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Abstract

Tropical plane curves are one of the building blocks in the study of tropical algebraic geometry.

A lot of work has been done to understand and establish connections between tropical and

classical algebraic geometry. The first step in this direction is to consider the case of smooth

tropical curves. This in turn comes with a nice connection to lattice polytopes and their

unimodular triangulations. This highly combinatorial setting helps to explore the algebro-

geometric aspects of tropical curves by trying to find when a smooth tropical curve is realizable.

This leads us to study the skeleton of a tropical curve, which is a metric graph that encodes

the combinatorial information regarding the curve. Our main goal here is to understand the

combinatorial nature of these skeletons and to try to find which graphs can occur as skeletons

of smooth tropical plane curves, and in this way, we come up with certain obstructions which

prevent a graph from being a skeleton of a tropical curve. We encounter a special class

of lattice polytopes, namely panoptigons, which help us in identifying a new criterion for

non-realizability of a graph as a skeleton.

Having studied about smooth tropical planar curves, in the latter section we move on to

the study of incidence of points and lines in the tropical plane and arrangements of tropical

lines. In the light of recent results exploring tropical point-line incidence, we establish a

tropical De-Bruijn Erdős theorem. We also study stable tropical lines and using projective

duality in the tropical plane, we find dual results concerning stable intersections. Utilizing

duality of tropical curves with subdivisions of Newton polytopes we also establish connections

between point-line geometry and the faces of subdivisions of Newton polytopes. With tropical

Sylvester-Gallai theorem and tropical De-Bruijn Erdős theorem, we discuss other results

which have been obtained about point-line geometry in the tropical plane and beyond.
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Zusammenfassung

Tropische ebene Kurven bilden einen Teil des Fundaments der tropischen algebraischen

Geometrie. Die Verbindung zwischen klassischer und tropischer Geometrie zu untersuchen

und zu vertiefen ist Thema vieler aktueller Arbeiten. Der erste Schritt ist die Untersuchung

glatter tropischer Kurven mittels ihrer Verbindung mit unimodularen Triangulierungen

von Gitterpolytopen. In diesem kombinatorischen Rahmen lässt sich die Frage nach der

Realisierbarkeit tropischer Kurven stellen. Dies führt uns zum Studium des Skeletts tropischer

Kurven, einem metrischen Graphen, der die kombinatorische Information der Kurve kodiert.

Wir wollen verstehen, welche Graphen als Skelett glatter tropischer Kurven auftreten können.

Dadurch gelangen wir zu Bedingungen an einen Graphen, die ihn davon abhalten, Skelett

einer tropischen Kurve zu sein. Eine besondere Klasse von Gitterpolytopen, “panoptigons”,

hilft uns neue Kriterien für Nichtrealisierbarkeit eines Graphen als Skelett zu finden.

Nach den glatten tropischen Kurven beschäftigen wir uns mit der Inzidenz von Punkten und

Geraden in der tropischen Ebene, sowie Arrangements von tropischen Geraden. Basierend auf

jüngsten Ergebnissen über tropische Punkt-Geraden Inzidenz, leiten wir eine tropische Version

des De-Bruijn Erdős Theorems her. Außerdem untersuchen wir stabile tropische Geraden

und, vermöge projektiver Dualität, bekommen wir duale Ergebnisse für stabile Schnitte.

Durch die Dualität tropischer Kurven mit Unterteilungen von Newtonpolytopen können wir

Verbindungen zwischen der Punkt-Geraden-Geometrie und den Seiten in der Unterteilung

des Newonpolytops herstellen. Unter dem Gesichtspunkt des tropischen Sylvester-Gallai

Theorems und des tropischen De-Bruijn Erdős Theorems erläutern wir andere Ergebnisse zur

Punkt-Geraden Geometrie in der tropischen Ebene und darüber hinaus.
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Chapter 1

Introduction

Tropical geometry started gaining immense traction as a new sphere for research starting from

the early years of the current century. Although, research had been conducted regarding max

plus algebras in the preceding century, the impact of the topic was realized only some decades

later with immensely strong results like the fundamental theorem of tropical geometry, tropical

convexity, etc [38]. This was also enhanced with various applications found in economics

[5], optimization [33], string theory [25] etc. which has brought the study of this subject

at the cross hair of researchers from various fields of interest. It even offers something of

interest to the star wars aficionado (cf.TIE-fighter graph [16]). In this thesis we would be

considering the connections between discrete geometry and the study of tropical curves,

relating lattice polytopes, regular subdivisions and tropical curves. Tropical geometry thrives

on the connections between tropical curves and their dual Newton subdivisions. Hence, let

us get acquainted with what is a subdivision and the combinatorics related to it. In [20], a

polyhedral subdivision is defined as follows,

Definition 1.0.1. Let J be a set of labels for the point configuration V ⊂ Rd. A collection

∆ of subsets of J is a polyhedral subdivision of V if it satisfies the following conditions

1. If C ∈ ∆ and F ≤ C, then F ∈ ∆ as well. (Closure property)

2. ∪C∈∆ convV (C) ⊇ convV (J). (Union Property)

3. If C ̸= C ′ are two cells in ∆, then relintV (C) ∩ relintV (C) = Φ. (Intersection Property)

A triangulation of V is a polyhedral subdivision all of whose cells are simplices. If that

subdivision is induced by a height function on V , it is called regular.

Tropical geometry is briefly the study of polynomials and the hypersurfaces defined by

them, over the tropical semiring (R ∪ ∞,⊕,⊙), where the binary operations act on the

elements in the following way

1



x⊕ y = max(x,y) and x⊙ y = x+ y

The tropical semiring can also be considered with a min-plus operation, however we

would be considering the max-plus operation in our case. A tropical polynomial is a tropical

analogue of a polynomial with the binary operations between monomials replaced with tropical

operations. The usual notion of vanishing which is studied in classical algebraic geometry

is replaced in the realm of tropical geometry with the notion of maxima (or minima) being

achieved at least twice. The corresponding vanishing sets are referred as tropical hypersurfaces.

These hypersurfaces imbibe a metric graph structure, with each vertex satisfying a balancing

condition. In this thesis we would be studying tropical planar curves which are hypersurfaces

corresponding to bi-variate tropical polynomials.

We now define the setup for smooth tropical planar curves, which we would be studying

in this work. Let P be a (convex) lattice polygon, i.e., P is the convex hull of finitely many

points in Z2, and V = P ∩ Z2 is the set of lattice points in P . We refer to the convex hull of

the interior points of P as the interior polygon of P , denoted Pint. If dim(Pint) = 2, we call

P non-hyperelliptic; if dim(Pint) ≤ 1, we call P hyperelliptic. Any function h : V → R can be

identified with a tropical polynomial as follows [10],

p(x, y) =
⨁︂

(i,j)∈V
h(i,j) ⊙ xi ⊙ yj

The tropical curve C corresponding to this tropical polynomial is dual to a regular

subdivision of V , which can be obtained by raising the lattice points in V to corresponding

heights in R3, the heights being specified by the function h. We consider the upper convex hull

of the points in V and their corresponding heights and obtain the subdivision by projecting

back to R2. The maximal cells are obtained as images of facets of the upper convex hull

under projection [10]. In the planar case, such a regular subdivision is a triangulation if

all maximal cells are triangles. A triangulation ∆ of V is unimodular if each triangle in ∆

has normalized area one, i.e., Euclidean area 1
2
. This is the case if and only if ∆ uses all

points in V (by Pick’s Theorem [44]) . We refer a tropical planar curve dual to a unimodular

triangulation as a smooth tropical planar curve.

Any tropical plane curve C contains a trivalent, planar, minor G which has exactly g

distinct cycles, and it is the smallest space to which the curve admits a deformation retract.

We refer to this graph as the skeleton of genus g of the tropical curve. Each skeleton has

2g − 2 vertices and 3g − 3 edges [10]. We also notice that skeleta of unimodular regular

triangulations of lattice polygons are termed as tropically planar or “troplanar” graphs in [16],

and we refer the tropical curves corresponding to a tropically planar skeleton as realizable

2



smooth tropical planar curve. We explain in Chapter 2.1 how this minor is obtained from a

tropical curve and how it relates to the dual unimodular triangulations.

Tropical curves have been studied previously since they occur as the simplest examples of

tropical hypersurfaces. Additionally, the moduli spaces associated with planar tropical curves,

Mplanar
g enjoys intricate and important connections to moduli spaces in classical algebraic

geometry. An important aspect of study has been to analyze the cohomology of classical

spaces in algebraic geometry by using the connections with the moduli space of tropical

curves, as explored in [15]. In 2015, Brodsky et al [10] studied the moduli space of tropical

curves, for lower genera g = 3, 4 and 5. This boiled down to studying the underlying skeletons

of all possible smooth tropical planar curves of a given genus. In there study, with the help

of a computational setup, they were able to find which trivalent planar graphs could occur as

skeletons for lower genera. There study showed that not all graphs can occur and one can try

to come up with combinatorial criteria to specify graphs which are forbidden from occurring

as skeletons. This approach was pushed to genus 7 in Coles et al [16], along with new criteria

for forbidden skeletons. However, these studies could not provide a complete classification

and as they involve computational enumeration of triangulations, therefore the results are

bounded by computational complexity, which increases rapidly as the genus increases. In

this thesis, we try to find answers to the questions which arose from [10] and [16] and in the

first chapter we provide two new criteria for graphs which are forbidden from occurring as

skeletons. This also leads us to studying highly symmetrical triangulations which we refer to

as anti-honeycomb. Also, with our results we are able to provide a full classification of all

curves for genus g ≤ 5, independent of the previous computational setup, i.e., by eliminating

all graphs which fall under known criteria.

In the third chapter of this thesis, we study lattice visibility, which can be understood as the

search for lattice points inside polytopes which can be connected to all other lattice points via

a straight line, without any intermediate lattice point. Visible points inside lattice polytopes

have been studied previously based on applications relating to optimization and even in

theoretical physics [28]. In this thesis, we define a new class of lattice polygons panoptigons,

which have a lattice point which is visible to all other lattice points. We first show that there

are only finitely many panoptigons and enumerate all possible nonhyperelliptic panoptigons,

via a constructive proof and a computational enumeration. This study regarding lattice

polytopes was however inspired by questions concerning tropical curves, and we elaborate

this connection by establishing a new criteria namely big face graphs, which is based on the

enumeration of panoptigons. This provided us with a new criteria for skeletons apart from

crowded criterion, which does not involve a cut edge.

3



In the last chapter, we move on to the arrangement of the simplest example of tropical

curves, namely tropical line arrangements. We provide a definition for a stable tropical line

and establish the equivalence between previously known notions of stable tropical lines, and

using this definition we state and prove the tropical analogue of the classical De Beuijn

Erdős theorem, which establishes a lower bound on the number of lines determined by a set

of points. This is inspired by recent point-line incidence results proved in [8]. Hyperplane

arrangements have been studied previously in tropical geometry, entailing to connections

with tropical convexity [21], hence tropical line arrangements turn out to be the base case in

this scenario. Also, hyperplane arrangements have been studied in order to explore there

connections with subdivisions of dilated simplex and a notion of a tropical oriented matroid

is established in [2] in connection to hyperplane arrangements. In the light of all these results,

we establish the lower bound on the number of stable tropical lines determined by a set of

n points in the tropical plane, hence a tropical De Bruijn Erdős theorem. With projective

duality, the result also translates to tropical line arrangements and stable intersections. The

proof of this result brings out the deep connections between faces of dual Newton subdivision

and corresponding stable intersections. We also state the connections of our result with the

study of tropical oriented matroids as specified in [2].

In summary, in this thesis we study which graphs can occur as skeletons of smooth tropical

planar curves; this classification provides us insights about the moduli space of tropical curves

and with our results we are able to provide a complete classification for lower genera. In

this process, we also discover a new class of lattice polygons, which helps us understand

lattice visibility in greater details, and in turn relates back to our study of tropical curves

by helping us to establish a new criteria for forbidden skeletons. Subsequently, we study

an active example of curves in the forms of tropical line arrangements and study point-line

incidence in the tropical plane.
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Chapter 2

Forbidden patterns in tropical plane
curves

2.1 Lattice polygons and tropical plane curves

We start with a finite set of points V ⊂ Rd and recall that polyhedral subdivision of V is a

polyhedral complex which covers the convex hull conv V and uses (a subset of) the given

point set V as its vertices. Let P be a (convex) lattice polygon, and V = P ∩ Z2 is the set of

lattice points in P .

Let ∆ be a (not necessarily unimodular) triangulation of V . The dual graph Γ = Γ(∆) is

the abstract graph whose nodes are the triangles of ∆; they form an edge in Γ if two triangles

share an edge in ∆. The dual graph is necessarily connected and planar, and each node has

degree at most three.

Figure 2.1: Graph with a sprawling node (left), a crowded graph (center), and a TIE-fighter
graph (right). Each box represents some subgraph of positive genus.

Next we describe a procedure to obtain the skeleton G from Γ. First, if there is a node of

degree one, we delete it together with the unique incident edge. We repeat this step until

no nodes of degree one are left. The remaining edges are nonredundant. Second, if there

is a node of degree two, we delete the node and join its neighbors by an edge. Again we

repeat until there are no more nodes of degree two. The resulting graph is the skeleton. By
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construction the skeleton is a trivalent planar graph, and it does not depend on the ordering

in which the edge deletions and contractions are performed [24, Section 3.1.2]. In this way

each edge of G arises as an edge path in Γ. This yields a surjective map, which we denote η,

from the nonredundant edges of Γ onto the edges of G. Note that this contraction map η is

undefined for any edge which is redundant. This elementary description of the skeleton is

algorithmic in nature and serves our purposes.

A split is a subdivision of V with exactly two maximal cells; it is necessarily regular [27,

Lemma 3.5]. If U and W are the two maximal cells of a split, then the intersection U ∩W
is a common edge of the two convex polygons U and W . It spans the corresponding split

line. A set of splits of V is weakly compatible if there is a triangulation which simultaneously

refines them all. Moreover, a set of splits is (strongly) compatible if any two split lines do not

meet in the interior of P . Compatibility implies weak compatibility. The split lines of two

weakly compatible splits which are not strongly compatible must meet in a point in V , i.e.,

an interior lattice point of P . An edge e of the connected graph G is a cut edge if deleting e

creates two connected components. Otherwise e lies in some cycle of G.

The following three technical results are extracted from the proof of [16, Theorem 3.4],

where cut edges are called “bridges”.

Lemma 2.1.1. Let e be a cut edge of G. Then η−1(e) comprises a single cut edge of Γ,

which is dual to an edge, s, of ∆. Moreover, the vertices of s lie on the boundary ∂P , and s

spans a split line of V .

Here the “vertices” are the two endpoints of the edge s. In the unimodular case these

are also the only lattice points contained in s. Our arguments below do not rely on the

uniqueness of the cut edge in η−1(e). It suffices to know that such edge (and its dual edge s)

exist.

Lemma 2.1.2. Let e be an edge between v1 and v2 in a cycle, C of G. Furthermore, let T1

and T2 be triangles in ∆ which correspond to v1 and v2 on the path η−1(e). Then T1 and T2

share an interior lattice point of P , and this is dual to C.

Lemma 2.1.3. Let z ∈ V be some lattice point in P with two incident triangles T1 =

conv{z, a1, b1} and T2 = conv{z, a2, b2} both of which are in ∆. Further, let Li be the line

spanned by ai and bi, for i = 1, 2. Suppose that L1 and L2 meet in some point, say w, such that

ai is closer to w than bi, for i = 1, 2. Then the interior of the quadrangle conv{z, a1, w, a2}
does not contain a point in V , unless a1 = a2 = w.

With this we can take a small first step to our main results. Recall that Lemma 2.1.1

associates a split of V to each cut edge of G.
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Lemma 2.1.4. Splits corresponding to distinct cut edges are compatible.

Proof. It suffices to consider pairs of splits. From Lemma 2.1.1 the cut edges e1 and e2 yields

two split lines, S1 and S2, which may not be unique. Unless S1 and S2 are compatible, they

must meet in a point of the point configuration V , which does not lie on ∂P , i.e., an interior

lattice point of P . Yet, by Lemma 2.1.1 the line S1 (and similarly S2) contains precisely two

points of V , and neither lies in the interior.

We now recall the duality between unimodular triangulations of lattice polygons and

smooth tropical planar curves as discusssed in Chapter 1. We illustrate this duality with the

following example,

Example 2.1.5. We consider the anti-honeycomb triangle

A(−2,4;−2,4;−2,4) = conv{(2, 2), (−2, 0), (0,−2)} , (2.1.1)

which occurs as Q
(4)
3 in [10]. The genus is g(A(−2,4;−2,4;−2,4)) = 4. We call the unimodular

triangulation ∆(−2,4;−2,4;−2,4), shown in Figure 2.2 (left), the anti-honeycomb triangulation of

A(−2,4;−2,4;−2,4). Its skeleton, shown in Figure 2.2 (right) and called (303) in [10], features three

cut edges which correspond to three compatible splits of A(−2,4;−2,4;−2,4). The triangulation

∆(−2,4;−2,4;−2,4) is regular, whence it defines a moduli cone of tropical plane curves. That

cone is 7-dimensional, while the entire moduli space Mplanar
4 has dimension nine; see [10,

Table 4]. See Section 2.4 for a more comprehensive discussion of anti-honeycomb polygons,

their triangulations and the notation (2.1.1).

Figure 2.2: Anti-honeycomb triangulation ∆(−2,4;−2,4;−2,4) of genus 4 (left), its dual graph
(center), and the corresponding skeleton (right)

We now sketch the forbidden patterns which are known already. A node in G is sprawling

if its deletion leaves three connected components; cf. Figure 2.1 (left). This obstruction to

tropical planarity was identified in [12, Proposition 4.1] and [10, Proposition 8.3]. Note that

graphs with a sprawling node were called “sprawling” in [10] and [16]. A planar embedding
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of a graph G is called crowded if either: there exist two bounded regions sharing at least two

edges; or, there exists a bounded region sharing an edge with itself. If all planar embeddings

of G are crowded, then G itself is said to be crowded. In [40, Lemma 3.5], it is shown that

crowded graphs can never be tropically planar. Additionally, [40, Corollary 3.7] describes a

family of crowded graphs, and this is depicted in Figure 2.1 (center). A graph is a TIE-fighter

if it looks like the one in Figure 2.1 (right). TIE-fighter graphs can never be tropically planar;

this was shown in [16, Theorem 3.4].

2.2 Heavy Cycles and Sprawling Triangles

Let P be a lattice polygon with precisely g interior lattice points. Moreover, let ∆ be a

unimodular triangulation of P with dual graph Γ = Γ(∆) and skeleton G(∆) = G. The

contraction map η sends nonredundant edges of Γ to edges of G. The g interior lattice points

of P bijectively correspond to the bounded regions of the planar graph G. By Euler’s formula

we have g = m−n+1, where m and n are the numbers of edges and nodes of G, respectively.

Our arguments in this section do not require ∆ to be regular. That is, our results extend to

a class of planar graphs, which is slightly more general than tropical plane curves.

Two lattice polygons, P and Q, are unimodularly equivalent if there is a lattice vector

α ∈ Z2 and an integer linear transformation τ ∈ SL(2,Z) such that P = α + τ(Q); cf. [20,

Section 9.3]. In that case, we have P ∩ Z2 = α + τ(Q ∩ Z2), i.e., the lattice points are

transformed alike. The map x ↦→ α + τ(x) is a unimodular transformation.

Lemma 2.2.1. Assume that P contains a unimodular triangle with vertices a, b, z such that

neither a nor b is a vertex of P , and z is an interior lattice point. If a and b lie on ∂P then

either a and b lie on a common edge of P or the lattice point a+ b− z is contained in P .

Proof. Up to unimodular equivalence we may assume a = (1, 0), b = (0, 1) and z = (0, 0). Let

L and M be the lines spanned by the edges of P containing a and b, respectively. Suppose

that (1, 1) is not contained in P . Since P is a lattice polygon, then the intersection of P

with the positive orthant agrees with the unit triangle abz. This entails that L and M agree,

which means that L =M defines an edge of P , and this contains a as well as b.

Definition 2.2.2. We say that a cycle C in a planar graph G is heavy, if

1. it has two nodes, v1 and v2, such that vi is incident with a cut edge ei connecting vi

with a subgraph Gi of positive genus;

2. and there is a third subgraph, G3, also of positive genus, which shares at least one node

with the cycle C; cf. Figure 2.3.
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v2 v1

C

e2 e1

G3

G2 G1

Figure 2.3: Graph with the heavy cycle C

In particular, a graph with a heavy cycle has genus at least four. From the classification

of hyperelliptic graphs in [40], we infer that a graph with a heavy cycle is not hyperelliptic.

Moreover, it follows from Lemma 2.1.1 that there are split lines, S1 and S2, dual to the edges

e1 and e2 of G. While the split lines may not be unique we just pick some. By Lemma 2.1.4

the splits S1 and S2 are compatible, and thus P decomposes into a union of three lattice

polygons P1, P2 and P ′ such that ∆ induces triangulations of all three. In this way, we get

triangulations ∆1, ∆2 and ∆′ such that the component Gi is the skeleton of ∆i for i = 1, 2,

and G3 ∪C is the skeleton of ∆′. The triangles in ∆′ which are dual to v1 and v2 are denoted

T1 and T2, respectively. We refer to the polygon P ′ as the heavy component of P , and likewise

∆′ is the heavy component of ∆. Expressed in the language of [16], the heavy component ∆′

arises from ∆ via “bridge-reduction”.

The following lemma is the technical core of this chapter. Its proof is a bit cumbersome,

with several cases to distinguish. However, it is rather powerful as it delineates a fine border

between trivalent planar graphs which are realizable as skeleta of tropically planar curves

and those which are not.

Lemma 2.2.3. Suppose that G has a heavy cycle with cut edges e1 and e2 as in Figure 2.3.

Then the triangles T1 and T2 in ∆ share an edge [z, w], where z is the interior lattice point

dual to C, and the split lines S1 and S2 intersect in w, which is a vertex of P ′, and which

lies in the boundary of P .

Before we enter the proof, we sketch an outline. The overall strategy is indirect, i.e.,

we will assume that T1 and T2 share a vertex but not an edge. Now the split lines from

Lemma 2.1.4 are either parallel or not; cf. Figure 2.4. In both cases we can exploit the

convexity of the four lattice polygons P1, P2, P
′ and P to arrive at contradictions. The

situation with intersecting split lines is the more difficult one, as it ramifies into sub-cases.

Proof. By Lemma 2.1.2 the triangles T1 and T2 share a vertex z, which is the interior lattice

point in P dual to the heavy cycle C. Up to a unimodular transformation we may assume

that z = (0, 0), and T1 = conv{z, (1, 0), (0, 1)}.
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T1

T2 z
p1

p2

q
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s1

s2

P ′

T1

T2
z

p1

p2 w

s1

s2

P ′

Figure 2.4: Two possibilities for S1 and S2, which are ruled out a posteriori in the proof of
Lemma 2.2.3. Left: S1 and S2 are parallel. Right: S1 and S2 intersect in a point.

We consider the point (1, 1). We notice that if (1, 1) ̸∈ P , then by convexity of P , the

positive genus component attached to the split edge s1 = [(1, 0), (0, 1)] is squeezed between

the lines y = 0 and y = 1, which has no interior lattice points and we get a contradiction.

Therefore the point (1, 1) lies in P . We want to show that (1, 1) is an interior lattice point of

P1 (and P ). First, since (1, 0) is in the boundary and z is in the interior of P , there are no

interior lattice points on the ray (1, 0) + pos{(1, 0)}. Similarly, there are no interior lattice

points on (0, 1) + pos{(0, 1)}. However, since G1 has positive genus at least one interior

lattice point of P1 exists, and it must lie in the translated orthant (1, 1) + pos{(1, 0), (0, 1)}.
As (1, 0) and (0, 1) lie in P1 it follows from the convexity of P1 that (1, 1) must be an interior

lattice point. Now consider the triangle T2 = conv{z, (α, β), (γ, δ)} where α, β, γ, δ ∈ Z with

αδ − βγ = 1 . (2.2.1)

Suppose T1 and T2 do not share an edge. We are aiming for a contradiction, which then

establishes a proof of this lemma. Since (1, 1) ∈ intP1 the horizontal line (0, 1) + R(1, 0)
intersects P ′ only in (0, 1). Similarly, the vertical line (1, 0) + R(0, 1) intersects P ′ only in

(1, 0). As (α, β), (γ, δ), (1, 0), and (0, 1) are pairwise distinct this yields α, β, γ, δ ≤ 0.

First, suppose the split line S2 is parallel to S1. As T2 is a unimodular triangle S2 is

the line through (−1, 0) and (0,−1). Then, S2 and α, β, γ, δ ≤ 0 forces α = δ = −1 and

β = γ = 0. We consider the lattice points q = (−1, 1) and r = (1,−1). As P ′ has positive

genus, it follows from Lemma 2.2.1 that either q or r is an interior lattice point of P ′. By

symmetry we may assume r ∈ intP ′. Then, the point q can either lie on the boundary of

P or is not in P . Now the interval [(1, 1), (1,−1)] is the convex hull of two interior lattice

points of P , but it contains the boundary point p1 in its relative interior. Hence we obtain a

contradiction.
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We conclude that the split lines S1 and S2 intersect in some point w = (ψ, ω), as depicted

in the Figure 2.4. Since T1 is fixed, T1 and T2 do not share an edge and α, β, γ, δ ≤ 0, we

obtain ω ≤ 0. We use the labels from Figure 2.4 and intend to show that w lies in ∂P .

Suppose the contrary. Then, due to Lemma 2.1.4, the point w must lie outside P . From

our choice of w we see that distance between the point p1 := (1, 0) and w is lesser than the

distance between the points (0, 1) and w. From (2.2.1) it follows that the distance between

p2 := (γ, δ) and w is lesser than the distance between w and (α, β). Applying Lemma 2.1.3 we

infer that the interior of the quadrangle conv{z, p1, w, p2} does not contain an interior lattice

point of P . We realize that since the triangles T1 and T2 do not share an edge, and since

p1, p2 ∈ ∂P therefore in this case [p1, p2] is a boundary edge and the triangle conv{z, p1, p2}
belongs to ∆.

We now look at possible coordinates of the point p2 = (γ, δ). Since the triangle

conv{z, p1, p2} is unimodular and as δ ≤ 0 we have δ = −1. Hence p2 lies on the ray

{(γ, δ) : γ ≤ 0, δ = −1}. We consider some values of γ starting with the case of γ = 0. Then

(2.2.1) implies that (α, β) is on the line x = −1, i.e., α = −1. We explore the possible values

for β.

For β = −2 the split edge on the line S2 would be s2 = [(0,−1), (−1,−2)]. This cannot

be as then S2 would contain p1 as a third boundary point, a contradiction to Lemma 2.1.1.

For β = −1 and s2 = [(0,−1), (−1,−1)], we realize that the polygon P2 is bounded in the

rectangular strip between the parallel lines y = x and y = x − 1. Yet there is no interior

lattice point between them, and this contradicts G2 to have positive genus. Any other value

of β < −2 contradicts the convexity of P at z. This rules out the possibility γ = 0.

The arguments for excluding the other values of γ are very similar. We summarize them

briefly. For γ = −1 we obtain β = α+ 1. Then either s2 = [(−1,−1), (−1, 0)], and we obtain

ω = 2 ≥ 0, which is absurd. Or s2 = [(−1,−1), (−2,−1)], whence P2 is squeezed between

the lines 2y = x and 2y = x− 1, which does not leave space for an interior lattice point. Or

s2 = [(−1,−1), (−3,−2)], which then lies on the line spanned by the boundary edge [p1, p2].

Again, any other value of β on the line y = x+ 1, contradicts the convexity of P at z.

Similarly, when γ = −2, we obtain 2β = α + 1. Then either s2 = [(−2,−1), (−1, 0)], and

we obtain ω = 1 ≥ 0, which is absurd. Or s2 = [(−2,−1), (−3,−1)], whence P2 is squeezed

between the lines 3y = x and 3y = x− 1, which does not leave space for an interior lattice

point. Or s2 = [(−2,−1), (−5,−2)], which then lies on the line spanned by the boundary

edge [p1, p2]. Again, any other value of β on the line 2y = x+ 1, contradicts the convexity of

P at z.

The case γ ≤ −3 is left. Then the point (α, β) lies on the line −γy = x + 1. The

following three possibilities occur for the split edge s2. Either s2 = [(−1, 0), (γ,−1)], and

11



e2

e3

e1

G3

G2 G1

Figure 2.5: A graph with a sprawling triangle; e1, e2, e3 are cut edges; G1, G2, G3 are
subgraphs of positive genus.

we obtain ω ≥ 0, forcing ω = 0. In this case we see that there is no edge to join between

the points (−1, 0) and (0, 1) such that the polygon P remains convex, which gives us

a contradiction. Or s2 = [(γ − 1,−1)(γ,−1)], whence P2 is squeezed between the lines

(1− γ)y = x and (1− γ)y = x− 1, which does not leave space for an interior lattice point.

Or s2 = [(2γ − 1,−2), (γ,−1)], which then lies on the line spanned by the boundary edge

[p1, p2]. Any other value of β on the line −γy = x+ 1, contradicts the convexity of P at z.

Therefore, finally, we conclude that there is no lattice point p2 = (γ, δ) such that the

triangle conv{z, p1, p2} belongs to ∆. Hence, our initial assumption was wrong, and the

triangles T1 and T2 do share the edge [z, w], where w = p1 = p2 is the intersection of S1 and

S2. Consequently, s1 and s2 are two distinct edges of P ′, and so w is a vertex of P ′.

We notice that the anti-honeycomb triangulation of genus 4 in Example 2.1.5 and Figure 2.2

is a positive example for the result in Lemma 2.2.3. For the three triangular cells containing

the split edges and sharing a common vertex, each pair of them has a common edge. In fact,

the specific shape of the heavy component in that example gives rise to another concept,

which covers a special case of Definition 2.2.2.

Definition 2.2.4. We say that the planar graph G has a sprawling triangle if it has a cycle

with three nodes, each of which is also incident with a unique cut edge, such that at the

other end there is a subgraph of positive genus; cf. Figure 2.5.

It turns out that Example 2.1.5 is the only case where this occurs:

Theorem 2.2.5. If G has a sprawling triangle then g = 4, and, up to unimodular equivalence,

we have

P = A(−2,4;−2,4;−2,4) and ∆ = ∆(−2,4;−2,4;−2,4) .

12



Proof. We use the notation from Figure 2.5. Let s1, s2 and s3 be the split edges in ∆

corresponding to the cut edges e1, e2 and e3. Using Lemma 2.2.3 on these three splits, we

obtain that each pair of them intersects in a point on ∂P . This gives three lattice points

a, b, c in the boundary of P such that each pair is joint by one of the three edges s1, s2, s3.

Let ∆|abc be the subcomplex of ∆ restricted to the lattice triangle abc. Its skeleton is the

sprawling triangle, whose genus is one. Hence there is a unique interior lattice point, z, of P

contained in abc. It follows that the lattice triangle abc has normalized area three, and its

unimodular triangulation into abz, acz, and bcz forms the induced subcomplex ∆|abc. Those
maximal cells of ∆ are dual to the three nodes of the sprawling triangle of G.

As in the proof of Lemma 2.2.1 we may assume that a = (1, 0), b = (0, 1) and z = (0, 0).

It then follows that c = (−1,−1). Directly from Definition 2.2.4 it follows that the line

ab is dual to a cut edge in G and thus induces a split of ∆. All the interior lattice points

corresponding to a region of the subgraph G1 must lie in the halfspace defined by ab which

does not contain z. Since z is the only interior lattice point of P which does not correspond

to a region of G1 ∪G2 ∪G3, the lattice points a, b and c must lie in the boundary of P .

Now Definition 2.2.4 requires the subgraphs G1, G2 and G3 to have positive genus. This

excludes the possibility that one of the three points a, b, c is a vertex of P . Thus they must

lie on pairwise distinct edges of P . Now we can apply Lemma 2.2.1 three times to learn that

the three lattice points
(1, 0) + (0, 1)− (0, 0) = (1, 1)

(1, 0) + (−1,−1)− (0, 0) = (0,−1)

(0, 1) + (−1,−1)− (0, 0) = (−1, 0)

are contained in P .

Let L,M,N be the three lines spanned by the edges of P through a, b, c, respectively.

Suppose that (1, 1) is a boundary point of P . Then, since P is lattice polygon, (1, 1) is the

intersection point of L and M and thus a vertex of P . This contradicts the fact that G1 has

positive genus, and it follows that (1, 1) is an interior lattice point of P . By symmetry, also

(0,−1) and (−1, 0) are interior lattice points of P .

Now the lattice point (1, 2) is not contained in P because it would then need to lie on the

line M , together with (−1, 0). But this cannot happen as (−1, 0) was already identified as

an interior point of P . Similarly, (2, 1) is not contained in P either. Yet this implies that the

intersection of the lines L and M lies strictly between the two parallel lines (1, 0) + λ(1, 1)

and (0, 1) + λ(1, 1). Thus there is at least one vertex of P , which must be a lattice point, on

the line (0, 0) + λ(1, 1). This forces (2, 2) to lie in P .

Again the situation is symmetric, which is why also (−2, 0) and (0,−2) lie in P . The

single choice left is that (2, 2) as well as (−2, 0) and (0,−2) are vertices of P , and L,M,N
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are the only facets. This establishes P = conv{(−2, 0), (0,−2), (2, 2)}. The claim about ∆

follows as there is only one way to extend the triangulation from the triangle abc to all of

P .

Remark 2.2.6. Contracting a sprawling triangle in a planar graph yields a graph with a

sprawling node, and this cannot be tropically planar. Therefore, Example 2.1.5 shows that

the class of tropically planar graphs is not minor closed; this was observed before [16, Figure

6].

2.3 Graph with a heavy cycle and two loops

Graphs with a sprawling triangle form special cases of graphs with a heavy cycle. Thus our

main technical result, Lemma 2.2.3, allowed us to derive decisive structural constraints for

triangulations whose skeleton has a sprawling triangle in Theorem 2.2.5. Now we are looking

into another special class of groups with a heavy cycle, aiming for a second structural result

on unimodular triangulations of lattice polygons.

Definition 2.3.1. We say that a connected trivalent planar graph G has a heavy cycle with

two loops if it has the form as described in Figure 2.6, where the shaded region represents a

subgraph of positive genus.

v2 v1
e2 e1

C

G3

Figure 2.6: Heavy cycle with two loops

The latter is the special case of Definition 2.2.2, where g(G1) = 1 = g(G2). This type of

skeleton does actually occur.

Example 2.3.2. The quadrangle Q
(5)
4 of genus 5, cf. [10, Figure 22], admits a (regular)

unimodular triangulation whose skeleton features a heavy cycle with two loops, cf. [10,

Figure 23].

Our aim in this section is to establish the following,

14



T1
z

w r

s1

s2
r′

P ′

p2

p1
T1
z

w r

q

s1
p1

Figure 2.7: This illustrates Theorem 2.3.3: general sketch (left) and the case when g(P ′) ≥ 4
(right), which is impossible

Theorem 2.3.3. Suppose G is a graph with a heavy cycle C and two loops with cut edges, e1

and e2, as in Figure 2.6. Then the heavy component P ′ can have at most three interior lattice

points, and these lie on the line spanned by the edge [z, w] ∈ ∆, where z is the interior lattice

point dual to C, and w is the intersection point of the split edges s1 and s2. In particular, P ′

is hyperelliptic and g ≤ 5.

Proof. It follows from Lemma 2.2.3 that the two triangles share the edge [z, w], where w ∈ ∂P

is the point where the two split edges meet. We will first show that the interior lattice points

of P ′ lie on the line spanned by [z, w].

As previously, we fix T1 = conv{(0, 0), (0, 1), (1, 0)} and use the labels from Figure 2.7; in

particular, we may assume that w = (0, 1). Using Lemma 2.2.3 and the unimodularity of T2,

we realize that p2 must lie on the line x = −1; so let p2 = (−1,−k) for some integer k. We

use Lemma 2.2.1 on the points z = (0, 0), w = (0, 1) and p1 = (1, 0) and infer that the point

r := (1, 1) is an interior lattice point of P ; moreover it is the unique interior lattice point of

P1. Similarly, we infer that the point r′ := (−1,−k + 1) is the unique interior lattice point of

P2. By considering the lines connecting the interior point r with the boundary points p1 and

w, respectively, we see that k ≥ 0. The same argument shows that the entire polygon P ′ is

squeezed between the lines x = 1 and x = −1. In particular, the interior lattice points of P ′

lie on x = 0, which is the line spanned by z and w.

Next we will show that g(P ′) ≤ 3. We assume the contrary, i.e., g(P ′) ≥ 4 Then, since all

interior lattice points of P ′ lie on the line x = 0, the point (0,−3) must be an interior lattice

point of P .
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The vertical line x = 1 contains the point p1, which is a boundary point, and r, which

is an interior lattice point. It follows that there is a lattice point (1, λ) in the boundary of

P1 for λ > 1; in particular, either (1, 2) ∈ P1 or the boundary edge at w passes through a

point in the open interval ((1, 2), (1, 1)). Also, as (0,−3) is an interior point, no point in

∂P1 is present on the line y = 3x − 3. We realize that in this case P1 is contained in the

triangle conv{p1, w, (1, 3)}. However, this triangle has no valid lattice point which could be a

vertex of P1; recall that (1, 3) has been excluded; see Figure 2.7. This provides the desired

contradiction, and thus g(P ′) ≤ 3.

The above result is sharp as Example 2.3.2 shows. The following summarizes the known

obstructions to tropical planarity together with our new results.

Theorem 2.3.4. A trivalent planar graph of genus g ≥ 3 is not tropically planar if one of

the following holds:

1. it contains a sprawling node, or

2. it contains a sprawling triangle and g ≥ 5, or

3. it is crowded, or

4. it is a TIE-fighter, or

5. it has a heavy cycle with two loops such that the interior lattice points of the heavy

component do not align with the intersection of the two split lines.

Figure 2.8: Examples of non realizable graphs of genus 7 and 8

For instance, the preceding result excludes the graphs in Figure 2.8.

2.4 Anti-honeycombs

The purpose of this section is to define a class of lattice polygons each of which admits a

special triangulation. This is motivated by Theorem 2.2.5, which characterizes one of these
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triangulations. These triangulations show high degree of symmetry and the entire family

deserves some attention. Consider three families of parallel lines:

Lk = {y=2x+k} , Mℓ = {2y=x−ℓ} , Nm = {y=−x+m} , (2.4.1)

where k, ℓ,m ∈ Z. By picking a sixtuple π = (k, k′; ℓ, ℓ′;m,m′), with k < k′, ℓ < ℓ′, and

m < m′ we obtain a polygon Aπ which is defined by three pairs of inequalities, where each

pair comes from one of the parallel families (2.4.1). We call Aπ the anti-honeycomb polygon

of type π; in general, this is not a lattice polygon. The following characterizes when the

lines from the three families intersect at lattice points; we omit the proof, which is a direct

calculation.

Lemma 2.4.1. We have

1. Lk ∧Mℓ ∈ Z2 if and only if k − ℓ is divisible by 3;

2. Lk ∧Nm ∈ Z2 if and only if k −m is divisible by 3;

3. Mℓ ∧Nm ∈ Z2 if and only if ℓ−m is divisible by 3.

The name comes about from the connection to the “honeycomb polygons” studied in [10,

pp. 10ff]. Note that not all of the six inequalities need to be facet defining, whence Aπ is a

hexagon, a pentagon, a quadrangle or a triangle. For instance,

A(k,−2k; k,−2k; k,−2k) = conv{(−k,−k), (0, k), (k, 0)} (2.4.2)

is a triangle, and its genus equals

g(A(k,−2k; k,−2k; k,−2k)) =
3k2 − 3k + 2

2
.

We fix a type π = (k, k′; ℓ, ℓ′;m,m′), and we let V = Aπ ∩ Z2 be the set of lattice points

in Aπ. Intersecting with the shifted lattice

L =

(︃
−1
−1

)︃
+ Z

(︃
2
1

)︃
+ Z

(︃
1
2

)︃
of index 3 we obtain a subset V ′ = V ∩L of the lattice points in Aπ. The families of lines (2.4.1)

yield weakly compatible splits of the point configuration V ′, and they induce a triangulation

∆′
π of the lattice points in V ′. Notice that all the points in V \ V ′ lie in the interior intAπ.

Since none of these lattice points lies on any of the lines (2.4.1) it follows that each of them

is contained in the interior of a unique triangle of ∆′
π. Employing stellar subdivisions at

the points in V \ V ′ this yields a triangulation ∆π of V , which we call the anti-honeycomb
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Figure 2.9: Anti-honeycomb triangulation of genus 19 on the left, and the corresponding
skeleton on the right

triangulation of type π. Figure 2.2, Example 2.1.5, and Theorem 2.2.5 are concerned with

the case π = (−2, 4;−2, 4;−2, 4) of genus 4. Figure 2.9 shows a genus 19 anti-honeycomb

triangulation along with its corresponding skeleton for π = (4,−8; 4,−8; 4,−8).

The honeycomb curves yield moduli cones of maximal dimension 2g + 1, where g is the

genus, cf. [10, Theorem 1]. In contrast the anti-honeycomb curves form a large family whose

moduli cones are much smaller. For instance, a direct polymake [23] computation shows that

the moduli cone of ∆(4,−8;4,−8;4,−8) is only 28-dimensional, whereas the upper bound 2g + 1

equals 39.

Example 2.4.2. Two interesting classes of anti-honeycomb quadrangles are:

A(k,−2k; k,k−3; k,−2k) = conv{(−k,−k), (k, 0), (k−1, 1), (1−k, 2−k)} ,
A(k,3−2k; k,k−3; k,−2k) = conv{(−k,−k), (k−2,−1), (k−1, 1), (1−k, 2−k)} .

They arise from the triangle A(k,−2k;k,−2k;k,−2k) in (2.4.2) by imposing Mk−3 and L3−2k, re-

spectively, as additional facets. The quadrangle A(k,−2k;k,k−3;k,−2k) is a lattice trapezoid of

genus 2k − 1, while A(k,3−2k;k,k−3;k,−2k) is a lattice parallelogram of genus 2k − 2. These

examples provide anti-honeycomb polygons of arbitrary genus. Additionally, their skeleta are

hyperelliptic, despite the fact that the interior lattice points do not lie on a line. The first

few cases are shown in Figure 2.10. Because of their shapes we call them anti-honeycomb

quadrangles of zigzag type.

Figure 2.10: Anti-honeycomb quadrangles of zigzag type and their skeleta; genus 3, 4 and 5.
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The anti-honeycomb polygons of low genus can be found by directly inspecting the

possibilities of stacking copies of the elliptic “building block” A(1,−2;1,−2,1,−2).

Proposition 2.4.3. The anti-honeycomb polygons of genus g ≤ 6 are unimodularly equivalent

to either quadrangles of zigzag type or to the triangle A(2,−4;2,−4;2,−4).

Up to an affine transformation, which is not a lattice transformation, the three families

of lines in (2.4.1) form a Coxeter hyperplane arrangement of type Ã2. This generalizes to

arbitrary dimensions, and so does the construction of the anti-honeycomb triangulations.

The resulting anti-honeycomb polytopes are affine images of the “alcoved polytopes” of Lam

and Postnikov [37].

2.5 Conclusion

We would now want to list all conclusions that we inferred with our results regarding the

status of tropically planar graphs. The classification of the tropically planar graphs of genus

g ≤ 5 was obtained in [10]. Theorem 2.3.4 now allows for a combinatorial characterization:

Corollary 2.5.1. A trivalent planar graph of genus g ≤ 5 is tropically planar if and only if

none of the obstructions in Theorem 2.3.4 occurs.

Proof. The trivalent graphs of low genus have been classified in [4]. For g = 3 there are five

such graphs, one of which has a sprawling node; the other four are tropically planar [10,

Theorem 5.1]. For g = 4 there are 17 graphs: one is non-planar, three have a sprawling node,

the remaining 13 are tropically planar [10, Theorem 7.1]. This was known before.

There are exactly 71 trivalent graphs of genus 5. Among them only 52 are planar without

a sprawling node [10]. Of these 14 were ruled out by explicit computations [10], which leaves

38 tropically planar graphs of genus 5. One of the key contributions of [16, Figure 8] is to

obtain obstructions to tropical planarity, which rules out another ten, which are crowded or

TIE-fighters.

a b c d

Figure 2.11: The four genus 5 graphs that are not ruled out by any prior known criteria
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As our new contribution we can now discuss the remaining four graphs, which are shown

in Figure 2.11. Firstly, we observe that all of these exhibit a heavy cycle. The graph labeled

“a” has a heavy cycle with two loops, but the component away from the two loops is not

hyperelliptic; i.e., it is ruled out by Theorem 2.3.3. The second graph, labeled “b” also has

a heavy cycle with two loops, the component (of genus 3) away from the two loops is even

hyperelliptic. However, we see that the interior point z dual to the heavy cycle would lie in

between the other two interior lattice points in the hyperelliptic polygon dual to the genus 3

component; the latter contradicts Theorem 2.3.3, which says that the interior lattice points

in the genus 3 component should lie below z on the line spanned by z and w, where w is the

point of intersection of the two splits. Thus “b” is ruled out by Theorem 2.3.3, too. The

graphs labeled “c” and “d” feature sprawling triangles, whence they are taken care of by

Theorem 2.2.5. This completes our combinatorial characterization of the tropically planar

graphs of genus at most five.

For genus 6, there are 388 trivalent graphs altogether, 354 of which are planar [4]. In [16]

it was shown that 152 tropically planar graphs of genus 6 remain. There are 28 graphs which

are non-realizable and could not be ruled out using any prior known criteria; cf. [16, Figure

17]. Out of these 28 graphs, 19 have a heavy cycle with two loops and can be ruled out using

Theorem 2.3.3 because the genus is too high. One of the remaining graphs has a sprawling

triangle, and thus excluded by Theorem 2.2.5. We are left with eight graphs of genus 6, which

are shown in Figure 2.12; for these we are not aware of any a priori obstruction. There are

672 troplanar graphs of genus 7 according to [16, Table 1]; however, the full list does not

seem to be available.

We now discuss some other recent advances that were made in the study of troplanar

graphs. In [16, Theorem 4.2], it is shown that as the genus g grows asymptotically large,

then the number of troplanar graphs tends to 0. This helps us understand that the complete

classification that we obtain in 2.3.4 for genus upto five, is something which can not be

replicated for arbitrarily large genus, as the family of distinct forbidden patterns would

keep getting larger, and this helps us appreciate the completeness of the result. Also, in

[17], a closed formula for computing the dimension of M∆ for a non-hyperelliptic lattice

polygon is obtained, which earlier could only be computed via computer-aided computations.

It complements the computation we did to compute the dimension of the antihoneycomb

triangulation in Figure 2.9 via polymake. Also, in [17], it is shown that for a non-hyperelliptic

lattice polygon P the following holds,

dim (MP ) = dim (MP )
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a b c d

e f g h

Figure 2.12: The eight trivalent planar graphs of genus 6, which are not tropically planar
[16], but which are not covered by Theorem 2.3.4.

where MP is the moduli space of non-degenerate curves defined over P and MP denotes

the closure of the set of all metric graphs that are the skeleton of a smooth tropical curve

with Newton polygon P . In ongoing work, we are trying to find all the possible values of

the dimension of MP and to obtain a closed formula to compute the dimension of M∆ for a

non-maximal hyperelliptic polygon.

Another possible avenue for further exploration could be to know how the tropically plane

curves of a fixed genus fit into the moduli space of all tropical curves. For genus 3 this was

recently answered in terms of modifications by Hahn et al. [26].

Results of the presented work in this chapter have been published in - Michael Joswig and

Ayush Kumar Tewari. “Forbidden patterns in tropical plane curves” Beiträge zur Algebra

und Geometrie / Contributions to Algebra and Geometry, Aug 2020 [34]. Licensed under a

Creative Commons Attribution 4.0 International License.
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Chapter 3

Lattice visibility and Panoptigons

3.1 Preliminaries

A lattice point in R2 is any point with integer coordinates, and a lattice polygon is any

polygon whose vertices are lattice points. We say that two distinct lattice points p = (a, b)

and q = (c, d) are visible to one another if the line segment pq contains no lattice points

besides p and q, or equivalently if gcd(a− c, b− d) = 1; by convention we say that any p is

visible from itself. Points visible from the origin O = (0, 0) are called visible points, with all

other points being called invisible. The properties of visible and invisible points have been

subject to a great deal of study over the past century, as surveyed in [9, §10.4]. The question

of which structures can appear among visible points, invisible points, or some prescribed

combination thereof was studied in [28], where it was proved that one can find a copy of any

convex lattice polygon (indeed, any arrangement of finitely many lattice points) consisting

entirely of invisible points.

Figure 3.1: Three panoptigons, with a panoptigon point circled and lines of sight illustrated;
the middle polygon has a second panoptigon point, namely the bottom vertex

In this chapter we pose and answer a somewhat complementary question: which con-

vex lattice polygons including the origin contain only visible lattice points? We define a

panoptigon1 to be a convex lattice polygon P containing a lattice point p such that all other

1This name is modeled off of panopticon, an architectural design that allows for one position to observe all
others. It comes from the Greek word panoptes, meaning “all seeing”.
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lattice points in P are visible from p. We call such a point p a panoptigon point for P . Thus

up to translation, a panoptigon is a convex lattice polygon containing the origin such that

every point in P ∩ Z2 is a visible point. Three panoptigons are pictured in Figure 3.1, each

with a panoptigon point and its lines of sight highlighted; note that the panoptigon point

need not be unique.

One can quickly see that there exist infinitely many panoptigons; for instance, the triangles

with vertices at (0, 0), (1, 0), and (a, 1) are panoptigons for any value of a. However, this

is not an interesting family of examples since any two of these triangles are equivalent, the

definition of which we recall below.

Definition 3.1.1. A unimodular transformation is an integer linear map t : R2 → R2 that

preserves the integer lattice Z2; any such map is of the form t(p) = Ap + b, where A is a

2× 2 integer matrix with determinant ±1 and b ∈ Z2 is a translation vector. We say that

two lattice polygons P and Q are equivalent if there exists a unimodular triangulation t such

that t(P ) = Q.

It turns out that there are infinitely many panoptigons even up to equivalence: note that

the triangle with vertices at (0, 0), (0,−1), and (b,−1) is a panoptigon for every positive

integer b, and any two such triangles are pairwise inequivalent since they have different

areas. We can obtain nicer results if we stratify polygons according to the lattice width of

a polygon P , the minimum integer w such that there exists a polygon P ′ equivalent to P

in the horizontal strip R× [0, w]. Although there are infinitely many panoptigons of lattice

widths 1 and 2, we can still classify them completely, as presented in Lemmas 3.3.1 and 3.3.2.

Once we reach lattice width 3 or more, we obtain the following powerful result.

Theorem 3.1.2. Let P be a panoptigon with lattice width lw(P ) ≥ 3. Then |P ∩ Z2| ≤ 13.

Since there are only finitely many lattice polygons with a fixed number of lattice points

up to equivalence [36, Theorem 2], it follows that there are only finitely many panoptigons

P with lw(P ) ≥ 3. In section 3.6 we detail computations to enumerate all such lattice

polygons. This allows us to determine that there exactly 73 panoptigons of lattice width 3

or more. One is the triangle of degree 3, which has a single interior lattice point; and the

other 72 are non-hyperelliptic, meaning that the convex hull of their interior lattice points is

two-dimensional.

As an application of our classification of panoptigons, we prove new results about tropically

planar graphs [16]. We prove a new criterion for ruling out certain graphs from being tropically

planar, notable in that the graphs it applies to are 2-edge-connected, unlike those ruled out

by most existing criteria; this resolves an open question posed in [16, §5]. We say that a
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planar graph G is a big face graph if for every planar embedding of G, there is a bounded

face sharing an edge with all other bounded faces.

Theorem 3.1.3. If G is a big face graph of genus g ≥ 14, then G is not tropically planar.

The idea behind the proof of this theorem is as follows. If a big face graph G is tropically

planar, then it is dual to a regular unimodular triangulation of a lattice polygon P . One of

the interior lattice points p of P must be connected to all the other interior lattice points, so

that the bounded face dual to p can share an edge with all other bounded faces. Thus, the

convex hull of the interior lattice points of P must be a panoptigon. If that panoptigon has

lattice width 3 or more, then it can have at most 13 lattice points, and so G cannot have

g ≥ 14.

For the case that the lattice width of the interior panoptigon is smaller, we need an

understanding of which polygons of lattice width 1 or 2 can appear as the interior lattice

points of another lattice polygon. We obtain this in Propositions 3.4.1 and 3.4.5, and can

once again bound the genus of G. In fact, if we are willing to rely on our computational

enumeration of all panoptigons with lattice width at least 3, then we can improve this result

to say that big face graphs of genus g ≥ 12 are not tropically planar. We will see that this

bound is sharp.

In Section 3.2 we present background on lattice polygons, including a description of all

polygons of lattice width at most 2. In Section 3.3 we classify all panoptigons. In Section

3.4 we classify all maximal polygons of lattice width 3 or 4. Finally, in Section 3.5 we prove

Theorem 3.1.3. Our computational results are then summarized in section 3.6.

3.2 Properties of lattice polygons

In this section we recall important terminology and results regarding lattice polygons. This

includes the notion of maximal polygons, and of lattice width. Throughout we will assume

that P is a two-dimensional convex lattice polygon, unless otherwise stated.

The genus of a polygon P is the number of lattice points interior to P . A key fact is that

for fixed g ≥ 1, there are only finitely many lattice polygons of genus g, up to equivalence [13,

Theorem 9]. We say a lattice polygon P is a maximal polygon if it is maximal with respect

to containment among all lattice polygons containing the same set of interior lattice points.

In the case that P is non-hyperelliptic, there is a strong relationship between P and Pint.

Let τ1, . . . , τn be the one-dimensional faces of a (two-dimensional) lattice polygon Q. Then

Q can be defined as an intersection of half-planes:

Q =
n⋂︂

i=1

Hτi ,
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where Hτ = {(x, y) ∈ R2 | aτx + bτy ≤ cτ} is the set of all points on the same side of

the line containing τ as Q. Without loss of generality, we assume that aτ , bτ , cτ ∈ Z with

gcd(aτ , bτ ) = 1. With this convention, we define

H(−1)
τ = {(x, y) ∈ R2 : aτx+ bτy ≤ cτ + 1},

and from there we define the relaxed polygon of Q as

Q(−1) :=
n⋂︂

i=1

H(−1)
τi

.

We can think of Q(−1) as the polygon we would get by “moving out” the edges of Q. It is

worth remarking that Q(−1) need not be a lattice polygon. We denote Q(−1) ∩H(−1)
τi as τ

(−1)
i .

It is not necessarily the case that τ
(−1)
i is a one-dimensional face of Q(−1); however, if Q(−1)

is a lattice polygon, then Q(−1) ∩ τ (−1)
i must contain at least one lattice point, as proved in

[17, Lemma 2.2]. Examples where Q(−1) is not a lattice polygon, and where Q(−1) is a lattice

polygon but an edge has collapsed, are illustrated in Figure 3.2. There is a very important

case when we are guaranteed to have that Q(−1) is a lattice polygon, namely when Q = Pint

for some non-hyperelliptic lattice polygon P .

Figure 3.2: Two lattice polygons, one with a relaxed polygon with a non-lattice vertex marked;
and one with a collapsed edge in the relaxed (lattice) polygon

Proposition 3.2.1 ([35], §2.2). Let P be a non-hyperelliptic lattice polygon, with interior

polygon Pint. Then P
(−1)
int is a lattice polygon containing P whose interior polygon is also Pint.

In particular, P
(−1)
int is the unique maximal polygon with interior polygon Pint.

If we are given a polygon Q and we wish to know if there exists a lattice polygon P with

Pint = Q, it therefore suffices to compute the relaxed polygon Q(−1), and to check whether its

vertices have integral coordinates. This might fail because two adjacent edges τi and τi+1 of

Q are relaxed to intersect at a non-integral vertex of Q(−1); we also might have that some

τ
(−1)
i is completely lost, which cannot happen when Q(−1) is a lattice polygon by [17, Lemma

2.2]. Careful consideration of these obstructions will be helpful in classifying the maximal

polygons of lattice widths 3 and 4 in Section 3.4.

An important tool in studying lattice polygons is the notion of lattice width. Let P be a

non-empty lattice polygon, and let v = ⟨a, b⟩ be a lattice direction with gcd(a, b) = 1. The
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width of P with respect to v is the smallest integer d for which there exists m ∈ Z such that

the strip

m ≤ ay − bx ≤ m+ d

contains P . We denote this d as w(P, v). The lattice width of P is the minimal width over

all possible choices of v:

lw(P ) = min
v
w(P, v).

Any v which achieves this minimum is called a lattice width direction for P . Equivalently,

lw(P ) is the smallest d such that there exists a lattice polygon P ′ equivalent to P with

P ′ ⊂ R× [0, d].

We recall the following result connecting the lattice widths of a polygon and its interior

polygon. Let Td = conv((0, 0), (d, 0), (0, d)) denote the standard triangle of degree d.

Lemma 3.2.2 (Theorem 4 in [14]). For a lattice polygon P we have lw(P ) = lw(Pint) + 2,

unless P is equivalent to Td for some d ≥ 2, in which case lw(P ) = lw(Pint) + 3 = d.

The following result tells us precisely which polygons have lattice width 1 or 2. It is a

slight reworking of a result due to [35], also presented in [13, Theorem 10]

Theorem 3.2.3. Let P be a two-dimensional lattice polygon. If lw(P ) = 1, then P is

equivalent to

Ta,b := conv((0, 0), (0, 1), (a, 1), (b, 0))

for some a, b ∈ Z with 0 ≤ a ≤ b and b ≥ 1.

If lw(P ) = 2, then up to equivalence either P = T2; or g(P ) = 1 and P ̸= T3 (all

such polygons are illustrated in Figure 3.3); or g(P ) ≥ 2. In the latter case we have
1
6
(g + 3)(2g2 + 15g + 16) polygons, sorted into three types:

• Type 1:

(0, 0) (i, 0)

(1, 2) (1 + 2g − i, 2)

where g ≤ i ≤ 2g.

• Type 2:

(0, 0) (i, 0)

(1, 2) (1 + j, 2)

(g + 1, 1)

where 0 ≤ i ≤ g and 0 ≤ j ≤ i; or g < i ≤ 2g + 1 and 0 ≤ j ≤ 2g − i+ 1
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• Type 3:

(0, 0) (i, 0)

(k, 2) (k + j, 2)

(g + 1, 1)(0, 1)

where 0 ≤ k ≤ g + 1 and 0 ≤ i ≤ g + 1 − k and 0 ≤ j ≤ i; or 0 ≤ k ≤ g + 1 and

g + 1− k < i ≤ 2g + 2− 2k and 0 ≤ j ≤ 2g − i− 2k + 1

Figure 3.3: The 14 genus 1 polygons with lattice width 2

Proof. The classification proved in [35] was similar, except with polygons sorted by genus

(g = 0, g = 1, and g ≥ 2 with all interior lattice points collinear) rather than by lattice width.

We can translate their work into the desired result as follows.

For lw(P ) = 1, we know P has no interior lattice points, so g = 0; all polygons of genus 0

besides T2 have lattice width 1. By [35] all genus 0 polygons besides T2 are equivalent to Ta,b

for some a, b ∈ Z with 0 ≤ a ≤ b and b ≥ 1.

For lw(P ) = 2, we deal with the three cases of g = 0, g = 1, and g ≥ 2. If g = 0, then the

only polygon of lattice width 2 is T2. If P is a polygon with genus g = 1, then by Lemma

3.2.2 we know that lw(P ) = lw(Pint) + 2 = 0 + 2 = 2 unless P is equivalent to Td for some d.

The only value of d such that Td has genus 1 is d = 3, so every genus 1 polygon except T3

has lattice width 2.

Finally, suppose P is a polygon of lattice width 2 and genus g ≥ 2. Since lw(Td) = d and

g(T2) = 0, we know P ̸= Td for any d, and so lw(Pint) = lw(P )−2 = 2−2 = 0. It follows that

all the g interior lattice points of P must be collinear, and so P is hyperelliptic. Conversely, if

P is a hyperelliptic polygon of genus g ≥ 2, by definition the interior polygon Pint has lattice

width 0. Since no triangle Td has genus g ≥ 2 with all its interior points collinear we may

apply Lemma 3.2.2 to conclude that lw(P ) = lw(Pint) + 2 = 2. This means that for polygons

of genus g ≥ 2, being hyperelliptic is equivalent to having lattice width 2. Combined with

the classification of hyperelliptic polygons in [35], this completes the proof.

27



A counterpart of lattice width is lattice diameter. Following [6], the lattice diameter ℓ(P )

is the length of the longest lattice line segment contained in the polygon P :

ℓ(P ) = max{|L ∩ P ∩ Z2| − 1 : L is a line}.

We define a lattice diameter direction ⟨a, b⟩ to be one such that there exists a line L with

slope vector ⟨a, b⟩ with |L∩P ∩Z2|−1 = ℓ(P ). We remark that there exist other works where

lattice diameter is defined as the largest number of collinear lattice points in the polygon P

[1]; this is simply one more than the convention we set above. The following result relates

ℓ(P ) to lw(P ).

Theorem 3.2.4 ([6], Theorem 3). We have lw(P ) ≤ ⌊4
3
ℓ(P )⌋+ 1.

Assume for the remainder of the section that P is a lattice polygon of genus g ≥ 2. We

recall the skeleton G associated to a unimodular traingulation ∆ of P . An example of a

regular unimodular triangulation, the dual graph, and the tropically planar skeleton are

pictured in Figure 3.4. Note that there is a one-to-one correspondence between the interior

lattice points of P and the bounded faces of G in this embedding, where two faces of G share

an edge if and only if the corresponding interior lattice points are connected by an edge in ∆.

Figure 3.4: A regular unimodular triangulation of a polygon, the dual graph of the triangula-
tion, and the corresponding tropically planar skeleton

It is worth remarking that we could still construct a graph G from a non-regular triangu-

lation. The reason that we insist that ∆ is regular is so that the graph G appears as a subset

of a smooth tropical plane curve, which is a balanced 1-dimensional polyhedral complex that

is dual to a regular unimodular triangulation of a lattice polygon; see [38]. (Indeed, the

regularity is necessary if we wish to endow a skeleton with the structure of a metric graph,

with lengths assigned to its edges, as explored in [10] and [17].) Most of the results that

we prove in this chapter, and that we recall for the remainder of this section, also hold if

we expand to graphs that arise as dual skeleta of any unimodular triangulation of a lattice

polygon.
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The first Betti number of a tropically planar graph, also known as its genus2, is equal

to the number of interior lattice points of the lattice polygon P giving rise to it. It is also

equal to the number of bounded faces in any planar embedding of the graph. A systematic

method of computing all tropically planar graphs of genus g was designed and implemented

in [10] for g ≤ 5. The algorithm is brute-force, and works by considering all maximal lattice

polygons of genus g, finding all regular unimodular triangulations of them, and computing

the dual skeleta. These computations were pushed up to g = 7 in [16]. In general there is

no known method of checking whether an arbitrary graph is tropically planar short of this

massive computation.

A fruitful direction in the study of tropically planar graphs has been finding properties or

patterns that are forbidden in such graphs, an example of which is discussed in the previous

chapter. Since the graph before skeletonization is dual to a unimodular triangulation of a

polygon, any tropically planar graph is 3-regular, connected, and planar. Several additional

constraints are summarized in the following result.

Theorem 3.2.5 ([12], Proposition 4.1; [16], Theorem 3.4; [34], Theorems 10 and 14). Suppose

that G is a 3-regular graph of genus g of one of the forms illustrated in Figure 3.5, where

each gray box represents a subgraph of genus at least 1. If G is tropically planar, then it must

have either the third or fourth forms, with g = 4 for the third form and g ≤ 5 in the fourth

form. In particular, if g ≥ 6, then G is not tropically planar.

Figure 3.5: Forbidden patterns in tropically planar graphs of genus g ≥ 6

The proofs of all these results rely on the observation that any cut-edge in a tropically

planar graph must arise from a split in the dual unimodular triangulation that divides the

polygon into two polygons of positive genus. For planar graphs that are 2-edge-connected

and thus have no cut-edges, the only known general criterion to rule out tropical planarity is

the notion of crowdedness [40]. However, crowded graphs are ones that cannot be dual to any

2This terminology comes from [3] and is motivated by algebraic geometry; it is unrelated to the notion of
graph genus defined in terms of embeddings on surfaces. The first Betti number of a graph is also sometimes
called its cyclomatic number.
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triangulation of any point set in R2, regardless of whether or not the point set comes from

a convex lattice polygon; thus it is not especially interesting that crowded graphs are not

tropically planar. In Section 3.5 we will find a family of 2-edge-connected, 3-regular planar

graphs that are not crowded but are still not tropically planar, the first known such examples.

3.3 A classification of all panoptigons

Let P be a convex lattice polygon. Recall from the introduction that P is a panoptigon if

there is lattice point p ∈ P ∩ Z2 such that every other point in P ∩ Z2 is visible from p. In

this section we will classify all panoptigons, stratified by a combination of genus and lattice

width. We begin with the panoptigons of genus 0.

Lemma 3.3.1. Let P be a panoptigon of genus 0. Then P is one of the following polygons,

up to lattice equivalence:

(0, 0) (2, 0)

(0, 2)

(0, 0)

(0, 1) (a, 1)

(b, 0)

where 0 ≤ a ≤ min{2, b}.

Proof. By [35], any genus 0 polygon is equivalent either to the triangle T2, or to the (possibly

degenerate) trapezoid Ta,b where 0 ≤ a ≤ b and 1 ≤ b. The triangle of degree 2 is a panoptigon,

as any non-vertex lattice point can see every other lattice point. For Ta,b, we note that if

a ≥ 3 then the polygon is not a panoptigon: each lattice point p is on a row with at least 3

other lattice points, not all of which can be visible from p since the 4 (or more) points in

that row are collinear. However, if a ≤ 2, then a point p can be chosen on the top row that

can see the other a points on the top row, as well as all points on the bottom row. Thus Ta,b

is a panoptigon if and only if a ≤ 2.

For polygons with exactly one interior lattice point, there is no obstruction to being a

panoptigon.

Lemma 3.3.2. If P is a polygon of genus 1, then P is a panoptigon.

Proof. Let p be the unique interior lattice point of P , and let q be any other lattice point of

P . Since g(P ) = 1, the point q must be on the boundary. By convexity, the line segment

pq must have its relative interior contained in the interior of the polygon, and so the line

segment does not intersect ∂P outside of q. Since p is the only interior lattice point, we have
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that the only lattice points of pq are its endpoints. It follows that q is visible from p for all

q ∈ P ∩ Z2 − {p}. We conclude that P is a panoptigon with panoptigon point p.

We now consider hyperelliptic polygons of genus g ≥ 2. We will characterize precisely

which of these are panoptigons based on the classification of them in Theorem 3.2.3 into

Types 1, 2, and 3. Any hyperelliptic polygon can be put into one of these forms in the

horizontal strip R× [0, 2]; thus we may say a lattice point (a, b) of such a polygon is at height

b, where every point is either at height 0, height 1, or height 2.

Lemma 3.3.3. Let P be a hyperelliptic polygon of genus g ≥ 2, transformed so that it of

one of the forms presented in Theorem 3.2.3. Then P is a panoptigon if and only if

• P is of Type 1, with g ≤ 3; or

• P is of Type 2, either with g ≤ 2, or with j = 0 and 0 ≤ i ≤ 1; or

• P is of Type 3, either with j = 0 and i ≤ 2, with k odd if i = 0 and k even if i = 2; or

with i = 0 and j ≤ 2, and k odd if j = 0 and k even if j = 2.

For the reader’s convenience we recall the polygons of Types 1, 2, and 3 in Figure 3.6.

(0, 0) (i, 0)

(1, 2) (1 + 2g − i, 2)

(0, 0) (i, 0)

(1, 2) (1 + j, 2)

(g + 1, 1)

(0, 0) (i, 0)

(k, 2) (k + j, 2)

(g + 1, 1)(0, 1)

Figure 3.6: Hyperelliptic polygons of Types 1, 2, and 3

Proof. We start by making the following observations. If p = (a, b) is a panoptigon point

for a hyperelliptic polygon P , then there must be at most 3 points at height b; and if there

are exactly 3, then p must be the middle such point. We also make several remarks in

the case that b ∈ {0, 2}. There are no obstructions to a point at height b seeing a point

at height 1, so we will not concern ourselves with this. Choose b′ ∈ {0, 2} distinct from b,

and suppose height b′ has 2 or more lattice points; then two of those points have the form

q = (a, b′) and q′ = (a+ 1, b′). We claim that p cannot view both q and q′. Writing p = (a, b),

the midpoints of the line segments pq and pq′ have coordinates
(︁
a+a′

2
, 1
)︁
and

(︁
a+a′+1

2
, 1
)︁
,

respectively. Exactly one of a+a′

2
and a+a′+1

2
is an integer, meaning that either q or q′ is not

visible from p. So, if p = (a, b) is a panoptigon point at height b ∈ {0, 2}, there must be

exactly one lattice point q = (a′, b′) at height b′ ∈ {0, 2} with b′ ̸= b; moreover, we must have

that a− a′ is odd.

We are ready to determine the possibilities for a hyperelliptic panoptigon P of genus

g ≥ 2, sorted by type.
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• Let P be a hyperelliptic polygon of Type 1. If g ≤ 3, then we may choose p = (a, 1)

that can see every other point at height 1, as well as all points at heights 0 and 2;

in this case P is a panoptigon. If g ≥ 4, then there are at least 4 points at height 1.

Moreover, the number of points at height 0 is i + 1 where g ≤ i ≤ 2g, and we have

i+ 1 ≥ 5 since g ≥ 4. Thus it is impossible to have at most 3 points at one height and

1 at another. This means that for g ≥ 4, P cannot be a panoptigon

• Let P be a hyperelliptic polygon of Type 2. If g = 2, then P has exactly three points

at height 1, and we can choose the middle point as a panoptigon point. Now assume

g ≥ 3; we cannot choose a panoptigon point at height 1, since there are g+1 ≥ 4 points

at that height. To avoid having 4 points on both the top and bottom rows we need

0 ≤ i ≤ g and 0 ≤ j ≤ i; and one of i and j must be 0, so we need j = 0 since j ≤ i.

From there we need at most 3 lattice points on the bottom row, so 0 ≤ i ≤ 2. If i = 2,

then the only possible panopticon point is the middle one on the bottom row, namely

(1, 0); but this point cannot see (1, 2), a contradiction. Thus 0 ≤ i ≤ 1; note that in

either case (0, 0) can serve as a panoptigon point.

• Finally, let P be a hyperelliptic polygon of Type 3. We cannot have a panoptigon

point at height 1, since there are at least g + 2 ≥ 4 points at that height. If there is

a panoptigon point at height 0, then we must have at most 3 points at height 0 and

exactly one point at height 2; that is, we must have j = 0 and i ≤ 2. Moreover, we

need to verify that way may choose a panoptigon point at height 0 that can see the

unique point at height 2; this can always be done if i = 1, but if j = 0 then we need k

odd (the only possible panoptigon point is then (0, 0)), and if j = 2 we need k even

(the only possible panoptigon point is then (1, 0)). A similar argument shows that we

can choose a panoptigon point at height 2 if and only if i = 0 and j ≤ 2, with k odd if

j = 0 and k even if j = 2.

As with the lattice width 1 panoptigons, we find infinitely many lattice width 2 panoptigons,

namely those of Type 2 with j = 0 and 0 ≤ i ≤ 1, and those of Type 3.

We have now classified all hyperelliptic panoptigons, and have found that there are

infinitely many of lattice width 1 and infinitely many of lattice width 2. Our last step is

to understand non-hyperelliptic panoptigons; with the exception of the triangle T3, this is

equivalent to panoptigons of lattice width 3 or more. We are now ready to prove that the

total number of lattice points of such a panoptigon is at most 13.
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Proof of Theorem 3.1.2. Let us consider the lattice diameter ℓ(P ) of P . We know by [1,

Theorem 1] that |P ∩ Z2| ≤ (ℓ(P ) + 1)2, so if ℓ(P ) ≤ 2 we have |P ∩ Z2| ≤ 9. Thus we may

assume ℓ(P ) ≥ 3.

Perform an SL2(Z) transformation so that ⟨1, 0⟩ is a lattice diameter direction for P ,

and translate the polygon so that the origin O = (0, 0) is a panoptigon point. Thus P ∩ Z2

consists of O and a collection of visible points.

Since ℓ(P ) ≥ 3 and ⟨1, 0⟩ is a lattice diameter direction, we know that the polygon P

must contain 4 lattice points of the form (a, b), (a+ 1, b), (a+ 2, b), and (a+ 3, b). We claim

that b ∈ {−1, 1}. Certainly b ̸= 0, since there are only three such points allowed in P : (0, 0)

and (±1, 0). We also know that b cannot be even: any set Z× {2k} has every second point

invisible from the origin.

Suppose for the sake of contradiction that the points (a, b), (a + 1, b), (a + 2, b), and

(a + 3, b) are in P with b odd and b ≥ 3 (a symmetric argument will hold for b ≤ −3).

Consider the triangle T = conv(O, (a, b), . . . , (a+ 3, b)). By convexity, T ⊂ P . Consider the

line segment T ∩ L, where L is the line defined by y = b− 1. The length of this line segment

is 3− 1
b
, and since b ≥ 3 this is strictly greater than 2. Any line segment of length 2 at height

b− 1 will intersect at least two lattice points. But since b− 1 is even and b− 1 ≥ 2, at least

one of these lattice points is not visible from O. Such a lattice point must be contained in T ,

and therefore in P , a contradiction. Thus we have that b = ±1.

Rotating our polygon 180◦ degrees if necessary, we may assume that b = −1, so that the

points (a,−1), . . . , (a+ 3,−1) are contained in P . It is possible that the number k of lattice

points on the line defined by y = −1 is more than 4; up to relabelling, we may assume that

(a,−1), . . . , (a+ k − 1,−1) are lattice points in P while (a− 1,−1) and (a+ k,−1) are not,

where k ≥ 4. Applying a shearing transformation

(︃
1 a+ 1
0 1

)︃
, we may further assume that

the points at height −1 are precisely (−1,−1), . . . , (k − 2,−1).

We will now make a series of arguments that rule out many lattice points from being

contained in P . The end result of these constraints is pictured in Figure 3.7, with points

labelled by the argument that rules them out.

(i) The polygon P has (regular) width at least 3 at height −1, and width strictly smaller

than 2 at heights 2 and −2, since it cannot contain two consecutive lattice points at

those heights. It follows from convexity that the width of the polygon is strictly smaller

than 1 at height −3, and that the polygon cannot have any lattice points at all at

height −4. It also follows that the polygon cannot have a nonnegative width at height

8. Thus every lattice point (x, y) in the polygon satisfies −3 ≤ y ≤ 7.
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(ii) We can further restrict the possible heights by showing that there can be no lattice

points at height −3. Suppose there were such a point (x,−3) in P . Consider the

triangle conv((x,−3), (−1,−1), (2,−1)). This triangle has area 3, so by Pick’s Theorem

[44] the triangle satisfies 3 = g + b
2
− 1, or 4 = g + b

2
, where g and b are the number of

interior lattice points an boundary lattice points of the triangle, respectively. The 4

lattice points at height −1 contribute 2 to this sum, and the one lattice point at height

−3 contributes 1
2
to this sum, meaning that the lattice points at height −2 contribute 3

2

to this sum. It follows that there must be at least two lattice points at height −2; but

this is a contradiction, since at least one of these points will be invisible from O. We

conclude that P cannot contain a lattice point of the form (x,−3), and thus y ≥ −2

for all lattice points (x, y) ∈ P .

(iii) We know that the lattice point (−2, 0) is not in P since it is not visible from O. If there

is any lattice point of the form (x, y) with y ≥ 1 and y ≤ −x − 2, then the triangle

conv(O, (−1,−1), (x, y)) will contain (−2, 0). Thus no such lattice point (x, y) can exist

in P .

(iv) No point of the form (x, y) with x ≥ 2 and y ≥ 0 may appear in P : this would force

the point (2, 0) to appear, as it would lie in the triangle conv(O, (2,−1), (x, y)).

(v) There are now only finitely many allowed lattice points (x, y) with y ≥ 1, namely those

with −y − 1 ≤ x ≤ 2 and 1 ≤ y ≤ 7. For each such point, we consider the triangle

conv((x, y), (−1,−1), (−1, 3)). We claim that only the 13 choices of (x, y) pictured in

Figure 3.7. that do not introduce a forbidden point. To see this, we note that the points

(0, 2), (−2, 2) and (−2, 4) are all forbidden. The point (0, 2) rules out (x, y) with x = 1

and y ≥ 5; with x = 0 and y ≥ 2; with x = −1 and y ≥ 4; ant with x = −2 and y ≥ 5.

For x = −2, the points (−2, 2) and (−2, 4) are already ruled out. For all remaining

points with x ≤ −3, every point besides (−3, 2), (−4, 3), and (−5, 3) introduces the

point (−2, 2) or (−2, 4) or both. This establishes our claim.

(vi) By assumption, we know there are no lattice points of the form (x,−1) where x ≤ −2.

It follows that there are also no lattice points of the form (x,−2) where x ≤ −4, since

(−1,−2) would lie in the convex hull of such a point with O and (2,−1).

(vii) We will now use the fact that we have assumed that P satisfies lw(P ) ≥ 3. We cannot

have that P is contained in the strip −2 ≤ y ≤ 0, so there must be at least one point

(x, y) with y ≥ 1. If there is a point of the form (x′,−1) with x′ ≥ 6, then we would

have that conv((x, y), (x′,−1), (−1,−1)) contains the point (2, 0), which is invisible.
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Thus we can only have points (x′,−1) if −1 ≤ x ≤ 5. A similar argument shows that

P can only contain a point (x,−2) if x is odd with −3 ≤ x ≤ 9.

(i)

(iii)

y = 8

y = −3
(ii)

(iv)

(v)

(vi) (vii)

Figure 3.7: Possible lattice points in P , with impossible points labelled by the argument
ruling them out

We have now narrowed the possible lattice points in our polygon down to the 30 lattice

points in Figure 3.7, five of which we know appear in P . For every such point (x, y), there

does indeed exist a polygon P with lw(P ) ≥ 3 containing (x, y) as well as the five prescribed

points such that P ∩ Z2 is a subset of the 30 allowed points, so we cannot narrow down any

further.

One way to finish the proof is by use of a computer to determine all possible subsets of

the 25 points that can be added to our initial 5 points to yield a polygon of lattice width at

least 3; we would then simply check the largest number of lattice points. We have carried

out this computation, and present the results in section 3.6. We also present the following

argument, which will complete our proof without needing to rely on a computer.

First we split into four cases, depending on the number k of lattice points at height −1:

4, 5, 6, or 7. When there are more than 4, we can eliminate more of the candidate points

(x, y) with y ≥ 1 or y = −2; the sets of allowable points in these four cases are illustrated in

Figure 3.8. In each case we will argue that our polygon P has at most 13 lattice points.

• Suppose k = 4. There are 20 possible points at height −1 or above; since there is at

most one point at height −2, it suffices to show that we can fit no more than 12 lattice

points at height −1 or above into a lattice polygon.
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Figure 3.8: Narrowing down possible points depending on the number of points at height −1

First suppose the point (−5, 4) is in P . This eliminates 9 possible points from appearing

in P , yielding at most 20− 9+ 1 = 12 lattice points total in P . Leaving out (−5, 4) but

including (−4, 3) similarly eliminates 9 possible points. Including (−2, 3) eliminates 8;

including (−1, 3) and leaving out (−2, 3) eliminates 8; including (1, 4) eliminates 9; and

including (1, 3) and leaving out (1, 4) eliminates 9. In all these cases, we can conclude

that P has at most 13 lattice points in total.

The only remaining case is that all lattice points of P have heights between −2 and 2.

The polygon can have at most one lattice point at height −2, at most one lattice point

at height 2, and some assortment of the 11 total points with heights between −1 and 1.

Once again, P can have at most 13 lattice points.

• Suppose k = 5. If P includes the point (−4, 3), then it cannot include (−2, 3), (−1, 2),

or (0, 1). Combined with the fact that P can only have one lattice point at height

−2, this leaves P with at most 13 total lattice points. A similar argument holds if

P includes the point (−2, 3). If P contains neither (−4, 3) nor (−2, 3), then it has at

most 1 point at height 3, at most one point at height −2, and some collection of the 11

points between. Thus P has at most 13 lattice points.

• Suppose k = 6. Since P has at most one lattice point at height −2, and only 12 points

are allowed outside of that height, P has at most 13 lattice points total.

• Suppose k = 7. Since P has at most one lattice point at height −2, and only 11 points

are allowed outside of that height, P has at most 12 lattice points total.

We conclude that |P ∩ Z2| ≤ 13.
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As detailed in section 3.6, we enumerated all non-hyperelliptic polygons containing the five

prescribed points from the previous proof, along with some subset of the other 25 permissible

points. The end result was 69 non-hyperelliptic panoptigons of lattice diameter 3 or more, up

to equivalence. In the same section we show that there are 3 non-hyperelliptic panoptigons

with lattice diameter at most 2, yielding a grand total of 72 non-hyperelliptic panoptigons. If

we instead wish to count panoptigons of lattice width at least 3, this count becomes 73 due

to the inclusion of T3.

We remark that it is possible to give a much shorter proof that there are only finitely

many non-hyperelliptic panoptigons. Suppose that P is a panoptigon of lattice diameter

ℓ(P ) ≥ 7. By the same argument that started our previous proof, we may assume without

loss of generality that P has (0, 0) as a panoptigon point as well as eight or more lattice points

at height −1. If P contains a point of the form (x, y) where y ≥ 2, then the line segment

P ∩ L where L is the x-axis must have length at least 7
(︂
1− 1

y+1

)︂
≥ 7

(︁
1− 1

2+1

)︁
= 14

3
> 4.

As such P must contain at least 4 points at height 0, impossible since there are only 3 visible

points at this height. Similarly P can have no lattice points at height 1: these would force

the inclusion of either (2, 0) or (−2, 0). Finally, if P contains a point of the form (x, y) where

y ≤ −3, then the line segment P ∩ L′ where L′ is the horizontal line at height −2 must have

width at least 7
(︂
1− 1

|y|−1

)︂
≥ 7

(︁
1− 1

3−1

)︁
= 7

2
> 3. As such we know that P must contain at

least 3 lattice points at height −2, impossible since no two consecutive points at that height

are both visible. Thus we know that P only has lattice points at heights 0, −1, and −2,

and so is a hyperelliptic polygon. This means that if P is a non-hyperelliptic panoptigon, it

must have ℓ(P ) ≤ 6. Since |P ∩ Z2| ≤ (ℓ(P ) + 1)2, it follows that if P is a non-hyperelliptic

panoptigon then it must have at most (6+ 1)2 = 49 lattice points; there are any finitely many

such polygons. In principle one could enumerate all such polygons with at most 49 lattice

points as in [13] and check which are panoptigons; this would be much less efficient than the

computation led to by our longer proof.

3.4 Maximal polygons of lattice width 3 or 4

In this section we will characterize all maximal polygons of lattice width 3 or 4. By Lemma

3.2.2, this will allow us to determine which polygons of lattice width 1 or 2 can be the interior

polygon of some lattice polygon. This will be helpful in Section 3.5, when we will need to

know which of the infinitely many panoptigons of lattice width at most 2 can be an interior

polygon.

For lattice width 3, we do have the triangle T3 as an exceptional case; all other polygons

with lattice width 3 must have an interior polygon of lattice width 1.
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Proposition 3.4.1. Let P be a maximal polygon. Then P has lattice width 3 if and only if

up to equivalence we either have P = T3, or P = T
(−1)
a,b where a ≥ 1

2
b − 1, 0 ≤ a ≤ b, and

b ≥ 1, and where Ta,b ̸= T1.

Proof. If P is equivalent to T3, then it has lattice width 3 as desired. If P is equivalent to

some other Td, then P has lattice width d ̸= 3, and so need not be considered.

Now assume P is not equivalent to Td for any d, so that P has lattice width 3 if and only

if Pint has lattice width 1 by Lemma 3.2.2. This is the case if and only if Pint is equivalent to

Ta,b for some a, b ∈ Z where 0 ≤ a ≤ b and b ≥ 1 (where Ta,b ̸= T1) by Theorem 3.2.3. Thus

to prove our claim, it suffices by Proposition 3.2.1 to show that T
(−1)
a,b is a lattice polygon if

and only if a ≥ 1
2
b− 1.

We set the following notation to describe Ta,b. Starting with the face connecting (0, 0)

and (0, 1) and moving counterclockwise, label the faces of Ta,b as τ1, τ2, τ3, and τ4 (where τ4

does not appear if a = 0).

Pushing out the faces, we find that τ
(−1)
1 lies on the line x = −1, τ

(−1)
2 on the line y = −1,

τ
(−1)
3 on the line x + (b − a)y = b + 1, and τ

(−1)
4 on the line y = 2. Note that working

cyclically, we have τ
(−1)
i ∩ τ (−1)

i+1 is a lattice point: we get the points (−1,−1), (2b− a+ 1, 1),

(2a − b + 1, 2), and (−1, 2). Thus if these are the vertices of T
(−1)
a,b , then T

(−1)
a,b is a lattice

polygon. Certainly (−1,−1) and (2b−a+1, 1) appear in T
(−1)
a,b . The points (2a− b+1, 2) and

(−1, 2) will appear as (not necessarily distinct) vertices of T
(−1)
a,b if and only if 2a− b+1 ≥ −1;

that is, if and only if a ≥ 1
2
b− 1. Thus in the case that a ≥ 1

2
b− 1, we have that T

(−1)
a,b is a

lattice polygon with vertices at (−1,−1), (2b− a+ 1,−1), (2a− b+ 1, 2), and (−1, 2).

If on the other hand a < 1
2
b−1, then τ

(−1)
4 is not a face of T

(−1)
a,b , and so one of the vertices

of T
(−1)
a,b is τ

(−1)
1 ∩ τ (−1)

3 . These faces intersect at the point
(︁
b+2
b−a

,−1
)︁
, where we may divide

by b− a since a < 1
2
b− 1 and so a ̸= b. Note that b− a > b− 1

2
b+ 1 = 1

2
(b+ 2). It follows

that that b+2
b−a

< 2, and certainly b+2
b−a

> 1, so
(︁
b+2
b−a

,−1
)︁
is not a lattice point. We conclude

that T
(−1)
a,b is a lattice polygon if and only if a ≥ 1

2
b− 1, thus completing our proof.

The explicitness of this result, combined with the fact that g
(︂
T

(−1)
a,b

)︂
= a+ b+ 2, allows

us to count the number of maximal polygons P of genus g with lattice width 3. First, note

that there are
⌊︁
g−2
2

⌋︁
choices of Ta,b with g lattice points: with our assumption that a ≤ b, we

can choose a to be any number from 1 up to
⌊︁
g−2
2

⌋︁
, and b is determined from there. Next, we

will exclude those choices of a that yield a < 1
2
b− 1, or equivalently a ≤ 1

2
b− 3

2
since a, b ∈ Z.

Given that a+ b = g, this is equivalent to a ≤ 1
2
(g − a)− 3

2
, or 3

2
a ≤ 1

2
g − 3

2
, or a ≤ g

3
− 1.

Thus the number of polygons we must exclude from the total count
⌊︁
g−2
2

⌋︁
is

⌊︁
g
3

⌋︁
− 1. We

conclude that the number of maximal polygons of genus g with lattice width 3 is⌊︃
g − 2

2

⌋︃
−
⌊︂g
3

⌋︂
+ 1
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when g ≥ 4 (which allows us to ignore T3).

We now wish to classify maximal polygons P of lattice width 4. One possibility is that P

is T4. Other than this example, the interior polygon Pint must have lattice width 2. Note

that if g(Pint) = 0, then Pint = T2; this has relaxed polygon T5, which has lattice width 5 and

so is not under consideration. If g(Pint) = 1, then Pint is one of the polygons in Figure 3.3.

It turns out that all of these can be relaxed to a lattice polygon, each of which has lattice

width 4; these polygons are illustrated in Figure 3.9.

Figure 3.9: The lattice width 4 polygons with exactly one doubly interior point

Now we deal with the most general case of polygons with lw(P ) = 4, namely those where

Pint has lattice width 2 and genus g′ ≥ 2. Thus Pint must be one of the 1
6
(g+3)(2g2+15g+16)

hyperelliptic polygons presented in Theorem 3.2.3. We must now determine which of these

hyperelliptic polygons Q have a relaxed polygon Q(−1) that has lattice points for vertices.

We do this over three lemmas, which consider the polygons of Type 1, Type 2, and Type 3

separately.

Lemma 3.4.2. If Q is of Type 1, then the relaxed polygon Q(−1) is a lattice polygon if and

only if i ≤ 3g+1
2

.

Proof. Let τ1, τ2, τ3, and τ4 denote the four one-dimensional faces of Q, proceeding counter-

clockwise starting from the face connecting (0, 0) and (1, 2) (note that τ4 does not appear

as a one-dimensional face if i = 2g). Consider the relaxed faces τ
(−1)
1 , τ

(−1)
2 , τ

(−1)
3 , and τ

(−1)
4 .

These lie on the lines −2x + y = 1, y = −1, 2x + (2i − 2g − 1)y = 2i + 1, and y = 3.

Proceeding cyclically, the intersection points τ
(−1)
i ∩ τ (−1)

i+1 of these relaxed faces are (−1,−1),

(2i − g,−1), (3g − 2i + 2, 3), and (1, 3). All these points are lattice points, so if they are

indeed the vertices of Pint then Q
(−1) is a lattice polygon.

The one situation in which our relaxed polygon will not have all lattice points is if τ
(−1)
1

and τ
(−1)
3 intersect at a height strictly below 3, cutting off the face τ

(−1)
4 and yielding a vertex

with y coordinate strictly between 2 and 3. These faces intersect at
(︂

g+1
2(i−g)

, i+1
i−g

)︂
, which

has y-coordinate strictly smaller than 3 if and only if i+1
i−g

< 3, which can be rewritten as
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i+ 1 < 3i− 3g, or as 3g+1
2

< i. Thus when i ≤ 3g+1
2

, our relaxed polygon is a lattice polygon;

and when i > 3g+1
2

, it is not.

Lemma 3.4.3. If Q is of Type 2, then the relaxed polygon Q(−1) is a lattice polygon if and

only if i ≥ g
2
+ 1 and j ≥ g−1

2
.

Proof. Label the faces of Q cyclically as τ1, τ2, τ3, τ4, and τ5. Due to the form of the slopes of

these faces, the relaxed face τ
(−1)
i will intersect the relaxed face τ

(−1)
i+1 at a lattice point; this

is true for τ1 with τ2 and τ5 by computation, and for any horizontal line with a face of slope

1/k for some integer k. Similarly, we are fine with the intersections of τ
(−1)
3 and τ

(−1)
4 : these

will always intersect at the lattice point (g + 2, 1). Thus the only way the relaxed polygon

will fail to have lattice vertices is if certain edges are lost while pushing out. Considering the

normal fan of Q, this leads to two possible cases for Q to not be integral: if the face τ
(−1)
2 is

lost, and if the face τ
(−1)
5 is lost.

First we consider the case that τ
(−1)
2 is lost due to τ

(−1)
1 and τ

(−1)
3 intersecting at a point

with y-coordinate strictly between 0 and −1; note that this can only happen when i < g. The

face τ
(−1)
1 is on the line −2x+ y = 1, and τ

(−1)
3 is on the line x− (g + 1− i)y = i+ 1. These

intersect at
(︂
− g+2

2g−2i+1
,− 2i+3

2g−2i+1

)︂
. Note that − 2i+3

2g−2i+1
> −1 is equivalent to 2i+3

2g−2i+1
< 1,

which in turn is equivalent to 2i + 3 < 2g − 2i + 1. This simplifies to i < g
2
+ 1. Thus we

have a collapse of τ
(−1)
2 that introduces a non-lattice vertex point if and only if i < g

2
+ 1.

Now we consider the case that τ
(−1)
5 is lost due to τ

(−1)
1 and τ

(−1)
4 intersecting at a point

with y-coordinate strictly between 2 and 3. The face τ
(−1)
4 lies on the line with equation

x+ (g − j)y = 2g − j + 2. This intersects τ
(−1)
1 at

(︂
g+2

2g−2j+1
, 4g−2j+5
2g−2j+1

)︂
. Having 4g−2j+5

2g−2j+1
< 3 is

equivalent to 4g − 2j + 5 < 6g − 6j + 3, which can be rewritten as 4j < 2g − 2, or j < g−1
2
.

Thus we have a collapse of τ
(−1)
5 that introduces a non-lattice vertex point if and only if

j < g−1
2
.

We conclude that Q(−1) is a lattice polygon if and only if i ≥ g
2
+ 1 and j ≥ g−1

2

Lemma 3.4.4. If Q is of Type 3, then the relaxed polygon Q(−1) is a lattice polygon if and

only if i ≥ g/2 and j ≥ g/2.

Proof. Label the faces of Q cyclically as τ1, . . . , τ6, where τ1 is the face containing the lattice

points (k, 2) and (0, 1) (with the understanding that some faces might not appear if one or

more of i, j and k are equal to 0). If the faces τ
(−1)
1 , . . . , τ

(−1)
6 are all present in the polygon

P (−1), then they intersect at lattice points by the arguments from the previous proof. Thus

we need only be concerned with the following cases: where τ
(−1)
3 collapses due to τ

(−1)
2 and
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τ
(−1)
4 intersecting at a point (x, y) with 0 > y > −1; and where τ

(−1)
6 collapses due to τ

(−1)
5

and τ
(−1)
1 intersecting at a point (x, y) with 2 < y < 3.

First we consider τ
(−1)
2 and τ

(−1)
4 . We have that τ

(−1)
2 lies on the line defined by x = −1,

and that τ
(−1)
4 lies on the line defined by x − (g + 1 − i)y = i + 1. These lines intersect

at (−1,− i+2
g+1−i

). The y-coordinate is strictly greater than −1 when i+2
g+1−i

< 1, i.e. when

i+ 1 < g + 1− i, which can be rewritten as i < g
2
. Thus we lose τ

(−1)
3 to a non-lattice vertex

precisely when i < g
2
.

Now we consider τ
(−1)
5 and τ

(−1)
1 . We have that τ

(−1)
1 lies on the line x − ky = −k + 1,

unless k = 0 in which case it lies on the line x = −1; and that τ
(−1)
5 lies on the line

x + (g + 1 − k − j)y = 2g + 2 − k − j. In the event that k ̸= 0, these intersect at(︂
gk+g−j+1
g−j+1

, 2g−j+1
g−j+1

)︂
, which has y-coordinate strictly smaller than 3 when 2g−j+1

g−j+1
< 3, or

equivalently if 2g − j + 1 < 3g − 3j + 1, or equivalently if j < g
2
. For the k = 0 case, the

intersection point becomes
(︂
−1, 2g−j+3

g−j+1

)︂
, which has y-coordinate strictly smaller than 3 when

2g−j+3
g−j+1

< 3, or equivalently when 2g − j + 3 < 3g − 3j − 3k + 3, or equivalently when j < g
2
.

Thus we have a non-lattice vertex due to τ
(−1)
5 collapsing precisely when j < g

2
.

We conclude that Q(−1) is a lattice polygon if and only if i ≥ g/2 and j ≥ g/2.

Combining Lemmas 3.4.2, 3.4.3, and 3.4.4 and the preceding discussion, we have the

following classification of maximal polygons with lattice width 4.

Proposition 3.4.5. Let P be a maximal polygon of lattice width 4. Then up to lattice

equivalence, P is either T4; one of the 14 polygons in Figure 3.9; or Q(−1), where Q is a

hyperelliptic polygon satisfying the conditions of Lemma 3.4.2, 3.4.3, or 3.4.4.

The most important consequence of Propositions 3.4.1 and 3.4.5 is that we can determine

which panoptigons of lattice width 1 or lattice width 2 are interior polygons of some lattice

polygon. We summarize this with the following result.

Corollary 3.4.6. Let Q be a panoptigon with lw(Q) ≤ 2 such that Q(−1) is lattice polygon.

Then |Q ∩ Z2| ≤ 11.

Proof. If lw(Q) = 1 with Q(−1) a lattice polygon, then Q must be the trapezoid Ta,b with

0 ≤ a ≤ b, b ≥ 1, and a ≥ b
2
− 1 by Proposition 3.4.1. In order for Ta,b to be a panoptigon,

we need a ≤ 2 by Lemma 3.3.1, so 2 ≥ b
2
− 1, implying b ≤ 6. It follows that |Q ∩ Z2| =

a+ b+ 2 ≤ 2 + 6 + 2 = 10.

Now assume lw(Q) = 2 with Q(−1) a lattice polygon. If Q has genus 0 then it is T2, and

has 6 lattice points. If Q has genus 1 then it is one of the polygons in Figure 3.3, and so

has at most 9 lattice points. Outside of these situations, we know that Q is a hyperelliptic
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panoptigon of genus g ≥ 2 as characterized in Lemma 3.3.3. We deal with two cases: where

Q has a panoptigon point at height 1, and where it does not.

In the first case, we either have g = 2 with Q of Type 1 or Type 2, or g = 3 with Q of

Type 1. A hyperelliptic polygon of Type 1 has (i+1)+ (1+2g− i) = 2g+2 boundary points.

A hyperelliptic polygon of Type 2 has i+ j + 3 boundary points. If Q is of Type 1, then it

has in total 3g + 2 ≤ 11 lattice points. If Q is of Type 2, then i+ j ≤ 2g + 1 = 2 · 2 + 1 = 5,

implying that Q has a total of i+ j + 3 + g ≤ 5 + 3 + 2 = 10 lattice points.

In the second case, we know that Q must have at most 3 points at height 0 or 2, and

exactly 1 point at the other height. First we claim that Q cannot be of Type 1: there are

2g + 2 ≥ 6 boundary points, all at height 0 or 2, and Q can have at most 4 points total at

those heights. For Types 2 and 3, we know by Lemmas 3.4.3 and 3.4.4 that either i ≥ g
2
+ 1

and j ≥ g−1
2
, or i ≥ g

2
and j ≥ g

2
. At least one of i and j must equal 0 to allow for a single

point at height 0 or height 2, so these inequalities are impossible for g ≥ 2. Thus Q cannot

have Type 2 or Type 3 either, and this case never occurs.

We conclude that if Q is a panoptigon of lattice width 1 or 2 such that Q(−1) is a lattice

polygon, then |Q ∩ Z2| ≤ 11.

3.5 Big face graphs are not tropically planar

Let G be a planar graph. Recall that we say that G is a big face graph if for any planar

embedding of G, there exists a bounded face that shares an edge with every other bounded

face. Our main examples of big face graphs will come from the following construction. First

we recall the construction of a chain of genus g from [10, §6]. Start with g cycles in a row,

connected at g − 1 vertices which are 4-valent. We will resolve each of these 4-valent vertices

to result in two 3-valent vertices in one of two ways. Let v be a vertex, incident to the edges

e1, e2, f1, f2 where e1 and e2 are part of one cycle and f1 and f2 are part of another. We will

remove v and replace it with two connected vertices v1 and v2, and we will either connect v1

to e1 and f1 and v2 to e2 and f2; or we will connect v1 to e1 and e2 and v2 to f1 and f2. Any

graph obtained from making such a choice at each vertex is then called a chain. Figure 3.10

illustrates, for g = 3, the starting 4-regular graph; the two ways to resolve a 4-valent vertex;

and the resulting chains of genus 3. We remark that although there are 2 × 2 = 4 ways to

choose the vertex resolutions, two of them yield isomorphic graphs, giving us 3 chains of

genus 3 up to isomorphism. Note that for every genus, there is exactly one chain that is

bridge-less, i.e. 2-edge-connected.
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f1

f2

v1

v2↗
↘

Figure 3.10: The starting 4-regular graph in the chain construction; the two choices for
resolving a 4-valent vertex; and the three chains of genus 3, up to isomorphism

Given a chain of genus g, we construct a looped chain of genus g + 1 by adding an edge

from the first cycle to the last one. The looped chains of genus 4 corresponding to the chains

of genus 3 are illustrated in Figure 3.11. For larger genus, we remark that two non-isomorphic

chains can give rise to isomorphic looped chains.

Figure 3.11: The looped chains of genus 4

In order to argue that any looped chain is a big face graph, we recall the following

useful result. By a special case of Whitney’s 2-switching theorem [39, Theorem 2.6.8], if

G is a 2-connected graph, then any other planar embedding can be reached, up to weak

equivalence3, from the standard embedding by a sequence of flippings. A flipping of a planar

embedding finds a cycle C with only two vertices v and w incident to edges exterior to C,

and then reverses the orientation of C and all vertices and edges interior to C to obtain a

new embedding. This process is illustrated in Figure 3.12, where C is the highlighted cycle

v − a− b− w − d− v.

Lemma 3.5.1. Any looped chain is a big face graph.

3Weak equivalence means two graph embeddings have the same facial structure, although possibly with
different unbounded faces.
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Figure 3.12: Two embeddings of a planar graph related by a flipping

Proof. In the standard embedding of a looped chain as in Figure 3.11, there are (at least)

two faces that share an edge with all other faces: one bounded and one unbounded. Since any

looped chain is 2-connected, any other embedding can be reached, up to weak equivalence,

by a sequence of flippings. It thus suffices to show that the standard embedding of a looped

chain is invariant under flipping.

Consider the standard embedding of a looped chain G, and assume that C is a cycle in G

that has exactly two vertices v and w incident to edges exterior to C. Let C denote the set

of all vertices in or interior to C. Since G is trivalent and C is 2-regular, we know that v and

w are each incident to exactly one edge, say e for v and f for w, that is exterior to C. We

now deal with two possibilities: that C = V (G), and that C ⊊ V (G).

If C = V (G), then e = f , and the only possibility is that v and w are the vertices added

to a chain H to build the looped chain G; that H is the bridge-less chain; and that C is

the outside boundary of H in its standard embedding. Flipping with respect to C does not

change the embedding of this graph.

G1

G2

G3G4

G5

e5 e1

e2
e3

e4

Figure 3.13: The structure of a looped chain, where the bridge-less chains Gi have solid edges
and the edges ei are dotted; the boundaries of the Gi are bold, and are the only possible
choices of C for a flipping

If C ⊊ V (G), then {e, f} forms a 2-edge-cut for G, separating it into C and C
C
. Consider

the structure of G: it is a collection of 2-edge-connected graphs G1, . . . , Gk, namely a collection
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of bridge-less chains, connected in a loop by edges e1, . . . , ek, where ei connects Gi and Gi+1,

working modulo k; see Figure 3.13 for this labelling scheme. We claim that e, f ∈ {e1, . . . , ek}.
If not, then without loss of generality e is in some bridge-less chain Gi. If f ∈ E(Gj) for

j ̸= i, then the graph remains connected; the same is true if f ∈ {e1, . . . , ek}. So we would

need f to also be in Gi. By the structure of the looped chain, we would need the removal of

e and f to disconnect Gi into multiple components, at least one of which is not incident to ei

or ei+1; however, this is impossible based on the structure of a bridge-less chain. It follows

that e and f must be among e1, . . . , ek. The only way to choose a pair {e, f} from among

e1, . . . , ek so that they are the only exterior edges incident to the boundary of a cycle C is if

they are incident to the same bridge-less chain Gi; that is, if up to relabelling we have e = ei

and f = ei+1 for some i. Thus C and its interior constitutes one of the bridge-less chains Gi.

But flipping a bridge-less chain does not change the embedding of our (unlabelled) graph,

completing the proof.

Figure 3.14: The loop of loops Lg for 3 ≤ g ≤ 6

We summarize the connection between big face graphs and panoptigons in the following

lemma.

Lemma 3.5.2. Suppose that G is a tropically planar big face graph arising from a polygon

P . Then Pint is a panoptigon.

This is not an if-and-only-if statement, since not all triangulations of P connect a point

of Pint to all other points of Pint; for instance, the chain of genus 3 with two bridges is not a

big face graph, but by [10, §5] it arises from T4 whose interior polygon is a panoptigon.

Proof. Let ∆ be a regular unimodular triangulation of P such that G is the skeleton of the

dual graph of ∆. The embedding of G arising from this construction must have a bounded

face F bordering all other faces. By duality, we know that F corresponds to an interior lattice

point p of P . Since F shares an edge with all other bounded faces, dually p is connected to

each other interior point of P by a primitive edge in ∆. Thus Pint is a panoptigon, with p a

panoptigon point for it.
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One common example of a looped chain of genus g is the loop of loops Lg, obtained by

connecting g − 1 bi-edges in a loop. This is illustrated in Figure 3.14 for g from 3 to 6. For

low genus, the loop of loops is tropically planar. Figure 3.15 illustrates polygons of genus

g for 3 ≤ g ≤ 10 along with collections of edges emanating from an interior point; when

completed to a regular unimodular triangulation4, they will yield Lg as the dual tropical

skeleton. Thus Lg is tropically planar for g ≤ 10. Another example of a tropically planar

looped chain, this one of genus 11, is pictured in Figure 3.16, along with a regular unimodular

triangulation of a polygon giving rise to it. Since the theta graph of genus 2 is also tropically

planar [10, Example 2.5] and is a big face graph, there exists at least one tropically planar

big face graph of genus g for 2 ≤ g ≤ 11. We are now ready to prove that this does not hold

for g ≥ 14.

Figure 3.15: Starts of triangulations that will yield the loop of loops as the dual tropical
skeleton

Figure 3.16: A tropically planar big face graph of genus 11, with a regular unimodular
triangulation giving rise to it

Proof of Theorem 3.1.3. Let G be a tropically planar big face graph, and let P be a lattice

polygon giving rise to it. By Lemma 3.5.2, Pint is a panoptigon. If lw(Pint) ≤ 2, then

g = |Pint ∩Z2| ≤ 11 by Corollary 3.4.6. If lw(Pint) ≥ 3, then g = |Pint ∩Z2| ≤ 13 by Theorem

3.1.2. Either way, we may conclude that the genus of G is at most 13.

4One way to see that this can be accomplished is to use a placing triangulation [20, §3.2.1], where the
highlighted panoptigon point is placed first and the other lattice points are placed in any order.
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It follows, for instance, that no looped chain of genus g ≥ 14 is tropically planar.

If we are willing to rely on our computational enumeration of all non-hyperelliptic

panoptigons, we can push this further: there does not exist a tropically planar big face graph

for g ≥ 12, and this bound is sharp. We have already seen in Figure 3.16 that there exists a

tropically planar big face graph of genus 11. To see that none have higher genus, first note

that if Pint is a panoptigon with 12 or 13 lattice points, then Pint must be non-hyperelliptic by

Corollary 3.4.6. Thus Pint must be one of the 15 non-hyperelliptic panoptigons with 12 lattice

points, or one of the 8 non-hyperelliptic panoptigons with 13 lattice points, as presented in

section 3.6. However, for each of these polygons Q, we have verified computationally that

Q(−1) is not a lattice polygon; see Figure 3.20. Thus no lattice polygon of genus g ≥ 12 has

an interior polygon that is also a panoptigon. It follows from Lemma 3.5.2 that no big face

graph of genus larger than 11 is tropically planar.

We close with several possible directions for future research.

• For any lattice point p, let vis(p) denote the set of all lattice points visible to p

(including p itself). Given a convex lattice polygon P , define its visibility number to

be the minimum number of lattice points in P needed so that we can see every lattice

point from one of them:

V (P ) = min

{︄
|S| : S ⊂ P ∩ Z2 and P ∩ Z2 ⊂

⋃︂
p∈S

vis(p)

}︄
.

Thus P is a panoptigon if and only if V (P ) = 1. Classifying polygons of fixed visibility

number V (P ), or finding relationships between V (P ) and such properties as genus

and lattice width, could be interesting in its own right, and could provide new criteria

for determining whether graphs are tropically planar; for instance, the prism graph

Pn = K2 × Cn can only arise from a polygon P with V (P ) ≤ 2. This question is in

some sense a lattice point version of the art gallery problem.

• We can generalize from two-dimensional panoptigons to n-dimensional panoptitopes,

which we define to be convex lattice polytopes containing a lattice point p from which all

the polytope’s other lattice points are visible. A few of our results generalize immediately;

for instance, the proof of Lemma 3.3.2 works in n-dimensions, so any polytope with

exactly one interior lattice point is a panoptitope. A complete classification of n-

dimensional panoptitopes for n ≥ 3 will be more difficult than it was in two-dimensions,

especially since it is no longer the case that there are finitely many polytopes with a

fixed number of lattice points. Results about panoptitopes would also have applications

in tropical geometry; for instance, an understanding of three-dimensional panoptitopes

would have implications for the structure of tropical surfaces in R3.
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• To any lattice polygon we can associate a toric surface [18]. An interesting question

for future research would be to investigate those toric surfaces that are associated to

panoptigons, or more generally toric varieties associated to panoptitopes.

3.6 Panoptigon computations

From the proof of Theorem 3.1.2, we know that any panoptigon of lattice width and lattice

diameter both at least 3 must be equivalent to a polygon consisting of some subset of the

thirty lattice points pictured in Figure 3.7, where the points (0, 0), (−1,−1), (0,−1), (1,−1),

and (2,−1) must be included. Using polymake [23], we ran through all possible convex

polygons consisting only of these 30 points. Ruling out those without interior lattice points

or with all lattice points collinear, we found a total of 215 distinct polygons, some of which

were equivalent under a unimodular transformation. These 215 polygons are available as the

collection “Non-hyperelliptic Panoptigons” in polyDB [42] at https://db.polymake.org.

Eliminating redundant copies, we find that there are a total of 69 non-hyperelliptic panoptigons

of lattice width and lattice diameter both at least 3, up to lattice equivalence. We list all

nonhyperelliptic panoptigons with lattice diameter at least 3 in Figure 3.19. The panoptigons

with 12 or 13 lattice points appear in Figure 3.20, along with their relaxed polygons. Each

relaxed polygon has at least one non-lattice vertex, marked by a square. The computation

of these relaxed polygons verifies that no non-hyperelliptic panoptigon with 12 or 13 lattice

points is the interior polygon of a lattice polygon.

To complete an enumeration of all non-hyperelliptic panoptigons of genus g ≥ 3, it remains

to find those panoptigons P that have lattice diameter smaller than 3. We accomplish this

with the following proposition.

Proposition 3.6.1. Let P be a non-hyperelliptic panoptigon of lattice diameter at most 2.

Then up to lattice equivalence P is either the triangle conv((0, 1), (0, 3), (4, 0)), the quadrilateral

conv((1, 0), (2, 0), (3, 1), (0, 3)), or the quadrilateral conv((0, 1), (0, 2), (2, 3), (3, 0)).

These three polygons are illustrated in Figure 3.17.

Figure 3.17: The three non-hyperelliptic panoptigons from Proposition 3.6.1
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Proof. Since P is non-hyperelliptic, we know that lw(P ) ≥ 3. Note that we cannot have

ℓ(P ) = 1, since then we would have lw(P ) ≤ ⌊4
3
ℓ(P )⌋+1 = 2. Thus ℓ(P ) = 2. It follows that

lw(P ) ≤ ⌊4
3
ℓ(P )⌋+1=2+1=3, so lw(P ) = 3. We know P is not T3 since T3 is hyperelliptic, so

we know that the interior polygon Pint must have lattice width 1. It follows that Pint must be

a trapezoid of height 1, and since ℓ(P ) = 2 that trapezoid must have at most 3 lattice points

at each height; thus Pint = Ta,b where 0 ≤ a ≤ b ≤ 2. It follows that P must be contained in

one of the polygons pictured in Figure 3.18; these are the maximal polygons associated to the

candidates for Pint. In order to refer to the lattice points of these polygons with coordinates,

we will assume that each is positioned to have the lower left corner at the origin (0, 0).

Figure 3.18: Possible interior polygons for Pint, and polygons that must contain P

We claim that P cannot have T0,2 T1,2, or T2,2 as its interior polygon. In each of those

cases, note that P automatically has 3 interior points at height 1; since ℓ(P ) = 2, there can

be no boundary lattice points at height 1. In order for boundary lattice points at height 0 to

connect to boundary lattice points at height greater than 1, the points (1, 0) and (4, 0) must

be included; but then there are 4 collinear lattice points at height 0, contradicting ℓ(P ) = 2.

Now suppose Pint = T1,1. Note that no boundary point of the 3 × 3 square can see

all interior points, so any panoptigon point q must be an interior point. Without loss of

generality, assume that it is q = (1, 1), meaning that the points (1, 3), (3, 1), and (3, 3) cannot

be included in P . Among the two points (2, 3) and (3, 2), at least one must be included to

allow for the desired interior polygon. By symmetry we may assume that (2, 3) is included.

There cannot be any other points at height 3, so (2, 3) must be a vertex of P and connect

to a boundary point of the form (0, b); the only possible such point is (0, 2). It then follows

that (3, 2) cannot be included, since this would yield 4 collinear points at height 2. Thus P

has an edge connecting (2, 3) to (3, 0). The point (2, 0) cannot appear in P since there are

already three points with x-coordinate equal to 2, so (3, 0) must be connected to (0, 1). At

this point, we know that P = conv((0, 1), (0, 2), (2, 3), (3, 0)). This is indeed a panoptigon of

lattice width 3 and lattice diameter 2.

Finally we will deal with the case where Pint = T0,1. We deal with several possibilities for

the (not necessarily unique) panoptigon point q of P .
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• Suppose q is an interior lattice point of P . By symmetry we may assume q = (1, 1), so

the lattice points (3, 1) and (1, 3) cannot be included. Since there must at least one

lattice point at height 3 or above, either (0, 3) or (0, 4) (or both) must be included. If it

is only (0, 4) and not (0, 3), then the points (1, 0) and (3, 0) must be included, yielding

the polygon conv((1, 0), (3, 0), (0, 4)). Otherwise, (0, 3) is in P . Since (0, 3), (1, 2), and

(2, 1) are all lattice points of P , the point (3, 0) cannot be included. Now, at least one

lattice point from the diagonal edge must be included, namely (4, 0), (2, 2), or (0, 4);

in fact, it must be exactly one, since otherwise (1, 3) or (3, 1) would be introduced by

convexity. If P contains (0, 4) or (2, 2) and no other points along that edge, then it

must also contain (3, 0), which we have already ruled out. Thus P contains (4, 0), and

as it does not contain (3, 0) it must have an edge connecting (4, 0) to (0, 1). At this

point there is a single possibility for P , namely P = conv((0, 1), (0, 3), (4, 0)). This

polygon is equivalent to the previous one, so we need only include one. This panoptigon

does indeed have lattice diameter 2.

• Now we deal with the case that the panoptigon point is a boundary point. Since the

panoptigon point must see all three interior points, it must either be a vertex of T4 or

the midpoint of one of the edges. Up to symmetry, we may thus assume that q is either

(0, 0) or (2, 0). If q = (0, 0), then the point (1, 3) must be included; otherwise we would

need (0, 3), which is not visible to (0, 0). Similarly (1, 3) is included, but then (2, 2) is

included by convexity, and this point is not visible to (0, 0), a contradiction.

If q = (2, 0), then there are 1, 2, or 3 points at height 0. If there is only q, then the

points (0, 1) and (3, 1) must be included, contradicting ℓ(P ) = 2. If there are 2 points,

we will assume by symmetry that the two points are (1, 0) and (2, 0). The lattice

point (3, 1) must then be included and the point (0, 1) must not be included; the only

remaining point to include from the face on the line x = 0 is (0, 3). No other lattice

points can be included, so then P = conv((1, 0), (2, 0), (3, 1), (0, 3)). Finally, if there

are 3 points at height 0 they must be (1, 0), (2, 0), and (3, 0). But now neither (0, 3)

nor (1, 3) may be included since ℓ(P ) = 2. Since (0, 4) is not visible from q, there are

no points in P with height greater than 2, a contradiction to T0,1 being the interior

polygon of P .

We conclude that the only non-hyperelliptic panoptigons P with ℓ(P ) ≤ 2 are the three

claimed.

Combined with our computation, this gives us the following count.
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Corollary 3.6.2. Up to lattice equivalence, there are 72 non-hyperelliptic panoptigons.

The explicitness of our enumeration allows us to find the largest lattice width of any

panoptigon: by Lemma 3.2.2, the lower right triangle in Figure 3.20 has lattice width 5, and

all the other panoptigons have lattice width 4 or less.

Results of the presented work in this chapter have been published in - Ralph Morrison

and Ayush Kumar Tewari. “Convex lattice polygons with all lattice points visible”, Discrete

Mathematics [41].
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Figure 3.19: All nonhyperelliptic panoptigons with lattice diameter at least 3
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Figure 3.20: All non-hyperelliptic panoptigons with 12 or 13 lattice points, along with their
relaxed polygons

53



Chapter 4

Point-line geometry in the tropical
plane

4.1 Introduction

Point-line geometry has been studied for a long time, and it mainly deals with the question

of incidence, i.e. when a point meets a line. There are many classical results established

about the incidence of points and lines in projective and affine planes like the Sylvester-Gallai

theorem, de-Bruijn Erdős theorem, Szemeredi-Trotter theorem, Beck’s theorem etc. In recent

times, there has been a lot of development in generalising these classical results, like [29]

surveys the work done on generalizations of de-Bruijn Erdős theorem. In a recent study in

[30], tropical lines present in a fixed plane are also studied.

Since tropical geometry provides a piecewise linear model of point line geometry, many

incidence geometric results have also been proved in it. In [8] a tropical version of Sylvester-

Gallai theorem and Motzkin-Rabin theorem is established along with the universality theorem.

In [47] the term geometric construction is coined , in order to identify all the types of classical

incidence geometric results which can have a tropical analogue. Even in [45] and [46] a

tropical version of Pappus theorem is discussed along with classical point-line configurations.

Another aspect is the relation to oriented matroids, and as mentioned in [8], it is elaborated in

[2], in the context of hyperplane arrangements and how they correspond to tropical oriented

matroids and how these matroids encode incidence information about point-line structures in

the tropical plane. The fact that the tropical plane allows projective duality, facilitates much

of the above mentioned results.

In this chapter, we start with some basic notions of point line geometry and specifically

the point-line geometry in the tropical plane. Subsequently, using the results obtained in

[8] and by introducing the notion of stable tropical lines we state a tropical counterpart to

de-Bruijn-Erdős theorem. We also establish the equivalence between a much general notion
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of stability for curves, in [47], and the stable lines that we define in our work. We find that

tropicalization of generic lifts of points determines the stable tropical line passing through

them. We establish the duality between stable lines and stable intersections and provide a

full classification of the faces that they correspond to in the dual Newton subdivision. With

this setup, we prove the tropical analogue of de-Bruijn-Erdős theorem,

Theorem 4.1.1 (Tropical de-Bruijn-Erdős Theorem). Let S denote a set of points in the

tropical plane. Let v (v ≥ 4) denote the number of points in S, and let b denote the number

of stable tropical lines determined by these points. Then,

1. b ≥ v − 3

2. if b = v − 3, then S forms a tropical near-pencil.

The definitions and the results required to state and prove Theorem 4.1.1 are elaborated

in the latter parts of this chapter.

4.2 Classical incidence geometry

In classical incidence geometry a linear space is defined in the following manner [22],

Definition 4.2.1. A finite linear space is a pair (X,B), where X is a finite set and B is a

set of proper subsets of X, such that

1. every unordered pair of elements of X occur in a unique B ∈ B.

2. Every B ∈ B has cardinality at least two.

Essentially, a linear space is a point-line incidence structure, in which any two points lie

on a unique line.

Example 4.2.2. Consider L = (X,B), where X is the set of points in the Euclidean plane

and B is the set of lines determined by X .

Another important definition about lines is,

Definition 4.2.3. A line which passes through exactly two points is called an ordinary line.

Erdős and de-Bruijn, came up with a theorem about point-line arrangements in a linear

space [19], which is established in [7] and stated in Theorem 4.2.4.
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Theorem 4.2.4 (de-Bruijn-Erdős Theorem). Let S = (X,B) be a linear space. Let v denote

the number of points in S(= |X|), and b denote the number of lines determined by these

points (= |B|, b > 1). Then

1. b ≥ v,

2. if b = v, any two lines have a point in common. In case (2), either one line has v − 1

points and all others have two points, or every line has k + 1 points and every point is

on k + 1 lines, k ≥ 2.

For a more general treatment and recent developments, one can read [29], where enu-

merative results like the above have been discussed in a more general setting of geometric

lattices.

Theorem 4.2.4 clearly is a very general statement, and in the case for points and lines in

the Euclidean plane, the bound on the number of lines is attained when points are in a near

-pencil configuration and the proof follows by induction and invoking Theorem 4.2.5.

Theorem 4.2.5 (Sylvester-Gallai Theorem). Given a finite collection of points in the Eu-

clidean plane, such that not all of them lie on one line, then there exists a line which passes

through exactly two of the points.

4.3 A brief introduction to tropical geometry

Tropical geometry can be defined as the study of geometry over the tropical semiring

T = (R ∪ {−∞}, max, +). A tropical polynomial p(x1, . . . , xn) is defined as a linear

combination of tropical monomials with operations as the tropical addition and tropical

multiplication.

p(x1, . . . , xn) = a⊙ x1
i1x2

i2 . . . xn
in ⊕ b⊙ x1

j1x2
j2 . . . xn

jn ⊕ . . .

With the above definitions, we see that a tropical polynomial is a function p : Rn −→ R
given by maximum of a finite set of linear functions.

Definition 4.3.1. The hypersurface V (p) of p is is the set of all points w ∈ Rn at which

the maximum is attained at least twice. Equivalently, a point w ∈ Rn lies in V (p) if and only

if p is not linear at w.

The tropical polynomial defining a tropical line is given as

p(x, y) = a⊙ x⊕ b⊙ y ⊕ c, where a, b, c ∈ R,
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(c− a, c− b)

Figure 4.1: A tropical line

and the corresponding hypersurface is the corner locus defined by the above polynomial,

which is a collection of three half rays emanating from the point (c− a, c− b) in the primitive

directions of (−1, 0), (0,−1) and (1, 1) (Refer [38]).

Now we look at the intersections of lines in the tropical plane. As is evident from the

setup, tropical lines can intersect over a half ray. However, two tropical lines have a unique

stable intersection, where a stable intersection is the limit of points of intersection of nearby

lines which have a unique point of intersection, within a suitable ϵ, with the limit being taken

as ϵ tends to 0 [38]. We refer the reader to [38] for further details about stable intersections

in full generality. We also define the two types of stable intersections which we encounter in

the case of tropical line arrangements,

Definition 4.3.2. A stable intersection in a tropical line arrangement is called stable inter-

section of first kind if no vertex of any line from the line arrangement is present at the point

of intersection.

Definition 4.3.3. A stable intersection in a tropical line arrangement is called stable inter-

section of second kind if the vertex of a line from the line arrangement is present at the point

of intersection.

An important observation is the projective duality which exists in the tropical plane [8],

which means that given a set of points P , there exists a incidence preserving map ϕ which

maps P to its dual set of tropical lines L, where for each point P ∈ P , ϕ(P ) = l with −P as

the vertex of the line l ∈ L.
The support of a tropical polynomial is the collection of the exponents of the monomials

which have a finite coefficient. The convex hull of the exponents in the support of a tropical

polynomial defines a Newton polytope. We recall the definition of regular subdivisions from

Chapter 1 . There exists a duality between a tropical curve T , defined by a tropical polynomial

p, and the subdivision of the Newton polygon corresponding to p, induced by the coefficients

of the tropical polynomial p. For further details about the description of this duality, the

reader can refer to [38, Chapter 3] and [11, Proposition 2.5].
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For a comprehensive study in a general setting, we analyze the underlying field K. A

valuation on K is a map val : K → R ∪ {∞} such that it follows the following three axioms

[38],

1. val(a) = ∞ if and only if a = 0;

2. val(ab) = val(a) + val(b);

3. val(a+ b) ≥ min{val(a), val(b)} for all a, b ∈ K.

An important example of a field with a non-trivial valuation is the field of Puiseux series

over a arbitrary field k, represented as K = k{{t}}. The elements in this field are formal

power series

k(t) = k1t
a1 + k2t

a2 + k3t
a3 . . . ,

where each ki ∈ k, ∀ i and a1 < a2 < a3 < .... are rational numbers with a common

denominator. This field has a natural valuation val : k{{t}} → R given by taking a nonzero

element k(t) ∈ k{{t}}∗, (where k{{t}}∗ represents the non zero element in the field k{{t}})
and mapping it to the lowest exponent a1 in the series expansion of k(t) [38].

It is an important observation that the valuation on the field of Puiseux series mimics the

operations of a tropical semiring in essence and for further discussions one can think of the

underlying field for the computations to be a Puiseux series with non-trivial valuation. So

points which are considered in the plane, would have lifts residing in corresponding field of

Puiseux series and the map which maps these lifts back to the points is the tropicalization

map. For a polynomial f =
∑︁

u∈Nn+1 cux
u, where the coefficients are from the field with a

non-trivial valuation, the tropicalization of f can be defined as [38],

trop(f)(w) = max{−val(cu) + w · u : u ∈ Nn+1 and cu ̸= 0}

We refer the reader to [38] for further details about this map.

A tropical line arrangement is a finite collection of distinct tropical lines in R2.

Definition 4.3.4. A tropical line arrangement L is said to be a tropical near-pencil arrange-

ment if in the dual Newton subdivision, for all triangular faces present in the subdivision; at

least one of the edges of the triangular face lies on the boundary of the Newton polygon.

Definition 4.3.5. A set of points N in the tropical plane, is said to form a tropical near-pencil

if the dual tropical line arrangement is a tropical near pencil arrangement.
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(a) A tropical near pencil arrangement (b) The corresponding dual subdivision

Figure 4.2: An example of a tropical near pencil arrangement

(a) Point set with stable tropi-
cal line

(b) Dual tropical near pencil
line arrangement

(c) Dual subdivision to the line
arrangement

Figure 4.3: An example of a tropical near pencil

For a tropical line arrangement with lines l1, . . . , ln with corresponding tropical polynomials

being f1, . . . , fn the tropical line arrangement, as a union of tropical hypersurfaces, is defined

by the polynomial,

f = f1 · f2 . . . · fn
The dual Newton subdivision corresponding to the tropical line arrangement is the Newton

subdivision dual to the tropical hypersurface defined by the tropical polynomial f (cf. [31]).

We realize that stable intersections of first kind correspond to parallelograms and hexagons in

the dual Newton subdivision and stable intersections of second kind correspond to irregular

cells with four, five or six edges in the dual Newton subdivision.

For an elaborate description of dual Newton subdivisions, corresponding to tropical line

arrangements, the reader is advised to refer to [8, Section 2.3].

4.4 Tropical incidence geometry

The behaviour of point-line structures in the tropical plane is distinct from the Euclidean

case, specifically with the appearance of coaxial points.

Definition 4.4.1. Two points are said to be coaxial if they lie on the same axis of a tropical

line containing them [8].

A recent result in [8] proves the tropical version of the Sylvester Gallai Theorem,

59



p0
p1

Figure 4.4: The infinite number of lines passing through the coaxial points p0 and p1

p0

p1

Figure 4.5: A stable tropical line (L, p0, p1)

Theorem 4.4.2 (Tropical Sylvester-Gallai). Any set of four or more points in the tropical

plane determines at least one ordinary tropical line.

An important observation is that if we consider a point set with no two points being

coaxial, then there is a unique line passing through any two points , and therefore the

point-line incidence structure in this case forms a linear space. Hence, we can invoke the

classical de-Bruijn-Erdős theorem to conclude that such a set of n points determines at least

n lines.

With the existence of a Tropical Sylvester-Gallai theorem, it is quite natural to explore

the possibility of a tropical version of the de-Bruijn-Erdős theorem, i.e., a lower bound on

the number of tropical lines determined by a n point set in the tropical plane. However, the

number of lines determined by coaxial points are infinite in this setting. For the question of

counting lines to be well posed, we would like to be in a scenario where a finite set of points

determine a finite set of lines. Hence, rather than counting the number of lines as shown in

Figure 4.4, we count a special class of lines, namely stable tropical lines.

Definition 4.4.3. Consider (L, p1, . . . , pn), (n ≥ 2) where L is a tropical line with the points

(p1, . . . , pn) on the line L, then (L, p1, . . . , pn), is called stable if

1. either L is the unique line passing through the pi’s, or

2. one of the points p1, . . . , pn is the vertex of L.

Now we show that this restriction on the counting of lines, turns out to be quite general

as these stable lines turn out to be the tropicalization of the line passing through generic lifts

of the points.
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−u′

−u′ − v

0

(−u′, v)

(−u, v)

Figure 4.6: Newton polytope and tropicalization for trop(P1P2)

Proposition 4.4.4. Given two coaxial points p1 = (−u,−v), p2 = (−u′,−v′) ∈ K2, pick lifts

P1 = (a1t
u + . . . , b1t

v + . . .) and P2 = (a2t
u′
+ . . . , b2t

v + . . .) over K{{t}}. If b1 ̸= b2, then

trop(P1P2) is the stable tropical line through p1 and p2.

Proof. Since we assume that the two points, p1 and p2 are coaxial, we take v = v′ which

would imply that the two points are coaxial in the (−1, 0) primitive direction.

An equation of a line in the plane is ax+ by = c. So if the lifts P1 and P2 lie on this line,

then they satisfy this equation

a(a1t
u + . . .) + b(b1t

v + . . .) = c (4.4.1)

a(a2t
u′
+ . . .) + b(b2t

v + . . .) = c (4.4.2)

Without loss of generality we assume u > u′ and a = 1. So subtracting the two equations

gives us

−a2tu′
+O(tu

′
) + b((b1 − b2)t

v +O(tv)) = 0

=⇒ b = a2tu
′
+O(tu

′
)

(b1−b2)tv+O(tv)

=⇒ c = a2t
u′
+ . . .+ (a2tu+O(tu

′
))·(b2tv+...)

(b1−b2)(tv)+...)

Therefore val(c) = −u′ and val(b) = −u′ − v, and we get the Newton polytope and the

tropicalization as shown in Figure 4.6,

which is a stable tropical line passing through p1 = (−u′,−v) and p2 = (−u,−v).
The result for two points being coaxial in the other two primitive directions also follows

with a similar computation.

Alternatively, in [47] in Section 2.2 a notion of a stable curve though a set of n points is

introduced. The definition of a stable curve in [47] is as follows
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Definition 4.4.5. The stable curve of support I passing through {q1, . . . , qδ−1} is the curve

defined by the polynomial f = “
∑︁

i∈I aix
i1yi2”, where the coordinates ai of f are the stable

solutions to the linear system imposed by passing through the points qj .

where for a curve H given by a polynomial f , the support is the set of tuples of i ∈ Zn

such that ai appears in f , δ(I) denotes the number of elements in I and the stable solution

for a set of tropical linear forms is the common solution for all the linear forms, which is also

stable under small perturbations of the coefficients of the linear forms [46][45].

So let us consider the above case for tropical lines and try to see the equivalent definitions

of stable lines through two points according to [47].

The linear form that represents a tropical line in the tropical plane is given by

a⊙ x⊕ b⊙ y ⊕ c (4.4.3)

So the support in this case is a set of 3-tuples of Z3 and δ(I) = 3. We take two arbitrary

points in the (-1,0) direction of a tropical line P1 = (−u, v) and P2 = (−u′, v), where u and

u′ both are positive and u′ ≤ u. Now let us compute the stable line passing through P1 and

P2 in the setup of [47].

The tropical linear system obtained by plugging in the points in 4.4.3 is as follows{︃
a⊙ (−u)⊕ b⊙ v ⊕ c = 0
a⊙ (−u′)⊕ b⊙ v ⊕ c = 0

Now the stable solution of the above tropical linear system provides the coefficients for

the linear form which defines the stable line passing through the two given points. The

corresponding coefficient matrix is given as

C =

[︃
−u v 0
−u′ v 0

]︃
.

With the help of explicit computations for calculating stable solutions of tropical linear

systems elaborated in [46] and [45], in the case above, we find that the stable solution is

given by (|O1|t : |O2|t : |O3|t) = (v : −u′ : −u′ + v) and hence the linear form representing

the stable line through P1 and P2 is given as

v ⊙ x⊕−u′ ⊙ y ⊕−u′ + v (4.4.4)

This is a tropical line with vertex (α, β) satisfying

α + v = −u′ + v =⇒ α = −u′ and β − u′ = −u′ + v =⇒ β = v.

Hence, we get the stable line shown in Figure 4.7.

The computation for a two point configuration in the other two primitive directions also

follows in the same manner.
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(−u′,−v)

(−u,−v)

Figure 4.7: Stable line passing through two given points
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Figure 4.9: Duality between stable lines and stable intersections

So as is evident from the above discussion, taking two points on any one of the rays of a

tropical line, we see that the definition of a stable line in [47] coincides with 4.4.3.

An important observation here is that the Sylvester-Gallai Theorem fails if we restrict

ourselves to stable tropical lines. Figure 4.8 shows explicit examples of sets of points in

the tropical plane with n = 4 and 5 points such that these point sets do not determine an

ordinary stable tropical line.

n = 4 n = 5

Figure 4.8: Point sets which do not determine an ordinary stable tropical line

Proposition 4.4.6. Given a n-point set P in the tropical plane, the number of stable lines

determined by P is equal to the number of stable intersections obtained in the corresponding

dual line arrangement.

Proof. Consider an arbitrary stable tropical line (L, p1, p2 . . . pn). By definition, either the

points p1, p2 . . . pn uniquely determine L or one of the points amongst the p′is is the vertex

of the line L. We first consider the case when the points p1, p2 . . . , pn determine the line

uniquely, and in this case there must be at least two non coaxial points present on the line L,
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and we realize that under duality, the reflection of the vertex of the line L with respect to

the origin corresponds to a unique stable intersection obtained in the dual line arrangement,

illustrated in the Figure 4.9. This implies a one to one correspondence between stable lines

determined by such points and the stable intersections obtained in the dual line arrangement.

Also, if one of the points amongst the p′is is the vertex of the stable tropical line L, then

we again oberve that the reflection of the the vertex of the line L with respect to the origin,

corresponds to a unique stable intersection in the dual line arrangement, illustrated in the

Figure 4.9. Hence, we see a one to one correspondence between stable tropical lines and the

number of stable intersections in the dual line arrangement.

We realize that this duality between stable intersections and stable lines is a bit stronger;

if the stable line is the unique line passing through the points on it, then the vertex of the

line corresponds to a stable intersection of first kind and if the stable line has one of the

points as a vertex, then the vertex corresponds to a stable intersection of second kind.

Proposition 4.4.6 illustrates the fact that stable tropical lines are in fact dual to stable

intersections of tropical lines.

Proposition 4.4.6 leads on to the following corollary.

Corollary 4.4.7. For a given tropical line arrangement L in the tropical plane, the number of

stable intersections equals the number of non-triangular faces in the dual Newton subdivision

corresponding to the tropical line arrangement.

Proof. Since all stable intersections are obtained as intersections of two or more rays, each

point of intersection has at least four or more rays emanating from it in the primitive directions.

This corresponds through duality to faces with at least four edges or more and the only other

faces which contribute in the dual Newton subdivision are triangular faces which are not dual

to stable intersections. Hence, the number of stable intersections in the line arrangement is

equal to the number of non-triangular faces in the dual Newton subdivision.

With this duality established, let us look at the total number of faces, which we denote

as t, present in a dual Newton subdivision of a tropical line arrangement of n tropical lines,

where n remains fixed for our discussion. Firstly, there is a trivial lower bound of n on t,

since the n vertices of the tropical lines contribute at least n faces in the corresponding

Newton subdivision. Also t is bounded above by the number
(︁
n
2

)︁
+ n, which is the number of

faces when any two lines in the line arrangement intersect transversally at a unique point [8].

Therefore, t satisfies the following inequality
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n ≤ t ≤
(︃
n

2

)︃
+ n

We recall that stable intersection of first kind correspond to parallelograms and hexagons

in the dual Newton subdivision and stable intersections of second kind correspond to irregular

cells with four, five or six edges in the dual Newton subdivision. A common description of all

the faces appearing in a dual Newton subdivision is described in the Figure 4.10 also present

in [8],

w3

w2 + c

w1

w3 + c

w2

w1 + c

Figure 4.10: A cell in the Newton Subdivision, which is dual to a tropical line arrangement
[8]

where w1, w2 and w3 are the number of lines, which are coaxial in the three primitive

directions, and c represents the number of lines centered at the point dual to the face in the

tropical line arrangement. A Newton subdivision with faces of the shape described in Figure

4.10, is called a linear Newton subdivision and if the only faces occurring in a linear Newton

subdivision are triangles, parallelograms and hexagons, then such a subdivision is called a

semiuniform subdivision [8].

We refer to faces in the shapes of parallelograms and hexagons as semiuniform faces and

faces dual to stable intersections of second kind as non-uniform faces.

Figure 4.11 shows all the possible shapes of cells present in the dual Newton subdivision

of a tropical line arrangement; in the figure for all semiuniform faces, for each edge length

parameter we consider wi = 1 and for all non-uniform faces we take c = 1. For higher values

of w′
is and c the shapes remain the same however the edge lengths corresponding to each

parameter get elongated according to the values described in Figure 4.10.

We move on to discuss one of the extremal cases for the values of t, which is the case

when t = n.

Lemma 4.4.8. Let L be a tropical line arrangement of n lines, having exactly n faces in the

corresponding dual Newton subdivision, then L has no stable intersections of first kind in the

tropical line arrangement.

Proof. We start with a tropical line arrangement L of n tropical lines, such that it has exactly

n faces. We continue by contradiction, assuming that there does exist a stable intersection of
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2nd ↔ Non-uniform

2nd ↔ Non-uniform 2nd ↔ Non-uniform

2nd ↔ Non-uniform 2nd ↔ Non-uniform

2nd ↔ Non-uniform 2nd ↔ Non-uniform

1st ↔ Semi-uniform 1st ↔ Semi-uniform

1st ↔ Semi-uniform 1st ↔ Semi-uniform

Figure 4.11: All possible shapes of faces present in the Newton subdivision of a tropical line
arrangement; with the labelings having type of stable intersections on the left along with the
type of face that corresponds to it on the right
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first kind in the line arrangement L. However, since there are at least n faces contributed by

the n vertices of the n tropical lines, and the face corresponding to a stable intersection of

first kind is not one of them, therefore this would imply that the total number of faces in the

dual Newton subdivision corresponding to L has at least n+ 1 faces, which is a contradiction

to the fact that L has n faces in the dual Newton subdivision. Hence, the proof.

We look at an example of a n line arrangement with exactly n faces.

l1

l2

l3

l4 ln

Figure 4.12: An example of a line arrangement with exactly n faces and three triangular faces

The example depicted in Figure 4.12 shows a tropical line arrangement of n tropical

lines {l1, l2, l3, l4, . . . , ln}, such that the total number of faces in the corresponding Newton

subdivision is n, and it has exactly three triangular faces located at the corners of the Newton

polygon.

We use (vmax)t to represent the maximum number of triangular faces present in a Newton

subdivision corresponding to a tropical line arrangement with total number of faces in the

Newton subdivision being equal to t.

Lemma 4.4.9. Let L be a tropical line arrangement of n tropical lines such that the dual

Newton subdivision N has exactly n faces, then the maximum number of triangular faces in

N is 3, i.e., (vmax)n = 3 .

Proof. As can be seen from Figure 4.12, there are explicit tropical line arrangements of n

tropical lines with n faces in the dual Newton subdivision with exactly 3 triangular faces. We

proceed by contradiction, and assume that (vmax)n > 3. With (vmax)n > 3, we can conclude

that there does exist at least one triangular face T in the interior of the Newton polygon, i.e.,

when no edges of T lie on the boundary of the Newton polygon or exactly one edge of T lies

on the boundary of the Newton polygon. We first consider the case when T is in the relative

interior of the Newton polygon, i.e., when no edges of T lie on the boundary of the Newton

polygon .

Let us consider the three faces C1, C2 and C3 that share an edge with the triangular face

T and we consider an example of the local line arrangement around T as depicted in the

Figure 4.13.
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Figure 4.13: Positions of cells in the Newton subdivision and the local line arrangement dual
to it

In the figure we see that the points D, E and F represent the vertices of the tropical

lines l1, l2 and l3 which are present at the stable intersections of second kind at these points,

dual to the cells C1, C2 and C3 in N . Also l0 represents the line dual to the triangular face

T . Also, by Lemma 4.4.8 we know that no stable intersections of first kind are present in the

line arrangement.

In the local picture, we obtain three stable intersections of first kind at the points A,B

and C. Since these points are stable intersections and by Lemma 4.4.8 we know we can not

have any stable intersections of first kind therefore there must exist a line with its vertex

at these points. Let us consider one of these intersections, A. The points D, A and F are

represented as (x1, y1), (x2, y2) and (x3, y3), then it is easy to see that

x1 < x2 < x3

This helps to conclude that if there is a tropical line present with vertex at A, then it

would either intersect the lines l0 and l3 at two points, or meet the vertex of the line l0.

There cannot be a line with vertex at A meeting the vertex of the line l0 as that would

contradict the fact that the face corresponding to l0 is a triangular face T in N . So we

continue with the other case when the line has the vertex at A and intersects the lines l0

and l3 at two points. But there cannot be a tropical line present at A with two points of

intersection with the lines l0 and l3, as that would contradict the fact that the cells C1, C2 and

C3 corresponding to the stable intersections at D, E and F , share an edge with the triangular

face T . Hence, there cannot be a tropical line with a vertex at A, and therefore A has to be a

stable intersection of first kind, which contradicts Lemma 4.4.8. The same argument follows

for the other two points of intersections, B and C. However, this is a contradiction to the

Lemma 4.4.8. Another observation is that for all possibilities of non-uniform faces (arising

from stable intersections of second kind) surrounding T , we obtain points of intersections

in similar positions as A, B and C which establishes the existence of at least three stable

intersections of first kind, and hence gives a contradiction. Therefore, this shows that it is

not possible to place a triangular face in the relative interior of the Newton polygon.
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Figure 4.14: Positions of cell in the Newton subdivision and the local line arrangement dual
to it

The other possible case is when the triangular face intersects the boundary of the Newton

polygon in exactly one edge. Without loss of generality, we take the triangular face to be

intersecting with one of the edges of the Newton polygon as depicted in the Figure 4.14 and

we look at the local line arrangement around the triangular face T .

We argue in the same way as we did in the previous case, and realize that by Lemma

4.4.8, C1 and C2 in Figure 4.14 are non-uniform faces. Also, we see that in Figure 4.14 the

points B and C represent the vertices of the tropical lines l1 and l2 which are present at the

stable intersection of second kind at these points, dual to the cells C1 and C2 in N . Here l0

represents the line dual to the triangular face T .

In the local picture, we obtain a stable intersection of first kind at the point A. If the

points B, A and C are represented as (x1, y1), (x2, y2) and (x3, y3), then it is easy to see that

x1 < x2 < x3

This helps to conclude that if there is a tropical line present with vertex at A, then it

would either intersect the line l0, or meet the vertex of the line l0. There cannot be a line

with vertex at A meeting the vertex of the line l0 as that would contradict the fact that the

face corresponding to l0 is a triangular face T in N . So we continue with the other case

when the line has the vertex at A and intersects the lines l0. But there cannot be a tropical

line present at this intersection as that would contradict the fact that the cells C1 and C2

corresponding to the stable intersections of second kind at B and C share an edge with the

triangular face T . Hence, there cannot be a tropical line with a vertex at A, and therefore

A has to be a stable intersection of first kind, which contradicts Lemma 4.4.8. It is easy to

verify that this contradiction occurs for all possibilities of non-uniform faces (arising from

stable intersections of second kind), which can be adjacent to T .

Therefore, the only places left to place a triangular face in the Newton polygon, are the

three corners, and hence the maximum number of triangular faces that can be obtained is

three, i.e., (vmax)n = 3.
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S1

S2 S3

Figure 4.15: The non-adjacent semiuniform faces determined by a triangular face T

Using Lemma 4.4.9 we obtain Corollary 4.4.10,

Corollary 4.4.10. Let L be a tropical line arrangement of n lines, such that t = n and let v

denote the number of triangular faces present in the dual Newton subdivision N . Then

n− v ≥ n− 3

Remark 4.4.11. An important inference is that for tropical line arrangements of n lines, with

n faces in the dual Newton subdivision, they occur in four distinct classes. Each class is

represented by the number of triangular faces at the corners, which varies between 0, 1, 2 and

3.

With Lemma 4.4.9, we know the bound on the number of stable intersections of an n line

arrangement with exactly n faces in the corresponding dual Newton subdivision. We now

move on to the more general situation.

We now define what it means for a semiuniform face to be determined by a triangular

face T .

Definition 4.4.12. A semiuniform face S in a dual Newton subdivision is said to be

determined by a triangular face T if,

1. S is adjacent to T , i.e., T and S share an edge, or

2. S is located as the faces S1, S2 or S3 depicted in the Figure 4.15

Here the shapes and location of these three semiuniform faces has to be exactly the same

as shown in the figure in order for the faces to be determined by the triangular face T . We

also note that edge lengths of these faces need not be unit length, and they could be elongated

depending on the lattice length parameters wi and c of the adjacent faces to T . We also note

that a triangular face determines at most six semiuniform faces; at most three adjacent to it

and at most three non adjacent to it.

We note that as a consequence of the definition, the determined faces S1, S2 or S3 cannot

be hexagonal faces. Also, as a consequence of the definition, two triangular faces cannot have

common non-adjacent determined faces.
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Figure 4.16: Examples depicting local line arranagements dual to a triangular face with 1 or
2 semiuniform faces adjacent to it.

With the above definitions, we look at the number of semiuniform faces determined

by a triangular face depending on the location of the triangular face in the dual Newton

subdivision.

Theorem 4.4.13. Let L be a tropical line arrangement of n lines and let N be its dual

Newton subdivision. If T is a triangular face in N (excluding the corners), then

1. T determines at least three seminuniform faces if T is in the relative interior of the

Newton polygon; i.e., when no edges of T lie on the boundary of the Newton polygon.

2. T determines at least one seminuniform face if T is at the boundary of the Newton

polygon; i.e, when one of the edges of T lie on the boundary of the Newton polygon.

Proof. We continue with the discussion in the Lemma 4.4.9. As we see in Figure 4.13, it is

shown that a triangular face T , which is not adjacent to a semiuniform face, determines at

least three semiuniform faces if T is in the interior and at least one semiuniform face if T is

located at the boundary. However, semiuniform faces might also occur as faces adjacent to

the triangular face. Therefore, when we consider the triangular face T in the interior, then T

can be adjacent to either one, two or at most three semiuniform faces. We know that if T is

adjacent to semiuniform faces at all edges, then there are at least three semiuniform faces

determined by T in the subdivision, trivially. Now we consider the case, when the triangular

face is adjacent to two semiuniform faces. In this case, the location of the triangular face,

implies existence of at least one non-adjacent semiuniform faces. Similarly, in the case when

the triangular face is adjacent to one semiuniform face, at least two non-adjacent semiuniform

faces are obtained. Both these cases are illustrated through an example in the Figure 4.16.

Hence if a triangular face is in the interior of the Newton polygon, then it implies the existence

of at least three semiuniform faces.

Similarly, if we consider the case when the triangular face T is located at the boundary,

then if there are semiuniform faces adjacent to T at one or two edges, then there exists at least

one semiuniform face in the subdivision, trivially. If T is not adjacent to any semiuniform
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T

P

Figure 4.17: An example to illustrate the rearrangement when T is adjacent to semiuniform
faces.

faces, then we see in Figure 4.14, that T determines at least one semiuniform face. Hence,

we can conclude that if a triangular face is at the boundary then it determines at least one

semiuniform face.

We now move on to count the total number of semiuniform face determined by the

triangular faces. Since two or more triangular faces can determine common semiuniform

faces, therefore the total count need not be a direct sum of determined faces of all triangular

faces.

With an abuse of notation we denote T to be a triangular face and n(T ) represent the

number of semiuniform faces determined by the triangular face T . Hence, n(T1 ∪ ... ∪ Tm)
denotes the total number of semiuniform faces determined by the triangular faces T1, ..., Tm.

Theorem 4.4.14. Let L be a tropical line arrangement of n lines and N be its dual Newton

subdivision, with T1 . . . Tm being the triangular faces in N (excluding the corners) and k be

the number of stable intersections of first kind. Then,

k ≥ n(T1 ∪ T2 . . . ∪ Tm) ≥ m

Proof. We proceed with induction on m, with the base case being m = 1. We see that in

this case, by Theorem 4.4.13, we know that the unique triangle present in the interior of N
determines at least one semiuniform face, therefore

k ≥ n(T ) ≥ 1

Firstly, we consider a subdivision N with m triangular faces in the interior. We now show

that for any such subdivision N , we can always construct a subdivision N ′, such that N ′ has

exactly m − 1 triangular faces, via a rearrangement of L to L′ . We consider a triangular

face T in N , dual to l′ in L, which we rearrange to obtain a stable intersection in order to

construct the subdivision N ′. We go through the following cases based on the types of faces

adjacent to T in N ,
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1. If T has at least one semiuniform face adjacent to it, dual to a stable intersection of

first kind P .

We move the vertex of the line l′, dual to T , along with coaxial lines towards P , such

that the vertex of l′ is superimposed on the point P , illustrated in the Figure 4.17. If during

the rearrangement, any rays of the lines coaxial to l′ meet the vertex of another line, which

might result in a reduction in the total number of triangular faces, we can consider a local

perturbation of the vertex of such a line, along the half ray, and in this way we can prevent

such a situation. In this way we obtain a subdivision N ′ with exactly m− 1 triangular faces,

via a local rearrangement. We also notice that the determined semiuniform face dual to the

point P in N , ceases to exist in N ′, since the vertex of l′ gets superimposed on P .

2. If T is adjacent only to non-uniform faces, with at least one of the adjacent non-uniform

faces being five or six edged.

If T is adjacent to non-uniform faces in N , then by the definition of determined faces from

the Figure 4.15, we realize that T determines uniquely at least one non-adjacent semiuniform

face dual to a stable intersection of first kind P , in N . We move the vertex of the line l′ dual

to T (along with any coaxial lines to l′ if there exist any), illustrated in Figure 4.18, such that

it meets the half ray of another line in L and there is an effective decrease in the number of

triangular faces by 1 (in our example we assume P2 to be the face which has to be a five or

six edged face). We show the location of lines coaxial to l′ (if present) by a dotted arrow

along the ray of coaxiality in the rearrangement. If during the rearrangement, any rays of the

lines coaxial to l′ meet the vertex of another line, which might result in the reduction in the

total number of triangular faces, we can consider a local perturbation of the vertex of such a

line, along the half ray, and in this way we can prevent such a situation. Hence in this way

we construct a subdivision N ′ with exactly m− 1 triangular faces, via a local rearrangement.

We also observe that the determined semiuniform face dual to P in N no more remains a

determined semiuniform face in N ′, because firstly by the definition of determined faces, the

face dual to P cannot be a hexagon. Additionally, out of the four edges of the face dual to

P , only at two edges can it be adjacent to triangular faces, and we realize that in N ′ at both

these edges, the face is adjacent to non-triangular faces. Hence, the face dual to P cannot be

a determined face by virtue of being adjacent to a triangular face in N ′. Also, it can neither

be a non-adjacent determined face, since the face dual to P was the unique non-adjacent

determined face with respect to T , and the triangular face T no longer exists in N ′.

3. If T is adjacent to only four-edged non-uniform faces.
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P2

P
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Figure 4.18: An example to illustrate the rearrangement when T is adjacent to five or six
edged non-uniform faces.

Firstly, by the definition of determined faces from the Figure 4.15, we realize that T

determines uniquely at least one non-adjacent semiuniform face dual to a stable intersection

of first kind P in N . We notice that in this case, we cannot obtain N ′ by the movement of

just l′ and its coaxial lines since it results in an increase in the number of triangular faces.

However, we observe that with a local rearrangement of l′ along with its neighbouring lines

which are coaxial to l′, we can obtain N ′. When T is adjacent to three or two such four

edged faces, the local rearrangement is illustrated in Figure 4.19. In the first case we see that

no lines can be present inside the hexagon Pl1Ql3Rl2, where we abuse the notation to denote

li as the vertex of the line li, i ∈ {1, 2, 3}, because that would contradict the adjacency of the

faces dual to vertices of l1, l2,l3 and T . Also other lines coaxial to any of the li’s (if present)

are depicted by dotted arrows in the figure.

P

Q

R

T
l1

l2

l3

l2

l1l3

P
T

l1

l2 l2

l1

Figure 4.19: All cases where T is adjacent to two or three four edged non uniform faces along
with the corresponding rearrangement L′.

Essentially, one can think of this rearrangement as moving the line l3 and l2 along with

the coaxial lines (if present) on the half rays not shared with l′, such that the vertices of l2

and l3 lie on the segments Ql1 and Pl1 respectively and one of the rays from each l3 and l2

meets the vertex of l′. In this way we obtain a subdivision N ′ with one less triangular face.
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Once again if during the rearrangement, any rays of the lines coaxial to l′ meet the vertex of

another line, which might result in the reduction in the total number of triangular faces, we

can consider a local perturbation of the vertex of such a line, along the half ray, and in this

way we can prevent such a situation. A similar argument works for the remaining case in

Figure 4.19. Also, we realize that the face dual to P ceases to exist as we go from N to N ′,

and this is illustrated in the Figure 4.19.

Hence, we see that in all cases for any subdivision N we can perform a rearrangement

of L to L′, to obtain a subdivision N ′ with exactly m− 1 triangular faces. Also, we notice

that as we change from N to N ′, there always exists a determined semiuniform face, dual

to a stable intersection of first kind (P ), which either ceases to exist in N ′ (Case (1) and

(3)) or does not remain a determined semiuniform face in N ′ (Case (2)). Hence, there

exists a determined semiuniform face in N , which can never contribute to the total count of

determined semiuniform faces in N ′. We now invoke the induction hypothesis for N ′ with

m− 1 triangular faces and we obtain,

k ≥ n(T1 ∪ T2 . . . ∪ Tm−1) ≥ m− 1

Since, the face dual to P cannot contribute to the m− 1 faces determined by triangular

faces present in N ′. Hence for N , we have

n(T1 ∪ T2 . . . ∪ Tm) ≥ n(T1 ∪ T2 . . . ∪ Tm−1) + 1 ≥ m− 1 + 1 ≥ m

Therefore, we realize that for all cases, given a subdivision N with m triangular faces,

k ≥ n(T1 ∪ T2 . . . ∪ Tm) ≥ m

Hence, the proof.

Theorem 4.4.15. If L is a tropical line arrangement of n tropical lines, then it determines

at least n− 3 stable intersections.

Proof. We try to look at all possible places where triangular faces occur in a Newton

subdivision. If v is the number of triangular faces present in a subdivision, then we can write

v as

v = p+ q

where p be the number of triangular faces present in the interior of the Newton polygon,

i.e., triangular faces which are adjacent to at least two or more faces in the subdivision

and q be the number of triangular faces present at the corners of the Newton polygon, i.e.,
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triangular faces which are adjacent to exactly one other face in the subdivision. It is easy to

see that q ∈ {0, 1, 2, 3}. Then the lower bound on the number of semiuniform faces, which

are determined by these triangular faces, is p (by Theorem 4.4.14). Therefore if k is the total

number of faces corresponding to stable intersections of first kind, then

k ≥ p

Also, the number of stable intersections of second kind h = n− v (since triangular faces

and faces corresponding to stable intersections of second kind are contributed by vertices of

lines, hence their sum is equal to n).

Therefore, the total number of stable intersections b is given as

b = n− v + k ≥ n− p− q + p = n− q ≥ n− 3

Hence, b ≥ n− 3.

Theorem 4.4.16. Let L be a tropical line arrangement of n tropical lines and let N be its

dual Newton subdivision. If L determines n − 3 stable intersections, then there are three

triangular faces present at the corners of the Newton polygon and N can not have any

triangular faces in the relative interior of the Newton polygon.

Proof. If L determines n−3 stable intersections, it is the case when the bound from Theorem

4.4.15 is sharp, which happens when the following equalities hold true

q = 3 (4.4.5)

and

k = n(T1 ∪ T2 . . . ∪ Tm) = m (4.4.6)

The first equality implies that there must be three triangular faces present at the corners

of the Newton polygon.

We now assume to the contrary, that triangular faces do exist in the relative interior.

We consider one such triangular face T in the relative interior of the Newton polygon. We

consider all possible cases for T , where it can share faces with other triangular faces in N ,

1. If T does not share any semiuniform faces with any other triangular face in N .
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Figure 4.20: All possibilities for T , when it shares a semiuniform face with another triangular
face

By theorem 4.4.13 we know that any triangular face in the relative interior determines at

least three semiuniform face. Then

k = n((T1 ∪ T2 . . . ∪ Tm−1) ∪ T ) = n(T1 ∪ T2 . . . ∪ Tm−1) + n(T )

≥ m− 1 + 3 = m+ 2

which gives a contradiction to the equation 4.4.6.

2. If T shares a semiuniform face with exactly one other triangular face Tα in N .

All possible cases for T , upto symmetry, are listed in Figure 4.20.

We realize that in all such cases, when we consider all possible adjacent faces to T , for

all of them n(T ) = 4, and none of the m − 2 triangular faces apart from T and Tα, can

determine the four faces determined by T , because that would contradict the fact that T can

share faces with exactly one other triangular face. Also, by Theorem 4.4.14, for the m− 2

triangular faces apart from T and Tα,

n(T1 ∪ T2 . . . ∪ Tm−2) ≥ m− 2

therefore,

k = n(T1 ∪ T2 . . . ∪ Tm) ≥ n(T1 ∪ T2 . . . ∪ Tm−2) + n(T ) ≥ m− 2 + 4 = m+ 2

which again gives a contradiction to the equation 4.4.6.

We also remark that for this case and all subsequent cases, semiuniform faces which are

parallelograms, and are determined by two different triangular faces, can not have edge lengths

greater than one, since they share one edge, per pair of parallel edges, with a triangular face,

whose edges always have unit lattice length. Hence, for all cases, the parallelogram faces

are of unit lattice length. However, for hexagonal faces, edges not adjacent with triangular

faces, can be of lattice length greater than one, although this does not change the count of

determined faces for T , i.e., n(T ), rather it only enlarges the lengths of the edges adjacent

to the hexagonal face. Hence, in our considerations, we would consider all hexagonal faces

having unit lattice length.
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Figure 4.21: Possibilities for T , when it shares semiuniform faces with exactly two other
triangular faces
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Figure 4.22: The case when T shares semiuniform with two other triangular faces, with one
of the determined faces being a hexagon

3. If T shares a semiuniform face with exactly two other triangular faces Tα and Tβ in N .

All possible cases for T , upto symmetry, are listed in Figure 4.21 and Figure 4.22.

We realize that in all cases in Figure 4.21, when we consider all possible adjacent faces for

T , n(T ) = 5, and for the first case in Figure 4.22, n(T ) = 4, while for all others in Figure 4.22,

n(T ) = 5. Also none of the m− 3 triangular faces apart from T , Tα and Tβ, can determine

the faces determined by T , because that would contradict the fact that T can share faces

with only two other triangular faces. By Theorem 4.4.14, for the m− 3 triangular faces apart

from T , Tα and Tβ, we have

n(T1 ∪ T2 . . . ∪ Tm−3) ≥ m− 3

therefore,

k = n(T1 ∪ T2 . . . ∪ Tm) ≥ n(T1 ∪ T2 . . . ∪ Tm−3) + n(T ) ≥ m− 3 + 4 = m+ 1

which again gives a contradiction to the equation 4.4.6.

4. If T shares a semiuniform face with exactly three other triangular faces Tα, Tβ and Tγ

in N .

All possible cases for T , upto symmetry, are listed in Figure 4.23, Figure 4.24 and Figure

4.25.
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Figure 4.23: Possibilities for T , when it shares semiuniform faces with three other triangular
faces
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Figure 4.24: Possibilities for T , when it shares semiuniform faces with three other triangular
faces, involving a hexagonal face which T shares with one other triangular face
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Figure 4.25: Possibilities for T , when it shares semiuniform faces with three other triangular
faces, involving a hexagonal face which T shares with two other triangular face
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Figure 4.26: The case for T , when it shares two hexagonal faces with four other triangular
faces

We realize that in all cases in Figure 4.23 and 4.24, n(T ) = 6, and for all the cases in

Figure 4.25, n(T ) = 5. Also, none of the m− 4 triangular faces apart from T , Tα, Tβ and

Tγ, can determine the faces determined by T , because that would contradict the fact that

T can share faces with only three other triangular faces. By Theorem 4.4.14, for the m− 4

triangular faces apart from T , Tα, Tβ and Tγ,

n(T1 ∪ T2 . . . ∪ Tm−4) ≥ m− 4

therefore,

k = n(T1 ∪ T2 . . . ∪ Tm) ≥ n(T1 ∪ T2 . . . ∪ Tm−4) + n(T ) ≥ m− 4 + 5 = m+ 1

which again gives a contradiction to the equation 4.4.6.

5. If T shares a semiuniform face with exactly four other triangular faces Tα, Tβ, Tγ and

Tϕ in N .

All possible cases for T , upto symmetry, are listed in Figure 4.26 and Figure 4.27.

We realize that for the case in Figure 4.26, n(T ) = 5. However, due to the arrangements

of the faces, some of the faces are fixed and are bound to appear in the subdivision, which

we show as S1, S2, S3 and S4 in the Figure 4.26. Amongst these faces, S4 is a face which

can not be determined by T, Tα, Tβ, Tϕ and Tγ. Additionally, we observe that it can also

not be determined by any of the remaining m− 5 triangular faces in N since it has no free

edges which could be adjacent to a triangular face. This implies that the dual point to S4

contributes to the count of stable intersections of first kind k, although it is not determined

by any triangular face in N . This gives a contradiction to the following equality

k = n(T1 ∪ T2 . . . ∪ Tm)

in 4.4.6.
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Figure 4.27: Possibilities for T , when it shares semiuniform faces with four other triangular
faces
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Figure 4.28: The cases where T shares faces with five or six other triangular faces

For the other cases in Figure 4.27, n(T ) = 6. None of the m− 5 triangular faces apart

from T , Tα, Tβ, Tγ and Tϕ, can determine the faces determined by T , because that would

contradict the fact that T can share faces with only four other triangular faces. By Theorem

4.4.14, for the m− 5 triangular faces apart from T , Tα, Tβ and Tγ,

n(T1 ∪ T2 . . . ∪ Tm−5) ≥ m− 5

therefore,

k = n(T1 ∪ T2 . . . ∪ Tm) ≥ n(T1 ∪ T2 . . . ∪ Tm−5) + n(T ) ≥ m− 5 + 6 = m+ 1

which again gives a contradiction to the equation 4.4.6.

The remaining three cases illustrated in Figure 4.28 can also be eliminated by a similar

argument, since in all these cases we obtain a semiuniform face S ′, which cannot be determined

by a triangular face, which gives a contradiction to the equation 4.4.6.

Hence, we completed all cases and we infer that the presence of a triangular face in the

relative interior contradicts the sharpness of the bound. Hence, the proof.
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Remark 4.4.17. We note that the converse of Theorem 4.4.16 does not hold true, meaning

that if L is a tropical near-pencil arrangement, then it does not imply that the number of

stable intersections equals n− 3, an example of which is illustrated in Figure 4.2.

Now we have established the required setup to state the tropical versions of the de-Bruijn

Erdős Theorem,

Theorem 4.4.18 (Dual Tropical de Bruijn-Erdős Theorem). Let L be a tropical line arrange-

ment of n (n ≥ 4) tropical lines in the plane. Let b denote the number of stable intersections

determined by L. Then,

1. b ≥ n− 3

2. if b = n− 3, then L is a tropical near-pencil arrangement.

With the duality elaborated in 4.4.6, we can now state the main theorem,

Theorem 4.4.19 (Tropical de Bruijn-Erdős Theorem). Let S denote a set of points in the

tropical plane. Let v (v ≥ 4) denote the number of points in S, and let b denote the number

of stable tropical lines determined by these points. Then,

1. b ≥ v − 3

2. if b = v − 3, then S forms a tropical near-pencil.

4.5 Further Perspectives

In [2] a type of a point is defined as follows,

Definition 4.5.1. A (n, d) type is a n tuple A = (A1, . . . , An) of nonempty subsets of

[d] := {1, 2, . . . , d}. The Ai’s are called coordinates of A, 1, . . . , n are called the positions and

1, . . . , d are called the directions.

which assigns a tuple to each point in the plane based on its location with respect to

a collection of hyperplanes, which in our case are lines and so d = 3 in this case. It might

be interesting to look into the derivation of our results in terms of these types. Figure

4.29, depicts the types corresponding to all the various faces that are present in a linear

Newton subdivision. The ′∗′ in the tuples represents a singleton, while the coordinates which

have multiple elements may not occur consecutively, but they can be made consecutive, by

rearranging the way we count the lines in the arrangement. We can obtain the type for a

face P with edge lengths greater than one, by assigning copies of the directions 12, 13 or 23
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(∗, . . . , 123, ∗, . . . , ∗)

(∗, . . . , 123, 23, ∗, . . . , ∗)

(∗, . . . , 123, 12, ∗, . . . , ∗)

(∗, . . . , 123, 13, ∗, . . . , ∗)

(∗, . . . , 123, 23, 13, . . . , ∗)

(∗, . . . , 123, 12, 13, . . . , ∗)

(∗, . . . , 123, 23, 12, . . . , ∗)

(∗, . . . , 123, 23, 13, 12, . . . , ∗)

(∗, . . . , 12, 23, 13, . . . , ∗)

(∗, . . . , 12, 13, ∗, . . . , ∗)

(∗, . . . , 23, 12, . . . , ∗)

(∗, . . . , 23, 13, . . . , ∗)

Figure 4.29: All possible shapes of faces present in the Newton subdivision of a tropical line
arrangement; with the corresponding type in the tropical oriented matroid on the right

depending on the direction of coaxiality of other lines with the vertex of the line dual to

P . Such an analysis could help in trying to look for generalizations of our results in higher

dimensions.

Also there has been a lot of interest in the study of tropical lines present in tropical cubic

surfaces owing to the existence of classical results such as the famous 27 lines on a cubic

surface, which has provided detailed analysis about lines embedded in surfaces and is explored

widely in [43] and [32], and one can try to generalize our results to higher dimensions using

techniques from their work.

Results of the presented work in this chapter have been published in - Ayush Kumar Tewari.

“Point-line geometry in the tropical plane”, arXiv preprint. Submitted for further publication

[48].
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