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Abstract

This thesis investigates the extrapolation of bending wave fields in homogenous
plates. Using a number of structural response measurements, the continuous spa-
tial field and the spectra of the response are reconstructed without knowledge of
the mechanical boundaries or the excitation forces. It is clarified whether the de-
liberate inclusion of the structural near-fields close to sources and boundaries can
be beneficial in the process.

Two methods are therefore presented. The first one represents an application
of Fourier transform-based Near-Field Acoustic Holography in a structure-borne
sound setting. The use of a polar coordinate system allows analytical propagation
functions to be convolved and deconvolved with boundary values measured in the
structural near-field of the plate. Because this constitutes an inverse problem,
numerical stabilization in the form of wavenumber filtering and regularization is
applied. The second method utilizes the Kirchhoff-Helmholtz integral and requires
far-field conditions at the measurement positions. It constitutes the solution of a
direct problem in comparison and is not restricted to a specific coordinate system
for measurement.

The methods are evaluated through a series of simulations and experiments,
considering three distinct cases: the infinite plate, the fully free and the simply
supported plate, excited by normal point forces, respectively. In terms of the
usually neglected influence of the near-field, the latter two can be seen as worst
and best case scenarios for the wide range of possible boundary conditions in
engineering practice.

It is found that the average reconstruction error to be expected from holography
ranges from 1 dB to 3 dB, depending on the boundary condition. The method is
not very well suited to analyze very narrow frequencies in a spectrum, and the
extrapolatable plate area is inherently limited. The Kirchhoff-Helmholtz integral-
based method leads to an average reconstruction error between 2 dB and 3 dB. As
with the holographic method, the observed deviations at individual field positions
and frequencies can be significantly larger, however. The presence of near-fields
requires a distance of at least a sixth of the considered bending wavelength between
measurement positions and structural discontinuities.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Extrapolation von Biegewellenfeldern in ho-
mogenen Platten. Ohne Kenntnis der mechanischen Randbedingungen oder der
anregenden Kräfte werden sowohl das kontinuierliche räumliche Wellenfeld als auch
die Spektren der Strukturantwort anhand von Strukturantwort-Messungen rekon-
struiert. Es wird aufgezeigt, inwiefern die bewusste Einbeziehung von Körperschall-
Nahfeldern im unmittelbaren Bereich der Quellen und der Ränder der Struktur
von Vorteil sein kann.

Hierfür werden zwei Verfahren vorgestellt. Das erste Verfahren stellt eine An-
wendung des Prinzips der akustischen Nahfeldholographie im Körperschallbereich
dar. Die Wahl eines Polarkoordinatensystems ermöglicht eine Extrapolation des
Feldes durch Faltung und Entfaltung von analytischen Ausbreitungsfunktionen
mit Randbedingungen, die im strukturdynamischen Nahfeld gemessen werden. Da
dieses Vorgehen der Lösung eines inversen Problems entspricht, kommt zudem nu-
merische Stabilisierung in Form von Wellenzahlfilterung und Regularisierung zur
Anwendung. Das zweite Verfahren verwendet die Theorie des Kirchhoff-Helmholtz
Integrals und setzt Fernfeldbedingungen an den Messpositionen voraus. Dies stellt
eine direkte Lösung des Ausbreitungsproblems dar und erfordert im Gegensatz zur
Nahfeld-Methode kein spezifisches Koordinatensystem für die Messungen.

Beide Verfahren werden in einer Reihe an Simulationen und Experimenten an-
hand von drei distinktiven Fallbeispielen evaluiert: eine unendlich ausgedehnte
Platte sowie eine vollständig freie und eine einfach aufgestützte Platte, jeweils an-
geregt durch Punktkräfte normal zur Plattenoberfläche. Im Hinblick auf die oft-
mals vernachlässigten Nahfelder stellen die beiden letzteren Beispiele Extremfälle
für die große Bandbreite an unterschiedlichen Randbedingungen in der Realität
dar.

Die Untersuchungen zeigen, dass der zu erwartende mittlere Rekonstruktions-
fehler des holographischen Verfahrens zwischen 1 dB und 3 dB liegt, abhängig von
der Randbedingung. Das Verfahren ist nicht zur Beurteilung von sehr schmalban-
digen Spektren geeignet und der extrapolierbare Bereich der Platte ist geometrisch
eingeschränkt. Das Verfahren auf Basis des Kirchhoff-Helmholtz Integrals führt im
Mittel zu Rekonstruktionsfehlern zwischen 2 dB und 3 dB. Wie bei der Nahfeld-
Methode können für einzelne Feldpunkte und Frequenzen auch deutlich größere
Abweichungen beobachtet werden. Im Fall von signifikant auftretenden Nahfel-
dern sollte dabei ein Messabstand von mindestens einem Sechstel der betrachteten
Biegewellenlänge zu den Diskontinuitäten in der Struktur eingehalten werden.
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1
Introduction

1.1 Motivation

In the field of acoustics, several analyses require the reconstruction of a structural
wave field. Special attention is thereby given to plate-like structures, since they
occur very frequently in engineering practice. Both sound radiation and structural
health are strongly related to the propagation of bending waves in plates or shells,
and a thorough analysis of any related problem requires, or at least profits from,
the spatial mapping of the resulting vibrations.

If provided with details about the mechanical excitation and the boundary con-
ditions, engineers nowadays have a wide range of numerical options in order to
calculate the resulting bending wave field directly. Unfortunately, however, the
strength or exact location of any applied excitation is often unknown in practice.
Depending on the intricacy of the construction, the true boundary conditions may
be estimated at best. For this reason, researchers have constantly been looking
for ways to reconstruct bending-related wave fields from experimental data rather
than relying solely on numerical predictions.

Independent of the type of field to be reconstructed, a significant amount of input
data is needed to reconstruct a continuous field. While many different approaches
exist, they either require the measurement of forces or the measurement of the
response over an area that covers the whole plate. Measurement of forces or
moments can prove difficult if the structure cannot be set up under laboratory
conditions. Measurement of the whole plate surface can become a chore if an
expensive scanning system is not available. It might be downright impossible if
some areas of the plate are not accessible for measurement in situ.

As a consequence, the question arises whether it is possible to reconstruct the
continuous field from input data that does not have to be collected evenly across
the whole structure. Herein lies the general research context and motivation for
this thesis: the problem of structural wave field extrapolation.
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1.3 Methodology

When it comes to reconstructing or actively controlling structure-borne sound
fields, existing methods usually require the negligence of structural near-fields.
This is often justified since the corresponding terms complicate the mathematical
model but do not affect a greater part of the field. The existence of structural
near-fields is basically a nuisance. As a practical consequence, measurement in the
near-field region is prohibited, however, which poses a problem if the wavelength
is large or if measurements have to be made close to a structural discontinuity. Yet
in the field of fluid-borne sound, the arguably most established method for wave
field extrapolation, Near-Field Acoustic Holography,1 draws its main adavantages
from including the (hydrodynamic) near-field. This interesting circumstance leads
to the questions that serve as the specific motivation for this thesis: Is it possi-
ble to perform a procedure analogous to Near-Field Acoustic Holography in the
structure-borne sound domain? Would this be preferable over a similar far-field-
based method?

1.2 Aims of this thesis

This thesis sets out to investigate a method for wave field extrapolation in a pure
structure-borne sound scenario, that is, the reconstruction of a continuous bending
wave field based on a limited number of structural response measurements. It is
postulated that the bending wave field of homogenous plates can be propagated
forward and backward through a procedure that follows the basic idea behind
Fourier transform-based Near-field Acoustic Holography. It is further postulated
that the bending wave field can be extrapolated in a mathematically different but
practically similar fashion, based on the utilization of the Kirchhoff-Helmholtz
integral in the far-field of the plate. It is to be shown that with both methods
neither mechanical boundary conditions nor the excitations need to be known
beforehand, assuming that a true bending wave field is observed under stationary
conditions.

This thesis seeks to evaluate and compare the accuracy and feasability of the
proposed methods in both theory and practice. It aims to clarify to which ex-
tent the inclusion of near-field influences improves the results. It further aims to
determine a practical criterion for the satisfaction of the near-field (or far-field)
requirement and to suggest suitable measurement parameters.

1.3 Methodology

In order to gain perspective on the investigations presented in this thesis, a lit-
erature survey is conducted in Chapter 2. The main purpose of the survey is to
discuss those branches of acoustical research that share “DNA” with the present

1Early literature refers to the method as “Nearfield Acoustic Holography” or “Nearfield Acous-
tical Holography”.
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1 Introduction

work. There are many approaches to vibro-acoustic field reconstruction and there-
fore the number of related research aspects is very large. It is intended to highlight
mainly the aspects that will appear in this thesis in some form as well. Chapter 2
is therefore not a thorough overview of acoustic wave field reconstruction and
extrapolation techniques in general. It should act as a preview on the subjects
that together form the body of this thesis and help to identify future research
possibilities in the conclusions.

The theoretical groundwork for near-field-based extrapolation through Fourier
transforms is laid in Chapter 3. First, the principles of fluid-borne NAH are
discussed in some detail because their structure-borne counterpart is analogous in
many ways. The sought-after formulae is then derived, and the corresponding pro-
cedure for infinite and finite plate structures is outlined and illustrated. Because
the near-field-based method poses an ”inverse” problem by nature, the resulting
numerical challenges are discussed toward the end of Chapter 3. In Chapter 4,
the formulae for far-field-based extrapolation by means of the Kirchhoff-Helmholtz
integral is derived. The corresponding procedure for infinite and finite plate struc-
tures is outlined and illustrated, with a short discussion of the application of the
Boundary Element Method in the infinite case.

As a first step in evaluating the methods, different numerical case studies are
performed in Chapter 5. Primarily, an infinite plate, a free plate and a simply
supported plate are considered. The infinite case thereby represents the very
basic, academic scenario. The free plate is a rather academic scenario as well
and represents an extreme case due to its significant near-field influence and its
high modal density. The simply supported plate, which has no near-fields at the
edges, can be seen as the other extreme. The choices therefore represent best
and worst case scenarios. Investigating both extremes is assumed to give a good
indication on how the two methods will handle different boundary conditions in
general. Both the continuous reconstruction of the spatial velocity response field
as well as the reconstruction of response spectra are simulated. A study of different
measurement parameters is conducted for the case of the infinite plate. For the
sake of completeness, a stiffened infinite plate and a plate with more arbitrary
geometry and boundaries are simulated as well.

As a second step in the evaluation, the simulated cases will be studied by exper-
iment in Chapter 6. An infinite perspex plate, a free aluminum plate and a simply
supported aluminum plate are used to test the methods under laboratory condi-
tions. Again, the continuous reconstruction of the spatial velocity response field
as well as the reconstruction of response spectra are performed. As a conclusion
of this analysis, the experimental results are compared to equivalent simulated
results, which brings the identified reconstruction error into perspective.

Chapter 7 closes the discussion presented in this thesis with a final assessment of
the presented methods, weighing the advantages and disadvantages. Suggestions
for future research possibilities are provided.
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2
Related Research

As noted and exemplified by Bobrovnitskii [1], the problem of reconstructing con-
tinuous sound or vibration fields from a limited amount of measurement data is
frequently encountered in acoustics and structural dynamics. It has also been ex-
tensively investigated in other fields, such as seismology, medical diagnostics or
non-destructive testing, resulting in a truly vast body of literature on the subject
in general. The following literature survey considers research that aims or allows
to reconstruct structure-borne sound fields in plates. This is a wide field itself,
with very different approaches. Many of these approaches deal with certain physi-
cal or numerical problems that are partial aspects of the general problem discussed
in this thesis. The survey focusses mostly on a few key references whose topics of
discusion can be found within this thesis in some form. It is acknowledged that
an exhaustive overview on the subject is thereby not provided.

The existing approaches might roughly be categorized according to the type of
field that is to be reconstructed or according to the type of measurement data that
is utilized to do so. Among these approaches, one might furthermore distinguish a
class that attempts the reconstruction of a continuous field from a limited number
of decidedly localized measurements. This is generally referred to as wave field
extrapolation and is attempted in this thesis in a specific manner. By categorizing
according to the type of reconstructed field, three focal points can be identified in
the literature: applied load distribution, structural intensity field and structural
displacement field.

The first may be denoted as force reconstruction (FR)-techniques. They are
primarily aimed at identifying magnitude and phase of the forces exciting the
plate, which in turn may be used to calculate the vibratory response at any part
of the structure as a benefit. This requires that the structure is well-known and
that an analytical or numerical model can be established, however. As seen in a
literature review by Dobson and Rider [2], conventionally, point forces can be de-
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termined using the measurement of transfer functions if the location of the forces
is known. Under practical conditions, direct measurement of the required transfer
functions may be cumbersome, which is why procedures based on the measurement
of response data have been investigated. In this regard, Zhang and Mann [3, 4]
investigated the reconstruction of a spatial force distribution based on the struc-
tural intensity distribution. The structural intensity was thereby determined from
discrete measurement of the normal velocity of the entire plate. It was shown that
the force distribution can be calculated directly in the wavenumber domain, using
two-dimensional Fourier transforms in conjunction with wavenumber filtering and
spatial windowing.

In order to be able to reconstruct a local part of the force field from localized
measurements only, Pézerat and Guyader [5] proposed to use the Force Analysis
Technique (F.A.T.) [6]. The approach consists of a discretization of the equation of
motion by a finite diffference scheme and the use of either singular value decompo-
sition or wavenumber filtering in order to render the inverse procedure numerically
stable. Other researchers have pursued approaches in which the distributed load
is described by a superposition of modal basis functions whose contribution can
be determined by measurement of the structural response. Liu and Shepard [7]
therefore used modified basis functions that are required to be defined merely over
the finite region of the force. Arguing that modal expansion approaches only allow
reconstruction in a limited frequency range, Jiang and Hu [8] proposed a proce-
dure in which only a number of appropriate modes are selected. In general, most
force reconstruction techniques rely on severe numerical stabilization due to the
ill-posedness of the problem and can therefore be inconvenient in practice [9].

The second focal point is the reconstruction of structural intensity fields. Be-
cause structural intensity is a vectorial quantity that describes the magnitude and
direction of power flow, it is well-suited to analyze noise and vibration problems.
Determination of the bending wave intensity requires the computation of the spa-
tial derivatives of the normal velocity field. It has been shown by Williams et
al. [10] that the spatial derivatives can be obtained using forward and inverse
Fourier transforms of the normal velocity field. Later, Pascal et al. [11] suggested
to use this kind of data processing in conjunction with laser vibrometer measure-
ments, which was subsequently pursued by several authors. As with FR, spatial
data processing is required in order to reduce the influence of measurement noise
in the reconstruction process. Morikawa et al. [12] as well as Nejade and Singh [13]
investigated different wavenumber filtering techniques, for instance. Arruda and
Mas [14] proposed to improve spatial data processing by using discrete Fourier se-
ries with arbitrary fundamental period instead of conventional Fourier transforms,
which would also allow for non-equally spaced measurement grids.

While the investigated approaches differ in computational terms, their practical
basis is always the sampling of the response over the entire surface of the plate.
Halkyard and Mace [15] presented a different procedure, in which far-field condi-
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2 Related Research

tions remote from discontinuities were assumed so that a Fourier series represen-
tation of plane waves could be employed to calculate the bending wave intensity.
A circular assembly of accelerometers was thereby used to evaluate the Fourier co-
efficients, from which the required plate response and its spatial derivatives could
be determined. However, the procedure does not allow a continuous extrapolation
of the normal velocity field from a limited number of localized measurements.

The third and more recent focal point is the reconstruction of the displace-
ment field for real-time structural health monitoring, predominantly through shape
sensing techniques, based on finite element analysis. Tessler and Spangler [16,17]
used the minimization of a least-squares error function that compared analytical
and experimentally measured strains to develop an inverse Finite Element Method
(FEM). The continuous displacment field can thus be reconstructed if strain sen-
sors are distributed over the entire surface, with the sensor locations corresponding
to the (coarse) FEM-mesh. Chierichetti and Ruzzene [18] suggested an iterative
procedure in which a repeatedly updated estimation of the structural load is used
to compare the structural response of an FEM-model with the experimentally
measured response. The approach requires fewer sensor positions that do not
have to be extensively distributed. The sensor position has to be chosen carefully,
however, and the approach requires good knowledge of the structure in order to
generate a corresponding FEM-model.

Another approach to the reconstruction of structural displacement from a few
localized sensor positions is the utilization of beamforming theory. Berkhout et
al. [19] developed an algorithm for the removal of dispersion from bending wave
datasets, allowing the principles of array-based acoustic imaging to be applied to
bending wave propagation. The difference between acoustic imaging and wave
field reconstruction was clarified by Maginness [20], who stated that imaging “is
taken to mean the production of pictures having geometrical congruence to such
discontinuities as may be of interest within the medium. Field reconstruction on
the other hand is, as the term implies, merely estimation of the field parameters
over a region of interest.” Following Berkhouts research, Hoerchens [21] showed
that a line or circular array of structural response measurements can be used
to localize sources and visualize discontinuities in plates effectively. Only far-
field measurements were considered, as the benefit of including the near-field was
deemed to be negligible for imaging purposes in plate-like structures. Hoerchens
and de Vries [22] showed that the resolution of the images is improved by taking
into account boundary reflections. The above method for extrapolation relies on
the use of the Rayleigh integral predominantly, which in principle is a special case
of the Kirchhoff-Helmholtz integral. With its clear focus on imaging, it appears
that this line of research has not fully explored the reconstruction of a continuous
bending wave field itself. Yet the underlying application of Rayleigh or Kirchhoff
theorems in the structure-borne sound domain could be put to further use in that
regard. The Kirchhoff-Helmholtz integral in particular already forms the basis for
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wave field extrapolation in very different scientific fields. In fact, Doelman [23]
showed in a general manner that it can be used for wave field extrapolation in
any bounded or unbounded homogenous medium. The mathematical operation
was thereby simplified by decomposing the field into a series of eigenfunctions
that could be extrapolated seperately. Also, waves travelling back and forth were
extrapolated separately. The latter is a known approach in geophysics, where the
elastic formulation of the Kirchhoff-Helmholtz integral can be used to reconstruct
the seismic wave field through a layered medium [24, 25]. In electroacoustics,
the conventional formulation of the integral can be used to control the acoustic
environment [26] in what is now known as wave field synthesis. It is therefore
justified to assume that it can be used to extrapolate a bending wave field in a
homogenous plate as well.

While it is intuitive to calculate a structure-borne sound quantity from structural
response measurements, it might be attempted from measurements in the adja-
cent fluid as well. Williams et al. [10] demonstrated how the structural intensity
of a vibrating plate can be determined using acoustic holography. The concept of
acoustic holography, dating back to around 1966 [27], first introduced a promising
way to project wave fields, in which the inverse problem of wave field reconstruc-
tion was solved by “backtracking the pressure field in space and time towards the
source” [28]. Williams and Maynard [29] showed that the reconstruction at the
source has to include evanescent waves in order to differentiate acoustic sources
that are separated by a distance less than a wavelength. Consequently, Maynard
et al. [30] addressed the problems of conventional holography through the method
of Near-Field Acoustic Holography (NAH). The case of NAH for cylindrical geom-
etry was subsequently considered by Williams and Dardy [31]. In classic NAH,
or closely related acoustic wave extrapolation methods considered by Candel and
Chassaignon [32] or Blacodon et al. [33], the sound pressure field is initially ob-
tained very close to the source, on a surface in either plane, cylindrical or spherical
coordinates, and is then decomposed into its plane wave components by means of a
spatial Fourier transform. By solving the Helmholtz equation in the wavenumber
domain, the field can be extrapolated from one surface to another and then be
reconstructed by applying an inverse transform. In this way, the wave field can be
backward-propagated right onto the surface of the radiating structure, as long as
it is conformal to the chosen separable geometry. In the case of a vibrating plate,
the surface field can therefore be calculated from sound pressure measurements in
the immediately adjacent surrounding fluid.

In order to apply NAH to structures with arbitrary shape, the numerical solution
of a system of integral equations, i.e. the Kirchhoff-Helmholtz integral equation,
instead of analytic Fourier transforms was pursued by Veronesi et al. [34]. This
led to research by Kim and Lee [35], Bai [36], Kim and Ih [37] and many others, in
which the Boundary Element method (BEM) is used to solve the integral equations,
now referred to as BEM-based NAH.
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2 Related Research

As the survey shows, the reconstruction of a structure-borne sound field from
a limited number of measurements usually requires either good knowledge of the
structure, i.e. material properties, geometry and boundary conditions, or measure-
ments that are evenly distributed across the whole structure. An extrapolation
approach that allows to reconstruct and clearly visualize the bending wave re-
sponse of a plate without the need for numerical modeling appears to be missing.
Since NAH is capable of determining the desired field information solely based on
acoustic response measurements, it needs to be investigated whether the under-
lying theory can be transferred to the structure-borne sound domain. A similar
procedure based on structural response measurements would be a promising way
to achieve structural wave field extrapolation. These considerations lead to Chap-
ter 3. Given that NAH is a near-field- and wave-based approach, it is fair to
ask whether a far-field wave-based approach would be more convenient ultimately.
This question leads to Chapter 4. The subsequent chapters demonstrate how these
purely wave-based approaches hold up in theory and in practice.
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3
Theory for Near-Field Structure-Borne

Sound Holography

In this chapter, the bending wave equation for thin homogenous plates is used to
derive a formulation for the extrapolation of the normal structural velocity. The
author has previously presented a shortened form of the derivation for infinite
plates [38] and used the related solution for finite plates to present preliminary
studies [39, 40]. The formulation represents a set of expanded eigenfunctions of
the plate in polar geometry and allows to perform a procedure that is analogous
to Near-Field Acoustic Holography, albeit in a pure structure-borne sound context.
The practical procedure for the presented method is discussed step by step. As an
inverse problem, the method comes with typical numerical issues, wherefore the
use of wavenumber filtering and regularization is discussed. The significance of
the near-field and its implications for the procedure are discussed as well.

3.1 On the principle of Near-Field Acoustic Holography

Broadly speaking, the principle of holography is applied whenever the analysis of a
distinct part of a wave field is used to reconstruct the continuous field. The Greek
words holos and gramma mean whole and message, indicating that a hologram
holds all the required information. More specifically, acoustic holography is syn-
onymous with the act of using a two-dimensional spatial segment (the hologram)
of a sound field in order to reconstruct a series of remote two-dimensional segments
(images) which together form the continuous three-dimensional field. In general
terms, such extrapolation is made possible if the eigenfunctions of the medium
and a specific set of boundary informations are known. In Fourier transform-
based NAH specifically, “...one simply measures a uniform (Dirichlet or Neumann)
boundary condition on a surface for which there is a known Green’s function. The
holographic reconstruction process is then simply the convolution (or deconvolution)

11



3.1 On the principle of Near-Field Acoustic Holography

of the measured boundary values with the Green’s function” [30]. In practice, this
means that the spatial sound pressure field is measured on said surface and is then
decomposed into its plane wave components by means of a two-dimensional spatial
Fourier transform. These plane wave components are the eigenfunctions for the
considered acoustic medium. In this way, the field is transformed to an eigenspace
wherein the wave field can be propagated by multiplication with a propagation
function. In order to establish the propagation function or propagator, Green’s
function1 must be known. A multiplication with the propagator corresponds to
shifting the magnitude and the phase of the wave field in the wavenumber domain.
Therefore, by taking the inverse Fourier transform again after the multiplication,
a projection of the spatial field from one surface to another is made. The actual
spatial sound pressure field can thus be reconstructed at positions remote from
the initial measurement.

The procedure that constitutes Fourier transform-based NAH requires a sep-
arable coordinate system, i.e. a coordinate system that allows all solutions of a
partial differential equation to be built up by a linear combination of separated
solutions, each dependent on only one coordinate [41]. The coordinate system
must be able to describe level surfaces that are a function of two coordinates while
the third coordinate is constant, as depicted in Fig. 3.1. Only then can the wave
field be projected from surface to surface along the remaining third coordinate.
The permitted coordinate systems are those of planar, cylindrical and spherical
coordinates because they grant a solution through analytical eigenfunctions that
satisfy the boundary conditions on level surfaces.

x

y

zzHzS

(a) planar (Cartesian) coordinates

rH

z

φ rS r

(b) cylindrical coordinates

Figure 3.1: Examples for separable coordinate systems.

1A stickler’s aside: In this thesis it will either be referred to “Green’s function” or “the Green
function”, depending on what seems grammatically reasonable to the author. In any case,
both denote the same.
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3 Theory for Near-Field Structure-Borne Sound Holography

The characteristic aspect of all NAH-procedures is that the hologram must be
obtained on a surface very close to a radiating sound source in order to include
important evanescent wave information. The aimed-at image surfaces, on the other
hand, might be located much further away from the source or even closer to the
source than the hologram surface, constituting either a forward- or a backward-
propagation problem. In acoustics, the term holography is often associated with
the latter, since the ability to propagate toward the radiating source is especially
appealing. If the source has a surface that is conformal to the chosen hologram
surface, it is ultimately possible to calculate the surface velocity of the source.
The mathematical description of Fourier transform-based NAH for planar and
cylindrical coordinates is given in Eqs. (3.1.1) and (3.1.3), respectively.

The sound pressure p on a source plane can be calculated by

p(x, y, zS) = F−1
x F−1

y


FxFy[p(x, y, zH)]Q

f(kx, ky, zS − zH)

, (3.1.1)

with the propagator

Qf(kx, ky, zS − zH) = ejkz(zS−zH). (3.1.2)

Here, z = zH is the location of the hologram plane and z = zS is the location of
the source plane. The sound pressure on a source cylinder can be calculated by

p(rS, φ, z) = F−1
φ F−1

z


FφFz[p(rH, φ, z)]Q

f(kφ, kz, rS − rH)

, (3.1.3)

with the propagator

Qf(kφ, kz, rS − rH) =
H

(2)
n (krS)

H
(2)
n (krH)

. (3.1.4)

Here, r = rH is the location of the hologram surface and r = rS is the location of
the cylindrical source surface. Eqs. (3.1.2) and (3.1.4) are the so-called pressure
propagators for plane and cylindrical waves in a fluid. For imaginary arguments,
corresponding to subsonic wavenumbers, the propagators represent an exponential
increase toward the source.

Because the reconstruction of the source field requires the source to be conformal
to the hologram surface, the choice of a suitable coordinate system, e.g. planar,
cylindrical or spherical, depends on the geometry of the source surface. If a pla-
nar image is backward-propagated toward a cylindrical source for example, the
reconstruction of the continuous field can only be achieved to the point where the
propagated image first “touches” the cylinder, never beyond. Because the utilized
solution to the wave equation is only valid in a source-free medium, the hologram
surface separates the valid extrapolatable region from the source region. If the
hologram surface encloses all the sources, this is known as an exterior problem. Its
counterpart is the so-called interior problem, in which all the sources are located
outside the hologram surface. The problem geometries are illustrated in Fig. 3.2.
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3.2 Formulation of the plate velocity

NAH allows extrapolation of the radiated sound field from measurement of the
surrounding fluid response, i.e. sound pressure or particle velocity. It will be
shown that the physical principle of Fourier transform-based NAH can be used
to extrapolate continuous structural bending wave fields from structural response
measurements as well. As will be seen, the application of Fourier transform-based
wave field extrapolation in the structure-borne sound domain inherits significant
limitations due to the fundamental requirements discussed above.

∞

(a) exterior problem (b) interior problem (c) combined problem

Figure 3.2: General types of boundary value problems.

3.2 Formulation of the plate velocity

In the most general way, holography is the projection of a wave field. Any such
projection obviously requires an exact understanding of how waves propagate in
a certain medium. A suitable formulation for wave propagation is needed. Con-
sidering a structure-borne sound scenario, it is therefore necessary to specify the
structural medium of interest as well as the excitation and response under consid-
eration. In this section, the bending motion of a thin, homogenous and isotropic
plate2 of infinite extent, excited by point forces normal to the surface, shall be
considered. The according response to a single point excitation in the frequency
domain is well known to be radially symmetric. It is described by a combination
of Bessel- and Neumann functions, called Hankel functions, of zero order [42]. As
discussed in Section 3.1, if wave field extrapolation in the sense of classic NAH is
intended, wave propagation needs to be described via a whole set of eigenfunctions.
The holographic procedure for the radial propagation of a bending wave field re-
sulting from multiple point forces will therefore require an expanded formulation
of Hankel functions in n orders.

2Both homogenity and isotropy are required by the methods considered in this thesis. Although
they are different characteristics of a structure, the subsequent discussion will only emphasize
the former. Referring to a “homogenous plate” shall imply that it is isotropic as well.
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3 Theory for Near-Field Structure-Borne Sound Holography

As a starting point, the general equation of motion for the normal displacement
of a thin homogeneous plate is considered [43]:

B′

m′′∇
2∇2u(x, y, t) +

∂2u(x, y, t)

∂t2
= 0, (3.2.1)

where ∇2 is the Laplacian operator, u is the normal displacement, B′ is the bending
stiffness and m′′ is the mass per unit area of the plate. Taking the temporal Fourier
transform, see Appendix A.4, of Eq. (3.2.1) yields

B′

m′′∇
2∇2u(x, y, ω)− ω2u(x, y, ω) = 0. (3.2.2)

By introducing the bending wavenumber kB through the relation

k4B =
m′′ω2

B′ , (3.2.3)

the equation can be written as

∇2∇2u(x, y, ω)− k4Bu(x, y, ω) = 0. (3.2.4)

Since velocity, the time derivative of displacement, is often preferred over dis-
placement in the analysis of structure-borne sound problems, it is reasonable to
formulate the equation of motion accordingly as

∇2∇2v(x, y, ω)− k4Bv(x, y, ω) = 0, (3.2.5)

where v is the normal velocity amplitude.
The fourth order differential equation can be replaced by a set of second order

equations

∇2v1(x, y, ω) + k2Bv1(x, y, ω) = 0, (3.2.6)

∇2v2(x, y, ω)− k2Bv2(x, y, ω) = 0, (3.2.7)

where v1(x, y, ω) and v2(x, y, ω) constitute components of velocity v(x, y, ω). The
first of the two equations is known as Helmholtz equation, the wave equation
for non-dispersive media. Solutions to both equations can be obtained by the
method of separation of variables. In general, the method presumes that the
solution of a partial differential equation in n variables is a product of n ordinary
differential equations, each being equal to a constant. Because of the requirement
to match analytical eigenfunctions with a level hologram geometry that leaves one
coordinate fixed, as discussed in Section 3.1, it comes natural to look for solutions
based on a polar coordinate system. These solutions are

v1(r, φ, ω) = R1(r, ω)Φ1(φ, ω), (3.2.8)
v2(r, φ, ω) = R2(r, ω)Φ2(φ, ω). (3.2.9)
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3.2 Formulation of the plate velocity

By inserting Eq. (3.2.8) into Eq. (3.2.6) and using the Laplacian operator in polar
coordinates

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
, (3.2.10)

Eq. (3.2.6) becomes3

Φ1
d2R1

dr2
+

Φ1

r

dR1

dr
+

R1

r2
d2Φ1

d2φ
+ k2BR1Φ1 = 0. (3.2.11)

The arguments of the functions have been omitted for compactness, as will be
done in the following steps. Division by R1Φ1/r

2 yields

r2

R1


d2R1

dr2
+

1

r

dR1

dr


+

1

Φ1

d2Φ1

d2φ
+ k2Br

2 = 0, (3.2.12)

or, if sorted by variables,

r2

R1


d2R1

dr2
+

1

r

dR1

dr


+ k2Br

2 = − 1

Φ1

d2Φ1

d2φ
. (3.2.13)

It is now apparent that the left hand side of Eq. (3.2.13) depends on r alone,
whereas the right hand side only depends on φ. Thus, both sides must be equal to
a constant, called the separation constant [44]. Since the solution must be periodic
in φ, the constant is chosen to be n2 and the right hand side of Eq. (3.2.13) becomes

− 1

Φ1

d2Φ1

d2φ
= n2, (3.2.14)

resulting in an ordinary second order differential equation

d2Φ1

d2φ
+ n2Φ1 = 0. (3.2.15)

For the left hand side, consequently, it is obtained:

d2R1

dr2
+

1

r

dR1

dr
+


k2B − n2

r2


R1 = 0. (3.2.16)

Proceeding in the same manner for Eq. (3.2.7), insertion of (3.2.9) into Eq. (3.2.7)
yields

d2Φ2

d2φ
+ n2Φ2 = 0 (3.2.17)

and
d2R2

dr2
+

1

r

dR2

dr
−

k2B +

n2

r2


R2 = 0. (3.2.18)

3Because R and Φ represent functions of one variable only, the differential equation is written
by means of the total differential d.
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3 Theory for Near-Field Structure-Borne Sound Holography

Equation (3.2.15) and Eq. (3.2.17) represent the so-called harmonic oscillator equa-
tion, whose general elementary solution is respectively given by

Φ1,n(φ) = αne
jnφ + γne

−jnφ, (3.2.19)

Φ2,n(φ) = βne
jnφ + δne

−jnφ, (3.2.20)

where αn, βn, γn and δn are arbitrary coefficients.
Equation (3.2.16) and Eq. (3.2.18) are forms of Bessel’s equation of order n. For

integer n they were shown to have independent solutions in the form of so-called
Bessel functions of the first and second kind Jn(z) and Yn(z). The latter is also
known as Neumann- or Weber function. For a propagating wave solution it is
required to use linear combinations of the two [45], known in general as Hankel
functions of the first and second kind

H(1)
n (z) = Jn(z) + jYn(z), (3.2.21)

H(2)
n (z) = Jn(z)− jYn(z). (3.2.22)

General elementary solutions for the nth order of Eq. (3.2.16) and Eq. (3.2.18) are
given by

R1,n(r, ω) = anH
(2)
n (kBr) + cnH

(1)
n (kBr), (3.2.23)

R2,n(r, ω) = bnH
(2)
n (−jkBr) + dnH

(1)
n (−jkBr), (3.2.24)

where an, bn, cn and dn are arbitrary complex coefficients.
Using the time dependence ejωt, the Hankel function of the first kind H

(1)
n (kBr)

represents an incoming wave, whereas the Hankel function of the second kind
H

(2)
n (kBr) represents an outgoing wave. This can be seen by employing Som-

merfeld’s radiation condition, which states that an outgoing radial wave must
originate from a source, not from a sink of energy [46]. The imaginary argu-
ments in Eq. (3.2.24) lead to exponentially decaying terms, generally referred to
as evanescent waves. They do affect the immediate area around their origin, which
in this context is referred to as near-field region. Their significance for the problem
considered in this thesis is discussed in Section 3.7.

A general elementary solution to Eq. (3.2.5) is ultimately given by the superpo-
sition of the solutions

v12,n(r, φ, ω) =R1(r)Φ1(φ) +R2(r)Φ2(φ)

=

anH

(2)
n (kBr) + cnH

(1)
n (kBr)


αne

jnφ + γne
−jnφ


+

bnH

(2)
n (−jkBr) + dnH

(1)
n (−jkBr)


βne

jnφ + δne
−jnφ


.

(3.2.25)

The mathematical solution apparently provides terms for incoming and outgoing
wave propagation. Considering a plate of infinite extent, it is evident that only
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3.2 Formulation of the plate velocity

outgoing wave propagation is possible. In order to obtain a physically comprehen-
sible solution, the terms corresponding to incoming wave propagation have to be
discarded. The elementary solution consequently simplifies to

v12,n(r, φ, ω) =

anH
(2)
n (kBr)


αne

jnφ + γne
−jnφ


+ bnH

(2)
n (−jkBr)


βne

jnφ + δne
−jnφ


.

(3.2.26)

Due to the linearity of the wave equation, a complete general solution is obtained
by linear superposition of all possible solutions:

v(r, φ, ω) =

∞
n=0

v12,n(r, φ, ω)

=

∞
n=0


anαnH

(2)
n (kBr) + bnβnH

(2)
n (−jkBr)


ejnφ

+
∞
n=0


anγnH

(2)
n (kBr) + bnδnH

(2)
n (−jkBr)


e−jnφ

=

0
n=−∞


anα

∗
nH

(2)
n (kBr) + bnβ

∗
nH

(2)
n (−jkBr)


e−jnφ

+
∞
n=0


anγnH

(2)
n (kBr) + bnδnH

(2)
n (−jkBr)


e−jnφ,

(3.2.27)

in which the arbitrary coefficients α∗
n and β∗

n shall replace αn and βn for the sake
of generality. The sums in Eq. (3.2.27) can be combined to form a single sum over
all negative and positive values of n. It is noted that the sign in the exponential
term is chosen in order to have consistency in the chosen conventions for Fourier
analysis, given in Appendix A. Replacing the coefficients in Eq. (3.2.27) once more
ultimately yields a convenient formulation for the radial bending wave propagation
in a homogenous infinite plate in terms of the normal velocity in polar coordinates

v(r, φ, ω) =

∞
n=−∞


AnH

(2)
n (kBr) +BnH

(2)
n (−jkBr)


e−jnφ. (3.2.28)

An and Bn are arbitrary complex coefficients. Knowledge of the wave field is
therefore equivalent to knowledge of these expansion coefficients.

A very simple formulation of the infinite plate velocity results from neglecting
the influence of the near-field:

v(r, φ, ω) =

∞
n=−∞

AnH
(2)
n (kBr)e

−jnφ. (3.2.29)
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3 Theory for Near-Field Structure-Borne Sound Holography

This expression will be used as an alternative mathematical basis for the recon-
struction of the bending wave field in an infinite plate in sections 5.6.3 and 6.1.2.

The derived Eqs. (3.2.28) and (3.2.29) constitute a Fourier series, respectively.
If the utilized polar coordinate system is interpreted in terms of closed circular
contours of radius r, the bending wave field along any such contour is a spatially
periodic function, which can be “built” by a sum of discrete series coefficients. As
can be understood from Appendix A, where the relation between Fourier series and
Fourier transforms is shown, these sums correspond to inverse Fourier transforms
in the φ-coordinate. The calculation of the series’ coefficient functions, from here
on simply referred to as Fourier components, can be achieved by performing a
forward Fourier transform. The Fourier components are expanded eigenfunctions
and essentially represent generalized propagation functions or propagators of order
n. They describe the propagation of bending waves in the infinite plate based on
the velocity propagator

Qinf
n (r, ω) = H(2)

n (kBr) +H(2)
n (−jkBr). (3.2.30)

In matrix form,4 the velocity propagator is denoted as

Qinf
n (r, ω) =


H

(2)
n (kBr) H

(2)
n (−jkBr)


. (3.2.31)

How the above relations can be used to extrapolate the continuous bending wave
field in an infinite plate is shown in Section 3.3. A physical interpretation of
Eq. (3.2.28) and the mathematical operations involved in the holographic proce-
dure is given in Section 3.6.

The difference between wave propagation in infinite and finite plates is the si-
multaneous occurence of outgoing and incoming waves, caused by reflection at the
edges. Since the edges constitute material discontinuities, near-fields can form in
their vicinity, depending on the boundary condition. These near-fields can be con-
sidered as evanescent waves that point inward. An elementary solution for finite
plates has already been presented in the form of Eq. (3.2.25), where both outgoing
and incoming propagating waves as well as outgoing and incoming near-fields are
accounted for. While it was appropriate to discard the corresponding incoming
terms in the infinite case, it is now required to retain them. By proceeding anal-
ogously to Eq. (3.2.27), the linear superposition of all elementary solutions yields
the complete solution

v(r, φ, ω) =
∞

n=−∞


AnH

(2)
n (kBr) +BnH

(2)
n (−jkBr) + CnH

(1)
n (kBr) +DnH

(1)
n (−jkBr)


e−jnφ

(3.2.32)

4In this thesis, boldface is used to identify matrix notation.
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3.2 Formulation of the plate velocity

for a finite plate, in which An, Bn, Cn and Dn are arbitrary complex coefficients.
Eq. (3.2.32) represents a formulation for the radial bending wave propagation in a
general homogenous finite plate in terms of the normal velocity. It is noted that,
like in Eq. 3.2.28, no specific boundary conditions at the edges are included in
this formulation. As in the infinite case, knowledge of the wave field is equivalent
to knowledge of the expansion coefficients. The edge boundary conditions should
therefore be accounted for once these four coefficients are determined. It is im-
portant to note that this is merely an assumption, and not necessarily a justified
one. It is known that there are physical boundary conditions for which there are
no analytical (or so-called closed form) solutions in the form of a sum of suitable
eigenfunctions. Yet, Fourier transform-based NAH relies on the existence of such
eigenfunctions. It will therefore be seen that this assumption is not equally war-
ranted in every case. Equation (3.2.32) constitutes a Fourier series in φ as well.
Its coefficient functions are eigenfunctions for the finite plate, as long as the math-
ematical boundary is circular. They can be considered as propagation functions
of order n. The corresponding velocity propagator is thus given by

Qfin
n (r, ω) = H(2)

n (kBr) +H(2)
n (−jkBr) +H(1)

n (kBr) +H(1)
n (−jkBr), (3.2.33)

and in matrix form

Qfin
n (r, ω) =


H

(2)
n (kBr) H

(2)
n (−jkBr) H

(1)
n (kBr) H

(1)
n (−jkBr)


. (3.2.34)

Since the governing Eq. (3.2.5) is derived from thin plate theory, the results
presented above are based on the assumption that the effects of shear stiffness
and rotational inertia can be neglected. These asumptions are valid as long as
sufficiently large wavelengths are considered. As the bending wavelength λB starts
to equal the sixfold plate thickness h [42],

λB/6 = h, (3.2.35)

the resulting error becomes

kB/kB,corr ≈ 0.1, (3.2.36)

which is usually deemed tolerable. For wavelengths smaller than that, however, the
resulting error becomes significant, which is why some form of correction should
be applied. From Mindlin’s extended equation of motion, the corrected bending
wave phase velocity can be derived [42]

cB,corr ≈ cB{1− 4(h/λB)
2]}, (3.2.37)

which includes the phase velocity found from Kirchhoff’s “conventional” plate the-
ory

cB =
ω

kB
=

4


B′

m′′
√
ω. (3.2.38)
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3 Theory for Near-Field Structure-Borne Sound Holography

From Eq. (3.2.37), a corresponding corrected bending wavenumber can be derived:

kB,corr ≈
kB

1− (kBh/π)2
. (3.2.39)

The corrected bending wavenumber is used in the computations performed for the
acrylic plate in Chapter 6.

3.3 Holographic procedure for infinite plates

This section explains how the equations established in Section 3.2 can be used to
perform both backward- and forward-propagation of the bending wave field, based
on structural response measurements. The procedure constitutes an exterior prob-
lem, as depicted in Fig. 3.2a. Formally, backward-propagation is considered in the
following, but it is important to note that the procedure for forward-propagation
is identical and merely differs by a change of the argument r in a mathematical
sense.

Fig. 3.3 illustrates the exterior problem of an infinite plate, excited by point
forces arbitrarily aligned along a circular source contour of radius rS, exhibiting
the normal velocity v(r, φ, ω). For now, it shall be assumed that the velocity
distribution v(rS, φ, ω) along the source contour at rS is of prime interest. The
procedure relies on the polar coordinate system, wherefore the extrapolatable area
is bounded inward by the circular source contour at rS. This can be compared to
the conformal source surfaces discussed in Section 3.1.

The mathematical procedure can be summarized as

v(rS, φ, ω) = F−1
φ


Qinf

n (rS, ω)


Qinf

n (r1, ω)
Qinf

n (r2, ω)

−1 Fφ{v(r1, φ, ω)}
Fφ{v(r2, φ, ω)}



= F−1
φ

Qinf
n (rS, ω)


H

(2)
n (kBr1) H

(2)
n (−jkBr1)

H
(2)
n (kBr2) H

(2)
n (−jkBr2)

−1 
vn(r1, ω)
vn(r2, ω)


= F−1

φ


H

(2)
n (kBrS) H

(2)
n (−jkBrS)

 An

Bn


= F−1

φ


AnH

(2)
n (kBrS) +BnH

(2)
n (−jkBrS


,

(3.3.1)

where F−1
φ and Fφ indicate inverse and forward Fourier transforms in the φ-

coordinate. The interpretation is as follows: A part of the wave field is sampled in
polar coordinates and decomposed into Fourier components by means of a spatial
Fourier transform. This represents a determination of the boundary values in
the wavenumber domain. The components are then multiplied by an expanded
propagator function, which means that magnitude and phase of the field are shifted
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3.3 Holographic procedure for infinite plates

in the wavenumber domain. The field is ultimately reconstructed in the frequency
domain by performing an inverse Fourier transform.

By comparison, the mathematical methodology is closely related to that of cylin-
drical NAH, summarized in Eq. (3.1.3), or NAH in general. The procedure outlined
above is therefore termed Near-Field Structure-Borne Sound Holography, from here
on referred to as NSBSH. Like NAH, NSBSH poses an inverse problem by nature.
The traits of an inverse problem and the resulting numerical challenges are dis-
cussed in Sections 3.9.1 and 3.9.2. Considering the geometry given in Fig. 3.3, the
procedure is discussed step-by-step in the following. Five consecutive steps may
be differentiated:

1. Obtaining the hologram data, i.e. measurement of the normal velocity dis-
tributions v(r1, φ, ω) and v(r2, φ, ω) along two circular contour lines;

2. Performing a spatial Fourier transform

vn(r1, ω) = Fφ{v(r1, φ, ω)} =

 π

−π
v(r1, φ, ω)e

jnφ dφ, (3.3.2)

vn(r2, ω) = Fφ{v(r2, φ, ω)} =

 π

−π
v(r2, φ, ω)e

jnφ dφ, (3.3.3)

where n represents the index of the Fourier components;

3. Establishing a linear system of equations

vn(r1, ω) = AnH
(2)
n (kBr1) +BnH

(2)
n (−jkBr1), (3.3.4)

vn(r2, ω) = AnH
(2)
n (kBr2) +BnH

(2)
n (−jkBr2), (3.3.5)

and solving for the unknown coefficients An, Bn;

4. Extrapolating in the wavenumber domain

vn(rS, ω) = AnH
(2)
n (kBrS) +BnH

(2)
n (−jkBrS); (3.3.6)

5. Performing an inverse Fourier transform

v(rS, φ, ω) = F−1
φ {vn(rS, ω)} =

1

2π

 ∞

−∞
vn(rS, ω)e

−jnφ dn. (3.3.7)

1. Obtaining the hologram data Eq. (3.2.28) states that two expansion coef-
ficients, An and Bn, have to be determined in order to describe radial bending
wave propagation by means of the normal plate velocity. In order to obtain the
coefficients, two boundary conditions are needed. They are found by measurement
of the spatial velocity distribution along two circular contour lines in the near-field
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3 Theory for Near-Field Structure-Borne Sound Holography
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φ
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Δdst dst,2
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Figure 3.3: Exterior problem geometry for NSBSH on an infinite plate; holo-
gram contour; source contour; • normal point force; extrapolat-
able plate area.

of the source, v(r1, φ, ω) and v(r2, φ, ω). These distributions are the holograms
from which the other images of the wave field can be extrapolated. The distance
between hologram contour and source contour is referred to as standoff distance.
Corresponding to the hologram contour radii r1 and r2 there are two standoff
distances

dst,1 = r1 − rS, (3.3.8)
dst,2 = r2 − rS (3.3.9)

which differ by the contour distance

∆dst = r2 − r1. (3.3.10)

As in fluid-borne NAH, a reconstruction at the source requires the hologram data
to contain evanescent wave information, wherefore the corresponding measure-
ments have to be taken in the structural near-field region.

Since the amplitude of vibration does not depend on a coordinate normal to
the plate surface, bending wave propagation in a thin plate is a function of two
dimensions. Therefore, whereas in classic NAH a hologram surface is used to
reconstruct a fluid-borne field that is a function of three dimensions, hologram
contour lines are used to reconstruct a structure-borne field that is a function of
two dimensions. Practically speaking, whereas in NAH the spatial distribution
of sound pressure is measured in a single plane or on a cylindrical or spherical
surface, in NSBSH the spatial distribution of structural acceleration or velocity is
measured along separate circular contour lines.

Measurement has to sample the distribution at a sufficient rate in order to avoid
aliasing effects. The intricacy of the distribution along a contour depends on the
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3.3 Holographic procedure for infinite plates

smallest occuring wavelength in general but more specifically on the radius of the
contour. A substantial discussion of spatial sampling by means of a circular sensor
array is not aimed at in this thesis, mostly because spatial signal processing is a
complex topic of its own. Further research might benefit the processing performed
in Chapters 5 and 6, however, and it stands to reason that in this regard clues might
be taken from literature dealing with the recording and reproduction of airborne
sound by means of circular microphone arrays, e.g. [47,48]. It is acknowledged that
by discounting specific aliasing effects due to the circular measurement aperture,
the following consideration is a simplified one. Since these effects will be shifted
to higher frequencies if a reasonably high amount of sampling points is used, they
shall not be considered specifically in this thesis.

In order to have a simple and approximate criterion for the required number
of sampling points, far-field conditions are assumed. The required number of
sampling points Ncrit might then be estimated by the spatial Nyquist criterion
that relates the sampling distance ∆x and the smallest occuring wavelength

λB,min

2
> ∆x =

2rπ

Ncrit
. (3.3.11)

Depending on the outer radius r to be sampled, it is given by

Ncrit >
4rπ

λB,min
= 2rkB,max. (3.3.12)

For a contour located in the near-field, however, the relation is not so clear, where-
fore the number obtained from Eq. (3.3.12) should preferably be increased by a
small amount. Eq. (3.3.12) basically states that contour lines with larger radii re-
quire a higher number of sampling points to resolve the smallest wavelength under
consideration. It refers to the correct resolution of the propagating bending wave
components only. It is not a criterion for evanescent wave resolution, which, as is
discussed in Section 3.7, cannot be given as explicitly.

2. Fourier transform As seen in Eqs. (3.3.2) and (3.3.3), both distributions have
to be decomposed into Fourier components in order to be used with Eq. (3.2.28).
Because the velocity distribution along each hologram contour has to be deter-
mined by discrete measurement in practice, the Fourier transforms are carried out
by means of discrete Fourier transformation (DFT). For periodic signals such as
the spatial velocity distribution along a closed contour, performing a DFT will
yield the Fourier components that make up the governing Fourier series, as shown
in Appendix A. In this thesis, all practical spatial transforms are performed by
using the fast Fourier Transform (FFT)-algorithms provided by MATLAB R⃝.

3. Establishing and solving a linear system of equations Using the Fourier
transform of the velocity distributions obtained by measurement, a linear system

24



3 Theory for Near-Field Structure-Borne Sound Holography

of equations can be established, allowing to solve for An and Bn. The right hand
side of Eq. (3.3.4) and Eq. (3.3.5), respectively, consitutes the coefficient function
of the Fourier series in Eq. (3.2.28), i.e. the velocity propagator scaled by the
expansion coefficients An and Bn. Obviously, the system itself is most basic and
can therefore be solved in a straightforward manner. The solutions are given in
Appendix C.1.

4. Extrapolation Having determined An and Bn, the propagation of waves is
determined in the wavenumber domain. The wave field can now be extrapolated
without difficulty. Backward-propagation to the wave field at rS is performed
by application of Eq. (3.3.6). The legitimate region for extrapolation is the whole
plate area r > rS encompassing the sources, as marked in Fig. 3.3. As stated above,
forward-propagation can be conducted by exchanging rS for rR in Eq. (3.3.6),
where rR > r2.

5. Inverse Fourier transform Performing the inverse Fourier transform accord-
ing to Eq. (3.3.7) ultimately yields the velocity along the source contour at rS in the
frequency domain. This represents a summation of the constituing Fourier com-
ponents, i.e. the scaled velocity propagators of order n that make up the Fourier
series derived in Section 3.2. It is understood from Appendix A that performing
the inverse Fourier transform is equal to the Fourier series.

Forward-propagation can be conducted analogously. By setting the radius to
any desired value rR > r2, the velocity distribution in the far-field may be recon-
structed. Thus, the continuous bending wave field for r > rS can be reconstructed.

An unwelcome side effect of this kind of procedure is the amplification of mea-
surement noise. If backward-propagation toward the sources is attempted from
data collected outside of the immediate near-field region, large error seems in-
evitable in practice. This can be seen from an analysis of the governing equation.
Using Eqs. (C.1.1) and (C.1.2), Eq. (3.3.6) can be written as

vn(rS) =
H

(2)
n (kBrS)


vn(r2)H

(2)
n (−jkBr1)− vn(r1)H

(2)
n (−jkBr2)


H

(2)
n (kBr2)H

(2)
n (−jkBr1)−H

(2)
n (kBr1)H

(2)
n (−jkBr2)

+

vn(r1)−
H

(2)
n (kBr1)


vn(r2)H

(2)
n (−jkBr1)− vn(r1)H

(2)
n (−jkBr2)


H

(2)
n (kBr2)H

(2)
n (−jkBr1)−H

(2)
n (kBr1)H

(2)
n (−jkBr2)


·


H

(2)
n (−jkBrS)

H
(2)
n (−jkBr1)


.

(3.3.13)

Eq. (3.3.13) represents an explicit formulation for backward-propagation from the
wave field at r1 and r2 to the wave field at rS. It is a rather cryptic formulation,
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3.4 Holographic procedure for finite plates

but its behavior can be made more transparent by using asypmtotic expressions
for the Hankel functions of large argument [49]

H(2)
n (z) →


2/πze−jz+j(πn/2+π/4), |z| ≫ n. (3.3.14)

By using Eq. (3.3.14) and applying standard arithmetic operations, Eq. (3.3.13)
becomes

vn(rS) ≈


r2
rS
vn(r2)e

−kBr1 −


r1
rS
vn(r1)e

−kBr2

e−kB(r1+jr2) − e−kB(r2+jr1)
e−jkBrS

+


vn(r1)−

e−kB(r1+jr1) − e−kB(r2+jr1)

vn(r2)e−kB(r1+jr2) − vn(r1)e−kB(r2+jr1)


r1
rS

ekB(r1−rS).

(3.3.15)

The first summand of Eq. (3.3.15) and Eq. (3.3.13) is of propagating wave charac-
ter, while the second summand is an exponential function whose magnitude quickly
becomes dominant as the ratio r1/rS and therefore the difference r1−rS increases.
Backward-propagation is thus characterized by a strong exponential increase of the
Fourier components’ magnitude. As measurements are made further away from
the source, the required increase becomes more drastic. This is especially true
for high wavenumbers and, although not directly shown by Eq. (3.3.15), Fourier
components of high order n. This behavior is legitimate as long as the input data
resolves the evanescent waves with sufficient accuracy, which can be assumed as
long as the two hologram contours are located close enough to the source and at
a reasonable distance to each other, depending on the dynamic range of the mea-
surement system. On the other hand, if the resolution is inaccurate, even small
errors will be greatly amplified. In the presence of measurement noise, backward-
propagation is therefore likely to yield erratically blown-up results.

If forward-propagation is attempted, reconstruction does not need to backtrack
such evanescence. Because there is no drastic exponential increase of measurement
values, the effect of noise is not expected to be as destructive.

3.4 Holographic procedure for finite plates

In the case of a finite plate, the problem of radial wave field extrapolation is a
combination of exterior and interior problem. Although Eq. (3.2.32) describes
a field of waves of opposing direction, it is only valid in a region where said
field is free of sources. Considering the polar coordinate system that was utilized
to obtain the solutions to the governing differential equation, the valid region
therefore has to be annular. This is shown in Fig. 3.4 which illustrates the problem
of a finite plate, excited by arbitrarily positioned normal point forces, exhibiting
the normal velocity v(r, φ). In analogy to Section 3.3, the mathematical process
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3 Theory for Near-Field Structure-Borne Sound Holography

of reconstruction is summarized as

v(rR, φ) = F−1
φ

Qfin
n (rR, ω)


Qfin

n (r1, ω)
Qfin

n (r2, ω)
Qfin

n (r3, ω)
Qfin

n (r4, ω)


−1 

Fφ{v(r1, φ, ω)}
Fφ{v(r2, φ, ω)}
Fφ{v(r3, φ, ω)}
Fφ{v(r4, φ, ω)}


 . (3.4.1)

1. Obtaining the normal velocity distributions v(r1, φ), v(r2, φ), v(r3, φ) and
v(r4, φ) along the hologram contour lines;

2. Performing a spatial Fourier transform

Fφ{v(r1, φ, ω)} → vn(r1, ω), (3.4.2)
Fφ{v(r2, φ, ω)} → vn(r2, ω), (3.4.3)
Fφ{v(r3, φ, ω)} → vn(r3, ω), (3.4.4)
Fφ{v(r4, φ, ω)} → vn(r4, ω); (3.4.5)

3. Establishing a linear system of equations

vn(r1, ω) =

AnH
(2)
n (kBr1) +BnH

(2)
n (−jkBr1) + CnH

(1)
n (kBr1) +DnH

(1)
n (−jkBr1),

(3.4.6)

vn(r2, ω) =

AnH
(2)
n (kBr2) +BnH

(2)
n (−jkBr2) + CnH

(1)
n (kBr2) +DnH

(1)
n (−jkBr2),

(3.4.7)

vn(r3, ω) =

AnH
(2)
n (kBr3) +BnH

(2)
n (−jkBr3) + CnH

(1)
n (kBr3) +DnH

(1)
n (−jkBr3),

(3.4.8)

vn(r4, ω) =

AnH
(2)
n (kBr4) +BnH

(2)
n (−jkBr4) + CnH

(1)
n (kBr4) +DnH

(1)
n (−jkBr4),

(3.4.9)

and solving for the unknown coefficients An, Bn, Cn, Dn;

4. Extrapolating in the wavenumber domain

vn(rR, ω) =

AnH
(2)
n (kBrR) +BnH

(2)
n (−jkBrR) + CnH

(1)
n (kBrR) +DnH

(1)
n (−jkBrR);

(3.4.10)

5. Performing an inverse Fourier transform

F−1
φ {vn(rR, ω)} → v(rR, φ, ω). (3.4.11)
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Figure 3.4: Annular problem geometry for NSBSH on a finite plate; hologram
contour; • normal point force; extrapolatable plate area; plate
boundary with arbitrary geometry and boundary condition.

In order to apply numerical stabilization techniques such as regularization in
step 2, the system of equations has to be put in matrix form

vn(r1, ω)
vn(r2, ω)
vn(r3, ω)
vn(r4, ω)

 =


Qfin

n (r1, ω)
Qfin

n (r2, ω)
Qfin

n (r3, ω)
Qfin

n (r4, ω)



An

Bn

Cn

Dn

 . (3.4.12)

The system is small enough to be solved by hand, however. The solutions found
by using Gaussian elimination are given in Appendix C.2.

Although mathematically the procedure is identical to the procedure for infinite
plates, it is different in a physical sense. The wave field is not propagated “back-
ward” or “forward” anymore because now there is more than one direction in which
the waves do propagate. Applying Eq. (3.4.1) rather means to propagate “inward”
or “outward” toward either boundary given by the hologram contours. Ultimately,
the difference between both procedures is of practical nature. In comparison to the
finite case, four contour lines are necessary to obtain the required hologram data,
corresponding to the four unknown coefficients in Eq. (3.2.32). Identically to the
infinite plate scenario, the standoff distances dst,1 and dst,2 are defined according
to Eqs. (3.3.8) and (3.3.9). Additionally,

dst,3,min = Lx,y/2− r3 (3.4.13)

and

dst,4,min = Lx,y/2− r4 (3.4.14)
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are respectively defined as the the minimum distances between outer hologram
contour and plate border.

Taking into account that larger contours require more sampling points, the
amount of measurement data is more than doubled. Secondly, as can be seen in
Fig. 3.4, the wave field of a finite plate can only be reconstructed in the annular
region r1 ≤ rR ≤ r4 confined by the hologram contour lines. As stated above,
Eq. (3.2.32) is only valid in a source-free region of the wave field. As a consequence,
the region confined by the hologram contour lines cannot be extended inward
beyond the position of the sources. In outward direction, it cannot be extended
beyond the dimensions of the plate, obviously. It is thus not possible to reconstruct
the field either in the center between the excitation sources or toward the corners
of the plate. This might not be too big of a limitation if a circular plate is excited
at the center, but it is a significant one if rectangular plates with higher aspect
ratios are considered. The geometry of the plate itself can be arbitrary and does
not need to be rectangular or symmetric.

3.5 Remarks on semantics

It is important to mention that the holographic procedure presented in Section 3.3
and Section 3.4 does not necessitate near-field information if only the far-field is
to be reconstructed. It is in fact possible to reconstruct the continuous far-field
from hologram data that includes no near-field information at all. Near-Field
Structure-Borne Sound Holography would be a misleading term in such instances.
In that sense, the ramifications of the near-field in NSBSH are different from those
in NAH. In NAH, near-field information is crucial in order to resolve sources that
are closer than the distance of one wavelength. NSBSH, as presented in this thesis,
does not allow the clear identification of two point forces because the surrounding
field cannot be reconstructed wholly. The role of the near-field in NSBSH, apart
from being a physically different effect, is therefore different from that in NAH. It
is “merely” required in order to reconstruct the correct response magnitude of the
field.

In the infinite case, a certain terminology was used to highlight the analogies be-
tween NAH and the procedure presented in this thesis. If waves do only propagate
outward it is clear that backward-propagation describes the act of backtracking
the outgoing wave field toward the source. In the finite case, where waves are
reflected back and forth, the prefixes “backward” and “forward” lose their original
meaning, as one rather propagates “inward” or “outward”.

3.6 Physical interpretation

Equation. (3.2.28) describes the constitution of a wave field in polar coordinates
in a very general manner. The bending wave field of a homogenous infinite plate
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3.6 Physical interpretation

can be described as a Fourier series whose components are generalized propagation
functions. For comparison, the wave field of such a plate in response to a single
point excitation at the origin of the coordinate system can be described by the
propagation function [42]

v(r, ω) = v0


H

(2)
0 (kBr)−H

(2)
0 (−jkBr)


, (3.6.1)

in which v0 may be any amplitude of normal velocity. The corresponding wave
field is rotationally symmetric, as depicted in Fig. 3.5a. The amplitude along the
path of a circular section at any given radius is constant. In the time domain,
the perturbances in the medium are analogous to those that are observed when a
stone is dropped in quiescent water. Circular wavefronts propagate outward and
essentially become plane wavefronts at a large distance. In this sense, the wave
field in Fig. 3.5a only consists of the zero order of Eq. (3.2.28) because at a fixed
radius all the particles move up and down in phase.

r

φ

(a) excitation by a single force

r

φ

(b) excitation by a set of forces

Figure 3.5: Infinite plate response due to normal forces.

Imagining a set of arbitrary point forces randomly positioned around the origin,
it is understood that the resulting wave field is no longer rotationally symmetric.
The amplitude along the path of a circular section at any given radius will have an
arbitrary spatial distribution, as depicted in Fig. 3.5b. According to Eq. (3.2.28),
this distribution can be exactly described if an infinite number of sinusoidal dis-
tributions e−jnφ of different amplitude are summed up.5 Hereby, n indicates the
number of “wavelengths” that make up each distribution, as is visualized in Fig. 3.6.
It is a direct application of the Fourier series theorem in the spatial domain, in
which spatial data is considered as a spectrum of discrete Fourier components.
Using such a series expansion approach is quite common for structural vibration
problems, e.g. in the analysis of structure-borne sound transmission [50,51].

The procedure can thus be interpreted as follows: Through the forward Fourier
transform, the arbitrary spatial distribution along a circular section of the bending

5In the field of antenna arrays, these terms would be known as “phase modes” [47], for example.
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wave field is broken down to a set of basic sinusoidal distributions. Given a few
discrete sampling points, they are better imagined as a series of points in nor-
mal vibration, with the displacements having a certain phase relation. From the
boundary conditions it is possible to calculate propagation functions that deter-
mine how each of these sinusoids must change in radial direction. The boundary
conditions themselves are given by the spatial distribution of the normal veloc-
ity along the hologram contour lines. Radial wave field extrapolation scales each
sinusoidal distribution in magnitude and phase accordingly, as indicated in the
right half of Fig. 3.6. The inverse Fourier transform finally reconstructs the actual
spatial distribution along a circular contour at any desired radius by summing up
the corresponding set of scaled basic spatial distributions.

This interpretation appears to be less illustrative in the finite case, but it applies
as well. The same set of basic spatial distributions is summed up, but their scaling
is now informed by both inner and outer boundary conditions at the same time.

r2

rS

n=2

n=3

n=4

n=2

n=3

n=4

...

...

...

...

Fourier transform

Extrapolation

Inverse Fourier transform

Figure 3.6: Schematic illustration of the holographic procedure for backward-
propagation.
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3.7 Definition of the near-field region

The bending wave field of a plate consists of propagating and exponentially decay-
ing wave components. The latter form at the points of excitation and at structural
discontinuities, namely the plate boundaries, and are referred to as evanescent
waves. Although they decay within short distance, they do affect the immediate
area around their origin, which in this context is referred to as near-field region.
It is a structural region that is to be differentiated from the radiated near-field re-
gions of a vibrating surface, i.e. the hydrodynamic and the geometric near-field [52].
Therefore, whenever this thesis utilizes considerations regarding the near-field in
NAH, it is acknowledged that fluid-borne near-fields are physically different ef-
fects. This thesis only considers pure structural bending wave near-fields, which
may be further differentiated from near-field effects that occur when the excita-
tion is a distributed force or moment or when excitations or discontinuities of
thick structures are considered [53]. The corresponding mathematical terms pose
an inconvenience in the analysis of structure-borne sound problems because they
complicate the governing differential equations. In order to find solutions, they
are often rightfully discarded when far-field conditions sufficiently remote from
discontinuities can be assumed. The problem considered in this thesis, however, is
the reconstruction of the wave field from measurements close to structural discon-
tinuities, wherefore evanescent wave components cannot be discarded a priori on
the same basis. Moreover, if the aim is to reconstruct the wave field at the source
where evanescent waves are suspected to prevail, it is comprehensible that the
information of these wave components has to be incorporated. Practically, this
means that the hologram contour lines have to be located within the near-field
region of the wave field. Only if this condition is met, will use of the formulae
presented in Section 3.3 produce accurate results.

This raises the question about the spatial extent of the near-field region in
practice and its definition in general. How close to the source does one have to get
for measurement? The constituents of the analytical solution for a point-driven
infinite plate, given in Eq. (3.6.1), may therefore be considered. The solution is
not precisely separated into pure propagating and evanescent components because
the Hankel function of real argument shows near-field behavior as well. However,
the term that involves the imaginary argument is purely evanescent, wherefore the
level difference

∆LH = 10 log
H(2)

0 (−jkBr)

H
(2)
0 (kBr)

2 (3.7.1)

may be used to analyze the relative decay of the evanescent wave in a theoretical
wave-based context. From Fig. 3.7, where ∆LH is plotted over the dimensionless
distance r/λB = kBr/2π, it is observed that the evanescent wave is diminished by
almost 30 dB at a distance r = λB/2 and by almost 60 dB at a distance r = λB. It
is noted that almost the same decay is found when the level difference is calculated
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Figure 3.7: Relative decay of the evanescent bending wave.

through exponential functions ejkBr and e−kBr that are used to describe propa-
gating and evanescent bending waves, respectively, in one-dimensional structures.

The condition most often found in literature is that evanescent waves can be ne-
glected if kBr ≫ 1, which equals r/λB ≫ 1/(2π). It can be estimated that in prac-
tice the effect of the near-field region will be negligible at distances greater than
r = λB/2. The near-field region might also be considered in terms of structure-
borne power flow. In the immediate area surrounding a vibration source there is a
significant amount of reactive power fluctuation. A near-field limit might therefore
be chosen where the reactive power fluctuation is less by a significant amount than
the corresponding active power [54]. This approach is not without difficulty. It
is known that in isolation, propagating waves transmit energy while evanescent
waves do not. On the other hand, if incoming and outgoing waves are present
at once, evanescent waves can interact to transmit energy, as has been shown for
thin beams [55] and plates [56]. Given a set of excitation forces in close proximity,
this interaction should be accounted for. In early research on power flow, it was
deduced that the near-field practically vanishes half a wavelength away from the
boundary of a semi-infinite beam and approximately one wavelength away from
the boundary of a finite beam in the presence of a standing wave [57].

In general, researchers often assume evanescent waves to vanish at a distance
of about half a wavelength from stuctural discontinuities, e.g. [53, 58], notably if
active control of bending vibration is attempted [59, 60]. For the purpose of this
thesis, this limit shall be used as point of reference. It is not a strict criterion,
however. In practice, the successful resolution of the decaying near-field depends
greatly on the dynamic range of the measurement system. The presence of noise
or the use of low sensitivity accelerometers may therefore require measurement
closer to the source than λB/2, wherefore λB/4 might be a more suitable point of
reference in practice. For a conclusion in this regard it is referred to Chapter 6.
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3.8 Remarks on the geometrical limitation

It is evident that the polar coordinate system that is used to describe the propaga-
tion of bending wave components is not best suited for a medium that constitutes
a rectangular plate. As a consequence, it would be desirable to formulate the
procedure in Cartesian coordinates, since these are conformal to the geometry
of rectangular plates. However, recalling the nature of Fourier-transform-based
NAH, to which NSBSH is analogous to, it becomes clear that this is not possi-
ble. As discussed in Section 3.1 and as can be understood from Eqs. (3.1.1) and
(3.1.3), extrapolation needs to be performed in a coordinate system that allows
the following: The measured hologram needs to form a surface that is normal to
the general direction of the propagating waves and the surface must be constant in
one separable coordinate along which the field is to be projected. In other words,
the section of the wave field that is used as a hologram must not be a function
of the projection-coordinate. For the two-dimensional problem of bending wave
propagation in a thin plate, these requirements are only met in polar coordinates
where the Hankel functions represent eigenfunctions independent of the coordinate
φ. In Cartesian coordinates, an encompassing hologram would be a function of
both coordinates x and y, which is not permitted.

Despite the mathematical analogy to NAH, NSBSH is a problem of its own in
many ways. Apart from a different practical measurement procedure, the descrip-
tion of the wave field, the field variables and the boundary conditions are different
since elastic wave propagation is considered. Section 3.9 shows that the required
data processing can be handled with the same basic tools used in NAH, however.

3.9 Stabilization techniques

NSBSH is an example of what in mathematical physics is referred to as an inverse
problem, which is to be differentiated from a direct problem. As is noted by
Kabanikhin in a survey paper on the topic [61], there is no strict definition for
inverse problems. Following Keller [62], who declares two problems inverse to
each other if the formulation of one problem involves the other, he states that the
inverse problem seeks to find unknown functions that include some of the functions
occuring in the formulation of the direct problem. For stationary processes, direct
problems usually seek to determine a response function that describes a physical
field at any point of a given spatial domain, based on knowledge of the domain,
the carrier medium, the source function and the boundary conditions. Because
in NSBSH the sought-after propagation functions require the determination of
boundary conditions through similar propagation functions for the direct problem,
it is an inverse problem according to the above definition.

Inverse problems are very often ill-posed problems. The concept of well-posedness
and ill-posedness goes back to Hadamard [63], who defines a problem as well-posed
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3 Theory for Near-Field Structure-Borne Sound Holography

if it has a solution that is unique and is a continuous function of the input data.
A problem is therefore ill-posed if it has more than one solution or none at all, or
if small errors in the data lead to large errors in the solutions. In the latter case,
the solution will be very sensitive to perturbances of either the input data or the
matrix that represents the system of equations, which is called an ill-conditioned
system. As seen in Section 3.7, ill-conditioning unfortunately applies to the math-
ematical models used in NSBSH. It is therefore necessary to apply some form of
data conditioning or enhanced processing in order to stabilize the reconstruction.

3.9.1 Wavenumber filtering

If noisy input data causes the extrapolated higher order Fourier components to
blow up, as discussed in Section 3.7, it is natural to try to reduce the contribution
of these components. This is generally known as low-pass wavenumber filtering.
The most basic filter is realized by a rectangular function that sets the problematic
components to zero. The sharp cut-off of a rectangular function can cause ringing
effects, however, which is why tapered windows are preferred in general. Fairly
early in the development of NAH, a filter with exponential taper was suggested [64]
for planar geometry:

Xf (k, kc, α) =


1− 1

2e
(k/kc−1)/α, k ≤ kc

1
2e

1−(k/kc)/α, k > kc
, (3.9.1)

in which k =

k2x + k2y represents the so-called radiation circle outside of which

wavenumbers indicate evanescent waves, meaning they are subsonic. A thor-
ough discussion of the wavenumber space in regard to radiation problems and
the wavenumber filtering required in NAH is given by Williams [28]. The expo-
nential taper of the filter is explained by the exponential rise in Eq. (3.1.2) for
subsonic wavenumbers. The parameter kc represents the cut-off number and α
determines the slope of the cut-off. The cut-off value has to be chosen by hand,
which requires a certain amount of a priori knowledge of the source. It was there-
fore suggested to use some form of regularization that can replace the procedure
of manually selecting such filter parameters [65].

Although the bending wave near-field is a different physical effect than the
hydrodynamic near-field, its mathematical description is similar, wherefore the
numerical effect to be battled is similar. It is therefore assumed that the same
type of filter can be used to stabilize the extrapolation of a bending wave field:

Xp(n, nc, α) =


1− 1

2e
(|n|/nc−1)/α, |n| ≤ nc

1
2e

1−(|n|/nc)/α, |n| > nc

, (3.9.2)

in which nc represents the cut-off number for the (positive and negative) n Fourier
components vn.
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3.9 Stabilization techniques

The stabilized mathematical procedure for infinite plates is summarized as

v(rS, φ, ω) = F−1
φ


Xp(n, nc, α)Q

inf
n (rS, ω)


Qinf

n (r1, ω)
Qinf

n (r2, ω)

−1 Fφ{v(r1, φ, ω)}
Fφ{v(r2, φ, ω)}


,

(3.9.3)
and for finite plates it is summarized as

v(rR, φ, ω) = F−1
φ

Xp(n, nc, α)Q
fin
n (rR, ω)


Qfin

n (r1, ω)
Qfin

n (r2, ω)
Qfin

n (r3, ω)
Qfin

n (r4, ω)


−1 

Fφ{v(r1, φ, ω)}
Fφ{v(r2, φ, ω)}
Fφ{v(r3, φ, ω)}
Fφ{v(r4, φ, ω)}


 .

(3.9.4)
Although formally similar, the filter according to Eq. (3.9.2) is a rather loose

analogy to Eq. (3.9.1). Unlike k, which differentiates propagating and evanescent
waves that are radiated from a structure, |n| does not do the same for bending
waves in a structure. Equation (3.9.2) merely states to which extent a certain num-
ber of Fourier components are excluded from the reconstruction process, without
discerning propagating or evanescent components. This is shown in Fig. 3.8. Be-
cause n relates to the N sampling points used for measurement, nc has a very
practical meaning nonetheless. In Fig. 3.8, the reconstruction of the velocity dis-
tribution along the source contour of a fictitious source is considered. Despite
only slight noise corruption, the reconstruction of the corresponding higher-order
Fourier components becomes increasingly unstable. The filter cuts the problematic
components from the spectrum, depending on nc and α.

3.9.2 Tikhonov regularization

A look at Eqs. (3.3.1) and (3.4.1) shows that the problem considered in this thesis
is of the form

v(rR, φ, ω) = F−1
φ


gA−1b


, (3.9.5)

where g is the image velocity propagator, A ∈ Cm×m is the square matrix formed
by the hologram velocity propagators and b ∈ Cm×1 is the Fourier transformed
measured velocity. The heart of the problem is to find

x = A−1b, (3.9.6)

that is to solve the linear system of equations

Ax = b, (3.9.7)

with x ∈ Cm×1 being the solution for the expansion coefficients that determine
the reconstructed velocity.
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3 Theory for Near-Field Structure-Borne Sound Holography

An important tool in the analysis of ill-posed problems, assuming A ∈ Cl×m

with l ≥ m for generality, is the singular value decomposition (SVD)

A = UΣV T =

m
i=1

uiσiv
T
i . (3.9.8)

Here, U ∈ Cl×l and V ∈ Cm×m are matrices consisting of the orthonormal
column vectors ui and vi, respectively. The diagonal elements of the matrix
Σ = diag(σ1, ..., σn) ∈ Cl×m are the singular values of A that appear in de-
creasing order σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0. This means that A maps the orthonormal
vectors vi into the orthogonal directions ui, with the singular values σi as scaling
factors. It is thus possible to determine the solution to the system of equations

x =

rank(A)
i=1

uTi b

σi
vi. (3.9.9)

Although the system in Eq. (3.9.7) is fully determined and therefore has an exact
solution, A is ill-conditioned if the wave field of a finite plate is to be reconstructed.
This can be seen by looking at the condition number

cond(A) = ∥A∥2
A−1


2
= max(σi)/min(σi), (3.9.10)

in which ∥A∥2 is the Euclidian norm of A. The condition number of A is the
ratio of its largest singular value to its smallest and quantifies the sensitivity of
the solution x to a small change in the input data b. The higher the condition
number, the more likely it is for the solution to become erratic. The condition
numbers that are obtained for A in the finite plate scenario are plotted in Fig. 3.9,
as a function of the Fourier component index n. Curves are shown for different
spans of the inner and outer hologram contour

dspan = r3 − r2, (3.9.11)

for different frequencies that are given by the number of bending wavelengths per
unit meter6. The numbers are very bad, especially if dspan is large compared to the
considered bending wavelength. This indicates that a straightforward application
of the procedure in practice could fail quite spectacularly if the numerical side is
left unmodified.

A common way to stabilize an ill-posed and ill-conditioned problem is to intro-
duce additional information about the desired solution. This is called regulariza-
tion. Due to the large number and diversity of ill-posed problems that have been
considered over time, a vast range of different regularization methods have been
developed. Algorithms can be separated in direct and iterative methods [66] and
in addition there are different methods for choosing the regularization parameters.

6See the description in Section 5.4
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3.9 Stabilization techniques

Tikhonov regularization is probably the most common form of direct regulariza-
tion, although it is not necessarily the best choice for any given problem. The main
idea behind Tikhonov regularization is to alter the original ill-posed problem and
consider a less sensitive approximation instead. If the alteration is subtle enough,
then the solution to the regularized problem will hopefully be an acceptable ap-
proximation of the true solution. In mathematical terms, Tikhonov regularization
of a discrete ill-posed problem is a minimization problem

min{∥Ax− b∥22 + λ2Ω(x)2}, (3.9.12)

where the function ∥Ax− b∥22 is called the residual norm, the function Ω(x) is
called the smoothing norm and λ is called the regularization parameter. In so-
called standard form, the regularized solution is

xreg = argmin{∥Ax− b∥22 + λ2∥x− x∗∥22}, (3.9.13)

where x∗ is an a priori estimation of the solution vector x. The regularized solution
of Eq. (3.9.13) can also be obtained by means of SVD and filter factors fi:

xreg =

m
i=1

fi
uTi b

σi
vi =

m
i=1

σ2
i

σ2
i + λ2

uTi b

σi
vi =

m
i=1

σiu
T
i b

σ2
i + λ2

vi. (3.9.14)

In this way, Tikhonov regularization can be interpreted as a filter that “damp-
ens” problematic components corresponding to the singular values σi < λ. Equa-
tion (3.9.14) is important because it allows a very simple numerical implementa-
tion of Tikhonov regularization. In Chapters 5 and 6 the corresponding part of
a publicly available MATLAB R⃝-toolbox created by Hansen [67] is used for that
purpose.

Equation (3.9.13) shows that the regularized solution depends heavily on the
choice of the regularization parameter λ but may also be informed by an estimation
x∗ of the expected solution. Essentially, λ dictates the tradeoff between stability
and accuracy. Seen in the physical context of this thesis, the larger λ is chosen,
the smoother the reconstruction, but the greater the risk of underestimating the
correct response magnitude. On the other hand, small λ mean that the original
problem is approximated closely, leaving it probably unstable. It is noted that the
choice of the regularization parameter is an extensive topic by itself that offers
different established methods. No such method will be applied or discussed in this
thesis since an investigation of a suitable method would steer too far outside its
scope. Nevertheless, the choice of the regularizaton parameter is crucial and will
be commented on.
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Figure 3.8: Filter curves and wavenumber spectrum for (1m)/λB = 10; ana-
lytical solution; reconstruction from backward-propagation;

α = 0.05, α = 0.1, α = 0.2.
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Figure 3.9: Condition numbers for NSBSH in the case of finite plates;
dspan = 2λB, dspan = 5λB, dspan = 10λB.
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4
Theory for Kirchhoff-Helmholtz

integral-based bending wave field
extrapolation

Assuming far-field conditions, this chapter describes the utilization of the Kirchhoff-
Helmholtz integral for the extrapolation of bending wave fields in thin homoge-
nous plates. To that end, the governing differential equation is used to derive the
two-dimensional form of Green’s function first. The two-dimensional form of the
Kirchhoff-Helmholtz integral is then derived generally and ultimately formulated in
terms of the normal structural velocity of a plate. Both infinite and finite plates
are thereby considered.

4.1 Green’s function for bending wave propagation in
the far-field

In textbooks on physics, Green’s functions are usually derived for either one-
or three-dimensional coordinate systems. It is less straightforward to derive the
two-dimensional case in a direct manner. One way to do so is to start from the
inhomogenous wave equation in Cartesian coordinates and use Fourier transforms
and contour integration. This approach is used by Hoerchens [21], for example,
in order to derive Green’s function for bending wave propagation in a thin plate.
Here, it will be applied in order to derive Green’s corresponding far-field function.

In order to find Green’s function for the propagation of bending waves in the
far-field of a thin homogenous plate, first the inhomogenous bending wave equation
is considered

B′

m′′∇
2∇2u(x, y, t) +

∂2u(x, y, t)

∂t2
= −F0(t)

m′′ δ(x− x0)δ(y − y0), (4.1.1)
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4.1 Green’s function for bending wave propagation in the far-field

where F0(t) is a point force at the position x0, y0. Apart from the excitation,
Eq. (4.1.1) is identical to Eq. (3.2.1). A temporal Fourier transform of Eq. (4.1.1)
yields

∇2∇2u(x, y, ω)− k4Bu(x, y, ω) = −Q0(ω)δ(x− x0)δ(y − y0), (4.1.2)

where
Q0(ω) =

F0(ω)

B′ . (4.1.3)

Because Eq. (4.1.2) is supposed to describe a linear system, it can be separated
into the following equations

∇2u1(x, y, ω) + k2Bu1(x, y, ω) = −Q0,1(ω)δ(x− x0)δ(y − y0), (4.1.4)

∇2u2(x, y, ω)− k2Bu2(x, y, ω) = −Q0,2(ω)δ(x− x0)δ(y − y0). (4.1.5)

As seen in Section 3.2, u2 represents an evanescent wave and might therefore be
neglected if far-field conditions are given. In this case, bending wave propagation is
adequately described by Eq. (4.1.4), i.e. the well-known Helmholtz equation with
a wavenumber that includes the effect of dispersion. Green’s two-dimensional free
space function G(x, x0|y, y0) is defined as the solution to the following inhomoge-
nous equation

∇2G(x, y|x0, y0) + k2BG(x, y|x0, y0) = −δ(x− x0)δ(y − y0). (4.1.6)

The dependence on ω is omitted in the notation of Green’s function. This is done
to ensure more compact equations in the following and to further differentiate
Green’s functions from the propagation functions used in Chapter 3. Taking the
spatial Fourier transform of Eq. (4.1.6),

FxFy{∇2G(x, y|x0, y0)+k2BG(x, y|x0, y0)} = FxFy{−δ(x−x0)δ(y−y0)}, (4.1.7)

yields
(−k2x − k2y)G(kx, ky) + k2BG(kx, ky) = −ejkxx0ejkyy0 (4.1.8)

which can be rearranged to

G(kx, ky) = − ejkxx0+jkyy0

k2B − k2x − k2y
. (4.1.9)

The inverse spatial Fourier transform of this equation leads to the following integral
representation of Green’s function

G(x, y|x0, y0) = F−1
x F−1

y {G(kx, ky)}

=− 1

4π2

 ∞

−∞

e−j[kx(x−x0)+ky(y−y0)]

k2B − k2x − k2y
dkx dky.

(4.1.10)
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Figure 4.1: Path for the contour integral in Eq. (4.1.11).

By factorizing the denominator in Eq. (4.1.10), one of the integrals can be inter-
preted as a contour integral in the ky-plane, so that

G(x, y|x0, y0) =
1

4π2

 ∞

−∞


C

e−j[kx(x−x0)+ky(y−y0)]

ky +

k2B − k2x

1

ky −

k2B − k2x

dky dkx.

(4.1.11)
By choosing the contour path shown in Fig. 4.1, application of the residue theorem
for a single pole, 

C
f(z) dz = 2πj lim

z→a
(z − a)f(z), (4.1.12)

leads to

G(x, y|x0, y0) = − j

4π

 ∞

−∞

e−j[kx(x−x0)+
√

k2B−k2x(y−y0)]
k2B − k2x

dkx. (4.1.13)

In order to solve the remaining integral, substitutions have to be carried out. The
following substitutions can be used [21]:

kx = kB cos(τ − jυ), (4.1.14)
dkx = jkB sin(τ − jυ)dυ, (4.1.15)

k2B − k2x = kB sin(τ − jυ), (4.1.16)

x− x0 = r cos(τ), (4.1.17)
y − y0 = r sin(τ), (4.1.18)

r =

(x− x0)2 + (y − y0)2. (4.1.19)

By inserting these expressions in Eq. (4.1.13), and by using the identity

cosh(υ) = cos(τ − jυ) cos(τ) + sin(τ − jυ) sin(τ), (4.1.20)
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the following integral is obtained:

G(r|r0) =
1

4π

 ∞

−∞
e−jkBr cosh(υ) dυ. (4.1.21)

Finally, from the relation established in Appendix B,

H
(2)
0 (kBr) =

j

π

 ∞

−∞
e−jkBr cosh(υ) dυ, (4.1.22)

Green’s function for the far-field-propagation of a bending wave in a thin homoge-
nous plate is obtained as

G(r|r0) = G2D(r|r0) = − j

4
H

(2)
0 (kBr). (4.1.23)

It is noted that the sign in Eq. (4.1.23) depends on the choice of the sign on the
right hand side of Eq. (4.1.6). The general result is equal to that obtained for
compressional wave propagation in a fluid. The description of harmonic far-field
bending wave propagation in terms of the normal plate response is therefore no
different from acoustic pressure propagation in a fluid. This relates to wave field
extrapolation as well. Since Kirchhoff’s integral equation is known to allow the
extrapolation of an airborne wave field, it should allow the extrapolation of a
bending wave field as well.

4.2 The general Kirchhoff-Helmholtz integral for the
exterior problem

In order to find the integral equation that permits the extrapolation of a bending
wave field in a homogenous plate, the general form of the Kirchhoff-Helmholtz
integral for any type of homogenous and isotropic volume is derived first. The
sought-after extrapolation method will be referred to as Kirchhoff-Helmholtz inte-
gral extrapolation (KHI). The derivation is based on Williams’ considerations [28]
rather than the somewhat shorter methodology used in other relevant textbooks,
e.g. [68], in which the Kirchhoff-Helmholtz integral follows from the general solu-
tion of the inhomogenous wave equation. In the following expressions, the function
argument ω is omitted again.

A Volume V bounded by the surface S = Si + S∞ is considered, as depicted
in Fig. 4.2. S∞ is imagined as the surface of a sphere whose radius tends toward
infinity. If only sources inside Si are present, it is assumed that the continuous
functions Φ(r) and Ψ(r) satisfy the homogenous Helmholtz equations

∇2Φ+ k2Φ = 0, (4.2.1)

∇2Ψ+ k2Ψ = 0, (4.2.2)
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Figure 4.2: Infinite volume V surrounding the boundary surface Si with the sur-
face normal n.

for all points r =

(x− x0)2 + (y − y0)2 + (z − z0)2 within the volume, including

the surface. Since the derivatives of these functions are continuous as well, the
functions obey Green’s second theorem

V
(Φ∇2Ψ−Ψ∇2Φ)dV =


S
(Φ

∂Ψ

∂n
−Ψ

∂Φ

∂n
) dS, (4.2.3)

in which ∂
∂n is considered to be the derivative with respect to the surface normal

n. Here, the normal is chosen such that it points toward the volume of interest, as
shown in Fig. 4.2. By subtraction of Eq. (4.2.1) times Ψ from Eq. (4.2.2) times Φ,
and through substitution of the resulting expression in Eq. (4.2.3), the following
integral equation is obtained:

S
(Φ

∂Ψ

∂n
−Ψ

∂Φ

∂n
) dS = 0. (4.2.4)

Assuming that a wave field described by Ψ(r) is only generated by a point source
at r′, then Ψ(r) is Green’s free space function G3D(r|r′) = G(r|r′), i.e. the solution
to the inhomogenous equation

∇2G(r|r′) + k2G(r|r′) = −δ(r − r′). (4.2.5)

Equation (4.2.5) represents the three-dimensional form of Eq. (4.1.6) that has been
presented in Section 4.1. Because the principle of reciprocity holds for Green’s
functions,

G(r|r′) = G(r′|r). (4.2.6)

The singularity presented by the point source violates the requirement of continuity
in Green’s theorem, however. In order to apply the theorem, the source point r′
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Figure 4.3: Geometry for the derivation of the exterior problem Kirchhoff-
Helmholtz integral; Green’s theorem is applicable in the volume V
bounded by the surfaces Sp, Si and S∞.

can be excluded from the volume by surrounding it with a small sphere of radius
ϵ and surface Sp, as shown in Fig. 4.3. Both Φ(r) and G(r|r′) are thus continuous
in V . It follows that

S = Sp + Si + S∞. (4.2.7)

Using Eq. (4.2.7) with Eq. (4.2.4) results in

0 =


Si

(Φ(r)
∂G(r|r′)

∂n
−G(r|r′)∂Φ(r)

∂n
) dSi

+ lim
ϵ→0


Sp

(Φ(rp)
∂G(rp|r′)

∂n
−G(rp|r′)

∂Φ(rp)

∂n
) dSp

+ lim
r∞→∞


S∞

(Φ(r∞)
∂G(r∞|r′)

∂n
−G(r∞|r′)∂Φ(r∞)

∂n
) dS∞.

(4.2.8)

By considering Green’s function on the the small sphere

G(rp|r′) =
e−jk|rp−r′|

4π|rp − r′|
=

e−jkϵ

4πϵ
(4.2.9)

and the surface element in spherical coordinates

dSp = ϵ2 sin θ dθ dφ ≡ ϵ2dΩ, (4.2.10)

it can be shown that for the second integral in Eq. (4.2.8)

lim
ϵ→0


Sp

(Φ(rp)
∂G(rp|r′)

∂n
) dSp = lim

ϵ→0
Φ(rp)


Ω

1

4π

∂e−jkϵ/ϵ

∂ϵ
ϵ2 dΩ = −Φ(r′)

(4.2.11)

46



4 Theory for Kirchhoff-Helmholtz integral-based extrapolation

and

lim
ϵ→0


Sp

(−G(rp|r′)
∂Φ(rp)

∂n
) dSp = lim

ϵ→0

∂Φ(rp)

∂ϵ


Ω

e−jkϵϵ

4π
dΩ = 0. (4.2.12)

From a physical point of view, the third integral in Eq. (4.2.8) must vanish because
there are no sources that could contribute from infinity. By using Green’s function
on the infinite sphere

G(r∞|r′) = e−jk|r∞−r′|

4π|r∞ − r′|
≈ e−jk|r∞−r′|

4πr∞
, (4.2.13)

the integral must be

lim
r∞→∞

1

4π


S∞

(−Φ(r∞)
∂

∂r∞

e−jk|r∞−r′|

r∞
+

e−jk|r∞−r′|

r∞

∂Φ(r∞)

∂r∞
) dS∞ = 0.

(4.2.14)

Because the mathematical solution of the Helmholtz equation allows both incoming
and outgoing waves, Eq. (4.2.14) does not hold by default, however. For the
integral to vanish, all incoming waves have to be rejected. This is achieved by
applying Sommerfeld’s radiation condition [46]:

lim
r∞→∞

r∞


∂Φ(r∞)

∂r∞
+ jkΦ(r∞)


= 0. (4.2.15)

Inserting Eqs. (4.2.11), (4.2.12) and (4.2.14) in Eq. (4.2.8) yields the Kirchhoff-
Helmholtz integral equation for the exterior problem

KΦ(r′) = −


Si

(G(r|r′)∂Φ(r)
∂n

− Φ(r)
∂G(r|r′)

∂n
) dSi, (4.2.16)

where

K =


1, r′ ∈ V

1/2, r′ ∈ Si

0, r′ /∈ V

.

If r′ is a point on Si, only half of Sp lies within V , wherefore the left hand side
of Eq. (4.2.16) will have a factor 1/2. If r′ is a point outside of Si, the left hand
side of Eq. (4.2.16) will be zero since the homogenous case of Eq. (4.2.4) applies.
The latter means that the wave field will be computed as zero if the point r′ and
the source are located on the same side of the boundary. Since the corresponding
factor K is the same for any iteration of the integral, it will be omitted after
Section 4.3.

Most importantly, Eq. (4.2.16) states that the wave field at any point r′ in a
source-free volume surrounding an arbitrary boundary surface Si can be calculated
from knowledge of the field and the field gradient on the surface. The first inte-
grand represents the contribution of monopole sources across the surface, while
the second integrand can be interpreted as the contribution of dipole sources.

47



4.3 The general Kirchhoff-Helmholtz integral for a combined boundary problem

4.3 The general Kirchhoff-Helmholtz integral for a
combined boundary problem

The derivation in Section 4.2 can be adapted to suit a combined boundary value
problem. It is assumed that the volume of interest is now bounded by two arbitrary
finite surfaces Si and Se, as depicted in Fig. 4.4.

Se
Si

Sp ri-r'

ri

r' rp

re

V

n

ε
n

n

Figure 4.4: Geometry for the derivation of the combined problem Kirchhoff-
Helmholtz integral; Green’s theorem is applicable in the volume V
bounded by the surfaces Sp, Si and Se.

It can be imagined that sources exist inside Si and outside of Se. In order to
derive the corresponding integral, the methodology of Section 4.2 can be used,
whereby the pairs r, Si and r∞, S∞ are exchanged for ri, Si and re, Se. The only
difference to the exterior problem is found in the third integral in Eq. (4.2.8), which
is taken over the finite surface Se now and will not vanish. As a consequence, the
Kirchhoff-Helmholtz integral for the combined problem is

KΦ(r′) =−


Si

(G(ri|r′)
∂Φ(ri)

∂n
− Φ(ri)

∂G(ri|r′)
∂n

) dSi

−


Se

(G(re|r′)
∂Φ(re)

∂n
− Φ(re)

∂G(re|r′)
∂n

) dSe,

(4.3.1)

where

K =


1, r′ ∈ V

1/2, r′ ∈ Si ∨ Se

0, r′ /∈ V

.

The statement of Eq. (4.3.1) is clear: If the wave field and its gradient are known
across both the inner and the outer bounding surface, the field in the encompassed
volume can be determined at any point.
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4 Theory for Kirchhoff-Helmholtz integral-based extrapolation

4.4 Applicability of the general Kirchhoff-Helmholtz
integral to a 2D-problem

Physically, the 2D-problem can be viewed as a special case of the 3D-problem,
i.e. the case where the field distribution is independent of a third coordinate.
This reasoning can be employed for 2D-applications of the Kirchhoff-Helmholtz
integral, as discussed by Spors [69] or Rabenstein et al. [70]. If the wave field
does not change along the third coordinate, the normal derivatives of the field ∂

∂n
are independent of that coordinate as well. The considered volume can then be
interpreted as a prism, as illustrated in Fig. 4.5. The surface integral over Si can
therefore be split into an integral along the contour C and an integral over z.

C
x

y

z

Figure 4.5: Considered volume for the Kirchhoff-Helmholtz integral if the wave
field does not depend on the z-coordinate.

Equation (4.2.16) is thus rewritten as

Φ(r′) = −


Si

G3D(r|r′)
∂Φ(r)

∂n
dSi +


Si

Φ(r)
∂G3D(r|r′)

∂n
dSi

= −

C

∂Φ(r)

∂n

 ∞

−∞
G3D(r|r′) dz dC +


C
Φ(r)

 ∞

−∞

∂G3D(r|r′)
∂n

dz dC.

(4.4.1)

Using the relation between two- and three-dimensional free-space Green functions
for a medium free of shear stresses [28] ∞

−∞
G3D(r|r′) dz = − j

4
H

(2)
0 (k


(x′ − x)2 + (y′ − y)2) = G2D(r|r′), (4.4.2)

Eq. (4.4.1) becomes

Φ(r′) = −

Ci

(G2D(r|r′)
∂Φ(r)

∂n
− Φ(r)

∂G2D(r|r′)
∂n

) dCi. (4.4.3)
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Equivalently, Eq. (4.3.1) becomes

Φ(r′) =−

Ci

(G2D(ri|r′)
∂Φ(ri)

∂n
− Φ(ri)

∂G2D(ri|r′)
∂n

) dCi

−

Ce

(G2D(re|r′)
∂Φ(re)

∂n
− Φ(re)

∂G2D(re|r′)
∂n

) dCe.

(4.4.4)

These results show that the Kirchhoff-Helmholtz integral can be applied to
two-dimensional problems as well, given that the corresponding Green function
is known.

4.5 The Kirchhoff-Helmholtz integral for infinite plates

For thin plates in bending vibration, for which Eq. (3.2.35) is valid, the structural
velocity can be assumed not to change along the coordinate normal to the plate
surface. In other words, the normal surface velocity is more or less equal to that
of the neutral layer. Bending wave propagation therefore poses a two-dimensional
problem, for which Green’s function has been derived in Section 4.1. The desired
integral formulation requires the derivative of Green’s function with respect to the
contour normal n

∂

∂n
G2D(r|r′) =

j

4
kBH

(2)
1 (kB|r − r′|) cos(α), (4.5.1)

where α is the angle between n and the vector from the considered field point
to the boundary contour position, depicted in Fig. 4.6. If the field of the normal
velocity Φ(r, ω) = v(r, ω) is considered, inserting Eqs. (4.1.23) and (4.5.1) into
Eq. (4.4.3) yields an explicit formulation of the Kirchhoff-Helmholtz integral for
the infinite plate:

v(r′, ω) =

j

4


Ci


H

(2)
0 (kB|r − r′|) ∂

∂n
v(r, ω) + v(r, ω)kBH

(2)
1 (kB|r − r′|) cos(α)


dCi.

(4.5.2)

In practice, the boundary contour Ci has to be divided into N segments, wherefore
Eq. (4.5.2) will be approximated by the sum

v(r′, ω) =

j

4

N
m=1


H

(2)
0 (kB|rm − r′|) ∂

∂n
v(rm, ω) + v(rm, ω)kBH

(2)
1 (kB|rm − r′|) cos(α)


∆Ci.

(4.5.3)
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r-r'

r+Δ

r'

r

Ci

α
r−Δ
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x

y

Δr
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∞

Figure 4.6: Geometry of the Kirchhoff-Helmholtz integral for an infinite plate;
boundary contour; auxiliary contour; • normal point force;
extrapolatable plate area.

The corresponding geometry used in this thesis is depicted in Fig. 4.6. The
required gradient of the field in the direction of the contour normal n is obtained
by approximation through the difference quotient

∂

∂n
v(r, ω) ≈ ∆v(r, ω)

∆r
=

v(r+∆, ω)− v(r−∆, ω)

r+∆ − r−∆
. (4.5.4)

The procedure of KHI is straightforward. The normal velocity has to be sampled
along the actual boundary contour of radius r and along two auxiliary contours of
radius r+∆ and r−∆, respectively. The field along the boundary is thus obtained
directly, at a distance dst,i from the sources, while the corresponding gradient
of the field is obtained through Eq. (4.5.4), depending on the boundary contour
distance

∆r = r+∆ − r−∆. (4.5.5)

The integral can then be evaluated directly without greater numerical difficulty.
It is important to note that KHI does not require polar coordinates or circular
contours but can be performed with any type of geometry. The circular geometry
is reasonable, however, and best suited to compare KHI with NSBSH.
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4.6 The Kirchhoff-Helmholtz integral for finite plates

Analogous to Section 4.5, the explicit formulation of the Kirchhoff-Helmholtz in-
tegral for the finite plate is given as

v(r′, ω) =

j

4


Ci


H

(2)
0 (kB|ri − r′|) ∂

∂n
v(ri, ω) + v(ri, ω)kBH

(2)
1 (kB|ri − r′|) cos(α)


dCi

+
j

4


Ce


H

(2)
0 (kB|re − r′|) ∂

∂n
v(re, ω) + v(re, ω)kBH

(2)
1 (kB|re − r′|) cos(β)


dCe,

(4.6.1)

in which α and β are the angles between the boundary contour normals and
the vectors from the considered field point to the boundary contour positions, as
depicted in Fig. 4.7. This expression will also be evaluated by a sum in practice:

v(r′, ω) =
j

4

Ni
m=1

fi,m∆Ci +
j

4

Ne
m=1

fe,m∆Ce, (4.6.2)

with

fi,m = H
(2)
0 (kB|ri,m − r′|) ∂

∂n
v(ri,m, ω) + v(ri,m, ω)kBH

(2)
1 (kB|ri,m − r′|) cos(α),

(4.6.3)

fe,m = H
(2)
0 (kB|re,m − r′|) ∂

∂n
v(re,m, ω) + v(re,m, ω)kBH

(2)
1 (kB|re,m − r′|) cos(β),

(4.6.4)

in which Ni and Ne represent the number of sampling points along the inner and
outer contours Ci and Ce, respectively. In analogy to Section 4.5, the gradients
can be approximated by difference quotients

∂

∂n
v(ri, ω) ≈

v(ri+∆, ω)− v(ri−∆, ω)

ri+∆ − ri−∆
, (4.6.5)

∂

∂n
v(re, ω) ≈

v(re−∆, ω)− v(re+∆, ω)

re+∆ − re−∆
. (4.6.6)

As seen in Fig. 4.7, the corresponding geometry can be chosen conformal to the
geometry of the plate, with a distance dst,e between plate edge and outer boundary
contour. This is the main advantage over NSBSH, although the measurement
effort is even higher. Six contours have to be sampled. Obviously, the effort for
calculation is doubled, compared to the infinite plate, because two integrals have
to be evaluated. Otherwise, the numerical procedure is identical.
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Figure 4.7: Geometry of the Kirchhoff-Helmholtz integral for a finite plate;
boundary contour; auxiliary contour; • normal point force;
extrapolatable plate area.

4.7 A boundary element approach

As is understood from the preceding sections, the KHI-approach requires a signif-
icant amount of measurement effort. Multiple contours have to be sampled in a
geometrically rigorous manner because both the velocity response and the gradient
of the velocity response have to be determined by measurement. Naturally, this
is something the engineer would rather avoid, especially if a scanning system for
automated positioning and measurement is not at hand. How this can be avoided
is a question inherently addressed by the Boundary Element Method (BEM) [71].

In the field of acoustics, the Boundary Element Method usually seeks to solve
a discretized system of Kirchhoff-Helmholtz integral equations for the boundary
of a given domain and uses the resulting solution to calculate the field within the
domain. BEM is also widely applied in structural acoustics. Since the subject
of BEM in itself is not central to this thesis, a thorough examination of BEM-
approaches for bending wave vibration exceeds the scope of this thesis. Never-
theless, a few basic considerations and practical evaluations shall be made in this
regard, which will provide an outlook on future research possibilities. In order to
show how a BEM-approach can be used in conjunction with the KHI-formulations
discussed above, the idealized case of an infinite plate is considered once more.
It is important to note that the following shows a very rudimentary way of im-

53



4.7 A boundary element approach

plementing BEM in a structural acoustics setting. This is permitted because the
considered scenario and its underlying physical model is simple: strictly outgo-
ing wave propagation in polar coordinates in an isotropic homogenous medium,
considered in the frequency domain. As a consequence, the mathematical model
required to solve the problem is simple, allowing application of BEM in a most
straightforward manner. The numerical intricacies that usually come with BEM
are therefore not addressed in this thesis.

The boundary contour C0, replacing the contour Ci in Fig. 4.6, can be di-
vided into M equal segments, i.e. boundary elements, each being represented by
a so-called collocation point that is located at the center of the segment m. If a
sufficient number of boundary elements are used, the integral over the contour is
approximately given by the sum of the elements. From Section 4.2 it is recalled
that the Kirchhoff-Helmholtz integral can also be used to recalculate the field at
any point on the boundary. Therefore, for the ith point on the boundary, the
Kirchhoff-Helmholtz integral for an infinite plate can be written as

1

2
vi = −

N
m=1


Gim

∂vm
∂n

− vm
∂Gim

∂n


∆C0. (4.7.1)

By defining matrices of dimension M × M for the contributing Green functions
and their normal derivatives

G =


G11 G12 · · · G1N

G21 G22
...

...
. . .

...
GN1 · · · · · · GNN

 , (4.7.2)

Gg =


∂G11
∂n

∂G12
∂n · · · ∂G1N

∂n

∂G21
∂n

∂G22
∂n

...
...

. . .
...

∂GN1
∂n · · · · · · ∂GNN

∂n

 , (4.7.3)

as well as column vectors of length N for the velocity and its normal derivative at
any collocation point

v =


v1
v2
...
vN

 , (4.7.4)

vg =


∂v1
∂n
∂v2
∂n
...

∂vN
∂n

 , (4.7.5)
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4 Theory for Kirchhoff-Helmholtz integral-based extrapolation

the complete system of equations required to calculate the field at all collocation
points according to Eq. (4.7.1) can be written as

1

2
v = (Ggv −Gvg)∆C0. (4.7.6)

Using matrix inversion, the system can be solved for the gradient of the plate
response along C0

vg = (G∆C0)
−1(

1

2
v −Ggv∆C0). (4.7.7)

In this way, all information required for KHI is obtained by performing discrete
measurement along one boundary contour instead of three. Obviously, BEM is
a numerical way of performing KHI, which is why it can be regarded as indirect
KHI just as well.
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5
Numerical evaluation

In this chapter, the methods proposed in the two preceding chapters are validated
and investigated through a set of simulations. Save for two special cases, the
simulated scenarios correspond to the experimental setups discussed in Chapter 6.
An infinite acrylic plate as well as a free and a simply supported plate excited by
point forces are considered. The main focus is laid on the reconstruction of both
the continuous spatial wave field and the response spectrum at a specific field point
from fictitious response data. The approaches of NSBSH, KHI and KHI-based
BEM are thereby compared directly. The simulations are mostly performed using
contaminated input data in order to test numerical sensitivity. The influence of
relevant measurement parameters, i.e. the number of sampling points, the standoff
distance and the amount of noise, is investigated through parameter studies.

5.1 Noise modeling

Even under ideal conditions, the quantities to be determined by measurement
fluctuate by a certain amount due to physical effects afflicted with statistical un-
certainty. These fluctuations are called random error and are commonly referred
to as noise. The measurement hardware, usually consisting of sensors, cables,
input connectors and A/D- converters, inevitably generates mechanical-thermal
and electrical-thermal noise. Random error is to be distinguished from system-
atic error which is a predictable inaccuracy in the measurement system, e.g. the
miscalibration of a sensor or the phase mismatch of sensors. In practice, even the
systematic error may be difficult to evaluate. An example is the positioning of the
sensors, which may not be completely accurate. If the data acquisition requires
measurements taken at many different positions, as is the case in this thesis, a
quasi-random error is introduced additionally.

Because extrapolation procedures can be numerically sensitive, their evaluation
has to include the inevitable effect of measurement noise. Inherent noise phenom-
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5.1 Noise modeling

ena exhibit Gaussian probability density distributions. This is reflected in similar
models for the simulation of noise used to evaluate inverse methods in structural
vibration [6, 72]. In this thesis, accordingly, input data is simulated as

vnoise = vexact ∆v ej∆ϕ, (5.1.1)

with the accurate velocity value vexact and the Guassian random real numbers

∆v = 1± σv, (5.1.2)
∆ϕ = 0± σϕ, (5.1.3)

with the standard deviations σv in percent of the velocity magnitude (percent of
meters per second) and σϕ in radians. In the text, the values of σϕ will be given
in degrees of phase, however. The model therefore comprises multiplicative noise
on the magnitude and additive noise on the phase of the velocity response.

By considering the level difference between contaminated and accurate input
data along a simulated measurement contour

∆Lv,input(x) = 10log
 vnoise(x)

vexact(x)

2, (5.1.4)

Fig. 5.1 gives a reference for the resulting contamination in absolute terms.
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Figure 5.1: Example for the simulated level difference between contaminated and
accurate velocity; σv = 1%, σϕ = 1 ◦; σv = 5%, σϕ = 5 ◦.

The solid curve represents an example for the resulting level difference when the
standard deviations for magnitude and phase are chosen σv = 1% and σϕ = 1 ◦,
which is the default noise included for any of the shown results in this chapter. The
dotted line results from the values σv = 5% and σϕ = 5 ◦, which is the maximum
contamination that is used in the parameter studies in Section 5.6.3. It is seen
that the former leads to really slight deviations −0.2 dB < ∆Lv,input(x) < 0.2 dB,
while the latter causes −1 dB < ∆Lv,input(x) < 1 dB almost without exception.
The noise artefacts simulated in this chapter are therefore mostly small.
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5 Numerical evaluation

5.2 Error quantity definition

The reconstruction error is considered to be the deviation of the reconstructed
velocity response from the true response. In the case of an infinite plate, the true
response is obtained by the analytical solution given in Appendix D.1. In the
case of the simply supported plate, the true response is obtained by the analytical
solution given in Appendix D.3, whereas the true response of the free plate is
assumed to be the solution obtained by FEM-analysis according to Appendix D.4.
The reconstruction error is considered in terms of the level difference

∆Lv(x, y, ω) = 10log
vrec(x, y, ω)

vsol(x, y, ω)

2, (5.2.1)

where vsol is the true velocity response and vrec is the reconstructed velocity re-
sponse. ∆Lv indicates the over- or underprediction of the true velocity at a specific
point on the plate in decibels.

Part of the reconstruction error is a systematic computational error that occurs
despite using uncorrupted input data. This will be referred to as computational
reconstruction error. It is noted that in practice the different sources of error
cannot be simply separated. It is difficult to evaluate different contributions to
the total reconstruction error. If not differentiated specifically, in this thesis the
term reconstruction error always refers to the total reconstruction error that is
the result of all impairments.

A more general prediction of the reconstruction error is considered by means of
the level difference of the spatially averaged square velocity

∆Lv(ω) = 10 log
v2rec(ω)
v2sol(ω)

, (5.2.2)

with the mean square velocity

v2(ω) =
1

N

N
i=1

v2i (x, y, ω). (5.2.3)

The definition ∆Lv(ω) stems from the definition of the logarithmic radiation effi-
ciency σ,

10 log σ = 10 log
P (ω)

ρ0cSv2(ω)
(5.2.4)

that relates the radiated acoustic sound power P normalized by the characteristic
acoustic impedance and the product of surface area and mean square velocity of
the structure. ∆Lv(ω) therefore represents the level difference that would result if
the radiation efficiency had been calculated using extrapolated instead of directly
measured normal velocities.
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5.4 Frequency representation

5.3 Plate parameters

The material parameters of the simulated plates are chosen such that they cor-
respond to the plates used in the experimental evaluation. The infinite case is
investigated in the form of an acrylic plate whose material parameters are given
in Table 5.1. For both the free and the simply suported finite case, an aluminum
plate is chosen. The parameters of the aluminum plate are given in Table 5.2.

Table 5.1: Acrylic plate properties

thickness density Young’s modulus loss factor Poisson’s ratio
[m] [kg/m3] [N/m2]

0.02 1150 3.5·109 0.06 0.375

Table 5.2: Aluminum plate properties

thickness density Young’s loss factor Poisson’s length width
modulus ratio

[m] [kg/m3] [N/m2] [m] [m]

0.005 2810 72·109 0.0001 0.31 1 1

5.4 Frequency representation

In many instances it is desirable to analyze acoustic spectra in terms of frequency.
For airborne sound problems, frequency is a familiar quantity which can easily be
related to the physics involved. Wave propagation is only marginally affected by
changes in the medium. Given structure-borne sound problems, wave propagation
is greatly affected by the material properties and the geometry of the structure.
At any given frequency, plates of different material and thickness may exhibit a
very different bending wavelength, wherefore a comparison in terms of frequency is
not especially meaningful. In this thesis, spectra are therefore generally displayed
in terms of the number of bending wavelengths per unit meter because the bending
wavelength incorporates all the crucial physical parameters. In order to have
a reference, Fig. 5.2 relates this quantity to the bending wavenumber and the
frequency for the structures in question. For convenience, “number of bending
wavelengths per unit meter” is abbreviated with “BWPM” in the text. In the
figures with spectral plots, its dimension is labeled “[1]” because it constitutes a
dimensionless quantity.
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(a) acrylic plate, simple bending
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Figure 5.2: Relation between frequency, bending wavenumber and bending wave-
lengths per unit meter in the considered frequency range.
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5.5 Reference values

The following reference values are used in the calculation of the levels given in this
thesis.

velocity v0=5·10−8m/s
force F0=1·10−6N
mechanical mobility Y0=5·10−2m/Ns

5.6 Infinite plate

5.6.1 Simulation scenario

Following the geometry depicted in Figs. 3.3 and 4.6, the scenario under consid-
eration consists of a fictitious source of normal point forces that act on an infinite
acrylic plate. The driving forces differ in magnitude and phase but do not vary
with frequency. The material parameters of the plate are given in Table 5.1. By
applying a polar coordinate system, a circular contour of radius r0 = 0.16m can
be imagined to connect the excitation points. The default measurement param-
eters used in the simulations are listed in Table 5.3: the number of sampling
points N along each hologram contour, the amount of noise through incorrect
magnitude and phase σv and σϕ, the standoff distances dst,1, dst,2, dst,i and the
contour distance ∆r according to Figs. 3.3 and 4.6. Deviations from these param-
eters are explicitly declared in the captions of the corresponding figures. Standoff
distances for NSBSH are initially chosen just less than a quarter of the wave-
length that is found for the highest frequency considered, thus lying within the
assumed near-field region. Input data is obtained by sampling the simulated plate
response with N = 48 points along each hologram contour. For the considered
frequencies the number is well above the limit dictated by Eq. (3.2.35). The total
number of utilized sampling points for NSBSH is Ntot = 2N since two contour
lines are required. For KHI, Ntot = 3N . One contour determines the velocity, and
two auxiliary contours are used to determine the corresponding normal gradient.
The BEM-approach requires only a single contour to be measured, and therefore
Ntot = N .

Each sampled plate response is corrupted by very slight random error according
to Section 5.1, whereby the values are assumed to fluctuate with the standard
deviations σv = 1% and σϕ = 1 ◦ by default. The computations utilize the
analytical solution to the problem of a thin infinite plate excited by normal point
forces, given in Appendix D.1.
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Table 5.3: Default simulation parameters for the infinite plate

N σv σϕ dst,1 dst,2 dst,i ∆r
[%] [◦] [m] [m] [m] [m]

NSBSH 48 1 1 0.015 0.03

KHI 48 1 1 0.05 0.015

BEM 48 1 1 0.05

5.6.2 Continuous spatial field reconstruction

First, the spatial reconstruction of a continuous field for the rather high frequency
f = 6820Hz, corresponding to BWPM = 10, is simulated. Figure 5.3 shows the
continuous reconstruction of the real part of the spatial velocity field by means of
the NSBSH-, KHI- and BEM-method compared to the analytical solution. With
NSBSH and KHI, the characteristics and the strength of the field are accurately
reconstructed, verifying the theory introduced for infinite plates. With BEM, the
field strength is clearly underpredicted. The blank plate area in the plot is the
field within r0, beyond which propagation is invalid. For KHI and BEM which
require sampling in the far-field, the blank plate area is larger than for NSBSH,
naturally.

Fig. 5.3 is not well-suited to estimate the true accuracy of the procedure. From
an engineering point of view, logarithmic quantities are preferred over linear quan-
tities as they tend to be more revealing for data sets that cover a large range of
magnitude. Therefore, in order to assess the reconstruction error, the level differ-
ence ∆Lv between reconstructed response and analytical solution is considered.

Fig. 5.4 shows the numerical error inherent in the implementation of the theory
for infinite plates, given very slight noise contamination. In the case of NSBSH
and KHI, the error most notably increases for those parts of the wave field that
have a vanishing response. The BEM-method, on the other hand, fails because
the number of sampling points N is too small. As is seen in Fig. 5.4d, increasing
N to a large number lets the extrapolated solution converge.
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Figure 5.3: Comparison of extrapolation methods on an infinite plate: simulated
bending wave field, f = 6820Hz ((1m)/λB = 10).
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Figure 5.4: Comparison of extrapolation methods on an infinite plate: simulated
reconstruction error, f = 6820Hz ((1m)/λB = 10).
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5.6.3 Spectral reconstruction and parameter studies

As a second step in the numerical evaluation, the reconstruction of response spec-
tra at two arbitrary positions in the near- and far-field is simulated. The near-field
position is one of the force positions. The far-field position is located at a distance
of 0.8m in radial direction. Reconstruction is performed while varying those mea-
surement parameters that would be of immediate interest in practice: the number
of sampling points, the standoff distance and the accuracy of the measured input
data, i.e. the contamination by noise.

The first result adresses the supposed main attraction of NSBSH: the possibility
to reconstruct the field at the source. Figure 5.5 compares backward-propagated
spectra obtained through different possible implementations of NSBSH, as dis-
cussed in Chapter 3: straightforward reconstruction, wavenumber-filtered recon-
struction and reconstruction based on a simplified formulation that neglects the
near-field terms. It is apparent that backward-propagation is a very sensitive pro-
cedure. Even though measurement is taken at a close distance of only 0.03m to the
source, with just a little measurement noise of 1%, straightforward reconstruction
already displays over- and undershooting and therefore deviations up to 3 dB or
more. It is not difficult to imagine that the reconstruction will fare much worse
if these parameters are increased. The reason for this behavior is an overampli-
fication of high wavenumber content, mostly determined by the highest order of
the Hankel functions used in the mathematical formulation. The more sampling
points, the higher the order of the functions involved and thus the more severe the
problem. In this example, N = 48 sampling points per contour are used, which is
more than twice the required amount.

As discussed in Section 3.9.1, this situation might be improved by applying
a wavenumber-filter. The sensitivity to both measurement noise and standoff
distance is thus significantly decreased. At low frequencies there is a uniform
underprediction of the spectrum due to the choice of the filter parameters. The
effect of different cut-off values for the filter is shown in Fig. 5.6. While a “generous”
filter is helpful in preserving the low wavenumber-content that is important at
low frequencies, it will allow overshooting at higher frequencies. Vice versa, an
“aggressive” filter prevents overshooting at higher frequencies, but cuts too much
of the low wavenumber-content. For this reason the filter cut-off should be chosen
differently for different frequency regions. Accepting the underprediction at the
low end of the spectrum, the cut-off value

nc = 1.3 · kBrmax = 2.6 · πrmax/λB (5.6.1)

and the filter slope
α = 0.1 (5.6.2)

were found to give convenient results for an infinite plate in the considered fre-
quency region. Ultimately, this amounts to a rather sharp filter whose width is
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oriented by Eq. (3.3.12), with rmax being the radius of the largest hologram con-
tour. The filter parameters were found empirically by comparing the results for
different values of nc and α at different frequencies in a couple of cases.

Using the simplified formulation for NSBSH stabilizes the results as well, al-
though the correct spectrum is significantly overpredicted throughout. It will be
seen that in practice the results for simplified backward-propagation are markedly
different. It is noted that both wavenumber-filtering and the simplified formulation
for NSBSH are only discussed in conjunction with backward-propagation. They
are ineffective for (and rather detrimental to) propagation toward the far-field.

Figure 5.7 illustrates the effect of the number of sampling points N on the
reconstruction error associated with forward-propagation, i.e. reconstruction of
the far-field. NSBSH is thereby compared to the Kirchhoff-Helmholtz integral-
based methods discussed in Chapter 4. The results for three different numbers
N are plotted over the required number of sampling points Ncrit according to the
spatial Nyquist criterion, given by Eq. (3.3.12). For NSBSH and the direct KHI-
approach, Ncrit does indeed give a good estimate on how many sampling points
to use. The curves indicate that accuracy is improved if more than Ncrit sampling
points are used. For the BEM-approach the number is not nearly enough, as is also
seen in Section 5.6.2. It has to be noted that the BEM-implementation was kept
most basic. Better results might be expected if a more sophisticated numerical
implementation is chosen. In general, NSBSH is superior at reconstructing the
low end of the spectrum. This is to be expected, seeing that the KHI-approach
neglects the near-field that is spatially extended at low frequencies.

Figure 5.8 shows how the extrapolation methods handle varying amounts of
measurement noise. NSBSH and KHI accept noise in about the same way, al-
though NSBSH is more negatively afflicted if noise increases. BEM appears to be
almost oblivious to these small increments in noise contamination. The magnitude
of systematic error is relatively large to begin with, so that the additional random
error does not change the result significantly. It is remarked that the simulated
noise contaminations do not necessarily represent realistic situations. Under un-
favorable practical conditions, even 5% error in amplitude and in phase may be
considered slight. As seen with backward-propagation, this can be enough to sink
an inverse procedure, however.

In Fig. 5.9, different values for the standoff distance, i.e. the distance between
hologram or boundary contour and source, are compared. Unlike backward-
propagation, forward-propagation through NSBSH is basically unaffected by in-
creasing standoff distances. The KHI-reconstruction improves with increasing dis-
tance from the source, as input data increasingly constitutes a pure far-field. The
same should apply for the BEM-reconstruction, but the tendencies are hard to
make out due to the larger systematic error.
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Figure 5.5: NSBSH, simulated backward-propagation on an infinite plate;
N = 48, dst,2 = 0.03m; analytical solution; wavenumber-
filtered; simplified formulation; straightforward implemen-
tation.
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Figure 5.6: NSBSH, simulated backward-propagation on an infinite plate using
different filter-cut-off values; analytical solution; nc = 1.3 ·
kBr2; nc = 2 · kBr2; nc = 3 · kBr2.
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Figure 5.7: Comparison of extrapolation methods on an infinite plate: simulated
reconstruction of a response spectrum for a varying number of sam-
pling points; analytical solution; N = 48; N = 24;

N = 12.
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Figure 5.8: Comparison of extrapolation methods on an infinite plate: simulated
reconstruction of a response spectrum for a varying amount of noise
contamination; analytical solution; σv = 1%, σϕ = 1 ◦;

σv = 3%, σϕ = 3 ◦; σv = 5%, σϕ = 5 ◦.
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Figure 5.9: Comparison of extrapolation methods on an infinite plate: simulated
reconstruction of a response spectrum for varying standoff distances;

analytical solution;
NSBSH: dst,2 = 0.03m, dst,2 = 0.045m, dst,2 = 0.06m;
KHI/BEM: dst,i = 0.03m, dst,i = 0.045m, dst,i = 0.06m.
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5.7 A quick look at the effect of structural
discontinuities

If there is one restriction that keeps the theory discussed in this thesis from be-
ing practical, it is the requirement of homogenity and isotropy in the structure.
In many engineering applications, plate structures have, by intention or not, dis-
continuities such as stiffeners, welding seams or holes. Any of these will lead to
reflection and wave conversion to some extent, which of course is not accounted
for by the free-field propagation functions utilized in this thesis. It is therefore
obvious that extrapolation by NSBSH and KHI must fail when structural discon-
tinuities are presented. Nevertheless, it is not quite clear how or to which extent.
An engineer might ask whether slight impedance differences, e.g. small obtrusions
in the plate, can be tolerated as long as the resulting reconstruction error remains
negligible. In order to comment on the severity of the restriction, the case of an
infinite plate with discontinuities will be briefly examined.

The infinite plate discussed in Section 5.6.2 will now be simulated to be stiffened
in x-direction. Four small beams of the same material are connected to the plate at
a distance of 0.4m. The beam width is identical to the thickness of the plate, and
the height is 2.5 times the thickness of the plate. The physical model that is used
to calculate the plate responses is obtained by using a simplified force substitution
approach, presented in [73]. Since the model considers coupling at discrete points
only, the distance between the coupling points along each beam was chosen smaller
than λB/4 in order to approximate a line connection. The utilized equations for
the plate response are given in Appendix D.2.

The results in Fig. 5.10 feature the magnitude of the normal velocity instead of
the real part. The magnitude represents the actual vibratory response that would
be determined by sensors in practice and is better suited to analyze the field
distribution of a plate with discontinuities. The obtained results are very clear.
Even with these arguably slight discontinuities, the methods are doomed to fail
completely. It is seen that the true response is quite intricate. The section enclosed
by the inner beams exhibits the highest magnitude because the excitation points
lie within that section. The adjacent sections are characterized by a significantly
weaker but modal field due to the insulating effect of the stiffeners. Outside these
sections, the field vanishes. The extrapolation fails to resolve any of this. A higher
magnitude along the inner section of the plate is predicted because this is where
the measurements yield the largest values, but nothing else is.

It must be concluded that any repeated obstruction, even a slight one, will render
the extrapolation methods unusable. A slight damage or a small punctuation may
not affect the results too much (in fact, the plates used for the experimental
evaluation are a little battered), but any significant discontinuity will mean that
NSBSH or KHI in their considered form cannot be used.
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Figure 5.10: Comparison of extrapolation methods on a stiffened infinite plate:
simulated bending wave field, f = 1233Hz ((1m)/λB = 4.2).
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5.8 Free plate

5.8.1 Simulation scenario

Corresponding to the geometry in Figs. 3.4 and 4.7, the scenario under consid-
eration consists of a fictitious source of normal point forces that act on a square
aluminum plate. The plate exhibits a free boundary condition, i.e. vanishing force
and moment, all around. By applying a polar coordinate system, a circular con-
tour of radius rS = 0.08m can be imagined to connect the force positions. The
forces differ in magnitude and phase but do not vary with frequency. The mate-
rial parameters of the plate are given in Table 5.2. For both NSBSH and KHI the
number of sampling points used along the inner and outer hologram or boundary
contour is referred to as Ni and Ne. The simulated measurement parameters are
listed in Table 5.4. Those parameters that determine the distances of the mea-
surement contours are depicted in Figs. 3.4 and 4.7. The required plate response
data is obtained by an FEM-solution to the problem of a completely free plate
excited by a set of normal point forces.

Table 5.4: Simulation parameters for the free/simply supported plate

Ni Ne σv σϕ dst,1 dst,2 dst,3,min dst,4,min
[%] [◦] [m] [m] [m] [m]

NSBSH 36 72 1 1 0.005 0.02 0.005 0.02

KHI 36 100 1 1

dst,i dst,e ∆r
[m] [m] [m]

NSBSH

KHI 0.04 0.04 0.02

5.8.2 Continuous field reconstruction

First, the spatial reconstruction of a continuous field for f = 439Hz (BWPM = 3)
is simulated. Fig. 5.11 shows the continuous reconstruction of the spatial field by
means of NSBSH and KHI compared to the FEM-solution. While the real part
of the normal velocity was used to show the propagation of waves in an infinte
plate in Section 5.6.2, the magnitude is chosen when finite plates are considered.
Although the magnitude cannot show the phase relations within a modal pattern,
i.e. whether the mode shapes bend in positive or negative normal direction, it has
a clear physical meaning because it represents the actual vibratory response that is
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determined by sensors in practice. NSBSH allows measurement in the near-field,
hence the smaller “restricted” area at the center of the plate. Apparently, the
field is reconstructed very well where it can be reconstructed. Unfortunately, the
restriction to hologram contours in polar coordinates means that the field cannot
be reconstructed toward the corners of the plate. A conformal geometry would not
pose a problem for the KHI-method if there was no strong near-field at the edges
of the plate. This is exactly the case, however, and so the reconstruction by means
of KHI fails. At this frequency, the chosen distance from the plate edge dst,e is not
enough to warrant the far-field assumption, resulting in a severely overpredicted
magnitude. In order to get reasonable results one would have to move further
away from the plate edges, thereby obliterating the main advantage of KHI vs.
NSBSH in this scenario.

The situation changes if high frequencies, e.g. f = 3123Hz (BWPM = 8), shown
in Fig. 5.12, are considered. Now the response calculated via KHI shows a very
good agreement with the true response, while NSBSH leads to a complete blow-up
close to the inner hologram contours and a worse result in general. Focusing on
the upper right part of the field in Fig. 5.12b, it is observed that the reconstructed
field pattern is inaccurate and that the magnitude of the “antinodes”1 tends to be
too high. The blow-up is a numerical but systematic effect. It was found that
if the inner and outer boundary contours are separated by a distance dspan that
approaches 3λB, the calculations closest to the inner contour escalate. It has to be
noted that this value has been concluded empirically and therefore must not hold
up if the simulation parameters are changed significantly. The error can occur for
very different condition numbers and despite uncontaminated input data but is
strongly related to the parameter dspan that informs the system of equations of
course. The error can be removed by choosing a sharper wavenumber-filter for
the inner field points, as seen in Fig. 5.12c. Using a cut-off value that is now
differentiated,

nc =


1.3 · kBrmax,


x2 + y2 ≤ 0.16m

0.9 · kBrmax,

x2 + y2 > 0.16m

, (5.8.1)

the results are stabilized. This kind of filtering is still simplistic and would proba-
bly need to be investigated further if the method was extended to deal with more
complicated scenarios.

It is concluded that NSBSH on finite plates inherits instabilities at high fre-
quencies or for large geometrical dimensions, which requires further stabilization
measures compared to the simpler infinite case. Problematic behavior at high fre-
quencies is not surprising for inverse procedures of this sort. If the plate response
is dominated by modes, equidistantly sampled responses are not independent any-
more. This has also proven problematic in FR-techniques, e.g. [74]. Looking at

1It is acknowledged that the terms “node” and “antinode” are usually only used given pure
modes or standing waves. Here, they shall also refer to peaks or lows if the field is not purely
modal.
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the corresponding reconstruction error across the plate, shown in Fig. 5.13, two
further observations are made. It is confirmed that the greatest error tendentially
occurs where the smallest responses have to be predicted. It is also seen that at
high frequencies NSBSH is obviously prone to higher error in general. This is not
a consequence of numerical instability because the condition number does not de-
pend on the measured responses. Also, it will be seen that the simply supported
plate shows much less reconstruction error at the same frequency. This is an error
in the physical model. The Hankel functions that were derived as eigenfunctions
for the governing differential equation can be likened to decaying cosine or sine
functions. It was merely assumed that a superposition of these functions can be
used to represent solutions for plates in polar coordinates in general. However, it
is known that sine functions do not represent suitable eigenfunctions that can be
summed up to build an analytical solution for a plate with free boundary condi-
tions. For this reason the assumption is just not very good. The assumed physical
model is only an approximation, and in the case of free boundaries the approxi-
mation does not come too close, obviously. On the other hand, the error seems to
come from a shifted field rather than from absolute miscalculation, wherefore the
results from extrapolation may still be considered very tolerable.
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Figure 5.11: Comparison of extrapolation methods on a free plate: simulated
bending wave field, f = 439Hz ((1m)/λB = 3).
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Figure 5.12: Comparison of extrapolation methods on a free plate: simulated
bending wave field, f = 3123Hz ((1m)/λB = 8).
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Figure 5.13: Comparison of extrapolation methods on a free plate: simulated
reconstruction error; a), b) f = 439Hz; c), d) f = 3123Hz.
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5.8.3 Spectral reconstruction

In many instances the acoustic engineer will be primarily interested in the response
spectrum at a specific location first and foremost. Exemplarily, the reconstruction
of a spectrum is performed at the position x = 0m, y = 0.3m. The results ob-
tained through NSBSH and KHI are compared in Fig. 5.14, in which the findings in
the previous section are confirmed. At lower frequencies the KHI-method consis-
tently overpredicts the plate response because the supposed measurement contours
are effectively placed within the near-field region. Deviations can amount to 5 dB
or even more. Comparing the distance from the edge dst,e = 0.04m to the number
of bending wavelengths per unit meter BWPM ≈ 4 at which the overprediction
subsides, indicates that the critical distance for far-field conditions is dst,e ≈ λB/7.
To be safe, the measurement contours should therefore be placed at a distance of
at least λB/6 from the discontinuities (the plate edges or the points of excitation)
generating the near-field. This is less than the distance assumed from literature
discussed in Section 3.7.

Dealing with low frequencies is the strong suit of NSBSH. Because it includes
the near-field, the results are especially accurate in the lower frequency range. It
is seen that NSBSH can work well despite ill-conditioning, at least given a low
amount of measurment noise. Most importantly, it is seen that it can be used
for spectral reconstruction despite relying on approximative functions that form
the physical model. It does not fall apart at high frequencies. In practice, the
problems discussed in Section 5.8.2 should lead to larger reconstruction errors,
given higher uncertainties in the measurement.
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Figure 5.14: Comparison of extrapolation methods on a free plate: simulated
reconstruction of a response spectrum; FEM-solution;

NSBSH; KHI.

5.9 Simply supported plate

5.9.1 Simulation scenario

The simulated scenario for the simply supported plate is identical to that of the
free plate described in Section 5.8.1, except for the boundary condition. Now a
“simple support” is imposed all around, meaning that there is zero velocity and
moment along the four edges. Since there is a well-known analytical solution to
the problem, given in Appendix D.3, no FEM-computation is necessary in order
to calculate the required input data.
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5.9.2 Continuous field reconstruction

The frequency f = 439Hz (BWPM = 3) is considered once more. In Fig. 5.15
the analytical solution for the corresponding normal velocity field is compared to
the reconstruction via NSBSH and KHI, while the resulting error is displayed in
Fig. 5.17. In this scenario, KHI works just as well as NSBSH, disregarding the
general difference of the extrapolatable area. The simply supported boundary
condition prohibits the existence of a structural near-field, and as a consequence
the outer measurement contours are necessarily located in the far-field. In the
case of finite plates, NSBSH does not require the existence of a near-field so much
as it can utilize it. Either way, the reconstruction error obtained through NSBSH
is found to be significantly smaller than for the free plate. The sine-like Hankel
functions are very well suited to describe this boundary condition, and thus the
physical model for wave propagation is very accurate.

The problems of NSBSH at high frequencies, reported in Section 5.8.2, were
found for the simply supported plate as well. The instabilities are thus confirmed
to be rooted in the model used for extrapolation since they do not vanish by
changing to a “friendlier” boundary condition. Luckily, they can therefore be
eliminated in the same way.

5.9.3 Spectral reconstruction

Analogous to Section 5.8.3, the reconstruction of a response spectrum is presented
in Fig. 5.18. Here, the position x=0m, y=0.25m is considered. In terms of ac-
curacy, NSBSH remains the superior method. Because of the simply supported
boundary condition, KHI comes very close nevertheless. It is seen that KHI has
more trouble predicting the exact magnitude of velocity at low levels. A recon-
struction error of 5 dB or more is not a rare sight, especially at low frequencies.
Besides that, both methods work similarly well.
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Figure 5.15: Comparison of extrapolation methods on a simply supported plate:
simulated bending wave field, f = 439Hz ((1m)/λB = 3).
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Figure 5.16: Comparison of extrapolation methods on a simply supported plate:
simulated bending wave field, f = 3123Hz ((1m)/λB = 8).
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Figure 5.17: Comparison of extrapolation methods on a simply supported plate:
simulated reconstruction error; a), b) f = 439Hz;
c), d) f = 3123Hz.
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Figure 5.18: Comparison of extrapolation methods on a simply supported plate:
simulated reconstruction of a response spectrum;

direct measurement; NSBSH; KHI.
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5.10 A quick look at arbitrary geometry and mixed
boundary conditions

The finite plates considered so far have been highly symmetric as far as geometry
and boundary conditions are concerned, but the presented theory does not require
such structural symmetry. In fact, symmetric plates are not necessarily easier to
deal with. They lead to highly symmetrical mode shapes at the eigenfrequencies,
which in turn may lead to ill-conditioned matrices in NSBSH where the sampling
points are aligned symmetrically and spaced equidistantly. In order to demonstrate
that both methods can handle irregularly shaped plates, Fig. 5.19 presents a FEM-
based simulation for a semi-skewed plate with mixed boundary conditions.

The edges leading in x-direction are clamped, while the edges in y-direction
remain free. Three arbitrary point forces are applied within the blank circular
area in the center. Both methods, within their confines, reproduce the true field
very well. It can be seen that the radius of the inner hologram contours for NSBSH
had to be slightly increased in order to maximize the extrapolatable area. Still, a
substantial area of the plate remains “out of reach” for NSBSH.

In the case of KHI, the only downside is that it is a little more complex to
implement the calculation of the Kirchhoff-Helmholtz integral due to the angles
involved. In practice, this would correspond to a more difficult arrangement of
the measurement points. It is easy to see that a laser scanning system becomes
a necessity if complicated contours have to be sampled in a reasonable amount of
time.
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Figure 5.19: Comparison of extrapolation methods on a plate with arbitrary ge-
ometry and mixed boundary conditions,
f = 1530Hz ((1m)/λB = 5.6).
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5.11 Conclusions

The developed theory was clearly confirmed. The extrapolation of a stationary
bending wave field can be performed using the presented approaches adapted from
the airborne sound domain.

It was demonstrated that the structural near-field can indeed be included if
the Fourier transform-based holographic method NSBSH is applied. Doing so
comes with costs, however. Besides the limitations imposed by theory, the method
requires substantial numerical stabilization. The utilized filter and regularization
parameters were found from empirical analysis of the results. The cut-off value
for the filter nc = 1.3 · kBrmax was thus found to give quite good initial results
overall, while a constant regularization parameter λ = 1.5 · 10−3 was found to be
suitable. A serious issue was encountered in the case of finite plates, for when the
distance between inner and outer hologram contour approaches 3 ·λB. The results
near the inner contour blow up completely, which appears to be a systematic issue,
not necessarily correlated with high condition numbers. The error was found to be
removed if a sharper wavenumber filter with the cut-off value nc = 0.9·kBrmax was
used within the affected plate area. This behavior suggests that a more refined
stabilization strategy might leave room for improvement and would probably be
required if the method was extended to deal with more sophisticated scenarios.
Regardless of numerical aspects, the utilized propagation functions were shown
to be a good fit for the simply supported boundary condition but were found to
be rather approximative when it comes to the free boundaries. With the latter,
continuous reconstruction of the spatial field exhibits a significant reconstruction
error at high frequencies, probably due to a spatial shift of the calculated field
compared to the true solution. The error is not that noticeable in the spectral
reconstruction, however.

True backward-propagation toward the source, only possible in the infinite case
to begin with, was found to work only with very small standoff distances, which
suggests that it might not be worth the trouble in practice.

The Kirchhoff-Helmholtz integral-based far-field method KHI was found to per-
form very reliably overall. In general the simulations suggest that the correspond-
ing measurements should be taken at a distance of λB/6 from structural disconti-
nuities for the near-field-related reconstruction error to vanish. The BEM that was
implemented for the infinite case proved to be the least accurate of the presented
methods. In order to obtain results that truly converge to those of NSBSH and
KHI, the number of sampling points per contour has to be quadrupled in com-
parison. Both NSBSH and KHI were shown to become accurate if the number of
sampling points per contour is chosen a bit higher than the value dictated by the
spatial Nyquist criterion.

The results suggest the arguably obvious: The far-field approach should be
favored when dealing with high frequencies or boundary conditions devoid of near-
fields, and the near-field approach vice versa.
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6
Experimental evaluation

In this chapter, the proposed methods are validated through a set of experiments
that mirror the scenarios considered in Chapter 5: an infinite plate and plates with
free and simply supported boundary conditions, excited by stationary point forces.
Array-type measurements from either accelerometers or laser vibrometers are used
to reconstruct the continuous bending wave field as well as response spectra. The
author has used some of the results for NSBSH on infinite plates in a previous
publication [38]. The accompanying discussion also comments on the feasibility
of the methods. The chapter concludes with a summarizing comparison of the
theoretical and practical reconstruction error, allowing a conclusion regarding the
overall accuracy that can be expected in practice.

6.1 Infinite plate

6.1.1 Setup

The procedures presented for infinite plates are validated by three experiments,
using a large acrylic plate. They will be referred to as experiment A, B and
C. In each experiment a different type of excitation is applied, referred to as
source A, B and C. Acrylic exhibits fairly high structural damping compared to
common industrial materials like steel or aluminum, which makes it better suited
to approximate the condition of a structure-borne free-field. In order to further
this condition, the plate is bedded on foam and embedded in sand along its edges,
so that the given discontinuity in terms of the mechanic impedance difference is
reduced. The plate is shown in Fig. 6.2, and its material properties are given in
Table 5.1. While it is impossible to fully satisfy the condition of infinity in practice,
a reasonable approximation may be sufficient. Figure 6.1 therefore compares the
measured point mobility at the center of the plate to the analytical value for an
equivalent infinite plate, which is known to be independent of frequency. As is to
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6.1 Infinite plate

be expected, the approximation is less successful at low frequencies, at which the
modal behavior is not significantly affected by structural damping. The resulting
unwanted peaks subside quite quickly as the frequency increases, giving way to a
substantial part of the spectrum for which the plate can be assumed to be infinite.
At high frequencies the mobility deviates from theory again because the mechanical
system is affected by the measurement setup: an accelerometer mounted through
wax and a shaker that is adding its full mass to the plate, as seen in Fig. 6.2f. The
plate can therefore be considered to be reasonably “infinite”. It is noted that this
condition will be increasingly violated toward the edges of the plate, which is why
the investigation will be restricted to the central plate area.
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Figure 6.1: Point mobility at the center of the acrylic plate; analytical solu-
tion; measurement.

The different source types used in the experiments are shown in Fig. 6.2. Source
type A consists of a shaker mounted off-center onto a circular structure with four
feet, fed by random noise. Force transducers are used as feet, small enough in di-
mension as to exert point excitation for the frequency region under consideration.
The source is simply set up on the plate without any kind of rigid connection. In
order to simulate a scenario with higher structure-borne sound power, source B
represents a modification of source A. Two shakers are mounted onto the same
structure. In order to increase structure-borne sound transmission, the force sen-
sors are glued to the plate using two-component adhesive, thereby establishing
a reasonably rigid connection. Source C simulates a source with diverse driving
forces. It is comprised of two pairs of shakers, rigidly connected to the plate using
two-component adhesive. Each shaker pair is fed by distinct band passed random
noise, and each shaker is driven by a separate amplifier. In this way the plate is
subjected to four clearly differentiated excitations. The resulting driving forces in
all experiments are displayed in Fig. 6.3.
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(a) experiment A: source and far-field mea-
surement positions

(b) experiment A: near-field measurement
positions

(c) experiment B: source and far-field mea-
surement positions

(d) experiment B: accelerometers, source
mounting;

(e) experiment C: source and acrylic plate
setup

(f) experiment C: source mounting

Figure 6.2: Infinite plate experiments: detail views of the measurement setups.
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Figure 6.3: Forces applied to the infinite plate.
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The required spatial velocity distributions are obtained by accelerometer mea-
surement. As depicted in Fig. 6.4, two contours with twenty-four sampling points
in the assumed near-field are used to perform NSBSH. Three far-field contours
are sampled in order to perform KHI. Only one such contour is required for the
BEM-approach. For KHI and BEM, twenty-four sampling points per contour are
used in experiment C, while experiment B is performed with both twenty-four and
forty-eight points per contour for comparison. In all cases, an additional fixed
reference point is used to calculate phase information by means of the respective
cross spectra. An overview of the default measurement parameters is given in
Table 6.1. Deviations from these parameters are explicitly given in the captions
of the corresponding figures.

Table 6.1: Default measurement parameters for the infinite plate

N dst,1 dst,2 dst,i ∆r
[m] [m] [m] [m]

NSBSH 24 0.015 0.03

KHI 24 0.045 0.03

BEM 24 0.045

6.1.2 Spectral reconstruction

The experimental evaluation for the infinite plate consists of the reconstruction
of velocity response spectra at arbitrary positions in the near- and far-field of
the source, shown in Fig. 6.4. The letters A, B and C denote experiment A, B
and C, respectively. In order to sample the measurement contours, a number of
miniature accelerometers are used, as shown in Fig. 6.2d. Given the setup of
the plate, positioning each sensor manually is somewhat inconvenient and time
consuming. It is for this reason that continuous spatial field reconstruction is not
evaluated in the infinite plate experiments. In order to reproduce the wave field
clearly at intermediate or high frequencies, a dense grid of response positions is
required. Without a suitable laser scanning system to be be installed either above
or below the “sandbox”, sampling such a grid would become very inconvenient.
Instead, it is chosen to investigate a few isolated response positions only. It is
noted that the chosen far-field positions are not located very far from the sources,
so that that the free-field condition can be assumed in good faith.

Each backward-propagated near-field spectrum is reconstructed by using the
complete formulation of NSBSH as well as its simplified formulation. While in
experiment A the corresponding measurement contours are located in the very
near-field only, experiments B and C allow to compare the results for increasing
standoff distances. The results obtained by using the complete formulation are pre-
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sented in Fig. 6.5. For each experiment the reconstruction works very well as long
as the hologram contours are located in the very near-field, i.e. within a distance
of approximately λB/4. It is observed that larger standoff distances will lead to an
unstable reconstruction across the whole spectrum, not just at high frequencies.
As seen in Fig. 6.6, the situation can be remedied by using the simplified formu-
lation of NSBSH. In spite of increasing standoff distances, backward-propagation
remains stable and accurate. This leads to the first and somewhat ironic conclu-
sion regarding NSBSH in practice: The omission of explicit near-field influences is
a key factor in achieving a reliable result when propagating backward toward the
source. The typical accelerometer noise floor shown in Fig. 6.5 confirms that the
signal-to-noise ratio is sufficient for the most part. In experiment A it falls 10 dB
below the response at the low and high end of the considered spectrum, which
means that the procedure might have run into trouble had the excitation been
weaker.

In terms of stability, the situation is different if forward-propagation through
NSBSH is attempted. As can be concluded from Fig. 6.7, the reconstruction of a
far-field spectrum does not need to be based on measurement in the near-field. For
the most part the spectra are predicted quite correctly, regardless of the standoff
distance. The results only differ at low frequencies. This does not seem surprising,
given the modal behavior of the plate, which is expected to lead to better or worse
results, depending on the response position. If the simplified formulation is used,
as shown in Fig. 6.8, quite interestingly even these differences are eradicated.

In contrast, the corresponding results obtained by using the pure far-field ap-
proaches for experiment B and C are shown in Fig. 6.9. The first thing to note
is that the straightforward use of KHI fares better than the BEM-approach in
general. BEM shows a clear tendency to underpredict the response levels, but
especially at higher frequencies it may underpredict the correct response by up
to 10 dB, if not more. Doubling the number of sampling points improves the
BEM-results significantly, while the improvement for KHI is marginal. Doing so
means that the overall amount of sampling points Ntot used for BEM equals that
of NSBSH in the end. The BEM-results may be brought to closely resemble the
KHI-results by using even more sampling points, although that would counter
the initial promise of reduced measurement effort. On the other hand, it is still
much more convenient to sample a single contour instead of three. Regardless,
the deviations at high frequencies show that BEM is the least accurate of the pre-
sented methods. In the end, the results from the infinite plate experiments show
that choosing a purely far-field-based approach like KHI can give results that are
almost identical to the near-field approach presented by NSBSH.

It must be noted that every experimentally obtained spectrum shown in this the-
sis has been frequency-averaged in order to improve the readability of the curves.
Initially, FFT-analysis was performed for 3201 spectral lines in a frequency range
up to 10 kHz, with spectral averaging over a period of thirty seconds. The resulting
spectra were then averaged down to 120 spectral lines in the last step of processing
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in order to improve the readability of the curves. The difference between initial
and averaged spectrum is shown and discussed in Section 6.2.3.
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Figure 6.4: Measurement geometry, reconstruction points and force positions on
the infinite plate; • force excitation; • accelerometer position; x re-
construction point.
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Figure 6.5: NSBSH, backward-propagation on an infinite plate for varying stand-
off distances; mean accelerometer noise floor; direct mea-
surement; reconstruction:

dst,1=0.015m, dst,1=0.03m, dst,1=0.045m.
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Figure 6.6: Simplified NSBSH: backward-propagation on an infinite plate for
varying standoff distances; mean accelerometer noise floor;

direct measurement; reconstruction:
dst,1=0.015m, dst,1=0.03m; dst,1=0.045m.

99



6.1 Infinite plate

2 3 4 5 10

0

20

40

(1m)/λB [1]

|v
|
[d
B
]

(a) measurement IA2

2 3 4 5 10

10

20

30

40

50

60

(1m)/λB [1]

|v
|
[d
B
]

(b) measurement IB2

2 3 4 5 10

20

30

40

50

60

(1m)/λB [1]

|v
|
[d
B
]

(c) measurement IC2

Figure 6.7: NSBSH: forward-propagation on an infinite plate for varying standoff
distances; direct measurement; reconstruction:

dst,1=0.015m, dst,1=0.03m, dst,1=0.045m.
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Figure 6.8: Simplified NSBSH: forward-propagation on an infinite plate for vary-
ing standoff distances; direct measurement; reconstruction:

dst,1=0.015m, dst,1=0.03m, dst,1=0.045m.
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Figure 6.9: Comparison of KHI and BEM on an infinite plate; direct mea-
surement; KHI; BEM.
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6.2 Free plate

6.2.1 Setup

A free and a simply supported aluminum plate are used to test the procedures
suggested for finite plates. Aside from their boundary condition, both plates are
identical, with the material properties already given in Table 5.2. The free plate is
unmodified except for two drillings that are used to suspend the structure, which
is shown in Fig. 6.11a. The source consists of a pair of shakers that are mounted
to the plate off-center through a circular plug, with a force transducer inserted
in-between. The shaker assembly and mounting can be seen in Fig. 6.11b and
Fig. 6.11f. Each shaker is being fed with white noise in the considered frequency
range. The resulting excitation forces are plotted in Fig. 6.10. It is seen that the
force levels drop above BWPM=6, and that they are quite similar in magnitude
and in phase.
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Figure 6.10: Forces applied to the free plate.

A positioning system is used to move a laser vibrometer that acts as the primary
velocity sensor, while a second laser is aimed at a fixed reference position. The
resulting cross spectra provide phase information for the actual velocity responses.
The geometries of the utilized measurement contours are depicted in Fig. 6.12, and
the measurement parameters are given in Table 6.2. The aging spindle motors
that drive the positioning system were found to cause a certain positioning error
that accumulated after prolonged measurement. By splitting up the measurement
campaign and repeatedly starting from the home position this is pretty much kept
in check, wherefore the accuracy of the measurements can ultimately be assumed
to suffice.

103



6.2 Free plate

(a) free plate: positioning system with
laser vibrometers

(b) free plate: source arrangement

(c) simply supported plate: positioning
system with laser vibrometers

(d) simply supported plate: source ar-
rangement

(e) simply supported plate: boundary con-
dition

(f) source mounting

Figure 6.11: Finite plate experiments: detail views of the measurement setups.
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Table 6.2: Measurement parameters for the free plate

Ni Ne dst,1 dst,2 dst,3,min dst,4,min dst,i dst,e ∆r
[m] [m] [m] [m] [m] [m] [m]

NSBSH 36 72 0.015 0.025 0.005 0.02

KHI 36 92 0.025 0.033 0.012

6.2.2 Spatial field reconstruction

The measurement positions that are used to perform NSBSH and KHI are depicted
in Fig. 6.12. While the hologram contours for NSBSH must remain circular, the
boundary contours for KHI can be chosen conformal to the plate geometry. In
the finite case, KHI requires six contours to be sampled, while NSBSH requires
four. The number of sampling points is also given in Table 6.2, along with the
other relevant measurement parameters. The outer boundary contours for KHI
are clearly moved inward, in the hope of escaping the structural near-field that
is expected at the free edges. As a reference for the reconstructed field, the true
response field is obtained by direct measurement at 25 · 25 = 625 sampling points
across the surface. The points are equidistant in both x- and y-direction, forming
a rectangular grid, as depicted in Fig. 6.12.

Examples for the resulting reconstruction of the normal velocity magnitude are
shown in Figs. 6.13 and 6.14, whereby the former shows the eleventh eigenmode
of the plate. The results confirm the tendencies found in Section 5.8.2: KHI over-
predicts the field at low frequencies and is accurate at high frequencies. Either
way, the shape of the modal patterns is reconstructed correctly. Also confirmed
are the tendencies found with NSBSH, which pretty much oppose those of KHI.
Low frequency resolution is very good. In fact, the reconstruction looks more re-
fined than the direct measurement. This is thanks to the nature of the utilized
cylindrical Hankel functions, which are a good fit if circular shapes have to be
“built”. High frequency reconstruction is a bit more challenged due to the approx-
imative underlying model. More drastic wavenumber-filtering has to be applied to
avoid blown-up results near the inner contour lines if the distance between inner
and outer hologram contour becomes approximately three times larger than the
considered bending wavelength.

The corresponding reconstruction error is shown in Fig. 6.15, and as in the
simulations, the highest deviations are usually found where a low magnitude has
to be predicted. It is also seen that at high frequencies the reconstruction error
becomes large immediately if one tries to reconstruct the field outside the outer
hologram contour.
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Figure 6.12: Measurement geometry, reconstruction points and force positions
on the free plate; • force excitation; • laser vibrometer position; x
reconstruction point.
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Figure 6.13: Comparison of extrapolation methods on a free plate: bending wave
field, f = 128Hz ((1m)/λB = 1.6).
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Figure 6.14: Comparison of extrapolation methods on a free plate: bending wave
field, f = 4265Hz ((1m)/λB = 9.4).
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Figure 6.15: Comparison of extrapolation methods on a free plate: reconstruc-
tion error; a), b) f = 128Hz; c), d) f = 4265Hz.
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6.2 Free plate

6.2.3 Spectral reconstruction

The assessment of the free plate experiment is completed by reconstructing three
arbitrary response spectra, shown in Fig. 6.16, whose positions are indicated in
Fig. 6.12. The same tendencies are found with every reconstruction point. The
characteristic overprediction by KHI subsides as BWPM ≈ 4.5. Considering the
chosen standoff distance from the plate edges dst,e = 0.033m, a critical distance of
dst,e ≈ λB/6 is identified, which confirms the findings in Section 5.8.3. In the worst
cases, which would be the largest wavelengths considered in the plotted spectrum,
the reconstruction error ∆Lv can amount to 10 dB or even more. Acknowledg-
ing this as inherent behavior, the reconstruction through KHI can be considered
successful. The peaks and valleys in the spectrum are identified correctly and for
higher frequencies the reconstruction error is very small overall.

Reassuringly, low frequencies do not pose a problem for NSBSH compared to
KHI. Only at the very low end of the spectrum is the curve “not getting it right”,
but it is also seen that NSBSH is less accurate where the response dips significantly.
There is the odd misfire in the center of the spectrum, although this might be
attributed to the chosen regularization parameter. For the shown experimental
results λ = 5 · 10−3 is chosen, as opposed to λ = 1.5 · 10−3 used in the simulations.
This means that a more drastic regularization was implemented in practice, which
is why the NSBSH-curves tend to underpredict the true spectrum here and there.
All in all, the reconstruction works very well, however.

It is very important to acknowledge how these results were achieved, especially
in the case of NSBSH. From the spatial distribution of the reconstruction error
plotted in Section 6.2.2, one would probably expect to see larger deviations of
the reconstructed curve. The dynamic range of the spectrum can be misleading
here, since a deviation of 3 dB is not that noticeable if the the graph covers a
range of 60 dB. Furthermore, as stated in Section 6.1.2, frequency averaging was
applied for both NSBSH and KHI, reducing the number of spectral points from
initially 3201 to 120. The averaging certainly mitigates over- and undershooting at
adjacent frequencies, and as a result the reconstruction appears much more correct.
The effect is shown in Fig. 6.17, in which the influence of the separate processing
steps for NSBSH is revealed. The reconstruction position FR1 is taken as the
example. Straightforward application of NSBSH is hopeless for all but the highest
frequencies. Wavenumber filtering brings the reconstructed levels down for the rest
of the spectrum and within a more reasonable range. Tikhonov regularization then
mitigates the severe overshooting that plagues the reconstruction. The thereby
reconstructed curve follows the tendency of the true curve nicely, but there is still
sporadic over- and undershooting. This is finally mitigated through frequency
averaging, which cleans up the results. The first important conclusion is that all
the processing discussed in Chapter 5 is unconditionally necessary. The second
conclusion is that these methods are not well suited for the exact analysis of very
specific narrow frequencies in the spectrum.
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Figure 6.16: Comparison of extrapolation methods on a free plate: reconstruc-
tion of a response spectrum by means of NSBSH and KHI;

direct measurement; NSBSH; KHI.
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Figure 6.17: Results from the processing steps of numerical stabilization and
frequency averaging for NSBSH; free plate, position FR1;

direct measurement; NSBSH.
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6 Experimental evaluation

6.3 Simply supported plate

6.3.1 Setup

Setting up a simply supported aluminum plate has been detailed in the literature
before. It has been shown that the boundary condition can be forced by using
angles to bolt the plate to a blade that is mounted on a very heavy foundation [75].
Such a setup seems inconvenient, however, given that there is no need to achieve a
completely accurate boundary condition in order to validate the theory. Another
approach to a reasonable experimental setup is taken, as shown in Fig. 6.11c-6.11e.
A continuous groove is cut close to the edges of the plate, reducing the thickness
from 0.005m to approximately 0.001m and thus leading to a locally decreased
bending stiffness. The edges themselves are screwed to a steel frame. In this
way the groove acts like a hinge and the plate area confined by the groove can
be considered as simply supported. Naturally this does not present a true simple
support. The frame does not behave like a rigid mass, the plate has a groove of
finite thickness and there are a limited number of screws that are not tightened
identically. The actually imposed boundary condition is probably not the same
along all sides of the plate as a result.

The source setup for the simply supported plate is similar to that of the free
plate, as can be seen in Fig. 6.11d. The shakers are positioned a bit more toward
the center but they are otherwise connected and driven in the same way. Due to
the enforced boundary condition, the resulting forces differ in magnitude and in
phase, as seen in Fig. 6.18.

Because of the construction, the plate is very slightly skewed in comparison
to the axis of the positioning system. This means that in practice the plate is
not fully symmetrical to the utilized measurement geometries that are depicted
in Fig. 6.19. The measurement parameters used in the experiment are given in
Table 6.3.

Table 6.3: Measurement parameters for the simply supported plate

Ni Ne dst,1 dst,2 dst,3,min dst,4,min dst,i dst,e ∆r
[m] [m] [m] [m] [m] [m] [m]

NSBSH 36 72 0.015 0.03 0.005 0.02

KHI 36 92 0.03 0.025 0.01
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Figure 6.18: Forces applied to the simply supported plate.

6.3.2 Spatial field reconstruction

As Fig. 6.20 proves, the reconstruction of the continuous spatial field at a low
frequency works well with both NSBSH and KHI. In the absence of a strong near-
field along the edges, even the latter is able to reproduce the magnitude of the field
correctly. This tendency has been predicted in Section 5.9.2. The low magnitude
determined by the direct measurement positions near the edges suggests that, at
least for low frequencies, the simply supported boundary condition was indeed
approximated.

Whereas the low-frequency field considered in Section 6.2.2 shows a distinct
modal shape that belongs to an eigenfrequency of that plate, the same cannot
be said here. The considered frequency does not equal an eigenfrequency of the
plate, and also the achieved boundary condition is not exact enough to produce a
characteristic modal pattern.

The magnitude of the high-frequency field, shown in Fig. 6.21, is a little over-
predicted by KHI, as can also be seen through the level difference in Fig. 6.22.
Otherwise, both NSBSH and KHI appear to reconstruct the spatial field correctly.

Another aspect regarding this kind of wave field extrapolation is the obtainable
spatial resolution. If far-field conditions can be assumed and if the number of
sampling points along the contours is sufficient, then the spatial resolution can be
chosen freely. Halving the distance between reconstruction points compared to the
direct measurement, results in Figs. 6.20d and 6.21d. For the low frequency this
does not make a big difference, except for a nicer looking graphic. For the high
frequency we get a much clearer visual representation of the nodal lines, however.
It can be concluded that wave field extrapolation, as imagined in this thesis, can
improve the visual representation of the wave field. This certainly is a positive
side effect.
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(a) direct measurement (b) NSBSH

(c) KHI

Figure 6.19: Measurement geometry, reconstruction points and force positions
on the simply supported plate; • force excitation; • laser vibrometer
position; x reconstruction point; effective boundary.
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Figure 6.20: Comparison of extrapolation methods on a simply supported plate:
bending wave field, f = 360Hz ((1m)/λB = 2.7).
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Figure 6.21: Comparison of extrapolation methods on a simply supported plate:
bending wave field, f = 4494Hz ((1m)/λB = 9.65).
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Figure 6.22: Comparison of extrapolation methods on a simply supported plate:
reconstruction error; a), b) f = 360Hz; c), d) f = 4494Hz.
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6.3.3 Spectral reconstruction

The results presented in Fig. 6.23 show that both NSBSH and KHI are mostly able
to detect the peaks and dips that form the true response spectrum at any given
position. In general, NSBSH proves to be more accurate, although it is not save
from greatly exaggerating sudden drops in the response occasionally. At position
SS2, which is very close to the outer hologram contours, the results for NSBSH
are unsurprisingly best. It is noted that the same regularization parameter is used
as for the free plate, which may explain these occasional dips of the reconstructed
level. It has to be kept in mind that a fixed regularization parameter was used,
which means that these miscalculations could probably be avoided if a suitable
algorithm for the evaluation of the optimal parameter was used. The empirically
chosen constant value provides a rather rudimentary stabilization.

While KHI does not generally overpredict the low end of the spectrum as with
the free plate, it is not as accurate as NSBSH. The reconstruction error now mostly
appears where level-drops have to be detected. The correct value can occasionally
be mispredicted by 10 dB. In fairness, and as stated before, this is less of an
issue than mispredicting level peaks. These results indicate that regardless of the
attempts to create a near-field-free boundary condition, there happens to be at
least some near-field influence at the measurement positions. As a consequence,
KHI fares worse, especially at low frequencies. “Worse” is a relative term of course,
and it must be said that the overall results are very satisfying for both methods.
Certainly these results would be deemed sufficiently accurate in many engineering
applications.
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Figure 6.23: Comparison of extrapolation methods on a simply supported plate:
reconstruction of a response spectrum by means of NSBSH and
KHI; direct measurement; NSBSH; KHI.
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6.4 Average reconstruction error

In a final evaluation of the methods, the level difference of the spatially averaged
velocity ∆Lv, defined in Section 5.2, is considered. The spectra of ∆Lv are cal-
culated from both experimental results and simulations. The latter are carried
out by assuming zero measurement noise, using the positions and forces that were
used in the measurements. In this way it is possible to compare the (unavoidable)
computational reconstruction error to the total reconstruction error in practice.
Since the infinite, free, and simply supported plates considered in this thesis are
compared directly, Figs. 6.24 and 6.25 can be seen as a summarization of all the
investigations.

In the case of the infinite plate, the level difference observed for NSBSH mostly
ranges from −2 dB to +2dB. The error can be higher at low frequencies, at
which the plate was shown to behave more like a finite plate. The correspond-
ing computational reconstruction error, i.e. the reconstruction error that results
purely from the implementation of the theory, is insignificant. The curves look
markedly different for KHI, where the inherent computational reconstruction error
is much higher. Both measurement and simulation have the same tendency, which
seems to be dominated by the character of the Hankel functions. Except for a
few frequencies with higher deviation, the level difference remains within a range
between −2 dB and +2dB, although the average deviation is visibly larger than
for NSBSH, even at high frequencies.

In the case of the free plate, NSBSH shows that it is having a rough time with
the highly resonant1 behavior of the structure, whose boundary conditions do not
agree too well with the utilized physical model for wave propagation. The fre-
quent thin peaks that occur for the simulated values of ∆Lv become larger with
frequency. In comparison, the experimental curve in this frequency region shows
a significantly lower and much more stable error thanks to the applied frequency
averaging. This is another reminder of what difference the act of frequency averag-
ing has on these results, and that the method is actually not well suited to analyze
narrow frequencies in a spectrum. Curiously, even without frequency averaging
the experiment fares better than the simulation at high frequencies. Neverthless,
the error peaks in the midrange are worrisome and indicate that there are indeed
limits as to what analytical basis functions can do even with such simple struc-
tures. Save for a narrow low-to-intermediate frequency region, where ∆Lv spikes
up to 5 dB, the error ranges from −2 dB to +3dB in practice, which means that
a higher response tends to be calculated mostly. KHI is much more predictable
in general: ∆Lv decreases in linear fashion with frequency, from approximately
−4 dB to −1 dB, until it fluctuates around 0 dB. The experiments seem to fare a

1“Resonance” refers to the vibration at modes in the presence of damping. It is acknowledged
that vibration at a resonance frequency can only be equated to vibration at an eigenfrequency
when damping is very small. So far the presence of damping was implied when “modal
behavior” was brought up.
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little better than the simulations, which indicates that the simulated near-field and
the practically observed near-field at the edges might not be directly comparable.
Since both curves clearly show the same reasonable tendency, this is no cause for
concern.

It is apparent that the simply supported plate constitutes a “good-natured”
structure in comparison to the free plate. The results obtained by NSBSH are
even better than for the infinite plate. Except for the high end of the spectrum,
the level difference has a range from −1 dB to +1dB, although the results are
obviously better at most frequencies. This is in agreement with the fact that
the computational error is small as well. At high frequencies, the level difference
increases slightly, and it has to be noted that without frequency averaging this
would appear to be more severe. For KHI, ∆Lv lies in-between −2 dB and 2+dB
in general.

It can be concluded that both methods were found to be reasonably accurate in
all cases, although some results are clearly better than others. The free plate leads
to the worst results in general, for the reasons discussed above and in Section 5.8.2.
The existence of strong near-fields also leads to the worst results for KHI, naturally.
Wether or not one should expect an average reconstruction error of 1 dB or 4 dB at
worst, therefore depends on the boundary condition. The less the plate boundary
is generating a near-field, the better for KHI. The more the plate boundary allows
a sum of expanded Hankel functions as a solution in polar coordinates, the better
for NSBSH.

As a reminder it is noted that these results are only suitable to analyze the
tendencies of the reconstruction error. Because ∆Lv constitutes a spatial average,
it is not an indication for the range of the reconstruction error at individual field
positions.
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Figure 6.24: Average reconstruction error, NSBSH;
experimental; computational (uncorrupted input data).
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Figure 6.25: Average reconstruction error, KHI;
experimental; computational (uncorrupted input data).
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6.5 Conclusions

By most accounts, the experiments confirm the results indicated by the simu-
lations, and it can be said that the conclusions drawn in Section 5.11 apply in
practice as well. This assumes that the medium of interest is a homogenous and
isotropic plate subjected to stationary excitation. In principle, both NSBSH and
KHI are able to reconstruct the continuous spatial response as well as response
spectra of bending wave fields with good accuracy. However, the former runs into
trouble given a structure like the fully free plate because the utilized propagation
functions are not particularly suitable eigenfunctions of the problem, while the
latter is not very well suited if low frequencies have to be considered.

The obtained results allow a rough quantification of these statements in engi-
neering terms, although they need to be differentiated. The average reconstruction
error to be expected with NSBSH for simply supported boundary conditions is
±1 dB, for infinite conditions ±2 dB, and for completely free boundaries it ranges
from −1 dB to +3dB, approximately. The average reconstruction error to be ex-
pected with KHI is roughly ±2 dB for simply supported and infinite boundary
conditions and decreases with frequency from +4dB to ±1 dB for free boundaries.
Measurement at a distance of approximately λB/6 from the boundaries is gener-
ally required to use KHI with good conscience. It has been shown that at specific
frequencies and positions the actual reconstruction error may be well above these
averaged values, mostly when drops in the response have to be predicted. Assum-
ing one does want to keep measurements within a couple of centimeters from the
edges and the source area, the considered wavelengths should therefore not exceed
0.25m-0.30m.

Given small wavelengths, a large number of sampling points are required, nat-
urally. The smallest considered bending wavelength was 0.09m, which in total
required about 180 measurement positions for NSBSH and a rather frightening
290 for KHI. It can be concluded that for anything other than low-frequency anal-
ysis, the engineer without a professional laser scanning system will need to dedicate
a substantial amount of time.

NSBSH in particular relies on severe data processing. Tikhonov regularization
with a regularization parameter λ = 5 ·10−3 was applied, meaning that regulariza-
tion had to be intensified compared to the simulations. The empirical functions for
the cut-off value of the wavenumber remained unchanged from Chapter 5. It was
shown that the method requires frequency averaging in order to mitigate frequent
over- and undershooting, which means that it is not very well suited to analyze
narrow band spectra.

Naturally, the experiment introduces some additional error caused by inaccu-
racies of the measurement positions, measurement noise or unaccounted physical
effects. Moreover, the assumption of a pure bending wave field can only hold to a
certain extent in practice, especially at high frequencies. As wavelengths become
smaller, the setup will facilitate moment excitation and even the conversion from
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bending waves to other wave types will occur, resulting in a field that does not
satisfy the primary theoretical assumptions. For the wavelengths considered in
this thesis, such effects are assumed to be reasonably small, however.
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7
Concluding remarks

The extrapolation of bending wave fields in homogenous plates was investigated.
From a number of structural response measurements along the edges and around
the area of excitation, the continuous spatial field and the spectra of the response
were reconstructed without knowledge of the mechanical boundaries or the mag-
nitude and exact location of the excitation forces. Two general approaches were
therefore presented. The first one, referred to as NSBSH, applies the principle
behind Fourier transform-based Near-Field Acoustic Holography (NAH) and in-
cludes the structural near-field deliberately. The second approach, referred to as
KHI, utilizes the Kirchhoff-Helmholtz integral and requires far-field conditions at
the measurement positions.

The theoretical considerations, numerical investigations and practical results
that constitute this thesis are certainly conclusive. Is it possible to exercise a form
of Near-Field Acoustic Holography in a pure structure-borne sound setting? Yes,
it is. But the analytical Fourier transform-based way of doing so imposes severe
limitations on the measurement geometry and the extrapolatable field area. The
limitations are even bigger than in NAH because the medium is usually bound in
every direction, and to some extent the utilized propagation functions impose a
limitation with regard to the mechanical boundary conditions of the plate. The
search for a suitable set of analytical solutions leaves only the polar coordinate
system, which is not conformal to most plate structures.

Does the inclusion of the structural near-field benefit the reconstruction like the
hydrodynamic near-field benefits its airborne paragon? No, not to the same extent.
It was shown that choosing the near-field-based method can certainly improve
the reconstruction error by several decibels compared to the investigated far-field
method, but only in the presence of a strong near-field and for large wavelengths.
In any other regard there is no big advantage. On the contrary, given a free plate,
where the near-field influence is the strongest, the physical model used for NSBSH
is not the best fit. The method therefore tends to be at its most inaccurate exactly
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when it should be at its best. This leads to the conclusion that the supposed core
virtue of the method is one of its primary challenges at the same time. Should
the need for an accurate extrapolation method in the presence of near-fields in the
lower or intermediate frequency range, i.e. for bending wavelengths up to 0.2m,
develop, the approach stays interesting of course.

Going forward, the most pressing question is how this kind of extrapolation can
be made admissible in Cartesian coordinates besides polar coordinates. In terms
of geometry, NAH started off limited as well and has since been advanced to deal
with complex situations, as outlined in a literature overview by Wu [76]. If the
development described therein is taken as a leading example, analytical transforms
will have to be abandoned in favor of approximations in order to develop NSBSH
further. It might be possible to utilize a decidedly approximate expansion of basis
functions for Cartesian coordinates, with the error regarded as a minimization
problem. It might also be possible to develop a numerical hybrid-approach through
finite or boundary element methods by introducing additional information about
the structure in question. In any way, the main challenge will be to keep the
near-field included specifically. Otherwise, one would be better advised to keep
it simple and turn to an approach like KHI, as presented in this thesis. This
conclusion of course leads to the arguably most important question to be asked
after reading the preceding chapters: Do the results for KHI justify to disregard
the structural near-field, stay clear of free boundaries and enjoy the ability to
choose arbitrary contours for extrapolation? If the engineer faces anything other
than completely free boundaries and large wavelengths and does not need to fight
over every decibel, yes.

Of course it needs to be reiterated that the main assumption made for both NS-
BSH and KHI is that of a homogenous and isotropic structure, which is becoming
rare in industrial practice. Given that only free-space Green or propagation func-
tions are used in both methods, it was not surprising to find that they fail if the
structure is orthotropic. However, it was quickly demonstrated just how unusable
both methods are if the structure is even slightly orthotropic. Therefore, even if
KHI suffices for bending wave field extrapolation in a homogenous plate, the effect
of structural discontinuities needs to be included in some form in order to render it
truly usable in engineering practice. This is assuming that the discontinuities are
spaced such that the corresponding near-fields can also be neglected. In this re-
gard it may be helpful to look at the field of seismics, where the elastic formulation
of the Kirchhoff-Helmholtz integral [77] is long since used for wave field extrapo-
lation in a medium in which different layers cause reflection [78]. There, the field
is decomposed into longitudinal and shear waves that are then extrapolated quite
like the acoustic field.

It is also worth noting that, since KHI was derived from a differential equation
that also describes the propagation of longitudinal waves in a plate, it could be
used to extrapolate a quasi-longitudinal wave field in a plate as well. This might
be another interesting path for future research.
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7 Concluding remarks

Putting aside any limitations for the sake of discussion, are these methods fea-
sible then? If a scanning system is available, yes. If the equipment consists of
a couple of accelerometers, not so much. Of course things may look different
for low-frequency analysis, where only a few measurement positions are needed.
Still, this situation contradicts one of the initially stated reasons for the interest
in structural wave field extrapolation. With a laser scanning system there is only
need for such extrapolation if certain parts of the structure are not accessible for
measurement. Disregarding monetary or time constraints, it has to be noted that
the presented extrapolation of a structural wave field requires a lot of data to be
sampled, and this appears to counter the initial premise.

If forced to choose one method over the other, the author would go with KHI
certainly. Both methods have appealing premises, and it was proven that indeed
neither the actual boundary conditions or geometry of the plate, nor the excitation
forces need to be known to extrapolate the field. In the case of NSBSH, some
boundary conditions will be more problematic by nature, which also counters that
argument to some extent. Overcoming these problems will be a challenge, but the
appeal of structure-borne wave field extrapolation surely warrants further research
in this direction. As this thesis indicates, the inclusion of the structural near-field
in the process is definitely possible, but not essential in most situations.
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A
Fourier analysis

A.1 Fourier series

A spatially periodic function f(s) with period C can be expressed in terms of the
Fourier series

f(s) =
∞

n=−∞
ane

−jkns, kn =
2πn

C
, (A.1.1)

where its coefficients are given by

an =
1

C

 C

0
f(s)ejkns ds. (A.1.2)

Hereby, kn can be regarded as a harmonic spatial frequency and 1/C as the fun-
damental spatial frequency.

A.2 Relation between Fourier series and continuous
Fourier transform

Because of the discreteness of the spatial fequencies, i.e. wavenumbers, considered
by Eq. (A.1.1), one can formulate

∆k =
2π

C
↔ 1

C
=

∆k

2π
. (A.2.1)

The integral limits in Eq. (A.1.2) can be changed:

an =
1

C

 C/2

−C/2
f(s)ejkns ds. (A.2.2)
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A.3 Relation between Fourier series and discrete Fourier transform

Using Eq. (A.2.1) and injecting Eq. (A.2.2) into Eq. (A.1.1) results in

f(s) =
∞

n=−∞

∆k

2π

 C/2

−C/2
f(s)ejkns ds e−jkns

=
1

2π

∞
n=−∞

e−jkns

 C/2

−C/2
f(s)ejkns ds ∆k

≡ 1

2π

∞
n=−∞

e−jknsF (k) ∆k.

(A.2.3)

It shall now be assumed that f(s) is a non-periodic function by letting the period
become infinite. For C → ∞ it follows that ∆k → dk, wherefore the sum in
Eq. (A.2.3) turns into an integral. As a consequence, the Fourier series becomes
the inverse Fourier transform

f(s) =
1

2π

 ∞

−∞
F (k)e−jks dk ≡ F−1

s {F (k)}, (A.2.4)

with the forward Fourier transform

F (k) =

 ∞

−∞
f(s)ejks ds ≡ Fs{f(s)}. (A.2.5)

This short deduction shows that for a spatially non-periodic function, in which
case an infinite set of infinitesimally narrow wavenumbers is needed, the Fourier
series becomes a continuous Fourier integral. For a periodic function, which can be
seen as a special case of a non-periodic function, the continuous Fourier transform
must be applicable as well as a consequence. The continuous Fourier transform
will then return discrete amplitudes which constitute the series coefficients that
build the Fourier series.

A.3 Relation between Fourier series and discrete
Fourier transform

The periodic spatial function f(mS), sampled in the mth interval S, shall be con-
sidered instead of the continuous function f(s). Discrete sampling of a continuous
function can be mathematically expressed as a multiplication by an impulse train

ΨS(s) = S

∞
m=−∞

δ(s−m∆S). (A.3.1)

After replacing f(s) in Eq. (A.1.2) with

fsmp(s) = f(s)ΨS(s), (A.3.2)
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A Fourier analysis

the sifting property of the delta function leads to the Fourier series coefficients of
the sampled function

an,smp =
1

C

 C

0
fsmp(s) e

jkns ds =
1

C

(C/S)−1
m=0

f(mS) ejknmSS. (A.3.3)

For an integer number of sampling points M = C/S, Eq. (A.3.3) becomes

an,smp =
S

C

M−1
m=0

f(mS) ejknmS =
1

M

M−1
m=0

f(mS) ejknmS

=
1

M

M−1
m=0

f(mS) ej2πnm/M ,

(A.3.4)

which demonstrates that for a discretely sampled periodic signal the coefficients
of a Fourier series are given by the discrete Fourier transform (DFT), divided by
the number of sampling points within a period. The above deduction has been
made analogously to the time domain [79].

The conclusion of the considerations in Appendices A.2 and A.3 concerns the
implementation of NSBSH. The velocity distribution along a closed contour may
have been derived as a Fourier series in polar coordinates, but thanks to the
inherent spatial periodicity this is actually the inverse Fourier transform of a series
of coefficients that can be obtained by taking the Fourier transform. Recognizing
that discrete sampling is necessary in practice, it is reassuring to know that the
sought-after series coefficients will be obtained by taking the DFT of the spatial
distribution along the contours. In terms of numerical implementation, basic FFT-
routines can be used to exercise the DFT.

A.4 Definition of the temporal Fourier transform

The forward transform from time domain to frequency domain is considered to be

F (ω) =

 ∞

−∞
f(t)e−jωt dt ≡ Ft{f(t)}, (A.4.1)

resulting in the corresponding inverse transform

f(t) =
1

2π

 ∞

−∞
F (ω)ejωt dω ≡ F−1

t {F (ω)}. (A.4.2)
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A.6 Definition of the spatial Fourier transform in two dimensions

A.5 Definition of the spatial Fourier transform in one
dimension

The forward transform from spatial domain to wavenumber domain is considered
to be

F (kx) =

 ∞

−∞
f(x)ejkxx dx ≡ Fx{f(x)}, (A.5.1)

resulting in the corresponding inverse transform

f(x) =
1

2π

 ∞

−∞
F (kx)e

−jkxx dkx ≡ F−1
x {F (kx)}. (A.5.2)

In comparison to the temporal Fourier transforms, the sign in the argument of
the exponential functions is changed. This is done to use a physically reasonable
convention, in which waves propagate in positive x-direction with progressing time.

For NSBSH, as imagined in this thesis, a polar coordinate system is used. The
Fourier transform has to be taken in the φ-coordinate along a closed circular
contour that is 2π-periodic in φ. A corresponding transform pair can be defined
as follows:

Fn(r) =

 π

−π
f(r, φ)ejnφ dφ ≡ Fφ{f(r, φ)}, (A.5.3)

f(r, φ) =
1

2π

∞
−∞

Fn(r)e
−jnφ dn ≡ F−1

φ {Fn(r)}. (A.5.4)

A.6 Definition of the spatial Fourier transform in two
dimensions

The transform pair that relates spatial domain and wavenumber domain in two
dimensions is considered to be

F (kx, ky) =

 ∞

−∞
f(x, y)ejkxxejkyy dx dy ≡ FxFy{f(x, y)}, (A.6.1)

f(x, y) =
1

(2π)2

 ∞

−∞
F (kx, ky)e

−jkxxe−jkyy dkx dky ≡ F−1
x F−1

y {F (kx, ky)}.

(A.6.2)
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B
Integral representation of the Hankel

function of second kind

For the modified Bessel function of the second kind Kn(z), Abramowitz and Ste-
gun [49] give the following relationships:

Kn(z) =

 ∞

0
e−z cosh(υ) cosh(nυ) dυ, (B.0.1)

Kn(z) = −πj

2
e−

1
2
nπjH(2)

n (ze−
1
2
πj). (B.0.2)

For n = 0, Eq. (B.0.1) can be rewritten as

K0(z) =

 ∞

0
e−z cosh(υ) dυ =

1

2

 ∞

−∞
e−z cosh(υ) dυ, (B.0.3)

and Eq. (B.0.2) can be rewritten as

K0(z) = −πj

2
H

(2)
0 (−zj). (B.0.4)

From Eqs. (B.0.3) and (B.0.4) it can be concluded that

H
(2)
0 (z) =

j

π

 ∞

−∞
e−jz cosh(υ) dυ. (B.0.5)
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C
Solutions for the expansion

coefficients

C.1 Infinite plate

The solutions for the expansion coefficients in Eq. (3.2.28) are found to be

An =
vn(r2)H

(2)
n (−jkBr1)− vn(r1)H

(2)
n (−jkBr2)

H
(2)
n (kBr2)H

(2)
n (−jkBr1)−H

(2)
n (kBr1)H

(2)
n (−jkBr2)

, (C.1.1)

Bn =
−H

(2)
n (kBr1){vn(r2)H(2)

n (−jkBr1)− vn(r1)H
(2)
n (−jkBr2)}

H
(2)
n (−jkBr1){H(2)

n (kBr2)H
(2)
n (−jkBr1)−H

(2)
n (kBr1)H

(2)
n (−jkBr2)}

+
vn(r1)

H
(2)
n (−jkBr1)

. (C.1.2)
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C.2 Finite plate

C.2 Finite plate

The solutions for the expansion coefficients in Eq. (3.2.32) are found to be

An =
vn(r1)−BnK2 − CnK3 −DnK4

K1
, (C.2.1)

Bn =
vn(r2)−K5

vn(r1)

K1
− Cn

K7 −K3K5

K1
−Dn

K8 −K4K5

K1

K6 −K2K5

K1

, (C.2.2)

Cn =
E5 −DnE3

E1
, (C.2.3)

Dn =
E6 −

E2E5

E1

E4 −
E3E2

E1

, (C.2.4)

with

E1 =K11 −
K3K9

K1
−


K7 −

K3K5

K1

 K10 −
K2K9

K1

K6 −
K2K5

K1

, (C.2.5)

E2 =K15 −
K3K13

K1
−

K7 −

K3K5

K1

 K14 −
K2K13

K1

K6 −
K2K5

K1

, (C.2.6)

E3 =K12 −
K4K9

K1
−


K8 −

K4K5

K1

 K10 −
K2K9

K1

K6 −
K2K5

K1

, (C.2.7)

E4 =K16 −
K4K13

K1
−

K8 −

K4K5

K1

 K14 −
K2K13

K1

K6 −
K2K5

K1

, (C.2.8)
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C Solutions for the expansion coefficients

where

K1 =H(2)
n (kBr1), (C.2.9)

K2 =H(2)
n (−jkBr1), (C.2.10)

K3 =H(1)
n (kBr1), (C.2.11)

K4 =H(1)
n (−jkBr1), (C.2.12)

K5 =H(2)
n (kBr2), (C.2.13)

K6 =H(2)
n (−jkBr2), (C.2.14)

K7 =H(1)
n (kBr2), (C.2.15)

K8 =H(1)
n (−jkBr2), (C.2.16)

K9 =H(2)
n (kBr3), (C.2.17)

K10 =H(2)
n (−jkBr3), (C.2.18)

K11 =H(1)
n (kBr3), (C.2.19)

K12 =H(1)
n (−jkBr3), (C.2.20)

K13 =H(2)
n (kBr4), (C.2.21)

K14 =H(2)
n (−jkBr4), (C.2.22)

K15 =H(1)
n (kBr4), (C.2.23)

K16 =H(1)
n (−jkBr4). (C.2.24)
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D
Solutions to the forced vibration

problems

D.1 Infinite plate

The analytical solution to the problem of a thin, isotropic, infinite plate excited
by a set of normal point forces is found by superposing the following solution for
a single excitation in polar coordinates [42]

v(r, ω) = F0Ypl,∞[H
(2)
0 (kBr)−H

(2)
0 (−jkBr)]. (D.1.1)

Equation (D.1.1) contains the point mobility of an infinite plate, established as

Ypl,∞ =
1

8
√
B′m′′

. (D.1.2)

The mechanical mobility in general is a complex frequency response function [80],
defined as

Yi,j(ω) =
vi(ω)

Fj(ω)
, (D.1.3)

where Fj(ω) is the complex amplitude of the excitation force and vi(ω) is that of
the resulting velocity response.
The point mobility describes the case in which the position i = j. As seen in
Eq. (D.1.2), in the case of an infinite plate it is independent of frequency.
The plate response to a number of point excitations is obtained by linear super-
position of the single responses

v(r, ω) =

N
j=1

FjYpl,∞[H
(2)
0 (kBrj)−H

(2)
0 (−jkBrj)], (D.1.4)
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D.2 Stiffened infinite plate

with the relation between polar and Cartesian coordinates

rj =

(xj − x)2 + (yj − y)2, (D.1.5)

where the index j denotes the excitation point.

D.2 Stiffened infinite plate

The solution to the problem of a stiffened infinite plate excited by a set of normal
point forces is found by using a force substitution approach. A thin infinite plate
is coupled with infinite Euler-beams along a finite number of coupling points. The
initial excitation is assumed to cause certain reactive forces at the coupling points,
so that the response of the stiffened plate can be considered as the superposition
of the response to the initial excitation force and the reactive forces. Reactive
moments are neglected, such as the contribution of coupling effects. The utilized
model is depicted in Fig. D.1, but for a detailed explanation of the approach it is
referred to the source paper [73].

Fj

vi

dj,rn

di,j
di,rn

r3r1 r2

∞

∞
drn,rn'

Figure D.1: Geometry for the modeling of a stiffened infinite plate: infinite plate
point-coupled with an infinite beam.

The velocity at the excitation point j is given by

vj = Ypl,∞Fj − Yj,rn [Yrn,rn′ + Ybe,rn,rn′ ]
−1Yrn,jFj , (D.2.1)

with

Yj,rn = Ypl,∞[H
(2)
0 (kBdj,rn)−H

(2)
0 (−jkBdj,rn)], (D.2.2)

Yrn,rn′ = Ypl,∞[H
(2)
0 (kBdrn,rn′ )−H

(2)
0 (−jkBdrn,rn′ )], (D.2.3)

Ybe,rn,rn′ =
ω

4Bk3B
[e−jkBdrn,rn′ − je−jkBdrn,rn′ ], (D.2.4)

Yrn,j = Ypl,∞[H
(2)
0 (kBdrn,j)−H

(2)
0 (−jkBdrn,j)]. (D.2.5)

Yj,rn is the matrix of transfer mobilities between the excitation point and the
coupling points for the uncoupled infinite plate. Yrn,rn′ is the mobility matrix
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D Solutions to the forced vibration problems

for the coupling points of the uncoupled infinite plate. Ybe,rn,rn′ is the mobility
matrix for the coupling points of the uncoupled infinite beam. The matrix built
by Eq. (D.2.3) gives the point mobility of an infinite plate Ypl,∞ when rn = rn′ .
Equivalently, the matrix built by Eq. (D.2.4) gives the point mobility of an infinite
beam

Ybe,∞ =
ω(1− j)

4Bk3B
(D.2.6)

when rn = rn′ . Yrn,j is the matrix of transfer mobilities between the coupling
points and the excitation point for the uncoupled infinite plate.

The velocity at the response point i is given by

vi = Yi,jFj − Yi,rn [Yrn,rn′ + Ybe,rn,rn′ ]
−1Yrn,jFj , (D.2.7)

with

Yi,j = Ypl,∞[H
(2)
0 (kBdi,j)−H

(2)
0 (−jkBdi,j)], (D.2.8)

Yi,rn = Ypl,∞[H
(2)
0 (kBdi,rn)−H

(2)
0 (−jkBdi,rn)]. (D.2.9)

D.3 Simply supported plate

The analytical solution to the problem of a thin, isotropic, simply supported plate,
excited by a normal point force F0 at the position x0, y0, is found by superposing
a set of orthogonal modes [28]:

v(x, y, ω) =
jωF0

m′′

∞
m=1

∞
n=1

Ψmn(x0, y0)Ψmn(x, y)

ω2 − ω2
n

, (D.3.1)

with
Ψmn(x, y) =

2
LxLy

sin(
mπx

Lx
) sin(

nπy

Ly
) (D.3.2)

and

ωmn =


B′

m′′


(
mπ

Lx
)2 + (

nπ

Ly
)2

, (D.3.3)

where n = {1, 2, 3, ...},m = {1, 2, 3, ...}. The plate response to a whole set of point
forces is obtained by linear superposition of the single responses.

D.4 Free plate

The solution to the problem of an all-around free plate excited by a set of normal
point forces is obtained from FEM-analysis, using the Structural Mechanics Module
of the commercial software COMSOLTM , version 4.2. A two-dimensional mesh
of triangular elements is used, with the maximum length of the elements set to
λB/10. The normal velocity values calculated by COMSOL are then exported into
MATLAB R⃝.
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