A Framework for
Intelligent Speculative Compiler Optimizations
and its Application to Memory Accesses

vorgelegt von
Diplom-Informatiker

Lars Alvincz
(geb. Gesellensetter)

von der Fakultat IV — Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
— Dr.-Ing. —

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Uwe Nestmann
Berichtende: Prof. Dr. Sabine Glesner
Berichtender: Prof. Dr. Jens Knoop

Tag der wissenschaftlichen Aussprache: 17. Juli 2009

Berlin 2009
D 83

Zusammenfassung

In dieser Arbeit stellen wir unser konzeptuelles Framework fiir intelligente spe-
kulative Compileroptimierungen (FriSCO, Framework for Intelligent Specula-
tive Compiler Optimizations) vor sowie die Anwendung des Frameworks, um
Speicherzugriffe zu optimieren. Das Ziel des Frameworks ist es, Compilern Wis-
sen iiber das Laufzeitverhalten von Programmen verfiighar zu machen, um die
Kluft zwischen statischen Programmanalysen einerseits und dem dynamischen
Programmverhalten anderseits zu iiberbriicken. Dadurch wird das Problem der
Uberapproximation gelost, das den statischen Programmanalysen inhérent ist,
und das Optimierungspotential vergroflert.

Die grundlegende Idee unseres Frameworks besteht darin, im Compiler un-
sichere, aber dafiir préazisere Programmanalysen zuzulassen und deren Ergeb-
nisse in spekulativen Optimierungen zu verwenden, um ein prézises Kostenmo-
dell zu erstellen. Dabei wird die Programmkorrektheit in allen Féllen gewahrt.
Wir verwenden Heuristiken, um das dynamische Programmverhalten vorher-
zusagen. Wir stellen ein Verfahren vor, um solche Heuristiken automatisch in
einer einmaligen Trainingsphase anhand von Profilingdaten mittels Maschinel-
len Lernens zu erzeugen. Auflerdem schlagen wir vor, &hnliche Programme in
Klassen zusammenzufassen. Dies kann automatisch durch eine Clusteranalyse
erfolgen. Wir trainieren jeweils eine spezialisierte Heuristik pro Programm-
klasse sowie einen Programmklassenprediktor. Damit 148t sich das Verhalten
beliebiger Programme prézise vorhersagen, indem die am besten geeignete Heu-
ristik ausgewéahlt wird. Die resultierende kombinierte Heuristik ist hochgradig
skalierbar und kann automatisch in ausfithrbaren, hoch skalierbaren Code iiber-
fithrt werden, der dann in den Compiler integriert werden kann. Wir stellen
einen allgemeinen Optimierungsalgorithmus vor, auf den die meisten existieren-
den Optimierungen abgebildet werden kénnen. Der Algorithmus transformiert
das Programm schrittweise und verwendet dabei ein Kostenmodell um sicher-
zustellen, dass in jedem Schritt die beste Transformation ausgewéahlt wird.

Das konzeptuelle Framework lédsst sich auf eine breite Spanne von Pro-
grammverhalten und -optimierungen anwenden. Im zweiten Teil dieser Arbeit
zeigen wir, wie wir das Framework anwenden, um Speicherzugriffe zu opti-
mieren. Das ist ein sehr wichtiges Optimierungsproblem aufgrund des Memo-
ry Gaps. Fir das angewandte Framework stellen wir eine neue Optimierung
vor, die spekulative Code-Verschiebung durchfiihrt, um die effektive Latenz
von Ladebefehlen zu reduzieren. Dabei kénnen sdmtliche Arten von Abhén-
gigkeiten iiberwunden werden. Das Kostenmodell basiert auf den Abhéngig-
keitswahrscheinlichkeiten fiir Speicherzugriffe sowie den Latenzen der Ladebe-
fehle. Wir haben das angewandte Framework vollstindig implementiert. Als
Plattform verwenden wir den Intel Itanium2-Prozessor, der spekulative Op-
timierung hardwareseitig unterstiitzt. Mit unseren Experimenten konnten wir
zeigen, dass die Heuristiken das Speicherverhalten von Programmen prézise
vorhersagen konnen, insbesondere dank unseres Konzepts der Programmklas-
sifikation. Weiterhin konnten wir mit Laufzeitexperimenten zeigen, dass unsere
spekulative Optimierung mithilfe des Kostenmodells signifikante Laufzeitver-
besserungen erreichte sowie in keinem Fall zu einer Verschlechterung fiihrte.

Abstract

In this thesis, we present a conceptual Framework for Intelligent Speculative
Compiler Optimizations (FrISCO) and its application to the optimization of
memory accesses. The framework aims at providing compilers with knowledge
about the run-time behavior of programs to bridge the gap between static
program analyses on the one hand and dynamic program behavior on the
other. This solves the problem of over-approximation, which is inherent to
static program analyses, and increases the optimization potential. We use
machine learning to make the knowledge available to the compiler.

The principal idea of our framework is to admit unsafe, yet more precise
program analyses within the compiler and to use their results in speculative op-
timizations, which use the information to derive precise cost models and which
guarantee program correctness in case of misspeculation. In our approach, we
use heuristics to predict the dynamic program behavior. We present a method
to generate such heuristics automatically in a one-off training phase from profil-
ing data using machine learning. Additionally, we propose to perform program
classification to group programs with similar behavior together, which can be
done automatically via cluster analysis. Based on the clustering, we train one
specialized heuristics for each class as well as a program class predictor. With
that, we can precisely predict the behavior of arbitrary programs by selecting
the most appropriate heuristics. The obtained overall heuristics is highly scal-
able and can be automatically translated to executable code to be integrated
within compiler optimizations. We present a general optimization algorithm,
onto which most existing optimizations can be mapped. The algorithm itera-
tively transforms the program. To ensure that the best transformation is found
in each step, the algorithm uses a cost model that is evaluated with the help
of the heuristics.

The conceptual framework is applicable to a wide range of program behav-
ior and program optimizations. In the second part of this thesis, we show the
application of the framework to the optimization of memory accesses, which
is a highly important optimization problem due to the memory gap. For the
applied framework, we present a novel optimization algorithm that performs
speculative code motion to reduce the effective latency of load instructions.
During code motion, the algorithm overcomes memory dependencies, register
dependencies, and control dependencies, and it maintains a precise cost model
which captures the effect of each transformation on the latency of the optimized
load. The cost model relies on information about the memory behavior of a
program, namely the probability of memory dependencies and load latencies.
We present how to build heuristics for that via machine learning. We fully
implemented the instantiated framework. As target architecture, we chose the
Intel Itanium2 processor, a modern VLIW processor with hardware support for
speculation. In our experiments, we could first show that the heuristics predict
the memory behavior precisely, especially due to our concept of program clas-
sification. Second, our run-time experiments demonstrate that our speculative
optimization, with the help of the heuristics, significantly improves program
performance and avoids performance degradation due to the cost model.

Danksagung

Die vorliegende Arbeit entstand wéhrend meiner Tétigkeit im DFG Aktions-
plan Informatik ,Verifikation und Optimierung bei der Ubersetzung héherer
Programmiersprachen®, geleitet von Prof. Dr. Sabine Glesner. An dieser Stelle
mochte ich mich bei allen bedanken, die zum Gelingen dieser Arbeit beigetra-
gen haben.

Zuallererst mochte ich meiner Betreuerin Prof. Dr. Sabine Glesner herzlich
danken, die mafgeblich zum vorliegenden Ergebnis beitrug. Sie begleitete diese
Arbeit {iber den gesamten Entstehungsprozess und war bei Fragen und Proble-
men immer ansprechbar, woraus zahlreiche ergiebige Diskussionen entstanden.
Gleichzeitig lie sie mir Freirdume, meine eigenen Schwerpunkte zu setzen, und
half mir, dabei den richtigen Weg zu finden. Meinem zweiten Gutachter, Prof.
Dr. Jens Knoop, bin ich ebenfalls sehr dankbar verbunden fiir seine freundliche
Unterstiitzung und seine inhaltlichen Anregungen.

Auch die Arbeitsatmosphére, in der diese Arbeit entstand, war duflerst pro-
duktiv. Meinen Kollegen danke ich fiir viele Diskussionen, die das Entstehen
der Arbeit vorangetrieben haben, sowie fiir die notige Ablenkung, sei es am
Kaffeetisch, im Kickerraum oder in der Kletterhalle. Insbesondere ein grofles
Dankeschoén an Paula fiir das Gegenlesen der Arbeit und fiir ihr &uflerst hilfrei-
ches Feedback. Vielen Dank auch meinen Diplomanden, die ebenfalls zu dieser
Arbeit beigetragen haben. Vor allem das Engagement von Dirk und Stefan war
enorm.

Zu guter Letzt danke ich meiner Familie, die mich stets unterstiitzt hat,
und meinen Freunden fiir die Auszeiten zwischendurch. Mein ganz besonderer
Dank gebiihrt Dir, Andrea, fiir Deine Liebe und Unterstiitzung, und unserem
Jonathan, der mit einem kleinen Léacheln unbeschreibliches Gliick entstehen
lésst.

Contents

1

Introduction
1.1 Problem
1.2 Objectives
1.3 Proposed Solution o
1.4 Motivation
1.5 Research Area
1.6 Main Contributions
1.7 Outline.
Background
2.1 Compilers
211 Front End o
2.1.2 Intermediate Representation
2.1.3 Program Analyses.
2.1.4 Optimizations
2.1.5 Code Generation
2.2 The Role of Memory in Compilers
2.3 Analysis of Memory Accesses
2.3.1 Dependence Analyses
2.3.2 Alias Analyses. L.
2.4 Speculative Optimization
2.4.1 Data Speculation
2.4.2 Control Speculation, ..
24.3 Recovery Code
2.4.4 Required Hardware Support
2.4.5 Hardware Support in Modern Processor Architectures . .

9

13
13
14
16
18
20
21
22

23
23
24
24
30
32
35
36
38
38
39
41
42
43
44
44
46

4.1
4.2

4.3

4.4

4.5
4.6

10 Contents
2.5 Machine Learning 48
2.5.1 C(Classification Learning 48

2.5.2 Cluster Analysis., 54

2.5.3 Predictor Precision 54

2.6 Summary o7

3 Related Work 59
3.1 Machine Learning in Compilers 59
3.1.1 Program Behavior 60

3.1.2 Optimization Sequences 60

3.1.3 Optimization Parameters 61

3.1.4 Discussion 62

3.2 Memory Dependencies 62
3.2.1 Collection of Memory Dependencies via Profiling 63

3.2.2 Alias Analysis oL 63

3.2.3 Discussion 65

3.3 Optimization of Memory Accesses 66
3.3.1 Conservative Optimizations 66

3.3.2 Speculative Optimizations 67

3.3.3 Discussion 69

4 A General Framework for Intelligent Speculative Optimizations 71

Overview 71
Analysis 74
4.2.1 Program Analysis 74
4.2.2 Profiling 75
Machine Learning 0oL 76
4.3.1 Behavior Predictor 76
4.3.2 Identification of Program Classes 7
4.3.3 Program Class Predictor 79
4.3.4 Repository of Behavior Predictors 79
4.3.5 Combination with Conservative Analyses 80
Speculative Optimizations 81
4.4.1 Search Space Exploration 81
4.4.2 Increased Optimization Potential 82
443 Cost Model 83
Instantiation of the General Framework 84

SUMmMAary 86

Contents 11
5 Intelligent Speculative Optimization of Memory Accesses 89
5.1 Speculative Optimization of Memory Accesses 90
5.1.1 Optimization Problem 90
5.1.2 Abstraction Level 92
5.1.3 Optimization Algorithm 93

5.2 Cost Model 97
5.2.1 Conservative Code Motion 97
5.2.2 Data Speculation 98
5.2.3 Control Speculation 101
5.2.4 Load Address Computation Chains 104
5.2.5 Crossing Check Instructions 105

5.3 Learning the Memory Behavior of Programs 107
5.3.1 Collection of Training Data 108
5.3.2 Identification of Program Classes 112
5.3.3 Repository of Predictors 115
5.3.4 Combination with Alias Analyses 116

5.4 Summary 116
6 Implementation 119
6.1 Overview 119
6.2 Analysis Phaseo 122
6.2.1 Suite of Representative Programs 122
6.2.2 Static Program Features 123
6.2.3 Static Code Features 123
6.2.4 Profiling Load Latencies 125
6.2.5 Profiling Memory Dependence Degrees 125
6.2.6 Combination of Code Features and Profiling Data 128

6.3 Machine Learning oo 129
6.3.1 Data Preparation 129
6.3.2 Predictor Construction 130
6.3.3 Program Classification 130
6.3.4 Construction of the Behavior Predictor Repository 132
6.3.5 Generation of Executable Code from the Predictors . . . 132

6.4 Speculative Optimization 134
6.4.1 Itanium Backend 134
6.4.2 Static Branch Predictor 135
6.4.3 Alias Analysiso 135
6.4.4 Speculative Upwards Code Motion 135

6.5 Summaryo ... 138

12 Contents

7 Experimental Results 139
7.1 Evaluation of the Predictors 139
7.1.1 Validation Methods 139

7.1.2 Program Suite L 140

7.1.3 General Applicability of Machine Learning 143

7.1.4 Program Classification 146

7.1.5 Predictor Precision for the Validation Set 153

7.2 Optimization 157
7.2.1 Experimental Setup 157

722 Results. 158

7.3 Summary e 162

8 Conclusion 165
81 Results. 165
8.2 Discussion 166
8.3 Outlook 168
List of Figures 171
List of Tables 175

Bibliography 177

Introduction

In software engineering, compilers play a major role in creating executable
applications from programs in high-level programming languages. While well-
researched, the steadily increasing expectations on computer performance as
well as the continuous evolution of new computer architectures raise an urgent
need for novel compiler techniques. A major challenge lies in the fact that
compilers are typically static and have to face the problem of obtaining infor-
mation about the dynamic run-time behavior to achieve correct, yet efficient
programs.

1.1 Problem

Modern compilers try to optimize programs with respect to a given objec-
tive function (for example, program performance or memory consumption).
To achieve high optimization gains, the optimizations rely on program anal-
yses which investigate properties of the considered program. This includes
information which is only available at program run-time and, thus, has to be
approximated. When transforming the program, optimizations must maintain
program correctness under all circumstances. To that end, special program
analyses as, e.g., dependence analyses are used. Optimizations are only al-
lowed to perform transformations that are deemed as admissible by the results
of such analyses. The demand for correctness forces the program analyses to
err on the safe side, i.e., to over-approximate the behavior whenever no exact
solution can be found. This may have severe consequences for the optimiza-
tion: First, advantageous program transformations may not be chosen due
to the over-approximation. Second, and even more importantly, a significant
fraction of program transformations may appear inapplicable due to the static
analyses being overly conservative. This problem is intrinsic to the scenario
of a static compiler: The run-time behavior of a program cannot be predicted
in general at compile-time because even the much simpler Halting Problem is
undecidable. Hence, we have a gap between the static program analyses in
the compiler on the one hand and the dynamic behavior of the program under
compilation on the other. As a consequence, the run-time performance of the
generated programs is severely limited.

13

14 Introduction

One way to overcome this problem lies in bridging that gap by making more
precise information about the dynamic run-time behavior available to the com-
piler optimization. The significant imprecision of static analyses is caused by
their over-approximation, which is in turn required for the analyses to be safe.
Hence, a way to significantly increase precision is to admit unsafe analyses.
With that, the analyses can focus on the relevant program behavior instead of
considering all eventualities. As a consequence, the optimizations that make
use of the analyses become speculative. Whenever an optimization uses unsafe
information about the program behavior, it has to ensure that the program
correctness is maintained in all cases by adding so-called recovery code. In case
the information on the program behavior turns out to be correct, the optimiza-
tion has exploited more optimization potential than a classic optimization that
relies on conservative analyses. Otherwise, the recovery code reconstructs the
correct system state. This may entail an additional overhead on program per-
formance, which makes a precise cost estimation vital. Hence, to overcome the
problem of the gap between static compilers and dynamic run-time behavior,
we need unsafe, but more precise analyses to predict the program behavior
together with speculative optimizations that make use of this information to
exploit the full optimization potential. This problem concerns different kinds
of program behavior and of optimizations. Thus, to obtain a general solution
to overcome the gap, we need a conceptual framework for speculative opti-
mizations that provides a mean for obtaining such precise analyses and for
describing the speculative optimization. At the same time, it is also important
to evaluate the practical applicability of the conceptual framework by applying
it to a certain optimization problem.

An example for that the over-approximation of static analyses has severe
consequences is the optimization of memory accesses. Because memory ac-
cesses have become increasingly expensive over the past years due to the
memory gap, program performance is often dominated by the memory sys-
tem. However, because the dependencies amongst memory accesses are hard
to predict statically, state-of-the-art alias analyses are highly imprecise. As a
consequence, conservative optimizations are severely limited in their optimiza-
tion potential and can hardly mitigate the implications of the memory gap.
Hence, to evaluate the practical applicability of the conceptual framework, we
consider its application to the optimization of memory accesses. In the follow-
ing, we develop objectives to decide whether or not a given framework meets
our demands, for the conceptual framework as well as for its application.

1.2 Objectives

As general objectives, we require a conceptual framework for speculative op-
timizations to provide efficient methods for program analysis and program
optimization, to be modular, and to be generally applicable to different kinds
of program behavior and different program optimizations. To assess the quality
of a framework, we use the following criteria:

1.2 Objectives 15

m Generality of the Optimization The conceptual framework should
be general enough to be applicable to a wide range of compiler opti-
mizations.

s Generality of the Regarded Behavior The framework should be
general enough to be used for a wide range of kinds of dynamic behavior,
no matter at which abstraction level it is observed (e.g., on instruction
level or on basic block level).

m Generality of the Analyses The framework should make it possible
that a comprehensive range of programs with differing dynamic behavior
can be optimized. This requires the analyses to be generally applicable
instead of being specialized to programs with a certain kind of dynamic
behavior.

Modularity The framework should be modular, such that analyses can
be combined arbitrarily with optimizations.

m Scalability of the Analyses While an initial preparation phase is al-
lowed to be time-consuming, the resulting analyses have to be highly
scalable to be of practical use.

m Precision Measure Because the results of the analyses are used to de-
termine the cost of transformations, it is important that the analyses
yield precise results. Hence, the framework has to provide a mean to
assess the precision of the obtained analyses.

m Cost Model While speculative optimizations allow for more optimiza-
tion potential, in case of misspeculation, the recovery code poses an ad-
ditional overhead to the execution time. Hence, it is important that the
optimizations use the information from the analyses to rate the expected
gain of a given transformation precisely.

To assess the quality of a given application of the general framework to a
certain optimization, we additionally propose the following criteria:

m Precision of the Analyses For a precise cost estimation, it is impor-
tant that the regarded dynamic behavior is precisely estimated by the
analyses. Due to the generality of the analyses that we demanded from
the conceptual framework, this has especially to hold for a wide variety
of programs with different characteristics.

m Program Correctness Because the optimization transforms the pro-
gram speculatively, it is important that misspeculation is taken care of.
The program correctness must be guaranteed in all cases.

m Optimization Gain The cost model has to be used to guide the op-
timization. By that, the optimization can perform the best available
transformation w.r.t. the cost model. At the same time, the cost model
ensures that performance degradation is avoided.

16 Introduction

1.3 Proposed Solution

In this thesis, we present a general Framework for Intelligent Speculative Com-
piler Optimizations, which aims at bridging the gap between static compilers
and dynamic program behavior by providing the compiler with knowledge, or
intelligence, about dynamic program behavior. This aim is pursued by three
central ideas:

1. We propose to admit potentially unsafe heuristics to analyze the dy-
namic program behavior. With that, we can overcome the problem of
over-approximation and increase the optimization potential.

2. We propose to automatically generate those heuristics using machine
learning techniques. By that, we obtain precise and highly scalable
heuristics, which only require static information to predict the dynamic
behavior of programs and, thus, can be used in a static compiler.

3. We propose to use speculative optimizations, which use the results
from the heuristics to derive a precise cost model to achieve high opti-
mization gains and, at the same time, ensure program correctness under
all circumstances.

In the following, we explain those ideas in more detail.

The first idea is to allow possibly unsafe, but more precise information as a
result of program analyses. The optimizations based on that information be-
come then speculative and have to cope with the case of wrong analysis results.
As a consequence of admitting unsafe analyses, heuristics can be used to imple-
ment program analyses. Heuristics can be more precise because they need only
cope with the most common (instead of all possible) cases. Hence, the severe
problem of over-approximation, inherent to static analyses, is overcome. At the
same time, machine learned heuristics are typically less computationally com-
plex than the corresponding program analyses. Thus, they scale significantly
better with respect to program size.

The second idea is to use machine learning techniques to automatically gen-
erate the heuristics. In general, the information about the dynamic behavior
of programs can be collected by profiling. However, this has the following dis-
advantages: First, it induces a significant overhead on compilation®. Second,
it requires an input set to execute the program under compilation. Third, the
information is highly specialized to the encountered input set but may not be
correct at all for another input set. We propose to use profiling in an initial
preparation phase to collect the regarded dynamic behavior, and to use ma-
chine learning to abstract from that concrete information and to automatically
generate general models. In the preparation phase, we perform profiling for a
representative set of programs on typical sets of input. Then, we use classifica-
tion learning to learn the relationship between static code features, which are

Tt is not uncommon that profiling increases the compilation time by a factor of 40, as it is
the case for the approach presented by Chen et al. [CLD*04], which collects dependencies
amongst memory instructions.

1.3 Proposed Solution 17

collected in the compiler, and the regarded dynamic program behavior. This
allows for the creation of heuristics, which predict the dynamic behavior solely
based on static code features. To face the fact that there is a wide variety
of programs with differing characteristics, we additionally propose to perform
program classification. Using cluster analysis, we automatically group similar
programs together and construct one heuristics for each program class. This
allows the compiler to rely on a heuristics tailored to the program class of the
program currently under compilation. By that, the precision of the heuristics
should increase significantly. In [Ges08|, we already sketched the idea of using
machine learning to obtain scalable program analyses. In [AG09], we showed
how we obtained precise heuristics for predicting memory dependencies, espe-
cially due to our concept of program classification.

The third idea proposes to use speculative optimizations. The additional
precision of the heuristics significantly increases the optimization potential.
Because the analyses are unsafe, the optimizations that use their results be-
come speculative. When speaking of speculation, it is clear that program cor-
rectness must never be touched. Hence, the optimizations have to cope with
the case that the information is incorrect. To that end, special recovery code
is added, which is executed in case of misspeculation. This also shows that
deriving a precise cost model during the optimization is important: The ex-
pected performance gain in case of successful speculation has to be weighed off
against the possible additional overhead of executing the recovery code. This
allows for identifying the applicable transformation that yields the highest op-
timization gain at each optimization step. In [GGO08|, we already could show
the benefits of a cost model for speculative optimizations. In that work, we
presented an algorithm for speculative register promotion for global variables,
which performs a cost estimation to decide which globals to optimize. Due
to the cost model, we could optimize many programs of the SPEC CPU2006
benchmark suite while avoiding a performance degradation in all cases.

Our general framework for intelligent speculative compiler optimizations is
applicable to a wide diversity of optimizations. To show its practical applicabil-
ity and to obtain a solution for an important optimization problem, we apply
the conceptual framework to the optimization of memory accesses. To that
end, we first develop a speculative optimization which performs speculative
code motion of load instructions. The optimization can overcome all kinds of
dependency by speculation, namely memory dependencies, control dependen-
cies, and register dependencies. Next, we present a cost model, which is vital
to decide whether or not a given transformation can be expected to pay off.
It captures all different kinds of speculation and thereby models the estimated
optimization gain precisely. Additionally, the cost model is parametrized by
hardware-dependent information and thus can be tailored to different target
architectures. To estimate the performance gain, the cost model requires in-
formation about the dynamic behavior of the considered program, namely the
expected latency of load instructions as well as the expected probability that
two memory accesses refer to the same data. To that end, we show how machine
learning techniques can be used to automatically generate precise heuristics,
which predict the required information.

18 Introduction

10000

CPU —+—
Memory --3>--
1000 F I E
e
_—
r
N
T L + i
= 100 L
A
A Xenneeeeeeend
_ x
e VIRV X
oE— " I DS i
,,,,,,,,,, - X
1 Il Il Il Il Il
1980 1985 1990 1995 2000 2005

Years

Figure 1.1: The Memory Gap

1.4 Motivation

Compilers give the programmer the freedom to develop software in abstract
programming languages, which allows him to focus on the idea instead of deal-
ing with tedious details of the hardware of the considered target machine. It
is the task of the compiler to translate the programmer’s idea correctly to an
executable binary. At the same time, compilers typically optimize the pro-
gram with respect to a given objective function. Common examples are to
improve run-time performance, memory consumption, or code size. The pro-
cess of compilation poses several subtasks, ranging from reading in the source
program, analyzing and optimizing it, and generating code for the target ma-
chine. For some of those subtasks, the underlying problems are so complex that
they still are not solved completely by today, leaving much room for improve-
ment. This is especially the case for the optimization problem. Additionally,
optimizations have to estimate the dynamic run-time behavior to find advanta-
geous program transformations as well as to ensure that program correctness
is maintained. To that end, they typically consult static program analyses,
which over-approximate the run-time behavior. This over-approximation may
be enormous, which severely reduces the optimization potential of the opti-
mizations and thereby leads to a limited program performance. One example
for that the over-approximation of the analyses has severe consequences on the
program performance is the optimization of memory accesses. This is caused
by a phenomenon termed as Memory Gap.

The Memory Gap, also known as Memory Wall, describes the fact that,
while both CPU and memory speed have been growing exponentially over
the past decades, the speed of memory did not manage to keep pace with
that of CPUs. Figure 1.1 illustrates the evolution (note the logarithmic y-
axis). We see how the clock rate of CPUs (solid line) grows exponentially
since 19802. The speed of memory (shown by the dotted line) is also steadily

2The numbers show the clock rates of Intel processors.

1.4 Motivation 19

increasing, but at a lower rate®. We see that for modern systems, CPU speed
and memory speed differ by two orders of magnitude. In other words, memory
became slower (in terms of CPU speed), which means that the CPU may
have to wait several cycles until a requested value is ready. This has dramatic
consequences on the run-time performance: Whereas in the beginning of the
computer era, performance was mainly limited by the operation speed of the
CPU (i.e., computing actually meant computing), it is now also limited by the
availability of data, which has to be fetched from memory. In the extreme case,
this can even mean that run-time performance is dominated by memory speed.
While this has been known for a long time (e.g., see Wulf et al. [WM95]),
current compilers still perform poorly on optimizing memory performance.
This is due to the inherent difficulty of the static analysis of memory behavior
of programs, which is dynamic. Empirical studies have shown that only a
small fraction of the statically predicted dependencies actually occur at run-
time. Mock et al. [MDCEO1] measured the average number of targets a pointer
may point to, once via a static analysis at compile-time, once via profiling at
run-time for a given program input. The considered programs originate mostly
from the SPEC CPU2000 benchmark suite. While the alias analysis reported
an average number of 25.56 targets per pointer, at run-time, on average only
1.08 targets were accessed by a pointer. In other words, at run-time, most
pointers only pointed to one target. This supports the intuitive assumption
that programmers use pointers for a certain aim, even if that is not obvious
to program analyses at first glance. As a consequence of this significant over-
approximation, the optimization potential is drastically limited. The effect
is especially bad for Very Long Instruction Word (VLIW) processors, which
are not capable of dynamic code optimizations at run-time. If a memory stall
is encountered, the processor has to wait until the value is available. As a
consequence, novel optimization techniques are heavily required, which reduce
the impact of the memory gap.

To face the memory gap, speculative optimizations of memory accesses have
been proposed. The idea to optimize speculatively and to ensure correctness
by special run-time checks was initially proposed by Nicolau [Nic89]. Since
then, various approaches have been proposed to optimize load instructions
speculatively (e.g., Mahlke et al. [MCH"92], Lin et al. [LCH"04], Rabbah et
al. [RSEW04], Dai et al. [DZHY05]). However, all approaches rely solely on
implicit cost models (if at all). Furthermore, the information about memory
dependencies used in these optimizations is highly imprecise and distinguishes
at most between three classes of dependency: no dependency, unlikely depen-
dency, potential dependency. This limits the optimization potential of the
optimizations and prevents a precise cost estimation. Another problem on a
different level is that all approaches present a solution for the specific prob-
lem of optimizing memory accesses. They fail to develop a general framework,
which can model a broader range of speculative optimizations.

3For the various kinds of memory technologies, we collected the average time for a random
memory access. From that, we obtained the average access frequency by taking the
reciprocal. For example, an average access time of 50ns becomes a frequency of 20 MHz.

20 Introduction

~

Compiler Construction (Machine Learning)
Program Alias Supervised
Analysis Analysis Classification
Learning
Program Speculative Unsupervised
Optimization |Code Motion Clustering
N J L J

\ This Thesis /

Figure 1.2: Covered Fields of Research

For machine learning, there are several examples that it can be used to make
compilers smarter (e.g., Wu et al. [WL94], Almagor et al. [ACGT04], Panait et
al. [PSW04], Cavazos et al. [CFAT07]). However, as for the proposed optimiza-
tions, those approaches focus to use machine learning for a specific application
scenario, instead of painting the picture how machine learning techniques can
be used to improve the compiler in general. The prediction of dependence
probabilities has never been investigated before. For load latencies, there is
one related work by Panait et al. [PSWO04], but their approach is very coarse
because it only considers two classes of loads (cache-hit vs. cache miss) instead
of predicting the actual latency.

Different from previous work, in this thesis, we develop a general framework
how to achieve and exploit a higher optimization potential by using machine
learning techniques together with speculative optimizations. With our precise
and parametrized cost model and with our concept of program classification
to increase the predictor precision, we present further novel ideas not inves-
tigated in related approaches. The chosen application scenario, namely, the
optimization of memory accesses, is highly relevant due to the memory gap.
We use machine learning to precisely predict the memory behavior of pro-
grams (load latencies and probabilities of memory dependencies), and use the
results in a general speculative optimization, which can overcome all kinds of
dependencies.

1.5 Research Area

Figure 1.2 shows the fields of research covered by this thesis. Because we
apply machine learning techniques in compiler construction, the two broader
areas of research this thesis is embedded in are given by those fields. Compiler
construction, which is a subfield of software engineering, investigates methods
to generate executable code from high-level programming languages. Central
questions are how to optimize the program w.r.t. a given objective function and
how to map the abstract program to the target machine. Machine learning, a
subfield of artificial intelligence, uses statistical methods to automatically cre-
ate models from training data, which explain some aspect of that data. The
knowledge represented in these models can be used to make predictions for

1.6 Main Contributions 21

previously unseen data. Having a closer look at our approach, for the com-
piler area, the heuristics we generate are used as program analyses in program
optimizations. To generate the heuristics, we use classification learning. The
precision is increased by program classification, which is done by cluster anal-
ysis. In the application of our conceptual framework, we generate heuristics
which predict the latency of a load and the probability of a memory depen-
dency between two memory accesses. The latter can be seen as a probabilistic
alias analysis. The optimization using those heuristics performs speculative
code motion to reduce the effective latency of load instructions.

1.6 Main Contributions

This thesis makes the following main contributions:

General Framework for the Use of Machine Learning in Compilers While
it has been previously proposed to use machine learning techniques in compiler
construction, previous work has only focused on concrete applications instead
of developing a general framework. We propose a general framework to auto-
matically generate heuristics from profiling data and to use them in speculative
optimizations.

Program Classification and a Repository of Heuristics To face the fact
that the run-time behavior of applications may differ broadly, we automatically
perform program classification to group similar programs together. Then, we
automatically generate one specialized heuristics for each program class. This
yields a two-stage heuristics: To predict the behavior of a program, we first
determine its program class and, second, select the appropriate specialized
heuristics.

Generic Optimization Algorithm For optimization, we use a generic algo-
rithm that transforms the program iteratively. In each step, all applicable
transformations are determined, and the cost model together with the heuris-
tics is used to rated the candidates w.r.t. their expected optimization gain.
This allows for selecting the best transformation in each step. Most existing
optimizations can be mapped to that algorithm.

Heuristics for Probabilities of Memory Dependencies As one result of the
application of our general framework to the optimization of memory accesses,
we obtain a precise heuristics that predicts the probabilities of memory depen-
dencies, solely based on static code features. To the best of our knowledge,
such a heuristics has never previously been proposed.

Intelligent Optimization of Memory Accesses We present a novel optimiza-
tion, which performs speculative code motion to reduce the effective latencies
of load instructions. The optimization can overcome all kinds of dependencies
by speculation.

22 Introduction

Precise Cost Model We precisely model the expected performance gain of
different speculative transformations in a cost model. This has not been done
for speculative optimizations by any other previous work. The cost model can
be tailored to different target architectures by hardware-dependent parameters.
It allows our optimization to select the transformations with the highest gain.

Practical Evaluation We performed a detailed evaluation of the application
of our framework. We completely implemented our framework for the opti-
mization of memory accesses within our compiler framework. We target the
Intel Itanium processor, for which we have established a complete compiler
platform within our framework. In our experiments, we first investigated the
precision of the predictors. Second, we performed run-time experiments and
discuss the results. With our results, we could show that we obtained precise
heuristics for memory behavior, namely memory dependencies and load laten-
cies. With the help of these heuristics, our speculative optimization achieved a
significant performance improvement for most programs of the SPEC CPU2006
benchmark suite, while avoiding a performance degradation in all cases.

1.7 Outline

This thesis is structured as follows. Chapter 2 describes the necessary back-
ground for both compiler construction and machine learning. Especially, we
describe the role memory plays in compilation and proposed techniques to
optimize speculatively. For machine learning, we introduce the concepts of
classification learning and cluster analysis, which are central for our approach.
In Chapter 3, we compare our approach with related work, distinguished by
the different fields of research our approach covers. Chapter 4 presents our
general framework. We give an overview of the framework and describe the
phases it comprises in detail. We also give examples how the framework can
be applied in practice. At the end of the chapter, we revisit our criteria for the
general framework and discuss whether or not they are met by our approach.
Chapter 5 presents the application of our general framework to the optimiza-
tion of memory accesses. We first describe the speculative optimization we
have developed to mitigate the impact of the memory gap. Based on that,
we derive a cost model which is necessary to estimate the performance gain
of different transformations. Finally, we describe the initial training phase,
in which heuristics for predicting the memory behavior of programs are au-
tomatically generated. At the end of this chapter, we use the criteria that
we have defined to evaluate applications of our general framework to assess
our approach. Chapter 6 gives details on the implementation of the applied
framework. In Chapter 7, we present the results of the empirical evaluation
of the applied framework that we performed. We first describe the setup for
the machine learning part and assess the precision of the automatically gener-
ated predictors. Then, we present and discuss results of run-time experiments
we performed to determine the performance gain our optimization achieves.
Chapter 8 summarizes the results of this thesis and gives an overview of future
work.

2 Background

In this thesis, we present a framework for intelligent speculative compiler op-
timization as well as its application to the optimization of memory accesses.
Thus, compilers and memory accesses in programs are central background top-
ics. To make the framework intelligent, we consider using machine learning,
which constitutes the third relevant background topic. We start with describ-
ing the structure of a compiler and its central parts, namely its intermediate
representation, program analyses, and program optimizations. For the appli-
cation of our framework, the role memory plays in the compiler and during
program execution is important. We describe the implications the usage of
memory has for the compiler, depending on the considered target architecture,
as well as techniques to analyze the memory dependencies of a program. After
that, we present optimization techniques that have been proposed to miti-
gate the impact of the memory gap by speculating on dependencies. Finally,
we describe machine learning techniques, especially classification learning and
cluster analysis, which we use in our approach to make the compiler intelligent.

2.1 Compilers

Compilers are programs that take source code in a given language and translate
it to a given target language. We consider especially compilers that translate
from a programming language (e.g., C) to executable machine code for a given
target machine. The advantage of compilers is that they allow the programmer
to develop software in higher-level programming languages, which abstract
from the details of the machine. By that, the development process is alleviated.
One major challenge for compilers is to generate efficient programs that exploit
the capabilities offered by the targeted hardware architecture. To that end,
the compiler tries to optimize the program with respect to a given objective
function!. Common examples for that are to minimize the execution time of
the generated program, its memory consumption, its energy consumption, or
its code size. Most of those optimization goals contradict each other.

1Strictly speaking, the term optimize is misleading, since most compilers merely improve
(or try to) the program w.r.t. the objective function, but do not guarantee that the
optimum is actually found.

23

24 Background

l Analy51s
—— > Front End | —> :::

code
Optlrmzatlon

3 Code Generation |[— t?(r)%zt

Compiler ‘Back End)

Figure 2.1: Architecture of a Compiler

The architecture of a typical compiler is shown in Figure 2.1. The front
end translates the source into an abstract Intermediate Representation (IR).
Various analyses and optimizations are performed upon the IR, and in the end
code generation yields the target program. This part of the compiler is termed
as Back End. Code generation can be seen as a special optimization, since the
translation of the abstract IR to the concrete target level offers many choices
and constitutes a vital step in the program optimization. In the following, we
consider the central concepts of a compiler in turn, starting from left to right,
or, from front end to back end.

2.1.1 Front End

The front end analyses the source code and transforms it into the IR. It starts
with a lexical analysis of the code, which groups the stream of characters of the
source file into meaningful tokens (e.g., keywords and identifiers). Then, the
parser performs a syntactical analysis and checks whether the program con-
forms to the (context-free) grammar of the considered programming language.
On success, the result is the Abstract Syntax Tree (AST). Additionally, the
symbol table is constructed, which contains the defined variables. After that,
the Semantic Analysis extracts context-sensitive information, e.g., scopes of
variable definitions are identified and type checks are performed. The AST
as well as the symbol table are annotated with semantic information. The
IR is built from the AST by making the control structure (loops, if-then-else)
explicit.

2.1.2 Intermediate Representation

The IR represents the program which is considered for compilation. During
the translation in the compiler, it passes through various levels, starting from
the (high) source level and ending at the (low) target level of the considered
machine. The work of a compiler can be correspondingly decomposed into a
sequence of steps, which subsequently process the IR. Each step performs one
of the following actions:

2.1 Compilers 25

Front End Back End
AN AN
4 N I
| | | | | | |
ol e vm |k
| | | | | | |
source language
dependent
independent
target
dependent

Figure 2.2: Compiler IR

Analysis The IR is analyzed w.r.t. certain properties and the
result is annotated again in the IR. This information
can then be used by subsequent optimizations.

Optimization Optimizations transform the representation with the
aim of improving it w.r.t. an objective function, under
consideration of the IR together with its annotations.

Lowering The IR is transformed to a lower level. Typically, this
means that it is enriched with information about the
target level (e.g., size of data types) or that constructs
like loops are broken down into simpler code (if and
goto statements). Lowering is a special case of an
optimization.

Figure 2.2 sketches the translation process for a typical compiler, together
with the corresponding IR level. The front end translates the source code via
a syntax tree into High-Level IR (HIR). In the following, a mixture of the
three kinds of steps presented above is performed. First, machine-independent
optimizations (e.g., algebraic transformations or constant propagation) can be
performed. Then, more specific optimizations will be performed, and the IR is
gradually lowered. In the Medium-Level IR (MIR), some notion of the target
platform is introduced. At the end, code generation yields the Low-Level IR
(LIR), which is very close to the final assembler code. After final optimizations,
the assembler code is emitted.?

The IR typically represents each function of the program as a Control Flow
Graph (CFG), which is generated from the Abstract Syntax Tree (AST) of the
source file. One important task in CFG creation is to identify the control flow
in the program as induced by loops and other control structures. As a result,
statements that are always executed together (i.e., which have no intervening
branches) are grouped to Basic Blocks, which constitute the nodes of the CFG.

2In the compiler community, the notion of HIR and LIR is common practice, whereas MIR
is often subsumed under HIR.

26 Background

int GCD (int a, int b) {

int c; ¥
while (b > 0) { (1] if (b>0) —
c=x % y;

yes

<_

a = b;

v

b= c; @ c=a%hb @] returna
} a=b 3
return a; b=c ;
exlt
}
(a) C Code (b) CFG for Function GCD

Figure 2.3: C code and resulting CFG

The edges connecting them represent the control flow. Each CFG has exactly
one entry block (the first block of the function) and one exit block (the block
with the return statement). If a function has multiple return statements,
the last property can always be achieved by adding a special exit block and
making it the successor of all blocks with return statement. Analyses will
add further information to the CFG or add special edges, e.g., to indicate data
dependencies among the statements. Besides the CFG, the IR also contains
the data types and variables defined in the program. As data dependencies are
important to most program optimizations, it is common practice to annotate
this information in the CFG. The resulting graph is called control data flow
graph (CDFQG).

Figure 2.3 gives a short example for CFG construction. On the left, we see
a small function which calculates the greatest common divisor of two numbers.
The resulting CFG is shown on the right. It consists of three basic blocks,
labeled 1 to 3, and has several control flow edges which connect the blocks.
Note the conditional edges from block 1 to blocks 2 and 3, respectively. The
loop of the C program is expressed by the loop in the CFG between blocks 1
and 2.

As the order of instructions has an impact on correctness as well as on
run-time performance, the concept of dependencies amongst the statements
of the CFG is vital for compiler analyses and optimizations. There exist two
types of dependencies: data dependencies and control dependencies. Data
dependencies refer to the data flow in the program and cover the intended
use (a written value is used) as well as re-use of variables (a variable is re-
defined /overwritten). Control dependencies are created by branches, which
stem from control constructs (like if-then-else or loops). Within a basic
block, we have only data dependencies because all instructions of a basic block
are always executed together. Control dependencies occur between merely
between basic blocks. In the following, we consider data flow and control flow
in turn.

2.1 Compilers 27

Data Flow

Most optimizations require information about data dependencies, since they
perform code motion, which is only allowed if all data dependencies are con-
sidered. An example is Loop Invariant Code Motion, where expensive code
fragments are pre-executed before a loop instead of being re-executed with
every loop iteration. This is of course only admissible if the code fraction
does not interfere with the remaining loop body. Another example is code
scheduling. The dependence information is represented by the Data Depen-
dence Graph (DDG), which contains all statements of the program. Its edges
connect statements (or the contained variables) that refer to the same data
(e.g., registers or memory locations). Evidently, the DDG is acyclic and tran-
sitive. Since each statement may read or write given data, there are four kinds
of dependencies:

RAR (read after read) Two instructions read the same data.

RAW (read after write, true dependency) One instruction reads data
that was written by a previous one.

WAR (write after read, anti dependency) One instruction writes data
that was previously read by another one.

WAW (write after write, output dependency) One instruction writes
data that was previously written by another one.

Of those, RAW dependencies are those which one has naturally in mind:
Data is calculated by one instruction and then used by another one. RAR
dependencies indicate shared usage and can be safely ignored. The remaining
dependencies, WAR and WAW, are dependencies which are introduced by
limited resources and redefinition of variables. For example, they are caused
by variable definitions in a loop or by register allocation, where only a limited
number of registers are available and thus have to be re-used. To ensure
correctness, all but RAR dependencies must not be violated. The DDG is
generated by Dependence Analyses, which will be described in Section 2.3.1.

When lowering the IR to LIR during code generation, different kinds of
data dependencies can be distinguished. During the lowering, the compiler
decides which variables will be held in memory and which in registers (see
Section 2.2). This requires additional memory instructions (loads and stores)
to bring data from the memory in registers for performing calculations on
them. Thus, we now have data dependencies amongst registers and those
amongst memory locations. Dependencies amongst registers can be exactly
determined at compile-time. Memory dependencies, on the other hand, can
only be approximated, since in general, the address an instruction references is
not known before run-time. The problem of identifying memory dependencies
is described in Section 2.3.

As an example for dependencies amongst registers, consider Figure 2.4,
which shows a short fragment of assembler code together with the induced de-
pendencies for register r1. Obviously, the RAW dependency between a) and b)

28 Background

a) mov =32 O
\

/\‘RAW
b) add r2 =(rl,7 =
: / RAW
¢) add r4 =(rl,9 <

“) WAR
d) mov =48

O waw

e) mov (rl = 63

Figure 2.4: Data Dependencies for Registers

represents a true dependency in the sense of intended information flow. This
also holds for the dependency between a) and ¢). Between b) and ¢), a RAR
dependency exists (shown by the dotted arrow), which can be safely ignored.
The other dependencies shown are simply due to the re-use of resources (in
this case, registers). WAW dependencies among registers will not be found in
final machine code, since the first instruction (here: d)) can be safely removed.
However, for dependencies among memory accesses, it cannot always be deter-
mined whether or not a dependency is WAW (this requires evidence that both
instructions will always write to the same memory address).

Control Flow

Many optimizations move code from its original basic block to other basic
blocks. In doing so, the control dependencies of the CFG must be regarded.
It has to be guaranteed that when reaching the original block, the moved code
was executed before. Since there are typically various different paths to reach
a block, this may entail code duplication. We first focus on paths in the CFG.
Then, we introduce the dominance relation, which helps to decide to which
blocks the code has to be moved while limiting the impact on code growth.

The CFG is a graph of basic blocks, connected by directed control flow
edges. The entry and the exit block of a CFG are unique and are denoted as
entry and exit, respectively. A Path is a sequence of basic blocks such that
there is a control flow edge between each pair of succeeding nodes. We treat
a path as an ordered set of basic blocks. For a CFG with loops, there may be
an infinite number of paths (in case of infinite loop bounds). Hence, to keep
the number of paths finite, we consider only acyclic paths. For two blocks blk;
and blky, PathsBetweenBlocks(blky, blky) yields all possible paths from blk; to
blks. With that, we can define the dominance relation.

Dominance Relation A block dom is said to dominate another
block blk if on all paths from the CFG’s entry block to blk, dom is
executed before blk:

Vpath € PathsBetweenBlocks(entry, blk) : dom € path.

The dominance relation is reflexive, transitive, and anti-symmetric. Each
block has at least one dominator, and each block is dominated by the entry
block. Figure 2.5 shows a CFG together with the resulting dominator tree.
It contains all basic blocks of the CFG, and each node immediately domi-

2.1 Compilers 29

(b)
Figure 2.5: (a) Control Flow Graph (b) Dominator Tree

nates its children. The dominator tree can be constructed in linear time (see
Harel [Har85]).

When moving code upwards, it has to be ensured that the code has been
executed when reaching the original block. To that end, one solution is to
move the code into one of the dominator blocks. However, depending on the
structure of the CFG, the number of blocks between the dominator and the
original block may be enormous. This increases the likeliness of dependencies
between the moved code and the intermediate blocks and therefore can make
code motion inadmissible. For that case, the concept of the dominance front
is better suited.

Dominance Front A set of blocks DomF is the dominance front
of a block blk if on all paths from the CFG’s entry block to bk,
exactly one d € DomF is executed before blk:

Vpath € PathsBetweenBlocks(entry, blk) : 3ld€ DomF : d € path

Figure 2.6: (a) CFG with a Dominance Front for the Exit Block(b) Induced Sub-
graph after Merging Blocks

30 Background

Static Dynamic

Safe Conservative Program Analyses -

Unsafe Heuristics Profiling

Table 2.1: Categorization of Program Analyses

This is equivalent to say a set of blocks DomF'is the dominance front of a
block blk if for the graph obtained by merging all blocks DomF to a single block
dom, dom dominates blk. As a special case, if DomF contains only one block,
the dominance front is at the same time the dominator of blk. An example is
given in Figure 2.6. On the left, we see a dominance front for the exit block.
On the right, we see the subgraph induced by merging the dominance front
into one block. This shows that D, E/, and H are actually a dominance front,
since the obtained merge block DFEH dominates the exit block.

2.1.3 Program Analyses

For the decision where and to which extent to optimize, optimizations need
various information about the properties of the considered program. Examples
are data dependencies among the instructions (see Section 2.1.2), liveness of
variables and the redundancy of expressions. This information is collected by
Program Analyses. They can be categorized along the following dimensions:

Safe/Unsafe In some cases, optimizations require safe informa-
tion. This is the case for data-dependence informa-
tion, where wrong results may lead to wrong code.
Some information, on the other hand, only affects
the optimality of the transformation and hence may
be unsafe. An example is branch prediction, which
can be used by many optimizations.

Static/Dynamic Static analyses are invoked at compile-time and can
only analyze the considered program code. Dy-
namic analyses (or profiling) examine the run-time
behavior of the program for a given input. This in-
formation can then be used in a subsequent (static)
compiler run for optimization. Static analyses can
consider all possible cases and are thus necessary to
achieve safe results. Dynamic analyses, on the other
hand, consider only a subset of all possible program
behavior and are hence inherently unsafe.

Table 2.1 shows the resulting analysis classes. They are discussed in more
detail in the following.

2.1 Compilers 31

Conservative Program Analyses A program analysis observes the CFG and
infers the expected dynamic behavior from that (for example, detect redun-
dant computations, determine dependencies amongst variables). The analy-
sis will iterate over the CFG and eventually annotates the resulting informa-
tion at each statement. If there are different possibilities at a given program
point (for example, when control-flow merges after an if-then-else), over-
approximation takes place, in order to make the analysis safe.

For example, the Reaching Definitions analysis annotates at each program
point the currently valid definition sites for every variable (a site refers to a
location in the source code). Hereby, a program point represents the moment
just before or after the execution of a statement. Hence, for every statement
s, we want to determine the set of valid definition sites before and after s,
denoted by def,(s) and def 5ui(s), respectively. Initially, def,, is set to the
empty set for all statements, and def ,,; is set to (s,z) if s defines x and to
the empty set, otherwise. Then this information is propagated along the CFG.
The def;, information merges the information of its potential predecessors,
i.e., the predecessors in the CFG for the first statement of a basic block or the
immediate predecessor within a basic block otherwise. The def ,,; information
is updated appropriately. A statement keeps all definitions of the def;, set
except for those that are overwritten by the statement itself. This iteration is
repeated until the fixed-point is reached. The existence of the fixed-point can
be proved by modeling the information as a lattice. Finiteness of the lattice
(every program has only a finite number of statements and variables) and
monotonicity of the update function directly show the existence. The result
can be used to construct use-definition chains, which connect every use of a
variable with the corresponding potential definition sites, as well as to build
definition-use chains, which represent the dual case where every definition of
a variable is linked with its potential uses. Both kinds are important for most
optimizations.

The presented example belongs to a class of data-flow analyses that is
based on monotone frameworks. An analysis is characterized by the underlying
lattice, the direction of the analysis (forward, as in our example, or backwards),
a function to combine the information from the predecessors of a node (in our
example, a set union), and the update function (i.e., how the information
is affected by a statement). These analyses can be implemented efficiently
and are linear in the number of program points. For details see e.g. Nielson
et al. [NNH99]. Other examples are available expressions analysis (was expr
already computed before?) and live variables analysis (is x still alive, i.e., will
its value be used again?).

The advantage of program analyses is that the information is safe, i.e.,
optimizations can rely on them, which is important to maintain program cor-
rectness. The analysis results are valid for all possible program runs, even
corner cases are covered. The disadvantage lies in the over-approximation,
which may lead to suboptimal results.

32 Background

Profiling For profiling, the program is executed on certain input data and
the regarded information about the dynamic behavior is collected. Then, this
information is used to optimize the program accordingly. The advantage is
that the information is very precise and will lead to a strong improvement for
the considered input set. However, at the same time, this is the disadvantage
of profiling. It is not guaranteed that the program will behave similarly for
other inputs, and thus we have very precise information for similar program
runs and unprecise or possibly wrong information in all other cases. Besides,
profiling requires that input data is available and can significantly increase
the overall compile-time. The efficiency of profiling depends on the data to
be collected. For counting the frequencies of CFG edges and of CFG paths,
efficient algorithms with a run-time overhead of 16% and 31%, respectively,
have been proposed (see Ball et al. [BL94], Ball et al. [BL96]). However, in
general, the costs of profiling can be expected to be higher by several orders of
magnitude. For example, Chen et al. [CLD"04] present an approach to profile
data dependencies. While their approach is tuned for efficiency, the required
run-time is about 40 times higher than without profiling.

Heuristics Like conservative program analyses, heuristics observe the CFG
to predict the dynamic behavior. However, heuristics may yield incorrect re-
sults. Thus it is important that their results are not used in a way that
correctness could be affected. The heuristics may either be specified by the
programmer (rules of thumb) or may be automatically extracted from previous
observations of the program behavior. This entails a previous dynamic profil-
ing phase, which executes programs on typical input sets, collects the regarded
information and derives from that the heuristics, which can be later on invoked
statically. Heuristics may either predict functional or non-functional program
behavior. In the first case, heuristics can augment or replace conservative
program analyses. Since heuristics are unsafe, the optimization must ensure
program correctness in case of wrong predictions. In the second case, wrong
predictions merely may lead to less performance gain and, hence, maintaining
program correctness is not an issue. Heuristics combine the ideas of profil-
ing and program analyses: They can be more precise than program analyses,
since they need not to be correct in all cases, and they avoid the overfitting as
inherent to profiling, since they are not tailored to a special program run.

In this section, we discussed how information about the program can be
collected by program analyses. In the next sections, we see how this can be
used by optimizations.

2.1.4 Optimizations

As described above, there are many different kinds of optimization. One cri-
terion to classify optimizations is the IR level they work on. This ranges from
high-level optimizations to low-level optimizations. Another criterion, which is
orthogonal to the IR level, is the functionality of the optimization. The follow-

2.1 Compilers 33

@O0 R

—— Transformation Step
Transformation Sequence

O C<EO Q -
i O=+0 ~O=+0-
IR : O - : O -
Q g :
Figure 2.7: Tree of Possible Transformation Sequences

ing shows a functional classification, which covers most optimizations (based
on Cooper et al. [CT04, p.495])

Dead Code Elimination: Remove unrequired code. Reasons may be
that its result is not used or that it cannot be reached at run-time.

m Specialize Consider the code context to find a specialized and more
efficient version (e.g., Constant Propagation, Strength Reduction).

» Inlining/Unrolling: Reduce the overhead of function calls/loops. Ad-
ditionally, this allows for further optimizations, e.g., loop unrolling can
allow for more parallelism in the code.

s Code Motion: For example, move code from blocks to less frequently
executed predecessors if admissible (Loop Invariant Code Motion)

s Redundancy Elimination: Re-use already computed values. This can
be implemented using code motion.

Some of these optimizations can be applied on different abstraction levels.
For example, dead code elimination can be applied first on the high-level IR
and then again on the low-level IR, since during the course of optimizations,
parts of the code may have become dead code.

Orthogonal to these classifications, optimizations can be either categorized
as optimal or as heuristic. A given optimization has several opportunities in
deciding in which way the code should be transformed. Typically, the resulting
overall transformation can be decomposed into a sequence of simpler transfor-
mation steps, which are similar to each other. For example, for Code Motion, a
transformation step would mean to move a piece of code to another place. Dur-
ing the optimization, it has to be decided which code should be moved where.
As a consequence, for each optimization, the applicable transformation steps
span a search tree that contains all possible versions of the program the opti-
mization can yield (see Figure 2.7). Starting with the initial program version as
root node, the successors of a node are obtained by applying each of all possible

34 Background

transformation steps. Each path that starts at the root represents a certain
transformation sequence (see the highlighted path in the figure). If we assume
that each program version can be labeled by its cost (e.g., estimated execution
time or estimated power consumption), the goal is to find the version with the
minimal cost. If the optimization explores the search space exhaustively, it can
find a program version that is guaranteed to be optimal (w.r.t. the capabilities
of the currently regarded optimization), and hence the optimization is termed
optimal. However, for most optimizations, the search space grows rapidly due
to combinatorial explosion, and exhaustive exploration is very expensive or
even unfeasible. This problem is met by heuristic optimizations, which only
explore the search space partially. For example, a greedy optimization could
construct the transformation sequence iteratively by always selecting the best
applicable transformation step and disregarding all other options. While the
result is not guaranteed to be optimal, it is mostly considered sufficiently good.
Besides, it can be obtained in reasonable time, which is necessary for compilers
used in practice. It depends on the application as well as on the optimization,
whether optimality is required or whether a solution yielded by a heuristic
approach is sufficient.

In case of optimal optimizations, all relevant aspects of the program are for-
malized in a model, which captures the optimization problem. Based on that,
an objective function is specified, which expresses the aim of the regarded op-
timization. This is used to find a solution to the problem, which is guaranteed
to be the best one w.r.t. the objective function. One popular technique that
is generally applicable to solve such optimization problems is Integer Linear
Programming (ILP) (Nemhauser et al. [NW88]). The advantage lies in the
guaranteed optimality. However, the more complex the optimization problem
gets, the less feasible it is to find the solution. Winkel [Win07] presents an
approach to use ILP for scheduling. The required time to find the solution
grows rapidly with the considered code size. For up to 100 lines of code, a
solution is found within seconds. For up to 200 lines, it is found in 20 minutes
on average. Beyond that, no numbers are given, but high computation times
can be expected. Hence, optimal optimizations via ILP can be applied to hot-
spot optimization, which only target selected pieces of the code (e.g., loops)
that have a major impact on program performance. In some cases, instead
of the general ILP, a specialized formalization can be derived, and more scal-
able techniques can be used to find a solution. Scholz et al. [SHK04] present
an approach for speculative partial redundancy elimination, which models the
problem as a network flow problem, for which efficient solution techniques are
available. To sum up, optimal approaches exist and are used where resources
are extremely limited. For a certain optimization, they consider the complete
optimization space and select the solution guaranteed to be best. However, the
challenge lies in deriving a compact formalization of the underlying optimiza-
tion problem and in choosing an appropriate algorithm to find the solution,
which is important to avoid or at least limit combinatorial explosion. Besides,
optimality is only guaranteed w.r.t. the specified objective function. Hence, if
the model of the optimization problem contains approximated parameters, the
optimality of the solution is put into perspective.

2.1 Compilers 35

Heuristic optimizations, on the other hand, trade off guaranteed optimality
of the solution for scalability. Opposed to the optimal approach, only a small
part of the search space spanned by all possible optimizing transformations is
explored. While it is not guaranteed that the resulting optimization is optimal,
mostly, it can be obtained efficiently, which is in many cases indispensable.
Besides, heuristic approaches are more suitable for approximated information.

2.1.5 Code Generation

Code generation is a special case of a low-level optimization. This transfor-
mation is a vital transformation step in the compiler. It maps the abstract IR
onto the concrete target machine. This mapping is ambiguous, and the choice
made here influences heavily the performance of the generated program. It in-
cludes the three phases instruction selection, instruction scheduling, and reg-
iwster allocation. Those phases are highly interdependent and each phase alone
constitutes an NP-hard optimization problem. Typical compilers solve this
problem by implementing these phases separately and calling them in a fixed
order, which sacrifices optimal results, but makes the problem manageable.
The typical sequence is: 1. instruction selection, 2. pre-scheduling, 3. register
allocation, 4. post-scheduling/packing. The pre-scheduling aims at reordering
the instructions to minimize register pressure (i.e., to cut down the number of
required registers), the post-scheduling tries to minimize the execution time.

Instruction Selection For instruction selection, one common technique is
tree pattern matching with a bottom-up rewrite system. A set of rules specify
how the IR should be mapped to assembler code. Each rule states how a
certain tree pattern, which will be matched against the IR, can be reduced to
a so-called non-terminal symbol, and which assembler code should be emitted.
The non-terminals can occur in the tree pattern of the rules, which allows
for chaining different rules together. Instruction selection typically considers
one statement at a time and tries to find a rewrite sequence that transforms
the statement to a single node. Usually, the rules are associated with costs,
and a cost-optimal rewrite sequence is searched for. This technique allows for
retargetable compilers: The instruction selection mechanism is generic. When
retargeting to a new platform, only the corresponding rewrite rules have to be
implemented.

Register Allocation Before register allocation, the compiler uses an arbitrary
number of virtual registers for intermediate results. Register allocation maps
this set to the real set of available registers. This includes the insertion of spill
and fill code, which swaps registers in and out of memory if the number of
registers is exhausted, and code for saving and restoring register values at the
begin and the end of a function, respectively.

36 Background

(Post-)Scheduling The scheduler rearranges the instructions to minimize
execution time, which can be achieved by executing expensive instructions (i.e.,
those which take a long time) first, so that the waiting time is hidden by other
instructions. This especially applies to memory accesses, which may experience
latencies of 100 cycles or even more. However, during the re-ordering of code,
the compiler must not violate any dependency, since then, the correctness of
the program is not guaranteed. Thus, the opportunities for optimizations of
the scheduler highly depend on the precision of the information about data
dependencies.

2.2 The Role of Memory in Compilers

During compilation, the compiler also decides about the data layout of the
program (i.e., global data and stack frames), and it decides whether or not
variables have to reside in memory. Primitive data types typically fit in regis-
ters and thus do not have to be put in memory generally®. Complex structures,
like lists or trees, require a special treatment. If they are defined through a
declaration, the compiler will allocate enough space in the corresponding stack
frame or in the global data section (depending on whether the declaration has
local or global scope). If they are allocated dynamically (i.e., by calls to special
functions like malloc in C), the memory allocation happens at run-time. In
the first case, the compiler knows the exact addresses. In the latter case, it
cannot determine them at compile-time. As a further complication, the same
allocation site can lead to multiple allocations at run-time if it lies within a
loop or within a function which is called multiple times.

This complicates the dependence analysis considerably, and to ensure pro-
gram correctness, a dependency between two memory accesses has to be as-
sumed unless proved to be absent.

The implications of the memory gap, the discrepancy between the speeds
of CPU and main memory, lead to a potentially drastic impact on program
performance. The compiler plays a major role in mitigating this impact. It can
reorder instructions, so that the long latencies of load instructions are hidden.
The impact of the memory gap depends on the selected architecture.

Systems with Limited Resources

For these systems, which are frequently used in embedded systems, in many
cases, dynamic memory allocation is not admitted. This simplifies the de-
pendence analyses significantly, since now mainly scalars and arrays have to
be analyzed, for which efficient analyses are available. Another consequence
is that the memory traffic is more predictable, since all data is either on the
stack or in the (typically continuous) global data area. This allows for a better

3 An exception has to be made if, somewhere in the program, the address of the variable is
taken. Then, the variable must be in memory, since it may be referred to by its address.

2.2 The Role of Memory in Compilers 37

exploitation of the caches. Both factors limit the impact of the memory gap.
Additionally, these systems often have a comparatively low CPU frequency,
which reduces the memory gap in the first place.

Sequential Systems

For these systems, the compiler has to cope with imprecise information on
data dependencies due to dynamic memory allocation and pointer arithmetic.
However, the absence of parallelism helps the compiler slightly: To reduce
the impact of the memory gap, other instructions are scheduled between a
long-latency load and the corresponding use. Since all those instructions are
executed sequentially, the reduction of the effective latency is higher than it
would be on a parallel machine. Still, for memory-intensive programs and high
load latencies, this will not be sufficient to hide the memory gap completely.

Super-scalar Processors

These processors can execute multiple instructions in parallel. The parallelism
is decided dynamically at run-time. The processor receives the code sequence
and creates a schedule. This requires complex hardware, since the processor
must be able to perform a dependence analysis at run-time. Again, the com-
piler can assist the processor by previously reordering the instructions to hide
the latencies. However, since the processor is parallel, the required number of
instructions to hide a given load latency increases with the parallelism offered
by the processor. This makes it harder to hide the latencies. However, for
super-scalar processors, the processor can ignore false dependencies that could
not be proved absent by the static compiler. In case of a memory stall, it can
look for other instructions which are ready to execute.

VLIW Processors

Very Long Instruction Word (VLIW) processors also allow for parallelism,
which makes it harder for the compiler to hide the latencies. As opposed to
super-scalar processors, however, the processor is rather simple and requires
the compiler to derive a schedule of the code. That means that it lies in
the responsibility of the compiler to arrange the code and to decide which
instructions can be executed together. The advantage is that the compiler has
a global view of the whole program and that it can take its time. On the down
side, the compiler has only static information, which is less precise than the
information that would be available in a super-scalar processor at run-time. If
the processor stalls, nothing can be done but to wait for the memory command
to finish. This puts the compiler into a strong responsibility, since it is solely
liable for the schedule and therefore for the program performance.

For the considered system classes, the compiler has an increasingly impor-
tant influence on mitigating the memory gap. Hence, for VLIW processors, it

38 Background

is most important to focus on optimizing memory accesses, since otherwise, the
run-time performance of programs may be dominated by stalls caused by the
memory system. For that reason, we target VLIW processors in the application
of our proposed framework.

2.3 Analysis of Memory Accesses

As we have seen previously, the compiler needs to regard the data dependen-
cies of the program to keep the program correctness. In the following, we
sketch how the dependence information can be determined in general. Then,
we describe alias analyses, which determine the memory dependencies of a
program.

2.3.1 Dependence Analyses

Dependence analyses are vital to construct the DDG for a program, which
is used by nearly all optimizations to decide about the correctness of a given
transformation. The analyses can be categorized into one of the following three
types according to the class of data types they focus on:

Scalars For scalar variables, the def-use analysis can be used to yield
the dependencies. If the IR obeys the SSA (Static Single
Assignment) form (into which it can be transformed easily,
see Cytron et al. [CFR'91]), the dependencies among scalars
are directly visible because for every redefinition of a vari-
able, a new version of that variable is introduced. Classic
SSA form assumes un-aliased variables. However, extensions
to cope with aliases have been proposed, e.g., by Chow et
al. [CCL196].

Arrays For arrays, the situation is more difficult, since the expression
to calculate the index can be complex. However, if only linear
expressions are allowed, Diophantine Equations can be used
to efficiently decide about dependency (Kennedy et al. [KA02,
pp. 94-96]).

Any In the generic case, however, when also arbitrary variables and
pointer expressions are considered, dependency is undecidable
(Landi [Lan92]). Alias analyses approximate the information
which variables may be aliases of each other. This has to be
regarded during the construction of the DDG.

All possible dependencies have to be reported to ensure correctness. Here
again the problem of over-approximation takes effect: Most dependencies de-
pend on input data, which is not known at compile-time. Hence the analyses
have to act conservatively. This leads to more edges in the DDG, which ham-
pers code optimizations.

2.3 Analysis of Memory Accesses 39

int a,b, xp,*xq;
I.):&a; Points-To Targets
if (cond) q = &a;
else q = &b; maybe must
P a
*q = 20; b
a = 2xa; ! a
(a) (b)

Figure 2.8: (a) Sample Code with Aliasing (b) Resulting Points-To Table

In the presence of pointers and structures on the heap, alias analyses are
vital to cut down the number of edges in the DDG. In the next section, we
briefly present the problem of aliases in more detail.

2.3.2 Alias Analyses

A variable is an alias of another variable if it can be used to refer to and modify
the latter one. This can already occur at function calls with call-by-reference
arguments and is especially relevant for languages with pointer-arithmetic as
e.g. C. Alias analyses typically collect points-to sets that contain for every
pointer the set of targets it may point to. Figure 2.8 gives a short example for
aliasing. We have integer variables a and b and integer pointers p and ¢. p is
set to the address of a, i.e., it is now an alias of a. The value of ¢ depends on a
condition cond. If cond is true, ¢ is set to the address of a, otherwise to that of
b. In Figure 2.8b, the result of an alias analysis is shown: For every variable,
we see a list of targets. As shown here, it may be distinguished whether a
variable points definitely or only potentially to a target. The second to last
line of the code in Figure 2.8a shows the importance of the aliasing relation.
A value is written to the address contained in ¢q. This means that either a or
b are changed. Hence, there is a potential dependency between the last two
lines, since the last line reads and writes a. As we see here, alias analysis gets
complicated in the presence of branches. This is even more the case if we take
aliasing across functions into account.

x =y | Simple Assign x = alloc(..) | Allocation
x = &y | Address Assign xx =y | Assign to Pointer
x = xy | Pointer Assign fun(zy,..,x,) — y | Function decl
x = op(y1,..,Yn) | Operator Assign x = f(y1,..,yn) | Function call

Table 2.2: Types of Statements

40 Background

Alias analyses iterate over the program code and collect possible targets of
pointers. Table 2.2 lists the classes of statements which are relevant for the
analysis (following Steensgaard [Ste96b]). The type of the statement deter-
mines in which way the points-to information is affected by it. Depending on
the type of the alias analysis, not all listed statements may be relevant. For
example, the easiest analysis Address-Taken assumes that all variables, which
have their address taken, are aliased by any pointer. This analysis would only
have to consider Address Assign statements and collect the variables on the
right hand side. Then, the points-to sets for all pointers would consist of this
collected list.

There are various dimensions to distinguish different analyses (for a more
detailed discussion, see, e.g., Hind et al. [HP00)):

data-flow sensitive vs. insensitive: Is the data flow considered,
which is induced by the instructions? While this is the
case for most analyses, it is not for the Address-Taken
Analysis, which simply looks at the right hand side of
certain assignments.

control-flow sensitive vs. insensitive: Is the control flow considered?
If so, the analysis has to merge the information when-
ever control merges, e.g., after an if-then-else. This also
means that different possible points-to sets have to be
maintained at the same time. In the extreme case, one
points-to set for every path.

context sensitive vs. insensitive: Is the calling context at func-
tion calls considered? Otherwise, the analysis assumes
values could flow from a call through the function and
return to another caller.

scope inter-procedural vs. intra-procedural: Is only one proce-
dure considered at a time, or is the whole program con-
sidered? For C programs, which may consist of several
separate files, there is inter-procedural (intra-file) as an
intermediate level.

heap aware vs. unaware: Are the various dynamically allo-
cated memory areas distinguished from each other? If
not, the heap would appear as one object, and all dy-
namically allocated variables would be assumed to be
aliased.

structure aware vs. unaware: What is the granularity of the anal-
ysis? Are different fields of a structure or different ele-
ments of an array distinguished?

Generally, the analyses have to trade off precision for scalability, and the
various criteria have a different impact on that. Data-flow-sensitivity is hardly
under discussion, since without it, the results would be extremely imprecise,
and the introduced overhead is low. The same holds for whether or not mak-
ing the analysis inter-procedural, which gives more precision at acceptable

2.4 Speculative Optimization 41

overhead. Also heap-awareness is important for meaningful analysis results,
since otherwise all heap references would be reported as aliased. Besides, the
additional overhead of distinguishing the different allocation sites is limited.
Compared to that, structure-awareness leads to only a slight increase in pre-
cision, but leads to a higher overhead. The remaining choices have a major
impact on the scalability of the overall analysis. Control-flow-sensitivity col-
lects the alias information for each program point, hence it is very memory
intensive. Context-sensitivity, on the other hand, needs to collect the alias in-
formation for every possible calling context, which also jeopardizes scalability.
Typical alias analyses, as found in compilers, are data-flow-sensitive, control-
flow-insensitive, inter-procedural, context-sensitive, and heap- and structure-
aware. Recently, scalable analyses that are control-flow-sensitive as well as
context-sensitive have been proposed (see Section 3.2.2).

However, even the most precise alias analysis can do nothing more than to
over-approximate the actual aliases present at run-time significantly. This was
shown by an empirical study by Mock et al. [MDCEOQ1], which measured the
average points-to size predicted by different alias analyses and compared them
with the size of the actual points-to sets experienced at run-time for given input
data. While the actual points-to sets had an average size of about one target,
the analyses predicted average target sizes per program ranging from 1 to 450,
with an overall average ranging from 26 to 80. Moreover, most of the pointers
had only one actual target at run-time. This illustrates the imprecision of the
analyses, which is caused by their overly conservative over-approximations.

2.4 Speculative Optimization

The problem with alias analyses is that they have to be conservative, since they
have to be correct. They have to consider all possible dependencies, whether
or not they may actually occur at run-time for realistic input data. To over-
come this problem, speculative optimization techniques have been proposed.
The idea is to speculatively ignore unlikely memory dependencies. Then, the
DDG will have fewer edges, and the optimizations have more opportunities at
their disposal. Of course, it has to be made sure that the program behavior
remains the same if the ignored dependencies actually do hold at run-time.
This will be dealt with by special checks and recovery code, which is issued
when speculation fails.

The use of speculation now admits unsafe alias analyses. While conserva-
tive analyses have to report a dependency unless proved to be absent, specula-
tive analyses have the freedom to do the opposite and report only dependencies
proved to exist. Of course, precise results are still important, since misspec-
ulation comes at the price of additional overhead. But it enables the alias
analyses to become realistic instead of overly pessimistic.

Speculative optimizations can ignore data dependencies. This is termed
data speculation. However, to allow for optimizations across basic block level,
it has to be speculated on control flow, since a load may be newly introduced

42 Background

d (1] 1d.a rd4=[r9]
st [r8] =rl2 D
Id r4=[r9] st [r8] =rl2
== check-val r4
add r7=r4, 8 add r7=r4,8
(a) Source Program (b) Optimized Program

Figure 2.9: Data Speculation

to a path. This is referred to as control speculation. Both techniques are
orthogonal to each other, hence a combination is possible. Finally, in case of
misspeculation, the correct system state has to be re-established. This is done
by recovery code. In the following, we look at data and control speculation as
well as recovery code generation in more detail. After that, we discuss to which
extent hardware support is required and, also, present in current architectures.

2.4.1 Data Speculation

Data speculation ignores data dependencies and moves loads across possibly
dependent stores to issue them earlier and to thereby hide their latency (at
least partly). An example is given in Figure 2.9. On the left, we see an excerpt
of a basic block, in which we load a value and use it. As it may happen,
the loaded value is not cached. Therefore, it has to be fetched from main
memory, which will take a long time, in which the processor is deemed to
wait (denoted by the cloud). However, nothing can be done, since the load
is immediately preceded by a store, for which the alias analysis reported a
possibly data dependency. Conservative optimizations would stop here, since
no optimization can be statically guaranteed to be correct: The value to be
loaded may be changed by the store instruction, hence it cannot be issued
before it. However, if we have some evidence that the reported dependency is
unlikely, we can optimize speculatively and deal with correctness dynamically
at run-time. The result is shown on the right: We move the load to the top of
the block. The load is now marked as an advanced load (ld.a) to indicate that
it is speculative. To ensure correctness, after the possibly conflicting store,
we have to check whether the value is still valid. This is done by a special
check (check-val). If we detect that everything went well, we can proceed
and use the value. If not, we have to reload the value from memory. This is
dealt with by recovery code, which is discussed in more detail in Section 2.4.3.
In this example, the load was moved only across one store. In general, data
speculation can move the load over an arbitrary number of stores.

For speculation, loads have to be issued non-blocking, which means that the
stall does not occur on the load instruction itself, but only when the value is
actually used by another instruction. Despite that, further hardware support
is not required, but advantageous, as we will see later.

2.4 Speculative Optimization 43

Id.s rd = [r9]
branch branch

/N A

@| @ 1d r4=[9] @ @]

add 17 =14, 8

check—excp r4
add17 =14, 8

(a) Source Program (b) Optimized Program

Figure 2.10: Control Speculation

2.4.2 Control Speculation

While data speculation ignores data dependencies, control speculation ignores
control dependencies to increase the optimization potential. Since basic blocks
are only of limited size, the presented data speculation may not suffice to hide
a significant amount of the latency. Instead, speculative optimization across
block boundaries offers more potential to reduce the latency. This requires
limited hardware support. If a load is moved speculatively into another block,
it may happen that it is newly introduced to a path through the program,
on which it was not present before. This is acceptable for loads with valid
addresses. But if, for example, the address is invalid, an exception? would
be introduced on a path where it would not have occurred before. Hence, in
this case, the load has to suppress potential exceptions, and they have to be
deferred to the original block.

An example is given in Figure 2.10. On the right, we see the original code.
In block 3, a value is loaded and used. Again we assume that the load leads
to a long stall. With data speculation, we cannot optimize, since the load
cannot be safely moved to block 1. There exists a path 1 — 2, onto which
the load would be newly introduced. If the load did raise an exception, the
program behavior would be changed. But with control speculation, we can
move the load in block 1 and mark it as speculative (ld.s). This means that
exceptions which may potentially be raised are deferred. Hence, the behavior
of the path 1 — 2 remains unchanged. Before the use, a special check is added
(check-excp). In case of a deferred exception, it will be reported now. Note
that control speculation per se does not entail data speculation, especially,
misspeculation is not an issue®. The value loaded is known to be unchanged,
the only issue is the deferral of exceptions to be able to optimize across block
boundaries. Since both techniques are orthogonal to each other, they could
and should be combined. Control speculation can be seen as a mean to apply
data speculation at a broader context.

4For example, a page fault or a segmentation fault.

5 Of course, when a load is introduced on a new path, it has to be ensured that the target
register of the load does not overwrite a register used on that path. This can be achieved
by register renaming.

44 Background

(] st [18]1= r124} @] dard=[9 |

Cld r4 = [19] add r6 =r6, rd4 @

5 add 16=16,14 Idss 5 = [r6] d rd=[r9]
1d 15 =[r6] st [18]=rl2 add r6 =r6, r4
== chk r4, #3 ld rS=[r6]

’ branch #1°
add 17 =14,15 E add 17 =r14,15 ranc
(a) Source Program (b) Optimized Program

Figure 2.11: Speculation with Recovery Code

2.4.3 Recovery Code

In case of misspeculation, the correct system state has to be recovered. This
can be done by branching to a newly added basic block, which contains the
recovery code and jumps back right to the use of the value. So far, we spec-
ulated only on single load instructions. In this case, the recovery code only
consists of the original load instruction. In the general case, the speculatively
loaded value can be used by further instructions. If a load together with its de-
pendent instructions is optimized speculatively, in case of misspeculation, the
load together with its dependants has to be re-executed by the recovery code.
Figure 2.11 gives an example. On the left, we have a chain of instructions that
loads an address, adds a value to that, and loads from the resulting address.
The second load leads to a stall. However, since a potential dependency is
reported between the first load and the preceding store (i.e., the addresses in
r8 and r9 may overlap), no optimization can be done. Speculation allows us
to ignore this dependency if it is deemed unlikely. The result is shown on the
right: All three instructions are moved across the store. Before the use of the
finally loaded value, it has to be checked whether the first load is still valid.
This is done by the check instruction. Other than before, in case of misspec-
ulation, a chain of recovery code has to be executed. In that case, the check
instruction jumps to block 2, which contains the recovery code and jumps fi-
nally back right to the use. Clearly, in that case, we have a higher gain, but
also a higher overhead. Note that this does not require additional hardware
support. For data speculation without hardware support, an extra block for
recovery code has to be added even for the simple case of optimizing only one
single load.

2.4.4 Required Hardware Support

As mentioned previously, speculation benefits from hardware support, but does
not depend on it. The only requirements to hardware is the availability of
non-blocking loads and, in case of control speculation, the possibility to defer
exceptions (like page faults). However, hardware support can help to improve
the efficiency of speculation, namely for the validity check and for the execution
of recovery code.

2.4 Speculative Optimization 45

In case of data speculation, the validity of the speculatively loaded value
has to be checked before using it. In other words, it has to be ensured that
no intervening store has changed the loaded value, which means that for each
store, the target address must not overlap with the address of the loaded value.
This check can be performed with and without hardware support, making it
more or less efficient, respectively. In case of hardware support, the check can
be made efficient by adding a small table to keep track of the speculatively
loaded values. Whenever an advanced load is issued, its address is added to
the table, and every store that is executed checks whether an overlapping ad-
dress is in this table. If so, it is removed. Then, the check can be performed
by a table lookup: If the corresponding address is in the table, the value is
still valid. Otherwise, the corresponding recovery code has to be executed.
Without hardware support, data speculation causes more overhead. For every
intervening store, instructions have to be inserted to explicitly compare the
target address with that of the considered load. If store and load are equally
aligned and if both have the same size, one check for equality of the corre-
sponding addresses is sufficient. In the general case, two checks are necessary
to prove that the load and the store do not conflict. For example, consider a
4-byte store to an address addr; and an 8-byte load from address addry. To de-
termine whether both instructions are independent, we need to check if either
addr; +4 <= addry or addr,+8 <= addry. If one of these checks fails, recovery
code has to be issued. Clearly, without hardware support, speculation leads to
more overhead, which increases with every intervening store (remember that
with hardware support, misspeculation cost does not depend on the number of
stores). However, for load instructions with a very high latency, this can still
pay off in the end. The gain of speculation amounts to the number of cycles
saved by issuing the load earlier (i.e., the number of cycles the intervening
instructions consume) minus the overhead for the validity check in the positive
case, and to the overhead for the check plus the time needed for the reload in
the negative case. Hence, even if not the entire latency of the load is hidden,
at least it is reduced.

Hardware support can also reduce the overhead of recovery code execution,
which is relevant for both data and control speculation. In general, before the
use, a special check has to ensure the validity of the value, which jumps to
the recovery code if necessary. For speculation of single loads, in which case
the recovery code would only consist of the load instruction, hardware can
offer a special instruction, which performs check and reload (if necessary) at
once. This saves the overhead of two branches and makes speculation especially
efficient.

In Figure 2.12, we see another example which contrasts speculation with
and without hardware support. On the left (Figure 2.12a), we see a sequence
of assembler code. A value is loaded into register r4 and then used. If the value
does not happen to be in the cache, this will lead to a long stall. Moving up
the load is not safe in general, since 8 and r9 may refer to the same address.
However, if our speculative alias analysis tells us that the addresses are prob-
ably different, we can optimize speculatively. First, we consider speculation
with hardware support (see Figure 2.12b). We move the load across the store

46 Background

d (1] 1d.adv rd = [r9] (1l1d ra4=[r9]
st [r8] =rl2 D st [r8] =112 st [r8] =rl2
Id rd4=[r9] Id.chk r4 =[r9] cmp r8, r4
== beq recov_code beq recov_code
add 17=14,8 add 17=14,8 6 add r7=r4, 8
(a) Source Program (b) Speculation with (c) Speculation without
Hardware Support Hardware Support

Figure 2.12: Speculation with and without Hardware Support

and make it an advanced load, which is comparative to a binding prefetch.
Then, after the store, we check whether the loaded value is still valid. If so,
we avoided a long stall. Otherwise, we simply reload again, and the program
run-time is similar to the left program. It is important to note that specula-
tion does not sacrifice correctness. If we misspeculate, we only get additional
overhead but the results stay correct. Without further hardware support for
speculation, additional instructions must be inserted to check whether the ad-
dresses overlap and to execute recovery code to reload the value if necessary
(see Figure 2.12c¢).

2.4.5 Hardware Support in Modern Processor Architectures

Because the concepts of speculation have been proposed over twenty years
ago and because the memory gap has grown and leads to significant, if not
drastic performance limitations, it can be expected that speculation will be
increasingly used in new processor architectures. One architecture that already
offers hardware support for speculation is the Intel Itanium processor. We use
this processor as platform in our case study. The Intel Itanium, and especially
its capabilities concerning speculation, will be presented in the following.

The Intel Itanium processor has an EPIC (Ezplicitly Parallel Instruction
Computing) architecture, which is an extension of the VLIW architecture. It
has an issue width of 6 instructions per cycle. However, the instruction format
is more general: The instructions are packed into bundles of 3 instructions each.
Instructions that should be issued at the same cycle, form instruction groups.
Those groups can span several cycles, and the processor can choose how many
instructions to execute at once. With that, the same instruction format can be
used for different issue widths. The Itanium supports predication to increase
basic block size. Basically, predication enables the conversion of control flow
into data flow. For example, an If-Then-FElse region can be merged into one
hyperblock. The comparing instruction of the if sets two boolean predicates
(contained in special registers on the Itanium), with the first containing the
result of the comparison and the other containing the negative value. The
then- and the else-branch are each marked with the corresponding predicate.
Instructions that have a false predicate have no effect at run-time. Thus, both
branches can be executed, and the predicates take care that only the correct

2.4 Speculative Optimization 47

Cache Level | Size (bytes) | Latency (cycles)
L1 | 16k D + 16k I 1
L2 256k min 5 (FP: 6)
L3 1.5M min 12
Main Memory 1G min 180-225

Table 2.3: Configuration of the Intel Itanium2 McKinley 900MHz Processor

one has an effect. This helps to increase block size, which leads to less branches
and therefore decreases branch misprediction stalls. Additionally, an increased
block size means also more potential exploit the parallelism of the processor
because it offers the scheduler more instructions to choose from.

Data and control speculation are supported by special hardware. For data
speculation, the Advanced Load Address Table (ALAT) contains all values that
were loaded in advance (indicated by ld.a). For every store instruction, the
ALAT is considered, and conflicting entries that are invalidated by the store
are removed. The check instruction consults the ALAT table. If its address
is within the table, the loaded value is still valid. Otherwise, it has to be
reloaded again. If only one single load has been optimized, the [d.c instruction
can perform both check and reload (if necessary) at once. Otherwise, a check
instruction detects misspeculation and branches to recovery code. Control
speculation can be indicated by a special flag on the load (Id.s). In that case,
every exception is deferred and not reported until the corresponding Id.c is
encountered. All registers have an additional Not a Thing (NaT)-bit, which
is set if the value is invalid due to an exception. Data and control speculation
can be combined (ld.sa).

The cache architecture and the corresponding latencies are shown in Ta-
ble 2.3 (taken from [Int04, pp. 33, 34, 48]). The actual latencies can be higher
than the shown values. There are two L1 caches for data and instructions, re-
spectively. The other caches are unified (i.e., contain both). For the L2 cache,
the minimum latency depends on whether the data is integer or floating-point
(FP). For speculation, the following latencies have to be considered. On suc-
cess, the check load has a one cycle latency. Misspeculation leads to an addi-
tional overhead of 8 or 18 cycles, depending on whether or not the value is in
the cache, plus the cycles required to load the value from memory if necessary.
If recovery code has to be executed (via the chk instruction), the overhead
further increases due to branching. Speculation should be applied carefully.
On the one hand, the overhead of misspeculation has to be regarded. On the
other hand, the ALAT table is of limited size (32 entries in case of the Ita-
nium). Hence, too aggressive speculation could cause the eviction of entries
from the ALAT table, which can lead to spurious misspeculation (i.e., actually
successful speculation is interpreted as misspeculation, since the corresponding
entry remains no longer in the ALAT).

48 Background

2.5 Machine Learning

Machine Learning (ML) techniques can be used to automatically infer informa-
tion from a series of observations. Machine learning can either be unsupervised
or supervised. In the first case, we know what to learn. For example, in case
of classification learning, each observation is annotated with a class label (that
is, it belongs to one of a fixed number of categories). The aim of learning is to
identify the relationship between an observation and its corresponding class.
This allows us to classify new, previously unseen data. In the second case,
for unsupervised learning, the observations have no annotations. For exam-
ple, in case of cluster analysis, the goal is to group the observations together.
This can be seen as first defining a set of classes and second defining the class
of each observation. Opposed to supervised learning, we have no means of
knowing whether or not the annotated classes are correct. In this thesis, we
use both techniques. We use classification learning to learn the relationship
between code properties and run-time behavior. From that, we can generate
heuristics. We use cluster analysis to perform program classification, such that
similar programs are put together in one class. This allows for having a set of
specialized heuristics, which we expect to increase the precision of the predic-
tions. In the following, we consider classification learning and cluster analysis
in turn. After that, we discuss how the precision of a predictor obtained by
classification learning can be assessed.

2.5.1 Classification Learning

For classification learning, we have a set of observations annotated with their
classes. From that, a model is built (or trained) to explain the relationship
between observations and their classes as precise as possible. This is illustrated
in Figure 2.13a. We have six observations, each described by a feature vector
and by its class, and build a model from that. This model can then be used
as a predictor to classify new, previously unseen observations based on their
feature vectors (Figure 2.13b). To validate the precision of the predictor, it
can be applied to the training data, and the predictions can then be compared
with the known correct classes. This yields a measure for the precision of the
model w.r.t. the training data. However, typically, the learned model is used
to classify new, unseen data. Thus, a more realistic estimate of the precision
of the model is given by applying the model to a new set of data, for which
the correct classes are known as well, and by comparing the predictions with
the actual classes (Figure 2.13¢). One pitfall in learning is overfitting. This
occurs if the model explains the training data precisely, but performs worse on
new data. In other words, the model failed to generalize and instead focused
on the peculiarities of the training data. The risk of overfitting can be reduced
by data preprocessing and by selecting sensible parameters for the considered
learning algorithm.

More formally, the problem solved by classification learning is the following:
We have a set of m observations, O = (0;). Each observation o is described

2.5 Machine Learning 49

: [:
(0]
o — @ > ¢
e [@ L 4
e I L 4
(a) Learning (b) Prediction
Prediction I Feature Vector
» @® ® Correct Classes
@ @ @ Predicted Classes

(c) Validation

Figure 2.13: Machine Learning

by an n-element feature vector Feat(o) € F, which collects its properties.
Additionally, we have a set of k classes, C = (c;), and for each o we know the
corresponding class ¢. The aim is to model the relationship between features
and classes. This yields a predictor function p : 7 — C, which can be also
applied to new observations. The features can be thought of as a m x n matrix
F = (fi;), where f; ; denotes the j-th feature for the i-th observation. Besides,
we have an m-element vector C' = (¢;), which contains the corresponding
(correct) classes. The predictor function p can be used to yield an m-element
vector C' = (¢;), which contains the predicted classes. The columns of F (the
features) are also called input (or explanatory, dependent) variables, and C
is called response or dependent variable. For the training data, we have the
feature matrix Fj, together with the vector of the corresponding classes,
Clirain- Similarly, we have Fi. and C).q as test data. Training yields the model
Mipgin. This model can be applied to the corresponding data sets to yield the
predicted classes Clin and Cl.q, respectively.

The whole process consists of the following phases:

s Data Preprocessing The features may have to be preprocessed, de-
pending on the selected learning algorithm.

m Learning Phase The model is trained with the training data using a
certain learning algorithm. The resulting model can then be used to
predict the classes for new, unseen data sets.

m Application The model can finally be used as a predictor or oracle in
the corresponding application area.

In the following, we regard each phase in turn.

50 Background

Data Preprocessing

The different columns of the feature matrix F', i.e., the properties, can be of
different type, also termed as levels of measurement. The following types of
data are distinguished:

s Nominal Data Discrete data that has no order. Each value is unique
and incomparable with others. Also termed as Categorical Data.
Examples: {red, green, blue}, {north, east, south, west}.

m Ordinal Data Discrete data that is ordered. On ordinal data, no dis-
tances can be calculated. Hence, instead of a mean value, only the median
can be determined. Examples: {low, medium, high}, {no,maybe,yes}.

s Quantitative Data Data that can be freely used for calculations. Es-
pecially, this means that the distance between two values can be deter-
mined, and that interpolation makes sense. Examples: R, N.

For classification, the response variable (c;) is discrete and may be nominal,
ordinal, or quantitative. If the classes are ordered, the response variable is
ordinal. If furthermore a distance can be determined upon the classes (for
example, if the classes represent a degree), the response variable is quantitative.
Otherwise, if different classes are incomparable, the response is nominal. The
features play a crucial role for the precision of the predictor. A relationship
between features and class can only be learned if it is actually extractable from
the features. Hence, it is important to find a good set of features as well as to
normalize their values.

Feature Selection One approach is to start with as many features as possible.
While this is a good starting point, this may slow down the learning phase.
Besides, it may also lead to models which consider unimportant features more
relevant than necessary (overfitting). This makes feature selection important.
Various techniques for feature selection can be used. As with learning, this can
happen either unsupervised or supervised. In the first case, only the features
alone are considered to determine the most important ones, in the last case,
also the corresponding classes are regarded. Typically, most techniques are
parametrized by the number k of desired remaining features. Unsupervised
selection could consider those features with the highest variance. Another way
is to use Principal Components Analysis, where the features are transformed
to a new space, in which the new features are sorted decreasingly by their
importance (w.r.t. variance). Supervised selection can e.g. select only those
features with the highest correlation with the given class vector. Another way
is to iteratively select different sets of features, train the predictor, determine
the prediction error and finally take those features that performed best.

Normalization If the data contains undefined values, it may be necessary to
either replace them or to omit the corresponding entry completely from the
data set. However, some learning algorithms can cope with undefined values,

2.5 Machine Learning 51

in this case, no special treatment is necessary. Ordinal and nominal data can
be transferred to numeric data if required by the learning algorithm. In the
first case, this can be easily done by mapping the ordered k values to the
interval [0,k]. In the latter case, this can be done by replacing the nominal
feature with k£ — 1 new features, where k is the number of nominal values, as
follows: For the first value, all new features are 0. For the i-th value (i > 1),
the (i —1)-th value is set to 1, the others to 0. Quantitative data as well should
be normalized. For example, if the values have a huge data range, taking their
logarithmic values can be beneficial. For some learning algorithm (e.g., Neural
Networks), it is necessary to finally transform the data, such that all features
are centered around 0 and have a unit variance. This can be simply done by
calculating (z — p)/o for every feature, where z denotes the regarded feature
values, and p and o refer as usual to the mean value and the variance.

It is important that the resulting transformation (feature selection plus
normalization) is also used to prepare new data when making predictions. That
is, after the training phase is finished, all data that is fed into the predictor
has to be transformed appropriately.

Learning Phase

Various learning algorithms have been proposed. Most algorithms use statis-
tics to build a model that explains the training data with minimal error. The
choice of the algorithm is determined by characteristics of the data set and by
the intended use of the model. The algorithms can be divided into two classes,
depending on how the model is represented. In case of an explicit/intelligi-
ble representation, the representation is directly readable and understandable.
The advantages are a compact representation, identification of overfitting, and
possibly an insight into the structure of the considered data. The other class
of algorithms has merely an implicit representation. A model is constructed
and can be used for predictions, but it acts as a black-box. In the following,
we give popular examples for both classes.

Explicit/Intelligible Representation

Naive Bayes This algorithm does not consider the features at all. The
probability distribution of the classes of the training data is estimated and
used to predict new values. This distribution constitutes the model.

Decision Trees The data is partitioned recursively into smaller subsets
until all objects in a partition have the same class. This yields a decision tree,
which has a conditions at each inner node and a class label at each leaf node.
On construction, a feature together with a cut-point is chosen that partitions
the regarded subspace best with regard to error minimization. This can be
thought of as dividing the n-dimensional feature space into boxes, such that
for each box, all contained objects have the same class. In other words, the
feature space is partitioned into hyper-boxes (i.e., hyper-rectangular regions,
bounded by hyper-planes orthogonal to the axes). This feature selection and

52 Background

, : y>1.5
3 D DD i OOO m/\}es
5 D 3 O A x>3
| A LT o/ \o
1
A A A
O AA O o
o 1 2 3 4 5 =

Figure 2.14: Decision Trees

partitioning is repeated iteratively until a certain precision or a given node
depth is achieved. The model is represented as the decision tree with condi-
tions on the inner nodes and the predicted classes at the leaves. This can be
interpreted as a set of rules, one for each leaf. Figure 2.14 illustrates how a
decision tree is trained. On the left hand side, we see the hyper-boxes (for 2
features, we have simply rectangles) which partition the space. On the right,
we see the resulting tree, which can be used to classify new examples based on
their attributes.

Random Forests For random forests (Breiman [Bre01]), a collection of
decision trees is trained (a typical number is 500). Each tree is trained with a
different, randomly selected subset of the training data, and also the selection
of the features to partition the space is influenced by random. For prediction,
each of the trees is consulted, and majority vote is used to determine the class
to predict. Random forests are more stable than decision trees and yield often
more precise predictors.

Linear Discriminant Analysis While for decision trees, the hyper-planes
have to be orthogonal, in linear discriminant analysis, arbitrary hyper-planes
are allowed to separate the data. Nesting of planes is not allowed. Hence,
the model is a set of hyper-planes, together with the predicted class for the
induced subspaces. A variant is Quadratic Discriminant Analysis, which allows
for parabolic hyper-planes. Figure 2.15 gives an intuition. On the left, we
see how the space is separated by hyper-planes (or in 2D, by lines) using
linear discriminant analysis. Newly encountered examples will be classified

g2\
y y
31 O O o © 31 O O o ©
o O RO o O e
2*~\\‘\\ N 27
gl TATTee—L
14 A RN 14 A
A A =) A A =
AA AA
0 T T T T T X 0 T T T T T X
o 1 2 3 4 s o 1 2 3 4 5
(a) Linear Discriminant Analysis (b) Quadratic Discriminant Analysis

Figure 2.15: Discriminant Analysis

2.5 Machine Learning 53

y
1 O O o ©
o U N
" a
| A
1
A A A
0 AA
o 1 2 3 o4 s 7

Figure 2.16: k-nearest Neighbors (k = 3)

depending on the area they reside in. On the right, we see the same for
quadratic discriminant analysis.

Implicit Representation

Nearest Neighbors The training data is fully stored. A prediction for a
new object is made by finding the nearest neighbor among the training data in
the feature space, and using its class as prediction. An extension is k-nearest
neighbors, where the k nearest neighbors are determined together with their
classes, and majority vote is used to make the prediction. The model is given
by the whole training data. Figure 2.16 gives an example. We see how a
new example (the gray hexagon) is classified by determining its three nearest
neighbors. In this case, the majority vote would be triangle.

Neural Networks A network with as many input nodes as features, as
many output nodes as classes, and arbitrarily many intermediate layers is con-
structed. Connections are only allowed between two adjacent layers and are
annotated with a weight. For prediction, the values of the features are propa-
gated through the net, and the class with the highest weight is predicted. In
learning, the weights of the network are adjusted corresponding to the features
and the class of each training example. Different learning rules are possible.
The model is given by the topology of the network and the weights.

The advantages of an explicit representation of the learned model are that
the model is concise as well as understandable. The conciseness allows for effi-
ciently making predictions, which is required to obtain highly scalable heuris-
tics. The understandability of the model allows us to identify which features
contribute most to the model, which enables the construction of a simplified
model. Hence, we consider learning algorithms with an explicit representation.

Application

To use the predictor in practice, the model as well as the corresponding algo-
rithm has to be implemented. For algorithms with a concise representation of
the model, which is the case for algorithms with explicit representation as well
as for, e.g., neural networks, this can easily be done. For example, the imple-
mentation of a decision tree is straight-forward. A decision tree has a condition

54 Background

feat <= wvalue at each inner node, which determines whether to branch left or
right. The leaves of the tree contain the predicted class. Hence, a decision
tree can be implemented by nested if-constructs. Random forests are consti-
tuted by a set of decision trees. Thus, for implementation, all trees have to be
consulted, and the most frequently predicted class is returned as overall predic-
tion. In case of nearest neighbors, on the other hand, the whole training data
has to be stored. For each prediction, the considered feature vector has to be
compared to every feature vector of the training data to determine the nearest
neighbors. For a given learning algorithm, the implementation can be auto-
matically generated from the learned model. Hence, it is important to consider
learning algorithms with a concise representation of the trained model. This
allows for the automatic generation of efficient and highly scalable heuristics.

2.5.2 Cluster Analysis

With cluster analysis, a set of objects O = {01,09,...,0,} is automatically
grouped together to build a set of clusters, such that similar objects are put
together and that dissimilar objects reside in different clusters. The resulting
clusters cly, . . ., cly, build a partition of O, that is: O = U™, ¢l; and cl;Nel; = 0
for ¢ # j. To decide about similarity, the cluster analysis requires a distance
measure amongst the objects. For n objects, the distance measure can be
represented as an n X n matrix. One popular class of clustering algorithms is
hierarchical clustering. In that case, the resulting clustering is iteratively built.
For agglomerative hierarchical clustering, we start with each object being in a
cluster of its own and successively merge clusters together. For divisive hierar-
chical clustering, initially, all objects reside in one cluster, and we successively
split one cluster at each step. In both cases, the distance measure is used
to decide which clusters to join and split, respectively, Hierarchical clustering
yields a hierarchy of clusters, which contains for each ¢ € {1..n} a clustering
with k classes (¢;). To obtain the resulting clustering, we can either specify
a k and select the corresponding clustering, or we can define a quality mea-
sure upon the clusterings and select the best one. For more details on cluster
analysis, see, e.g., Kaufman et al. [KR90]. The result of a cluster analysis
can also be seen as a new classification of the objects, which assigns a class
¢k, k € {1,--- ,m} to each object 0. Once the classification has been obtained
by clustering, classification learning can be used to identify the relationship
between the features of the objects and their corresponding classes.

2.5.3 Predictor Precision

To validate the precision of a predictor, it is applied to a data set for which
the correct classes are known. Then, the predictions are compared with the
correct classes. To obtain realistic results, the data to which the predictor is
applied should be different from the data it was trained with. There are many
ways to define precision, and it depends on the intended application which
is the right choice. Some error measures are only applicable for quantitative

2.5 Machine Learning 55

classes. In the following, let m be the number of classes, n the number of
observations, C' = (¢;) the vector of the actual classes, and C' = (¢;) the vector
of the predicted classes. ||.|| denotes the cardinality of sets.

Error Rate/Accuracy One straight-forward way to assess a predictor is to
determine its error rate, i.e, the rate of wrong predictions.

gp - il #aj
n

Conversely, the accuracy is given by the rate of correct predictions and
amounts to 1 — FR. The error rate gives a good first impression of the perfor-
mance of a predictor. However, due to its all-or-nothing behavior, also almost
correct predictions, which may occur for quantitative data, are regarded as
incorrect.

Mean Absolute Error For quantitative classes, the mean absolute error is a
more accurate measure. It is given by the mean value of the difference between
correct and predicted classes.

¢

MAE — 2. lci —cil
n

The standard deviation o4 can be calculated to measure the dispersion.

Ak-Accuracy The mean absolute error gives an idea of the precision, but
because it returns only one value, it has limited expressiveness. As example,
it is not possible to distinguish whether we have 10 times an error of 1 or once
an error of 10. It depends on the application area, whether this distinction is
important or not. The Ak-accuracy is a generalization of the accuracy and
yields a more precise measure.

| Jei —al <k
Ak-Ace = L nc’—}” . ke{0,m—1)

Ak-Acc is the fraction of predictions with a maximum error of k classes.
Clearly, AO-Acc reports the amount of correct predictions and equals to the
accuracy as defined above. If we have m classes, A(m-1)-Acc is 1. Like the
mean absolute error, the Ak-accuracy requires quantitative classes.

Correlation If the classes are quantitative, the correlation of predicted classes
C and actual classes C can be calculated by

Cor — Cov(a, c) L@ — pe) (e — pe)

7600 LS~ et S o

56 Background

1.0 '
0.8 =
0.6 -
0.4 -
0.2 -
0.0 .

Accuracy

Figure 2.17: Ak-Accuracy

The result is a degree of the linear relationship between predicted values and
correct classes. Degrees close to 1 or —1 indicate a strong linear relationship,
degrees close to 0, however, do not mean the absence of any relationship. They
merely can be interpreted as the absence of a linear relationship.

Discussion The prediction error yields the amount of incorrect predictions.
However, all mispredictions are treated equally. This is inadequate for quanti-
tative data because an error of one class is treated like an error of ten classes.
The mean absolute error is better suited to assess the precision of a predictor
in case of quantitative data. However, in some cases, if the class distribution is
extremely skewed, a constant predictor could achieve a low error rate without
actually predicting anything meaningful. In this case, the correlation can be
consulted for clarification. The correlation is undefined if one of its arguments
is constant, and is very low if its arguments are mostly constant. Hence, a
non-zero correlation together with a low mean absolute error indicates a good
prediction. To get an even more precise picture of the precision of a predictor,
the Ak-accuracy can be inspected.

Example To get an intuition of the presented error measures, we consider a
small example. Let us assume we have three classes (m = 3) and ten training
examples (n = 10) with corresponding classes C' = (1,2,3,1,2,3,1,2,3,1).
The predicted classes are C = (1,1,2,2,3,3,2,2,1,1). Then we have:

error rate: 0.6

mean absolute error (stddev): 0.7 (0.67)

Ak-accuracy: AO-accuracy = 0.4, Al-accuracy = 0.9, A2-accuracy = 1
correlation: 0.29

The Ak-accuracy can also be shown graphically, as can be seen in Fig-
ure 2.17. The x axis indicates the values of k£, and the y axis shows the
corresponding accuracies. Because k € {0,--- ,m — 1}, the graph is only de-
fined for integer values (indicated in the plot by the dots). The mean error is
indicated in the figure by the abscissa of the plus sign. Since we have three
classes, the maximum absolute error is 2. For the maximum error, the class
deviation rate is always 1, as can be seen in the graph.

2.6 Summary 57

2.6 Summary

In this chapter, we presented the structure of a compiler and its essential com-
ponents. One central challenge during compilation is to optimize the program
with respect to its memory behavior. We have reviewed the state of the art
techniques to meet this challenge, namely alias analyses that investigate mem-
ory dependencies on the one hand and speculative optimizations that allow
for more aggressive optimization on the other, and we have seen their limita-
tions: Alias analyses are performed statically and thus estimate the memory
dependencies conservative. As a consequence, they tend to drastically overes-
timate the dependencies, which limits the optimization potential. Speculative
optimizations offer a solution to this problem by ignoring unlikely dependen-
cies while maintaining program correctness. This allows for more aggressive
optimizations. As speculation introduces a run-time overhead, it is vital to
perform a precise cost estimation to achieve a maximal performance gain and
to avoid performance degradation (in case of misspeculation). However, to
identify unlikely dependencies that could be ignored, the cost estimation re-
quires information about the probability of memory dependencies. We propose
to use machine learning to get these probabilities. In the second part of this
chapter, we reviewed corresponding techniques from machine learning. We
propose to use classification learning to automatically generate heuristics from
observations, and to use cluster analysis to automatically derive a program
classification to make the heuristics more precise. To assess the resulting pre-
dictor, we have presented different means to estimate predictor precision.

3 Related Work

The framework presented in this thesis proposes to use machine learning tech-
niques to automatically generate heuristics that can be used in a compiler.
Thus, clearly, work that makes use of machine learning in compilers is related.
We apply our general framework to the optimization of memory accesses, which
means work on the analysis of memory dependencies in programs as well as
work on the optimization of memory accesses (classic as well as speculative)
are also related. For each area in turn, we present and discuss related work
and compare our approach to that.

3.1 Machine Learning in Compilers

One central idea of using machine learning in compilers is to provide the static
compiler with knowledge about the dynamic program behavior at run-time,
for example, by automatically deriving heuristics from the observed dynamic
program behavior in a one-off training phase. This can entail substantial over-
head in the training phase, but the resulting predictors, which can then be
used in the compiler, are typically highly scalable and can be implemented
efficiently. This approach can be used to enrich or replace all analyses that
allow for unsafe information. Another application is to determine in which
order optimizations should be applied during compilation. It is obvious that
fixed optimization sequences, as used in common compilers, cannot get the
best out of every program. However, due to the combinatorial explosion, the
search space of all possible optimization sequences cannot be completely ex-
plored. Machine learning can be used to learn which sequences are promising
candidates, depending on characteristics of the considered program. Thereby,
it guides the search space exploration. As a special case, this can also be used
to predict parameters for certain optimizations, e.g., the unroll factor for loop
unrolling. In the following, we present approaches which use machine learn-
ing to respectively obtain predictors for program behavior, good optimization
sequences, and good optimization parameters. At the end of this section, we
compare our approach with the presented ones.

59

60 Related Work

3.1.1 Program Behavior

One popular example used in many compilers is static branch prediction as
proposed by Wu et al. [WL94]. The aim is to statically predict the target of
a branch to reduce stalls due to branch misprediction. The authors collected
profile data together with program information about the regarded programs.
The relationship between various static program properties and the branch
direction (taken/not-taken) was learned and yielded a couple of predictors.
For example, one heuristics predicts a branch-if-zero to be not-taken. Another
one predicts that the branch to a return statement in a function is taken. For
branch prediction, the result of all predictions is weighted and then combined
to yield the final result. For the considered programs, a perfect predictor would
have a miss rate of 10%"'. The proposed predictor reaches a miss rate of 20%,
which is far better than the 50% of a random predictor.

Another approach, which is more related to ours, was proposed by Panait et
al. [PSWO04]. The authors aimed to find a predictor, which identifies delinquent
loads, i.e., loads that lead to long cache stalls. They extracted static code
features out of assembler code and performed program runs to collect loads
that missed the cache. With that information, predictors were trained. The
resulting heuristics is intuitive, e.g., the more multiplications were used to
calculate an address, the likelier is a cache miss. The predictor was able to
identify a subset of 11% of the loads that was responsible for 96% of all cache
misses.

3.1.2 Optimization Sequences

While in a typical compiler, a couple of predefined optimization sequences are
available (=01, -02, etc.), it is obvious that there is not one single sequence that
is best for all programs. Instead, sequences were chosen that perform well in
the general case. On the other hand, it is not feasible to find for each program
the best optimization sequence?. For example, if we want to choose a sequence
of 10 out of 20 optimizations, we have already (n+'k), = 2 ~6.7-10" different
sequences, without considering shorter sequences or sequences in which an
optimization is applied multiple times. If we optimistically assume that one
sequence can be evaluated per second, this will take over 20.000 years. Typical
compilers have about 50 optimizations, and the optimization sequence is of
about the same length. Hence, this suggests to use machine learning to learn
which sequences may be advantageous for which kinds of programs. This
information can then be used to cut down this huge search space by only
exploring parts of it.

!The underlying assumption is that a predictor makes always the same prediction for a
certain branch instruction. Hence, in the presence of conditional jumps, even the perfect
predictor is not always correct.

2And even theoretically it is not possible, since the optimality of a sequence might depend
on the encountered program input.

3.1 Machine Learning in Compilers 61

The process of finding optimal sequences tailored to the considered pro-
gram is also called iterative compilation. Typically, in a first learning phase, a
substantial part of the search space is explored exhaustively to train the pre-
dictors. Then, the predicted information is used to measure the result for a few
interesting sequences. After that, several iterations may follow, which use the
run-time results to further explore other sequences. Almagor et al. [ACGT04]
investigate the structure of the search space and finds out that many local
minima are close to a global minimum. As a consequence, the authors pro-
pose to use hill-climbing with different random starts to find good sequences.
Their approach is an extension of the work by Cooper et al. [CSS99]. Agakov
et al. [ABC106] first consider only a moderate number of optimizations and
collect exhaustive data for this reduced search space (5 out of 14 available
optimizations). The authors analyze the structure of the search space and
find out that optimal sequences are scattered among the space. To avoid ex-
haustive search to find any of them, they use genetic algorithms together with
Markov models to guide the search for sequences. As training data, they use
the exhaustive information about the small search space (containing 88.000 se-
quences, and for each sequence code features of the resulting program and its
speedup over the unoptimized version). The trained predictor allows for finding
good sequences with limited effort. They evaluate their approach by applying
the predictor to a more realistic space (20 out of 82 optimizations, leading
to over 103 sequences). As a result, the predictor finds good sequences with
only a few iterations. This approach is extended by Dubach et al. [DCF*07].
There, the authors aim at actually predicting the performance impact of a
given optimization sequence. Artificial neural networks are used to build the
models. Unlike before, the model is trained only with a small portion of the
small search space (512 instead of 88.000 samples). Still, the model can predict
the performance gain precisely, even for the huge search space (in this case,
up to 20 out of 54 optimizations or 103 sequences). Cavazos et al. [CFAT07]
consider a fixed optimization sequence and aims at determining which opti-
mizations to apply. This leads to a smaller search space of 2* for a sequence
length of k. As features, they use performance counters, which collect many
low-level properties of the program (e.g., cache misses or number of branches)
and are offered by most modern processors. The model is trained using logistic
regression. The resulting performance is on average 17% better than with a
commercially available compiler for the considered platform.

3.1.3 Optimization Parameters

As with optimization sequences, a good choice of optimization parameters de-
pends on the considered program. Moss et al. [MUCT98] use classification
learning to predict the parameters of a scheduler to find the optimal order of
instructions. The result is a preference relation, which is used by the scheduler.
Similarly, in the work of Stephenson et al. [SAMOO03], the priority function of
the scheduler is learned automatically via genetic programming. The results
are sometimes even better than for manually written priority functions. Cava-
zos et al. [CMO04] present an approach to train a heuristics that decides whether

62 Related Work

or not to schedule. If compilation time is expensive, it might be advisable to
skip scheduling if the improvement is limited. The heuristics could reduce
the time spent in the scheduler to 25%, while keeping the same program per-
formance. Cavazos et al. [CO05] show how to learn whether or not a given
function should be inlined in Java, based on parameters like maximum callee
size, number of calls in the callee, size of the caller. For the machine learned
heuristics, a significant performance improvement could be achieved compared
to other heuristics. Stephenson et al. [SA05] propose to use classification learn-
ing to predict loop unroll factors, based on static loop features. The training
data is given by a set of loops, each described by its features and the best
loop unroll factor (determined empirically). Based on that, the best unroll
factor for new loops could be predicted in 65% of the time, which leads to a
performance improvement of 5% for the SPEC CPU2000 benchmarks.

3.1.4 Discussion

The previous sections gave an overview of the problems in compiler construc-
tion machine learning was used for, to demonstrate how fruitful the combina-
tion of both areas can be. The strength of machine learning is that concise
models can be automatically constructed from comprehensive training data.
These models condense the complex information and yield statically applicable
predictors. This can be either used to make huge search spaces manageable
or to provide the static compiler with knowledge about the dynamic run-time
behavior. The presented approaches are dedicated to a certain problem, for
which they use machine learning techniques. In contrast to that, we propose
a conceptual framework that can be applied to all kinds of program behavior.
Our novel concept of program classification can be used to improve the pre-
sented approaches. In the application of our general framework, we focus on
learning memory behavior, namely, memory dependencies and load latencies.
Learning memory dependencies has never been considered before to the best of
the author’s knowledge. Hence, we see our approach not as a competitor with
the presented ones, but as an extension. For learning load latencies, Panait et
al. [PSW04] have proposed a related approach. However, this approach dis-
tinguishes only two classes for a load, namely cache hit and cache miss. In
our approach, we use a finer classification. We directly predict the latency
of a load with an accuracy of 10 cycles (the load latency is discretized to 11
classes). By that, the load latencies can be estimated more precisely.

3.2 Memory Dependencies

To optimize memory accesses, knowledge about memory dependencies is re-
quired. This information can either be collected dynamically by profiling or
statically by program analyses. In the following, we describe related work
which uses profiling. After that, we give an overview of the state-of-the-art
of alias analyses and present the strengths and weaknesses of the different ap-

3.2 Memory Dependencies 63

proaches, and we discuss whether or not these static techniques are sufficient
for our purposes.

3.2.1 Collection of Memory Dependencies via Profiling

Profiling can be used to measure the actual program behavior at run-time.
Since the results are unsafe, it is typically used to collect branch and path
counts of a program. This can be used to identify hot regions, which can
then be optimized with increased effort. Chen et al. [CLD"04] present an
approach to use profiling to collect the actual data dependencies of a program
present at run-time for a given input set. To this end, the code is modified
such that each memory access is tracked. A virtual representation of the
memory (named shadow memory) is built and records for every address the
last defining access (i.e., the last store instruction that wrote to that address).
This is used to identify actual dependencies between instructions, e.g., which
instructions consumed the values written by another one. Since it is not feasible
to represent the memory completely, the authors propose to increase scalability
by sacrificing precision, and they map the actual address space to the smaller
shadow memory by hashing. Even with the thereby limited precision, the
run-time for collecting the dependencies is about 40 times higher.

3.2.2 Alias Analysis

For languages with pointer arithmetic like (', alias analyses are vital to cut
down the number of dependence edges in the DDG. While alias analyses have
also been proposed for other languages like Java®, we focus on alias analyses
for C.

As we have seen in Section 2.3.2, alias analyses come in different flavors.
We briefly present the most popular approaches and compare their results for
a running example, shown in Figure 3.1. Since we are interested in scalability,
we only consider the class of control-flow-insensitive and context-insensitive
analyses (F~C™). Andersen [And94] proposes a subset-based algorithm, which
is structure-unaware. It is considered to be the most precise approach within
the FF~C™ class, since in the constructed points-to graph, the out-degree of
a node is arbitrary (see Figure 3.1b). The algorithm is of cubic complexity
in the worst case, thus it does not scale too well for huge programs. The
major reason for the high complexity is the arbitrary out-degree of the nodes.
Consequently, Steensgaard [Ste96b] presents an almost linear alias analysis?,
which enforces an out-degree of one. This algorithm is also structure-unaware,
but Steensgaard presents an extension that considers structures [Ste96a]. The
analysis is based on type theory and uses equivalence classes, represented by

3 Java makes things easier on the one hand, since arbitrary pointer arithmetic is not possible.
On the other hand, new issues due to the dynamic type system are introduced, which
add other sources of complexity.

4Its complexity is bounded by «, the inverse of the Ackermann function.

64 Related Work

a,c —»bd]|

(c) Steensgaard (d) Das

Figure 3.1: C code and Resulting Points-To Graphs

efficient union-find structures. It is also classified as unification-based, which
means that the direction of a simple assign (see Table 2.2) is not considered,
which is the case for subset-based algorithms. As a result, the analysis is
less precise, compared to Anderson. This is evident in the results for our
example shown in Figure 3.1c. The unification-based approach leads to many
false dependencies, e.g., the points-to graph reports that y may point to a.
Shapiro et al. [SHI7] present an algorithm for which the precision can range
from Steensgaard to Andersen. They have a parameter k, which denotes the
maximum allowed out-degree in the points-to graph. With £ = 1, we have
Steensgaard’s algorithm, with & = oo, Andersen’s. However, scalability is still
bad for higher values of k. Das [Das00] presents another way of combining the
benefits of the algorithms of Steensgaard and Andersen. For the first level of
indirection, the direction of an assignment is considered, i.e., the algorithm is
like Andersen’s. This was motivated by the fact that pointers in C are often
used to establish call-by-reference for data structures. Hence, for the first
level, precise analysis is important. For further indirection, the unification-
based approach (like Steensgaard’s) should suffice, which keeps scalability of
the analysis. The algorithm is of quadratic complexity in the worst case, but
scales well. Due to the reported results, the analysis is almost as precise as the
(computationally more complex) analysis proposed by Andersen. This can also
be observed in Figure 3.1d, which is for the first indirection level equivalent
to Figure 3.1b. Note the so-called flow edge from the box containing ¢ to that
one with a. This edge indicates that the upper box also includes the lower
box, and thus establishes a subset-based approach for the first level.

For a broader overview and for a discussion of also control-flow- or context-
sensitive algorithms, respectively, there exist comprehensive survey papers,
which discuss the relevance of alias analysis, the role of the chosen analysis
precision and other important aspects like, e.g., choosing the right granularity
of the analysis (see Hind et al. [HP0O], Hind [HinO1], Ghiya et al. [GLS01],
Chen et al. [CLHY02]).

3.2 Memory Dependencies 65

Recently, also alias analyses to yield speculative dependencies have been
proposed. Ferndndez et al. [FE02] consider an alias analysis for assembler code.
For the propagation of the alias information along the CFG, the authors use
profiling information to only consider frequently executed paths. This makes
the result speculative, since not all possible paths are considered. Additionally,
also a safe alias analysis is performed. Hence, dependencies that are predicted
by the safe but not by the speculative analysis are marked as speculative.
Chen et al. [CHJLO04] propose a probabilistic alias analysis. However, the
probabilities depend on branch probabilities determined by profiling. Besides,
their analysis is very expensive and can only deal with code up to 1000 lines
of code. Silva et al. [SS06] present a probabilistic alias analysis, which is flow-
sensitive. The dependence information is represented by sparse matrices and
also relies on branch probabilities. The analysis time can amount to up to 5
hours for real-world programs.

Concerning the complexity classes of the analyses, it has been shown by
Landi [Lan92] that for control-flow-sensitive analyses, may-alias is not decid-
able and must-alias is not even semi-decidable. Horwitz [Hor97] proves that
control-flow-insensitive analyses are NP-hard if arbitrary levels of pointer in-
directions are admitted.

3.2.3 Discussion

In the previous sections, we presented an approach which collects the actual
dependencies for given input data via profiling. Also, the current state-of-
the-art of alias analyses was presented, to demonstrate the complexity of the
problem on the one hand and the imprecision even of today’s analyses on the
other. Scalable alias analyses are inadequate for our means, since they are
too imprecise in two ways: They report too many false dependencies, which
sacrifices optimization potential, and know only (at most) three classes of
dependencies, namely absent, maybe, and must. Two approaches (Ferndndez
et al. [FE02] and Chen et al. [CHJL04]) add a fourth class, speculative. While
this is a step in the right direction, it is still too imprecise for a precise cost
model. However, our approach allows for benefiting from the strength of those
approaches. Whenever the alias information reported by the alias analysis
is known to be exact (i.e., for the dependence classes absent and must), we
use it. Otherwise, we consult our heuristics. By that, the resulting predicted
program behavior can be expected to be much more precise. Alias analyses
that do not scale allow for better precision than their scalable counterpart. In
case of the approaches of Chen et al. [CHJL04] and Silva et al. [SS06], we even
get probabilistic dependence information. The latter approaches could also
be combined with our approach. However, until now, they do not scale and
cannot be practically used. Besides, it is unclear whether they can be more
precise than our approach, hence a comparison would be necessary.

The work by Chen et al. [CLD"04] is the only approach known to the
author to consider the actual data dependencies at program run-time. The
approach differs from ours in two significant points: First, the authors collect

66 Related Work

only actual dependencies and not all dependencies. However, this is not suffi-
cient in the presence of code motion, where new dependencies may occur when
two instructions refer to the same address. We do not consider dependencies,
but accessed addresses, from which we can infer all possible dependencies.
This information is stable w.r.t. code transformations. Second, they fail to
generalize from the collected data as we do via machine learning. For every
program under consideration, the data dependencies have to be collected. This
requires representative input data and leads to a significant overhead (the re-
quired time for profiling is 40 times the regular execution time). Conversely,
in our approach, we only require profiling in the one-off training phase. From
the collected information, we generate highly scalable predictors, which can be
efficiently implemented in the compiler.

3.3 Optimization of Memory Accesses

Many optimizations have been proposed to reduce latencies induced by loads.
Conservative optimizations either perform prefetching to bring the required
data into the cache, or they perform code transformations to reduce the num-
ber of expensive loads (via partial redundancy elimination) or to reduce the
encountered latencies (via code motion). Speculative optimizations also per-
form the mentioned transformations, but act more optimistically by deliber-
ately ignoring unlikely dependencies. Thus, they can exploit more optimization
potential. Prefetching is similar to speculation, since it loads data in advance.
The difference is that the prefetched values cannot be used in further com-
putations (i.e., prefetching performs a non-binding load), whereas the results
of speculative loads can be used (binding load)’. In the following, we present
approaches for conservative as well as speculative optimizations.

3.3.1 Conservative Optimizations

Prefetching

The idea of prefetching is to bring data into the caches before it is actually
needed. This can increase cache hit rates and thereby reduce the impact of the
slower main memory. Prefetching does not affect functional program correct-
ness, but merely cache behavior and thus program performance. Prefetching
requires non-blocking load instructions, 7.e., loads have to be executed in the
background. While its value is fetched, regular execution can continue.

For prefetching, it has to be decided which values to prefetch. This can be
done either by software or by hardware. In the latter case, complex logic is

5For a binding load, the result is stored in a register and thus can be used in the following.
This should not be confused with the term non-blocking load, which means that the load is
executed in the background while following instructions are being executed. Prefetching
as well as speculative loads both require loads to be non-blocking.

3.3 Optimization of Memory Accesses 67

required to detect regular patterns and to prefetch automatically. Examples
are iterative accesses to arrays within a loop. Software prefetching can be even
more complex, since the whole program can be considered. Again, loops are
the starting point. Prefetching loads can be used when iterating over arrays or
structures. However, prefetching can also impair performance: It leads to an
increased memory traffic, increases code size, and may lead to cache pollution
when applied too aggressively. Cache pollution refers to the eviction of useful
entries from the cache to make room for the prefetched values. As consequence,
this can lead to additional cache misses which would not have occurred without
prefetching.

Vanderwiel et al. [VL0OO] give a good survey of hardware and software
prefetching techniques and also discuss the downside of prefetching. One re-
search topic is to identify the stride value of memory accesses in loops, i.e.,
for accesses to regular structures, the increment which is added in each itera-
tion. Stoutchinin et al. [SAGT01] present an approach for prefetching, which
can also deal with pointer-chasing loops. However, the intrinsic problem is
that for structures in the heap, the access sequences are unpredictable, unless
the structures were allocated during an initialization phase without any other
intervening allocations. Wu [Wu02] determines the stride through profiling.
Different algorithms are presented and compared. Puzak et al. [PHES05] give
a further discussion on the profitability of prefetching.

Code Transformations

Partial redundancy elimination is used in most compilers. It applies to redun-
dancy in general, i.e., to arithmetic expressions as well as memory accesses.
However, in the latter case, it is more difficult to determine whether or not a
value is still valid, due to the aliases among memory accesses. For code motion,
loop invariant code motion is a popular example. The idea is to move expen-
sive instructions out of hot regions, which are executed frequently (e.g., loops).
This is only possible if the result is not modified by the other instructions in
the region. See, e.g., Muchnik [Muc97] for more details. The mentioned op-
timizations are important to achieve a good program performance. However,
their weakness is that they have to rely on conservative program analyses,
since otherwise, program correctness is jeopardized. Especially for programs
with many memory accesses, this can mean that much optimization potential
is neglected.

3.3.2 Speculative Optimizations

Basically, speculative optimizations allow us to make assumptions, which are
not proved to be true. Thus, they allow the compiler to be more optimistic,
which is justified, since the over-approximation of static program analyses is
often highly imprecise. Speculation can be used to guess about the value
of variables, to invoke threads speculatively, and to speculate about memory
dependencies. In our approach, we consider the last case. Every classic op-

68 Related Work

timization that regards memory dependencies can be made speculative. This
has been done for partial redundancy elimination as well as for scheduling.

Nicolau [Nic89] is one of the first to propose speculation on data depen-
dencies, in this case for array accesses. This allows for ignoring potential
dependencies between array accesses, for which the index expressions can-
not be proved to be different (e.g., because one of them was non-linear), as
long as corresponding check instructions are inserted appropriately. Mahlke et
al. [MCH™"92] generalize this approach. They propose a framework for schedul-
ing on parallel processors and propose speculation to reduce latencies induced
by loads. While they used simulation to evaluate their approach, Rogers et
al. [RL92] and Bringmann et al. [BMH'93] propose hardware extensions to
cope with speculation. This idea led to the proposal of the HP PlayDoh ar-
chitecture (mentioned by Abraham et al. [AR94]), which in turn led to the
development of the Intel Itanium (see Huck et al. [HMR100]). Speculation
was used in many other generic compiler frameworks, e.g., in the work of
Ebcioglu et al. [EGK'94], which proposes speculative code motion, and in
the approach of Deitrich et al. [DH96], which considers speculative scheduling.
August et al. [ACMT98] present a simulator for the Itanium, for which pred-
ication and speculation lead to great performance improvements. From that
point on, most approaches for speculation on data dependencies consider the
[tanium architecture.

Ju et al. [JNMWO0O] present a comprehensive framework for speculative op-
timization during list scheduling, and also considers the optimization of chains
of instructions. After scheduling, recovery code is generated where required.
Simple heuristics are used to determine whether or not a memory dependency
due to aliasing should be marked as speculative (comparison of the correspond-
ing base addresses). Lin et al. [LCH*04] present a compiler framework with
a speculative extension of SSA form. Opportunities for speculation are anno-
tated in the IR via the speculative flag. As optimization, speculative partial
redundancy elimination (SPRE) is presented. This approach is a generaliza-
tion of the work of Ju et al. [JNMWO00]. While the authors propose to annotate
whether or not dependencies are speculative, they only use a binary flag, which
cannot be used for a precise cost model. Another optimization, speculative reg-
ister promotion, is presented by Lin et al. [LCHYO03]. Scholz et al. [SHK04]
propose another solution for SPRE. The authors extend their previous work on
classic PRE. Their formalization considers execution time as well as program
size and can optimize for a combination of both. Rabbah et al. [RSEW04] con-
sider a more general approach. First, expensive loads are identified (using the
results from Panait et al. [PSWO04]). Then, the corresponding load dependence
chains (LDCs), which are required for, e.g., address calculations, are deter-
mined and optimized. The maximum length of an LDC is limited to 7 instruc-
tions. The authors report significant performance improvements, however, the
results are hard to compare, since only a subset of the SPEC benchmarks is
considered. Dai et al. [DZHY05] give a detailed discussion of the different cases
in speculative code motion, together with the implications for recovery code
generation. Besides, speculative stores are considered, which have to be im-
plemented completely in software, since the Itanium has no hardware support

3.3 Optimization of Memory Accesses 69

for that. Lin et al. [LHY'06] give further details on the generation of recov-
ery code in the framework proposed by Lin et al. [LCHYO03]. In [GGO0§], we
considered the speculative optimization of a certain class of memory accesses,
namely those induced by the use of global variables. Those variables have to be
reloaded after calls to functions that might change them. However, if the value
remains unchanged, the reload is redundant. We performed speculative regis-
ter promotion for globals to avoid those redundant reloads. The optimization
performs a cost estimation to decide which variables to optimize. We could
obtain a performance improvement for many of the SPEC CPU2006 bench-
marks, while avoiding performance degradation in all cases. Also, finding the
optimal solution for speculative scheduling was considered. Winkel [Win04]
models the scheduling problem as an integer linear program. They consider
speculation and find the optimal solution. However, their approach is very ex-
pensive, so that only small programs/code regions (hundreds of lines of code)
can be considered.

3.3.3 Discussion

In the previous sections, we presented a selection of approaches to optimize
memory accesses and to reduce the experienced memory latency. Especially
relevant for our approach are existent speculative optimizations. While some
approaches propose special speculative optimizations (e.g., speculative register
promotion as presented by Ju et al. [JNMWO0O0] and by us in [GGO08], SPRE
as presented by Lin et al. [LCHT04] and by Scholz et al. [SHKO04]), our ap-
proach is more general and comparable to the work of Lin et al. [LCHT04]
and of Panait et al. [PSW04]. Concerning the code transformation, the latter
approaches and ours have similar capabilities. However, in contrast to those
approaches, we use a precise cost model to predict the performance gain. This
model uses information about expected load latencies, probabilities of mem-
ory dependencies, and branch frequencies. Therefore, we argue that costs are
much more adequately modeled in our approach, which allows for an increased
performance improvement. Additionally, the cost model contains architectural
parameters. This makes it possible to transfer our approach to other architec-
tures that do not offer hardware support for speculation.

On top of that, our general framework proposes a unified way of using ma-
chine learning for obtaining more precision in the compiler. The framework can
be instantiated for various application scenarios. To demonstrate its practical
applicability, we applied it to the optimization of memory accesses. To the best
of the author’s knowledge, a general framework for combining machine learn-
ing techniques with speculative compiler optimizations has not been proposed
before.

4 A General Framework
for Intelligent Speculative
Optimizations

Optimizing compilers have to face the challenge to generate programs with an
efficient run-time behavior while merely looking at the static program code.
The optimizations are guided by program analyses, which estimate the run-
time behavior. However, the necessity of correctness forces the analyses to
err on the safe side, which may lead to a severe over-approximation. As con-
sequence, the optimizations have overly pessimistic assumptions on the pro-
gram behavior and cannot exploit the available optimization potential. In
this chapter, we present our general Framework for Intelligent Speculative
Compiler Optimizations (FrISCO). FrISCO overcomes the problems of con-
servative analyses by admitting unsafe, but more precise analyses, which are
automatically obtained via machine learning, together with speculative opti-
mizations, which ensure the program correctness in all cases.

To automatically construct a model of the dynamic program behavior, we
propose to use machine learning techniques. This allows for the automatic
construction of heuristics that can be used to predict dynamic behavior solely
based on static code features. Training happens in a one-off preparation phase.
The resulting predictors are typically based on a simple representation (e.g.,
decision trees) and are thus highly scalable (i.e., can process many queries in a
short time). They can be used in the compiler as oracles, which precisely pre-
dict the estimated dynamic program behavior. Hence, instead of considering
all cases, including pathological ones, as equally likely, the compiler can focus
on the likely behavior.

4.1 Overview

We propose a conceptual framework that brings intelligence to compiler opti-
mizations by providing them with knowledge about dynamic program behav-
ior. The knowledge is gained automatically by machine learning from profiling

71

72 A General Framework for Intelligent Speculative Optimizations

} Programs "

/

! ‘ Machine Learning ‘ }

source
code :\': _)

\Compiler Framework

Figure 4.1: Extending Compiler Frameworks with FrISCO

data. Our framework can be used to extend existing compiler frameworks, es-
pecially their analyses and optimizations. Figure 4.1 illustrates our approach.
At the bottom, we see a conventional compiler, which performs several analyses
and optimizations. Our framework extends conventional compiler frameworks
by intelligent compiler optimizations, together with the corresponding analy-
ses and cost models. The idea of our framework is to first collect static code
and program features as well as profiling data for a representative program
suite. From that, machine learning automatically generates behavior predic-
tors, which can be used as heuristics to guide the optimization and to estimate
the performance gain via the cost model.

Our framework comprises three phases (see Figure 4.2): Analysis, Machine
Learning, and Speculative Optimization. As a prerequisite, the framework re-
quires a mean of collecting the desired behavior through profiling as well as
a comprehensive and representative suite of programs to obtain the training
data. In the first phase (Analysis), the compiler translates the program suite
to binaries and collects their static code features at the same time. Then, pro-
filing collects information about the dynamic program behavior. This yields
the data required by the next phase, namely the code features as well as the
corresponding behavior. In the second phase (Machine Learning), a model is
automatically constructed that explains the relationship between features and
behavior. This model yields the Behavior Predictor, which can be integrated
into the compiler to make predictions for new programs. In the third phase
(Optimization), the predictor is used by speculative optimizations, which use
the predictions for the construction of a cost model, which determines whether
or not a given transformation is considered beneficial and should be applied.
While especially the first and also the second phase entail a significant over-
head, they are only executed initially. The collected data is condensed and
abstracted in the generated predictors, which can efficiently be implemented.
In the final phase, the compiler consults the predictors. Due to their high

4.1 Overview 73

| »—> | C(;mpiler | —>» —> VPr(;filelrr

) P

Machine
Learning

\

f
2 Machine Learning Predictor

v

(Cont Model Q3 :
- Speculative -

3. Speculative Optimization Optimizations

Figure 4.2: Phases in FriSCO

scalability, the additional overhead is negligible (and actually lower than those
of conservative program analyses).

The framework aims at providing the optimization with heuristics to es-
timate the dynamic run-time behavior, which are automatically constructed
by ML techniques. Since all kinds of programs are considered, the program
behavior can differ significantly from program to program. Hence, if only one
predictor is trained for all programs, it can be expected that it is either precise
for some programs and highly imprecise for the rest or quite imprecise for all
programs. As a solution, we introduce program classes to group programs with
similar behavior together. The idea is that for each program class, one pre-
dictor is trained. Since programs in one class behave similarly, the predictor
can yield precise results. Instead of having one predictor for all programs, we
now have one predictor per program class. Additionally, we train a program
class predictor, which determines the program class for a previously unseen
program.

The extended framework is shown in Figure 4.3. In the analysis phase, we
extend the compiler by also collecting static features of a whole program. This
is later required to train the program class predictor. In the learning phase,
we automatically group similar programs into program classes. This can be
used to train the program class predictor, which learns the relationship between
static program features and the corresponding program class. Additionally, we
build one behavior predictor for each program class. In the optimization phase,
we now have a two-stage process: First, the program class of the considered
program is determined. Then, the corresponding behavior predictor is taken,
and it is used to derive the cost model and thereby guides the optimization.
In the following, we describe each phase of our framework in detail. We start
with the one-off training phase, which comprises the analysis phase and the
machine learning phase, and show then how the obtained predictors can be
used to guide speculative optimizations.

74 A General Framework for Intelligent Speculative Optimizations

| »—> | C(;mpiler | —>» —> VPr(;filelrr

[v
. Analvsi [ProgFeat@ [CodeFeat@ '
1. Analysis j
Machine

Learning

L.

<ProgC1ass > i Behavior
. Machine Learning Predictor 6 Predictors

(Cost Model & :
- Speculative -

Speculative Optimization M

N

‘,w

Figure 4.3: FriSCO: Extended Framework with Program Classes

4.2 Analysis

In the analysis phase, we collect the data that is required by the subsequent
machine learning phase, namely the code and program features and the pro-
gram behavior. The investigated program behavior determines the abstraction
level, at which code features as well as the program behavior are analyzed.
Examples for the abstraction level are instructions, pairs of instructions, vari-
ables, basic blocks, or loops. The abstraction level defines the entity domain
&, which contains all possible entities (e.g., all possible load instructions) and
is infinite. We consider a representative suite of programs P = (p;). For each
program p; in turn, the concrete entity domain & C £ is determined, which
contains the entities occurring in the program. These entities constitute the
base, upon which the following analyses operate. First, the static features have
to be collected for each program in the program suite by a program analysis.
This includes the code features, which are collected for the regarded entities of
a program, as well as the program features, which represent the characteristics
of a whole program. Then, the regarded dynamic behavior for representative
input data has to be recorded via profiling. We describe both steps in turn.

4.2.1 Program Analysis

To obtain the static code features for the entities of a program, the compiler
has to implement the projection function mepqt : € — Frode, Which maps a
given entity to its code feature vector. To that end, the regarded entity to-
gether with its context is inspected and properties relevant to the considered
program behavior are collected. This yields the feature vector. For example,
if £ denotes load instructions, the feature vector could contain information
about the data types of the referenced variables, about the complexity of the
address calculation, and about the number of memory instructions in the sur-

4.2 Analysis 75

rounding basic block. Since the collected features are crucial for learning the
relationship between feature vector and corresponding class, it is important to
collect many features. Later on, feature selection can be performed to keep
only the most relevant features. By that, the learned model gets simpler and
overfitting can be avoided. Based on function 7s.,:, we can collect the features
for all m entities of a program with the projection Il feqs : P — Feoge - For a
given program p;, this yields the code feature matrix CFeat; € Foq.".

Additionally, we collect for each program one program feature vector. That
vector represents the characteristics of a whole program that are expected
to have an influence on the regarded program behavior. For example, the
program feature vector could contain the fraction of integer/floating point
variables w.r.t. all variables as well as the average basic block size. To obtain
the vector, the compiler implements the projection function mypar : P — Fprog-
Thereby, we obtain for each representative program p; the program feature
vector pfeat; = mypear(pi). This is later used to train the program class predictor.

4.2.2 Profiling

By profiling, we collect the actual behavior for the entities of p;, which is used
to implement the projection function mpep, : € — Open. Since at run-time, some
parts of a program are executed multiple times, while others are not executed
at all, the result of profiling for a program p; on a given program input is the
function Iy, : P — Pot(Opep), which maps each entity to a (possibly empty)
set of observations. For example, if we consider load instructions as entities
and their latencies as behavior, profiling yields for each load instruction of a
program a (possibly empty) list of experienced latencies. Since we consider
classification learning, we define the classes of behavior Cp;, an entity can
show, and we specify a function Iy, : Pot(Oper) — Cpen, which performs the
classification for a set of observations. For our example of load latencies, we
could take the average of all experienced latencies and discretize this value by
defining a finite set of equivalence classes. The observation sets for an entity
may be empty, and it depends on the considered behavior, how this should
be interpreted. One way is to use a default class for that case. (e.g., for the
access frequency of a variable, an intuitive default value would be 0). Another
way is to consider only entities for which an observation was made, i.e., for
a program p;, to consider only & = {e € & | men(e) # @} (e.g., this would
be appropriate when predicting the cycle execution time of instructions). As
result, profiling yields for each e; its behavior beh; = I(men(e;)), and for the

/

m’ entities (m' < m) of p;, this constitutes the vector Beh; € Cpep™ .

Formally, for our program suite P = (p;), we now have the program features
PFeat = (pfeat;) and, for each program p; and for each entity e;, the static code
features cfeat; and the profiled behavior beh;, yielding CFeat; = (cfeat;), Beh; =
(beh;) for a program p; and altogether (CFeat;) and (Beh;).

76 A General Framework for Intelligent Speculative Optimizations

4.3 Machine Learning

In the second phase, we use machine learning techniques to automatically con-
struct models, which explain the relationship between the static code features
and the dynamic run-time behavior. To increase precision, similar programs
are grouped together into program classes, and a set of specialized predictors
is constructed. The phase has three steps: identify the program classes (Cprog),
train the program class predictor (Pp¢), and build one specialized behavior pre-
dictor for each class (Pgeh), which yields the repository of behavior predictors.
In the following, we first regard the overall goal, namely to obtain a behavior
predictor. Then, we describe the mentioned three steps to obtain more precise
predictions of the run-time behavior via program classification. After that, we
discuss how conservative program analyses can be used to further improve the
results of the predictions.

4.3.1 Behavior Predictor

From the preceding analysis phase, we have a set of m observations, consist-
ing of static code features together with the corresponding observed dynamic
behavior. The domain of one feature vector is denoted as F,.q4.. Because we
consider classification learning, the regarded dynamic behavior was discretized
to a set of classes Cyen. Thus, the training data is given by the feature matrix
CFeat € F7,. and by the class vector Beh € C},. With that, we can use a ma-
chine learning algorithm (e.g., classification trees) to automatically generate a
model from the training data. The algorithm aims at finding a model which
represents the relationship between features and classes with minimum error.
In other words, a model is constructed that explains the relationship best for
the considered training data. The model can then be fed with a feature vector
and yields as result the predicted class. This can be used to determine the pre-
diction error for the training set. But more interestingly, the model can be used
as a predictor and can be applied to new, previously unseen feature vectors. By
implementing the underlying algorithm of the considered learning method, an
executable heuristics can be automatically generated from the trained model.
This heuristics can replace a program analysis in the compiler’ and provides
the optimization as well as the cost model with precise information about the
expected run-time behavior.

Because our representative program suite contains multiple programs, we
also have multiple sets of training data. This poses the question how to con-
struct one predictor from that. To that end, we can choose from two com-
bination techniques: Either, the data sets of the programs are merged and
upon this data, one predictor is trained. Or, for each data set, one predictor
is trained, and to obtain the resulting predictor, each of these predictors is
consulted to derive the final prediction. In the latter case, there are again dif-

!Note that the considered program behavior may be non-functional (e.g., the execution
frequencies of basic blocks) as well as functional (e.g., the values of variables or expres-
sions).

4.3 Machine Learning 77

‘ Pred ?Omp ‘ Pre dYote é

jAf training

s
1\,5\,,\”,1?;”\ ,,,,, - (=]
merge data ﬁ training ﬁ

.@. (©J(e,) - (o)

(b)

Figure 4.4: (a) Combination of Data vs. (b) Combination of Predictors

ferent possibilities to combine the results, or votes, from the separately trained
predictors:

m take the majority vote and break ties by selecting the minimum solution
m take the majority vote and break ties by selecting the maximum solution

m combine all votes and derive an average value if appropriate for the
considered behavior (i.e., if the behavior is represented by quantitative
classes)

The first case, combination of the training data, is shown in Figure 4.4a.
Formally, the new predictor P is constructed as follows (with CFeat; and Beh,
denoting the training data for each program j):

P = train(U; CFeat;, U; Beh;)

The second case, combination of the predictors gained for each program, is
shown in Figure 4.4b. Formally,

P = @&P;, with P; = train(CFeat;, Beh,),

with @ either mode,,;,, mode,,q., or average. The functions mode,,;, and
mode,,q. are defined as follows:

modemin(0) = {e € O[Ve' € O - ||O]|e > [|O|er v (||O]le = [|O]|e Ae <€)}
modeme(0) = {e € OVe' € O - [[Olc > [[O]]e V ([[O]]c = [|O]]e Ae =€)}

4.3.2 ldentification of Program Classes

So far, we considered how to construct one universal heuristics for a given
behavior, which is expected to predict the behavior of all kinds of programs.
Given the great diversity of programs, however, the idea of one universal pre-
dictor is not appropriate. Instead, we propose to use program classification
to obtain a set of specialized predictors. For a given program which is to be
optimized, we can choose the predictor that suits best that program’s charac-
teristics to predict its dynamic behavior.

78 A General Framework for Intelligent Speculative Optimizations

; ‘ SA Clustering
N] R
7o~ [ProgBehavl): _ - - -~ Nt
¢ 1 ; .7 Distance Program

s

A ML @/ Matrix Classes

B) = Coderea) oM
®

v ’

Behavior Error
Predictors Matrix

Figure 4.5: Three Ways to Identify Program Classes

To identify program classes for the programs in the training set, the idea is
to group (or cluster) similar programs together. The question is how to define
similarity. Based on that definition, a dissimilarity or distance matrix? can be
constructed, which is then used by clustering algorithms to form the classes.
Three different kinds of information can be used to define program similarity
(see Figure 4.5):

® Static Code Features Define similarity based on the static code fea-
tures. This puts programs together that have similar code characteristics.

@ Dynamic Behavior Define similarity based on the dynamic behavior as
obtained by profiling. This can be used to group programs with similar
dynamic behavior.

® Mutual Predictability Define programs as similar that explain each
other with little error. To this end, we train a predictor for each program
and use it to predict the behavior for every other program in the training
set. If we compare the predictions with the results from profiling, we have
an error for each pair of programs, which yields an error matrix. This
matrix can directly be used as distance matrix for the cluster analysis. As
a result, we obtain program classes such that the inner class prediction
error is minimized.

Which similarity measure is best depends on the considered behavior as well
as the selected programs. In the validation phase, different criteria can be com-
pared by performing the corresponding clustering and measuring the induced
error for the behavior predictions. To perform clustering, machine learning
offers various unsupervised algorithms, which cluster entities based on a dis-
tance measure. Besides, we pose the following constraints to obtain reasonable
clustering: To prevent trivial classes, we define a minimal size each class must
have (minClassSize). Similarly, a minimal number of program classes is defined
(minClassCount).

2While the algorithms for cluster analysis typically use a distance measure, it is obvious
that also a similarity measure can be used because the one can easily be transformed
into the other.

4.3 Machine Learning 79

ProgFeat
rogClass
Programs ,,

Program
Classes

Figure 4.6: Construction of the Program Class Predictor

At the end of this step, we have identified a set of k& program classes Cppg =
{c1, €9, , ¢, }. Additionally, each program p; is assigned to its corresponding
class pc; € Cprog, expressed by the vector PC' = (pc;) € Cprog”-

4.3.3 Program Class Predictor

The idea of the concept of program classes is to obtain more precise predictors
for program behavior by grouping programs with similar behavior together
and by building a separate behavior predictor for each program class instead
of using a general predictor for all programs. This leads to a repository of pre-
dictors, which is given by training one behavior predictor per class. Then, for
a given program, its program class can be determined to select the appropriate
predictor. To this end, the program class predictor is built.

The clustering performed in the previous step yields for the n programs
(p;) the corresponding program classes PC = (pc¢;) € Cproy"- In the initial
analysis phase, we also collected the static program features of the programs
PFeat = (pfeat;) € Fproy". From PFeat and PC, we can train a predictor for
program classes Ppc : Fprog — Cprog, Which can be used to predict the program

class of a previously unseen program (see Figure 4.6).

This predictor allows the compiler to use a behavior predictor tailored to
the considered program. Given that we have one behavior predictor for each
program class, the compiler can select the appropriate one. As result, the
predictions of the dynamic run-time behavior can be expected to be more
precise than if only one general behavior predictor would be used.

4.3.4 Repository of Behavior Predictors

Opposed to Section 4.3.1, where we considered to build only one behavior
predictor for all programs of the program suite, we now construct a set of
specialized behavior predictors to increase the precision of the predictions. As
a result of the identification of program classes, the programs of our repre-
sentative program suite are grouped into program classes. The idea is now to
construct one specialized predictor per program class, which yields the repos-
itory of predictors. To obtain the predictor for a given program class, the
features and the profiling data sets of the corresponding programs are used as
training data ((CFeat;), (Beh;)). As described in Section 4.3.1 the data sets

80 A General Framework for Intelligent Speculative Optimizations

stafic, Program
analystSy Classes
Programs ' !
_) 3 v
W Predictor i ?
iictor | __, (8) @ ®
Combination e e
Predictor
Repository

/Behavior

Predictors

Figure 4.7: Construction of Behavior Predictors

are combined to obtain one predictor. As a result, for each program class j, a
behavior predictor Py, is constructed. Figure 4.7 shows the overall process.

4.3.5 Combination with Conservative Analyses

While one aim of our approach is to overcome the inherent imprecision of con-
servative program analyses, our approach also allows for benefiting from them.
For example, in many cases, a program analysis can tell whether the reported
behavior is definitely correct (i.e., exact) or whether it is only approximated
due to insufficient information. Then, the result of the program analysis can
be used when exact, and otherwise, the heuristics can be consulted. On top
of that, the result of the analysis can be even used as input for the heuristics.
Figure 4.8 illustrates this idea. As a result, the overall predictions get more
precise by combining heuristics with conservative program analyses.

In this section, we have presented how machine learning techniques can
be used to automatically construct heuristics from the data collected in the
preceding analysis phase, namely static code features together with profiled
dynamic behavior. The heuristics predict the dynamic behavior of previously
unseen programs, solely based on static features. We also presented how to
automatically perform program classification, which leads to a set of specialized
predictors. With that, we can select the most appropriate predictor for a given
program and thereby obtain more precise predictions. Finally, we have seen
how the heuristics can benefit from conservative analyses. With the methods
presented in Section 2.5.3, we can assess the precision of a predictor by applying
it to new data for which we know the correct classes. We can also compare
different parameters of the learning phase against each other and determine
which performs best. For example, we can compare the different combination
schemes presented in the previous section to find the best one. Or we can

,,,,,,,,,,,,, IS

4’ Program .
) -)

approx

Figure 4.8: Combining Program Analyses and Heuristics

4.4 Speculative Optimizations 81

____, |Program HW
Analysis | | Model

|

S

:
— Optimization —

Figure 4.9: Black-box View of Compiler Optimizations

perform different program classifications and identify the classification that
leads to the highest precision. Especially, this gives us a mean to evaluate the
improvement that we obtain by program classification.

4.4 Speculative Optimizations

In the final phase of FrISCO, the predictors created via machine learning are
used by one or more speculative compiler optimizations. The optimizations use
the predictors to estimate the dynamic behavior of the considered program.
Using these estimations, a precise cost model is derived, which helps to decide
whether or not a given transformation is beneficial. In the following, we first
take a closer look at how optimizations explore the search space to find trans-
formation sequences. We focus on heuristic optimizations, which only explore
the search space partially and which iteratively decide which transformation to
apply. We compare speculative optimizations with their conservative counter-
parts to illustrate how speculation increases the optimization potential. After
that, we present how the machine learned predictors are used to build a precise
cost model. With that, promising candidates can be selected while at the same
time, transformations that would degrade the performance can be avoided.

4.4.1 Search Space Exploration

Compiler optimizations transform the IR of a given program to improve it
with respect to the regarded objective function (e.g., efficiency, code size). A
black-box view of a compiler optimization is shown in Figure 4.9. The IR of
the program is transformed to yield the optimized IR’ The optimization is
performed with respect to a cost model, which is used during the optimiza-
tion. It receives information about the program via program analysis as well
as about the considered target architecture via a hardware model®. How the
actual transformation of the IR is performed, varies from optimization to op-
timization. There is no general approach to model all kinds of optimizations.
However, all optimizations can be thought of as a function that transforms
the program into another version. The set of all possible program versions
an optimization can achieve from the original program constitutes the search

3In case of machine-independent optimizations, the hardware model is not needed.

82 A General Framework for Intelligent Speculative Optimizations

— afﬁa
_,x
IR Program [% Cost
Analysis Model
@)
Applicable :
Transformations —X)

Figure 4.10: Optimization Step for Conservative Optimizations

space of the optimization. In Section 2.1.4, we have seen that there are optimal
optimizations, which explore the whole search space and hence yield the best
solution (possibly at the price of feasibility), and heuristic optimizations, which
only explore the search space partially and trade off optimality for efficiency.
Optimality, however, is only relative to the considered cost model. If the cost
model is based on approximated information, it is questionable whether the
yielded so-called optimal solution is actually optimal. In this situation, heuris-
tic optimizations are preferable. They are naturally suited to approximated
information and besides, they perform the transformation efficiently. Hence,
we consider the approach of heuristic optimizations, which transform the pro-
gram iteratively and which explore the search space only partially.

As we have seen in Section 2.1.4, the transformation performed by an opti-
mization can be thought of as a sequence of simpler transformation steps. To
construct the sequence, the optimization has to explore the search tree built
by all possible transformation sequences. Due to combinatorial explosion, the
search tree is huge, and complete exploration is not feasible. Hence, we consider
the optimization to be greedy: Instead of actually constructing the complete
tree, it is only explored locally. The transformation sequence is built incremen-
tally. At each point, all applicable transformations are determined and rated
with their expected gain. Then, the best one is selected and appended to the
sequence. This is iteratively repeated until either a given quality of the code
is reached, no advantageous transformation steps are left, or a given number
of transformation steps was performed. Most proposed compiler optimizations
can be mapped to this model. In the following, we take a closer look at the op-
timization step, which decides which transformation to apply. To illustrate the
advantages of speculative optimizations over their conservative counterparts,
in the following, we compare both alternatives.

4.4.2 Increased Optimization Potential

The optimization step for conservative optimizations is shown in Figure 4.10.
Starting on a given IR, we assume that n transformation steps can be applied,
which respectively yield the transformed IR;. For each IR;, the estimated dy-
namic program behavior yielded by program analysis is used to first decide
whether the corresponding transformation step is safe, i.e., is guaranteed to
maintain the program semantics (shown in the figure by the green check marks
and by the red crosses, respectively). If so, second, the results from program

4.4 Speculative Optimizations 83

Cost

Heuristics Model

Applicable
Transformations

Figure 4.11: Optimization Step for Speculative Optimizations

analysis are fed into the cost model, which yields the corresponding expected
performance gain GG; € N. In case of machine-dependent optimizations, this
also takes the hardware model into account. If a transformation step is ren-
dered unsafe, it is not considered for selection. From the safe transformation
steps, the best one is selected, and we proceed as before. Since the program
analyses are conservative, many if not most of the possible transformation steps
will be rendered unsafe. As a consequence, much of the optimization potential
is wasted.

Speculative optimizations allow us to overcome the limitations introduced
by conservative optimizations and exploit the full optimization potential. The
optimization step is slightly changed (see Figure 4.11). As opposed to the con-
servative case, speculative optimizations consider also unsafe transformation
steps, which cannot be guaranteed at compile-time to be semantics preserving.
In those cases, special recovery code has to be added, which dynamically en-
sures correctness at run-time (denoted in the figure by RC;). It checks whether
the speculative assumption was true. If that is not the case, i.e., in case of mis-
speculation, corresponding code is executed which restores the correct system
state. The cost model reflects the effects of the transformation step on the IR
as well as the estimated additional cost for the recovery code in case of misspec-
ulation. For speculative optimization, heuristics instead of program analyses
are consulted to estimate the dynamic run-time behavior and to thereby con-
struct the cost model. Since heuristics are allowed to yield unsafe information,
they can provide more optimistic and hence more precise information and thus
render more transformation steps applicable.

4.4.3 Cost Model

Speculative optimizations allow for performing possibly unsafe transforma-
tions, thereby increasing the optimization potential. In doing so, it is im-
portant to perform a precise cost estimation, which rates the optimization
candidates, to find good transformation sequences. While speculative opti-
mizations in general allow for using heuristics to rate the candidates, in our
proposed FrISCO framework, we propose to use machine learning to auto-
matically generate predictors which can be used as heuristics. This allows for
the automated construction of precise, highly scalable heuristics. To increase
the precision of the predictors, we perform program classification to have one
specialized predictor per program class. The corresponding optimization step

84 A General Framework for Intelligent Speculative Optimizations

ProgClass
Predictor

i Predictor
B/ Repository

Behavior Cost
Predictor Model

Applicable
Transformations

Figure 4.12: Optimization Step in FrISCO

is shown in Figure 4.12. First, the program class of the considered, previously
unseen program is determined by the program class predictor. With that, the
appropriate behavior predictor can be selected from the predictor repository.
By that approach, the dynamic run-time behavior of a program is precisely
predicted by a predictor tailored to its corresponding program class. This in
turn leads to a precise cost model, which allows for balancing the expected
gain due to speculation against the expected overhead in case of misspecula-
tion. The high scalability of the generated predictors further guarantees only
limited compile-time overhead. In fact, since predictors are typically more ef-
ficient than program analyses, the overhead can be expected to be less as for
program analyses in the case of conservative optimizations.

In this section, we have described a generic algorithm for speculative op-
timization. The program is iteratively transformed to improve its run-time
behavior. At each step, for all applicable transformations, the resulting per-
formance gain is determined with the help of the cost model, and the transfor-
mation with the highest gain is selected. Since the optimization is speculative,
a transformation may require additional recovery code to guarantee program
correctness in all cases. This is considered by the cost model. The cost model
relies on the behavior predictor, which was automatically generated via ma-
chine learning in the previous phases of the framework, to predict the run-time
behavior of the program.

4.5 Instantiation of the General Framework

The presented FriSCO framework can be instantiated for different kinds of
speculative optimizations*. Both the assumptions of the considered dynamic
program behavior as well as the model of speculative optimizations are so
general that most proposed approaches can be mapped to it. Table 4.1 lists
some examples for possible instantiations. The chosen instantiation determines
the abstraction level, i.e., at which level the behavior is observed (i.e., it
defines &), as well as in which way the behavior is collected (mpep). This

40f course, the framework can also be used for conservative optimizations.

4.5 Instantiation of the General Framework 85

Optimize Predict Abstraction Level
critical path length | required time (cycles) | instruction

code layout execution frequency basic block, trace, function
loop layout loop iteration count loops

execution time recursion depth function

mMemory accesses dependence degree pair of memory instructions
register promotion | access frequency variable

memory usage dynamic size variable

Table 4.1: Exemplary Instantiations of FriSCO

also determines which code features are collected (Feoge, Tefear) and how the
behavior is mapped to a class (I). Additionally, we have to determine which
program features should be collected for program classification (7peq). It is
obvious that the analysis part and the optimization part of the framework can
be used independently. As a consequence, it is possible to combine different
instantiations of FrISCO. Thus, one optimization can use multiple predictors
for different aspects of dynamic program behavior, while on the other hand,
one behavior predictor can be used by multiple optimizations.

To decide how to instantiate the framework, the typical starting point would
be to select a speculative optimization that is to be performed (see Figure 4.13).
This includes the derivation of a cost model, which is also dependent on the
hardware (hardware features like size of the register set, cost of speculation).
Based on that, it can be determined which aspects of dynamic program be-
havior are relevant. This in turn concretizes the analysis phase, since it de-
termines the abstraction level and which code features and which dynamic
program behavior should be collected. While the second phase for machine
learning is generic, it may also prove advantageous to tailor this phase to the

Feature Selection
********** >| Profiling Algorithm

@ DatalCharaclerislics @
. Requi
Machine ML Algorithm eqmrgd
Y - > Dynamic
Learning ML Parameters .
Behavior
Speculative select Optimization Algorithm
Optimization optimization HW-Specific Cost Model
Abstract Framework Instantiated Framework

Figure 4.13: Instantiating FriSCO

86 A General Framework for Intelligent Speculative Optimizations

chosen instantiation, since different learning algorithms and different learning
parameters can be considered. It depends on the characteristics of the data
which choice is best. In summary, the instantiation of the framework is done
step by step: The instantiation of the optimization phase is followed by the
instantiation of the analysis phase, which finally leads to the instantiation of
the machine learning phase.

4.6 Summary

In this chapter, we have presented our general framework for intelligent spec-
ulative optimization. As central point, we propose to admit unsafe, but more
precise information as the result of program analyses, which allows for the
use of heuristics. This makes the optimizations using these results specula-
tive. They have an increased optimization potential at their disposal, but at
the same time have to perform a precise cost estimation, since misspeculation
poses an additional run-time overhead. We presented a general concept for a
speculative, greedy optimization scheme which efficiently explores the search
space of all possible transformations and selects the best ones (w.r.t. the cost
model). To obtain precise heuristics, we presented an approach which uses
machine learning to automatically create heuristics from profiling data. By
grouping programs with similar behavior together in program classes, the pre-
cision of the heuristics is further increased. Finally, we sketched how the
general framework can be applied and used in practice, and we gave various
examples for that.

In Section 1.2, we defined six objectives to asses the quality of our general
framework. We revisit each objective in turn and decide whether or not it is
fulfilled.

m Generality of the Optimization In our framework, optimizations are
modeled as a sequence of simpler transformations. By that, virtually all
optimizations are covered, hence the generality of the optimization is

fulfilled.

m Generality of the Regarded Behavior We impose no restrictions on
the regarded behavior. The level, at which the behavior is observed, can
be freely chosen. Also the kind of behavior is arbitrary. The only demand
we make is that the behavior can be modeled as a discrete set of classes.
This can be achieved for almost all kinds of behavior, hence, this criteria
is fulfilled.

Modularity The framework is modular. Various heuristics can be com-
bined with arbitrary optimizations. This especially allows for re-using
heuristics in different optimizations as well as for using many heuris-
tics in one optimization to obtain a comprehensive view on the dynamic
program behavior.

4.6

Summary 87

Scalability of the Heuristics The heuristics are given by models that
are trained by machine learning. It depends on the chosen machine learn-
ing algorithm to which extent the heuristics are scalable. However, there
exist a wide range of algorithms which are precise and highly scalable,
as, e.g., decision tree learning. Hence, scalability is given.

Precision Measure To assess the quality of the heuristics, a precision
measure is required. Since we have comprehensive training data avail-
able, we can use cross-validation to obtain a realistic measure of the
precision of the heuristics. The idea of cross-validation is to divide the
training data into two parts: With one part, the models are trained.
With the other, the precision of the models is assessed. This guarantees
realistic results, since the obtained models are applied to new, previously
unseen data.

Cost Model Our general framework reflects the importance of the cost
model. It is central in choosing which transformation to apply during the
optimization. The heuristics automatically obtained by machine learning
provide the cost model with a precise picture of the dynamic behavior
of the program. From that, it can be expected that the cost model
adequately models the performance gains of different transformations.

Thus, the general FrISCO framework we presented in this chapter fulfills

all our objectives for conceptual frameworks for speculative optimizations. In
the next chapter, we present an instantiation of the framework, which targets
the optimization of memory accesses. Due to the phenomenon of the memory
gap, this optimization problem is highly relevant to ensure high performance
on modern architectures. The instantiation entails the development of the
required analyses together with the corresponding optimizations.

Intelligent Speculative
Optimization of Memory Accesses

In the introduction, we have illustrated that the performance of general pur-
pose computers is severely jeopardized by the memory gap. As a consequence,
the development of novel optimization techniques, together with the corre-
sponding analyses, is heavily required, since it is not uncommon that memory-
intensive programs stall up to 50% of their execution time waiting for data
to be fetched from memory. The key to overcome this problem lies in the
optimization of the load instructions. By issuing loads as early as possible,
their latency can be partly if not completely hidden, such that their value is
directly available when required. In doing so, memory dependencies amongst
the instructions must be regarded to maintain program correctness. As we
have seen in Section 2.1.3, conservative analyses have to over-approximate the
behavior of programs. This over-approximation is especially severe for the
analysis of memory dependencies (see Section 2.3.2). As a result, a huge num-
ber of memory dependencies amongst the instructions is reported, most of
which are not present at run-time. These dependencies chain the instructions
tightly together, and little optimization is possible. Speculating on data de-
pendencies permits to break those chains and to fully exploit the available opti-
mization potential. In the previous chapter, we have presented our Framework
for Intelligent Speculative Compiler Optimizations (FrISCO). The framework
overcomes the problem of limited optimization potential in conventional com-
pilers due to overly conservative static analyses by introducing unsafe analyses
together with speculative optimizations that can make use thereof (while en-
suring program correctness). In the following, we consider an instantiation of
the FriSCO framework which aims at the optimization of load instructions
and the latencies introduced by them. Following the approach presented in
Section 4.5, we instantiate FrISCO as follows: First, we select the speculative
optimization to be performed. This determines which information about the
dynamic run-time behavior is required to build the cost model in the second
step. Then, we can decide how to instantiate the first two phases of FriSCO
to collect the required information.

89

90 Intelligent Speculative Optimization of Memory Accesses

5.1 Speculative Optimization of Memory Accesses

In the application of our general framework, we consider the speculative opti-
mization of memory accesses. In the following, we first discuss the optimization
problem that we have. This yields the information that is required to decide
about the profitability of a given code transformation. Then, we discuss which
abstraction level suits best our optimization problem. Finally, we describe in
detail our optimization algorithm, which performs speculative code motion.
We show how it can overcome all kinds of dependencies and how the corre-
sponding recovery code is created.

5.1.1 Optimization Problem

The aim of the optimization is to reduce the amount of stalls due to memory
loads at program run-time. Hence, the objective function is the amount of
latency that could be hidden for a given load, which constitutes the perfor-
mance gain. At the same time, we need to keep an eye on code size to avoid a
substantial code growth. This could increase the amount of instruction cache
misses and thereby degrade performance. Thus, we specify an upper bound on
the maximally admitted code growth. The optimization problem is therefore to
maximize the performance gain while obeying the restrictions on code growth.

As described in Section 4.4, we propose to perform the optimization itera-
tively and to use the cost model for guiding the optimization. This allows for
developing a comparably simple algorithm, which relies on the cost model to
perform the best transformation in each optimization step.

For cost estimation, several aspects of the expected dynamic run-time be-
havior of the considered program are relevant. It is first important to know
which load instructions are expected to lead to a high load latency, since for
those, optimization maximally pays off. During the code motion, the optimiza-
tion speculates on data dependencies, i.e., it ignores potential dependencies
amongst memory accesses if they are considered unlikely. Thereby, the opti-
mization potential is increased. This requires information about the likeliness
of data dependencies amongst memory accesses (or their dependence degree).
Finally, the optimization moves code across basic block boundaries, which also
increases the optimization potential. To determine the costs of different code
motion transformations, it is important to know the execution frequency of
basic blocks as well as the probabilities of branches.

Besides, the cost model needs further information to derive the estimated
gain. To determine by which amount the latency could be reduced by code mo-
tion, the distance in cycles between two positions in the code has to be known.
To that end, the issue cycle of an instruction (relative to the surrounding basic
block) has to be known for each instruction!. This information can be initially
determined by the scheduler of the compiler, which assumes a fixed latency for

'Tn case of parallel processors, multiple instructions can be executed at one cycle.

5.1 Speculative Optimization of Memory Accesses 91

each instruction?. While this is appropriate for most instructions, it is highly
imprecise for load instructions, which may encounter latencies ranging between
a few and a few hundred cycles. Hence, a precise prediction of load latencies
is highly required. Additionally, this is also important to detect which loads
are worth being optimized in the first place. During the optimization, as code
motion proceeds, the issue cycles have to be correspondingly updated. Besides
the issue cycle, the cost model requires information about the additional over-
head caused by speculation, which depends on the considered target platform.
This includes the cost caused by the check for successful speculation (validity
check) and by the cost of recovery code execution in case of misspeculation.

To sum up, the optimization needs the following information to build the
cost model:

load latencies

likeliness of memory dependencies

branch probabilities and basic block frequencies

relative issue cycle of instructions

overhead of validity checks and of recovery code execution

While the first three items refer to information on the dynamic behavior
of the program, the last two items are mainly static properties. To estimate
the dynamic behavior, heuristics can be used. For branch probabilities and
basic block frequencies, a highly scalable heuristics has been proposed by Wu
et al. [WL94]. For predicting the latencies as well as the likeliness of dependen-
cies, however, proposed heuristics lack either precision or scalability. Hence,
in Section 5.3, we present our approach to use machine learning to yield two
precise and scalable heuristics, which predict the latency of a load instruction
and the likeliness of a dependency for a pair of memory instructions, respec-
tively. The relative issue cycle of instructions can be precisely estimated at
compile-time. Except for load instructions, most instructions have typically a
fixed execution time, which depends on the target platform. From that, the
relative issue cycle in a basic block can be determined. To deal with the vary-
ing latency of load instructions, the heuristics for load latencies can be used.
The overhead of speculation depends on the hardware platform and can be
seen as a parameter of the cost model.

The impact on code growth depends on whether or not speculation is sup-
ported by hardware, since this determines the amount of the required recovery
code. For example, on the Itanium, one check instruction can detect misspec-
ulation for an arbitrary number of intervening store instructions. Without
hardware support, the number of required checks grows with the number of
intervening stores. We consider both variants, with and without hardware
support. As with the overhead of speculation, the information required to
estimate code growth mainly depends on the regarded hardware platform.

2More precisely, it is common to distinguish different types of produced and consumed
data, respectively, and to specify a fixed latency for each combination of producer type
and consumer type.

92 Intelligent Speculative Optimization of Memory Accesses

5.1.2 Abstraction Level

The optimization we propose aims at reducing the latency of load instruc-
tion. As we have seen in Section 2.1, the IR passes different abstraction levels
(from HIR to LIR). When developing a new optimization, the most adequate
abstraction level has to be selected. Our optimization requires the following
properties from the IR:

m [t has been decided which data is held in memory and which in registers.
Especially, this determines which data accesses require memory accesses.

m The abstract IR has been mapped to the concrete assembler level of the
regarded target platform. This is important to determine the code size.

m We need a model of the regarded target platform to estimate the execu-
tion time of single instructions. This is vital for cost estimation.

All requirements are fulfilled at the LIR level, i.e., after code generation. In
the LIR, the basic blocks of the CFG consist of sequences of simple, assembler-
like instructions which operate on registers.

While we regard the IR at the LIR level, this does not mean that the rich
information of HIR has become unavailable. Instead, we assume that each
LIR construct has a link to the HIR construct it stems from. This combines
the precision that we gain from the closeness to the target platform with the
global view and the context information we have at the HIR level. Since we
regard the IR at the LIR level, we have simple assembler-like instructions
which operate on registers. The optimization moves load instructions upwards
in the code. In doing so, data as well as control dependencies amongst the
instructions must not be violated. This holds for data dependencies amongst
registers as well as for those amongst memory locations. For register depen-
dencies, output (WAW, write-after-write) and anti (WAR, write-after-read)
dependencies are only caused by register shortage. Those dependencies can be
overcome by register renaming. Hence, if we assume for now that we have an
arbitrary number of registers available, we can safely neglect output and anti
dependencies. Conversely, true dependencies amongst registers (RAW read-
after-write) can never be ignored. Since we consider load instructions, true
register dependencies from the load to previous instructions stem from address
calculations (e.g., for array accesses). Those instructions are required to deter-
mine the address that the load fetches data from and, hence, cannot be crossed.
Concerning memory dependencies, as we consider load instructions, we need
only to consider true dependencies (RAW), which can occur to preceding store
instructions.

We assume that the code is scheduled and that for each instruction, its
estimated issue cycle (relative to the surrounding basic block) is known. This
is required to measure the number of cycles between the execution of two
instructions, which is used to determine the amount of cycles by which a given
load latency could be reduced.

5.1 Speculative Optimization of Memory Accesses 93

@00 R

——— Transformation Step
Optimization Sequence

Q -

®) Q{EQ O -

i O=r@ ~O=+0-

IR : Q : O
O g :

Ist load 2nd Joad 3rd Joad 4th]oad
optimized optimized optimized optimized

Figure 5.1: Tree of Transformation Sequences for Speculative Code Motion

5.1.3 Optimization Algorithm

As we have seen in Chapter 4, we consider an optimization that transforms
the IR step-by-step. At each step, the cost model is used to rate different
alternatives and to take the best one. Additionally, we determine the impact
on code growth for each alternative and preclude transformations that exceed
a given limit. The optimization aims to reduce the effective latency of load
instructions. To that end, we first build a list of candidates, namely loads
with high expected load latencies, and then process each candidate in turn.
The candidates are sorted by their latency in decreasing order such that we
start with the most promising one. The idea is now to move the candidate
upwards in the code, step-by-step. In the search tree of possible transformation
sequences, we start with considering the first candidate. The alternatives are
given by moving the candidate a different number of steps upwards. The cost
model is used to rate each alternative. Then, at depth one in the tree, the best
optimization for the first candidate was chosen, and we consider the second
candidate. This process is repeated until we run out of candidates or until the
limit for code growth is reached. Figure 5.1 shows the search tree. Note that
the cost model is used to rate the benefits of a given transformation as well as
to decide whether a given transformation is admissible, i.e., whether it does
not exceed a given code growth limit. This is important to limit the impact of
the optimization on the instruction cache behavior. As another constraint, the
amount of allowed speculation should be limited, since over-speculation also
degrades performance. To that end, the fraction of speculative loads w.r.t. all
loads is determined.

The resulting algorithm is shown in Figure 5.2. It is parametrized by the
maximum allowed code growth as well as the maximum amount of allowed
speculation. By these parameters, the algorithm can be tailored to the re-
garded target architecture. The vital parts of the algorithm are speculative
code motion and the cost model. In the following, we describe speculative
code motion in detail as well as the issue of recovery code generation. The
cost model is described in detail in Section 5.2.

94 Intelligent Speculative Optimization of Memory Accesses

1. build list of optimization candidates (loads with a high
latency, sorted in decreasing order by latency)

2. process each candidate in turn

m determine different optimization alternatives, for

ke {0.. MAX,}:
e move the candidate k steps upwards
e overcome dependencies by speculation

e for each alternative, determine the estimated
optimization gain and the code growth (based
on the cost model)

m take the best admissible solution
m insert recovery code as required

m proceed with next candidate, unless exit condition
satisfied (e.g., maximum code growth or maximum
level of speculation)

Figure 5.2: Algorithm for Speculative Code Motion

Speculative Code Motion

When considering to move a load instruction upwards, different kinds of depen-
dencies may be present to the preceding instruction. The kind of dependency
determines by which means the dependency can be overcome and what the
consequences for the optimization gain as well as for code size are. Note that
the algorithm itself does not consider the advantage of a given transformation.
It moves the load instruction stepwise upwards, coping with dependencies as
required, and uses then the cost model to decide whether or not this solution
leads to an improvement. In Section 2.4.1, we have seen how memory depen-
dencies can be overcome by data speculation. Section 2.4.2 has shown how to
deal with control dependencies by control speculation. The corresponding cost
model, which is the crucial part of the optimization and which is used to de-
cide whether or not a given transformation should be performed, is presented
in Sections 5.2.2 and 5.2.3, respectively. In both cases, the load is marked as
speculative, and at its original location, a special check instruction is inserted
that detects misspeculation.

The only remaining kind of dependency not dealt with so far is a true
register dependency. In that case, the result register of a previous instruction
is used by the considered load as address register. In other words, the preceding
instruction performs address calculation for the regarded load. This is quite
common in typical code, and address calculations are caused by, e.g., array
or struct accesses. Obviously, there is no way to move the load across that
previous instruction. To still render optimization possible in that case, we
group the load and the preceding instruction together to build a Load Address

5.1 Speculative Optimization of Memory Accesses 95

i
add 15 =32, 4. (add r5=32, 14
(Id r8=[r5]
Id r8 =[r5] LAC chain
(a) (b)

Figure 5.3: Construction of a LAC chain (a) True Data Dependency Prevents Code
Motion (b) LAC chain Enables Further Code Motion

Computation (LAC) chain. Then, we can proceed with moving the whole LAC
chain upwards. Of course, this step may be repeated, i.e., if there is another
instruction that is required for address computation, it is put in front of the
LAC chain.

Figure 5.3 illustrates the construction of a LAC chain. On the left, we
see that code motion of the load instruction cannot cross the add instruction,
since it calculates the address the load refers to. This can be solved by building
a LAC chain, as shown on the right: Both instructions are coupled together
and can now be moved further upwards. Different from before, we now have
to consider the dependencies from all instructions of the LAC chain to the
preceding instructions during code motion. Note that the last instruction of a
LAC chain is the originally targeted load instruction. Since a single load can
be considered as a LAC chain of length one, from now on we use the term LAC
chain.

The optimization transforms different load instructions in turn. Hence,
when moving code upwards, we may encounter check instructions, which were
inserted by a previous optimization of another load Ild,,. If there is no de-
pendency between the LAC chain and the check instruction, it can be safely
crossed without any further precautions. Otherwise, we have to take a closer
look at the situation. We know that the check is preceded by a number of
advanced loads. In case speculation is successful for Id,.,, the dependency
actually holds between the LAC chain and the advanced loads, and we can
cross the check instruction. Otherwise, if speculation fails for Id,.,, crossing
the check is not allowed in general. However, if speculation fails, we know that
the check will detect that and issue corresponding recovery code. Thus, if we
add the currently regarded LAC chain to the recovery code of the encountered
check, we can safely cross the check. By that, we can exploit the cycle dis-
tance created by the previous optimization to further reduce the latency of the
currently optimized load.

With that, we can overcome all kinds of dependencies to preceding instruc-
tions. However, the transformation itself does not regard whether or not a
given code motion step appears beneficial. It is due to the cost model to de-
cide about that. The encountered kind of dependency determines the required
code transformation to overcome the dependency as well as the correspond-
ing cost model. In the following, we consider the kinds of dependencies that
might occur and describe how they can be overcome. The corresponding cost

96 Intelligent Speculative Optimization of Memory Accesses

models are described in detail in Section 5.2. From the regarded LAC chain to
a preceding instruction ins, the following different kinds of dependencies may
occur:

Memory dependency: If ins is a store that might alias with any instruction
in the LAC chain, the dependency is speculatively ignored and the op-
timization proceeds. Similarly, if ins denotes a function call that might
affect a value loaded within the LAC chain, the dependency is ignored
speculatively.

Control dependency: If the beginning of a block is reached, control specu-
lation renders moving the LAC chain to preceding blocks possible. This
may require code duplication if the current block has multiple predeces-
SOTS.

Register dependency: If there is a true register dependency from any in-
struction of the LAC chain to ins, as for address calculation, ins is put
in front of the LAC chain. Note that ins is then either an arithmetic
instruction (for offset calculation) or a load (for indirect accesses). As
a special case, if ins is a check instruction of a previously speculatively
optimized load Id,., upon which ld depends (for indirect accesses), we
can cross ins without updating the LAC chain if we append the LAC
chain to the recovery code of ins.

In case of control speculation, i.e., when the LAC chain is moved to another
block, it has to be ensured that it is executed for each path leading to the
original block. Thus, it may be necessary to duplicate the LAC chain and
to insert it in multiple target blocks. In Section 2.1.2, we have seen how the
concept of a dominance front can be used to decide whether it is admissible to
move code from its original block blk to a certain set of target blocks DomF.
If DomF constitutes a dominance front of blk, the transformation maintains
correctness. In other words, in that case it is guaranteed that the code is
executed before reaching the original block blk.

Recovery Code Generation

During the optimization, for each considered candidate, the appropriate re-
covery code is collected. Conceptually, the recovery code belongs to the check
instruction, which is inserted at the original location of the considered load
candidate when speculation is performed. At the beginning, after data or
control speculation, the recovery code contains nothing but a copy of the origi-
nal load instruction. When performing code motion across a check instruction
(stemming from a previously optimized load) upon which a dependency occurs,
the recovery code belonging to that check instruction is extended by the LAC
chain of the currently optimized load. This is the only case that causes non-
trivial recovery code. A detailed example is given in Section 5.2.5. When the
optimization is finished, the recovery code has to be inserted into the program
code. To avoid a perturbation of the instruction cache behavior, it should be
placed at the end of the program. For each check, new recovery code is added,

5.2 Cost Model 97

st [r7] = ... memory st [r7] = ...
.’ RAW 1d rd = [r9]
S=4 1ldrd=[r9] lazgxp |:> § CYCop
CYChuse
use r4 use r4

Figure 5.4: Conservative Code Motion

which contains the corresponding code as well as an instruction for jumping
back just behind the check. Depending on the regarded target architecture,
trivial recovery code might be implemented more efficiently. On the Intel Ita-
nium processor, the check instruction can issue automatically a reload in case
of data misspeculation. Hence, if the recovery code contains nothing but the
reload, the recovery can be completely done by the check instruction.

5.2 Cost Model

In this section, we derive the cost model that determines the performance gain
as well as the code growth for a given transformation, which is used to guide
the optimization. We start with conservative code motion and then consider
the different cases, namely data speculation, control speculation, building LAC
chains, and dealing with previously optimized loads. We present a cost model
for each case and give illustrative examples.

5.2.1 Conservative Code Motion

In the conservative case, code motion has to stop at any dependency. This
makes it an intra-block optimization (i.e., crossing basic block borders is not
admissible). The regarded load Id is moved upwards as far as possible. If any
data dependencies are present to a preceding instruction ins, the optimization
has to stop. This kind of optimization is always safe.

Figure 5.4 shows an example. On the left, we see a basic block, which
contains a load instruction that we want to optimize as well as an instruction
that uses the loaded value. We assume that the load has latency of lat.,, cycles.
Since loads can be issued in the background, this latency (or what remains
thereof) only becomes visible when the loaded value is actually used. Hence,
at the use site, the effective latency will be lower than the initial latency lat.,,.
We also see a potential read-after-write memory dependency to a preceding
store, which introduces a barrier for code motion (shown by the red line). On
the right, we see how the load instruction was moved upwards up to the barrier.
To determine the gain of this transformation, we compare the effective latency
of the base version with that of the optimized version. To that end, we have
to determine the distance (in terms of cycles) between the different instruction

98 Intelligent Speculative Optimization of Memory Accesses

positions. Since we know for each instruction its issue cycle, the distance can
be directly determined from that. In the figure, we see the distance between
the original position of the load and its use (cycy,,.) as well as the distance
between the new position and the old position of the load (cyc,,,). For both
the base and the optimized version, respectively, the distance between the
corresponding load position and the use constitutes the amount of the load
latency that could be hidden or masked. From that, we can compute the
effective latency for the base and for the optimized version, respectively:

latbase = latemp — CYCpyse (51)

latopt = latezy — CYChoge — CYCopt

The gain of the optimization is given by the difference:

gain = latyese — latoy = cyc,,,; (5.3)

This optimization has no effect on code size, hence the code growth is 0
(with and without hardware support for speculation):

code_growth,,, = 0

code_growthy,, = 0 (5.5)

Since the maximum optimization is achieved if laty,s. is hidden completely,
we assume that the distance by which a load is optimized never exceeds its
latency. In other words, the effective latencies laty,se and lat,,, are always non-
negative. This avoids unrealistic gains caused by a negative lat,,: (e.g., if a load
with a low latency is moved upwards by a long distance). In the optimization
algorithm, this is realized as an exit condition in the optimization loop. Since
gain is given by cyc,,,, this means that the further we move the load upwards,
the higher the optimization gain (until late,, = cycy,, + cyc,,;). However, this
does not hold for the general case, as we see in the following.

5.2.2 Data Speculation

In the previous section, we have presented the principle of code motion for the
conservative case. As first extension, we now consider how data dependencies
induced by memory accesses can be overcome to increase the optimization po-
tential. As before, we move the load instruction upwards step-by-step. When
we encounter a store instruction that might conflict with the load, speculation
allows us to deliberately ignore that dependency and to optimize instead, i.e.,
to move the load across the store. However, we have to decide whether or not
speculation appears beneficial. As we will see in the following, the likeliness of
the conflict can be used to decide whether or not to speculate.

5.2 Cost Model 99

i add 9 =8, 18
. add r9 = 8, r8 register >
adlmnj o RAW 1d.adv r4 = [r9]
o ,I [7] memm’y
st [r7] = ... ove
Wl[idif,\'/flf -7 § RAW I:: > st[rf7]=... - Yespec
check v < _)" P=Pagp -
Tt--3 Wdr4=[9] lat,, Id.chk r4 = [r9] P.def;
} CYCpase % Cyc()pf
YCpase
use r4
use r4

Figure 5.5: Data Speculative Code Motion

Figure 5.5 illustrates the case that we move the load across a potentially
conflicting store®. On the left, we see the unoptimized code. A potential de-
pendency (memory RAW') between the load and a preceding store is reported.
We assume that we know the probability pg., of that dependency. The figure
also shows a true register dependency (register RAW) to a preceding instruc-
tion. As shown on the right, the load is moved upwards until the register
dependency is reached, which cannot be overcome for now. This optimization
is unsafe, or speculative, since a potential dependency is ignored. The load
becomes an advanced load, which means that it is executed optimistically and
that its value may be invalidated by the succeeding store. Additionally, we
have to insert a wvalidity check before the use, which detects if conflicts oc-
curred (misspeculation), and corresponding recovery code that is executed in
that case to restore the correct system state. The overhead or penalty cycles
introduced by the check (cyc,,;) and, if necessary, by the execution of the re-
covery code (cyc,.) depends on the way speculation is technically implemented.
In case of hardware support, the check can be executed in constant time. The
amount of cycles required to execute the recovery code is typically dominated
by the latency of the regarded load (lat.,,), which has to be reloaded. How-
ever, due to the preceding advanced load, the loaded value may reside at a
higher level in the cache hierarchy, which reduces its latency. cyc,, denotes the
additional number of cycles required by the two branches, which jump to the
recovery code and back again, respectively.

We are free to insert the validity check anywhere between the last poten-
tially conflicting store and the use of the loaded value. If speculation was
successful, the position of the check does not matter. Otherwise, the check
triggers the execution of recovery code to reload the invalidated value. In that
case, the effective load latency is reduced by the distance from the check to
the use site. Consequently, the check should be placed as early as possible,
i.e., immediately behind the last possibly conflicting store, as shown in Fig-
ure 5.5. The amount of cycles that is hidden if speculation is successful is
denoted as cycg,,.. The amount of cycles that is hidden in any case is given by
CYChase T CYCop- The overhead in case of misspeculation is given by the time
required to execute the recovery code, lat.,, + cyc,,. In any case, the overhead

3We only consider stores which might conflict with the load. Stores that provably have no
conflicts can be safely ignored.

100 Intelligent Speculative Optimization of Memory Accesses

is cyc - Speculation fails if the potential data dependency between load and
store does occur, i.e., p4ep denotes the probability of misspeculation. From
that, we can compute the effective latency achieved by the optimization:

latops = lateyy — cycCpoee — CYCopt T CYCopy,

(5.6)
- (1 - pdep) " CYCspec +pdep * CYCre
In the general case, multiple stores can be crossed by the speculative opti-
mization. For each of the n stores, we know its corresponding conflict proba-
bility pidep w.r.t. the optimized load instruction. Speculation fails if any of the
dependencies does occur. The probability for that is given by:

pgzg =1- H (1 _pilep> (57)

1<i<n

To compute the effective latency of the optimized program, we use the same

formula as above and replace pge, by pge, -

The overall optimization gain is then given by

ain = latygse — lat,
g ' & (5.8)

_ any any
= CYCopt — CYCepk + (1 - pdep) " CYCspec — Pdep * CYCre

We see that py” is one central factor to decide about the profitability of
speculation. Thus, it is clear that the more potential conflicting stores we
cross, the higher gets py.’, and the lower gets the optimization gain. This
means that moving a load upwards as far as possible is certainly not the best
solution. At the latest, optimization should stop if (cycyuee + cYCop + CYCpec)
exceed lat.,, since then, no additional improvement can be gained and pg,’
can only increase further. Without hardware support for speculation, the
effect on code size depends on n, the number of stores that were crossed. In
the worst case, for each store, a check and a conditional jump is required, plus

the recovery code itself (a reload and a jump for branching back):

code_growth,, = 2 -n + 2 (5.9)

For architectures with hardware support for speculation, one check instruc-
tion is sufficient, regardless how many store instructions were crossed. If the
recovery code only consists of the reload, this can be automatically issued
by the check instruction in case of misspeculation. Hence, we only need one
additional check instruction:

code_growthy,, = 1 (5.10)

5.2 Cost Model 101

motion blk

Figure 5.6: Control Speculation: Dominance Front and Branch Probabilities

As a special case of data speculation, a load can be moved across a function
call. This requires the absence of register dependencies from the load to the

call. cycy,,.. and py.” have to be computed from the code of the called function.

5.2.3 Control Speculation

With data speculation, as presented in the previous section, we are able to
overcome unlikely memory dependencies from the regarded load to preceding
store instructions. However, the optimization still has to stop at basic block
borders. Given the typically small size of basic blocks, this drastically limits the
optimization potential. However, without further precautions, loads cannot be
moved to preceding blocks, since that might introduce an exception on another
program path (e.g., illegal address fault). With control speculation, exceptions
are deferred, which makes code motion across basic block borders admissible.
Generally, with control speculation, we are free to move the load to arbitrary
basic blocks. It has to be guaranteed that the load has been executed before
the original use site is reached. In other words, on all paths that lead to the
original use site, the load has to be executed. This may require to perform
code duplication. In the following, we assume that code motion moved code
from its original basic block blk to a set of target blocks, denoted as Tygts.
To ensure correctness of the optimization, Tgts has to constitute a dominance
front DomF of blk (see Section 2.1.2).

As an example, Figure 5.6 shows an excerpt from a CFG. At each branch,
the branch probability is annotated (unless p = 1). Additionally, since we only
consider an excerpt of the CFG, the probabilities of the paths leading to A, B,
and FE, respectively, are shown. At the bottom, we have block blk, from which
we want to perform upwards code motion. The optimization has decided to
place the code in blocks A, B, and E, which form a dominance front for blk.
Note that the probability of executing the dominance front needs not be 1. In
the example, the probability of reaching A, B, or F is 0.3+ 0.15+ 0.3 = 0.75.
This needs not to be equal to the probability P(blk) of reaching blk, which is

102 Intelligent Speculative Optimization of Memory Accesses

0.3 4 0.15+ (0.3 -0.5) = 0.6 in the example. Not shown is the exit node, at
which the control flow converges at the latest from left and right hand side of
the shown CFG.

The optimization inserts a copy of the considered load in each block t € Tgts
and replaces the original load in blk by a check instruction. To estimate the
overall gain of the optimization, we first consider all possible paths leading
from any node in Tgts to blk. With that, we can determine the performance
for each path and can obtain the overall gain by weighting each gain by the
corresponding path probability. For a given t € Tyts,

Paths,, := PathsBetweenBlocks(t, blk)

contains all paths from ¢ to blk. From the estimated branch probabilities,
we can determine the relative probability of a path wl, € Paths}, by multi-
plying the probabilities of its control flow edges. This yields the conditional
path probability P(7},|t), given that ¢ was reached. To obtain the overall per-
formance gain for the considered optimization, the idea is now that we regard
each path 7f, from each ¢ € Tgts to blk in turn, determine its performance
gain, and sum up all gains, weighted by the corresponding path probability.
To weight the incoming paths from one target t € Tgts to blk, we first need the
probability of a path 7}, w.r.t. to bik, i.e., we need P(7},|blk). An important
property is >, c gy zﬂilképat’wizk P(rt,|blk) = 1, since all paths to blk contain
one t € Tyts (remember that Tgts is a dominance front of blk). This is required
for normalization when building the weighted sum of the performance gains of
each path. We observe that for a path 7}, from a t € Tgts to blk,

P(rt,| blk) @ P(myy N blk) @) P(riy) @) P(ryy Nt) @ P(myylt) - P(t)
blk P(blk) P(blk) P(bik) P(blk)

(5.11)

Transformation (1) directly follows from the definition of conditional prob-
ability. For transformation (2), we observe that whenever 7}, occurs, we know
that we have reached blk. Formally, P(x}, N blk) = P(n},) - P(blknt,) =
P(m},) - 1. The same argument holds for 7, and ¢ in step (3). Transformation
(4) again directly follows from the definition of conditional probability. Hence,
since we already have the conditional path probability P(r},|t), we need to
determine the probabilities of reaching ¢ and blk, respectively:

P(t)= Y P(nlentry) (5.12)
7€ Paths;™"™
P(blk)=) P(r|entry) (5.13)

entry

me Paths,

5.2 Cost Model 103

blk

Figure 5.7: Control Speculation: Paths m; leading to blk with Path Probabilities
P(7;|blk)

Note that P(blk) may be below 1 if blk is conditionally executed (e.g., if
Tgts and blk are part of a subgraph which is entered by a then-branch of an
if-then-else construct). With that, we can determine P(r},|blk) with equa-
tion (5.11). To determine the performance gain for a given path 7, the blocks
of w},. are considered as a straight line sequence of code. This yields cyc,.,
CYCopts CYCspee and pyr). From that, using equation (5.8), we can compute the
resulting gain for that path and denote the result as PathGain(w!,). Finally,
we build the sum of those gains, weighted by the conditional probabilities of

the corresponding paths:

gain = Z Z P(7h,|blk) - PathGain(rh) (5.14)

te Tgts wzlkEPathstblk

Coming back to our example, Figure 5.7 shows all possible paths leading
from the dominance front to blk, together with their conditional probabilities.
For example, for path 7y, the probability is determined as follows: P(m|blk) =
P(m|A) - P(A)/P(blk) = 0.4-0.3/0.6 = 0.2. As another example, for path my,
we get P(my|blk) = 0.5-0.3/0.6 = 0.25. Note that the sum of those conditional
path probabilities is always 1. For each path, we can compute the gain achieved
by the optimization. The weighted sum thereof yields the resulting gain.

Figure 5.8 gives an example how to compute the resulting gain. A load
was moved from its original position in block 4 to its dominator, block 1. The
figure also shows the branch probability at the control flow edges, the length
of different code regions in cycles, and the dependence probability for the load
and the store in block 2. There are two paths from block 1 to block 4, namely
1—2—4 and 1—3—4. For the first path, the probability is 0.8, and we have the
following distances: cyc,,,. = 0, cyc,,, = 5, cycy,. = 35. The probability for
a conflict pge, is 0.1. For an original latency lat.,, of 50 cycles, an additional
recovery cost cyc,. of 10 cycles, and a check overhead cyc,,. of 8 cycles, we

104 Intelligent Speculative Optimization of Memory Accesses

@ add r9=28, 12
Id.spec r4 = [r9]«~

} 5 cycles
p=0:V P

=0.2
st [r8] =110 30 cycles 10 cycles
(pd(?p =0.1) (P(/()/) =0.0)

p=1.0\A ﬁ:z.o

@ Id.chk r4 = [r9]
} 5 cycles

use r4 .l original position

.. new position

Figure 5.8: Control Speculative Code Motion

can compute the expected gain gain; =5—8+0.9-35—0.1-10 = 27.5. For
the second path, the path probability is 0.2, and the distances are cyc,,,, =
0, cycopr = 5, cycyee = 15. The probability for a conflict pge, is 0. Thus,
gaing =5 —8+1-15—0-10 = 12. To obtain the overall estimated stall, we
sum up the gains for each path weighted by the path probabilities and obtain
a resulting performance gain of 0.8 - 27.5 + 0.2 - 12 = 24.4 cycles.

To determine the impact on code growth, let n be the number of possibly
conflicting store instructions that were crossed, and let m = | Tgts| denote the
number of blocks into which the load was speculatively moved. Then, the origi-
nal load is replaced by m loads, which leads to (m-1) additional loads. Without
hardware support for speculation, we need one check and one conditional jump
for each possibly conflicting store, plus the recovery code itself (one reload and
a jump for branching back). With hardware support, one check instruction
is sufficient, and no recovery code is required, since the check automatically
re-issues the load in case of misspeculation. This leads to the following code
growth:

code_growthy,, = (m—1)+2-n+2=m+2-n+1 (5.15)
code_growthy,, = (m —1)+1=m (5.16)

5.2.4 Load Address Computation Chains

In a previous example for data speculative code motion (see Section 5.2.2, Fig-
ure 5.5), we have seen that a true register dependency from the considered load
to a preceding instruction has prevented further optimizations. Those depen-
dencies are mostly caused by address calculations, which stem from, e.g., array
or struct references and are common in typical code. Hence, true dependencies
from the register containing the load’s address to preceding instructions are
likely and therefore constitute a significant limitation of the optimization. As

5.2 Cost Model 105

addr5=32,14| LAC
register .~ } 1d 8 = [r5] chain
_;addr5:32,r4DRAW !
“od 1dr8=[15] {7 lat,,, |:> N % CYCops
} CYChuse CYChuse
use r8 use r8

Figure 5.9: Code Motion with Load Instruction Chains

shown in Section 5.1.3, a solution to this problem is to include the instructions
the load depends on in code motion. To that end, we build a Load Address
Computation (LAC) chain by grouping together the load instruction and the
instructions it depends on. Then, we perform code motion for the whole LAC
chain. Unlike before, where we merely had to consider the dependencies from
the regarded load to the preceding instructions, we now have to consider the
dependencies from all instructions of the LAC chain.

Figure 5.9 gives an example. Since all extensions are orthogonal to each
other and can freely be combined, for clarity, we do not consider data and
control speculation in the example. On the left, we see that code motion has
to stop at a true register dependency due to address calculation, which limits
the optimization potential. On the right, we see how this problem can be
overcome: Both instructions are grouped together to a LAC chain, which can
be moved further upwards.

Address calculation typically consists of adding and multiplying. Thus, the
corresponding instructions can be expected to have a low, constant latency,
and moving the LAC chain together as a block is appropriate. For indirect
references, however, address calculations may also contain load instructions.
In that case, the latency is in general unpredictable, and scheduling the LAC
chain together may cause additional stalls. Hence, loads should only be added
to the LAC chain if their latency is expected to be low.

This extension merely increases the optimization potential and has no in-
fluence on the optimization gain. In case of code duplication due to control
speculation, now the whole LAC chain has to be duplicated instead of the
single load. Hence, the formulas to specify the code growth are as follows:

code_growth,, = (m — 1) - |[LAC chain| + 2 -n + 2 (5.17)
code_growth,,, = (m — 1) - |LAC chain| + 1 (5.18)

5.2.5 Crossing Check Instructions

During code motion, we may encounter check instructions, which stem from a
previous optimization of another load. Since the check instructions correspond
to load instructions, the question is whether those checks can be crossed by
code motion, and, if so, in which way. As an example, see Figure 5.10. In

106 Intelligent Speculative Optimization of Memory Accesses

Id.adv r4 =[r3]

’I cee ’ !
/ A .
: st [r10] =12 |v. ‘: st [r10] =2 V recover:
" > N, memory h ld r4 = [l'3]
/ RAW | Id.chk r4 = [r3]— :
~oxd4 M rd=[r3] [|:> ' < jmp back
register !
LAC | add r5=32,14 kAW \ add r5=32,14
chain| 1d r8 = [r5] Id r8 =[r5]
use r8 use r8
(a) (b)
Id.adv r4 = [r3]
add r5=32,r4 - -
recover:
1d r8 =[r5] 1d rd =[r3]

dd 15 =32, 14
—> cycspec{_._'“ « ojera || | 2dd 1S=32r

, Id r8 =[r5]
pgzzy,-' Id.chk r4 = [1'3]% .
< jmp back
CYCopy

use r8

(c)

Figure 5.10: Code Motion across Check Instructions (a) Original Code (b) Optimi-
zation of First Load (c) Optimization of Second Load (with LAC
chain)

Figure 5.10a, we see two load instructions with a long latency. The figure
also shows the true register dependency from the add instruction to the first
load as well as the memory dependencies from the first load to the preceding
store. Figure 5.10b shows how the first load is optimized, together with the
corresponding recovery code, which simply reloads r4. Now the second load
is optimized. First, the add instruction is added to its LAC chain, since it
is required for address calculation. Then, during upwards code motion, the
LAC chain reaches the check of the first load. As described above, the check
can safely be crossed, given that the corresponding recovery code is updated.
Figure 5.10c shows the result. The updated recovery code for the load from r4
now also executes the dependent instructions. In the example, neither a check
instruction nor recovery code is required for r8 because the load from 8 itself
was not speculatively optimized. Misspeculation can only occur for r4, and
in that case, it is detected by the check for r4, and the load from 8 together
with its LAC is re-executed.

Note that for this optimization, no speculation was performed. However,
the gain depends on the previously performed speculation for another load.
Thus, we need the probability of misspeculation pj;" for the previously opti-
mized load. Additionally, we need to determine cycyyge, CYCopir CYCopeer CYCy. fOT
the regarded load as usual. (see Figure 5.10c for an example for cyc,,, and

CYCypee). To compute the effective latency, we have to distinguish whether or

5.3 Learning the Memory Behavior of Programs 107

not speculation was successful for that previous load. If it was successful, we
reduced the original latency by cyc,,.. cycles. The probability for that case is
1 —pl,, - Otherwise, in case of misspeculation, we have to execute the recovery
code. The overhead of executing the existing recovery code for the previous
load were already reflected in the cost model. Hence, we only need to consider
the additional costs we have, which is given by cyc,.. In all cases, the origi-
nal latency lat,, is reduced by cycy,s. + cyc,,. Note that also the overhead
induced by the check were already reflected previously when optimizing the

corresponding load instruction. Thus, lat,,: can be computed as follows:

latopr = lateyy — cYchose — CYCopt

rev Tev (5'19)
- (1 - psep) " CYCopec +p§ep " CYCre
The optimization gain is then given by
gain = latpse — latype
prev prev (520>

= CYCopi + (1 ~ Pep) * CYCspec — Paep " CYCrc

Note that we have to ensure that the currently regarded load is not moved
too closely to the previously optimized one. In other words, at the new position
of the currently optimized load, the value loaded by the previous load has to
be available. Otherwise, we would introduce a stall. Hence, we obtain the
effective latency of the previously optimized load, lat;,;", and we make sure
that the distance between the previously optimized load and the regarded one
does not fall below that value.

The code growth is given by the length of the LAC chain of the regarded
load, since it is appended to the recovery code for the check instruction that
is crossed. Hence:

code_growth,,, = code_growth,, = |LAC chain| (5.21)

5.3 Learning the Memory Behavior of Programs

In the previous section, we have seen which information about the dynamic
program behavior is required for a precise cost estimation, namely the latency
of load instructions and the probability of dependencies amongst memory in-
structions. In this section, we describe how to use machine learning to auto-
matically generate heuristics for those dynamic properties. As we have seen in
Section 2.5, machine learning requires a set of observations (the training data),
containing for each observation its features and its class. The model, which
is automatically constructed, represents the relationship between features and

108 Intelligent Speculative Optimization of Memory Accesses

the corresponding class. Hence, if we take static code features as features and
if we model the dynamic program behavior as categorical class, we can use
the model to yield a heuristics, which predicts the dynamic behavior based on
static information. The training data is collected in the first step. To increase
the precision of the predictors, we perform program classification, which allows
us to use specific predictors tailored to a certain kind of programs instead of
using one general predictor. Hence, in the second step, we describe how we
use cluster analysis to automatically derive program classes. Finally, based
on the identified program classes, the repository of predictors is built. This
constitutes the third step. In the following, we consider each step in turn.

5.3.1 Collection of Training Data

For machine learning, we need static features plus the corresponding classes,
derived from the dynamic program behavior. In Section 4.2, we have seen
that the regarded dynamic behavior determines the level at which the behav-
ior is observed, which defines the entity domain £. Then, we need to decide
which static features to collect (Feoge, Tefeqr) and how the regarded behavior
can be collected via profiling (7). For feature collection, the regarded com-
piler framework can be extended by an appropriate, typically simple static
analysis to collect the static features. For profiling, the program suite is exe-
cuted on typical input data, and the regarded behavior is observed. Note that
we have to bring static and dynamic information together, i.e., each dynamic
observation has to be mapped to its corresponding static features. Since we
consider classification learning, we also have to specify how the behavior can
be mapped to a discrete set of classes (which defines the mapping 7). Fur-
thermore, for program classification, we have to specify which static program
features should be collected (7pq). This can also be realized as an analysis
step in the regarded compiler framework. In the considered instantiation of
the general FriSCO framework, we need predictors for load latency and for
memory dependence degrees. In the first case, the entity domain &, is con-
stituted by load instructions. Hence, we collect features of load instructions.
For predicting memory dependence degrees, the regarded entity domain &g,
is constituted by pairs of memory accesses. Hence, we collect features for each
memory instruction and combine them appropriately. The features together
with the corresponding behavior for load latencies and memory dependence
degrees, respectively, yield the two training sets we regard. Additionally, since
we consider program classification, we have as another training set the set of
programs, together with their static program features.

In the following, we first consider the collection of static features required
for both regarded kinds of program behavior as well as for program classifica-
tion. Then, we describe how to collect the corresponding classes by profiling,
again for load latencies and for memory dependence degrees. Finally, we regard
how to obtain the predictors from the training data.

5.3 Learning the Memory Behavior of Programs 109

Static Feature Analysis

We have three different kinds of training sets to predict load latencies, memory
dependence degrees, and program classes, respectively. In general, all features
are collected in the compiler by a special analysis phase.

Code Features: Load Latencies To predict the latency of a load, we need
to collect static code features for load instructions. Since we are at the LIR
level, a load corresponds to an assembler-like instruction. However, as we have
the back link into the HIR, we can also collect context information. For ma-
chine learning, the set of available features is crucial to obtain precise models.
Hence, it is best to collect as many features as possible. Later on, there ex-
ist techniques for feature selection, which help to keep only the most relevant
features. For a load instruction, the inherent features refer to the load itself,
i.e., data type, size of the data type, size of the enclosing data type (e.g., an
array), level of indirection (for pointers). Since we are at LIR, we can also
collect information like number of references to the stack-pointer, number of
arithmetic instructions for address calculation (add’s, shl’s, mul’s). Finally,
looking at the broader context, we can collect information like if/loop nesting
depth, block execution frequency, number of (load/store) instructions in the en-
closing basic block/loop body. As a result, for each load instruction, we obtain
a feature vector containing static properties of that load and its context.

Code Features: Dependence Degrees A memory dependency occurs be-
tween a pair of memory instructions (loads or stores). Hence, we need static
features for a pair of memory instructions. The features collected for load
instructions can also be collected for store instructions. Thus, to obtain the
features for a pair of memory instructions, we first collect the feature vector
for each instruction and concatenate both vectors. Then, we add combined
features, which compare the corresponding features of both instructions. For
example, is the data type equal?, is the level of indirection equal?. As a re-
sult, for each pair of memory instructions, we obtain a feature vector which
combines the features of both instructions.

Program Features For program classification, we need static features of the
whole program, which cover its characteristics. Hence, we collect the frac-
tion of load and store instructions and the fractions of the different types
of variable accesses (int, float, array, struct, ...). We also collect infor-
mation about the complexity of the program, like program size (number of
functions/blocks /instructions), amount of branching (average number of suc-
cessors of a basic block), average number of points-to targets. This yields a
feature vector which contains the characteristics of the program.

110 Intelligent Speculative Optimization of Memory Accesses

Profiling and Class Derivation

The dynamic behavior of programs can be collected by profiling. This requires
representative input data to run the programs. In the following, we first de-
scribe how to obtain load latencies by profiling. Then we regard how to use
profiling to collect the dependence degrees amongst memory instructions.

Load Latencies For modern processors, information about dynamic behavior
like load latencies can be collected using so-called performance monitoring
counters during profiling. Due to the vast amount of information, sampling
has to be performed, since otherwise, the program behavior could change due
to the overhead of monitoring. Hence, experiments should be repeated multiple
times to ensure that the profiling data covers most of the load instructions of
the program. Profiling yields for each load instruction a list of experienced
latencies. To obtain a class from that, as required for machine learning, we
first build the mean value for each load. Then, we form 11 latency classes,
representing a latency of 0, 10, 20, ---, 100 cycles, respectively, and map each
mean value to the class it is closest to. Load instructions for which no latency
is reported during profiling are not included in the training set. This may
happen either due to sampling, which is incomplete, or due to the fact that
not all instructions may be executed for a given input set.

Dependence Degrees We collect the dependencies empirically for the pro-
grams in the training set using profiling. During execution, we collect the
referenced addresses for all memory accesses. This gives us for every memory
instruction the list of accessed addresses. Based on that, we can determine the
dependence degree for each pair of instructions. Because we do not perform
sampling, the information we collect is complete w.r.t. the training set.

When deciding about dependency amongst memory references, care has to
be taken to distinguish different life ranges of addresses. For example, the
stack resides in a fixed memory area, and if a function returns, its stack frame
is re-used for the next called function. Similarly, memory that is allocated
dynamically on the heap is re-used after de-allocation. To cope with the first
problem, we monitor all function entry and exit points and maintain a list
that contains the addresses of the currently valid stack-frames, annotated with
a unique number. Similarly, we track all heap allocation and de-allocation
sites of the program and maintain a list of currently allocated heap areas,
together with a unique number. The unique numbers can be considered as a
version number of a address range in the memory. When an access refers to
a physical address, we first check whether it goes to an allocated heap area.
If so, we obtain its version number. Otherwise, we check whether it accesses
the stack. Again, if this is the case, we determine the corresponding stack
frame and obtain its version. Otherwise, global data is accessed, which has
a distinct (fixed) version number. Two memory accesses are only equivalent
if they refer two the same address and if their version numbers coincide. By

5.3 Learning the Memory Behavior of Programs 111

Stack with Call Frames

2 —

call f() ’ fO) #1 0xFF80 — OxFFFF: version #l1
- 0xFF80 - OxFFFF: version #1

call g() ZI f0 #1| 20 #2[,, 0xFFO00 — OxFF7F: version #2
exit g() ’ fO) #1 0xFF80 — OxFFFF: version #l1
””” 0xFF80 - OxFFFF: version #1

call h() zl f0 #ll hQ #3[,,,,,, 0xFF20 — OxFF7F: version #3
exit h() ’ 0 #[O0xFF80 — OxFFFF: version #1

Figure 5.11: Distinguishing Different Versions of the Stack

that, we can distinguish different versions of memory areas and thus avoid false
dependencies.

Figure 5.11 gives an example. We see a sequence of function calls and
function returns, which changes the stack of call frames. Especially, we see
that local variables of function ¢ and of function h, respectively, partly share
the same memory area. However, with our approach, each address range in the
memory receives its own version. Thereby, we can distinguish a local variable
of function g from a local variable of function h that reside both at OxFF00 by
their version number.

We are interested in determining the dependence degree for each pair of
instructions. Intuitively, if all accesses go to the same address, the degree
should be 1, if all are different, 0. For the general case, we have two instructions
ins; and insy, and the following functions to represent the profiling results:
Targets(ins) denotes the accessed addresses of ins, Count(ins) the number
of all accesses and TgtCount(ins,tgt) the number of accesses to a target tgt.
For normalization, we calculate the fraction of all accesses from ins to a given
target tgt, TgtFrac(ins,tgt) = TgtCount(ins,tgt)/Count(ins). For ins; and inss,
we consider every common target tgt in turn and compare the fractions that the
instructions point to tgt respectively. It is obvious that both instructions have
to refer to tgt if they should overlap. Hence, for each tgt, we take the minimum
of both fractions. Note that a multiplication of both fractions would not be
appropriate, since the fractions do not represent independent probabilities.
The resulting degree is the sum thereof for all common targets tgt:

DepDegree(insy, insy) = Z]};Elan TqgtFrac(insy, tgt) (5.22)
tgtek_ﬂl , Targets(insy,) o

112 Intelligent Speculative Optimization of Memory Accesses

Instr 1 Instr 2 DepDegree

10 20 30 40 | 10 10 20 20 | min{3, +} + min{3, 1} = 5 = 0.5
10 20 30 40 | 40 50 60 70 || min{,1} =1 =0.25

10 20 30 40 | 10 10 10 min{3,1} =1 =0.25

10 10 20 40 | 10 20 min{3, 1} + min{i,1} =2 =0.75

Table 5.1: Calculation of the Dependence Degree

Clearly, DepDegree returns a value in [0..1]. As example, Table 5.1 shows
four pairs of memory accesses, together with their accessed addresses, and their
resulting DepDegree. For simplicity, we omit the version number.

Note that the dependence degree is an over-approximation. It does not
regard the order of accesses. For example, if two instructions iterate over the
same array in opposite directions, the analysis returns a dependence degree of
1. However, we consider the degree as a measure of the inherent dependency
of two instructions, rather than the actual dependency. And, clearly, two
instructions that refer to the same array have a dependency among them.
Besides, code optimizations may change the iteration order and the actual
dependencies, while the dependence degree as defined above remains stable.

5.3.2 Identification of Program Classes

Machine learning allows for the automatic construction of models from the
collected training data, which represent the relationship between features and
classes. Various learning algorithms are available to construct the models
(see Section 2.5.1). We are interested in models with an explicit and concise
representation, which allow for building highly scalable predictors. To obtain
precise predictors, different learning algorithms can be evaluated to find the
algorithm which suits best. From the model, we can automatically generate
executable code (e.g., C code), which can be used as a heuristic function. It
receives static features from the compiler and returns the predicted class.

From the collected training data, predictors are constructed via machine
learning. In our case, these predictors can be used to respectively predict the
expected latency of a load and the estimated dependence degree of a pair of
memory instructions. Since there are different kinds of programs, one univer-
sal predictor cannot be expected to yield precise predictions for all programs.
Hence, we propose to identify groups of programs with similar behavior and to
learn one specialized behavior for each program class. This yields a repository
of predictors instead of one single universal predictor. Since we consider two
different kinds of dynamic behavior, namely load latencies and memory depen-
dence degrees, we obtain one classification for each behavior. In the following,
we consider the case of learning memory dependence degrees. The procedure
is analogous for learning load latencies.

5.3 Learning the Memory Behavior of Programs 113

ic
(;t(éllysis ProgFeat " .

1O

D) :
g, D,
\ z

.~ Distance
e & . Matrix

®)—E

DepDegree Error
Predictors Matrix

Figure 5.12: Obtaining the Distance Matrix

Through program classification, we want to automatically group programs
together that are similar to each other. This requires a distance measure on
programs. For a given set of programs, the distance measure can be represented
as a distance matrix, which contains the distance for each pair of programs.
Based on that, a program classification can be obtained by clustering algo-
rithms. The algorithm is called unsupervised, since the correct result (i.e., the
correct clustering) is unknown. The clustering algorithm aims at achieving
two goals, namely to find a clustering such that the inner-cluster distance is
minimized and that the between-cluster distance is maximized. In our case,
the first goal is important, while the second can be neglected. There are two
kinds of clustering algorithms: partitioning clustering yields a given number of
classes, while hierarchical clustering yields a hierarchy of clusters, from which
an arbitrary number of clusters can be created. However, in both cases, we can
regard the cluster analysis as a function, which receives the distance matrix as
well as the number of classes that should be identified. Then, for a different
number of classes, the corresponding clusterings can be determined and the
best one can be selected. Once the clustering is obtained, each program of
the representative program suite is assigned to a program class. From that,
the program class predictor can be trained. It learns the relationship between
static program features and the corresponding program class and can be used
to predict the program classes for previously unseen programs. Finally, the
repository of behavior predictors is built. It contains one specialized predictor
for each program class (see Section 5.3.3). When a program is to be optimized,
first its program class is determined by the program class predictor, then the
corresponding behavior predictor is selected from the repository.

Distance Measure

The distance matrix is vital for clustering, since it defines the similarity of
programs. In Section 4.3.2, we have seen how the distance matrix can be
obtained. Figure 5.12 shows that either the static code features (@®), the
memory behavior (dependence degree, see @), or the capability of programs
to explain each other (expressed by the error matrix, see @) can be used to
derive the distance measure. In the following, we consider each case in turn.

114 Intelligent Speculative Optimization of Memory Accesses

Program Features The program features contain representative information
about a whole program, like the relative frequency of different kinds of instruc-
tions or the distribution of different data types. Based on that, the distance
matrix can be obtained by first normalizing each entry of the feature vector
and by using a common distance measure like the euclidean distance. This
yields a normalized distance. Normalization is important because otherwise,
features with a wide value range would dominate the resulting distance. One
exemplary program classification could, e.g., contain one class Cy ={programs
that operate mostly on integer data} and Cy={programs that operate mostly
on floating-point data}. However, the program features do not depend on the
considered memory behavior, which is one disadvantage of this alternative.
Solely relying on static features is not sufficient to obtain program classes that
group programs together that have a similar memory behavior.

Memory Behavior (Dependence Degree) The second alternative defines
similarity with help of the dynamic behavior of programs, as collected by pro-
filing. Since the behavior is expressed by a finite number n of classes, the
behavior of each program can be summarized by the histogram of its behavior.
This yields a vector of length n, which contains the number of corresponding
observations for each class. This vector can again be normalized such that the
sum of its elements is 1. Then, the euclidean distance can be used to obtain
the distance matrix. The advantage of this variant is that it actually allows for
grouping programs together which behave similarly. As an example, we could
obtain the following three classes: Cy={programs with mostly low dependence
degrees}, Co={programs with mostly high dependence degrees}, Cs={other pro-
grams}.

Prediction Accuracy (Error Matrix) The aim of program classification is to
obtain one predictor for each program class. Hence, the programs in one class
should be able to predict each other. This motivates the third alternative:
Using mutual prediction accuracy as similarity measure. The idea is that for
each program, one predictor for memory dependence degrees is trained. Then,
it is applied to each other program of the representative training suite. The
comparison of the predicted classes with the correct ones yields the prediction
error. There are different possibilities to perform the comparison. One way
is to calculate the mean absolute error of the predictions. Another way is
to determine the correlation between the predicted and the correct classes,
respectively. The prediction error can be directly used as distance matrix.
The advantage of this alternative over the other two is that it actually allows
for grouping programs together that predict each other precisely. By that,
more accurate predictions can be expected.

Cluster Analysis

Once the distance matrix has been constructed, clustering can be performed.
The idea is to group the programs into clusters such that the inner-cluster

5.3 Learning the Memory Behavior of Programs 115

123456780910 14271035689 14271035689
1 1 [T 1 1
2 4 [4 2
3 2 2 3
: o o .
10
6 3] 3 6
7 5 5 7
8 6 6 8
9 8 8 9
10 9 9 10
Distance Distance Resulting Ordered
Matrix Matrix Clustering Program
(permuted) Classes

Figure 5.13: Cluster Analysis Based on the Distance Matrix

error is low. Conceptually, this can be thought of as permuting the rows and
cells of the distance matrix simultaneously until quadratic blocks form along
the diagonal. Figure 5.13 gives an example for a program suite containing 10
programs. On the left, we see an exemplary distance matrix, together with
the corresponding program numbers. For the sake of clarity, we only distin-
guish three different distances: none (shown as white box), low (green), high
(yellow). Since each program has maximal similarity (or minimal distance)
with itself, the diagonal contains only white boxes. For the remaining matrix,
we see that green and yellow boxes appear to be scattered randomly. In the
next step, a simultaneous permutation of rows and columns is performed to
bring programs with low distance together (note that the program numbers
have also been permuted correspondingly). We see that three clusters have
manifested themselves, of size 2, 3, and 5, respectively. From that, we can
derive the corresponding classes, as shown in the final step. This is used in the
following to train the program class predictor, as described in Section 4.3.3.
The program class predictor is constructed from the static program features
and the corresponding program classes. For each regarded dynamic property,
a separate program class predictor is created. Finally, for each identified pro-
gram class, a specialized behavior predictor is trained from the training data of
the corresponding programs. This yields the repository of behavior predictors.

5.3.3 Repository of Predictors

As a result from clustering, we obtain a set of classes. To obtain the predictor
repository, one specialized behavior predictor is trained for each program class.
In other words, we have to construct one predictor from the training data of
multiple programs. In Section 4.3.4, we have presented different techniques
to establish that goal. We can either first combine the training data sets and
train one predictor with that or first train a set of predictors and combine
those to one predictor. In the latter case, we have again different options for
combination. We can take the most frequent result returned by the predictors
or, if applicable, we can determine the mean value of all results. This requires
that the classes representing the dynamic behavior are quantitative, which is
the case for the dependence degree as well as for load latencies.

116 Intelligent Speculative Optimization of Memory Accesses

5.3.4 Combination with Alias Analyses

As mentioned before (compare Figure 4.8), the overall precision can be in-
creased if we combine the heuristics with a conventional static alias analysis.
Whenever the analysis reports no or yes for a dependency amongst memory
accesses, we use that value and interpret it as a probability of p = 0 and p = 1,
respectively. When the analysis reports maybe, which can be expected to be
the common case, we consult our heuristics. By that, we obtain exact infor-
mation when available and approximate precisely with our machine learned
heuristics, otherwise.

5.4 Summary

In this chapter, we have described the application of the general FrISCO frame-
work to the optimization of memory accesses. At the beginning, we discussed
the regarded optimization problem in detail and identified the information
about the dynamic run-time behavior that is required by the cost model. With
that, we instantiated each of the three phases of FriSCO in turn. We started
by presenting our algorithm for speculative code motion. Especially, the algo-
rithm can overcome all kinds of dependencies with the help of speculation. The
algorithm relies on the cost model to decide which transformation to apply. For
each of kind of transformation performed by the optimization algorithm, we
showed how the corresponding performance gain is precisely modeled. After
that, we have shown how machine learning can be used to obtain the heuris-
tics required by the cost model. The regarded dynamic behavior, in our case
the latency of load instructions and the dependence degree amongst memory
instructions, respectively, determines at which level the behavior is observed.
From that, it follows which static code features should be collected and how
the corresponding profiling data can be collected. We further described how to
discretize the behavior to classes, as required by classification learning. With
that, we have all required information for the training phase. Then, machine
learning algorithms can be used to automatically generate predictors from the
training data. We use our proposed concept of program classification to group
similar programs together and to have one specialized predictor for each pro-
gram class. As a result, for each regarded dynamic behavior, we have a set
of heuristics, which can be used by the cost model to perform a precise cost
estimation. This enables the optimization to perform those transformations
which are expected to yield the highest optimization gain.

In Section 1.2, we defined three criteria to rate the quality of an application
of our general framework. We revisit each criterion in turn and discuss whether
or not it is fulfilled by our instantiated framework.

m Precision of the Heuristics The concept of program classification we
propose achieves highly precise heuristics. This is shown in Section 7.1,
where we present an empirical evaluation of the precision of the heuristics
and discuss the results.

5.4

Summary 117

Correctness The algorithm for speculative code motion can overcome
all kinds of dependencies. For each kind, we presented a transformation
which guarantees correctness in all cases. In case of misspeculation,
special recovery code is executed to reconstruct the correct system state.

Optimization Gain We presented a comprehensive cost model, which
models the expected performance gain for each possible code transfor-
mation. It draws information from the heuristics, which estimate the dy-
namic memory behavior of the program under compilation. With that,
it can be expected that the optimization gain of given transformations is
precisely modeled. In our experiments described in Section 7.2, we can
show that the optimization achieves a significant optimization gain.

Implementation

In this chapter, we describe the implementation of the instantiated FrISCO
framework, which targets the optimization of memory accesses. As a result,
we obtained a complete experimental compiler platform, which supports the
full C language and which can cope with huge software like, e.g., the GNU
gcc within reasonable time. In the following, we first sketch the tools we used
for our implementation. Then, we show a specialized version of the general
framework, which shows how its abstract parts were mapped to implementation
modules. After that, we consider each module in turn and describe notable
aspects of its implementation.

6.1 Overview

An overview of the implementation of the FrISCO framework, instantiated for
the optimization of memory accesses, is shown in Figure 6.1. The diagram
corresponds to the overview of the general FrISCO framework (compare Fig-
ure 4.3, page 74) and illustrates how the abstract components were specialized
and implemented. The main parts correspond to the three phases of the ab-
stract framework. The acquisition of the training data (i.e., static features plus
profiled behavior) is performed in the analysis phase. We use the CoSy© com-
piler framework for the feature collection. Since the optimization operates at
LIR level, the features are collected after the IR was lowered to the LIR by our
Itanium backend. For profiling, we use the tools Pin[Int07] and pfmon[HP04].
Additionally, we developed tools for trace analysis in C++ to post-process the
profiled dependencies. The machine learning phase is entirely implemented
within the R Project|RCT08]. The data acquired in the analysis phase is used
to identify similar programs to perform program classification. This is done for
each considered program behavior, namely, for load latencies and for memory
dependence degrees. With that information, a predictor is built that predicts
the class of a program based on its features as well as a repository containing
one behavior predictor per program class that predicts program behavior based
on the corresponding code features — again, this is performed once for each of
the two considered program behaviors. Finally, code generation is performed
to generate executable heuristics from the predictors, written in C. The specu-

119

120 Implementation

Programs D —

: Binaries), "~ | memtracer: _analysis
i et | ;

. . Analysis

Tool External Tool

ﬁmodule Implementation

model Learned Model

Heuristics 4 4

R
code_gen
.
lLeitemey DEplleEEs
2 Machine Learning LD 6 6

p statlcprof HItanium i defoat - (CostModel) |]
_" """"""""" 3 _>§Backend393,?,0,,,,ef?q?,,3_>§ Speculative __>

,,,,,,,,,,,,,,,,, 3 . Optimization

3. Speculative Optimization

Figure 6.1: Implementation of FrISCO

lative optimization phase is completely implemented within the C'oSy compiler
framework. First, we perform a state-of-the-art static branch prediction to ob-
tain the probabilities of branches (staticprof). Then, a state-of-the-art alias
analysis is performed (aliasdas). While alias analyses are imprecise in case
of reported maybe dependencies, in the opposite case (no dependency), their
results are safe and the heuristics for dependence degrees needs not be con-
sulted. Next, code generation is performed by our Itanium backend, and the
IR is transformed into LIR. This is required because the heuristics as well as
the optimization operates at LIR level. Feature extraction is done by the code-
feat engine, which considers both IR and LIR (i.e., high-level and low-level
IR) and annotates the LIR with the corresponding code features. The features
are required by the machine learned heuristics to precisely predict the dynamic
program behavior, namely, load latencies and dependence degrees. Based upon
the heuristics, the cost model is built, and the code is speculatively optimized.
Finally, the resulting assembler code is emitted, which is translated to the ex-
ecutable binary. In the following, we first briefly introduce the external tools

6.1 Overview 121

we used. Then, we consider each of the three phases in turn and describe in
detail peculiarities of our implementation.

External Tools

CoSy As compiler platform, we use the CoSy compiler development system
by ACE[ACE]. The CoSy system is a modular compiler, which contains over
50 state-of-the-art program analyses and optimizations, which are termed as
engines. The C front end translates the source code into the Common CoSy
Medium-level Intermediate Representation (CCMIR), upon which all analy-
ses and optimizations operate in turn. After high-level, machine-independent
analyses and optimizations have been performed, the CCMIR is transformed
by a rule-based code-generator to obtain the Low-level Intermediate Represen-
tation (LIR), which represents the assembler code of the target architecture.
On the LIR, low-level analyses and optimizations can be performed, before
the final code is emitted. To target CoSy to a new hardware platform, a
specification for the considered platform has to be developed. This includes
a specification of the register file, of the functional units of the processor, of
their latencies, and of code selection rules that map the abstract CCMIR to
the corresponding assembly language. Additionally, further technical details
have to be programmed manually in C. This includes the calling conventions,
which specify how arguments and return values are passed between functions,
the memory model, the data representation, and stack frame construction. The
platform is highly modular and allows for adding custom analyses and opti-
mizations to the system. CoSy offers various data structures (e.g., lists, hash
maps) and CCMIR walkers to ease the development of new engines. Within
that platform, we did the following implementations:

m a state-of-the-art alias analysis (engine aliasdas, following Das [Das00])

m a state-of-the-art static branch predictor (engine staticprof, following Wu
et al. [WL94]

m a complete backend for the Intel Itanium2 processor

m the codefeat engine for feature collection (both code features and program
features)

m the speculation engine for the speculative optimization (together with
the cost model)

The third phase of the framework, speculative optimization, was fully imple-
mented in the compiler platform.

pfmon, Pin, C++4 The training data, which is collected in the analysis phase,
contains information about the code features and the corresponding dynamic
behavior. To collect the dynamic behavior information, we used the profiling
tools pfmon[HPO04] and Pin[LCM™*05, Int07]. pfmon allows for directly col-
lecting latencies of load instructions during program execution. The dynamic
binary instrumentation tool Pin allows for monitoring specific instructions,

122 Implementation

which we used to observe the accessed addresses for all memory instructions.
To process the collected raw data to obtain the dependence degrees for each
pair of memory instructions, we developed utility programs in C++.

R Project The second phase of the framework, machine learning, was en-
tirely implemented within the R Project for statistical computing [RCTOS].
All regarded algorithms for classification learning as well as for clustering were
already provided with R or were drawn from the Comprehensive R Archive Net-
work. R defines a script-like, functional language, in which we implemented
the algorithms of the machine learning phase of the FrISCO framework. For
classification learning, we use the rpart package, which is based on Breiman et
al. [BFOS84]. It implements an algorithm to build a decision tree by perform-
ing recursive partitioning of the data. For cluster analysis, we use the hclust
package (Murtagh [Mur85]), which performs hierarchical, agglomerative clus-
tering based on a distance matrix.

6.2 Analysis Phase

In the analysis phase, the training data is acquired for a suite of representative
programs. Based on that, the predictors are built in the next phase. This
requires as a prerequisite to compose a program suite, which covers a wide
bandwidth of applications. The data acquisition consists of the collection of
static features as well as in profiling the regarded behavior. Feature collection is
done per program as well as per instruction to yield program and code features,
respectively. As a result, we obtain feature tables (rows: programs/entities,
columns: features). We save the tables in the comma-separated value (CSV)
file format. Profiling is performed to collect load latencies as well as dependence
degrees. Finally, we bring the collected features and the profiling data together,
i.e., we establish the link from the profiled behavior to the corresponding
feature vector. In the following, we regard each task of data acquisition in
turn.

6.2.1 Suite of Representative Programs

Since the generated heuristics should be generally applicable to all kinds of pro-
grams, it is important to build the training data from a set of programs that
covers a wide bandwidth of behavior. The CPU benchmark suites proposed
by the Standard Performance Evaluation Company (SPEC)[SPEC] pursue ex-
actly that aim. Hence, we used the programs from their program suites SPEC
CPU1995, CPU2000, and CPU2006. Each program of the program suite comes
with different sets of input data, which we used for profiling. The programs are
written in Fortran, C, and C++. We translated Fortran programs to C pro-
grams via f2¢ (Feldman [Fel90]). For our representative program suite, we took
all C and all translated Fortran programs. Additionally, we added programs
from the Pointer-Intensive Benchmark Suite[PIBS95], which are written in C

6.2 Analysis Phase 123

and which also come with typical program inputs. Altogether, our program
suite contains 39 programs.

6.2.2 Static Program Features

We developed the CoSy engine codefeat to collect significant and representative
features of a whole program as well as of instructions. For a program, we collect
data-centric features, which reflect which data types are used in the program,
as well as structural features, which reflect characteristics of the IR. For the
data-centric features, we determine the relative frequency of types of variable
usages. We distinguish between the following types: integer, floating-point,
pointer, integer array, floating-point array, composite (e.g., struct), recursive
composite (e.g., linked list). To determine the relative frequencies, we consider
each access to a variable and classify its type. With that, we count the number
of accesses for each type and normalize it by the number of all accesses. To
take the execution frequency of instructions and the size of data types into
account, we use four different weighting schemes to count the accesses:

each access has the weight 1

each access is weighted by its (statically estimated) execution frequency
each access is weighted by the size of its data type

each access is weighted by its size and its frequency

0o =

Since we distinguish 7 type categories, this yields 7 relative frequencies
(which sum up to 1) for each weighting scheme. In addition to those data-
centric features, we also collect features to capture the structure of the CFG.
We count the number of referenced variables, expressions, basic blocks, and
basic block successors, respectively. Additionally, we add up the size of the
points-to sets, as reported by a static alias analysis we implemented (for more
details, see Section 6.4.3). From that, we determine derived features like av-
erage number of expressions per basic block. We use two different weighting
schemes: Use the same weight for all entities, or weight each entity by its ex-
ecution frequency. With that, we build one feature vector per CFG (i.e., per
function). To obtain the resulting whole-program feature vector, we cumulate
over all CFGs in turn and determine the average values. Altogether, this yields
4.7+ 2.8 =44 features. The feature vector is shown in Table 6.1. Internally,
the feature vector is kept within a C struct termed s_progfeat. As a result of
the collection of program features, we obtain one feature vector per program.

6.2.3 Static Code Features

To build predictors, machine learning requires a feature vector for each re-
garded entity. For load latencies, the entity is given by load instructions.
For dependence degrees, the entity is given by a pair of memory instructions.
Hence, we collect features for each memory instruction. From that, the fea-
tures for a pair of memory instructions can be obtained by combining the

124 Implementation

Data-centric Features
(relative frequencies, sum is 1; four sets of features:
unweighted, weighted by frequency, by size, by frequency and size)

reg integral integer variables

ptr integral pointer variables

freg integral floating-point variables

arr integer arrays

farr floating-point arrays

rec composite data structures

rrec composite data structures with self-referential members

Structural Features
(two sets of features: unweighted, weighted by frequency)

obj number of variable references

expr number of expressions

blk number of basic blocks

nxt number of basic block successors

ptsz number of points-to targets

expr_blk expressions per basic block

next_blk successors per basic block

avg_ptsize average points-to targets per reference

Table 6.1: Static Program Features

corresponding two feature vectors. We developed a CoSy engine to collect
significant and representative features per memory instruction. The features
reflect properties of the memory reference itself as well as inherited properties
of preceding instructions that calculate the referenced address. Additionally,
we collect information about the context of the instruction, namely its sur-
rounding basic block and, if applicable, its surrounding loop. For the basic
block context, we count the number of all instructions as well as the num-
ber of special types of instructions (memory instructions, loads, stores, calls).
With that, we can determine the relevance of the corresponding instruction
type. We also collect information about the CFG (number of predecessors/-
successors, block frequencies, and, if applicable, the if-nesting depth). If the
instruction is part of a loop, we determine the loop body and collect statistic
features (number of blocks, number of different types of instructions). Because
the loop body may contain further loops, which have a higher execution fre-
quency, we additionally collect weighted statistic features (each occurrence of
an instruction is weighted by the execution frequency of its basic block). Al-
together, this yields 80 features per memory instruction. The resulting feature
vector is used to learn load latencies. To obtain the resulting feature vector
for an instruction pair, as required to learn dependence degrees, we concate-

6.2 Analysis Phase 125

nate the feature vectors of both instructions. Additionally, we automatically
construct combined features as follows: Are the corresponding features of both
instructions equal, both zero, both non-zero. This yields altogether 230 fea-
tures. The components of the feature vector are shown in Table 6.2. Internally,
the feature vector is kept within a C struct termed s_codefeat.

6.2.4 Profiling Load Latencies

Modern processors offer special performance monitoring counters, which can
be used to monitor special events during program execution like cache misses.
We used the pfmon[HP04] tool to collect the load latencies on the Itanium. We
monitored the “Data Cache Level 1 — Miss” event and collected the address of
the corresponding instruction as well as its experienced latency. Since pfmon
performs sampling, we repeated each program run 30 times. As a result, we
have a list of instruction addresses and corresponding latencies. If multiple
latencies are reported for an instruction (i.e., if the instruction is executed
multiple times), we calculate the average value. Since classification learning
requires the behavior to be encoded as discrete values, we discretize the latency
by the following function:

d:N — Ciy,d(z) = min{ |5 + 0.5],10}.

This yields 11 classes Cj,; = {0,1,..,10}. The latency is divided by 10
and rounded to the next integer, which constitutes the corresponding class.
Any latencies above 100 are mapped to the highest class 10. This mapping
represents a trade-off between precision of the classes on the one hand and
precision of the predictors on the other. With more classes, the behavior is
more precisely modeled, but the predictors can be expected to be less precise.
On the other hand, with fewer classes, the predictors perform better, but the
behavior is modeled less precise.

6.2.5 Profiling Memory Dependence Degrees

To collect the addresses that are accessed by memory instructions, we use the
profiling tool Pin[Int07]. It provides an Application Programming Interface
(API) to monitor program execution at the desired abstraction level. In our
case, we monitor instructions of a program. In Section 5.3.1, we have described
how the dependencies amongst memory accesses can be determined via profil-
ing data. First, we record for each memory access the referenced address as well
as the address of the corresponding instruction. As we have seen previously,
certain physical addresses may be re-used. This is the case for local data, which
resides in a procedure’s stack frame, as well as for data on the heap, which
may be re-allocated after de-allocation. Hence, for the corresponding memory
ranges, the corresponding version number has to be determined. To that end,
we additionally track each function call and function return and annotate the
appropriate version number at the corresponding stack frame. Besides, we

126

Implementation

Features of the referenced object

ref_size
ref_supsize
ref_num_obj
ref_num_cont
ref_num_ptr
ref_num_sp_rel
ref_num_gp_rel
ref_num_add
ref_num_mul
ref_is_glob
ref_is_loc
ref_is_par
ref_is_arr
ref_is_rec
ref_is_union
ref_is_recrec
ref_ptsize

size

size of the surrounding structure if appropriate
number of objects

number of de-references

number of references to pointers

number of references to the stack pointer
number of references to the global data pointer
number of additions

number of multiplications

is the referenced object a global?

is it a local variable?

is it a function parameter?

is it an array?

is it a record?

is it a union?

is it a recursive record?

number of points-to targets of the reference

Features of the indirectly referenced objects

all features listed above; boolean features become count features
(e.g., how many indirect references to arrays)

Totaled features

sum of direct and indirect features

Features of the surrounding basic block

blk_preds
blk_succs
blk_sum_ins
blk_sum_memins
blk_sum_Id
blk_sum_st
blk_sum_call
blk_freq
blk_if_depth

number of block predecessors

number of block successors

number of instructions

number of memory instructions

number of loads

number of stores

number of calls

frequency of the block (statically predicted)
if nesting depth

Features of the surrounding loop (if appropriate)

loop_depth
inner_loops
loop_sum_bb
loop_sum_ins
loop_sum_memins
loop_sum_Id
loop_sum_st
loop_sum_call

number of surrounding loops

number of contained loops

number of blocks (+ weighted by frequency)
number of instructions (+ weighted)

number of memory instructions (+ weighted)
number of loads (4 weighted)

number of stores (4 weighted)

number of calls (4 weighted)

Table 6.2: Static Code Features per Memory Instruction

6.2 Analysis Phase 127

also track function calls which refer to memory management (malloc, calloc,
free) and again assign the appropriate version number at the corresponding
address range. By that, we can determine a version number for each physical
address. If an address is neither within a stack frame nor within an allocated
heap region, it refers to global data, and we used a fixed, distinct version num-
ber to express that case. Thus, for each memory access in the program, we
record the accessed physical address, its version number, and the address of
the corresponding instruction.

The result from profiling is a log file that contains the collected data for each
executed memory access. For each memory access ins, we have the number of
accesses for a given target tgt, TgtCount(ins,tgt), which can be used to deter-
mine the total number of accesses performed by ins, Count(ins). From that,
we can calculate the dependence degree for two instructions ins;, insy (with
TqtFrac(ins,tgt) = TgtCount(ins,tgt)/Count(ins); see also equation (5.22)):

DepDegree(ins,, insy) = Z]g;l% TgtFrac(insy, tgt), (6.1)
tgtek_r] , Targets(insy) o

Since most instructions are executed multiple times due to loops, the log
file is very huge (typically several gigabyte). Especially, the whole file cannot
be held in memory for further processing. To make the huge data manageable,
we observe that equation (6.1) is modular, i.e., the degree is determined by
considering each common target independently. For each target, we can deter-
mine the fraction it constitutes for the corresponding instruction and use the
minimum of both fractions for cumulation. Hence, it is possible to consider
each occurring target in turn, determine the involved instruction pairs, deter-
mine their fractions, and update the corresponding DepDegree value. For that
technique, it is only required to hold all accesses to a given target at once in
the memory, which is much less than the whole log file. We implemented the
corresponding algorithm in a C+4++ tool that performs trace analysis. Initially,
the log file is sorted by the accessed targets. This is done via merge sort, which
allows for sorting files of arbitrary size. First the log file is partitioned into
smaller chunks that fit into main memory. Then, each chunk is sorted. Finally,
the sorted chunks are merged together. Next, the dependence degree is calcu-
lated. To that end, the sorted log file is iterated twice. In the first iteration,
the number of referenced addresses Count(ins) is determined for each instruc-
tion ins by summing up the counts for each target tgt, TgtCount(ins,tgt). In
the second iteration, the overlap is determined for each instruction pair insi,
insy by summing up the overlaps for each common target. The current overlap
for each instruction pair is stored in a two-dimensional array DepDegree. The
log file is processed, and for each target tgt and for each instruction pair ins;,
insy, the corresponding overlap is given by the minimum of TgtFrac(ins;,tgt)
and TgtFrac(insy,tgt). The overlaps are cumulated as appropriate in the array
DepDegree (see equation (6.1)). Note that TgtCount(ins;,tgt) is 0 if there is
no reference from ins; to tgt. As the result of our trace analysis, the array
DepDegree contains the dependence degree for each instruction pair.

128 Implementation

The dependence degree calculated so far is a value dep€ Qy..1). Since we
use classification learning, we have to discretize the dependence degrees and
encode them as discrete values. We use the following function:

d: Qpo.1) = Caep,d(x) = [10- 2 4 0.5].

This yields 11 classes C4ep = {0, 1,..,10}. The dependence degree is multi-
plied by 10 and rounded to the next integer, which constitutes the correspond-
ing class. As before, this mapping represents a trade-off between precision of
the classes on the one hand and precision of the predictors on the other.

6.2.6 Combination of Code Features and Profiling Data

So far, we have described how to collect the code features and the profiling data.
Both kinds of data were collected separately and, hence, have to be brought
together to be usable for machine learning. This means that for each entity for
that we have collected the dynamic behavior, we have to find the corresponding
code features. First, we consider how to match the features and the profiling
data for the case of load latencies. Profiling yields a list of instructions together
with their experienced load latency. An instruction is given by its instruction
address. With that, we can identify the corresponding memory instruction in
the executed binary. However, during feature collection in the compiler, the
addresses of instructions are not yet available. To still make the link from
instruction address to the corresponding feature vector, we use the relative
position of an instruction with respect to the function it belongs to. For each
memory instruction, we determine the function it resides in as well as its
relative position within that function. During feature collection, we determine
the relative positions of instructions by a virtual emit phase: For each function,
we process its basic blocks in the same order as for code generation. By
that, we can obtain the relative position of each instruction. The feature
vector contains special fields that contain the function and the relative position
of an instruction. Those fields are not used for machine learning, they are
merely used to establish the link between the profiled information and the
corresponding feature vector.

For the case of dependence degrees, i.¢e., to link the profiling data with the
corresponding code features for instruction pairs, we proceed similarly. Pro-
filing yields the dependence degree for an instruction pair, which is given by
two instruction addresses. For each address, we determine the correspond-
ing feature vector as described above. Then, both vectors are combined by
concatenating their values and by building combined features.

As a result of the data acquisition, the training data is ready to be used
for machine learning in the next phase. For each program, we have a table
which contains static features as well as experienced latency for each load
instruction, as well as another table which contains static features as well as
the corresponding dependence degree for each pair of memory instructions.

6.3 Machine Learning 129

6.3 Machine Learning

The aim of the machine learning phase is to construct behavior predictors
which predict load latencies as well as memory dependence degrees. This
phase is entirely implemented within the R Project|RCTO08], using its script-
like, functional language R. All classification and clustering algorithms we used
were provided by the R Project or by the Comprehensive R Archive Network.
We started first investigations on using machine learning for predicting depen-
dence degrees in the diploma thesis [Hee07], and we performed an empirical
study on how to obtain good clusterings in the diploma thesis [Rol09]. For the
implementation of the machine learning phase, we wrote functions in R that
bring the training data collected in the previous phase into R and preprocess
it for normalization, invoke the provided functions appropriately to perform
clustering and machine learning, and generate executable C code from the
predictors. The core tasks of this phase are the construction of a distance ma-
trix on programs, the program classification, the construction of the program
class predictor, and the construction of the behavior predictor repository. The
whole phase is performed twice, once for the data on load latencies and once
for the data on memory dependence degrees. In the following, we consider
each subtask in turn and convey the central ideas. The procedure is identical
for handling load latencies and dependence degrees, hence, we use the general
term memory behavior to subsume both.

6.3.1 Data Preparation

The training data collected in the previous phase is given as a set of CSV files,
one per program of the program suite and per considered memory behavior.
Those files can be read into R and are represented as a list of tables. The
rows correspond to the observations, the columns to the features and, as a
special column, to the observed behavior. The features are named and can be
accessed by name within R. The number of observations per program depends
on the program and on the input data it was executed with. To make learning
feasible, we define a fixed upper bound for the number of observations. When
a table contains more than 3000 observations, we randomly select 3000 obser-
vations and disregard the rest. Next, we process the features. Depending on
the considered program behavior, we may have up to 230 features per obser-
vation. We perform feature selection to keep only the most important ones.
To that end, we determine the correlation between each feature and the ob-
served behavior. Then, we select the 25 features with the highest correlation.
The correlation is averaged for all training data. Especially, for each table,
the same features are selected. As a result, for each program, we have a table
with at most 3000 rows (the observations) and with 26 columns (25 features
plus the observed behavior). Additionally, for program classification, we have
another table which contains the program features. The rows correspond to
the programs and the columns to their features.

130 Implementation

tot_num_ptr < 0.5
yes S~ no
tot_sum_size2 >= 12 tot_num_mul <05
2 tot_num_adci <05 2 i()
1 2

Figure 6.2: Learned Decision Tree

6.3.2 Predictor Construction

A predictor can be directly build from a table. It models the relationship be-
tween the features and the observed behavior, which is termed as response. We
use the rpart package within the R Project, which constructs a decision tree to
model the relationship. The decision tree is a binary tree which has conditions
at its inner nodes and class values at its leaves. The aim is to partition the
feature space into orthogonal hyper-boxes such that the observations within a
hyper-box mostly share the same behavior. The tree is iteratively built. At
each step, a feature F' and a threshold value val are selected and the currently
considered hyperspace is divided into two partitions F' <= val and F' > val. F
and wval are chosen such that the partitioning groups observations with similar
behavior together as best as possible. Then, for each partition, the partition-
ing is repeated. At the same time, the decision tree is built. Each partitioning
adds another node to it. The process stops if all observations of a partition
have the same behavior or if the number of observations of a partition falls
below a fixed threshold. As a result, the built classification tree models the
relationship between features and response. It can be used to make predic-
tions for new data. An example is shown in Figure 6.2. We see a tree which
partitions the feature space into 5 hyper-boxes using 4 conditions. To make a
prediction, we start at the root. Iteratively, the condition of the currently re-
garded node is evaluated, and the result determines whether we continue with
the left child or with the right. When we reach a leaf, we report the annotated
class value as prediction. For example, if tot_num_ptr=1 and tot_num_mul=2,
the exemplary tree would return a dependence degree of 10.

6.3.3 Program Classification

To increase the precision of the predictors, we perform program classification
and group similar programs together. This is done by cluster analysis, based on
a distance matrix. We use the hclust package within the R Project. The cluster
analysis starts with all programs being in a separate cluster. Then, iteratively,
the two clusters that are closest to each other (with respect to the distance
matrix) are merged together. This is repeated until all programs belong to the
same cluster. The result of clustering is given by a dendrogram. A dendrogram
is a binary tree which represents all intermediate clusterings obtained during

6.3 Machine Learning 131

cluster _programs <— function(tablist) {
tablist: list of tables, one per program
models = sapply(tablist , function(tab) {
rpart (behav = ., tab)
)i

models: list of predictive models (decision trees)
errmat = sapply (models, function(model) {
sapply (tablist , function(tab) {
mean (abs (predict (model, tab) — tab$behav))

1)

Ik
errmat: distance matrix
cutreee (hclust (errmat) ,3);

Figure 6.3: Program Classification via Hierarchical Clustering

the cluster analysis. In other words, for each k between 1 and n (n being the
number of programs), a clustering with & clusters can be determined from the
dendrogram. To obtain sensible clusterings, we state a lower bound for cluster
size and an upper bound for the number of clusters to avoid over-fitting. A
cluster should contain at least 5 programs, and the number of clusters should
not exceed 6.

To obtain the distance matrix, we build one predictor for each program.
Then, we apply each predictor to all programs and compare the predicted
behavior with the correct behavior to derive the mean absolute error. Since
we have 11 classes to model the program behavior, the mean deviation error
ranges from 0 to 10. As a result of the cluster analysis, we have a list that
assigns each program to its cluster number. The corresponding R code is
shown in Figure 6.3. The function cluster_programs expects the list of tables
containing the training data. First, the relationship between the features and
the response variable (termed behav) is learned for each table. This is done via
the rpart function, which expects a formula and a table. The formula denotes
which relationship should be learned, in our case, the relationship between
response variable behav and all other features (indicated by the dot). To obtain
predictive models for all tables, the sapply function is used, which resembles the
map function of typical functional languages. Then, based on that models, the
distance matrix errmat is built. For each model and for each table, the model
is used to predict the behavior for that table, and the predictions are compared
with the correct response (tab$behav selects the response from the table tab).
Since the 11 classes can be mapped to the numbers 0 to 10, the difference can be
determined for each prediction. Then, the absolute value thereof is taken, and
the mean value is derived. This yields the mean deviation prediction error.
Overall, the result is a matrix. Upon that matrix, hierarchical clustering is
performed and yields the dendrogram. From that, a clustering which yields 3
clusters is selected and returned.

132 Implementation

Clustering yields for each program the number of the program class it
belongs to. This constitutes the response variable and can be used together
with the static program features to build a program class predictor.

6.3.4 Construction of the Behavior Predictor Repository

With the information from program classification, we can build a repository of
specialized behavior predictors. For each program class, one behavior predictor
is built. As we have described in Section 4.3.4, we consider various ways of
combining the training data of the programs of a program class to obtain one
predictor. The first alternative is to merge the feature tables of all programs
of the regarded program class. If the number of observations exceeds our limit
of 3000, we again perform sampling. Then, we use rpart to build a decision
tree. The second alternative is to build a set of predictors via rpart, one per
program within the program class, and to make predictions by consulting all
predictors and by combining their votes. Here again, we consider different
alternatives. We either take the majority vote and break ties by taking the
lowest or the highest class, respectively, or we compute the arithmetic mean of
all votes and round it to the nearest class value. The latter case is admissible,
since the behavior is represented by quantitative classes. With that, we have
one composite predictor per program class. It contains the predictors for each
program of the program class and combines their votes to make a prediction. In
the evaluation, we compare the precision of the different combination schemes
against each other. As result, we have a repository of predictors, one for each
program class.

Overall, we obtain a two-stage behavior predictor from the training data,
which contains the program class predictor and the repository of behavior
predictors. To make predictions about the memory behavior, first the program
class of the regarded program is determined based on its static code features.
Second, the corresponding predictor is selected from the repository, and it is
used to predict the memory behavior, based on the static code features of the
considered instruction or instruction pair.

6.3.5 Generation of Executable Code from the Predictors

The rpart algorithm builds predictors in form of decision trees. Within R,
those predictors can be used to make predictions for new data. However,
we require the predictors to be applicable outside of R, namely, within our
compiler framework. To that end, we developed a code generator in R, which
takes in a decision tree and generates C code from that, which implements
the decision tree. A decision tree can be implemented by nested if-then-else
constructs. For each inner node, we create an if-then-else construct that checks
the annotated condition. For the then-branch, we recursively generate code
for the left child of the node. For the else-branch, we take the right child.
Whenever we reach a leaf, we report the annotated class label as prediction.

6.3 Machine Learning 133

if (tot_num_ptr <0.5)

if (tot_sum_size2>=12)
tot_num_ptr < 0.5

N return 2;
yes ‘\\\1\10 else
tot_sum_size2 >= 12 tot_num_mul < 0.5 if (tot_num_mul<0.5)
/\\\ / return 1;
B Ise return 2;
tot_num_add < 0.5 €)
2 - . 2 10 else
/ if (tot_num_add <0.5)
1 2 return 2;
else return 10;
(a) Learned Decision Tree (b) Resulting C Code

Figure 6.4: Code Generation from Decision Trees

Figure 6.4 gives an example. On the left, we see an exemplary decision tree
that was trained to predict the dependency degree for an instruction pair. We
see how certain features are compared to a threshold at each inner node. The
result of the comparison determines whether to branch left (condition fulfilled)
or right (condition not fulfilled). The leaves are annotated with class labels.
On the right, we see the corresponding C code that was generated by our
function.

While the function to predict program classes is directly given by the code
generated from the corresponding decision tree, the function for a behavior
predictor may correspond to multiple decision trees if the predictors were com-
bined by voting. In that case, the function of the behavior predictor first eval-
uates all decision trees of the corresponding program class and then combines
their votes appropriately. Based on those functions, the code for the overall
behavior predictor can be generated. First, the program class is determined.
Then, the function of the corresponding behavior predictor is consulted to
obtain the resulting prediction. The program features and the code features
are passed to the functions as appropriate using the C structs s_progfeat and
s_codefeat, respectively. Those structs were defined within the codefeat engine,
which performs the feature collection.

As a result of the machine learning phase, one heuristics for predicting
load latencies and one heuristics for predicting memory dependence degrees
are generated. The heuristics are written in C and use the data structures
that were defined in our CoSy engine codefeat. Hence, the heuristics can be
used in the compiler to predict the memory behavior. This only requires an
additional analysis step that determines the static features of the program and
of each memory instruction, which is done by codefeat.

134 Implementation

6.4 Speculative Optimization

In the preceding phase for machine learning, heuristics for predicting the mem-
ory behavior of programs were generated. In the phase of speculative optimiza-
tion, this information is used to guide a speculative optimization of memory
accesses, performing upwards code motion. This phase was entirely imple-
mented within the C'oSy system. For the implementation, we first needed to
establish our compiler platform for the Intel Itanium2, which mainly consisted
in developing a backend for the Itanium2 processor. Then, we implemented a
state-of-the-art static branch predictor to obtain branch probabilities as well
as a state-of-the-art alias analysis to make our heuristics more precise. Finally,
we implemented the algorithm for speculative upwards code motion (described
in Section 5.1.3) as well as the cost model (see Section 5.2). In the following,
we consider each task in turn.

6.4.1 Itanium Backend

The CoSy system provides a highly modular compiler framework, which com-
prises many state-of-the-art optimizations and which facilitates retargeting to
new target hardware platforms by using the rule-based code generator BEG
(backend generator; based on bottom-up rewrite systems, see Emmelmann et
al. [ESL89]). To establish a compiler framework with the Intel Itanium2 pro-
cessor as target architecture, the main task was to develop a backend within
the CoSy system. The vital parts can be described by a backend specification.
However, peculiarities like calling conventions (how are values passed to and
returned from functions) require manual C programming.

The backend specification describes the register file, the functional units
of the processor together with latencies amongst them, and, mainly, how to
map the abstract CCMIR to the concrete assembler language of the target
architecture. The specification of register file and functional units is straight-
forward. The derivation of rules requires more effort, since every construct of
the CCMIR has to be mapped to assembler code. Altogether, the specifica-
tion contains 229 code selection rules. To complete the backend, we had to
manually program specific parts. The major tasks were the following:

» specify whether a given data type fits in a register (and if so, in which
kind of register)

m generate the required data directives for global data

» specify how parameters are passed to functions (which fit in a register,
which should be passed on the stack, which registers to use)

m regard the alignment of data as demanded by the target architecture

All required information was taken from the official technical specifications
of the Ttanium2 processor by Intel [Int06b, Int06¢, Int06d, IntO1]. As a re-
sult, we obtained a compiler platform that compiles arbitrary C programs and
generates assembler code for the Intel Itanium2. Based on the specification of

6.4 Speculative Optimization 135

the functional units and the latencies amongst them, scheduling is performed
during compilation. As a result, each instruction receives the cycle at which it
is executed (relative to the surrounding basic block). To generate executable
binaries from the assembler files, we use Intel’s Itanium assembler (which is
part of Intel’s icc compiler [Int06al).

6.4.2 Static Branch Predictor

To determine branch probabilities statically, we implemented the heuristics
presented by Wu et al. [WL94]. For each branch, the probability is deter-
mined as follows: For the condition the branch depends on as well as for both
branch targets, certain characteristics are determined. Based on that infor-
mation, a set of simple heuristics decides whether or not the branch is taken.
Each heuristics has an associated weight, which expresses the relevance of that
heuristics. Finally, all predictions are combined to yield the probability that
the branch is taken. Additionally, from that information, the frequencies of
basic blocks can be derived. This topic was investigated in the diploma theses
[Tet07]. We implemented the static branch predictor (or static profiler) in the
C'oSy engine staticprof.

6.4.3 Alias Analysis

The idea of our framework is to use heuristics to overcome the imprecision of
static analyses. However, we can also benefit from that part of information
returned by static analyses that us precise. Whenever alias analyses report a
memory dependency to be absent, this information is exact. Only for the other
case, when a dependency is reported as potentially present, alias analyses are
highly imprecise. Hence, we combine our heuristics for dependence degrees
with a state-of-the-art alias analysis. Whenever we want to determine the
dependence degree for an instruction pair, we first consult the alias analysis.
If it returns no dependency, we know that this information is exact and return
a dependence probability of 0. Otherwise, we consult our heuristics and return
the predicted probability (see also Figure 4.8). Thus, we implemented the
one-level flow alias analysis proposed by Das [Das00]. The analysis is scalable
and was empirically proved to outperform other static analyses in terms of
precision (see Mock et al. [MDCEO1]). We developed a CoSy engine aliasdas,
which performs the alias analysis and annotates the results in the CCMIR. We
performed initial investigations on that topic in the diploma thesis [Opp07].

6.4.4 Speculative Upwards Code Motion

We implemented the algorithm for speculative upwards code motion as CoSy
engine (see Figure 5.2 for the algorithm). This includes the implementation of
the cost model as well as of the actual upwards code motion, which can over-
come all kinds of dependency. As we have seen in Section 5.1.1, the cost model

136 Implementation

needs information about the dynamic program behavior as well as about the
target architecture. In the following, we revisit the different kinds of required
information and state by which parts of the implementation they are collected.

m Load latencies: yielded by our generated heuristics

m Likeliness of memory dependencies: yielded by our generated heu-
ristics

s Branch probabilities, basic block frequencies: yielded by the im-
plemented static branch predictor

m Relative issue cycle of instructions: yielded by the generic sched-
uler, which is part of CoSy

m Overhead of validity checks and of recovery code execution:
from the documentation of the Intel Itanium2 architecture [Int04, p.33]

We implemented the algorithm for speculative code motion as described
in Section 5.1.3, Figure 5.2. The optimization operates on the LIR level and
processes the program function by function. We initially investigated the algo-
rithm in the diploma thesis [Sch07] and developed the full version based on this
experience. First, a list of optimization candidates is built. We identify all load
instructions, predict their latency with our heuristics and subtract the cycle
distance to obtain the effective latency. The instruction that uses the loaded
value can be determined by analyzing the register dependencies. The distance
is determined by inspecting the relative issue cycles of the instructions. The
candidate list is sorted by effective latencies in decreasing order to ensure that
optimization starts with promising candidates. Each candidate is processed
in turn. It is iteratively moved upwards step-by-step, and after each transfor-
mation, the resulting effective latency is determined via the cost model. Each
transformation is actually performed on the code. During code motion, the
best encountered code configuration is saved. Code motion stops when a max-
imum number of transformations has been performed. Of all transformations,
the code with the highest optimization gain (i.e., with the lowest effective load
latency) is kept. For each code configuration, the code size is determined. This
allows for limiting the impact of the optimization on code growth. During code
motion, dependencies are overcome as described in Section 5.1.3. Memory de-
pendencies can be ignored with data speculation. Control dependencies can
be overcome with control speculation. Opposed to the general algorithm we
presented in the previous chapter, we do not perform code duplication. For
code motion across basic block borders, we consider only dominator blocks of
the currently regarded blocks, which makes code duplication needless. Still,
as described for the general algorithm, we consider each possible path from
the target block to the original basic block, determine its optimization gain
and sum up all gains, weighted by the corresponding conditional path proba-
bilities. True register dependencies are overcome by LAC chain construction.
We rename all registers that are only internally used within a LAC to virtual
registers. By that, we circumvent output and anti dependencies on registers.

6.4 Speculative Optimization 137

Parameter Default | Explanation

max_freq_ratio 2.0 maximally admitted ratio between the fre-
quencies of the target block and of the orig-
inal block for control speculation

max_lac_length 6 maximally admitted length of the LAC

max_lac_loads 2 maximally admitted number of load in-
structions in LAC

max_cand_abs 3 maximally admitted number of optimiza-
tion candidates per function

max_cand_rel 0.005 maximally admitted fraction of optimiza-
tion candidates per function (w.r.t. number
of instructions of the function)

max_code_growth | 0.05 maximally allowed fraction of code growth

Table 6.3: Parameters of Speculative Code Motion

When a function call is crossed during code motion, it is considered as a
possibly conflicting store in the cost model. The probability is determined by
considering the dependence probabilities between the currently optimized load
and each store instruction of the called function and by choosing the highest
probability thereof. The costs of speculation were taken from the technical
specification of the Intel Itanium2 processor. Because the Itanium supports
speculation by hardware, the cost of the validity check is constant and does
not depend on the number of stores that were speculatively crossed. The cost
model reflects a peculiarity of the implementation of speculation on the Ita-
nium: When an effective latency is only partially reduced by speculative code
motion, ¢.e., when the loaded value is not yet available when reaching the
check instruction, the Itanium reports a misspeculation. This makes specu-
lative code motion only profitable if the distance between advanced load and
check instruction amounts at least to the load latency.

The algorithm can be fine-tuned by a number of parameters (see Ta-
ble 6.3). Code motion across basic block borders is controlled by the parameter
max_freq_ratio, which avoids that code gets moved into blocks with a higher
frequency. This would impair program performance. The construction of LAC
chains ensures that the upper bound for the number of (load) instructions,
specified by max_lac_length (maz_lac_loads), is not exceeded. The Itanium
uses a special hardware table (ALAT) to decide whether a speculatively loaded
value is still valid. This table is of very limited size (32 entries). Hence, to avoid
over-speculation, the parameters maz_cand_abs and maz_cand_rel specify the
number of candidates that may be optimized per function. The first parame-
ter specifies an absolute value, the second a relative value w.r.t. the number of
instructions in the regarded function. The maximum value of both parameters
is used as an upper bound on the number of optimized loads. The parameter

138 Implementation

SLOC | Language | Module
418 C++ Pin: memtracer
4342 C++ Trace Analysis

7829 R Generation of Predictors, Fxperimental Evaluation,
Code Generation

2981 C CoSy: aliasdas

1938 C CoSy: staticprof

1450 C CoSy: codefeat

4808 C CoSy: Speculative Optimization
4618 C CoSy: Itanium Backend

7694 CGD CoSy: Itanium Backend — Backend Specification
36078 Total

Table 6.4: Source Lines of Code (SLOC) of the Implementation Modules

max_code_growth specifies which amount of code growth is admissible. The
shown default parameters have led to the best performance results.

6.5 Summary

In this chapter, we described how we implemented the instantiated FriSCO
framework, targeting the optimization of memory instructions. The analysis
phase was implemented using CoSy for feature collection and pfmon and Pin
for profiling. The machine learning phase was entirely implemented within the
R Project and yields executable heuristics, written in C, to predict memory de-
pendence degrees and memory latencies. In the speculative optimization phase,
which was fully implemented within CoSy, those heuristics were integrated and
are accessible from our speculative optimization. Table 6.4 lists the number of
source lines of code (SLOC) for each module we implemented (comments and
empty lines were not counted). As a result, we obtain an executable compiler
that accepts the full C language, speculatively optimizes memory accesses, and
generates executable binaries for the Itanium architecture,

7 Experimental Results

In this chapter, we describe the results of our experiments with the implemen-
tation of the instantiated FriSCO framework. First, we evaluate the automat-
ically generated predictors. Second, we investigate the optimization gain that
our optimization achieves using those predictors.

7.1 Evaluation of the Predictors

As initial experiment, we determine the general applicability of decision tree
learning to predict both regarded kinds of memory behavior. This entails two
steps: First, we perform self-validation to see whether the relationship between
features and behavior can be identified. Second, we use cross-validation to get
a first impression whether the learned models can be transferred from one
program to another. We solely use the training set of programs for that first
experiment. After that, we present our main experiment, which evaluates the
precision of the obtained predictors for the validation set of programs. To
that end, we initially perform self-validation on the validation set. This yields
an upper bound for the predictor precision, against which we can compare
the other results. Then, we train one general predictor from the training set
of programs and assess its precision for the validation set. After that, we
perform program classification and train a set of specialized predictors using
the training set, and we evaluate their precision for the validation set. In both
cases, we also compare the 4 different schemes to combine data sets (merge,
vote-min, vote-max, vote-average, see Section 4.3.4) against each other.

In the following, we first describe the validation methods we use, namely
self-validation and cross-validation. Then, we present the program suite that
we use for our experiments. After that, we describe our experiments.

7.1.1 Validation Methods

In Section 2.5.3, we have presented different error measures to evaluate the
precision of a predictor for a given data set, for which the correct classes are

139

140 Experimental Results

known. On top of that, there are different validation methods, which decide
which data to use for training and which for validation. In the following, we
describe self-validation and cross-validation.

For self-validation, training data and validation data are identical, i.e.,
the predictor is applied to the data it was trained with. The comparison of
predicted and actual classes of the data yields the prediction error. The error
can not be considered as a realistic estimate, since the model was trained
to minimize this error in the first place. Hence, this error can be expected
to be very low. However, self-validation can be used to analyze whether a
relationship can be learned in principle. If self-validation yields bad results,
the learning scenario has to be modified, e.g., by adding more features or by
changing the classification of the data. In case of cross-validation, a predictor
is trained with one part of the training data, and it is validated with another
part. Because the predictor is validated with new data, cross-validation yields
a more realistic estimate of the predictor precision. If we have m training data
sets, we have m x (m — 1) combinations of two data sets, upon which pairwise
cross-validation can be performed. If we have a means of aggregating data sets
together, we can also perform leave-one-out cross-validation: For every data
set in turn, a predictor is trained with all other data sets but the regarded one,
and the resulting predictor is then validated with the omitted data.

We use both methods, self-validation and cross-validation, to assess the
general applicability of machine learning for our training data. For the main
experiment, we use neither of those methods. However, the setting can be com-
pared with that of cross-validation. Because the training set and the validation
set are disjoint, the obtained results yield realistic error estimates. To estimate
the predictor precision for a given pair of predicted and correct classes, we use
the mean absolute error together with the correlation. Additionally, to have
a closer look at the general applicability of machine learning for our training
data, we consult the Ak-accuracy.

7.1.2 Program Suite

We want to use machine learning to identify the relationship between static
code features and program behavior. This requires a representative program
suite to obtain usable predictors. Furthermore, to get a realistic impression of
the predictor precision, it is important to apply it to new data. In other words,
the training set and the validation set must be disjoint. We use programs from
the SPEC CPU benchmark suites|SPEC], which were designed to cover a wide
range of typical program behavior. Each program is provided with three sets
of input data, which are of increasing complexity: test, train, and ref. The
first SPEC benchmark suite was presented 1992. Since then, new suites have
been released in 1995, 2000, and 2006 to reflect the continuous development of
new software. Especially, the complexity of the contained programs increased
with every release (for a comparison of Spec’00 and Spec’06, see Agaram et
al. [AKLMO6]). To obtain a sufficiently comprehensive program suite, we use

three SPEC benchmark suites: SPEC CPU1995, SPEC CPU2000, and SPEC

7.1 Evaluation of the Predictors 141

Dependence Degrees

Training Spec’95 (test): applu apsi fpppp hydro2d mgrid su2cor swim
(28 Programs) | tomcatv turb3d wave5 compress go li m88ksim

Spec’00 (test) : ammp applu apsi art equake mesa sixtrack swim
Spec’00 (train): crafty gap gzip parser twolf vpr

Validation Spec’00 (train): bzip2 mcf perlbmk

(10 Programs) | Spec’06 (test): bzip2 gobmk hmmer mef perlbench sjeng sphinx

Load Latencies

Training Spec’95 (train): hydro2d swim tomcatv turb3d waveb compress
(26 Programs) | go ijpeg li m88ksim

Spec’00 (train): ammp applu apsi art equake mesa mgrid swim
wupwise crafty gap gzip parser twolf vortex vpr

Validation Spec’95 (train): perl

(13 Programs) | Spec’00 (train): bzip2 mcf perlbmk

Spec’06 (train): bzip2 gobmk h264ref hmmer mcf milc perl-
bench sjeng sphinx

Table 7.1: Training and Validation Sets of Programs (together with the chosen
input data set)

CPU2006. We use programs from Spec’95 and Spec’00 for the training set,
and Spec’06 as validation set. Some programs are part of multiple benchmark
suites (in different versions). For example, bzip2 is contained in Spec’00 as
well as in Spec’06. To ensure that training set and validation set are disjoint,
we exclude programs from the training set that are also contained in the val-
idation set, and add them to the validation set. This concerns 4 programs:
Spec’95: perl, Spec’00: bzip2, perlbmk, mcf'. Our chosen program sets for
training and validation, respectively, ensure realistic validation results, since
both sets are disjoint. Additionally, the chosen setting adds another challenge
to our approach: Compared to the current Spec’06 suite, the programs of the
preceding suites are less complex. Hence, we try to predict the behavior of
today’s programs with those of yesterday. If we are successful with that, we
have evidence that we obtained generally applicable predictors.

We performed the experiments for both regarded memory behaviors, de-
pendence degrees and load latencies, separately. The training and validation
sets for one behavior differ slightly from those for the other behavior, mainly
because the profiling to obtain the dependence degrees is highly expensive both
in terms of time and memory. Table 7.1 shows the training and validation sets
for dependence degrees and load latencies, respectively, together with the used
input set. More details on the programs can be found in [SPEC].

!Note that the program go from Spec’95 is not an older version of gobmk from Spec’06.

142 Experimental Results

s95.applu s95.apsi s95.fpppp $95.hydro2d s95.mgrid s95.su2cor

L1, . B L

1 [. . -
s95.swim 395.tomcatvl~ﬂ $95.turb3d s95.wave5 [s95.compress s95.90

#III

T L L. I|D..;00.art IIE

s95.li $95.m88ksim | s00.ammp s00.applu s00.apsi

=5

s00.equake s00.mesa s00.sixtrack s00.swim sOO.crafty s_OO.gap

S N | B

s00.gzip s00.parser s00.twolf sOO vpr

il L.

0246810024681002468100246810

Frequency
OO00O= OO00O~ DOOOO= OOO0O= OO0+
ONADNO ONADNOO ONEADNO ONROIOO ONBROHO

Dependence Degree

(a)
10 s00.bzip2 | s00.mcf s00.perlbmk s06.bzip2 s06.gobmk s06.hmmer
0.8 -
0.6 -
> -
S 85 SOV WU (SN | SR
2 1'0 s06.mcf s06.perlbench| s06.sjeng s06.sphinx
(0] ‘s - -
T 88 -
02 Jlen. - [o IE

0246 8100 2 4 6 8100 2 4 6 8100 2 4 6 8 10
Dependence Degree

(b)
Figure 7.1: Distribution of Dependence Degrees (a) Training Set (b) Validation Set

For each program, we performed profiling to obtain the regarded behav-
ior, which we classified in 11 classes (0-10). To get a first impression of the
characteristics of the programs, we determined the distribution of the behavior
w.r.t. the classes. For the dependence degree (see Figure 7.1), we observe that
the distribution varies significantly from program to program. We can identify
different kinds of distribution:

1. distributions, in which almost all dependencies are highly likely,

2. distributions, in which almost all dependencies are highly unlikely,

3. distributions with a peak for both highly unlikely and likely dependen-
cies, and

4. the rest.

The distributions for load latencies are shown in Figure 7.2. Opposed to de-
pendence degrees, the distributions are similar to each other. They have a high
peak in the lower classes. For most programs, almost all loads were classified
in the first three classes (0-2). There are only a few programs that have a
different distribution. For example, for the mcf programs, the distribution is
more balanced.

7.1 Evaluation of the Predictors 143

$95.hydro2d s95.swim s95.tomcatv | s95.turb3d s95.wave5 [s95.compress

.

mle me|ll m =
s95.go s95.ijpeg s95.1i $95.m88ksim [s00.ammp s00.applu
: [A ol f
s00.apsi s00.art s00.equake s00.mesa s00.mgrid s00.swim
Jall. o al.. o alln A o
s00.wupwise s00.crafty s00.gap s00.gzip s00.parser s00.twolf

all. lalls ...

=

s00.vortex -soo.vpr

il il

0246 8100 2 4 6 810

Frequency
OO00O= OO00O~ DOOOO= OOO0O= OO0+
ONADNO ONADNOO ONEADNO ONROIOO ONBROHO

Load Latency

s06.sphinx

(a)

10 s95.perl s00.bzip2 s00.mcf s00.perlbmk s06.bzip2 s06.gobmk

8¢ L -

02 T e N
3 10 s06.h264ref | s06.hmmer s06.mcf s06.milc | s06.perlbench| s06.sjeng
8 §;§: ﬂl -
O 4 —
[In. alnee—ainlla.____ Il) -

1.0

0.8

0.6

0.4

0.2

0.0

Ml .

024 6 810
Load Latency

(b)
Figure 7.2: Distribution of Load Latencies (a) Training Set (b) Validation Set

7.1.3 General Applicability of Machine Learning

To assess the general applicability of decision tree learning to obtain behav-
ior predictors, we performed self-validation as well as cross-validation on the
training set of programs. For self-validation, we considered each program of the
training set in turn, built one predictor and used it to predict the regarded pro-
gram. We assessed the precision of each predictor and averaged the results. We
proceeded similarly for cross-validation. We considered all pairs of programs
that contain two different programs, trained a predictor with the first program
and validated it with the second. Again, the precision was determined and
averaged over all pairs. To interpret the results, we used the results of random
predictors as reference. With that, we can identify the amount of information
that was extracted by machine learning. We used two random predictors: ran-
dom randomly predicts one of the classes. random-prob first determines the
distribution of the classes of the training set and then predicts a class based

144 Experimental Results

on that distribution. We used the second predictor to decide whether the deci-
sion tree predictor has actually identified a relationship between features and
classes, or whether it only has found the most frequent classes, which may
happen for training data with a highly skewed class distribution.

Dependence Degrees For dependence degrees, the results of self-validation
are shown in Figure 7.3 for each of the considered prediction algorithm. On the
left, we see the mean absolute error (MAE) together with the correlation. The
bars indicate the standard deviation. The random predictors err on average
by 4.33 classes, and the correlation is almost zero (0.01). The random-prob
performs slightly better (MAE 3.75, Cor 0.01), which is an evidence that the
distribution of the dependence degrees is not uniform. However, due to its
randomness, the correlation remains unchanged. The rpart predictor has a
low error (0.99) and a high correlation (0.79). This shows that rpart could
successfully identify the relationship between features and classes for a given
program. On the right, the Ak-accuracy is shown (the MAE is indicated by
the abscissa of the star). For the random predictors, it starts low and grows
almost linearly. For the random-prob predictors, the performance is slightly
better, but still, about 40% of the predictions have an absolute error above
4 classes (the Ad-accuracy is about 60%). Again, rpart performs drastically
better. It starts high and has a steep curve. For example, 70% of the predic-
tions are exactly correct, and almost 90% have an error of at most 2 classes.
While the results for the rpart predictors are excellent, they merely show that
the relationship is in principle learnable. They cannot be considered as real-
istic estimates of the predictor precision for new data. For a more realistic
impression, we perform cross-validation on the training set of programs. The
results are shown in Figure 7.4. We see that random-prob (4.84, Cor 0.01)
performs even worse than random (4.75, Cor 0.01), which is an evidence for
the fact that the distributions of the dependence degrees differ amongst the
programs. As before, we see that rpart performs best. The error is higher than
for self-validation (3.25), but still, we have a high correlation (0.43). For the
Ak-accuracy, the predictors perform similarly to self-validation, with the dif-
ference that the curves for the random-prob and rpart predictors, respectively,
have been moved downwards. For rpart, two third of the predictions have an
error of at most 2.

Load Latencies The results of self-validation for load latencies are shown in
Figure 7.5. As before, we see that the random predictors perform worse than
rpart. However, the error of random-prob (MAE 2.75, Cor 0.03) is significantly
below that of random (MAE 3.48, Cor 0.03). This is caused by the fact that
the distribution of load latencies is highly skewed (see Figure 7.2). Still, it
is evident that rpart has identified a relationship between features and laten-
cies for each program (MAE 1.22; Cor 0.46), which is especially shown by the
high correlation. The Ak-accuracy gives more evidence for the skewness of
the distribution of the latencies. For the random predictors, the curves are
comparatively steep. For rpart, almost 60% of the predictions are correct, and
for about 80%, the error is below 2 classes. The results from self-validation

7.1 Evaluation of the Predictors 145

Mean Absolute Error Ak-Accuracy
1
8 1.0 | | | | | | | | |
-7
.o, |
4 0.9 + ‘/
0.8 o . - L
_ e L
random random-prob rpart 0.7 4~ $
& 0.6 po -
g oo
i 3 057 e “ o -
Correlation 3 1 . B
T < 04y Py
08 0.01 0.01 0.79 034 - L
- DO cor SOOI - Py
0.6 o . 02— . rangom S ICT N
2’ random-prob - - - |
Oud v . 0.1 rpart
[772 T . 0.0 T T T T T T T T T
01 2 3 4 5 6 7 8 9 10
random random-prob rpart K
(a) (b)

Figure 7.3: Dependence Degrees: Self-Validation on the Training Set (a) Mean
Absolute Error and Correlation (b) Ak-Accuracy

Mean Absolute Error Ak-Accuracy
). 457 48 35
8 1.0 | | | | | | | | |
. .I
4~ 0.9 %+
. B /
2 . 0.8 7 - g B
random random—prob rpart 0-77 e e i
& 0.6 'f':l:. _e L
@ — - @
S 05 -8 -
Correlation 8 o 9
1 < 0.4 - . -
0.01 0.01 0.43 oz -® .® L
08 .. - 1 o
0.6+t 02 .° random ~ ccecee -
: b random-prob - - - [
0 .. 0.1 = rpart
0.0 . 0.0 — T T
01 2 3 4 5 6 7 8 9 10
random random-prob rpart K
(a) (b)

Figure 7.4: Dependence Degrees: Cross-Validation on the Training Set (a) Mean
Absolute Error and Correlation (b) Ak-Accuracy

146 Experimental Results

show that the relationship between features and latencies is in principle learn-
able. However, the high skewness of the distribution of the latencies makes
learning a harder task. The training data contains more examples for certain
classes, hence, the resulting predictor will be specialized for those classes. The
results from cross-validation (shown in Figure 7.6) further give evidence for
that assumption. While the error for random (3.46, Cor 0.03) and random-
prob (2.96, Cor 0.03) is hardly changed, the error for rpart is doubled (2.60),
leaving little room between the results of random-prob and rpart. However,
the correlation still shows that rpart could extract information (0.11 ws. 0.03).
The Ak-accuracy illustrates the similar performance of all predictors.

The results show that decision tree learning is applicable to model the
program behavior we consider. For dependence degrees, we have a low abso-
lute error together with a high correlation, which shows that the relationship
between features and behavior could be well learned. For load latencies, we
also have a low absolute error. The correlation is not as high as for depen-
dence degrees, but still significantly greater than the correlation of the random
predictors. Hence, also for load latencies, a relationship between features and
latencies could be learned. From the results, we see that both kinds of regarded
memory behavior, dependence degrees and load latencies, can be learned via
machine learning. With that, the initial experiment is successfully finished,
and we continue with the machine learning phase.

7.1.4 Program Classification

The first step of the machine learning phase of FriSCO is to perform program
classification of the programs in the training set. To that end, we use cluster
analysis. For the distance matrix, which is required by the cluster analysis,
we used the results from pairwise cross validation collected in the initial ex-
periment. We trained a predictor for each program and applied it to every
program. With that, we obtained for each pair of programs the mean absolute
error, which is used as distance measure. With hierarchical clustering, the pro-
grams of the training set were automatically grouped together. Hierarchical
clustering yields a hierarchy of different clusterings, which have 1 to m (the
number of programs in the training set) clusters. We selected the clustering
with the lowest average inner-cluster error. If clustering yields k clusters, the
result of the cluster analysis can be seen as a classification of the programs
in the training set into k classes. From the static program features and those
classes, we trained the program class predictor. That predictor was used to
determine the classes of the programs in the validation set. In the following,
we consider both regarded behaviors, namely dependence degrees and load
latencies, in turn. We show the obtained distance matrix together with the
resulting clustering, present the obtained program class predictor, and show
the resulting classification of the programs of the validation set.

7.1 Evaluation of the Predictors

147

Mean Absolute Error

1
8
4
random random-prob rpart
Correlation
1 ,,,,,,,, 0 03 ,,,,,,,,,,,,,,, 003 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,
08 ..
O' ..
04 ..
02 ..
random random-prob rpart
(a)

Accuracy

Ak-Accuracy

0.2 - random - -
01 random-prob - - - |
’ rpart —
0.0 T T T T T T T T
o 1 2 3 4 5 6 7 8 9 10
k
(b)

Figure 7.5: Load Latencies: Self-Validation on the Training Set (a) Mean Absolute
Error and Correlation (b) Ak-Accuracy

Mean Absolute Error

1
8
4
2 .
random random-prob rpart
Correlation
! 0.03 0.03 0.11
08 ..
06 ..
04 ..
02 ..
| —
random random-prob rpart
(a)

Accuracy

Ak-Accuracy

0.2 random e -
013 random-prob - - - |
: rpart —
0.0 1 T T T T T T 1

(b)

Figure 7.6: Load Latencies: Cross-Validation on the Training Set (a) Mean Abso-
lute Error and Correlation (b) Ak-Accuracy

148 Experimental Results

AT O N A I O 10
AVG — 2 o5
CLUSTER-AVG] |
s95i.li-tst
s95i.go-tst
s00.parser—trn —[| | I " 1.89
s00.gap-trn —
s00.crafty—trn —
s95i.compress—tst —
s95f.wave5-tst
s95f.turb3d-tst
s95f.su2cor-tst —
s95f.mgrid-tst —
s95f.hydro2d-tst —
s95f.apsi-tst
s95f.applu—tst j.
L

1.71

[|
|
s00fp.apsi-tst
s00fp.applu—tst ..
s00.art-trn
$95i.m88ksim—tst —
s00fp.sixtrack—tst
s00.vpr-trn1 —
s00.twolf-trn — 3.09
s00.equake-trnpart —
s00.ammp-trn | H B ||
s95f.tomcatv-tst —
s95f.swim—tst | []
s95f.fpppp-tst
s00fp.swim-—tst — 2.85
s00.gzip-trn —
s00.mesa-tst —

test data

[|
-|_|-IIIIIIIII¥IIIIIIIIIII

train data

Figure 7.7: Dependence Degrees: Distance Matrix for the Training Set

Dependence Degrees

The resulting distance matrix for the prediction of dependence degrees on the
training set of programs is shown in Figure 7.7. For a given cell of the matrix,
the column denotes the program the predictor was trained with and the row
denotes the program that was validated with the predictor (columns and rows
are sorted identically). Since we have 11 classes, the error ranges between
0 and 10. It is color coded, as shown in the legend on the right. In the
first row/last column, the average error of the corresponding column/row is
shown. The average error of the whole matrix (disregarding the diagonal, as
its cells correspond to self-validation) is 3.25. With that distance matrix, we
performed the cluster analysis. Intuitively speaking, the aim of clustering is to
group programs together, such that cells with a low error are within clusters
and cells with a high error are put outside. The result is also shown in the figure
(the columns/rows of the matrix were permuted according to the clustering).
We obtained 4 program classes, indicated by the black squares. The error
within each class is also shown (again without considering the corresponding
diagonals). In the second row/second last column, the average error for the
column/row of the corresponding cluster is shown. We see that clustering
achieved to reduce the error: Within each class, the error is below the overall
mean error, and in most cases, the error reduction is significant. We also
see that the within-cluster row/column means are always below the overall
row/column means (compare the first and second rows/columns).

7.1 Evaluation of the Predictors 149

’ Class H Programs (Training Set) ‘ MAE ‘ Cor ‘
1 Spec’00: swim mesa gzip 2.85 (£1.30) | 0.44
Spec’95: fpppp swim tomcatv
2 Spec’00: sixtrack ammp equake twolf vpr 3.09 (+1.36) | 0.27
Spec’95: m88ksim
3 Spec’00: applu apsi art 1.71 (£0.76) | 0.79

Spec’95: compress applu apsi hydro2d
mgrid su2cor turb3d waved

4 Spec’00: crafty gap parser 1.89 (£1.75) | 0.62
Spec’95: go li
1-4 || Weighted Average Values 2.28 (£1.18) | 0.51

Overall Average Values (no program classes) ‘ 3.25 (+1.89) ‘ 0.43 ‘

Table 7.2: Dependence Degrees: Identified Program Classes for the Training Set

The resulting classes are shown in Table 7.2. For each class, we see the
induced mean absolute error (together with the standard deviation) and the
correlation, as yielded by inner-class pairwise cross-validation. In other words,
the values are obtained by computing the average values of the corresponding
sub-matrices of the distance matrix (that are induced by the program classifi-
cation), as indicated by the four black squares in Figure 7.7. Again, the values
on the diagonals are ignored. Additionally, we see the average of the cluster
errors, weighted by the corresponding cluster size. As reference, the overall er-
ror and the correlation, as obtained without program classes, are shown. In all
but in class 2, the correlation increases and the MAE (together with the stan-
dard deviation) is reduced significantly. In class 2, the MAE (together with
the standard deviation) is reduced but also the correlation decreases. Overall,
for our distance matrix, the mean absolute error could be reduced from 3.25
to 2.28. Note that all those results were computed solely from the distance
matrix.

From the obtained clustering together with the static program features
(listed in Table 6.1, p.124), we trained a predictor using rpart. The resulting
decision tree is shown in Figure 7.8. Each inner node contains a condition with
regard to the program features, and the result of that condition determines
whether we branch to the left (condition was fulfilled) or right (otherwise).
The leaf nodes are annotated with a class label, which constitutes the result-
ing prediction. For a given program feature vector, we start at the root and
traverse the tree iteratively until we arrive at a leaf. The annotated class is
reported as result. There may be multiple paths (from the root to a leaf) that
report the same class. The figure illustrates the advantages of the decision tree
learning algorithm: Its result is directly readable by the human user, and it
can be interpreted to gain insights into the problem domain. From the tree,
we can interpret the four classes and identify characteristics of the contained
programs as follows:

150 Experimental Results

\
Ves expr_blk >=9.15 % ---

no
|

u_avg_ptsize < 8.85- - | :

. ptr_wc >= 20.1 2 4

1 2 2 3

ptr_c < 14.65

Figure 7.8: Dependence Degrees: Decision Tree of the Program Class Predictor

Class 1: larger basic blocks, few pointers, few points-to targets

Class 2: larger basic blocks and significant pointer usage, or significant
usage of structured variables

Class 3: larger basic blocks, some pointers, more points-to targets

Class 4: small basic blocks, few structured variables

This means that classes 1 and 3 have characteristics of floating-point in-
tensive applications, with the difference that class 3 has more pointer usage,
which cannot be analyzed precisely by alias analyses. Class 4 contains control-
intensive programs. For class 2, the results are not as uniform as for the other
classes. It contains programs that are pointer-intensive or that are control-
intensive and make significant use of structured variables. We applied the
program class predictor to the program features of the programs in the val-
idation set. Table 7.3 shows the result. Remember that the validation set
for dependence degrees contains 3 Spec’00 programs and 7 Spec’06 programs,
three of which are more recent versions of the 3 Spec’00 programs. mcf and
perlbench /perlbmk reside in the same class. The two versions of bzip2, however,
are put into classes 1 and 3, respectively. Hence, the features of the program
must have slightly changed. Comparing both versions of bzip2, from Spec’00 to
Spec’06, the number of lines of code grew from 3227 to 5114, and the number
of C files also grew from 2 to 9. However, while the program complexity ap-
pears to have increased, the pointer behavior appears to have become slightly
less complex for bzip2.

Class | Programs (Validation Set)
1 Spec’06: bzip2
2 Spec’06: sphinx
3 Spec’00: bzip2

Spec’06: hmmer

4 Spec’00: mcf perlbmk
Spec’06: gobmk mcf perlbench sjeng

Table 7.3: Dependence Degrees: Predicted Program Classes for the Validation Set

7.1 Evaluation of the Predictors 151

I T T N T O Y B 10
AVG 60
CLUSTER-AVG | | | :
$95i.m88ksim-trn
s95i.ijpeg-trn
s95i.go-trn
s95i.compress—trn
s00.twolf-trn
s95f.wave5-trn
s95f.swim-trn
s95f.hydro2d-trn
s00.mesa-trn
s00fp.swim-trn
s95i.li-trn
s00.vpr-trnA
s00.vortex—trn
s00.gap-trn
s00fp.apsi-trn
s00.crafty—trn
s95f.turb3d-trn
s95f.tomcatv-trn
s00fp.mgrid-trn
s00fp.applu-trn
s00.art-trn
s00.parser—trn
s00.gzip-trn
s00fp.wupwise—trn
s00.equake-trn
s00.ammp-—trn

1.68

1.96

213

test data

1.94

2.41

rrrrrrrrrrTr T T T T T T T T T T T T T T —0

train data

Figure 7.9: Load Latencies: Distance Matrix for the Training Set

Load Latencies

For load latencies, we also performed pairwise cross-validation to obtain the
distance matrix. The result is shown in Figure 7.9, together with the resulting
clustering. The overall mean average error amounts to 2.60. Clustering yields
5 program classes, and the within-cluster error is notably below that overall
error. The resulting classes are shown in detail in Table 7.4, together with the
average error for the clustering and with the overall error. For the per-class
results, we see that in all but one case, the error (together with the standard
deviation) is reduced significantly and the correlation is increased. In the
one remaining case, for class 1, the error is slightly reduced (together with
the standard deviation), but the correlation also is decreased. Overall, if we
consider the average performance of the program classification, we see that the
MAE could be reduced from 2.60 to 2.03, and also the correlation improves
from 0.11 to 0.18.

With that program classification, we trained a program class predictor. The
resulting decision tree is shown in Figure 7.10. By means of the tree, we can
interpret the characteristics of the programs of each program class as follows:

152 Experimental Results

’ Class H Programs (Training Set) ‘ MAE ‘ Cor ‘
1 Spec’00: wupwise ammp equake gzip parser 2.41 (£0.27) | 0.06
2 Spec’95: tomcatv turb3d 1.94 (£0.82) | 0.31
Spec’00: applu mgrid art
3 Spec’95: 1i 2.13 (£0.28) 0.14
Spec’00: apsi crafty gap vortex vpr
4 Spec’95: hydro2d swim waveb 1.96 (+£0.58) | 0.26
Spec’00: mesa swim
5 Spec’95: compress go ijpeg m88ksim 1.68 (£0.42) | 0.11
Spec’00: twolf
’ 1-5 H Weighted Average Values ‘ 2.03 (40.47) ‘ 0.18 ‘
’ Overall Average Values (no program classes) ‘ 2.60 (40.83) ‘ 0.11 ‘

Table 7.4: Load Latencies: Identified Program Classes for the Training Set

m Class 1: few points-to targets, larger basic blocks or mainly variables of
integral type

m Class 2: hardly integer arrays, few variables of floating-point type or
some floating-point arrays

m Class 3: more points-to targets

m Class 4: hardly integer arrays, some variables of floating-point type, few
floating-point arrays

m Class 5: few points-to targets, smaller basic blocks, variables not mainly
of integral type

This means that Classes 2 and 4 resemble floating-point applications, with
the difference being the relevance of floating-point arrays. Class 3 contains pro-
grams with hardly predictable pointers. Classes 1 and 5 may be characterized
as programs with a transparent pointer behavior, the difference being that in
class 1, basic blocks tend to be larger. We applied the predictor to the programs

7777777777 I
no

freg_wc < 14.35- . ﬁavg_ptrsize <3.45 F !

2 farr_we >=11.7+, ﬁ expr_blk >=11.95 -, 3
2 4 1 reg_wc >=69.85 -,
1 5

Figure 7.10: Load Latencies: Decision Tree of the Program Class Predictor

7.1 Evaluation of the Predictors 153

Class || Programs (Validation Set)

1 Spec’06: hmmer sphinx

2 Spec’06: milc

3 Spec’95: perl

Spec’00: bzip2 mcf perlbmk
Spec’06: mcf sphinx perlbench

4 _
5 Spec’06: bzip2 gobmk h264ref sjeng

Table 7.5: Load Latencies: Predicted Program Classes for the Validation Set

of the validation set. The resulting classes are shown in Table 7.5. Remember
that the validation set contains 1 Spec’95 program, 3 Spec’00 programs, and 9
Spec’06 programs. For the 4 programs from the older benchmarks, more recent
versions are contained in Spec’06. We see that both versions of mcf as well
as all three perl variants perl/perlbmk / perlbench were put into the same class.
Again, as for dependence degrees, the two versions of bzip2 reside in different
classes (classes 3 and 5, respectively). And again, the difference appears to be
the more complex pointer behavior of Spec’00 bzip2.

7.1.5 Predictor Precision for the Validation Set

From the obtained program classification, we built a set of specialized heuris-
tics, one per program class. Together with the program class predictor that
we trained, this yields a composite heuristics that can be applied to the vali-
dation set. For each program in the validation set, we determined its program
class and selected the corresponding specialized heuristics to predict the pro-
gram behavior. We performed a set of experiments on the validation set of
programs. First, as a limit study, we performed self-validation. That is, from
each program of the validation set, we trained a predictor and used it to pre-
dict the data it was trained with. This experiment is the only one that uses
the validation set to train predictors. While the results of self-validation are
not realistic, they can be used to define an upper bound on predictor preci-
sion. Next, we performed different experiments without program classification
to have a baseline, against which we can compare the results with program
classification. To train one predictor from a set of programs, the correspond-
ing data sets have to be combined. In Section 4.3.4 (p. 79), we have presented
two alternatives to that end: The data sets can be either merged, or we can
train a set of predictors, one from each data set, and combine there votes.
In the latter case, we distinguish three different schemes how to combine the
votes: We either take the majority vote and break ties by taking the mini-
mal/maximal class, or we take the mean value of the votes and map it back
to a class. All these schemes require the classes to be quantitative, which is
the case for our scenario. Altogether, this yields four different combination
techniques. For each technique, we construct one predictor and apply it to

154 Experimental Results

the validation set of programs. Next, we perform the same experiments with
program classification. For each combination technique, we build a composite
heuristics and apply it to the validation set of programs. In total, this yields
9 experiments: self-validation and four combination techniques without and
with program classification, respectively. For each experiment, we determined
the mean absolute error as well as the correlation. In the following, we present
the results for dependence degrees and for load latencies in turn.

Dependence Degrees The results for dependence degrees are shown in Fig-
ure 7.11. On the left, we see the result of self-validation. As expected, the
error is very low, and the correlation is near to 1. Next, we see the different
experiments performed without program classification. We see at first glance
that the merge and the vote-mean combination technique performs best, both
in terms of the error as well as of correlation. For vote-mean, the error (2.83)
is slightly above the error of merge (2.72). However, the standard deviation
of the error is significantly lower (1.89 wvs. 2.96), and also the correlation is
higher (0.65 vs. 0.44). Hence, for the experiments without program classi-
fication, wvote-mean is the best combination technique. For the results with
program classification, we see that all predictors perform better (only merge
experiences a lower correlation). Especially, we see that for vote-mean, we
have highly precise results: The error is reduced to 1.79 (best result without
program classification: 2.72), and correlation goes up to 0.71 (vs.0.65). Also,
the standard deviation is low. Hence, program classification could reduce the
mean absolute error by almost 1 class. The detailed results for each of the pro-
grams of the training set are shown in Table 7.6. We see the results without
and with program classification, using the vote-mean combination technique.

Load Latencies The results for load latencies are shown in Figure 7.12. On
the left, we see the result of self-validation. While the error is low, compared
to the corresponding result for dependence degrees, we see that the correla-
tion is comparatively low (0.48 vs. 0.91 for dependence degrees). As we have
discussed earlier, this is caused by the fact that the distributions of the load la-
tencies are highly skewed towards lower latencies. For the experiments without
program classification, the results are similar. However, as before, the vote-
mean predictor performs best (lowest error, lowest standard deviation, highest
correlation). For the experiments with program classification, we see that the
precision of the predictors is improved. Again, the vote-mean predictor with
program classification performs best. It reaches a mean absolute error of 1.99,
which is close the the error of self-validation (1.23). Also, the correlation is
significantly higher than in all other cases (0.18 vs. 0.09) and is comparatively
high, considering the 0.48 of self-validation. Hence, we see that also for load
latencies, program classification has a significant positive effect on the predic-
tor precision. As before, the vote-mean predictor performs best. The detailed
results for the programs of the validation set are shown in Table 7.7.

7.1 Evaluation of the Predictors 155
Mean Absolute Error
107 0.61 : 2.72 3.49 3.72 2.83 : 2.22 2.25 2.48 1.79
8- e b

self-val

merge vote-min

without program classification

vote—-mean !
|
I

vote—-max

Correlation

merge

vote-min
with program classification

vote—-min

vote-max vote-mean

vote-max vote-mean

Figure 7.11: Dependence Degrees: Predictor Precision for the Validation Set

Program | without PC with PC
Err Cor Class | Err | Cor
Spec’00 bzip2 || 1.06 | 0.85 3 0.64 0.87
mcf || 2.92 | 0.49 4 2.38 0.43
perlbmk || 3.46 | 0.76 4 1.36 0.82
Spec’06 bzip2 || 3.20 | 0.74 1 1.39 0.83
gobmk || 2.58 | 0.36 4 2.31 0.40
hmmer || 2.42 0.66 3 2.05 0.64
mcf || 3.54 | 0.28 4 2.43 0.54
perlbench || 3.56 0.76 4 1.37 0.84
sjeng || 2.94 | 0.75 4 2.18 0.75
sphinx || 2.67 | 0.81 2 1.82 0.92
mean value ” 2.83 | 0.65 ” | 1.79 | 0.71 |

Table 7.6: Dependence Degrees: Detailed Results of the Predictor Precision for
the Validation Set (for the vote-mean combination technique)

156 Experimental Results

Mean Absolute Error

self-val

merge vote-min vote-max vote-mean merge vote-min vote-max vote-mean

109 128, 284 253 2.47 239 | 247 227 227 1.99
8-]]
[} [}
[} [}
61) [[}))) : :
[} [}
4 . 1 1o . . . -
[} [}
[} I
27) 1 1 ’
[} [}
0- 1 1
self-val | merge vote-min vote-max vote-meanl merge vote-min vote-max vote-mean
: without program classification | with program classification
Correlation
by 0.48 :' 0.08 006 0.07 0.09 ' 008 0.10 0.12 0.18
0.8 I !
[} [}
[} [}
0.6 1 l
[} [}
[} I
0.4 v \
[} [}
0.2+ - '
[} [}
N ;— e _:— - - -
[} I
1

Figure 7.12: Load Latencies: Predictor Precision for the Validation Set

Program || without PC with PC
Err Cor Class ‘ Err ‘ Cor
Spec’95 perl || 1.69 | 0.12 3 1.19 0.10
Spec’00 bzip2 || 2.49 | 0.16 3 2.16 0.28
mcf || 2.88 | 0.06 3 2.25 0.24
perlbmk || 2.11 0.12 3 1.97 0.15
Spec’06 bzip2 || 2.58 | 0.04 5 2.07 0.34
gobmk || 2.44 | 0.04 5 1.98 0.01
h264ref || 2.17 | 0.13 5 2.15 0.06
hmmer || 2.23 0.09 1 1.67 0.32
mcf || 2.91 | 0.07 3 2.23 0.22
milc || 2.73 | 0.10 2 1.93 0.27
perlbench || 1.98 0.12 3 1.84 0.12
sjeng || 2.57 | 0.01 5 2.38 0.19
sphinx || 2.24 | 0.11 1 2.03 0.09
mean value | 239 | 0.09 | | 199 | 018 |

Table 7.7: Load Latencies: Detailed Results of the Predictor Precision for the Val-
idation Set (for the vote-mean combination technique)

7.2 Optimization 157

7.2 Optimization

In the previous section, we have presented experiments with the machine
learned predictors, and we have seen that precise predictors could be trained
from the training set of programs. In this section, we present our run-time ex-
periments, which we performed to assess the actual performance improvement
that could be achieved with our approach. To that end, we use the implemen-
tation of our proposed speculative optimization of memory accesses, together
with heuristics that were automatically generated from the trained predictors.
We first describe the experimental setup and present then the results.

7.2.1 Experimental Setup

We measured the run-time performance for the 11 C programs of the SPEC
CPU2006 benchmark suite?. As target platform, we used the Intel Itanium?2
processor. We compiled each program in a base version and in an optimized
version. For the base version, we optimized each program with -04, which per-
forms over 50 state-of-the-art analyses and optimizations provided with CoSy
on the program. We also performed our implementation of a state-of-the-art
alias analysis for the base version. For the optimized version, we addition-
ally performed our speculative optimization. The generated heuristics did not
increase the compilation time notably. Our speculative optimization was typ-
ically finished within less than one minute, except for very huge programs like
the gee. In that case, the optimization took a few minutes, compared to an
overall compilation time of over an hour. We used the ref data provided with
the SPEC benchmarks as input data for all experiments. The program per-
formance was measured with the pfmon[HP04] tool. We ran each program
three times and chose the median values. The aim of our optimization is to
improve program performance. Hence, we measured the required execution
time for each program. In order to explain the effect our optimization has on
the execution time, we furthermore measured the number of stall cycles for
different kinds of stalls, using the performance counters of the Itanium. We
also measured the amount and the kind of speculation that was performed
at run-time. In the following, we consider both tasks, measuring stalls and
measuring the degree of speculation, in turn.

Our optimization aims at reducing cache stalls. Hence, we measured the
amount of stalls caused by integer loads and by floating-point loads. The for-
mer lead to data cache (D-Cache) stalls, the latter to floating point unit (FPU)
stalls. Possibly negative effects of our optimization are an increased code size
and an increased register pressure. To cope with the first, we measure the
amount of integer cache (I-Cache) stalls. For the second, we measure stalls
caused by the Itanium’s Register Stack Engine (RSE). The Itanium provides an
automatic register-windowing mechanism that is invisible to the programmer.

2 We had to exclude the C program 462.libquantum, which is part of SPEC CPU2006,
because the CoSy front end is not fully C99 compliant.

158 Experimental Results

program load instructions code
count | candidates | optimized || growth

bzip2 4141 32.5% 7.1% 0.8%

gee || 149711 10.2% 29.2% 1.2%
gobmk | 38475 32.4% 30.9% 1.8%
h264ref | 63222 80.4% 10.3% 8.2%
hmmer 16095 94.1% 22.3% 8.3%
Ibm 556 38.7% 92.1% 0.4%

mcf 713 47.1% 64.0% 10.3%

milc 7508 69.2% 26.8% 4.9%
perlbench | 63949 42 % 17.2% 0.7%
sjeng 6254 1.1 % 20.0% 0.6%
sphinx 7563 88.8% 9.6% 4.5%

Table 7.8: Static Optimization Statistics

Each function can allocate as many local registers as it needs (up to 96 regis-
ters). The RSE works in the background and swaps parts of the register file to
a backing store and back again, whenever necessary. The more registers a func-
tion needs, the higher the overhead of the RSE. Hence, an increased amount
of RSFE stall cycles indicates an increased register pressure. For each of the 4
considered types of stalls, we determine the fraction it constitutes w.r.t. the
original program execution time as well as how much it could be improved
by our optimization. Additionally, we determine how many instructions could
be effectively executed per cycle. This value expresses the parallelism that
was available during run-time. We can use the instructions per cycles (IPC)
count to determine to which extent our optimization increased the available
parallelism.

To measure the degree of speculation that was performed, we first collected
statistics during the optimization. Additionally, we compared the binaries
of the base and of the optimized version, respectively, to determine the code
growth. Then, we executed the programs and measured how frequently certain
kinds of instructions were executed dynamically. We observed load instructions
as well as speculative load and check instructions. To that end, we used the
performance counters of the Itanium.

7.2.2 Results

The static optimization statistics for the programs are shown in Table 7.8.
For each program, we collected the static count of loads, the amount thereof
that our optimization considered as optimization candidates, and the amount
of the candidates that were actually optimized. Additionally, the table shows
the code growth. The static load count differs from program to program,

7.2 Optimization 159

T T T T T T
Execution Time

improvement (%)
[\S)
T
i

Figure 7.13: Run-Time Results

ranging from a few hundred to over a hundred thousand. In most cases, many
of the load instructions are considered as expensive and become optimization
candidates. For most programs, about one forth of the candidates are selected
for optimization. The resulting code growth is in all but three cases below 5%.

The run-time results are shown in Figure 7.13. We see that for 5 programs,
run-time could be reduced significantly by up to 3.75%. For the remaining
programs, there are 4 programs with marginal improvement, and two programs
for which the optimization had hardly an effect. Detailed results are shown in
Table 7.10. For each program, the table lists the improvement with respect to
execution time (ET) and to the available parallelism (instructions per cycle,
IPC). Next to these improvements, we show the effect of our optimization with
respect to four different kinds of stalls, namely D-cache stalls (for integer loads),
FPU stalls (for floating-point loads), I-cache stalls, and RSE stalls (captures
register pressure). For each kind of stall, we show the fraction it constitutes in
the base version as well as how much it could be improved by our optimization.
All values are given as percent. We see that the IPC improvement correlates
with the ET improvement. In the following, we regard the 5 programs with
the highest improvement in turn. For bzip2 and gcc, the improvements were
mainly caused by a reduction of integer load stalls. In case of hmmer, the
effects on the stall behavior is negligible. The improvement is caused by the
increased IPC, which was achieved by our optimization by the increased code
motion opportunities. For mcf, the improvement is due to a reduction of integer
load stalls. For sphinz, the reduction of integer as well as floating-point loads
together with an increased IPC are the reasons for the improvement. The
results for the I-cache stalls show that our optimization did not introduce
additional stalls due to code growth. There are only two programs that have an
increased number of I-cache stalls (gec and h264ref). However, in both cases,
the I-cache stalls constitute less than 2.2% of the execution time. Especially, we
see that for the two programs with the highest code growth, mcf, hmmer, and
h264ref (see Table 7.8), I-cache stalls are not an issue. Similarly, the register
pressure was not increased by our optimization. There is only one benchmark
that has an increased amount of RSE stalls (milc). For that benchmarks, the
fraction the RSE stalls constitute is hardly measurable. Overall, we see that

160 Experimental Results

program | regular | speculative loads checks

loads data | ctrl | both | data | ctrl
bzip2 99.31 -1 1.36 - - | 0.68
gee 98.20 | 0.08 | 4.17 | 0.13 | 0.08 | 1.86
gobmk 96.87 || 0.58 | 4.09 | 054 0.72| 1.89
h264ref 99.51 || 0.05| 049 | 0.05| 0.17| 0.26
hmmer 96.91 | 0.00 | 3.12 | 0.00 | 0.00 | 3.08

Ibm 100.00 - - - - 0.00

mcf 85.14 -1 32.51 - -1 15.34

milc 96.77 - | 0.88 - - 081
perlbench 99.98 - 0.14 | 0.00 | 0.00 | 0.02
sjeng 100.00 - - - -1 0.00
sphinx 99.24 || 0.00 | 6.16 — || 0.00 | 0.74

Table 7.9: Dynamic Instruction Count for Loads and Speculative Instructions
(with respect to the dynamic load count of the base version, in %)

the optimization could improve the run-time performance significantly in many
cases, while avoiding performance degradation in all cases.

To determine the actual amount of speculation that was performed at run-
time, we used the performance counters to count the number of load and of
speculative instructions during execution time. Table 7.9 shows the results.
We see the amount of the different kinds of instructions with respect to the
number of load instructions in the original program. All values are given as
percent. A value of 0.00 represents some small fraction, whereas ‘—’ states the
complete absence of the corresponding instruction. We see that control spec-
ulation prevails over data speculation. The speculative instructions amount
to a few percent of the number of original loads in all but one case: For mcf,
speculation was heavily performed. From Table 7.10, we see that mcf is the
program with the highest amount of D-cache stalls. Hence, there are many
opportunities for speculation. Data speculation is less frequently performed
than control speculation. The reason lies in the hardware implementation of
data speculation on the Itanium processor. If the latency of a load could
only be partially hidden by speculation, the program experiences a full stall
at run-time. The reason is that data speculation uses the ALAT table, and
a corresponding entry is only added when the load was successfully finished.
The check instruction consults the ALAT table and reports misspeculation if
no matching entry is found. Hence, data speculation is only advantageous if
the latency can be completely hidden. Given that the latency can amount to
hundreds of cycles, this cannot be achieved in most cases. Conversely, con-
trol speculation uses a special Not a Thing (NaT) bit, which is annotated at
each register. Whether or not a load yields an exception is decided before the
actual value is loaded. Hence, a check instruction for control speculation can

7.2 Optimization 161

ET | IPC | D-Cache FPU I-Cache RSE
program || impr ||impr| frac|impr| frac|impr| frac|impr frac‘impr
bzip2| 3.75| 4.34| 30.6| 12.0 0.0| 13.7\ 0.0] 4.0 0.0| 13.0
gee|| 3.32| 2.33| 48.2) 4.6| 13| 19| 22| —6.6| 09| 19.7
gobmk | 0.36| 1.87| 0.1| —-1.3]| 3.0 0.7 0.1 3.1} 1.0/ 22.8
h264ref| 0.07| 0.06| 10.5| 04| 0.7 0.2\ 1.3| =2.2|| 0.7| 21.7
hmmer|| 2.86| 3.15| 89| —-1.6|| 14| 11.1) 0.2, 7.1|| 0.0] 1.7
Ibm| 0.55| 0.42| 452 0.2| 24.0f 1.7\ 0.2 9.7|| 0.0 0.7
mcf| 2.75(11.86| 86.8| 3.4| 0.0/ 0.5 0.1 05| 00| 22
milc | 0.45] -0.27| 22.1| —=0.7|| 53.6| 0.6| 0.0/ 4.6|| 0.0| —1.5
perlbench | 0.60|| 0.00|| 14.0/ 1.2 0.1} 0.1} 3.0 3.7 41| 0.1
sjeng | 0.14 -1.08| 9.0| —6.1|| 1.1} 15| 5.1 27.8| 14| 7.3
sphinx || 1.59| 293| 17.1| 2.2| 33.6] 10| 02| 3.6/ 0.6] 12.2
average| 1.49| 2.33(/26.59| 1.30|10.80| 3.00] 1.12| 5.03| 0.78| 9.08

Table 7.10: Impact on the Stall Behavior (all values in %)

decide whether or not a load raises an exception before the load is finished.
Thus, control speculation can be performed also if the original latency could
only partially be hidden. As a consequence, the optimization mostly performs
control speculation.

We expect better results for architectures that have better support for
speculation than the Itanium. As mentioned, we throttled the optimization
such that it only makes an optimization if the latency of a given load can
be completely hidden. To get an impression of the effect of this limitation,
we regard the fraction of optimized loads w.r.t. all optimization candidates,
differentiated by the expected original latency. Additionally, in another run,
we performed the optimization and enabled the partial hiding of a load latency.
The results are shown in Table 7.11.

For the throttled version that only admits full hiding of the latency, as
we used in the run-time experiments, 23.6% of the candidates are selected for
optimization on average. The table shows that mostly candidates with a low
latency are chosen. For loads with a latency below 10 cycles, the fraction of
chosen candidates is above average, while for the remaining cases, the fraction
is below average. Especially, only 6.7% of load instructions with an latency
of at least 50 cycles were optimized. This is caused by the fact that the
higher the latency of a load, the harder it is to hide it completely. If we
drop the restriction that the latency has to be fully hidden, the results are
completely different, as shown in the right column of Table 7.11. On average,
7.0% of the candidates were chosen for optimization. While this may appear
surprising at first because one would expect that the optimization performs
more optimization in that case, the table shows that it is more efficient. The
algorithm selects candidates with higher latencies, such that optimization pays
more off. The fraction of the candidates that were optimized grows as latency

162 Experimental Results

Latency Optimized Candidates Improvement of
Only Full Hiding | Partial Hiding Admitted | Performance Gain

1-4 31.2% 2.2% -18.7%
5-9 24.3% 18.6% 23.6%
10-19 17.1% 61.6% 68.5%
20-29 8.6% 42.3% 77.9%
30-39 12.7% 70.2% 49.3%
40-49 19.4% 79.3% 46.5%
50— 6.7% 73.6% 158.8%

All 23.6% 7.0% 35.6%

Table 7.11: Fraction of Optimized Loads with respect to Candidates

increases. From the candidates with a latency above 30 cycles, over 70% were
selected for optimization. We also compared the optimization gain that is
achieved in the throttled version with that that would be achieved with the
partial-hiding variant. The last column of Table 7.11 shows that the gain
increases significantly. Especially, for loads with latencies above 50 cycles, the
optimization gain is increased by 158.8%. On average, it increases by 35.6%.
Note that the partial-hiding variant obtains more improvement while choosing
only one third as many candidates for optimization compared to the throttled
version. These results show that on the Intel Itanium architecture, many
candidates with a high latency are not selected for optimization, which leads
to significant limitations on the achieved optimization gain. We also see that
the optimization will achieve considerably more performance improvements on
architectures without the limitations of the Itanium.

7.3 Summary

In this chapter, we have presented the results of the experiments that we per-
formed to investigate the improvement caused by our FrISCO framework, in-
stantiated to the optimization of memory accesses. First, we analyzed the ma-
chine learning phase. We could show that for both learning domains, namely
dependence degrees as well as load latencies, the relationship between fea-
tures and behavior is in principle learnable. Then, we performed program
classification as foundation for building a set of specialized predictors. We
performed a set of experiments on the validation set of programs to empiri-
cally determine the best combination technique, which is required to obtain
one predictor from multiple programs’ training data, as well as to assess the
improvement caused by our concept of program classification. We could show
that the vote-mean combination technique performs best in all cases (with and
without program classification and for both regarded program behaviors). Due
to program classification, the predictor precision increased significantly. For

7.3 Summary 163

dependence degrees, the mean absolute error could be reduced from 2.72 to
1.79 classes (correlation: from 0.65 to 0.71). For load latencies, the error went
down from 2.39 to 1.99 classes (correlation: from 0.09 to 0.18). With our run-
time experiments, we could show that our speculative optimization, together
with the machine learned heuristics, could significantly improve program per-
formance in most cases. For the SPEC CPU2006 benchmark, the execution
time could be reduced by up to 3.75% (average: 1.49%). At the same time,
the amount of instruction cache stalls or of stalls due to increased register
pressure did not increase notably. This shows that our cost model could ef-
fectively identify advantageous optimizations while at the same time avoiding
additional overhead. We could show that the optimization would achieve no-
tably better optimization results on a platform that implements speculation
better than the [tanium. Overall, we could show that the regarded memory
behavior, namely dependence degrees and load latencies, can be learned to
automatically yield precise heuristics, and that those heuristics together with
our speculative optimization significantly improve the run-time behavior.

8 Conclusion

In this chapter, we summarize the central results of this thesis. With that,
we revisit the criteria we defined in the introduction and discuss whether we
succeeded in meeting these criteria. Finally, we outline and discuss directions
for future work.

8.1 Results

In this thesis, we have presented our conceptual Framework for Intelligent
Speculative Compiler Optimizations (FrISCO). The framework aims at pro-
viding compilers with knowledge about the run-time behavior of programs to
bridge the gap between static program analyses on the one hand and dynamic
program behavior on the other. This solves the problem of over-approximation,
which is inherent to static program analyses, and increases the optimization
potential.

The principal idea of our framework is to admit unsafe, yet more precise
program analyses within the compiler and to use their results in speculative
optimizations, which use the information to derive precise cost models. In our
approach, we use heuristics to predict the dynamic program behavior. We pre-
sented a method to generate such heuristics automatically in a one-off training
phase from profiling data via machine learning. Due to our concept of program
classification, the heuristics are not restricted to a certain kind of programs.
Instead, they yield precise results for arbitrary programs (given that the repre-
sentative program suite used in training the heuristics was chosen thoroughly).
The obtained heuristics are highly scalable and can be automatically translated
to executable code to be used within the compiler.

With the heuristics, the compiler can predict the dynamic program behavior
solely based on static information about the code. These predictions are used
in compiler optimizations, which become speculative, since the predictions are
unsafe. We presented a general optimization algorithm, onto which most ex-
isting optimizations can be mapped. The algorithm transforms the programs
iteratively and greedily explores the search space of all possible transforma-
tions, using a cost model that is evaluated with the help of the heuristics. Of

165

166 Conclusion

course, the optimization ensures that the program behavior is not changed in
case of misspeculation. The admission of unsafe information together with
speculative optimization allows for exploiting far more optimization potential
because the drastic over-approximation of conservative analyses can be over-
come. At the same time, the cost model benefits from the precise predictions
to rate each possible program transformation w.r.t. the expected optimization
gain and thereby selects the best transformation.

The conceptual framework is applicable to a wide range of program behavior
and program optimizations. We have presented a set of possible applications
and have described the steps required to instantiate the general framework. In
the second part of this thesis, we have shown the application of the framework
to the optimization of memory accesses, which is a highly important optimiza-
tion problem due to the memory gap. For the applied framework, we have
presented a novel optimization algorithm that iteratively performs speculative
code motion to reduce the effective latency of load instructions. The idea is to
execute expensive loads earlier to hide their latency. During code motion, the
algorithm overcomes memory dependencies, register dependencies, and control
dependencies, and it maintains a precise cost model which captures the effect
of the performed transformation on the latency of the optimized load. By
that, different applicable transformations are rated and the best is selected.
We presented a cost model that captures the benefit of each different kind of
speculative transformation as well as the combined benefit. The cost model
relies on information about the memory behavior of a program, namely the
probability of memory dependencies and load latencies. We have presented
how to build heuristics for that via machine learning.

We fully implemented the instantiated framework. As target architecture,
we chose the Intel Itanium?2 processor, a modern VLIW processor that offers
hardware support for speculation. In our experiments, we could first show that
the heuristics predict the memory behavior precisely. Especially, we could show
that our concept of program classification improves the precision significantly.
The mean absolute error was reduced from 2.72 to 1.79 classes for dependence
degrees and from 2.39 to 1.99 classes for load latencies. Second, we could
demonstrate with run-time experiments that our speculative optimization sig-
nificantly improves program performance and avoids performance degradation
due to the cost model. The execution time of programs was reduced by up to
3.75% (on average by 1.49%), while an increase in stalls due to code growth
or increased register pressure could be avoided in all cases. By applying the
conceptual framework to the optimization of memory accesses, we have shown
the practical applicability of our framework and have made a contribution to
an important optimization problem.

8.2 Discussion

In the introducing chapter, we have defined objectives to assess the quality of
the general framework as well as of the applied framework. In the following,

8.2 Discussion 167

we revisit the criteria in turn and discuss whether or not they are met by our
approach. In the general framework, the only assumption on the optimization
algorithm is that it transforms the program step-wise. As every optimization
can be expressed iteratively, the generality of the optimization is given. We do
not put any restrictions on the regarded dynamic behavior, as long as it can
be observed via profiling. Hence, also the generality of the regarded behavior
is given. Our concept of program classification allows for obtaining a predic-
tor that yields precise results for all kinds of programs. By this, we achieve
the generality of the analyses. The three phases of the conceptual framework
have clear interfaces and can be combined freely. Any observed run-time be-
havior can be used to train arbitrary heuristics, which can be used by any
speculative optimizations. Therefore, the modularity criterion is fulfilled. For
machine learning, we propose to use algorithms with a concise representation
(e.g., decision trees). The obtained representations are instructive to the com-
piler developer and can be efficiently implemented to guarantee the scalability
of the heuristics. We have described a methodology to assess the precision of
the obtained heuristics. Since we perform cross-validation, the obtained re-
sults can be considered as a realistic precision measure for the heuristics. In
the optimization phase of our general framework, we integrated the cost model
explicitly as part of the optimization. By that, the cost model can be used
to assess each applicable transformation during the optimization. Thereby, we
ensure that the best transformations are selected. For the application of the
conceptual framework, we could experimentally demonstrate the high precision
of the heuristics for a wide range of different applications. This is especially due
to our concept of program classification. The optimization algorithm ensures
program correctness for each kind of speculation by adding the appropriate
recovery code. In our run-time experiments, we could show a significant opti-
mazation gain for the SPEC CPU2006 benchmark suite. Therefore, we could
show that all imposed objectives are met by our approach. We think that
many existing approaches can benefit from our conceptual framework by using
automatically generated heuristics as well as a precise cost model.

With the presented application of the framework, we have first shown how
to automatically generate a precise, highly scalable heuristics for the memory
behavior of programs. Second, we have presented an optimization that uses
the heuristics for precise cost estimation. In our experiments on the Intel Ita-
nium, we achieved significant performance improvements (up to 3.75%). We
have also shown that the optimization can lead to notably more performance
improvements on other architectures that have better support for speculation
than the Intel Itanium!. Additionally, the presented heuristics for memory
behavior is a result of its own and can be used directly in other existing spec-
ulative optimizations to increase the performance gain.

!Concerning speculation, the Intel Itanium architecture has one major drawback: If the
latency of a speculatively optimized load is not completely hidden, the hardware reports
misspeculation for that load. As a consequence, a partial reduction of the effective load
latency has no positive effect on run-time performance (see also Section 6.4.4, page 137).

168 Conclusion

8.3 Outlook

In this thesis, we presented a conceptual framework to increase the optimiza-
tion potential in static compilers on the one hand and to exploit it by specu-
lative optimizations on the other. Furthermore, we presented how we applied
the conceptual framework to the optimization of memory accesses, and we
implemented that instantiated framework within our compiler infrastructure
targeting the Intel [tanium processor. With our experimental results, we could
prove the practical applicability of our framework. Still, there are some useful
extensions conceivable, and our work also raised some open questions which are
to be investigated by future research. In the following, we start by considering
extensions of the instantiated framework. Then, we discuss future research
building upon the conceptual framework, and we end by looking beyond the
approach presented in this thesis.

Our implementation of the speculative optimization does not consider code
duplication, as it is the case for our conceptual algorithm. It would be interest-
ing to extend the implementation by that aspect and to assess the improvement
caused by that. Another extension could also be to investigate other target
platforms, as the implementation of speculation on the Itanium has its draw-
backs. It would also be interesting to evaluate the benefit of speculation when
done solely by software, which renders the optimization presented in this the-
sis applicable to all target platforms. For the training of the heuristics, we
also would like to investigate the effects of increasing the size of the repre-
sentative program suite significantly. We expect that this would lead to even
clearer program classes and would furthermore increase the precision of the
heuristics.

For the conceptual framework, we have given a number of possible appli-
cation scenarios. It would be interesting to select another scenario from that
list and to investigate the benefit the investigation of our framework would
cause. The conceptual framework presented in this thesis assumes that the
phases machine learning (train the heuristics), compiler optimization (using
the heuristics), and finally program execution are strictly separated. However,
those phases may also be integrated together, as in iterative compilation (ini-
tially proposed by Bodin et al. [BKK'98], current approaches are, e.g., Agakov
et al. [ABC*06] and Pingjing et al. [LCWO08]). By that, parameters of the cost
model could be automatically fine-tuned to different kinds of programs. Going
beyond that, the idea of our conceptual framework could also be applied to dy-
namic or continuous compilation (e.g., Childers et al. [CDS03] and Christophe
et al. [BCOT7]), in which case the programs are executed within a dynamic
run-time system. This allows the optimizations to dynamically adjust to the
program behavior during run-time.

On an even more general level, we consider machine learning techniques an
indispensable tool to assist optimizations, especially for application areas that
are very complex and not yet completely explored. Representing the cost model
explicitly as part of the optimization, which is one central idea of this thesis,
on the one hand allows for trading off performance gains with additional over-

8.3 Outlook 169

head of a transformation and on the other hand makes the optimization less
machine dependent, as the cost model can contain architectural parameters.
One application scenario, to which the ideas of this thesis could be transferred,
is the Multiprocessor System-on-Chip (MPSoC) paradigm. For MPSoC, it is
still an open question how to best distribute an application to the network
of processors. The hardly predictable amount of communications between the
processors severely limits run-time performance. This problem is similar to
the implications of the memory gap, yet it adds complexity at another level.
Therefore, we think that our experience from building a cost model for optimiz-
ing memory accesses can be used as a foundation to model the communication
cost for MPSoCs. Another important parameter for performing a good task
allocation in MPSoCs is the estimated execution time of tasks. Again, our
results can be used as a starting point to model that problem. We think that
the development of a combined model for both problems, communication costs
and task scheduling, based upon our results, is very promising to achieve a
better efficiency with MPSoCs than with today’s methods.

As short-term goal, other instantiations of our conceptual framework ap-
pear interesting (see Table 4.1, page 85 for some suggestions). For the long-
term, looking at the promising results of this thesis, we are convinced that
machine learning can be successfully used in other domains to make the com-
piler more intelligent, thereby bridging the gap between static compilation and
dynamic program behavior.

List of Figures

1.1

1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

2.17

3.1

The Memory Gap 18
Covered Fields of Research 20
Architecture of a Compiler 24
Compiler IR 25
C code and resulting CFG 26
Data Dependencies for Registers 28
Dominator Tree of a Control Flow Graph 29
Dominance Front 00 L 29
Tree of Possible Transformation Sequences 33
Aliasing and Points-To Table, 39
Data Speculation 42
Control Speculation 43
Speculation with Recovery Code 44
Speculation with and without Hardware Support 46
Machine Learning Lo 49
Decision Trees L 52
Discriminant Analysis L. 52
k-nearest Neighbors 53
Ak-Accuracy 56
C code and Resulting Points-To Graphs 64

171

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
2.3
5.4
2.5
2.6
2.7
2.8
2.9
5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4

Extending Compiler Frameworks with FriISCO 72

Phases in FriSCO 73
FrISCO: Extended Framework with Program Classes 74
Combination of Predictors 7
Three Ways to Identify Program Classes 78
Construction of the Program Class Predictor 79
Construction of Behavior Predictors 80
Combining Program Analyses and Heuristics 80
Black-box View of Compiler Optimizations 81
Optimization Step for Conservative Optimizations 82
Optimization Step for Speculative Optimizations 83
Optimization Step in FrISCO 84
Instantiating FrISCO 85

Tree of Transformation Sequences for Speculative Code Motion . 93

Algorithm for Speculative Code Motion 94
Construction of a LAC chain 95
Conservative Code Motion 97
Data Speculative Code Motion 99
Control Speculation: Dominance Front 101
Control Speculation: Path Probabilities 103
Control Speculative Code Motion 104
Code Motion with Load Instruction Chains 105
Code Motion across Check Instructions 106
Distinguishing Different Versions of the Stack 111
Obtaining the Distance Matrix 113
Cluster Analysis Based on the Distance Matrix 115
Implementation of FriSCO 120
Learned Decision Tree 130
Program Classification via Hierarchical Clustering 131
Code Generation from Decision Trees 133

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

Distribution of Dependence Degrees
Distribution of Load Latencies
Dependence Degrees: Self-Validation on the Training Set
Dependence Degrees: Cross-Validation on the Training Set . . .
Load Latencies: Self-Validation on the Training Set
Load Latencies: Cross-Validation on the Training Set
Dependence Degrees: Distance Matrix for the Training Set . . .
Dependence Degrees: Decision Tree of the PC Predictor

Load Latencies: Distance Matrix for the Training Set
Load Latencies: Decision Tree of the PC Predictor
Dependence Degrees: Predictor Precision for the Validation Set
Load Latencies: Predictor Precision for the Validation Set

Run-Time Results

List of Tables

2.1 Categorization of Program Analyses 30
2.2 Types of Statements oL 39
2.3 Configuration of the Intel Itanium2 McKinley Processor 47
4.1 Exemplary Instantiations of FrISCO 85
5.1 Calculation of the Dependence Degree 112
6.1 Static Program Features 124
6.2 Static Code Features per Memory Instruction 126
6.3 Parameters of Speculative Code Motion 137
6.4 Source Lines of Code of the Implementation Modules 138
7.1 Training and Validation Sets of Programs 141
7.2 Dependence Degrees: Program Classes for the Training Set . . . 149
7.3 Dependence Degrees: Program Classes for the Validation Set . . 150
7.4 Load Latencies: Program Classes for the Training Set 152
7.5 Load Latencies: Program Classes for the Validation Set 153
7.6 Dependence Degrees: Detailed Results of the Predictor Precision 155
7.7 Load Latencies: Detailed Results of the Predictor Precision . . . 156
7.8 Static Optimization Statistics 158
7.9 Dynamic Instruction Count for Speculative Instructions 160
7.10 Impact on the Stall Behavior 161
7.11 Fraction of Optimized Loads with respect to Candidates 162

175

Bibliography

[ABC*06]

[ACE]

[ACG+04]

[ACM+98]

[AG09)

Felix Agakov, Edwin Bonilla, John Cavazos, Bjorn Franke, Grig-
ori Fursin, Michael F.P. O’Boyle, John Thomson, Marc Toussaint,
and Christopher K.I. Williams. Using machine learning to focus
iterative optimization. In Fourth IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO 2006), pages
295-305, Washington, DC, USA, 2006. IEEE Computer Society.

Associated Compiler Experts bv., Amsterdam, The Netherlands.
http://www.ace.nl.

Lelac Almagor, Keith D. Cooper, Alexander Grosul, Timothy J.
Harvey, Steven W. Reeves, Devika Subramanian, Linda Torczon,
and Todd Waterman. Finding effective compilation sequences.
In ACM SIGPLAN/SIGBED Conference on Languages, Compil-
ers, and Tools for Embedded Systems (LCTES’04), pages 231-239.
ACM Press, 2004.

David I. August, Daniel A. Connors, Scott A. Mahlke, John W.
Sias, Kevin M. Crozier, Ben-Chung Cheng, Patrick R. Eaton,
Qudus B. Olaniran, and Wen-Mei W. Hwu. Integrated predi-
cated and speculative execution in the impact epic architecture.

In 25th Annual International Symposium on Computer Architec-
ture (ISCA 1998), pages 227-237. IEEE Computer Society, 1998.

Lars Alvincz and Sabine Glesner. Breaking the curse of static
analyses: Making compiler intelligent via machine learning. In
3rd Workshop on Statistical and Machine learning approaches to
ARchitectures and compilaTion (SMART’09), January 2009.

[AKLMO6] Kartik K. Agaram, Stephen W. Keckler, Calvin Lin, and

177

[And94]

[AR94]

[BCO7]

[BFOS84]

[BKK*98]

[BL94]

[BLO6]

[BMH*93]

[Bre01]

Kathryn S. McKinley. The memory behavior of data structures
in C SPEC CPU2000 benchmarks. In SPEC Benchmark Work-
shop, 2006.

Lars Ole Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, DIKU, University of Copen-
hagen, May 1994.

Santosh Abraham and Bantwal Ramakrishna Rau. Predicting load
latencies using cache profiling. Technical Report HPL-94-110, HP
Labs, 1994.

Jean Christophe Beyler and Philippe Clauss. Performance driven
data cache prefetching in a dynamic software optimization sys-
tem. In Proceedings of the 21st annual international conference on
Supercomputing (ICS '07), pages 202-209, New York, NY, USA,
2007. ACM.

Leo Breiman, Jerome Friedman, Richard A. Olshen, and Charles J.
Stone. Classification and Regression Trees. Wadsworth and
Brooks, Monterey, CA, 1984.

Francois Bodin, Toru Kisuki, Peter M.W. Knijnenburg,
Michael F.P. O’Boyle, and Erven Rohou. Iterative compilation in

a non-linear optimisation space. In Proceedings of the Workshop
on Profile and Feedback-Directed Compilation, October 1998.

Thomas Ball and James R. Larus. Optimally profiling and tracing
programs. ACM Transactions on Programming Languages and
Systems (TOPLAS), 16(4):1319-1360, 1994.

Thomas Ball and James R. Larus. Efficient path profiling. In
29th Annual ACM/IEEE International Symposium on Microarchi-
tecture (MICRO-28 1996), pages 46-57. IEEE Computer Society,
1996.

Roger A. Bringmann, Scott A. Mahlke, Richard E. Hank, John C.
Gyllenhaal, and Wen-Mei W. Hwu. Speculative execution excep-
tion recovery using write-back suppression. In 26th Annual In-
ternational Symposium on Microarchitecture (MICRO-26 1993),
pages 214-223, Los Alamitos, CA, USA, 1993. IEEE Computer

Society Press.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32,

[CCL*96]

[CDS03]

[CFA*07]

[CFR+91]

[CHJL04]

[CLD*04]

[CLHY02]

[CMO4]

2001.

Fred C. Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and Mark
Streich. Effective representation of aliases and indirect memory op-
erations in ssa form. In 6th International Conference on Compiler
Construction (CC’96), pages 253-267. Springer-Verlag, 1996.

Bruce Childers, Jack W. Davidson, and Mary Lou Soffa. Con-
tinuous compilation: A new approach to aggressive and adaptive
code transformation. In 17th International Parallel and Distributed
Processing Symposium (IPDPS 2003), page 205. IEEE Computer
Society, 2003.

John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla,
Michael F.P. O’Boyle, and Olivier Temam. Rapidly selecting good
compiler optimizations using performance counter. In Fifth Inter-
national Symposium on Code Generation and Optimization (CGO

2007). IEEE Computer Society, 2007.

Ron K. Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Weg-
man, and F. Kenneth Zadeck. Efficiently computing static single
assignment form and the control dependence graph. ACM Trans-
actions on Programming Languages and Systems (TOPLAS),
13(4):451-490, 1991.

Peng-Sheng Chen, Yuan-Shin Hwang, Roy Dz-Ching Ju, and
Jenq Kuen Lee. Interprocedural probabilistic pointer analy-
sis. IEEE Transactions on Parallel and Distributed Systems,
15(10):893-907, 2004.

Tong Chen, Jin Lin, Xiaoru Dai, Wei-Chung Hsu, and Pen-Chung
Yew. Data dependence profiling for speculative optimizations.
In Evelyn Duesterwald, editor, 13th International Conference on
Compiler Construction (CC 2004), volume 2985 of LNCS, pages
57-72. Springer, April 2004.

Tong Chen, Jin Lin, Wei-Chung Hsu, and Pen-Chung Yew. An em-
pirical study on the granularity of pointer analysis in ¢ programs.
In Proceedings of 15th Workshop on Languages and Compilers for
Parallel Computing (LCPC’02), 2002.

John Cavazos and J. Eliot B. Moss. Inducing heuristics to decide
whether to schedule. In ACM SIGPLAN Conference on Program-

[CO05]

[CSS99]

[CT04]

[Das00]

[DCF*07]

[DHO6]

[DZHYO05]

[EGK*94]

ming Language Design and Implementation (PLDI 2004), pages
183-194. ACM Press, 2004.

John Cavazos and Michael F.P. O’Boyle. Automatic tuning of
inlining heuristics. In Proceedings of the 2005 ACM/IEEE con-
ference on Supercomputing (SC '05), page 14, Washington, DC,
USA, 2005. IEEE Computer Society.

Keith D. Cooper, Philip J. Schielke, and Devika Subramanian.
Optimizing for reduced code space using genetic algorithms. In
ACM SIGPLAN workshop on Languages, Compilers, and Tools
for Embedded Systems (LCTES’99), pages 1-9. ACM Press, 1999.

Keith D. Cooper and Linda Torczon. Engineering a Compiler.
Morgan Kaufmann, 2004.

Manuvir Das. Unification-based pointer analysis with directional
assignments. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2000), pages 3546,
New York, NY, USA, 2000. ACM Press.

Christophe Dubach, John Cavazos, Bjorn Franke, Grigori Fursin,
Michael F.P. O’Boyle, and Olivier Temam. Fast compiler optimi-
sation evaluation using code-feature based performance prediction.
In Proceedings of the 4th conference on Computing Frontiers (CF
'07), pages 131-142, New York, NY, USA, 2007. ACM.

Brian L. Deitrich and Wen-Mei W. Hwu. Speculative hedge: Regu-
lating compile-time speculation against profile variations. In 29th
Annual ACM/IEEE International Symposium on Microarchitec-
ture (MICRO-28 1996), pages 70-79, 1996.

Xiaoru Dai, Antonia Zhai, Wei-Chung Hsu, and Pen-Chung Yew.
A general compiler framework for speculative optimizations using
data speculative code motion. In 3nd IEEE/ACM International
Symposium on Code Generation and Optimization (CGO 2005),
pages 280290, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

Kemal Ebcioglu, Randy D. Groves, Ki-Chang Kim, Gabriel M. Sil-
berman, and Isaac Ziv. VLIW compilation techniques in a super-
scalar environment. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 1994), pages

[ESLS9]

[FE02]

[Fel90]

[Ges08]

[GGO8|

[GLSO1]

[Har85)

[Hin01]

36-48, New York, NY, USA, 1994. ACM Press.

Helmut Emmelmann, Friedrich-Wilhelm Schréer, and Rudolf
Landwehr. BEG: a generation for efficient back ends. In ACM

SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI 1989), pages 227-237. ACM Press, 1989.

Manel Fernandez and Roger Espasa. Speculative alias analysis for
executable code. In Proceedings of the 2002 International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT
'02), pages 222-231, Washington, DC, USA, 2002. IEEE Computer
Society.

Stuart I. Feldman. A Fortran to C converter. ACM SIGPLAN
Fortran Forum, 9(2):21-22, 1990.

Lars Gesellensetter. Scalable analysis via machine learning:
Predicting memory dependencies precisely. In Florian Martin,
Hanne Riis Nielson, Claudio Riva, and Markus Schordan, edi-
tors, Scalable Program Analysis, number 08161 in Dagstuhl Sem-
inar Proceedings, Dagstuhl, Germany, 2008. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, Germany.

Lars Gesellensetter and Sabine Glesner. Interprocedural specu-
lative optimization of memory accesses to global variables. In
Proceedings from the 14th International Furo-Par Conference on
Parallel Processing (Euro-Par “08). Springer, 2008.

Rakesh Ghiya, Daniel Lavery, and David Sehr. On the importance
of points-to analysis and other memory disambiguation methods
for ¢ programs. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2001), pages 47-58,
New York, NY, USA, 2001. ACM Press.

David Harel. A linear algorithm for finding dominators in flow
graphs and related problems. In Proceedings of the seventeenth
annual ACM symposium on Theory of computing (STOC ’85),
pages 185-194, New York, NY, USA, 1985. ACM.

Michael Hind. Pointer analysis: haven’t we solved this prob-
lem yet? In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineer-
ing (PASTE ’01), pages 5461, New York, NY, USA, 2001. ACM

[HMR*00]

[Hor97]

[HPOO]

[HPO4]

[Int01]

[Int04]

[Int06a]

[Int06b)

[Int06¢]

[Int06d]

[Int07]

Press.

Jerry Huck, Dale Morris, Jonathan Ross, Allan Knies, Hans Mul-
der, and Rumi Zahir. Introducing the [A-64 architecture. IEEFE
Micro, 20(5):12-23, 2000.

Susan Horwitz. Precise flow-insensitive may-alias analysis is NP-
hard. ACM Transactions on Programming Languages and Systems

(TOPLAS), 19(1):1-6, 1997.

Michael Hind and Anthony Pioli. Which pointer analysis should
[use? In Proceedings of the 2000 ACM SIGSOFT international

symposium on Software testing and analysis (ISSTA ’00), pages
113-123, New York, NY, USA, 2000. ACM Press.

Hewlett-Packard. pfmon — a hardware-based performance moni-

toring tool, v3.2, 2004. http://perfmon2.sourceforge.net.

Intel Corporation. Intel Itanium software conventions and runtime
architecture guide. Document number: 245358-003, Intel Corpo-
ration, May 2001.

Intel Corporation. Intel Itanium2 processor reference manual for
software development and optimization. Order number: 251110-
003, Intel Corporation, May 2004.

Intel Corporation. tcc 9.1 20061105, 2006.
http://developer.intel.com/software/products/compilers.

Intel Corporation. Intel IA-64 architecture software developer’s
manual: Volume 1: [IA-64 application architecture. Revision 2.2,

Intel Corporation, Jan 2006.

Intel Corporation. Intel [A-64 architecture software developer’s
manual: Volume 2: [A-64 system architecture. Revision 2.2, Intel

Corporation, Jan 2006.

Intel Corporation. Intel [A-64 architecture software developer’s
manual: Volume 3: Instruction set reference. Revision 2.2, Intel

Corporation, Jan 2006.

Intel Corporation. Pin — a tool for the dynamic instrumentation of

programs, v2.2, version 14289, 2007. http://www.pintool.org.

[JINMWO00] Roy Dz-Ching Ju, Kevin Nomura, Uma Mahadevan, and Le-Chun

[KA02]

[KR90]

[Lan92]

[LCH*04]

[LCHYO03]

[LCM™*05]

[LCWO8]

[LHY06]

Wu. A unified compiler framework for control and data specula-
tion. In 2000 International Conference on Parallel Architectures
and Compilation Techniques (PACT’00), Philadelphia, Pennsyl-
vania, October 15 - 19 2000.

Ken Kennedy and John R. Allen. Optimizing compilers for modern
architectures: a dependence-based approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2002.

Leonard Kaufman and Peter J. Rousseeuw. Finding groups in

data: an introduction to cluster analysis. John Wiley and Sons,
New York, 1990.

William Landi. Undecidability of static analysis. ACM Lett. Pro-
gram. Lang. Syst., 1(4):323-337, 1992.

Jin Lin, Tong Chen, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-
Ching Ju, Tin-Fook Ngai, and Sun Chan. A compiler framework
for speculative optimizations. ACM Transactions on Architecture
and Code Optimization (TACO), 1(3):247-271, 2004.

Jin Lin, Tong Chen, Wei-Chung Hsu, and Pen-Chung Yew. Spec-
ulative register promotion using advanced load address table
(ALAT). In 1st IEEFE/ACM International Symposium on Code
Generation and Optimization (CGO 2003), pages 125-134, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2005),
pages 190-200, New York, NY, USA, 2005. ACM Press.

Pingjing Lu, Yonggang Che, and Zhenghua Wang. An effective
iterative compilation search algorithm for high performance com-
puting applications. In Proceedings of the 2008 10th IEEE Inter-
national Conference on High Performance Computing and Com-
munications (HPCC 08), pages 368-373, Washington, DC, USA,
2008. IEEE Computer Society.

Jin Lin, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-Ching Ju, and

Tin-Fook Ngai. Recovery code generation for general speculative

IMCH*92]

[MDCEO1]

[Muc97]

[MUC*98]

[Mur85]

[Nic89)

[NNH99

[NWS8S]

[PHES05]

optimizations. ACM Transactions on Architecture and Code Op-
timization (TACO), 3(1):67-89, 2006.

Scott A. Mahlke, William Y. Chen, Wen-Mei W. Hwu, Bant-
wal Ramakrishna Rau, and Michael S. Schlansker. Sentinel
scheduling for vliw and superscalar processors. In Proceedings of
the fifth international conference on Architectural support for pro-
gramming languages and operating systems (ASPLOS-V), pages
238-247, New York, NY, USA, 1992. ACM Press.

Markus Mock, Manuvir Das, Craig Chambers, and Susan J. Eg-
gers. Dynamic points-to sets: a comparison with static analy-
ses and potential applications in program understanding and op-
timization. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineer-
ing (PASTE ’01), pages 66-72, New York, NY, USA, 2001. ACM

Press.

Steven S. Muchnik. Advanced Compiler Design € Implementation.
Morgan Kaufmann, 1997.

J. Eliot B. Moss, Paul Utgoff, John Cavazos, Doina Precup, Darko
Stefanovi¢, Carla Brodley, and David Scheeff. Learning to schedule
straight-line code. In Michael I. Jordan, Michael J. Kearns, and
Sara A. Solla, editors, Advances in Neural Information Processing
Systems, volume 10. The MIT Press, 1998.

Fionn Murtagh. Multidimensional Clustering Algorithms. Physica-
Verlag, Vienna, 1985.

Alexandru Nicolau. Run-time disambiguation: coping with stati-
cally unpredictable dependencies. IEEE Transactions on Comput-
ers, 38(5):633-678, 1989.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Princi-
ples of Program Analysis. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 1999.

George L. Nemhauser and Laurence A. Wolsey. Integer and com-
binatorial optimization. Wiley-Interscience, New York, NY, USA,
1988.

Thomas R. Puzak, Allan Hartstein, Philip G. Emma, and Viji

Srinivasan. When prefetching improves/degrades performance. In

[PIBS95]

[PSW04]

[RCTOS]

[RL92]

[RSEW04]

[SA05]

[SAG+01]

[SAMO03]

Proceedings of the 2nd conference on Computing Frontiers (CF
'05), pages 342-352, New York, NY, USA, 2005. ACM Press.

Pointer-Intensive Benchmark Suite. Assembled by Todd Austin,
1995. http://www.cs.wisc.edu/"austin/ptr-dist.html.

Vlad-Mihai Panait, Amit Sasturkar, and Weng-Fai Wong. Static
identification of delinquent loads. In 2nd IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO
2004), page 303, Washington, DC, USA, 2004. IEEE Computer
Society.

R Development Core Team. R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Comput-
ing, Vienna, Austria, 2008. ISBN 3-900051-07-0, http://www.R-

project.org.

Anne Rogers and Kai Li. Software support for speculative loads.
In Proceedings of the fifth international conference on Architec-
tural support for programming languages and operating systems
(ASPLOS-V), pages 38-50, New York, NY, USA, 1992. ACM

Press.

Rodric M. Rabbah, Hariharan Sandanagobalane, Mongkol Ekpa-
nyapong, and Weng-Fai Wong. Compiler orchestrated prefetch-
ing via speculation and predication. ACM SIGPLAN Notices,
39(11):189-198, 2004.

Mark Stephenson and Saman Amarasinghe. Predicting unroll fac-
tors using supervised classification. In 3nd IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO

2005). IEEE Computer Society, 2005.

Artour Stoutchinin, José N. Amaral, Guang R. Gao, James C.
Dehnert, Suneel Jain, and Alban Douillet. Speculative prefetching
of induction pointers. In 10th International Conference on Com-
piler Construction (CC 2001), pages 289-303, London, UK, 2001.
Springer-Verlag.

Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-
May O’Reilly. Meta optimization: improving compiler heuristics
with machine learning. In Jr. James B. Fenwick and Cindy Norris,
editors, ACM SIGPLAN Conference on Programming Language

[SHO7]

[SHK04]

[SPEC]

S506]

[Ste96a]

[Ste96b]

[VLOO]

[Win04]

[Win07]

[WLO4]

Design and Implementation (PLDI 2003), pages 77-90, New York,
June 9-11 2003. ACM Press.

Marc Shapiro and Susan Horwitz. Fast and accurate flow-
insensitive points-to analysis. In 2/th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL
1997), pages 1-14, New York, NY, USA, 1997. ACM Press.

Bernhard Scholz, Nigel Horspool, and Jens Knoop. Optimizing for
space and time usage with speculative partial redundancy elimi-
nation. ACM SIGPLAN Notices, 39(7):221-230, 2004.

Standard Performance Evaluation Company.

http://www.spec.org.

Jeff Da Silva and J. Gregory Steffan. A probabilistic pointer anal-
ysis for speculative optimizations. ACM SIGOPS Operating Sys-
tems Review, 40(5):416-425, 2006.

Bjarne Steensgaard. Points-to analysis by type inference of pro-
grams with structures and unions. In 6th International Conference
on Compiler Construction (CC’96), pages 136-150, London, UK,
1996. Springer-Verlag.

Bjarne Steensgaard. Points-to analysis in almost linear time. In
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL 1996), pages 32-41. ACM Press,
1996.

Steven P. Vanderwiel and David J. Lilja. Data prefetch mecha-
nisms. ACM Comput. Surv., 32(2):174-199, 2000.

Sebastian Winkel. Exploring the performance potential of Itanium
processors with ILP-based scheduling. In 2nd IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO
2004). IEEE Computer Society, 2004.

Sebastian Winkel. Optimal versus heuristic global code scheduling.
In 40th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO-40 2007), pages 43-55, Washington, DC, USA,
2007. IEEE Computer Society.

Youfeng Wu and James R. Larus. Static branch frequency and

program profile analysis. In 27th Annual International Symposium

[WMO5]

[Wu02]

on Microarchitecture (MICRO-27 1994), pages 1-11, New York,
NY, USA, 1994. ACM Press.

William A. Wulf and Sally A. McKee. Hitting the memory wall:
implications of the obvious. ACM SIGARCH Computer Architec-
ture News, 23(1):20-24, 1995.

Youfeng Wu. Efficient discovery of regular stride patterns in ir-
regular programs and its use in compiler prefetching. In ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI 2002), pages 210-221, New York, NY, USA,
2002. ACM Press.

Supervised Diploma Theses

[Hee07]

[Opp07]

[Rol09)]

[Sch07]

[Tet07]

Jonas Heese. Lernen von Speicherabhéngigkeiten. Technische Uni-
versitit Berlin, Fachgebiet PES, November 2007.

Jan Oppor. Spekulative Alias-Analyse. Technische Universitdt Berlin,
Fachgebiet PES, November 2007.

Tobias Roloff. Identifikation von Programmklassen mit dhnlichem
Speicherzugriffsverhalten. Technische Universitidt Berlin, Fachgebiet
PES, April 20009.

Stefan Schulz. Spekulative Optimierung von Speicherzugriffen in
Compilern. Technische Universitdat Berlin, Fachgebiet PES, Novem-
ber 2007.

Dirk Tetzlaff. Erweitertes Hyperblock-Scheduling fiir VLIW-
Prozessoren. Technische Universitéit Berlin, Fachgebiet PES, October
2007.

	Title
	Contents
	Introduction
	Problem
	Objectives
	Proposed Solution
	Motivation
	Research Area
	Main Contributions
	Outline

	Background
	Compilers
	Front End
	Intermediate Representation
	Program Analyses
	Optimizations
	Code Generation

	The Role of Memory in Compilers
	Analysis of Memory Accesses
	Dependence Analyses
	Alias Analyses

	Speculative Optimization
	Data Speculation
	Control Speculation
	Recovery Code
	Required Hardware Support
	Hardware Support in Modern Processor Architectures

	Machine Learning
	Classification Learning
	Cluster Analysis
	Predictor Precision

	Summary

	Related Work
	Machine Learning in Compilers
	Program Behavior
	Optimization Sequences
	Optimization Parameters
	Discussion

	Memory Dependencies
	Collection of Memory Dependencies via Profiling
	Alias Analysis
	Discussion

	Optimization of Memory Accesses
	Conservative Optimizations
	Speculative Optimizations
	Discussion

	A General Framework for Intelligent Speculative Optimizations
	Overview
	Analysis
	Program Analysis
	Profiling

	Machine Learning
	Behavior Predictor
	Identification of Program Classes
	Program Class Predictor
	Repository of Behavior Predictors
	Combination with Conservative Analyses

	Speculative Optimizations
	Search Space Exploration
	Increased Optimization Potential
	Cost Model

	Instantiation of the General Framework
	Summary

	Intelligent Speculative Optimization of Memory Accesses
	Speculative Optimization of Memory Accesses
	Optimization Problem
	Abstraction Level
	Optimization Algorithm

	Cost Model
	Conservative Code Motion
	Data Speculation
	Control Speculation
	Load Address Computation Chains
	Crossing Check Instructions

	Learning the Memory Behavior of Programs
	Collection of Training Data
	Identification of Program Classes
	Repository of Predictors
	Combination with Alias Analyses

	Summary

	Implementation
	Overview
	Analysis Phase
	Suite of Representative Programs
	Static Program Features
	Static Code Features
	Profiling Load Latencies
	Profiling Memory Dependence Degrees
	Combination of Code Features and Profiling Data

	Machine Learning
	Data Preparation
	Predictor Construction
	Program Classification
	Construction of the Behavior Predictor Repository
	Generation of Executable Code from the Predictors

	Speculative Optimization
	Itanium Backend
	Static Branch Predictor
	Alias Analysis
	Speculative Upwards Code Motion

	Summary

	Experimental Results
	Evaluation of the Predictors
	Validation Methods
	Program Suite
	General Applicability of Machine Learning
	Program Classification
	Predictor Precision for the Validation Set

	Optimization
	Experimental Setup
	Results

	Summary

	Conclusion
	Results
	Discussion
	Outlook

	List of Figures
	List of Tables
	Bibliography

