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Zusammenfassung

Wir sind mittlerweile von einer stetig zunehmenden Anzahl an vernetzen Dingen,

dem sogenannten Internet der Dinge (IoT), umgeben, ohne es oftmals überhaupt

zu bemerkten. Dabei gibt es keinen Lebensbereich mehr, der davon ausgenommen

ist. Sei es zum Beispiel das Smart Home, das Auto, oder das vernetzte Arbeitsum-

feld. Die Interaktion mit diesen Dingen ist jedoch noch herausfordernd. Die meisten

Objekte besitzen eine dedizierte Benutzerschnittstelle, welche nur selten interoper-

abel ist. Insbesondere Domänenübergreifende Interaktionsmöglichkeiten sind rar.

Die Interaktion im Kontext von IoT benötigt daher Interaktionsparadigmen, mit all-

gegenwärtigen Interaktionsgeräten, die nahtlos im Alltag der Nutzer präsent und

nicht an bestimmte Dinge gebunden sind.

Sprachassistenten stellen eine natürliche und intuitive Art der Interaktion mit IoT

dar. Jedoch eignen sie sich nicht für alle Interaktionen, Umgebungen und Situatio-

nen. Fingergesteninteraktion stellt eine vielversprechende Möglichkeit der Inter-

aktion im IoT-Kontext dar. Sie sind vielfältig und aussagekräftig sowie unauffällig

und intuitiv auszuführen. Die Erkennung kann mittels Wearables überall und jeder

Zeit erfolgen. Ringe stellen hierbei ein vielversprechendes Wearable dar. Sie wer-

den direkt auf dem Finger getragen und können somit direkt die Fingerbewegung

erfassen. Allerdings können sie in der Regel nur die Bewegung eines Fingers er-

fassen.

In dieser Dissertation wird ein Ring vorgestellt, der ein breites Spektrum an In-

teraktionen, die mehrere Finger einbeziehen, ermöglicht. Der Ring nutzt dazu ka-

pazitive Sensoren, um die Abstände zu anderen Fingern zu messen. Ein Prototyp,

PeriSense genannt, wurde entwickelt und für die Evaluierung verwendet. Diese

Dissertation fokussiert auf die Evaluierung der Fähigkeiten und Grenzen von Peri-

Sense. Hierzu wurde neben den technischen Eigenschaften auch der statische und

dynamische Interaktionsraum ermittelt. Zusätzlich wurde auch der Interaktion-

sraum um PeriSense herum evaluiert. Anschließend wurde ein Algorithmus zum

Finger Tracking entwickelt, der die kapazitiven Sensormesswerte auf Fingerwinkel

abbildet. Mindestens die Bewegung von drei Fingern kann verfolgt werden, und bei

vordefinierten natürlichen Bewegungen können sogar die Winkel aller fünf Finger

geschätzt werden.

Abschließend werden vier verschiedene implementierte Anwendungen mit Peri-

Sense vorgestellt. Für die Implementierung dieser Anwendungen wurde ein Frame-

work entwickelt. Es ermöglicht die Erstellung von komplexen Interaktionspipelines

ohne Programmierung über eine JSON-basierte Konfigurationsdatei.
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Insgesamt zeigen die Evaluierungsergebnisse, dass die Verwendung von kapazi-

tiven Sensoren die Erkennung eines breiten Interaktionsraumes unter Einbeziehung

mehrerer Finger ermöglicht, wie er von anderen Geräten wie zum Beispiel Kamera-

basierten Ansätzen oder Datenhandschuhen bekannt ist. Folglich kann PeriSense

ein unaufdringliches Interaktionsgerät darstellen, welches während des gesamten

Tagesablaufs zur Verfügung steht.
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Abstract

Without even noticing it, we are surrounded by a growing number of networked

things, the so-called Internet of Things (IoT). Almost all our life areas are included,

such as in the smart home, car, or work. However, interacting with these things

is still challenging. Most things provide a dedicated user interface, which is rarely

interoperable. In particular, cross-domain interaction possibilities are rare. Inter-

action with the IoT thus requires interaction paradigms with ubiquitous interaction

devices that are seamlessly present throughout the users’ daily lives and not bound

to any specific things.

Speech assistants are a natural and intuitive way to interact with IoT. However,

they are not suitable for all interactions, environments, and situations. Finger

gesture interaction represents a promising way of interacting in the IoT context.

They are versatile and meaningful, as well as unobtrusive and intuitive to execute.

Furthermore, recognition can be achieved anywhere and anytime using wearables.

Rings represent a promising wearable in this regard. They are worn directly on the

finger and can thus directly detect finger movement. However, they can usually only

detect the movement of one finger.

This dissertation presents a ring enabling a broad range of multi-finger interac-

tions. It utilizes capacitive sensing to measure the approximate distances to other

fingers. A prototype, PeriSense called, was developed and used for the evaluation.

This dissertation focuses on evaluating the capabilities and limitations of PeriSense

in the application of finger gesture recognition. For this purpose, besides the techni-

cal properties, the static and dynamic interaction space was determined. Addition-

ally, the around-device interaction space was also evaluated. Subsequently, a finger

tracking algorithm mapping the capacitive sensor readings to finger angles was de-

veloped. As a result, at least the motion of three fingers can be tracked, and in the

case of predefined natural movements, all five fingers’ angles can be estimated.

Finally, four different implemented applications using PeriSense are presented.

For the implementation of these applications, a framework was developed. This

framework allows the creation of complex interaction pipelines without program-

ming via a JSON-based configuration file.

Overall, the evaluation results reveal that using capacitive sensing enables a

broad interaction space involving multiple fingers, as known from other devices

like camera-based approaches or data gloves. Consequently, PeriSense would po-

tentially be an unobtrusive interaction device that is available throughout the daily

routine.
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1. Introduction

Marc Weiser’s vision of ubiquitous computing has already (Weiser, 1999) mainly
been fulfilled for many years in the form of the Internet of Things (IoT). We are al-
ready surrounded by numerous connected things, often without our noticing. These
things consist of a mixture of hardware, software, data, and services aiming to sup-
port and assist humans without being obtrusive and distracting or interrupting peo-
ple from performing a task. Typical applications are self-quantification, connected
health, smart home control and monitoring, infrastructure management, industry
4.0 (Talkhestani and Weyrich, 2020; Drews and Weyrich, 1997), and many more. It
concerns all domains in our life. Increasingly, the different domains and applica-
tions are interconnected so that the user can move and interact seamlessly between
these domains. Interaction with the IoT thus requires interaction paradigms with
ubiquitous interaction devices that are seamlessly present throughout the users’
daily lives and not bound to any specific things.

1.1. Motivation

When interacting with IoT, the smartphone often represents the central interface
between the user and the things. Although the smartphone is ubiquitous and seam-
lessly present, interaction using a smartphone is not natural and intuitive. It re-
quires too many interaction steps and cognitive attention. In addition to smart-
phones, more and more speech-based assistants are establishing as interaction
modalities for IoT. These are mostly available ubiquitously and seamlessly. More-
over, voice-based interaction is natural and intuitive. However, voice-based interac-
tion is not suitable for all situations, such as in public spaces, in crowds, or during
a conversation with another person.
Gesture interaction represents a promising modality. Gestures are naturally used

in inter-human communication. They also represent a promising modality for in-
teraction with the IoT as they can communicate spatial relations referring to the
IoT’s physical side. In particular, the use of micro finger gestures, which can be
performed easily and inconspicuously, represents a promising interaction. Micro
gestures can be performed with low cognitive load and, thus, rather unconsciously
(Wolf et al., 2011; Sharma et al., 2019). Since they consist of only small and incon-
spicuous finger movements, other people in the environment cannot perceive these
interactions.
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Rings equipped with sensors are a promising basis for ubiquitous gesture detec-
tion. Rings are a widely used and accepted article of jewelry in our culture, carrying
symbolic and mythical meanings. Due to their small size and form, they can be worn
all day without being obtrusive or drawing much attention. Therefore, equipping a
ring with sensors can realize a ubiquitous and unobtrusive gesture interaction de-
vice. Therefore it is no surprise that sensor rings gain more and more interest in
the human-computer interaction community (Shilkrot et al., 2015).
As stated by Shilkrot et al. (Shilkrot et al., 2015) for rings and Lee et al. (Lee

and Hui, 2018) in general for wearable interaction devices, current approaches of
wearable gesture interaction devices lack a rich range of interactions, which limits
the variety of applications. This is due to the fact that rings are only able to sense
the motion or the bend angle of a single finger. Possible solutions to this problem are
the use of multiple rings (Liang et al., 2021; Fukumoto and Tonomura, 1997) or rings
spanning multiple fingers (TapRing, 2017). However, both reduce the obtrusiveness
and comfort and thus the suitability for daily use.
This work presents a ring enabling a broad range of multi-finger interactions.

It utilizes capacitive sensing to measure the approximate distances to other fin-
gers. A prototype, PeriSense called, was developed and used for the evaluation.
This dissertation focuses on evaluating the capabilities and limitations of PeriSense
in the application of finger gesture recognition. It is expected that using capaci-
tive sensing enables a broad interaction space involving multiple fingers, as known
from other devices like camera-based approaches or data gloves. Consequently,
PeriSense would potentially be an unobtrusive interaction device that is available
throughout the daily routine.
In the following, the concrete contributions of this work are presented (Section

1.2) and it is described how they related to the thesis structure (Section 1.3).

1.2. Contributions

This thesis develops and evaluates a concept for a ubiquitous interaction device that
can be used seamlessly for different applications throughout the day. This disser-
tation aims to evaluate the capabilities and limits of capacitive proximity sensing
for enabling multiple finger gesture recognition with a ring. In the following, the
resulting contributions gained from this work are provided:

C1 First main contribution is a concept for a ring utilizing capacitive sensing to
enable multiple finger interaction.

C2: A self-contained ring prototype implementing the concept of a ring utilizing
capacitive sensing to enable multiple finger interaction is developed and de-
scribed. This prototype is called PeriSense and is used for the evaluation.

2



1. Introduction

Based on the results of the evaluations, the user feedback, and the experi-
ences made, knowledge is gained on how to improve this prototype towards a
final prototype.

C3: The technical evaluation of PeriSense will give insides into the properties of
the sensors and their resolution at different distances. Furthermore, knowl-
edge is gained about the susceptibility of capacitive fields to interference in
everyday life. Finally, these findings can be applied in general to the design of
capacitive sensing-based interaction devices.

C4: The evaluation determines the interaction space reading static, dynamic, and
around-device interactions. This allows the derivation of gesture sets and in-
teraction flows which are possible with PeriSense. It also helps to understand
the limitations in the recognition of specific interactions. This generic evalua-
tion prevents PeriSense from being tied to a specific application by a dedicated
interaction design. Instead, it allows interaction designers to create their in-
teraction applications. In addition to evaluating the interaction space, some di-
verse applications that have been implemented with PeriSense are presented.

C5: A finger tracking algorithm is presented that can map capacitive sensor data to
finger angles. Thus, PeriSense represents a ubiquitous finger tracking device.

C6: A framework is presented allowing the creation of interaction pipelines with-
out programming. This saves time and eliminates the need to program com-
plex interactive sequences. It also reduces the necessary knowledge about
interaction flows, gesture recognition, and machine learning. The framework
has various interfaces through which the interaction pipelines can be quickly
and flexibly integrated into applications. This allows the very fast and flexible
creation of interactive applications with PeriSense. The framework is designed
modular and flexible so that it would be easily possible to integrate further in-
teraction devices into the framework.

1.3. Structure

In the following, the thesis’s structure is described.

Chapter 2 presents the problem analysis consisting of the research challenges and
the research questions to be answered.

Chapter 3 illustrates the current state of the art in the related areas, providing
a general overview of wearable gesture interaction devices ranging from camera-
based approaches over wrist band-based approaches to finger-worn wearable en-
abling finger interactions. The chapter ends with a presentation of eRing, a pre-
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liminary work studying the general feasibility of the underlying concept of multiple
finger interaction with a ring using capacitive sensing.

Chapter 4 introduces the fundamental concepts of capacitive sensing and gives a
brief overview of applications in the field on human-computer interaction.

Chapter 5 presents the concept of multiple finger interaction with a ring using ca-
pacitive sensing. Also, it introduces PeriSense, a prototypical implementation of the
concept.

Chapter 6 presents the comprehensive evaluation of PeriSense. It consists of the
technical evaluation, the determination of the different interaction spaces, and the
finger tracking algorithm.

Chapter 7 presents a generic framework allowing the creation of interaction pipelines
without the need for programming. Additionally, it describes four implemented ex-
ample applications using PeriSense.

Chapter 8 concludes this work with a summary and outlook on future work.

Appendix A shows the intermediate prototypes that led to PeriSense. It also gives a
first outlook on the successor developed based on the findings in this thesis.

Appendix B presents all schematics, layouts, and components of PeriSense.

Appendix C presents an example interaction pipeline using the PeriSensePy frame-
work.
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This chapter describes the challenges to be overcome (Section 2.1) and the research
questions to be answered in this dissertation (Section 2.2).

2.1. Problem Statement

Interaction in the context of IoT is still challenging. The things to interact with are
partially hidden from the user and the variety of things is large. The variety of differ-
ent use cases and application domains is also significant. At the same time, however,
the transition between applications and domains is almost seamless. The diversity
of applications makes it difficult to create a uniform interaction concept that can
map all specific actions. Constantly changing the interaction device is not practical,
so an interaction device is needed that is available at all times and allows a wide
range of interactions. Studies revealed that users desire an unobtrusive wearable
in the form of jewelry that covers multiple domains and serves as an everyday com-
panion (Fortmann et al., 2015; Ledger, 2014). Overall, the challenges confronted in
this thesis are:

• Ubiquity: In order to be a full-day companion, the interaction device should
work independently of location, time, domain, and other external factors, e.g.,
illumination or crowded sceneries.

• Unobtrusiveness: The interaction device should not obstruct users’ daily rou-
tine or draw unwanted attention. Ideally, the device should disappear so that
the users forget that they wear an interaction device.

• Richness of interaction set : The gesture device should be able to distinguish
between a large number of different gestures in order to be applicable for as
many things, applications, and domains as possible (Shilkrot et al., 2015; Lee
and Hui, 2018).

2.2. Research Statement

Rings have good prerequisites to meet the challenges defined above. Rings are
usable independent of time and location, and they can become invisible to the user.
The drawback is that they lack a rich interaction set. This dissertation aims to
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extend the ring’s capability to recognize multiple finger gestures. For this purpose,
capacitive sensing is utilized. Consequently, the interaction space is to determine
and to study. In detail, the following questions are to be studied:

Q1 Which technical properties can be achieved using standard consumer elec-
tronic components? These properties involve the determination of the reso-
lution at different distances and the study of the influence of environmental
noise on the capacitive measurement.

Q2 Which gestures and interactions are possible and where are the limits? To
answer this question, it is aimed to determine PeriSense’s interaction space for
different interactions. For this purpose, there are the following sub-questions:

Q2-1 What is the static interaction space? Which fingers are in range and
which not in the case of static gestures such as postures? Which kind of
postures are possible, and which implications exist?

Q2-2 What is the dynamic interaction space? Which finger movements are in
range and which not? Which kind of gestures are possible, and which
implications exist?

Q2-3 What is the around-device interaction space? What kind of gestures can
be performed nearby the ring? Which gestures are distinguishable and
which not? Which kind of gestures are possible, and which implications
exist?

Q3 Can the interaction space increased by additional sensor data information?
The PeriSense prototype contains also a motion sensor. Does this motion sen-
sor contribute to the extension of the different interaction spaces?

Q4 Is it possible to map the ring data to a hand model in order to determine the
angles of each finger joint? If it is possible, how accurate is the determination
of the angles?

The main focus of this dissertation is the evaluation of PeriSense’s interaction
space. This work aims not to extend the capacitive sensing technology. To imple-
ment the concept, commercial state of the art components are used.
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Wearable interaction devices undergo a continuously increasing popularity in the
HCI community. This led to a wide variety of different wearables. This chapter
presents and discusses related work in the context of wearables enabling finger in-
teractions. It starts with an overview of finger-worn wearables and extends to arm
and body-worn wearables in general. It continues to give an overview of wearables
enabling finger tracking. Finally, preliminary work conducted prior to this disser-
tation is presented. This work studied the general feasibility of using capacitive
sensing for multiple finger interaction with a ring.

3.1. Finger-worn Wearables Enabling Finger Interaction

Probably the largest category of finger worn interaction devices is rings. Most of
them are equipped with motion sensors such as accelerometer (to sense accelera-
tion), gyroscope (to sense the change of orientation) and magnetometer (to sense
the relative orientation with respect to the earth) in order to sense gestures and
finger taps (Liang et al., 2021; Younas et al., 2020; Gupta et al., 2019; Ens et al.,
2016; Fukumoto and Suenaga, 1994; Gummeson et al., 2014; Hrabia et al., 2013;
Jing et al., 2013; Ketabdar et al., 2012; Nirjon et al., 2015; Wolf et al., 2013, e.g.).
This allows the recognition of a wide range of dynamic gestures and interactions in
mid-air and on surfaces. However, usually, only the movement of one finger or the
whole hand is captured. DualRing (Liang et al., 2021) utilizes two rings equipped
with motion sensors worn on the thumb and index finder. To capture all individual
finger’s movement, all fingers must be equipped with a ring (Hrabia et al., 2013,
e.g.). If a ring is combined with a sensor wristband and the sensor data is fused,
as in the case of FinGTrAC (Liu et al., 2020) and WRIST (Yeo et al., 2019a), then
the interaction variety can be expanded by including the orientation of the hand or
finger in relation to the wrist.
Another common type of sensors are magnetometers sensing the influence of per-

manent magnets in the close-proximity environment, such as uTrack (Chen et al.,
2013). Two magnetometers are worn on the ring finger, enabling 3D input by wear-
ing a magnet on the thumb. A similar configuration is proposed in (Reyes et al.,
2018), where a magnet is worn on a thumb ring and a magnetometer of a smart-
watch is used to sense the extension and reposition of the thumb in order to control
smartwatch applications. A similar approach is used by Ma et al. (Ma et al., 2011)
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where a magnet placed on the index finger is tracked by magnetometers mounted
on a wrist band. In contrast to these approaches, in (Simmons and Welsh, 2015,
2014) a magnetometer is worn on each finger and the magnet is placed on the back
of the hand. This configuration allows accurate finger tracking but it requires equip-
ping the whole hand. Parizi et al. (Parizi et al., 2019) follows a similar approach with
AuraRing, where instead of a magnet a coil is embedded in the ring. Several coil
sensors around the wrist measure the magnetic field, from which the finger position
is determined. Nenya (Ashbrook et al., 2011) and PairRing (Chung et al., 2018) use
magnets in the ring and magnetometers mounted on a wrist band to recognize ring
rotations along the finger axis. MagTouch (Park et al., 2020) and FingMag (Park and
Lee, 2019) use a Ring with a magnet to increase the touch precision on smartwatch
touch screens. The magnetometer of the smartwatch is used to determine the finger
position through the ring’s magnet.
Zhang et al. (Zhang et al., 2011) uses a piezo microphone to recognize slide and

tap gestures performed on a surface. The same approach is used by FingerSound
(Zhang et al., 2017a) and FingOrbit (Zhang et al., 2017b) enabling unistroke ges-
tures drawn with the thumb on the palm. These piezo microphone equipped rings
are worn on the thumb and recording the sound when the thumb is moving over
the palm. Additionally, a gyroscope is used to track the directional changes of the
thumb. This configuration allows a high accuracy recognition of Graffiti-style let-
ters.
Many ring devices provide touch areas for binary input. OctaRing (Lim et al.,

2016) for example, consists of eight touch areas for pressure-sensitive multi-touch
input enabling complex input patterns. Thumb-In-Motion (Boldu et al., 2018a) uti-
lizes a capacitive touch-matrix on a ring in order to enable thumb slide and tap
gestures recognition on the ring.
ThermalRing (Zhang et al., 2020) uses a low-resolution thermal camera mounted

on a ring. The ring is worn on the index finger of on hand while the camera points
sidewards. On the index fingertip of the other hand, there is placed a thermal
reflective tag. The ring has a thermal source emanating heat. If the tag is in the
camera’s field of view, the heat is reflected. This reflection is visible as a white
track-able spot in the camera image. This tag can also be placed on objects allowing
on-device interactions.
Currently, there exist only two rings sensing the movement of multiple fingers:

TypingRing and CyclopsRing. TypingRing (Nirjon et al., 2015) detects finger taps
on a surface in order to enable text input. It uses proximity sensors in order to detect
if the neighboring finger is next to the ring or not. CyclopsRing (Chan et al., 2015)
utilizes a fish-eye camera in order to enable a wide range of finger interactions.
The fish-eye camera point downwards capturing all fingers. However, the camera
lacks under fast and intense changes in illumination and the recognition has to deal
with occlusions and background noise. Furthermore, it is much more challenging to
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implement a resource-friendly image transmission and the corresponding gesture
recognition approach on a mobile phone, not to mention on the ring itself.
ThumbTrack (Sun et al., 2021) uses an array of infrared-based proximity sensors

placed around a ring. Conceptually, this concept is closest to that of this disser-
tation. However, ThumbTrack is only evaluated for recognizing thumb-based pinch
gestures and not for any further finger interactions. Also, the ThumbTrack approach
lacks of a self-contained concept for a implementation in the wild.
There exist a further couple of wearable finger interaction devices beside rings.

Most notable are nail covers (Gu et al., 2020; Shi et al., 2020; Hsiu et al., 2016; Kao
et al., 2015). They have similar capabilities such as ubiquity and unobtrusiveness.
While Nail+ (Hsiu et al., 2016) can only detect different force touch interactions,
NailIO (Kao et al., 2015) can distinguish on-nail finger swipe gestures. Shi et al. (Shi
et al., 2020) use a motion sensor mounted on the index finger’s nail to enable draw-
ing gestures on a surface. QwertyRing (Gu et al., 2020) uses a similar approach for
a virtual keyboard application.
Another approach is TIMMi (Yoon et al., 2015) a textile finger worn input devices.

It is worn on the index finger to measure its finger bend and recognizes touch events
with the thumb on TIMMi itself by the means of a conductive elastomer. A similar
but more flexible approach is proposed by FabHandWear (Paredes et al., 2021).
Rings equipped with sensors are a promising basis for ubiquitous gesture detec-

tion. Due to their small size and form, they can be worn all day without being
obtrusive or drawing much attention. Consequently, they depict a ubiquitous and
unobtrusive gesture interaction device. Despite rings offer many interaction possi-
bilities, most rings can only detect a particular interaction set, and the movement
detection is limited to one finger or the whole hand. Multi-ring concepts can pro-
vide a wide range of interactions. However, they lack comfort since all fingers must
be equipped with a ring as well as an energy supply and a resource-friendly signal
processing concept for multiple rings is needed. Current single ring approaches
cannot detect, for example, whether all fingers are formed into a fist or only one or
two fingers are bent. Only CyclopsRing can detect complex multi-finger gestures.
However, it uses a camera. This prevents objects from being held in hand during
the interaction. Also, the power supply over several hours, avoiding the lens from
becoming dirty and extreme illumination situations are challenging. In Addition, it
can cause privacy concerns for the user. In summary, rings bring good prerequi-
sites to be an everyday companion. However, they usually lack in providing a broad
interaction space.

9



3. Related Work

3.2. Arm and Body Worn Wearables Enabling Finger

Interaction

Besides rings also other wearables can enable the detection of finger interactions.
An obvious wearable enabling multiple finger interaction is a data glove (Lee et al.,
2019; Hsieh et al., 2019; Nguyen et al., 2019; Takada et al., 2019; Peshock et al.,
2014; Murao, 2015; Hsieh et al., 2016; Dipietro et al., 2008, e.g.). It allows the
equipment of a multitude of sensors, enabling it to detect and track the finger mo-
tions and touch interactions very precisely. However, sensor gloves suffer in tactile
feedback and comfort because users must wear them everywhere throughout the
day. This is uncomfortable in summer or wet conditions such as sports. Gloves are
thus more suitable for particular short-time purposes such as input for virtual re-
ality glasses to manipulate virtual objects or accurate machine control (Drews and
Weyrich, 1997, e.g.).
Another often found approach is the usage of a camera to track finger move-

ments. Some approaches mount the camera, for example, on a head-mounted dis-
play (Chatain et al., 2020; Dominguez et al., 2006) or on a shoulder (Soliman et al.,
2018). However, here, for the interaction the fingers have to be brought into the
camera’s field of view. Other approaches place a camera on a wrist. Wu et al. (Wu
et al., 2020a) place a camera at the top of a wrist band. The gestures are recognized
by distinguishing the hand contour caused by the different gestures and postures.
Opisthenar (Yeo et al., 2019b) uses a similar approach. Instead a rgb-camera it
uses a depth camera that captures overstretching finger postures so that the finger
tips are in the camera’s field of view. Both approach, however, are limited in the
interaction manifold and in case of Opisthenar overstretching finger postures lead
fast to fatigue. On the opposite to place the camera on the top of the wrist, Ubi-
Hand (Ahmad and Musilek, 2006) and Digits (Kim et al., 2012) use a camera placed
downwards capturing the palms inside. This allows accurate tracking of all fin-
gers. FingerTrak (Hu et al., 2020) uses four thermal cameras placed around a wrist
band to enable to full hand tracking. RotoWrist (Salemi Parizi et al., 2021) applies
a similar approach using infrared light-based sensors to track the wrist’s orienta-
tion and motion. WristLens (Yeo et al., 2020), Yamato et al. (Yamato et al., 2020),
WatchSense (Sridhar et al., 2017), PalmType (Wang et al., 2015a), and PalmGesture
(Wang et al., 2015b) use a wrist band mounted camera for the recognition of ges-
tures and interaction performed with the other hand’s index finger on the arm or
hand surface. Camera-based wearables can enable manifold interactions, precise
tracking, and high recognition performance. However, in the context of ubiquitous
computing, there are three major drawbacks of these interfaces: occlusion, illumi-
nation sensitivity, and a limited field of view (in dependence on the mounting posi-
tion). In the case of a head or body-mounted camera, for example, the user must
bring his limbs into the camera’s active field of view, which is in the front of the
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user’s body in this case. This can be exhausting for the user. Further, such interac-
tions need some space in front of the user’s body, making it challenging to gesture,
for example, in a crowded space. This interaction style can also make some users
feel strange and awkward by performing obtrusive gestures in public. In contrast,
wrist-mounted camera solutions allow unobtrusive finger gestures, but they have to
deal with occlusion by jackets, gloves, or other clothes and objects or dirt. Despite
this, all camera-based approaches have to deal with changing and extreme illumi-
nation conditions, such as strong direct sunlight or absence of light, and cluttered
background noise. Additionally, the transmission and processing of images still re-
quire many resources. Consequently, building a self-sufficient and energy-efficient
camera-based wearable is, therefore, still a considerable challenge.
BeamBand (Iravantchi et al., 2019) uses an array of ultrasonic sensors mounted

on a wrist band to detect different hand gestures. However, it is confronted with
similar problems as the camera-based approaches.
Finger movements causes a displacement of the bones and chords changing the

arm contour. FirstVR (Tamaki et al., 2019), Hosono et al. (Hosono et al., 2019), Kara-
sawa et al. (Karasawa et al., 2019), and Fukui et al. (Fukui et al., 2011) use photo
reflector sensors to detect changes in arm contour. Furthermore, there are many
different methods to measure these changes. Bian et. al(Bian and Lukowicz, 2021),
GestureWrist (Rekimoto, 2001), and CapBand (Truong et al., 2018) apply capacitive
sensing, WristFlex (Dementyev and Paradiso, 2014) uses pressure sensors, Ortega-
Avila et al. (Ortega-Avila et al., 2015) utilizes infrared lights, EchoFlex (McIntosh
et al., 2017) applies ultrasound imaging, and Tomo (Zhang and Harrison, 2015) use
tomography to measure these arm contour changes. Also, electromyography (EMG)
measuring the electrical activity produced by muscles in the forearm can be used
to detect and distinguish finger movements as shown, for example, by CAPG-MYO
(Dai et al., 2021), Zhang et al. (Zhang et al., 2018), Amma et al. (Amma et al., 2015),
Haque et al. (Haque et al., 2015), and Huang et al. (Huang et al., 2015). EMPress
(McIntosh et al., 2016) combines arm contour measuring with pressure sensors and
muscle activity measurement with EMG sensors to detect finger gestures. Depend-
ing on the used technique, the interaction space for these wrist bands ranges from
rough hand movements to finger movements. Fine-grained micro gestures are hard
to detect. Additionally, most sensing techniques are sensitive regarding noise and
changes in displacement. Some also lack comfort since they have to be fixed tight
around the arm in order to be able to measure the arm contour and chords displace-
ments.
Noticeable is the capacitive sensing-based wrist band proposed by Bian et. al(Bian

and Lukowicz, 2021). It is one of the very few self-sufficient interaction devices
meeting challenges like energy consumption and gesture recognition in the wild.
Even the deep learning-based gesture recognition is performed on the ring’s micro-
processor. Most approaches lack a concept for self-sufficient power supply and data
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processing in the wild.
Kato (Kato and Takemura, 2016) and Yokota (Yokota and Hashida, 2016) use a

high-frequency sound that is induced into the forearm. Hand and finger movements
cause a frequency shift of the induced sound which can be applied to recognize
finger gestures. SoundCraft (Han et al., 2017) in the opposite uses microphones
integrated into a smartwatch to record environmental sounds, e.g., moving the fin-
ger over a desk, which is then utilized for hand gesture and interaction recognition.
Laput and Harrison (Laput and Harrison, 2019) detect fine grained hand activities
using high-speed acceleration data from a Smartwatch. In combination with motion
sensors, they are able to detect a wide spectrum of hand and finger gestures. On the
other hand, they can only detect broad gestures and no subtle finger movements.
AuraSense (Zhou et al., 2016) enables around-smartwatch interaction by electric

field sensing. It enables the detection of finger movements up to 3 cm around the
device. It allows primarily the detection of slide movements. A similar approach
is realized by Watanabe et al. (Watanabe and Terada, 2018) applying ultrasound.
FingerIO (Nandakumar et al., 2016) generalizes this idea. It transmits an inaudible
signal and tracks the echoes of the moving finger with a smartphones’ microphone.
It works even when the phone is in the pocket. However, the recognition is chal-
lenging when the device is moving. Additionally, the computation requires many
resources resulting in very high power consumption on the smartphone.
SeeSaw (Wu et al., 2018a) uses the smartwatches’ motion sensor to detect arm

rotation for smartwatch control. fSense (Buddhika et al., 2019) uses a photoplethys-
mogram sensor in a smartwatch to recognize some hand gestures.
A special case of wearables are on-skin interfaces consisting of stick-able sen-

sors such as PDMSkin (Röddiger et al., 2020) and Tacttoo (Withana et al., 2018)
or implantable interface (Holz et al., 2012). These interfaces are still limited for
2D touch and tap gestures. Similar considerations also apply to smart textiles (Wu
et al., 2020b; Yoon et al., 2015) which can additionally also be used to detect finger
or arm bends (Wu et al., 2018b; Yoon et al., 2015).
Despite all advantages such as general acceptance, unobtrusiveness and the pos-

sibility of integration into smartwatches, the wrist bands cannot sense subtle finger
gestures, are partially sensitive to noise and uncomfortable in case of arm contour
measurement devices or need still too many resources in case of camera-based de-
vices.

3.3. Finger Tracking Using Wearables

Besides finger gesture recognition, there also exist wearables to track all finger
angles continuously. Lee et al. (Lee et al., 2019) developed a glove for virtual reality
applications. It tracks the thumb, index finger, and middle finger with high precision
using motion and soft sensors. Additionally, it provides haptic feedback measuring
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the fingertip contact force. However, the extensive sensor equipment providing this
high precision requires a cable for power supply and data transfer. In the context
of virtual reality, it is acceptable, but in the context of ubiquitous computing not.
Kim et al. (Kim et al., 2016) provides a similar glove to track all fingers with similar
precision and haptic. Nassour et al.(Nassour et al., 2020) provides a more everyday
use-able glove but with some lower precision. It uses conductive sensors in silicon
tubes. This allows a simple adaptation to different glove sizes.
Hrabia et al. (Hrabia et al., 2013) developed a customize-able glove based on

motion sensors. Sensors for each finger joint can be added or removed. Missing
sensors respectively joint data will be approximated.
FingerTrak (Hu et al., 2020) uses four thermal cameras placed around a wrist

band to track 20 finger and hand joints. The joint angles are estimated from finger
postures using a deep neural network. The average mean error over all joints is
6.46 degrees. Cluttered background and re-mounting can increase the error to 8.06

degrees. Digits (Kim et al., 2012) tracks all fingers using a depth camera mounted
on a wrist. It is placed downwards, capturing the palms inside. For each joint, an
average mean error of fewer than 9 degrees is reported.
WU-Hand (Liu et al., 2021a) and Liu et al. (Liu et al., 2021b) enable full finger

tracking with a electromyography-based wrist band by utilizing a deep learning ap-
proach.
Ma et al. (Ma et al., 2011) and Lyons et al. (Lyons, 2020) place a magnet on the

index fingers’ nail, which is tracked by magnetometers mounted on a wrist band.
This method allows, however, only the tracking of one finger. MagX (Chen et al.,
2021) solves this issue by developing an enhanced sensor array allowing a flexible
placing of multiple magnets. Simmons et al. (Simmons and Welsh, 2015, 2014)
places a magnetometer on each finger segment and a strong magnet at the wrist.
This enables high precision tracking. The average mean error over all fingers is
2.55 degrees. The drawback, however, is that all fingers have to be equipped with
sensors.
There exists no ring providing finger tracking, not even for just one finger. Ma

et al. (Ma et al., 2011) and Lyons et al. (Lyons, 2020) provide the smallest setup
equipping one finger and the wrist. All remaining approaches equip all fingers or
using a wrist band. It would be possible to track a single finger by just equipping the
finger with a soft sensor or conductive sensor. However, this would require a textile
tube as a carrier for the sensors. Such a textile, however, would reduce the comfort
in everyday usage. Further, there is no device sensing multiple fingers except wrist
band-based approaches.
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3.4. eRing: A Preliminary Feasibility Study

At the beginning, there was an idea to create electric fields around a ring and to
measure their distortions by the fingers’ movements. Measuring these disturbances
could provide feedback on the finger movement or even current finger position and
thus enable gesture recognition. Before the dissertation, the general feasibility
of this assumption was examined. For this purpose, a prototype called eRing was
developed to explore if it is worth studying the idea in more depth in this dissertation
(Wilhelm et al., 2015).
In the following, this section presents a brief summary of this preliminary work

and the results.

3.4.1. Concept

Electric fields are omnipresent and act on electric charges, while capacitance is
the ability to store this charge. Typically a capacitor is presented as a parallel pair
of two metal plate electrodes which constitute an electric field. For electric field
sensing, one electrode that builds up a capacitor with its dielectric environment
is sufficient. In the case of a nearby moving conductive object the capacitance
changes as a consequence. This variable capacitance is therefore a well-fitting way
of measuring the proximity of the conductive human skin and is widely used as a
non-contact touch and proximity sensor (Baxter, 1996).
To measure the variable capacitance, a simple RC circuit(Figure 3.2) was used

for the first prototype. In this operation mode, the changes of the surrounding
electric field are sensed by measuring the charging time of the electrode. Setting
the send pin to a high value will have a measurable delay on the receive pin due

Figure 3.1.: Visualization of the preliminary idea.
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Figure 3.2.: Circuit for a single electrode of eRing.

to the charging of the capacitor. This rise time τ is proportional to the product of
resistance and capacitance, which enables the inference of the sought capacity Cx.
Apart from the capacitor electrode the only explicit component is thus the resistor.

Low values will result in shorter charging times, while high values will result in
a more sensitive response. Hence there’s a trade-off between response time and
resolution.

3.4.2. Implementation

The constructed prototype called eRing (Figure 3.3) consists of four components. A
3D printed ring provides the body to attach the sensor system. Four copper foils
are attached to the ring’s lower sides and act as distinctive electrodes for capacitive
sensing. To prevent direct contact between skin and electrode, adhesive tape is
used as isolation. A small board with four 10MΩ resistors is mounted on top of the
ring and serves as the driving circuit for the capacitive measurement. Sitting on its
top, an Arduino Nano1 sends step inputs and measures the respective time delay by
utilizing the open source CapSense library written by Paul Badger2. The Arduino
is connected via USB to a PC for processing and classification. Due to its minimal
design the system consumes a total power of maximum 0.2W. The consumption
is almost entirely determined by the micro controller. The sensor driving board
consumes 10µW.

3.4.3. Gesture Recognition

In order to classify gestures in the four dimensional sensor data, we use a 1-nearest
neighbor (1NN) classifier with lucky time warping (LTW) (Spiegel et al., 2014) as a
similarity measure. It has been shown that the 1NN classifier is a good choice for
time series classification (Xi et al., 2006), such as gesture recognition. Additionally,
it is parameter-free, requires only a small number of training examples, provides

1Arduino Nano’s website: https://store.arduino.cc/arduino-nano (accessed on 21.03.2021)
2CapSense Arduino library: http://playground.arduino.cc/Main/CapacitiveSensor (accessed on
21.03.2021)
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Figure 3.3.: eRing prototype.

easy to comprehend results, and has in connection with LTW a linear time and space
complexity. This allows the implementation of the classifier on microcontroller.
Since we obtain a four-dimensional time series from the ring, we have to replace

the one-dimensional distance function d(qi, ci) in (Spiegel et al., 2014, Eq. 7) with:
d(qi, ci) =

∑︁D=4
d=1 (qi,d, cj,d)

2, where qi,d is the dth dimension in ith data point in the
time series Q, cj,d is the dth dimension in jth data point in the time series C, and
D is the number of dimensions. For the prototype presented in this paper, we in-
troduce two classifiers: one for static finger postures and one for dynamic finger
gestures. The difference between both is the preprocessing step of the time series.
For the dynamic finger gestures, we apply the z-score normalization: Qz = Q−µ(Q)

σ(Q) ,
where Q is a times series to be normalized, µ(Q) is the mean of Q, σ(Q) is the stan-
dard deviation of Q, and Qz is the normalized time series. This normalization is
important because the amplitudes of one gesture class can have strong variations.
These variations have a big influence on the similarity measure and can lead to false
classifications.
In contrast to static finger postures, there is no time varying pattern but different

constant amplitudes. A z-score normalization would eliminate the distinguishabil-
ity of different posture classes, because after the normalization the posture data is
close to the zero-baseline. Accordingly, for dynamic finger gesture recognition we
apply the z-score normalization before we classify the gesture with the 1NN classi-
fier and the recognition of static finger gesture is based on the raw sensor data for
the 1NN classification.
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d 0 4 7 10 14 17
µ 1.5365 1.43 1.4089 1.3954 1.3918 1.39
σ 411 140 79 27 13 6
µf 1.6801 1.5420 1.5134 1.5046 1.4996 1.4980
σf 876 190 79 32 14 8

Table 3.1.: Mean µ and standard deviation σ values of the 20 runs for sensor 1 over
different distances d in approximated millimeter. The index f indicates
the signal, which was recorded with the ring worn on the finger.

3.4.4. Evaluation

In order to show the general feasibility of the idea of an electric field-based ubiq-
uitous gesture device, three experiments were conducted to evaluate eRing. In the
first experiment, the range of the electric field and the sensitivity were explored.
Based on these results, six postures and six dynamic gestures were defined to test
the recognition capabilities of the prototype.

Experiment 1 – Sensitivity and Field Range Test

First, the field range and sensitivity of eRing were tested. For this, a WACOM
pen tablet3 and pen was used to measure the ranges. The ring was fixed on the
tablet. The pen was held between thumb and the index finger of the left hand.
The index finger was placed at the ring, so that it touched one electrode, and it was
moved 2cm away from the electrode along a ruler fixed on the tablet while recording
the sensed values of the electrode and the position of the pen. To simulate the
influence of a finger inside the ring, the ring was placed on the right hand index
finger and performed the same procedure as before. The sensor values, the moved
distances in pixel (2cm equals about 90 pixel), and the time line were written in a
file. Afterwards, the mean and standard deviation of the 20 runs was computed.

Results The experiment revealed that the average field range is about 1cm. The
values increase only slightly for distances bigger than about 5mm. For smaller dis-
tances clear signal changes can be observed. However, with decreasing distance,
the standard deviation increases rapidly. Table 3.1 shows this relationship for sen-
sor 1. It reveals also that the standard deviation increases and the field range
decreases, if the ring is worn on the index finger.

Discussion This experiment shows that the electric field of eRing is small. For
this reason, only the tracking of neighboring fingers is realistic. Since the effective
field range is only about 5mm, the neighboring finger should be close to the ring.

3WACOM Intous™3 Graphics Tablet PTZ-1230
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(1) Hand Open (2) Fist (3) Two

(4) Pointing (5) Ring (6) Grasp

Figure 3.4.: Finger postures used in experiment 2.

Experiment 2 – Finger Posture Recognition

In a second experiment, it is aimed to show the feasibility of detecting finger pos-
tures with eRing. Based on the results of experiment 1, six postures involving the
thumb, the index finger, and the middle finger (Figure 3.4) were defined. Due to
the limited range of the prototype gestures were chosen that can be distinguished
based on the position and distance of thumb and middle finger if the ring is placed
on the index finger (cf. Figure 3.3). Fifty examples for each posture were gathered
in one session from one user. In total, 300 posture examples were collected. For
this process, an evaluation software were used which asked the user to perform a
certain posture. The sequence of postures to perform was random and no posture
was chosen in sequence. In order to be able to segment properly the postures for
the offline classification, the participant labeled the postures with a button installed
with a wire on eRing. Every time he moved his finger in the requested position, he
pressed the button for at least one second. The four dimensional sensor data, the
time line, the requested labels and the button state were written in a file.
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Figure 3.5.: Confusion matrix for experiment 2.

After the recording, the labeled postures were extracted using a script which
stored them in a suitable data structure. In order to decrease the influence of the
selected training examples and to provide reproducible results, a cross-validation
was performed. The data set was split into 10 sequential partitions. Each partition
contained 30 training examples. These are 5 examples for each posture, which fits
a practical size for online gesture recognition. We took one partition as the training
set and the remaining nine were used as test set. This procedure was repeated
for each of the 10 partitions. For the classification of the postures, the raw sensor
data and a 1NN classifier with lucky time warping (LTW) (Spiegel et al., 2014) as
similarity measure was used.

Results The mean error rate of the 10 runs in experiment 2 was 0.027. Figure 3.5
contains the confusion matrix of the experiments where it can be identified which
postures were miss-classified. The columns represent the posture classes and the
rows represent the class as which the classifier labeled the examples for this pos-
ture. The numbers of the column and the row headers correspond to the posture
numbers in Figure 3.4. The matrix summarizes the results of all 10 runs and the val-
ues were normalized to 1 (matrix value / (45 test examples per posture * 10 runs)).
Due to rounding bias, some columns do not sum up to one. The matrix shows that
the postures "Two" (3), "Ring" (5), and "Grasp" (6) show the best recognition per-
formance. Some examples of the posture "Fist" (2) were assigned to posture "Hand
Open" (1). The postures "Hand Open" (1), "Fist" (2), and "Ring" (5) received some
false-assignments by "Fist" (2), "Pointing" (4), and "Hand Open" (1), respectively.
Only "Two" (3), "Pointing" (4) and "Grasp" (6) received no false-assignments.
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(1) Wipe (2) Circle Left (3) Square Right

(4) Pinch (5) Snap (6) Drop

Figure 3.6.: Finger gestures used in experiment 3.

Discussion The experiment revealed that it is possible to distinguish between fin-
ger postures including thumb, index finger, and middle finger with an average of
97% correct classified test examples. Most miss-assignments can be explained by
the limited range of the electric field. For example, during the execution of "Hand
Open" (1), the thumb was sometimes too far away from the ring and was conse-
quently, classified as "Ring" (5) or "Two" (3). If the fist was not fully closed, posture
"Fist" (2) was sometimes classified as "Hand Open" (1). The posture "Pointing" (4)
performed worst because it produces a similar signal pattern to the posture "Fist"
(2) if the middle finger was in effective field range. Overall, all postures had in
average over 90% of correct results and are, thus, suitable for the usage with eRing.

Experiment 3 – Dynamic Finger Gesture Recognition

After the feasibility of eRing to recognize finger postures was evaluated, it is aimed
now to show the feasibility to recognize dynamic finger gestures involving thumb,
index and middle finger. In this experiment, the recognition of six gestures (Figure
3.6) were tested. The data in this experiment was recorded under the same condi-
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Figure 3.7.: Confusion matrix for experiment 3.

tions as in experiment 2 for the posture recognition. In difference to the posture
recognition, a z-score standardization to each gesture example was applied before
the classification was run.

Results The results of experiment 3 are mapped into a confusion matrix (Figure
3.7) in the same way as described in the results of experiment 2. It shows a mul-
tifarious distribution of miss-classified examples. The average classification rate of
each class was 0.91. The outliers are "Drop" (6) with 1.00 and "Square" (3) with 0.80.
The overall mean error rate of the 10 runs in experiment 3 is 0.094. The gestures
"Circle" (2) and "Square" (3) had the broadest distribution of miss-classified exam-
ples. Most miss-classified examples of the gesture "Square" (3) were assigned to
"Pinch" (4) and vice versa.

Discussion This experiment showed that eRing is able to detect a broad range
of gestures. It enables the recognition of index finger movements (2, 3, 5, 6) as
well as of thumb (1, 4) and middle finger (5) movements close to the index finger.
The same issue with the limited field range as observed in experiment 2 occurs in
context with the dynamic gestures. If the fingers are further away from the ring
than they should, the gesture is miss-classified. For example, if the thumb is out of
the field range during the "Wipe" (1) gesture, then it is classified as "Snap" (5) or
"Square" (3). However, in spite of the lower overall recognition rate in comparison
to the postures, all gestures are suitable for the usage with eRing.
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3.4.5. Discussion and Limitations

In this preliminary work, a novel ubiquitous gesture interaction device called eRing
was proposed and its feasibility evaluated. It consists of a ring equipped with four
electrodes spanning an electric field around the finger. Wearing eRing on the index
finger, finger postures and gestures involving the thumb, index finger and middle
finger can be recognized.
Experiments showed that despite severe limitations in the prototype and no op-

timization in the detection algorithm the prototype is a promising foundation for
distinguishing finger postures and gestures. To overcome limitations in the range of
the electric fields a new prototype should be build using an oscillating voltage and
a different measuring mode for the variations in the electric field.
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4. Capacitive Sensing

Capacitive sensing is a well-studied and widely applied technology. Probably the old-
est and most famous example of an application is the Theremin1 a non-contacting
electronic music instrument. Today, it is impossible to imagine our everyday life
without this technology. For example, the touchscreens of smartphones are based
on the principle of capacitive sensing. Also, many sensors such as accelerometers,
which can be found in every smartphone and many other devices today, are based
on this technology. This chapter introduces the basic principles of capacitive sens-
ing. It is limited to the slightest necessary details to understand and reconstruct
this work. Readers interested in more details in the fundamentals of electrostatics,
circuit basics, or in further applications of capacitive sensing are requested to refer
to the comprehensive book from L.P. Baxter (Baxter, 1996), e.g.
In the following, this chapter explains first the basics of capacitance and a ca-

pacitor (Section 4.1). Afterward, it introduces capacitive sensing (Section 4.2) and
discusses its advantages and disadvantages (Section 4.2.3). The chapter closes with
a brief overview of capacitive sensing, specifically in the field of human-computer
interaction (Section 4.3).

4.1. Capacitive Sensor Basics

Since capacitive sensing is based on the capacitive coupling principle, this section
introduces the capacitor’s basics. The presented concepts and principles are sim-
plified, requiring no deeper knowledge in physics, such as Maxwell’s equations.
L.P. Baxter (Baxter, 1996), e.g., gives a detailed derivation of these equations and
concepts.

4.1.1. Electrical Charge

All elements consist of atoms. According to the atom model theory, an atom com-
prises an atomic nucleus and an atomic shell. The atomic nucleus contains posi-
tively charged protons and electrically neutral neutrons. The atomic shell consists
of negatively charged electrons moving around the nucleus. An atom is electrically
neutral if the number of protons equals the number of electrons. If more electrons

1Theremin, invented by Lev Sergeyevich Termen in 1920: https://en.wikipedia.org/wiki/Theremin
(accessed on 30.03.2021)
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4. Capacitive Sensing

Figure 4.1.: A capacitor storing electrical charge in a circuit.

are present, the atom is negatively charged. If more protons are present, it is posi-
tively charged. The electric charge of a body indicates how large its electron surfeit
or deficiency is. The charge has the symbol Q, and the unit is C (Coulomb). The
electric charge is a multiple of the elementary charge e, where e = 1.602 · 10−19C.
Consequently, an object’s charge can be expressed as Q = N · e, whereas N is the
number of charges.
Electric current is the electric charge flow through an object that produces no

net loss or gain of electric charge. The interrelation between charge and electric
current I can be represented as follows: Q = I · t, where t is the time. From this
equation, the following relationship is derived: 1A s = 1C. In other words, if a
current of one ampere (1A) flows through an electrical conductor for 1 s, a charge
of 1C is transported through the conductor cross-section.

4.1.2. Dielectric Constant

The Coulomb’s law describes the force F between two point chargesQ1 andQ2, sep-
arated by rmeters: F = Q1Q2

4πε0εrr2
. The symbol ε represents the permittivity relating to

a material’s capability to transmit an electric field. The material’s net capacitance,
thus, depends on the dielectric constant. The constants ε0 = 8.854× 10−12 Fm−1

and εr indicate the dielectric constant and the relative permittivity, respectively.
The relative permittivity of a material is the dimensionless ratio of its permittivity ε

to the permittivity of the vacuum ε0.

4.1.3. Capacitor

A capacitor is a passive electrical component that stores an electric charge’s po-
tential energy in an electric field. Generally, it is composed of two conducting elec-
trodes separated by a non-conducting material. Figure 4.1 depicts a capacitor in a
circuit. As soon as the switch is closed, electrical charge is stored on these elec-
trodes. The charge is stored until the potential difference between them is equal
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Figure 4.2.: Lumped circuit model.

to the applied source voltage. After disconnecting the source voltage, the electrical
charge remains in the electrodes. Since there is no perfect insulator, the charge is
lost by leakage. The capacitor also loses charge when another component in the
circuit consumes the stored energy.

4.1.4. Capacitance

In simple terms, the electrical capacitance indicates the capacity for electrical char-
ges Q. The symbol of the capacitance is C, and the unit of measurement is Farad F .
The electrical capacitance C between two electrically conducting objects separated
from each other is equal to the ratio of the stored quantity of charge Q and the elec-
trical voltage U between them: C = Q

U . Based on this equation, the capacitance of a
plate capacitor can be computed as follows: C = ε0εr

A
d , where A is the area of each

plate in m2, and d is the distance in meters between the two plates. The detailed
derivation is described in (Baxter, 1996), e.g. The capacitance increases with the
enlargement of the surface and the plate distance reduction.

4.2. Capacitive Sensing

Capacitive sensing is a technology detecting contactless the presence or absence
of any objects. It is based on measuring the change of capacitance of a capac-
itor system. One of the first studying capacitive sensing in context of human-
computer interaction extensively are Smith and Zimmerman (Zimmerman et al.,
1995; Smith, 1996, 1999, e.g.) at the MIT. Recent continuing contributions were
made at the Technische Universität Darmstadt for example by Wimmer, Braun, and
Grosse-Puppendahl (Wimmer et al., 2007b,a; Wimmer, 2011; Braun et al., 2015;
Grosse-Puppendahl et al., 2013a,b, 2017, e.g.). In the following, this principle and
the measurement modes are explained as well as the advantages and limitations.
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4.2.1. Principles of Capacitive Sensing

Capacitive sensing is a technology to measure the change of a capacitor system.
Such a capacitor system consists of at least two electrodes in the context of capac-
itive sensing. Depending on the application, the electrodes can be made of various
materials and substances, such as copper, plastic, textiles, paint, or even human
skin. As described in section 4.1, a capacitance exists between two electrodes.
Figure 4.2 depicts a simplified lumped circuit model for a capacitive system with

a transmit electrode Et supplied with a voltage, receive electrode Er, and an con-
ductive object, in this case a hand. There exists a capacitance Ctr between the
transmit and receive electrode. If a hand, which is connected to the electrodes via
the ground, approaches the electric field between the electrodes, the hand is ca-
pacitively coupled into the system. It creates a capacitance Cxt and Cxr between
the electrodes changing the capacitance Ctr. All electrodes in the system must be
connected through a common ground (Baxter, 1996). In the simplest case, it can
be the earth. The capacitances Cxt and Cxr are proportional to the overlap between
the corresponding electrode and the opposed conductive object. The relationship
between capacitance C, the area of overlap A, and the object proximity d is given
by C = ε0εr

A
d , where ε0 is the dielectric constant and εr the relative permittivity (see

also Section 4.1). In addition to the capacitances Cxt, Cxr, and Ctr, further capac-
itances are included in the measurement, such as the intrinsic human body capac-
itance Ci and the inevitable parasitic capacitances Cpt and Cpr, which are present
in every physical circuit. In principle, device pins and the presence of ground re-
turn lines in a circuit design add parasitic capacitances that are summed up in the
measured total capacitance.
The capacitance at the measuring electrode can be determined in different ways.

In the case of a DC voltage, it can be approximated by measuring the time it takes to
charge and discharge the electrode. This method is very simple, but it is also very
limited in resolution and very slow in measurement, so it is primarily suitable for
touch-buttons. Usually, however, an AC voltage is applied, and thus, an oscillating
field is generated. The capacitance is then usually determined by the change of the
displacement current.
Many factors influence the measurement, such as temperature variations, circuit

crosstalk, improper grounding, or shielding. All factors that must be considered in
circuit design are described in detail in (Baxter, 1996).

4.2.2. Measurement Modes

In the application domain of human-computer interaction, there are different sensor
configurations for measuring capacitance (Grosse-Puppendahl et al., 2017). First,
it is distinguished between active and passive capacitive sensing. In active sensing,
the transmit electrode Et is controlled driven by a specific voltage. The transmit
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(a) Loading mode (b) Shunt mode

(c) Transmit mode (d) Receive mode

Figure 4.3.: Capacitive measuring modes.

electrode Et is capacitive coupled with the receive electrode Er. Passive setups in
the opposite are driven by environmental sources emitting an electric field.
The measurement modes are classified by the relative position between the human

body and the transmit and receive electrodes (Et and Er respectively). Figure 4.3
depict simplified these modes for active capacitive sensing.
The simplest mode is the loading mode (Figure 4.3a). A single electrode is driven

with a specific voltage creating an electric field. Any object sharing the same ground
increases the system’s capacitance by approaching the electrode.
The shunt mode consists of a transmit and receive electrode (Figure 4.3b). The

transmit electrode generates an electric field between both electrodes. Approaches
a conductive object the electric field, it is coupled to the electrodes and grounds of
the electric field. This reduces the displacement current between the transmit and
receive electrodes.
The transmit mode also uses a transmit and a receiving electrode generating an

electric field between them (Figure 4.3c). The difference to the shunt mode is that
the human body is very close to the transmitting electrode. The body acts as an
extension of the transmit electrode, increasing the range between the body and the
receiver electrode. The receive mode is the inverse of the transmit mode (Figure
4.3d). Now, the body is close to the receive electrode.

4.2.3. Advantages and Limitations of Capacitive Sensing

Capacitive sensing has a couple of advantages in opposite to other sensing tech-
nologies. The most significant advantage is probably the variety of materials for the
electrodes. The electrodes can have any size and shape. They can have the dimen-
sions of square meters or tiny square millimeters. They can be curved, flexible, or
stretchable. Equally diverse are the material options, which classically range from
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copper over textiles to paint. This allows for the unobtrusive and diverse placement
of the electrodes. In addition, the electrodes can be hidden under other materi-
als, such as the desk surface, without affecting the measurement. This also means
no occlusion problem as known from other sensors, such as cameras or ultrasonic
sensors.
The electronics also usually use low-cost and low-power components. Another

advantage of capacitive sensing is that data rates of 100Hz and more can easily be
achieved. In addition, the data has low complexity and can therefore already be
pre-processed and analyzed on the microcontroller.
The electrodes have a wide field of view at a very close distance. On the other

hand, capacitive sensors can not focus because of their one-dimensionality. It can
only be measured that the object is close to the electrode but not in which area.
Another potential difficulty is imposed by the nonlinear relationship between prox-
imity and measured capacity. While movements close to the electrode result in
drastic changes in capacitive measurements, its sensitivity decreases at increasing
ranges quickly.

4.3. Applications in the Context of Human-Computer

Interaction

Capacitive sensing is a well-known technology since many decades. It has already
been widely used for a long time, especially in the industrial environment, for exam-
ple for measurement of pressure, liquid level, balances, linear position, thickness of
objects, and proximity or as sensor technology for electronic switches and sliders,
accelerometer, digital level sensors, proximity sensors, microphones, vehicle detec-
tion sensors, pressure sensors, touch screens, or track pads. However, research
and applications in the field of human-computer interaction hardly existed for many
years. For a long time, applications were limited to capacitive touchscreens, but-
tons, and sliders, with a few exceptions. In the nineties, Smith and Zimmerman
(Zimmerman et al., 1995; Smith, 1996, 1999, e.g.) at MIT started to investigate
capacitive sensing in the context of human-computer interaction and to create ap-
plications with it. In recent years, the advantages of capacitive sensing have been in-
creasingly recognized, and hundreds of diverse applications have been implemented
with it. Grosse-Puppendahl et al. (Grosse-Puppendahl et al., 2017) have done a com-
prehensive survey classifying the approaches using capacitive sensing in the field
of human-computer interaction. In the following, a selection of works that show the
diversity of applications is presented.
The application cases are very diverse. They include, for example, indoor local-

ization (Valtonen et al., 2012; Sousa et al., 2013, e.g.), user distinction (Pickering,
2008; Dietz and Leigh, 2001, e.g.), gesture recognition (Matthies et al., 2021; Wim-
mer, 2011; Grosse-Puppendahl et al., 2014, e.g.), interaction with everyday objects
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(Sato et al., 2012; Zhang et al., 2017c, e.g.), on-body and on-skin interaction (Zhang
et al., 2016; Lissermann et al., 2013, e.g.), around-device interaction (Zhou et al.,
2016, e.g.), and multi-touch displays (Voelker et al., 2015; Lee et al., 1985, e.g.).
Popular applications also include smart textiles, which are equipped with capaci-

tive sensors to enable, for example, touch interaction (Singh et al., 2015; Poupyrev
et al., 2016, e.g.), gesture recognition (Bello et al., 2021; Gong et al., 2021; Wu
et al., 2018b, e. g.), activity recognition (Wimmer et al., 2007b; Cheng et al., 2013;
Rantanen et al., 2013, e.g.), or vital data tracking (Ueno et al., 2007; Oum et al.,
2008, e.g.).
Capacitive sensing finds also application in the context of wearable-based finger

and micro gesture recognition. Nguyen et al. (Nguyen et al., 2019) developed, for
example, a data glove using electrodes on the fingertips enabling micro gesture
interaction. Bian et. al(Bian and Lukowicz, 2021), GestureWrist (Rekimoto, 2001),
and CapBand (Truong et al., 2018) apply capacitive sensing to measure arm contour
changes caused by finger movements. Kao et al. (Kao et al., 2015) uses capacitive
touch sensors on a nail cover for micro gesture interaction too. Boldu et al. (Boldu
et al., 2018b) equipped a ring with a capacitive touch area to enable sliding gestures
performed with the thumb on the ring worn at the index finger. ElectroRing (Kienzle
et al., 2021) utilizes capacitive sensing to recognize pinch gestures and touch events
on objects.
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The previous part of this work pointed out the advantages of rings as interaction
devices. It also discussed the limits of current rings and the challenges to be ad-
dressed. A limitation of the current rings is the lack of the possibility to enable
multi-finger interactions. This limits the interaction space and, thus, the applica-
tion. This dissertation evaluates the concept of using electric fields for multi-finger
interaction with a ring. This chapter presents the conceptual thoughts of using
electric fields for multi-finger interaction (Section 5.1). Afterward, this chapter de-
scribes the prototypical implementation of the proposed concept (Section 5.2). To
distinguish from previous and later ring versions, this prototype generation is called
PeriSense.

5.1. Concept

Driven by the attractiveness of rings as an interaction device, but with the limited
possibility of recognizing multi-finger gestures, I came up with the basic idea that
electrical fields could be applied around the ring. The idea here is that the fingers
influence and change the fields differently depending on their position (Figure 5.1).

Figure 5.1.: Visualization of the basic idea: The ring creates electric fields around
the ring. Depending on the finger pose, the fields are different influ-
enced.
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Electorde E1
Electrode E2
Electrode E3
Electrode E4E1 E4

E2 E3

Figure 5.2.: Electrode arrangement around the ring.

These field changes are measurable. Initial tests and research quickly led to capaci-
tive proximity sensing. Through capacitive sensing, changes in the electric field can
be detected. These changes are determined by changes in the capacitance of the
capacitive sensor.
The concept is based on arranging capacitive electrodes on a ring and employ-

ing capacitive proximity sensing to quantify the distances to the adjacent fingers.
Measuring proximity between conductive objects can be achieved effectively by ca-
pacitive sensing in several different modes (see Section 4.2.2). These measurement
methods are the loading, shunt, receive, and transmit mode. In shunt mode, it is
more difficult to measure the influence of conductive objects at a distance, espe-
cially when the electrodes are placed close together around the ring. Two elec-
trodes per field are required, whereas, in loading mode, only one electrode per field
is needed. Besides, when arranging the electrodes, care must be taken to ensure
that the fields do not influence each other. The transmit and receive modes are not
suitable for this scenario, as they makes use of the electromagnetic emissions of
the environment. This is difficult in everyday situations because the ambient elec-
tromagnetic emissions are different in each environment. It is also questionable
whether finger movements can be detected at all, at least without special calibra-
tion or environmental setup. We apply the loading mode, its purest form, which
drives a single electrode with an oscillating signal, leading to the periodic charging
and discharging of the respective electrode. Such an electrode acts as one plate
of a capacitor while the surrounding conductive objects in its environment act as
the opposite plate connected to ground. The capacitance itself is proportional to
the size of the electrode and inversely proportional to the displacement to its com-
plement. By approaching the electrode with such a conductive object, its charge
time increases consequently as there is more energy to store at a higher capacity.
The capacitance can thus accordingly be computed by measuring those changes in
frequency. As in such a scenario, the human body serves as the ground electrode;
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Figure 5.3.: Simplified conceptual visualization of the electrode placement and the
flow of the field lines.

the human body needs to share the same ground potential as the electronic sensing
device.
The implementation concept provides that four electrodes are placed around the

ring (Figure 5.2). The four electrodes are arranged in a linear array on the ring
to enable a form of spatial perception. Two of the four electrodes are directed
sidewards to measure the influence of the neighboring finger primarily. If the ring
is worn on the index finger, then the distances to the thumb and little finger are
considerable. Therefore, the electrodes are larger on the sides. The other two elec-
trodes are directed towards the palm and gather proximity data below the wearing
finger to detect finger bends, also from the neighboring fingers partially (Figure
5.3).
Figures 5.4a to 5.4c illustrate the working principles symbolically. If the only

outstretched finger is the index finger (Figure 5.4a), then the capacitive sensor
values are rather low. Approaching the ring with the middle finger (Figure 5.4b)
or the thumb (Figure 5.4c), the particular capacitive sensor measurement values
increases.
In contrast to a lot of other sensing modalities, capacitive sensing can sense a

wide field of view at close distances without the need for a lens (Grosse-Puppendahl
et al., 2017). The downside is that it is not trivially possible to differentiate the
causes of changes in total capacitance for a single electrode. In order to overcome
this limitation, an active shield is driven at the same potential as the electrode under
measurement. Although the overall sensitivity is reduced, the measurement can be
blocked partially and directed in particular directions (Wang, 2015).
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(c) Move thumb close to index finger.

Figure 5.4.: Capacitive proximity sensing working principles.
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Figure 5.5.: 3D model of the PeriSense case.

5.2. Implementation

In this section, the implementation of the concept is described. First, the hardware
implementation of the prototype is described (Section 5.2.1). Afterward, the soft-
ware implementation is described, starting with the firmware (Section 5.2.2), and
finally the driver (Section 5.2.3).

5.2.1. PeriSense Hardware Prototype

From the idea to the prototype presented here, there were many prototype versions.
With each new version new insights were gained and taken into account in a further
improved prototype. The history of the prototypes is briefly explained and described
in the appendix (Appendix A).
Short traces and a reproducible design are crucial requirements. Therefore, a lay-

out for a 2-layer flexible circuit board was designed in Eagle1. This way, the copper
electrodes for capacitive proximity sensing can be laid out in an editor for reliable
production by a common PCB manufacturer. The copper electrodes are designed as
rectangles with rounded corners, with lengths of edges ranging from 12 to 17mm,
forming areas from approximately 200 to nearly 280mm2. The electrodes pointing
downwards are smaller than the electrodes pointing side-wards. Although the mea-
surable distance decreases with smaller electrodes, this limitation is mitigated as
these two electrodes primarily detect finger bending. The two electrodes on the
side, however, primarily measure the distance to the adjacent fingers. This distance

1EAGLE is an electronic design automation software for the automation of electronic design:
https://www.autodesk.de/products/eagle/overview (accessed on 08.09.2020)
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Figure 5.6.: System architecture block diagram.

can measure a few centimeters and is the reason why these electrodes are laid out
larger.
The thickness of a copper layer is specified by 35 m. The active shield is laid

out below the electrode layer to direct the capacitive measurements outwards. The
flexible base material allows for a convenient way of placing all electrical compo-
nents in a 3D-printed finger ring casing (Figure 5.5). The 3D model was created
with FreeCAD2. The dimensions of the ring case are a width of 22mm, a height of
44mm, a variable inner diameter between 18 and 22mm (depending on the finger
size and prototype), and outer diameter of 27mm. The cases of our prototypes have
a thickness of 2.5mm in this area, with a shell thickness of 0.5mm.
In order to reduce cross-talk between sensor measurements and their processing

and transmitting, the flex-board is segmented into two parts with dedicated voltage
regulators. For the capacitive sensing measurement, a Texas Instruments FDC1004
sensor (TexasInstruments, 2015) is used. It features a 4-channel capacitance-to-
digital converter for capacitive proximity sensing. Each channel is connected to one
of the four electrodes which are sampled in sequential order. As the ring device

2FreeCAD is an open-source parametric 3D modeler: https://www.freecadweb.org/ (accessed on
20.08.2020).
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(a) Top side. (b) Bottom side.

Figure 5.7.: Assembled flexible circuit board.

and the human body have to share the same ground potential for this sensing mode
to function correctly, the inside of the ring is coated with a copper foil to provide
an electrical connection to the worn finger. An additional inertial measurement
unit (IMU) with 9 degrees of freedom is equipped to augment sensor readings for
gesture recognition with hand position and orientation tracking. For the IMU, a
InvenSense MPU9250 sensor (InvenSense, 2017) was applied. Figure 5.6 provides
a block diagram for illustration of the underlying system architecture. The circuit
layouts and complete component list can be found in the appendix B.
The flexible circuit boards were produced by a dedicated service provider and as-

sembled using a reflow soldering technique. Figure 5.7 shows an assembled circuit

Figure 5.8.: PeriSense prototypes in different colors and sizes.
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Table 5.1.: Description of the LED status.

LED color State Description

Red On (solid)/Off Power is on/off.

Orange
Blinking Bluetooth module is in discovery mode.
Solid There is a established Bluetooth connection.

Green Blinking The ring sends data via the Bluetooth interface.

board. The top segment includes a Microchip ATmega328P3 for reading out the re-
spective sensor measurements sequentially using an I2C bus and transmitting those
readings with the help of a Bluetooth 2.1 module connected over UART at a baud
rate of 115200bps. The device is driven by a small-sized LiPo battery with a capacity
of 110mAh. Consuming about 128mA at 3.0V on average during measurement and
Bluetooth communication, a battery charge lasts for around an hour of continuous
usage. By disabling Bluetooth communication and using UART exclusively, average
power consumption went down to 16mA. Without any energy optimizations the av-
erage run-time is about 1 to 1.5 hours. Three LEDs sign the devices status (Table
5.1). Figure 5.8 shows the complete assembled rings in different colors and sizes.
Figure 5.9 shows a record of capacitive raw values of electrode E1 to E4 while the

ring was worn on the index finger. Each electrode has a different offset. The offset
can change with the body’s internal resistance (which varies e.g., with the body’s
fluid balance) and can be influenced by other parasite capacitances. As closer a
finger part approaches the electrodes as larger is the sensor raw value. In areas 1
and 4, the index finger was stretched, and all other fingers bend so that no finger
part was in the range of the electrodes. In area 2, all fingers are stretched out.
Consequently, electrodes E1 and E4 are touched by the thumb and middle finger. In
area 3, all electrodes have contacts with finger parts because the fingers formed a
fist. In area 5, electrode E1 and E2 measure the effect of the thumb touching the
ring while the index finger is stretched out. In area 6, the fingers were randomly
moved.

5.2.2. Firmware

The ring firmware is implemented in C++. To read sensor data from the I2C bus,
the I2Cdev library4 is used. This library provides already a module to configure and
read the MPU9250. The I2Cdev library was extended by a self-implemented module
for the TI FDC10004 sensor. Both sensors are read as fast as possible in polling
mode. Every time new data is available, it is send over the Bluetooth serial inter-
face. This results in a transmission frequency of about 100Hz. There is no further

3Microchip ATmega328P documentation: https://www.microchip.com/wwwproducts/en/ATmega328p
(accessed on 20.08.2020)

4I2Cdevlib written by Jeff Rowberg: https://github.com/jrowberg/i2cdevlib
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Figure 5.9.: Example of capacitive raw values of electrode E1 to E4 while the ring
was worn on the index finger.

data processing by the firmware, because of the limited resources of the micro-
controller. The memory size for the EEPROM and RAM of Microchip ATmega328P
microprocessor, however, are only 1kB and 2kB, respectively. Thus, the resources
of the microcontroller are almost entirely utilized. The implementation of additional
features bears the risk of affecting the microcontroller’s performance, and thus the
transmission frequency of 100Hz could not be guaranteed.
After power on, the firmware initializes the FDC1004 and the MPU9250 sensors.

The Bluetooth module is activated and set to discover mode. This allows the ring
to be found by other Bluetooth devices like smartphones or laptops. If a device is
paired with the ring, the ring starts sending the sensor data via the serial Bluetooth
interface. At every time point t, a 17-dimensional data vector is transmitted. Table
5.2 describes the data the ring sends at every time step t. To maximize the trans-
mission rate, the data is transmitted as bytes. To ensure that the byte sequences
are correctly separated and converted to the corresponding data types, each byte
vector is encoded with the Consistent Overhead Byte Stuffing (COBS) algorithm
(Cheshire and Baker, 1997). The COBS algorithm uses the zero as a separator or
end signal of the byte vector. Consequently, all zeros are removed from the byte
vector and replaced by pointers pointing to the next zero. A so-called overhead byte
at the beginning of the byte packet points to the first zero. Thus 43 bytes every time
step t are transferred, 41 bytes of them are data and the 2 remaining bytes from the
COBS encoding.
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Table 5.2.: Description of the transmitted ring data.

Id Size Type Description

ts 4 B Int32 Time stamp in milliseconds starting from 0 at
ring startup

di 1 B Int8 A legacy data field used for debugging purpose
in the development phase (is deprecated).

e1 4 B Int32 Capacitive raw measurement of electrode 1
e2 4 B Int32 Capacitive raw measurement of electrode 2
e3 4 B Int32 Capacitive raw measurement of electrode 3
e4 4 B Int32 Capacitive raw measurement of electrode 4
ax 4 B Int16 Acceleration raw measurement along x-axis of

the motion sensor
ay 2 B Int16 Acceleration raw measurement along y-axis of

the motion sensor
az 2 B Int16 Acceleration raw measurement along z-axis of

the motion sensor
gx 2 B Int16 Raw measurement of the angular velocity

around x-axis of the motion sensor
gy 2 B Int16 Raw measurement of the angular velocity

around y-axis of the motion sensor
gz 2 B Int16 Raw measurement of the angular velocity

around z-axis of the motion sensor
mx 2 B Int16 Raw measurement of the magnetization along x-

axis of the motion sensor
my 2 B Int16 Raw measurement of the magnetization along y-

axis of the motion sensor
mz 2 B Int16 Raw measurement of the magnetization along z-

axis of the motion sensor
tmp 2 B Int16 Temperature raw measurement of the motion

sensor

39



5. PeriSense

5.2.3. Driver

Due to the use of Bluetooth for data transmission, the ring can be connected in
many ways. The ring is connected via the serial Bluetooth interface RFCOMM.
Many devices and operating systems support this technology. Accordingly, most
programming and script languages offer platform-independent interfaces. Drivers
were developed in Python and, in the beginning, also experimental drivers in Java
and Matlab. Python was chosen because it allows data analysis, and the results can
be implemented directly in the application without the need for a new implementa-
tion.
In the driver, the COBS packets are decoded, and the resulting byte vector is

converted into the raw data, as shown in Table 5.2. The raw data from the IMU is
converted into the corresponding physical values according to the sensor documen-
tation (InvenSense, 2017). The capacitive raw values are not converted because it
is only a linear conversion factor and is irrelevant for further considerations. Table
5.3 shows the data provided by the driver.
The driver was implemented as a Python class. The most essential functions are:

class PeriSense :
def __ ini t__ ( self , serial_port )
def connect( sel f )
def disconnect ( sel f )
def addHandler( self , handler )
. . .

The constructor expects the serial interface port as a string value to which Peri-
Sense is connected. On Windows, for example, the string is "COM4" or on Linux,
for example, "/dev/rfcomm0". The operating system assigns the corresponding port
number. The serial interface is opened by invoking connect(), and thus the data
transfer is started. The data transfer and connection to the ring can be disconnected
using disconnect(). The driver provides the received ring data via an Observer pat-
tern. For this purpose, a handler, i.e., a function with the following signature, must
be passed to the driver:

def handler ( ts , di , e1, e2, e3, e4, ax , ay , az , gx , gy , gz , mx, my, mz
, tmp)

The function parameters correspond to the values in table 5.3.
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Table 5.3.: Description of the data provided by the driver interface for further pro-
cessing.

Id Type Data Range Unit Description

ts Int32 0 to 21474836 ms Time stamp in milliseconds start-
ing from 0 at ring startup

di Int8 -127 to 128 - A legacy data field used for debug-
ging purpose in the development
phase (is deprecated).

e1 Int32 0 to 21474836 - Capacitive raw measurement of
electrode 1

e2 Int32 0 to 21474836 - Capacitive raw measurement of
electrode 2

e3 Int32 0 to 21474836 - Capacitive raw measurement of
electrode 3

e4 Int32 0 to 21474836 - Capacitive raw measurement of
electrode 4

ax Double -4 to 4 g Acceleration in x-direction
ay Double -4 to 4 g Acceleration in y-direction
az Double -4 to 4 g Acceleration in z-direction
gx Double -1000 to 1000 ◦/s Angular velocity around x-axis
gy Double -1000 to 1000 ◦/s Angular velocity around y-axis
gz Double -1000 to 1000 ◦/s Angular velocity around z-axis
mx Double -4800 to 4800 µT Magnetization in x-direction
my Double -4800 to 4800 µT Magnetization in y-direction
mz Double -4800 to 4800 µT Magnetization in z-direction
tmp Double -40 to 85 ◦C Temperature
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The previous chapter introduced the concept of tracking multiple fingers’ move-
ment with one ring using capacitive sensing. Additionally, the implementation of
PeriSense, a prototype that implements the idea prototypical, was described. This
chapter presents a comprehensive evaluation using the PeriSense prototype. The
evaluations presented in this chapter are analytical and not bound to applications
and aim to determine the interaction space. Consequently, the used gesture sets
do not necessarily relate to real-world applications. The determination of the in-
teraction space should allow interaction designers to create their specific interac-
tion applications. Some examples of implementations and evaluations in real-world
application-context are presented in chapter 7.
In the following, the evaluation of the technical properties such as the influence

of environmental noise and the spatial resolution of the electrodes (section 6.1), the
static interaction space determining which fingers are in the range of the measure-
ment (section 6.2), the dynamic interaction space determining which finger move-
ments are detectable (section 6.3), the around-device interaction space showing
which finger movements performed around the ring (section 6.4), and, finally, fin-
ger tracking (section 6.5) are presented.

6.1. Technical Evaluation

To determine the sensor properties of PeriSense, two experiments were conducted.
First, the influence of external sources and noise were studied. Second, the spatial
resolution of the four electrodes was evaluated.

6.1.1. Experiment I: Influence of Ambient Electrostatics

Since we are surrounded by natural and artificial electrostatic noise sources such as
power lines or electrical appliances, it is to study if these sources influence capac-
itive sensing performance first. For this purpose, data at eight different locations
were recorded. The ring was placed in the respective locations and not worn on a
finger during this experiment to exclude signals caused by unavoidable finger and
hand movements. To avoid disturbances due to battery changes, the original battery
was replaced by a 18650 battery with 3.5Ah, which was placed next to the ring.

42



6. Evaluation

Figure 6.1.: Distributions of the standard deviations of five seconds long sliding win-
dow over 4.5 hours lasting measurements at different locations.

The following locations were evaluated: close to a big robot1 which was running,
close to a big robot which was turned off, on a table in an office, in a smart home
environment at a10 cm distance from a 98 ” running TV, on a running notebook above
the hard drive (SSD) area, on a running notebook above the keyboard, on the back-
side of a non-charging smartphone and on the backside of a charging smartphone
in flight mode.
For each location, 4.5 hours of data were recorded. On each data set, a sliding

window with a size of five seconds was applied. The window was moved with a step
size of one. For each window, the standard deviation and mean value were calcu-
lated. Figure 6.1 shows the boxplots of the standard deviations at each location
for the four electrodes E1 to E4. Since some boxplots have large outliers, a loga-
rithmic scale was applied. There is no noticeable difference in the distribution of
the standard deviation at the robot (regardless of running or not), in the office, at
the TV in the smart home, and on the notebook’s keyboard. On the smartphone’s
backside, the standard deviation distribution is similar to the other locations, such
as the laptop or smart home. However, there are periodically occurring peaks in the
measurements. These result from communication modules such as mobile, wireless
network or Bluetooth and cause huge outliers and a little broader distribution. A
separate test showed that they do not occur when the phone is in flight mode. A sig-
nificantly broader distribution of the standard deviation can be observed over the
notebook’s hard drive and on the charging smartphone’s backside in flight mode.

1Care-O-Bot 3 robot: https://www.care-o-bot.de/en/care-o-bot-3.html (accessed on 02.09.2020)
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Figure 6.2.: A sample for measurement for electrode E1 in the office and above the
loading smartphone in flight mode.

Figure 6.3.: Distributions of the mean values of five seconds long sliding window
over 4.5 hours lasting measurements at different locations.
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Figure 6.4.: Experimental set-up for evaluation of spatial sensor resolution.

The laptop’s SSD and the charging smartphone induce an oscillating noise. Figure
6.2 shows a section for the measurement for electrode E1 in the office and above
the charging smartphone.
The mean value variance is small for each location (Figure 6.3), and no signal drift

over time at constant temperatures can be observed. The slightly broader mean
distribution for the smartphone results from the high noise. In summary, it can be
concluded that ambient electrostatics seems not to be a problem for PeriSense. Only
some devices in limited situations can induce noise. However, it is to consider that
these measurements were performed without wearing the ring on the finger. That
means the was no reference ground. Wearing the ring on the finger, the ring and
the human body share the ground stabilizing the measurements and reducing the
noise. Additionally, these distortions occur only with direct contact and disappear
with some distance of centimeter or even millimeter. Consequently, it is to conclude
that the measured disturbances cause no issues in real-life applications.

6.1.2. Experiment II: Spatial Resolution

In order to determine the effective interaction space of PeriSense, the spatial res-
olution for each electrode was computed by measuring the capacitive proximity in

45



6. Evaluation

a grid surrounding the ring. The spatial resolution is defined by Lucas et al. as
"the smallest distance between two identical objects that produce a signal with a
measurable difference compared to the signal they would produce if they were su-
perimposed"(Lucas et al., 2015). The computation of the spatial resolution was
based on the procedure for flat electrodes employed in (Grosse-Puppendahl et al.,
2013a). Therein, the spatial resolution is determined by computing the mean µ(d)

and standard deviance σ(d) across measurements of the same true proximity d and
measuring the maximum pairwise distance between the border measurements that
falls into the range defined by (µ(d)− σ(d), µ(d) + σ(d)).
Opposed to the usage of flat electrodes, in this case, the electrodes are bent on

a ring. This is the reason why measurements were gathered in a grid and not just
at one-dimensional distances. For each of these 2D-measurement positions p, a
set Pp of all samples at this position was constituted, and the mean µ(Pp) and the
standard deviance σ(Pp) were calculated. Subsequently, a set of all measurement
positions Pp,s was created which fell into the measurement range defined by (µ(Pp)−
σ(Pp), µ(Pp) + σ(Pp)). In this resulting set Pp,s, the maximum pairwise difference of
distances to the ring-border was taken. This resulted in a one-dimensional distance
projection, and therefore is analogous to the method in (Grosse-Puppendahl et al.,
2013a).
For executing such an experiment, the limb of a Care-O-Bot 3 robot2 was equipped

with an acrylic bar of 30 cm to keep the robot’s capacitive influence as small as pos-
sible (Figure 6.4). At the end of the bar, an aluminum tube with a length of 10 cm and
a diameter of 2 cm was mounted, simulating a neighboring human finger, similarly
to the simulated arm in (Grosse-Puppendahl et al., 2013a). As the simulated finger
and PeriSense have to share the same ground potential for optimal performance,
the aluminum tube was connected to the exposed ground link via a small diameter
wire to achieve comparable results. The ring itself was put on a 3D printed mount.
The robot traversed the measurement grid from left to right, top to bottom in

steps of 5mm. All positions refer to the center of the ring and represent the center
of the aluminum probe. As the probe has a diameter of 2 cm, this accounts for the
minimum measurement gap of 1 cm around the ring in the resolution plots. At each
measurement position, 5 s of capacitive values were read after a short settling time
of 2 s. This procedure lasted about 5 hours, and thus exceeded the small battery
capacity of the prototype. As before, the small battery was replaced with a bigger
18650 type battery with 3.5Ah, which was put aside on the table.
Figure 6.5 contains a plot of the computed resolution values of each electrode

for each measurement position. At low proximity, the electrodes have a resolution
in millimeter range. The figure also depicts which areas are exclusively measured
by a single electrode and which areas are overlapping. Up to a displacement of
approximately 5 cm most of the surrounding positions are sensed by at least two

2Care-O-Bot 3 robot: https://www.care-o-bot.de/en/care-o-bot-3.html (accessed on 02.09.2020)
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Figure 6.7.: Spatial resolution at distances measured between ring-border and tube-
border.
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electrodes. Figure 6.6 shows a superimposed plot of all four electrodes by taking
the minimum of each resolution. Figure 6.7 depicts the superimposed resolution in
relation to the actual distance between ring border and probe border. It suggests
that up to 1.5 cm the superimposed resolution is in the order of millimeters as the
computed resolution is zero, which means no matchable measurement positions
could be found in a 5mm grid. As the relevant proximity for gestures is way above
this value, no further efforts were made to reduce grid size. The curve then forms
a knee upwards at around 2.5 cm, seems to rise linearly up to 6 cm, and increases
much more afterward. While small probe distances can be resolved with a very high
resolution, a probe distance of, for instance, 6 cm cannot be reliably distinguished
from a distance of 12 cm.
This corresponds to the previous statement, that capacitive proximity sensing is

highly nonlinear and most sensitive in close proximity. Although the range could be
increased by increasing the electrode size, this would lead to a bigger form factor
which is undesired. Displacements between fingers rarely exceed such ranges any-
way. The plots show also that the smaller electrodes pointing downwards have a
very similar resolution like the larger electrodes.

6.1.3. Conclusion

The technical evaluation has shown that ambient noise does not influence the mea-
surement. The ring should only be used for interactions where the ring is worn on
the finger so that there is a reference mass reducing noise. Direct contact with
devices with radio modules or generally high electrical emissions may occasionally
result in increased noise in the signal. In practice, however, this should not be a
limitation. In the case of on-device interactions, e.g., the gesture execution on the
back of a smartphone, it is recommended to check whether the gesture recognition
can be disturbed or not.
The measurement of the resolution showed that the effective range reaches up to

2.5 cm. Consequently, at least the influence of the neighboring fingers can be de-
tected. Only the thumb is borderline in detection when the ring is worn on the index
finger. This is reasoned because the thumb is directed approximately 90 degrees
to the index finger when it is fully spread. However, the field is directed so that it
does not perceive lateral influence to reduce interference. How far this influences
the recognition of multi-finger gestures and if the effective resolution of 2.5 cm is
enough to enable a wide range of multi-finger interactions will be evaluated in the
following sections.
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A B C D E F ∗ G H

I J∗ K L M N O P ∗

Q∗ R S T U V ∗ W ∗ X

Y Z∗

1 2 3 4∗ 5 6 7 8 9

Figure 6.8.: ASL fingerspelling alphabet (A to Z) and numbers (1 to 9). The light
gray with an asterisk marked postures were not used for posture inter-
action evaluation (Images taken from (Marnanel, 2007).).

6.2. Evaluation of Static Interaction Space

In the previous section, the resolution of the capacitive measurement was deter-
mined at different distances. This section analyses what these findings imply in
practice and which fingers are covered by the measurement. In other words, the
static interaction space is determined. It is studied which fingers are in range or
not and which implications for the interaction design can be drawn. Also, ring repo-
sitioning and user-dependent effects are investigated. As a test set, the American
Sign Language (ASL) fingerspelling alphabet (A to Z) and numbers (1 to 9), as shown
in Figure 6.8, is utilized. This dataset consists of many different finger poses involv-
ing all fingers. This diversity makes the dataset suitable for determining the static
interaction space.
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6.2.1. Method

This subsection describes the method and setup of this evaluation. It formulates the
questions to be answered, the gesture set to be used, the participants, the recording
procedure, and finally the analysis procedure.

Questions

In this evaluation, the following questions will be investigated:

Q1 Static Interaction Space: What is the effective static interaction space of
PeriSense? This involves the following sub-questions: Which fingers are in
range of the electric field? Which consequences can be drawn for the interac-
tion design?

Q2 Repositioning: Taking on/off the ring can cause slightly differences in ring
orientation along the finger axis. Also, during the daily routine, the ring can
rotate a little. It should be investigated whether this rotation could influence
the measurement or detection in any way.

Q3 Generalization: Each hand has different anatomical peculiarities. For ex-
ample, the fingers are different in length and thickness, and mobility varies.
Therefore, it is necessary to investigate whether the measurement data and
recognition results can be generalized. Can the data be transferred from one
user to another?

Q4 Confusion Resolution by Additional Sensor Support: PeriSense also con-
tains an accelerometer as part of the integrated motion sensor. This accelerom-
eter measures the acceleration of the sensor in three orthogonal directions.
Since there is no dynamic motion during the ASL postures are performed, only
the gravitational force is measured. Therefore, the sensor’s orientation to the
earth’s ground can be determined based on the measured gravitational force
vector. Consequently, using the acceleration data as additional information for
the ASL postures classification seems obvious. However, do the acceleration
data improve the recognition rate?

Gesture Set

As a test set, the American Sign Language (ASL) fingerspelling alphabet (A to Z) and
numbers (1 to 9), as shown in Figure 6.8, is utilized. This dataset consists of many
different finger poses involving all fingers. This diversity makes the dataset suitable
for the determination of the interaction space. The evaluation aims not to detect the
ASL alphabet completely with PeriSense, but to determine the interaction space of
PeriSense.
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Some signs have the same posture but differ in the orientation of the hand (e.g.,
K and P). These signs do not contribute to interaction space determination because
they cannot be detected based only on capacitive sensing. Consequently, these signs
are dropped from the test set. Also, signs that include finger movements (e.g., Z)
are dropped since they are no static postures. In Figure 6.8, the dropped letters
and numbers F, J, P, Q, V, W, Z, and 4 are displayed in light gray and marked with an
asterisk. This results in a set of 27 postures to test.

Participants

The experiment was performed with participants that had no previous contact with
PeriSense or similar interaction devices and who had the ability to move their fin-
gers painlessly and unrestrainedly. All participants received a voucher for an online
store over 30Euro.
Ten colleagues were invited from our institute (female = 4, male = 6, age between

21 and 32) with the following properties of their right hand: hand length between
16.4 and 20.6 cm (µ = 18.36 cm, σ = 1.29 cm), span width of the hand between 18.4 and
23.7 cm (µ = 21.07 cm, σ = 1.46 cm) and index finger length between 6.5 and 8.1 cm (µ
= 7.31 cm, σ = 0.45 cm).
The participant’s circumference of the index finger was between 56 and 70mm.

To enable evaluation with different finger sizes, three rings were produced with a
different inner diameter (18, 20, and 22mm). The outer sizes kept unchanged and are
also identical in regards to technical properties such as signal noise and resolution.

Recording Procedure

Since the index finger is a primary interaction finger, PeriSense was worn on the
base segment of the index finger of the right hand. Prior to the tests, the postures
were explained and the participants had time to exercise them. The postures were
requested and performed in random order. During the experiments, the participants
were allowed to take as much time as they needed to take a break, touch and adjust
the ring and also relax and move the fingers freely.
The evaluation of the fingerspelling alphabet was split into six sessions distributed

over multiple days. In each session, 10 samples of each finger spelling sign were
collected. Consequently, each user-provided 1620 samples in total. Every session
was initiated by a calibration sequence in which the participants had to perform and
hold the respective calibration posture (Figure 6.9) for 5 seconds. This sequence
was used to normalize the sensor data.
A maximum of two sessions a day were performed. The participants were able to

take a break after the first session. Additionally, the ring battery was changed. This
procedure requires taking off the ring. Taking on the ring again probably caused a
slightly different ring placement from the first session.
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Figure 6.9.: Calibration posture for wearing the ring on the index finger. The pos-
ture ensures maximum proximity to the hand or any fingers.

The fingerspelling alphabet to test consists of postures. Postures are indicated
by a specific static finger position, although the position is possibly only held for
a second. For recording sample data, the participants had to perform the posture
shown on the computer screen until it disappeared. The user indicated the start of
the posture by pressing a button on the computer keyboard. After this button press,
the next 250ms of data were labeled with the performed posture by the evaluation
software.
All sensor data were logged into a CSV file during the whole session. Besides

the four capacitive measurements and the motion data (acceleration, rotation and
the ambient magnetic field measurement along the x-, y- and z-axis), the software
logged also the associated timestamps (time in milliseconds starting from startup
of the ring), sample ids (an increasing posture counter), requested posture labels
(when the program requested the participant to perform a certain gesture), posture
labels (signs when the user performed the requested posture) and also a temper-
ature measured by the IMU. All measurements were captured at a rate of about
100Hz.
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Analysis Procedure

In order to study the questions Q1 to Q4 from subsection 6.2.1, four tests T1 to T4
were defined as described in the following:

T1 Test 1 regarding interaction space (Q1): Fundamentally, the question is if
PeriSense produces distinguishable patterns of the capacitive proximity sens-
ing values even for similar gestures. In order to determine this, a leave one
out cross-validation on every single session data set is performed. This re-
duces possible side effects, e.g., from the repositioning of the ring or from
other users (e.g., different hand anatomy, variations in execution, etc.).

T2 Test 2 regarding repositioning (Q2): To study the effect of repeatability and
possible effects of repositioning the ring, the sessions of each user are tested
against each other. Since six sessions were collected for the fingerspelling
alphabet, a 3-fold cross-validation is applied, where two sessions were tested
against the remaining four.

T3 Test 3 regarding generalization (Q3): To study the generalization, a leave
one user out cross-validation is performed where each user’s gestures are
tested against the remaining gestures of the other users. This allows us to
determine how far different hand anatomy and variations in gesture execution
influence the recognition results.

T4 Test 4 regarding additional sensor support (Q4): To study if the accelera-
tion data enhances the recognition results, tests T1 to T3 are repeated under
the same conditions but using the acceleration data added to the capacitive
sensing values.

The capacitive measurements can vary in different offsets. This can be a result of
a constant ring contact with neighboring fingers, in particular for users with shorter
fingers, which thereby induces an additional offset. Also, differences in the intrin-
sic human body capacitance can result in different offsets. Therefore, a calibration
was applied in order to normalize the capacitive measurements regarding the off-
sets. In this process, the mean value of the session’s calibration sequence from the
whole recorded session. Although all PeriSense’s sensor values were logged, the
data is constrained to class labels and capacitive measurements for this evaluation.
In test T4, the acceleration values were additionally used. For the offset normalized
capacitive values and the additional acceleration values in T4, the median value of
each labeled posture sequence was determined. This results in a four-element vec-
tor for test T1 to T3 and a seven-element vector for T4. For the classification, a
Support Vector Machine (SVM) trained with the Sequential Minimal Optimization
(SMO) method (Platt, 1998) was applied. In preliminary experiments, different clas-
sification algorithms were tested. It was found that SVM offers good performance
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Figure 6.10.: The recognition results of test T1 for each session and user.

over all tests while providing fast training and classification. As a kernel for the
SVM, the Pearson VII function-based kernel (PuK) (Üstün et al., 2006) was used.
The kernel and regularization parameters were determined for each test by a pa-
rameter selection through maximizing the precision. Further, all given rates in the
following sections indicate the precision, which is defined as the number of true
positives (TP) over the number of true positives and the number of false positives
(FP): Precision = TP

TP+FP .

6.2.2. Results

In the following, the results of each test are presented.

Results of Test T1

Test T1 performing a leave one out cross-validation on each session results in an
average precision over all sessions of 0.64. Figure 6.10 shows each session’s preci-
sion grouped by the corresponding user ids, and Figure 6.11 shows the histogram of
each session’s precision. Two sessions even reach 0.78 despite the large and similar
set of postures. Eighteen sessions achieve results of 0.7 and more. Twenty-seven
sessions reach a precision between 0.6 and 0.7. Fourteen sessions show a preci-
sion between 0.4 and 0.6. The lowest achieved precision for a session is 0.35. The
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Figure 6.12.: Confusion matrix for test T1 of ASL posture set. The columns refer to
the actual class, the rows to the assigned ones during the classifica-
tion.
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Figure 6.13.: The recognition results of test T2 for each fold and user.

standard deviation over all sessions is 0.1. Seven users reach an average precision
over the six sessions of at least 0.6. The standard deviation over the user’s average
precision is 0.075.
Figure 6.12 depicts the confusion matrix of test T1. It plots how often each per-

formed posture has been confused with other ones. The columns should sum up
to one. Since the test set is large and space for plotting is limited, the precision
values are rounded to two digits after the point. This causes some columns not to
sum up to one. The confusion matrix reveals that the numbers (except 9) are the
most difficult to distinguish. Numbers 1, 2, 3, and 8 are also confused with L, D,
and sometimes with G and X. The letters M, N, I, S, and Y are also confused. The
last confusion group is B, H, and U. The best results are obtained for A, E, T, X, and
9 with a precision of more than 0.79 and the lowest confusion. Overall, no posture
is below 0.47.

Results of Test T2

For test T2 performing a 3-fold cross-validation over the six sessions for each user,
the precision drops to 0.49. Figure 6.13 shows each fold’s precision grouped by
the corresponding user ids, and Figure 6.14 shows the histogram of each fold’s
precision. Eight folds achieves a precision of at least 0.6. The maximum precision
reached is 0.67, the lowest is 0.19 and 0.29, and the standard deviation is 0.12.
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Figure 6.14.: Histogram of the recognition results of test T2.
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Figure 6.15.: Confusion matrix for test T2 of ASL posture set. The columns refer to
the actual class, the rows to the assigned ones during the classifica-
tion.
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Figure 6.16.: The recognition results of test T3 for each user.

Figure 6.15 depicts the confusion matrix of test T2. It plots how often each per-
formed posture has been confused with other ones. The columns should sum up
to one. Since the test set is large and space for plotting is limited, the precision
values are rounded to two digits after the point. This causes some columns not to
sum up to one. The confusion groups observed in test T1 remain. As in test T1,
the letters A, E, T, and 9 also reached the best results with a precision of more than
0.67. In comparison to test T1, X is not anymore in the top five but now letter R. The
precision of X drops from 0.82 to 0.6.

Results of Test T3

In test T3 performing a leave one user out cross-validation, the average precision
is 0.36. The standard deviation is 0.06. Figure 6.16 shows the precision for each
user. Three users archive a precision over 0.4 and the remaining between 0.3 and
0.4 except one resulting with 0.28.
Figure 6.17 depicts the confusion matrix of test T3. It plots how often each per-

formed posture has been confused with other ones. The columns should sum up to
one. Since the test set is large and space for plotting is limited, the precision values
are rounded to two digits after the point. This causes some columns not to sum
up to one. The confusion matrix shows that most postures cannot be distinguished.
Only letter A has a precision of 0.89. Letters E, R, T, and 9 have precision between
0.6 and 0.67. The rest performs much worse and shows high confusion.
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Figure 6.17.: Confusion matrix for test T3 performing a leave one user out cross-
validation on the ASL fingerspelling set. The columns refer to the
actual classes and the rows to the assigned classes during the classifi-
cation.

Results of Test T4

In test T4, the tests T1 to T3 were repeated using acceleration values in addition
to the capacitive sensing values. Regarding test T1, the average precision over all
sessions is 0.7. Figure 6.18 shows the histogram of test T4-1. Two sessions reach
more than 0.8. Three sessions achieve a precision of less than 0.6. The standard
deviation over all results is 0.053.
Figure 6.19 depicts the confusion matrix of test T4-1. It plots how often each per-

formed posture has been confused with other ones. As in the previous test results,
the columns do not necessarily sum to one due to rounding. The confusion matrix
reveals that some confusions are resolved or reduced. The numbers (except 9) are
still the most difficult to distinguish. However, the numbers are only confused with
L and D. The confusion group M, N, I, S, and Y and the group B and U still exist.
The best results are obtained for A, G, H, and 9, with a precision of more than 0.9

and the lowest confusion. Postures E, R, and T achieve a rate between 0.8 and 0.9.
Overall, no posture is below 0.46.
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Figure 6.18.: The histogram of the recognition results of test T4-1 performing a
leave one out cross-validation on each session.

Confusion matrix for test T4-1 on ASL set
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Figure 6.19.: Confusion matrix for test T4-1 of ASL posture set. The columns refer
to the actual class, the rows to the assigned ones during the classifi-
cation.
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Figure 6.20.: Recognition results of test T4-2 for each fold and user.
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Figure 6.21.: Confusion matrix for test T4-2 of ASL posture set. The columns refer
to the actual class, the rows to the assigned ones during the classifi-
cation.
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Regarding test T2, the average precision over all folds is 0.64. Three folds achieve
a precision over 0.8 (see Figure 6.20). The lowest fold precision is 0.30 and 0.36, and
the standard deviation of the precision for this test is 0.13. The confusion matrix
for this test (Figure 6.21) is similar to the confusion matrix of test T4-1. The con-
fusion and precision of postures with higher precision keep almost unchanged. On
the other hand, the precision decreases for postures with lower precision and the
confusion increases, particularly for the numbers 1 to 8.
Regarding test T3, the average precision over all users is 0.42. Figure 6.22 shows

the precision for each user. One user achieves a precision of only 0.14. The high-
est achieved precision is 0.60, and the standard deviation for this test is 0.12. The
confusion matrix (Figure 6.23) shows that most postures cannot be distinguished.
Only postures A, G, H, and 9 have a precision of 0.79 and greater. The rest performs
much worse and shows high confusion. As already in test T1 and T2, the numbers 1
to 8 perform worst.

6.2.3. Discussion

In test T1, performing a leave one out cross-validation on each session, an average
precision of 0.64 was achieved. Eighteen sessions reached a precision over 0.7. In
the confusion matrix, two major confusion groups can be identified. The first one is
the group M, N, I, S, and Y. These confusions can be explained by the fact that the
fingers enclose three sides of the ring, and the palm and these postures vary only in
thumb and pinky posture. During the evaluation, it could be observed that partic-
ipants squeezed their hands with different strengths relating to the postures. This
explains for test T1 why some postures, such as I and S, are not entirely confused.
Nevertheless, since the electrodes are enclosed by the fingers, it is not possible to
detect if the pinkie finger is outstretched or not. It is also difficult to distinguish
whether the thumb is outstretched (such in posture Y) or bent and placed on or un-
der the finger (such as in posture I or M). Regarding the signal, a small difference
is observable. However, it is too small for reliable distinguishing. Similar issues
emerge for the second confusion group: 1, 2, 3, 8, L, D, G, and X. It is difficult to
detect reliably if the thumb is outstretched (such as in posture 3 or L) or not (such
as in posture D or G). The confusion could be reduced for some postures when the
ring would be worn on the thumb. However, this, in turn, increases confusion for
other postures. Gestures that differ in the fingers’ degree of flexions, such as B,
C, E, and S, can be easily distinguished. The same applies to the adjacent fingers.
However, the distance between the fingers should not be too large here, as is the
case between the thumb and index finger in particular.
In test T2 performing a 3-fold cross-validation over the six sessions for each user,

the precision dropped in comparison to test T1. Postures that could be easily dis-
tinguished in test T1 achieved a similar precision in test T2. On the other hand,
postures with a high confusion in test T1 show a higher confusion in test T2. Con-
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Figure 6.22.: The recognition results of test T4-3 for each user.

Confusion matrix for test T4-3 on ASL set
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Figure 6.23.: Confusion matrix for test T4-3 of ASL posture set. The columns refer
to the actual class, the rows to the assigned ones during the classifi-
cation.
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sequently, possible changes in ring position by reattaching did not influence the
recognition result of the proper distinguishable postures.
In test T3 performing a leave one user out cross-validation, the average precision

dropped by 43.75% in comparison to test T1. The postures are not distinguishable
anymore. One issue arises from the execution force of the postures. Some partici-
pants squeezed their hands more than others at specific postures such as A and S.
This causes slightly different signal levels. Further, it is also to deal with different
hand anatomy causing a change of the signal baseline. All these issues together
cause a high confusion between some ASL signs. Differences in ring position and
orientation, as well as different hand anatomy, should be handled by the calibration.
However, it showed that the calibration procedure is not suitable to eliminate these
issues adequately.
In test T4 using the accelerometer data additionally for the analysis, some con-

fusions could be resolved and the average overall precision enhanced. Regarding
test T1, the precision increased only slightly by 9.83%. However, some confusions
could be resolved. Regarding test T2 and T3, the precision increased by 30.61% and
16.67% respectively. In all tests, confusions were reduced.
The two main issues that could be observed are the width of the ring prototype

and variations in executing the calibration posture. For users with shorter fingers,
the ring already had a little contact with the skin varying with different finger pos-
tures. Also, slight variations in the execution of the calibration posture (such as
over-stretching the index finger or bending it too much) result in biased calibration
sequences. This can cause a change in the ratio between the four signal baselines,
and the resulting bias in the pre-processed samples makes it difficult to distinguish
similar postures.
Regarding the interaction space, it can be concluded that the thumb is difficult

to measure unless it is close to or touching the electrodes. This results from the
directed electric field, which is more orthogonal to the electrodes. The thumb,
however, usually moves below the ring and thus the electric field. Also, the posture
of the pinky finger is difficult to detect.
With an improvement of the calibration process (see also section 6.5), use of the

acceleration data, and optimization of the feature selection, a user-specific classifier
can be trained on the ASL data set A to Z (without numbers), which achieves good
results. However, despite this experiment investigating the interaction space during
static finger positions, the dynamic part of the posture, i.e., the change or finger
movement between letter transitions, could also be added for classification. This
could contribute to an improvement in classification performance.
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(a) Circle (b) Rectangle (c) Scissors (d) Flick

(e) Snap
(f) Slide Thumb Over

Middle Finger
(g) Slide Thumb Over

Nails
(h) Bloom

Figure 6.24.: The multi-finger gesture set used for evaluation of the dynamic inter-
action space.

6.3. Evaluation of Dynamic Interaction Space

In the previous sections, technical properties were determined, and the static inter-
action space using postures was studied. This section studies the dynamic interac-
tion space concerning the finger’s movement range. Therefore, a finger gesture set
characterized by different finger movements is evaluated. Furthermore, it is studied
which fingers are in range or not and which implications for the interaction design
can be drawn. Also, ring repositioning and user-dependent effects are investigated.
In contrast to the static postures evaluated above, the following gesture set con-

sists of specific finger movements, depicted in Figure 6.24. These finger gestures
allow for fine and subtle micro-interactions. Therefore, various gestures different in
execution but partially similar to the resulting sensor pattern were selected.

6.3.1. Method

This subsection describes the method and setup of this evaluation. It formulates the
questions to be answered, the gesture set to be used, the participants, the recording
procedure, and finally the analysis procedure.
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Questions

In this evaluation, the following questions will be investigated:

Q1 Dynamic Interaction Space: What is the effective dynamic interaction space
of PeriSense? This involves the following sub-questions: Which finger move-
ments are in the range of the electric field? Which consequences can be drawn
for the interaction design?

Q2 Repositioning: Taking on/off the ring can cause slight differences in ring
orientation along the finger axis. Also, during the daily routine, the ring can
rotate a little. It should be investigated whether this rotation could influence
the measurement or detection in any way.

Q3 Generalization: Each hand has different anatomical peculiarities. For ex-
ample, the fingers are different in length and thickness, and mobility varies.
Therefore, it is necessary to investigate whether the measurement data and
recognition results can be generalized. Can the data be transferred from one
user to another?

Q4 Confusion Resolution by Additional Sensor Support: PeriSense also con-
tains an accelerometer and a gyroscope as part of the integrated motion sen-
sor. The accelerometer measures the acceleration and the gyroscope the
change of rotation of the sensor in three orthogonal directions. Do the ac-
celeration and gyroscope data improve the recognition rate?

Gesture Set

The finger gesture set consists of specific finger movements, depicted in Figure
6.24. These finger gestures allow for fine and subtle micro-interactions. Different
finger gestures from various published gesture sets were selected to study the in-
teraction space. These gestures differ in execution but are similar in the resulting
sensor pattern. Consequently, it is not intended to show that these gestures can
exceptionally be well recognized. Instead, it aims to show where the boundaries
are in the differentiation and at the same time which various gestures can be dis-
tinguished. Therefore, a mix of gestures has been chosen that, on the one hand,
generate similar patterns and, on the other hand, involve different finger move-
ments. This should give an impression of which interactions are possible and which
are not. In this manner, gestures Bloom and Flick have the same index finger move-
ment. Gestures Circle and Rectangle consist of a very similar pattern. It is also
notable that the index finger only draws these two gestures without moving the
hand.
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Participants

The experiment was performed with participants that had no previous contact with
PeriSense or similar interaction devices and who had the ability to move their fin-
gers painlessly and unrestrainedly. All participants received a voucher for an online
store over 30Euro.
This group was disjunctive from the evaluation in section 6.2. It involved two

invited colleagues and eight external participants acquired via flyers placed at the
university campus and supermarkets close-by the campus. Overall, the group con-
sisted of 10 participants with different hand sizes (hand length between 16 and
19.8 cm (µ = 18.26 cm, σ = 1.38 cm), span width of the hand between 18.3 and 23.1 cm

(µ = 20.43 cm, σ = 1.56 cm), index finger length between 6.2 and 7.5 cm (µ = 7.07 cm,
σ = 0.52 cm)) and gender (female = 5, male = 5, age range between 25 and 46).
The participant’s circumference of the index finger was between 56 and 70mm.

To enable evaluation with different finger sizes, three rings were produced with a
different inner diameter (18, 20, and 22mm). The outer sizes kept unchanged and are
also identical in regards to technical properties such as signal noise and resolution.

Recording Procedure

Since the index finger is a primary interaction finger, PeriSense was worn on the
base segment of the index finger of the right hand. Before these tests, the gestures
were explained, and the participants had time to exercise them. The gestures were
requested and performed in random order. The participants were asked to move
the hand and fingers into the start position of the requested gesture, hold a second,
perform the gesture, and keep again a second in the end position of the performed
gesture. The short breaks at the beginning and end of each gesture were necessary
for the experimenter, who noted the start and end of the gesture by simultaneously
pressing a key on a keyboard. The participants received no feedback on the gesture
recognition result during the whole experiment. The participants were allowed to
take as much time as they needed to take a break, touch and adjust the ring, and
relax and move the fingers freely.
The recording of the finger gestures was split into two sessions. In each session,

15 samples of each finger gesture were collected. Consequently, each user provided
240 samples in total. Between the sessions, further multiple data sets of different
interaction techniques were recorded. Between each recording, there was a break.
No specific interaction technique was recorded in sequence. After every recording
session, the ring battery was changed. This procedure requires taking off the ring.
Taking on the ring again caused most probably a slightly different ring placement
from the previous session.
All sensor data were logged into a CSV file during the whole session. Besides

the four capacitive measurements and the motion data (acceleration, rotation and
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the ambient magnetic field measurement along the x-, y- and z-axis), the software
logged also the associated timestamps (time in milliseconds starting from startup
of the ring), sample ids (an increasing posture counter), requested posture labels
(when the program requested the participant to perform a certain gesture), posture
labels (signs when the user performed the requested posture) and also a temper-
ature measured by the IMU. All measurements were captured at a rate of about
100Hz.

Analysis Procedure

In order to study the questions Q1 to Q4 from subsection 6.3.1, four tests T1 to T4
were defined as described in the following:

T1 Test 1 regarding interaction space (Q1): The question is if PeriSense pro-
duces a distinguishable pattern of the capacitive proximity sensing values
even for similar gestures. In order to determine this, a one-leave out cross-
validation on every single session data set is performed. This reduces possible
side effects, e.g., from the repositioning of the ring or from other users (e.g.,
different hand anatomy, variations in execution, etc.).

T2 Test 2 regarding repositioning (Q2): The sessions of each user are tested
against each other to study the effect of repeatability and possible effects of
repositioning the ring. Since two sessions were performed for each user, a
2-fold cross-validation is applied.

T3 Test 3 regarding generalization (Q3): To study the generalization, a leave
one user out cross-validation is performed where each user’s gestures are
tested against the remaining gestures of the other users. This allows us to
determine how far different hand anatomy and variations in gesture execution
influence the recognition results.

T4 Test 4 regarding additional sensor support (Q4): To study if the motion
sensor data enhances the recognition results, tests T1 to T3 are repeated un-
der the same conditions but using the acceleration and gyroscope data added
to the capacitive sensing values.

Although all PeriSense’s sensor values were logged, for this evaluation the data
is constrained to the class labels and the four capacitive sensor measurements. In
test T4, the acceleration and gyroscope values of the motion sensor were addition-
ally used. In the first step, all sessions were min-max normalized in terms of the
dimensions. Afterwards all gestures were segmented by the corresponding labels.
Since the capacitive measurements can vary in offset, the mean of each gesture
was subtracted from the corresponding segmented gesture. Consequently, each
normalized and segmented gesture is defined as a multidimensional time series G
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(a) Gesture Circle.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time in [s]

0

0.5

1

1.5

2

2.5

3

Se
ns

or
 ra

w
 v

al
ue

s

#106 Gesture Snap
E1 pointing to middle finger
E2 pointing to thumb
E3 pointing down (middle finger side)
E4 pointing down (thumb side)

(b) Gesture Snap.

Figure 6.25.: Raw values of the capacitive sensor for gestures Circle and Snap.
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Figure 6.26.: The recognition results of test T1 performing a leave one out cross-
validation on each session for each user.

of size n: G = (g0, . . . , gn−1) with gt = (e1t, e2t, e3t, e4t) at time t for test T1 to T3
and with gt = (e1t, e2t, e3t, e4t, axt, ayt, azt, gxt, gyt, gzt) for test T4. The symbols e, a,

and g refer to the capacitive measurement, acceleration and the angular velocity
respectively.
Figure 6.25 shows exemplary the raw values of the capacitive sensor for gesture

Circle and Snap.
For the classification, a one nearest neighbor (1NN) (ten Holt et al., 2007) classi-

fier was applied. The applied similarity measure is a multidimensional dynamic time
warping (DTW) algorithm (ten Holt et al., 2007) and can adapt to different speeds of
performing a gesture. The one nearest neighbor classifier using the dynamic time
warping distance produces comprehensible and reproducible results, while still be-
ing a very robust classifier for sequences (Bagnall et al., 2017).
Further, all given rates in the following sections indicate the precision which is

defined as the number of true positives (TP) over the number of true positives and
the number of false positives (FP): Precision = TP

TP+FP .
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Figure 6.27.: Histogram of the recognition results of test T1.
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Figure 6.28.: Confusion matrices for test T1 of the gesture set. The columns refer
to the actual class, the rows to the assigned ones during the classifi-
cation.
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Figure 6.29.: The recognition results of test T2 for each session and user.

6.3.2. Results

In the following, the results of each test are presented.

Results of Test T1

Test T1 performing a leave one out cross-validation on each session results in an
average precision over all sessions of 0.93. Figure 6.26 shows each session’s preci-
sion grouped by the corresponding user ids, and Figure 6.27 shows the histogram
of each session’s precision. Two sessions reach a precision of 0.98. Only four ses-
sions resulted in a precision less than 0.9 where the minimum precision is 0.84. The
standard deviation over all sessions is 0.04. The standard deviation over the user’s
average precision is also 0.04.
Figure 6.28 depicts the confusion matrix of test T1. It plots how often each per-

formed gesture has been confused with other ones. The columns should sum up to
one. Since the test set is large and space for plotting is limited, the precision values
are rounded to two digits after the point. This causes some columns not to sum up to
one. The confusion matrix reveals that most difficulties occur in the differentiation
between Circle and Rectangle. Gestures Flick, Slide Thumb Over Middle, and Snap
show some minor confusions with other gestures.
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Figure 6.30.: Histogram of the recognition results of test T2.
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Figure 6.31.: Confusion matrices for test T2 of the gesture set. The columns refer
to the actual class, the rows to the assigned ones during the classifi-
cation.

74



6. Evaluation

1 2 3 4 5 6 7 8 9 10
user id

0

0.2

0.4

0.6

0.8

1
pr

ec
is

io
n

Figure 6.32.: The recognition results of test T3 for each user.

Results of Test T2

For test T2 performing a 2-fold cross-validation over the two sessions for each user,
the precision drops down to 0.82. Figure 6.29 shows each fold’s precision grouped
by the corresponding user ids, and Figure 6.30 shows the histogram of each ses-
sion’s precision. Two folds achieve a precision of 0.95 or higher. Eight folds reach a
precision between 0.8 and 0.9. The maximum precision reached is 0.98, the lowest
precision is 0.66, and the standard deviation is 0.09.
Figure 6.31 depicts the confusion matrix of test T2. It plots how often each per-

formed gesture has been confused with other ones. The columns should sum up to
one. Since the test set is large and space for plotting is limited, the precision values
are rounded to two digits after the point. This causes some columns not to sum up
to one. The confusions changed in comparison to test T1. As in test T1, there is
confusion between Circle and Rectangle. Another confusion is between Bloom and
Flick. The precision for gestures Snap, Flick, and Bloom dropped at most.

Results of Test T3

In test T3 performing a leave one user out cross-validation, the average precision is
0.74. The standard deviation is 0.07. Figure 6.32 shows the precision for each user.
Two users archive a precision of 0.8 and more. Five user reach a precision between
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Confusion matrix for test T3 on gestures set
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Figure 6.33.: Confusion matrices for test T3 of the gesture set. The columns refer
to the actual class, the rows to the assigned ones during the classifi-
cation.

0.72 and 0.8. Two user achieve a precision of 0.78 and 0.79. The highest precision is
0.83 and the lowest 0.59.
Figure 6.33 depicts the confusion matrix of test T3. It plots how often each per-

formed gesture has been confused with other ones. The columns should sum up to
one. Since the test set is large and space for plotting is limited, the precision values
are rounded to two digits after the point. This causes some columns not to sum
up to one. The confusion matrix is similar to the matrix of test T2. Primarily ges-
tures Flick and Snap dropped more than the remaining in precision. Only gestures
Scissors and Slide Thumb Over Nails hardly changed in precision.

Results of Test T4

In test T4, the tests T1 to T3 were repeated using acceleration and gyroscope values
in addition to the capacitive sensing values. Regarding test T1, the average preci-
sion over all sessions is 0.97. Figure 6.34 shows each session’s precision grouped by
the corresponding user ids. Four sessions reached a precision of 1.0, three sessions
0.99, and five sessions 0.98. The lowest achieved precision is 0.91. The standard de-
viation over all results is 0.025. Figure 6.35 depicts the confusion matrix of test T4-1.
It plots how often each performed gesture has been confused with other ones. As in
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Figure 6.34.: The recognition results of test T4-1 for each session and user.
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0.95
0.04

0
0
0
0
0
0

0.03
0.96

0
0
0
0
0
0

0
0

1.00
0
0
0
0
0

0
0
0

0.99
0
0
0
0

0
0
0
0

1.00
0
0
0

0
0
0
0
0

0.97
0

0.03

0.01
0
0
0
0

0.01
0.97
0.01

0
0
0
0
0

0.04
0.01
0.93

Circ
le

Rec
tan

gle
Bloo

m

Scis
so

rs

Slid
e T

hu
mb O

ve
r N

ail
s

Slid
e T

hu
mb O

ve
r M

idd
le

Flick Sna
p

Circle
Rectangle

Bloom
Scissors

Slide Thumb Over Nails
Slide Thumb Over Middle

Flick
Snap

0

0.2

0.4

0.6

0.8

1

Figure 6.35.: Confusion matrices for test T4-1 of the gesture set. The columns refer
to the actual class, the rows to the assigned ones during the classifi-
cation.
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Figure 6.36.: The recognition results of test T4-2 for each session and user.
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Figure 6.37.: Confusion matrices for test T4-2 of the gesture set. The columns refer
to the actual class, the rows to the assigned ones during the classifi-
cation.
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the previous test results, the columns do not necessarily sum to one due to round-
ing. The confusion matrix reveals that most confusions are resolved or reduced.
The confusion group Circle and Rectangle is almost solved. Also, the confusions
regarding Slide Thumb Over Middle and Flick are almost resolved. The confusions
regarding gesture Snap remain.
Regarding test T2, the average precision over all folds is 0.91. Six folds achieve

a precision over 0.94 and eight less than 0.9 (see Figure 6.36). The lowest fold
precision is 0.79 and the standard deviation of the precision for this test is 0.053.
The confusion matrix for this test (Figure 6.37) shows more confusions than in test
T4-1. It shows similar confusion as to the matrix of test T1. Only gesture Snap
achieves a low precision of 0.77.
Regarding test T3, the average precision over all users is 0.89. Figure 6.38 shows

the precision for each user. The lowest achieved precision is 0.8. Three use achieved
a precision of 0.95 and higher, and the standard deviation for this test is 0.048. The
confusion matrix (Figure 6.39) changed not significantly in comparison to test T4-2
except for gesture Snap. In comparison to test T3, confusions for all gestures could
be significantly reduced.

6.3.3. Discussion

In test T1, performing a leave one out cross-validation on each session, an aver-
age precision of 0.93 was achieved. Sixteen of twenty sessions reached a precision
higher than 0.9. The confusion matrix reveals only one confusion group between Cir-
cle and Rectangle. The similarity of their patterns may explain this confusion. The
patterns are primarily distinguished by a short contact of electrodes 2 and 4 with the
middle finger. Moreover, most participants reported difficulties in executing these
gestures because the execution felt unnatural and required more cognitive atten-
tion than the execution of other gestures. This may also have resulted in an unclean
execution, which may have increased the likelihood of confusion. Gestures Bloom,
Scissors, and Slide Thumb Over Nails provide a robust pattern. Also, gestures Slide
Thumb Over Middle Finger and Snap show reasonable results.
In test T2 performing a 2-fold cross-validation over the two sessions for each user,

the precision dropped in comparison to test T1. The confusion between Circle and
Rectangle increased. Also, the precision for the remaining unistroke gestures de-
creased visibility. In particular, the performance of the Bloom, Flick, and Snap ges-
tures dropped strongly. This drop may be explained by the similarity of the involved
motion of the ring-wearing index finger. The produced signal is fairly similar since
the index finger has the same movement in these gestures. Repositioning effects of
the ring may increase this effect.
In test T3 performing a leave one user out cross-validation, the average precision

dropped by 20.43% in comparison to test T1. The gestures are hardly distinguishable
anymore. Only Scissors and Slide Thumb Over Nails show considerable results. The
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Figure 6.38.: The recognition results of test T4-3 for each user.

Confusion matrix for test T4-3 on gestures set
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Figure 6.39.: Confusion matrices for test T4-3 of the gesture set. The columns refer
to the actual class, the rows to the assigned ones during the classifi-
cation.
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confusion matrix changed hardly in comparison to test T2. Consequently, different
finger anatomy and slight differences in ring placement do not seem to influence
the precision much as the normalization eliminates different signal baselines and
highlights the pattern.
In test T4, using the accelerometer and gyroscope data additionally for the analy-

sis, most confusions could be resolved and the average overall precision enhanced.
Regarding test T1, the precision increased only slightly by 4.3%. However, most con-
fusions could be resolved except for Snap. Regarding test T2 and T3, the precision
increased by 9.89% and 7.5%, respectively. In all tests, confusions were reduced.
The confusion between Circle and Rectangle was strongly reduced by applying

information from the motion sensor because it adds information about directional
changes in finger movement. For gesture Rectangle, the finger movement stops at
each corner, and for Circle, it is a smooth ongoing movement. Confusion between
gestures Flick and Snap comes from variations in the execution of Snap. Sometimes
the participants started Snap with index and middle finger straight, bending the
middle and moving backward the index finger. This results in almost the same pat-
tern in the capacitive measurements. Again, using the additional acceleration and
gyroscope data can solve this confusion issue. Only the confusion between Snap and
Slide Thumb Over Middle remains. In general, it can be concluded regarding the in-
teraction space that PeriSense produces proper distinguishable patterns for finger
gestures based on capacitive measurements. However, similar motion and varia-
tions in execution can lead to confusions. Furthermore, it is to assume that smaller
and more electrodes could also reduce confusions. However, the large electrodes
seem to hinder the sensing of smaller finger displacements along the electrodes.
By employing data from the accelerometer and gyroscope for classification, these
confusions can be diminished. This allows a broad definition of finger gestures used
with PeriSense enabling various applications.
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Figure 6.40.: Drawing unistroke gestures above PeriSense.

6.4. Evaluation of Around-Device Interaction Space

In the previous sections, technical properties were studied, and the static and dy-
namic interaction space were determined. Section 6.1.2 shows that PeriSense can
sense the change of conductive objects reliable up to 2.5cm. Consequently, this sec-
tion evaluates if this capability can be used for around-device interactions extending
the interaction space by another interaction technique. For this purpose, it is evalu-
ated if small unistroke gestures drawn with the other hand’s index finger above the
ring can be detected.

6.4.1. Method

This subsection describes the method and setup of this evaluation. It formulates the
questions to be answered, the gesture set to be used, the participants, the recording
procedure, and finally the analysis procedure.

Questions

In this evaluation, the following questions will be investigated:

Q1 Around-Device Interaction Space: What is the effective interaction space
around PeriSense? This involves the following sub-questions: Which finger
movements and interactions are detectable? Which consequences can be drawn
for the interaction design?
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(a) Triangle (b) Rectangle (c) Circle (d) Delete

(e) X (f) Pig Tail (g) Bracket (h) Brace

Figure 6.41.: Unistroke gestures used for evaluation. The gestures start at the thin
slightly transparent end, follow the direction of the arrow and end at
the arrow.

Q2 Repositioning: Taking on/off the ring can cause slight differences in ring
orientation along the finger axis. Also, during the daily routine, the ring can
rotate a little. It should be investigated whether this rotation could influence
the measurement or detection in any way.

Q3 Generalization: Each hand has different anatomical peculiarities. For ex-
ample, the fingers are different in length and thickness, and mobility varies.
Therefore, it is necessary to investigate whether the measurement data and
recognition results can be generalized. Can the data be transferred from one
user to another?

Gesture Set

Since PeriSense measures the capacitance between the electrodes and close sur-
rounding objects, this section evaluates if small unistroke gestures drawn with the
other hand’s index finger above the ring can be detected. Figure 6.40 depicts an
example for such an interaction technique. In order to study how well similar ges-
tures can be distinguished, eight unistroke gestures were selected from (Wobbrock
et al., 2007). These are depicted in Figure 6.41.
The unistroke gestures have been chosen, which generate similar patterns. This
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set should give an impression which interactions are possible and which are not.
In this manner, the unistroke gestures Circle, Rectangle, and Triangle are executed
counter-clockwise, Pig Tail is similar to Circle in a different orientation, and Delete
is a rotated version of X. Unistrokes Bracket, and Brace are pretty similar to each
other too.
These gestures are not directly drawn on the ring surface but at the proximity of

about 5 to 30mm above the ring. The right hand is to be held as shown in Figure 6.40
and the gestures are drawn with the left hand’s index finger where the downward
direction of the gesture is towards the palm. The active writing area is directly
above the ring. Although most users were right-handed, they reported no difficulties
in drawing with their left hand.

Participants

The experiment was performed with participants that had no previous contact with
PeriSense or similar interaction devices and who had the ability to move their fin-
gers painlessly and unrestrainedly. All participants received a voucher for an online
store over 30Euro.
This group was same as in section 6.3 but disjunctive from the group in section 6.2.

It involved two invited colleagues and eight external participants acquired via flyer
placed at the university campus and supermarkets close-by the campus. Overall, the
group consisted of ten participants with different hand sizes (hand length between
16 and 19.8 cm (µ = 18.26 cm, σ = 1.38 cm), span width of the hand between 18.3 and
23.1 cm (µ = 20.43 cm, σ = 1.56 cm), index finger length between 6.2 and 7.5 cm (µ =
7.07 cm, σ = 0.52 cm)) and gender (female = 5, male = 5, age range between 25 and
46).
The participant’s circumference of the index finger was between 56 and 70mm.

To enable evaluation with different finger sizes, three rings were produced with a
different inner diameter (18, 20, and 22mm). The outer sizes kept unchanged and are
also identical in regards to technical properties such as signal noise and resolution.

Recording Procedure

Since the index finger is a primary interaction finger, PeriSense was worn on the
base segment of the index finger of the right hand. Before these tests, the gestures
were explained, and the participants had time to exercise them. The gestures were
requested and performed in random order. The participants were asked to move
the hand and fingers into the start position of the requested gesture, hold a second,
perform the gesture, and keep again a second in the end position of the performed
gesture. The short breaks at the beginning and end of each gesture were necessary
for the experimenter, who noted the start and end of the gesture by simultaneously
pressing a key on a keyboard. The participants received no feedback on the gesture
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recognition result during the whole experiment. The participants were allowed to
take as much time as they needed to take a break, touch and adjust the ring and
also relax and move the fingers freely.
All sensor data were logged into a CSV file during the whole session. Besides the

four capacitive measurements and the motion data (acceleration, rotation, and the
ambient magnetic field measurement along the x-, y- and z-axis), the software also
logged the associated timestamps (time in milliseconds starting from the startup
of the ring), sample ids (an increasing posture counter), requested posture labels
(when the program requested the participant to perform a particular gesture), pos-
ture labels (signs when the user performed the requested posture) and also a tem-
perature measured by the IMU. All measurements were captured at a rate of about
100Hz.

Analysis Procedure

In order to study the questions Q1 to Q3 from subsection 6.4.1, three tests T1 to T3
were defined as described in the following:

T1 Test 1 regarding interaction space (Q1): The question is if PeriSense pro-
duces a distinguishable pattern of the capacitive proximity sensing values
even for similar gestures. In order to determine this, a one-leave out cross-
validation on every single session data set is performed. This reduces possible
side effects, e.g., from the repositioning of the ring or from other users (e.g.,
different hand anatomy, variations in execution, etc.).

T2 Test 2 regarding repositioning (Q2): To study the effect of repeatability
and possible effects of repositioning the ring, the sessions of each user are
tested against each other. Since two recording sessions with each user were
performed for the unistroke set, a 2-fold cross-validation is applied, where two
sessions were tested against each other.

T3 Test 3 regarding generalization (Q3): To study the generalization of the
result, a leave one user out cross-validation is performed where each user’s
gestures are tested against the remaining gestures of the other users. This al-
lows us to determine how far different hand anatomy and variations in gesture
execution influence the recognition results.

Since the right hand wearing PeriSense is not moving during the unistroke ex-
ecution, the capacitive measurements without motion data was only used for the
analysis. Additionally, the data of the right electrode was omitted because the mid-
dle finger covers it. Consequently, the electrode measurements of the remaining
three electrodes were only used for the unistroke gesture recognition. Due to vari-
ances in proximity between PeriSense and the drawing finger, each sample was
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#104 Unistroke gesture Circle
E1 pointing to middle finger
E2 pointing to thumb
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Figure 6.42.: Raw values of the capacitive sensor for unistroke gesture Circle.
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Figure 6.43.: Raw values of the capacitive sensor for unistroke gesture Delete.
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Figure 6.44.: The recognition results of test T1 for each session and user.

standardized by centering to the mean and scaling to unit variance to stress the
pattern and normalize its amplitude. Consequently, each standardized unistroke
gesture is defined as a multidimensional time series G of size n: G = (g0, . . . , gn−1)

with gt = (e1t, e2t, e3t) at time t. The symbol e refers to the capacitive measurement.
Figures 6.42 and 6.43 show exemplary the raw values of the capacitive sensor

for unistroke gesture Circle and Delete. Since the offsets of the sensor values vary
much more than the amplitudes, the mean value for each sensor value was sub-
tracted to make the amplitude visible and comparable.
For the classification, a one nearest neighbor (1NN) (ten Holt et al., 2007) classi-

fier was applied. The applied similarity measure is a multidimensional dynamic time
warping (DTW) algorithm (ten Holt et al., 2007) and can adapt to different speeds
of performing a gesture. 1NN with DTW distance produces comprehensible and
reproducible results while still being a very robust classifier for sequences (Bagnall
et al., 2017). Further, all given rates in the following sections indicate the preci-
sion, which is defined as the number of true positives (TP) over the number of true
positives and the number of false positives (FP): Precision = TP

TP+FP .
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Figure 6.45.: Histogram of the recognition results of test T1.

Confusion matrix for test T1 on unistrokes set

0.82
0.04
0.04
0.10

0
0
0
0

0.03
0.87
0.07
0.02
0.01

0
0
0

0.03
0.04
0.87
0.03
0.02

0
0
0

0.10
0.02
0.04
0.82

0
0

0.01
0.01

0
0

0.02
0.01
0.95
0.01

0
0

0
0
0
0
0

0.99
0.01

0

0
0
0
0
0
0

0.96
0.04

0
0
0
0
0
0

0.05
0.94

Tria
ng

le

Rec
tan

gle
Circ

le
Dele

te X
Pigt

ail

Brac
ke

t
Brac

e

Triangle

Rectangle

Circle

Delete

X

Pigtail

Bracket

Brace
0

0.2

0.4

0.6

0.8

1

Figure 6.46.: Confusion matrices for test T1 of the unistroke set. The columns refer
to the actual class, the rows to the assigned ones during the classifi-
cation.
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6.4.2. Results

In the following, the results of each test are presented.

Results of Test T1

Test T1 performing a leave one out cross-validation on each session results in an
average precision over all sessions of 0.9. Figure 6.44 shows each session’s preci-
sion grouped by the corresponding user ids, and Figure 6.45 shows the histogram of
each session’s precision. Four sessions reach a precision of 0.95 and more. Twelve
sessions resulted in a precision of 0.9 and higher. The minimum precision is 0.83.
The standard deviation over all sessions is 0.04. The standard deviation over the
user’s average precision is also 0.04.
Figure 6.46 depicts the confusion matrix of test T1. It plots how often each per-

formed gesture has been confused with other ones. The columns should sum up
to one. Since the test set is large and space for plotting is limited, the precision
values are rounded to two digits after the point. This causes some columns not to
sum up to one. The confusion matrix shows a reasonable accuracy of0.94 and more
for gestures Bracket, Brace, Pig Tail, and X. Despite the good precision of Bracket
and Brace, there is some confusion between these two unistrokes. A big confusion
cluster can be identified for Triangle, Rectangle, Circle, and Delete. All of these ges-
tures have a precision below 0.88. Also, X is sometimes confused with the gestures
of this group.

Results of Test T2

In test T2 performing a 2-fold cross-validation over the two sessions for each user,
the precision drops down to 0.86. Figure 6.47 shows each fold’s precision grouped
by the corresponding user ids, and Figure 6.48 shows the histogram of each ses-
sion’s precision. Two folds achieve a precision of 0.97. Eight folds reach a precision
of 0.9and higher. The maximum precision reached is 0.97, the lowest precision is
0.41 and 0.63, and the standard deviation is 0.13. One user shows a low result on
both folds.
Figure 6.49 depicts the confusion matrix of test T2. It plots how often each per-

formed unistroke has been confused with other ones. As in the previous test results,
the columns do not necessarily sum to one due to rounding. Overall, the confusion
groups remain unchanged in comparison to test T1. As in test T1, there is confusion
between Bracket, Brace, Pig Tail, and X. There are some more confusions regarding
Brace, Bracket, and Circle in general.
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Figure 6.47.: The recognition results of test T2 for each session and user.
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Figure 6.48.: Histogram of the recognition results of test T2.
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Confusion matrix for test T2 on unistrokes set
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Figure 6.49.: Confusion matrices for test T2 of the unistroke set. The columns refer
to the actual class, the rows to the assigned ones during the classifi-
cation.
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Figure 6.50.: The recognition results of test T3 for each user.
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Confusion matrix for test T3 on unistrokes set
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Figure 6.51.: Confusion matrices for test T3 of the unistroke set. The columns refer
to the actual class, the rows to the assigned ones during the classifi-
cation.

Results of Test T3

In test T3 performing a leave one user out cross-validation, the average precision is
0.88. The standard deviation is 0.11. Figure 6.50 shows the precision for each user.
For one user, a precision of 1.0 and for two users a precision of 0.99 is achieved.
Five users reach a precision of 0.92 or higher. Four users achieve a precision be-
tween 0.77 and 0.88. The same user as in test T2 also achieves in test T3 the lowest
precision of 0.64.
Figure 6.51 depicts the confusion matrix of test T3. It plots how often each per-

formed gesture has been confused with other ones. As in the previous test results,
the columns do not necessarily sum to one due to rounding. The confusion matrix is
more similar to test T1 than to test T2.

6.4.3. Discussion

The test revealed that PeriSense could also detect around-device interactions per-
formed with the other hand, in this concrete case, two-handed unistroke gesture
input. In general, this input technique generates well distinguishable patterns for
most gestures. The big confusion group of Triangle, Rectangle, Circle, and Delete
seems to arise from the one-dimensional electrode arrangement, particularly for the
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confusion between Triangle and Delete since it is not possible to detect the direction
of movement along the electrode.
There is no significant difference between user dependence and user indepen-

dence tests. Changes in ring orientation are no issue since the ring is fixed between
the index and middle finger. Only for one user out of 10 a low result was obtained.
Judging from the signals, in this case, it seems that the gestures were not performed
exactly over the ring.
The ability to detect multiple finger gestures and around-device interactions in-

creases the interaction space and, thus, the variations of applications.
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Figure 6.52.: Joint notation of the fingertip close (distal interphalangeal (DIP))
joint, middle (proximal interphalangeal (PIP)) joint, and palm close
(metacarpophalangeal (MCP)) joint.

6.5. Ring-based Finger Tracking

In the previous sections, technical properties were studied, the static and dynamic
interaction space were determined, and the around-device interaction space was
evaluated. This section evaluates whether it is possible to map the capacitive mea-
surements to the finger angles enabling multi-finger tracking. For this purpose, a
long short-term memory (LSTM)-based finger tracking algorithm is developed and
evaluated.

6.5.1. LSTM-based Finger Tracking

To enable complete tracking of each finger, at least the angles of the fingertip close
joint (distal interphalangeal (DIP) joint), middle joint (proximal interphalangeal (PIP)
joint), and palm close joint (metacarpophalangeal (MCP) joint) for each finger (Fig-
ure 6.52) must be determined. That means the four capacitive sensor readings of
PeriSense must be mapped to 15 joint angles. To reduce the complexity, only the
PIP and MCP joints are determined since the DIP joint angle can be approximated
as shown by Hrabia et al. (Hrabia et al., 2013). Consequently, the angles to be
determined are reduced to 10.
Due to the low number of sensors arranged around a ring, the limited sensing

field, the non-linearity of capacitive proximity sensing, and the influence of the ca-
pacitive measurements by all fingers and the palm, the mapping problem is highly
non-linear. These limitations can produce the same or very similar capacitive mea-
surements for different finger poses.
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In order to cope with the mapping ratio of low input and high output dimension
and the non-linearity of the capacitive measurements, a regression model based on
a long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) is applied
to map the four sensor values to the ten joint angles. The LSTM is a recurrent
neural network architecture where the cells in the hidden layer are complex units
that incorporate an internal memory with different gates for setting, deleting, and
reading the memory content. This allows each cell to store received information
and compare it to later information. The consecutive input sequence is fed into the
LSTM piece by piece, one measurement containing four sensor values at a time.
Only the output to the last measurement of the sequence is then transmitted further
as a result of the entire sequence. The joint angle cannot jump randomly from
one value to another, but they in- or decrease continuous angle by angle. This
dependence seems to be appropriate for the internal LSTM structure.
As reference data for this regression problem, a Leap Motion camera3 was used

providing a skeleton model. During the training data collection, finger movements
were performed over the Leap Motion camera while wearing a PeriSense prototype.
Data from both devices were recorded simultaneously. Further implementation and
training details regarding the LSTM network are given in the method section.

6.5.2. Method

This subsection describes the method and setup of this evaluation. It formulates the
questions to be answered, the participants, the recording procedure, and finally the
analysis procedure.

Question

This evaluation will investigate the following question: Is it possible to map the four
capacitive sensing measurements to the finger angles enabling finger tracking? In
concrete, which fingers and angles can be tracked, and what are the limits?

Gesture Set

In initial tests, it was discovered that the Leap Motion SDK has difficulties tracking
specific finger movements correctly. Consequently, six finger movements, gestures
called, were defined: (1) all fingers open and close (fist spread in change), (2) from
a fist, thumb, index and middle finger open and close, (3) from spread hand, index
finger bends, (4) from a fist, thumb and index finger open and close, (5) from spread
hand, ring and little finger bend and (6) from spread hand, middle, ring and little
finger bend.

3Leap Motion: https://www.leapmotion.com (accessed on: 2019/10/04)
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Participants

For the experiment, 17 participants for the evaluation and four additional partici-
pants for the hyperparameter optimization were recruited. Both groups were dis-
junctive from the evaluation in the previous sections. All participants could move
their fingers painlessly and unrestrainedly. Overall, both groups together consisted
of four female and 17 male participants with different hand sizes (hand length be-
tween 16 and 19.8 cm (µ = 18.26 cm, σ = 1.38 cm), span width of the hand between
18.3 and 23.1 cm (µ = 20.43 cm, σ = 1.56 cm), index finger length between 6.2 and
7.5 cm (µ = 7.07 cm, σ = 0.52 cm)) and age range between 24 and 47. Three of the
participants were left handed. The participant’s circumference of the middle finger
was between 56 and 70mm. To enable evaluation with different finger sizes, three
rings were produced with different inner diameters (18, 20, and 22mm). The outer
sizes are kept unchanged and are also identical in regards to technical properties
such as signal noise and resolution.

Recording Procedure

To capture the motion of as many as possible fingers, PeriSense was worn on the
base segment of the right hand middle finger. Also, the left-handed participants per-
formed the experiment with the right hand and reported no difficulties performing
the requested movements since the movements were easy and natural in execution.
After introducing the experiment and the possibility of getting familiar with Peri-
Sense and the Leap Motion camera, the participants had to perform a calibration
procedure. Within this procedure, the participants were required to move the finger
for 20 seconds so that the ring was touched everywhere and had maximum distance
everywhere to the adjunct finger to capture the maximum and minimum capacitive
values, respectively.
First, each gesture was explained, and the participants exercised them. After-

ward, 30 seconds of the gesture execution were recorded while the participants
could see the hand model provided by the Leap Motion SDK. The Leap Motion cam-
era frames and the capacitive sensing values from the ring were recorded simulta-
neously.

Analysis Procedure

First, the Leap Motion frames and the ring data were synchronized regarding the
timestamps. Additionally, invalid tracking sequences (e.g. parts without recognized
hands by the Leap Motion SDK or hands with low confidence values) were elimi-
nated. Afterward, each finger’s PIP and MCP joint angle were extracted from the
Leap Motion hand model and normalized to 0 and 1. The capacitive sensing values
were normalized to -1 and 1 regarding the calibration values. Finally, all data were
merged into one data set.
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Figure 6.53.: Mean absolute error for each participant.

For both training and evaluation, the loss function is the mean squared error
penalizing outliers. Additionally, the absolute error is included as a metric to help
interpret the results. The networks are trained using the RMSProp (root mean
square propagation) optimizer with a learning rate of 0.001. A sliding window (with
a window size of w) was applied to the data set, which generates an (n samples,
window size of w, features dimensions) - input matrix for the LSTM layer. The n
samples are the number of generated windows, the sliding window size is five, and
the dimension of the features (the four capacitive sensing values) is four. All training
data (windows) was shuffled before being used. The number of units used in the
LSTM cell is 50, and a dropout layer was added with a rate of 0.3 on the LSTM layer.
Next, a dense layer with 25 units was added and finally a dense output layer was
added with an output dimension of 10 (corresponding to the ten finger angles). The
activation function for the two dense layers is a ReLU (rectified linear unit).
The parameter used in the evaluation were determined by a hyperparameter op-

timization using data from four users, which were not part of the data set used for
the evaluation. The data of the 17 participants was used for a leave one user out
cross-validation.

6.5.3. Results

The leave one user out cross-validation over the data of 17 participants and all joint
angles achieved a mean absolute error (MAE) of 13.02 degrees (minimum MAE is
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Figure 6.54.: Mean absolute error for each joint.

5.29 degree, maximum MAE is 18.19 degree, and the standard deviation is 4.35).
Figure 6.53 shows the MAE for each participant. It reveals that the participants
with the largest and smallest hands had the largest error. Participants 3 and 8 had
the largest and smallest hands, respectively. Also, participants 1, 2, and 17 had
large hands. For 10 participants, the MAE is below 13.5 degrees (minimum MAE is
10.22), and the two largest MAE are 17.11 and 16.37 degrees. The standard deviation
over the participant’s MAE is 2.21.
Figure 6.54 shows the MAE for each joint. The error of all MCP joints is smaller

than the error of the corresponding PIP joints. The lowest errors are achieved for
the thumb (PIP = 6.27, MCP = 5.23) and the highest for the ring finger (PIP =

18.19, MCP = 15.73) followed by the little finger (PIP = 17.04, MCP = 15.63). The
MAE for the MCP of the index and middle finger are similar with 12.08 and 11.64.
The MAE of the PIP joint of the index finger is 15.23 and of the middle finger 13.05.
Figure 6.55 shows the MAE for each joint in 5-degree resolution. The joint of the

little and ring finger and the joints of the middle and index fingers show similar
behavior. The MAE rises in the second third of the range for the thumb, index, and
middle finger. Around 20 to 30 degrees, all joints show lower MAE and smaller MAE
distributions. For the thumb, index and middle finger joints, the distribution of the
MAE becomes larges when the fingers are bend. Further, all joints show outliers at
the upper and lower side of the range and only a few in the middle.
Figure 6.56 shows exemplary snapshots of the gestures (1) to (6) for the partic-
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Figure 6.55.: Boxplots showing the MAE distribution over the angle range from 0 to
90 degrees for the each joint.
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Figure 6.56.: Data snapshots of each gesture ((1) to (6)) from one user. On the top,
the PIP joint angle of the middle finger computed by the Leap Motion
SDK , and the predicted angle (orange) is shown. Below, the corre-
sponding capacitive sensing values are shown. C1 is the electrode
pointing towards the ring finger (to the right side), C2 is at the bottom
right and captures the influence of the middle and ring finger, C3 is
at the bottom left and measures the influence of the middle and index
finger, and C4 points towards the index finger.
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Figure 6.57.: Demonstration setup. It shows the demonstrator’s right hand wearing
PeriSense on the middle finger and performing finger movements. In
the background, there is the (mirrored) computer-animated 3D hand
model rendering the demonstrator’s finger movements.

ipant number 10’s middle finger PIP joint as well as the corresponding capacitive
measurements. For gestures (1), (2), and (6), the LSTM tends to underestimate the
angle at the upper and lower side of the movement range. Nevertheless, the bend-
ing of this joint is predicted regardless if the adjunct fingers moved too or not. At
gestures (3), (4), and (5), the middle finger should not move. However, joint bends
are predicted up to 50 degrees. On the other hand, the reference angles and the
capacitive sensing data show finger bends for gesture (5) where the middle finger
should not be moved. In this case, the LSTM predicted less motion than the refer-
ence angles.

6.5.4. Discussion

The leave one user out cross-validation results show that very large or small hands
can lead to an increased MAE. It is assumed, in such cases, that the ring is not
optimal aligned and produces slightly different measurements caused by the differ-
ent proximities and contacts of the fingers and the palm. The current prototypes
scale only inside with respect to the diameter. It would be better also to scale the
outer size and form. Further, training different ring sizes separately could enhance
performance. Also, user-dependent training should minimize the error.
Although the motion of the thumb and little finger cannot be tracked actively by

PeriSense, the thumb shows the lowest MAE. Also, the MAE of the little finger is
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comparable with the other ones. The LSTM can predict these angles in dependence
on the movement of the other fingers. This is only possible for predefined and nat-
ural hand movements like the gestures used in this evaluation (e.g., open and close
the hand oscillatory). Using free arbitrary finger movements would cause signifi-
cant errors for these fingers. Also, gestures consisting only of thumb or little finger
movements, such as the shaka or thumb-up gestures, are not detectable because
the ring is enclosed by the index, middle, and ring finger. Wearing the ring on the
index finger could enable tracking of the thumb, but on the other hand, the ring
finger would become not trackable.
The predicted middle finger bends for gestures (3), (4), and (5) (see Figure 6.56)

are caused by false tracking of the Leap Motion SDK. This is also visible at gesture
(5), where the reference angles show finger bends, although there was no move-
ment. The capacitive measurements show some amplitudes for electrodes C2 and
C3, pointing down right and down left, respectively. The movement of the ring fin-
ger causes the amplitude of C2. The index finger causes the amplitude of C3. The
index touched the electrode slightly when all fingers were stretched. When the ring
and little finger are bent, the index finger spread slightly to the left (away from C3).
Consequently, the LSTM learned the errors in the reference data, even if the errors
do not occur often. Taking more training data could decrease the influence of this
error. Alternatively, also better tracking algorithm for the reference system would
reduce the errors.
Since it is difficult to imagine the effect of a 13.02 degree error in practice, Peri-

Sense and the finger tracking approach were connected to a virtual 3D hand model
(Figure 6.57). In first tests, strong jitters were observed in the virtual model. In
consequence, an exponential smoothing with an alpha of 0.5 was applied on the pre-
dicted angles, which has been determined by experimental evaluation. This results
in a stable visual hand model. According to subjective impression, the angles are
displayed correctly, and the fingers move like the real ones. For some movements
like gesture (5), the already above-discussed effect of learned errors from the ref-
erence data could be observed. Also, movements that are not an explicit part of the
training data, like stretching the middle finger, could not be properly depicted by the
hand model. Overall, the tracking performance is sufficient enough for displaying
natural finger movements. Using a more accurate reference system and additional
gestures for the training data could enhance the tracking performance.
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In the previous, a concept for recognizing multi-finger gestures with a ring and
the prototypical implementation of this concept in the form of PeriSense were pre-
sented. Subsequently, PeriSense was comprehensively evaluated analytically. This
chapter presents some applications for PeriSense. The fields of application are very
manifold. For example, PeriSense can serve as an input device for AR and VR glasses
or smartphones (for example, to control the camera shutter or the music player). It
can also be used as a remote controller for the smart home. One thing that is not
the focus of this work but could also be a use case is activity recognition. Activity
recognition could be used to trigger implicit interactions. For example, in a cooking
scenario, the ring could detect that the user is stirring for X minutes, and the recipe
step is then automatically advanced. In this context, PeriSense could also be used
to track fitness activities such as running or swimming, or in the healthcare sector,
for example, to detect a fall, document drinking behavior, or report lethargic move-
ments. Also, applications in the context of industry 4.0 are of interest, such as an
input controller for a digital workbench (Drews and Weyrich, 1997) or testing novel
interaction concepts with a digital twin (Talkhestani and Weyrich, 2020).
In the following, we present four different applications with PeriSense that have

already been implemented. Since the interaction pipelines are always very differ-
ent, but the programming is often complex, but at the same time very similar, a
framework called PeriSensePy was developed. This framework allows the creation
of interaction pipelines without programming. Accordingly, the PeriSensePy frame-
work is presented first, followed by the four applications.

7.1. PeriSensePy Application Framework

The interaction flow for each application is individual. Figure 7.1 shows a simplified
typical pipeline. The sensor data is passed from the device driver to an interaction
recognition module. The interaction recognition continuously classifies the sensor

Figure 7.1.: A typical generic interaction pipeline.
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Figure 7.2.: PeriSensePy framework concept.

data into noise (signals that do not contain consciously performed gestures) and
gestures. This can be, for example, a gesture filter that classifies, e.g., using a Sup-
port Vector Classification (SVC), the signal (such as in Zhang et al. (Zhang et al.,
2017a)). However, it can also be an event that characterizes the interaction. For ex-
ample, the event could be a button press on the interaction device or, in PeriSense’s
case, tapping the ring with the thumb (if the ring is worn on the index finger). It
would also be imaginable that the interaction intention is characterized by a partic-
ular hand or finger position or orientation. If the interaction recognition detected an
interaction intention, then the gesture recognition is activated and classifies which
gesture was performed and whether it is a gesture.
Accordingly, the interaction pipeline must be implemented again for each applica-

tion. Many code sections are, however, always the same or similar. Nevertheless,
they differ considerably in detail, so a simple copy and paste is usually not possible.
Due to the complexity of the interaction pipelines’ implementation, changes in the
interaction flow often require a complete redesign of the implementation.
In order to create interactive applications with PeriSense quickly and easily, a

framework called PeriSensePy was developed. It allows the creation of interaction
flows without programming. The composition and configuration of the interaction
pipelines are done exclusively through a JSON-based configuration file. The inter-
action pipeline is created and executed from the configuration file at runtime. This
allows for quick changes and adjustments without the need to program. Also, the
framework allows automatic training of the models defined in the configuration file.
In the following, the implementation concept of the PeriSensePy framework is

presented, and afterward, the implementation is described. An example of an inter-
action pipeline configuration using this framework is presented in Appendix C.
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7.1.1. Concept

The goal of PeriSensePy is to provide a generic framework that can be used to im-
plement various and diverse interaction flows. This requires the following modules:
a driver module, interaction recognition module, gesture recognition module, logic
module, and output module. Figure 7.2 shows all modules and how they are con-
nected and interact with each other.
The driver manages PeriSense and provides the sensor data. The sensor data is

independently passed to the interaction recognition, logic, and gesture recognition
module. The interaction recognition notifies and activates the logic and the ges-
ture recognition module. The interaction recognition module is always active and
continuously processes the sensor data. Optionally, the logic module can also be
configured to be always active. The interaction recognition or logic module only ac-
tivates the gesture recognition module. Deactivation takes place within the gesture
recognition module. The interaction recognition module sends an event to the out-
put and logic module. The event may contain more detailed information about the
type of interaction recognized, such as the name or a confidence value. The gesture
recognition module also sends the recognized gesture as an event to the logic and
output module.
The logic module represents a generic component. This module allows the imple-

mentation of more complex processes and logic, which cannot be realized via the
standard interaction recognition, gesture recognition, and output module. This can
be, for example, the implementation of a dimmer by rotating the ring or the fusion of
gesture sequences to one command (for example, the fusion of a gesture to address
a device followed by a control gesture to a single command).
The output module provides the recognized gestures and events of the interaction

recognition and the logic module to applications. This can be, for example, via a
web service, REST API, MQTT channel, or WebSocket.
The concept allows the modules to be combined in almost any way. The configu-

ration of the modules is done via a configuration file. The framework evaluates this
file at runtime, and the interaction pipeline is created from it.

7.1.2. Implementation

The PeriSensePy framework is implemented in Python. All framework modules have
an abstract class, which all concrete module implementations must inherit. The in-
stantiation of the classes is done via corresponding factories. This allows a straight-
forward and fast extension of the modules by further algorithms.
For the driver module, a PeriSense driver handling the Bluetooth communication

and a PeriSense simulation driver is implemented. The simulation driver plays CSV
files recorded with PeriSense back into the framework. It thus simulates a Peri-
Sense. Since the data interface is generic, drivers for arbitrary interaction devices
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can be added. Thus, the framework is not technically limited to PeriSense.
To implement a concrete interaction detection, the following three functions have

to be implemented:

def _ in i t ( sel f )

def _classify ( self , values )

def train ( sel f )

The function _init(self) is called when initializing the module implementation and
is used for loading the model and other initialization actions. In the function _clas-
sify(self, values), the classification of the passed sequence is performed. The func-
tion train(self) trains the model of the implementation, selects the features, deter-
mines the parameters for normalization, and whatever else is necessary for training
the specific implementation. Currently, two interaction recognizers have been im-
plemented: TapRecognition and FeatureBasedFilter. TapRecognition performs a tap
recognition. It can detect the tap on a specific electrode. FeatureBasedFilter is
based on a Support Vector Classification (SVC) from the scikit-learn library1. The
features are extracted using the tsfel library2, which are determined via automatic
feature selection in the train(self) method. The SVC classifies the last n sensor data
into noise (i.e., gestures not consciously performed) and gesture.
The gesture recognition module provides the same interface as the interaction

recognition module. The following algorithms have been implemented so far: SK-
LearnRecognition and OneNNRecognition. SKLearnRecognition uses algorithms
from the scikit-learn library. There is a choice between SVC, Random Forest Trees,
andMulti-layer Perceptron (MLP). OneNNRecognition implements a 1-nearest neigh-
bor classifier. Currently, only Dynamic Time Warping (DTW) is implemented as sim-
ilarity measure. When using DTW, k prototypes per class can be computed from
the training data using Generalized Learning Vector Quantization (GLVQ)(Jain and
Schultz, 2018). It will then use the prototypes in place of the original training data
for classification. This reduces the number of comparisons in classification. A typi-
cal value for the number of prototypes is between 1 and 5 per class, which is much
smaller than the total number of training examples.
The logic modules were introduced to implement special cases that cannot be

mapped via the other modules. Currently, there is only one implementation of a logic
module developed for the smart home controller demonstration in Section 7.2. This
implementation determines the users’ pointing direction from the motion sensor
data and activates the corresponding classifier given the direction.

1Machine learning library for Python: https://scikit-learn.org/stable/ (accessed on 10/18/2020)
2Time Series Feature Extraction Library (TSFEL for short): https://tsfel.readthedocs.io/en/latest/index.html
(accessed on 10/18/2020)
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The abstract class of the output module provides the following functions to be
implemented:

def connect( sel f )

def disconnect ( sel f )

def _send_message( self , eid , label , name, score )

The connect(self) function is called during module initialization. Here, a server’s
connection can be established, a server can be started, or variables can be initial-
ized. The disconnect(self) function is called when the interaction pipeline is termi-
nated.The output modules can also be configured via the parameter "run_forever
: false" so that the two functions are always called when PeriSense connects and
disconnects, respectively. The function _send_message(self, eid, label, name, score)
sends the detected gesture to the corresponding application and if needed also the
id of the classifier (eid ), the label of the gesture (label ), and the confidence value
(score). Currently, modules are available for a general MQTT channel, the IOLITE3

MQTT interaction channel, REST API, WebSocket client and server, output to the
console, and a connector for a smart mirror.
The modules can be assembled into an interaction pipeline via an HJSON4-based

configuration file. In theory, any number of pipelines can be defined and combined
per application. The configuration was based on HJSON because it supports com-
ments. This allows fast editing of the configuration file.
A runtime application ApplicationPipeline.py is implemented, which creates the

pipelines from the configuration and initializes and starts the modules according to
the configuration. The training of the individual modules is realized via the Train-
ingPipeline.py runtime application.
The framework contains many more submodules and classes for auxiliary func-

tions, algorithms, data processing, etc. The complete framework description and
especially the description of the HJSON file’s parameters and the many configura-
tion options are documented in the code repository5.
An example of an interaction pipeline configuration using this framework is pre-

sented in Appendix C. In the following, four example applications using PeriSense
are presented.

3IOLITE is a smart home platform: https://iolite.de (accessed on 25.03.2021)
4HJSON is a user-friendly to read version of JSON:https://hjson.github.io (accessed on 20.03.2021)
5The code is placed in the DAI-Labor’s git repository: https://gitlab.dai-
labor.de/gestureprojects/perisensepy (accessed on 25.03.2021)
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Figure 7.3.: Controlling smart home ceiling lights using PeriSense.

7.2. Smart Home Controller

Smart homes contain various networked devices which can be combined to complex
home automation scenarios. The user experience can be improved by flexible inter-
action systems that enable the user to interact with any device from anywhere at
home in their daily life. The ability to be worn throughout the day makes PeriSense
a suitable interaction device in this context. Frequent automation scenarios, like
switching on a light or shutting down all devices when leaving home, could be tied
to representative gestures to make them available to the user anywhere throughout
their daily routine. Furthermore, the ability to draw unistroke gestures above the
ring could be used as textual input, e.g., to enter a pin for door opening.
In the Ambient Assisted Living Testbed of DAI-Labor at the Technische Univer-

sität Berlin, a demonstration was developed to test and showcase PeriSense. This
demonstration was already presented to a large and broad audience at countless
events such as the Long Night of Science6 or internal events with visitors from
science, industry, economics, politics, public sector, and many more. The demon-
stration consists of three seamless integrated use cases: (1) smart home appliance
control, (2) display control, and (3) music center control.

6Long Night of Science’s website: https://www.langenachtderwissenschaften.de/en (accessed on
24.03.2021)
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Figure 7.4.: Controlling smart mirror using PeriSense.

7.2.1. Example Scenario

A user wears PeriSense on the right hand’s index finger. The user comes into the
sleeping room. He points at the ceiling lights with his right index finger and double-
taps PeriSense with his thumb. Afterward, he performs a gesture, and the light is
turned on (Figure 7.3). He points to the blinds, taps PeriSense again twice, and
executes a gesture after which the blinds are lowered. He sits down and points
to the music system. He taps PeriSense twice with his thumb and switches on the
music center with a gesture. Subsequently, he selects the desired track and volume
by gesturing. He picks up his book and starts reading. After a while, the user puts
the book aside and turns off the music system by gesturing. He gets up and goes
to his smart mirror to find out about tomorrow’s weather and appointments. To do
this, he points to the mirror and double-taps PeriSense. The mirror displays a visual
icon to indicate that it is now active and can be controlled by PeriSense. The user
opens the weather forecast tile for tomorrow with a gesture and switches to the
calendar tile, performing a gesture afterward (Figure 7.4).

7.2.2. Gesture Sets

The showcase implemented in the Ambient Assisted Living Testbed consists of three
use cases. For each use case, a separate gesture set was defined. Figure 7.5 shows
the gestures for the device control use case. Gestures Up and Down are used to
open and close the blinds. Gestures CircleLeft and CircleRight are used to turn on
and off the ceiling lights.
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(a) Up (b) Down (c) CircleLeft (d) CircleRight

Figure 7.5.: Smart home device control gesture set.

(a) Grap’nPull (b) Push’nRelease (c) Slide Up/Down

Figure 7.6.: Smart mirror control gesture set.

(a) CircleLeft (b) CircleRight (c) Up

(d) Down (e) Left (f) Right

Figure 7.7.: Smart music center control gesture set.
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Figure 7.8.: Interaction pipeline for the smart home application.

In the Ambient Assisted Living Testbed, a smart mirror is installed displaying
different content. It provides a summary view showing four tiles. Each tile can
be enlarged to fullscreen. In the fullscreen mode, it can be switched between the
enlarged tiles. Figure 7.6 shows the control gestures for the smart mirror. Gesture
Grap’nPull switches from summary view to fullscreen view of the tile in the upper
left corner. The gesture is executed by first performing a grasp motion with the
hand and stretched limb followed by pulling back the limb. Gesture Push’nRelease
switches back from the fullscreen mode to the summary view. It is performed by
jabbing the limb and opening the fist. Between the fullscreen tiles can be switched
using gestures Left and Right. By sliding the thumb up and down on PeriSense, the
tiles are switched.
Figure 7.7 shows the gestures for the music center control use case. The gestures

are drawn with the thumb on the palm. Gestures CircleLeft and CircleRight are used
to turn on and off the music center. Gestures Up and Down are used to increase and
decrease the volume by 10 steps. Gestures Left and Right switch between the music
tracks.

7.2.3. Implementation

This demonstration is implemented in the sleeping room of the Ambient Assisted
Living Testbed. The device’s placement is as follows: the blinds are located east-
wards, the ceiling lights at the top, the smart mirror is westwards, and the music
center is northwards placed. To ensure that no control command is accidentally
triggered by a true-false recognized gesture, the user must double-tap PeriSense
with the thumb. The tap recognition is a threshold-based algorithm measuring the
change of the capacitive sensing values. The pointing direction is determined by
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the compass of the motion sensor. For each use case, a specific gesture recogni-
tion algorithm was trained. Figure 7.8 shows the interaction pipeline. The device
selection is a logic module. It activates the gesture recognition modules relating
to the pointed device. Each use case uses a 1-nearest neighbor classifier for ges-
ture recognition. In the case of the device control, the gesture recognition module
deactivates after it recognized a gesture. In the case of the smart mirror and the
music center, the gesture recognition is active for 15 s and 5 s respectively. Every
time a gesture is recognized, the activation time is reset and starts to count from
the beginning. This ensures the user has not to tap PeriSense every time if the user
wants to turn on the music center and adjust a certain track, e.g.
PeriSense is connected with a Raspberry Pi where the PeriSensePy framework

runs. PeriSense connects automatically to the Pi as soon it is turned on. The mu-
sic center, the blinds, and the ceiling lights are connected and controlled with the
IOLITE smart home platform. The recognized control gestures for these devices
are sent via an MQTT channel to IOLITE. The smart mirror control interface can be
accessed directly via a REST API.
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Figure 7.9.: Selecting the focused lights by tapping PeriSense.

Figure 7.10.: Adjusting the brightness by swiping on PeriSense.

7.3. Input Device for Augmented Reality Glasses

The current trend towards augmented and virtual reality also raises the demand
for new input modalities. Existing technologies use camera technology or dedicated
input controllers to detect hand input and gestures. PeriSense could achieve similar
results but does not suffer from occlusion or light conditions and leaves the user
with free hands. The ring could serve to detect directional changes and movements
via established motion-sensing techniques. Capacitive sensing can complement this
by being able to sense a variety of interactions. In the context of the project UbiAct7,
PeriSense is applied as an input controller for AR glasses in the context of smart
home control.

7.3.1. Example Scenario

The user is wearing PeriSense and AR glasses. He wants to start cooking. Therefore,
he wants to switch on the light in the kitchen. To do this, he brings his hand into

7The UbiAct project was founded by the German Federal Ministry of Education and Research(grant
no. 16SV8277): https://www.interaktive-technologien.de/projekte/ubiact (accessed on 17.03.2021)
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(a) Activation posture
(b) Tap

(c) Swipe Left/Right (d) Swipe Up/Down

Figure 7.11.: UbiAct gesture set.

an activation position, which causes all controllable devices in his field of view to
be displayed on the AR glasses. The device in the center of the field of view has the
focus highlight, in this case, the kitchen lamp (Figure 7.9). He selects the focused
kitchen lamp by double-tapping the ring with his thumb. The control menu of the
lamp opens. The user can choose between setting the brightness and the color
(Figure 7.10). The user can swipe to adjust the lamp’s dimming level by looking at
the brightness setting. By opening the hand or releasing the activation position, the
display on the glasses is closed, and he can start cooking.

7.3.2. Gesture Set

Since the UbiAct project was still running when this thesis was written, the interac-
tion concept presented here is only an early intermediate draft concept. Anyway, the
idea of the gesture set is to reduce the number of interactions to a minimum. Fur-
ther, it is aimed at using micro gestures requiring low cognitive load. Figure 7.11
shows the first sketch of the gesture set. Tapping once PeriSense (Figure 7.11b)
selects a focused element. Tapping twice PeriSense (Figure 7.11b) returns to the
previous menu or view. Figure 7.11a shows the activation posture.
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Figure 7.12.: Interaction pipeline for the UbiAct use case.

7.3.3. Implementation

UbiAct’s current concept is to provide PeriSense with the IOLITE platform8. Accord-
ingly, PeriSense is connected to a Raspberry Pi running the PeriSensePy framework
and the IOLITE platform. Figure 7.12 shows the interaction pipeline. The gesture
recognition module is active once the user’s activation posture is detected. The de-
tected gestures and de-/activation events are sent to the IOLITE platform over an
MQTT channel. The platform then pushes the gestures to the AR glasses, which are
also connected to the platform via a REST API.

8IOLITE smart home platform: https://iolite.de/en (accessed on 24.03.2021)
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7.4. Drone Controller

Special Operations Forces (SOF) are facing extreme risks when prosecuting crimes
in uncharted environments like buildings. Autonomous drones could potentially
save officers’ lives by assisting in those exploration tasks, but an intuitive and re-
liable way of communicating with autonomous systems is yet to be established. In
the context of the project InLaSeD9, an interaction concept using PeriSense was de-
signed to be used by SOF during operation for interaction with autonomous systems
(Montebaur et al., 2020). Controlling autonomous drones using gestures is more in-
tuitive than using a remote control. Additionally, using PeriSense, there is no need
to hold a device in the hands and look at it producing additional cognitive load and
attention.

7.4.1. Example Scenario

A SOF unit entering a building is accompanied by an autonomous operating drone
delivering visual information to the unit. The leading officer of the SOF unit carries
PeriSense and a mobile computer. PeriSense is connected to the mobile computer,
where the sensor data is processed and recognized commando events sent to the
drone. During the SOF units moves thru the building, the autonomous operating
drone supports the unit by inspecting the environment for potential dangers. As the
unit approaches another room entrance, the leading officer sends the drone into this
room. To do that, he performs a specific commando gesture related to the drone.
The drone takes off. Afterward, the leading officer performs another gesture to send
the drone forwards into the room, where the drone starts to explore the room. As
the room seems to be safe, the leading officer calls the drone back using a gesture.
Afterward, the leading officer performs a gesture signalizing two unit members to
move forwards into the room.

7.4.2. Gesture Set

Communicating with gestures is already well-known to special forces. Building on
this well-established interaction model, additional gestures specifically designed to
instruct autonomous drones were designed, assisting police officers during the op-
eration. These defined gestures (Figure 7.13) can co-exist with already established
commandos and can not be mistaken for everyday finger and hand movements.

9The InLaSeD project was funded by the German Federal Ministry of Education and Re-
search (grant no. 13N14795): https://www.sifo.de/de/bewilligte-projekte-aus-der-bekanntmachung-
anwender-innovativ-forschung-fuer-die-zivile-2256.html(accessed on 27.03.2021)
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Figure 7.13.: Autonomous drone gesture command set.

Figure 7.14.: Interaction pipeline for the drone control application.
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Figure 7.15.: Demonstration setup.

7.4.3. Implementation

This demonstration is prototypically implemented as a simulation. PeriSense is con-
nected with a computer where the PeriSensePy framework is running. Figure 7.14
shows the interaction pipeline for this demonstration. The gesture filter is based on
an SVC classifier deciding if the last n sensor values belong to a gesture or not. If
these n sensor values are considered as part of a gesture, they are forwarded to a
Random Forest-based gesture recognition module classifying the incoming values.
If the filter passes m windows (with m >> averagegesturelength) in sequence to the
gesture recognition, then the gesture recognition and the gesture filter are reset.
The gesture filter forwards only a sensor window again when at least one sequence
was classified as noise (no indented gesture). This reduces True-False recognition.
The recognized control commands represented by the corresponding gestures are

passed to drone simulation based on MORSE10 running on the notebook computer,
too (Figure 7.15). Based on the control command, the simulated drone starts actions
like taking off or moving forward.

10http://morse-simulator.github.io/ (accessed on 18.12.2020)
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Figure 7.16.: Modulating "Bassline 101" parameters with PeriSense.

7.5. Immersive Midi Controller

The most important aspect for music producers is the fusion with their music to ex-
plain their histories, feelings, and ideas. This requires immersive equipment to mix
their movement with music in order to get a unique experience. Nowadays, elec-
tronic music equipment only has buttons, knobs, and faders to modulate the sounds.
This does not create immersion and feels unnatural to musicians. The control with
a knob or fader allows only a one-dimensional expression. Consequently, it is be-
coming more common that electronic music equipment includes touch interfaces in
their devices because it provides a better experience.
In the context of Bryan Balfagón’s Bachelor thesis (Balfagón Ortiga, 2016), it was

studied if PeriSense is suitable to be a natural and immersive controller for musical
midi software. In the study with 18 musicians ranging from amateurs to profes-
sionals, it was found that using PeriSense as an input controller for midi software
takes the creation of music to another level. This allows a new synchronization level
between human movement and sound, resulting in a higher artistic potential.

7.5.1. Scenario

In a live show, the musician plays the notes of the main melody or arpeggio with one
hand. The melody is the most modulated in electronic music. The rest of the sounds
are usually cyclical. With the other hand wearing PeriSense, the musician changes
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the MIDI software parameters to modulate the melody. The parameters are mapped
to modulate the frequency filter and the ADSR2 module, such as the most common
attack and sustain. By moving the hand, the musician can express his emotions in
movements, and the movements in turns are translated into the modulation of the
melody.

7.5.2. Interaction Concept

Up to five control elements to be modulated can be assigned to each electrode. The
control elements to be modulated can be assigned to the directions of movement
in the x, y, and z directions and the axes of rotation around the motion sensor’s x-
and y-axis. With four electrodes, this results in up to 20 assignable control elements.
The control elements of an electrode can be activated by tapping on the correspond-
ing electrode. As soon as the electrode has been activated, the movements of the
hand are mapped to the corresponding control elements according to the direction
of movement. Tapping the electrode again deactivates the mapping. If all four elec-
trodes are activated, up to 20 control elements can be modulated simultaneously.
Figure 7.16 shows an example of control assignments for an electrode.

7.5.3. Implementation

PeriSense is connected to a computer with MIDI software installed. The motion data
changes of PeriSense are mapped to controller values of the MIDI software. The
mapped controller values are decoded into MIDI messages and sent to the MIDI
software via the MIDI port. The mapping of the sensor values to the corresponding
controller values is configured via a user interface. The entire demo is implemented
in Java since the PeriSensePy framework did not exist at that time. However, it
is possible to implement the interaction pipeline with the PeriSensePy framework.
Figure 7.16 shows the demo. It shows a MIDI software in the background and a
camera snapshot on the left-bottom, which shows a user wearing PeriSense. Also,
the mapping between the sensors and the controller is drawn.
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This dissertation aims to evaluate the capabilities and limitations of capacitive sens-
ing for multi-finger interaction with a ring. For this purpose, a ring-based inter-
action device using capacitive sensing for multi-finger interaction was proposed,
and a prototype, PeriSense called, was developed. Based on PeriSense, compre-
hensive evaluations were conducted. Besides the technical properties, the static
and dynamic interaction spaces were determined. Additionally, the around-device
interaction space was also evaluated. Subsequently, a finger tracking algorithm
mapping the capacitive sensor readings to finger angles was developed and evalu-
ated. Finally, four different interactive applications using PeriSense were presented.
To implement these applications, a framework was developed. This framework al-
lows creating complex interaction pipelines without the need for programming via
a JSON-based configuration file.
This chapter summarizes and discusses the contributions and evaluation results

with regard to the research questions defined in Section 2.2. Afterward, PeriSense’s
limitations and the resulting future work are discussed.

8.1. Summary

This section summarizes and discusses the concept and the evaluation results con-
cerning the research questions defined in Section 2.2. This thesis first proposed a
concept for a ring enabling multi-finger interaction. For this purpose, the ring was
equipped with four electrodes measuring the capacitance between nearby fingers
or the hand palm and the corresponding electrode. Finger movement changes the
distance between the fingers and the electrodes, causing a change in the measured
capacitance. This effect is used to distinguish between different finger movements
and interactions in general.
Based on this concept, a prototype, PeriSense called, was developed. PeriSense

consists of a 2-layer flexible circuit board layout. For the capacitive sensing mea-
surement, a Texas Instruments FDC1004 sensor (TexasInstruments, 2015) is used.
An additional inertial measurement unit (IMU) with 9 degrees of freedom is equipped
to augment sensor readings for gesture recognition with hand position and orien-
tation tracking. A microcontroller gathers the sensor data and transmits them via
a Bluetooth module to a (mobile) computer for further data processing. The power
consumption of the hardware without the Bluetooth module is about 50mW and
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with the Bluetooth module enabled at about 380mW. Equipped with a 130mAh bat-
tery, PeriSense’s runtime is about 1h to 1.5h. The flexible circuit board allows for
a convenient way of placing all electrical components and a battery in a 3D-printed
finger ring casing. PeriSense is thus a self-containing prototype that can be used for
evaluations and demonstrations.
Three PeriSense versions with different inner diameters but the same outer diam-

eter and technical properties were built and used for evaluations. In the following,
the evaluation results are discussed concerning the research question.
Question 1: Which technical properties can be achieved using standard con-

sumer electronic components? The technical evaluation has shown that ambient
noise does not influence the measurement. The ring should only be used for in-
teractions where the ring is worn on the finger so that there is a reference mass
reducing noise. Direct contact with devices containing radio modules or generally
high electrical emissions may occasionally result in increased noise in the signal. In
practice, however, this should not be a limitation.
The measurement of the resolution showed that the effective range reaches up to

2.5 cm. Consequently, at least the influence of the neighboring fingers can be de-
tected. Only the thumb is borderline in detection when the ring is worn on the index
finger. This is reasoned because the thumb is directed approximately 90 degrees
to the index finger when fully spread. The field is directed so that it does not per-
ceive lateral influence. Larger electrodes could increase the measurement range.
However, this also increases the ring’s form factor reducing the wearing comfort.
Question 2: Which gestures and interactions are possible and where are the

limits? To answer this questions, three sub-questions were derived and answered
first.
Question 2-1: What is the static interaction space? The ASL fingerspelling

dataset was used for evaluation to test which types of postures are recognizable.
This dataset consists of many different finger poses involving all fingers. In the
case of user and session-dependent cross-validation, a precision up to 0.78 could be
achieved. Regarding the interaction space, it can be concluded that the thumb is
difficult to measure unless it is close to or touching the electrodes. This results from
the directed electric field, which is more orthogonal to the electrodes. The thumb,
however, usually moves below the ring and thus the electric field. This results in
high confusion between the pinch gestures, such as for the numbers 6 to 9. Also,
the pinky finger’s posture is difficult to detect because it is slightly out of range or
often covered by other fingers.
The two main issues that could be observed are the ring prototype’s width and

variations in executing the calibration posture. The ring already had a little bit of
contact with the skin varying with different finger postures for users with shorter
fingers. Therefore, a flexible circuit board design scaling with inner ring size would
be advantageous. In this case, the outer diameter could also decrease with a smaller
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inner diameter resulting in a smaller ring casing.
Also, the calibration process seems not to be optimal chosen. For example, slight

variations in the calibration posture’s execution, such as over-stretching of the index
finger or bending it too much, result in biased calibration sequences. Also, hand and
finger forms, as well as the finger flexibility, lead to a bias in the calibration. This
bias can cause a change in the ratio between the four signal baselines, making it
difficult to postures from different users.
In summary, postures can cause difficulties in the recognition since the signal

offset depends on the user’s hand and body ground making an offset-elimination
difficult. Also, slight changes in the ring orientations during wearing must be con-
sidered. Nevertheless, optimizing the offset handling and feature selection, a user-
specific classifier could be trained on the ASL dataset A to Z (without numbers),
achieving good results. Despite this experiment aimed to investigate the interac-
tion space during static finger positions, the dynamic part of the posture, i.e., the
change or finger movement between letter transitions, could also be added for clas-
sification. This would contribute to an improvement in classification performance.
Question 2-2: What is the dynamic interaction space? To evaluate the dynamic

interaction space, various gestures different in execution but partially similar to the
resulting sensor pattern were selected. In the case of user and session-dependent
cross-validation, a precision up to 0.98 and on average 0.93 could be achieved. The
results dropped in the case of ring repositioning and the user-independence test.
The main confusion was between Circle and Rectangle. These gestures were chal-
lenging to perform for the users because they were only allowed to move the finger
without moving the hand. This resulted in strongly varying patterns between the
users.
In general, it can be concluded regarding the interaction space that PeriSense

produces proper distinguishable patterns for finger gestures based on capacitive
measurements. However, similar motion and variations in execution can lead to
confusions. Furthermore, it is to assume that smaller and more electrodes could
also reduce confusions. The relatively large electrodes seem to hinder the sensing
of smaller finger displacements along the electrodes.
Question 2-3: What is the around-device interaction space? To evaluate the

around-device interaction space, small unistroke gestures drawn with the other
hand’s index finger above the ring were used for the evaluation. The test re-
vealed that PeriSense could also detect around-device interactions performed with
the other hand, in this concrete case, two-handed unistroke gesture input. In gen-
eral, this input technique generates well distinguishable patterns for most gestures.
The big confusion group of Triangle, Rectangle, Circle, and Delete seems to arise
from the one-dimensional electrode arrangement since it is impossible to detect the
direction of movement along the electrode.
There is no significant difference between user dependence and user indepen-
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dence tests. Changes in the ring orientation are no issue since the ring is fixed
between the index and middle finger. Only for one user out of ten, a low result was
obtained. Judging from the signals, in this case, it seems that the gestures were not
performed exactly over the ring.
The ability to detect multiple finger gestures and around-device interactions in-

creases the interaction space and, thus, the variations of applications. Further de-
tectable around-device interaction would be palm gestures as used in (Zhang et al.,
2017a) for example. Here, the ring could be worn at the index finger, middle finger,
or thumb.
Summarizing the results regarding Question 2 overall, a wide variety of around-

device interactions and multi-finger movements can be detected and distinguished.
Only postures can be problematic because of the varying signal offset. Also, user-
independent recognition and ring repositioning can be problematic. However, in-
creasing the number of electrodes and reducing the ring size could meliorate these
drawbacks and improve the recognition for all interactions.
Question 3: Can the interaction space increased by additional sensor data in-

formation? For the posture and gesture interactions, the additional motion sensor
data improved the recognition results. In particular, it helped to reduce confusions
caused by repositioning of the ring and variations between users. Additionally, the
motion sensor extends the interaction space by hand and am movements and orien-
tations.
In general, it is possible to integrate additional sensors into PeriSense. For ex-

ample, a camera or a piezo microphone can provide context information or even
increase detection accuracy and resolve confusions. However, each additional sen-
sor increases power consumption and significantly reduces battery life, threatening
PeriSense’s self-sufficiency. High-performance batteries suitable to be installed in a
ring casing are still the subject of research. Therefore, the usage of capacitive sens-
ing and a motion sensor represents a perfect compromise regarding the resulting
interaction space.
Question 4: Is it possible to map the ring data to a hand model in order to de-

termine the angles of each finger joint? To enable complete tracking of each finger,
at least the angles of the fingertip close joint (DIP joint), middle joint (PIP joint),
and palm close joint (MCP joint) for each finger must be determined (Figure 6.52).
That means the four capacitive sensor readings of PeriSense must be mapped to 15
joint angles. To reduce the complexity, only the PIP and MCP joints are determined
because the DIP joint angle can be approximated, as shown by Hrabia et al. (Hrabia
et al., 2013). Consequently, the angles to be determined are reduced to ten.
In order to cope with the mapping ratio of low input and high output dimension

and the non-linearity of the capacitive measurements, a regression model based on a
long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) was applied
to map the four sensor readings to the ten joint angles. The evaluation showed
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that the average mean error over all angles is only 13.02 degrees. At least the
motion of three fingers can be tracked reliable, and in the case of predefined natural
movements, even all five fingers’ angles can be estimated. As a reference system for
learning the mapping, a Leap Motion camera and the corresponding SDK were used.
Unfortunately, the finger tracking of the Leap Motion SDK is too inaccurate. These
tracking errors are trained by the LSTM, which in turn leads to inaccurate tracking
with PeriSense. A more accurate reference system would significantly improve the
mapping model, leading to a minor mean average error. Additionally, like postures,
finger tracking is also affected by variations in offset. A smaller ring size to eliminate
unwanted finger contacts would also reduce the tracking error.
The extensive evaluations revealed promising results. However, the experiments

and gesture sets were of experimental nature and with little relation to applica-
tions. Therefore, four application examples were presented, which have already
been implemented and are in use. Here, PeriSense’s wide range of possible appli-
cations is evident due to its broad interaction space. The applications include smart
home control, display control, drone control, and input device for MIDI applica-
tions. Since implementing the specific interaction flows is always time-consuming
and turns out to be complex, a framework has been developed. The framework
allows the creation of complete interaction recognition pipelines without program-
ming via a JSON-based configuration file. This allows fast and flexible creation and
modification of interaction flows.

8.2. Future Work

The evaluations indicated PeriSense’s ability to distinguish a broad range of ges-
tures and provide various interaction techniques. However, some limitations were
disclosed as well. Initially, it was assumed large electrodes with higher sensing res-
olution at larger distances would benefit gesture recognition accuracy. However,
it is estimated that decreasing the electrode size while increasing the number of
electrodes can be advantageous for most gestures. Currently, the electrodes are
arranged in one line across the ring’s outer surface. Arranging them in two di-
mensions on this surface could lead to noticeable increases in sensor performance,
particularly for around-device interactions. Smaller electrodes additionally enable
smaller ring forms. This would foster wearing comfort and reduce unwanted finger
contacts inducing an additional offset. However, a trade-off between electrode size
and its sensor range has to be taken.
Regarding the ring size, a flexible circuit board design scaling with inner ring size

would be advantageous. In this case, the outer diameter could also decrease with a
smaller inner diameter resulting in a smaller ring casing. This would increase the
wearing comfort and reduce unwanted finger contacts.
With an increased number of electrodes, it could be possible to normalize the sen-
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sor data regarding ring orientation along the finger axis. The current electrode size
is too large to detect rotational changes. For this normalization, a singular value
decomposition (SVD) based algorithm (Horn et al., 1988) could be applied. This
normalization would resolve errors caused by repositioning and change in orienta-
tion during wearing.
A technical limitation is currently the power consumption of PeriSense. This is

mainly founded in the used Bluetooth module consuming about 85% of the power
usage. The power consumption of our prototype without the Bluetooth module is
about 50mW and with the Bluetooth module enabled at about 380mW. Utilizing a
single controller for I2C and RF communication will lead to a more energy-friendly
design. Furthermore, additional power-saving routines could be implemented. For
example, the low power wake on motion interrupt of the motion sensor could sus-
pend and wake up the microcontroller and its attached sensors. Further, it is also
inefficient to send all data points continuously to an external device. Therefore, a
low-cost pre-filtering algorithm could help to avoid sending noise and meaningless
data and would thereby reduce the number of transferred packages and the overall
power consumption of the communication module (Lackerschmid, 2018, e.g.).
When the hardware was designed, Texas Instrument was the only manufacturer to

offer an integrated chip for capacitive sensing suitable for PeriSense. In the mean-
time, there are comparable chips from Analog Devices1. These have partly different
characteristics and can operate up to 24 electrodes depending on the chip. There-
fore, it would be a worthwhile undertaking to compare the chip versions from Texas
Instruments and Analog Devices in the application with PeriSense. In this context,
a comparison between the loading and shunt mode for measuring the capacitance
would also be interesting. The Texas Instruments chip used made it difficult to use
the shunt mode due to the limited number of channels available. The chips from
Analog Devices have up to 24 channels, which would allow an electrode design for
the shunt mode to be implemented for PeriSense.
Regarding finger tracking, it is worthwhile to use a more accurate reference sys-

tem for learning the images. This would significantly improve the already good
result and add value.
The PeriSensePy framework offers an elegant way to implement a variety of inter-

action flows. The flows’ configuration does not require any programming knowledge
but expert knowledge about machine gesture recognition. In order to eliminate this
expert knowledge and thus make the framework available to application develop-
ers or even interaction designers, for example, it requires further algorithms to
automate the training and selection of hyper-parameters. Since the framework is
generic and modular, it can also be used for other interaction devices. For this
purpose, only the driver and data interface needs to be further generalized. In

1Analog Device’s capacitive sensing chips: https://www.analog.com/en/products/analog-to-digital-
converters/integrated-special-purpose-ad-converters/capacitive-to-digital-and-touch-screen-
controllers.html (accessed on 30.03.2021)
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addition, as the number of interaction devices increases, more gesture recogni-
tion algorithms may be needed, such as image processing algorithms. Since the
framework is implemented in Python using the multiprocessing library, there are
synchronization-related latencies in the data transfer between the threads. High
data rates or interaction pipelines with multiple gesture recognition modules can
significantly delay recognition under certain circumstances. This can only be reme-
died by using cython2, e.g., or re-implementing the framework in another language,
such as C++ or Java.
Finally, four implemented example implementations showcasing PeriSense’s ca-

pability of providing a broad interaction space were presented. However, these ap-
plications are still limited regarding real-life scenarios. In the next step, PeriSense
has to be tested and evaluated in the wild. This is where the UbiAct project funded
by the German Federal Ministry of Education and Research connects. In the context
of UbiAct, PeriSense is evaluated as an interaction device for smart home control
and as an input device for augmented reality glasses in seamlessly integrated use
cases in a real-world environment.

8.3. Conclusion

This dissertation presented PeriSense, a wearable interaction device in the shape
of a ring for interaction in the context of IoT. PeriSense is entirely self-sufficient
and can be unobtrusive worn the whole day without disturbing the user in his daily
routines. By using capacitive sensing and a motion sensor, a large interaction space
is enabled. Furthermore, with the PeriSensePy framework enabling the fast and
flexible creation of interactive use cases, this dissertation contributes towards an
unobtrusive interaction device available throughout the daily routine.

2Cython is an optimising static compiler for Python and cPython: https://cython.org (accessed on
23.03.2021)
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A. Prototype History

The attractiveness of rings as an interaction device has long been given. In the joint
project Universal Home Control Interfaces@Connected Usability (UHCI) funded by
the German Federal Ministry of Economics (BMWi), a printed ring was equipped
with an accelerometer in 2013 (Figure A.1). The sensor was connected via a cable
to an Arduino Nano1. This ring was designed and implemented to control smart
home devices.

1Arduino Nano website: https://store.arduino.cc/arduino-nano (accessed on 01.09.2020)

Figure A.1.: How everything started. First ring prototype using an accelerometer
for gesture recognition.

Figure A.2.: Nod prototypes.
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A. Prototype History

Figure A.3.: Left, a strong magnet symbolizing experiments with magnetic fields.
Right, a circuit to transmit and measure radio waves.

In the later course of the project, three prototypes of the Kickstarter project Nod2

(Figure A.2) were bought, which contained an motion sensor, and buttons.
Interactions with these rings were limited and usually limited to the detection of

hand movements. The idea was born to expand the interaction space by recognizing
the movements of several fingers using a field. First experiments were performed
with magnetic fields (Figure A.3 left). However, it soon became apparent that this
would require the use of a magnetometer on each finger and magnets on the wrist
(see also (Simmons and Welsh, 2014)). Afterwards experiments with radio waves
were performed (Figure A.3 right). It became obvious that the technology is difficult
to implement in a ring with the given capabilities and means.

Figure A.4.: Left, three touch electrodes. Right, one electrode on a 3D-printed ring.

2Blog entry about the Nod ring: https://www.punchkick.com/blog/2014/04/29/nod-smart-gesture-
control-ring (accessed on 01.09.2020). The ring did not reach market maturity.
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A. Prototype History

Figure A.5.: eRing prototype.

Next, first experiments with capacitive sensing were performed. It started with
touch electrodes (Figure A.4 left) and later with electrodes on a rectangular ring
(Figure A.4 right). The electrodes were each connected to an Arduino Nano. The
electrodes were charged via the nano. It was measured how much time it takes to
saturate the electrode. If this was not possible within two seconds, the measurement
and charging was aborted and started again or with the next electrode.
On this basis, the first real ring prototype called eRing (Figure A.5) was developed

(Section 3.4).

Figure A.6.: First experiments with alternating fields.
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A. Prototype History

Figure A.7.: First prototype using alternating fields.

However, the measurement is very slow, the fields are too small, and the noise is
too high. Furthermore, the circuit is too susceptible, especially the solder joints. It
has already been shown that an integrated solution is necessary. Furthermore, the
ring is not self-sufficient. The USB cable for power supply and data transfer causes
interference and induces parasitic capacities.
To speed up the measurement, increase the field range, and reduce noise, the

measuring principle has been changed. The electrode is now charged with a high-
frequency alternating voltage (instead of direct voltage), and thus an alternating
field is generated. Conductive objects within the range of the field change the fre-
quency of the field. This frequency change can be determined. Figure A.6 shows
the first experiments with this measurement technique. In the next step, this circuit
was integrated into a ring (Figure A.7). It was shown that the circuit needs much
space. There was only enough space to operate one electrode.

Figure A.8.: Initial version of PeriSense.
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A. Prototype History

Figure A.9.: Etched electrode layout.

In order to reduce the ring size and to be able to integrate all components and
operate all electrodes, a board layout was designed (Figure A.8). The board already
comes with all connectors to be extended with a Bluetooth module, additional sen-
sors, and a battery. The resulting prototype is the initial version of PeriSense.
It was found that the cables are constantly touched by finger and hand. Despite

shielded cables, interference occurs. Also, the soldered connections of the cables
are much too susceptible. Therefore, in the next version the electrodes and the
traces for electrodes were etched (Figure A.9 and A.10).

Figure A.10.: Prototype using an etched electrode layout.
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A. Prototype History

Figure A.11.: First self-sufficient PeriSense prototype with TI FDC1004, Invensense
MPU9250, Bluetooth module, and Battery.

However, the measurement was still very noisy and inaccurate. To simplify and
speed up the development, the decision was made to use the Texas Instrument
FDC1004 sensor (TexasInstruments, 2015) for the capacitive measurement. Also,
an Invensense MPU9250 motion sensor (InvenSense, 2017) and a Bluetooth module
were also integrated. This version was also equipped with a rechargeable battery.
Thus, this version was the first self-sufficient PeriSense version (Figure A.11), which
could be tested with the first users.
The solder connections and connectors cause loose contacts and leakage currents,

strongly influencing the capacitive measurements. Therefore a flexible board layout
was designed and manufactured. All sensors are now integrated on this board. This
PeriSense version is the one presented and evaluated in this thesis (Figure A.12).

Figure A.12.: Final PeriSense prototypes in different colors and sizes.
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A. Prototype History

Figure A.13.: The third ring generation.

Figure A.14.: Left, the new flexible board layout and right a new board layout with
a touch matrix.

Based on the experiences of this dissertation, a new generation of rings was de-
veloped (Figure A.13). They are equipped with an ARM Cortex M4 microcontroller
with an integrated Bluetooth low energy module3, two TI FDC10004 sensors, and
eight electrodes in a 2-dimensional arrangement. Furthermore, the ring has become
smaller. Another version was also designed, which has a touch matrix on the thumb
side (Figure A.14). An evaluation of these prototypes is still pending.
All evolutionary stages were tested and developed beforehand with pegboards,

as shown as an example in Figure A.15. Figure A.16 shows the evolution of ring
shapes over time, and figure A.17 shows all ring prototype versions above my former
desktop at the DAI Labor again.

3Nordic nRF52832: https://www.nordicsemi.com/Products/Low-power-short-range-
wireless/nRF52832 (accessed on 01.09.2020)

152

https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52832
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52832


A. Prototype History

Figure A.15.: Experimental test setup for the circuits.

Figure A.16.: Evolution of ring shapes over time.
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A. Prototype History

Figure A.17.: Prototype version gallery.
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B. Layouts

B.1. Circuit

Table B.1.: Components

Part ID Value Device Package

C1 0.1uF C0201 C0201

C2 0.1uF C0201 C0201

C3 0.1uF C0201 C0201

C4 0.1uF C0201 C0201

C5 4.7µF CPOL0603 C0603

C6 0.1µF C0201 C0201

C7 22pF C0201 C0201

C8 22pF C0201 C0201

C9 0.1µF C0201 C0201

C10 1uF C0201 C0201

C11 10nF C0201 C0201

C12 0.1µF C0201 C0201

C13 0.1uF C0201 C0201

C14 1uF C0201 C0201

C15 0.1uF C0201 C0201

C20 1uF C0201 C0201

C21 1uF C0201 C0201

C22 1uF C0201 C0201

C23 10µF CPOL0603 C0603

C24 0.1µF C0201 C0201

CIN1 TPTP06R NOSTOP TPTP06R NOSTOP TP06R NOSTOP

CIN2 TPTP06R NOSTOP TPTP06R NOSTOP TP06R NOSTOP

CIN3 TPTP06R NOSTOP TPTP06R NOSTOP TP06R NOSTOP

CIN4 TPTP06R NOSTOP TPTP06R NOSTOP TP06R NOSTOP

CON1 CON06 CON06

JP2 JUMPER-SMT 2 NC
PASTE SILK

JUMPER-SMT 2 NC
PASTE SILK

SMT-JUMPER 2 NC
PASTE SILK
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B. Layouts

JP RX JUMPER-SMT 3 1-
NC PASTE SILK

JUMPER-SMT 3 1-
NC PASTE SILK

SMT-JUMPER 3 1-
NC PASTE SILK

JP TX JUMPER-SMT 3 1-
NC PASTE SILK

JUMPER-SMT 3 1-
NC PASTE SILK

SMT-JUMPER 3 1-
NC PASTE SILK

LED B LEDSML0603 SML0603

LED G LEDSML0603 SML0603

LED R LEDSML0603 SML0603

P1 BATT FFC-03P1.0MM FFC-03P-1.0MM

P2 ISP FFC-06P0.5MM FFC-06P-0.5MM

P3 I2C FFC-04P1.0MM FFC-04P-1.0MM

P4 UART DBG FFC-03P1.0MM FFC-03P-1.0MM

P5 GND FFC-03P1.0MM FFC-03P-1.0MM

R1 1k R0201 R0201

R2 10k R0201 R0201

R3 10k R0201 R0201

R4 470 R0201 R0201

R5 470 R0201 R0201

R6 470 R0201 R0201

R7 10k R0201 R0201

R8 1k R0201 R0201

S1 SWITCH-SPDT-GND SWITCH-SPDT-GND SWITCH SPST SMD

SHLD TPTP06R NOSTOP TPTP06R NOSTOP TP06R NOSTOP

U$ 1 FFC-CONN-
03P1.0MM

FFC-CONN-
03P1.0MM

FFC-CONN-03P-
1.0MM

U$ 2 FFC-CONN-
04P1.0MM

FFC-CONN-
04P1.0MM

FFC-CONN-04P-
1.0MM

U$ 3 FFC-CONN-
06P0.5MM

FFC-CONN-
06P0.5MM

FFC-CONN-06P-
0.5MM

U$ 4 C-GRID-04 C-GRID-04 SL-LP-4-SMD-005

U$ 5 C-GRID-03 C-GRID-03 SL-LP-3-SMD-005

U1 MCP1700T-3002
E/TT

MCP1703CB SOT23

U2 MCP1700T-3002
E/TT

MCP1703CB SOT23

U3 ATMEGA328P
VQFNVQFN

ATMEGA328P
VQFNVQFN

VQFN-28

U4 MPU-9250 MPU-9250 QFN.24.4X4.NO EP

U5 FDC1004DSC FDC1004DSC DSC.10

U7 BLUETOOTH-RN-41 BLUETOOTH-RN-41 RN41

X1 XTALNX5032 NX5032
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B. Layouts

B.2. Layouts
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Figure B.1.: Board layout with all layers.
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Figure B.2.: Top layer.
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Figure B.3.: Bottom layer.
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C. PeriSensePy Example Configuration

This appendix presents a sample implementation of an interaction pipeline using
the PeriSensePy framework. The interaction pipeline is described in the following
(Section C.1), and then the corresponding JSON configuration (Section C.2) and how
it is executed are presented (Section C.3).

C.1. Interaction Pipeline

Figure C.1 shows an example of an interaction pipeline. The interaction detection
is based on a sliding window of size 10, which is shifted by 5 steps. A feature vector
is computed for each window, which serves as input for a Support Vector Classifi-
cation (SVC). If a window is classified as a gesture, the sensor data is buffered by
the gesture recognition. As soon as a window is classified as noise, the buffering
is stopped, and the buffered sequence as a whole is classified by gesture recogni-
tion. The gesture recognition is based on a 1-nearest neighbor classifier (1NN) that
uses Dynamic Time Warping (DTW) as a similarity measure. Using a generalized
learning vector quantization (GLVQ), the training set size is reduced by computing
three prototypes per class. The detected gesture is sent to the IOLITE platform via
an MQTT channel. In addition, the detected gesture and the interaction detection
events are printed to the console.

C.2. Configuration

In the following, an example configuration file of the interaction pipeline described
above is presented.

Figure C.1.: Example interaction pipeline.
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C. PeriSensePy Example Configuration

1 {
2 "device" : {
3 "driver" : "PeriSense",
4 "whiteList" : [ ],
5 "blackList" : [ ],
6 "scan_timeout" : 30
7 },
8 "InteractionModeRecognition" : {
9 "filter2" : {

10 "comment" : "",
11 "id" : "filter2",
12 "class_name" : "FeatureBasedFilter",
13 "active" : true,
14 "grIds" : [ "gesrec2" ],
15 "features" : {
16 "timestamp" : false,
17 "b" : false,
18 "e1" : false,
19 "e2" : false,
20 "e3" : false,
21 "e4" : false,
22 "e5" : false,
23 "e6" : false,
24 "e7" : false,
25 "e8" : false,
26 "ax" : true,
27 "ay" : true,
28 "az" : true,
29 "gx" : true,
30 "gy" : true,
31 "gz" : true,
32 "temp" : false },
33 "buffer_size" : 15,
34 "window_length" : 10,
35 "step_width" : 5,
36 "fs" : 50,
37 "model_file" : "svm_acc_gestures_w10_step2.model",
38 "feature_conf_file" : "fcfg.json",
39 "training" : {
40 "train" : true,
41 "classifier" : ’SVC’,
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C. PeriSensePy Example Configuration

42 "gesture_train_files" : [ "gestures_10_01.csv", "gestures_10_02.
csv" ],

43 "noise_train_files" : [ "noise_10_01.csv", "noise_10_02.csv" ] }
,

44 }
45 },
46 "GestureRecognition" : {
47 "recognizer2" : {
48 "comment" : "knn",
49 "id" : "gesrec2",
50 "class_name" : "OneNN",
51 "active" : true,
52 "features" : {
53 "timestamp" : false,
54 "b" : false,
55 "e1" : false,
56 "e2" : false,
57 "e3" : false,
58 "e4" : false,
59 "e5" : false,
60 "e6" : false,
61 "e7" : false,
62 "e8" : false,
63 "ax" : true,
64 "ay" : true,
65 "az" : true,
66 "gx" : true,
67 "gy" : true,
68 "gz" : true,
69 "temp" : false },
70 "gestures" : [
71 { "label" : 1,
72 "name" : "up" },
73 { "label" : 2,
74 "name" : "down" },
75 { "label" : 3,
76 "name" : "left" },
77 { "label" : 4,
78 "name" : "right" },
79 { "label" : 5,
80 "name" : "action } ],
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C. PeriSensePy Example Configuration

81 "buffer_size" : 15,
82 "window_length" : 0,
83 "step_width" : 1,
84 "n_to_add" : 15,
85 "n_to_delete" : 5,
86 "max_window_length" : 35,
87 "min_window_length" : 8,
88 "norm_file" : "norm.model",
89 "model_file" : "oneNN_dglvq.model",
90 "rec_threshold" : 1.0,
91 "recognition_break" : 1.0,
92 "training" : {
93 "train" : true,
94 "measure" : "DTW",
95 "normalization" : "norm",
96 "min_values" : [ -16, -16, -16, -2000, -2000, -2000 ],
97 "max_values" : [ 16, 16, 16,2000, 2000, 2000 ],
98 "optimizing" : {
99 "optimizer" : "DGLVQ",

100 "k_prototypes" : 3,
101 "A_mean_algo" : 1,
102 "learning_rate" : 20.01 },
103 "train_files" : [ "gestures_10_01.csv", "gestures_10_02.csv" ] }
104 }
105 },
106 "OutputModules" : {
107 "PrintConsole1" : {
108 "id" : "debugOutput",
109 "class_name" : "PrintConsole",
110 "recIds" : [ "gesrec2", "filter2" ],
111 "mapping_only" : false,
112 "gesture_mapping" : { },
113 "active" : false
114 },
115 "iolite" : {
116 "id" : "ioliteOutput",
117 "class_name" : "MQTT_IOLITE",
118 "address" : "127.0.0.1",
119 "port" : 1883,
120 "recIds" : [ "gesrec2" ],
121 "mapping_only" : false,
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C. PeriSensePy Example Configuration

122 "run_forever" : false,
123 "gesture_mapping" : {
124 "action" : "SELECT",
125 "left" : "LEFT",
126 "right" : "RIGHT",
127 "up" : "UP",
128 "down" : "DOWN" },
129 "active" : true
130 }
131 }
132 }

C.3. Run Interaction Pipeline

The above presented pipeline is executed as following:

$ sudo python3 run_demo.py =c config . hjson

or alternatively in the python console:

> from demos. ApplicationPipeline import ApplicationPipeline
> ap = ApplicationPipeline ( "config . hjson" )
> ap. start ( )

On Linux-based operating systems, it is necessary to run this command with root
privileges since the PeriSense driver’s Bluetooth access requires this.
To train the models defined in the configuration, the following command is to

execute:

$ python3 run_train .py =c config . hjson

or alternatively in the python console:

> from demos. TrainingPipeline import TrainingPipeline
> tr = TrainingPipeline ( "config . hjson" )
> tr . train ( )
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