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SUMMARY 
The world’s expanding cities are increasingly at risk from the effects of climate and global 

change. Heat extremes pose one of the greatest threats to urban residents, causing mortalities, 

detrimental health effects, economic losses, increased energy consumption, and exacerbated air 

pollution. Various frameworks, such as the Sponge City, have been proposed to increase the 

resilience of cities to multiple environmental threats, mainly relying on the ecosystem services 

provided by urban greenery. Sustainability initiatives in cities need to be implemented at a 

neighborhood scale capturing socio-demographic vulnerability to heat stress. However, high-

resolution, spatially distributed data to identify hotspots of heat exposure are largely unavailable. 

In particular, two major indicators of thermal comfort in cities - air temperature and 

evapotranspiration (ET) - urgently need to be characterized. However, their estimation remains 

challenging, as the urban environment is highly horizontally and vertically heterogeneous. The 

majority of existing process-based models cannot handle the urban complexity or be upscaled to 

the city-level. To address these challenges, state-of-the-art technologies, in particular, artificial 

intelligence (AI), remote sensing, and crowdsourcing, have emerged as a solution to producing 

spatially-explicit and accurate information on parameters relevant to climate change mitigation. 

Thus, the overall goal of this thesis was to characterize thermal comfort indicators in an urban 

environment at a high spatial resolution using remote sensing, open geodata, and AI. Berlin, 

Germany was selected as a test site due to its high risk of heat-related mortalities and established 

infrastructure of atmospheric measurements. This thesis had two main objectives: (1) investigate 

how accurately thermal comfort indicators in urban areas can be modeled at a high spatial 

resolution with remote sensing imagery, geodata, and meteorological data using machine learning 

(ML) regression algorithms; and (2) assess the spatial variation of the modeled ET and air 

temperature across Berlin to provide insights for urban planning and policy focused on heat risk 

mitigation.  

Air temperature, especially at night, is one of the best indicators of heat stress. However, high-

resolution air temperature maps have until recently remained unavailable due to the limited 

number of weather stations in cities. Thus, the first part of this thesis focused on how open source 

remote sensing, GIS and crowdsourced weather data can be used to predict the spatial distribution 

of nocturnal air temperature one day in advance at a 30-m resolution for the entire city using ML. 

Three predictor scenarios were tested: (1) only remotely sensed predictors, (2) only the spatially 

interpolated crowdsourced air temperature from the previous day, and (3) both remotely sensed 

and crowdsourced data from the previous day. As crowdsourced weather data is associated with 

more uncertainties than traditional weather data, validation was conducted with both 

crowdsourced and traditional air temperature data using “leave-one-date-out” cross-validation. 

Using only remotely sensed predictors showed the highest overall accuracy when validating with 

conventional air temperature data, demonstrating that remote sensing data is essential to 
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accurately predicting air temperature in the gaps between citizen weather stations. Accuracy was 

high when validating with crowdsourced data, but decreased when validating with independent 

data, likely due to the effect of citizen weather stations’ installation near building walls. However, 

accuracy was highest in highly sealed urban fabric, where heat risk is highest, demonstrating the 

utility of this approach for identifying dangerous hotspots within the city.  

ET provides an essential cooling service and approximates vegetation water use, making it a key 

indicator for urban sustainability. ET is defined as the water transported from the land surface to 

the atmosphere and consists mainly of soil evaporation, plant transpiration, and evaporation of 

intercepted precipitation in terrestrial ecosystems. To improve ET modeling in urban areas, a 

novel approach was developed which incorporated diverse land cover contributing to urban ET 

measurements into AI algorithms. Flux footprint modeling, which estimates the source area of 

eddy covariance (EC) measurements, was used to extract weighted averages from remote sensing 

and GIS data. Incorporating remotely sensed data extracted with flux footprints enhanced the 

predictive accuracy of models. In the next phase, this approach was extended to map ET for the 

entire city at a high spatial (10-m) and temporal (hourly) resolution for one year. Validation 

showed that this approach is reliable for mapping urban ET. Lastly, to support urban planning, 

the spatial variation of both modeled thermal comfort indicators was analyzed in relation to land 

cover. Ultimately, using remote sensing and AI to characterize indicators of thermal comfort can 

support urban planning aiming to reduce heat risks for an increasingly urban world population.  
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ZUSAMMENFASSUNG 
Wachsende Städte stehen weltweit zunehmend den Auswirkungen des globalen Wandels und 

Klimaveränderungen gegenüber. Extreme Hitzeperioden stellen eine der größten Bedrohungen 

für Stadtbewohner dar. Sie führen zu Todesfällen, gesundheitlichen Beeinträchtigungen, 

wirtschaftlichen Verlusten, erhöhtem Energieverbrauch und verstärkter Luftverschmutzung. 

Verschiedene städtebauliche Nachhaltigkeitskonzepte, wie z. B. die Sponge City, stützen sich vor 

allem auf die Ökosystemleistungen des städtischen Grüns und sollen die Resilienz von Städten 

gegenüber zahlreichen Umweltbedrohungen erhöhen. Nachhaltigkeitsinitiativen müssen auch auf 

der Ebene von Stadtteilen umgesetzt werden, um soziodemografische Anfälligkeiten für 

Hitzestress detailliert aufzugreifen. Entsprechend hochauflösende, räumlich verteilte Daten für 

die Identifizierung von Hotspots mit Hitzerisiko fehlen jedoch weitgehend. Insbesondere zwei 

wichtige Indikatoren für das thermische Wohlbefinden in Städten – Lufttemperatur und 

Evapotranspiration (ET) – müssen dringend charakterisiert werden. Ihre Abschätzung bleibt eine 

Herausforderung, da die städtische Umwelt horizontal und vertikal sehr heterogen ist. Die meisten 

der bestehenden prozessbasierten Modelle können die Komplexität von Städten nicht aufnehmen 

oder müssen auf die Stadtebene hochskaliert werden. Zur Bewältigung dieser Herausforderungen 

haben sich modernste Technologien, insbesondere künstliche Intelligenz (KI), Fernerkundung 

und Crowdsourcing, als Lösung für die Erstellung räumlich expliziter und genauer Informationen 

über die für den Klimaschutz relevanten Parameter erwiesen. Das übergeordnete Ziel dieser 

Arbeit war es daher, Indikatoren für das thermische Wohlbefinden in einer städtischen Umgebung 

mit hoher räumlicher Auflösung und unter Verwendung von Fernerkundung, offenen Geodaten 

und KI zu charakterisieren. Berlin wurde aufgrund des hohen Risikos von hitzebedingten 

Todesfällen und der etablierten Infrastruktur für atmosphärische Messungen als Studiengebiet 

ausgewählt. Die vorliegende Doktorarbeit verfolgt zwei Hauptziele: (1) Methoden zu 

untersuchen, wie Indikatoren zum thermischen Wohlbefinden in städtischen Gebieten mit 

Fernerkundung, Geodaten und meteorologischen Daten unter Verwendung von 

Regressionsalgorithmen des maschinellen Lernens (ML) in hoher räumlicher Auflösung 

modelliert werden können; und (2) die räumliche Variation der modellierten ET und 

Lufttemperatur in Berlin zu bewerten, um Erkenntnisse in die Stadtplanung und -politik zur 

Minderung des Hitzerisikos einfließen zu lassen. 

Die Lufttemperatur, insbesondere nachts, ist einer der besten Indikatoren für Hitzestress. 

Hochauflösende Karten der Lufttemperatur waren jedoch bislang aufgrund der begrenzten Anzahl 

von Wetterstationen in Städten nicht verfügbar. Daher konzentrierte sich der erste Teil dieser 

Arbeit auf die Frage, wie Open-Source Fernerkundungs-, GIS- und Crowdsource-Wetterdaten 

genutzt werden können, um die räumliche Verteilung der nächtlichen Lufttemperatur einen Tag 

im Voraus mit einer Auflösung von 30 m für die gesamte Stadt mittels ML vorherzusagen. Es 

wurden drei Vorhersageszenarien getestet: (1) ausschließlich fernerkundlich basiert, (2) 
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ausschließlich basiert auf räumlich interpolierte Crowdsource-Lufttemperatur Daten vom Vortag, 

und (3) basiert auf sowohl fernerkundlichen als auch Crowdsource-Daten vom Vortag. Da 

Crowdsource-Wetterdaten mit mehr Unsicherheiten behaftet sind als herkömmliche Wetterdaten, 

wurde die Validierung sowohl mit Crowdsource- als auch mit herkömmlichen 

Lufttemperaturdaten unter Verwendung einer "leave-one-date-out"-Kreuzvalidierung 

durchgeführt. Die Verwendung von Fernerkundungsdaten zeigte die höchste Gesamtgenauigkeit 

bei der Validierung mit herkömmlichen Lufttemperaturdaten. Das zeigt, dass 

Fernerkundungsdaten eine genaue räumliche Vorhersage der Lufttemperatur, ergänzend zu den 

privaten Wetterstationen von Bürgern, ermöglichen. Die Genauigkeit war bei der Validierung mit 

Crowdsource-Daten hoch, nahm jedoch bei der Validierung mit unabhängigen Daten ab, was 

wahrscheinlich auf die Installation der privaten Wetterstationen in der Nähe von Gebäudewänden 

zurückzuführen ist. Die Genauigkeit war jedoch in stark versiegelten städtischen Strukturen am 

höchsten, in denen das Hitzerisiko zugleich am stärksten ausgeprägt ist. Das zeigt den Nutzen 

dieses Ansatzes für die Identifizierung gefährlicher Hotspots in der Stadt. 

ET entspricht dem Wasserverbrauch von Vegetation und leistet somit einen wesentlichen Beitrag 

zur Abkühlung, welcher sie zu einem Schlüsselindikator für urbane Nachhaltigkeit macht. ET ist 

definiert als das Wasser, welches von der Landoberfläche in die Atmosphäre transportiert wird. 

Sie besteht hauptsächlich aus Bodenverdunstung, Transpiration über Pflanzen und Evaporation 

von interzeptierten Niederschlägen innerhalb terrestrischer Ökosysteme. Um ET-Modellierungen 

in städtischen Gebieten zu verbessern, wurde ein neuartiger Ansatz entwickelt, der verschiedene 

Landbedeckungen in KI-Algorithmen integriert. Die Flux-Footprint-Modellierung, welche den 

räumlichen Fußabdruck der Eddy-Kovarianz-Messungen (EC) schätzt, wurde verwendet, um 

gewichtete Mittelwerte aus Fernerkundungs- und Geoinformationsdaten zu gewinnen. Die 

Einbeziehung von Fernerkundungsdaten aus den Flux-Footprints, verbesserte die 

Vorhersagegenauigkeit der Modelle. In der nächsten Phase wurde dieser Ansatz erweitert, um die 

ET für die gesamte Stadt mit einer hohen räumlichen (10 Meter) und zeitlichen (stündlich) 

Auflösung für ein Jahr zu modellieren. Die Validierung zeigte, dass dieser Ansatz für die 

Kartierung der ET in Städten zuverlässig ist. Zur stadtplanerischen Verbesserung wurden 

schließlich die räumlichen Variationen der beiden modellierten Indikatoren für das thermische 

Wohlbefinden bezüglich verschiedener Landbedeckungsklassen analysiert. Somit kann der 

Einsatz von Fernerkundung und KI zur Charakterisierung von Indikatoren für das thermische 

Wohlbefinden Stadtkonzepte unterstützen, welche auf die Verringerung von Hitzerisiken für eine 

zunehmend urbane Weltbevölkerung abzielen. 
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Chapter 1: Introduction 

This thesis is devoted to better modeling and understanding two key thermal comfort indicators 

(evapotranspiration (ET) and air temperature (Tair)) using remote sensing, open geodata and 

artificial intelligence. The following sections provide an overview of how urbanization affects 

human well-being, especially in the context of heat risk (Section 1.1.1), present challenges in this 

area of research (Section 1.1.2), and introduce how state-of-the-art technologies can be used to 

characterize two key thermal comfort indicators (ET and Tair) (Section 1.2). The study area is 

introduced in Section 1.3. Finally, the research questions and objectives and the structure of the 

thesis are presented in Sections 1.4 and 1.5, respectively. 

1.1 BACKGROUND AND MOTIVATION 

1.1.1 THE EFFECTS OF URBANIZATION ON HUMAN WELL-BEING AND HEALTH 
 A rapidly growing proportion of the world’s population resides in cities; currently, 55% of 

the 7.6 billion global population is urban, which is expected to increase to 68% by 2050 (United 

Nations, 2019). Climate and global change are degrading the quality-of-life of urban dwellers, 

where heat extremes, water insecurity, and flooding are even greater risks than in rural areas 

(Kundzewicz et al., 2014; Li and Bou-Zeid, 2013; Manoli et al., 2019). One of the greatest threats 

to residents of urban settlements are heat extremes, whose risk is exacerbated from the interaction 

between increasingly frequent heat waves and the urban climate (Li and Bou-Zeid, 2013; Meehl 

and Tebaldi, 2004). 

 Heat stress is amplified in cities due to the urban heat island (UHI) effect, which describes 

the higher air and surface temperatures in dense urban areas compared to their rural surroundings 

(Oke, 1982; Voogt and Oke, 2003). The land use change associated with urbanization drives the 

UHI effect by increasing solar absorption, heat trapping, and anthropogenic heat from vehicles, 
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industry, and buildings, while decreasing ET from vegetation (Christen and Vogt, 2004; Oke et 

al., 1991). During heatwave events, the UHI effect magnifies exposure to extreme heat, leading 

to detrimental effects on human health and increased mortality (Dousset et al., 2011; Kovats and 

Hajat, 2008; Mora et al., 2017). Heatwaves are one of the most lethal climate-related events (Mora 

et al., 2017), with heat-related mortalities reported for cities around the world (Dousset et al., 

2011; Schifano et al., 2009; Shaposhnikov et al., 2014). In Europe, heatwaves accounted for more 

than 123,000 fatalities between 1980 and 2020, or more than 85% of fatalities from all weather-

related events (EEA, 2022a). Extreme heat affects human health detrimentally, aggravating 

respiratory and cardiovascular disease directly (Kovats and Hajat, 2008) and indirectly through 

the intensification of air pollution (Krug et al., 2019). Heat exposure is especially dangerous for 

vulnerable populations, including the elderly, infants, and persons with chronic disease (Kovats 

and Hajat, 2008). Urban heat is also associated with higher energy demand from air conditioning, 

leading to more carbon emissions and financial burden on low-income residents (Santamouris, 

2020). 

 ET enhances thermal comfort, reduces stormwater runoff, and approximates the irrigation 

water demand of green spaces, making it a key indicator for urban sustainability and resilience 

(Saher et al., 2021). Terrestrial ET is defined as the water transported from the land surface to the 

atmosphere (Wang and Dickinson, 2012). The main sources of ET are soil evaporation, plant 

transpiration, and interception loss (Miralles et al., 2020) (Figure 1.1), with transpiration 

contributing 80 - 90% of ET in vegetated ecosystems (Jasechko et al., 2013). Transpiration, the 

release of water vapor into the atmosphere occurring when plants open their stomatal pores, is a 

necessary cost of photosynthesis (Wang and Dickinson, 2012). The energy required for the phase 

change from liquid water to water vapor (transpiration) removes heat from the leaf, leading to a 

cooling effect (Wang and Dickinson, 2012). Evaporation also cools the land surface through the 

energy absorbed during the phase change (Wang and Dickinson, 2012). Interception loss, or the 

evaporation of intercepted precipitation, is a significant source of ET in natural environments, 

especially in forests (Miralles et al., 2020). Interception loss plays an even larger role in cities due 

to their impervious surfaces (Ramamurthy and Bou-Zeid, 2014). In cities, anthropogenic 

emissions also contribute to ET. Human activities, including building energy use, vehicle traffic, 

industry, and human metabolism, release water vapor (Karsisto et al., 2016; Kotthaus and 

Grimmond, 2012; Ward et al., 2013). However, these anthropogenic sources of ET are not 

beneficial for urban heat mitigation (Rocha et al., 2022a). 
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Figure 1.1: The main components of terrestrial ET (also referred to as ‘evaporation’ and 

‘latent heat flux’) in natural ecosystems (Miralles et al., 2020). The pie chart shows the 

approximate share of each component globally according to Wei et al. (2017). The bottom-

right box portrays a cross-section of a wet leaf, with liquid water transitioning into vapor 

on its surface (interception loss) and inside the leaf (transpiration). 

 Replacing vegetation with artificial surfaces generally leads to lower ET from transpiration 

over urban areas, causing higher Tair (the UHI effect) (Wong et al., 2021). While ET itself 

modifies the microclimate, it is at the same time deeply driven by atmospheric conditions, 

including Tair, solar radiation, and relative humidity (Foltýnová et al., 2020). Aside from 

microclimate, ET is dependent on land cover characteristics, including vegetation type, volume, 

species and soil moisture, which are highly spatially variable within an urban environment (Nouri 

et al., 2015). 

 The utility of urban ET goes beyond mitigating heat risk through evaporative cooling, as ET 

is also a central component in the hydrological cycle (Gessner et al., 2014; Nouri et al., 2015). 

Urban water interfaces are defined as boundary zones between components or subsystems of the 

entire urban water system between which fluxes of water, matter, and energy occur (Gessner et 

al., 2014) (Figure 1.2). ET constitutes a major part of a continuous flow of water within the soil-

plant-atmosphere continuum, leaving soil surfaces through evaporation and plant stomata through 

transpiration (Damm et al., 2018; Wang and Dickinson, 2012). Thus, ET bridges one of the main 

urban water interfaces: the interface between the soil, vegetation, and atmosphere (Damm et al., 
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2018; Gessner et al., 2014). Sustainably managing water resources in urban areas, which are 

increasingly under pressure from climate and global change, requires an improved understanding 

of urban water interfaces (Gessner et al., 2014). Quantifying ET is crucial to reducing the water 

footprint of cities by optimizing the irrigation needed to maintain the ecosystem services provided 

by urban vegetation, such as cooling (Nouri et al., 2019). Characterizing ET in cities can also 

resolve how much rainwater remains available for anthropogenic use, such as toilet flushing 

(Gessner et al., 2014). Finally, lower ET rates in cities, combined with limited stormwater 

infiltration over impervious surfaces, result in higher flooding risk (Berland et al., 2017; Wan et 

al., 2021). 

 

Figure 1.2: The urban water cycle (Gessner et al. (2014); modified by Kuhlemann (2022)). 

 Urban greening has emerged as one of the main solutions for the various threats to the 

livability of cities, including extreme heat and flooding (Gaffin et al., 2012; Wong et al., 2021). 

Vegetation and the ecosystem services it provides, with one of the major ones being cooling via 

ET, are central components of various urban sustainability concepts, including Nature-Based 

Solutions (Somarakis et al., 2019), Sponge Cities (Gaines, 2016), Water Sensitive Urban Design 

(Fletcher et al., 2008), and Low-Impact Development (Qin et al., 2013). Urban green 

infrastructure (UGI) such as urban parks and street trees can lower Tair during heat waves by 

enhancing ET and providing shade, while also providing numerous additional co-benefits, 

including recreational space, improved air quality, and carbon sequestration (Wong et al., 2021). 

To properly implement and manage UGI in order to promote thermal comfort in cities, however, 

spatially distributed, high-resolution data on where hotspots of heat risk (high Tair and low ET) 
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occur within an urban area is needed, but has until now remained largely unavailable (Saher et 

al., 2021; Zhou et al., 2019). 

1.1.2 RESEARCH CHALLENGES IN PROVIDING DATA TO SUPPORT UHI 
MITIGATION 
 Characterizing indicators of urban heat, such as Tair and ET, is challenging due to the high 

heterogeneity of urban environments, where artificial and natural components intersect in a 

complex mosaic (Gessner et al., 2014; Middel et al., 2022). Most existing process-based models 

have not been developed to handle the horizontal and vertical complexity of cities, with the 

parameters of urban climate and water systems constantly varying dynamically in both space and 

time (Gessner et al., 2014; Ho et al., 2014; Saher et al., 2021). To plan sustainable and climate-

resilient cities, accurately characterizing thermal comfort at a high spatio-temporal resolution is 

needed (Middel et al., 2022; Milojevic-Dupont and Creutzig, 2021). State-of-the-art technological 

and methodological approaches, such as remote sensing, artificial intelligence (AI), and novel 

sensor data offer a way forward to better modeling urban heat. This thesis aims to better 

characterize the soil-vegetation-atmosphere interface in urban areas, which can support both heat 

risk mitigation and sustainable water management. 

1.1.2.1 TAIR IN URBAN AREAS 
 The majority of work on mapping urban heat has utilized land surface temperature (LST) 

derived from satellite imagery (Zhou et al., 2019). Tair is a more appropriate indicator of human 

health risk than LST (Ho et al., 2016). However, the overwhelming focus on LST in UHI studies 

has mainly been motivated by the availability of spatially explicit data, while Tair has until 

recently only been measured by a limited set of meteorological stations widely spaced within a 

city (Muller et al., 2013). Tair is highly spatially variable at a fine scale (1-100 m) in urban areas 

due to contrasting land cover, sun exposure, wind dynamics, and vegetation types (Oke and 

Maxwell, 1975; Voogt and Oke, 2003).  

 The existing approaches to model and map Tair using remote sensing data include (1) 

temperature vegetation index (TVX) methods, (2) energy balance models, and (3) statistical and 

machine learning regression models (Ho et al., 2014; Venter et al., 2020). The TVX method is 

based upon the negative semi-empirical relationship between NDVI and LST, but it can only 

estimate Tair for large areas with gradual temperature changes at a coarse resolution, making it 

inappropriate for urban areas (Ho et al., 2014; Stisen et al., 2007). Energy balance models estimate 

Tair based on the principles of thermodynamics, but rely on parameters for which spatially 

distributed, high-resolution data is rarely available in cities (Mostovoy et al., 2006; Sun et al., 

2005). The UrbClim model estimates urban Tair based on a simple parameterization of the urban 

surface energy balance coupled to a 3-D atmospheric boundary layer scheme (De Ridder et al., 

2015). However, due to model simplifications necessary to increase computational speed, the 
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UrbClim model cannot account for several key aspects of the urban climate, including local 

circulation patterns (the city breeze) and the influence of the urban canopy layer (De Ridder et 

al., 2015). Statistical approaches are based on empirical regression modeling, which includes 

linear regression (Nichol et al., 2009) or ML regression (see Section 1.2.1) and are most promising 

for Tair mapping in urban areas (Ho et al., 2014; Venter et al., 2020). 

 Recently, the proliferation of private weather stations providing crowdsourced weather data 

in cities worldwide has made it possible to measure microclimatic variation in a cost-effective 

way (Fenner et al., 2017; Meier et al., 2017; Muller et al., 2015; Napoly et al., 2018). Although 

much more densely spaced than traditional meteorological stations (with hundreds to thousands 

of stations within a city), citizen weather stations such as “Netatmo” are too unevenly distributed 

and spatially clustered (Fenner et al., 2017; Meier et al., 2017), making spatial interpolation 

insufficient to represent microscale Tair variation adequately (Ho et al., 2016; Venter et al., 2020). 

Linking crowdsourced Tair data (included within the term “geodata” throughout this thesis) to 

remotely sensed satellite imagery provides the opportunity to upscale these measurements based 

on attributes such as vegetation density, morphology, and albedo. 

1.1.2.2 ET IN URBAN AREAS 
 Despite the importance of ET for urban heat mitigation and the urban water cycle, ET 

estimation in urban areas remains a critical area of research, with most ET studies focusing on 

agricultural or natural areas (Nouri et al., 2015, 2013; Saher et al., 2021). Characterizing ET is 

highly challenging even in a predominantly homogeneous, natural environment (Damm et al., 

2018). However, the urban environment is exceptionally heterogeneous, with numerous interfaces 

between artificial and natural systems (Gessner et al., 2014) and a high variation in soil attributes, 

land cover, vegetation type and height, and microclimate (Nouri et al., 2013). Therefore, similarly 

to Tair, the spatial variability of ET occurs at a fine scale in cities. Point-based field measurements 

of ET, such as sap flow and lysimeters, cannot capture the spatial variation of ET over urban 

fabric (Litvak et al., 2017; Nouri et al., 2013); furthermore, they are difficult to deploy in cities in 

a distributed manner due to lack of accessibility and risk of vandalism (Gillefalk et al., 2022). 

 Eddy covariance (EC) is one of the best-suited methods to directly measure urban ET (Nouri 

et al., 2013). The EC micrometeorological technique, which is most commonly deployed on a 

fixed tower, measures high speed fluxes of water, heat, gas, and momentum in the atmospheric 

boundary layer in a large area (up to 1 km2) (Nouri et al., 2013). Nevertheless, the EC 

instrumentation is still a point-based measurement which is limited by large data gaps (20-60 %) 

due to equipment failures and low turbulence conditions (Moffat et al., 2007). Furthermore, a 

constantly-changing upwind area (a ‘footprint’ or ‘source area’) contributes to the ET signal 

measured from an EC tower (Foken, 2016; Kljun et al., 2002; Schmid and Oke, 1990). Due to 

continuous footprint variation, heterogeneous land cover has a dynamic effect on EC 
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measurements (Kotthaus and Grimmond, 2014). Linking EC and remote sensing data holds 

potential for upscaling urban ET, an approach which has so far been hampered by the lack of ET 

measurements over a variety of land covers (Wang et al., 2016). 

 Due to the constraints of field measurements, physical models have mainly been used to 

estimate urban ET (Nouri et al., 2015; Saher et al., 2021). Two of the most common types of 

models, surface energy balance (SEB) models and physically based hydrological models, were 

not developed for urban areas and therefore do not perform well for urban ET estimation (Nouri 

et al., 2015; Saher et al., 2021). Models specifically developed for urban applications, such as 

urban land-surface models (ULSMs), are generally not applied to entire cities at a high resolution, 

due to the difficulty of estimating the input parameters in a heterogeneous urban terrain (Rocha 

et al., 2022b; Saher et al., 2021). For a more detailed overview of the available urban ET modeling 

approaches, refer to Sections 3.1 and 4.1 and to the review papers Saher et al. (2021) and Nouri 

et al. (2015). The premise of this thesis is to investigate if machine learning combined with remote 

sensing imagery and in situ data can overcome the shortcomings of physical models to better 

characterize urban ET at a high temporal and spatial resolution (Chapters 3-4). 

1.2 CHARACTERIZING THERMAL COMFORT INDICATORS USING AI 
AND REMOTE SENSING 
 In this work, state-of-the-art techniques (AI and remote sensing) are used to model thermal 

comfort indicators at a high spatio-temporal resolution. The following sections introduce the 

principles of AI and remote sensing and their utility for characterizing Tair and ET in an urban 

environment. 

1.2.1 ARTIFICIAL INTELLIGENCE 
 Artificial intelligence (AI) is an umbrella term comprising both machine learning (ML) and 

deep learning (DL) (Chollet and Allaire, 2018). AI falls within the domain of predictive modeling 

or statistical learning, a process of uncovering relationships within data to predict an outcome 

(Hastie et al., 2009; Kuhn and Johnson, 2013; Vapnik, 1999). ML and DL methods allow for the 

generalization of patterns on new data outside of the training sample (Vapnik, 1999). ML 

algorithms can address different learning tasks, with the main ones being classification and 

regression (Hastie et al., 2009; Kuhn and Johnson, 2013). The major paradigms of ML are 

supervised learning (where a target value is specified during training), unsupervised learning 

(where the target value is unknown), and reinforcement learning (learning through actions within 

an environment) (Hastie et al., 2009). For a more comprehensive introduction to ML, refer to 

Hastie et al. (2009) and Kuhn and Johnson (2013). Within the scope of this thesis, the focus is on 

supervised regression algorithms, which predict a numeric outcome (such as ET) by learning from 

ground-truth data (Kuhn and Johnson, 2013). 
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 AI methods have shown several advantages over process-based approaches due to their 

capacity to uncover patterns from data which are not yet well-defined in physical models and their 

superior accuracy for numerous applications (Reichstein et al., 2019). AI algorithms can also 

integrate diverse and large data into prediction and can facilitate interpretability by, for example, 

providing variable importance (Kuhn and Johnson, 2013; Roscher et al., 2020a). Spatial 

prediction, or mapping, of biogeophysical parameters such as photosynthesis or ET at local to 

global scales is one realm where supervised ML regression has been especially successful 

(Reichstein et al., 2019). AI also holds great potential to advance resilience to climate change in 

urban areas (Creutzig et al., 2019; Middel et al., 2022; Milojevic-Dupont and Creutzig, 2021; 

Rolnick et al., 2023). Using AI methods to link satellite data with other datasets can generate 

spatially explicit products relevant for climate change mitigation, which can facilitate 

neighborhood-scale policy and urban planning solutions (Creutzig et al., 2019; Milojevic-Dupont 

and Creutzig, 2021). 

 One of the main sub-categories of supervised ML regression are tree-based models, which 

contain nested “if-then” statements that split the data into possible outcomes (Hastie et al., 2009; 

Kuhn and Johnson, 2013). While tree-based approaches are advantageous due to their capacity to 

easily integrate different types of predictors and implicit feature selection, simpler tree-based 

models suffer from model instability and poor accuracy (Kuhn and Johnson, 2013). To resolve 

this problem, ensemble techniques such as bagging were introduced in the 1990s to provide more 

stable predictions by combining many models’ predictions (Kuhn and Johnson, 2013). One of the 

resulting algorithms, Random Forests, has proved to be one of the most popular ML algorithms 

due to its high and consistent predictive accuracy for various applications and particularly in the 

remote sensing field (see Chapters 2-4). Boosting, another ensemble approach, which combines 

(or ‘boosts’) the predictions of several “weak” classifiers to produce a superior accuracy, was also 

introduced in the early 1990s (Hastie et al., 2009; Kuhn and Johnson, 2013). Combining the 

concept of boosting with regression trees has resulted in powerful algorithms such as stochastic 

gradient boosting (Chapter 2), where numerous trees with a restricted depth (number of splits) are 

used to generate a prediction (Kuhn and Johnson, 2013). 

 Neural networks are a type of nonlinear empirical model which estimates the outcome using 

hidden units, or an intermediary set of unobserved variables (Hastie et al., 2009; Kuhn and 

Johnson, 2013). The simplest type of neural network, still categorized as just ML, has a single 

layer of hidden units (a single-layer feed-forward network) and is referred to as an artificial neural 

network (ANN) (Hastie et al., 2009; Kuhn and Johnson, 2013). Averaging the predictions of 

several ANNs, similarly to ensemble methods for regression trees, is beneficial for producing a 

more stable prediction (Kuhn and Johnson, 2013); such an algorithm (model averaged neural 

network) is applied in Chapter 2. A deep neural network (DNN) contains more layers of hidden 
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units and is therefore considered ‘deep’ learning, which is in fact a subfield of machine learning 

(Chollet and Allaire, 2018). Adding convolutional layers, which can learn local spatial or 

temporal patterns, to DNNs produces a convolutional neural network (CNN) (Chollet and Allaire, 

2018). For instance, a type of CNN suitable for time-series analysis (1D CNN) is used in Chapter 

3 to predict ET. 

1.2.2 REMOTE SENSING 
 Remotely-sensed data provides spectral, thermal, and morphological information about the 

landscape in a spatially explicit manner. Satellite remote sensing is a cost-effective way of 

providing regularly-updated, spatially distributed data, especially in cities, where dense networks 

of in situ measurements are not feasible due to both cost and permits. Most of the processes related 

to the soil-plant-atmosphere continuum, such as ET, cannot directly be observed by remote 

sensing (Damm et al., 2018). However, various proxies, which have a relationship with the 

process of interest, can be detected by changes in absorption or scattering observable by remote 

sensing (Damm et al., 2018). 

 Both ET and Tair vary based on vegetation density, vitality, height, 3D structure (or exposure 

to sun and wind), imperviousness, soil moisture, and land cover (or the thermal properties of the 

surface cover), which are highly variable in urban areas (Nouri et al., 2013; Oke and Maxwell, 

1975; Voogt and Oke, 2003). Satellite imagery can directly estimate some of these attributes (such 

as vegetation height) or serve as a proxy of others (such as vegetation indices as a proxy of 

vegetation vitality). Medium-resolution satellite imagery is especially appropriate for large-scale 

modeling of urban heat and for urban planning applications due to its relatively high spatial 

resolution (10-30 m for spectral imagery) and open access (Venter et al., 2020), with the best-

known examples being the Landsat (Landsat 7 and 8) and Sentinel-2 satellites. Vegetation indices, 

which are usually derived from spectral data, can be used as proxies of leaf area index (LAI), 

canopy density, and vegetation health (Saher et al., 2021). The Normalized Difference Vegetation 

Index (NDVI) is the most commonly used vegetation index in both ET and Tair studies in urban 

areas (Ho et al., 2014; Nouri et al., 2015; Saher et al., 2021). 

 Thermal infrared (TIR) remote sensing data has most commonly been used to estimate land 

surface temperature (LST) and the surface urban heat island (SUHI), which is defined as the 

radiative temperature difference between urban and non-urban surfaces (Zhou et al., 2019). TIR 

data can be used to estimate leaf temperature, which is related to transpiration rates (Damm et al., 

2018). Though most UHI studies have focused on utilizing LST directly as an indicator of urban 

heat, this research field has recently shifted its focus to linking satellite imagery to in-situ 

measurements in order to model more appropriate indicators of human health and thermal 

comfort, such as Tair (Ho et al., 2016; Zhou et al., 2019). In fact, LST and Tair are considerably 

spatially and temporally mismatched over urban areas due to the influence of wind, turbulence, 
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the 3-D urban structure, and other factors (Azevedo et al., 2016; Mirzaei and Haghighat, 2010). 

Nevertheless, LST can approximate the thermal properties of the land surface, including heat 

capacity and thermal conductivity, and is therefore frequently used as an input parameter in 

empirical and physical models estimating Tair and ET (Bastiaanssen et al., 1998; Zhou et al., 

2019). 

 Active remote sensing systems such as light detection and ranging (LiDAR) can be used to 

estimate 3-D structure (building height and vegetation height), which has a major influence on 

urban microclimate as a driver of wind flow, shade, and the volume of vegetation available for 

ET (Damm et al., 2018; Masson et al., 2020). Vegetation structure, including its height and 

morphology, is an indicator of several factors influencing transpiration, including the number of 

leaf stomata, canopy conductance, and canopy roughness (Damm et al., 2018; Yebra et al., 2013). 

Finally, several sources of satellite imagery, such as Sentinel-1 Synthetic Aperture Radar (SAR) 

data, another product of active remote sensing, still remain unexplored for urban ET and Tair 

estimation and are discussed in section 5.3. For a general overview, Damm et al. (2018) provides 

a comprehensive review of the remote sensing imagery suitable for studying plant-water relations, 

with a focus on transpiration (Figure 1.3). Figure 1.3 shows how remote sensing technologies can 

approximate physiological, biochemical, and structural parameters related to plant water 

availability, several of which have a relationship to transpiration (Damm et al., 2018). As a note, 

the terms “geodata” and “GIS data” are used in this thesis to refer broadly to georeferenced 

information, which includes products derived from remote sensing imagery (such as building 

height data) in addition to crowdsourced weather data. 
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Figure 1.3: An overview of the remote sensing technology relevant for assessing plant-water 

relations, including transpiration (Damm et al., 2018). Bold black lines refer to the 

application spectrum of the remote sensing technology, while dashed lines imply limited 

applicability. Moving in the right direction, water availability decreases, with 

corresponding adaptation mechanisms by plants. Purple arrows show fluorescence 

radiation emission from plants, while red arrows indicate thermal radiation emission. 

 Remote sensing predictors of Tair used in regression modeling include LST, NDVI, sky 

view factor (SVF), and land cover (Benali et al., 2012; Ho et al., 2014; Mostovoy et al., 2006). 

For an overview, the main modeling approaches used to estimate urban Tair and ET are outlined 

in section 1.1.2. Until recently, regression models estimating Tair relied on Moderate Resolution 

Imaging Spectroradiometer (MODIS) satellite data at a 1 km resolution, which is insufficient for 

urban planning (Venter et al., 2020). This thesis itself is situated at the forefront of the use of ML 

regression to map urban Tair at a higher resolution by integrating crowdsourced weather data and 

medium-resolution satellite imagery (Landsat 8) into modeling (Chapter 2). 

 Recent studies have shown that integrating a variety of remote sensing and GIS data is 

indispensable to modeling urban ET (Nouri et al., 2015; Saher et al., 2021). Satellite imagery has 

generally been used to provide information on soil moisture and plant traits in ET models (Nouri 

et al., 2015). Remote sensing data most commonly used in urban ET models are vegetation indices 

and LST (Nouri et al., 2015). Satellite imagery has recently shown potential to serve as a proxy 

of anthropogenic heat, defined as the heat emitted from human metabolism, air conditioning and 

heating, vehicle exhaust, and industry (Allen et al., 2011; Faridatul et al., 2020). For instance, 

Faridatul et al. (2020) adapted the Surface Energy Balance Algorithm for Land (SEBAL) to the 

urban environment by adding anthropogenic heat to the energy budget based upon a land cover 

map. Although anthropogenic heat plays a substantial role in the urban surface energy budget, it 

is omitted from most remote sensing-based ET models, leading to an underestimation of ET 

(Allen et al., 2011; Cong et al., 2017; Faridatul et al., 2020). Finally, it should be noted that though 

land cover drives the spatial variation in ET in an urban environment, meteorological conditions 

force most of the temporal variation in ET, making meteorological data essential to ET estimation 

(Nouri et al., 2015; Rocha et al., 2022b). Accurate estimates of Tair in particular are critical to 

quantifying ET (Damm et al., 2018). 

1.3 STUDY AREA 
 Berlin is the largest city in Germany with respect to both population (3.7 million) and area 

(891 km2) (Statistical Office of Berlin-Brandenburg, 2019). Berlin is a mid-latitude city 

characterized by a climate transitioning between a temperate oceanic and a humid continental 

climate with warm summers (Beck et al., 2018). The long-term annual mean (1991-2020) Tair 
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and precipitation are 10.4 ℃ and 575 mm, respectively (DWD, 2022). Berlin has a fairly flat 

topography with an average elevation of 34 m above sea level. 

 Berlin is a hotspot for heat stress-related mortalities (Gabriel and Endlicher, 2011; Krug et 

al., 2019), with 5% of all deaths between 2001 and 2010 attributed to elevated Tair (Scherer et 

al., 2013). Around 34% of Berlin’s land surface is impervious (Senate Department for Urban 

Development and Housing, 2017), which is mainly concentrated around the city center (Figure 

1.4). Heat-stress risk is most pronounced in the mid-rise dense residential areas in the city center 

and high-rise multi-story houses in the eastern part of the city, where higher Tair coincides with 

a high proportion of elderly residents (Dugord et al., 2014). At the same time, Berlin has been 

identified as a pioneer city worldwide in the use of green infrastructure to reduce its heat risk and 

water footprint (Liu and Jensen, 2018). According to the European Environment Agency, Berlin 

has one of the highest percentages of ‘green infrastructure’ (51%), a term comprising both green 

(vegetated) and blue (water) spaces, among the 38 European capital cities (EEA, 2022b). Surface 

water accounts for 6.6% of the city’s area (SenUVK, 2021). 

 Berlin is a suitable pilot city for modeling thermal comfort indicators due to its exceptional 

infrastructure of atmospheric measurements. The Urban Climate Observatory (UCO) Berlin has 

been operated by the Chair of Climatology at the Technische Universität Berlin since 1990 and 

thus represents one of the longest time-series of data on urban climates in the world (Scherer et 

al., 2019). The UCO Berlin provided additional independent Tair data for validation of modeled 

Tair in Chapter 2. Furthermore, two flux towers, TUB Campus Charlottenburg (TUCC) and 

Rothenburgstrasse (ROTH), were installed in 2014 and 2018, respectively, by the UCO Berlin 

(Figure 1.4). These flux towers provide continuous measurements of heat fluxes using the EC 

technique, including ET, and are central to the work in Chapters 3-4. For a detailed description of 

the flux towers, refer to Section 3.2.1. 
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Figure 1.4: Land use land cover (LULC) map of Berlin, Germany (Urban Atlas (2018); 

Rocha et al. (2022a); modified). The two flux towers are marked with black dots. 

1.4 RESEARCH QUESTIONS AND OBJECTIVES 
 The overall goal of this thesis is to better characterize the spatial variation of two essential 

thermal comfort indicators (Tair and ET) in an urban environment using open-source remote 

sensing imagery, geodata, and AI. To support this goal, this thesis has two main objectives:  

 

Objective 1: Investigate how accurately thermal comfort indicators in urban areas (ET and Tair) 

can be modeled at a high spatial resolution with remote sensing imagery, geodata, and 

meteorological data using ML regression algorithms (Chapters 2-4).  

 

Objective 2: Assess the spatial variation of the modeled ET and Tair across Berlin to provide 

insights for urban planning and policy focused on heat risk mitigation (Chapters 2 and 4). 

 

 Tair, especially at nighttime, is one of the best indicators of heat-related mortality and 

adverse health effects (Dousset et al., 2011; Gabriel and Endlicher, 2011; Ho et al., 2016; Kovats 

and Hajat, 2008). Nevertheless, the remote sensing field has so far focused on mapping LST due 

to the relative ease of attaining spatially explicit data, despite its poor link to human heat exposure 

(Ho et al., 2016; Zhou et al., 2019). Tair products with a high spatial resolution in urban areas are 

currently lacking, but could greatly benefit urban planners aiming to reduce heat-related human 

mortality and health risks. To investigate how the emergence of crowdsourced information can 
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facilitate the mapping of Tair at a high spatial resolution, the first research question of this thesis 

is:  

 

Research Question I: How can open source remote sensing, GIS and crowdsourced weather data 

be used to predict the spatial distribution of nocturnal Tair in an urban area? (Chapter 2) 

 

 The developed methodology demonstrated the potential of ML regression to accurately 

model and map nocturnal Tair using medium-resolution satellite data and other open-source 

geodata. However, another key indicator of thermal comfort, ET, still remained poorly 

characterized in urban areas. The importance of ET in cities is far-reaching, as this parameter can 

approximate the cooling capacity of green spaces as well as their water demand and consumption 

(Saher et al., 2021; Shashua-Bar et al., 2011). Thus, a better understanding of the spatio-temporal 

distribution of ET is essential to inform the management of green infrastructure in order to reduce 

heat risk. Similarly to Tair, the potential of using AI to model ET in urban areas was hampered 

by the lack of sufficient training data until now. 

 In order to map ET at a high spatial resolution using an AI approach, it was necessary to first 

establish a workflow of integrating remote sensing and GIS data into ML regression algorithms. 

Flux footprint modeling, a method to estimate the constantly-changing source area of ET 

measurements from flux towers, was tested as a solution to linking heterogeneous urban land 

cover to the measured ET signal. The second research question of this thesis therefore addressed 

the gains in predictive accuracy from integrating remote sensing and GIS data over simply using 

meteorological data: 

 

Research Question II: Is there a benefit to integrating remote sensing and GIS data extracted by 

flux footprints to model urban ET at a high temporal (half-hourly) resolution? (Chapter 3) 

 

 Having demonstrated the potential of this methodology for modeling urban ET at a high 

temporal resolution, it was then possible to further develop this approach to map ET at a high 

spatio-temporal resolution in Berlin. Thus, the third research question of this thesis focused on 

upscaling ET to the city-scale: 

 

Research Question III: Can ET be accurately mapped at a high spatial (10-m) and temporal 

(hourly) resolution in an urban environment with remote sensing imagery, geodata, and 

meteorological data using ML and flux footprint modeling? (Chapter 4) 
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 While this thesis was grounded in methodological advances which facilitated the modeling 

and mapping of thermal comfort indicators (Objective 1), its ultimate goal was to provide insights 

relevant for urban planners and policy-makers focused on alleviating the risk of heat stress 

(Objective 2). Therefore, the fourth research question focused on understanding the spatial 

variation of the modeled thermal comfort indicators: 

 

Research Question IV: What is the spatial variation of modeled ET and air temperature across 

Berlin and what implications does this variation have for urban planners? (Chapters 2-4) 

 

 The spatially explicit products of this thesis can support urban sustainability measures 

focused on heat risk mitigation and greening. Furthermore, the use of AI and remote sensing to 

identify hotspots of heat risk can serve as a blueprint for “Smart City” applications tackling the 

challenges of climate change. 

1.5 THESIS OUTLINE 
 Following this introduction, three main research chapters each constitute a stand-alone 

manuscript published or submitted to an international peer-reviewed journal. A schematic 

overview of the main topics of each research chapter is given in Figure 1.5. Chapter 2 addresses 

Research Question I and objectives 1 and 2 (published in IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing). Chapter 3 covers Research Question II and 

Objective 1 (published in Science of the Total Environment). Chapter 4 covers Research Question 

III and objectives 1 and 2 (in review with Remote Sensing of Environment). Please refer to 

Appendix D for a complete list of publications. Research Question IV, a cross-cutting question 

concerning the spatial variation of the modeled thermal comfort indicators, is covered in all 

research chapters. In Chapter 5, the thesis is synthesized, providing a summary of the main results 

and an outlook for future research.  
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Figure 1.5: Conceptual graphic visualizing the thesis structure. 
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Chapter 2: Summer nights in Berlin, 
Germany: Modeling air temperature 
spatially with remote sensing, 
crowdsourced weather data, and 
machine learning 

This study was published as: 

Vulova, S., Meier, F., Fenner, D., Nouri, H., Kleinschmit, B., 2020. Summer Nights in Berlin, 

Germany: Modeling Air Temperature Spatially With Remote Sensing, Crowdsourced Weather 

Data, and Machine Learning. IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing 13, 5074–5087. https://doi.org/10.1109/JSTARS.2020.3019696  

This is the postprint version of the article. 

ABSTRACT 
Urban areas tend to be warmer than their rural surroundings, well-known as the “urban heat 

island” effect. Higher nocturnal air temperature (Tair) is associated with adverse effects on human 

health, higher mortality rates, and higher energy consumption. Prediction of the spatial 

distribution of Tair is a step towards the “Smart City” concept, providing an early warning system 

for vulnerable populations. The study of the spatial distribution of urban Tair was thus far limited 

by the low spatial resolution of traditional data sources. Volunteered geographic information 

(VGI) provides alternative data with higher spatial density, with citizen weather stations 

monitoring Tair continuously in hundreds or thousands of locations within a single city. In this 

study, the aim was to predict the spatial distribution of nocturnal Tair in Berlin, Germany, one 

day in advance at a 30-m resolution using open-source remote sensing and geodata from Landsat 

and Urban Atlas, crowdsourced Tair data, and machine learning (ML) methods. Results were 

tested with a “leave-one-date-out” training scheme (testingcrowd) and reference Tair data 

(testingref). Three ML algorithms were compared - Random Forest (RF), Stochastic Gradient 

Boosting (GBM), and Model Averaged Neural Network (avNNet). The optimal model based on 

accuracy and computational speed is RF, with an average RMSE for testingcrowd of 1.16 °C (R2 = 

0.512) and RMSE for testingref of 1.97 °C (R2 = 0.581). Overall, the most important GIS predictors 

https://doi.org/10.1109/JSTARS.2020.3019696
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were morphometric parameters and albedo. The proposed method relies on open-source datasets 

and can, therefore, be adapted to many cities worldwide. 

2.1 INTRODUCTION 
 Urbanization has been accelerating for the past few decades. According to the United 

Nations (United Nations, 2018), 60% of the global population will be concentrated in urban areas 

by 2030. Urban areas experience higher air and surface temperatures than surrounding rural areas, 

well-known as the urban heat island (UHI) effect (Voogt and Oke, 2003). The UHI is mainly 

driven by the modification of three-dimensional structure, albedo, photosynthetic capacity, land 

cover, and imperviousness of the landscape, which alters the surface energy balance, and 

anthropogenic heat from air conditioning, automobiles, and industry (Christen and Vogt, 2004). 

The UHI of mid-latitude cities is especially distinct during summer nights, when absorbed energy 

from daytime solar radiation is released, preventing ambient air temperature (Tair) from declining 

(Christen and Vogt, 2004).  

 By 2050, urban land expansion is projected to result in a warming of urban Tair of up to 3 

°C, increasing extreme heat risks for about half of the future urban population (Huang et al., 

2019). Extreme urban heat increases human mortality, with well-documented heat waves such as 

Paris in 2003 (>4000 deaths) (Dousset et al., 2011). The heat load to city dwellers is more 

pronounced at night, since daytime vulnerability may be reduced by modifying behavior, whereas 

the options to enhance sleeping conditions are limited (Gabriel and Endlicher, 2011; Kovats and 

Hajat, 2008). Elevated nighttime Tair prevent the human body from properly resting and enhance 

the risk of respiratory and cardiovascular health issues (Dousset et al., 2011). Populations such as 

elderly people, infants, and hospital patients are especially vulnerable to heat stress (Gabriel and 

Endlicher, 2011; Kovats and Hajat, 2008; Scherer et al., 2013). Summertime heat increases energy 

consumption due to air conditioning, straining electricity infrastructure and placing an additional 

financial burden on low-income households (Santamouris and Kolokotsa, 2015).  

 The population of Berlin, Germany, has already been adversely impacted by heat waves. 

Mortality rates increased up to 67.2% during extreme heat waves in Berlin from 1990 to 2006 

(Gabriel and Endlicher, 2011). From 2001 to 2010, 5% of all deaths in Berlin were linked to high 

summer Tair, primarily affecting people over the age of 65 (Scherer et al., 2013). Dugord et al. 

(2014) used simulated Tair for 6 AM in August 2000, population density, and the share of 

vulnerable people to assess heat-stress risk in Berlin, finding the highest risk in central residential 

areas and in high-rise multi-story houses in the eastern part of Berlin. Furthermore, the impact on 

human mortality during heat waves in Berlin is amplified by high ozone concentrations, 

highlighting the interactive effects of high Tair and air pollution (Krug et al., 2019).  
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 In order to mitigate heat risks for the urban population, high-resolution and spatially 

distributed Tair data is urgently needed (Scherer et al., 2013; Venter et al., 2020). Traditionally, 

ground-based measurements of Tair were limited to conventional weather stations, which are not 

sufficiently dense to portray intra-urban Tair variation. Higher-density Tair monitoring has been 

achieved by high-resolution measurement networks (Muller et al., 2013) and vehicle-mounted 

temperature sensors (‘traverses’) (Schmidt, 1927; Seidel et al., 2016; Shandas et al., 2019), but 

these approaches are costly to implement and maintain. Recently, crowdsourced atmospheric data 

has emerged as a source for low-cost, spatially dense, and long-term measurements of Tair in 

urban environments (Fenner et al., 2017; Meier et al., 2017; Napoly et al., 2018; Seebacher et al., 

2019; Venter et al., 2020). Crowdsourced Tair data from ‘Netatmo’ citizen weather stations 

(CWS), which belong to the realm of the ‘Internet of things’ and volunteered geographic 

information (VGI), has proved to be reliable to study urban Tair with its worldwide distribution, 

easy and free access, and high spatial density (Chapman et al., 2017; de Vos et al., 2020; 

Feichtinger et al., 2020; Fenner et al., 2017; Meier et al., 2017; Napoly et al., 2018; Nipen et al., 

2020). 

 Simply spatially interpolating Tair measurements based upon techniques such as inverse 

distance weighting (IDW) or kriging to map Tair is insufficient, as microscale variations in Tair 

occur due to differences in surface roughness, land cover, and vegetation density (Voogt and Oke, 

2003). Remotely sensed satellite data are indispensable for regression modeling of Tair 

measurements based on spectral, thermal and morphological information about the urban 

landscape (Shandas et al., 2019; Venter et al., 2020; Yoo et al., 2018). Spectral imagery can 

characterize urban land cover through vegetation indices (such as the commonly used Normalized 

Difference Vegetation Index (NDVI)) and built-up indices (Shandas et al., 2019; Venter et al., 

2020; Wicki et al., 2018; Yoo et al., 2018; Zha et al., 2003). Spectral data can also be used to 

derive albedo (Liang, 2001; Zhu et al., 2019), which controls the energy balance partitioning of 

urban surfaces (Christen and Vogt, 2004). Land Surface Temperature (LST) derived from thermal 

imagery is an indicator of the thermal conductivity and heat capacity of urban surfaces, which 

allows some surfaces to absorb incoming radiant energy more efficiently (Wicki et al., 2018). 

Energy is stored in the urban fabric during the day and released during the night, causing elevated 

Tair, particularly in summertime conditions with high solar irradiance (Christen and Vogt, 2004; 

Wicki et al., 2018). LST and NDVI provided by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) have been utilized as predictors for Tair mapping at 1 km resolution 

(Yoo et al., 2018; Zhu et al., 2019). Recently, higher spatial resolution satellites such as Landsat 

7 and 8 (30-100 m) and Sentinel-2 (10-60 m), which are better-suited for urban applications, have 

been employed for Tair mapping (Nichol, 2005; Shandas et al., 2019; Wicki et al., 2018). LiDAR 

remote sensing and building height products characterize the 3D structure of the urban canopy 

(Venter et al., 2020), which drives the variation of urban Tair by influencing wind flow and solar 
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radiation trapping (Quanz et al., 2018; Wicki et al., 2018). Building height is increasingly freely 

available through open-source datasets such as the ALOS World 3D model (Ren et al., 2020; 

Takaku et al., 2014) and Urban Atlas (European Environment Agency, 2018). 

 Urban Tair is increasingly mapped by combining Tair measurements and remote sensing 

data (e.g., (Shandas et al., 2019; Venter et al., 2020; Wicki et al., 2018; Yoo et al., 2018)). Venter 

et al. (2020) categorized available approaches of Tair mapping into three groups of: (1) 

temperature vegetation index methods (TVX); (2) thermodynamic balance models; and (3) 

statistical and machine learning (ML) regression models. ML approaches are superior in 

prediction accuracy to other methods (Kuhn and Johnson, 2013). Moreover, in contrast to 

parametric approaches, ML algorithms can handle a large set of available predictor variables and 

provide mechanisms for estimating variable importance (Kuhn and Johnson, 2013). However, 

very few studies so far have fused crowdsourced Tair data and remote sensing data to map Tair 

(Seebacher et al., 2019; Venter et al., 2020). Shandas et al. (2019) used Random Forest (RF) 

regression using Sentinel-2 and vehicle-mounted temperature sensors to model Tair spatially. 

Seebacher et al. (2019) predicted UHI occurrences using private weather station network data, 

land-use and land-cover data from OpenStreetMap, meteorological data, and RF classification. 

They recommended the addition of other influencing variables in prediction models of UHIs, 

including the morphology of urban surfaces (Seebacher et al., 2019). Notably, Venter et al. (2020) 

combined Sentinel, Landsat, and LiDAR data with crowdsourced Netatmo data to model annual 

mean, daily maximum and minimum Tair using RF regression in Oslo, Norway. They found that 

accuracy in modeling Tair was lowest in summer when Tair variability was higher and 

recommended that future research focus on mapping in these conditions due to their high societal 

relevance (Venter et al., 2020). The fusion of crowdsourced Tair data and geodata to model urban 

Tair is therefore still in its infancy and needs to be applied in new locations and conditions. 

 In this study, we aim to predict nocturnal urban Tair spatially one day in advance by 

integrating geodata (Landsat 8 and morphometric indicators), crowdsourced Tair data, and ML 

methods. Previous studies used satellite data and Tair measurements as an interpolation tool 

(Shandas et al., 2019; Venter et al., 2020; Wicki et al., 2018), but did not aim to predict Tair 

distribution in advance. Our study aims at predicting Tair as deviation from a conventional 

weather station, allowing for the integration of high-resolution mapping with sophisticated 

forecasting models. In addition, we added crowdsourced Tair as a predictor in addition to 13 GIS 

predictors, exploring temporal autocorrelation for its predictive potential. Furthermore, this study 

explores how accurately Tair can be modeled using crowdsourced Tair, which integrates other 

uncertainties compared to traditional meteorological data, by independently testing with 

conventional Tair data in addition to “leave-one-date-out” testing. Although RF regression has 

been applied in previous studies (Shandas et al., 2019; Venter et al., 2020), comparisons of ML 
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algorithms to map urban Tair are thus far lacking. This study demonstrates this methodology in 

Berlin, Germany, but can easily be adapted to cities worldwide due to the free availability of the 

majority of datasets.  

 We addressed the following research questions: (1) How can open source geodata and 

crowdsourced Tair data be applied to predict spatial distribution of nocturnal Tair in a mid-latitude 

metropolitan region? and (2) How is nocturnal Tair distributed in the metropolitan area and how 

is it affected by urban land cover?  

2.2 METHODS 

2.2.1 STUDY AREA 
 Berlin is the largest city in Germany with 3.7 million inhabitants distributed across 891 km2 

in 2018 (Statistical Office of Berlin-Brandenburg, 2019). It is located in eastern Germany (52.52 

°N, 13.40 °E) and has a humid warm temperate climate (Cfb) (Kottek et al., 2006). Berlin is 

covered by 45% green and blue infrastructure, nearly 20% transportation and infrastructural areas 

and around 35% built-up areas (Dugord et al., 2014). 

2.2.2 DATA AND PREPROCESSING 
 The workflow for this study is shown in Figure 2.1. An overview of the 14 predictors used 

to model Tair one day in advance is provided in Table 2.2.  

 

Figure 2.1: Flowchart of the study, including preprocessing steps, training using machine 

learning (ML) models, generation of spatial predictions of Tair, and testing. Abbreviations 

can be found in the text. Data products are represented as rectangles, whereas processes 
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(such as data processing or statistical analyses) are represented as ovals. The 14 predictors 

used in machine learning models are represented as parallelograms. Letters refer to the 

parts of the “Methods” section which describe steps shown in the flowchart. 

2.2.2.1 CROWDSOURCED TAIR DATA 
 Crowdsourced Tair, referred to as “Tcrowd” hereafter, was obtained from CWS of the 

private company ‘Netatmo’ (www.netatmo.com). Each CWS provides instantaneous values at 

approximately five-minute intervals, which are automatically uploaded to the Netatmo server via 

Wi-Fi. An automatic workflow to acquire these data at one-hourly intervals is described in Meier 

et al. (2017). In total, data from 2959 Netatmo stations were included in this study (see Figure 

2.2, Table 2.2) for four summer dates in the years 2017-2019 (see section “Landsat data” below).  

 Quality assessment and control is crucial for the application of crowdsourced Tair data 

(Chapman et al., 2017; Meier et al., 2017; Muller et al., 2015; Napoly et al., 2018). The quality 

control (QC) procedure developed by Napoly et al. (2018) was used in this study to statistically 

identify implausible measurements of erroneous crowdsourced data due to misplacement of 

sensors, solar exposition (radiative errors), inconsistent metadata or device malfunctions. This 

QC procedure needs no reference meteorological data and is easy to apply via an available 

software R-package “CrowdQC” (Grassmann et al., 2018). The first step (M1) of the QC flags 

CWS with equivalent longitude and latitude coordinates. The second step (M2) applies a modified 

z-score approach for the detection of statistical outliers from the hourly Tair distribution. 

Therefore, as an intermediate step, altitude-corrected Tair was calculated to account for natural 

variation of Tair due to different elevations of Netatmo stations. Elevation data were derived from 

the globally available Digital Elevation Model (DEM) derived from the 2000 NASA Shuttle 

Radar Topography Mission (SRTM) (Jarvis et al., 2008). The third step (M3) removes data for a 

complete month when more than 20 % of data points during this month are flagged during QC 

step M2 (per station). The fourth step (M4) excludes any station that, when correlated against 

median hourly Tcrowd over a month, produces a Pearson’s correlation coefficient of less than 

0.9. The last QC step applied here (O1) is the linear interpolation of missing individual hourly 

values at each CWS. 

 Tcrowd data was temporally averaged between (and including) the hours of 22 UTC and 2 

UTC in order to represent nighttime Tair. Averaging of Tcrowd data improves its robustness and 

further improves data quality by reducing the influence of erroneous data points that could still 

remain in the data set, even after QC (Napoly et al., 2018). As the nighttime UHI typically requires 

a few hours to be fully developed (Fenner et al., 2017), three hours after sunset (22 UTC) was 

selected as the starting time of the averaging interval. As Netatmo data is rounded to the closest 

hour (e.g., 3:20 UTC is rounded to 3 UTC), 2 UTC was selected as the endpoint to ensure that all 
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data was before sunrise. Only stations where five out of five observations were available between 

22 UTC and 2 UTC were included. 

 

Figure 2.2: Spatial distribution of crowdsourced air temperature (Tcrowd) measured at 

Netatmo weather stations (colored circles) in Berlin on the night starting on 25 June 2019 

(averaged from 22 UTC to 2 UTC), which coincides with the June 2019 heat wave in 

Germany. The 1338 Netatmo stations shown were available after quality control (QC) and 

removing Netatmo stations outside of the Berlin city boundary and without data on the 

previous night (24 June 2019). Symbols partially overlap due to the high spatial density of 

Tcrowd. The location of reference meteorological stations operated by the German 

Meteorological Service (DWD) and the Urban Climate Observation Network (UCON) is 

indicated with gray diamonds. The DWD station Berlin-Tempelhof, which was used to 

compute Tcrowd deviation, is indicated with a black triangle. The black line denotes the 

administrative border of Berlin. 

 After initial preprocessing, the deviation of Tcrowd data was computed. Tair data from the 

German Meteorological Service (DWD) weather station Berlin-Tempelhof (Station ID: 00433), 

TTempelhof, was used as a proxy for the “mean” temperature of Berlin. DWD station data were 

averaged between 22 and 2 UTC, corresponding to the same time as Tcrowd data. Deviation of 

Tcrowd (Tcrowddev) was then computed as Tcrowd minus TTempelhof for each night. 

2.2.2.2 OTHER METEOROLOGICAL DATA 
 Meteorological data used for Land Surface Temperature (LST) derivation (Tair (°C), relative 

humidity (%), and air pressure (hPa)) were acquired from the weather station Berlin-Tempelhof 

via DWD climate data center (DWD, 2021). Weather data used for LST calculations were 

collected at 10:00 UTC in order to correspond with the Landsat 8 day scene acquisition time (see 

Table 2.1). Modeled Tair was independently validated using six DWD (DWD, 2021) stations and 

eleven stations of the Urban Climate Observation Network (UCON) of the Chair of Climatology 

at Technische Universität Berlin (Fenner et al., 2014) (see Figure 2.2 and Appendix A Table A.1). 
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Table 2.1: Meteorological conditions. “LS day” refers to the acquisition time of Landsat 

imagery. “Night” refers to conditions averaged between 22 UTC and 2 UTC starting on the 

same day as Landsat acquisition. “Night (+1 day)” refers to conditions averaged between 22 

UTC and 2 UTC one day after Landsat acquisition. Data is acquired from DWD weather 

station Berlin-Tempelhof (Station ID: 00433), except for cloudiness data (acquired from 

DWD weather station Berlin-Dahlem (FU) (Station ID: 00403)). 

 

2.2.2.3 LANDSAT DATA 
 Four Landsat 8 (L-8) scenes were selected based on the following criteria: (a) cloud-free; (b) 

summertime (June-August); and (c) matching Netatmo data availability (2015-present): 2 June 

2017, 23 July 2018, 24 June 2019, and 26 July 2019 (Table 2.1).  

 L-8 Thermal Infrared Sensor (TIRS) data were used to characterize LST. L-8 data were 

acquired from the United States Geological Survey (USGS) EarthExplorer (U.S. Geological 

Survey (USGS), 2019a). Land surface emissivity (LSE), a key input variable for estimating LST, 

was estimated using the Normalized Difference Vegetation Index (NDVI) thresholds method 

(Sobrino et al., 2004; Wang et al., 2015). For water bodies, the emissivity value of water (0.991) 

was assigned for the “Water” LULC class provided by Urban Atlas 2012 (Wang et al., 2015). The 

mono-window algorithm developed by Wang et al. (2015) was applied to derive LST from the 

thermal band (band 10): 

𝐿𝐿𝐿𝐿𝐿𝐿 =  
𝑎𝑎 ∙ (1 − 𝐶𝐶 − 𝐷𝐷) + (𝑏𝑏 ∙ (1 − 𝐶𝐶 − 𝐷𝐷) + 𝐶𝐶 + 𝐷𝐷) ∙ 𝐿𝐿𝐴𝐴𝐴𝐴 − D ∙ 𝐿𝐿𝑎𝑎

𝐶𝐶
 (1) 

where Ta is the effective mean atmospheric temperature (K); a and b are the coefficients 

approximating the derivative of the Planck radiance function for the thermal band; C and D are 

scene-dependent based on LSE and atmospheric transmittance; and TAS is the effective brightness 

temperature received at the sensor (Wang et al., 2015). 

 NDVI was computed as an indicator of photosynthetic activity and vegetation density 

(Tucker, 1979). NDVI represents the reflection properties of vegetated surfaces in the visible red 

(RED) and near-infrared (NIR) range:  
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 The Normalized Difference Built-up Index (NDBI) was computed as an indicator of built-

up areas, which have a higher reflectance in the shortwave-infrared (SWIR) region (Band 6 for 

L-8) compared to the near-infrared (NIR) region (Band 5 for L-8) (Zha et al., 2003): 

 

 Surface broadband albedo (α) was computed based upon the normalized version (Smith, 

2010) of the Liang (2001) algorithm, adapted to L-8 data. Five Top of Atmosphere (TOA) 

reflectance L-8 bands (ρ2-7) as provided by the USGS Earth Resources Observation and Science 

(EROS) Center Science Processing Architecture (ESPA) were used for the calculations (U.S. 

Geological Survey (USGS), 2019b):  

 

 Since Landsat-based predictors vary between study dates and are weather-dependent, their 

spatial deviation was used to train and test models. Landsat deviation (Landsatdev) was calculated 

for all different Landsat data (LST, NDVI, NDBI, albedo) as follows: 

 

 

where Landsatmean represents the spatial mean value of the respective variable within Berlin. 

2.2.2.4 OTHER GEODATA 
 Building height (BH) and land use and land cover (LULC) classes data from 2012 were 

provided by the Urban Atlas (European Environment Agency, 2018). Urban Atlas 2012 datasets 

are freely available for 785 Functional Urban Areas in 39 countries, allowing for direct 

transferability of this methodology. Vegetation height (VH) was provided by the Berlin Digital 

Environmental Atlas (Berlin Senate Department for Urban Development and Housing, 2014). 

Impervious surface fraction (ISF) was assigned based on LULC classes from Urban Atlas data. 

Impervious coefficients were assigned to each LULC class following Jennings et al. (2004) and 

the degree of soil sealing indicated by LULC classes.  

 Urban morphology parameters, which describe the spatial structure of the urban 

environment, were calculated using the Urban Multi-scale Environmental Predictor (UMEP) 

QGIS plug-in (Lindberg et al., 2018) and BH. The Sky View Factor (SVF) represents the 

proportion of the observed sky divided by the total upper hemisphere. A 100 x 100m cell grid (as 
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in URBANFLUXES, Marconcini et al. (2017)) and BH were used to compute several parameters 

including the plan area index (PAI) (fraction of roof area), the frontal area index (FAI) (area of 

building walls normal to wind direction relative to the total ground area), the standard deviation 

of BH (zHstd), roughness length (z0) (the height at which wind speed theoretically becomes zero 

in the log wind profile), and zero-plane displacement length (zd) (height above ground where the 

wind speed is zero as a results of obstacles to the flow) (Grimmond and Oke, 1999; Lindberg et 

al., 2018). The roughness parameters (z0 and zd) were calculated following the method of Kanda 

et al. (2013). The parameters used here are isotropic (not depending on a specific wind direction). 

2.2.3 FOCAL BUFFER ANALYSIS 
 Land surface parameters influence Tair with a distance-decay effect, which can be accounted 

for using spatial aggregation (Shandas et al., 2019; Venter et al., 2020; Wicki et al., 2018). 

Therefore, a moving window average of varying spatial distances (referred to as a ‘focal buffer’) 

was computed for all 13 GIS predictors (see Fig. 1(c)). Focal buffers with the following circular 

radii (0 m, 50 m, 100 m, 200 m, 300 m, 500 m, 750 m, 1000 m, 1500 m), coregistered to Landsat 

resolution (30 x 30 m), were created. The optimal radii were determined based on Spearman’s 

rho and are shown in Table 2.1. Further details on focal buffer analyses are given in Appendix A 

(Table A.5; Figure A.1). Focal buffer values were extracted at the location of the CWS. 

2.2.4 MACHINE LEARNING MODELING 

2.2.4.1 DATA COMPILATION AND MODELING APPROACH 
 A time lag of one day was selected for the prediction as longer time lags are associated with 

greater uncertainty based on weather forecasting (Zhang et al., 2019). The dates on which Landsat 

data were available are referred to as the predictor dates, as the Tcrowd data from these dates 

were used as input for prediction (one of the independent variables). The outcome dates are one 

day after the corresponding predictor dates, referring to the Tcrowd values being predicted in the 

models (the dependent variable). For instance, 2 June 2017 is a predictor date and 3 June 2017 is 

an outcome date. Tcrowd data from a predictor and outcome date pair (such 2 and 3 June 2017) 

are matched based upon the station ID. For model tuning and training, three out of the four study 

dates were used (“leave-one-date-out”), meaning that training was conducted with three predictor 

and outcome date pairs. The remaining study date (one predictor and outcome date pair) was used 

as an independent test subset to assess model performance. For example, training was conducted 

with Tcrowd data from 2-3 June 2017, 23-24 July 2018, and 24-25 June 2019, and this trained 

model was applied to data from 26 July 2019 (Tcrowd and 13 GIS predictors) to predict Tair on 

27 July 2019. CWS without data on both the paired predictor and outcome dates and outside of 

the Berlin city boundary were excluded from training and testing datasets (see Figure 2.2). After 
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preprocessing, 1130 observations for 2-3 June 2017, 1258 observations for 23-24 July 2018, 1338 

observations for 24-25 June 2019 (Figure 2.2), and 1387 observations for 26-27 July 2019 

remained. “GIS predictors” refers to all 13 remote sensing and GIS predictors (without Tcrowd). 

The following combinations of predictors were tested in models: (a) Tcrowd and all 13 GIS 

predictors (all); (b) only the 13 GIS predictors (GIS); and (c) only Tcrowd as a predictor (Tcrowd) 

(Table 2.2). Models were additionally run without VH, a dataset which is not available in all cities 

worldwide, in order to demonstrate the applicability of our method using only open-source data 

with worldwide (or at least European) coverage. Comparison of model performance with and 

without VH is given in Appendix A (Figure A.2 and Figure A.3).  

Table 2.2: Overview of the predictor variables used to model Tair one day in advance. 

Optimal focal buffer radii were identified using Spearman’s rho. Landsat 8 predictors are 

depicted for the exemplary scene 23 July 2018, 10:01 UTC. Tcrowd is shown for the night 

of 23 July 2018 (averaged between 22 UTC and 2 UTC). GIS predictors are depicted with a 

spatial resolution of 30m x 30m, not as focal buffers. Landsat predictors and Tcrowd are 

shown with true values (not deviation). Citation numbering refers to Vulova et al. (2020). 
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2.2.4.2 MACHINE LEARNING ALGORITHMS 
 We tested three supervised regression ML algorithms: Random Forest (RF), Stochastic 

Gradient Boosting (GBM), and Model Averaged Neural Network (avNNet). Detailed descriptions 

of the ML algorithms and the ‘caret’ package implementations are provided in Kuhn and Johnson 

(Kuhn and Johnson, 2013). The root mean square error (RMSE) was used to select the optimal 

hyperparameters during 10-fold cross-validation. With 10-fold cross-validation, the training 

samples are randomly partitioned into ten equally sized folds, with nine folds used for training 

and one fold used for validation (Kuhn and Johnson, 2013). This procedure is repeated with each 

of the ten folds used for validation once (Kuhn and Johnson, 2013). Tested hyperparameters 

during tuning were based upon recommendations from Kuhn and Johnson (Kuhn and Johnson, 

2013). Optimal hyperparameters determined by this procedure are given in the Appendix A 

(Tables A.2 – A.4). 
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 RF is an ensemble machine learning technique commonly applied in remote sensing 

(Shandas et al., 2019; Venter et al., 2020; Yoo et al., 2018; Zhu et al., 2019). RF generates 

predictions by creating a large number of decision trees based on randomly selected subsets 

through bootstrapping from both training samples and predictor variables at each tree node (Kuhn 

and Johnson, 2013). The number of predictor variables randomly selected at each split (‘mtry’) 

was tuned for each value between two and the number of predictor variables (Kuhn and Johnson, 

2013). RF models with one predictor (Tcrowd) were not tuned, with ‘mtry’ kept constant at a 

default value of 2. The number of trees (‘ntree’) was set to the default ‘caret’ value of 500, as 

tuning ‘ntree’ is shown to be unnecessary and the largest performance gain is generally achieved 

with the first 100 trees (Probst and Boulesteix, 2018). 

 GBM incorporates the strengths of regression trees and boosting in a single algorithm (Kuhn 

and Johnson, 2013). With boosting, new trees are generated based upon previous trees by fitting 

the model to the residuals from the prior step (Kuhn and Johnson, 2013). The depth of trees 

(‘interaction.depth’) was tuned from 1 to 11 with increments of 2 (Kuhn and Johnson, 2013). 

Three values of the learning rate (‘shrinkage’) were evaluated during tuning (0.01, 0.05, and 0.1) 

(Kuhn and Johnson, 2013). The number of trees (‘n.trees’) was tuned from 100 to 1000 with 

increments of 50 (Kuhn and Johnson, 2013). The minimum observations in terminal nodes 

(‘n.minobsinnode’) was tuned using three values (6, 8, and 10).  

 Neural networks are powerful nonlinear regression methods which model the outcome by 

an intermediary set of unobserved variables (hidden units) (Kuhn and Johnson, 2013). To generate 

avNNet predictions, the ‘caret’ package fits the same neural network model five times using 

different random seeds and averages the output from each network (Kuhn and Johnson, 2013). 

Prior to modeling with avNNet, the predictors were centered and scaled (Kuhn and Johnson, 

2013). Weight decay was tuned from 0 to 0.1 with increments of 0.02 (Kuhn and Johnson, 2013). 

The number of hidden units (‘size’) was tuned from 2 to 14 (the maximum number of predictors) 

with increments of 2 (Kuhn and Johnson, 2013). Relative variable importance scores (scaled from 

0 to 100%) were extracted from models with only GIS predictors (Kuhn and Johnson, 2013).  

2.2.4.3 SPATIAL PREDICTIONS 
 Trained models were used to predict Tair on the testing dates. In order to generate spatial 

predictions, a spatially continuous raster of all predictors was necessary. Thus, ordinary kriging 

was performed on Tcrowddev using a 30m x 30m grid using the R package ‘automap’ (Hiemstra 

et al., 2009). CWS outside of the Berlin city boundary were not excluded in order to enhance 

accuracy on the city outskirts. Spatial predictions were converted from Tcrowddev to true Tair by 

adding TTempelhof for the corresponding night (Table 2.1, Figure 2.1).  
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2.2.5 TESTING 
 Testingcrowd refers to applying trained models to the date left out of training and comparing 

the predictions to measured Tcrowd. Additionally, we compared observed Tair (Tobs) of 17 

reference weather stations (see Figure 2.2) and modeled Tair (Tmod) at the pixel matching the 

geographic coordinates of the stations (see Figure 2.2 and Appendix A Table A.1), which is 

referred to as testingref. Reference Tair data is essential in order to assess the bias and inaccuracy 

which may be incorporated by the use of Tcrowd (instead of conventional Tair data) as a predictor 

(Fenner et al., 2017; Meier et al., 2017). Both testingcrowd and testingref were evaluated with RMSE, 

mean absolute error (MAE), percent bias (pbias), and coefficient of determination (R2). R2 is 

included as a reference, as similar studies (e.g., (Venter et al., 2020; Yoo et al., 2018; Zhu et al., 

2019)) include this statistic. However, R2 is an inadequate measure to assess the performance of 

nonlinear models (Spiess and Neumeyer, 2010) and is highly influenced by the variation in the 

dependent variable (Kuhn and Johnson, 2013). Thus, the other performance metrics were 

emphasized in evaluating model performance.  

2.2.6 LULC ANALYSIS 
 A single spatial prediction representing a typical heat wave was selected for analysis of the 

variation of Tmod between LULC classes and different distances from the geometric city center: 

24 July 2018 using RF and all predictors. LULC classes comprising less than 5% of the Berlin 

area were omitted from analysis, leaving 9 LULC classes. The following buffer classes from the 

city center were analyzed: 0-5 km, >5-10 km, >10-20 km, and >20-30 km. Kruskall-Wallis tests 

and Dunn’s post-hoc tests (with p-values adjusted with the Benjamini-Hochberg method 

(Benjamini and Hochberg, 1995)) were applied to assess the significance of differences in Tair 

between LULC classes. 

 An analysis of the relationship between Tmod and the GIS predictors was conducted in order 

to quantify how nocturnal Tair is affected by urban land cover. The relationship between Tmod 

using RF and all predictors was analyzed using Spearman rank correlation coefficient 

(Spearman’s rho) (see Appendix A; Figure A.4). The GIS predictors without focal buffers and 

coregistered to Landsat (30-m) resolution were used for this analysis. 

 If not mentioned otherwise, all modeling and analysis were completed using R version 3.6.2 

(2019-12-12) and RStudio (version 1.2.5033) (R Core Team, 2020). The ‘caret’ package for R 

was used as a wrapper package for the ML algorithm implementations in R (Kuhn, 2008). Parallel 

processing was performed on seven cores using the R package ‘doSNOW’ (Microsoft 

Corporation and Weston, 2019). Processing time of model training was measured using the R 

package ‘tictoc’ (Izrailev, 2014). Benchmarking results are given in Appendix A (Table A.10). 
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2.3 RESULTS 

2.3.1 AIR TEMPERATURE MODELING 
 Using all predictors (Tcrowd and 13 GIS predictors) or only GIS predictors in all models, 

RMSE is <1.3 K for testingcrowd and <2.4 K for testingref (Table 2.3). Based on testingcrowd, RF is 

the best-performing algorithm with an average RMSE of 1.23 K across the three predictor sets, 

closely followed by GBM (RMSE = 1.24 K) and avNNet (RMSE = 1.26 K). Testingcrowd reveals 

that models with GIS predictors show on average the lowest RMSE (1.22 K). However, all 

predictors most frequently show the lowest RMSE for testingcrowd for each date and ML algorithm 

(in 6 out of 12 cases) (see Appendix A; Tables A.6-A.9). According to RMSE for testingcrowd, all 

predictors performed best in 2018 and July 2019, whereas GIS predictors and Tcrowd performed 

best for 2017 and June 2019, respectively. The lowest RMSE for testingcrowd averaged for all four 

study dates is achieved using RF and GIS predictors (RMSE = 1.16 K).  

 Testingref confirms RF as the best algorithm, with an average RMSE of 2.21 K across the 

three predictor sets, followed by avNNet (RMSE = 2.24 K) (Table 2.3). Although RF shows the 

lowest average RMSE for testingref, avNNet most frequently shows the lowest RMSE for testingref 

for each date and predictor set (see Appendix A; Tables A.6-A.9). However, ML algorithms 

generally show a similar performance for both testingcrowd and testingref. On average, GIS 

predictors outperform other predictor sets based on RMSE for testingref (RMSE = 1.99 K). GIS 

predictors also most frequently have the lowest RMSE for testingref for each date and ML 

algorithm (in 9 out of 12 cases), with other predictor combinations showing lower RMSE only on 

27 July 2019. The lowest RMSE for testingref averaged for all study dates is found using avNNet 

and GIS (RMSE = 1.95 K).  

Table 2.3: “Leave-one-date-out” testing performance metrics averaged across all test dates. 

The performance metrics are root mean square error (RMSE), mean absolute error (MAE), 

percent bias (pbias), and coefficient of determination (R2). The best performance metrics 

for testingcrowd and testingref are shown in bold. 

 

 Testingref indicates an overestimation of Tair based upon pbias (Table 2.3). The models’ 

inability to predict lower Tair values can be seen in Figure 2.3 and Figure 2.4, showing results for 

24 July 2018. Generally, Figure 2.3 shows underestimation of Tair for testingcrowd, especially for 
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high Tair, and overestimation for testingref. Average positive pbias for testingcrowd is driven by the 

2017 study date, which was cooler than the other nights (see Appendix A; Table A.6). Tmod 

underestimates the true Tair range on 24 July 2018 due to the influence of the July 2019 date in 

training. On 27 July 2019, Tcrowd was spatially homogeneous, with a range and standard 

deviation of 4.15 K and 0.94 K, respectively. In contrast, on 24 July 2018, Tcrowd had a range of 

6.25 K and a standard deviation of 1.54 K.  

 

Figure 2.3: Scatterplots for a single study date (24 July 2018) showing the correlations 

between modelled Tair (Tmod) and observed Tair for nine models: (a) all predictors with 

avNNet, (b) all predictors with GBM, (c) all predictors with RF, (d) GIS predictors with 

avNNet, (e) GIS predictors with GBM, (f) GIS predictors with RF, (g) Tcrowd predictor 

with avNNet, (h) Tcrowd predictor with GBM, and (i) Tcrowd predictor with RF. The 

intensity of the blue color represents the testingcrowd data point density. Red triangles 

represent testingref data points. 
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 All spatial predictions show a typical Tair spatial gradient (warmer to cooler) from the city 

center into the outskirts (Figure 2.4). Though Tmod is well-validated in the inner city, the lower 

Tair in the city outskirts are consistently overestimated for all three predictor sets (Figure 2.4). 

Spatial predictions based on a single Tcrowd kriging product did not fully capture the fine-scale 

variability of Tair. The spatial prediction based on only GIS predictors better reflect urban 

morphology and land cover but do not predict lower Tair in the north and northeast of Berlin 

(Figure 2.4). For 2018, the optimal RF model based on testingcrowd (RMSE = 0.96 K) incorporates 

all predictors, reflecting the mixed influence of larger-scale meteorological influences and urban 

structure. Testingref RMSE for RF is the lowest based on GIS predictors (2.23 K), demonstrating 

the utility of GIS predictors to predict Tair in new locations.  

 

Figure 2.4: Visualization of Tair predictions of the three combinations of predictors for the 

exemplary date of 24 July 2018 using RF regression with (a) all, (b) GIS, and (c) Tcrowd as 

predictors. Points with a black outline represent UCON/DWD reference stations. The 

Tempelhof station is marked with a black triangle. The projection and datum are WGS-84. 

2.3.2 VARIABLE IMPORTANCE 
 Figure 2.5 shows the percentage of relative influence of GIS predictors in models. A large 

variability of importance between algorithms is apparent. Morphometric parameters are 

particularly influential. On average, zd is the most important predictor (67.7% relative influence), 

followed by zHstd (62.4%), and albedo (54.8%). The least important predictors are, on average, 

NDBI (29.9%), BH (34.0%), and ISF (34.0%).  

 The importance of GIS predictors is highly affected by the ML algorithm employed. Figure 

2.5 shows that the variable importance for the same parameter can differ greatly between the three 

ML algorithms. Zd is the most important parameter on average for avNNet, followed by BH and 

SVF. VH is the least influential predictor for avNNet, followed by LST and PAI. In contrast, for 

RF, on average, VH is the most important GIS predictor, followed by albedo and PAI. The least 
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important predictors for RF are BH, SVF, and zd. For GBM, the most important predictors are 

zd, zHstd, and albedo, and least important predictors are BH, PAI, and NDBI.  

 Variable importance also differs based on the test date excluded. The exclusion of two dates 

is analyzed as an example: 23 July 2018 (a spatially variable night) and 26 July 2019 (a spatially 

homogeneous night). When July 2019 is excluded from training, the most important predictors 

are zHstd, zd, and z0 and the least important are LST, ISF, and NDBI. With July 2018 excluded 

from training, the most important predictors are zd, zHstd, and albedo and the least important are 

BH, VH, and z0. However, the algorithm employed has a greater effect on variable importance 

than the dates used in training. While this analysis of variable importance focuses only on models 

with GIS predictors, Tcrowd is the most important predictor in all cases for models with all 

predictors, emphasizing the high autocorrelation of Tcrowd 24 hours apart. 

 

Figure 2.5: Relative variable importance revealed by models with only GIS predictors. Date 

refers to the test date excluded in model training. 

2.3.3 TAIR DISTRIBUTION AND LULC EFFECTS 
 Mean Tair for each LULC class using the spatial prediction for 24 July 2018 with RF and 

all predictors is shown in Table 2.4. Greater distance to the city center is associated with lower 

Tair for nearly every LULC class. The only exceptions are noted for the “Forests” and “Water” 

classes, where Tair at >20-30 km is slightly higher than at >10-20 km. Overall, more pronounced 

differences are found between buffer sizes than between LULC classes. Testing within each 

LULC class, there are significant differences between all buffer sizes for all LULC classes 

(Dunn’s test, adjusted p-values < 0.05).  
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 LULC classes with predominantly sealed surfaces are generally warmer than other LULC 

classes. The warmest LULC class is “Continuous urban fabric” at 0-5 km, >5-10 km, and >10-20 

km. At >20-30 km, “Forests” is the warmest LULC class. The second-warmest LULC classes are 

“Discontinuous dense urban fabric” at 0-5 km and >10-20 km, “Other roads and associated land” 

at >5-10 km, and “Water” at >20-30 km. 

 Vegetated LULC classes are generally cooler. The coolest LULC classes are “Green urban 

areas” at 0-5 km, “Forests” at >5-10 km, “Water” and “Forests” at >10-20 km, and “Sports and 

leisure facilities” at >20-30 km. The second-coolest LULC classes are “Sports and leisure 

facilities” at 0-5 km, >5-10 km, and >10-20 km and “Green urban areas” at >20-30 km. “Green 

urban areas” are defined as public green areas for primarily recreational use, including gardens, 

parks, and zoos (European Union, 2016). “Sports and leisure facilities” is also a largely vegetated 

LULC class, as it includes public arenas for sports and their associated green areas (European 

Union, 2016). Insignificant differences between LULC classes are given in Appendix A.  

Table 2.4: Mean Tair ± standard deviation (SD) for nine LULC classes in Berlin at buffers 

representing different distances (in km) from the geometric city center. The LULC analysis 

was conducted using the spatial prediction for 24 July 2018 (averaged 22-2 UTC) with RF 

and all predictors. Spatial SD was calculated across all pixels per LULC class. Sealing level 

(S.L.) is indicated for urban fabric LULC classes. Blue: mean of 21-21.5 °C, green: mean of 

>21.5-22 °C, yellow: mean of >22-22.5 °C, orange: mean of >22.5-23 °C, red: mean of >23-

23.5 °C. 
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 The modeled Tair distribution using RF models with all predictors (see Figure 2.4 and Table 

2.4) emphasizes the cooling influence of green spaces in Berlin for all study dates. The cooling 

effect of both larger (>1 km2) and smaller (<1 km2) green spaces is visible in Tmod, with forests, 

public parks, and cemeteries all associated with lower Tair. Aside from the hot spot of higher Tair 

in the city center, the central eastern part of Berlin, which is composed of high-rise multi-story 

houses, is a pronounced hot spot. This area of Berlin was identified as having a high heat stress 

risk based upon the proportion of elderly residents and simulated Tair at 6 AM (Dugord et al., 

2014). However, the cooling influence of the Erholungspark Marzahn (~1 km2) on this borough 

is evident during the extreme heat wave event in 2019, demonstrating the beneficial cooling effect 

of urban green spaces. 

2.4 DISCUSSION 
 With increasing extreme heat risks for urban residents (Huang et al., 2019), the prediction 

of hotspots at a high resolution is vital. Using the example of the city of Berlin, we have 

demonstrated the capacity of fusing crowdsourced Tair data, Landsat data, and other open-source 

geodata to spatially predict summertime nighttime Tair one day in advance at a 30-m resolution. 

Using the optimal algorithm (RF) and all predictors, testingcrowd and testingref show an average 

RMSE of 1.23 K and 2.31 K, respectively. Based on RF and only GIS predictors, accuracy is even 

higher, with an average RMSE for testingcrowd of 1.16 K and testingref 1.97 K. RF performance is 

lowest with only Tcrowd as a predictor, with an average RMSE for testingcrowd of 1.30 K and 

RMSE for testingref of 2.35 K. Our results are comparable to Venter et al. (2020)’s accuracy in 

modeling daily maximum (RMSE = 1.85 K) and minimum Tair (RMSE = 1.46 K) using Netatmo 

data, particularly as they showed that accuracy decreased (approaching 2 K) when modeling for 

summertime. 

 This study investigated the suitability of three different ML algorithms for their applicability 

in modeling Tair. Based on both testingcrowd and testingref performance, RF regression proves to 

be the most suitable algorithm. The second-best algorithm is avNNet, which most frequently had 

the lowest RMSE for testingref compared to other algorithms. RF’s comparatively faster 

computation time with tuning (up to three times faster than avNNet) is a clear advantage when 

processing large datasets (see Appendix A; Table A.10). However, for model training with 

optimal hyperparameters, RF is the slowest algorithm (twice as slow as avNNet).  

 We demonstrated that combining geodata and crowdsourced Tair in a ML model is 

advantageous. Due to high temporal autocorrelation, Tcrowd is useful in predicting its own spatial 

distribution one day in the future during relatively stable weather conditions. However, Netatmo 

stations are unevenly distributed throughout the city (see Table 2.2, Figure 2.2), concentrated in 

built-up central areas, while natural landscapes are not covered (Fenner et al., 2017; Meier et al., 



Chapter 2: Summer nights in Berlin, Germany: Modeling air temperature spatially with remote sensing, 
crowdsourced weather data, and machine learning 

Stenka Vulova - November 2022   37 

2017). GIS predictors facilitate more accurate predictions in the gaps between CWS, reflecting 

the spatial structure and other properties of the urban landscape. The appropriate predictors may 

depend on atmospheric conditions that favor a certain level of spatial variability of Tair. For 

prediction on a relatively spatially invariable date (e.g., 27 July 2019; Tcrowd range = 4 K), GIS 

predictors alone overestimate variation, with lowest testingref performance for GIS predictors (RF 

RMSE = 1.05 K) and highest performance for Tcrowd only (RF RMSE = 0.43 K). In contrast, for 

a date with higher spatial Tair variability (e.g., 25 June 2019; Tcrowd range = 7 K), Tair is best 

modeled with only GIS predictors (RF RMSE = 2.75 K) according to testingref. Of the four study 

dates, 27 July 2019 represents the night with highest wind speed (5.1 m/s) and a more 

homogenous Tair distribution. Venter et al. (2020) showed that mapping on hotter, calm days is 

more challenging than on windy days, leading to overestimation of Tair. This observation is also 

reflected in our results, where RF with all predictors for 27 July 2019 shows a RMSE for testingref 

of 0.47 K, in contrast with an average RMSE of 2.31 K for all study dates. Overall, we recommend 

the approach of combining GIS predictors with crowdsourced Tair data in order to harness the 

advantages of both: fine-scale urban structure (GIS) and Tair distribution from a prior time step 

(Tcrowd).  

 An analysis of the relative variable importance of GIS-only models highlighted the 

importance of morphometric predictors (particularly zd and zHstd) and albedo (see Figure 2.5). 

Variable importance differs based on the algorithm applied (Kuhn and Johnson, 2013); for RF 

models, for instance, the most important predictors were VH, albedo, and PAI. Wicki et al. (2018) 

and Venter et al. (2020) also found morphometric parameters, especially z0, zd (Wicki et al., 

2018), and zHstd (Venter et al., 2020), to be useful predictors for modeling urban Tair. A study 

in Berlin found that nighttime Tair is influenced by surface structure, such as building surface 

fraction and SVF, and distance to open green spaces (Quanz et al., 2018). Considering that BH is 

open-source for hundreds of cities and morphometric parameters can easily be computed with 

open-source tools (e.g., Lindberg et al. (2018)), their integration into models is highly 

recommended. Acquiring cloud-free Landsat images greatly constrained the study dates in this 

study. One solution to expand the archive is to integrate Sentinel-2 images, which have been 

found to be well-suited to modeling Tair (Shandas et al., 2019; Venter et al., 2020). Additionally, 

model runs without VH did not significantly differ in performance from those with VH, 

confirming that our methodology is feasible using only open-source parameters with worldwide 

coverage (see Appendix A; Figure A.2 and Figure A.3).  

 Focal buffers optimize the performance of GIS parameters for climatological modeling, 

accounting for the distance of influence of landscape features on Tair (Shandas et al., 2019; Venter 

et al., 2020; Wicki et al., 2018). Therefore, we provided a recommendation for optimal focal 

buffer radii for each of the 13 GIS predictors (Table 2.2) for other urban climatology studies. 
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Focal buffers warrant further investigation in other cities and on other dates, as weather conditions 

were found to influence the optimal radius length (see Appendix A; Figure A.1). 

 Testing with an independent dataset can best approximate the true capacity of modeling 

using crowdsourced data. The lower accuracy indicated by testingref indicates that assessing the 

performance of modeling by simply leaving out crowdsourced data from training (as in Venter et 

al. (2020)) is insufficient. Despite extensive QC procedures (e.g., (Meier et al., 2017; Napoly et 

al., 2018; Nipen et al., 2020)), crowdsourced data include biases and inaccuracies compared to 

high-quality meteorological observations which affect model predictions. Netatmo stations are 

mainly installed near building walls and in built-up areas (Fenner et al., 2017; Meier et al., 2017), 

which causes microscale effects on Tair. Meier et al. (2017), Fenner et al. (2017), and Napoly et 

al. (2018) found a consistent positive deviation between Tcrowd and reference Tair in Berlin, 

with the highest deviation occurring during summer and nighttime.  

 For urban planning applications, it is crucial to understand where Tair predictions are most 

accurate. Accuracy decreases with distance to the city center based on testingref (see Appendix A; 

Table A.11). Whereas at 0-5 km distance from the city center RMSE for testingref is 1.58 K on 

average, buffers of 5-10 km, 10-20 km, and 20-30 km show an average RMSE for testingref of 

2.70 K, 2.83 K, and 3.96 K, respectively. Overestimation is also lowest 0-5 km from the city 

center (pbias = 3.5%). The highest accuracy is found for urban fabric with a 50% to 100% sealing 

level (average RMSE for testingref = 1.76 K), whereas the lowest accuracy is found for meadows 

(average RMSE for testingref = 2.93 K) (see Appendix A; Table A.12). Urban fabric with a sealing 

level of 10% to 50% and forests show an average testingref RMSE of 2.64 K and 2.79 K, 

respectively. Urban fabric with a higher sealing level also shows the lowest percent bias (5.9%). 

A study modeling Tair in Oslo using Netatmo Tair and Landsat data also found that the highest 

errors occurred in Local Climate Zones (LCZs) (Stewart and Oke, 2012) with vegetation cover 

(Venter et al., 2020).  

 A spatial analysis of a summer night during the 2018 heat wave shows significant differences 

in Tair between different distances from the city center and between LULC classes. Public green 

areas and other open green spaces are among the coolest LULC classes during nighttime. 

Considering the greater overestimation of modeled Tair for vegetated areas further away from the 

city center, Tair varies even more drastically than shown by modeled results. Reference weather 

stations show Tair as low as 16.7 ℃ (Kaniswall, class “Pastures”, 20-30 km from city center) and 

as high as 23.9 ℃ (Dessauer, class “Discontinuous dense urban fabric”, 0-5 km from city center). 

A study in London also emphasized the cooling effect of urban green spaces during calm warm 

nights (Vaz Monteiro et al., 2016). Furthermore, open green spaces are associated with greater 

cooling for nocturnal Tair than areas with a high proportion of trees, as the reduction in SVF by 

the canopy impedes radiation loss (Spronken-Smith and Oke, 1999; Vaz Monteiro et al., 2016). 
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However, trees also contribute to cooling of nighttime Tair (Vaz Monteiro et al., 2016) and are 

critical for cooling daytime Tair through shade and evapotranspiration (Spronken-Smith and Oke, 

1999). Urban planners should consider the benefit of preserving and expanding open green spaces 

in mid-latitude cities, such as Tempelhofer Feld in Berlin, in light of their cooling effect on warm 

summer nights (Quanz et al., 2018), while also maintaining urban tree cover for its stronger 

daytime cooling effect.  

 Using daytime LST as a predictor may contribute to Tair overestimation in urban green 

spaces in addition to geographic clustering of Netatmo stations. We found a positive association 

between daytime LST and nighttime Tair. However, daytime LST indicates that forests are cooler 

than meadows (Vulova and Kleinschmit, 2019), whereas the opposite is true for nighttime Tair 

(Nichol, 2005; Spronken-Smith and Oke, 1999; Vaz Monteiro et al., 2016). Nighttime LST may 

be a more appropriate indicator for nighttime Tair (Nichol, 2005; Yoo et al., 2018), but 

inconsistent data availability did not allow us to integrate it into models. It is also important to 

note that the original spatial resolution of the Landsat 8 Thermal Infrared Sensor (TIRS) (100-m) 

is a limiting factor in using LST to model Tair, as only the lower temperature of larger urban 

green spaces can be detected at this resolution (Parlow et al., 2014). Despite these drawbacks, 

daytime LST was the 5th-ranked (out of 13) variable in variable importance for RF with an 

average importance of 62.7%, showing its value in Tair modeling. In order to reduce the 

overestimation of Tair, calculating Tcrowd deviation by subtracting the Tcrowd mean from all 

Tcrowd values could reduce positive bias in model runs. 

 The lack of Netatmo stations in green spaces is more difficult to resolve: to depict a more 

complete picture of the urban climate, crowdsourcing efforts could expand their network away 

from the city center. CWS could also be installed further away from buildings to better 

characterize the urban street canyon with well-mixed air, yet this might be challenging for many 

owners of such devices. The presented LULC analysis does not fully capture the cooling capacity 

of urban green spaces, which is crucial to highlight for sustainable urban planning. Nevertheless, 

the current methodology is well-suited for its key application: a short-term heat wave warning 

system for high-risk populations. A study on heat waves in Berlin found that the highest mortality 

rates occurred in the most densely built-up districts (Gabriel and Endlicher, 2011)—which are 

well-represented by Netatmo data (Fenner et al., 2017; Meier et al., 2017) and showed the highest 

modeling accuracy in our study.  

2.5 CONCLUSION 
 This study presented a method for predicting summertime nocturnal Tair one day in advance 

in a mid-latitude temperate city using Landsat data, open-source geodata, and crowdsourced Tair 

data. We compared the performance of three ML algorithms and three different combinations of 
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predictors. The most accurate ML algorithm was found to be RF, which is encouraging due to its 

intuitive use and fast computational speed. RF models with only GIS predictors showed a high 

predictive capacity, with an average RMSE for testingcrowd of 1.16 K and RMSE for testingref of 

1.97 K. Models with GIS predictors were generally more accurate, whereas models incorporating 

Tcrowd as a predictor enhanced accuracy on a night with a relatively spatially homogeneous Tair 

distribution and higher wind speed. The integration of both geodata and crowdsourced Tair as 

predictors is recommended in modeling in order to benefit from both high-resolution satellite and 

morphological data, and Tair distribution from a prior time step. Based on an analysis of variable 

importance, we recommend the inclusion of morphometric predictors (particularly zd and zHstd) 

and albedo in Tair prediction. Furthermore, we provided a recommendation for optimal focal 

buffer radii for the 13 GIS predictors, ranging from 50m to 1500m.  

 Testing with reference data revealed an overestimation of Tair, particularly in vegetated 

areas further from the city center. While modeling Tair using crowdsourced atmospheric data 

holds great promise, crowdsourced datasets incorporate biases due to sensor location and spatial 

distribution. Nevertheless, the present method is well-suited for prediction of heat risk in the built-

up city center, where urban residents face the highest risk of heat stress.  

 An understanding of the spatial distribution of Tair hot spots can guide sustainable urban 

planning, which is crucial as urban residents face increasing extreme heat risks. The strength of 

the developed method is that it can easily be fused with weather forecasts from other models to 

provide accurate estimates of heat wave hotspots in advance. Therefore, the prediction of Tair in 

advance can be used as a warning system to detect when vulnerable communities could be 

affected by hot spots, such as retirement homes, hospitals, and schools. Future studies could test 

this methodology in other urban areas.   
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GRAPHICAL ABSTRACT 

 

ABSTRACT 
As climate change progresses, urban areas are increasingly affected by water scarcity and the 

urban heat island effect. Evapotranspiration (ET) is a crucial component of urban greening 

initiatives of cities worldwide aimed at mitigating these issues. However, ET estimation methods 

in urban areas have so far been limited. An expanding number of flux towers in urban 

environments provide the opportunity to directly measure ET by the eddy covariance method. In 

this study, we present a novel approach to model urban ET by combining flux footprint modeling, 

remote sensing and geographic information system (GIS) data, and deep learning and machine 

learning techniques. This approach facilitates spatio-temporal extrapolation of ET at a half-hourly 
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resolution; we tested this approach with a two-year dataset from two flux towers in Berlin, 

Germany. The benefit of integrating remote sensing and GIS data into models was investigated 

by testing four predictor scenarios. Two algorithms (1D convolutional neural networks (CNNs) 

and random forest (RF)) were compared. The best-performing models were then used to model 

ET values for the year 2019. The inclusion of GIS data extracted using flux footprints enhanced 

the predictive accuracy of models, particularly when meteorological data was more limited. The 

best-performing scenario (meteorological and GIS data) showed an RMSE of 0.0239 mm/ hour 

and R2 of 0.840 with RF and an RMSE of 0.0250 mm/ hour and a R2 of 0.824 with 1D CNN for 

the more vegetated site. The 2019 ET sum was substantially higher at the site surrounded by more 

urban greenery (366 mm) than at the inner-city site (223 mm), demonstrating the substantial 

influence of vegetation on the urban water cycle. The proposed method is highly promising for 

modeling ET in a heterogeneous urban environment and can support climate change mitigation 

initiatives of urban areas worldwide.  

3.1 INTRODUCTION 
 Meeting the United Nations’ Sustainable Development Goal 11 of “sustainable cities and 

communities” is critical as urban residents worldwide are increasingly affected by climate change 

and water scarcity (Liu and Jensen, 2018). By 2050, nearly 70% of the world population is 

projected to be urban (United Nations, 2019). The paradigm of integrating green infrastructure to 

support sustainable urban water management is growing in importance and is known by various 

terms such as water sensitive urban design (WSUD), sponge city, and low impact development 

(LID) (Liu and Jensen, 2018; Nguyen et al., 2019). These city policies are part of a “co-benefits 

approach” of climate change mitigation, which simultaneously addresses urban flooding and the 

urban heat island (He et al., 2019). The ecosystem services provided by green infrastructure, 

which include the enhancement of flood water infiltration, air temperature modification, energy 

saving, air quality, biodiversity, and numerous socio-economic benefits, are central to this 

approach (He et al., 2019; Nguyen et al., 2019; Nouri et al., 2013). 

 Berlin, Germany, a city internationally recognized for its sustainable water supply system, 

is one example of a city preparing for climate change impacts by adopting the sponge city concept 

(Liu and Jensen, 2018). Taking advantage of the cooling effect of evapotranspiration (ET) is a 

key principle of this concept (Gunawardena et al., 2017). Adding more green infrastructure such 

as green roofs to the city can provide an evaporative cooling effect during the increasingly 

common heat waves expected in northern Europe (Liu and Jensen, 2018; Meehl and Tebaldi, 

2004; Vulova and Kleinschmit, 2019). Therefore, an enhanced understanding of ET in urban areas 

is essential to implementing climate change mitigation and urban greening schemes 

(Gunawardena et al., 2017). 
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 Despite its significance, ET estimation in urban environments remains a nascent area of 

research, as most ET studies have focused on natural or agricultural areas (Nouri et al., 2013; 

Saher et al., 2021). The urban environment is spatio-temporally heterogeneous, with a mixture of 

land cover, microclimate, and soil and water characteristics (Nouri et al., 2013). Point-based ET 

measurements such as lysimeters and sap flow may not be representative or practical in an urban 

setting (Litvak et al., 2017). 

 Surface energy balance (SEB) models use remotely sensed imagery and auxiliary 

meteorological data as input and estimate ET as the residual of the energy balance equation 

(Norman et al., 1995; Saher et al., 2021; Su, 2002). Some commonly applied SEB models include 

the two-source energy balance (TSEB) model (Norman et al., 1995), Surface Energy Balance 

Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998), and Surface Energy Balance System 

(SEBS) (Su, 2002). Jiang and Weng (2017) applied TSEB to model daily ET in an urban area in 

the United States; however, ET was not validated with field data in this study. Cong et al. (2017) 

compared SEBS to a water balance method to estimate ET in Beijing, China, finding that SEBS 

severely underestimated annual ET. SEB models are not suitable for characterizing urban ET 

without major adjustments, as they omit anthropogenic heat and diurnal advection effects, assume 

homogeneous vegetation, operate on a regional scale, and ignore atmospheric variability in urban 

areas (Saher et al., 2021). 

 Physically based hydrological models simulate hydrological processes, including soil 

evaporation, transpiration, interception, subsurface flow, and channel flow, using representations 

of partial differential equations (Dwarakish et al., 2015). Recent hydrological models incorporate 

remote sensing data such as the Normalized Difference Vegetation Index (NDVI) as a proxy for 

leaf area index (LAI), biomass, and urban impervious fraction (Boegh et al., 2009, 2004). 

Physically based hydrological models are challenging to implement as they necessitate the 

estimation of numerous parameters, which often require expert knowledge or field measurements 

to be determined (Boegh et al., 2009; Dwarakish et al., 2015).  

 Eddy covariance (EC), a micrometeorological technique which measures turbulent fluxes of 

sensible and latent heat, momentum and other gases e.g. CO2, is one of the few methods which 

can directly measure ET in a heterogeneous urban environment (Nouri et al., 2013). However, 

EC measurements have mostly been used in agricultural, forestry and riparian studies so far (Holl 

et al., 2020; Järvi et al., 2012; Menzer et al., 2015; Moffat et al., 2007; Papale and Valentini, 

2003). Limited EC applications over urban areas were predominantly used to assess exchanges 

of energy, greenhouse gases and air pollutants rather than LE or ET (Holl et al., 2020; Järvi et al., 

2012; Kordowski and Kuttler, 2010; Menzer et al., 2015; Moffat et al., 2007; Papale and 

Valentini, 2003). Moreover, EC measurements are frequently affected by instrument failures, low 

turbulent atmospheric conditions, and system “spikes”, leading to data gaps accounting for 20-
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60% of data on an annual basis (Moffat et al., 2007). Gap-filling or modeling is therefore 

indispensable in order to obtain daily, monthly, and annual sums of ET, which can be used to 

better characterize the urban water cycle. 

 Current modeling and gap-filling approaches are insufficient in a heterogeneous urban 

environment due to the changing source area of EC measurements and urban heterogeneity 

(Kotthaus and Grimmond, 2014; Menzer et al., 2015). Previous studies modeling CO2 have 

addressed the issue of urban heterogeneity by training models independently on different wind 

direction sectors (Menzer et al., 2015) or adding wind direction as a binary predictor (Järvi et al., 

2012). However, these approaches do not integrate the influence of wind speed and atmospheric 

stability in controlling footprint area (Kljun et al., 2002; Kotthaus and Grimmond, 2014). 

Footprint models, on the other hand, can estimate the likely surface area affecting turbulent flux 

measurements at a given point in time (Kotthaus and Grimmond, 2014). Combining footprint 

modeling with a geospatial database is highly beneficial for the interpretation of urban fluxes 

(Christen et al., 2011; Kotthaus and Grimmond, 2014). However, footprint modeling has not thus 

far been combined with machine learning (ML) regression in order to model urban ET.  

 Although studies modeling EC fluxes at a half-hourly scale have applied ML approaches to 

gap-fill the datasets, the application of ML models in new locations has not thus far been assessed. 

Extracting remotely sensed data by footprint modeling opens up the opportunity to spatially 

upscale ET to the city scale at a high resolution in the future (Crawford and Christen, 2015). We 

therefore test the potential to model ET in areas where no flux tower is available by training in 

one location and testing in another. We model urban ET using 1D convolutional neural networks 

(1D CNNs) and random forest (RF), which have never and rarely been applied to model EC fluxes 

so far, respectively (Kim et al., 2020).  

 In this study, we evaluated an approach combining flux footprint modeling, deep learning 

(DL) and ML, and GIS and remotely sensed data in order to model ET at a half-hourly resolution 

in a heterogeneous urban environment. We assessed the hypothesis that integrating remote 

sensing and GIS data by footprint modeling, rather than relying solely on meteorological data, 

can better characterize urban ET. We tested this methodology in Berlin, Germany with a two-year 

dataset from two flux towers. Our key objectives were to: 1) assess the benefit of remote sensing 

and GIS data extracted by flux footprints to modeling urban ET; 2) identify the main drivers of 

ET in an urban environment; 3) compare the performance of two ML and DL algorithms (1D 

CNN and RF) and four predictor scenarios in modeling urban ET; 4) compare model performance 

at two urban flux tower sites with differing land cover and evaluate to what extent models can be 

applied in new locations; and 5) derive monthly and annual ET estimates.  
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3.2 DATA 
 A set of temporally dynamic and static data extracted from satellite imagery, flux towers, 

and meteorological stations was used to predict ET in an urban landscape. An overview of the 23 

predictors used to model ET at a half-hourly resolution is given in Table 3.1. 

3.2.1 STUDY AREA 
 The study is based in Berlin, the largest city in Germany with 3.7 million inhabitants 

distributed across 891 km2 in 2018 (Statistical Office of Berlin-Brandenburg, 2019) (Figure 1.1). 

Berlin is located in eastern Germany (52.52 °N, 13.40 °E) and has a humid warm temperate 

climate (Kottek et al., 2006).  

 The two flux towers are part of the Urban Climate Observatory (UCO) Berlin maintained by 

the Chair of Climatology at the Technische Universität Berlin (TUB) (Scherer et al., 2019). The 

Rothenburgstraße (ROTH) flux tower is located in an urban research garden belonging to the 

TUB in the southwest of the city (Figure 3.1). The TUB Campus Charlottenburg (TUCC) flux 

tower is located on top of the main building of the TUB in the center of the city (Figure 3.1). The 

measurement heights are 39.75 m and 56 m for the ROTH and TUCC towers, respectively. The 

tower at ROTH is situated in a more vegetated area, with 50.6% vegetation, 26.3% impervious 

surface, 22.8% buildings, and 0.3% water bodies within a 1000-m radius. The tower at TUCC, in 

contrast, is characterized by 32.6% vegetation, 35.5% impervious surface, 27.2% buildings, and 

4.7% water bodies within a 1000-m radius.   

 

Figure 3.1: Locations of the two flux towers in Berlin, Germany. A 1-km radius showing 

vegetation height (VH) and building height (BH) around the towers is depicted for a) TUCC 

and b) ROTH. c) The Normalized Difference Vegetation Index (NDVI) from Landsat 8 is 

shown for 24 June 2019 in Berlin and its surrounding area. The datum is WGS-84 and the 

projection is UTM. 
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3.2.2 METEOROLOGICAL DATA 
 Hourly meteorological data were acquired from the German Meteorological Service (DWD) 

Climate Data Center (DWD, 2021) and used as ET predictors (Table 1). Solar radiation data were 

acquired from the station Potsdam (19.2 km and 23.2 km distance from ROTH and TUCC, 

respectively) for both towers. All other DWD data were acquired at stations Berlin-Dahlem (1.04 

km distance from ROTH) and Berlin-Tegel (5.94 km distance from TUCC) for ROTH and TUCC, 

respectively. Linear interpolation was applied for short (<4 h) gaps. Lastly, all DWD data were 

linearly interpolated to a half-hourly resolution.  

 Reference ET (ETo) was calculated with the hourly ASCE “Standardized Reference 

Evapotranspiration Equation” for short crops (Allen et al., 2005) using the “hourlyET” function 

of the R package “water” (Olmedo et al., 2016). For further details on the parametrization of ETo 

and saturated vapor pressure (SVP), refer to Appendix B. 

 Figure 3.2a-d shows daily air temperature, shortwave downward radiation, precipitation, and 

NDVI throughout the study period. Figure 3.2e shows the temporal distribution of half-hourly ET 

after quality control (in units of mm/ hour) measured at the two flux towers during the study 

period. Both towers follow a typical seasonal pattern for ET, with the highest maximum values 

in summertime and the lowest maximum values in wintertime. As expected, the maximum ET 

values at the more vegetated site (ROTH, green dots) are nearly double the values at the less 

vegetated site (TUCC, orange dots) in the growing season. 
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Figure 3.2: Meteorological and vegetation greenness conditions during the study period (1 

June 2018 to 1 June 2020): (a) daily averaged air temperature (Tair), (b) daily averaged 

shortwave downward radiation (SW), (c) daily precipitation (P), (d) Normalized Difference 

Vegetation Index (NDVI), and (e) half-hourly ET after quality control measured at the two 

flux towers during the study period, with ROTH depicted in green and TUCC in orange. 

NDVI data were extracted from flux footprint modeling (at a half-hourly temporal scale) at 

the ROTH flux tower and averaged to a daily scale. Tair and P were derived from the 

German Meteorological Service (DWD) station Berlin-Dahlem (FU) and SW from the DWD 

station Potsdam. The study period was drier and warmer than the long-term (1981-2010) 

mean, with an average annual P of 448 mm (long-term mean: 591 mm) and an average Tair 

of 11.3 °C (long-term mean: 9.5 °C) (DWD, 2021, 2020). 

3.2.3 FLUX MEASUREMENTS, FILTERING AND DATA PROCESSING  
 The EC system at both sites combines an open-path gas analyzer and a three-dimensional 

sonic anemometer-thermometer (IRGASON, Campbell Scientific) for simultaneous 

measurements of water vapor density as well as orthogonal wind components. The EC software 

package EddyPro (Version 6.2.1) was used to quality-control EC raw data and to calculate ET 

from 20-Hz time series over 30-min intervals. 

 Data quality control and processing with EddyPro included elimination of spikes, filtering 

values based on physical thresholds, and statistical screening based on the method developed by 

Vickers and Mahrt (1997). We applied double coordinate rotation, correction of sonic temperature 

for humidity, high- and low-frequency spectral corrections (Moncrieff et al., 1997), and 

corrections for air density (Webb et al., 1980). Furthermore, instrument diagnostic flags not equal 

zero and data with signal strength <0.8 were withheld. EddyPro output data at 30-minute 

resolution with quality flag 2 were excluded (Foken, 2016) as well as data during and 4 hours 

after precipitation events based upon DWD precipitation data. Additionally, data from wind 

directions 17° - 35° at TUCC and 54° - 72° at ROTH were excluded because this sector is 

influenced by flow distortion due to the instrument and mounting setup (Foken, 2016). De-spiking 

based on standard deviation (SD) was applied, with LE data five times greater than the SD 

removed as spikes using the R package “FREddyPro” (Xenakis, 2016). A simple threshold was 

applied, excluding data where LE was below -100 W/ m2 and above 500 W/ m2. Furthermore, 

negative values of ET were removed as they represent condensation.  

 Based on overlapping observations from the two towers, the study period was restricted to 

two years (1 June 2018 to 1 June 2020). A total of 16,707 and 16,013 (48% and 46% of the study 

period) high quality half-hourly ET observations (in mm/ hour) then remained available for 

modeling at ROTH and TUCC, respectively. 
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3.2.4 TURBULENT FLUX FOOTPRINTS  
 Modeling urban ET measured by flux towers is challenging due to the dynamic influence of 

heterogeneous land cover. Turbulent fluxes measured by an EC measurement system do not 

represent the energy exchange of a fixed radius around the site, but rather that of a constantly 

changing upwind area which contains the sources and sinks contributing to measurements (Foken, 

2016; Kljun et al., 2002; Schmid and Oke, 1990). This area is referred to as a footprint or turbulent 

flux source area and can be estimated by footprint models (Crawford and Christen, 2015; Kljun 

et al., 2002). In this study, footprint areas were estimated with the Kormann and Meixner (2001) 

analytical footprint model using the R package “FREddyPro” (Xenakis, 2016). Further details on 

the parametrization of footprint models are given in Appendix B. The resulting footprint grids 

were reduced to the 90% probability area. Weighted averages of the surface cover were extracted 

by multiplying these grids with the raster layers and summing the resulting pixel values on a half-

hourly basis (Figure 3.3). 

3.2.5 REMOTE SENSING AND GIS DATA 
 Six remote sensing and GIS datasets were used as predictors of urban ET (Table 3.1; Figure 

3.3), which are referred to as “GIS predictors.”  

 The Harmonized Landsat and Sentinel-2 (HLS) surface reflectance product provided by 

NASA was used to compute NDVI, an indicator of vegetation density and vitality (Claverie et al., 

2018; Tucker, 1979). This open-source product is well-suited for vegetation phenology 

monitoring in urban areas with a revisit period of 3-5 days and a 30-meter resolution (Claverie et 

al., 2018). The preprocessing and interpolation to daily resolution of HLS data are further 

described in Appendix B.  

 Vegetation height (VH) and building height (BH) were provided by the Berlin Digital 

Environmental Atlas at 1-meter resolution (Berlin Senate Department for Urban Development 

and Housing, 2014). Vegetation fraction was derived by converting VH pixels higher than 0.01 

m to a value of 1 and all other pixels to 0. Land use and land cover (LULC) classes data were 

provided by Urban Atlas 2012 (European Environment Agency, 2018). Water fraction was 

derived by assigning the LULC classes “Water” and “Wetlands” to a value of 1 and all other 

classes to 0. Impervious surface fraction (ISF) was also derived from the Urban Atlas LULC 

dataset, as described in Vulova et al. (2020).  

Table 3.1: An overview of the predictor variables used to model evapotranspiration (ET) at 

half-hourly resolution; details of the source of the data, preprocessing method, and their 

spatial and temporal resolutions are listed. In the “Temporal resolution” column, “static” 

refers to predictors which remain constant over time (such as building height). In the 

“Spatial resolution” column, P refers to point data (derived from a single point in space), 
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while F refers to remote sensing and GIS data extracted with flux footprints. All 

meteorological data (including ETo) were linearly interpolated to a half-hourly resolution. 

Predictor (acronym) Unit Data source Preprocessing method Spatial 
resolution 
(m) 

Temporal 
resolution 

GIS predictors 

Building height (BH) m Berlin Digital 
Environmental Atlas 
(2014) 

- 1 (F) Static 

Impervious surface 
fraction (ISF) 

% Urban Atlas 2012 (LULC) Vulova et al. (2020); 
rasterization with 1-m 
resolution 

1 (F) Static 

Normalized Difference 
Vegetation Index 
(NDVI) 

- Harmonized Landsat and 
Sentinel-2 (HLS) surface 
reflectance product, 
NASA 

Claverie et al. (2018); 
cloud-masking; pixel-
wise linear interpolation 
to daily scale 

30 (F) Daily 

Vegetation fraction % Berlin Digital 
Environmental Atlas 
(2014) VH 

Conversion of VH higher 
than 0.01 m to 1 and all 
other pixels to 0 

1 (F) Static 

Vegetation height (VH) m Berlin Digital 
Environmental Atlas 
(2014) 

- 1 (F) Static 

Water fraction % Urban Atlas 2012 (LULC) Rasterization of water 
bodies with 1-m 
resolution (1 = present, 
0 = absent) 

1 (F) Static 

Meteorological predictors 

Air pressure hPa DWD - P Hourly 

Air temperature °C DWD - P Hourly 

Diffuse solar radiation W/m2 DWD Unit conversion from 
J/cm2 to W/m2 

P Hourly 

Dry bulb temperature °C DWD - P Hourly 

Longwave downward 
radiation 

W/m2 DWD Unit conversion from 
J/cm2 to W/m2 

P Hourly 

Reference 
evapotranspiration 
(ETo) 

mm/hour DWD Allen et al. (2005) 
equation for short crops; 
“water” R package 
(Olmedo et al., 2016) 

P Hourly 

Relative humidity (RH) % DWD - P Hourly 

Saturated vapor 
pressure (SVP) 

hPa DWD Allen et al. (1998); 
“MeTo” R package 
(Dettmann and Grimma, 
2019) 

P Hourly 

Shortwave downward 
radiation 

W/m2 DWD Unit conversion from 
J/cm2 to W/m2 

P Hourly 

Soil temperature at 5 
cm, 10 cm, 20 cm, 50 
cm, and 100 cm depth 

°C DWD - P Hourly 

Solar zenith angle ° DWD - P Hourly 

Vapor pressure deficit 
(VPD) 

hPa DWD - P Hourly 

Wind speed m/s DWD - P Hourly 
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3.3 METHODS 

3.3.1 ET MODELING  
3.3.1.1 PREDICTOR SCENARIOS 
 To explore the contribution of different data sources (remote sensing and GIS, 

meteorological, and ETo) to estimating ET, four predictor scenarios were tested in models: (1) 

only ETo as a predictor (one predictor; “ETo”), (2) ETo and GIS predictors (seven predictors; 

“ETo and GIS”), (3) only meteorological predictors (16 predictors; “Met”), and (4) 

meteorological and GIS predictors (22 predictors; “Met and GIS”). GIS predictors refer to the six 

remote sensing and GIS datasets (BH, VH, ISF, NDVI, vegetation fraction, and water fraction) 

(Table 3.1; Figure 3.3). Meteorological predictors refer to all predictors except GIS predictors 

and ETo (Table 1). In total, 32 models were run, with two towers, two temporal training/ testing 

splits, four predictor scenarios, and two artificial intelligence (AI) algorithms.   

 Figure 3.3 presents an overview of the entire methodological approach.  
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Figure 3.3: Flowchart showing an overview of the study, including the data used for ET 

modeling, footprint modeling, and ML and DL modeling. Abbreviations can be found in the 

text. The probability grids diagram is adapted from Christen (2016). 

3.3.1.2 ML AND DL ALGORITHMS  
 ML and DL algorithms, which broadly fall under the umbrella of AI, have emerged as 

particularly accurate methods for gap-filling urban fluxes (Järvi et al., 2012; Menzer et al., 2015; 

Schmidt et al., 2008). ML and DL algorithms were selected to model urban ET as they can 

generalize from sample data without relying on a process-based formulation (Kuhn and Johnson, 

2013; Menzer et al., 2015; Schmidt et al., 2008). Furthermore, ML and DL algorithms allow for 

the integration of a large set of predictor variables and the estimation of variable importance 

(Kuhn and Johnson, 2013). Here, we tested two supervised regression DL and ML algorithms: a 

1D CNN and RF.  
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3.3.1.2.1 1D CONVOLUTIONAL NEURAL NETWORKS (CNN) 
 CNNs are a type of DL model defined by convolutional layers, which learn local patterns 

automatically (Chollet and Allaire, 2018). Whereas in computer vision 3D convolutions are used 

to extract local spatial features, 1D convolutions essentially treat time as a spatial dimension, 

extracting local patterns in a sequence and recognizing them at a different temporal position 

(Chollet and Allaire, 2018). This capacity makes them highly relevant to sequence processing, 

with recent applications in hydrological modeling (Chollet and Allaire, 2018; Ferreira and da 

Cunha, 2020; Haidar and Verma, 2018).  

 The CNN architecture used in this study consisted of three convolutional layers, with each 

of the first two convolutional layers immediately followed by max pooling layers. The third 

convolutional layer was followed by a flatten layer in order to convert the 3D outputs to 2D 

outputs (Chollet and Allaire, 2018). The final (seventh) layer is a 1-dimensional dense layer with 

linear activation, generating the ET prediction. CNN architecture was set up according to the 

recommendations of Chollet and Allaire (2018) and trial and error experimentation. In 

convolutional layers, padding was set to “same”, stride was set to 1, and the activation function 

was set to rectified linear unit (ReLU). To train the models, the Adam algorithm (Kingma and Ba, 

2015) and the mean squared error (MSE) loss function were used. The learning rate was set to the 

default of 0.001. To limit overfitting, early stopping was used to define the number of training 

epochs, with a maximum of 100 training epochs and a patience of 10 epochs. In-depth information 

on CNNs and their implementation using the R interface to Keras can be found in Chollet and 

Allaire (2018). A detailed description of hyperparameter tuning for CNNs is given in Appendix 

B.  

3.3.1.2.2 RANDOM FOREST (RF) 
 RF was used to model urban ET due to its capacity to handle highly nonlinear relationships, 

avoid overfitting, and produce a stable prediction (Kim et al., 2020; Kuhn and Johnson, 2013). 

RF is an ensemble decision tree-based algorithm proposed by Breiman (2001). Further details on 

RF and its implementation are given in Kuhn and Johnson (2013). Hyperparameter tuning for RF 

is described in Appendix B. 

3.3.1.2.3 VARIABLE IMPORTANCE  
 Relative variable importance scores (scaled from 0 to 100%) were extracted from models 

trained with the “Met and GIS” predictor scenario. Variable importance was extracted by the 

permutation approach described by Breiman (2001) using the “vip” R package for CNNs 

(Greenwell et al., 2020) and the “caret” R package for RF (Kuhn, 2008).  



Chapter 3: Modeling urban evapotranspiration using remote sensing, flux footprints, and artificial 
intelligence 

Stenka Vulova - November 2022   53 

3.3.2 ET PERFORMANCE METRICS  
 To evaluate the temporal and spatial extrapolation capability of models (Roberts et al., 

2017), we split the data into training and testing sets. For the temporal extrapolation capability, 

we used 2018 and 2020 data for training and 2019 data for testing and vice versa. For ROTH, 

8617 and 8090 observations were available for 2018/ 2020 and 2019, respectively. For TUCC, 

8055 and 7958 observations were available for 2018/ 2020 and 2019, respectively. For the spatial 

extrapolation capability, we tested two scenarios: (1) training and testing on the same tower and 

(2) training on one tower and testing on the other.  

 The model performance was evaluated using the testing set, and the prediction accuracy was 

assessed using five metrics: root mean square error (RMSE), percent bias (pbias), coefficient of 

determination (R2), mean absolute error (MAE), and normalized root mean square error 

(NRMSE). The value used to normalize NRMSE was the difference between the maximum and 

minimum observed values. 

3.3.3 TOTAL ET 
 Monthly and annual ET sums for the year 2019 were calculated by two methods: (1) by gap-

filling using the ML and DL algorithms and (2) by exclusively modeling ET using the ML and 

DL algorithms without using the high-quality ET data for 2019. All models used for ET sums 

were trained in 2018 and 2020 and on the same tower for which data were predicted. In all cases, 

the “Met and GIS” predictor scenario was applied first, as it was found to be the best-performing 

scenario. In some cases, flux footprints could not be modeled due to unsuitable atmospheric 

conditions for footprint modeling and missing EC input data. Thus, any remaining gaps were 

filled using models trained with the “Met” predictor scenario. For ROTH, 9430 half-hours in 2019 

were missing and thus gap-filled (53.8 % of the data). For TUCC, 9562 half-hours in 2019 were 

missing and thus gap-filled (54.6 % of the data). Since ET was modeled at a half-hourly scale but 

is given in units of mm/ hour, half-hourly values were averaged to an hourly scale before summing 

ET.  

 Unless stated otherwise, all modeling and analysis were completed using R version 3.6.3 

(2020-02-29) and RStudio (version 1.3.1073) (R Core Team, 2020). CNNs were implemented 

through an R interface using the Keras DL framework and the TensorFlow backend (Allaire and 

Chollet, 2020; Chollet and Allaire, 2018). CNN models were trained on a local workstation using 

the CUDA environment (GPU-based processing) and a NVIDIA graphics card (Quadro P1000). 

The “caret” R package was used as a wrapper package for the RF algorithm implementation in R 

(Kuhn, 2008). For RF model tuning and training, parallel processing was performed on 14 cores 

using the R package “doSNOW” (Microsoft Corporation and Weston, 2019).  
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3.4 RESULTS  

3.4.1 ET MODELING 
 When modeling both towers independently, the scenarios including GIS predictors show the 

highest prediction accuracy. Table 3.2 presents the testing performance metrics averaged across 

the two temporal training and testing splits, providing an overall performance estimate of models. 

The “Met and GIS” scenario shows the lowest RMSE, NRMSE, and MAE and highest R2 in the 

majority of cases. With RF, the “Met and GIS” scenario shows the highest accuracy overall, with 

an RMSE of 0.0239 mm (R2 = 0.840 and MAE = 0.0154 mm) for ROTH and 0.0170 mm (R2 = 

0.544 and MAE = 0.0115 mm) for TUCC (Table 3.2). The “Met and GIS” scenario has a similar 

performance with CNN, with an RMSE of 0.0250 mm (R2 = 0.824 and MAE = 0.0160 mm) for 

ROTH and 0.0178 mm (R2 = 0.502 and MAE = 0.0119 mm) for TUCC.  

 The increase in performance is greater when adding GIS predictors to a simple “ETo” 

scenario than a scenario with 16 meteorological predictors. Comparing the simple predictor 

scenarios of “ETo” and “ETo and GIS”, “ETo and GIS” achieves a higher performance (lower 

RMSE, NRMSE, and MAE and higher R2) for both towers (Table 3.2). The “Met and GIS” 

scenario shows increased prediction accuracy than the “Met” scenario (Table 3.2). For instance, 

at ROTH with RF, “ETo and GIS” has a nearly 0.01 mm lower RMSE (26% decrease) and a 0.15 

higher R2
 (22% increase) than “ETo”, whereas the increased performance of “Met and GIS” 

compared to “Met” is less pronounced: 0.002 mm lower RMSE (7% decrease) and 0.02 higher 

R2 (3% increase).  

 RF outperforms CNN in most predictor scenarios, although the performance of both 

algorithms is comparable (Table 3.2). In a few scenarios, CNN performs better (“ETo” for ROTH; 

“ETo” and “ETo and GIS” for TUCC).  

 The RMSE and R2 values cannot be directly compared between the two towers, as they are 

dependent on the variation of ET. The range and maximum of ET are lower at TUCC, a site with 

less surrounding vegetation, than at ROTH (Figure 3.2e), leading to lower RMSE and R2 values 

at TUCC (Table 3.2). In the study period, the maximum ET at ROTH is nearly double (0.29 mm/ 

hour) the maximum ET at TUCC (0.16 mm/ hour) (Figure 3.2e). R2, in particular, is highly 

affected by the variation in the dependent variable (Kuhn and Johnson, 2013). NRMSE is 

normalized RMSE which facilitates a comparison of the prediction accuracy which takes into 

account the different ranges of ET at the two towers. When training and testing occurs on the 

same tower, NRMSE is generally lower at the more vegetated site (ROTH) than at the less 

vegetated site (TUCC). In most cases, training on the more vegetated site (ROTH) and testing on 

the less vegetated site (TUCC) is associated with a higher NRMSE than the opposite scenario due 

to the lower ET range at TUCC. 
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 Models for both towers have a low pbias when training and testing in different years 

(Appendix B; Table B.3 and Table B.4). However, training and testing on different towers 

increases the RMSE substantially while showing a relatively small effect on the R2 (Table 3.2). 

This increase in RMSE occurs due to the considerable difference in the average of ET between 

the two towers (0.05 vs. 0.03 mm/ hour at ROTH and TUCC, respectively), while the similar R2 

values indicate that the relationship between most predictors and ET is similar for both towers. 

 The addition of GIS data is associated with lower RMSE, NRMSE, and MAE for RF models 

when training in ROTH and testing in TUCC. Otherwise, the inclusion of GIS data is associated 

with a higher RMSE, NRMSE, and MAE when training and testing on different towers. This 

effect can be explained by the contrasting correlations between ET and the GIS predictors 

observed at the two towers (Appendix B; Figure B.3). At ROTH, ET correlates positively with 

indicators of higher vegetation presence (VH, Pearson’s r = 0.30; vegetation fraction, Pearson’s r 

= 0.32) and negatively with indicators of impervious land cover (ISF, Pearson’s r = -0.45; BH, 

Pearson’s r = -0.27), as expected. In contrast, at TUCC, ET has a weak positive correlation with 

BH (Pearson’s r = 0.06) and an insignificant correlation with ISF. Unexpectedly, ET at TUCC 

correlates negatively with both vegetation fraction (Pearson’s r = -0.15) and VH (Pearson’s r = -

0.15).  

 Training on TUCC leads to an underestimation of ET at ROTH, with a pbias ranging from -

44% to -55% (Table 3.2). As ET at TUCC is on average lower (Figs. 3 and 7), models trained on 

TUCC data cannot predict the higher ET observed at ROTH. Conversely, most models trained on 

ROTH data overestimate the lower ET observed at TUCC, as indicated by a positive pbias (52% 

- 87%) for all predictor scenarios except “ETo and GIS.” The decrease in pbias when including 

GIS data in models trained in ROTH and tested in TUCC can be explained by the contradictory 

relationship between ET and GIS predictors at the two towers (Appendix B; Figure B.3). 

 Monthly and diurnal modeling accuracy are discussed in Appendix B (Figures B.6 - B.10).  

Table 3.2: Testing performance metrics averaged across the two training and testing splits 

(training in 2018/ 2020 and testing in 2019 and vice versa). The performance metrics are 

root mean square error (RMSE), mean absolute error (MAE), percent bias (pbias), 

coefficient of determination (R2), and normalized root mean square error (NRMSE). The 

best performance metrics for each tower training and testing combination (e.g., training in 

ROTH and testing in TUCC) are shown in bold. 
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Tower 
(train) 

Tower 
(test) 

Predictors RMSE (mm/ 
hour) 

MAE (mm/ hour) pbias (%) R2 (-) NRMSE (%) 

   CNN RF CNN RF CNN RF CNN RF CNN RF 

ROTH ROTH ETo 0.0304 0.0355 0.0195 0.0226 -6.20 0.95 0.745 0.660 10.55 12.30 

  ETo and 
GIS 

0.0266 0.0263 0.0177 0.0169 1.05 -0.20 0.801 0.805 9.25 9.10 

  Met 0.0274 0.0256 0.0178 0.0164 4.65 2.35 0.793 0.817 9.50 8.85 

  Met and 
GIS 

0.0250 0.0239 0.0160 0.0154 -3.15 1.80 0.824 0.840 8.65 8.30 

TUCC TUCC ETo 0.0186 0.0208 0.0121 0.0140 -4.00 0.80 0.486 0.360 11.70 13.05 

  ETo and 
GIS 

0.0174 0.0175 0.0114 0.0116 -4.65 1.40 0.525 0.514 10.95 11.00 

  Met 0.0178 0.0173 0.0119 0.0119 -0.60 5.90 0.508 0.529 11.15 10.85 

  Met and 
GIS 

0.0178 0.0170 0.0119 0.0115 0.35 4.45 0.502 0.544 11.15 10.65 

ROTH TUCC ETo 0.0399 0.0475 0.0247 0.0285 70.90 83.95 0.486 0.452 25.05 29.80 

  ETo and 
GIS 

0.0635 0.0226 0.0398 0.0153 -137.10 -7.45 0.067 0.369 39.90 14.20 

  Met 0.0473 0.0446 0.0290 0.0273 90.50 87.15 0.507 0.521 29.70 27.95 

  Met and 
GIS 

0.0636 0.0318 0.0393 0.0202 -119.00 52.10 0.145 0.514 39.70 19.90 

TUCC ROTH ETo 0.0509 0.0524 0.0297 0.0311 -48.60 -46.65 0.744 0.524 17.65 18.20 

  ETo and 
GIS 

0.0583 0.0538 0.0349 0.0321 -61.70 -54.75 0.609 0.703 20.25 18.65 

  Met 0.0516 0.0491 0.0313 0.0289 -47.10 -44.00 0.665 0.775 17.95 17.05 

  Met and 
GIS 

0.0582 0.0505 0.0352 0.0297 -61.15 -49.15 0.596 0.780 20.20 17.50 

 

3.4.2 VARIABLE IMPORTANCE 
 The relative variable importance of predictors for both towers was tested. Figure 3.4 shows 

the percentage of relative influence of predictors with the “Met and GIS” scenario, which includes 

most of the predictors (except ETo). Despite how strongly ET is driven by meteorological 

conditions, the influence of GIS predictors is apparent in the RF variable importance. For RF 

models at ROTH, NDVI, ISF, and BH are the third, fifth, and sixth most important predictors, 

respectively. The most important meteorological predictors at both ROTH and TUCC with RF 

are wind speed, air pressure, and solar zenith angle. 

 RF variable importance differs between the two towers, reflecting the higher influence of 

impervious cover at TUCC. The second and fourth most important predictors at TUCC with RF 

are ISF and BH, respectively. Water fraction also has a minor influence in TUCC, whereas in 

ROTH water fraction has essentially no influence due to the lack of water bodies around the tower 

(Figure 3.4).  

 CNN variable importance differs substantially from RF variable importance. With CNNs, 

the most important meteorological predictors are shortwave downward radiation, solar zenith 
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angle, and diffuse solar radiation at ROTH and solar zenith angle, wind speed, and shortwave 

downward radiation at TUCC. ISF is the 7th most important predictor at ROTH, whereas the 

other GIS predictors are low ranked in importance.  

 

Figure 3.4: Relative variable importance revealed by models. The “Met and GIS” 

(meteorological and GIS predictors) predictor scenario is depicted. The variable 

importance was averaged across the two training and testing splits (training in 2018/ 2020 

and testing in 2019 and vice versa). 

3.4.3 TOTAL ET 
 Monthly and annual ET sums were computed for both towers (Figure 3.5). ET sums show a 

substantially higher ET at the more vegetated site (ROTH), as expected (Figure 3.5). The annual 

ET sum for 2019 is ~140 mm higher at ROTH than at TUCC, with an annual sum of 366 mm and 

223 mm, respectively, when gap-filling with the best-performing algorithm (RF) (Figure 3.5). 

The highest monthly ET sums are in the summer months; for ROTH, gap-filled ET sums with RF 

are 63 mm in June, 54 mm in July, and 50 mm in August (Figure 3.5). For TUCC, gap-filled ET 

sums with RF are around half the sums at ROTH: 31 mm in June, 28 mm in July, and 27 mm in 

August. Annual ET sums differ by only 3-5 mm when modeling the entire year of 2019 rather 

than gap-filling, confirming the dependability of the approach for ET estimation. Modeling the 

entire year without gap-filling reproduces the diurnal and annual cycle of the original data well 



Modeling thermal comfort indicators in an urban environment using remote sensing, open geodata, and 
artificial intelligence 

58  Stenka Vulova - November 2022 

for both algorithms (Figure 3.6). CNN better reproduces the high summer daytime ET at ROTH, 

whereas these values are underestimated by RF (Figure 3.6; Appendix B Table B.3). Nevertheless, 

differences in annual ET sums between the two algorithms are negligible, even when solely 

modeling (4 mm and 10 mm difference at ROTH and TUCC, respectively) (Figure 3.5). For both 

towers, 14 hours remained where ET could not be modeled due to missing DWD data, which 

were assigned to zero.  

 

Figure 3.5: Monthly evapotranspiration (ET) sums for the year 2019 calculated by (a) gap-

filling using random forest (RF) and 1D convolutional neural networks (CNN) and (b) by 

only modeling using RF and 1D CNN without using the original ET data for 2019. The first 

annual ET sum values listed represent the RF-based annual sums, while the CNN-based 

annual sums are in parentheses. All models used to obtain ET sums were trained in 2018 

and 2020 and on the same tower for which data were predicted. In all cases, the “Met and 

GIS” (meteorological and GIS) predictor scenario was applied first. Any remaining gaps 

were filled using models trained with the “Met” (meteorological) predictor scenario (see 

main text for further details). 
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Figure 3.6: Annual and diurnal course of (a) observed evapotranspiration (ET) at ROTH, 

(b) observed ET at TUCC, (c) modeled ET at ROTH with 1D convolutional neural networks 

(CNN), (d) modeled ET at TUCC with 1D CNN, (e) modeled ET at ROTH with random 

forest (RF), and (f) modeled ET at TUCC with RF. ET depicted in (c)-(f) is exclusively 

modeled with ML algorithms (not gap-filled). All models used to model ET were trained in 

2018 and 2020 and on the same tower for which data were predicted. White areas represent 

missing data (for (a) and (b)) and modeled negative values (for (c)-(f)). 

3.5 DISCUSSION 

3.5.1 ET IN AN URBAN ENVIRONMENT  
 Aligning with greening, carbon-neutrality, and sustainability plans of many cities worldwide 

and in light of the impact of climate change on the urban water cycle and urban heat, it is crucial 

to accurately characterize urban ET. In this study, we presented a novel approach combining 

footprint modeling, ML and DL, and remote sensing to accurately model urban ET at a half-

hourly scale. Integrating GIS, remote sensing and meteorological datasets and using ML and DL 

techniques paves the way for new approaches in urban ET estimation and facilitates enhancing 

its accuracy and transferability. When available meteorological data is more limited (e.g., only 
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ETo data), the addition of remotely sensed satellite and GIS data is especially beneficial for ET 

modeling in an urban environment. Some urban areas, particularly in developing countries, have 

limited access to data such as solar radiation (Shafieiyoun et al., 2020; Shojaei et al., 2018), 

whereas medium-resolution satellite imagery is freely available worldwide (Claverie et al., 2018). 

Modeling with Penman-Monteith ETo still assumes extensive meteorological data is available for 

an urban area, which is not the case for data-scarce regions (Shafieiyoun et al., 2020). Therefore, 

future work should consider even more limited data scenarios.  

 We tested different predictors of urban ET on two EC towers located in different 

neighborhoods in Berlin. We found a combination of meteorological, remote sensing, and GIS 

data to be the optimal predictor scenario of urban ET. For the tower surrounded by more urban 

greenery, meteorological and GIS data shows an RMSE of 0.0239 mm/ hour and R2 of 0.840 with 

RF and an RMSE of 0.0250 mm/ hour and a R2 of 0.824 with 1D CNN. For the tower surrounded 

by a greater proportion of impervious cover, the same scenario shows an RMSE of 0.0170 mm/ 

hour and R2 of 0.544 with RF and an RMSE of 0.0178 mm/ hour and R2 of 0.502 with 1D CNN. 

 Our approach compares favorably with other modeling approaches for estimating hourly 

urban LE; we converted LE (W/ m2) from other studies to ET (mm/ hour) for comparison. For 

instance, the Surface Urban Energy and Water Balance Scheme (SUEWS) was used to model LE 

on an hourly scale in Los Angeles, USA and Vancouver, Canada; an RMSE of 0.0295-0.0826 

mm/hour and R2 0.47-0.79 were reported (Järvi et al., 2011). SUEWS was applied to estimate 

urban LE at an hourly scale at two EC sites in the UK, a dense urban site in London and a suburban 

site in Swindon; an RMSE of 0.0364 mm/ hour and R2 of 0.245 and an RMSE of 0.0333 and R2 

of 0.721 were reported, respectively (Ward et al., 2016). Three urban land-surface models (LSMs) 

were applied to model EC fluxes in a dense city center site and a suburban site in Helsinki, Finland 

(Karsisto et al., 2016). The LSMs showed an RMSE of 0.0168 mm/ hour (winter) to 0.0889 mm/ 

hour (summer) at the suburban site and an RMSE of 0.0226 mm/ hour (winter) to 0.0733 mm/ 

hour (summer) at the urban site (Karsisto et al., 2016). A micrometeorological approach (ARM) 

was applied to model LE in three temperate cities, finding a poor to moderate agreement with EC 

measurements; an RMSE of 0.0268-0.0450 mm/ hour and R2 of 0.37-0.42, an RMSE of 0.0280 

mm/ hour and R2 of 0.09, and an RMSE of 0.0311 mm/ hour and R2 of 0.07 were reported for 

Basel, Switzerland, London, UK, and Heraklion, Greece, respectively (Chrysoulakis et al., 2018).  

3.5.2 MODELING ET 
 Comparing ML and DL algorithms used in our study, RF showed a slightly higher accuracy 

than CNN, although the performance of the algorithms was comparable. RF also outperformed 

ANNs and SVM in a study gap-filling methane fluxes (Kim et al., 2020). Kim et al. (2020) 

attributed the superior performance of RF for methane gap-filling to its capacity to incorporate a 
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variety of model inputs, including noise, while avoiding overfitting. 1D CNNs are nevertheless 

promising for hydrological modeling due to their high computational speed and capacity to extract 

temporal patterns (Ferreira and da Cunha, 2020; Haidar and Verma, 2018). As data-driven 

empirical models, the ML and DL algorithms needed to be trained at each location to perform 

optimally, shown by the increase in RMSE when training and testing on different towers. 

However, the similar R2 values whether training and testing on the same or different towers show 

that the relationship between the predictors and ET are similar for both towers. The inclusion of 

remote sensing and GIS data opens up the possibility to fit general models incorporating the 

influence of surface cover. 

3.5.3 ET DRIVERS IN AN URBAN ENVIRONMENT 
 Deeper investigation of predictors by variable importance analysis highlighted the 

contribution of remote sensing and GIS data to models, even though ET is primarily driven by 

meteorological variables. The most important GIS predictors based on RF were NDVI, ISF, and 

BH at ROTH and ISF, BH, and vegetation fraction at TUCC. Land cover may play a role in which 

predictors are most relevant. For instance, NDVI may be more relevant for modeling in a more 

vegetated urban area (e.g., ROTH), as NDVI has been shown to be very beneficial to modeling 

ET of urban vegetation (Boegh et al., 2009; Nouri et al., 2015). CNN models assigned lower 

importance to GIS predictors, with ISF as the most important GIS predictor at ROTH and BH as 

the most important GIS predictor at TUCC. Wind speed, air pressure, and solar zenith angle are 

highly relevant in ET estimation according to RF models. CNN models also emphasized a similar 

set of meteorological variables: shortwave downward radiation, solar zenith angle, diffuse solar 

radiation, and wind speed.  

 The ET sums showed a substantial difference between the less vegetated site and the more 

vegetated site, demonstrating how green infrastructure can substantially alter the urban water 

cycle. In summertime, monthly ET sums of a more highly vegetated site (ROTH) were double 

the ET sums of the less vegetated site (TUCC). ET at ROTH constituted a larger share of available 

precipitation (P) annually (72% of 506 mm P measured at Berlin-Dahlem) than at TUCC (56% 

of 400 mm P measured at Berlin-Tegel or 38% of 584 mm P measured at the TUCC flux tower), 

which can be attributed to the greater vegetation cover at ROTH. P was not calculated from the 

ROTH flux tower due to large data gaps in the dataset. A study in a suburban area (Swindon) in 

the UK estimated annual ET to be 370 mm using EC data (Ward et al., 2013), closely matching 

the annual ET sum at the more vegetated site (ROTH) in our study (366 mm). The study area in 

Swindon, UK was similar to our study site at ROTH, as their flux tower was also installed in a 

residential garden with significant surrounding vegetation cover (44% within a 500-m radius) 

(Ward et al., 2013). However, the ratio of ET to P annually at Swindon (57%) was lower than the 

ratio at ROTH (Ward et al., 2013). A study simulating annual ET in Copenhagen, Denmark with 
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an ecohydrological model estimated an annual ET of 210 mm, corresponding to 27% of P (Boegh 

et al., 2009); this ET sum is comparable to the value at the less vegetated site (223 mm), although 

the percentage of P is lower in Copenhagen than in both sites in this study. The site in Copenhagen 

was surrounded by 28% vegetation cover in the averaged daily flux footprint (Boegh et al., 2009), 

which is even lower than the fraction of vegetation cover at TUCC (33%). A source of uncertainty 

for ET sums are precipitation events, during which the EC system cannot accurately record fluxes. 

On average, modeled ET was lower during precipitation events, likely reflecting the reduced 

shortwave radiation during rain events (Appendix B; Figure B.4 and Table B.5). In reality, a rapid 

evaporation may occur directly following rainfall from rainwater that is intercepted by impervious 

surfaces or vegetation (Ward et al., 2013). Methods relying on open-path gas analyzers therefore 

underestimate ET sums (Ward et al., 2013).  

3.5.4 FUTURE APPLICATIONS 
 The future of sustainable cities, elaborated in the sponge city or WSUD concept, hinges upon 

ecosystem services provided by green infrastructure (He et al., 2019; Liu and Jensen, 2018). ET 

is a key indicator of the ecosystem services provided by urban green spaces due to its role in the 

water balance and its cooling capacity; as such, urban initiatives are already explicitly aiming to 

enhance ET by integrating more vegetation, green facades, and green roofs into the urban 

landscape (Liu and Jensen, 2018). Expanding green infrastructure in cities, however, brings trade-

offs in urban sustainability, as more water resources are used for landscape irrigation (Litvak et 

al., 2017; Nouri et al., 2019; Pataki et al., 2011). While urban water scarcity has mainly been the 

concern of (semi-)arid regions so far (Litvak et al., 2017; Pataki et al., 2011; Saher et al., 2021), 

extreme drought and heat waves in recent years in western and northern Europe have 

demonstrated that these challenges are also increasingly relevant for temperate cities suffering 

from summer heat waves such as Paris or Berlin (Dousset et al., 2011; Fenner et al., 2019; Gabriel 

and Endlicher, 2011). 

 The growing interest in managing and quantifying the impacts of climate change on cities 

therefore demands accurate ET modeling approaches (Boegh et al., 2009; Cong et al., 2017; Saher 

et al., 2021). The proposed methodology can be applied to simulate the effects of climate change 

and land use scenarios on urban ET, with implications for the urban energy and water balance. 

Furthermore, the presented approach can be used to upscale urban ET spatially at the city scale at 

a high resolution in the presence of EC and GIS data as the most important model inputs are freely 

available. Spatial upscaling can facilitate the exploration of how adding green infrastructure such 

as green roofs in cities can augment evaporative cooling and where to install them for the greatest 

benefit to urban residents (Besir and Cuce, 2018). Furthermore, large-scale urban land use change, 

such as the conversion of the former Berlin Tempelhof Airport to a built-up area, can be simulated 

to anticipate its effect on ET and its related ecosystem services. In future applications, urban ET 
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maps can be made publicly available to support initiatives aiming for sustainable irrigation 

management of urban green spaces and heat risk mitigation for urban residents. The presented 

approach can also be applied to accurately gap-fill urban EC flux data and produce long-term ET 

time series, which can be used to better understand ET seasonality and trends (Foltýnová et al., 

2020).  

 Generating spatial predictions of ET simply requires predicting with trained models on a 

GIS database of all predictors, as has previously been applied for urban air temperature (Vulova 

et al., 2020). However, some challenges need to be resolved before upscaling. Extracted GIS data 

by footprint modeling is averaged over different spatial scales (Kotthaus and Grimmond, 2014). 

Upscaling spatially would thus require spatial aggregation of GIS data corresponding to an 

average footprint.  

 The ET dynamics of the less vegetated site (TUCC) need to be further investigated, 

particularly in relation to the influence of land cover. A study modeling LE from EC data at an 

hourly resolution with SUEWS also showed lower accuracy (higher RMSE and lower R2) in 

modeling LE in a dense urban site compared to a suburban site surrounded by more vegetation 

(Ward et al., 2016). The lower range of ET values and therefore lower R2 is expected in a site with 

less vegetation (Ward et al., 2016). Furthermore, at the more vegetated site (ROTH), footprint 

modeling revealed the expected positive correlation of vegetation cover and ET (Appendix B; 

Figure B.3). At the less vegetated site, however, the correlations were counter-intuitive, showing 

a negative relationship between ET and indicators of vegetation presence (vegetation fraction and 

vegetation height) (Appendix B; Figure B.3). As the TUCC tower is an inner-city tower situated 

on a building roof, it may be more affected by water vapor released through anthropogenic 

activities, which can confound the contribution of surrounding vegetation to ET (Karsisto et al., 

2016; Kotthaus and Grimmond, 2012; Nordbo et al., 2012; Ward et al., 2013). In addition, 

observed ET from EC towers is not reliable during rain. In this study, four hours of data after 

precipitation were removed; however, the effect of increased ET by wet surfaces after rainfall 

may persist for more than 12 hours (Kotthaus and Grimmond, 2014). Advection effects, which 

are more common in a patchy urban landscape, may also affect EC fluxes (Kotthaus and 

Grimmond, 2014; Vesala et al., 2008). Kotthaus and Grimmond (2014) also found that turbulent 

fluxes in the center of London, UK could not be explained by surface cover types and suggested 

that other effects besides impervious surface cover fractions need to be considered to interpret 

urban fluxes.  

 The presented approach can be integrated with any remote sensing and GIS layers that may 

be relevant to modeling an EC flux, such as urban morphology and Leaf Area Index (LAI). The 

integration of footprint models with ML and DL is also relevant for other urban fluxes, such as 
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CO2 (Crawford and Christen, 2015; Järvi et al., 2012; Kotthaus and Grimmond, 2014; Menzer et 

al., 2015). Future studies can apply this approach to other cities and fluxes.  

3.6 CONCLUSIONS 
 Urban ET is a key aspect of urban greening efforts worldwide and therefore requires 

innovative methods to be accurately quantified. We presented a novel approach fusing flux 

footprint modeling, remote sensing and GIS data, and ML and DL to model urban ET at a half-

hourly scale. Flux footprints allow for land cover characteristics to be incorporated into ML and 

DL algorithms, which is essential to estimating ET in heterogeneous urban terrain. We compared 

two DL and ML algorithms (1D convolutional neural networks (CNNs) and random forest (RF)). 

Although RF showed a slightly higher accuracy, the performance of CNNs was also promising 

and warrants further exploration with other model architectures. 

 Four predictor scenarios were tested to assess the contribution of remote sensing and GIS 

data to model performance. We found incorporating remote sensing, GIS, and meteorological 

predictors to be the best-performing scenario to estimate urban ET. This predictor scenario with 

RF showed an RMSE of 0.024 mm/ hour and R2 of 0.84 and an RMSE of 0.017 mm/ hour and R2 

of 0.54 for the more vegetated and less vegetated site, respectively. NDVI and impervious surface 

fraction emerged as the most important GIS predictors, while solar zenith angle, shortwave 

downward radiation, wind speed, and air pressure were the most important meteorological 

predictors.  

 Future applications of this methodology include gap-filling ET in order to analyze long-term 

trends, simulating the influence of altering urban land cover on ET, and spatially upscaling ET to 

the city scale with a high spatial resolution. The presented method can support sustainable urban 

planning efforts in the face of climate change, including initiatives to manage blue and green 

water resources and to mitigate the urban heat island effect. 
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GRAPHICAL ABSTRACT 

 

ABSTRACT 
The impacts of global change, including extreme heat and water scarcity, are threatening an ever-

growing urban world population. Evapotranspiration (ET) mitigates the urban heat island, 

reducing the effect of heat waves. It can also be used as a proxy for vegetation water use, making 

it a crucial tool to plan resilient green cities. To optimize the trade-off between health, urban 

greening and water security, reliable and up-to-date maps of ET for cities are urgently needed. 

Despite its importance, few studies have mapped urban ET accurately for an entire city in high 

spatial and temporal resolution. We mapped the ET of Berlin, Germany in high spatial (10-m) 

and temporal (hourly) resolution for the year of 2019. A novel machine learning (ML) approach 

combining Sentinel-2 time series, open geodata, and flux footprint modeling was applied. Two 

eddy flux towers with contrasting surrounding land cover provided the training and testing data. 

Flux footprint modeling allowed us to incorporate comprehensive land cover types in training the 
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ML models. Open remote sensing and geodata used as model inputs included Normalized 

Difference Vegetation Index (NDVI) from Sentinel-2, building height, impervious surface 

fraction, vegetation fraction, and vegetation height. NDVI was used to indicate vegetation 

phenology and health, as plant transpiration contributes to the majority of terrestrial ET. Hourly 

reference ET (ETo) was calculated and used as input to capture the temporal dynamics of the 

meteorological conditions. Predictions were carried out using random forest (RF) regression. 

Weighted averages extracted from hourly ET maps using flux footprints were compared to 

measured ET from the two flux towers. Validation showed that the approach is reliable for 

mapping urban ET, with a mean R2 of 0.76 and 0.56 and a mean RMSE of 0.0289 mm and 0.0171 

mm at the more vegetated site and the city-center site, respectively. Lastly, the variation of ET 

between Local Climate Zones (LCZs) was analyzed to support urban planning. This study 

demonstrated the capacity to map urban ET at an unprecedented high spatial and temporal 

resolution with a novel methodology, which can be used to support the sustainable management 

of green infrastructure and water resources in an urbanizing world facing climate change. 

4.1 INTRODUCTION 
 Climate change impacts are fundamentally threatening the way of life of residents in many 

urban areas, where risks of heat waves, flooding, and water scarcity are exacerbated (Kundzewicz 

et al., 2014; Li and Bou-Zeid, 2013; Manoli et al., 2019). These hazards are leading to an increase 

in casualties, adverse health effects, and infrastructure damage (Kundzewicz et al., 2014; Mora et 

al., 2017). As a growing majority of the world population resides in cities (United Nations, 2019), 

urban sustainability measures may have the greatest impact on human quality-of-life (Acuto et 

al., 2018; Gaffin et al., 2012). To meet UN Sustainable Development Goal 11 of making cities 

more sustainable and resilient, urban planners and policy-makers urgently need to adopt 

mitigation measures grounded in evidence-based understanding of urban (eco)systems (Bayulken 

et al., 2021). 

 Greening cities to adapt to present and future environmental risks is therefore growing in 

importance worldwide, as epitomized by the frameworks of Water Sensitive Urban Design 

(WSUD) (Fletcher et al., 2008), Sponge Cities (Gaines, 2016), Nature-Based Solutions 

(Somarakis et al., 2019), Low-Impact Development (LID) (Qin et al., 2013), and Sustainable 

Drainage Systems (Zhou, 2014). Evapotranspiration (ET) of green infrastructure plays a central 

role in all of these concepts (Bayulken et al., 2021; He et al., 2019). Enhancing ET reduces urban 

heat (Manoli et al., 2019) and associated health burdens and mortality (Cuthbert et al., 2022; 

Hiemstra et al., 2017), stormwater runoff and flooding risk (Berland et al., 2017; Jongen et al., 

2022), cooling demand (Coccolo et al., 2018), and carbon emissions (Scott et al., 2006). 

 ET is a key indicator for urban sustainability, as it is associated with thermal comfort 

(Shashua-Bar et al., 2011; Wang et al., 2019), water storage capacity (Jongen et al., 2022), the 
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irrigation demand of green spaces (Litvak et al., 2017; Saher et al., 2021), and stormwater runoff 

reduction (Berland et al., 2017; Wan et al., 2021). An improved understanding of urban ET and 

its spatio-temporal patterns is essential to future-proof cities worldwide against climate risks 

(Berland et al., 2017; Saher et al., 2021). Sustainability initiatives in urban areas need to be 

adapted to a neighborhood scale relevant for vulnerable socio-demographic groups (Hölzl et al., 

2021). Therefore, for sustainable management of resilient cities, accurate, high-spatial and -

temporal resolution maps of ET on a city scale are needed. 

 However, urban greening programs still require better data and models to assess the value 

of urban vegetation (Pataki, 2013). In recent years, machine learning (ML) has emerged as one 

of the most promising methods to extract knowledge from big Earth system data, which comprises 

a variety of remote sensing and in situ sensors (Reichstein et al., 2019). Regression ML algorithms 

have been especially successful in predicting the spatio-temporal variation of biogeophysical 

parameters by linking point observations with satellite data (Reichstein et al., 2019). Data-driven 

methods provide numerous advantages, including the capacity to discover patterns and infer from 

data without process-based formulation (Kuhn and Johnson, 2013; Reichstein et al., 2019).  

 Despite the relevance of ET estimation for urban greening, urban ET has rarely been 

modeled and even more rarely mapped (Nouri et al., 2015; Saher et al., 2021; Vulova et al., 2021). 

Characterizing ET is always challenging, but in particular in an urban environment due to a high 

heterogeneity of land cover, plant traits, soil characteristics, and microclimate (Nouri et al., 2013; 

Saher et al., 2021). Therefore, process-based models have mainly been used to model urban ET, 

with the most common types being surface energy balance (SEB) models, hydrological models, 

and urban land-surface models (ULSMs) (Järvi et al., 2011; Karsisto et al., 2016; Nouri et al., 

2015; Rafael et al., 2020; Saher et al., 2021; Ward et al., 2016). As the majority of these models 

have been developed for agricultural and natural areas, their applications in urban areas have been 

limited in reliability and transferability (Nouri et al., 2015; Saher et al., 2021). Medium-resolution 

earth observation data, such as Landsat and MODIS, have been integrated into SEB models to 

improve urban ET mapping (Cong et al., 2017; Faridatul et al., 2020; Jiang and Weng, 2017). 

However, SEB models still do not perform well in characterizing urban ET, as they exclude 

anthropogenic heat, assume a single plant species, and are optimized for a regional scale (Saher 

et al., 2021). Furthermore, physical modeling approaches to quantifying ET developed for urban 

areas commonly rely on parameters which are impractical to estimate on the city scale at a high 

resolution, such as soil water potential, wall emissivity, and heat emissions from vehicles (Meili 

et al., 2020; Saher et al., 2021). For urban planning, regularly updated city-level ET maps at a 

hyperlocal resolution (10-30 m) (Venter et al., 2020) are needed to assess high-risk areas related 

to extreme heat and stormwater runoff and to propose integrated solutions, such as street trees 

and green roofs (Pataki, 2013; Wan et al., 2021). The few studies mapping urban ET so far have 
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been limited in temporal resolution, extent (Rocha et al., 2022b; Vulova et al., 2021), spatial 

resolution (Saher et al., 2021; Wang et al., 2016), or accuracy (Chrysoulakis et al., 2018; 

Grimmond et al., 2010; Rafael et al., 2020; Wan et al., 2021). ML, in combination with open-

access remote sensing data and in situ measurements, offers a way forward to accurately mapping 

spatio-temporally dynamic ET in urban areas (Reichstein et al., 2019; Vulova et al., 2021).  

 Flux towers are increasingly providing direct measurements of ET in cities worldwide 

(Jongen et al., 2022), opening up the possibility to model urban ET empirically. However, to the 

best of our knowledge, only one study applied an empirical model to map ET in an urban area so 

far (Wang et al., 2016). Wang et al. (2016) related a buffer average extracted from two MODIS 

products (albedo and land surface temperature) around a single flux tower site in Phoenix, USA 

using ordinary least squares (OLS) regression. This regression model was used to map daily ET 

at a 500-m spatial resolution (Wang et al., 2016). However, the capacity of mapping ET in a city 

using a data-driven approach was limited by the lack of ET data from various urban land covers 

(Wang et al., 2016). To address this issue, Vulova et al. (2021) developed a novel approach to 

model urban ET using flux footprint modeling to incorporate a variety of land cover into artificial 

intelligence algorithms. However, this methodology was only applied to model ET at two points 

in a city (Vulova et al., 2021).  

 Here, we map urban ET at the city scale at a high spatial (10-m) and temporal (hourly) 

resolution using a novel data-driven approach. We integrated the influence of heterogeneous land 

cover on urban ET into ML models by combining open-access remote sensing data and flux 

footprint modeling (Vulova et al., 2021). City-wide hourly ET maps were generated for the entire 

year of 2019, which were aggregated to daily, monthly, and annual ET maps. Hourly maps for a 

2 km2 extent around the flux towers for two years (2019-2020) were used for validation with flux 

tower measurements at two sites in Berlin, Germany. The city-wide ET maps were further 

analyzed using Local Climate Zones (LCZs), a classification developed to better understand urban 

heat island (UHI) effects, to explore the implications for urban planning. Our key objectives are 

to: 1) model and map the spatio-temporal variability of urban ET and 2) assess the impact of LCZs 

on urban ET. 

 Such high-resolution, spatially explicit ET products in cities are essential to unraveling the 

role of vegetation in providing cooling services and the presence of water in increasingly water-

scarce urban landscapes. These ET maps can therefore support sustainability measures in cities, 

especially greening and heat risk adaptation schemes.  
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4.2 METHODS 

4.2.1 EVAPOTRANSPIRATION MAPPING 
 We mapped the ET of Berlin at a high temporal (hourly) and spatial (10-m) resolution using 

ML, open data available for most large- and medium-size cities worldwide, including remote 

sensing imagery, geodata, and meteorological data, and eddy covariance (EC) data. An overview 

of the methodology is provided in Figure 4.1. We integrated the variability of urban land cover 

into ML models by estimating the extents of constantly-changing footprints of two flux towers 

using flux footprint modeling (Kormann and Meixner, 2001). Random Forest (RF) models were 

trained in one year, while testing and mapping was performed with the other year (e.g., training 

in 2020 and testing in 2019) and vice versa. Measured ET from the two flux towers was used to 

estimate the model accuracy. We validated our mapping approach by extracting footprints from 

hourly ET maps for the entire study period (2019-2020). We then aggregated the city-wide hourly 

ET maps from 2019 to generate daily, monthly, and annual maps. Finally, as ET varies greatly 

among different land surfaces, we assessed the variation of ET between LCZs.  
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Figure 4.1: Flowchart showing the workflow of the study, including the input data used for 

ET mapping (in blue), footprint modeling, model training, and validation. Abbreviations 

can be found in the text. The flowchart is adapted from Vulova et al. (2021), with the 

footprints diagram adapted from Christen (2016). 
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4.2.2 STUDY AREA 
 ET was mapped for the entire city of Berlin, the largest and capital city in Germany with 3.7 

million inhabitants and 891 km2 (Statistical Office of Berlin-Brandenburg, 2019) (Figure 4.2b). 

The city is characterized by 45% urban green spaces and water bodies. Building density decreases 

from the city center to the border. Berlin has a temperate oceanic and a humid continental climate 

with warm summers (Beck et al., 2018) and a flat topography. Berlin has been identified as a 

forerunner city worldwide in the use of green infrastructure for sustainable water management 

and heat mitigation (Liu and Jensen, 2018). Daily air temperature (Tair), shortwave downward 

radiation, precipitation (P), and NDVI during the study period (2019-2020) are shown in Figure 

C.1 (Appendix C). Both years were warmer than the long-term (1981-2010) mean (9.7 ℃), with 

an average Tair of 11.8 ℃ and 11.7 ℃ in 2019 and 2020, respectively (DWD, 2021) and drier 

than the long-term mean (591 mm) (DWD, 2021), with a P of 520 mm and 479 mm in 2019 and 

2020, respectively.  

 

4.2.3 FLUX MEASUREMENTS 
 Two flux towers, which are part of the Urban Climate Observatory (UCO) Berlin (Scherer 

et al., 2019), were used for training and testing. The surroundings of the towers contain 

heterogeneous vegetation (grassland, shrub, and trees) and impervious cover representative of 

land cover in temperate-zone cities (Gillefalk et al., 2021; Vulova et al., 2021). However, the 

Rothenburgstrasse (ROTH) tower is surrounded by more green spaces (with 51.1% vegetation 

surface cover within a 1-km radius) than the TU Berlin Campus Charlottenburg (TUCC) tower 

(34.4% vegetation surface cover within a 1 km radius). The flux towers and their surroundings 

are described extensively in Vulova et al. (2021), Jongen et al. (2022), and Gillefalk et al. (2021). 

 The EC instrumentation, data quality control (QC) and preprocessing are elaborated in 

Vulova et al. (2021). All half-hourly ET observations (in mm/ h) remaining after QC were used 

for training, consisting of 16,011 and 16,255 observations (45.7% and 46.3% of the raw EC data) 

combined from both towers for 2019 and 2020, respectively. The source area contributing to 

turbulent flux measurements by EC towers, referred to as a flux footprint, constantly changes 

based upon wind speed, wind direction, and atmospheric stability (Kormann and Meixner, 2001). 

We used the Kormann and Meixner (2001) model to estimate the footprints for each half hour 

during the study period. The parametrization of footprint models is described in Vulova et al. 

(2021) and Duarte Rocha et al. (2022b). 
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4.2.4 METEOROLOGICAL DATA 
 Reference ET (ETo) was selected as a predictor to synthesize the meteorological conditions 

regulating ET (Allen et al., 2005). Using ETo instead of individual meteorological datasets has 

been shown to model urban ET accurately while being accessible even in data-scarce regions of 

the world (Vulova et al., 2021). We used open-access hourly meteorological data from the 

German Meteorological Service (DWD) (DWD, 2021) to calculate ETo. From all the DWD 

stations within 70 km of Berlin, 10 stations were selected based upon the availability of all the 

data needed to compute ETo (air temperature, relative humidity, wind speed, and sunshine 

duration). Solar radiation was estimated from sunshine duration using the extraterrestrial equation 

from the MeTo package (ra function) (Dettmann and Grimma, 2019) due to only one DWD station 

within 70 km having solar radiation data. ETo was computed using the hourly ASCE 

“Standardized Reference Evapotranspiration Equation” for short crops (Allen et al., 2005). For 

further details on the calculation of ETo, refer to Vulova et al. (2021). ETo was then linearly 

interpolated to a half-hourly scale for training to match the temporal resolution of the EC data. As 

spatially continuous rasters of all predictors are necessary for ET mapping, ETo was interpolated 

with ordinary kriging at a 1 km resolution using the R package “gstat” (Gräler et al., 2016). For 

training, ETo was extracted from the kriged rasters at the coordinates of the two towers.  

4.2.5 REMOTE SENSING AND GIS DATA 
 As predictors for ET mapping, we used freely-available remote sensing and GIS data (Table 

4.1). Normalized Difference Vegetation index (NDVI) (Tucker, 1979) is an indicator of 

vegetation health, density, and biophysical characteristics which is well-suited for modeling urban 

ET (Nouri et al., 2015; Saher et al., 2021; Vulova et al., 2021). We used the Google Earth Engine 

platform (Gorelick et al., 2017) to calculate and download NDVI raster time series from Sentinel-

2 Level-2A products at a 10-m resolution (image collection "COPERNICUS/S2_SR"). 

Atmospheric, terrain, and cirrus correction of Sentinel-2 images was performed using the 

Sen2Cor atmospheric correction processor. Pixels remaining after cloud masking were 

interpolated to a daily scale. Urban Atlas 2012 (European Environment Agency, 2018) provided 

building height at a 10-m resolution. Vegetation height (VH) was provided by the Berlin Digital 

Environmental Atlas at 1-m resolution (Berlin Senate Department for Urban Development and 

Housing, 2014). Vegetation fraction (VF) was provided by the Berlin Digital Environmental Atlas 

(Berlin Senate Department for Urban Development and Housing, 2014). Impervious surface 

fraction (ISF) was derived from the Urban Atlas 2018 Land Use and Land Cover (LULC) dataset 

(European Environment Agency, 2018), as explained in Vulova et al. (2020). ISF and VF, which 

were available as polygons, were rasterized to a 1-m resolution. Finally, all geodata were 

resampled to a common (10-m) resolution before footprint modeling and ET mapping. Water 

bodies were excluded from footprint modeling and ET mapping, as there were nearly no water 
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bodies present in the training regions (footprints). Weighted averages of the surface cover were 

then computed by multiplying the footprint grids with the raster layers and summing the pixel 

values on a half-hourly basis. The weighted averages of surface cover extracted with footprint 

modeling were used to train the ML models, which were then used to predict ET for all pixels 

within the city border. 

Table 4.1: Predictor variables used to model and map evapotranspiration (ET); the data 

source, provider, and their original spatial and temporal resolutions are listed. In the 

“Temporal resolution” column, “static” refers to geodata which does not vary temporally 

(such as impervious surface fraction). 

Predictor (acronym) Unit Data source Data provider Original spatial 
resolution (m) 

Temporal 
resolution 

Building height (BH) m Urban Atlas 2012 Copernicus 
Programme, European 
Commission 
(European 
Environment Agency, 
2018) 

10 Static 

Impervious surface 
fraction (ISF) 

% Urban Atlas 2018 
(LULC) 

Copernicus 
Programme, European 
Commission 
(European 
Environment Agency, 
2018) 

Polygons* Static 

Normalized Difference 
Vegetation Index (NDVI) 

- Sentinel-2 Level-2A 
surface reflectance 

European Space 
Agency (ESA) (ESA, 
2015), Google Earth 
Engine (Gorelick et 
al., 2017) 

10 Daily 

Reference 
evapotranspiration (ETo) 

mm/h DWD DWD Climate Data 
Center (CDC) (DWD, 
2021) 

1000 Hourly 

Vegetation fraction (VF) % Berlin Digital 
Environmental Atlas 

(Berlin Senate 
Department for Urban 
Development and 
Housing, 2014) 

Polygons* Static 

Vegetation height (VH) m Berlin Digital 
Environmental Atlas 

(Berlin Senate 
Department for Urban 
Development and 
Housing, 2014) 

1 Static 

*In the “Spatial resolution” column, “polygons” refers to datasets originally provided as vector 

data, which were then rasterized to 1-m resolution.  

4.2.6 MACHINE LEARNING APPROACH 
 To map ET, we used the Random Forest (RF) ML algorithm, a supervised regression model 

which combines classification and regression trees (CART) with bagging (Breiman, 2001). RF 
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was selected as it can replicate highly nonlinear relationships, is robust against overfitting (Kuhn 

and Johnson, 2013), and has been shown to perform well in modeling urban ET (Vulova et al., 

2021). Detailed descriptions of RF and its implementation using the “caret” R package are 

provided in Kuhn and Johnson (2013) and Vulova et al. (2021). RF models were trained using 

half-hourly data (the resolution of EC data and footprint modeling) combined from both towers 

in order to include a greater variety of combinations of land cover covered by footprints and 

meteorological conditions.  

4.2.7 VALIDATION 
 We mapped ET on an hourly basis based upon the highest temporal resolution of predictors. 

For testing, ET was mapped on an hourly basis for 2 km x 2 km (the likely maximum coverage 

of flux footprints) areas centered around the flux towers for 2019-2020. To perform validation on 

an hourly basis, the quality-controlled EC data was averaged to an hourly resolution, omitting 

hours where one or no half-hourly observations were available. Weighted averages from the 2 km 

x 2 km ET maps were extracted using flux footprints modeled with hourly averaged EC data to 

compare modeled with measured ET. To evaluate the temporal extrapolation capacity of our 

models, we used 2020 data for training and 2019 data for testing and vice versa. In total, 6696 

and 6771 hourly ET observations combined from both towers were used for testing in 2019 and 

2020, respectively. The prediction accuracy was evaluated using root mean square error (RMSE), 

percent bias (pbias), coefficient of determination (R2), and normalized root mean square error 

(NRMSE). 

4.2.8 LOCAL CLIMATE ZONE ANALYSIS 
 LCZs refer to a classification system initially developed to provide a universal framework 

for UHI studies, consisting of 17 classes of which 10 are urban-specific (Stewart and Oke, 2012). 

Each LCZ represents a distinct thermal climate regime based on surface structure and land cover 

(Stewart and Oke, 2012). The main advantage of the LCZ scheme is comparability, where a LCZ 

in Tokyo, Delhi, or Paris refers to the same urban form and cover (Demuzere et al., 2021; Stewart 

and Oke, 2012). LCZs are also advantageous for guiding urban planners, architects, and engineers 

to construct climate-adapted cities due to simple and clear definitions of the design elements of 

each LCZ (e.g., building height, building density, and vegetation cover ratio) (Stewart and Oke, 

2012). LCZ maps are freely-available for global cities, all of Europe, and the United States of 

America (Demuzere et al., 2021).  

 To assess and demonstrate the variation of ET for different LCZs across Berlin, we used a 

LCZ map of Berlin produced by the LCZ Generator (Demuzere et al., 2021) using training data 

provided by Fenner et al. (2017) (Figure 4.2b). The LCZ Generator allows users to incorporate 

their local knowledge to map cities into LCZs in an online platform, with >1000 open-access LCZ 
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maps of cities worldwide already posted by users (Demuzere et al., 2021). The LCZ map is 

representative for the years 2017-2019 based on the pre-processed earth observation data used to 

map LCZs (Demuzere et al., 2021). LCZ maps are generally provided at 100-m resolution 

(Demuzere et al., 2021), as LCZs are defined as “regions of uniform surface cover, structure, 

material, and human activity that span hundreds of meters to several kilometers in horizontal 

scale” according to Stewart and Oke (2012). As individual pixels do not comprise an LCZ class, 

a Gaussian-filtered version of the LCZ map, which reduces granularity, was used. LCZs were 

converted to polygons to extract summary statistics and produce boxplots from the ET maps. 

Medians, rather than means, were used to describe differences between LCZs, as the mismatch 

between the spatial resolution of our ET maps and LCZs (10-m vs. 100-m) introduces more noise 

in the arithmetic mean.  

4.3 RESULTS 

4.3.1 MAPPING URBAN EVAPOTRANSPIRATION 
 Annual estimated ET ranged from 119 mm to 648 mm (mean: 300 mm), with strong spatial 

patterns dependent on the land cover (Figure 4.2a). Annual ET was highest in Tempelhof Field 

park, the city’s largest open green space (Figure 4.2d), in the NE of the city, which consists of 

cropland and pasture (Figure 4.2f), and smaller green spaces such as community gardens and 

parks. Areas of low ET were concentrated in highly impervious areas (Figure 4.2c and e), such as 

streets, in the city-center and the East.  
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Figure 4.2: Maps of a) annual evapotranspiration (ET) in 2019 and b) Local Climate Zone 

(LCZ) coverage in Berlin, Germany. Annual ET and LCZs are depicted for zoomed extents 

around c) a large urban forest (Tiergarten) and d) the largest park, dominated by low 

vegetation (Tempelhof Field), e) a typical inner-city neighborhood with mid-rise buildings 

(Karl-Marx-Allee (KMA) neighborhood), and f) an area with croplands and residential 

buildings on the periphery of the city, with high-resolution aerial imagery (source: Google; 

©2022 CNES / Airbus, GeoBasis-DE/BKG, GeoContent, Landsat/ Copernicus, Maxar 

Technologies) for reference. White colored areas in the annual ET maps represent water 

bodies, which were excluded from ET modeling. 

 The estimated monthly ET maps captured the phenology of the urban vegetation (Figure 

4.3). Forests in the SE and SW of the city showed very low ET in wintertime, which increased 

considerably during leaf out (April). Highest ET occurred in June (mean: 44 mm, max: 80 mm), 

while lowest ET occurred in January (mean: 11 mm, max: 39 mm).  
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Figure 4.3: Maps of monthly evapotranspiration (mm/ month) in 2019 in Berlin, Germany. 

4.3.2 EVALUATION 
 The performance metrics when testing for each year and flux tower are shown in Table 4.2. 

On average, validation at the greener site (ROTH) showed a higher R2 (0.76) than at the less 

vegetated site (TUCC; 0.56). On the other hand, RMSE was higher at the greener site (0.0289 

mm) than at the city-center site (0.0171 mm). The higher R2 and RMSE when testing at the site 

surrounded by more vegetation (ROTH) can largely be explained by the higher range and 
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maximum ET measured at ROTH compared to TUCC (Kuhn and Johnson, 2013; Rocha et al., 

2022b; Vulova et al., 2021). Normalized RMSE (NRMSE) allows us to compare the accuracy 

between the two sites with a metric that removes the influence of the range of measured ET. The 

difference between NRMSE between the two towers was minimal (11.2% vs. 11.9% at ROTH 

and TUCC, respectively). ET was overestimated by a greater magnitude at the more built-up site 

(TUCC; pbias = 28.7%) than at the more vegetated site (ROTH; pbias = 3.1%). Training models 

using data from both towers led to a higher overestimation of ET at the dense city-center site 

where lower ET values were observed (TUCC). 

 Overall, averaged across the two sites, accuracy was slightly higher in 2019 (R2 = 0.67) than 

in 2020 (R2 = 0.65). ET was on average more overestimated in 2020 (pbias = 21.2%) than in 2019 

(pbias = 10.6%). Training in 2019 and predicting in 2020 likely led to the overestimation as the 

previous year had higher air temperature (Tair) and precipitation (P) in summertime (Tair: 21.5 

and 20.3 ℃, P: 194 and 126 mm).  

Table 4.2: Performance metrics for validation at two flux towers and two years. The 

performance metrics are root mean square error (RMSE), percent bias (pbias), coefficient 

of determination (R2), and normalized root mean square error (NRMSE). The best 

performance metrics are shown in bold. 

Tower (test) Year (test) RMSE (mm/h) pbias (%) R2 ( - ) NRMSE (%) 

ROTH 2019 0.0277 -0.2 0.772 11.0 

2020 0.0301 6.3 0.748 11.3 

TUCC 2019 0.0161 21.4 0.567 11.3 

2020 0.0181 36.0 0.553 12.4 

 To better understand the temporal variation of the mapping error, the difference between the 

modeled and measured ET in mm/h (residuals) was calculated and plotted as a time series (Figure 

4.4). At the more vegetated site, residuals were positive in summertime for both testing years, 

indicating that models were underestimating ET. In contrast, at the dense city-center site, modeled 

ET was not underestimated in summertime, with near to zero or negative residuals. In April, RF 

models overestimated ET for both testing years and both sites, likely due to a time lag between 

the rising NDVI signal in spring and the contribution of plant leaf out to transpiration. At the same 

flux sites in Berlin, ET was also overestimated in April using a process-based model due to a 

sharp increase in vegetation greenness, which did not yet correspond to higher ET (Rocha et al., 

2022b). 



Modeling thermal comfort indicators in an urban environment using remote sensing, open geodata, and 
artificial intelligence 

80  Stenka Vulova - November 2022 

 

Figure 4.4: Smoothed time series of the hourly model error (observed ET - predicted ET) 

for the two flux towers when testing in (a) 2019 and (b) 2020. Smoothing function (formula 

= y~splines::bs(x,20)). 

4.3.3 LOCAL CLIMATE ZONE ANALYSIS 
 We analyzed the variability of urban ET within different LCZ classes both annually and in 

summertime (Figure 4.5). ET varied highly between both the vegetated and urban LCZs, with the 

highest and lowest ET estimated for “low plants” and “compact midrise”, respectively.  

 LCZ “low plants” showed the highest median ET both annually (390 mm) and in 

summertime (50 mm), closely followed by “bush, scrub” for both time periods. “Dense trees” had 

the lowest median ET (317 mm annually, 46 mm in summertime) of the natural LCZs, other than 

the non-vegetated “bare soil or sand” LCZ. Our study cannot fully account for interception loss, 

which may explain the lower estimated ET for trees. EC data during and 4 hours after precipitation 

events is unreliable and is therefore removed, which does not allow for the evaporation from 

intercepted rainwater to be characterized (Vulova et al., 2021; Ward et al., 2013). 
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 ET also showed high variation between the urban-specific LCZs. Among the urban LCZ 

classes, “sparsely built” showed the highest median ET both annually and in summertime (335 

mm and 47 mm). “Compact midrise” showed the lowest median ET both annually and in 

summertime (246 mm and 29 mm).  

 In a few cases, the ranking of LCZs differed between annual and summer ET. For instance, 

“large lowrise” showed a higher median ET than “open midrise” annually, while the opposite was 

the case in summertime. In winter months, ET was higher in “large lowrise”, a highly paved LCZ, 

than in “open midrise” (Appendix C; Figure C.3). In addition, “bare soil or sand” showed higher 

ET than “open lowrise” annually, while the relationship was reversed in summertime. This 

discrepancy can also be attributed to the higher ET of “bare soil or sand” than “open lowrise” in 

wintertime (Appendix C; Figure C.3). Our approach can still capture the influence of interception 

loss occurring more than 4 hours after rainfall. Thus, these differences can be explained by 

evaporation from interception loss, which is generally higher in wintertime and over impervious 

surfaces (Miralles et al., 2020; Ramamurthy and Bou-Zeid, 2014).  

 

Figure 4.5: Local Climate Zones (LCZs) and modeled (a) annual ET (mm/ year) and (b) 

monthly ET (mm/ month) averaged in summertime (June, July, and August) over Berlin in 

2019. The LCZs are ordered in decreasing order of median summertime ET. For the 

boxplots, the center line represents the median, the upper and lower hinges represent the 

25th and 75th percentile, the upper whisker extends from the hinge to the largest value no 

further than 1.5 * interquartile range (IQR), the lower whisker extends from the hinge to 

the smallest value no further than 1.5 * IQR, and the light gray dots represent the outliers 

(points beyond the whisker range). 
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4.4 DISCUSSION 
 Mapping ET is highly relevant to making cities climate-resilient as more of the world 

population is exposed to extreme heat, flooding, and drought (Kundzewicz et al., 2014; Li and 

Bou-Zeid, 2013; Mora et al., 2017). In this study, we demonstrated the capacity of an open-source 

data-driven approach to accurately map urban ET at a high spatial and temporal resolution.  

 In most cases, urban ET modeling approaches can only be validated by flux tower 

measurements at one to two points in the city (Chrysoulakis et al., 2018; Karsisto et al., 2016), as 

was the case in our study. Our modeling approach showed a comparable or higher accuracy than 

the majority of studies modeling hourly urban ET or LE. Our ET maps were validated at a more 

vegetated site and a dense city-center site, showing a R2 of 0.76 and 0.56, respectively. For urban 

land surface models, the R2 ranges from 0.017 to 0.79 (Järvi et al., 2011; Karsisto et al., 2016; 

Rafael et al., 2020; Ward et al., 2016). A micrometeorological approach to mapping LE in three 

European cities showed R2 ranging from 0.07 to 0.42 (Chrysoulakis et al., 2018). As in our study, 

higher R2 values have been reported for greener sites compared to dense inner-city sites (Rafael 

et al., 2020; Rocha et al., 2022b; Vulova et al., 2021; Ward et al., 2016), which is likely due to 

the higher variation of ET at more vegetated sites.  

 ET maps can support the management of urban green spaces to mitigate heat risk for urban 

dwellers. An established trade-off exists between the capacity of UGI to provide ecosystem 

services, in particular evaporative cooling, and the irrigation needed to maintain this cooling 

capacity (Cuthbert et al., 2022; McCarthy and Pataki, 2010; Nouri et al., 2019). As urban areas 

are increasingly faced with the double burden of heat waves and droughts, climate change 

adaptation with UGI may exacerbate water scarcity (Cuthbert et al., 2022; Miller et al., 2020). 

This trade-off can be visualized on a map showing the ET anomaly between the hottest day in 

2019 and the average daily summertime ET (Figure 4.6), with the increase in ET varying with the 

vegetation health, type, and water availability. In Tiergarten, which is dominated by tree 

vegetation, ET is ~30% higher than average, enhancing the microclimate where heat risk is 

highest (Figure 4.6b) (Dugord et al., 2014). In Tempelhof Field, a large open green space, the 

increase in ET is more differentiated, being higher (30-50 %) in the south of the meadow but 

lower in the middle (~20%) (Figure 4.6c). The Karl-Marx-Allee (KMA), an inner-city 

neighborhood (above the river, Figure 4.6d), is a hotspot for thermal stress, while housing a high 

proportion of elderly residents (Knaus and Haase, 2020). Notably, the ET anomaly in the KMA 

area (up to 100%) is even higher than in conventional green spaces, likely due to irrigation 

maintaining the vitality of the vegetation. Figure 4.6e shows a mixture of agricultural fields and 

residential buildings, with an industrial area showing the highest ET anomaly (>60%). Our 

mapping approach reveals how the cooling capacity of green spaces responds to drought stress, 

which can better inform UGI implementation for climate mitigation.  
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Figure 4.6: Map of the anomaly between the daily evapotranspiration (ET) (mm/ day) of a 

heatwave date (26 June 2019) and the average daily ET in summertime in 2019. The ET 

anomaly is depicted for a) the entire city and zoomed extents around b) a large urban forest 

(Tiergarten) and c) the largest park, dominated by low vegetation (Tempelhof Field), d) a 

typical inner-city neighborhood with mid-rise buildings (Karl-Marx-Allee neighborhood), 

and e) an area with croplands and residential buildings. White colored areas represent 

water bodies, which were excluded from ET modeling. 

 Grasslands and shrublands, which showed the highest ET in our study, may provide a critical 

evaporative cooling service. On average, grasslands and shrubs converted more of annual 

precipitation to ET (72% and 68%) than dense trees (61%). Forests have been commonly assumed 

to convert more of precipitation into ET due to their higher interception, higher leaf area, and 

deeper root systems (Teuling, 2018; Williams et al., 2012). However, flux measurements have 

shown that grasslands consume more precipitation as ET than forests in a global study of 167 

sites (Williams et al., 2012), in sites across Europe in summertime (Teuling et al., 2010), and in 

three sites in northern Germany (Markwitz et al., 2020). Field measurements in semi-arid urban 

landscapes have confirmed that irrigated turfgrass lawns have substantially higher rates of ET 
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than trees (Litvak et al., 2014) and reduce air temperatures during both daytime and nighttime 

(Gómez-Navarro et al., 2021). A remote sensing-based study in Los Angeles, USA also found 

that increasing turfgrass cover resulted in a greater cooling effect based on land surface 

temperature (LST) than the same increase in tree fraction (Wetherley et al., 2018). Furthermore, 

a study investigating the effects of drought on urban vegetation in California using repeat airborne 

imaging spectroscopy showed that turfgrass recovered more quickly from a multi-year drought 

than trees despite irrigation restrictions (Miller et al., 2020).  

 The high ET rate of grasslands may be problematic when precipitation is limited, requiring 

scarce water resources to maintain ecosystem service provision of these green spaces. Trees 

remain an essential component of adapting cities to extreme heat due to shading, a lower need for 

irrigation, and evaporative cooling (Gómez-Navarro et al., 2021; Teuling et al., 2010; Wang et 

al., 2019; Wong et al., 2021). Interspersing trees and bushes in meadows can be a ‘win-win’ 

solution, lowering water demand from grass by shading while maximizing UHI mitigation 

(Gómez-Navarro et al., 2021). 

 Nevertheless, ET is more commonly stated to be higher in trees rather than grasslands or 

shrubs when proposing greenery well-suited to mitigation of urban heat (Gillefalk et al., 2021; 

Wan et al., 2021; Wong et al., 2021). The lower ET in trees estimated in our study should be 

cautiously interpreted, as our methodology, like most EC-based studies, cannot estimate 

interception loss occurring a few hours after rainfall, which is especially high in trees (Gillefalk 

et al., 2021; Kuhlemann et al., 2021; Vulova et al., 2021; Ward et al., 2013). A paradox has been 

identified across studies quantifying ET rates, with EC measurements generally showing higher 

ET rates in grasslands and lysimeters in forests (Teuling, 2018). Forest ET may be underestimated 

by flux towers due to the role of advection and mesoscale circulation (Teuling, 2018). Teuling 

(2018) also noted that trees reaching a high ET rate is dependent on their age, height, and a dense 

forest canopy, which may limit tree ET rates in urban areas. Furthermore, much of the area 

classified as low plants or bushes in Berlin is in fact cropland or pasture. As agricultural vegetation 

is irrigated and fertilized to optimize yield, it is generally greener and produces more ET; 

however, low plants and shrubs in non-irrigated green spaces are unlikely to present such high 

rates of ET.  

 Our study also provided insights on the variation of ET between urban LCZs. Among the 

urban-specific LCZs, “sparsely built” showed the highest ET, followed by “open lowrise” and 

“open highrise”, both annually and in summertime. These findings are in line with previous 

studies, which found that lower development intensity is associated with higher annual ET (Liu 

et al., 2010; Wan et al., 2021). “Large lowrise”, a mostly paved LCZ, showed relatively higher 

ET rates in wintertime than more vegetated LCZs (Appendix C; Figure C.3), which can be 

attributed to higher rates of evaporation from interception loss from impervious surfaces (Miralles 
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et al., 2020; Ramamurthy and Bou-Zeid, 2014). Our results emphasize the need to map ET at 

different temporal scales, rather than only annually, to better characterize its influence on heat 

mitigation and the urban hydrological balance.  

 One advantage of a data-driven mapping approach is its capacity to uncover patterns not 

properly characterized by physical models (Reichstein et al., 2019), including the rooting depth, 

which may be more developed in grasslands than previously assumed (Williams et al., 2012) or 

the higher interception loss over paved surfaces in wintertime. Another benefit of using a data-

driven approach is the flexible integration of diverse and novel datasets (Kuhn and Johnson, 

2013). For instance, urban microclimate can be integrated into ET mapping in future work using 

crowdsourced weather data (Venter et al., 2020; Vulova et al., 2020). The presented methodology 

can be also used to map other fluxes measured by eddy covariance, such as CO2 (Kotthaus and 

Grimmond, 2014), at a high spatio-temporal resolution by combining remote sensing and GIS 

data, flux footprint modeling, and ML. 

 LST was not included as a predictor in this study due to the lower temporal (16-day repeat 

cycle) and spatial resolution (100 m) of thermal infrared (TIR) imagery from the Landsat 8 

satellite compared to Sentinel-2 imagery. Assessing the effectiveness of downscaling Sentinel-3 

TIR imagery from 1000 m to 10 m resolution using Sentinel-2 imagery in urban areas can allow 

for LST to be added as a predictor in future implementations (Guzinski and Nieto, 2019). 

However, since sharpening low-resolution TIR imagery is unlikely to be sufficient in highly 

heterogeneous areas such as cities (Guzinski and Nieto, 2019), the launch of high-resolution TIR 

sensors, such as the Thermal infraRed Imaging Satellite for High-resolution Natural resource 

Assessment (TRISHNA) mission (Vidal et al., 2022), will be most beneficial for accurate ET 

estimation.  

 There are a few limitations associated with the presented data-driven method. Our approach 

is driven by the input data, which allows transferability to similar land cover and meteorological 

conditions to those used in training. On the other hand, re-training with local flux data may be 

necessary to achieve acceptable accuracy, especially in other climate zones. Our maps 

underestimated the highest ET in summertime, with underestimation most likely occurring in pure 

vegetated areas such as forests, due to flux footprints capturing the mixed influence of impervious 

and vegetated surface cover during training (Figure 4.4). In future work, the variability of ET 

within a city can be better characterized by incorporating training data from flux towers in other 

cities in similar climatic zones (Jongen et al., 2022) and in natural areas underrepresented by 

urban flux towers, such as forests (Markwitz et al., 2020). High ET values may also be 

underestimated (Appendix C; Figure C.2) as most of the training observations represent low ET 

(e.g., nighttime and wintertime). To reduce this effect, ML models can be trained separately for 

summer in daytime in future implementations. The transferability of ET mapping with and 
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without flux tower data for training can be tested with the increasingly available eddy covariance 

data in cities worldwide (Jongen et al., 2022) or other ground-truth datasets (Nouri et al., 2013).  

 Although eddy covariance (EC) is one of the best-suited methods to directly measure urban 

ET (Nouri et al., 2013), uncertainties characteristic of EC data (Feigenwinter et al., 2018) 

introduce some inaccuracies into our ET maps. Furthermore, EC systems cannot accurately record 

fluxes during and a few hours after rainfall events, necessitating the exclusion of this data during 

quality control (Vulova et al., 2021; Wouters et al., 2015). Training with EC data therefore 

underestimates evaporation from interception, especially for trees and impervious surfaces (Ward 

et al., 2013). However, our ET maps are still appropriate for mitigation of thermal stress, as 

interception loss is not associated with the cooling effect of transpiration (Miralles et al., 2020; 

Rocha et al., 2022b). Our mapping approach is especially accurate for identifying hotspots for 

low thermal comfort, which is most relevant for urban planners aiming to mitigate the UHI effect. 

4.5 CONCLUSION 
 Our study successfully mapped ET at the city scale at a high spatio-temporal resolution using 

a machine learning approach in combination with remote sensing. Urban ET maps contribute 

essential understanding to urban greening, heat-mitigation, water-saving, and stormwater 

reduction measures, which potentially buffer the most people against climate change impacts in 

an increasingly urbanized world (Gaffin et al., 2012). An interaction between increasingly 

frequent and intense heat waves (Meehl and Tebaldi, 2004) and UHI effects from expanding 

urbanization (Li and Bou-Zeid, 2013; Manoli et al., 2019) will place unprecedented pressure on 

the health, livability, and energy use in cities. Our study provides a methodology for mapping ET 

at a high spatial and temporal resolution to guide urban planning initiatives aiming to reduce heat 

risks. The effects of drought on the capacity of urban green infrastructure to provide evaporative 

cooling are still largely unknown (Miller et al., 2020). However, mapping long-term time-series 

of urban ET in future work can provide insights on balancing water-saving and greening 

measures. This approach can be adapted by urban planners to map ET under various greening and 

climate-change scenarios. 

DATA AND CODE STATEMENT 
 The code used for this study is publicly and permanently available on Zenodo at 

https://doi.org/10.5281/zenodo.6521095. The output data from footprint and machine learning 

modeling are available on request from the first author. The raw eddy covariance data belongs to 

the Urban Climate Observatory (UCO) Berlin and are available on request from Dr. Fred Meier 

(fred.meier@tu-berlin.de). The meteorological (DWD) data are freely available at 

https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/ and can also 

https://doi.org/10.5281/zenodo.6521095
mailto:fred.meier@tu-berlin.de
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/
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be downloaded using our open code (https://doi.org/10.5281/zenodo.6521095). The source code 

to compute and download our NDVI time series using Google Earth Engine is also provided in 

the same Zenodo publication. Urban Atlas products (building height and Land Use and Land 

Cover (LULC)) are publicly available at https://land.copernicus.eu/local/urban-atlas. The code to 

derive ISF from Urban Atlas LULC is provided in the Zenodo publication. VH and VF are freely 

available from the Berlin Digital Environmental Atlas (https://fbinter.stadt-

berlin.de/fb/index.jsp). The LCZ map used in this study is freely available at https://lcz-

generator.rub.de/factsheets/6d7f501c212dc888e32a3a9a5740ce930addd3bc/6d7f501c212dc888

e32a3a9a5740ce930addd3bc_factsheet.html.  
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Chapter 5: Synthesis and Conclusions 

 Worldwide, ever-expanding cities and human settlements are threatened with the 

exacerbated effects of global and climate change, including heat-related mortalities, water 

scarcity, flooding, and air pollution (Kundzewicz et al., 2014; Li and Bou-Zeid, 2013; Manoli et 

al., 2019; Wilby, 2007). Despite their high relevance to the well-being and thermal comfort of 

urban inhabitants, ET and Tair are still not well-characterized in urban areas (Nouri et al., 2015; 

Saher et al., 2021; Zhou et al., 2019). The emergence of big data at a high spatial resolution, which 

includes satellite imagery, volunteered geographic information, and various sensors, has opened 

up the possibility to develop strategies for climate change mitigation at a neighborhood scale 

(Milojevic-Dupont and Creutzig, 2021). Extracting information from big Earth system data has 

been facilitated by artificial intelligence (AI), whose rise is fueled by advances in computational 

power and computer science theory (Milojevic-Dupont and Creutzig, 2021; Reichstein et al., 

2019). 

 The choice of AI algorithm is less important than the understanding and selection of data to 

feed into it. Modeling thermal comfort indicators in urban areas, especially with AI approaches, 

remains a research frontier in its infancy, with some of the very first attempts presented in this 

thesis. The recent emergence of the necessary data (crowdsourced weather data, urban flux tower 

data) has opened up the possibility to model Tair and ET using ML regression models. Until 

recently, however, this opportunity has been hampered by challenges in processing and aligning 

the data spatially and temporally with remote sensing imagery. 

 To address the existing research gap, this thesis had two main objectives. The first objective 

focused on developing workflows to modeling and mapping thermal comfort indicators using AI, 

remote sensing, and open geodata, combined with in situ sensor data, at a high spatial resolution: 

 

Objective 1: Investigate how accurately thermal comfort indicators in urban areas (ET and Tair) 

can be modeled at a high spatial resolution with remote sensing imagery, geodata, and 

meteorological data using ML regression algorithms (Chapters 2-4).  

 

 This thesis provided a methodology for spatially predicting nocturnal Tair one day in 

advance in urban areas, which can be used as a blueprint for a warning system for heat risk for 

vulnerable residents (Chapter 2). Next, the capacity to model urban ET, a key indicator for climate 
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change mitigation and greening, accurately at a high temporal (Chapters 3 and 4) and spatial 

(Chapter 4) resolution was demonstrated using a novel approach which exploited the dynamic 

source area of eddy covariance measurements. The modeling approaches were tested in Berlin, 

the largest city in Germany by area (891 km2) and in the European Union by population (3.7 

million) within city limits (Statistical Office of Berlin-Brandenburg, 2019). By assessing the 

spatial variation of the modeled ET and Tair across Berlin, the second objective was to provide 

insights for urban planning and policy focused on heat risk mitigation (Chapters 2-4), which is 

addressed in Section 5.1.3. 

 The following sections summarize the main findings of this thesis (Section 5.1) and provide 

a perspective on the remaining challenges and opportunities in this research field (Section 5.2). 

Specifically, how innovative applications of AI (Section 5.2.1) and remote sensing (Section 5.2.2) 

could further improve the understanding of Tair and ET in urban areas in the future is discussed. 

Lastly, Section 5.2.3 provides an outlook for how the insights from this thesis could be integrated 

into urban planning. 

5.1 MAIN FINDINGS 

5.1.1 MODELING TAIR IN AN URBAN ENVIRONMENT 
 Heat extremes in cities are profoundly and detrimentally affecting urban residents and 

ecosystems, driving heat-related mortalities (Dousset et al., 2011; Scherer et al., 2013), respiratory 

and cardiovascular health issues (Kovats and Hajat, 2008), enhanced air pollution (Koken et al., 

2003; Krug et al., 2019), higher energy use and carbon emissions (Santamouris and Kolokotsa, 

2015; Tooke et al., 2014), and unforeseen shifts in urban biodiversity (Turrini and Knop, 2015). 

With the high human and financial cost of urban heat, mapping hotspots at a high resolution is 

vital. Thus, the first question of this thesis was:  

 

Research Question I: How can open source remote sensing, GIS and crowdsourced weather data 

be used to predict the spatial distribution of nocturnal Tair in an urban area? (Chapter 2) 

 In this thesis, the capacity of spatially modeling Tair by combining crowdsourced weather 

data, open-source remote sensing data and geodata, and machine learning was demonstrated for 

nearly the first time (Chapter 2; a similar study by Venter et al. (2020) was conducted in parallel). 

Tair was predicted for summer nights due to their higher relevance for human health and mortality 

and more pronounced UHI effect (Christen and Vogt, 2004; Gabriel and Endlicher, 2011; Kovats 

and Hajat, 2008). Tair was predicted and mapped one day in advance at a 30-m resolution, using 

Tair deviation from a standard meteorological station located centrally in Berlin. Combining 

remote sensing and GIS data with crowdsourced data was generally found to be beneficial. 
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Crowdsourced weather data is certainly useful as a source of training and validation data for Tair 

modeling; Chapter 2 also tested if integrating kriged crowdsourced data from one day in advance 

as a predictor would improve the Tair mapping accuracy. While remote sensing and GIS data 

performed better when Tair was more spatially variable, better reflecting the fine-scale Tair 

variation due to urban structure and land cover, the crowdsourced Tair data could more accurately 

predict its distribution one day in the future during stable weather conditions due to temporal 

autocorrelation. Combining diverse data as predictors allows for models to “hedge their bets” for 

situations where either the urban form and cover or previous meteorological conditions may play 

a larger role in determining Tair distribution. Based on independent reference Tair data, however, 

the scenario using only remote sensing and GIS predictors was most accurate, so integrating 

crowdsourced weather data from a previous time step is not imperative. 

 This thesis not only demonstrated that Tair can accurately be modeled with the proposed 

workflow, but contributed insights on which data and preprocessing were especially important 

for an optimal model performance. Morphometric parameters, which reflect the 3D structure of 

the urban environment and can easily be derived from building height data, were especially 

important in modeling Tair. The land cover of an area surrounding each weather station influences 

the Tair measurement (Guo and Moore, 1998; Ho et al., 2014; Zakšek and Oštir, 2012); however, 

which radius can best approximate this influence in an urban environment still remains an open 

question (Ho et al., 2016; Venter et al., 2020). Therefore, a range of radii (0 - 1500 m) was tested 

for the spatial averaging of 13 remote sensing and GIS predictors; recommendations for optimal 

buffers for each type of geodata are provided based on the correlation with the crowdsourced Tair 

measurements. The workflow demonstrated to model Tair can be implemented in platforms at the 

intersection of the Smart City and Green City concepts, which could warn residents and policy-

makers about upcoming or real-time heat stress risk. 

5.1.2 MODELING AND MAPPING URBAN ET 
 To plan greener and more climate-resilient cities, it is critical to characterize ET in urban 

areas at a scale relevant for urban planning. In this thesis, a novel open-source data-driven 

approach to modeling urban ET at the city-scale at a high spatio-temporal resolution was 

developed and validated. 

 Interfaces play a critical role in the urban water cycle, serving as key sites of fluxes which 

affect the entire system and its behavior (Gessner et al., 2014). ET is one of the fundamental 

parameters characterizing the soil-vegetation-atmosphere interface, as it constitutes both an 

energy flux contributing to the cooling capacity of a surface and a water flux which can facilitate 

the estimation of available water for human consumption in cities (Damm et al., 2018; Gessner et 

al., 2014). Thus, this thesis contributed to a better understanding of one of the main urban water 
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interfaces. Integrative sustainability approaches aiming to simultaneously mitigate UHI and 

manage water resources more ecologically, such as Nature-Based Solutions (Somarakis et al., 

2019), will benefit from an improved characterization of urban ET. 

 ET is highly dependent not only on meteorological conditions, but also on the underlying 

land cover, which represents a complex mosaic of materials, vegetation types and 3D structure in 

an urban environment (Nouri et al., 2015; Rocha et al., 2022b, 2022a). Thus, the capability of 

modeling urban ET in a data-driven way has mainly been limited by the availability of in situ ET 

data representing the diversity of urban land cover, with most cities having one to two flux towers 

(Jongen et al., 2022). At the same time, the interpretation of the signal of ET measured by flux 

towers has been confounded by the constantly-changing source area (footprint) of eddy 

covariance measurements over a high urban heterogeneity (Christen et al., 2011; Kotthaus and 

Grimmond, 2014; Menzer et al., 2015). To simultaneously tackle both of these challenges, a 

method was developed to incorporate the diverse land cover contributing to urban ET 

measurements into AI algorithms by combining flux footprint modeling and remote sensing and 

GIS data (Chapters 3 and 4). Thus, the second research question was:  

 

Research Question II: Is there a benefit to integrating remote sensing and GIS data extracted by 

flux footprints to model urban ET at a high temporal (half-hourly) resolution? (Chapter 3) 

 

 It was hypothesized that integrating remote sensing data by footprint modeling can allow for 

a better representation of urban ET than only modeling with meteorological data (Chapter 3). 

Integrating the characteristics of the land cover extracted by flux footprints, which were modeled 

on a half-hourly basis, into ML and DL algorithms enhanced the modeling accuracy over 

scenarios only relying on meteorological data. This result demonstrated the capacity of footprint 

modeling, combined with a geospatial database, to represent the influence of urban land cover on 

ET variation, paving the way for applying the methodology to upscale ET to the city-scale. 

 In the next phase, the data-driven approach was further developed to map ET for an entire 

city at a high spatial (10-m) and temporal (hourly) resolution for one year (Chapter 4). Thus, the 

third research question focused on the capacity of this methodology to map urban ET:  

 

Research Question III: Can ET be accurately mapped at a high spatial (10-m) and temporal 

(hourly) resolution in an urban environment with remote sensing imagery, geodata, and 

meteorological data using ML and flux footprint modeling? (Chapter 4) 
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 Mapping ET required several key modifications to the method introduced in Chapter 3, 

including using spatially distributed meteorological data, combining the data from the two flux 

towers to create a general model, and validating the result in a spatially explicit manner. By 

validating the spatial product with flux footprints, the developed approach was found to be more 

accurate or similar in accuracy when compared to the few existing approaches used to model 

hourly urban ET (Chapter 4). The ET maps for Berlin were further assessed using Local Climate 

Zones (LCZs), a land cover classification designed for UHI and urban planning applications 

(Stewart and Oke, 2012). The variation of modeled ET based on land cover was found to be in 

line with previous studies (Liu et al., 2010; Wan et al., 2021). The implications of this thesis’s 

findings for urban planning are discussed in the next section. 

5.1.3 IMPLICATIONS FOR URBAN PLANNING 
 With the world’s cities facing accelerating climate and global change effects, it is crucial to 

supply urban planners with high-resolution spatial data (Milojevic-Dupont and Creutzig, 2021; 

Pataki, 2013). To move in the direction of sustainable and green cities, this work provided insights 

on how urban greening can be used to mitigate heat risk based upon high-resolution maps of urban 

Tair and ET, addressing Objective 2 and Research Question 4: 

 

Objective 2: Assess the spatial variation of the modeled ET and Tair across Berlin to provide 

insights for urban planning and policy focused on heat risk mitigation 

 

Research Question IV: What is the spatial variation of modeled ET and air temperature across 

Berlin and what implications does this variation have for urban planners? 

 

 In Chapter 4, LCZs were used to investigate the spatial variation of ET in Berlin, indicating 

that grasslands and shrubs may be especially significant sources of ET. In order to synthesize the 

Tair and ET results in answering Research Question 4, an additional analysis of the relationship 

between LCZs and nocturnal Tair in summertime (Chapter 2) was undertaken. The maps of the 

four study dates modeled in Chapter 2 were averaged and boxplots (Figure 5.1) are used to portray 

the variation of Tair per LCZ. Comparing the ranking of LCZs for summertime ET (Figure 4.5b) 

and Tair (Figure 5.1a), there is a good correspondence, with the LCZs with highest ET generally 

showing lowest nocturnal Tair. Based on the scenario with “all” predictors, “low plants” and 

“shrubs” are the coolest LCZs at nighttime. Land cover with scattered or dense trees nevertheless 

promotes higher ET and lower nocturnal Tair than more LCZs with impervious cover. Thermal 

comfort is most threatened in the “compact midrise” LCZ, which shows lowest ET and highest 
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nocturnal Tair. More open arrangements of buildings, such as the “open highrise” LCZ 

concentrated in East Berlin, allow for higher ET and lower Tair due to an abundance of vegetated 

land cover. 

 

Figure 5.1: Local Climate Zones (LCZs) and nighttime Tair modeled with (a) all predictors 

and (b) only remote sensing and GIS predictors. The four summertime study dates mapped 

in Chapter 2 over Berlin using Random Forest were averaged for each predictor scenario. 

The LCZs are ordered in decreasing order of median Tair. For the boxplots, the center line 

represents the median, the upper and lower hinges represent the 25th and 75th percentile, 

the upper whisker extends from the hinge to the largest value no further than 1.5 * 

interquartile range (IQR), the lower whisker extends from the hinge to the smallest value 

no further than 1.5 * IQR, and the light gray dots represent the outliers (points beyond the 

whisker range). 

 However, the model configuration, such as choice of predictors, can have a large influence 

on the modeled spatial distribution of thermal comfort indicators. While the “All” scenario, which 

includes crowdsourced Tair from the day before as a predictor, shows that low plants exhibit the 

lowest Tair, in the “GIS” scenario dense trees have the lowest Tair (Figure 5.1). The models’ 

incapacity to consistently and accurately characterize Tair over vegetated areas is largely due to 

the placement of “Netatmo” stations, which are mostly installed in built-up areas and close to 

building walls (Fenner et al., 2017; Meier et al., 2017). Subsequently, vegetated land cover, 

especially meadows, showed the lowest accuracy in Chapter 2, with highly sealed urban fabric 

showing the highest accuracy. This limitation could be overcome if research institutes install a 

denser network of Netatmo stations in vegetated urban areas, which is feasible considering their 

low cost (Chapman et al., 2015; Venter et al., 2020). The mapping approaches presented in 

Chapters 2 and 4 are nevertheless highly relevant for urban planning focused on thermal comfort, 

as they are most accurate where heat risk is highest. 
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 To compare the spatial distribution of ET and nocturnal Tair, the city-wide maps for a date 

occurring during a major 2019 European wave (25 June) are shown in Figure 5.2. Despite showing 

two different phenomena, the two maps are moderately (negatively) correlated (Pearson’s r = -

0.47). More vegetated areas exhibit higher ET and lower Tair. For instance, in the NE of Berlin, 

an area dominated by crops and pastures, particularly high ET rates coincide with low Tair. In the 

impervious areas, mainly concentrated in the city-center, more energy is absorbed from solar 

radiation during the day, which is released at night, increasing Tair (Christen and Vogt, 2004). A 

lower sky view factor from buildings blocks the release of longwave radiation and thus slows 

nighttime cooling (Spronken-Smith and Oke, 1999). In the same dense, highly paved areas, ET is 

low due to a lack of vegetation for transpiration. Nevertheless, it must be reiterated that ET and 

Tair act on different spatial and temporal scales. While the majority of ET occurs in daytime, the 

most pronounced Tair UHI intensity occurs at nighttime (Spronken-Smith and Oke, 1999), which 

motivated the modeling of average Tair between 22 UTC and 2 UTC in Chapter 2. Furthermore, 

surface cover has an influence on Tair beyond its boundaries, which decays with distance (Guo 

and Moore, 1998; Ho et al., 2014; Zakšek and Oštir, 2012). Thus, in Chapter 2, optimal focal 

buffer radii for each of the remote sensing and GIS predictors were empirically determined and 

then used to generate Tair maps. ET, on the other hand, is an attribute directly linked to the land 

surface and is not modeled with spatial aggregation. The blurring effect seen in Figure 5.2a can 

be partially attributed to the focal buffer approach, as well as the difference in spatial resolution 

(30-m for Tair; 10-m for ET). 

 

Figure 5.2: Maps of modeled thermal comfort indicators on 25 June 2019: (a) nocturnal 

Tair (℃) estimated with Random Forests and the “GIS” predictor scenario (Chapter 2) and 

(b) daily ET (mm/ day) (Chapter 4) in Berlin, Germany. White colored areas in the maps 

represent water bodies, which were excluded from ET modeling and masked from the Tair 

map for ease of visual comparison. 

 A sparse arrangement of trees in grassy parks may be optimal for UHI mitigation while 

reducing the irrigation requirement for grass by tree shade based on the findings of this thesis and 
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previous studies (e.g., Gómez-Navarro et al. (2021), Litvak et al. (2014)). Grasslands can also be 

irrigated to maximize the cooling effect in summertime, with just enough irrigation necessary to 

enhance ET in daytime without increasing soil moisture excessively, which may reduce cooling 

at night (Spronken-Smith and Oke, 1999) and increase the city’s water footprint (Nouri et al., 

2019). Thermal comfort in cities is largely driven by ET and shade in daytime, with a higher 

dependence on sky view factor and soil moisture in nighttime (Spronken-Smith and Oke, 1999). 

Open green spaces generally cool nocturnal Tair more than areas with trees (Gómez-Navarro et 

al., 2021; Spronken-Smith and Oke, 1999; Vaz Monteiro et al., 2016). Trees block radiative loss 

from the surface at nighttime, with cooling further slowed by wetter conditions (Spronken-Smith 

and Oke, 1999). In daytime, grasslands may contribute more to evaporative cooling than trees 

(Chapter 4) (Litvak et al., 2014; Markwitz et al., 2020; Teuling et al., 2010; Williams et al., 2012), 

while the cooling effect of tree shade remains crucial for thermal comfort (Rocha et al., 2022a; 

Wong et al., 2021). High-resolution maps of Tair and ET can be used by urban planners to further 

optimize the balance between nighttime (Chapter 2) and daytime cooling (Chapter 4) by varying 

vegetation type and irrigation strategies. 

5.2 REMAINING CHALLENGES AND FUTURE RESEARCH 
 An urban data science focused on sustainability has emerged as a solution to addressing 

climate change across the world, driven by developments in remote sensing, advanced statistical 

methods, and crowdsourced information (Creutzig et al., 2019). AI combined with big data offers 

an opportunity to provide spatially precise climate mitigation solutions in urban areas worldwide 

and support low-carbon urban planning and policy (Milojevic-Dupont and Creutzig, 2021). Most 

broadly, this thesis constitutes an advance in the use of state-of-the-art technologies (AI, remote 

sensing, crowdsourcing) to further the understanding necessary for urban sustainability and 

resilience, with a focus on heat risk mitigation. However, diverse research directions for future 

studies remain which can address the challenges and knowledge gaps beyond the scope of this 

work. 

 This thesis is situated at the forefront of urban climate informatics (Middel et al., 2022), an 

emerging research field focused on better understanding complex urban climate systems through 

novel methodological and technological approaches. Four technological trends are driving the 

advancement of urban climate informatics: novel sensors (e.g., Internet-of-Things), state-of-the-

art analytical algorithms and platforms (e.g., AI), new urban datasets (e.g., 3D building data, 

crowdsourcing), and increasing accessibility of digital infrastructure (e.g., computational power, 

cloud computing) (Middel et al., 2022). However, in order to meet this field’s goal of facilitating 

climate-sensitive urban design and planning (Middel et al., 2022), substantial work remains in 

understanding the key indicators of human heat risk. Crowdsourcing of atmospheric parameters 

has mainly focused on Tair so far (Middel et al., 2022; Venter et al., 2020; Vulova et al., 2020), 
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but recent studies have also assessed its capacity for characterizing precipitation (Bardossy et al., 

2021; de Vos et al., 2017, 2020), air pressure (de Vos et al., 2020), humidity (de Vos et al., 2020) 

and wind speed (Droste et al., 2020). This crowdsourced atmospheric data can also be combined 

with remote sensing and GIS data using AI to produce high-resolution spatial products of urban 

microclimate. Apparent temperature is a measure of the perception of ambient heat by humans 

combining humidity and Tair (Basu, 2009; Masterton and Richardson, 1979) which has been 

shown to be even more closely linked to mortality than other weather variables (Zhang et al., 

2014). Thus, future studies can focus on mapping apparent temperature using Netatmo data to 

better characterize the risk of heat exposure. Spatially explicit data of atmospheric parameters 

derived from crowdsourcing can be integrated into both data-driven and physical models focusing 

on urban ET, as microclimate effects have not been considered in most approaches used to 

estimate urban ET (Saher et al., 2021). Furthermore, there is a high potential of crowdsourced 

weather data combined with satellite imagery (Chapter 2) to be implemented into real-world apps 

or platforms providing localized warnings of heat exposure in advance when combined with 

weather forecasts from other models (Nipen et al., 2020). Finally, a more comprehensive 

understanding of the social dimensions of urban heat risk is needed; heat stress indicators such as 

Tair and ET should be investigated in relation to socioeconomic status and ethnicity to gain a 

better understanding of heat-related vulnerability and inequity (Harlan et al., 2006). 

 This thesis advanced the understanding of how to model (Chapter 3) and map urban ET 

(Chapter 4) with open-source remote sensing and meteorological data using a data-driven 

approach. However, urban ET estimation, especially with remote sensing data, is still a major 

research frontier, with numerous remaining research directions (Nouri et al., 2015; Saher et al., 

2021). First of all, the transferability of the modeling approaches proposed in Chapters 3 and 4 

needs to be tested in other cities based on their availability of open-source data. The 

generalizability of ML models can be tested when re-training with local eddy covariance data or 

not, facilitated by the expanding network of urban flux towers worldwide (Jongen et al., 2022). 

To better inform urban planners and policy-makers preparing for rapid global change, both ML 

and process-based urban ET models can be used to model the impact of climate change, 

urbanization, and water scarcity scenarios on ET (Rocha et al., 2022b, 2022a). 

5.2.1 DEVELOPMENTS IN AI 
 Machine learning, combined with spatially-explicit remote sensing and crowdsourced data, 

will be increasingly instrumental in guiding urban planning aiming to mitigate the effects of 

climate change and reduce greenhouse emissions (Creutzig et al., 2019; Milojevic-Dupont and 

Creutzig, 2021; Rolnick et al., 2023). Expanding the notion of “Smart Cities”, which focuses on 

intelligent urban development through the use of information and communication technologies 

(Neirotti et al., 2014), to include the concepts of sustainability, resilience, and livability is crucial 
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(Rolnick et al., 2023). As urban areas will be most severely affected by increasingly frequent heat 

waves (Li and Bou-Zeid, 2013), characterizing urban microclimate with spatially-explicit data is 

one of the most relevant applications of ML in cities (Chapter 2) (Creutzig et al., 2019). Better 

representing ET in urban areas fulfills both the goals of heat risk mitigation and more sustainable 

water management in cities (Chapters 3 and 4). Optimizing the irrigation needed to maintain the 

ecosystem services of urban vegetation, including evaporative cooling, can be better 

accomplished using high-resolution urban ET products (Chapter 4), supporting the concept of the 

“smart water city” aiming to better manage urban water resources using state-of-the-art 

technologies (Gessner et al., 2014; Oberascher et al., 2022). The methodology developed in 

Chapters 3 and 4, which aims to overcome the lack of in situ urban ET data, can also be applied 

to model other fluxes measured by eddy covariance. As quantifying urban CO2 emissions will be 

increasingly important to climate policy (Creutzig et al., 2019), the prototype of modeling urban 

ET presented in this thesis should also be utilized to model CO2. 

 Despite the promise of using AI to generate high-resolution products relevant for sustainable 

urban planning (Milojevic-Dupont and Creutzig, 2021), as demonstrated in this thesis, this 

emerging field is still faced with barriers which can be resolved by new directions of research. 

Some of the main challenges of Earth system science are the need to extract knowledge from a 

deluge of big data while respecting a physical understanding of nature’s laws (Reichstein et al., 

2019). While ML methods can flexibly adapt to diverse data, their interpretability is limited and 

they are not constrained by physical laws. Integrating machine learning and physical modeling 

(‘hybrid modeling’) has a high potential for overcoming the limitations of each approach (Kraft 

et al., 2022; Reichstein et al., 2019) and is a promising future route of using ML to guide climate 

change mitigation in cities (Milojevic-Dupont and Creutzig, 2021). For instance, ground-truth 

data scarcity can be overcome by pre-training a neural network with simulated data from a 

physical model and fine-tuning it with the limited available data, such as urban EC measurements 

(Roscher et al., 2020a). A simple example of integrating the outputs of physical models is using 

reference ET (ETo) based on the Penman-Monteith equation as a predictor in ML models for 

actual ET instead of raw meteorological data (Chapters 3 and 4). Machine learning can also be 

used to better estimate parameters in physical models based on statistical covariates, such as 

remote sensing data (Reichstein et al., 2019); this approach has recently been successfully applied 

to model the global hydrological cycle (Kraft et al., 2022). In parallel to this work, the capacity 

of a process-based soil-vegetation-atmosphere transfer (SVAT) model to accurately model 

(Rocha et al., 2022b) and map (Rocha et al., 2022a) urban ET using freely available remote 

sensing and meteorological data was demonstrated. A process-based tracer-aided ecohydrological 

model (EcH2O-iso) has also been used to quantify ET in an urban environment (Gillefalk et al., 

2022, 2021). Estimating input parameters for these models such as stomatal conductance, 

interception capacity, and soil moisture in a data-driven way based on high-resolution remote 
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sensing data can improve their capacity to characterize ET in a complex urban terrain (Gillefalk 

et al., 2022; Rocha et al., 2022a). 

 Explainability and interpretability are the next frontier of Earth system modeling using AI, 

while the overwhelming focus so far has been on optimizing accuracy (Reichstein et al., 2019; 

Roscher et al., 2020a, 2020b). Explainable AI (XAI) has recently emerged as a research field 

focused on advancing the transparency, interpretability and explainability of ML and DL 

algorithms to foster scientific understanding and new discoveries (Roscher et al., 2020a, 2020b). 

The related fields of informed ML, theory-guided data science, and physics-informed learning 

aim to integrate domain knowledge, including the physical laws of nature, into the ML pipeline 

(Roscher et al., 2020b). Decision trees such as Random Forests are, in this respect, advantageous 

due to the ease of extracting parameter importance, which makes them interpretable (Kuhn and 

Johnson, 2013; Roscher et al., 2020a). Random Forests also showed the highest accuracy 

throughout this work (Chapters 2 and 3) and should remain a staple in remote sensing-based 

regression modeling when the computational cost of more complex algorithms (e.g., deep neural 

networks) is not justified. One practical application of XAI in remote sensing are saliency maps, 

which have been used to visualize the pixels and wavelengths of hyperspectral imagery most 

relevant for classifying plants as diseased (Nagasubramanian et al., 2019). Saliency maps could 

allow us to gain insights into the interaction between a complex urban landscape and 

microclimate; for instance, linking crowdsourced images (e.g., Flickr) and Tair (e.g., Netatmo 

citizen weather stations), saliency maps could show which part of the image (soil, impervious, 

vegetation) contributes most to the prediction of microclimate. SHAP values are another XAI 

approach which could be exploited to link urban cover-related predictors to their modeled 

warming or cooling effect (Marcilio and Eler, 2020). 

 Deep learning approaches can automatically integrate both temporal and spatial context into 

prediction (Reichstein et al., 2019). Processes such as ET are affected by the state of the system, 

which is driven by past events such as drought (‘memory effects’) (Reichstein et al., 2019). The 

current distribution of Tair in a city is also highly correlated to its distribution in a previous time 

step (Chapter 2). In Chapter 3, 1D convolutional neural networks (CNN), a type of DL algorithm 

which can extract local patterns in a time series, were tested for urban ET modeling. This capacity 

to exploit temporal patterns may have been hindered by the presence of irregular gaps in the time 

series due to quality control, exhibited by 1D DNNs’ slightly lower accuracy than Random Forests 

(Chapter 3). Long-short-term-memories (LSTMs), an even more powerful DL model for 

modeling dynamic time series than 1D CNNs, are promising for future studies modeling urban 

ET and Tair due to their consideration of memory and lag effects (Chollet and Allaire, 2018; 

Zhang et al., 2022). Spatially explicit models, such as Integrated Nested Laplace Approximation 

(INLA), are a promising alternative to deep learning for integrating spatio-temporal dependencies 
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into modeling (Rocha et al., 2019; Simpson et al., 2012). The use of such spatial models to predict 

plant traits using remote sensing data is still in its very inception (Rocha et al., 2019), but holds 

high potential for better modeling the ET of urban vegetation. 

 To effectively implement machine learning for planning sustainable and resilient cities, a 

better understanding of the source of the modeling uncertainty is needed. ML-based studies 

commonly select a data source, often due to its availability for the study area, which is then used 

for both training and validation. To avoid influencing the accuracy with the spatio-temporal 

autocorrelation of the data itself, this data are ideally split in a way meant to minimize temporal 

autocorrelation (e.g., train in one year, test in another) or spatial autocorrelation (train in one 

location, test in another location) (Roberts et al., 2017). Then, performance metrics are calculated 

(commonly, RMSE and R2) and the accuracy is declared to be satisfactory (or not). However, 

what remains unknown from most studies is how much the uncertainty and bias of the (training 

and testing) data affected the output and calculated metrics. Given their availability, different 

sources of reference data can better resolve this open question. In Chapter 2, the influence of 

validating Tair maps with either crowdsourced weather data (which was also used in training) or 

traditional weather stations was investigated. Crowdsourced weather data has only recently been 

used in climatological studies, with its validity for climatological research still widely questioned 

(Fenner et al., 2017; Meier et al., 2017; Muller et al., 2015; Napoly et al., 2018). Testing the 

accuracy with traditional reference stations revealed a lower accuracy and a greater 

overestimation of Tair than testing with crowdsourced data. Most “Netatmo” stations are installed 

in highly built-up areas and near building walls due to their owners’ convenience (Fenner et al., 

2017; Meier et al., 2017); thus, this data present more bias and inaccuracy than reference 

meteorological data even after thorough quality-control. 

 In situ data on ET in cities is even scarcer than data on Tair. In Chapters 3 and 4, AI models 

predicting ET are trained and tested using eddy covariance (EC) data. However, EC data also 

present large uncertainty and require extensive quality-control to be usable (Feigenwinter et al., 

2018). Thus, some of the inaccuracy when modeling ET, whether with physical or ML models, is 

inherently due to the noise of the EC data, and not due to the algorithm (Rocha et al., 2022b). In 

future work, ET models should be independently validated with alternative sources of ground-

truth data, including lysimeters and sap flow sensors (Nouri et al., 2013). Measurements of gas 

exchange (transpiration, stomatal conductance) in leaves, combined with leaf area index 

measurements, can also provide a valuable source of validation data for urban ET (Vulova et al., 

2019). The nature of the modeling uncertainty should ultimately also be well-communicated to 

urban planners. While overestimating heat risk due to data bias (see Chapter 2) may be acceptable, 

underestimating it may lead to inadequate short-term (e.g. warning systems) and long-term (e.g. 

greening) solutions to protect human well-being. 
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5.2.2 OUTLOOK ON REMOTE SENSING OF THERMAL COMFORT 
 Various Earth Observation (EO) sensors hold great potential for modeling urban Tair and 

ET. In this thesis, LST was used as a predictor of Tair (Chapter 2), but not of ET (Chapters 3-4). 

As discussed in Chapter 4, though thermal imagery is highly relevant to ET, it was not integrated 

into urban ET estimation due to the limited temporal and spatial resolution of current TIR sensors. 

The most commonly used TIR sensor in UHI studies, Landsat, has a relatively high spatial 

resolution (60-120 m) but its long revisiting cycle (16-day) is further reduced by cloud cover 

(Zhou et al., 2019). For instance, by selecting cloud-free Landsat 8 imagery over Berlin in 

summertime from 2015 to 2019 (Chapter 2), only four scenes remained, underscoring the low 

temporal resolution. The use of Sentinel-2 (Chapter 4) or harmonized Landsat and Sentinel-2 time 

series (Chapter 3) (Claverie et al., 2018) allowed for a higher temporal resolution. While pixel-

wise linear interpolation of a vegetation index (Chapters 3-4) can be justified due to the day-to-

day stability of the vegetation state, such interpolation is not applicable for LST, which is highly 

temporally dynamic (Zhou et al., 2019). Moreover, the spatial resolution of other open-access 

TIR sensors, such as MODIS and Sentinel-3 (both with 1 km resolution) is insufficient for urban 

planning applications (Venter et al., 2020; Zhou et al., 2019). The recent or upcoming launch of 

higher spatial- and temporal-resolution TIR sensors, including the Thermal infraRed Imaging 

Satellite for High-resolution Natural resource Assessment (TRISHNA) mission (Vidal et al., 

2022) and the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 

(ECOSTRESS) mission (Anderson et al., 2021), can allow for TIR imagery to be integrated into 

the mapping of thermal comfort indicators in cities. 

 Other remotely sensed data which could enhance urban Tair and ET modeling include NASA 

Global Ecosystem Dynamics Investigation (GEDI), a LiDAR instrument measuring 3D 

vegetation structure and aboveground biomass (Dubayah et al., 2020), and Sentinel-1, a SAR 

sensor (Chintala et al., 2022). Improvements in radiometric calibration of nano-satellite imagery, 

such as the CubeSat constellation, could allow for even higher spatio-temporal resolution (3-5 m, 

daily) mapping of thermal comfort indicators (Aragon et al., 2021; Leach et al., 2019). 

Furthermore, nighttime lights imagery, such as NASA’s daily Black Marble product (Román et 

al., 2018), can be used as a proxy of anthropogenic heat, a major driver of ET variation in urban 

environments which is unaccounted for in most ET models (Cong et al., 2017; Saher et al., 2021). 

The relationship between chlorophyll fluorescence, an indicator of plant photosynthetic activity, 

and transpiration, has not been investigated at large scale due to the limited existing 

instrumentation (Damm et al., 2018). Fluorescence spectroscopy may become a viable source of 

data through upcoming missions such as the Fluorescence Explorer (FLEX) (Drusch et al., 2017). 

 An understanding of entire components and processes contributing to urban ET is still 

missing, which can be improved by analyzing remote sensing data in conjunction with various in 



Chapter 5: Synthesis and Conclusions 

Stenka Vulova - November 2022   101 

situ data. Soil sealing is the central driver of the challenges associated with urbanization, including 

the UHI effect and flooding, but an understanding of the hydrological balance of paved surfaces, 

in particular of evaporation, is still lacking (Gessner et al., 2014; Timm et al., 2018). This thesis 

contributed to filling this gap by estimating ET for an entire city, including impervious surfaces, 

using a data-driven approach in Chapter 4. Lysimeter measurements can provide ground-truth 

data for modeling evaporation from different pavement types (Aljoumani et al., 2022). In order 

to characterize the thermal dynamics and evaporation of paved surfaces, a high spatio-temporal 

time series of thermal imagery has been collected using a fixed platform over two lysimeters in 

an ongoing study (Pipkins et al., 2017). Coupling continuous in situ and remote sensing 

measurements holds great potential for better modeling the evaporation of sealed surfaces. The 

evaporation and cooling potential of urban water bodies is still largely uncertain (Jacobs et al., 

2020; Wang and Ouyang, 2021). To plan for cooler cities with blue infrastructure, further studies 

combining field-based, remote sensing, and modeling methods are needed to assess the 

contribution of water bodies to urban cooling and ET. Finally, interception loss from precipitation 

in an urban environment, which is highly variable due to a complex topography, should be 

investigated in future work. Eddy covariance measurements cannot separate ET into the different 

sources of water vapor: plant transpiration, soil evaporation, interception loss, and anthropogenic 

emissions (Ramamurthy and Bou-Zeid, 2014). Terrestrial and airborne laser scanning is one 

promising tool that can better characterize urban water storage capacity and potential interception 

loss (Baptista et al., 2018; Sampson et al., 2012). 

 Higher-resolution remote sensing imagery collected from drones and other platforms can 

provide a crucial link between in situ ET measurements and satellite imagery (Feng et al., 2022; 

Qin et al., 2022; Saher et al., 2021). In a preliminary study, UAV flights with thermal and 

multispectral cameras were conducted over an urban garden in Berlin on a monthly basis 

throughout the growing season of 2019 (Vulova et al., 2019) (Figure 5.3). Diverse field data was 

collected simultaneously as the UAV flights, including transpiration, stomatal conductance, leaf 

area index, soil moisture, flux tower measurements, and sap flow (Kuhlemann et al., 2021; Vulova 

et al., 2019). This unique dataset can facilitate an understanding of how well different vegetation 

indices and models can approximate the spatio-temporal variation of urban ET. The spatial 

resolution of UAV data (~5 cm) is well-suited for investigating the effects of shade on ET and 

microclimate, which are currently largely unknown (Saher et al., 2021) (Figure 5.3). Two field 

days with hourly flights also captured the diurnal ET variation of urban vegetation at a fine scale 

for the first time. 
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Figure 5.3: UAV imagery from an overflight on 14 June 2019 from an ongoing study aiming 

to characterize urban ET and microclimate in a research garden in Berlin, Germany 

(Vulova et al., 2019): (a) normalized difference vegetation index (NDVI) and (b) land surface 

temperature (LST). 

 Although UAVs could prove to be highly beneficial for urban ET estimation (Saher et al., 

2021), restrictions on UAV flights in many cities pose a challenge for this avenue of research. 

Proximal sensing, referring to mounting camera systems on fixed platforms or vehicles, is a 

promising alternative to monitor urban phenology and other plant traits (Rumora et al., 2021). 

Mounting thermal and multispectral cameras which continuously and regularly take photos on 

top of an urban flux tower, an example of stationary sensing (Anjomshoaa et al., 2018), could 

improve our understanding of the link between remote sensing time series and ET measurements. 

“Drive-by sensing” is an emerging approach within the “smart city” paradigm (Anjomshoaa et 

al., 2018) that can facilitate a continuous and cost-effective monitoring of the phenology, vitality, 

and ecosystem services of street trees (Filippa et al., 2018). Mounting multispectral and thermal 

cameras on existing vehicle fleets such as trams or garbage trucks could allow for the state of 

urban vegetation to regularly be captured at an unprecedented high spatial and temporal resolution 

(Anjomshoaa et al., 2018; Filippa et al., 2018). To model the ecosystem services of urban 

vegetation, including evaporative cooling, drive-by sensing should be coupled with an expansion 

of continuous ecophysiological measurements in urban trees: e.g. sap flow and other sensors 

which can be integrated into an Internet-of-Things (IoT) network for monitoring urban green 

infrastructure in real-time (Matasov et al., 2020). 

5.2.3 FUTURE APPLICATIONS IN URBAN PLANNING 
 The methodologies for modeling thermal comfort indicators developed in this thesis can be 

integrated into urban planning processes aimed at UHI mitigation and the enhancement of human 

health and well-being. AI in combination with remote sensing imagery, crowdsourced data, and 

other geodata makes it possible to generate spatially explicit products of parameters relevant to 
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climate mitigation in cities (Milojevic-Dupont and Creutzig, 2021) - Tair and ET, in the case of 

this thesis. High-resolution, localized information on thermal comfort can be integrated into 

national or European-wide heat risk governance plans (Lass et al., 2011). Identifying the areas of 

a city with highest heat risk is a crucial first step for decision-makers to target mitigation 

interventions. Such interventions can include the addition of vegetated surfaces in cities, as 

epitomized by the Sponge City (He et al., 2019) or similar frameworks, or the optimization of the 

plant species and amount of irrigation in existing green spaces. Heat exposure risk can even be 

predicted in advance (as demonstrated for Tair in this thesis), and therefore can be integrated into 

early-warning systems such as smartphone apps, an increasingly important form of ‘risk 

communication’ (Lass et al., 2011). Such platforms will allow urban residents to modify their 

own behavior to reduce heat stress, while also indicating an anticipated strain on energy 

infrastructure for the affected stakeholders. Policymakers need to develop actionable solutions to 

heat-related risks, which require an understanding of the impact of anthropogenic and 

environmental changes in the urban environment (Milojevic-Dupont and Creutzig, 2021). ML 

approaches integrating various geodata allow for the simulation of the effects of both climate 

change scenarios and urban planning and policy decisions such as land cover conversion on 

thermal comfort. For instance, Zurich is already using a Digital Twin of the city integrating 3D 

spatial data to assess the potential impact of urban planning decisions on the urban climate 

(Schrotter and Hürzeler, 2020). While this thesis focuses largely on thermal comfort, a greater 

understanding of the spatio-temporal dynamics of urban ET will allow for a smarter management 

of water resources in a time when drought is increasingly threatening the ecosystem services 

provided by urban vegetation (Miller et al., 2020), including its cooling capacity. Ultimately, 

emerging technologies, including novel remote and in situ sensors, volunteered geographic 

information, and AI, can revolutionize our understanding of urban ecosystems and allow for the 

world’s growing cities to better plan for human well-being, thermal comfort, and sustainable 

water resource management. 
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Appendix A Modeling 

urban air temperature 

Supplementary material to Chapter 2: Summer nights in Berlin, Germany: Modeling air 

temperature spatially with remote sensing, crowdsourced weather data, and machine learning 

 

Table A.1: Locations of reference stations used for validation. Latitude and longitude are in 

WGS84. Operators: DWD - Deutscher Wetterdienst, TUB - Technische Universität Berlin. 

Altitude is according to Shuttle Radar Topography Mission (SRTM) data (Jarvis et al., 

2008). Measurement height at all sites is 2 m above ground except at Bamberger (2.5 m) and 

Dessauer (3.5 m). a Local Climate Zone (LCZ) as mapped in Fenner et al. (2017) 
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Tuning 

 

Table A.2: Optimal hyperparameters for avNNet revealed during parameter tuning. Model 

tuning was performed using 10-fold cross-validation. The optimal values leading to the 

lowest RMSE based on 10-fold cross-validation were used in the final models. Date refers to 

the predictor date left out of model training. 

 

 

Table A.3: Optimal hyperparameters for GBM revealed during parameter tuning. Model 

tuning was performed using 10-fold cross-validation. The optimal values leading to the 

lowest RMSE based on 10-fold cross-validation were used in the final models. Date refers to 

the predictor date left out of model training. 

 

 

Table A.4: Optimal hyperparameters for RF revealed during parameter tuning. Model 

tuning was performed using 10-fold cross-validation. The optimal values leading to the 

lowest RMSE based on 10-fold cross-validation were used in the final models. Date refers to 

the predictor date left out of model training. RF models run with one predictor (Tcrowd) 

were not tuned, with hyperparameter ‘mtry’ kept constant at a default value of 2. 
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Focal Buffer Analyses 

 

 Tcrowd was averaged from 22 UTC to 2 UTC on the same day as Landsat predictors. 

Spearman rank correlation coefficient (Spearman’s rho) was used to quantify the relationship 

between focal buffers and Tcrowd (Figure A.1). The advantage of the Spearman coefficient is 

that it is a nonparametric measure of rank correlation that assesses how well two variables are 

monotonically related, even if their relationship is nonlinear. The p-values of the correlations were 

adjusted according to the Benjamini and Hochberg (1995) method to account for multiple tests. 

The families adjusted for were all possible radii (9 radii) and all GIS predictors (13 predictors), 

or 117 families per study date. 

 For each parameter and study date, the absolute values of Spearman’s rho coefficients 

(representing the strength of correlation) were ranked from highest to lowest. The three most 

strongly and significantly (p < 0.05) correlated radii per study date and parameter were assigned 

points based on their rank of the absolute values of Spearman’s rho coefficients (e.g., highest 

correlation: 3 points; second-highest: 2 points, etc.). Then, the points assigned per parameter and 

radius were summed for all four study dates. The radius with the most points for a certain 

parameter was identified as the optimal radius (see Table 2.2). 

 



Chapter 6: Appendices 

Stenka Vulova - November 2022   135 

 

Figure A.1: Heat maps showing Spearman’s rho correlation coefficients between Tcrowd 

and GIS predictors with different focal buffer radii for (a) 2 June 2017, (b) 23 July 2018, (c) 

24 June 2019, and (d) 26 July 2019. P-values of the correlations were adjusted according to 

the Benjamini and Hochberg (1995) method to account for multiple tests. All Spearman 

correlations between GIS predictors and Tcrowd were statistically significant (all adjusted 

p-values < 0.05). 

 

Table A.5: Optimal radii in meters for focal buffers for each study date based on 

Spearman’s rho correlation analyses.  

 

 

Testing  
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Table A.6: “Leave-one-date-out” testing performance metrics for the test date 3 June 2017. 

The performance metrics are coefficient of determination (R2), root mean square error 

(RMSE), mean absolute error (MAE), and percent bias (pbias). 

 

 

Table A.7: “Leave-one-date-out” testing performance metrics for the test date 24 July 2018. 

The performance metrics are coefficient of determination (R2), root mean square error 

(RMSE), mean absolute error (MAE), and percent bias (pbias). 

 

 

Table A.8: “Leave-one-date-out” testing performance metrics for the test date 25 June 2019. 

The performance metrics are coefficient of determination (R2), root mean square error 

(RMSE), mean absolute error (MAE), and percent bias (pbias). 

 

 

Table A.9: “Leave-one-date-out” testing performance metrics for the test date 27 July 2019. 

The performance metrics are coefficient of determination (R2), root mean square error 

(RMSE), mean absolute error (MAE), and percent bias (pbias). 
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LULC Analysis 

 

 Testing within each buffer size, there were significant differences between the majority of 

LULC classes (Dunn’s test, adjusted p-values < 0.05). All differences between LULC classes 

were significant at the 0-5 km buffer. At the >5-10 km buffer, classes 12100 (mainly industrial 

areas) and 50000 (water) were not significantly different. At the >10-20 km buffer, classes 12220 

and 14100 were not significantly different. At >20-30 km, class 11100 was not significantly 

different from three other classes (11220, 12100, and 12220) and class 11210 was not 

significantly different from class 14200. 

 

Performance without Vegetation Height 

 

 There was no significant difference between models with VH as a predictor and without VH 

based on all performance metrics for both testingcrowd and testingref (Figure A.2; Figure A.3) 

(Wilcoxon rank sum tests, p > 0.05). 
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Figure A.2: Comparison of the Tair prediction performances of the three ML algorithms 

for testingcrowd with all or only GIS predictors and with/ without vegetation height (VH) as 

a predictor. The performance metrics are coefficient of determination (R2), root mean 

square error (RMSE), mean absolute error (MAE), and percent bias (pbias). 

 

 

Figure A.3: Comparison of the Tair prediction performances of the three ML algorithms 

for testingref with all or only GIS predictors and with/without vegetation height (VH) as a 

predictor. The performance metrics are coefficient of determination (R2), root mean square 

error (RMSE), mean absolute error (MAE), and percent bias (pbias). 

 

Processing Time 

 

Table A.10: Processing time in minutes for model tuning and training as well as just model 

training with the optimal hyperparameters. The date refers to the test date left out of 

training. 
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Factoring Influencing Testing Accuracy  

 

 In order to analyze how testingref performance differs based on land cover, the Urban Atlas 

2012 LULC classes of the reference weather stations (Table A.1) were grouped into four main 

land cover classes based on similarity (Table A.12). The new class “Urban fabric (S.L. 50% - 

100%)” was a combination of LULC classes “Continuous urban fabric (S.L.: >80%)”, 

“Discontinuous dense urban fabric (S.L.: 50% - 80%)”, and “Airports.” The new class “Urban 

fabric (S.L. 10% - 50%)” was a combination of LULC classes “Discontinuous medium density 

urban fabric (S.L.: 30% - 50%)”, “Discontinuous low density urban fabric (S.L. : 10% - 30%)”, 

and “Sports and leisure facilities.” The new class “Urban meadows” was a combination of LULC 

classes “Green urban areas”, “Pastures”, and “Herbaceous vegetation associations.” The new 

class “Forests” was based only on the LULC class “Forests.” 

 

Table A.11: Testingref performance metrics averaged for buffers representing distances (in 

km) from the geometric city center. The performance metrics are coefficient of 

determination (R2), root mean square error (RMSE), mean absolute error (MAE), and 

percent bias (pbias). 

 

 

Table A.12: Testingref performance metrics averaged for land cover classes. The 

performance metrics are coefficient of determination (R2), root mean square error (RMSE), 

mean absolute error (MAE), and percent bias (pbias). 
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Modeled Air Temperature and Urban Land Cover  

 

 The analysis of the relationship between Tmod and GIS predictors reinforced the importance 

of urban morphology to Tair variation (see Figure A.4). For 3 June 2017, the most strongly 

correlated GIS predictors were zd, LST, and zHstd. The most strongly correlated GIS predictors 

for 24 July 2018, 25 June 2019, and 27 July 2019 were zd, zHstd, and SVF. 

 

 

Figure A.4: Heat map showing Spearman’s rho correlation coefficients between modelled 

air temperature (Tmod) and GIS predictors (from the previous day, in the case of Landsat 

predictors) without focal buffers for the four study dates. All Spearman correlations 

between GIS predictors and Tmod were statistically significant (all adjusted p-values < 0.05). 
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Appendix B Modeling 

urban ET 

Supplementary material to Chapter 3: Modeling urban evapotranspiration using remote sensing, 

flux footprints, and artificial intelligence 

 

Reference evapotranspiration (ETo) parametrization 

 

 Reference ET (ETo) is defined as the ET rate from a homogeneous surface of dense and 

actively growing vegetation with a specific height and surface resistance, which is not constrained 

by water availability (Allen et al., 2005). A standardized calculation procedure for ETo based on 

the Penman-Monteith equation has been developed by the American Society of Civil Engineers 

(ASCE), which simplifies the vegetated surface for ETo as two types of hypothetical crops with 

predefined characteristics for reproducibility and convenience (Allen et al., 2005, 1998, 1994). 

The two hypothetical crop types are a short crop with a height of 0.12 m (similar to a clipped, 

cool-season grass) and a tall crop with a height of 0.50 m (similar to full-cover alfalfa) (Allen et 

al., 2005). In our study, preliminary exploratory data analysis revealed a higher correlation 

between measured ET and ETo for short crops rather than ETo for tall crops, with a Pearson’s r 

of 0.862 and 0.841 at ROTH and 0.697 and 0.689 at TUCC, respectively. Reference 

evapotranspiration (ETo) was calculated with the hourly ASCE “Standardized Reference 

Evapotranspiration Equation” for short crops (Allen et al., 2005) using the “hourlyET” function 

of the R package “water” (Olmedo et al., 2016). Air temperature, wind speed, relative humidity, 

and shortwave downward radiation from the DWD were used as input. Hourly ETo was computed 

as: 

𝐸𝐸𝐿𝐿𝐸𝐸 =  
0.408 Δ(𝑅𝑅𝑛𝑛 − 𝐺𝐺) + 𝛾𝛾 𝐶𝐶𝑛𝑛

𝐿𝐿 + 273 𝑢𝑢2(𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑎𝑎)

Δ +  𝛾𝛾(1 + 𝐶𝐶𝑑𝑑  𝑢𝑢2)
(1) 

where Rn is the calculated net radiation at the crop surface (MJ m-2 h-1); G is the soil flux density 

at the soil surface (MJ m-2 h-1); T is mean hourly air temperature (°C); u2 is mean hourly wind 

speed (m s-1); es is saturation vapor pressure (kPa); ea is actual vapor pressure (kPa); Δ is the slope 
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of the saturation vapor pressure-temperature curve (kPa °C-1); γ is the psychometric constant (kPa 

°C-1); Cn is a numerator constant that changes with the crop type (K mm s3 Mg-1 h-1); Cd is a 

denominator constant that changes with the crop type (s m-1) (Allen et al., 2005). 

 Saturated vapor pressure in kPa (es) is computed as: 

 

𝑒𝑒𝑠𝑠 =  𝑒𝑒𝑜𝑜(𝐿𝐿) = 0.6108 𝑒𝑒𝑒𝑒𝑒𝑒 �
17.27 𝐿𝐿
𝐿𝐿 + 237.3

�  (1) 

 

where eo(T) is the saturation vapor pressure function and T is mean hourly air temperature (°C). 

 Actual vapor pressure in kPa (ea) is calculated as:  

 

𝑒𝑒𝑎𝑎 =  
𝑅𝑅𝑅𝑅
100

 𝑒𝑒𝑜𝑜(𝐿𝐿) (2) 

 

where RH is mean hourly relative humidity (%).  

 Net radiation in MJ m-2 h-1 (Rn) is calculated as: 

 

𝑅𝑅𝑛𝑛 =  𝑅𝑅𝑛𝑛𝑠𝑠 −  𝑅𝑅𝑛𝑛𝑛𝑛 (3) 

 

where Rns is net shortwave radiation (MJ m-2 h-1) and Rnl is net outgoing longwave radiation (MJ 

m-2 h-1). 

 Rns is calculated as: 

 

𝑅𝑅𝑛𝑛𝑠𝑠 =  𝑅𝑅𝑠𝑠 − 𝛼𝛼 𝑅𝑅𝑠𝑠 = (1 − 𝛼𝛼)𝑅𝑅𝑠𝑠 (4) 

 

where α is albedo or the canopy reflection coefficient and Rs is the incoming solar radiation (MJ 

m-2 h-1). A constant value of 0.23 is used for α according to Allen et al. (2005). 

 Rnl is calculated as: 

 

𝑅𝑅𝑛𝑛𝑛𝑛 = 𝜎𝜎 𝑓𝑓𝑐𝑐𝑑𝑑�0.34− 0.14 �𝑒𝑒𝑎𝑎� 𝐿𝐿𝐾𝐾 ℎ𝑟𝑟
4 (5) 
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where σ is the Stefan-Boltzmann constant (2.042 x 10-10 MJ K-4 m-2 h-1); fcd is the cloudiness 

function (dimensionless); TK hr is the mean absolute temperature during the hourly period (K).  

 Soil heat flux density (G) is calculated as: 

 

𝐺𝐺ℎ𝑟𝑟 𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.1 𝑅𝑅𝑛𝑛 (6) 

𝐺𝐺ℎ𝑟𝑟 𝑛𝑛𝑑𝑑𝑛𝑛ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.5 𝑅𝑅𝑛𝑛 (7) 

 

where G and Rn are both in units of MJ m-2 h-1. Nighttime is defined as when Rn is negative. 

 For further details on the equations and parametrization of ETo, please refer to Allen et al. 

(2005). 

 

Convolutional neural networks (CNN) hyperparameter tuning 

 

 To avert convergence problems, feature-wise normalization was applied for each column in 

the input data matrix, subtracting the mean of the feature and dividing by the standard deviation 

(Chollet and Allaire, 2018). The mean and standard deviation used for centering and scaling were 

always computed using the training dataset. 

 Hyperparameter tuning for 1D convolutional neural networks (CNNs) was performed using 

the R package “tfruns” (Allaire, 2018), with tested values based upon the recommendations of 

Chollet and Allaire (2018). The following values were tested for the number of filters, kernel size, 

batch size, and pool size, respectively: (32, 48, 64), (3, 5, 7, 9), (16, 32, 128), and (2, 3). Each 

hyperparameter was kept constant across different layers (e.g., all convolutional layers have 32 

filters in one scenario). The validation loss (mean squared error (MSE)) was utilized to select the 

optimal hyperparameters using a random 20% subset of the training data. If MSE did not differ 

between different hyperparameter combinations, mean absolute error (MAE) was used to select 

between the hyperparameter combinations with the lowest MSE. Optimal hyperparameters 

determined by this procedure are shown in Table B.1.  

Table B.1: Optimal hyperparameters for 1D convolutional neural networks (CNNs) 

revealed during parameter tuning. 
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Tower 
(train) 

Predictors Filters Kernel size Batch size Pool size 

Train 
2018/2020 

Train 
2019 

Train 
2018/2020 

Train 
2019 

Train 
2018/2020 

Train 
2019 

Train 
2018/2020 

Train 
2019 

ROTH ETo 64 32 7 5 128 128 3 3 

 ETo and 
GIS 

64 48 5 9 128 16 2 2 

 Met 48 48 7 9 16 16 2 3 

 Met and GIS 64 64 7 7 32 32 3 3 

TUCC ETo 64 48 5 3 16 32 2 3 

 ETo and 
GIS 

48 48 9 7 16 16 3 2 

 Met 64 48 7 9 32 32 2 3 

 Met and GIS 64 48 9 9 32 16 3 3 

 

Random forest (RF) hyperparameter tuning  

 

 As with CNNs, the predictors were centered and scaled prior to modeling with RF. The 

number of predictors randomly selected at each split (mtry) was tuned for each value between 

two and the number of predictors, as recommended by Kuhn and Johnson (2013). The root mean 

square error (RMSE) was used to determine the optimal hyperparameters during ten-fold cross-

validation on the training data. Optimal mtry values determined by tuning are given in Table B.2. 

Random forest (RF) models with a single predictor (ETo) were not tuned, with mtry kept constant 

at a default value of 2. The number of trees (ntree) was set to the default “caret” R package value 

of 500 (Kuhn, 2008), as tuning ntree is demonstrated to be unnecessary and the most substantial 

performance gain is reached with the first 100 trees (Probst and Boulesteix, 2018).  

Table B.2: Optimal hyperparameters for RF revealed during parameter tuning. 

Tower 
(train) 

Predictors mtry 

Train 2018/ 
2020 

Train 2019 

ROTH ETo and GIS 2 2 

 Met 13 4 

 Met and GIS 11 5 

TUCC ETo and GIS 2 2 

 Met 3 2 

 Met and GIS 4 2 

 

Harmonized Landsat and Sentinel-2 (HLS) data preprocessing  
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 The Harmonized Landsat and Sentinel-2 (HLS) product provides a harmonized “Virtual 

Constellation” (VC) of the Landsat 8 Operational Land Imager (OLI) and Sentinel-2 Multi-

Spectral Instrument (MSI) sensors by standardizing the products to a common pixel resolution, 

map projection, atmospheric correction, cloud mask, and nadir view geometry (Claverie et al., 

2018). 

 Cloud, cirrus, and adjacent cloud pixels were masked out using the Quality Assessment (QA) 

layer (Claverie et al., 2018; Masek et al., 2018). Next, the Normalized Difference Vegetation 

Index (NDVI), which represents the reflection properties of vegetated surfaces in the visible red 

(RED) and near-infrared (NIR) range (Tucker, 1979), was computed:  

 

𝑁𝑁𝐷𝐷𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑅𝑅 − 𝑅𝑅𝐸𝐸𝐷𝐷
𝑁𝑁𝑁𝑁𝑅𝑅 + 𝑅𝑅𝐸𝐸𝐷𝐷

(8) 

 

where NIR is band 5 and band 8A for Landsat 8 OLI and Sentinel-2 MSI, respectively, and RED 

is band 4 for both sensors. 

 Lastly, each pixel was linearly interpolated to daily values under the assumption that the 

day-to-day fluctuations of NDVI were small. The resulting daily rasters were subsequently used 

to extract weighted averages of NDVI every half-hour by flux footprint modeling.  

 

Flux footprint modeling  

 

 Footprint size, shape, and extent are controlled by the sensor height, wind direction, wind 

speed, atmospheric stability, surface roughness, and surface material composition (Kljun et al., 

2002). To calculate footprints, the functions required wind speed and direction, z’ (the effective 

measurement height), the standard deviation of the cross-stream wind component (sigmaV), 

friction velocity (u*) measured by the IRGASON, and the Monin-Obukhov stability parameter 

(ζ) as an indicator for atmospheric stability (Kormann and Meixner, 2001; Xenakis, 2016). The 

fetch size was set to 1500 meters and the resolution for the output grid was set to ten meters. All 

input meteorological data for footprint modeling were derived from the flux towers. SigmaV was 

calculated as the square root of northward wind. 

 The parameter z’ was calculated as: 

 

𝑧𝑧′ = 𝑧𝑧𝑧𝑧 − 𝑧𝑧𝑧𝑧 (9) 
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where zm is the measurement height and zd is the zero-plane displacement length (Kotthaus and 

Grimmond, 2014). 

 The stability parameter ζ was calculated according to the equation from Oke et al. (2017): 

 

ζ =
z′

𝐿𝐿𝑜𝑜
 (10) 

 

where Lo is the Obukhov length. The computation of Lo was executed within EddyPro. 

 The aerodynamic parameter zd (representing the height above ground where the wind speed 

is zero as a result of obstacles to the flow) used to calculate z’ was estimated in an iterative process 

for each 30-minute interval (Grimmond and Oke, 1999). Morphometric parameters for each site 

were computed using the Urban Multi-scale Environmental Predictor (UMEP) QGIS plug-in 

(Lindberg et al., 2018) with a 1000 m radius and a 1° wind direction search interval, producing 

databases of morphometric parameters for 360 wind directions. Three different rasters were used 

as input for UMEP: vegetation height (VH), building height (BH), and a raster combining VH 

and BH (representing the maximum height of either VH or BH at any given pixel). Zd was 

calculated following the method of Kanda et al. (2013). Using zd only calculated from BH with 

the method of Kanda et al. (2013) would underestimate zd, as trees in the surrounding area 

increase the aerodynamic roughness. Therefore, the method from Kent et al. (2017) was used to 

correct zd to incorporate vegetation as a roughness element. A different aerodynamic porosity 

(P3D) value, which is used to estimate the roughness of vegetation, was used for each season 

(winter, summer, and intermediate) due to changes in tree foliage (Kent et al., 2017). For further 

details refer to Kent et al. (2017) and Quanz (2018). The seasonally corrected one-degree zd 

values were then averaged over a running mean including the zd values from wind direction i±5° 

moving forward by one degree. According to the previously described method for zd calculation, 

zd was calculated for a 50x50 m grid within UMEP, generating zd grids for summer, winter, and 

the intermediate seasons. 

 These ‘first-guess’ estimates of zd values were assigned to the half-hourly EC data based 

upon wind direction and season and used to calculate initial ‘first-guess’ footprints. The output of 

footprint modeling are grids with a ten-meter resolution for the 1500 m surrounding area, where 

each grid cell holds the footprint probability. Footprint grid cells contributing to 90% of the signal 

were used to extract a weighted average of the zd grids depending on the season (Quanz, 2018).  

 The zd extracted from grids using ‘first-guess’ footprints differs from running mean zd and 

leads to a more precise description of the footprint area according to Kotthaus and Grimmond 

(2014). This grid-derived zd was used to run Kormann and Meixner (2001) models again, 
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producing ‘final guess’ footprint probability grids. The ‘final guess’ footprint grids were used to 

extract weighted averages of the surface cover (from a raster stack of six remote sensing and GIS 

predictors).  

 

Evapotranspiration (ET) performance metrics  

 

Table B.3: Testing performance metrics for training in 2018/ 2020 and testing in 2019. The 

performance metrics are root mean square error (RMSE), mean absolute error (MAE), 

percent bias (pbias), coefficient of determination (R2), and normalized root mean square 

error (NRMSE). The best performance metrics for each tower training and testing 

combination (e.g., training in ROTH and testing in TUCC) are shown in bold. 

Tower 
(train) 

Tower 
(test) 

Predictors RMSE (mm/ 
hour) 

MAE (mm/ hour) pbias (%) R2 (-) NRMSE (%) 

   CNN RF CNN RF CNN RF CNN RF CNN RF 

ROTH ROTH ETo 0.0306 0.0353 0.0190 0.0221 -12.00 -5.90 0.754 0.663 10.70 12.30 

  ETo and 
GIS 

0.0264 0.0267 0.0171 0.0170 -2.10 -3.70 0.809 0.808 9.20 9.30 

  Met 0.0281 0.0255 0.0186 0.0162 5.20 -1.80 0.784 0.823 9.80 8.90 

  Met and 
GIS 

0.0258 0.0241 0.0166 0.0153 0.00 -1.40 0.816 0.842 9.00 8.40 

TUCC TUCC ETo 0.0181 0.0204 0.0115 0.0138 -14.50 -2.20 0.526 0.380 11.50 12.90 

  ETo and 
GIS 

0.0173 0.0173 0.0111 0.0114 -9.30 -1.10 0.551 0.535 11.00 11.00 

  Met 0.0181 0.0170 0.0125 0.0117 7.10 4.50 0.510 0.555 11.40 10.80 

  Met and 
GIS 

0.0175 0.0167 0.0114 0.0113 -4.80 2.20 0.531 0.570 11.10 10.60 

ROTH TUCC ETo 0.0405 0.0446 0.0241 0.0265 62.70 75.40 0.524 0.490 25.60 28.20 

  ETo and 
GIS 

0.0758 0.0217 0.0464 0.0147 -168.40 -12.30 0.051 0.385 48.00 13.80 

  Met 0.0471 0.0444 0.0295 0.0271 102.00 86.10 0.543 0.558 29.80 28.10 

  Met and 
GIS 

0.0325 0.0300 0.0230 0.0194 -50.20 50.40 0.250 0.548 20.50 19.00 

TUCC ROTH ETo 0.0553 0.0545 0.0320 0.0320 -54.90 -49.10 0.749 0.510 19.30 19.10 

  ETo and 
GIS 

0.0614 0.0539 0.0365 0.0320 -63.20 -53.50 0.583 0.726 21.50 18.80 

  Met 0.0517 0.0506 0.0317 0.0296 -42.90 -44.80 0.580 0.760 18.10 17.70 

  Met and 
GIS 

0.0592 0.0510 0.0355 0.0297 -61.50 -47.90 0.664 0.782 20.70 17.80 

 

Table B.4: Testing performance metrics for training in 2019 and testing in 2018/ 2020. The 

performance metrics are root mean square error (RMSE), mean absolute error (MAE), 

percent bias (pbias), coefficient of determination (R2), and normalized root mean square 
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error (NRMSE). The best performance metrics for each tower training and testing 

combination (e.g., training in ROTH and testing in TUCC) are shown in bold. 

Tower 
(train) 

Tower 
(test) 

Predictors RMSE (mm/ 
hour) 

MAE (mm/ hour) pbias (%) R2 (-) NRMSE (%) 

   CNN RF CNN RF CNN RF CNN RF CNN RF 

ROTH ROTH ETo 0.0303 0.0358 0.0201 0.0231 -0.40 7.80 0.735 0.656 10.40 12.30 

  ETo and 
GIS 

0.0269 0.0259 0.0184 0.0169 4.20 3.30 0.794 0.803 9.30 8.90 

  Met 0.0266 0.0256 0.0169 0.0166 4.10 6.50 0.802 0.812 9.20 8.80 

  Met and 
GIS 

0.0241 0.0237 0.0154 0.0154 -6.30 5.00 0.832 0.837 8.30 8.20 

TUCC TUCC ETo 0.0191 0.0211 0.0128 0.0143 6.50 3.80 0.447 0.340 11.90 13.20 

  ETo and 
GIS 

0.0175 0.0176 0.0117 0.0119 0.00 3.90 0.499 0.494 10.90 11.00 

  Met 0.0175 0.0175 0.0113 0.0121 -8.30 7.30 0.506 0.502 10.90 10.90 

  Met and 
GIS 

0.0181 0.0172 0.0123 0.0117 5.50 6.70 0.474 0.518 11.20 10.70 

ROTH TUCC ETo 0.0394 0.0504 0.0254 0.0305 79.10 92.50 0.447 0.415 24.50 31.40 

  ETo and 
GIS 

0.0511 0.0235 0.0332 0.0158 -105.80 -2.60 0.082 0.353 31.80 14.60 

  Met 0.0475 0.0447 0.0286 0.0276 79.00 88.20 0.471 0.484 29.60 27.80 

  Met and 
GIS 

0.0947 0.0335 0.0556 0.0210 -187.80 53.80 0.039 0.481 58.90 20.80 

TUCC ROTH ETo 0.0465 0.0503 0.0274 0.0301 -42.30 -44.20 0.739 0.539 16.00 17.30 

  ETo and 
GIS 

0.0552 0.0538 0.0333 0.0323 -60.20 -56.00 0.635 0.680 19.00 18.50 

  Met 0.0515 0.0475 0.0308 0.0281 -51.30 -43.20 0.749 0.790 17.80 16.40 

  Met and 
GIS 

0.0573 0.0500 0.0348 0.0298 -60.80 -50.40 0.528 0.778 19.70 17.20 
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Figure B.1: Scatterplots showing the observed and predicted ET for 1D convolutional 

neural networks (CNN) models where training was performed in 2018/ 2020 and testing was 

performed for the year 2019. Training and testing were conducted on the same tower. The 

following scenarios are depicted: (a) “ETo” predictor scenario in ROTH, (b) “ETo” 

predictor scenario in TUCC, (c) “ETo and GIS” (ETo and GIS predictors) predictor 

scenario in ROTH, (d) “ETo and GIS” predictor scenario in TUCC, (e) “Met” 

(meteorological predictors) predictor scenario in ROTH, (f) “Met” predictor scenario in 

TUCC, (g) “Met and GIS” (meteorological and GIS predictors) predictor scenario in 

ROTH, and (h) “Met and GIS” predictor scenario in TUCC. The intensity of the blue color 

represents the data point density. The red line indicates the best fit (linear model), and the 

solid black line indicates the 1:1 line. 
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Figure B.2: Scatterplots showing the observed and predicted ET for random forest (RF) 

models where training was performed in 2018/ 2020 and testing was performed for the year 

2019. Training and testing were conducted on the same tower. The following scenarios are 

depicted: (a) “ETo” predictor scenario in ROTH, (b) “ETo” predictor scenario in TUCC, 

(c) “ETo and GIS” (ETo and GIS predictors) predictor scenario in ROTH, (d) “ETo and 

GIS” predictor scenario in TUCC, (e) “Met” (meteorological predictors) predictor scenario 

in ROTH, (f) “Met” predictor scenario in TUCC, (g) “Met and GIS” (meteorological and 

GIS predictors) predictor scenario in ROTH, and (h) “Met and GIS” predictor scenario in 

TUCC. The intensity of the blue color represents the data point density. The red line 

indicates the best fit (linear model), and the solid black line indicates the 1:1 line. 

 

 

Figure B.3: Heat map showing Pearson’s correlation coefficients between 

evapotranspiration (ET) and predictors. The entire datasets used for modeling (from 1 June 

2018 to 1 June 2020 with quality control filtering applied) were used to compute the 

correlation coefficients. Two of the correlations with ET were statistically insignificant (p-

values > 0.05): wind speed at the ROTH tower and impervious surface fraction (ISF) at the 

TUCC tower. 

 

Precipitation and gap-filled ET 

 

 There were significant differences between gap-filled ET during precipitation versus during 

no precipitation in all cases (Figure B.4) (Wilcoxon rank sum tests, p < 0.05). Gap-filled ET was 

lower on average during precipitation events in all cases (Table 7; Figure B.4). 
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Figure B.4: Comparison of gap-filled evapotranspiration (ET) for the year 2019 when 

precipitation has fallen or not. Wilcoxon rank sum tests were applied to each gap-filled 

dataset (with a single tower and model) to determine if there were significant differences in 

gap-filled ET in the precipitation versus the no-precipitation group.  

 

Table B.5: Mean and standard deviation (SD) of gap-filled evapotranspiration (ET) for the 

year 2019 when precipitation has fallen (Y) or not (N).  

Tower Model Precipitation 
(Y/N) 

Mean ET SD ET  

ROTH CNN N 0.0447 0.0544 

Y 0.0308 0.0291 

RF N 0.0443 0.0537 

Y 0.0316 0.0291 

TUCC CNN N 0.0257 0.0212 

Y 0.0232 0.0133 

RF N 0.0261 0.0210 

Y 0.0230 0.0126 

 

Monthly precipitation 
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Figure B.5: Monthly precipitation (P) sums in 2019 from two German Meteorological 

Service (DWD) weather stations in Berlin. 

 

Temporal modeling accuracy 

 

 Modeling accuracy varies considerably seasonally and between the two towers, whereas it 

is similar between the two AI algorithms. The monthly averages of the performance metrics 

RMSE, R2, NRMSE, and pbias with the “Met and GIS” predictor scenario based on the testing 

set (when training and testing on the same tower) are shown in Figure B.6. In order to assess the 

variation in accuracy between the two towers, only timestamps which were available for both 

towers in the testing datasets were used, leaving 5731 timestamps for the 2019 testing dataset and 

5948 timestamps for the 2018/ 2020 testing dataset. For both towers, RMSE is highest in the 

summer months and lowest in the winter months. As an example, modeling with RF at ROTH, 

the highest RMSE is in August (0.0309 mm/hour), whereas the lowest RMSE is in December 

(0.0086 mm/ hour). R2 is highest in summertime and lowest in wintertime for both towers. With 

RF at ROTH, June has the highest R2 (0.870), whereas December has the lowest R2 (0.505). This 

finding is in line with Ward et al. (2016), who also reported a higher R2 (~0.8 for the suburban 

site) in summertime than in wintertime. Both higher RMSE and higher R2 values in the warmer 

months can largely be explained by the higher variability of ET in summertime. 

 When normalizing RMSE using the range (NRMSE), the less vegetated site (TUCC) 

presents proportionally higher error than the more vegetated site (ROTH). With NRMSE, the 

seasonal component of error is not as pronounced as with RMSE and R2. At ROTH, the highest 

NRMSE occurs in August, November, and September. At TUCC, NRMSE still implies a higher 

modeling error in summertime: the highest NRMSE occurs in July, May, and June. With RF, 

NRMSE is lowest in the transitional and winter months (March, February, and May at ROTH; 

January, March, and February at TUCC). Measured ET at TUCC is likely more affected by water 

emissions from traffic and other anthropogenic sources and interception loss from impervious 

surfaces due to its location on a roof in the city center, which reduces modeling accuracy (Karsisto 

et al., 2016; Miralles et al., 2020). Although summertime EC measurements are usually subject 

to fewer measurement issues (Ward et al., 2016), our study indicates higher error in summertime 

based upon NRMSE and RMSE. However, pbias is closer to zero in summer months than in 

transitional and winter months. 

 RF models overestimate ET (positive pbias) in the cooler months (November, January-

April), with overestimation particularly pronounced in the transitional months (April for both 

towers and November especially for TUCC). In summertime, pbias fluctuates around zero. 
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Models tend to overestimate ET more at TUCC (higher pbias). CNN models are more prone to 

underestimation than RF models, which can be partially attributed to prediction of negative ET 

values.  

 

Figure B.6: Monthly averages of (a) root mean square error (RMSE), (b) coefficient of 

determination (R2), (c) normalized root mean square error (NRMSE), and (d) percent bias 

(pbias) based on the testing set (averaged across the two training and testing splits, with 

training in 2018/ 2020 and testing in 2019 and vice versa). The predictor scenario depicted 

is “Met and GIS” (meteorological and GIS predictors with 22 predictors in total). Training 

and testing were conducted on the same tower. Only timestamps which were available for 

both towers in the testing datasets were used. 

 Model accuracy varies not only on an annual, but also on a diurnal, basis (Figures B.7-B.10). 

In the transitional seasons (spring and autumn) at ROTH, NRMSE is higher during the night, 

whereas NRMSE does not show clear diurnal variation in summer and winter. Higher modeling 

error at night may be due to inaccuracies in the nighttime storage heat flux (Ward et al., 2016, 

2013). While pbias does not display a diurnal pattern in summertime, it varies considerably 

diurnally for all other seasons. RF models generally overestimate ET more at nighttime (positive 

pbias) in spring, autumn, and winter. In contrast, at ROTH, CNN models underestimate ET at 

nighttime in spring and winter (negative pbias). CNN models assign a higher importance to 

meteorological predictors, which imply a lower ET due to reduced solar radiation and 

temperature, whereas RF models assign a high importance to GIS predictors (Figure 3.4), which 

may explain the discrepancy in nighttime pbias between the AI algorithms. 
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Figure B.7: Hourly averages of root mean square error (RMSE) for each season based on 

the testing set (averaged across the two training and testing splits, with training in 2018/ 

2020 and testing in 2019 and vice versa). The predictor scenario depicted is “Met and GIS” 

(meteorological and GIS predictors with 22 predictors in total). Training and testing were 

conducted on the same tower. Only timestamps which were available for both towers in the 

testing datasets were used. 

 

 

Figure B.8: Hourly averages of the coefficient of determination (R2) for each season based 

on the testing set (averaged across the two training and testing splits, with training in 2018/ 

2020 and testing in 2019 and vice versa). The predictor scenario depicted is “Met and GIS” 
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(meteorological and GIS predictors with 22 predictors in total). Training and testing were 

conducted on the same tower. Only timestamps which were available for both towers in the 

testing datasets were used. 

 

 

Figure B.9: Hourly averages of normalized root mean square error (NRMSE) for each 

season based on the testing set (averaged across the two training and testing splits, with 

training in 2018/ 2020 and testing in 2019 and vice versa). The predictor scenario depicted 

is “Met and GIS” (meteorological and GIS predictors with 22 predictors in total). Training 

and testing were conducted on the same tower. Only timestamps which were available for 

both towers in the testing datasets were used. 
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Figure B.10: Hourly averages of percent bias (pbias) for each season based on the testing 

set (averaged across the two training and testing splits, with training in 2018/ 2020 and 

testing in 2019 and vice versa). The predictor scenario depicted is “Met and GIS” 

(meteorological and GIS predictors with 22 predictors in total). Training and testing were 

conducted on the same tower. Only timestamps which were available for both towers in the 

testing datasets were used. 
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Appendix C Mapping urban 

ET 

Supplementary material to Chapter 4: Mapping hourly urban evapotranspiration using Sentinel-

2, open geodata and machine learning 

 

 

Figure C.1: Daily meteorological and vegetation greenness conditions during the study 

period (2019 - 2020): (a) averaged air temperature (Tair), (b) averaged shortwave 

downward radiation (SW), (c) precipitation (P) and (d) Normalized Difference Vegetation 

Index (NDVI). The NDVI time series was extracted from a Sentinel-2 L2A product 

(Gorelick et al., 2017) for Berlin and the respective flux tower locations at 

Rothenburgstrasse (ROTH) and TU Berlin Campus Charlottenburg (TUCC) using a 500-

m buffer. 
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Figure C.2: Scatterplots showing the observed and predicted ET when testing at two flux 

towers (ROTH and TUCC) and two years (2019 and 2020). The intensity of the blue color 

represents the data point density. The red line indicates the best fit (linear model) and the 

solid black line indicates the 1:1 line. 
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Figure C.3: Mean monthly ET (mm/ month) for Local Climate Zones over Berlin, Germany 

in 2019. 
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