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Abstract 

The yearly internet traffic growth of 45% requires new optical transmission 
technologies to meet the increasing capacity demand.  The use of multimode 
fibers in mode division multiplexing operation could be a possible candidate 
to increase the transmission capacity for long haul transmission, as well as 
for short range transmission links such as communication within data 
centers, where multimode fibers are already in use. Here the operation of the 
multimode fiber is currently restricted to a single input, single output scheme. 
One of the issues of using multimode fibers is mode coupling and mode 
dispersion. This issue can be managed by using principal modes as 
transmission carriers modes as will be discussed in this thesis. To 
numerically verify this, a coherent multimode fiber model was developed. 
Here only linear affects like mode dispersion and mode coupling were taken 
into account. Principal mode transmission in mode division multiplexing 
scheme is analyzed and its limits examined. The maximal multiplexed 
transmission rate is imposed by the multimode fiber bandwidth, as long as 
principal mode dependent losses are compensated. In this case multiple input 
multiple output digital signal processing at the receiver is not required. Using 
digital signal processing at the receiver, combined with principal mode 
transmission has some advantages compared to the conventional LP-mode 
launch, if the memory of the system is limited to one symbol. In this case the 
equalizer is capable of equalizing twice the transmission rate that would be 
possible using the conventional LP-mode transmission.  
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Zusammenfassung 

Der Bedarf an immer schnelleren Datenübertragung ist in den letzten Jahren 
drastisch gewachsen. Dies erfordert die Entwicklung neuer Optischer 
Übertragungstechniken um diesem Bedarf entgegenzukommen. Eine 
Möglichkeit besteht darin, die Eigenwellen einer mehrwelligen Faser zu 
nutzen, um parallel Datenströme zu übertragen. Auf Grund von 
Modenkopplung und Modendispersion ist dies durch aufwendige 
Signalverarbeitung am Empfänger beschränkt, so dass nach anderen 
Lösungen gesucht werden muss. Eine Möglichkeit besteht darin, so genannte 
„Principal modes“ als Trägermoden zu verwenden. Diese Möglichkeit würde in 
dieser Dissertation numerisch untersucht und deren Grenzen bestimmt. Um 
dies zu untersuchen, wurde ein kohärentes Mehrwelliges Fasermodell 
entwickelt, um die Übertragung von Signalen mit höherwertigen 
modulationsformaten in einer mehrwelligen Faser darzustellen. Darauf 
basierend wurde die „Principal mode“ Übertragung in mehrwelligen Fasern im 
„mode division multiplexing“ Betrieb untersucht. Aus der Analyse geht hervor, 
dass diese Art von Übertragung durch die Bandbreite der mehrwelligen Faser 
begrenzt ist, solange die „Principal Mode“ abhängigen Verluste kompensiert 
werden. Die Anwendung digitaler Signalverarbeitung ermöglicht es, die 
Symbolrate weiterhin zu erhöhen, wobei dann der Unterschied zum 
herkömmlichen Ansatz, die LP-moden als Trägerwellen zu verwenden, nur 
dann von Bedeutung ist, wenn die Gedächtnislänge nur einen Symbollänge 
beträgt.  
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1. Introduction 
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Glass fiber is becoming more and more important these days, specially due to 
the high bandwidth demand induced by many new internet applications such 
as high definition video communication, cloud computing and social 
networking amongst others. All these new applications have led to a yearly 
internet traffic growth of 45 % [1], which requires new optical technologies to 
meet the growing bandwidth demand. Fiber based communications is mainly 
divided into two categories: technologies based on single mode fibers (SMF), 
which are commonly used for long and mid – range transmission and 
technologies based on multimode fibers (MMF), which are mainly used in short 
range transmissions due to their larger numerical aperture (NA) and core 
radius 0ρ , which directly translates into lower assembly costs due to larger 
coupling tolerances [2].  

Short-range transmission, commonly limited to a transmission range of less 
than one kilometer, is typically needed in data centers, which contain 
thousands of servers that form parallel supercomputing infrastructure [3]. The 
communication traffic in data centers is currently limited between servers that 
are located within one building, but it is foreseen to extent to several buildings 
to form cluster fabrics for warehouse scale computing [4] in order to keep up 
with increasing traffic demand. This places some new challenges for data 
center operators, since operating at larger transmission rates reduces the 
maximal transmission distance. To understand this limitation, it is necessary 
to understand the standard MMF operation. Fig. 1 shows a simplified MMF 
transmission scenario. Here a pulse is modulated on the optical carrier, which 
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can be emitted for instance from a light emitting diode (LED), by modulating 
the driving current. Light is then coupled into the MMF, where the optical 
pulse is distorted during propagation if no modal coupling is present, by modal 
dispersion1. At the output of the MMF, the optical power is converted by means 
of a photodiode (PD) into electrical current, where the pulse appears distorted 
as depicted in Fig. 1. This distortion causes inter symbol interference, in the 
case of data transmission, where a very long bit stream is transmitted through 
the MMF, which would then result in bit errors at the receiver. The effect of 
modal dispersion is the main limiting factor in MMF transmission [5,6] and 
can be understood in a very simplified manner as shown in Fig. 1. Here two 
different modes propagate with different group velocity in the MMF, arriving 
at the receiver at different time instances. If the light source was modulated, 
the maximal achievable transmission distance would roughly be given by the 
maximal allowable time delay between the slowest and fastest modes, so that 
the pulses are not distorted.  

 

 
Fig. 1. Traditional MMF operation. A pulse is modulated on the optical carrier 
(here a LED) which is then coupled into the MMF. The pulse appears distorted 
on the output side of the MMF after being detected by the photodiode (PD) due 
to mode dispersion. Modal dispersion is induced by mode propagating at 
different group velocities, here shown exemplary for the LP01 and LP11 mode, 
with group velocities vgr,1 and vgr,2 respectively.    

  

A key factor that describes the maximal transmission rate over a given length 
is known as the bandwidth length product and much effort has been applied 
over the last decades to improve this factor. Several MMF standards are 
commercially available, capable of achieving higher transmission rate over a 
given distance (some examples include the OM1 – OM4 MMF specified by the 
                                                
1 Here only linear effects are being considered. 
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IEEE standards). All these MMF are specified at a wavelength of 850λ = nm 
since transmitters and receivers are available at low cost. To increase the 
transmission capacity further, it is essential to explore new transmission 
schemes which will be reviewed in the next subsection. 
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1.1 State of the art 
To increase the transmission rate even more, new approaches have been 
proposed. These are not necessarily low cost, but are capable of increasing the 
transmission capacity further. These include 

Electronic dispersion compensation: This technique distorts the 
input or output signal, using for example a feed-forward equalizer, in 
such a way as to compensate for the distortion effects of the MMF and/or 
vertical cavity surface emitting lasers (VCSEL). Several reports have 
shown [7,8] the feasibility of this approach, improving the maximal 
transmission rate at the given transmission distance.  

Frequency/Wavelength division multiplexing. These approaches 
rely on using multiple sub – carriers to increase the overall transmission 
rate and to mitigate inter symbol interference. These subcarriers can 
either be optical, as in coarse wavelength division multiplexing (CWDM), 
where several optical emitters are multiplexed within the 150 nm 
transmission window in the 850 nm region; or electric subcarriers, as in 
subcarrier multiplexing, where regions beyond the baseband showing 
flat frequency response are used for transmission. These electrical and 
optical multiplexing techniques can be combined to obtain extremely 
high data rates [2]. 

Space division multiplexing. One straight forward approach to 
increase the transmission rates of MMF for data center application was 
introduced in the IEEE 802.3ba standard, by defining the 40GBASE – 
SR4 and 100GBASE – SR10 technologies [2]. This approach relies on the 
use of space division multiplexing (SDM), which bundles four or ten OM3 
type MMF, to achieve transmission rates up to 100 Gbit/s for a maximal 
distance of 100 meters. This approach has a major drawbacks which is 
scalability, since the amount of MMF required would become most likely 
unmanageable [9].  

 

The concept of SDM is not limited to simple MMF parallelization and several 
different approaches have been proposed to increase the transmission capacity 
of a MMF. One approach is the so called mode group division multiplexing 
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(MGDM) [10,11,12]. This approach relies on exciting and detecting a group of 
modes that have the same propagation constant and to encode information on 
each of these mode groups. This allows data transmission parallelization using 
one single MMF. Considering as an example an OM4 MMF, which guides ten 
mode groups at a wavelength of λ =0 1.55 µm. A multiplexing gain factor of ten 
can thus be achieved. Due to slightly different propagation constants within 
one mode group, the maximal transmission distance is limited by the maximal 
differential time delay between guided modes within one mode group. The 
multiplexing and de-multiplexing can be realized by using an offset launch [13] 
and offset mode filtering as shown for instance in [14] or by using spatial 
diversity detection using ring photo – diodes [15,16]. This approach does not 
require multiple input multiple output (MIMO) digital signal processing if 
coupling between mode groups is low and maximal transmission reach is 
limited to 1 – 2 km. In the case where mode coupling originated from micro-
bending for example can no longer be neglected (for example if the transmission 
length exceeds 2 km), signal degradation increases dramatically, reducing the 
transmission performance of such multiplexing transmission systems. Since 
direct detection is normally applied to make this approach a simple, low cost 
approach, MIMO signal processing does not improve the performance 
significantly [17] since the phase information is not available at the receiver. 

 

Spatial beam forming has also been proposed as a candidate for spatial division 
multiplexing in a MMF for short reach application using direct detection 
[18,19]. Here the channel needs to be known a priori to equalize the input mode 
field pattern as to maximize the output photodiode current of the ith photodiode 
of the ith optical output. This approach requires the use of one coherent laser 
source, which is then split into multiple outputs. Each output is then 
modulated with different data streams. Since all outputs are originated from 
one source, they all have a well-defined phase relation to each other which can 
be changed to a desired value by a phase shifter for example. A related 
approach was introduced by Fan and Khan in 2005 by the so called principal 
modes (PMs) [20]. They are computed and launched using the channel state 
information and therefore take into consideration the dispersive effects of the 
MMF and the mode coupling characteristics of the MMF. It was found that 
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these modes are frequency independent to the first order and therefore robust 
against modal dispersion. An intuitive example of their benefit is shown in  
Fig. 2.  

 

 
Fig. 2. The main concept of principal mode transmission in MMF. Here the 
spatial field distribution is modified by the spatial light modulator (SLM) to a 
match a principal mode. The field distribution representing the principal mode 
inside the MMF is a weighted superposition of the guided eigenmodes of the 
unperturbed MMF. The principal mode travels inside the MMF with a well-
defined group velocity vgr, PM. For this reason no signal distortion is observed at 
the output of the MMF.  

 

Here the field distribution of a laser light source is mapped into a principal 
mode which in turn excites the MMF. The mapping is shown here exemplary 
using a spatial light modulator (SLM), but can be done also by silicon photonics 
grating couplers [21] or special lenses [22]. The pulse modulated on the laser 
propagates though the MMF and appears undistorted at the output of the 
MMF, in contrast to resulting output pulse shown in Fig. 1. This approach was 
firstly demonstrated by [23,24] using a standard graded index MMF. By using 
adaptive optics, in form of a spatial light modulator, it was possible to excite a 
PM, achieving transmission rates of 100 Gbit/s over a transmission distance of 
2.2 km [25]. This shows the potential of the approach, since the MMF used was 
an OMF 4 type fiber, optimized for the wavelength of 0 850nmλ = and hence, 
with a MMF bandwidth length product of less than ×2GHz km   at the 
wavelength of λ =0 1.55 µm. Using the same MMF in the conventional 
transmission scheme would allow a maximal transmission rate of roughly less 
than 2 Gbit/s for one kilometer. This concept will be extended in this work by 
using the PMs as carriers for mode division multiplexing (MDM) as discussed 
in the section 4. 

  

Laser t
t

PD

MMF

SLM

vgr,PM
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1.2 Goal and outline of this thesis 

 
Fig. 3. The concept of mode division multiplexing in a multimode fiber.  

 

The natural extension of the principal mode approach is its use in a MDM 
scheme, as mentioned earlier. This approach makes sense if one takes into 
consideration that multiple data streams transmitted through the MMF in 
parallel are likely to couple amongst each other, limiting the transmission 
performance of such a system. This performance limitation can be compensated 
using digital signal processing at the receiver, but mode dispersion (MD) will 
enhance the complexity of such a receiver since it complexity increases roughly 
proportional to the square of maximal differential time delay between the 
guided modes. A principal mode transmission in MDM scheme would be 
transparent towards these effects as explained in section 4 and might perform 
well without the use of MIMO digital signal processing at the receiver or even 
reduce its complexity if present. A possible transmission scenario is depicted 
in Fig. 3. Here each PM, containing a different data stream, is multiplexed 
(MUX) into the MMF, transmitted and then de-multiplexed (DEMUX) by a 
spatial filter and detected at the receiver. At the receiver, it is possible to use 
MIMO digital signal processing to recover the input information. This MDM 
approach can be combined with wavelength division multiplexing (WDM) 
approaches, but will be studied here at only one wavelength, namely 
λ =0 1.55 µm. This wavelength, which is commonly used for long range 
transmission, is used here since it is believed that silicon photonics will play 
an important role in future transceiver and receivers structures for MMF 
transmission systems as the joint work of Corning and Intel suggest [26]. Since 
silicon is not transparent for wavelengths belowλ ≤ 1μm , the usage of larger 
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wavelengths are necessary and since most of the research is being realized at

0 1.55μmλ = , it suggest this to be the wavelength of choice. In addition, silica 
fibers exhibit their absorption minimum at 0 1.55µmλ = , achieving at this 
wavelength low loss transmission.  

 

To understand the main limitations of the MMF in MDM scheme using PMs as 
carriers, a model needs to be established. As higher order modulation formats 
are likely to be used in future MMF transmission links and PMs require the 
complete amplitude and phase information of the transmission channel, a 
coherent MMF transmission model is necessary. To implement this, complete 
knowledge of the eigenmodes of the unperturbed MMF are essential, which will 
be dealt with in chapter 2. Here the Laguerre-Gaussian modes will be 
introduced, which are the eigenmodes of the infinitely extended parabolic index 
profile fiber and used in this work unless stated otherwise. These eigenmodes 
will be compared against the modes of the truncated parabolic index profile 
MMF in terms of field distribution, propagation constant and differential group 
delay. Chapter 3 will deal with the modeling of the MMF which includes mode 
coupling induced by splices and micro-bends. Here a simple model will be 
presented which is capable of evaluating the propagation inside the MMF with 
low computational effort. Chapter 4 will then use this transmission model to 
emulate a MDM transmission scenario using the PMs as carrier modes. This 
scenario will be compared towards the more common LP-mode launch in terms 
of transmission performance. To extend the applicability of this approach, the 
performance of the PM transmission will be analyzed using a multiple input 
multiple output (MIMO) digital signal processing receiver, which will be 
introduced in chapter 5. The performance of PM transmission in a MDM 
scheme will be compared towards the LP-mode transmission scheme. The 
conclusion of this thesis will then be presented in chapter 6. 
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2. Multimode fiber modes 

 
Fig. 4. Schematic of MMF. Refractive index is shown here exemplary for = 2p
and ∞=p . The cladding is shown here to extend to infinity and the core 
diameter is denoted here by 2ρ0. 

Formel-Kapitel (nächstes) Abschnitt 1 

Fibers can be categorized mainly into two types of fibers: single mode fibers 
(SMF) and multimode fibers (MMF), while the latter is of interest here. The 
main structure is shown in Fig. 4 and can be divided into two areas: the core 
(dark blue) and cladding (light blue). The core area has a refractive index, 
which may have a radial dependence, denoted here as ( )ρ λ0 ,n . Its maximal 
value ( )1n λ  is found typically at the fiber core axis ρ =( 0) . Light is guided in 
the core area by means of total internal reflection. For this reason, the material 
surrounding the core area, exhibits a smaller refractive index value ( )2n λ  , 
which is called cladding. A common examined refractive index profile is the 
family of so called power law profiles, which is given by [27,5]: 

 ( ) ( ) ρρ λ λ ∆ λ
ρ

 
 −

 
=  


 

2 2
0 1

0
, ) 1 2(

p
n n  (2.1) 

Here ρ0 denotes the core radius and ( )∆ λ  the normalized refractive index 
difference, which is defined as [27]: 

2ρ0∞
ρ

n0(ρ,λ)

n2(λ)
n1(λ)

p = 2 p = ∞
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 ( ) ( )
( )

( ) ( )
( )

λ λ λ
∆ λ

λ λ
  −

= − ≈  
 

2 1 22
2 11

1 1
2

n n n
n n

 (2.2) 

The approximation given in Eq.(2.2) holds if ( ) 1∆ λ  . The description given in 
Eq. (2.1) yields the step index MMF if ∞=p , as shown in Fig. 4 (dotted line) 
and the graded index profile (Fig. 4 shows exemplary the parabolic index profile 
with = 2p ). MMFs with refractive index profiles with p around ≈ 2p are known 
to minimize the differential group delay (DGD) [5] between the propagating 
modes2. Since the goal of this work is to apply a MMF to use for MDM, it is 
necessary to reduce the differential time delay between the propagating modes 
in order to minimize the memory of the digital signal processing at the receiver. 
For this reason the analysis here is limited to power law profiles with ≈ 2p . 
The refractive index ( )λ1n  can be calculated using the Sellmeier – equation, 
which is given as [28]: 

 ( ) λλ
λλ λ

λ λ

= +
 − 



−



2
2

2

2

1

2

11
1 1

.
LL e

e

n  (2.3) 

The resonance wavelengths λe and λL  depend on the silica concentration [28].  

 

 
Fig. 5. Refractive index for different concentrations of SiO2. This figure was 
plotted using the values in [28]. The green curve contains 100 % SiO2 content, 
while the red curve contains 86.7% SiO2 and 13.3% B2O3, the blue curve 
contains 86.5% SiO2 and 13.5% GeO2 and the black curve 90% SiO2 and 10% 
P2O5  

 

                                                
2 This applies only if profile dispersion is neglected [34]. Different wavelengths require a 
different power law parameter p to obtain an optimal MMF bandwidth. Here it will be assumed 
that this is the case.  
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Fig. 5 shows the refractive index for different concentrations of SiO2. Here a  
90 % silica concentration and 10 % P2O5 concentration is assumed (Black curve) 
for ( )λ1n . To understand the fundamentals of MMFs, it is necessary to analyze 
the MMF in terms of its eigenmodes. This is presented in the next subsection.  
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2.1 Vector wave equation 
In order to describe the propagation of light inside a multimode fiber (MMF), 
it is necessary to assume that the region of interest is far away from any source 
of excitation, so that it is possible to describe the MMF with its bound modes. 
Their sum represents the complete electric and magnetic field vector ( , , )x y zE



and ( , , )x y zH


 respectively [27]. These are given as: 

 

Forward prop. wave Backward prop. wave

( , , , ) ( , , , ) ( , , , )

( , , , ) ( , , , ) ( , , , )

r r r
r r

r r r
r

r

r
r

x y z t a x y z t a x y z t

x y z t a x y z t a x y z t

−−

−−

= +

= +

∑ ∑
∑ ∑

E E E

H H H

 

 









 

 



 (2.4) 

The index r is an integer and extends over all guided modes, with total number 
D. The parameter ra± denotes the modal amplitudes. The summation extends 
over the forward and backward propagating waves as shown in Eq. (2.4). Only 
forward propagating waves will be considered here and therefore the second 
summation in Eq. (2.4) is set to zero. The electric and magnetic field satisfy 
Maxwell’s equations, which can be expressed in differential form as3: 

 
( )

( )( )

µ µ ρ λ

ρ λ

∇ × = − ∇ × =

∇ = ∇ =

0 0 20 0 0
0 0

2
0

;

;

; ,

· , 0 · 0.

r r r r

r r

k k nj j

n

E H H E

E H

   

 

   (2.5) 

Here 0 0 0k µω=   is the wave number in free space, 0 0 and µ  the dielectric 
constant and magnetic permeability in free space, respectively. Equation (2.5) 
implies the use of the time dependence exp( )j tω 4 . For this reason, the 
derivative with respect to time / t∂ ∂  is replaced by jω, already applied in 
Eq.(2.5). Under the assumption that the refractive index does not change in 
propagation direction, which is assumed here to be the positive z-direction, the 
modal fields can be expressed in Cartesian coordinates, while omitting the time 
dependence exp( )j tω as: 

 
( ) ( ) ( )
( ) ( ) ( )

β

β

= −

= −

, , , exp ,
, , , exp

r r r

r r r

x y z x y j
x y z

z
x y j z

E e
H h











 (2.6) 

                                                
3 Here the convention ( )exp j tω is used; [27] uses the convention ( )ω−exp j t .   
4 j is the imaginary number defined as 2 1j = − . 
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or in cylindrical coordinates as: 

 
( ) ( ) ( )
( ) ( ) ( )

,, , , exp
, , , exp .

r r r

r r r

z
z

r z r j
r z r j

φ φ β

φ φ β

= −

= −

E e
H h











 (2.7) 

Here rβ 5 is the propagation constant of the rth mode, ( ) ( ) and , ,r rx y x ye h


  are 
electric and magnetic field vectors without any z-dependence. The propagation 
constant rβ  is frequency dependent in general, but the current analysis is 
limited to a single frequency so that this dependence is omitted for now. The 
vector wave equation for the electric field can be obtained by eliminating the 
magnetic field by performing the rotation of the first equation in Eq.(2.5). The 
following expression is obtained: 

 ( ) ( )2 22 0 0 0· , .r r r r rnj kωµ ρ λ∇ × ∇ × = ∇ ∇ − ∇ = ∇ × =E E E H E
    

     

 (2.8) 

This equation can be simplified using the fact that: 

 

( )( ) ( ) ( )
( ) ( )

( )( )
( )( ){ }

ρ λ ρ λ ρ λ

ρ λ ρ λ
ρ λ

ρ λ

∇ = ∇ ∇

∇ ∇ =

∇ = − ∇

∇

+

+

= −

2 2 2
0 0 0

2 2
0 0

2 2
0 0

2
0

, , , ·
, , · 0,

· / ,
.

,
log ,

r r r

r r

r r

r

n n n
n n

n n
n

E E E
E E

E E
E

  
  

 
 

 
 




 (2.9) 

Applying (2.9) to (2.8) yields: 

 ( ){ } ( )( ){ }ρ λ ρ λ∇ = −∇+ ∇
 

  

2 2 22
0 0 0ln, , .r r tn k nE E  (2.10) 

If a similar procedure is applied to the magnetic field rH


the following equation 
is obtained [27]: 

 ( ){ } ( ) ( )( )ρ λ ρ λ∇ = ∇ ×+ × ∇2 2 22
0 0 0, ,ln .r r tn k nH H

 
  

 (2.11) 

Equations (2.10) and (2.11) have been stated here independently of any 
coordinate system. A great simplification is achieved, if the field vectors have 
components referred to fixed Cartesian directions [27]. In that case the vector 
operator 2∇



can be replaced by the scalar Laplacian operator ∆ . Since the fields 
are independent to the choice of coordinate system, the fields are expressed as: 

                                                
5 Here the tilde is used to differentiate to β, which is the propagation constant using the weak 
guidance approximation.  
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 ( ) ( ) ( )
( ) ( ) ( )
ρ φ ρ φ ρ φ
ρ φ ρ φ ρ φ

= + +

= + +
, ,

, ,,

, , , ,
, .

,
, ,

r y r zr r x

r r x y zr r

e e e
h h h

E x y z
H x y z



  



  

 (2.12) 

Here ,  and x y z   are unit vectors in x-, y- and z-direction respectively. Equation 
(2.10) and (2.11) can now be formulated as: 

 
( ){ } ( )( ){ }
( ){ } ( ) ( )( )
ρ λ ρ λ

ρ λ ρ λ

∆ +

∆

= −∇ ∇

= ∇ × × ∇+

2 2 2
0 0 0
2 2 2
0 0 0

, ,

,

ln ,

ln .,
r r t

r r t

n k n

n k n

E E

H H

 

   (2.13) 

The subscript t denotes that the operator operates only on the transversal 
components. The right side of (2.13) still couples the field components to each 
other and it is therefore reasonable to introduce some simplification. This is 
mainly the weak guidance approximation, which is discussed in the next 
subsection. 
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2.2 Scalar wave equation 
If it is possible to assume, that the normalized refractive index difference ( )λ∆  
between core and cladding is much smaller than unity, the vector wave 
equation can be reduced to a scalar eave equation [5] since the right hand side 
Eq. (2.13) becomes zero. This enables the use of so called linear polarized modes 
(LP-Modes) which was first proposed by [29] for step index fibers. As a 
consequence, the solution to the eigenvalue equation is virtually insensitive to 
the polarization properties of the MMF [27] and the waves propagating along 
the waveguide experience almost a homogeneous medium, which leads to 
almost a free space propagation character. For this reason polarization effects 
will not be accounted during this work and the number of modes stated here 
and further on refer always to the case of single polarization. The transversal 
magnetic field components is then given by [5]: 

 ( )
1/2

0
, 1 ,

0
.r t r tn λ

µ
 

=  


×


H z E
 

   (2.14) 

The z- component of the electric and magnetic field vector is given as: 

 ( )

( )

λ ρ

λ ρ
∇

=
∇

=

,
,

0 1 0

,
,

0 1 0
,

,t r t
r z

t r t
r z

jE
k n

jH
k n

E

H



   (2.15) 

where /t z∇ ∇ − ∂ ∂=  is the Nabla operator operating only the on the 
transversal coordinate components. Both vector wave equations result in: 

 
( ){ }
( ){ }
ρ λ β

ρ λ β

∆ + − =

∆ + − =

2 2 2 ,0 0
2 2 2 ,0 0

, 0,
0.,

t r r t

t r r t

n k
n k

e
h



  (2.16) 

Here the use of Eq. (2.7) and β∂ ∂ = −/ z j has been applied. These fields satisfy 
the orthogonality condition, stated here for the electric field in one polarization 
directions as [28]: 

 ( ) ( )φ φ =∫∫ *, ',, , 0,r t r t
A

e r e r dA   (2.17) 
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where A extends over the entire fiber cross-section and this condition holds if
'r r≠ . If 'r r=  this integral is proportional to the guided power [5], but will be 

normalized to unity as: 

 ( ) ( )*,, , , 1r t
A

r te r e r dAφ φ =∫∫   (2.18) 

Since the MMF is circularly symmetric, it makes sense to use a cylindrical 
coordinate system to describe the eigenmodes of the MMF. Equation (2.16) can 
therefore by written as: 

 ( ) ( )
( )
ρ φ

ρ ρ λ β
ρ ρ ρ φ ρ φ

 
−

 ∂ ∂ ∂ + + =  ∂ ∂ 
 ∂  

2 ,2 2 2
0 02 2 ,

1
,

,1 0.
,r t

r
r t

n
r

k
e
h



  (2.19) 

The following equations are limited to the transverse electric field vector 

, ( , )r t r φe  only, since the equation for the transverse magnetic field vector 

, ( , )r t r φh


 is the same. If the separable form: 

 ( ) ( ) ( )
( ),

sin, ,cosr x l
l
l
φ

ρ φ ψ ρ
φ

=




e x   (2.20) 

is applied to Eq. (2.19), where ( )lψ ρ  is a function that has only a radial 
dependency and l is an integer denoting the circumferential order, it is possible 
to reformulate (2.19) for one polarization direction as:  

 ( ) ( )
2

2 2 2
0 0 2

1 , 0.r l
ln kρ ρ λ β ψ ρ

ρ ρ ρ ρ
 ∂ ∂

+ =
 

− − 
 

∂ ∂ 
 (2.21) 

This equation can be normalized by introducing the following dimensionless 
variable ρ ρ= 0R  which is also used in the argument of ( )ψ ρi  further on. In   
In order to solve Eq.(2.21), it is necessary to specify the refractive index profile. 
As explained earlier, it is necessary to minimize the DGD spread between 
propagating modes in order to minimize the complexity of digital signal 
processing at the receiver if the MMF is to be used for MDM operation. For this 
reason, the power law refractive index profile given in (2.1) with 2p =  is used 
to analyze the MMF further. Small deviations from this profile are discussed 
later in section 2.6. This leads to the following differential equation [27]: 

 ( )
2 2

2 2 2
2 2

1 0,r l
l u R

R R R
V R

R
ψ∂ ∂ 

+ −− + = ∂ ∂ 
 (2.22) 
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where Eq. (2.1) has been used. The parameters ur and V are given as: 

 ( )
( ) ( )

2 2 20 0 1

0 1 0

,
2 .

r ru k n
V k n

ρ λ β

λ ρ ∆ λ

= −

=
 (2.23) 

A good approximation to the problem stated in Eq.(2.22) can be found if it is 
assumed that the parabolic profile extends to infinity as shown in Fig. 6 with 
the black dashed curve. The solution to the modal field distribution can be 
found in terms of the Laguerre-Gauss modes, which are discussed in the next 
subsection. 

 
Fig. 6 Exemplary refractive index profile. Blue curve shows the truncated 
profile, which has a constant value for 0/ 1ρ ρ > , black curve shows the infinite 
parabolic profile  

n(
ρ)

ρ/ρ0



18  2. MULTIMODE FIBER MODES 

2.3 Solution to the infinite square law profile  
The following trial solution  

 ( ) ( ) ( )2 2 / 2expll lR g VR R VRψ = −   (2.24) 

is applied as discussed in [27] to Eq. (2.22) in order to transform the differential 
equation to (see Annex A.1): 

 ( ) +
+ + − + + = 

 

2

2
1( 1 ) 0.

4 2
r

l
d u ll w g w

dw
w

d
d

w V
 (2.25) 

The parameter w is given as 2w VR= . The solution which ensures that ( )l Rψ  
is bounded is the generalized Laguerre polynomial ( )2lqL VR  [27,30] 6 . The 
constant q is bounded to be an integer and given by: 

 −=
−2 1 .

4 2
ru l
V

q  (2.26) 

Together with Eq. (2.23) it is possible to determine the propagation constant 
β +, 1l q 7 as [31]: 

 ( ) ( ) ( )
( )

∆ λ
β λ

ρ λ+
+ +

= −, 1 1 0
0 0 1

2 2 2 1
1 .l q

q
k n

k
l

n  (2.27) 

The field distribution in x or y polarization is therefore given as [27]: 

 ( ) { φρ φ φ+ +





−= 



2
2, 1 , 1

cos( )ex( , p .sin() )2
lll q l q q

VRe C lVR lR L  (2.28) 

where +, 1l qC is a normalization constant which normalizes the field to unity to 
satify Eq. (2.18). Before proceeding to normalize , 1( , ),l qe ρ φ+  it is necessary to 
reformulate Eq.(2.28) and introduce some parameters. The parameter ξ is 
introduced and is defined as: 

 
( ) ( )

ρξ
λ ∆ λ

= 0

1 0
.

2n k
 (2.29) 

                                                
6 The Laguerre polynomial can be described by using the Rodrigues’ Formula given in [30] as:

( ) ( / !) ( )/l x l n x l q nqL x e x q d e x x dx− −= . 
7 The modal subscript r is now given with l and q describing circumferential and radial order 
respectively. Adding the value of one to q is necessary to match the LP – mode notation, where 
the notation LPl,q+1 notation is followed. 
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Using the fact that 2 2 2/VR ρ ξ= , the electric field of mode (l,q) can be 
formulated as [32]: 

 ( ) ( )
( )

φρ ρ ρρ φ
φξ ξ ξ+ +

   
=    



 
− 

  


 

2 2
, 1 , 1 2 2 .

2
cos, exp sin

l
ll q l q q

l
e C L

l
 (2.30) 

The normalization constant ,l qC is given as [32]:  

 ( )

{
ξ π+ =

==
≠

+, 1

1 for 0 .2 for 

! ,
!

0

1 l
l q

l

C

l
q

b l

q
l

b

 (2.31) 

The solution given in Eq. (2.30) is known as the Laguerre-Gauss modes and 
Fig. 7 shows as an example the intensity distribution of the fundamental LP01 
mode, while (b) shows as an example the intensity distribution of the LP22 
mode. 

 

  
Fig. 7. Spatial intensity distribution of (a) LP01 Mode, (b) LP22 Mode 

 

It is possible to give ξ a physical interpretation if the fundamental mode is 
analyzed. The magnitude of the pointing vector in propagation direction is 
given as: 

 ( ) ( ) 2*, 1 , 1 , 1 , 1,1
2

, ( , ) ,l q l q l q l qS eρ φ ρ φ ρ φ+ + + + × =   ∝e h z


   (2.32) 

For the fundamental mode ( 0 and 0)l q= = the pointing vector is proportional 
to: 

 ρ
ξ

 
∝ − 

 

2
0,0 2exp .S  (2.33) 

(a) (b) 
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The pointing vector drops to 1/e of its maximal value at ρ ξ= 8. Since the optical 
power is proportional to S  it is possible to state 2ξ as the diameter, where the 
power has dropped to 1/e of its maximal value.  The Laguerre-Gauss modes are 
going to be used throughout the entire work unless stated otherwise.  

 

2.3.1 Estimation of propagation constants 

The propagation constant , 1l qβ + , formulated in Eq.(2.27), describes the 
propagation of mode (l,q) in z-direction and is in general frequency dependent 
since it includes, among others, the frequency dependence of the refractive 
index, described in Eq.(2.3). It is useful to expand the propagation constant

, 1l qβ + in terms of a Taylor series, which can be found in textbooks such as [33], 
around the optical angular carrier frequency 0ω as: 

 ( ) ( ) ( )
ω ω ω ω ω ω

β ω β β ω ω β ω ω+ + + += = =
≈ −+ −+

0 0 0

(1) 2(0)
, 1 0 0, 1 , 1 , 1

(2)1
2

.l q l q l q l q

 (2.34) 

Here ( )
, 1l q
iβ +  is the ith derivative of , 1l qβ + with respect to ω at the center angular 

frequency ω0. The first derivative of ( ), 1l qβ ω+ is performed by using the 
approximation 21 /21 /8x xx ≈ − −−  which yields [31]: 

 

( )
( )

( )
( )

( ) ( ) ( )

( )
( )
( )

( )

( ) ( )

ω ω
ω ω

ω ω

ω ω

∆ ω ∆ ωβ ω
ω ω ρ ω ρ ω

ω
∆ ω

ω ρ

∆ ω ∆ ω
ρ ρ ω ω∆ ω

ωβ ω
β ∆ ω

ω

+

=
=

=

+
+

=

  ∂ ∂   ≈ − −  ∂ ∂    

   = +      
  ∂
 − +
  ∂ 

∂  = ≈ +  


=

∂ 

0
0

0

0

2
0 0, 1

0 1 0 0 0 1 0 0

2
1 0

0
0 1 0 0 0

0

0 0 1 0 00

1 0, 1 (1) 2 0, 1
0

2 2 2( )

21

( )

11
8

1

1 2

l q

l q
l q

n k
M M

N M
c n

M

N M
c V

n k

k

n k

( )
( )

ω ω

∆ ω
ωρ ∆ ω =

  ∂
  −
  ∂  0

2

0 0
.M

 (2.35) 

                                                
8 This is not be mistaken with the field mode radius given in [31]. The parameter ξ is related 
to the mode field radius w as 2 wξ = . 



2. MULTIMODE FIBER MODES  21 

 
 

Here Eq. (2.23) was applied. The simplification was achieved by assuming 
( )21 2 / V∆ λ which is always the case for weakly guiding fibers. The 

degenerate mode group (DMG) number M is given as: 

 2 1M q l= + +   (2.36) 

and ( )1N λ is the group index defined as ( ) ( ) ( )λ λ λ λ λ∂= − ∂1 1 1 /nN n . The 
parameter (1)

, 1l qβ + has the unit of time per unit length and will be denoted by
τ +, 1l q further on. It is important to mention here, that modes with the same 
DMG number M, have the same group velocity and can be gathered into groups, 
the so called degenerate mode groups. M specifies the number of modes 
contained within the DMG with DMG number M. To evaluate the maximal 
DMG number Mmax, it is necessary to know the maximal number of guided 
modes, which is denoted by D. These can be obtained by evaluating Eq. (2.27) 
using the following condition [27]: 

 ( ) ( )0 2 , 1 0 1 .l qk n k nλ β λ+< ≤  (2.37) 

As soon as all the guided modes are known, it is possible to calculate Mmax by 
using Eq. (2.36). The derivative of ( )∆ λ  with respect to ω can be related to 
profile dispersion, which is defined as [5]: 

 ( )
( ) ( )

( )λ ∆ λλ
λ ∆ λ λ

∂
=

∂
1

1N
n

P   (2.38) 

and causes a frequency dependent deviation of the time delay , 1l qτ + , which 
influences the bandwidth length product of the MMF as shown in [34]. This 
can be countered by optimizing the exponent coefficient p in Eq. (2.1) as shown 
in [34] for the wavelength of interest9. For this reason, it will be assumed that 
the few mode fiber (FMF) under consideration has an optimal exponent p to 
counter for this effect. As will be shown later in section 2.6, the field 
distribution of such power law profiles are very similar to the field distribution 
in a MMF with parabolic index profile so that the use of Laguerre-Gauss modes 
is justified.  

 

                                                
9 Assuming a MMF with ρ == =0 1μm, 025 1.457.2, NA n  a profile dispersion value of P = 0.13 
is calculated. Using the formulas given in [34] to estimate the optimal popt parameter, a value 
of popt = 1.72 is obtained. 
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The second derivative (2)
, 1l qβ + is given as: 

 

( ) ( ) ( )

( )
( )( )

( ) ( ) ( )
( ) ( )

( )( )
( )

ω ω ω ω

λ λ

ω ω

β ω ω
∆ ω

ω ω ρ

∆ ωρ

ω ρ

λλ ∆ λ
π λ λ ρ

λ ρ ∆ λ

λ ρ
β ω λ

ω π

+

= =

=

+

=

 ∂ ∂   +   ∂ ∂   

−

 ∂
+  

=

 
 =
 
 

−



=

=

∂  

∂
≈

∂

0 0

0

0

22 , 1 1
02 1 0 0

2 2001
32

1 0 0 0
223 1

02 2 0 0 0

2 20 0 01
32

1 0 0

1

0

1 22 ,
2

1

2

1

2

2

2

,

1

l q

l q
M

M
n k

n k

n k

n k

N
c

MN
c

n M
c

N M
c

D
c

 (2.39) 

where ( )1 2 21 /M c nD λ λ λ−= ∂ ∂ is known as material dispersion. The last 
expression in (2.39) was obtained by assuming ( )1 0 0 1n kλ ρ 

10. Using the 
expressions obtained in (2.35) and (2.39) it is possible to formulate (2.34) as: 

 ( ) ( ) ( )λβ ω β τ ω ω ω ω
π+ ++≈ +− −+
2 2(0)

, 1 , 1 0 0, 1 2
.l q l q Ml q D

c
 (2.40) 

If the optical wave is modulated, the optical envelope, modulated on mode (l,q), 
travels with the group velocity +( , 1)v l q

gr given as: 

 
0

1
, 1( , 1)

, 1

( ) 1v ,l ql q
gr

l qω ω

β ω
ω τ

−
++

+=

 
= =



∂
∂




 (2.41) 

From Eq. (2.41) it becomes clear, that signals carried on several modes with 
different DMG number M, will at some point suffer from distortion. This is 
called modal dispersion (MD) and is the main cause of distortion in MMF [6]. 
The Laguerre-Gauss modes, given in Eq.(2.30), together with their propagation 
constants, given in Eq.(2.40), will be used throughout this work.  

 

To justify the use of the Laguerre-Gauss modes, which is the solution of the 
infinite extended parabolic profile and does not take into account the effect of 

                                                
10  The expression ( )λ π2 / 2MD c  is one order of magnitude larger than the rest of the 
expression. 
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the cladding, a numerical analysis will be carried out in which the spatial mode 
distribution, propagation constant and group delay is evaluated and compared. 
This analysis takes into account the effect of the cladding, which, as shown 
later, has a great impact on the maximal DGD. The next subsection will 
therefore deal with the description of the numerical procedure used to estimate 
the mode distribution as well as propagation constants which is based on the 
work of [35,34].   
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2.4 Numerical estimation algorithm 
In order to formulate Eq. (2.21) free from all fiber parameters other than V, the 
normalized propagation constant 2rB 11 is introduced, which is defined as [35]:  

 ( )
( ) ( )( )

2 2 2
0 12

2 2 2
0 1 2

.r
r

k n
k n n

B
λ β

λ λ
=

−

−  (2.42) 

Br is the normalized propagation constant bounded between zero and one12. 
Using the definition of V in Eq. (2.23) and ρ ρ= 0/R , Eq. (2.21) is formulated as 
[35]: 

 ( )( ) ( )ψ∂ ∂  + 
 

− − = 
 ∂ ∂ 

22 2 2 0.r lVR R R B N R R
R

l
R

 (2.43) 

( )N R is the normalized profile shape which has a minimum value of zero and 
a value of one at the core – cladding boundary. The solution to this problem in 
the cladding region ( )( )1 for 1N R R= > , where it is assumed that the cladding 
extends to infinity as shown in Fig. 4, is given by the modified Bessel function 
Kl of the second type as: 

 ( ) ( )ψ = − 21 .l l rR AK V B R  (2.44) 

The constant A is determined by the boundary condition between core and 
cladding which dictates that ( )l Rψ and ( ) /l R Rψ∂ ∂ have to be continuous [35]. 
In addition, there are six boundary conditions at center of the axis 0R = . These 
are given as [35]: 

 

(0)(0) 1, 0, 0
(0)(0) 0, 1, 1
(0)(0) 0, 0, 2

l
l

l
l

l
l

R

R

l

l

l
R

ψψ

ψψ

ψψ

∂
∂

∂
∂

∂
∂

= = =

= = =

= = ≥

 (2.45) 

To reduce the number of boundary conditions the following transformation rule 
is applied to Eq.(2.43) as suggested by [35]: 

                                                
11 The index r is used here to clarify that the normalized propagation constant varies with 
mode.  
12 Br is defined here as given in [35]. A more common definition is given for example in [5], 
which is related to the values given here by its square root value. 
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 ( ) ( )ψ = .ll lR R f R  (2.46) 

Equation (2.43) is then transformed to: 

 
( ) ( ) ( ) ( ) ( ) + + + − = 

∂ ∂
∂ ∂

2
22

2 2 1 0,r l
f R f R

R l RV B N R f R
R R

 (2.47) 

with the following boundary conditions : 

 ( ) ( ) ( ) ( )
( )
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The boundary condition for the second derivative has been deduced by applying 
the boundary conditions for the zero and first derivative to Eq. (2.47) and by 
using the rule of L’Hôpital [33]. The continuity condition at the core-cladding 
boundary delivers the boundary condition, which can be formulated as: 
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( ) ( ) ( )
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− +
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+− −∂
+ + − =

∂ −

2 21 12
2

0

1 11 1 0.
2 1

l r l rl
r

l rR lR

K V B K V B
l V B
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 (2.49) 

Eq. (2.47) is now integrated for a fixed value l and a random value of rB in the 
range of0 1rB< < . If rB satisfies Eq.(2.49), the correct radial field distribution 

( )lf R  is found, together with its propagation constant now denoted as +, 1l qB 13. 

Given ( )lf R , the electric field of the mode (l,q+1) can be described as: 

 ( ) ( ) ( )
( )

φ
ρ φ ψ

φ+++




= , 1, 1, 1
cos, sinl ql q l q

l
R

l
e C  (2.50) 

with ( ),q 1l Rψ + given as: 

 
( ) ( )
( ) ( )

ψ

ψ
+ +

+ +

= <

= − >

, 1 , 1
2, 1 , 1

for 1,
1 for 1.

ll q l q

l q l l q

R R f R R
R AK V B R R

 (2.51) 

Here the line above ( ), 1 ,l qe ρ φ+  is used to distinguish the electric field of the 
Laguerre-Gauss mode given in Eq. (2.30) and the numerical estimation in  

                                                
13 Br is now +, 1l qB  since the field has a circumferential order l and radial order q. The roots of 
Eq.(2.49) are used to define the radial order. In addition the propagation constant +, 1l qB and 
the normalized field distribution +, 1l qe  have been marked with a line on top, to differentiate 
with respect to the Laguerre - Gauss modes, described in section 2.3. 
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Eq. (2.50). The normalization constant +, 1l qC normalizes the field in the sense 
of Eq. (2.18). The propagation constant , 1l qβ + can be obtained by using , 1l qB +

from Eq. (2.49). 

  

It is now of interest to compare the Laguerre-Gauss field approximation with 
the more accurate numerical calculation. This is the topic of the next 
subsection. 
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2.5 Comparison between LG modes and 
numerical mode evaluation 

 

There are several parameters that need to be compared in order to estimate 
the accuracy of the Laguerre-Gauss approximation. These values can be stated 
as follows: 

• Field distribution 

• Propagation constant 

• Group delay 

Each of them is dealt with in the next subsections: 

 

2.5.1 Comparison of field distribution 

The field distribution can be compared by estimating the overlap between two 
field distributions, where ( )ρ φ+, 1 ,l qe  denotes the exact field distribution using 
the numerical mode solver and ( )ρ φ+, 1 ,l qe  denotes the Lagurre – Gauss 
approximation as given in section 2.3. If the fields are both normalized to unity 
as described in Eq. (2.18), the overlap can be formulated as: 

 ( ) ( ), 1 , 1 , 1*, , ,
A

l q l q l qC e e dAρ φ ρ φ+ + += ∫∫  (2.52) 

where A is the MMF cross-section. Since both field distributions have the same 
circumferential dependence, Eq. (2.52) can be simplified to: 

 ( ) ( )
0

*, 1 , 1 , 1 .
e

l q l q l qC R R d
ρ

ψ ψ ρ ρ+ + += ∫  (2.53) 

The upper boundary ρe should ideally go to infinity. This is of course 
numerically not possible and for this reason the integration is performed up to

03eρ ρ= × 14. To reasonably compare the field distributions, the parameter 
ξ given in Eq. (2.29) is set for each MMF under consideration to have the same 

                                                
14 This value proved enough to ensure an error of less than 0.1%.  
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value of 5.5μmξ = 15. From Eq. (2.29) this means the ratio of 0 /NAρ  needs to be 
set constant since: 

 
( ) ( )

0 0

00 1 2 k NAk n
ρ ρξ

λ ∆ λ
= =  (2.54) 

The parameter NA is the numerical aperture of the MMF and is defined as: 

 ( ) ( )2 2
1 2 .NA n nλ λ= −  (2.55) 

Using these considerations for the simulation environment, the guided modes 
of the infinite parabolic profile and the truncated parabolic profile are 
compared. The simulation parameters are given in Table I. Each of the 
simulations is done, using a carrier wavelength of 0 1. μm55λ = . 

 
TABLE I SIMULATION PARAMETERS FOR MMF OF INTEREST 

Parameter Unit Values 
Number of 
modes per 

polarization 
- 6 10 15 21 55 

NA - 0.12 0.13 0.144 0.156 0.2 
ρ0 µm 15 16.25 18 19.5 25 
V - 7.3 8.56 10.5 12.3 20.3 

∆τmax ps/km 17 32 51 75 211 

 

Fig. 8 shows exemplary the radial dependence of two modes, the LP11- and LP31 
mode for the 15 mode fiber. The dashed curves represents the radial field using 
the LG – approximation given in Eq.(2.28), while the solid lines represent the 
radial field using the numerical calculation given section 2.4.   

The LG – modes represent an excellent approximation for the lower 
order modes, while the higher order modes deviate a little, especially for values 

1.R >  This is now analyzed further using the relative mode mismatch, which 
is defined as: 

 ∆ + += −, 1 , 11 .l q l qC C  (2.56) 

                                                
15 This value is chosen due to the fact that a standard OM4 Fiber has this value.  



2. MULTIMODE FIBER MODES  29 

 
 

 
Fig. 8. Radial field distribution of the LP11 mode and LP31 mode for the 6 mode 
fiber using the values given in Table I. The dashed lines represent the 
distribution using the LG – approximation, while the solid lines represent the 
radial field distribution using the exact numerical approach. The field 
distribution is normalized to unity.  

 

Fig. 9 shows the results. These show that the modes belonging to the mode 
group with highest DMG number M have the highest mismatch.  

 

  

 
Fig. 9. Relative mode deviation for (a) 6 mode FMF; (b) 10 mode FMF; (c) 15 
mode FMF 
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This can be attributed to the cladding, since modes with lower DMG number 
value M are concentrated more around the axis region. As the number of modes 
increase, the relative mode mismatch increases for the highest mode group as 
shown in Fig. 9 (a) – (c). Nevertheless, the relative mode mismatch affects 
mostly the highest mode group, particularly those modes with higher radial 
order q. Since the calculation of the modal field distribution described in 
subsection 2.4 yields also the propagation constant, the comparison of the 
propagations constants will be evaluated in the next subsection.  

 

2.5.2 Comparison of phase constants 

The evaluation of the radial field distribution described in section 2.4 delivers 
additionally the normalized propagation constant , 1l qB + . This is now compared 
to the normalized propagation constant , 1l qB +  of the Laguerre-Gauss modes at 
the carrier wavelength of 0 1.5 m.5μλ =  Fig. 10 shows the square of normalized 
propagation constant B as function of DMG number M16 for a 15 mode few 
mode fiber (FMF) and a 55 mode MMF. First it is possible to see that B2 is 
equal for all modes within one DMG as expected in the Laguerre-Gauss 
approximation. This is also the case for the exact solution, except for the 
highest DMG, since the individual modes within this mode group experience 
the cladding differently, as discussed in the previous subsection. In these two 
particular examples the standard deviation of B2 within the mode belonging to 
the highest DMG number M is less than 0.007. The highest DMG number has 
the value of 5maxM =  for the 15 mode FMF and 10maxM =  for the 55 mode 
MMF.  

 

                                                
16 The numerical estimation does not yield degenerate values for , 1l qB + within the same mode 
group since the parabolic profile does not extend into infinity. Nevertheless their deviation is 
small so that an arrangement within so called quasi-principal mode groups is possible.  
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Fig. 10. Comparison between normalized propagation constant B2 for a FMF 
guiding (a) 15 modes and (b) 55 modes using the Laguerre-Gauss 
appoximation in Eq. (2.35) represented by the solid gray line and the exact 
numerical calculation using blue dots. Solid line is only depicted for better 
overview since the DMG number M is an integer number.   

   

2.5.3 Comparison of differential group delay 

The evaluation of the differential group delay per unit length , 1l qτ + requires the 
computation of the derivative with respect to angular frequency of the 
propagation constant β +, 1l q . Instead of evaluating the derivative numerically, 
an alternative formulation is presented which uses the Hellmann-Feynman 
theorem. The group delay per unit length can be computed according to [36] as: 

 
2 22, 1 02, 1 , 1

, 1 , 1

1 ( )( , ) .1
2 2

l q
l q l q

l q l q A

n ke dA
β ρ

τ ρ φ
β ω β ω

+
+ +

+ +

∂

∂
=

∂
∂

= ∫∫  (2.57) 

Here A is the MMF cross-section which extends to infinity and the field 
distribution +, 1l qe is normalized as given in Eq. (2.18). Applying Eq. (2.1) and 
Eq. (2.42) to Eq. (2.57) yields: 

 
( ) ( )( ) ( ) ( )1 2 2, 1 , 12 2

1 , 1

1 , .
1 2 l q

l q l q
A

N e n dA
c n B

τ ρ φ ρ
λ ∆ λ

+ +
+−

= ∫∫  (2.58) 

Fig. 11 shows the differential group delay ∆τ +, 1l q as function of DMG number M. 
The differential group delay has been evaluated with respect to the 
fundamental mode as: 

 ∆τ τ τ+ += −, 1 , 1 0,1.l q l q   (2.59) 

The dashed black line shows the results using the Laguerre-Gauss 
approximation given in Eq. (2.35) while the blue and green dots show the 
results using the exact numerical estimation for a 15 mode FMF and a 55 mode 

(a) (b) 
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MMF respectively. These results are in agreement with the calculations 
realized in [37] were the WKB approximation was used to calculate the DGDs 
of the different DMGs. The results in Fig. 11 show that mainly the two highest 
DMG have different DGD values induced by the presence of the cladding.   

  

 
Fig. 11. Influence of the cladding upon the differential group delay. Black 
dashed line shows the results using the Laguerre-Gauss approximation, blue 
and green dots shows DGD for a 15 and 55 mode fiber respectively.  

 

This is consistent with the results shown in section 2.5.1, where modes with 
larger DMG number experiences more of the cladding, which as a consequence, 
reduces the effective refractive index perception by the field (since the cladding 
has a lower refractive index).  

 

 
Fig. 12. Modification of the refractive index distribution as proposed by [38] by 
introducing the factor δ, which describes the strength of the refractive index 
step between core and cladding boundary. To reduce the DGD spread only 
values of 1δ >  have to be considered.  
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In the limit where the field propagates only in the cladding, its group velocity 
is given by 2/c N . This value is higher than the fundamental mode group 
velocity for instance, which is located around the core axis region and therefore 
travels nearly at 1/c N . This explains the negative values in Fig. 11 for modes 
located within the highest DMGs. The results in Fig. 11 show that the 
differential group delay can be as large as 10 ns/km, which is almost two orders 
of magnitude larger than calculated through the help of Eq. (2.35).  To 
counteract the DGD spread induced by the cladding, a method was proposed 
by [38] in which a step is introduced between the core-cladding interfaces as 
shown in Fig. 12. This modified refractive index can be described as [38]: 

 ( ) ( ) ( )

( ) ( )( )

ρλ δ∆ λ ρ
ρρ λ

λ ∆ λ ρ

  
  − ≤  =   
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2
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,

1,

1 2 0

1 2
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n

n

n

  (2.60) 

where δ is the parameter that controls the step size at the core-cladding 
interface. Here only values above 1, i.e 1,δ > will be examined, since those have 
been reported to reduce the differential group delay which is essential in MDM 
applications to reduce the DGD spread. Fig. 13 shows the DGDs for all LP-
modes in a 15 mode FMF as a function of the step values δ. Using a value of 

2δ =  effectively reduces the maximal DGD spread from 4.2 ns/km to 140 
ps/km17 as shown in more detail in the inset of Fig. 13. These results might 
lead to the conclusion that increasing δ further might decreases the differential 
group delay. This is not the case as shown in [38], where a numerical routine 
is used to find the optimal δ value to minimize the overall DGD value.  

 

                                                
17 Here it is important to notice that the number of guided modes can be smaller for the same 
normalized frequency parameter V, if δ > 1. This is because the cut off condition is shifted to 
higher V values as shown in [38].  This has been compensated in Fig. 13 by increasing V while 
maintaining ξ constant to maintain the total number of guided modes 15.  
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Fig. 13. DGDs for FMFs guiding 15 modes for different step values δ. The 
maximal differential group delay of the the highest mode group is reduced to 
140 ps/km using a value of 2.δ =  The dashed line shows the values for the 
infinite extended parabolic profile. The discrete values are joined only for 
better overview.  

 

The field distribution of the LP01 and LP03 mode using the Laguerre-Gauss 
modes and the fields estimated using the step parameter 2δ =  are shown in 
Fig. 14. As expected, the field mismatch is reduced and the field distribution is 
almost identical, even for the mode belonging to the higher order mode group. 
Here it needs to be pointed out, that the step, described by the parameter δ, 
also affects the number of guided modes.  

 

 
Fig. 14. Field distribution of the LP01 and LP03 modes using the Laguerre 
Guassian and exact numerical calculation with 2.δ = Field distribution are 
almost identical. Field mismatch is for the LP03 modes equal to 0.002C =  
(Compared to a value of 0.03C =   in Fig. 9 (c)) 

 

To compare the field overlap of the higher order modes, the normalized 
frequency parameter 10.5V = had to be increased to value of 14.3V =  so that 
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the modes to be compared are guided. The V parameter was increased by 
increasing ρ0 and NA in such a manner, to keep the ratio 0 / NAρ   constant. 
From these results it is possible to conclude, that the Laguerre-Gauss 
approximation is an excellent approximation to describe the field distribution 
inside a FMF, as well as DGDs of the individual modes. Now that the parabolic 
index profile has been analyzed and the Laguerre-Gauss approximation has 
been verified, it is worthwhile analyzing if the same field distribution can be 
used to describe profiles with near parabolic index profile. For this reason, the 
analysis is extended to power law profiles which is discussed in the next 
subsection. 
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2.6 MMF with power law profiles 
As mentioned already in section 2.3.1, the field distribution of a FMF with a 
truncated power law profile can be very similar to the field distribution of a 
FMF with an infinitely extended parabolic index profile. This is now verified 
by evaluating the field mismatch ∆C from Eq. (2.56) for different truncated 
power law profiles. The variation is realized here for a 15 mode FMF in the 
range of {1.8,1.9, ,2.4}p =  and the results are shown in Fig. 15. The mismatch 
is evaluated between the Laguerre-Gauss modes and the numerical 
calculation.  

  

 
Fig. 15. Field mismatch ∆C between Laguerre-Gauss modes and numerical 
calculation of field distribution for different profile exponents’ p.   

 

As expected, the relative mismatch ∆C is relatively small for all guided modes. 
The highest mismatch value is given for the LP03 mode which is in agreement 
with the results presented in section 2.5.1. With this analysis this section is 
finalized and the results will be summarized in the next subsection. 
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2.7 Summary 
With these results this chapter is concluded and the main results can be 
summarized as follows: 

 The scalar wave equation can be used if the normalized refractive index 
difference ( )∆ λ  is much smaller than unity, i.e. if ( ) 1∆ λ << holds. In 
this case the FMF is said to be weakly guiding. 

 The field distribution is described using the Laguerre-Gauss 
approximation. The relative field mismatch ∆C between the Laguerre-
Gauss modes and numerical calculations does not increase above 5% for 
the considered FMFs, even if the profile deviates slightly from parabolic 
profile. 

 Modes belonging to the two highest order DMG are mostly affected by 
the cladding. This can be seen in the DGDs spread, which can increase 
as much as 100 times the value given by the LG-Modes. This can be 
efficiently compensated using the refractive index distribution shown in 
Fig. 12 such as to have a much smaller deviation from the LG-
approximation. In this case, the field distribution is even more 
accurately described by the Laguerre-Gauss modes. Nevertheless, it is 
necessary to increase the V value to maintain the number of guided 
modes equal.  

 

Under the assumption that the FMF under consideration has a refractive index 
profile as in Fig. 12 with a value ofδ ≈ 2  , the LG-modes and its propagation 
values are a very good approximation and will be used in the following chapters 
to simulate the FMF of interest unless stated otherwise.  
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3. Propagation and mode 
coupling in MMF 

Formel-Kapitel (nächstes) Abschnitt 1 

The modal field distributions that were given in the last chapter are modes 
that can actually be excited but exist only if the MMF is free from any 
imperfection. Imperfections are always present in MMF and cause modes to 
couple. Some of these imperfections are for example micro-bendings, splices, 
MMF core deformations like ellipticity, refractive index variations, amongst 
others. Micro-bendings and splices will be dealt with here. To understand some 
of the limitations induced by modal coupling one imagines the excitation of a 
single mode at the beginning of the MMF. After some distance the power will 
be transferred to other guided modes while some of the power is transferred to 
non-guided modes [39]. Power transferred to non-guided modes results in so 
called coupling losses while power transferred to other guided modes can result 
for example in signal distortion. While MMF were studied extensively in the 
70s using power coupling models [40,41,42] which effectively describes power 
redistribution as function of time and MMF length and MMF bandwidth 
increase due to modal coupling, these models fail to consider phase effects 
which are important when using coherent light sources or higher order 
modulation formats.  

 

This chapter deals with the modeling of the coherent transmission link, 
limiting the analysis to linear effects in the MMF. Linear propagation inside 
the MMF will be described first, taking into account phase effects and modal 
dispersion, while introducing the matrix notation. The orthogonality condition 
described in section 2.2 will be reformulated for this purpose, simplifying its 
evaluation while using the matrix formalism, as well as deriving the formula 
for the weighting coefficients.  

The analysis is then extended to include modal coupling induced by 
micro-bendings and splices. Two different mode coupling procedures are 
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compared and analyzed: the ideal mode approach and the local mode approach 
as shown in Fig. 16 (a) and (b) respectively. The ideal mode approach relies on 
approximating the perturbed MMF by using one set of modes, which are the 
eigenmodes of the ideal MMF shown in Fig. 16 (a) by the dashed lines.  

 

  
Fig. 16. MMF with distorted core – cladding interface described in terms of (a) 
ideal modes; (b) normal local modes 

 

The actual MMF depicted in Fig. 16 (a) by the solid line is then viewed as a 
perturbation of the ideal MMF. The local normal mode approach relies on 
partitioning the MMF in many segments. Each segment is then described by a 
local coordinate system as depicted in Fig. 16 (b) and the eigenmodes are 
computed for a fictitious MMF depicted in Fig. 16 (b) by the dashed lines. 
Coupling can then be estimated by evaluating the overlap integral between the 
eigenmodes from MMF section i to MMF section j. While both models rely on 
partitioning the MMF in small sections, it will be evident that the use of the 
local mode approach brings some benefits since coupling losses are 
automatically included in the description. In addition, it will be shown that it 
is possible to drastically reduce the computational effort of the model by 
reducing the total amount of MMF fiber sections if the overall induced coupling 
loss is maintained constant. This will be verified thoroughly by analyzing the 
evolution of the DGDs of the MMF, the MMF bandwidth and mode dependent 
loss. The chapter ends by comparing the results to the results presented in 
[40,41] which use the coupled power models.   
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3.1 Ideal propagation and matrix notation of the 
MMF transmission system 

 

An arbitrary electric field at the input ( )= 0z of the MMF can be expanded in 
terms of the MMF eigenmodes as [28]: 

 ( ), , 11
,

,) ,,( l q
l

l q
q

e a eρ φ ρ ϕ++= ∑   (3.1) 

where ,l qa  is the weighting coefficients and the summation extends over all 
guided modes. If Eq. (3.1) is now multiplied with ( )', '* ,l qe r φ  and integrated over 
the complete MMF cross-section, the following equation is obtained: 

 ( ) ( ) ( ) ( )', ' 1 , 1 , 1* *', ' 1
,

, , ., ,
l qA

l q l l q l q
A

qe e r dA a e e r dAρ φ φ ρ φ φ+ + + += ∑∫∫ ∫∫   (3.2) 

Using the orthogonality condition given in Eq. (2.17) and the fact that in Eq. 
(3.2) only terms with 'l l=  and 'q q=  remain, the following relation can be 
formulated for the excitation coefficients [28]: 

 
( ) ( )

( ) ( )

*', 1'

,
, 1 ', ' 1*

,,

,,
.

l q

l q
l q l q

A

A

e e r dA
a

e e r dA

ρ φ φ

ρ φ φ

+

+ +
=

∫∫

∫∫
  (3.3) 

Identically, the field at the output of the MMF can be expressed as an 
expansion of the MMF eigenmodes with different weighting coefficients 

( ), ,q lb z ω  as: 

 ( ) ( ) ( ), 1 , 1
,

, , , , , .
l

out l q l q
q

z ze b eρ φ ω ω ρ φ+ += ∑   (3.4) 

The weighting coefficients ( ), 1 ,l qb z ω+  are now frequency and z – dependent 
since they contain the propagation information. In the case of ideal 
propagation, that is, the case of a perfect straight MMF, the input and output 
field can be described using vector notation as: 

 ( ) ( )( ) ( )ω ω= − =, exp 0 .z j L zB ab


   (3.5) 

Here L describes the MMF length and the matrix ( )ωB is square matrix given 
by: 
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  (3.6) 

with diagonal entries given by the uncoupled propagation coefficients ( )β ω+, 1l q

described in Eq. (2.34). The first matrix entry is the propagation constant of 
the LP01 fundamental mode. The second and third diagonal entry correspond 
to the odd and even LP11 mode, which form the second DMG.  The next entries 
correspond to the propagation constants ( ), 1l qβ ω+  of all modes belonging to the 
third degenerate mode group, where all possible combinations of q and l are 
taken into account that yield 2 1 3M q l= + + = , starting with lowest l value and 
ending with the highest. This is done for all guided modes, so that the matrix 

( )ωB  can be viewed as a block diagonal matrix, where each block matrix is 
diagonal as well and contains the propagation constants of one DMG. The 
matrix exponential is defined in terms of a Taylor series as [30]: 

 ( ) ( )( )0exp / !.
k

kj L j L kω ω
∞

=
 − = −  ∑B B   (3.7) 

The vector ( ) ( ) ( ) ( )max max0,1 1 , 1,10 , 0 , , 00 T
l qz z a z a za + = = = = =a 

  contains the 
excitation coefficients of all guided eigenmodes at the input of the MMF, 
denoted here with 0z = . Since each weighting coefficient within the vector

( )0z =a describes indirectly the presence of a field distribution, the 
orthogonality condition given in Eq. (2.17) reduces in this vector space to a 
scalar product between two vectors as: 

 *', ' 1, 1 0,T l ql q ++ =a a    (3.8) 

if 'l l≠ or 'q q≠ . This can be understood easily if one takes a closer look to the 
following example: the vector [ ]0,1 0,1,0, ,0 Ta=a   contains the weighting 
coefficient of the LP01 mode and the vector  [ ]0,2 0,20, ,0, ,0, ,0 Ta=a  

  contains 
the weighting coefficient of the LP02 mode. If the scalar product between the 
vector 0,1a  and the vector *0,2a  is computed, it’s clear that the result is zero: 

 *0,1 0,2 0T =a a    (3.9) 
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This vector scalar product describes therefore the orthogonality condition given 
in Eq. (2.18). In addition, a second variation of the orthogonality condition can 
be formulated, by leaving out the conjugation of the second vector as: 

 ', ' 1, 1 0T l ql q ++ =a a    (3.10) 

A rigorous treatment of this mathematical formulation would require the 
introduction of the Heisenberg notation as done for example in [20,43]. This 
will not be done here to maintain simplicity.  

Having introduced the matrix notation for the propagation within the 
MMF, the analysis is now extended to include modal coupling. These two 
coupling mechanism behave identical in MMF with parabolic index profile as 
will be shown in the next subsection by transforming the refractive index. 
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3.2 Refractive index transformation 
If a MMF contains micro-bendings, it is possible to assign a bending radius to 
each bend. Each bending is therefore described by a bending radius in x- and 
y- direction, denoted as Rx and Ry18 respectively. Fig. 17 (a) shows exemplary a 
MMF segment with a bending radius in y-direction.  

 
Fig. 17. Transformation of a MMF segment with (a) micro-bending with 
refractive index ( )λ0 ,n y  in y- direction into a (b) straight MMF segment with 
refractive index ( )λ,en y .The effective refractive index ( )λ,en y induced by the 
bending is shown in (c) in the case of a truncated parabolic profile.  

 

The goal is to transform the geometrical change in the MMF as shown in  
Fig. 17 (a) into a refractive index change so that the MMF segment might be 
considered as a straight section as shown in Fig. 17 (b). The resulting refractive 
index profile is shown in Fig. 17 (c) with the solid line. This transformation is 
described in the next paragraph.  

As the wave travels along a bent MMF segment, it is necessary for the wave to 
have a higher phase velocity at the outer core-cladding boundary, than in the 
core axis for example, in order to preserve the phase front. This requires a 
smaller phase constant at the core-cladding boundary. Using the polar 
coordinate system, which lies here in the y-z plane19, the outer and center arc 
lengths in Fig. 17 (a), denoted as s1 and s2, are given as:  

 
0

1,2 1,2 0
0

,s d
φ

ρ φ ρ φ== ∫


 

   (3.11) 

                                                
18 The bending radii considered here are in the order of magnitude of meters. In this sense it 
only makes sense to talk about coupling losses, since they exceed radiation losses as mentioned 
in [45]. 
19 The same procedure can be realized for the x-z plane. For simplicity only the y-dependency 
is discussed.  
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where ρ and φ describe the axial and angular dependence 20  and φ0  is the 
integration limit for the angular dependency. From Fig. 17 (a), it is possible to 
identify 1ρ with Ry. The phase front is preserved if: 
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 (3.12) 

The transverse wave number for the bended MMF ,t bk is given as: 

 ( ) ( )2 2 2 2
0 0, , , , .t bk k n x y x yλ β= −  (3.13) 

The transverse wave number for the equivalent straight MMF segment ,t sk is 
given as: 

 ( )2 2 2 2 2
, 00 ( , , ) ( , , ) .p st sk k n x y n x yλ λ β= + −  (3.14) 

Both equations describe the same problem, which is why Eq. (3.13) and  
Eq. (3.14) are equated as: 

 , , .t b t sk k   (3.15) 

This yields the following relation: 

 
( ) ( )

( ) ( )

β ρ β λ

β β λ

=
 

− = 
 

−

−

2 2 22 2 0

2 221

, , ,

, ,2 ,

s p

y s p
y

y R
R

k n x y

n x y
 (3.16) 

where the series expansion of 1 12(1 /1 ) 1 2y yyyR R− −≈ −+ has been used21. Under 
the assumption that 22( )y sRβ β=  the refractive index perturbation is obtained 
as [27]: 

 ( )λ λ
 

+ 


=


2 2
1

2 2( , , ) .p
y x

y x n
R R

n x y  (3.17) 

Therefore, the refractive index change induced by a bending is a linear tilt as 
shown in Fig. 17 (c). It is possible to reformulate this further by noting that: 

                                                
20 Not to be mistaken with the MMF coordinate system used in Eq. (2.50) for example.  
21 This expansion is justified if { , } { , }x yR R x y .   
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 (3.18) 

The offset in x- and y-direction is given as: 

 
( ) ( )
ρ ρ

∆ ∆
∆ λ ∆ λ

= =
2 2
0 0; .

2 2 yx
x y

R R
 (3.19) 

With Eq. (3.18) it is shown that a micro-bend can be viewed as an offset, where 
the offset is inversely proportional to the micro-bending radius. A more 
rigorous proof of this concept can be formulated by analyzing the power 
coupling spectrum, which is shown in detail in annex A.2. 

  

 
Fig. 18. Fiber mismatch in x- and y-direction. The distribution in each 
direction is Gaussian; (b) Complete MMF made out of concatenation of ideal 
MMF segments. 

 

This transformation shows an important relation. Micro-bendings can be 
modeled as a series of mismatched MMF segments with offset ∆x and ∆y and 
can be interpreted as splices as in Fig. 18, if the refractive index profile has a 
parabolic shape. If actual splices are included in the transmission link, they 
can be modeled by an additional mismatch. The description of the coupled mode 
theory in terms of ideal modes will be discussed in the following subsection.  
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3.3 Description in terms of ideal modes 
The main idea behind this approach is to model the MMF in terms of one set of 
orthogonal modes which describe the MMF in the absence of any perturbation. 
Fig. 16 (a) shows the case of a MMF in which the core-cladding interface is 
deformed. The dashed line shows the undistorted MMF and its eigenmodes 
obey the homogeneous scalar wave equation given in Eq. (2.16). As already 
shown in chapter 2, the Laguerre-Gauss modes describe the eigenmodes of the 
MMF in good approximation with parabolic index profile. In presence of a 
perturbation, as shown in Fig. 16 (a) by the solid line, the modes couple and 
their propagation can be formulated in matrix notation as [39]: 

 ( ) ( ) ( ) ( ) ( )ω+ =
d

.
d

z
j z z z

z
a

B a κ a


   (3.20) 

Here no coupling between back- and forward propagating waves is assumed 
and the matrix ( )zκ  describes mode coupling between the guided modes  and 
is length dependent. Equation (3.20) describes coupling within guided modes 
only since coupling into non guided modes is not included. As a consequence, 
the coupling matrix ( )zκ is unitary. To simplify Eq.(3.20), the MMF is 
partitioned into small sections. Within one section, the coupling matrix ( )zκ
can be considered constant and is therefore z-independent. The evolution of the 
vector a within one segment is therefore given as: 

 ( ) ( ) ( ) ( )ω+ =
d

· · .
d n

z
j z z

z
a

B a κ a


   (3.21) 

The index n denotes here the nth MMF segment. The coupling coefficients of 
the matrix κn can be estimated as [27,39]: 

 
( ) ( ) ( ) ( )κ λ
λ

∞ ∞

−∞ −
+ ++

∞
+ =

−
∫ ∫0 2( )

, 1 ´, ´ 1, 1
*

1
, ´, ´ 1 , , ,

2
, .n

p l q l ql q l q
jk x y e x y e x

n
y dxdyn  (3.22) 

The perturbed refractive index np describes the perturbation in terms of the 
refractive index change and is given as described in Eq. (3.17) for a micro-
bending. Eq. (3.22) is therefore given as: 

 ( ) ( ) ( )κ λ
∞ ∞

−∞ −∞
+ ++ +

−
= ∫ ∫( )

, 1 ´, ´ 1, 1, ´, ´ 1
0 *1 , , .n

l q
x

l ql q l q n ejk x x y x y
R

e dxdy   (3.23) 
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The evolution of the input vector ( 0)z =a can be formulated now by integrating 
Eq. (3.21) over a small segment of length Lseg since ( )ωB  and nκ  are z – 
independent. This yields as suggest by [44]: 

 ( ) ( ) ( ),, 0 .,seg seg n segz L z L zω ω= = = =b T a


  (3.24) 

The vector ( ),segz L ω=b


denotes the evolution of the vector a after a single 
MMF segment and , ( , )seg n z ωT is the transfer matrix describing propagation and 
coupling given as: 

 ( ) ( )( )ω ω= = − +, , exp .seg n seg seg n segz L j L LB κT  (3.25) 

The complete transfer matrix is therefore given as a product of N segment 
matrices 

 ( ) ( )
1

,, , .I seg n seg
N

n
z z Lω ω

=
= =∏T T  (3.26) 

The index I stands for ideal modes. The rank of the transfer matrix ( ),I z ωT
equals the number of guided modes D and contains Mmax different mode groups. 
To incorporate coupling losses in ( ),I z ωT it is assumed that the highest order 
mode group with DMG number Mmax couples into the first non-guided mode 
group Mmax+1. This idea is motivated on the work presented in [45], where 
micro-bending losses were estimated for single mode fibers. There it was shown 
that coupling losses can be calculated by coupling the fundamental LP01 mode 
with the first non - guided mode, the LP11 mode. On this basis, the idea is 
extended and applied to a MMF. To obtain the modes of the first non-guided 
mode group, a virtual MMF is evaluated, which guides ḿax 1maxM M= +  mode 
groups. This MMF is created by increasing the V parameter, while maintain 
the ratio of 0 / NAρ  constant. This ensures that all modes contained within the 
mode groups max´´ 1M M≤ −  have exactly the same spatial distribution as the 
actual MMF. Coupling into these modes is then evaluated within each segment 
by using Eq. (3.23). The correctness of this assumption will be shown later as 
the two models are compared. The rank of the matrix ( ), ,seg n z ωT is now 
increased by an additional mode group. The number of modes contained now 
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in ( ), ,seg n z ω+T 22 is increased from D to D+ which can be evaluated by using the 
following relation: 

 
+

=

+ = ∑
1

1
.

maxM

i
D i   (3.27) 

Further on it is assumed that the power coupled into the modes with DMG 
number ḿaxM  does not couple back into the guided modes. This is therefore 
considered as coupling loss and is modeled by setting the matrix entries to zero 
after each segment. This can be achieved by multiplying the matrix ( ), ,seg n z ω+T
on both sides with the matrix L defined as:  

 .D
T sD

 =  
 

I 0L 0 0  (3.28) 

The matrix I is a square identity matrix of rank D, the matrix 0D is rectangular 
zero matrix of size ( )D DD+× −  and 0s is a square zero matrix of Rank + − .D D
The matrix Ts0 is the transpose of 0D. The complete transmission matrix is 
therefore given as: 

 ( ) ( )ω ω+

=

+ = =∏ ,
1

, · , · .
N

segseg nI
n

z z LT T LL  (3.29) 

The evolution of the input field, given by the vector ,a  can now be described by: 

 ( ) ( ) ( ),, · 0 .I zz zω ω+= =b T a


  (3.30) 

Eq. (3.30) can now be used to describe the propagation of an arbitrary input 
field, given by the vector ( )0z =a .   

 

                                                
22 The + indicates here that the matrix has an increased rank. As an example consider a MMF 
guiding 55 modes, divided into 10 mode groups. The virtual MMF contains 11 mode groups and 
66 modes. The last ten mode contained in the real MMF couple to the 11 new modes contained 
in the new virtual mode group. This calculation assumed modes in only one polarization 
direction.  
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3.4 Description in terms of normal local modes 
The description in terms of normal local modes is based on the idea of using a 
local coordinate system as shown Fig. 16 (b). At each position iz z= the 
perturbed MMF is approximated by the unperturbed MMF shown with the 
dashed lines. As mentioned in section 3.1, the effective refractive index 

( ), ,en x y λ  of a micro-bend can be viewed as a splice mismatch as shown in  
Fig. 18. At each position zi, the eigenmodes are therefore computed and 
expanded in terms of the eigenmodes of the next section zi+1 to calculate the 
overlap and with it the coupling coefficients. In each ideal segment n, the scalar 
wave equation (for one polarization direction, here the x-direction) 

 { }β∆ + − =2 2 2, ,0 0t e n r n xn k e  (3.31) 

is satisfied. One possibility to solve this problem is by using the fact that each 
micro-bend is equivalent to MMF offset as given in Eq.(3.18). By using a 
separate coordinate system for each MMF section as shown in Fig. 18 (a), the 
scalar wave equation is satisfied by the Laguerre-Gauss-modes. The 
propagation constants within each ideal MMF segment are given as described 
in section 2.3.1. The Laguerre-Gauss-modes are described in the n-th segment 
with a coordinate system denoted by ρn and φn. The coupling coefficients can be 
formulated using overlap integrals as [32,46]: 

 ( ) ( ) ( )* 1( ) ( )
1 1, 1, ´, ´ 1 , 1 ´, ´ 1 , ., nn n

n n n nl q l q l q l qeK e dAρ φ ρ φ
∞ ∞

+
+ ++ + + +

−∞ −∞

= ∫ ∫  (3.32) 

Here it is assumed that fields are normalized to unity. These coefficients23 form 
the coupling matrix denoted by Kn which describes coupling between section n 
and n+1. The coupling matrix Kn is not unitary. (unlike κn in the previous 
section), Therefore coupling losses between two adjacent MMF sections are 
implicitly included in matrix Κn and as shown later, describes effectively 

                                                
23 The coupling coefficients can be evaluated for offset values numerically. If very small offsets 
are used, an analytical approach should be used since numerical inaccuracy will cause matrices 
to have norm larger than one. As a consequence, cascading them will lead to gain in the 
transmission system. One approach to solve these integrals analytically is by expanding the 
Laguerre-Gauss mode into Hermite-Gauss modes as explained in [32]. The coupling integral 
between these modes can be evaluated analytically and then retransformed into Laguerre-
Gauss modes.  
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coupling induced losses. Propagation within one segment is described by the 
diagonal matrix M(ω) given as: 

 ( ) ( )ω ω= −, exp ( ) .z j zM B  (3.33) 

Here ( )ωB is exactly the same matrix as described in Eq. (3.6). Propagation 
and coupling is then described by: 

 ( ) ( )
1

, ., ·LN
N

n
n

zz ω ω
=

= ∏T KM  (3.34) 

Here the index LN stands for local normal modes and basically describes a 
concatenation of segments with piecewise contants curvature.  Equation (3.29) 
and Eq. (3.34) describe the evolution of the modes in the presence of modal 
coupling induced by micro-bends and splices in terms of ideal modes or local 
normal modes. To take into account mode coupling effects within one mode 
group and or fiber variations due to temperature, the following random 
matrices are introduced which are described in the next subsection. 
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3.5 Random matrices 
The optical phase of light propagating though the MMF changes if the 
temperature changes inside the MMF. This has mainly two causes [47]: the 
change in fiber length through thermal expansion or contraction and the 
refractive index change due to temperature variation. This phase change ∆ϕ 
per unit temperature ∆T and unit length ∆l is given as [47]: 

 ∆ϕ π ∆
∆ ∆ λ ∆

∂ ∂ = + ∂ ∂ 

2 .n l n
T l l T T

 (3.35) 

Using the values presented [48] for the wavelength of 1.55μm,λ =  it is possible 
to estimate a value of 24: 

 ∆ϕ
∆ ∆

= °48 radians / / .C m
T l

 (3.36) 

This values is only valid for the fundamental mode in a SMF.  In the case of a 
MMF, it is probable that this value varies slightly for each mode. A slight 
temperature variation causes a significant phase change so that a random 
matrix approach is chosen to model the phase change induced by temperature. 
This diagonal matrix is therefore given as: 

 ( )( )ζ ζ ζ= − 21exp diag , , , ,YD jR   (3.37) 

where each elements ζi is uniformly distributed with the boundaries π−0 2 . 
Due to the results presented in [48], it is reasonable to assume that this matrix 
is constant over frequency and is therefore equal for all frequency components.  

An additional effect which is modeled here using random matrices is coupling 
between modes within one degenerate mode group. Since all modes within one 
mode group have the same propagation constant it is likely for these modes to 
couple uniformly as reported by [22,49]. To model this process, it is necessary 
to generate unitary matrices. This can be modeled by using the procedure 
described in [50]. The basic idea behind this procedure is to generate a random 
unitary matrix. Using the QR-decomposition, any matrix Ζ 25  can be 
decomposed as: 

                                                
24 Here the value of 1 /l l T∆ ∆− ∂ ∂  has been neglected since it is one order of magnitude smaller 
than /n T∂ ∂ according to [47] 
25 The arbitrary matrix Ζ is generated using Mathematica random number generation.  
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 = .Z QR  (3.38) 

Here the matrix R is an upper triangular matrix and invertible. The Q matrix 
belongs to the unitary group, ( )U n∈Q  and is therefore unitary. The matrix 
generated through this procedure will be used to couple within one mode group. 
The resulting mode group coupling matrix is a block matrix given as: 

 ×

×

 
 

=  
 
 max max

2 2

1 0 0
0 0 .0 0
0 0

U

M M

QR

Q





 



 (3.39) 

These two matrices are multiplied after each ideal segment, which modifies the 
complete transmission matrix to: 

 ( ) ( ) , ,
1

, ., · · ·LN se
N

n
n

g U n D nzz Lω ω
=

== ∏T K RM R  (3.40) 

It is important to mention here, that the segment length Lseg is modified 
slightly from segment to segment to avoid the exact phase state for each mode. 
This subsection finalizes the description of the MMF modeling and it is possible 
to proceed to the numerical evaluation of the two models.  

To compare these two transmission models with each other, it is important to 
evaluate the impact of mode coupling on the transmission characteristics of the 
system. Some of the system characteristics include the evolution of the DGD 
spread, the mode dependent loss (MDL) and overall induced coupling loss. To 
evaluate the evolution of the DGD in the presence of mode coupling, the 
eigenvalues of the group delay operator are used as proposed in [43,51]. By 
doing so a DGD value can be attributed to one particular principal mode and 
the overall DGD spread can be tracked. To do so, the group delay operator 
(GDO) needs to be introduced. Here the operator will be derived and used 
without using the PMs for MDM operation. An intuitive explanation to the 
principal modes and a motivation of why to use them in mode division 
multiplex applications was already given in the introduction and will be dealt 
with in more detail in section 4.  
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3.6 The group delay operator 
The analysis is started by normalizing Eq. (3.30) with respect to the 
fundamental mode as: 

 ( ) ( ) ( )0,1( ), , · 0 .jz L e z L zφ ωω ω−= = = =b T a


  (3.41) 

Here φ0,1 is the phase of the fundamental mode given as ( ) ( )φ ω β ω= 00 1 ,1, L
( )β τ ω≈ + 00 1 ,1, ,L where L is the length of the complete MMF. Since only the 

frequency dependence will be of interest in this derivation, the z – dependence 
is omitted for now. ( )ωT is the transmission matrix given either by the model 
in Eq. (3.29) or Eq. (3.40). The derivative with respect to angular frequency ω 
yields: 

 ( ) ( ) ( ) ( ) ( )0,10,1 ,jj e ωω φ ω ω
ω

ω ω ω
− φ ∂ ∂ ∂

= − + ∂ ∂ ∂ 

Tb
T a



  (3.42) 

Since the input field a is fixed, the derivative of a with respect to ω has been 
set to zero / 0ω∂ ∂ =a in Eq. (3.42). By rearranging Eq. (3.42) and using  
Eq. (3.41) the following expression is obtained: 

 ( ) ( ) ( ) ( ) ( )0,1 1 ,j
ω φ ω ω

ω ω
ω ω ω

−
 ∂ ∂ ∂

= − + ∂ ∂ ∂ 

b
T T

T
b




 (3.43) 

This equation can be reformulated as: 

 ( ) ( )0,1 ( ),j L
ω

τ ω ω
ω

∂
 = − ⋅ + ∂

b
I G b





 (3.44) 

where I is identity matrix and ( )ωG  is the group delay operator defined as 
[52]: 

 ( ) ( ) ( )ω
ω ω

ω
−∂

=
∂

1  .T
T

G   (3.45) 

The frequency derivative of 0,1φ  can be identified as 0,1Lτ , the group delay of 
the fundamental mode over the complete transmission length L. Equation 
(3.44) represents the change of the output field pattern ( )ωb



 as the frequency 
changes to the first order due to the matrix ( ).ωG  Nevertheless, it is possible 
to find a vector pb



that is frequency independent to the first order if the 
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frequency dependent matrix ( )ωG acting on ( )ωb


 complies with the following 
equation: 

 ( )· .pp pω γ=G b b
 

 (3.46) 

This can be rewritten as an eigenvalue equation as follows: 

 ( ) 0,pω γ− =G I  (3.47) 

Where pγ are the complex eigenvalues of the matrix ( )ωG . The eigenvectors 
computed through Eq. (3.47) are the PMs at the output of the MMF and are 
designated as pb



. Using Eq. (3.44) and Eq. (3.46) the following expression is 
obtained: 

 ( )( )0,1 ,p
p p pj L Lτ τ α

ω
∂

= − + −
∂
b b




 (3.48) 

where the eigenvalues have been separated into a real and imaginary part as 
( ) .p p pj Lγ α τ= − +  Equation (3.48) shows that pb



is frequency independent 
since pτ and pα are scalar values. In addition, it is important to notice that the 
PMs do not satisfy the orthogonality condition given in Eq.(3.8) and Eq.(3.10), 
since losses are included in the transmission matrix ( )ωT . This agrees with the 
analysis made in [53] for the PSP, where polarization dependent loss causes 
the PSP not to be orthogonal. The imaginary part of pγ  can be interpreted as 
the differential group delay of the PM times the transmission length L. The 
real part of pγ  can be related to the differential loss over the transmission 
length L for each PM. The PMs at the input can be computed either by using 
Eq. (3.41) or by following a similar approach as described from Eq. (3.42) to  
Eq. (3.48). This results in the following equation: 

 ( )0 0,( )j φ ω
ω

ω ω
∂∂  = ⋅ − = ∂ ∂ 

a I F a




 (3.49) 

where the matrix ( )ωF is given as: ( ) ( ) ( )1  /ω ω ω ω−= ∂ ∂TF T . The eigenvalue 
equation is then given as: 

 ( ) 0,pω γ− =F I  (3.50) 

which yields identical eigenvalues as in Eq. (3.47). The eigenvectors obtained 
through the eigenvalue equation (3.50) are the PMs at the input of the MMF 
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and are designated here as pa . The matrix ( )ωF  and ( )ωG  are not identical 
which is a direct consequence of ( )ωT  not being unitary [52], although they 
have the same eigenvalues. For this reason the PMs at the input are not the 
same as the PMs at the output and this analysis differs at this point from the 
analysis presented in [20]. Having now derived the GDO it is possible to 
proceed to study the evolution of the group delay in presence of modal coupling 
and to compare the two proposed models, which is the topic of the next 
subsection. 
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3.7 Model validation 
One of the main influences of mode coupling is the reduction of the overall 
DGD, which in turn increases the MMF bandwidth [40,41,42]. This process can 
be viewed in power coupling models as a redistribution of power, where power 
couples from mode to mode. If a signal pulse is travelling on different modes at 
different times, portions of its energy will be transferred from mode to mode 
randomly along the transmission. By evaluating the MMF as a complete 
system an overall change in the group delay of the individual PMs can be 
observed. This was firstly shown by [43]. While the analysis in [43] is somewhat 
similar to the one proposed here, it fails to describe coupling losses. For this 
reason, all results will be plotted as a function of coupling loss.  

The analysis to be presented in the next paragraph is realized for to a ten mode 
FMF and has therefore 4 mode groups, i.e. max 4M = . Polarization effects and 
profile dispersion are not considered here. The simulation parameters are 
given in Table II.  

 
TABLE II. SIMULATION PARAMETER FOR TEN MODE FIBER (PER POLARIZATION) 

Parameter Value Quantity 

ξ 5.5 µm 
Radius at which the optical power of 
the fundamental mode has decreased 

to 1/e of its maximum value 

∆τmax 32 ps/km Maximal DGD difference of the 
uncoupled LP-modes 

2ρ0 32.5 µm MMF core diameter 
N1 1.475 Group refractive index in the core axis 
n1 1.457 Refractive index in the core axis 
L 1 km Fiber length 
λ0 1.55 µm Center wavelength 

Mmax 4 Maximal DMG number 

 

First the evolution of the DGD of the PMs is analyzed and plotted as a function 
of the overall coupling losses. Overall coupling losses are calculated by using 
an overfilled launch at the input of the FMF and by evaluating the logarithmic 
ratio of output to input power as: 

 
†

†
dB 10logα

 
=      

 

b b
a a

 

 

 (3.51) 
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Here the input vector [ ]1,1, ,1 T=a  , excites all guided modes in order to meet 
the overfilled launch condition and † represents the conjugate transpose of the 
given vector. The symbol indicates the ensemble average and is applied over 
100 realizations. For the ideal mode approach this means that 100 realizations 
were computed for a fixed standard deviation 1/Rσ  of the inverse bending 
radius, which follows a truncated normal distribution ( )σ 2

1/0, RN . For the ideal 
mode case this means that 100 realizations were computed for a fixed standard 
deviation σspl  of the lateral mismatch, which follows a truncated normal 
distribution ( )σ 2

1/0, RN . Fig. 19 (a) shows the DGD over 1 km, using the ideal 
mode approach as previously published in [54,55]. 

 

  
Fig. 19. (a) Evolution of the DGD of the PMs. Here the micro-bending model 
using ideal mode approach was used. Micro-bending radius follows a truncated 
normal distribution ( )2

1/R0,σN  with the given standard deviation of the inverse 
bending radius (upper frame axis). (b) DGD of the PMs using local modes. Here 
104 segments were used. The splice offset follows a truncated Gaussian 
distribution ( )20, splσN  (upper frame axis) have been used. Each curve shows 
the average DGD (solid line) and the standard deviation (dotted) over 100 
realizations. The truncated Gaussian distribution has a maximal value of

1/4 Rσ× and 4 splσ×  for both approaches.  

 

The amount of segments used for this simulation is 4 x 104. The segment length 
Lseg was set to a maximum value of 10 cm and varied uniformly to values below 
that. Each point represents a FMF realization for different statistics of the 
inverse bending radii distribution. The solid line was obtained with a 
polynomial least square fit. The results match the tendency of the results 
presented in [43] in which the DGD spread narrows as the inverse bending 
radii increases. Fig. 19 (b) shows the same result using the local mode approach 
using 1 x 104 ideal MMF segments. These results show that both models behave 
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very similarly as long as the coupling losses are the same. This results confirms 
the assumption made in section 3.1, that coupling losses can be modeled by 
assuming coupling into the first non-guided mode group with DMG number 
Mmax + 1. Additionally it shows that losses can be computed by simply using 
MMF segment mismatch which speeds up the numerical procedure. It is also 
important to notice that both models exhibit the same behavior even though 
the number of MMF segments is not the same. For this reason, the number of 
segments are reduced in the next subsection while maintaining the coupling 
losses constant. This is achieved by increasing splice mismatch, i.e. by 
increasing σspl.  

 

3.7.1 Reducing the number of MMF segments 

The group delay operator is now evaluated for a 1 km FMF while varying the 
number of MMF segments [56]. Since the two proposed mode coupling models 
behave identically, the analysis here is restricted to the local mode approach 
(lateral offset), since its evaluation is faster. This is mainly due to the reduced 
number of matrix multiplications. In order to compare the results, the DGD 
spread, defined as the standard deviation of the group delay of the PMS as: 

 [ ]τσ ∆τ ∆τ
=

−=
− ∑ 2

1

1
1

D
i

iD
 (3.52) 

is evaluated. Here ∆τ ∆τ== ∑ 11 D
iiD  is the average DGD of the PMs and ∆τi  

are the individual DGDs of the PMs. The results are presented in Fig. 20 (a). 
The calculated DGD spread computed for the different number of MMF 
segments matches perfectly for a number of segments above 100. 
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Fig. 20. (a) 10 mode FMF DGD spread τσ as function of overall coupling loss 
for different number of FMF segments (b) MDL values for a one km 10 mode 
fiber (one polarization) for different number of FMF segments. 

  

As the number of segments is reduced below this value, a deviation can be 
observed at values above 1.5 dB coupling loss. This is analyzed in detail by 
evaluating the relative DGD spread error ∆δ, defined as:  

 ( )τ τ τ∆δ σ σ σ= −, , ,/ .i i ref ref  (3.53) 

Here the index i represents the realization of interest, for example a MMF with 
20 ideal FMF segments and ref stands for the reference realization which is 
taken here to be the FMF with 104 segments. The relative DGD spread error is 
shown in Fig. 21.  

  

 
Fig. 21. Relative bandwidth error ∆δ for 1km FMF with different number of 
ideal FMF segments using the local mode approach. The relative error is 
computed using as reference the FMF containing 104 segments.  

 

The relative error for the MMF containing 100 segments is below 1% for the 
complete simulated range. As the number of FMF segments is reduced, the 
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relative error increases, especially for higher α values. From these results it is 
possible to deduce the following results: if the FMF link contains up to 7 dB 
coupling loss, the number of ideal FMF segments should not be reduced below 
100 within 1 km if the error is to be kept below 1%. Since high coupling losses 
are unlikely in FMF transmission links, the number of FMF segments can be 
reduced much more without making considerable errors, as shown in Fig. 21.  

The power redistribution in presence of modal coupling can be studied by 
analyzing the behavior of mode dependent loss (MDL). MDL has a direct 
impact on the performance of the transmission system [57] since it can be 
viewed as a direct reduction of number of propagation modes [58]. For this 
reason it is important to analyze if the MDL behavior is preserved while 
reducing the number of ideal FMF segments. MDL can be calculated by 
decomposing the transmission matrix ( )LN ωT  using the singular value 
decomposition26. This procedure decomposes an arbitrary matrix into three 
matrices as [59]: 

 ( )ω = †.LNT UΣV  (3.54) 

The matrix U and V are both unitary matrices, while Σ is a diagonal matrix 
with nonnegative entries. The diagonal entries λi in Σ are known as the 
singular values. The ratio of largest to smallest singular value is known as 
mode dependent loss, which is defined as [60]: 

 λ
λ

= max

min
MDL . (3.55) 

The MDL behavior is shown in Fig. 20 (b). As in Fig. 20 (a), MDL behaves 
identically in the sense that all MDL values coincide if the number of segments 
is above 100.  

Now that the limit of the model has been calculated using a ten mode fiber and 
its correctness verified, the DGD spread behavior is analyzed as a function of 
number of modes. This is the topic of the next subsection. 

                                                
26 This is an entirely numerical procedure to evaluate the power fluctuation of the MMF. It is 
not related to the losses of the LP-modes or PMs. A relation to this is not known so far.  
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3.8 Scaling behavior of a MMF with respect to 
bandwidth and MDL 

Table III shows the parameters used for scaling the number of guided modes 
within the simulation environment. Values which are not mentioned in  
Table III are the same as the ones used in Table II. The parameters have been 
scaled such as to have a value of 5.5μm.ξ =  

  
TABLE III. SIMULATION PARAMETERS FOR VARIOUS MMF 

Parameter Unit Values 
Number of modes 
per polarization 

 6 10 15 21 36 

∆τmax ps/km 17 32 51 75 123 
NA - 0.12 0.13 0.144 0.156 0.176 
2ρ0 µm 30 32.5 36 39 46 

 

Since the DGD spread increases due to the increasing number of modes, it is 
only reasonable to express the results in terms of a normalized DGD spread
σ ,N  which is defined as: 

 τ τσ σ σ= ,/ .N u  (3.56) 

Here τσ ,u  defines the uncoupled DGD spread which is given at 0α = , where no 
mode coupling is present and its value is maximal. Since the relative 
bandwidth gain BG is related to one over the normalized DGD spread, i.e.

1 /G NB σ∝ , the results are presented in terms of the inverse DGD spread as 
function of overall coupling loss α for different number of guided modes. The 
results presented in Fig. 22(a) show that 1/σN depends solely on the overall 
coupling losses. It is important to point out that the red and blue curves (square 
and diamond marks respectively) show a turning point at about five and seven 
dB coupling losses respectively. This is a numerical artifact caused by the 
estimation of Eq. (3.45) since the smallest singular value of ( ),LN z ωT is very 
small (due to coupling losses) and therefore the inverse ( )1 ,LN z ω−T  cannot be 
computed correctly. 
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Fig. 22. (a) Inverse DGD spread for different number of guided modes per 
polarization (b) MDL for various MMF guiding different number of modes per 
polarization. The number of MMF segments used in each simulation is 100. 
Each curve has been estimated by averaging over 100 realizations. 

 

The results in Fig. 22(a) show that coupling loss governs the behavior of the 
inverse DGD spread, which is additionally independent of the number of 
guided modes. This means for example that reducing the DGD spread by half 
comes at a cost of 9dB coupling loss (extrapolating the results in Fig. 22 (a)). 
This has to be considered if coupling techniques are applied to increase the 
bandwidth of graded index MMF. Additionally, the MDL behavior is analyzed. 
MDL has the tendency to increase faster with higher number of modes for the 
same coupling loss values as shown in Fig. 22 (b).  

 

The main results are now summarized as follows: 

• The DGD spread improvement for a MMF with parabolic index profile 
depends solely on the coupling loss induced by the mode coupling.  

• MDL has a higher impact on MMF guiding a larger number of modes if 
mode coupling is used to reduce the DGD spread by the same amount. 
This means that a MMF with larger number of modes loses more degrees 
of freedom. This will directly impact the number of channels within the 
MMF that can be used for MDM.   

 

This means that mode coupling can have a negative impact on MDM 
transmission systems, since some modes lose much power during the coupling 
process which directly affects the capacity of the MDM system. If mode 
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coupling is used intentionally in a MDM system to reduce the DGD spread as 
proposed by [61], some channels might be lost during transmission due to their 
large attenuation.  

The results presented so far follow more or less the coherent analysis proposed 
by Poole for the case of the PSP and by Shemirani for the PMs using the GDO. 
Nevertheless, the coherent model proposed here should yield the same 
bandwidth behavior induced by modal coupling as the non-coherent approach 
realized in [40,41] to describe the impulse response reduction due to modal 
coupling. For this reason, some new parameters need to be introduced in order 
to compare the results presented here with the ones presented in [40,41]. These 
parameters will be discussed in the next subsection.   
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3.9 Comparison to power coupling models 
All the results presented so far rely on the usage of the overall coupling loss α, 
as defined in Eq. (3.51). This value is probably not easy to measure which is 
why the concept of steady state loss αs is commonly used, for which different 
measurement techniques have been developed. A good review of the different 
techniques is presented in [62]. Since this is a theoretical framework, the 
theory of steady state loss is discussed in the next subsection.  

 

3.9.1 Steady state loss 

Steady-state losses are losses which can be measured if the mode distribution 
has reached an equilibrium mode distribution (EMD) [62]. Steady state loss is 
found when the loss value per unit length stays constant. To calculate this 
value, the method proposed by [40] is used. This method relies on solving the 
power flow differential equation. To understand the relation of the power flow 
differential equation with the model presented here, section IV of [40] will be 
discussed in more detail.  

The partial differential equation describing power diffusion P inside the MMF 
is given as: 

 
2

2
1 .m

P P PK P
z v t

Pθ α
θ θ

∂ ∂ ∂ ∂ + − = + ∂ ∂ ∂ ∂ 
 (3.57) 

Here αm represents the material loss MMF, v the group velocity, which is 
assumed to be constant for all modes, and θ is the angle of propagation. The 
factor 32/31 0 02 ( ) /K k F rn ∆ Ω=  describes the power coupling strength as a 
function of the power coupling spectrum and will be discussed in more detail 
in annex A.2. Using the trial solution ( )( , ) ( )zP z e Gσ αθ θ− +=  and assuming 
steady state condition ∂P/∂t = 0, Eq. (3.57) becomes [40]: 
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using the normalized solution: 
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where J0 and J1 are the Bessel functions of zero and first order respectively 
and ν is an integer number. The parameter uν is determined by the roots of the 
Bessel function according to 0( ) 0.J νµ =  The general solution to Eq. (3.59) is 
then given as a superposition of the trial solution as: 

 ( ) ( )
1

, .mz zP z e c G e να σν ν
ν

θ θ
∞

− −

=
= ∑  (3.60) 

The eigenvalues 2 / 4 cKuν νσ θ= can be interpreted as mode dependent loss 
values. These values increase with increasing values of uν so that 

1 2 Yσ σ σ< < holds. The power distribution ( ),P z θ  inside the MMF has been 
basically expanded in terms of its eigenmodes given by Eq. (3.59). This spatial 
distribution ( )Gν θ  has no length dependence and the term ze νσ− dictates its 
attenuation along the MMF27. As the length z L= increases towards infinity, 
only one mode is left: 

 ( ) ( ) ( )α σθ θ− −= 11 1 ., m LP z c e G  (3.61) 

This power distribution can be interpreted as the steady state power 
distribution since EMD has been reached and σ1 is in that case the steady state 
loss value given in [1/m]. The actual steady state transmission loss is then 1 .Lσ

Now it is necessary to connect the coherent transmission model with the power 
flow equations presented in the previous paragraph. The output field vector is 
given in Eq. (3.41) in the frequency domain. Steady state loss requires

/ 0,P t∂ ∂ = which is translated in the frequency domain to the evaluation of 
( ),LN z ωT  at 0ω ω= . The output steady state power †

ststb b
 

is then formulated 
as: 

 ( ) ( )ω ω ω ω= == = =† †† 0 0z ., z L,LNLNstst Lb b a T T a
 

   (3.62) 

The power transmission matrix can be identified as: 

 ( ) ( ) ( )0 0
†

0 , ,, LNLN z Lz L z Lω ω ω ω ω ω= = = = == =P T T   (3.63) 

                                                
27 This attenuation value is not related to the MDL value, since the MDL values are computed 
using the singular value decomposition of the matrix ( )ω ω== 0,z LT . The value here are 

computed by evaluating the eigenvalues of ( )ω ω== 0, .z LP  
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and describes the power propagation inside the MMF in the basis of the 
eigenmodes given in Eq. (2.30). By expanding ω ω== 0( , )z LP in terms of its 
eigenvectors, an expression comparable to the expression in Eq. (3.60) can be 
obtained. The eigenvector with the lowest eigenvalue can be identified as the 
EMD vector if steady state is reached and its eigenvalue can be related to 
steady state loss as: 

 ( )ησ =1 1log / .L  (3.64) 

Here η1 is assumed to be the smallest eigenvalue28 and needs to be applied here 
to several realizations due to the interference of the modes. To verify that the 
transmission link has reached steady state loss, the ratio between first and 
second eigenvalue is evaluated as proposed by [39,40]. If the ratio 1 2/η η reaches 
a large enough value, for example 100, it is safe to assume that EMD has been 
reached and steady state loss can be evaluated. This procedure will be used in 
the next subsection to evaluate the root mean square (RMS) reduction of the 
impulse response as a function of steady state loss.  

 

3.9.2 RMS impulse response 

The effect of mode coupling can be analyzed by evaluating the RMS width of 
the impulse response of the MMF. This analysis has the advantage that it is 
not limited by the accurate inversion of the transfer matrix ( ),LN z ωT  , as the 
GDO analysis presented in section 3.8. The RMS width of a pulse is defined as: 

 22 ,RMS t t= −  (3.65) 

where the nth moment nt  of the optical power envelope p(t) is given as: 

 ( )n nt t p t dt
∞

−∞

= ∫  (3.66) 

A pulse containing unit energy, 0 1,t =  is launched at the input of the MMF 
while exciting all guided modes with na  as defined in section 3.7. The output 
response is then normalized to unit energy to capture only distortion effects. 

                                                
28 The smallest eigenvalue, corresponds to the smallest steady state loss value so that the 
assumption so 1 2 Yσ σ σ< < <  holds. 
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Three exemplary realizations are shown in Fig. 23 (b) – (d) for a ten mode FMF 
(These impulse responses are not normalized to unity at the output).  
Fig. 23 (b) shows the uncoupled impulse response. Each peak corresponds to 
the sum of power carried in a DMG. The power amplitude increases due to the 
increasing number of modes within a DMG with larger DMG number.  

 

  

  
Fig. 23. (a) Input pulse with one ps width; (b) Uncoupled impulse response of 
ten mode FMF; (c) Impulse response of ten mode FMF with 1.6 dB coupling 
loss; (d) Impulse response of ten mode FMF with 8.2 dB coupling loss.  

 

The DMG number increases for each peak from left to right of Fig. 23 (b). A 
sparse impulse response is shown in Fig. 23 (c), where the coupling loss 
corresponds to the value of 1.6 dB. Additionally, the impulse response is shown 
in Fig. 23 (d) where the coupling loss value is 8.2 dB. Here it is possible to see 
that the coupling process has effectively reduced the length of the impulse 
response at the price of 8.2 dB coupling loss.   

The ratio R between coupled to uncoupled RMS width, which is given as: 

 =
unc

RMS
RMS

R   (3.67) 
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and is calculated to capture the pulse width reduction. R is therefore bounded 
by < ≤0 1R  where the value 1 indicates no RMS width reduction.  

 

  
Fig. 24. (a) R as function of overall loss. Results are in agreement with the 
results presented in Fig. 22; (b) R as function of steady state loss. Dashes gray 
lines were computed using the values given in [40] and [41]. Solid lines were 
computed using the model presented here.   

 

The solid lines in Fig. 24 (a) shows R as a function of the overall coupling loss 
α. These results are consistent with the results presented in Fig. 22 (a). Both 
the DGD spread, as well as R, increase very similarly for all simulated MMFs 
with different number of guided modes as long as α has the same value. Since 
R captures amplitude and DGD spread, it can be related to a relative MMF 
bandwidth gain via ∝1/GB R 29. Fig. 24 (b) shows R as a function of steady state 
loss σ1L. Solid lines are used to distinguish between the results presented in 
this manuscript against the results given in [41], which are plotted using gray 
dashed lines. The difference between the two gray dashed lines (circles and 
triangles) shown in Fig. 24 can be stated as follows: the lower line (gray-dashed 
with circle marker) represents the lower boundary, which is given using a value 
of 2 1 0.18dBLR σ =  as estimated in [40] and verified in [41]. The upper 
boundary (grey dashed- with triangle markers) is a more realistic 
approximation given in [41], where a value of 2 1 1.8dBR Lσ =  was used. These 
approximations rely on the use of many modes to transform the coupled mode 
equations into a single differential equation as proposed by [39]. The solid lines 
shown in Fig. 24 (b) represent a more accurate solution to the problem since 

                                                
29 The relative bandwidth gain BG is computed accurately using the method presented here 
since it does not require the computation of the inverse matrix ( )ω−1 ,LN zT  . It does not allow 
the individual DGD tracking as in section 3.8 though.  
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the equivalence of the coupled amplitude equations was solved. This is 
required, especially when analyzing FMFs, since the continuum approximation 
is not accurate in the limit of a few guided modes. As shown in Fig. 24(b), all 
curves converge to a square root behavior for high steady state loss values. This 
convergence is reached as the number of guided modes increases. This 
tendency agrees with the results presented in [40,41] in which a square root 
behavior is predicted for all values of σ1L in the limit ,D → ∞  where D is the 
number of guided modes.  

The previous results show that the coherent model, using discrete splices 
describes the MMF behavior correctly since it yields the same type of behavior 
estimated by [40,41]. The results presented here have been calculated using 
the parabolic index profile.  
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3.10 Summary 
The main results of this chapter are summarized as follows: 

• Mode coupling induced by micro-bends and splices can be modeled 
effectively by FMF lateral mismatches between ideal propagation 
sections.  

• The number of lateral mismatches can be reduced down to 102 segments 
per kilometer, while increasing the lateral mismatch to maintain the 
overall coupling loss constant. Reducing the number of segments per 
kilometer down to 102 ensures a relative error below 1% for a coupling 
loss value of less than 7 dB. If the coupling loss is less than 2 dB/km, the 
number of segments can be reduced further down to 20 per kilometer.   

• The relative bandwidth gain depends solely on the coupling strength 
induced by the mode coupling process. This applies for all FMF, no 
matter the number of guided modes.  

• The spread of the impulse response of the FMF can be reduced by mode 
coupling and its reduction is linear in the low coupling regime, while it 
resembles a square root behavior in the high coupling regime.  

 

Having analyzed the FMF model, the FMF is operated under mode division 
multiplexing condition. This is the topic of the next section.  
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4. FMF in MDM operation 

Formel-Kapitel (nächstes) Abschnitt 1 

Mode division multiplexing has attracted the attention of many researches in 
the last years due to the possibility of increasing the capacity relative to the 
SMF by the number of guided modes. This has been analyzed theoretically and 
shown in experiments by many authors, some of them named here [63,64,22]. 
The works rely on using the eigenmodes of the unperturbed FMF (the LP-
modes), as described in section 2.3, as carriers. In the ideal case, where the 
FMF has no coupling and the multiplexing and de-multiplexing of the carrier 
modes is perfect, the signals modulated on each carrier mode propagate 
independently of each other (when considering the linear effects only). 
Therefore, the transmission throughput increases by the number of total 
guided or used modes. In the presence of modal coupling though, these 
channels are no longer independent of each other and require digital signal 
processing at the receiver to recover all transmitted data streams. It is 
therefore of interest to find eigenmodes of the complete MMF transmission 
system, which are more robust against modal coupling. Principal modes could 
prove to be such an eigenmode, since these modes a more robust towards 
distortion induced by modal dispersion and modal coupling as mentioned in the 
introduction of this work, together with Fig. 2. A special case of the principal 
modes is found in SMF, where the fundamental mode propagates in two 
different polarization directions. Due to optical birefringence, the modes 
propagate with different group velocities and due to random change in the 
birefringence along the propagation length, these modes couple, distorting the 
signal propagating along the SMF [65]. Principal states of polarization (PSP) 
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are eigenmodes of the GDO given in Eq. (3.45) and are therefore insensitive to 
polarization mode dispersion in the first order since each PSP travels with one 
well defined group velocity inside the SMF. This concept was first found by [66] 
for single mode fibers and then transferred to modes in a MMF by [20] and is 
illustrated in the case of a FMF supporting three guided modes as shown in 
Fig. 25. 

 

 
Fig. 25. Concept of principal modes in the case of a FMF supporting three 
spatial modes (LP01, LP11,o and LP11,e). Figure (b) shows an input vector 
corresponding to a PM at the input of the fiber. As the frequency changes the 
output vector pb



stays unchanged. Figure (a) shows an example in the case 
where the input field pattern is not a PM. The output field distribution b



changes as the frequency changes.  

 

A random mode, denoted here with ( )0z =a  is excited as shown in Fig. 25 (a) 
at the input of the three mode FMF, where 0z =  is assumed to be the FMF 
input. It is assumed, that this mode is a superposition of the three eigenmodes 
of the unperturbed FMF. Since each mode has a different group velocity ( , 1)v ,l q

gr
+

a pulse propagating on several eigenmodes arrives distorted at the output of 
the FMF. Even if only one eigenmode is selectively excited at the input of the 
FMF, the pulse shape is not guaranteed to be preserved because of modal 
coupling [52]. In the spatial-frequency domain, this can be translated to a 
varying output vector ( ), ,z L ω=b



 which changes, as the frequency at the input 
changes and causes signal distortion.  On the other hand, if a PM ( )0p z =a  is 
excited at the input of the FMF as shown in Fig. 25 (b), the output field pattern 

( )p z L=b


 stays constant over a small frequency range [67]. If the PMs are used 
as carrier modes in a MDM transmission system, they could prove to be 
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beneficial since they would not perceive neighboring PMs and transmit the 
signals undistorted. This is now analyzed in more depth by using them as 
carrier modes in MDM transmission systems and comparing their performance 
to the well-known LP- mode launch. The complete transmission system is 
shown in Fig. 26. The analysis here assumes that the transmitter knows the 
transmission channel, in this case the complete MMF link, in order to excite 
the PMs at the input side of the transmitter. The analysis in the next 
subsection is limited to a three mode FMF 30  to understand some of the 
limitations of this approach. 

 

 
Fig. 26. Basic idea behind a FMF in mode division multiplexing operation. One 
laser is used as transmitter, which is split into D number of modulators. Each 
modulator encodes different data streams ( )is t on the optical carrier, which 
results in a modulated optical signal ( )ix t . The spatial field distribution is then 
matched to an LP-mode or PM at the mode multiplexer (M-MUX) and 
transmitted though the FMF, supporting D modes. At the receiver, each mode 
is mode-de-multiplexed (M-DE-MUX) and detected at one of the photodiodes 
Rx.   

                                                
30 A three mode FMF refers here to three spatial modes. Polarization is not considered in this 
analysis as mentioned earlier in section 3.  
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4.1 Performance evaluation in a three mode 
system 

To understand some of the main limitations when using PMs for MDM 
purposes, a three-mode system is investigated numerically. Fig. 26 shows the 
transmission system under consideration, where the number of modes D is 
limited to three. The transverse field distributions for the LP01 mode is given 
according to Eq. (2.30) as:  

 ρρ φ
ξπξ

 
=  

−

 

2
0,1 2

1, ex
2

p( )e  (4.1) 

and both LP11 modes as: 

 
( )
( )
φρ ρρ φ
φπ ξ ξ

 
− = 

  

2
1,1 2

cos2, exp .sin2
( )e  (4.2) 

A single coherent light source, with angular carrier frequency 0ω , is used as 
transceiver and its output power is divided equally into three different 
modulators, resulting in three individual signals at the same wavelength. The 
transverse field distribution ( ), 1 ,l qe ρ φ+ of each carrier is modified to match a 
specific principal mode or LP-mode respectively, in the optical domain by 
spatial filtering. The excitation of a specific modal distribution can be achieved 
as mentioned by [68,69] using adaptive optics, by using a holographic approach 
as realized in [70,71] or by using an integrated grating approach as presented 
in [21]. If the spatial field distribution is matched to a PM, adaptive techniques 
would be required due to temporal channel variations. Here the PMs are 
estimated once per channel realization. The modes are then multiplexed and 
transmitted to the output of the FMF as: 

 ( ) ( ) ( ) ( )
( )ω ω ω

=


= = =

=
=


∑

1
, , .0

0i

D i
LN i

pi
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z L z L

ab T a







  (4.3) 

where ( )= 0i za  is a vector representing the ith LP mode and ( )= 0ip za  is the 
ith PM at the input of the FMF. ( )X ω  is the Fourier transform of the optical 
signal: 

 ( ) ( ) ( )ω= exp ,i i ox t s t j t    (4.4) 
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where ( )is t  represents the data signal modulated of the optical carrier. The 
output field vector is then de-multiplexed at the output of the FMF. 
Multiplexing and de-multiplexing can be considered as mirror images and it is 
therefore possible to apply the same concepts as mentioned for the 
multiplexing. The de-multiplexing of the ith LP - mode containing the ith output 
data stream ( ) ,iY ω now distorted by the transmission matrix ( ) ,,LN z ωT  is 
achieved mathematically by applying the orthogonality condition defined in 
Eq.(3.8) as: 

 ( ) ( ) ( )ω ω ω= = = =*, , .T i i iz L b z L Yb a


   (4.5) 

Here the vector ia has just one non-zero component, depending on which LP-
mode is to be de-multiplexed. In the case of de-multiplexing the fundamental 
LP01 mode, the vector is given as: [ ]=1 1,0,0 .Ta  De-multiplexing a PM is not as 
simple, since the PM is a weighted superposition of the three LP modes. In 
addition, the PMs do not satisfy the orthogonality condition given in Eq. (3.8)
and Eq. (3.10). For this reason, a set of detection vectors id



 will be defined in 
section 4.1.3, capable of detecting each PM without crosstalk at the angular 
carrier frequencyω0 . Using these vectors, the output signal ( )ωipY  carried by 
the ith PM is given as: 

 ( ) ( ) ( )
ω ω

ω ω ω
= =

= = =∑
0 1

,, .i
T i j j i p

D

j
z L b d Yb d

 

  (4.6) 

After de-multiplexing, the inverse Fourier transform is performed and direct 
detection is applied by the absolute square value to the output signal as: 

 ( ) ( ){ } ( )ω−= =
2 21i i ip t Y y tF   (4.7) 

and 

 ( ) ( ){ } ( )ω−= =
2 21 .i i ip p pp t Y y tF   (4.8) 

The simulation parameters are given in Table IV and some values require 
explanation; α represents the average total transmission loss induced by 
splices and micro-bendings. This value is computed using Eq. (3.51) which 
requires an overfilled launch; L is the FMF length and σspl is the standard 
deviation of the FMF offset between adjacent FMF segments. The number of 
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ideal segments per km have been chosen to 20 since coupling losses are below 
0.14 dB/km31. This would lead to a DGD spread error of less than 1% as 
described in section 3.7.1. The current analysis does not distinguish between 
splices and bends since both induced the same effect and can be viewed as 
generalization of the results presented in [52]. 

 
TABLE IV. SIMULATIONS PARAMETERS FOR MDM TRANSMISSION  

IN A THREE MODE FMF (ONE POLARIZATION) 
Parameter Value Quantity 

ξ 5.5 µm 
Radius at which the optical power of 
the fundamental mode has decreased 

to 1/e of its maximum value 
∆τmax 6.3 ps/km Maximal DGD 
2ρ0 26 µm MMF diameter 

α 0  – 1.4 dB Total average coupling loss of complete  
FMF length 

L 10 km Fiber length 
N 20 / km Number of ideal FMF segments per km 

BF 7.0 GHz Bandwidth of three mode FMF for 
Length L 

Mmax 2 Maximal DMG number 
Bmod 7 – 26 GHz Modulation bandwidth 

 

Using these parameters the maximal transmission rate is analyzed as function 
of coupling loss using the PMs and LP-modes as carriers in subsection 4.1.2. 
Before this is analyzed, it is necessary to introduce the concept of the eye 
diagram which is often used to analyze the signal integrity of binary modulated 
signals as discussed in the next subsection. 

 

4.1.1 Signal bandwidth and eye opening diagram 

Digital signal transmission is advantageous in optical transmission links since 
it requires less signal to noise ratio [28]. Although the MDM transmission 
system analyzed in section 4.1.2 does not include Gaussian white noise, 
crosstalk to other channels can be perceived as noise and therefore the use of 
digital modulation schemes is justified here. Here the analysis is limited to on-
off-keying (OOK) signals, which can be viewed as a special case of pulse 
                                                
31 This values has been calculated simply by diving the average overall coupling loss value α 
by the amount of segments used per km. Since the transmission length is 10 km and the 
maximal loss values is 1.4dBα = , the value of 0.14 dB/km is obtained.   
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amplitude modulation (PAM) described in annex A.3. The modulation 
bandwidth Bmod of such a signal can be defined by the frequency / 2c cf ω π= , at 
which the power spectral density crosses the first zero point [72]:  

 ( ) ( )ω ω ω= ==
2 2/ 0 0.cS S   (4.9) 

Here ( ) ( ){ }22
iS s tω = F  denotes the power spectral density. Fig. 27 shows the 

normalized power spectral density ( ) ( )2 2
0/ fS f fS = as a function of frequency 

f rather than angular frequency ω. The signal bandwidth is denoted in Fig. 27 
as mod cB f= . 

 

 
Fig. 27. Normalized power spectral density ( ) ( )2 2

0/ fS f fS =  for a 10 Gbit/s 
OOK signal. The pulse has been shaped using a 5th order Bessel filter with a 
3dB filter bandwidth of 0.85 x Bitrate. The modulation bandwidth is given 
according to definition as 10GHzmodB = .  

 

A common tool used to analyze the signal integrity of OOK signals is the so 
called eye diagram. The eye diagram is constructed by partitioning a random 
bit sequence into many short sequences and superimposing these short 
sequences on each other. Fig. 28 shows the back to back (BTB) eye diagram of 
a random bit sequence ( )s t  used for the MDM transmission. The bit sequence 

( )s t  has been shaped by using a 5th order Bessel filter as defined in annex A.3 
with a bandwidth of × baud 0.85 rate . Here two values are depicted: the eye 
opening (EO) and the eye width (EW). The EO is defined as the maximum 
opening within the bit interval:  

 ( ){ } ( ){ }EO min max ,s t d s t d= > − <   (4.10) 

where the value d is the decision value and is used to define whether the signal 
is to be considered as zero or one. Here ( )s t  has an amplitude of one and the 

f - f0 [GHz]
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decision value is chosen at the value where the rising and falling edge intersect 
in the back to back eye diagram. The EW is defined as the maximal horizontal 
opening at a constant amplitude level and is illustrated in Fig. 28. Since the 
eye opening will vary as function of bitrate, the time axis will be normalized 
further on with respect to the back to back eye width as: /N BTBt t EW= . The 
normalization is done with respect to the input EW value and is indexed here 
with BTB.  

 

 
Fig. 28. Eye diagram of an arbitrary bit sequence ( )s t  at 10 Gbit/s. The eye 
opening (vertical opening) and eye width (horizontal opening) are depicted to 
illustrate the values with EO and EW respectively. The time scale has not 
been normalized here.  

 

These parameters will be used in the next subsections to analyze the 
transmission performance of PMs in MDM operation.  

 

4.1.2 Maximal throughput using PMs in MDM operation 

When the MMF is operated in the conventional incoherent way as discussed in 
section 1 and Fig. 1, where the source excites many of the guided modes, the 
transmission rate is limited by the MMF bandwidth BF [73,13]. If the 
modulation bandwidth Bmod of the signal ( )is t , does not exceed the MMF 
bandwidth BF, the signal does not suffer much from modal dispersion and a 
good transmission performance is obtained. The uncoupled bandwidth FB  of a 
MMF is given as [5]: 

 
∆τ

≈
max

0.443 .FB
L

 (4.11) 

s(
t)

time [ps]
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Since the PMs are frequency independent to the first order, it is expected that 
they overcome distortion effects due to modal dispersion and mode coupling up 
to a modulation bandwidth of mod FB B≈ . In the case of a three mode FMF this 
means 7GHzmod FBB =≈ 32. To formulate result independent of MMF length, 
transmission rate and fiber type, all the following transmission results are 
normalized with respect to the fiber bandwidth BF and a normalized 
throughput value is defined as:  

 = .mod

F

Bb
B

  (4.12) 

To justify the use of PM transmission, the transmission quality of PMs under 
MDM operation is compared against the well-known LP-mode launch as 
presented for example in [22] but without the use of MIMO signal processing. 
As an example, a three mode transmission system is considered by 
multiplexing three random bit sequences ( )is t  (one bit sequence per carrier 
mode) with OOK-NRZ modulation format, containing 211 symbols. The input 
signal ( )is t  is filtered using a fifth order Bessel filter, as described in annex 
A.3 with an electrical filter bandwidth of ×= Bitrate.0.85elB  At the output of 
the MMF the modes are spatially filtered, detected and the optical power is 
computed. Additive Gaussian white noise is not included in this transmission 
and mode dependent losses are compensated at the output in order to study the 
signal distortion caused by inter-symbolic interference induced by mode 
coupling and mode dispersion. Mode dependent losses are compensated by 
multiplying the ith de-multiplexed output signal with the value Gi defined as: 

 ( ) ( )= ,i i ip t G p t   (4.13) 

where iG  is defined as the ratio of ith input - to ith output signal energy as: 

 ( ) ( )= ∫ ∫
0 0

, .i n i

T

i

T

iG p t dt p t dt   (4.14) 

Here T is the time length of the PRBS sequence and input and output power is 
given by ( ) ( ) 2

,ini ip t x t= and ( ) ( )=
2

i ip t y t  respectively. This procedure is 
applied to the PMs as well and the value will be denoted as ipG . This ratio is 

                                                
32 The bandwidth of the FMF is GHz7FB ≈ for a length of 10kmL = .  
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frequency independent and therefore compensates only an average mode 
dependent loss33 value. Fig. 29 shows the eye diagram of two particular output 
signals de-multiplexed at the receiver. In (a) the de-multiplexed output signal 
of the LP11 mode is shown while (b) shows the de-multiplexed output signal of 
the PM2. The normalized throughput value is 1.14b = , which corresponds to  
8 Gbit/s.  

 

  
Fig. 29. Eye diagrams for the normalized output signal transmitted over a 
three mode FMF at 8 Gbits/s over 10 km in MDM operation. The eye diagram 
is evaluated as an example for the output signal de-multiplexed at the (a) LP11 
mode output and (b) PM3 output. Here 1.5 dB coupling losses are induced by 
mode coupling. These result resemble the ones presented in [74]. 

 

As expected, the signal modulated on the PM has significantly less distortion 
than the signal transmitted over the LP-mode. This is now analyzed further by 
evaluating the eye opening penalty (EOP) as a function of average coupling loss 
value. The EOP is defined as: 

 BTBEOEOP[dB] 10log ,
EO

 =  
 

 (4.15) 

EOBTB stands for back-to-back eye opening, measured at the input of the FMF. 
Here it’s important to emphasize again, the output signal has been normalized 
to contain the same energy as the input signal. Fig. 30 shows this analysis for 
the case where the (a) LP-modes are used as carrier modes and the (b) PMs are 
used as carrier modes. The normalized throughput value is fixed at 1.14b =

while the coupling loss value α is varied. Fig. 30 (a) shows the signal 
                                                
33 This mode dependent loss value is not the same values as used in section 3.8 where the ratio 
of maximal to minimal singular value is used. Mode dependent loss here referrers to the actual 
loss values for each particular mode.  
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multiplexed on the LP01 mode that has a much lower eye opening penalty. This 
can be explained if one considers the modal distribution of the LP01 mode, 
which is confined more at the core axis making it less susceptible to bents and 
splices. Both signals multiplexed on the LP11 modes on the other hand exhibit 
a larger EOP value, which can be explained with the fact that they are more 
susceptible to bends and splices since their power distribution are located more 
at the core-axis boundary. Both exhibit a very similar trend as expected.  
Fig. 30 (b) shows that each signal multiplexed on a PM does practically not 
suffer signal distortion induced by modal dispersion and mode coupling. 

 

  
Fig. 30. EOP for a three mode FMF under MDM operation at 8 Gbit/s  
( 1.14b = ) as function of coupling induced loss α using (a) LP-modes as carriers 
and (b) PMs as carriers. Solid lines represent the mean EOP value, which has 
been obtained by averaging over ten FMF realizations. The dashed are the 
upper value of the mean confidence interval of 95%. The lower boundary is 
omitted for better overview and the confidence intervals of (a) are omitted 
since the mean EOP value is already very large and LP-modes will not be 
analyzed further.  

 

The eye opening penalty does not exceed 0.4 decibel in Fig. 30 (b) for this 
particular bit rate and for the complete simulation range, which basically 
means that the received signal has not suffered distortion and no signal 
processing is required at the receiver. Nevertheless it is possible to observe an 
interesting behavior. Two of the three signals multiplexed on the PMs have 
almost identical behavior and exhibit the same performance, while the other 
signal exhibits a far better performance. If this is compared to the tendency 
shown in Fig. 30 (a) for the signals multiplexed on the LP – modes, one finds a 
very similar behavior; PM1 mode takes the role of the fundamental mode, while 
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the PM2 and PM3 take the role of the two higher order modes in the system34. 
This tendency will be studied further when increasing the number of modes in 
the transmission system in section 4.2.  

The PM transmission analysis is now extended by analyzing the distortion 
behavior as function normalized throughput value b. The results are shown in 
Fig. 31 for two different scenarios: (a) 0.38α =  dB and (b) 1.39α =  dB. These 
results show that the EOP increases as the normalized throughput value 
increases, just as expected. It is also important to observe that the confidence 
interval for the EOP increases for larger normalized throughput values b. It 
can be seen that the actual EOP values depend very much on the coupling 
strength present in the transmission system, since larger EOP values are 
adopted for larger coupling loss values. 

 

  
Fig. 31. EOP as function of normalized throughput /mod Fb B B=  for two 
different overall coupling loss values α: (a) 0.38 dBα =  and (b)1.39 dB . Solid 
line represents mean value, evaluated over ten FMF realizations and the 
dashed lines represent the upper value of the mean confidence interval of 95%.  
The lower interval is omitted for better overview.  

 

The performance of such a system will therefore depend largely on the 
combined value of b and α, which is shown in Fig. 32. Here, a contour plot is 
shown for the eye opening penalty as function of normalized throughput b and 
coupling losses α for the signal de-multiplexed on (a) PM1 and (b) PM335.  

 

                                                
34  This does not necessary mean that the spatial distribution looks alike and that their 
temporal behavior is identical.  
35 PM2 is not shown since it behaves similarly to PM3 as shown in the previous results. 
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Fig. 32. EOP as function of coupling loss values α and normalized throughput 

3/mod Fb B B=  for (a) PM1 and (b) PM3. These values represent the upper 
boundary given by the confidence interval for the mean EOP value. 

 

Since the upper confidence interval of the mean EOP is much larger compared 
to its mean value, the upper boundary of the mean EOP confidence interval is 
used in Fig. 32. This ensures that 95% of all simulations lie underneath the 
EOP value specified. The results in Fig. 32 shows that PM1 has a much better 
performance than PM3. The eye opening is much larger over the entire 
simulated range which suggests that PM1 has a higher transmission 
bandwidth than PM2 and PM3.  

 

To further quantify the signal quality at the output of the FMF, the normalized 
eye width (EWN) of the signal is evaluated. The normalized eye width is shown 
in Fig. 28 and is defined as:  

 =
BT

N
B

EW ,
EW

EW   (4.16) 

where BTBEW is the back to back eye width measured at the input of the MMF 
and the EW is the eye width at the output of the FMF, after de-multiplexing 
the signals. The EWN value is show as function of coupling loss values α for two 
different throughput values (a) 2.4b =  and (b) 3.5b = .  
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Fig. 33. Eye width as function of coupling loss values α for normalized 
throughput value of (a) 2.4b =  and (b) 3.5b = . The solid lines represent the 
mean eye width value and the dashed lines the lower value of the 5 – 95% 
confidence interval. The upper value has been omitted for better overview.  

 

Its values decrease with increasing values of α and b. In addition, it is also 
possible to observe that the signal multiplexed on PM2 and PM3 have similar 
eye width closure behavior. The EWN values decreases as function of α and as 
function of b. To gather the dependence over α and b, a contour plot is evaluated 
for the EWN value.  

 

  
Fig. 34. Normalized eye width as function of coupling loss α and throughput 
value b. The results show the normalized eye width after the signal has been 
de-multiplexing and amplified; (a) shows the behavior for PM1 while (b) shows 
the behavior for PM3.  

 

Fig. 34 (a) shows the normalized eye width EWN for PM1 while (b) shows the 
EWN value for PM3. It shows clearly that the signal carried by PM1 suffered 
less distortion than PM3 since the normalized eye width is almost unity, 
indicating almost no distortion. The signal transmitted through PM3 on the 
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other hand suffers from distortion at higher α and b values. It is interesting to 
note that for signals transmitted through PM3 high normalized throughput b 
values are possible without eye width closing only in conjunction with low 
coupling loss values α and vice versa. Since it is of interest here to operate a 
MDM transmission system, in which all transmission channel operate equally 
well, a performance criterion needs to be introduced to define weather a 
transmission mode is usable for transmission. Here a 1 dB eye opening penalty 
criterion is chosen exemplarily, combined with a minimum eye width opening 
of 0.78, which corresponds to an eye width penalty (EWP) of 1 dB. An example 
of an eye diagram of a signal that fulfils this criterion is shown in Fig. 35(a). 
Fig. 35 (b) shows the maximal allowable coupling loss values α and maximal 
throughput value b for each PM so that the EOP and EWP criterion is fulfilled. 
The tendency is just as expected, PM1 has a higher performance and has 
therefore a higher allowable throughput value b. For PM2 and PM3 the 
maximal throughput value depends on the maximal amount of mode coupling 
induced loss tolerated in the transmission link. If a maximum value of 

1.4 dBα =  is acceptable, the maximal throughput value is 2.7b = . If only a 
value of 0.6dBα =  is tolerated, a value of 3.3b =  can be achieved. Since more 
than 1 dB coupling loss value is unlikely in a transmission system, it is possible 
to state that principal mode transmission in a three mode fiber seems to be 
very robust towards modal coupling as long as the modulation bandwidth per 
PM does not exceed roughly 2.5 times the FMF bandwidth36. This behavior is 
analyzed further in subsection 4.2, by scaling the number of guided modes 
within the FMF. For now, the analysis will continue in the frequency domain 
by analyzing crosstalk. 

 

                                                
36 This result is 2.5 times larger as the one presented in [52].  This is due to the definition of 
the FMF bandwidth used here in Eq.(4.11), which has an extra factor of 0.443 as proposed in 
[5]. 
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Fig. 35. (a) Example of an eye diagram that fulfills the EOP and EWP 
criterion; (b) maximal allowable coupling loss values α and maximal 
throughput value b for each PM so that the combined criteria of EWP and EOP 
are fulfilled. 

 

4.1.3 Crosstalk analysis and spatial filtering limitations 

In order to operate the MMF in a MDM operation, it is necessary to de-
multiplex each transmission mode at the receiver. For this purpose, the 
orthogonality condition given in Eq.(2.17) is used. As discussion in section 3.1, 
the orthogonality condition for the LP-modes is transformed in the vector space 
as: 

 ( ) ( )= = =* 0.0 0T ji z za a    (4.17) 

where the vectors ia  and ja  are two vectors, representing the weighting 
coefficients of the LP-modes, with only one none-zero entry at the coefficient i 
and j. As mentioned in section 3.6, the most important consequence of MDL is 
that the principal mode vectors are no longer orthogonal. This means that  
Eq. (3.8) and Eq.(3.10) in section 3.1 does not apply since their scalar product 
does not yield zero. In other words: 

 ( ) ( )
ω ω ω ω

ω ω
= =

= = =
0 0

1* ,, , ,T p jp i z z L kLb b
 

  (4.18) 

and 

 ( ) ( )
ω ω ω ω

ω ω
= =

= = =
0 0

2, , ,, ,jT
p i pz L L kzb b
 

  (4.19) 

where k1 and k2 are constant values and the index i and j are the indices of two 
different principal modes. To avoid this, it is possible to construct a set of 
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vectors jd


 that obey the following conditions at the angular carrier frequency

0ω : 

 ( )
ω ω ω ω

ω
= =

= =
0 0

, 0,p i
T jz Lb d
 

 (4.20) 

and  

 ( )
ω ω ω ω

ω
= =

==
0 0

, 1.,i
T ip z Lb d
 

  (4.21) 

This can be formulated in matrix notation as [52,74]: 

 ( )
00

·,z L ω ωω ω
ω ==

= =DP I  (4.22) 

Here P is the matrix containing in its rows the principal modes at the output 
,pb



 I is the identity matrix and D is the detection matrix in which each column 
represents one detection vector id



used to detect the ith PM. Computing the 
detection vectors translates in inverting the PM matrix P as:  

 ( )ω ω ω ω
ω−

= =
= =

0 0
1 , .z LD P   (4.23) 

To study the impact on an MDM transmission system, a frequency domain 
analysis in which crosstalk is computed as a function of the frequency deviation

0f f− is carried out. Crosstalk at the receiver is defined using the relation given 
in Eq. (4.18) as: 

 ( ) ( ) ( )
0

2
*

1 ,
1,

,,

3
, , ,C T p

D

i i
jj p i

j
z L z L z LP

ω ω
ω ω ω

=

≠ ==
= = == ∑ b b

 

 (4.24) 

and using relation Eq. (4.20) as: 

 ( ) ( )
ω ω

ω ω
=

= ≠ =
== =∑

0

2
,,2 ,

3

1,
, .,

D

i i

C T n jj p i
j

P z L z Lb d
 

  (4.25) 

Here the detection vector ,n jd


is normalized to unity in contrast to the 
definition given in Eq. (4.20). The frequency dependence in Eq. (4.24) and Eq. 
(4.25) has been computed by evaluating: 

 ( ) ( ) ( )ω ω= = = = ,, , 0 ., TT LN p ip i z L z L zb aT


   (4.26) 

Fig. 36 shows the results of the simulation for the frequency domain analysis.  
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Fig. 36. Crosstalk of PMs in a three mode FMF using (a) the relation given in 
Eq. (4.25) and (b) using the equation given in Eq. (4.24) . The 10 km long FMF 
contains 0.6dBα =  coupling loss and has bandwidth of 3 7GHzFB =   

 

Comparing Fig. 36 (a) and (b) shows the effect of using the detection vectors. 
While (b) has some residual crosstalk around the carrier frequency, the use of 
detection vectors in (a) eliminates this completely. It is important to notice the 
curves in Fig. 36 (a) and (b) are very different for values below 0 5GHzf f− < . 
Above this values the curves are very similar but not identical, which explains 
the difference in the curves shown in section 4.1.1, where EOP values behaved 
slightly different from each other for. As the frequency deviation increases, 
crosstalk increases by about 10 dB per 2 GHz and then fluctuates around 10 
dB. The maximal crosstalk value depends on the mode coupling strength which 
grows as the total loss increases, as shown in Fig. 37. It is also important to 
notice that each PM has a different crosstalk value. Comparing for instance 
PM1 and PM3 in Fig. 36 (b) at 0 15GHzf f− =  shows a crosstalk difference of 
15 dB. This leads to the conclusion that each PM has a different crosstalk value, 
which correlates with the results presented in Fig. 30. This could have a great 
impact when using a MMF guiding a larger number of principal modes in MDM 
operation, since the number of modes at the output leads to increased crosstalk. 
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Fig. 37. Crosstalk for PM1 using detection vector for different coupling loss 
values α.  

 

Using Eq. (4.24) to de-multiplex the PMs at the receiver leads to additional 
crosstalk around the carrier frequency f0 as shown in Fig. 36 (b) if not 
compensated by using the detection vectors id



. Having said this, the analysis 
is continued by analyzing briefly the transmission degradation induced by not 
compensation the mode dependent loss value.  

 

4.1.4 Effects of PM dependent loss 

The signal analysis presented in section 4.1.2 assumes the compensation of 
principal mode dependent loss. This is compensated by multiplying the output 
signal ( ),i outp t  with the factor Gi, as given in Eq. (4.14). This factor 
compensates a time average loss value, so that only the amplitude of the signal 
is changed by this operation. It is therefore of interest to evaluate the effect on 
the EOP, defined in Eq. (4.15) without the compensation of principal mode 
dependent loss. The results for a fixed throughput value of 1.14b =  while 
varying the coupling loss value α are presented in Fig. 38. 
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Fig. 38 EOP for a MDM transmission using PM as carriers without 
compensation of average principal mode dependent loss. Throughput value is 
fixed at 1.14b =  while varying coupling loss value α. 

 

When comparing these results with the results presented in Fig. 30 (b), where 
principal mode dependent losses was compensated, it becomes obvious that 
compensation of loss is essential, to ensure good transmission performance. A 
difference of one order of magnitude can almost be observed among the curves 
presented in Fig. 38 and Fig. 30. Since the signal degradation without the 
compensation of PM dependent losses is so severe, further analysis using 
higher throughput values b will not be continued since the performance 
degradation will increase even further.  
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4.2 Scaling properties for systems with higher 
number of modes 

The number of modes is now varied in order to analyze the scalability of the 
principal modes transmission in MDM operation similarly to the results 
already presented in [52,75]. The simulation parameters are exactly the same 
ones as presented in Table III for a six-mode FMF and ten-mode FMF but are 
shown in Table V for better overview. Fig. 39(a) shows the maximal allowable 
coupling loss values α and maximal throughput value b for each PM so that the 
EOP and EWP criterion of less than 1 dB is fulfilled. As expected, it is possible 
to observe that some PMs perform better than others.  

 
TABLE V. SIMULATION PARAMETERS FOR SIX MODE AND TEN MODE FMF (ONE POLARIZATION) 

Parameter Unit Values 
Number of modes - 3 6 10 

NA - 0.11 0.12 0.13 
ρ0 µm 13 15 16.25 

∆τmax ps/km 6.3 17 32 
BF GHz 7.0 2.6 1.38 

 

The maximal throughput value b that can be achieved when a maximal 
coupling loss value of 1.4 dBα = is allowed is roughly 2.3b = , which is a value 
comparable to value given for a three mode fiber in section 4.1.2. These results 
can also be formulated in terms of number of usable PMs as shown in  
Fig. 39(b). The number of usable PMs can be understood as the total number 
of PMs, given the normalized throughput value b, that satisfy the EOP and EW 
penalty value of less than 1dB. Here the number of usable PMs are given as 
function of coupling loss α for a given throughput value b, similar to the results 
presented in [52]. These results are also extended to a ten mode FMF. Fig. 40 
(a) shows the maximal allowable coupling loss values α and maximal 
throughput value b for each PM in a ten mode FMF so that the EOP and EWP 
criterion is fulfilled and (b) show the number of usable PMs in a ten mode FMF. 
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Fig. 39. (a) Maximal coupling loss value α and throughput value b tolerated 
by each PM to fulfill the EOP and EW criterion in a six mode FMF; (b) number 
of usable PMs in a six mode FMF as function of coupling loss value α for 
different throughput values b. 

 

Comparing the results for a three mode, six mode and ten mode FMF show that 
all PMs can be used for MDM transmission as long as the normalized 
throughput value does not exceed 2.3. This ensures that the signals 
multiplexed on each PM, do not suffer more than 1 dB eye opening penalty and 
1 dB eye width penalty. In addition it is also interesting to note, that the 
performance of several PMs tends to be very similar, as marked in Fig. 39 (a) 
and Fig. 40 (a) with the black circle. This behavior could have great impact on 
the transmission performance of a MDM system using PMs as carriers, since 
exceeding the maximal throughput and coupling loss value would cause 
simultaneously the outage of several channels.  

 

(a) (b) 
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Fig. 40. (a) Maximal coupling loss value α and throughput value b tolerated 
by each PM to fulfill the EOP and EW criterion in a ten mode FMF; (b) number 
of usable PMs in a ten mode FMF as function of coupling loss value α for 
different throughput values b. 

 

These results show some of the potential limits of the MDM transmission 
system using PMs as carriers. Reducing the coupling strength and thereby the 
coupling loss value α, seems like a possible solution to increase the maximal 
throughput in a mode division multiplex transmission using PMs as carriers. 
Nevertheless coupling loss values are extremely small so that this approach 
seems unpractical and an alternative approach needs to be used if the 
transmission rate is to be increased further. One possibility is the inclusion of 
MIMO digital signal processing at the receiver. Of course LP-mode launch is 
applicable there as well, but the question arises, if the complexity of such a 
receiver structure might be reduced by using the PMs as carriers. This will be 
the topic of the next section.  For now, brief summary of the results of this 
chapter will be presented 

 

4.3 Summary 
The main results of this chapter are summarized as follows: 

• The compensation of principal mode dependent loss is essential in an 
MDM transmission system. Should this not be taken into account, the 
performance is reduced significantly.  

• Mode division multiplexing transmission using principal modes as 
carriers is beneficial without the use of MIMO digital signal processing 

(a) (b) 
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at the receiver, if the modulation bandwidth of each signal modulated 
upon each PM does not exceed roughly twice the MMF bandwidth. In 
this case an eye opening penalty and eye width penalty of a maximum 
of 1 dB can be expected for each de-multiplexed signal stream. 

• The multiplexing gain obtained by a MDM transmission using PMs as 
carriers against the conventional MMF use is given by 2MG D≈ × , 
where D represents the number of guided modes. Here it is assumed that 
all PMs are used for transmission. 

 

These results have a direct impact on the design of a MDM transmission 
system using PMs as carriers. If principal mode dependent losses are present, 
either induced by mode coupling or by any other device in the transmission 
system, it needs to be compensated by some sort of principal mode selective 
amplifier. This means that each PM would obtain a different amplification 
value. If principal mode dependent losses are not present or have been 
compensated, the maximal transmission rate is limited by twice the MMF 
bandwidth. The transmission rate of each channel needs to be fixed so that the 
modulation bandwidth of each channel does not exceed twice the MMF 
bandwidth in order to guarantee good system performance. Alternately, it is 
possible to consider algorithms that would adapt the transmission rate to the 
PM in use. In this case the transmission rate could be increased further. The 
MDM transmission system would also require feedback to adapt the PMs at 
the input of the FMF to channel variations.  In this case it is important to know 
the time rate at which the channel varies, which could be in the order of 
magnitude of milliseconds, which is the time at which polarization fluctuations 
occur in SMF [76]. 
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5. Comparison of receiver 
complexity  

Formel-Kapitel (nächstes) Abschnitt 1 

The mode division multiplexing transmission system presented in section 4 
was analyzed without MIMO digital signal processing after detection. The 
maximal throughput achieved was mainly limited by the MMF bandwidth. As 
mentioned earlier, this limit could be overcome by using MIMO digital signal 
processing at the receiver. In that case, MDM transmission using LP-modes as 
carriers is feasible as presented by many authors [22,49,63,77]. Nevertheless 
it is still of interest to compare the performance of the LP-mode launch towards 
PM launch in MDM transmission in terms of receiver complexity. Here the 
complexity of the receiver structure will be defined by the amount of temporal 
filter taps necessary to equalize a signal to a certain error vector magnitude 
(EVM) level, defined in section 5.2. The complete transmission system 
resembles therefore the transmission system shown in Fig. 26, but it includes 
now a coherent receiver to obtain phase and amplitude information of the 
transmitter signal, as well as MIMO digital signal processing to equalize the 
output signals as shown in Fig. 41, similar to [78].  

 



96  5. COMPARISON OF RECEIVER COMPLEXITY 

 
Fig. 41. MDM transmission system using MIMO digital signal processing. 
Optical fields at the output of each modulator (MOD) are encoded and then 
matched to a desired spatial mode which is either a LP-mode or a principal 
mode. These are then multiplexed and transmitted through the multimode 
fiber. At the output, the sum of all modes is mode-de-multiplexed (M-DE-
MUX) and detected using a coherent receiver (RX). Each signal then passes 
through the MIMO Wiener filter where an estimate of the transmitted input 
signal ( )is t is computed. 

 

Since the transmission scenario does not change much with respect to the FMF, 
the same fiber parameters are used as in section 3.8 in Table III for the six 
mode FMF. The use of coherent receivers enables the use of higher order 
modulation formats, which are discussed in annex A.3. Here the analysis is 
limited to quadrature phase shift keying (QPSK) signals. The coherent receiver 
is assumed to be ideal which means that the frequency of the local oscillator is
ω0 so that no frequency compensation technique is necessary. After 
propagating through the MMF, the optical signal is filtered spatially and the 
following expression is obtained for the signals DE-multiplexed from the LP-
modes: 

 ( ) ( ){ }ω−= 1i iy t YF   (5.1) 

and for the PMs: 

 ( ) ( ){ }ω−= 1, , .p i p iy t YF   (5.2) 

The following description will be limited to signals DE-multiplexed from LP-
modes as given in Eq. (5.1)  to simplify notation but is also applicable for PMS.  

The signal ( )iy t  can also be formulated as: 
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 ( ) ( ) ( )ω= 0exp .i iy t u t j t   (5.3) 

The optical carrier frequency is given here with 0ω and ( )iu t  describes the ith 
complex envelope. To obtain the complex envelope of the optical signal ( )iu t , a 
coherent receiver is necessary which basically down mixes the optical signals 

( )iy t  with a local oscillator laser to transform the pass band signal into a 
baseband signal and thus obtaining ( )iu t . Since the MIMO Wiener filter works 
with complex filter coefficients, the complex signal is processed without 
decomposing the signal into in-phase and quadrature component. The analog 
optical signal37 ( )iy t  is down sampled to two samples per symbol. Since the 
goal here is to analyze the signal distortion due to transmission, no noise is 
added. In this case, the MIMO Wiener filter can practically equalize the signal 

( ),i outs t so that the square error is basically zero, i.e. 
( ){ } ( ) ( ){ } ≈= −

2 2 0i ie t s t s tE E  . Since it is of interest to compare if the receiver 
complexity is reduced in terms of required filter taps using the PMs as carrier 
modes against the LP – modes, a criterion needs to be defined, up to which 
point a mode is successfully equalized. A common metric used to define the 
quality of a complex signal is the so called error vector magnitude (EVM) which 
is discussed in more detail in subsection 5.2. For now the details of the MIMO 
Wiener filter are discussed. 

 

                                                
37 The analog optical signal is modeled here and transmitted here by using 16 samples per bit.  
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5.1 MIMO Wiener Filter 

 
Fig. 42. Typical configuration for optimum inverse system modeling [79].  

 

In this subsection the fundamentals of the MIMO Wiener filter will be 
discussed. The filter will be discussed by starting out with a simple single input 
single output (SISO) case and then extending it to the more complex multiple 
input multiple output case. The basic idea of the SISO problem is shown in  
Fig. 42. An arbitrary input signal ( ) ( ) ( )exp ox t s t j tω=  propagates for instance 
through a single mode fiber. The channel is described in the frequency domain 
by the transfer function ( )T ω  and the output signal ( )y t  is given as38:  

 ( ) ( ) ( ){ }ω ω−= 1 , .y T zt X aF   (5.4) 

The complex envelope ( )u t  is recovered using a coherent detector and then 
sampled and it enters the equalizer, where it is convoluted with the estimated 
inverse channel impulse response ( ) 1h t − as: 

 ( ) ( ) ( )−= ∗1 .s t h t u t   (5.5) 

The signal ( )s t  is an estimate of the input data signal ( )s t . The error ( )e t  is 
then computed and the optimal estimation of the input signal ( )opts t  is 
obtained when the error is minimal. The transmission channel is assumed to 
be causal, containing only linear effects and it is time invariant39. For this 
reason the signal will be described using a finite impulse response (FIR) filter 
which will be discussed later. The analysis here will deal with the time domain 
representation of the Wiener filter. A Wiener filter minimizes the expectation 
value of the square error ( ) 2e t of the signal as: 

                                                
38 Here the notation used in section 4 is used to describe a single mode fiber. The transfer 
matrix ( )ω,LN zT simply becomes a transfer function ( )ω,T z and the input vector a  is simply 
a scalar value a.  
39 At least for a certain time window. 

s(t)ejω0t y(t)Channel DSP
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 ( ){ } ( ) ( ){ }= −−
2 2 Min.dt s se t t TE E 

   (5.6) 

Here Td is the time delay induced run time through the channel and the inverse 
equalizer, which will be omitted for simplicity now.  

As mentioned earlier the signal needs to be resampled which is done by 
choosing a sampling period T of at least / 2BT T<  according to the Nyquist 
criterion, where TB is the symbol duration, in order to avoid aliasing. The 
sampled version of Eq. (5.6) is then given as: 

 ( ){ } ( ) ( )
−

=

 
 = − − 
  

∑ *

0

2
2 1

.
FL

l
l

e s nT c u nT ln TTE E   (5.7) 

Here LF is the length of FIR filter and *lc  are the complex filter coefficients. The 
error signal ( )e nT  is defined as: 

 ( ) ( ) ( )
−

=
= − −∑

1

0
* ,

FL
l

l
e n s n c u n l   (5.8) 

where *l l lc a jb= +  and both la  and lb  are real numbers. Here the simplified 
notation ( ) ( )s n s nT was used and will be used further on. Since the square 
error ( ) ( ) ( )=

2 *n e n ee n  needs to be minimized, it is necessary to perform the 
derivative of Eq. (5.7) with respect to the filter coefficients kc , which are the 
only free parameters and set the equation to zero to minimize the square error 
as: 

 ( ) ( ) ( ) ( ) ( ) ∂  ∂ ∂  = + =   ∂ ∂ ∂   

2 *
* 0.

kk k

e n e n e n
e n e n

c c c
E E   (5.9) 

The differentiation with respect to a complex variable is defined as [79]: 

 .
k k k

j
c a b
∂ ∂ ∂

= +
∂ ∂ ∂

  (5.10) 

By applying Eq. (5.10) to Eq.(5.8), the following result is obtained for the 
derivative of ( ) ( )* and e n e n  with respect to ck: 
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( )
( ) ( ) ( )

( )
( )

−

=

 
∂  

∂   =
∂ ∂

= − −
∂

− −

=
∂

− ∑
1

0

*
2 ,

0.

FL
l l

l

k k

k

e n
s n a jb u n l
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u n k

e n
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  (5.11) 

Inserting Eq. (5.11) into Eq. (5.9) yields40:  

 ( ) ( ){ } ( ) ( ){ }
−

=
− − − − =∑* *

0

1
0.

FL
l

l
u n k s n c u n k u n lE E   (5.12) 

The left hand side of Eq. (5.12) is the cross-correlation value between the 
output signal and the input signal. The right hand side describes the 
autocorrelation of the output signal ( )u t  at different time differences k l− . 
Doing the same procedure for all coefficients ck, where [ ]0, 1Fk L∈ −  yields k 
different equations as (as an example 3fL =  is considered): 

 
0 0 1 0,1 2 0,2

0
0,0

1 1,0 1,1 1,2
2 0 2,0 1 2,2

1 2
2,1 2 .

R R R
R R

r c c c
r c c c
r c

R
R c R Rc

= + +
= + +
= + +

  (5.13) 

Here the following notation was used: 

 ( ) ( ){ }
( ) ( ){ }

= −

= − −,

*

*

,
.

k

k l

r u n k s n
R u n k s n l

E

E
  (5.14) 

This can be written in matrix notation as: 

 .us uu= Rr c    (5.15) 

The matrix uuR contains all components Rk,l given by: 
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−

− − − −

 
 
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L L LL

R R R
R R R
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

   



  (5.16) 

The vector 1 10, , , f

T
Lc c c −=   c   contains all the unknown filter coefficients and 

the vector 0 11, , , f

T
us Lr r r −=   r 

  contains the cross-correlation coefficients 

                                                
40 Here the index l has been changed to the index k to differentiate it to the index used in the 
summation. Both belong to the same space though, reaching from { }, 0, 1Fk l L∈ −     
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between input and output signals at different time instances. This equation is 
known as the Wiener – Hopf equation [80]. Applying the inverse41 of uuR to  
Eq. (5.15) yields the filter coefficient vector c  as: 

 1 .suu u− =rR c    (5.17) 

The size of the matrix 1uu−R which needs to be inverted is F FL L×  and the 
number of filter coefficients is given by FL . The resulting filter structure is 
depicted in Fig. 43 for a FIR filter length of 4FL = . Here the signal ( )u n  passes 
through the filter bank. The signal is delayed each time by ∆t, and then 
multiplied by the filter coefficient *ic . The sum of all these parts results then in 
the estimated signal ( )ns which is an estimation of the input signal ( )s n as 
shown in Fig. 42. The estimation of the cross-correlation vector usr  requires 
the knowledge of the input signal ( )s n which can be obtained for instance by 
training in real transmission systems. 

 

 
Fig. 43. FIR filter structure for signal de-convolution. Here the filter has 
exemplary just four filter coefficients *lc .  

 

When implementing this, care needs to be taken, since the output signal  
( )du n T−  has some delay Td due to propagation compared to the input signal
( )s n . In the single input single output (SISO) system, the delay is well defined 

since it is given by the time the signal requires to propagate throughout the 
channel. This issue is treated in the following simple example. An input signal 

( )s n  passes through a lossy, non-dispersive medium of some length L and 
arrives at the output after some time = /dT L v . The output signal ( )u n  passes 
through the filter bank. At the output of the filter the square error ( ) 2e n
between the input signal ( )s n  and the filtered signal ( )ns  is estimated. From 

                                                
41 When inverting yyR , the QR – decomposition should be used since the matrix might be ill 
conditioned. 

∆tf,0

( )s n

( )u n ∆tf,1 ∆tf,2
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intuition, it is expected that only one filter tap is required to recover the input 
signal ( )s n , since the signal ( )u n is just a shifted, damped version of ( )s n .  

 

 
Fig. 44. The square error as function of the delay pT  for an FIR filter with 
fixed filter length 1fL = . The error becomes minimal when the input signal 

( )s n  is delayed at least by the time shift 5pT = , which is the shift the output 
signal ( )u n has experienced due to propagation.   

 

Here the delay required to estimate ( ) ( ){ }−= −*us du n k s nr TE   correctly plays 
an important role: 1. if dT  is too small, no correlation is found and the filter 
coefficients are estimated incorrect, which in return yields a much higher error, 
2. dT is estimated to large and more than one filter tap Lf is needed to minimize 
the square error, overestimating the required filters taps. This behavior is 
shown in Fig. 44. Here a FIR filter one tap 1fL = is used to show the behavior. 

Having said this, the Wiener filter is now formulated for the multiple input and 
single output case. Equation (5.7) is extended now by modeling the signal 

( )js n  by a weighted superposition of all output signals ( )du n as [80]: 

 ( ){ } ( ) ( )
−

= =

 
 = − − 
  

∑ ∑
1

,
1 0

2
2 * .

FLD
l d d

d l
j je s n u n ln cE E   (5.18) 

Here the index j refers to the jth input signal and D is the total amount of output 
signals. Applying the same procedure as before, while taking into account that 
the number of taps are now extended to FD L× , yielding FD L×  equations42, 
the following equation is obtained [80]:  

 .is i=u uuRr c    (5.19) 

                                                
42 The SISO problem before contained only LF equations. 

𝐸
𝑒
𝑛

2

pT
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This equations looks very similar to Eq. (5.15) but a closer looks shows that the 
correlation matrix is now performed between multiple output signals ( )du n  , 
described by the vector [ ]1 2, , , D

Tu u u=u 

 . The matrix uuR  in Eq. (5.19) can 
thus be viewed as a nested matrix: 

 
 
 =
 
 

1 1 1

1
*

.
D

DD D

u u u u

u u u u
uu

R R
R

R R



  



  (5.20) 

The matrices i iu uR describe the autocorrelation of the output signal ( )iu n  with 
itself and their shape is identical to the matrix given in Eq. (5.16). The matrices 

i ju uR describe the correlation between the output signals ( )iu n  and ( )ju n . The 
cross-correlation vector [ ]21, , , ,i i Di iu s u s u s

T
s r r r=ur 

 contains the correlation 
values between the input signal ( )is n  and all the output signals ( )iu n , where

[ ]1,j D∈ . Up to this point, the filter coefficients for one signal estimation ( )i ns  
have been made. Equation (5.19) basically describes a multiple input single 
output (MISO) receiver structure as shown in Fig. 45 for the example of three 
output signals. Eq. (5.19) can be expanded to describe a multiple input multiple 
output receiver, by noting that it can be expanded to describe the filter 
coefficients for all signals by writing: 

 [ ] [ ]1 2, , 1 2, , , .Ds s Ds = uu u uur r r c cR c    





   (5.21) 

Since all of these equations have the matrix uuR  in common and a vector 
containing vectors as elements is basically a matrix, it is possible to formulate 
the complete MIMO filter coefficients as [80]: 

 1 .−= uu usC R R   (5.22) 

Here the filter coefficient matrix C is given as: [ ]1 2, , , D= c cC c

    and the 
matrix Rus is given as: [ ]1 2, , , .Ds s s=us u u ur r rR  



  Equation (5.22) fully describes 
the equalizer filter coefficients required to recover all input signals after 
propagation through a MIMO system such as for example a MMF in MDM 
operation.  
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Fig. 45. MISO FIR filter structure. All output signals yi 1,2,3i∈    are 
combined and weighted to obtain the input signal estimation 1x .  

 

It is important to mention here that the formalism proposed in [80] does not 
take the complex valued nature of the FIR filter coefficients into account, which 
will lead to a suboptimal recovery of the input signals, if these are also complex 
valued. Eq. (5.22) is applied in subsection 5.4 to a FMF operated in MDM 
operation while comparing the maximal filter length required to de-multiplex 
successfully the received signals ( )u n  using the LP-mode and PMs as carrier 
modes. Before doing that, a new metric is introduced to quantify the quality of 
higher order modulation formats. 

  

∆tf,0

( )s t

( )1u n ∆tf,1 ∆tf,2

*0,1c *1,1c *2,1c *3,1c

∆tf,0 ∆tf,1 ∆tf,2
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5.2 Error vector magnitude 
The error vector magnitude measures basically the standard deviation of each 
constellation point, using the ideal constellation point as reference. This metric 
will be used to define the quality of the equalized signal ( )i ts . For 
completeness, the definition of the EVM values is given as [81]:  

 ( ) ( )σ σ
=

= = −∑ 22

1

1; .
N

m err err i s i s
n

EVM s nTs
N

nT    (5.23) 

Here Ts is the symbol duration and T is set to = sT T 43. The signal ( )is nT  has 
unit amplitude and each symbol lies therefore on the unit circle as depicted in 
Fig. 46 (a).  

 

 
 

Fig. 46. (a) Example of a 4 QAM signal in which the sampled symbols are 
distributed around the ideal constellation points marked in white. The error 
vector is shown with the yellow arrow; (b) BER as function of EVM value 
(similar to [81]). 

 

The EVM is plotted exemplarily in Fig. 46 (a), where the white arrow shows 
the error vector. Since the in-phase component and quadrature component of 
the signal can be viewed as independent random variables, the probability 
density function (PDF) is a product of the individual PDFs as: 

                                                
43 A clock recovery algorithm needs to be applied to the signal ( )i ss nT  before it can be sampled 
exactly in the middle of the symbol interval to evaluate the EVM value.  This can only be done 
after the signal has been equalized by the MIMO Wiener filter since no correlation can be found 
otherwise to the reference signal ( ).is nT   

(a) (b) 
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 ( ) ( ) ( ),I Q I QIs s s s QQ If s s f s f s=
   

      (5.24) 

Here ( ),I Qs Qs If s s
 

   represents the joint PDF and ( )I Isf s


  and ( )Qs Qf s


  the PDF for 
the in phase and quadrature component respectively.  

The relation between EVM and the symbol error ratio (SER) can be formulated 
by assuming that the in-phase component and quadrature components has a 
PDF with follows a Gaussian distribution: 
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∫ ∫
  (5.25) 

Here it was assumed that x yµ µ µ= =  and x yσ σ σ= = . Since the EVM value is 
related to the standard deviation by 2 2 2EVM 2 EVMx yσ σ σ+ ⇒= = , the bit 
error ratio (BER) is given as: 

 
21 1 1 erBER 1

EVM
f

2 4
µ  +  



 
 = −
   

  (5.26) 

Which is consistent with the results presented in [82] and plotted in [81]. The 
BER as a function of EVM is plotted in Fig. 46 (b). The analysis presented here 
is realized without any noise so as to analyze the minimal number of filter taps 
required to equalize the signal ( )iu t distorted by the transmission channel 
given some EVM value. The BER value at which it is assumed that forward 
error correction (FEC) is capable of recovering the distorted signal errorless, is 
commonly given at a value of 3BER 10−≈  and corresponds to an EVM value of
EVM 0.32≈ . This limit takes into account the presence of noise, which is not 
present in the MDM system here. For this reason, a lower value is chosen so 
that in the presence of noise the FEC limit is achieved. The value chosen here 
isEVM 0.23= , which corresponds to a BER value of 5BER 10−≈ .  

Before presenting the simulation results, it is important to understand the 
parameters that influence the complexity of the MIMO digital signal 
processing unit in a MMF transmission system. This will be discussed in the 
next subsection.  
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5.3 Parameters of influence 
For illustrative purposes a simple two mode transmission system as shown in 
Fig. 47 is considered.  Here a signal is transmitted through the LP01 mode and 
is ideally spatially filtered and detected by Rx 1. 

 
Fig. 47. Illustration of required temporal receiver length. A NRZ-PRBS signal 
is launched on the fundamental LP01 mode and is spatial filtered and detected 
by Rx 1. Due to crosstalk at transmitter, some power couples into the 
transmission channel 2, which is guided by the LP11 mode. At Rx 2, a delay 
copy of the original signal is obtained, with a delay t L∆ ∆τ=  

 

It is assumed, that there is a frequency independent crosstalk at the 
transmitter, so that some portion of the signal couples to the other spatial 
channel without distorting it, mainly the LP11 mode. In that case a portion of 
the signal will arrive, just as shown in Fig. 47 at Rx 2 in grey. This version is 
a delayed copy of the original signal, which was supposed to be sent only 
through the LP01 mode. If this crosstalk signal at Rx 2 is to be used for 
equalization purposes at Rx 1, the receiver needs to keep the signal at Rx 1 for 
a time t∆ , until it can process it together with the portion of Rx 2. This would 
introduce one single filter tap with time delay t∆ . In this simple illustration, 
the cause for crosstalk is at one discrete point. In the transmission system of 
interest though, crosstalk is induced by micro-bendings and splices. Therefore 
it is necessary to resolve the signal more precisely. Usually the optical signal 
is sampled and then processed. Therefore the smallest possible time resolution 
is the sampling rate, which is here twice the symbol rate Rs. Each filter tap has 
therefore a temporal length of ( )1 / 2f st R∆ = , where Rs is the transmission rate. 
The maximal number of temporal filter taps Ns in the absence of noise are 
therefore given as: 

MMF

Rx 2 – Mode 2

t

Rx 1- Mode 1

t

t L∆ ∆τ=
Tx 1 

t

L
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∆ ∆
∆

= ≈ ==   (5.27) 

Here Eq. (4.11) was used and the definition of the modulation bandwidth given 
in section 4.1.1 was used. As depicted in Fig. 45, the number of filter taps 
increase additionally with the number of channels used. In this case, the 
number of channels is given by the total number of guided modes which is 
limited here to six. From Eq. (5.27) it becomes evident that the number of 
required filter taps T sN ND= × increases with the normalized throughput b. 
For this reason, all the following results are plotted as function of b. Having 
reviewed this, the results will be presented in the next subsection. 
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5.4 Simulation results 
The simulation parameters are shown in Table VI and they are basically the 
same as the ones used in section 4.2 for the six mode FMF. The modulation 
format used in this is QPSK and the length of the PRBS sequence is 211. Here 
it’s worthwhile to note that the few mode fiber bandwidth given is for the length 
of 10kmL = . 

 
TABLE VI. SIMULATION PARAMETERS FOR MDM TRANSMISSION USING MIMO DIGITAL SIGNAL 

PROCESSING 
Parameter Value Unit 

Number of modes 6 - 
NA 0.12 - 
ρ0 15 µm 

∆τmax 17 ps/km 
BF 2.6 GHz 
L 10 km 
α 0 - 2 dB 

Bmod 5 - 31 GHz 
σspl 0 – 0.34 µm 

 

The results are shown in Fig. 48 (a) though (d). These result were computed by 
averaging over 16 simulation realizations for a given splσ and random phase. 
From the results presented in section 4.1.3 it is known that PMs have different 
crosstalk behavior. For this reason it is expected that some of these require 
more filter taps to equalize them successfully to a value of EVM = 0.23. For this 
reason Fig. 48 (a) – (d) contain two curves. The mode that performs best 
requires the minimum amount of taps (dashed curve), while the modes that 
perform the worst require the maximal amount of taps (solid curve) to achieve 
the EVM value. The rest are somewhere in between as shown by the shaded 
area. The results presented in (a) and (b) were carried out using an overall 
coupling loss of 1 0.4dBα =  while the results in (c) and (d) contained an overall 
coupling loss of 2 1.3dBα = . The result filled in red in Fig. 48 (b) and (d) show 
that PM transmission has some advantage towards the LP-mode transmission 
(shaded in blue), but it depends highly on the value of b and the overall coupling 
loss value α. 
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Fig. 48. Required filter taps per mode as function of normalized bandwidth b ; 
(a) and (b) show simulation results for 0.4 dB overall coupling loss for LP – 
modes and PMs respectively; (c) and (d) show simulation results for 1.3 dB 
overall coupling loss for LP – modes and PMs respectively. Each simulation 
curve is calculated by averaging over 16 transmission realizations using a 
truncated normal distribution for splσ .  

 

In the case of the PMs, it is also interesting to notice the lower boundary 
(dashed curve) does not increase significantly as b increases, leading to the 
conclusion that there is one (or several) PM at least that require a small 
number of filter coefficient to be successfully equalized, which is consistent 
with the results already presented in section 4.2. This points out that this 
particular PM does not couple much, making this one very robust toward modal 
coupling even for higher b values.  

In the case of short range transmission, most of the implementations 
cases such as data center transmission need to have a low complexity value 
since this makes them low cost. In this case it is of interest to analyze the 
maximal throughput one can achieve using a fixed equalizer length of two 
temporal taps, i.e. = = =2 and 6 12s T sN N N  . The system will be defined then 
as adequate if all transmission channels are successfully equalized to an EVM 
value below 0.23. The normalized throughput as a function of coupling loss α 
is shown in Fig. 49. Two curves are shown, the red curve with round markers 

(a) (b) 

(c) (d) 
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represents the results for PM transmission, while the blue curve with square 
markers represent the results for LP-mode transmission. These lines represent 
the boundary up to which the maximal throughput value b can be increased as 
a function of coupling loss value α, so that the receiver is still capable of 
equalizing all the signals down to the EVM value of 0.23. In other words, all 
signals that are transmitted and have values below that boundary, are 
successfully equalized. Comparing both curves it is possible to observe that for 
coupling loss values of less than 0.3 dB, there is basically no performance 
difference. This is to be expected since crosstalk for those values tends to zero 
and the signal can be equalized with good performance without requiring many 
taps. As the coupling increases, the performance difference between the two 
carriers increases. Here it is possible to observe that PM transmission has a 
2.5 times higher throughput b value than LP-mode transmission using the 
same receiver.  

 

 
Fig. 49. Maximal allowable throughput values using PMs and LP-modes. A de-
multiplexed signal ( )u t  is considered to be equalized, if its EVM value is below 
0.23. Here a fixed filter length of 2sN =  and 12TN =  was used and the EVM 
value of each signal evaluated. Shaded area represents the improvement if the 
PMs are used as carriers.  

 

This enhancement stays constant up to a coupling loss value of 1.5 dB (due to 
increasing simulation time, there are only two values between 1.3dBα =  and

2.0dBα = , so that the limit to which the improvement of 2.5 is given is not very 
accurate). After this, the performance difference is reduced down to a factor of 
1.6. This shows that PM mode transmission offers some benefit towards LP-
mode transmission if MIMO signal processing is used. In the case of having a 
receiver length of = 12sN , a benefit exits if the coupling loss value does not 
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increase above 1.5 dB. The limit of this benefit is now analyzed by incrementing 
the temporal filter length of the digital processing unit.  

 

  
Fig. 50. Maximal throughput using PMs and LP-modes; Equalizer length is  
(a) 24TN =  and (b) 36TN = . Shaded area represents the difference between 
two carrier approaches. 

 

The results are shown in Fig. 50 (a) and (b) using a maximal equalizer length 
of 24TN = per mode and 36TN =  per mode respectively. The performance 
difference is reduced in comparison to the results presented in  
Fig. 49, which is not surprising when one considers the mathematical definition 
of PMs, which is frequency independent up to the first order. Fig. 50 (a) shows 
a maximum improvement of 1.3 in the area of roughly 0.9dB and 1.4dB 
coupling loss. For a filter length of 36TN = , the throughput difference is 
basically zero, i.e. both carrier modes perform equally well. Having said this, 
the results will be summarized in the next subsection.  

 

(a) (b) 
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5.5 Summary 
The results can therefore be summarized as follows: 

• PM mode transmission in MDM scheme using coherent detection and 
MIMO digital signal processing makes only sense if the maximal 
normalized throughput value does not exceed 6 times the fiber 
bandwidth and losses induced by mode coupling does not exceed 1.5 dB. 
In this case, a 2.3 fold throughput improvement can be achieved 
compared to the conventional LP - mode transmission system.  

• Increasing the temporal length of the MIMO processing unit can 
improve the general performance of the transmission system, but does 
not lead to improved performance when compared to a MDM 
transmission system that uses the LP-modes as carriers.   

 

These results point out the fact that mode division multiplexing using PMs as 
carriers modes can be advantageous if the normalized throughput and coupling 
loss values do not exceed a value of 6b =  and 1.3dBα =  respectively. In this 
case the maximal number of taps per mode required to equalize the signal is

12TN = . This can only be advantageous if the transmission length is short or 
if a mode dispersion compensating system is installed in the transmission link. 
The latter option is only feasible if the channel stays constant over the entire 
transmission time. To make MDM using PMs as carriers feasible, the 
complexity of exciting, tracking and de-multiplexing the PMs has to be less 
than the effort of using real time digital signal processing to equalize the 
signals at the output of the MMF. If the transmission link is bidirectional, the 
issue of feeding the channel information back to the transmitter to launch into 
the right PMs becomes manageable. 
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6. Summary, future work and 
conclusions 

Throughout this work a matrix based, coherent field transmission model was 
developed for a MMF with arbitrary number of modes, having an infinitely 
extended parabolic profile. It was shown that the eigenmodes of the 
unperturbed MMF are well described using the Laguerre-Gaussian mode 
model, which can be applied to:  

 MMF with truncated parabolic index profiles 

 MMF with power law index profiles 

 MMF with truncated parabolic index profiles and trenches 

The differential group delay and propagation constants were compared, while 
neglecting the effect of chromatic dispersion and profile dispersion. The 
inclusion of these effects should be realized if for instance the laser source has 
a large line width or if the modulation bandwidth is very high. Profile 
dispersion can be included as shown for example in [35]. Including this effect 
would then require to optimize the exponent in power law profiles for each 
carrier wavelength λ0 to obtain the highest possible MMF bandwidth. By 
neglecting this effect we has intrinsically assumed the optimal bandwidth for 
the wavelength of interest, which is here 0 1.55μmλ = . 

The transmission model is proven to model accurately mode coupling induced 
by random fiber imperfections such as micro-bends and splices in MMF with 
infinitely extended parabolic profile, which was proven by analytical and 
numerical results. Other random perturbations can be covered by this model, 
as long as the difference between the propagation constants of adjacent mode 
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groups ∆β is equally spaced, as it is in the case of a MMF with infinitely 
extended parabolic profile. Other types of MMF with near parabolic profiles 
can be modeled by this approach accurately as well, as long as the value ∆β 
does not deviate too much from the equally spaced case. The deviation of the 
mode coupling behavior when ∆β are not exactly equally spaced, will have to 
be evaluated in the future, to generalize the applicability of this model.  

It was shown that losses induced by coupling is the main parameter which 
dictates the behavior of the DGD spread and MMF fiber bandwidth. In this 
sense, through measurement of the average bandwidth gain, the coupling loss 
α can be estimated and vice versa. The model is to be taken with care at this 
point, since it does not necessary deliver information about the micro-bends in 
the system. It delivers only the coupling effect of a MMF with random 
perturbations accurately, as long as the model and the system to which it is 
compared to have the same coupling losses. In addition it can be stated that 
this modelling approach is fast in comparison to other lumped models (for 
example [43]), since it does not require as many sections (100 vs. 104). The 
minimal number of segments required to model a one km long MMF system 
accurately, was calculated to be 100. This analysis was limited to a 10 mode 
fiber but it is expected that MMFs guiding a larger number of modes do not 
require more segments. This still has to be verified rigorously though.  

The concept of the principal modes was introduced for a non – unitary system, 
which was necessary due to the nature of the transmission channel, the MMF, 
which contains coupling losses. The group delay operator was used to evaluate 
the evolution of the group delay of the principal modes and the DGD spread 
reduction induced by the mode coupling process. This approach is limited 
though, since it does not allow the evaluation of the group delay up to a certain 
coupling loss value α, since the matrix to be evaluated (group delay operator) 
becomes non-invertible due to the rank reduction of the matrix44. This effect is 
unfortunately mode dependent and a limit up to which this procedure works 
cannot be stated. A solution to this problem is the evaluation of the pseudo-
inverse of the matrix. This procedure is not constrained to square matrices and 

                                                
44 Physically speaking it means that a principal mode is lost due to losses.  
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thus delivers a possible solution to the problem, but was not investigated 
rigorously enough to be presented here.  

Further on this model was used to simulate a MMF in mode division 
multiplexing operation. Here the PMs were used as carrier modes and their 
performance compared towards the well-known LP-mode launch, using a 
combined eye opening and eye width penalty criterion. Here is as assumed that 
the channel is stationary and the channel is known at the receiver in order to 
estimate the individual PMs. It was shown the PM have the advantage of being 
relatively robust towards modal dispersion, modal mode coupling and 
crosstalk, as long as the modulation bandwidth of the signal modulated on each 
PM does not exceed roughly twice the fiber bandwidth45. This appears to be a 
general rule for PM transmission in MDM scheme without MIMO signal 
processing at the receiver and was verified for various MMF guiding different 
numbers of modes.  

In addition the performance using MIMO digital signal processing was 
compared as well. Here the maximal throughput as function of coupling loss α 
was compared and evaluated for a six mode fiber, using QPSK as modulation 
format. Roughly twice the throughput was achieved using PM transmission 
compared to LP-mode transmission. Here the temporal filter length = 2sN  of 
the MIMO DSP was kept constant and the maximal achievable throughput was 
compared. EVM was used as a metric to measure the quality of the signal, 
where a transmission channel was considered adequate for transmission if it 
could be equalized by the fixed equalizer down to an EVM value below 0.23. 
Increasing the amount of temporal filter taps Ns of the MIMO DSP unit further 
than = 2sN  does not yield significant performance increase in terms of a 
higher throughput difference. Further work in this area would include the 
measurement of the MMF temporal behavior, since this would dictate how fast 
the channel would need to be estimated, which would lead then to a re-
estimation of the PMs as well. The application of PM is only thinkable if they 
can be excited without using costly adaptive systems and only for short to mid-
range transmission systems, due to latency.   

                                                
45 This applies only under the assumption that coupling induced loss does not exceed 1.2 dB. 
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A Annex A 

 

A.1 Transformation to Laguerre differential 
equation 

Formel-Kapitel  1 Abschnitt 1 

Here the transformation of Eq. (2.22) to Eq. (2.25) is shown using the trial 
solution ( ) ( ) ( )( / ) ex / 2pll lw g w V wwψ = − , where 2w VR= . First, the differential 
equation:  

 
2 2

2 2 2
2 2

1 ( ) 0lr
l u

R R R
R R

R
V ψ−

∂ ∂ 
+ − + = ∂ ∂ 

  (A.1) 

is changed as to be a function of w as: 

 ( )
22 2

2 ,
4 4 4

0r
l

l ww
w w w V

wµ ψ
 ∂ ∂

+ − + ∂ 
− =

∂
  (A.2) 

Here the following relations for the derivatives were used:   
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Applying now the trial solution to Eq. (A.2) yields: 
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Since the term after the square bracket is zero only at infinity, the term inside 
the square bracket needs to be solved. The solution that ensures that ( )g w  
decreases monotonically as ρ  increases is the generalized Laguerre 
polynomial ( )lqL w  [30]. This requires the parameter: 

 
2 1 ,

4 2
r l q
V

µ +
− =   (A.5) 

to be a positive integer, here called q. This constrains the parameter 2rµ  to 
values of:  

 ( ), 2 2 1 .l q V q lµ = + +   (A.6) 

If the definition of ( )2 2 2, 0 0 1 ,l ql q k nµ ρ λ β= − is now used, the propagation 
constant ,l qβ  can be calculated as: 

 ( ) ( ) ( ) ( )
, 1 0

4 2 1
1 ,l q V

q l
n k

∆ λ
β ω λ

+ +
= −   (A.7) 

which is the result presented in Eq. (2.27).  
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A.2 Power coupling spectrum 
Here a more rigorous relation is formulated to show the coupling equivalence 
between splices and micro-bendings in a MMF with parabolic index profile. 
Equation (3.20) is formulated in terms of a slowly varying amplitude 

( )exp ,c a j zµ µ µβ= −  where cµ describes the amplitude of the µth eigenmode of 
the matrix differential equation now formulated as: 

 , exp ( ) .mm m
m

jc c
z

zµ
µ µκ β β− −

∂
 =

∂ ∑   (A.8) 

From mode coupling theory it is known that coupling induced by small 
distortions occurs only within neighboring mode groups [39] 46, i.e. if 1.M∆ =
47 After integrating Eq. (A.8) the following equations is obtained: 

 ( ) ( ) ( )µ µ µκ β β = − − ∑ ∫,
0

exp ,
L

m m
m

mc L c f z j z dz   (A.9) 

where the summation index m extends only over the modes with DMG number 
M and the index µ belongs to the mode with DMG number 1M ± . Here it is 
assumed as in [40], that ( ) ( )µ µκ κ=, ,m mz f z  where µκ ,m  is constant and ( )f z  
is the deformation function of the MMF as depicted in Fig. 51. The integral on 
the right side of Eq. (A.9) can be interpreted as the Fourier transform of ( )f z
and is called the coupling spectrum, which is denoted here by ( )F Ω . If the 
Fourier transform of ( )f z vanishes at the spatial frequency m µΩ β β= − , the µth 
mode will not be excited. The coupling spectrum:  

 ( ) [ ]
0

( p) 1 ex
L

f jF z z dz
L

Ω Ω−= ∫   (A.10) 

can also be formulated differently by applying twice a partial integration to  
Eq. (A.10) as: 

                                                
46 This has been shown also in [43] for a MMF with parabolic index profile using the Hermite-
Gauss modes.   
47  M∆ describes the PMG number difference of modes belonging to adjacent mode groups.  
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  (A.11) 

It is now assumed that the first two terms in Eq. (A.11) can be neglected since 
their values do not contribute significantly to ( )F Ω . This results in: 

 ( ) ( ) ( )
2

22
0

1 exp .
L

z
zL
f z

F j dzΩ Ω
Ω

= − −
∂

∂∫   (A.12) 

Equation (A.10) and Eq. (A.12) allow the estimation of the power coupling 
spectrum using either the deformation function ( )f z  or its second derivative

( )2 2/ zf z∂ ∂ . Since the second derivative of ( )f z  can be interpreted as the 
curvature function ( )1 / R z , it is more convenient to use the formulation in  
Eq. (A.12) for the description of micro-bendings, while the formulation in  
Eq. (A.10) is used here to describe the power coupling spectrum related to 
random splice mismatches. Since a statistical model is considered here 
consisting of MMF sections with constant curvature and random amplitude 
and sign, it is necessary to evaluate the ensemble average of the power coupling 
spectrum ( ) 2F Ω , where  denotes the ensemble average. The power 
coupling spectrum for the curvature function can be obtained from the Fourier 
transform of the autocorrelation function as derived in [6] by: 

 ( ) ( ) ( )2
1/ 1/4

1 exp ,R Rc u j u duF
L

Ω Ω
Ω

∞

−∞

= −∫   (A.13) 

where ( )1/Rc u  is the autocorrelation function 48  related to the curvature 
function ( )1 / R z . The autocorrelation function of a MMF with piecewise 
constant curvature sections and fixed length Lseg is given by: 

                                                
48 The integral boundary L can be extended to infinity since the autocorrelation function is zero 
there.  
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  (A.14) 

Here 1/Rσ  denotes the standard deviation of the inverse bending radius which 
follows a truncated Gaussian distribution. Applying Eq. (A.13) with the 
definition given of ( )1/Rc u  in Eq. (A.14) yields [40]: 

 ( )( )
22 1/1/ 6

2 c s) .( 1 oRR seg
seg

L
L

F σ
Ω Ω

Ω
= −   (A.15) 

By assuming that 2segLΩ π  and averaging over the length, following 
expression is obtained [40]: 

 
22 1/1/ 6( .) 2 RR

segL
F σ

Ω
Ω

=   (A.16) 

As discussed earlier, the definition given in Eq. (A.10) is used to estimate the 
power coupling spectrum ( )2

splF Ω  of a MMF with piece-wise constant splices. 
The power coupling spectrum can be obtained by taking into account Eq. (A.10)  

 ( ) ( ) ( )2 1 exp .splsplF c u j u du
L

Ω Ω
∞

−∞

−= ∫   (A.17) 

Its autocorrelation function ( )splc u  is given by: 
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  (A.18) 

Here ( )splf z  is the deformation function describing the splice offsets and 2
splσ  

describes the standard deviation of splice offset distribution which also follows 
a truncated Gaussian distribution. The average power coupling spectrum is 
then given as: 

 
22

2 .(
2

) spl
spl

segL
F

σ
Ω

Ω
=   (A.19) 
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Equation (A.16) and Eq. (A.19) describe the power coupling spectra for a MMF 
link with random micro-bendings and splices respectively. Both spectra have a 
different dependency of Ω, as shown in Fig. 52, which might lead to the 
conclusion that both coupling mechanisms behave differently.  

 

 
Fig. 51. Random micro-bends in y – direction with radius Ry in a MMF and the 
respective deformation function f(z) 

 

If the spatial frequency is now sought, at which both power coupling spectra 
yield the same results, following results is obtained: 

 1/ .R

spl

σΩ
σ

=   (A.20) 

If Eq. (3.19) is taken into account which states that 2
0 / 2x r R∆ ∆= and the 

definition of the standard deviation is used, the following result is obtained: 

 
0

2 .
r

∆Ω =   (A.21) 

This spatial frequency Ω  has the exact value of ∆β  between neighboring mode 
groups in a MMF with infinite parabolic profile.  Since this difference applies 
for all adjacent mode groups, all guided modes require a deformation with a 
spatial frequency of Ω ∆β= in order to couple to one another. In this particular 
case it simply means that both coupling spectra behave identically. Having 
proved this, it is worthwhile analyzing the complete set of coupling spectra that 
have the following dependency: 

 Ω
Ω

∝2) ,1( nF   (A.22) 

where n is an arbitrary number. As shown in Fig. 52 (b), all this curves 
intersect at one point, namely 1Ω = . Since it was proven before, that the 
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coupling spectra of splices and micro-bends intersect in one location, it can be 
deduced that all curves intersect at the exact same location as well. This has 
the following consequence. All coupling phenomena, which have a coupling 
spectra proportional to Eq. (A.22) can be described accurately with this model. 

 

  
Fig. 52. (a) Power coupling spectrum of the deformation function of micro-
bending and splices; (b) general family of power coupling spectra that intersect 
at 1Ω =   

(a) (b) 
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A.3 Digital modulation 
Digital modulation and detection consist of transferring information in the 
form of bits over some communication channel. This information is encoded 
into certain amplitude and/or phase levels of some analog signal ( )s t  and then 
imprinted on a carrier wave, with angular carrier frequency ω0. This causes a 
spectral shift of the signal, which is then called a pass band signal. This can be 
formulated mathematically as [83]: 

 ( ) ( ) ( ) ( )( ) ( )0 0cos c 2os .s t t t ta t f t f tω π φ− + =     (A.23) 

Where ( )a t  describes the pure amplitude modulation, ( )f t  the frequency 
modulation and ( )tφ  the phase modulation. Frequency modulation will not be 
dealt here, i.e. ( ) 0f t = . Eq. (A.23) can also be written in complex notation as: 

 ( ) ( )( ) ( ) ( ){ }0 0cos 2 exp 2 .f ts t t t j fs tπ φ π+ = Re   (A.24) 

Here { }xRe  refers to the real part of x and ( ) ( ) ( )I Qs t s t js t= +  is the complex 
envelope, now divided into real and imaginary part, ( )Is t  and ( )Qs t  
respectively.  

 
Fig. 53. Constellation diagram for various (no pulse shaping) signal types;  
(a) 4 QAM (b) 16 QAM (c) 2 PAM (OOK) and (d) 4 PAM.  

 

If no phase modulation exists, the envelope ( )s t  is real, i.e. ( ) 0,Qs t = and the 
modulation is called multilevel pulse amplitude modulation (MPAM). If both 
amplitude and phase modulation exist, the signal is called multilevel 
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quadrature amplitude modulation (MQAM). Some examples are given in  
Fig. 53 in the so called constellation diagram. The complex envelope 

( ) ( ) ( )I Qs t s t js t= + consist basically out of two signals with envelope ( )Is t  and 
( )Qs t  , phase shifted by 90 degrees. These signals are in general described by 

their amplitude level and a pulse shape as: ( ) ( ),I I is t A g t=  and
( ) ( )Q, .Q is t A g t= The pulse shape of the signal ( )g t  is imprinted on the binary 

signal here in the frequency domain using a fifth order Bessel filter with the 
following transfer function [84]: 

 ( ) ( ) 12
5

1 ,i n i n
i

H a b ffω
−

= + +∏   (A.25) 

where ai and bi are real coefficients. These filter coefficients for several orders 
of Bessel filters are given in Table VII.  

TABLE VII. FILTER COEFFICIENTS FOR BESSEL FILTER 
Parameter Filter order 

 1 2 3 4 5 
ai 1 1.3617 0.7560 1.3397 0.6656 
   0.9996 0.7443 1.1402 
     0.6216 

bi 0 0.6180 0 0.4889 0 
   0.4772 0.3890 0.4128 
     0.3245 

 

Here, only two types of signals will be treated: 2 PAM or on off keying (OOK) 
and 4 QAM signals or quadrature phase shift keying. The generation of an 
OOK signal is in principle the simplest way of modulating since it basically 
requires only to turn the carrier off, for a logical zero and to turn in on, for a 
logical one. Direct modulation of the transmitter is possible, but it adds an 
unwanted frequency modulation (known as chirp) which widens the required 
bandwidth and therefore reduces the spectral efficiency. For this reason a 
mach-zehnder type modulator (MZM) is often used [5], which is capable of 
suppressing this effect if it’s driven in a push-pull configuration. The OOK 
signal can therefore be described as [83]: 

 ( ) ( ) ( ){ }0exp 0 1 /i i s cs t A g t j t t T fω= ≤ ≤Re    (A.26) 
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Here Ai describes the amplitude level which takes only two values: zero and 
one for OOK keying signals and Ts is the symbol time.  The QPSK signal, is a 
special case of the quadrature amplitude modulation since the magnitude of 
each constellation point is unity (if properly normalized) and the information 
is basically coded on the phase. It can be described over one symbol time Ts as 
[83]: 

 ( ) ( ) ( )( ) ( ){ }0exp 2 exp ,1 / / 4is t Ag t j i M j j tπ π ω− += Re   (A.27) 

for0 st T≤ ≤ . 
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8. Acronyms 

ACRONYM DEFINITION 
BER Bit Error Ratio 
BTB Back To Back 
CWDM Coarse Wavelength Division Multiplexing 
DEMUX DE – Multiplexing 
DGD Differential Group Delay 
DMG Degenerate Mode Group 
DSP Digital Signal Processing 
DWDM Dense Wavelength Division Multiplexing 
EMD Equilibrium Mode Distribution 
EO Eye Opening 
EOP Eye Opening Penalty 
EVM Error Vector Magnitude 
EW Eye Width 
EWP Eye Width Penalty 
FEC Forward Error Correction 
FIR Finite Impulse Response 
FMF Few Mode Fiber 
GDO Group Delay Operator 
LED Light Emitting Diode 
LG Laguerre-Gauss 
LN Local Normal 
LP Linear Polarized 
MD Mode Dispersion 
MDL Mode Dependent Loss 
MDM Mode Division Multiplexing 
MGDM Mode Group Division Multiplexing 
MIMO Multiple Input Multiple Output 
MISO Multiple Input Single Output 
MMF Multiple Mode Fiber 
MPAM Multilevel Pulse Amplitude Modulation 
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ACRONYM DEFINITION 
MQAM Multilevel Quadrature Amplitude Modulation 
MUX Multiplexing 
MZM Mach Zehnder Modulator 
NRZ Non Return to Zero 
OOK On Off Keying 
PAM Pulse Amplitude Modulation 
PD Photo Diode 
PDF Probability Density Function 
PM Principal Mode 
PMD Polarization Mode Dispersion 
PMF Probability Mass Function 
PRBS Pseudo Random Bit Sequence 
PSP Principal States of Polarization 
QAM Quadrature Amplitude Modulation 
QPSK Quadrature Phase Shift Keying 
RMS Root Mean Square 
RX Receiver 
SDM Space Division Multiplexing 
SER Symbol Error Ratio 
SISO Single Input Single Output 
SMF Single Mode Fiber 
SNR Signal to Noise Ratio 
VCSEL Vertical Cavity  Surface Emitting Laser 
WDM Wavelength Division Multiplexing 
WKB Wentzel Kramers Brillouin 
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