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Abstract

Quasicrystals possess long-range positional order with a non-crystallographic ro-

tational symmetry. Quasicrystalline order leads to interesting surface properties.

Adsorbates on quasicrystalline surfaces can form new self-assembled structures.

In this work we study by computer simulations the phase behavior and mobility

of hard rods in a quasicrystalline substrate potential. The quasicrystalline sub-

strate is derived from the interference pattern of �ve laser beams and possesses

a decagonal rotational symmetry. We take two di�erent particle models into ac-

count namely the hard needles and the hard spherocylinders. Hard needles are the

simplest form of elongated particles which form liquid crystalline phases. They

do not exhibit an excluded volume. To take excluded volume e�ects into account,

we also studied the hard spherocylinder model. In two dimensions the hard rods

are known to undergo a density driven phase transition from an isotropic phase to

a quasi-nematic phase. When the substrate potential is present, we �nd di�erent

phase behavior for two rod lengths. Short rods can connect only two minima of

the substrate potential. Long rods are able to connect many potential minima.

Under the in�uence of the substrate, the short needles form disconnected clus-

ters located between two potential minima. The orientations of the clusters are

aligned with the symmetry directions of the potential. Through the formation of

clusters the quasi-nematic order gets destroyed. At high densities and high poten-

tial strengths a nematic order can be frozen in. Long needles also form clusters

under the in�uence of the substrate potential. In contrast to the short needles the

clusters are not disconnected but are able to share a few minima. The clusters

form lines which are oriented along the symmetry directions of the potential. In

this way, a nematic phase can be stabilized. The distances between the lines fol-

low two interwoven Fibonacci sequences. At low densities the needles form small

regions of clusters oriented along di�erent symmetry directions of the substrate.

This non-nematic decagonal phase can also be frozen in at high densities and high

potential strengths.

Similar to the short needles the short spherocylinders form disconnected clusters

under the in�uence of the potential at low densities. Due to their �nite width the

system becomes crowed with increasing density. The directional order decreases
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signi�cantly and �nally the preferred directions of the clusters shift against the

symmetry directions of the potential at high densities. At su�ciently high poten-

tial strengths the long spherocylinders order themselves onto lines. The positional

order is very weak and gets lost at high densities. The long spherocylinders re-

main in a decagonal directional order even for high densities. We also investigate

the mobility of the spherocylinders with kinetic Monte Carlo simulations. With

increasing potential strength the short spherocylinders get trapped at their min-

imum positions. In more dense systems the mobility of the short rods rises. In

contrast to short spherocylinders the long spherocylinders can slide along the lines

connecting the potential minima. This results in a high mobility of the long rods

even at high potential strengths.
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Zusammenfassung

Quasikristalle besitzen eine langreichweitige Positionsordnung mit einer nicht kri-

tallogra�schen Rotationssymmmetrie. Die quasikristalline Ordnung führt zu in-

teressanten Eigenschaften ihrer Ober�ächen. In dieser Arbeit untersuchen wir

das Phasenverhalten und die Mobilität von harten Stäbchen auf einem quasicrys-

tallinen Substrat mittels Computersimulationsn. Das quasicrystalline Substrat

wird durch die Inteferenz von fünf Laser Strahlen erzeugt und besitzt eine dekag-

onale Rotationssymmetrie. Wir untersuchen zwei verschiedene Teilchenmodelle,

das der harten Nadeln und das der harten Spherozylinder. Die harten Nadeln

sind das simpelste Teilchenmodell welches �üssigkristalline Phasen aufweist. Sie

besitzen aber kein Volumen. den Ein�uss eines Teilchenvolumens untersuchen wir

im Modell der harten Spherozylinder. In einem zweidimensionalen System �ndet

unter Erhöhung der Dichte der Stäbchen ein Phasenübergang von der isotropen in

eine quasi-nematische Phase statt. Auf dem Substrat zeigen Stäbchen zweier ver-

schiedener Längenskalen unterschiedliches Phasenverhalten. Die kurzen Stäbchen

können nur zwei Minima des Substrates verbinden. Die langen Stäbchen können

mehrere Minima verbinden.

Unter dem Ein�uss des Substrates �nden sich die kurzen Nadeln zwischen

den Minima des Potenzials zu Clustern zusammen, die jeweils von einander ge-

trennt liegen. Die Cluster sind nach den Symmetrierichtungen des Substrates

ausgerichtet. Durch diesen Prozess wird die quasi-nematische Phase zerstört. Für

hohe Dichten und Potentialstärken kann eine nematische Phase eingefroren wer-

den. Auch die langen Nadeln bilden auf dem Substrat Cluster. Im Gegensatz zu

den kurzen Nadeln sind diese Cluster miteinander verbunden und können sich Min-

imapositionen teilen. Mehrere Cluster können sich zu Linien zusammen setzen,

die in Richtung der Symmetrieachsen des Substrates liegen. Auf diese Weise kann

die quasi-nematische Phase stabilisiert werden. Die Abstände zwischen den Linien

folgen zwei ver�ochtenen Fibonacci Sequenzen. Bei niedrigen Dichten formieren

sich die Cluster in unterschiedlich nach den Symmetrieachsen des Potentials aus-

gerichtete Regionen. Eine solche nicht nematische dekagonal ausgerichtete Phase

kann auch bei hohen Dichten und Potentialstärken eingefroren werden.

Ähnlich den kurzen Nadeln bilden die kurzen Spherozylinder unter Ein�uss
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des Substratets getrennte nach den Symmetrieachsen des Potentials ausgerichtete

Cluster. Aufgrund ihres Volumens füllt sich die Fläche bei einer Erhöhung der

Dichte. Dabei schwächt sich die dekagonale Ausrichtung deutlich ab und bei

sehr hohen Dichten verschieben sich die bevorzugten Richtungen der Stäbchen

relativ zu den Symmetrieachsen des Potentials. Die langen Spherozylinder ordnen

sich auf dem Substrat entlang von Linien. Die räumliche Ordnung der Stäbchen

ist sehr schwach und wird letztendlich durch sehr hohe Dichten völlig zerstört.

Die dekagonale Ausrichtung hingegen bleibt selbst bei hohen Dichten erhalten.

Zusäzlich haben wir die Monbilität der Stäbchen bestimmt. Unter Erhöhung

der Potentialstärke werden die kurzen Stäbchen zwischen den Minimapositionen

gefangen. Die Mobilität steigt wieder, wenn die Dichte erhöht wird. Die langen

Spherozylinder können entlang der Symmetrielinien des Potenzials entlang gleiten.

Dadurch bleiben sie selbst bei hohen Potentialstärken mobil.
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1 Introduction

Quasicrystals are solids which exhibit a long range positional order. The or-

der is aperiodic and it can possess rotational symmetries which are forbidden

for crystalline structures. Quasicrystals can possess symmetry axes with non-

crystallographic eight-, ten- and twelve-fold rotational symmetry. In many qua-

sicrystals physical properties are found to be di�erent from usual crystals but also

di�erent from unordered amorphous materials[94, 196]. It is not surprising that

since the publication of their �rst discovery[177], quasicrystals attracted a lot of

scienti�c interest.

The surface properties of quasicrystals are of particular interest. Quasicrys-

talline surfaces show a low adherence[57, 146, 147] which can be useful for non-

sticky coatings but is also an obstacle for epitaxial applications. A detailed under-

standing of the interfacial �lms between crystalline and quasicrystalline structures

is important for the usage of quasicrystals, e.g. to enhance the adhesion between

quasicrystals and simple metal substrates [52]. Monolayers of adatoms can adopt

the quasicrystalline structures or arrange themselves in new fascinating structures.

In experiments with quasicrystalline alloys adatoms formed new self-assembled

structures[56, 60, 62, 132, 183]. The investigations are also directed towards the

understanding of the growth of quasicrystalline structures from quasicrystalline

templates.

Colloidal systems provide a model system for atomic order. They exists in dif-

ferent size and shapes and their interactions are easy to control in experiments[164,

165, 216]. The length scales and time scales of the dynamic of colloidal particles

allow to study the phase behavior of colloidal systems on the level of single parti-

cle trajectories. Colloidal particles can be controlled by external �elds like intense

laser beams[73, 96]. The patterns of interfering laser beams can create two di-

mensional crystalline and quasicrystalline structures[171]. These patterns serve as
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1 Introduction

substrates which mimic the structural properties of quasicrystalline surfaces. One

can investigate new structures and phase transitions on quasicrystalline surfaces

with colloidal particles con�ned to such two dimensional laser substrates[170].

Experimental and theoretical studies with spherical particles on a decagonal sub-

strate found new interesting phase behavior[71, 137, 138, 139, 169].

We extend the well studied setup of colloids on a quasicrystalline substrate from

spherical colloids to rodlike particles. Hard rodlike particles exhibit a long and

a short axis. In two dimensions this anisotropic shape introduces an additional

orientational degree of freedom[70]. At su�ciently high densities rodlike parti-

cles align their orientations along a common director and form a nematic phase.

In a nematic phase, a long-ranged order of the orientations of the rods is estab-

lished while the center of mass positions of the particles stay liquid like disordered.

The nematic phase is therefore the simplest example of a liquid crystal. In two

dimensions the nematic order is called quasi-long-ranged because orientational

correlations decay algebraically and the nematic director can only be de�ned lo-

cally in a �nite radius around each particle[65].

Hard rods can also e�ectively model organic molecules on quasicrystalline sur-

faces like alkenes or aromatic hydrocarbons. The most common application of rod-

like particles are liquid crystal displays[91]. In such devices the liquid-crystalline

particles are placed into con�ned geometries. The interactions of particles with

the interfaces play an important role for their phase ordering in the bulk and the

possibility of switching between di�erent states[116].

We identify new phases of hard rods under the in�uence of a quasicrystalline

decagonal substrate potential. The orientational degree of freedom of hard rods

leads to interesting directional order along the decagonal symmetry directions of

the substrate potential in combination with pronounced cluster formation. At high

densities this ordering competes with the quasi-nematic phase. The interaction of

the rods with the potential is strongly dependent on the length of the rods with

respect to the typical length scale of the substrate potential. The nematic order

can be enhanced as well as destroyed by the substrate potential. In this work,

we investigate this interesting phase behavior and the mobility of hard rods on a

quasicrystalline substrate with computer simulations.
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The outline of the work is as follows. In chapter 2 we present the properties

of quasicrystals and quasicrystalline surfaces. The chapter also introduces our

decagonal substrate created from the interference pattern of �ve laser beams. In

the following chapter 3, we introduce the properties of nematic liquids in general

and our particle models in particular. We brie�y summarize the phase transi-

tions of the hard rod models we analyzed in two dimensions. Furthermore, we

explain the quantities to investigate the phase transitions and the phase regions

in detail. At the end of chapter 3 we present the interaction of the hard rods

with the substrate potential and its structural characteristics. In chapter 4, we

give the details of the simulation techniques used in this work. In chapter 5 we

present the results of our study of the hard-needle model. We display the phase

diagram for short and long needles and give a detailed account of the new phases

and structures. In chapter 6 we summarize the results of our investigations of the

hard-spherocylinder model. The phase behavior of spherocylinders signi�cantly

di�ers from those of the needles. In addition, we have also investigated the dy-

namics of the spherocylinders with kinetic Monte Carlo simulations. We conclude

our �ndings in chapter 7 and give an outlook of future topics which may arise

from the results of this work.

Parts of this work have been published in [A] and in [B].
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2 Quasicrystals

In this chapter we introduce �rst the quasicrystals in general. Thereafter we

present the properties of atomic quasicrystalline surfaces. Afterwards we give an

introduction to colloidal systems in general and two dimensional systems under the

in�uence of laser �elds in particular. An explanation of the experimental setup of

colloids on a quasicrystalline substrate follows and we present our quasicrystalline

decagonal substrate potential. In the last past of the chapter we explain the

mathematical concepts of quasicrystals and the Penrose tilings in particular.

2.1 Introduction to quasicrystals

Before the discovery of the quasicrystalline matter only two types of ordered solid

matter has been known. On the one hand unordered structures like amorphous

materials. On the other hand crystalline materials with a periodic long-range spa-

tial order. The di�erent species of crystals are classi�ed by their rotational and

translational symmetry. The possible point groups to build a crystal in two or

three dimensions are well known. A lattice belonging to a crystalline point group

possesses n-fold rotational symmetry if it is invariant under a rotation of an angle

of 2π/n with respect to a well de�ned rotational axis. The only possible values for

n for a periodic lattice are n = 1, 2, 3, 4, 6. The distinct properties of crystalline

matter arises from this well ordered structure. Until the discovery of quasicrystals

the crystalline periodic structures believed to be the only possibilities of long-

ranged ordered matter. Quasicrystals possess at least one non-crystallographic

rotational symmetry. They were discovered �rst in 1982 by D. Shechtman when

he was investigating alloys of Al and Mn. This �rst quasicrystal has an icosa-

hedral symmetry consisting of 6 di�erent rotational axes where each has a 5-fold

rotational symmetry which is forbidden for any periodic crystalline structure. In

the same year A. Mackay published the di�raction pattern of a Penrose tiling[128].

At this time the Penrose tiling was known only as a purely mathematical long-
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2 Quasicrystals

range ordered structure. Mackay showed that the di�raction pattern of atoms

arranged in such a tiling shows a non-crystallographic 5-fold rotational symmetry.

Shechtman and the crystallographic community were not aware of the �ndings by

Mackay. As a result Shechtman faced tough resistance against his interpretation

of an ordered phase with non-crystallographic rotational symmetry. He was able

to publish his �ndings �nally in 1984 [177], two years after his discovery. After this

publication the scienti�c community directed a lot of attention at this topic but

still encountered a lot of opposition, in particular by the double Nobel prize winner

L. Pauling [150]. The quasicrystalline alloy found by Shechtman was metastable

and could be produced only by rapid quenching of the melt. The small grains of

a few micrometer in size were di�cult to study in detail. This situation changed

in 1986 when the �rst stable quasicrystalline phase was found by Dubost et al.

in an alloy of Al6Li3Cu[51]. At the end of the 80s the number of quasicrystalline

phases in di�erent alloys rapidly increased. As a reaction to the discovery of the

quasicrystals the International Union of Crystallography changed its de�nition

of a crystal to �any solid having an essentially discrete di�raction diagram�[36].

This de�nition is much wider than necessary for the incorporation of the �rst

quasicrystals because it discards also the need for any rotational symmetry. Now

quasicrystals are a commonly accepted particular state of matter. Shechtman has

been rewarded the Nobel prize for chemistry for his discovery in 2011.

The physical properties of quasicrystals turned out to be di�erent from conven-

tional crystals as well as from disordered glass phases[94, 196]. Most quasicrystal

materials are found in alloys of Al. But this could be an artifact of history of the

discovery of quasicrystals. The Al rich quasicrystals are brittle, hard and poor

conductors of heat and electricity. Because of their brittleness the search for tech-

nical applications concentrates on their usage as coatings or composites. For this

purposes the surface properties of the quasicrystals are very important.

2.2 Quasicrystalline surfaces

2.2.1 Atomic surfaces

As the quality and size of the quasicrystalline samples has improved, the surface

properties of such materials came in reach of scienti�c investigations[45, 56, 108].

In the beginning it was not clear whether quasicrystalline bulk structure also
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2.2 Quasicrystalline surfaces

appears at their surfaces. Fortunately one is now able to produce high quality

quasicrystalline surfaces which can be used as templates for the growth of thin

�lms or nanostructures[59, 132, 183, 184, 198]. The sizes of the samples vary

between a few millimeters to 10cm. The main goal of forming such thin �lms

on quasicrystalline surfaces is to force the atoms in the �lm into a quasicrys-

talline structure. This can result in quasicrystalline structures composed only

from one single chemical element in contrast to natural quasicrystals which are

composed of at least two di�erent elements. Noble gases have a low chemical

reactivity and were used to study the physorption properties of various quasicrys-

talline surfaces[55, 200]. The experiments were accompanied by computational

simulations of the noble gases[38, 46, 47, 174, 175]. The rare gases can retain

the quasicrystalline structure if the length scale of the atomic bonds in their

crystalline ordered phase matches the typical length scale of the quasicrystalline

structures of the substrate like Xe on a quasicrystalline AlNiCo alloy. Experi-

ments have been performed with metal elements like Au[181] and Ag[60] but also

thin �lms of Pb[1, 42], Bi and Sb[63] lead to interesting results. Simulations of

metal �lms helped to understand the experimental results like quasicrystalline

clusters and locked crystalline domains[18, 140]. The competition of the qua-

sicrystal template structure and the solid crystalline state of the �lm material

can lead to fascinating new structures, e.g. the step structure of a Cu �lm on a

i−AlPdMn interface follows a one-dimensional quasicrystalline sequence known

as the Fibonacci sequence[115, 155]. C60 molecules placed onto such Cu �lms

show an unusual low mobility[185]. Chemically more reactive metals like Fe can

also penetrate into the surface structure[213]. The low friction coe�cient of qua-

sicrystalline surfaces[57, 146, 147] raises questions about the interaction of the

surfaces with lubricants commonly made from carbohydrates[39, 48, 133]. Qua-

sicrystalline interlayers also may be a possibility to connect two crystalline mate-

rials with incommensurate periodicity[64]. Recently, also special adsorption sites

on quasicrystalline surfaces have been identi�ed. Due to the aperiodic nature of

the surface multiple chemical decorations of a quasicrystalline surface are possible

[202].
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2 Quasicrystals

2.2.2 Colloidal systems

Colloidal systems are omnipresent in biological systems as well as in industrial

applications. The motivation to understand the behavior of colloidal particles is

not limited to those applications. They are also a model system for the under-

standing of atomic and molecular structures and dynamics[12, 216]. Due to their

size they are easy to observe with microscopic devices working in the visible light

spectrum. The time scales of their dynamical behavior are much longer than for

atomic systems. This results in a good time resolution of dynamical processes

where it is even possible to follow single particle trajectories. Colloidal particles

can have almost arbitrary shapes and sizes[164]. It is possible to mix di�erent

colloidal particle species to investigate phenomena such as phase separation[102].

The interaction strength between particles is tunable over a wide range e.g. in

systems witch electrostatic interactions with di�erent salt concentrations of the

solution[218]. A very important feature of colloidal particles is their sensitivity to

external �elds introducing even more possibilities to force a colloidal system into

a physical situation of interest. Colloidal particles are not only easy to probe in

experiment but also easy to treat in theory and computer simulations[10]. This

makes them a perfect model to study phase transitions or glass and gel formation.

Two-dimensional systems are particularly interesting. The phase behavior of

particles con�ned to two dimensions is very di�erent from the 3D case[195]. The

KTNHY theory [110, 141, 220] is able to explain the two-dimensional melting

as a disclination unbinding transition leading to a continuous phase transition in

contrast to one �rst-order phase transition observed in 3D systems. In particular,

the theory predicted a two stage melting in a system of spherical particles. First,

a phase transition from the solid phase to a �uid hexatic phase can be observed

where the bond orientational order of the solid is preserved only locally and the

phase possesses no long-ranged order. Afterwards, in a second phase transition,

the hexatic �uid phase melt and the system exhibits an isotropic phase. This two

stage process could be investigated in an experiment with colloids in a 2D con-

�ned geometry[221]. Also simulations of con�ned systems show velocity[3, 50, 54]

and angular momentum[207] autocorrelations with long positive tails. In early

experiments with con�ned colloids[152, 153] the con�ning walls were structureless

glass plates. In practical applications the substrates for a 2D colloidal �lm are
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2.2 Quasicrystalline surfaces

usually structured. Therefore, the substrates are able to induce an order in the

colloidal monolayers[43]. That can be used to build template patterns which are

able to not only order the �rst monolayer but also in�uence the order of the bulk in

a technique named after its atomic counterpart as colloidal epitaxy[4, 92, 197, 203].

To model a wide range of di�erent substrate patterns we make use of the sen-

sitivity of colloidal particles to laser �elds. Laser �eld experiments exploit the

di�erent dielectric constants of the solvent and the colloidal particle. The inverse

of the laser frequency is much smaller than the relevant time scale of the motion

of the particle. From the point of view of the particle the laser �eld is therefore

of a static intensity. The particle is subject to two di�erent contributions of the

laser �eld. Those are easily derived for the force of the induced dipole moment of

the particle [73, 96]:
−→
FL = 0.5α∇E2 +

∂

c∂t
(
−→
E ×

−→
B ) (2.1)

with E the electric �eld, B the magnetic �eld and α the polarizability of the parti-

cle. The �rst term is the gradient force of the laser �eld and the second term is the

scattering force describing the momentum transfer between the laser beam and the

particle. In a two-dimensional system the scattering force points perpendicular to

the plane and usually leads to a higher e�ective mass of the particle. To gener-

ate a substrate potential for colloidal particles the gradient force is the important

part. This force is proportional to the gradient of the intensity. Depending on the

particle shape the prefactors may be more complicated [9, 124, 199].

The most common applications of the in�uence of intense laser �elds on colloidal

particles are optical tweezers[77]. They are widely used instruments to con�ne and

manipulate single particles. This tool is of a high scienti�c importance and its

applications are the basis of many scienti�c developments of the past decades. In

our focus, the usage of laser �elds should not be limited to a single particle but

to a system of interacting particles. Laser �elds serve as a substrate potential in

a two-dimensional system. Ordered structures of colloids which form under the

existence of light �elds are named optical matter[28]. The �rst investigated laser

substrates where one-dimensional, periodic intensity pro�les. The interference

pattern of two laser beams consisted of parallel stripes. The colloids move to

the high density regions and eventually crystallize to a state which is referred

9



2 Quasicrystals

Figure 2.1: a) the Archimedian tiling (33, 42) b) quasicrystalline modulated Archi-

median tiling, the distances S and L between the double triangle rows follow a

Fibonacci sequence.

to as laser induced freezing(LIF)[33, 124]. Later, it was found in theory and

numerical simulations that such a system can undergo a second phase transition

at even higher intensities. The crystalline phase melts again and this reentrant

phase transition is called laser induced melting (LIM)[14, 30, 96, 212]. With the

LIF and LIM transition the one dimensional periodic substrate shows a rich and

surprising behavior.

With two-dimensional laser patterns one can form a periodic lattice of potential

minima. At su�ciently high intensities the colloids freeze and occupy every poten-

tial minima with one particle. A special new phenomenon occurs if the number of

colloids exceeds the number of potential minima. Two or three colloids are con�ned

in one potential minimum to form a colloidal molecule[2, 23, 24, 53, 159]. One

colloidal molecule is not spherical anymore but has an orientation. For interaction

lengths longer than the distance between two potential minima the orientations

between colloidal molecules of the whole system are able to couple and new forms

of orientational order arises in a system of spherical particles.

2.2.3 Colloids on quasicrystalline surfaces

Laser �elds could also used to create quasicrystalline substrates. The interference

pattern of the laser beams can produce substrates belonging to arbitrary classes

10



2.2 Quasicrystalline surfaces

of rotational symmetry[171]. The resulting intensity patterns are identical to

the density functions in the phase �eld crystal model[163]. Most attention has

been payed to the decagonal systems with a 10-fold rotational symmetry[170].

The decagonal symmetry is the most common symmetry found at quasicrystalline

surfaces. On decagonal light substrates spherical colloids can order themselves

into a quasicrystalline phase with 10-fold or 20-fold bond orientational symmetry.

The most interesting discovery in the investigation of the phase diagram of the

colloids is the occurrence of a phase with quasicrystalline Archimedian tiling[71,

137, 138, 139, 169] as shown in Fig. 2.1. This phase arises if the length scale of

the bonds of the preferred hexagonal crystal is close to the typical length scale of

the quasicrystalline decagonal substrate. The normal Archimedian tiling (33, 42)

consist of a periodical repetition of alternating rows of triangles and squares.

The Archimedian tiling (36) consists of triangles only and the vertices belong

to a triangular lattice. At high densities and without any substrate structure

the colloidal particles form a hexagonal phase. If one draws the positions of

the colloids as vortices and the bonds between nearest neighbors as edges, an

Archimedian tiling (36) of triangles appears. A new phase emerges if one place

the colloidal hexagonal phase onto a decagonal substrate with a length scale and

an interaction strength matching the length scale and interaction strength of the

bonds of the hexagonal phase. In this new phase, the bonds between the particles

de�ne a pattern of triangles and squares like in the Archimedian tiling (33, 42).

But in contrast to the normal Archimedian tiling the sequence of rows of triangles

and squares is not periodic but follows a one dimensional quasicrystalline sequence

known as Fibonacci sequence. To do so, the rows of triangles are doubled and the

resulting tiling can be described as an alternating (36) and (33, 42) Archimedian

tiling.

There also have been investigations of the dynamical features of colloids on a

decagonal substrate potential. Colloids on a quasicrystalline substrate �nd their

potential minima similar to colloids on amorphous surfaces[168]. On a di�erent

decagonal substrate a directional locking of driven particles has been seen[158].

Quasicrystals do not only have translational modes. The dynamics of so called

phasonic drifts which have no counterpart in periodical crystals have been inves-

tigated as well[111].

The experimental setup necessary for the creation of quasicrystalline substrates

11



2 Quasicrystals

Figure 2.2: Experimental setup for the generation of a laser �eld substrate: a)

Five linear polarized laser beams are focused into a sample cell. b) The decagonal

interference pattern c) Con�guration of spherical colloidal particles exposed to the

interference pattern.[139]
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2.2 Quasicrystalline surfaces

is shown in Fig. 2.2. The setup consists of a laser beam which is split up into par-

tial beams. The wave vectors of the laser beams are arranged along the n edges

of a prism that is made of a perfect n-sided polygonal base. The laser beams

interfere again in the plane of the sample which contains the colloidal suspension.

The number and wave vectors of the beams determine the structure of the in-

terference pattern. The wave vectors of the laser beams are arranged to form a

rotational symmetric star. The rotational symmetry of the star is equal to the

rotational symmetry of the interference pattern if the number of beams n is even.

The rotational symmetry of the pattern is 2n if the number of wave vectors is odd.

As shown in Eq.(2.1), the potential acting on a colloid is proportional to the

intensity of the electric �eld. For the average potential strength at a given point

we have to integrate the interference of j laser beams over one period T de�ned

by the inverse of the oscillation frequency of the laser beam ω:

V (−→r ) ∝ −
T∫

0

dt{
n−1∑
j=0

Ej cos(
−→
Gj · −→r + ϕj + ωt)}2

∝ −
T∫

0

dt{
n−1∑
i=0

n−1∑
j=0

EiEj cos(
−→
Gj · −→r + ϕj + ωt) cos(

−→
Gi · −→r + ϕi + ωt)}

∝ −
T∫

0

dt
n−1∑
i=0

n−1∑
j=0

EiEj{cos((
−→
Gj −

−→
Gi) · −→r + ϕj − ϕi)

+ cos((
−→
Gi +

−→
Gj) · −→r + ϕi + ϕj + 2ωt)}

Where Ej is the amplitude and ϕj the phase and Gj is the wave vector of the laser

beam. After integration over the time we get:

V (−→r ) ∝
n−1∑
i=0

n−1∑
j=0

EiEj{cos((
−→
Gj −

−→
Gi) · −→r + ϕj − ϕi) (2.2)

We are not interested in di�erent phase shifts expressed by the term ϕj −ϕi. The
general form of the potential reads then:

V (−→r ) = −V0

n2

n−1∑
j=0

n−1∑
i=0

cos[(
−→
G i −

−→
G j) · −→r ] . (2.3)
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2 Quasicrystals

Figure 2.3: Star of wave vectors (left) and the resulting substrate potential (right)

created from a) 5 laser beams and b) 3 laser beams.

The characteristic length scale of the structures of the potential is given by aV =

2π/|
−→
G i|. Therefore we express all lengths in units of this length scale. The

parameter V0 gives the depth of the deepest minima. In our simulations we give

V0 in units of the thermal energy kT , where T is the temperature and k the

Boltzmann constant. In Fig. 2.3 two di�erent choices of a star of wave vectors
−→
G i for n = 5 and n = 3 are shown. In Fig. 2.3 a) The �ve wave vectors

−→
G i

point to the vertices of a pentagon and generate a star of vectors with an angle

φ = 2π/5 between two neighboring vectors (
−→
G i,
−→
G i+1) the resulting potential has

a decagonal quasicrystalline symmetry. In Fig. 2.3 b) the three wave vectors point

to the vertices of an equilateral triangle. Right next to it the resulting triangular

crystalline potential is shown. In the following we use the decagonal potential as

our model for a quasicrystalline substrate potential.
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2.3 Mathematical concepts of quasicrystals

2.3 Mathematical concepts of quasicrystals

Unlike crystalline matter the connection of the quasicrystalline order to its math-

ematical description is not straight forward[95, 119, 187]. We start with the three

basic properties found in real material. Afterwards we explain quasicrystalline

geometrical patterns in one and two dimensions.

The property of a long-ranged positional order leads to sharp peaks in the elec-

tron di�raction patterns of quasicrystals similar to crystalline matter. The most

obvious property of quasicrystalline materials is the long range orientational order

of the bonds of nearest neighbors. One can order the bond angles along a star of

axis. The set of star axis can have a rotational symmetry. In most quasicrystals

the rotational symmetry is non-crystallographic. That means that no crystalline

order is able to have the same rotational symmetry. It is easy to picture this in two

dimensions. Crystals with a unit cell shape of triangles, rectangles or hexagons

have a 3, 4 or 6−fold rotational symmetry respectively. The quasicrystalline Pen-

rose tiling consists of two di�erent rhombic unit cells which edges are orientated

onto a 5−fold rotational symmetry.

The second property is connected to the translational order of the atoms and

atomic clusters. The density function can be decomposed into a sum of periodic

functions. If the ratio of the periods of some of the functions is an irrational num-

ber those functions are called incommensurate. If a decomposition of a distribution

into periodic functions exhibits also incommensurate functions the distribution is

quasiperiodic. Quasicrystals possess a quasiperiodic translational order.

These two properties can be deduced from the electron di�raction patterns of

the quasicrystals. One basic property is left to avoid unphysical mass distribu-

tions which can not be obtained in real materials. In real materials the atoms

can not come arbitrary close to each other. Therefore there must be a minimal

spacing between two atoms. There should also be a maximum spacing between

two atomic sides. Otherwise the material can consist of arbitrary huge holes and

gaps.

In the following we will use a further restriction for the quasicrystals mentioned
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2 Quasicrystals

in this work. We always use quasicrystalline structures with non crystallographic

rotational symmetries. This is a large restriction in mathematical terms but since

nearly every known real quasicrystal material possesses such a rotational sym-

metry, the reduction of the mathematically possible quasicrystals leads to almost

no constraints of the physical scope. This reduction gives us another important

feature for most of the known quasicrystalline structures. Quasicrystalls possess-

ing rotational symmetry are self-similar. That implies the ability to construct

quasicrystals with self-similarity transformations like in�ation and de�ation rules

what is not possible for general aperiodic structures. In the next section we want

to present some examples of quasicrystals and demonstrate the mentioned prop-

erties in detail.

2.3.1 Fibonacci sequences

A very important one-dimensional quasicrystalline set is the Fibonacci sequence[94,

119, 187]. It serves as an easy to understand toy model for more complicated cases

of quasicrystalline structures. The Fibonacci chain is also very closely related to

the Penrose tilings which we will discuss in the next section. In one dimension an

rotational symmetry has no meaning so the construction of the Fibonacci sequence

is only de�ned by the other two properties. The Fibonacci sequence consists of

a quasiperiodic repetition of two spacings with di�erent lengths. We denote the

short length scale (s) and the long length scale (l). The spacings can be seen as the

unit cells of the quasicrystalline structure which are repeated in a quasiperiodic

order. In this way we satis�ed the two conditions of an aperiodic translational

order and a minimum and a maximum distance identical to the length scales of

the unit cells. There are many ways to create this sequence exploiting di�erent

properties of an one dimensional quasicrystal. In general, one generates the se-

quence iteratively with construction or de�ation rules. Both methods start with

an initial sequence of spacings which grows with each step by a �nite number of

additional spacings. After each step, every obtained sequence is a �nite patch

of the in�nite Fibonacci sequence which would be obtained for the step number

n→∞.

A construction rule describes how to add con�gurations of the previous step to

obtain a new longer sequence in the next step. A start con�guration with the step
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2.3 Mathematical concepts of quasicrystals

Figure 2.4: Subdivision of the upper box marked L into smaller parts using the

de�ation rule S → L and L→ LS at each step. The fraction of the two distances

always obey L/S = τ . The step number is shown on the left and the number of

sub boxes at each step is shown on the right.

numbers n = 0, n = 1 is de�ned by S0 = l and S1 = ls. The construction rule

for the Fibonacci sequence reads then Sn = Sn−1Sn−2. The recurrence relation for

a Fibonacci number series is Fn = Fn−1 + Fn−2 with the seed values F0 = 0 and

F1 = 1. With this construction rule the similarity between the Fibonacci chain

Sn and the Fibonacci series Fn become apparent. In particular the number of

spacings in the patch of the Fibonacci chain Nn grow with Nn = Nn−1 + Nn−2.

The seed numbers of the Fibonacci sequence N0 = 1 and N1 = 2 are identical to

the Fibonacci series steps F2 = 1 and F3 = 2. Therefore the number of spacings

in every �nite patch of Sn is the Fibonacci number Nn = Fn+2.

The de�ation rules uses a given set of spacings and subdivide them into a new

set of more spacings. In this way the lengths (s) and (l) cannot be preserved.

In every step new lengths (s′) and (l′) are de�ned in a way such that the ratio

between them stays constant and they di�er from the previous lengths by only a

constant factor. Because we are only interested in the sequence of the short and

long lengths and not in their absolute value we will leave out the subscripts in

the following. The easiest de�ation rule substitutes in every step the spacing with

s→ l and l→ ls. In Fig. 2.4 the de�ation is shown. The number of spacings after

each step follows again the Fibonacci number series like in the construction rule

above. The de�ation rules show another very interesting symmetry if we introduce

a dot as a marker in the initial step as l.s. The �rst 4 substitutions are shown in

Fig. 2.5.

The sequence is despite of the �rst s and l exactly symmetric around the central

dot. After each step the order of the inner asymmetric s and l is interchanged.
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l.s

ls.ll

lsll.slsl

lsllsls.llsllsl

lsllslsllsll.slsllslsllsl

Figure 2.5: First 4 de�ations of the middle-C sequence.

This Fibonacci sequence around a central dot is called middle-C sequence [78].

This sequence plays an important role in the cartwheel tiling which we introduce

in the next sections.

The de�ation rule can reveal another connection of the Fibonacci chain to the

Fibonacci number series. If we assign the probability of �nding an l after step n

at a certain position with pn(l) and a short distance with pn(s) we can express the

probabilities of step n through the probabilities of the previous step n − 1 using

the de�ation rules. For the long distance the probability pn(l) reads :

pn(l) =
pn−1(l) + pn−1(s)

2pn−1(l) + pn−1(s)
(2.4)

With pn(l) = 1− pn(s) follows for the limit n→∞:

p∞(l) =
1

1 + p∞(l)
(2.5)

p∞(l) =

√
5− 1

2
= 1− τ (2.6)

and therefore:
p∞(l)

p∞(s)
= τ (2.7)

The number τ is known as the golden ratio and is also the limit n → ∞ for the

fraction of Fibonacci numbers Fn+1/Fn. Therefore the ratio of the number of long

distances and the number of short distances in a in�nite Fibonacci sequence is the

golden ratio τ .

The Fibonacci sequence can also be obtained by a projection method. One

can project a periodic regular square lattice onto a line with a slope of 1/τ . The
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2.3 Mathematical concepts of quasicrystals

Figure 2.6: Construction of the Fibonacci chain via the projection method. The

central black line has a slope of 1/τ . The dotted lines denotes the projection strip.

projection is done only for close points within a small environment around the

line called the projection strip. There are only two di�erent distances between the

projected points which can be marked again as short s and long l. The sequences

of the distances then follows the Fibonacci sequence. The size of the projection

strip satis�es the condition of a minimum and maximum distance between two

points in the Fibonacci sequence. The projection line don't have to cross the

origin of the coordinate system and also the projection strip can be displaced as

long as the width of the strip is preserved. Choosing the projection in the same

way as shown in Fig. 2.6 we �nd again the exact sequences from the construction

rules above. The sequence obtained with the de�ation method is identical to the

sequence starting from the origin of the coordinate system going into the negative

direction. The symmetry center of the middle-C sequence is the cross section of

the upper acceptance boundary with the Y axis.

2.3.2 Tilings

In the scope of this work we want to study a system of rod like particles on a qua-

sicrystalline surface. Therefore the properties of two-dimensional quasicrystalline
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Figure 2.7: a) the tiles of a Girih tiling[37], b) a patch of a Girih tiling[126].

structures are important. As a mathematical model system we present the charac-

teristics of quasicrystalline tilings of the plane. Tilings are well known geometrical

structures based on a �nite subset of topological discs which can be arranged to

�ll a two-dimensional space by periodic or aperiodic repetition. The �rst qua-

sicrystalline tiling was found in ancient Islamic art about 500 years ago[126]. The

tiling consist of so called Girih tiles as shown in Fig. 2.7. In Islamic art the Girih

tiles are widely used as decorations until today, e.g. the portal of the Turkish

embassy in Berlin is decorated with such a tiling. Most of these tilings are peri-

odic but with a very large repeating patch. The most important quasicrystalline

tiling related to our work is the Penrose[151] tiling which has a 5-fold rotational

symmetry. The Penrose tiling was the �rst quasicrystalline tiling of the plane ex-

plored in modern mathematics. Therefore the features of the tiling are well known.

There are many possibilities to obtain a quasicrystalline two-dimensional struc-

ture by a tiling of the plane[8, 11, 161]. Quasicrystalline tilings consists of sets

of two or more tiles which serves as unit cells of the tiling[187]. To be able to

cover the whole plane without holes, one need in addition a special construction

rule. There are di�erent types of construction rules for a quasicrystalline tilings

which can be classi�ed as in the case of the one dimensional Fibonacci sequence.

Most of them start from a single unit cell building an arbitrary huge patch. An

easy to understood rule is a set of matching rules[120, 188] for the edges of the

unit cells. The unit cells are decorated with markers which have to be matched

by the neighboring unit cells. Starting with an arbitrary unit cell one can just

add more cells and grow a patch which can cover the whole plane. Unfortunately
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the matching rules alone are ambiguous. Every patch of a tiling must ful�ll the

matching rules but not every patch placed correctly with respect to the matching

rules can be completed without defects to �ll the entire plane. The importance of

the matching rules arises from the fact that real quasicrystalline materials have

to grow by local interactions between the atoms[34, 123]. This local interaction

has to be re�ected in the possibility to build a perfect quasicrystalline tiling with

local matching rules for each tile[69]. Another problem is the building of two or

more di�erent tiles of the correct stoichiometric number out of an initial isotropic

liquid state. This problem could be avoided by using one single prototile with a

set of overlapping rules instead of di�erent unit cell tiles with matching rules[196].

We will present these construction methods in the example of the Penrose tiling

in the next section.

A di�erent approach to obtain a tiling of the plane are de�ation rules[119, 187].

The de�ation rules describe how a tile can be subdivided into smaller unit cells.

This method uses the self-similarity of many quasicrystalline tilings and is a two-

dimensional analogon to the de�ation rules of the Fibonacci sequence. One starts

again with an arbitrary tile and subdivide it into a sub pattern. One repeats this

subdivision until the needed size of the quasicrystalline patch is reached. This

is a very reliable method which always produces perfect patches and is a vital

approach for mathematical treatments. Obviously such a de�ation can not serve

as a model for the growth of real quasicrystals.

A more general way to obtain a quasicrystalline tiling of the plane is the multi-

grid method[68, 107, 189]. A grid is a countable, discrete set of parallel lines. The

multigrid is a sum of many grids with di�erent line directions. This method is

analogue to the projection method of the Fibonacci sequences. One can identify

the line directions with the symmetry axis of the system and regard them as pro-

jections of a higher dimensional hypercube on the two-dimensional plane. The

crossing points of the lines can be regarded as dual to the positions of the unit

cells of a tiling. De�ning for every type of crossing points a corresponding tile,

one can construct aperiodic tilings of the whole plane. This can lead to more gen-

eral aperiodic tilings which can not be constructed by matching rules or de�ation

methods. This generalization can also introduce tilings without any rotational

symmetry[186].
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2.3.3 Penrose tiling

The Penrose tiling is an aperiodic tiling of the plane with a 5−fold rotational

symmetry[151]. There are at least 3 popular di�erent sets of unit cells[78]. We

show them in Fig. 2.8. The Penrose set in Fig. 2.8 a) consist of six di�erent

unit cells which are four kinds of pentagons, a pentacle, a rhomboid and a half

pentacle. This tiling has untypical many unit cells but displays the 5−fold rota-

tional symmetry in the most understandable way. A very common set is the set

of two di�erent unit cells of kites and darts shown in in Fig. 2.8 b). The last set

has also two unit cells, a skinny and a fat rhomboid, Fig. 2.8 c). The two unit

cells of the last set turned out to be very useful also for the descriptions of other

tilings with di�erent rotational symmetries. The justi�cation to call all of them

a Penrose tiling stems from their equivalence under self-similar transformations.

One can transform a perfect tiling of one set into a tiling of another set and vice

versa. The Penrose tiling can be build from matching rules, de�ation methods

and a multigrid of 5 periodic grids in the symmetry directions of a pentagon. The

matching rules of the rhomboid set are shown in Fig. 2.9 a). The rhomboids are

marked with arrows. Two rhomboids are allowed to be placed side by side if the

shared edges have the same number of arrows pointing in the same direction. The

matching rules can be obtained from the projection of a 5 dimensional crystalline

grid onto the 2 dimensional plane[40]. In Fig. 2.9 b) the de�ation rules are shown.

The rhomboids can be subdivided into a small sub patch of smaller rhomboids.

The length of the edges shrinks by a factor of 1/τ . After each de�ation one can

in�ate the obtained tiling by τ and obtain a bigger patch of a perfect tiling with

the same edge lengths as in the initial patch.

Patterns with the same properties of an underlying tiling can be derived by

the decoration of the unit cells[94]. One famous decoration of the fat and skinny

rhomboids is the Ammann bar decoration[78, 119, 187]. The rhomboids are dec-

orated with line segments which can also be used as markings for the matching

rules. The marked tiles composing a Penrose tiling with the line segments merged

into a set of parallel lines in every of the 5 symmetry directions. The Ammann

bar decoration and the resulting tiling is shown in Fig. 2.10. In every set of par-

allel lines there are only two di�erent distances, a short S and a long distance L

which are ordered in a Fibonacci sequence. It is also possible to construct the
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Figure 2.8: The 3 types of a Penrose tiling : a) Pentacles, rhomboids and pen-

tagons, b) kites and darts, c) thick and thin rhomboids from [84]
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Figure 2.9: a) matching rules for thick and thin rhomboids. b) de�ation of thick

and thin rhomboids (red) into a smaller tiling.

Figure 2.10: a) decoration of the tiles with Ammann bars b) resulting Penrose

tiling with Ammann bars.
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grid of parallel lines �rst and obtain the tiling stemming from the grid structure

afterwards. If the lines have a sequence of long L and short S distances obeying

L/S = τ , following the Fibonacci sequence and the orientation of the lines is

along the 5-fold symmetry directions of a pentagon, the grid is called Pentagrid.

The Pentagrid is the underlying multigrid for all Penrose tilings. The intriguing

property of the Ammann bar decoration is that it reveals the connection between

matching rules, the multigrid method and the Fibonacci sequence in a Penrose

tiling.

A quite sophisticated kind of de�ation method for the kites and darts in a Pen-

rose tiling is the cartwheel tiling[78]. Starting with a kite and two darts, a so called

ace, and de�ate this by the corresponding de�ation rules, one gets sequentially

growing patches. The patches with even numbers of de�ations posses very interest-

ing features. All patches have a mirror symmetry like the �rst ace. Furthermore,

the even numbered patches consists of sub patches in the shape of a decagon.

These patches are called cartwheels. A nth order cartwheel is a cartwheel after

2n de�ations starting from the ace. In Fig. 2.11 the initial ace patch a) is shown.

After two de�ations one reaches the decagon patch b) with the ace in the middle.

This decagon patch is the �rst order cartwheel. Two more de�ations show a bigger

decagon, displayed in Fig. 2.11 c). In the center of the big decagon is again the

ace and the �rst order cartwheel. In the center of a cartwheel of nth order are

always all cartwheels of the order m < n. One can show that every Penrose tiling

consists of an in�nite composition of cartwheels. Another important feature of

the cartwheel tiling is the sequence of Ammann bars. The distances between the

Ammann bars follow the middle-C sequence of the Fibonacci chain shown in the

previous section.

The decoration of the unit cells is a widely used method to connect a tiling

with actual quasicrystalline materials. The tiling together with a decoration which

stands for the positions of the atoms can serve as an approximant of a real ma-

terial. But the decoration of the tiling of a quasicrystal consisting of many unit

cells remains unsatisfactory. This unit cells fall short in explaining how a real qua-

sicrystall grows, especially how the single atomic bonds know the correct matching

rules for a macroscopic quasicrystalline order without any defects and holes. An

alternative approach inspired by the cartwheel tilings was given by the work of
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Figure 2.11: The cartwheel tiling derived by de�ation rules. a) The central ace

con�guration b) the �rst order cartwheel c) the second order cartwheel.
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Figure 2.12: a) decagon prototile b) overlap rules for four small overlaps A and a

big overlap B.

Figure 2.13: a) Cartwheel decoration of a Gummelt decagon b) Decoration of the

decagon with a Jack.

Gummelt[66, 79, 80, 97]. The set of a few di�erent unit cells is replaced by just

one single quasi unit cell. The quasi unit cell for the Penrose tiling is a decagon.

The decagons are allowed to cover parts of each over by a set of matching rules as

displayed in Fig. 2.12. The bene�t of this approach is that the matching rules of

the decagon can be explained by the inner structure of the atomic clusters without

the need of explaining how di�erent building blocks are forming. A decoration of

a decagon with the corresponding positions of the atoms reveals that the decagon

clusters sharing just groups of atoms with each other[157, 192]. One group of

atoms can belong to more than one decagon structure. The geometrical match-

ing rules of the decagons correspond to the sharing possibilities of the atomic

structures. Three dimensional quasicrystals can be build from the stacking of the

two-dimensional clusters[135, 194]. One can derive the Penrose tiling from the

Gummelt decagon easily by a decoration of the decagon as shown in Fig. 2.13.

The kites and darts decoration is just the �rst order cartwheel tiling as shown

in Fig. 2.11 b). The rhomboids tiling can be derived by adding a so called Jack

con�guration as a decoration of the decagon.
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3 Nematic liquids

In this chapter we introduce �rst di�erent kinds of liquid crystalline order. Af-

terwards we explain the special properties of phase transitions in two dimensions.

Phase transitions can described quantitatively by order parameters. The order

parameters used in our work are shown in the third section of this chapter. In

section 3.4 we display our particle models. Then we present the interaction of the

hard rods with the substrate potential and choose the lengths of the rods.

3.1 Liquid-crystalline order

The mechanical properties and symmetries of liquid crystal phases are intermedi-

ate between a liquid and a crystalline state. They are therefore often referred to

mesophases. They were �rst discovered by Reinitzer[160] and shortly after named

liquid crystals by Lehmann [118] in the 19th century. The components of liquid

crystalline matter are anisotropic building blocks. The size of the building blocks

range from small molecules up to the scale of colloidal particles. The most com-

mon shapes are elongated particles or disc-like particles. There are many di�erent

liquid crystalline phases which are categorized with regard to the order found in

these phases[70]. The simplest phase is the nematic phase. In a nematic the par-

ticles are oriented along a common axis called the director. The particles can �ow

in every direction like in the liquid phase. The di�usion of the particles is usually

di�erent in the direction of the director and perpendicular to it. In the cholestric

phases the orientation of the director smoothly changes in space and has a helical

structure around an axis perpendicular to the director. The period of the helix

is called the pitch of the cholestric. The pitch is typically much larger than the

size of one particle. If the pitch is in�nitely large we obtain the nematic phase.

If the particles are positionally ordered in one dimension and the orientations are

ordered along a common director like in a nematic phase the phase is called smec-

tic. An one-dimensional spatial crystalline order de�nes two-dimensional layers in
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Figure 3.1: Schematic drawing of a nematic , smectic and columnar order.

which the particles can �ow like a liquid. There are many di�erent possibilities

to build a smectic order so there is a large subgroup of smectic phases. The most

common smectic phases are the smectic A where the layers are perpendicular to

the director and the smectic C where the director is tilted with respect to the

normal of the planes. The most ordered phase is the columnar phase. In this

phase the particles are periodically ordered in two dimensions and liquid only in

the third one. The name stems from the conformation of the particles into parallel

columns. The particles are in a liquid state along the axis of the column only.

Fig. 3.1 displays schematically the di�erent phases. Another important classi�ca-

tion of liquid crystals is how the matter approaches the liquid crystalline phase.

Particles which undergo easily a phase transition into a liquid crystalline phase by

a temperature change are called thermotropic. If the phase transition is density

driven, the liquid crystal is called lyotropic.

Liquid crystals are nowadays most widely used in liquid crystal displays (LCD)[91].

The surface interactions play a very important role in the development of LCD

systems. The direct interaction of an anisotropic molecule with a surface is called

anchoring[99, 100]. The molecule can prefer to lie planar at the surface or have a

speci�c contact angle. At the vicinity of the surface the liquid crystal can undergo

a phase transition of the Kosterlitz-Thouless type[182]. The surface monolayer

can induce a liquid crystalline order in the bulk[101, 130, 193]. The formation of

an interfacial monolayer at a wall is strongly connected with the wetting behavior

of the liquid[41, 173, 179, 191]. In LCDs the liquid crystals are usually con�ned

between two parallel walls. Therefore the in�uence of the walls with and without a
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substrate pattern raised a lot of attention[5, 32, 49, 76, 208]. Di�erent techniques

of patterning a surface are known, which can induce controlled phase behavior in

the bulk phase[81, 106, 156, 219, 222]. The patterns can consist of topological

gratings[26] or chemical structures [22]. Also patterns produced by laser �elds are

known[117, 127]. It has been shown that patterns with crystallographic symme-

tries can be used to build liquid crystal devices which have bistable or tristable

nematic order[21, 105, 116]. The most interesting experiments for the scope of

our work are nematogens in contact with crystalline surfaces. Some systems have

already been investigated experimentally like alkene on graphite[88] or pentacen

on SiO2[31], and through computer simulations[145].

Lyotropic hard core nematics are easy to model in computer experiments in

the most general fashion. There are less lyotropic liquid crystals known than

thermotropic but they have become more and more important also for practical

applications. Many of the lyotropic nematics are anorganic rods[67, 165, 227]

such as bohemite rods[27, 204, 205, 206, 215] sepiolite clay[217, 223] LaPO4 rods

[104], rodlike silica [112] or β − FeOOH needles[129]. One of the oldest lyotropic

liquid crystals is the tobacco mosaic virus[29, 144]. Because of its monodispersity

it served as an ideal experimental model system[61, 74, 214] for a long time. The

application of the self-organization of liquid crystals on crystalline surfaces raises

scienti�c interest in other �elds as well. For example, the self-assembly of nano

rods can be used to build nanostructures on semiconductors[121, 122].

In the following we want to restrict ourself to the simulation of a two-dimensional

system. The phase behavior of two-dimensional systems is quite di�erent from the

three dimensional bulk systems. We take two di�erent models for the particles

into account namely the hard needles and the hard spherocylinders.

3.2 Phase transitions in two dimensions

A phase transition occurs when a system changes its order from one state to an-

other. The phase transition can be tracked quantitatively by a properly chosen

order parameter. One can distinguish two basic types of phase transitions with

respect to the behavior of the free energy function at the transition temperature
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TC . The transition is called �rst order if the �rst derivatives of the thermodynamic

potential, e.g. the free energy, are discontinuous at the transition temperature.

The size of the discontinuity is unimportant for this classi�cation and can be ar-

bitrary small or large in di�erent systems. The transition is called continuous if

the second or higher-order derivative of the thermodynamic potential exhibit a

discontinuity.

Onsager predicted in 1949 a �rst order isotropic to nematic phase transition of

a system of in�nitely thin rods in three dimensions[143]. The phase transition is

driven purely by the shape of the particles without the need of additional interac-

tion potentials. This transition is well understood and experimentally con�rmed.

If one con�nes such a system between two plates, the �rst order phase transition

gets lost as the distances between the two plates get narrower and the system

becomes quasi two-dimensional. The phase behavior of a two-dimensional system

is quite di�erent from the three-dimensional case. The Mermin-Wagner theo-

rem states that there is no long-range order in one or two-dimensional systems

with short-ranged interactions between the particles[134]. This rigorous result can

be extended to more complicated long-ranged potentials as shown by Bruno[25].

Nevertheless, phase transitions still exsist, namely between an isotropic phase

and a phase with long-ranged correlations which decay algebraically. In a two-

dimensional system the nematic phase has no common director in the thermody-

namic limit satisfying the Mermin-Wagner theorem. One can de�ne the nematic

director only locally for �nite regions around every particle. Therefore the phase

is called quasi-nematic. The nature of those phase transitions is of the KTNHY

type[82, 110, 220]. Of special interest for our simulation of rods con�ned on a

two-dimensional plane is the universality class of the two-dimensional XY model

of freely rotating spins on a lattice. In this system the isotropic to quasi-nematic

phase transition is continuous. Kosterlitz derived the critical exponents for this

model quite early[109] but the simulation of this particular model turned out to be

rather complicated and has been done more recently [58, 85]. In our simulations

the long-ranged orientational correlations lead to a strong system size dependence

of the the isotropic to quasi-nematic phase transition.
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3.3 Order parameters

3.3 Order parameters

Order parameters are a vital tool to investigate the di�erent states of matter

and their phase transitions. In our system of rods con�ned to a plane in a qua-

sicrystalline substrate several order parameters are necessary to describe its phase

behavior. In the following we present the order parameters in detail.

We measure the existence of a nematic phase with the nematic order parameter

S which is de�ned as

S = N−1〈
N∑
i=1

cos(2θi)〉, (3.1)

where N is the particle number and θi is the angle of the ith rod with the nematic

director.

Figure 3.2: Rodlike particle with an length L and the attached orientational unit

vector −→u (i).

In practice, it is more convenient to use the orientational tensor order parameter.

For a con�guration consisting of N rods it is de�ned as

Qab = N−1

N∑
i=1

[2ua(i)ub(i)− δab] , (3.2)

where −→u (i) = [u1(i), u2(i)] is a unit vector indicating the direction of rod i as

illustrated in Fig 3.2. Since Qaa = 0, the two eigenvalues of Qab, Q and −Q add

up to zero and the nematic order parameter is the ensemble average S = 〈Q〉 over
the positive eigenvalue of Qab.

Under the in�uence of the substrate potential the rods can form additional

phases. They can be characterized by a bond-orientational or directional ordering

in the plane. To describe a directional order where the rods are aligned along
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the symmetry direction of the substrate we have introduced the directional order

parameter for m−fold order :

Φm = 〈ϕm〉 with ϕm = N−1

∣∣∣∣∣
N∑
j=1

eimαj

∣∣∣∣∣ (3.3)

where αj is the angle of the rod j with respect to an arbitrary axis.

Figure 3.3: The decagonal directional order parameter Φ10 measures whether the

angles α of all particles with with respect to an arbitrary axis match onto a 10−fold
rotational symmetric star.

In our decagonal substrate the important directional order is along the 10 sym-

metry directions of the substrate. To measure the occurrence of this directional

order, we use Φ10 as displayed in Fig. 3.3. Like the nematic order parameter the

directional order parameter measures only the existence but not the orientation

of an ordered phase. One can obtain the orientation by taking the phase of the

complex sum in Eq(3.3) despite of the absolute value. We note that this phase

can also be measured if the system has a very low directional order which slightly

prefers the symmetry directions.

Another kind of order observed in our system is a bond-orientational order of

the rod centers. We measure this order quantitatively with the bond orientational

order parameter which reads for a m− fold order :

Ψm = 〈ψm〉 with ψm = N−1

∣∣∣∣∣
N∑
j=1

n−1
j

nj∑
k=1

eimθjk

∣∣∣∣∣ (3.4)

where θjk is the angle of a bond between particle j and one of its nj nearest neigh-

bors k with respect to an arbitrary reference direction, see Fig. 3.4. The nearest
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3.3 Order parameters

Figure 3.4: The bond orientational parameter uses the angle of a bond θjk between

the particle j and its neighbor k with respect to an arbitrary axis.

neighbors are determined with the help of a Voronoi tessellation [167, 180]. At

high potential strengths the rods form clusters. We de�ne such clusters by the

conditions that all nearest neighbors j of each particle i within a cluster stay be-

low a maximum distance of |ri − rj| < 0.4L where L is the length of the particle

and in addition have a maximum di�erence in their orientation of |αi−αj| < 0.2.

We tested di�erent values for the de�nition of the clusters. The cluster structure

turned out to be robust against changes. For each cluster one can de�ne its posi-

tion rC by the center of mass and a orientation αC by its director. We can de�ne

the order parameters for the clusters as before and denote the directional order

parameter of the clusters ΦCm and the cluster bond orientational order parameter

ΨCm respectively. We are interested in the 10− and 20−fold bond orientational

order of the particles and the clusters. We name the bond orientational order of

a system after the bond orientational parameter with the highest value.

The localization of a phase transition by studying the relevant order parameter

can be a di�cult task. It is helpful to take a look at the �uctuations of the

order parameter instead of the order parameter itself. The �uctuations become

maximal at a phase transition and even show critical behavior in the vicinity

of second-order phase transition [7, 190]. The �uctuations of the nematic order

parameter is known as susceptibility, which is de�ned as the variance with respect

to S [20, 142],

χS = βN(〈Q2〉 − S2) (3.5)

with β = 1/kT . In the same way, we de�ne the variance for �uctuations around
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the directional order parameter and the bond orientational order parameter,

χΦ = βN(〈ϕ2
m〉 − Φ2

m) (3.6)

χΨ = βN(〈ψ2
m〉 −Ψ2

m) (3.7)

Furthermore, we also look at the speci�c heat capacity, which is connected to

�uctuations in the energy E of a rod con�guration

c =
β2

N
(〈E2〉 − 〈E〉2) . (3.8)

Another very useful tool to investigate the structure of a system are correlation

functions. Of particular interest are the spatial distribution functions. The radial

pair correlation function g(r) gives the probability of �nding two particles having

a distance of r normalized to the probability of �nding two particles with the same

distance in a system with the same density but perfect random positions of the

particles[6]. It is an important quantity since it can be also measured in scattering

experiments. g(r) can be determined in an ensemble average:

g(r) =
1

2πrρN
〈
N∑
i

N∑
i 6=j

δ(r + |−→r i −−→r j|)〉 (3.9)

where −→r i,−→r j are the positions of the center of mass of the rods and N is the

number of particles in the system. In our system not only the radial distribution is

of particular interest but the correlations in two dimensions. The two dimensional

correlation can be measured with respect to di�erent coordinate frames. We use

the frame of the simulation box:

gR(x, y) =
1

ρN
〈
N∑
i

N∑
i 6=j

δ(x+ (xi − xj))δ(y + (yi − yj))〉 (3.10)

where (xi, yi) and (xj, yj) are the coordinates of the rods with respect to the coor-

dinate system of the simulation box. Sometimes the choice of a the local frame of

each rod is more illuminating. In the pair correlation function of the local frame

gR(r‖, r⊥), the axes of the local frame are oriented parallel and perpendicular to

the director of the rod.

We also calculate the radial orientational correlation function:

gS(r) = 〈
N∑
i

N∑
i 6=j

δ(r + |ri − rj|) cos(2(αi − αj))
δ(r + |ri − rj|)

〉 (3.11)
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Figure 3.5: Left: Snapshot of a hard-needle system in the isotropic regime Right:

Needles in a quasi-nematic phase

The orientational correlations can also be de�ned in two dimensions in the frame

of the simulation box gS(x, y) and in the local frame of each rod gS(r‖, r⊥) as

de�ned for the spatial correlation functions before.

3.4 Particle models

3.4.1 Hard needles

Hard needles are particles with a �nite length but without any lateral extension.

The aspect ratio of the needle length to diameter is L/D = ∞. The needles

interact with each other by a hard core repulsion potential VI only. They are not

allowed to cross each other that means VI =∞ if they cross and VI = 0 otherwise.

Without any substrate the system was �rst investigated numerically by Frenkel

and Eppenga[65]. The isotropic to quasi-nematic phase transition takes place

at a number density of ρ ≈ 7 1
L2 . In the quasi-nematic phase the orientational

correlations decay algebraically. In computer simulations, the position of the

phase transition and the value of the nematic order parameter strongly depend

on the size of the simulation box. In our simulations the transition density is at

ρ ≈ 6 1
L2 and the maximum value of the order parameter is between 0.8 < S < 0.9.

The critical exponents of the phase transition were investigated numerically by

Vink[209]. They turned out to be consistent with the XY model. In Fig. 3.5
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Figure 3.6: Hard spherocylinder with an aspect ratio of L/d = 10.

two snapshots from simulations of the isotropic and the quasi-nematic phase are

shown.

3.4.2 Hard spherocylinders

In contrast to the hard needle model hard spherocylinders exhibit a �nite aspect

ratio. In two dimensions they consist of a rectangular rod with the diameter d

and a length L with two half circular caps at each end. The diameter of the cap

circles is also d. In Fig. 3.6 a spherocylinder with an aspect ratio of L/d = 10 is

shown.

The phase behavior of the spherocylinders strongly depend on the aspect ratio.

The model was investigated numerically �rst by Bates and Frenkel [13]. For

low aspect ratios with L/d < 7 the rods exhibit only an isotropic phase for low

densities and a solid phase at high densities. More slender rods with higher aspect

ratios exhibit also a low density isotropic phase and a high density solid phase but

at intermediate densities a quasi-nematic phase emerges. The properties of the

isotropic to quasi-nematic phase transition are the same as for the hard needle

model. The nature of the solid phase is still unknown. It looks almost smectic but

it is very di�cult to perform computer simulations in this density regime. In our

simulations we stay at densities well below the transition to the solid phase. We

use an aspect ratio of L/d = 10 to be able to simulate a system which possesses a

nematic phase. At this aspect ratio the isotropic to quasi-nematic phase transition

is expected to be at an area fraction of η ≈ 0.5. In our simulations, the actual

position of this phase depends again on the size of the simulation box. In Fig. 3.7

two systems of spherocylinders are shown in an isotropic and quasi-nematic phase
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Figure 3.7: Left: Snapshot of a system of hard spherocylinders in the isotropic

regime Right: Hard spherocylinders in a quasi-nematic phase

respectively.

3.5 Rod - substrate interaction potential

In this section we present the interaction of the rods with the substrate potential.

We display the structural features of our substrate potential and choose the length

of the rods. The substrate potential derived in Eq.(2.3) reads for a decagonal

symmetry:

V (−→r ) = −V0

25

4∑
j=0

4∑
i=0

cos[(
−→
G i −

−→
G j) · −→r ] . (3.12)

with the wave vectors
−→
G i pointing to the vertices of a pentagon as shown in Fig.

2.3. The particles interact with the substrate by averaging the potential over their

full length L:

VR(−→r ,−→u ) =
1

L

∫ 1/2

−1/2

V (−→r + lL−→u )dl . (3.13)

The potential VR depends on the choice of the length L. We de�ne the mini-

mal potential energy of a rod at a given position −→r with respect to all possible

orientations −→u of the rod:

VM(−→r ) = min
∀−→u

(VR(−→r ,−→u )) (3.14)

Fig. 3.8 displays |VM | for di�erent choices of L. For L = 0 the substrate potential
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Figure 3.8: Maximum strength of the potential |VM | for di�erent rod lengths L.
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from Eq. (3.12) is recovered. If L < 1aV the particles are shorter than the typical

distance of two potential minima. Therefore positions of the minima in VM are

the same as for V . Very short particles behave like point like particles despite

averaging over a small length along the substrate potential. At L = 1aV the po-

sitions of the deepest minima change and the minima of VM are located between

two minima of the bare substrate potential V . The minima exhibit a elongated

shape in contrast to the minima in the substrate potential V which possess a

circular shape. The orientation of the long axis of the elliptical shaped minima is

identical to the particle orientation with the lowest energy at this position. At a

length of L = 3aV a pattern appears which consists of long lines of low potential

energy connecting the minima. Because of the averaging in the de�nition of VR the

deepest minima of the resulting potential become shallower with increasing length

of the particles. The depth of the deepest minima decreases from Vmin = −1 for

L = 0 to VRmin = −0.38 for L = 5aV .

In the following we choose two lengths for our particles. The length of the short

particles is L = 1aV and the length of the long particles is L = 3aV .

Restricting the orientation to one of the symmetry directions, one can recognize

a line pattern connecting all potential minima for both particle lengths. In Fig.

3.9 the orientation of the particles points along the X-axis. In the middle panel

the projection of the potential of such aligned particles onto the Y -axis is shown.

The projection onto an axis perpendicular to the orientation of the particles is

independent of the particle length. One can identify characteristic distances be-

tween lines connecting the potential minima also seen in the distribution of the

maxima in the projected potential. The distances between the lines of the deepest

minima follow a Fibonacci sequence with a mirror symmetry at the center of the

coordinate system. Taking also lines of shallower minima into account the Fi-

bonacci sequence decomposes into two interwoven Fibonacci sequences of smaller

distances which possess the same symmetry around the origin of the coordinate

system as the Fibonacci sequence we have obtained by the projection method

shown earlier in Fig. 2.6. We present a more through investigation of the origin

of these line pattern in the Appendix of this work.

From the structure of VM , we can derive the bond orientational order of the
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Figure 3.9: The potential |VR| for a particle which is oriented along the direction of
the X-axis. Left panel for L = 1. Right panel for L = 3. In the middle panel the

projection V ∗(Y ) of both substrate potentials onto the Y -axis is shown together

with the Fibonacci sequences which are de�ned by the distances between lines of

deep minima.
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Figure 3.10: Bond orientational order parameter for the positions of the substrate

minima for both length scales.

minima. The values of the bond orientational order parameter Ψ10 are shown

in Fig. 3.10. For the calculation of Ψ10 we determined ≈ 20000 positions of

the minima of VM . For both particle lengths the bond orientational order is

quite weak. The short particles have a slightly higher bond orientational order of

Ψ10 = 0.28 compared to Ψ10 = 0.26 for long particles. At every minimum position

of the potential VM there is only one rod orientation for which the potential VR
exhibit this minimum. The rod orientations of every minima are aligned along

one of the symmetry directions of the potential. If we divide the minima positions

into groups of minima with the same orientation, the bond orientational order

parameter of the minima in each group is signi�cantly higher as for the sum of all

minima. The bond orientational order parameter of every single group is for both

particle lengths Ψ10 ≈ 0.75.
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In this chapter we present the basics of statistical mechanics necessary for our

simulations and give the details of the algorithms used by our simulations.

4.1 Canonical ensemble

In statistical mechanics we characterize a macroscopic thermodynamic system by

the weighted averages obtained from a complete set of its microscopic realizations[201].

We address the sets of microstates together with their statistical weights as en-

sembles. The weights depend on the interaction of the system with a reservoir

and the ensembles are named accordingly. In our simulations we use the canonical

ensemble. The canonical ensemble is described by its number of particles N its

volume V and its temperature T . One can imagine such a system as a box with

a �xed size in equilibrium in a heat bath with which it exchanges thermal energy

to stay at a �xed temperature. We are interested in rods on a plane. Let −→r i
be the coordinate of the i−th particle, −→u i a unit vector pointing in the direc-

tion of its long axis and −→p i its momentum and
−→
l i the angular momentum. The

Hamiltonian for this system is given by:

H(−→r ,−→p ,
−→
l ) =

N∑
i

−→p 2
i

2
+

N∑
i

−→
l 2
i

2I
+

N∑
i

N∑
j

Vpair(
−→r ij,−→u i,

−→u j)+
N∑
i

Vsubstrate(
−→r i,−→u i)

(4.1)

where I is the moment of inertia, Vpair is the pair potential and Vsubstrate is the

substrate potential. With the notation

dΓ =
1

h3NN !
drdpdl (4.2)

the partition function can be written as:

Z =

∫
dΓe

−H(Γ)
kT (4.3)
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Where k is the Boltzmann constant and h is Planck's constant.

It is an important feature of the partition function that one can split the function

into the con�gurational parts and the kinetic parts[75].

Z = ZKZRZV (4.4)

ZK is the translational kinetic term, ZR the rotational kinetic term and ZV the

potential part. The integration of the di�erent parts of the partition function can

be done separately. The integral over the translational momenta can be carried

out to:

ZK =
V N

N !Λ2N
(4.5)

where Λ the thermal de Broglie wavelength is given by:

Λ =
h√

2πmkT
(4.6)

The rotational kinetic part reads:

ZR =
1

ΛN

IN

mN
(4.7)

The con�gurational part of the partition function is independent of the dynamics

of the system. The Monte Carlo simulation takes only the con�gurational part

into account. The translational and rotational kinetic part of the partition func-

tion add only as a prefactor. In the following we denote by Z the con�gurational

part of the partition function only.

We want to derive the ensemble average of static properties in the canonical

ensemble[19, 142]. Let wµ(t) be the probability to �nd a discrete state µ in the

system at a given time t. If we are interested in a quantity Q which is de�ned for

every state the expectation value is :

〈Q〉 =
∑
µ

Qµwµ(t) (4.8)

In equilibrium the probability of �nding a state µ is not time dependent, that is
dwµ
dt

= 0. For clarity, we denote the time independent wµ by pµ = wµ(0) = wµ(t).

The value of the equilibration probabilities in a canonical ensemble are well known:

pµ =
1

Z
e−Eµ/kT (4.9)
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The expectation value 〈Q〉 now reads:

〈Q〉 =

∑
µ

Qµe
−Eµ/kT

Z
(4.10)

4.2 Monte Carlo simulation

In a Monte Carlo simulation we create a sample of con�gurations which is chosen

in a way to be representative to the whole thermodynamic ensemble. We generate

the new con�gurations with a Markov chain. If a system is in a given state µ it has

the transition probability P (µ → ν) to move from this state to another state ν.

The measurement of a quantity Q would then become an average over the visited

states of the system. To generate a representative sample of a canonical ensem-

ble in equilibrium, the transition probabilities have to satisfy certain conditions.

The condition of ergodicity means that every possible state is part of the in�nite

Markov chain. The condition of detailed balance reads:

pµP (µ→ ν) = pνP (ν → µ) (4.11)

The total probability of being in state µ and visiting state ν is the same as the

probability to be in the state ν and going to the state µ. These conditions are

necessary to generate an equilibrium distribution. To guarantee that the equilib-

rium distribution is a Boltzmann distribution, the transition probabilities have to

satisfy:
P (µ→ ν)

P (ν → µ)
= e−β(Eµ−Eν) (4.12)

We have still a lot of freedom for an algorithm which implements those conditions.

The main focus of an algorithm is therefore to create a good sample of states in

the most computational e�cient way. The most popular and common Monte

Carlo algorithm is the Metropolis algorithm. In this algorithm a small change is

introduced in a given system for every simulation step. The transition probability

is split in two parts:

P (µ→ ν) = g(µ→ ν)A(µ→ ν) (4.13)

g(µ→ ν) is the selection probability to chose the new state ν when the system is

in the state µ. A(µ → ν) is the probability that the change is accepted and the
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new state of the system is state ν. If the change is rejected the system stays in the

state µ. The ratio between the trials and the accepted changes is the acception

ratio. The rules to perform a change in the system satisfy the condition of detailed

balance. The selections probabilities have to ful�ll:

g(µ→ ν) = g(ν → µ) (4.14)

The information about the equilibration distribution is in the acceptance condi-

tion:

A(µ→ ν) = min{e−β(Eµ−Eν), 1} (4.15)

In our simulations of rodlike particles the algorithm is implemented as follows.

In every simulation step a random particle is chosen. The position −→r N and angle

αN of the particle at step N are changed going to step N + 1 with :

−→r N+1 = −→r N + r0Γ−→e
αN+1 = αN + α0(1− 2Γ)

Γ is a random number between 0 ≤ Γ ≤ 1 with a �at distribution. −→e is a

unit vector with a random orientation. The values of r0 and α0 determine the

maximum change in position and angle of the particle. The change in angle and

position is made independent of each other to obtain the acception ratios of each

con�gurational change separately. In an additional step a change in position and

angle is made simultaneously to overcome energy barriers. The maximum values

of the step sizes r0 and α0 are adjusted to a mean acceptance ratio of 〈A〉 ≈ 0.5.

To help the simulation to resolve locked states in a more e�cient way, we set the

maximum step sizes to r0 = L with L is the lengths of a rod and α0 = π at every

100th simulation step. Those steps have a very low acceptance ratio but account

for a higher di�usion of the system through the con�guration space.

4.3 Kinetic Monte Carlo

Monte Carlo simulations turned out to be quite e�cient in systems with a com-

plicated energy landscape to obtain the static properties of an thermodynamic

equilibrated system. This high e�ciency raised the question whether it is also

possible to use the algorithm to get informations about the dynamical properties.

It turned out that in the case of an overdamped Brownian systems it is possible to
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use the Monte Carlo scheme with some minor changes only[103]. First we want to

recall the term Brownian dynamics and than show how to apply the Monte Carlo

scheme to this kind of system.

4.3.1 Brownian motion

The Brownian particles are placed in a surrounding medium with which it is in

a thermal equilibrium[44, 131]. The particles interact with each other with an

interaction force
−→
F int. The system can be in�uenced by an external �eld

−→
F ext.

The in�uence of the medium is due to a friction force
−→
F fric and a random thermal

force
−→
F therm. The Langevin equation for a particle then reads:

m
d

dt
−→v =

−→
F fric +

−→
F ext +

−→
F int +

−→
F therm (4.16)

where m is the mass of the particle and v is its velocity. Regarding a one particle

system without external forces only the friction force and the thermal force have

to be taken into account. The friction force is proportional to the velocity of the

particle
−→
F fric = −γ−→v (t), e.g. for a spherical particle according to Stoke's law

γ = 6πRη, where R is the radius of the particle. The thermal force
−→
F therm has

a average of zero because the total system is at rest without a preferred drift

direction. The components of the force are independent of each other. Both

properties of the thermal force lead to[86]:

〈Ftherm,i(t)〉 = 0 (4.17)

〈Ftherm,i(t), Ftherm,j(t
′)〉 = 2Bδijδ(t− t′) (4.18)

The Langevin equation is:

m
d

dt
−→v + γ−→v =

−→
F therm (4.19)

The solution of this di�erential equation can be written as[83, 149]:

−→v (t) = −→v (0)e−
γ
m
t + e−

γ
m
t

t∫
0

dt′
1

m
e
γ
m
t′−→F therm(t′) (4.20)

We now can take a look at the mean square velocity given by:

〈−→v (t)2
〉

= −→v (0)2e−2 γ
m
t + e−2 γ

m
t

t∫
0

dt′
t∫

0

dt′′
1

m2
e
γ
m

(t′+t′′)
〈−→
F therm(t′) ·

−→
F therm(t′′)

〉
(4.21)

49



4 Computational methods

After integration, we derive in the long time limit t� m/γ :〈−→v (t)2
〉

=
nB

mγ
(4.22)

where n is the number of dimensions. From the equipartition theorem we know

that m 〈−→v (t)2〉 = nkT/2 and therefore the strength of the �uctuations are related

to the temperature:

B = γkT (4.23)

The particle di�uses with time. To quantify this di�usion process we take a look

at the mean square displacement (MSD) in the long time limit:

〈
|−→r (t)−−→r (0)|2

〉
=

1

γ2

t∫
0

dt′
t∫

0

dt′′
〈−→
F therm(t′) ·

−→
F therm(t′′)

〉
(4.24)

=
2nB

γ2
t (4.25)

= 2nDt (4.26)

The last equation is the de�nition of the di�usion constant D and it follows:

D = B/γ2 (4.27)

In the following we are not interested in the di�usion of a spherical particle

but of elongated particles like spherocylinders. The di�usion of such a particle

is not isotropic anymore[35, 93]. If we de�ne a local coordinate system which is

�xed to the symmetry axis and the center of each particle the di�usion process

can be divided into a di�usion parallel to the long axis of each particle with a

di�usion constant D‖ and perpendicular to the long axis with a di�erent di�usion

constant D⊥. In addition the particle can have an angular di�usion relative to the

resting reference frame of the experiment de�ned by an angular di�usion constant

DR. In the case of spherocylinders we use the following approximate di�usion

coe�cients[125]:

D‖ =
D0

2π
(ln p− 0.207 + 0.980/p− 0.133/p2) (4.28)

D⊥ =
D0

4π
(ln p+ 0.839 + 0.185/p+ 0.233/p2) (4.29)

DR =
3D0

πL2
(ln p− 0.662 + 0.917/p− 0.050/p2) (4.30)

50



4.3 Kinetic Monte Carlo

p is de�ned by p = 1+L/d where L is rod length and d is the diameter of the rod.

The di�usion coe�cients D‖ and D⊥ can be measured via the MSD in the co-

moving frame: 〈
|r‖(t)− r‖(0)|2

〉
= 2D‖t (4.31)〈

|r⊥(t)− r⊥(0)|2
〉

= 2D⊥t (4.32)

The total translational di�usion coe�cient is then:

D0 = 0.5(D‖ +D⊥) (4.33)

The mean square rotational displacement is connected to the angular correlation

function : 〈
|−→u (t)−−→u (0)|2

〉
= 2(1− e−DRt) (4.34)

where −→u (t) is the unit vector oriented along the long axis of the particle. In the

case of small simulation steps the angle α with respect to an arbitrary �xed axis

shows the same di�usive behavior like the translational variables:〈
|α(t)− α(0)|2

〉
= 2DRt (4.35)

A mean square displacement proportional to the time is usually found in sim-

ple systems such as a single particle without any external �eld for times much

longer than the time scale of the �uctuations of the solvent. Interactions between

particles, high densities and external �elds can lead to a MSD∝ tν with ν 6= 1.

Those systems possess anormal di�usion. A coe�cient ν < 1 is called subdi�usive

and a coe�cient ν > 1 is superdi�usive. A special case of superdi�usivity is the

ballistic motion with ν = 2. In the MSD one can distinguish the di�erent time

scales in which di�erent kinds of di�usion occur. In a typical glassy system one

can recognize a ballistic motion at very short time scales, which correspond to the

mean free path of the particles, a subdi�usive motion at intermediate time scales

where the particles are caged by its neighbors, and a long time normal di�usion

for time scales greater than the mean caging time of a particle.

4.3.2 Simulation scheme

One usually uses the Brownian dynamics simulation scheme to solve the Langevin

equation. In Brownian dynamics simulations the Langevin equation is discretized

51



4 Computational methods

and the computer solves the time evolution of the system. In such a simulation the

calculation of forces can be the most time consuming part of the whole simulation.

In particular for non-spherical particles which exhibit anisotropic friction forces

and torques the computational e�ort to calculate one single time step can slow

down a simulation. In a Monte Carlo simulation no forces have to be calculated at

each simulation step. The Monte Carlo simulation takes only the potential energy

into account. As a result a kinetic Monte Carlo simulation can be computation-

ally much faster than a Brownian dynamics simulation. In this section we want to

present the derivation of the kinetic Monte Carlo scheme and give the simulation

details of our implementation.

To illustrate the functionality of the kinetic Monte Carlo scheme we consider a

particle in an one-dimensional system[89, 90, 103]. The particle is at the position

x(t) within a potential V (x). The Monte Carlo step chooses a new coordinate of

the particle within an interval [x− δx, x+ δx] with a �at probability distribution.

The potential is only slowly varying over the step interval so we can write the

maximum change in potential energy ±∆V ≈ ±Fδx with an approximate con-

stant force F . We consider the potential to increase with x. In this way we only

�x the direction of the movement. A change of position into the negative direction

decreases the potential energy. The move is therefore always accepted. A step

into the positive direction will be accepted with a probability of e−β∆V ≈ e−βFδx

only. The mean displacement can be written as:

〈∆x〉 =

0∫
−δx

xdx+
δx∫
0

xe−βFxdx

δx∫
−δx

dx

(4.36)

We can now expand the exponential in the next two orders and integrate:

〈∆x〉 =

δx∫
0

(e−βFx − 1)xdx

2δx
(4.37)

≈

δx∫
0

(−βFx2 + 0.5β2F 2x3)dx

2δx
(4.38)

≈ βF
δx2

6
(1− 3βFδx

8
+O(δx2)) (4.39)
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The mean displacement in one time step is proportional to the strength of the

force F corresponding to a drift of the particle. We can do the same expansion

for the mean square displacement of one Monte Carlo step :

〈
∆x2

〉
=

δx∫
0

(e−βFx − 1)x2dx

2δx
(4.40)

≈
2/3δx2 − βF

δx∫
0

x3dx+ o(δx4)

2δx
(4.41)

≈ δx2

3
(1− 3βFδx

8
+O(δx2)) (4.42)

The MSD is independent of F in the order of δx2. Comparing the MSD with the

di�usion equation one can derive an equation for the size of the time step:〈
∆x2

〉
=

δx2

3
= 2D0δt (4.43)

δt =
δx2

6D0

(4.44)

The corrections of the order δx3 are the same in the drift (Eq. 4.39) and in

the MSD (Eq. 4.42). In simulations in more than one dimensions the higher

order corrections can be approximated by the acceptance ratio A[166]. The �nal

de�nition of the time step in our simulation is:

δt =
Aδx2

6D0

(4.45)

This procedure is straightforward for the isotropic di�usion of a spherical particle.

However, a rod has di�erent di�usion coe�cients parallel and perpendicular to

the rod axis and also performs rotational di�usion. Furthermore, the acceptance

ratios for the di�erent Monte Carlo steps within a Monte Carlo cycle can be

di�erent[148, 162]. Equation (4.45) then introduces three di�erent time steps

∆t‖, ∆t⊥, and ∆tR for one cycle. To be consistent, they have to be the same.

We therefore use as reference time step the di�usion time parallel to the rod axis,

∆t0 = ∆t‖ = r2
‖A‖/(6D‖), and adjust the maximum step sizes for the other degrees

of freedom so that ∆t‖ = ∆t⊥ = ∆tR. This procedure results in the maximum

step sizes

r⊥ =

√
A‖D⊥
A⊥D‖

r‖ and rR =

√
A‖DR

ARD‖
r‖. (4.46)
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4.4 Wang Landau Monte Carlo

Monte Carlo simulations can lose e�ciency if the system possesses a rough energy

landscape with high energy barriers or in a system which is at the vicinity of a

phase transition. There are many techniques to overcome high energy barriers

but they are not always su�cient[113]. The so called Wang Landau Monte Carlo

simulation method[114, 210, 211] is a quite recent approach to use the Monte

Carlo scheme to derive the density of states (DOS) g(E) where E is the internal

energy of a state rather then to sample an ensemble at a �xed temperature. The

algorithm was �rst used for lattice systems but can applied to o� lattice systems

as well[154, 178, 226]. The acceptance criterion of the Monte Carlo simulation is

modi�ed to:

A(µ→ ν) = min{g(Eν)

g(Eµ)
, 1} (4.47)

With this acceptance ratio every state is visited with an equal probability. The

density of states is the result of the simulation and is initially not known. We

have to start with an arbitrary �rst guess of the shape of g(E). One usually starts

with histogram for g(E) of a �at distribution giving every state the same weight,

e.g. g(E) = 1. During the simulation every visited state changes the DOS by

multiplying g(E) with an constant factor f > 1. The more often a state is visited

the larger the corresponding g(E) and the less probable is a further visit of the

same state. We record in a second histogram H(E) the absolute number of visits

of every state. As soon as the shape of the initial g(E) converges to the real

g(E) the histogram of the number of visits becomes �at. The �nite value of f

determines the strength of the �uctuations of g(E) and is therefore an upper limit

of the accuracy of the obtained DOS. On the other hand a small value of f slows

down the convergence of g(E) and wastes a lot of computation time. To deal with

this problem one split the simulations into many single runs with di�erent values

of f . In the �rst simulation the modi�cation factor f1 is chosen to be f1 > 1.

The simulation is done until a reasonable �atness in the histogram for the visits

of states is reached. After that a second simulation is started with the outcome of

g(E) from the previous simulation as the initial shape of the DOS. The next sim-

ulation has a modi�cation factor of f2 = f 0.5
1 . Again the simulation is performed

until the histogram of the visited states is su�ciently �at. The scheme is repeated

and the modi�cation factor is converging fn → 1 for n → ∞. One can stop the

simulation when the desired accuracy of the shape of g(E) is gained[224].
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In our simulations we use a re�nement of this iteration scheme. We do not use

many simulations with �xed fn but slowly lowering f(τ) with increasing simulation

time τ . If the modi�cation factor scales down with f ∼ 1 + 1/τ the convergence

time can get shorter and we reach g(E) with a higher accuracy[15, 16, 17, 225].

The exact values of the start factor f and the timescale τ are subject to a �ne

tuning which have to be done for every individual system separately. The edges

of the histograms are de�ned by the energy range we are interested in. To avoid

boundary e�ects trial moves which lead to con�gurations outside the preferred

energy range were treated like discarded moves from the acceptance criterion[172].

With the DOS we can calculate the con�gurational part of the partition func-

tion:

Zconf =
∑
conf

e−βE =
∑
E

g(E)e−βE (4.48)

Because we modify in the simulation scheme only the shape of g(E) its absolute

value di�ers by a constant factor from the real g(E). We still can get a lot of

information from this by normalizing this equation. We get the statistical weight

of the states with a given temperature and a given energy by:

P (E, T ) =
g(E)e−

E
kT∫

g(E)e−
E
kT dE

(4.49)

We can record in a simulation run the distribution of any observable as a function

of the energy O(E) and get its mean value at a given temperature with:

〈O〉T =

∫
P (E, T )O(E)dE (4.50)

In particular, the internal energy U can be obtained by:

U(T ) = 〈E〉T =

∫
P (E, T )EdE (4.51)

In some systems it is possible that the complex con�gurational landscape is not

only a function of the energy but also of additional parameters like an order

parameter. We can extent the density of states g(E) to a joint density of states

(JDOS) as a two dimensional function of a parameter O and the energy that

reads g(E,O). The modi�cation of the simulation scheme is straight forward.
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The histograms for g(E,O) and the histogram of visits H(E,O) become two

dimensional. The acceptance criterion modi�es to:

A(µ→ ν) = min{g(Eν , Oν)

g(Eµ, Oµ)
, 1}. (4.52)

We obtain the statistical weight with respect to only one of the variables by

integrating over the other:

P (E, T ) =

∫
g(E,O)e−

E
kT dO∫∫

g(E,O)e−
E
kT dEdO

(4.53)

P (O, T ) =

∫
g(E,O)e−

E
kT dE∫∫

g(E,O)e−
E
kT dEdO

(4.54)

This can be extended in principle to any number of variables. Because of the high

computational costs most of the Wang Landau simulations are done for only one

or two variables. We use the JDOS Wang Landau simulation with the energy and

the nematic order parameter S to obtain an expression for g(E, S).

4.5 Simulation details

In our simulation we use periodic boundary conditions [83, 136]. Since the qua-

sicrystalline potential is not periodic, discontinuities at the boundaries of the

periodically repeated simulation boxes occur. To minimize the discontinuities, we

choose special box sizes following Ref. [167]. For the decagonal potential the edge

lengths of the simulation box have to be X = 2naV and Y = maV /sin(π/5),

where n and m are Fibonacci numbers. The periodic repetition of quasicrystalline

subpatches leads to a crystalline structure called a crystalline approximant[72].

Since we �x the box sizes to discrete values, we vary the particle number to realize

di�erent densities.

As initial conditions we choose two di�erent particle con�gurations. The �rst

consists of a random distribution of both the particle positions and orientations.

With such isotropic starting conditions one can study whether the particles are

able to build up nematic order. In the second con�guration the positions of the

particles are randomly distributed but the they all align along an arbitrarily chosen

common direction. Starting with such an ideal nematic order, we investigate how

stable the nematic phase is.
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Details of hard needle simulations

Most of our simulations of the needle system are performed in simulation boxes

with n = 3, m = 5 for short needles and n = 13, m = 21 for long needles. The

particle number varies between 232 and 654 for the short needles and between 331

and 886 for the long needles to realize an appropriate density range. The limita-

tions on the possible box sizes also makes it di�cult to perform �nite size analysis.

The next larger box size for the long needles needs 776 needles at the lowest and

2318 at the highest simulated density. Because of the very long computation time,

we performed a search for �nite-size e�ects only for two densities of the two needle

lengths. We con�rmed results from Ref. [65] that in the two-dimensional needle

system the position of the isotropic-to-quasi-nematic transition depends on the

system size. However, for the onset of the decagonal directional order, which is

mainly determined by the substrate potential, we do not �nd a �nite-size e�ect.

In the following, we measure the needle density ρ in units of the square of the

needle length, 1/L2. In this way, the isotropic-nematic phase transition always

occurs at the same value of the reduced density ρ independent of needle length L.

To equilibrate the system, we use a few 105 Monte Carlo sweeps at low densities

and low potential strengths up to a few 106 sweeps for high densities and high

potential strengths. One Monte Carlo sweep consists of the number of particles

times a single Monte Carlo cycle for each particle. At least 10 simulation runs

with independent initial conditions are performed for each initial condition and

each density.

We performed Wang landau simulations to derive g(E, S). The Wang Landau

simulations are performed in systems of box sizes with n = 3, m = 5 for short

needles and with n = 13, m = 21 for long needles. The number of short needles

varied between 232 and 403. Two densities of the long-needle system with 623 and

886 particles have been investigated. For every particle density 6 Wang Landau

simulations are performed in parallel. After ≈ 107 simulation sweeps the resulting

histograms for g(E, S) were averaged. The obtained average g(E, S) was used as

an initial shape for the density of states in the following simulation runs. This

simulation scheme was repeated until the modi�cation factor f reached f = 1.0005

for the short needles and f = 1.0025 for the long needle system. The Wang Landau
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simulations give the resulting order parameter as functions of the temperature T

of the system for a constant potential strength. Because the interaction with the

potential is the only energy scale in our system, we can transform the results of

the Wang Landau simulation for a given temperature into the results of a system

with a constant temperature but a given potential strength.

Details of hard spherocylinder simulations

For the short-rod system we use a box size with n = 8, m = 13 and a particle

number between 100 and 637 to realize low densities and a box size with n = 5,

m = 8 with a particle number between 245 and 776 to realize high densities. The

long-rod system is simulated in a box with n = 34, m = 55 and particle numbers

varying between 229 and 1431. All particle densities are quanti�ed by the area

fraction η which the rods occupy relative to the total area.

To equilibrate the system, we use at least 106 Monte Carlo sweeps for the low

densities and 3·106 sweeps for the high densities. For the short-rod system we per-

form at least ten independent simulation runs at every density, potential strength

and initial condition. For the long-rod systems the number of runs is at least four.

When we perform kinetic Monte Carlo simulations, we use the normal Monte

Carlo scheme to equilibrate the system. Then we start the kinetic Monte Carlo

scheme where we rescale the maximum step sizes until the time steps tR and t⊥
converge to t‖. One Monte Carlo sweep goes consecutively through all the parti-

cles to avoid unphysical double moves or stops of one rod. The sequence of the

particles is altered randomly between the sweeps.

The step size r‖ should be well below the smallest characteristic length scale

one wants to resolve. In our case, it is given by the diameter of the rod d. We

therefore set r‖ < 0.1D but also veri�ed that r‖ < 0.01d does not change our

simulation results. Our choice of r‖ < 0.1d is well suited to resolve the dynamics

of the rod on a time scale it needs to di�use a diameter d.

To obtain the single particle di�usion we average over 2500 particle trajecto-

ries. The MSD of the rods in an ensemble is an average over at least 7 di�erent

58



4.5 Simulation details

simulation runs.
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In this chapter we show our results of the investigation of the hard-needle model.

First, we start with the short-needle system and then we present our investigation

of the long-needle system. At the beginning of every section we give a short

introduction of the phase diagram and thereafter we explain the di�erent phases

in detail. Most results of this chapter are published in [A].

5.1 Short needle system

5.1.1 Phase diagram

The phase diagram of the short needles in Fig. 5.1 can be divided into four regions.

The most important transition separates surface-induced directional or decagonal

order at high substrate strength from a region at low or zero strength. Here the

substrate does not in�uence the typical phase behavior where below a density

of ρ ≈ 5.9 we observe an isotropic phase followed by the quasi-nematic phase

as already reported for this system size by Frenkel and Eppenga [65]. Above

the main transition line also two regions exist. In the low-density region a pure

decagonal phase exists without any nematic order. In the region at high densities,

the realized ordering depends on the initial condition. In particular, it is possible

to freeze in a starting con�guration with nematic order in addition to the surface-

induced decagonal order. Now, we give a detailed account of our results.

5.1.2 Decagonal directional order

In Fig. 5.2 we plot the decagonal order parameter Φ10 and its susceptibility χΦ

as a function of the potential strength V0. The maximum of the susceptibility

coincides with the in�ection point of the decagonal order parameter at a value

of Φ10 ≈ 0.2. We �nd this behavior at all simulated densities. Therefore, we
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Figure 5.1: Phase diagram for the short needles.

let the decagonal directional phase of the needles start at Φ10 ≈ 0.2. Figure 5.3

shows the decagonal order parameter versus V0 for di�erent densities. In the short-

needle system, all these curves look similar and there is no pronounced density

dependence. Only for low densities, decagonal ordering needs a higher potential

strength to develop. Accordingly, the transition line in the phase diagram 5.1

slightly bends upwards at low densities. The minimum potential strength for

observing the decagonal phase is about V0 = 15 at high densities. Despite the

clear maximum in the susceptibility, we do not observe a maximum in the heat

capacity at the same position in the phase space. This is reminiscent to the work

of Frenkel and Eppenga [65]. They only observed a weak maximum in the heat

capacity shifted against the actual transition from the isotropic to the nematic

phase. For comparison a in�nite dilute system ρ = 0 is also shown in Figure

5.3. The directional order of such a dilute system is substantially lower than for

higher densities. This can be understood by the di�erent mechanism of directional

ordering.

The snapshots of Fig. 5.5 show the short-needle system at a density ρ = 8.3. In

the left panel the substrate potential has a strength of V0 = 10kT just below the

phase transition. The system is in a nematic phase but one can already recognize

a weak modulation of the density of the needles induced by the substrate. The

modulation leads to bundles of needles within the nematic phase. In the right
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Figure 5.2: Figure 5.3:

Left: Decagonal directional order parameter Φ10 and its susceptibility χΦ at ρ =

8.3.

Right: Decagonal directional order parameter Φ10 for di�erent densities.

Figure 5.5: Snapshot of a short needle system at a density of ρ = 8.3. Left : at a

potential strength of V0 = 10kT , right : V0 = 40kT
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Figure 5.6: Pair correlation function g(r) for short needles at a density of ρ = 8.3

for di�erent potential strengths V0.

panel of Fig. 5.5 the strength of the substrate potential is V0 = 40kT . The

needles are con�ned to clusters at the minima positions of the substrate. The

needles in a cluster are parallel and are ordered along the symmetry directions

of the substrate. The pair correlation function for V0 = 40 in Fig. 5.6 shows the

dense packing within the clusters through the large �rst maximum very close to

r = 0. One recognizes the isolated clusters by the deep and broad �rst minimum

at r = 0.5. The pair correlation function exhibit no pronounced maximum at

V0 = 10kT but one can identify a weak density modulation in comparison with

the substrate free case V0 = 0kT . We conclude that the formation of clusters

strongly enhance the directional order through a local nematic phase within every

cluster. The weak density dependence in the simulated range shown in the phase

diagram stems from the minimum potential strength to con�ne a single needle at

a minimum. Finally, we note that the pro�les for the decagonal order parameter

in �g. 5.3 do not change by increasing the number of needles from approximately

600 to 1200. So there is no size dependence. This is in agreement with the fact

that the decagonal order is due to the local values of the substrate potential.

5.1.3 Nematic order

The isotropic to quasi-nematic transition has already been discussed extensively[65,

209]. We now discuss the transition from the nematic phase into the region with

surface-induced directional order for increasing V0. Figure 5.7 plots the nematic
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Figure 5.7: Figure 5.8:

Left: Nematic order parameter S as a function of the potential strength V0 for

di�erent densities ρ.

Right: Nematic susceptibility χS as a function of the potential strength V0 for

di�erent densities ρ.

order parameter pro�le for di�erent densities. The nematic order �rst decreases

slowly until a potential strength of about V0 = 18kT where the surface-induced

decagonal order sets in. Now, local needle clusters form that isolate the needles

against each other. This leads to a sharp drop of the order parameter to S ≈ 0.2

and nematic order vanishes. So the loss of nematic order is strongly correlated

with the appearance of decagonal directional order. The nematic susceptibility

plotted in Fig. 5.8 for various densities indicates the loss of nematic order with a

pronounced maximum at the transition line. For comparison the nematic suscep-

tibility in the isotropic phase at ρ = 4.5 does not exhibit such a maximum. The

fourth region in the phase diagram of the short needles in Fig. 5.1 is named frozen

initial con�guration. The plot of the nematic order shown in Figure 5.7 results

from simulations which started with a random distribution of both the needle po-

sitions and orientations. After the equilibration of the system we �nd a decagonal

orientated phase where the needle clusters oriented along the symmetry direc-

tions of the substrate potential with an equal probability for each direction. In

the region of frozen initial con�gurations situated at high potential strengths and

high densities the outcome of the simulation depends on its initial con�guration.

When we prepare the initial con�guration to be in a nematic phase and there-
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Figure 5.10: Figure 5.11:

Left: Snapshot of a short needle system at a density of ρ = 8.3 and a potential

strength of V0 = 60kT with a frozen nematic order of S ≈ 0.1.

Right: Snapshot of a short needle system at a density of ρ = 8.3 and a potential

strength of V0 = 60kT with a frozen nematic order of S ≈ 0.6.

fore exhibit an common director the resulting system remains in a nematic order

after equilibration. We have con�rmed this behavior by doubling the simulation

time normally needed for equilibrating the system. Two snapshots of simulations

with di�erent nematic order are shown in Fig. 5.10 and Fig. 5.11. In Fig. 5.10

in initial isotropic initial con�guration is frozen and as a result the nematic order

parameter is S ≈ 0.1. One can recognize a �ower like structures of the clusters

which is reminiscent of the overlapping decagons of potential minima in the sub-

strate potential. Fig. 5.11 shows a system with a high nematic order parameter

of S ≈ 0.6. The needle clusters are ordered onto lines following the Fibonacci

line structure of the potential. In Figure 5.13 the di�erent results of the nematic

order parameter for the di�erent initial con�gurations at a density of ρ = 8.3 are
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Figure 5.13: Figure 5.14:

Left: Nematic order parameter S as a function of the potential strength for

isotropic and nematic starting con�guration respectively and the decagonal di-

rectional order parameter Φ10 at a density of ρ = 8.3.

Right: Nematic order parameter S as a function of the potential strength for

di�erent densities ρ from nematic initial starting con�gurations.

shown. Below a potential strength of V0 = 36kT the results are independent of

the initial con�guration. Needle clusters with the same orientation order along

the Fibonacci lines as expected from the structure of the substrate potential (Fig.

3.9). In between needle clusters with di�erent orientation occur. In our simula-

tions the order parameter never exceeds S ≈ 0.7 since between clusters oriented

along neighboring Fibonacci lines always clusters with di�erent orientations can

be inserted. Therefore, in a frozen nematic state we always observe at least two

of the �ve possible cluster orientations and the nematic order is never perfect. In

Fig. 5.14 the dependency of the frozen nematic order on the density is shown. The

higher the density the lower the potential strengths necessary to freeze an initial

nematic order of the system. At the highest simulated density of ρ = 12.7 there

is almost no gap of low nematic order between the region of the nematic system

and the region of the frozen initial con�gurations. The direct transition from a

nematic to a frozen nematic system is accompanied by a very low maximum in

the nematic susceptibility as already shown in Fig. 5.8.

For a further investigation of the nature of the frozen nematic order we per-

formed Wang Landau simulations. A comparison of the Wang Landau results

67



5 Hard needles

Figure 5.16: Figure 5.17:

Left: The nematic order parameter S at a density of ρ = 8.3 as a function of the

potential strength V0 in a comparison between the Wang Landau MC simulation

and the Metropolis MC scheme.

Right: Distribution of the nematic order parameter p(S) at a density of ρ = 8.3

and a potential strength of V0 = 60kT for di�erent simulations.

with the results from the Metropolis Monte Carlo scheme are plotted in Fig. 5.16

for ρ = 8.3. The nematic order derived from the Wang Landau simulation is in

good agreement with the Metropolis simulations. The nematic order decreases

with increasing potential strength. In the region of the frozen nematic con�gura-

tion the Wang Landau simulations prefer a low nematic order of S ≈ 0.3 which is

higher than the frozen isotropic con�guration but much lower than the maximum

frozen nematic order. In Fig. 5.17 the distribution of the nematic order parameter

at a potential strength of V0 = 60kT for the di�erent simulations is shown. The

peak structure indicates frozen systems with a di�erent degree of nematic order.

In the region of frozen initial con�guration, the energy of the system, the decago-

nal order, and the heat capacity do not depend on the degree of nematic ordering.

So, con�gurations with di�erent frozen nematic order just seem to constitute dif-

ferent possible realizations of the same decagonal order which corresponds to a

highly degenerate ground state.
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5.1 Short needle system

Figure 5.19: Figure 5.20:

Left: Two dimensional pair correlation function gR(x, y)for a short needle system

with a density of ρ = 4.5 and a potential strength of V0 = 60kT .

Right: Two dimensional order correlation function gS(x, y) for a short needle

system with a density of ρ = 4.5 and a potential strength of V0 = 60kT .

5.1.4 Positional and Bond-orientational order

At high potential strengths the needles are well ordered in clusters at the positions

of the potential minima. The two-dimensional pair correlation function gR(x, y)

in Fig. 5.19 shows the quasicrystalline order. The two-dimensional orientational

correlation function gS(x, y) of the same system is shown in Fig. 5.20. Figure 5.20

displays a central spot surrounded by 10 red spots which indicate directions in

space along which clusters assume the same orientation as the central cluster. In

between, the blue spots give directions with perpendicular orientation. The pat-

tern in Fig. 5.20 displays the same decagonal symmetry and positional order as

the substrate potential. Therefore, parallel needle clusters exhibit the same long-

range positional and orientational order as the substrate potential. The relative

positions of non-parallel clusters can be identi�ed as peaks in the pair correlation

function in Fig. 5.19 which do not match any red areas in the orientational corre-

lation function in Fig. 5.20. The de�nition of the positions of the clusters at the

vicinity of the transition into the substrate induced order is di�cult. The system

undergoes huge �uctuations which is indicated by the huge standard deviation of

the number of clusters found in the simulated systems at V0 < 20kT shown in Fig.
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Figure 5.22: Figure 5.23:

Left: Absolute number of clusters N in the simulation box and its standard devi-

ation σN as a function of the potential strength V0 at a density of ρ = 8.3

Right: Decagonal bond-orientational order parameter ΨC10 for the center of mass

of the clusters as a function of the potential strength V0 at a density of ρ = 8.3

for nematic and isotropic initial con�gurations.

5.22. Therefore, we de�ne the bond-orientational order of the cluster centers ΨC10

only from potentials strengths above V ≈ 20kT . The bond-orientational order of

a system with ρ = 8.3 is shown in Fig. 5.23 for the di�erent initial con�gurations.

In the region of the frozen initial con�guration the bond-orientational order of the

nematic systems is signi�cantly higher than for a frozen isotropic order. In this

region a high nematic order is coupled with a high bond-orientational order.

5.2 Long needle system

5.2.1 Phase diagram

The phase diagram of the long needles in Fig. 5.25 can be divided into �ve regions

and exhibits pronounced di�erences compared to the short-needle system and its

phase behavior in Fig. 5.1. The most important division line marks again the onset

of surface-induced decagonal order with Φ10 > 0.2 for increasing substrate strength

V0. However, whereas for short needles this line is more or less horizontal, it now

tilts towards smaller V0 when density ρ increases. Below the decagonal transition
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Figure 5.25: Phase diagram of the long needle system

line, one observes again the isotropic and quasi-nematic phase with the transition

located at ρ ≈ 6.2 for the simulated system size. Interestingly and in contrast

to short needles, the transition at ρ ≈ 6.2 extends beyond the main decagonal

transition line to larger V0, where now three di�erent phase regions exist. At

densities below ρ ≈ 6.2 the system assumes pure decagonal order without any

nematic ordering. At densities larger than ρ ≈ 6.2 a phase with both nematic

and decagonal order exists up to a substrate strength of V0 ≈ 35kT . In the short-

needle system, such a phase does only occur in a very narrow region of V0. For

ρ > 6.2 and V0 > 35kT , the starting con�guration again freezes in. Now, we

describe the phase behavior in more detail and try to explain it.

5.2.2 Decagonal directional order

We �rst discuss the decagonal ordering of the long needles as illustrated by the

decagonal order parameter Φ10 plotted versus V0 for several densities in Fig. 5.26.

Most properties of Φ10 are the same as in the short-needle system. The maximum

of the susceptibility χΦ when plotted as a function of V0 occurs again when the

decagonal order parameter assumes the value Φ10 = 0.2 and the heat capacity does

not show any maximum at this position. However, in contrast to short needles, the

potential strength V0 necessary to induce decagonal ordering strongly decreases
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Figure 5.26: Figure 5.27:

Left: Decagonal directional order parameter Φ10 as a function of the potential

strength V0 for di�erent densities ρ.

Right: Decagonal directional order parameter Φ10 as a function of the density ρ

for di�erent potential strengths V0.

with increasing density. In Fig. 5.27 the order parameter is plotted against the

density. We understand such a behavior qualitatively. With increasing V0, short

needles tend to form compact clusters of the size of one needle length when they

connect two potential minima. The clusters are well separated from each other

regardless their density. In contrast, long needles connect several mimima and

even share one or two of them. Now, clusters with the same orientation form

elongated domains which have a length equal to several needle lengths (Fig. 5.29).

The widths of the domains oriented along one of the decagonal directions also

extend beyond one needle length since geometrically it is simpler to align clusters.

For larger densities, we expect such domains to form more easily which explains

the behavior of the decagonal transition line.

5.2.3 Nematic order

At low densities ρ < 6.2 the needles show surface-induced decagonal order without

any nematic ordering. Similar to Fig. 5.29 the needle clusters form aligned domains

that are equally distributed in all 10 decagonal directions. Above ρ = 6.2 the

formation of the needle clusters does not destroy nematic order since the clusters
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5.2 Long needle system

Figure 5.29: Snapshot of a long needle system at a density of ρ = 8.6 and a

potential strength of V0 = 40kT .

overlap with each other as explained in the previous paragraph. As a result the

phase region with both stable nematic and decagonal order in the phase diagram

of Fig. 5.25 occurs. Figure 5.30 demonstrates that for each density the nematic

order parameter is nearly constant as a function of V0. One recognizes a slight

increase when the decagonal order is established and a decrease beyond V0 = 40kT

in the region of frozen initial con�guration. Finally, in the region termed frozen

initial con�guration in the phase diagram of Fig. 5.25, the mobility of the needles

is so small that the system is not able to change an initial con�guration. Like

short needles, long needles are able to freeze in an initial nematic order. However,

if the simulation starts without any orientational order, nematic ordering does not

develop during equilibrating the system. Figure 5.31 shows how the nematic order

parameter S depends on the starting con�guration. The energy, heat capacity,

and decagonal order are the same whether the system freezes in the nematic or

isotropic state. In the isotropic system needle clusters are aligned within domains

the orientations of which are distributed equally on all ten decagonal directions.

In Fig. 5.31 the nematic order parameter in the simulations with isotropic

start con�gurations does not drop immediately but decreases between potential

strengths of V0 = 40kT till V0 = 60kT . We believe this is an artifact of the
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Figure 5.30: Figure 5.31:

Left: Nematic order parameter S as function of the potential strength V0 for dif-

ferent densities ρ.

Right: Comparison of the nematic order parameter for di�erent initial con�gura-

tions as a function of the potential strength V0 at a density of ρ = 8.6.

Figure 5.33: Distribution of the nematic order parameter at a density of ρ = 8.6

and a potential strength of V0 = 60kT obtained from di�erent simulation schemes

and initial conditions.
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simulation scheme. In the Monte Carlo simulation scheme, the equilibration run

corresponds to a fast cooling of the system. Just above the limit potential strength

of V0 = 40kT the system can increase its nematic order while equilibrating. This

results in an increased nematic order above S = 0 even if started with an isotropic

con�guration. The nematic order drops with increasing potential strength until

�nally the equilibration is fast enough to perfectly freeze in an initial non-nematic

order at V0 = 60kT . Artifacts of the equilibration run also freeze in when start-

ing in an initial nematic order. Fluctuations of the nematic phase freeze in for

V0 > 40kT . In the equilibration run the �uctuations are introduced in two di�er-

ent ways. The �rst source of �uctuations is the initial isotropic positional order of

the system. The simulation scheme creates �uctuations while �nding the proper

minima of the needles. The second source of �uctuations are the thermal �uctu-

ations of needles around their director which are also usually seen in the case of

zero potential strength. The strength of the �uctuations of the substrate free case

are the upper limit for the simulation scheme at high potential strengths and the

nematic order drops to the nematic order of the substrate free system.

A comparison of the results at a density of ρ = 8.6 and a potential strength of

V0 = 60kT between Monte Carlo simulations with di�erent initial nematic order

and the Wang Landau simulations is shown in Fig. 5.33. In contrast to the short

needle system the Wang Landau simulation results favor a high nematic order

of the long needles in the region of frozen initial con�gurations. In the common

nematic - decagonal directional ordered phase the nematic director is oriented

along one of the symmetry direction of the substrate. In Fig. 5.34 we show a

typical needle snapshot of the combined nematic and decagonal order at ρ = 8.6

and V0 = 18. One clearly recognizes an average direction of the needles along the

director, which points along one of the decagonal directions. The single needle

orientations �uctuate around the director. The �uctuations of the orientations of

the needles with respect to the nematic director prefer the neighboring decagonal

directions of the potential. One can identify such �uctuations in the snapshot

Fig. 5.34a) as bundles of needles. The corresponding orientational distribution

function of the needles is plotted in Fig. 5.34(b). Besides the orientation of the

director at α = 2π/5, two weaker maxima appear at the neighboring decagonal

directions at α = π/5 and 3π/5. Increasing density, these maxima become weaker

in agreement with the increasing nematic order parameter S. All three maxima
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Figure 5.34: a) Snapshot of a long needle system at a density of ρ = 8.6 and a

potential strength of V0 = 18kT in a nematic and decagonal directional ordered

phase. b) Corresponding orientational distribution function for the needles. The

angle α is measured with respect to the horizontal.
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Figure 5.35: Figure 5.36:

Left: Pair correlation function for the center of mass of the long needles at a

density of ρ = 8.6 for di�erent potential strengths V0.

Right: Two dimensional pair correlation function with respect to the axis parallel

r‖ and perpendicular r⊥ to the director of each long needle at a density of ρ = 8.6

and a potential strength of V0 = 60kT .

become sharper when V0 increases restricting the needles more and more to the

decagonal directions of the substrate potential. In the short needle system the

needles form isolated clusters and therefore the angular correlation is �nite and

the e�ect of directional enhancement is con�ned to the needles within a cluster. In

the long needle system the nematic phase remains �uid. Despite the restriction of

the system to a �nite number of directions the phase may be still quasi-nematic.

5.2.4 Positional order

In the vicinity of the transition to the decagonal directional order the positional

order of the long needles is not as pronounced as for the short needles. In Fig.

5.35 the pair correlation function for di�erent potential strengths of a dense sys-

tem with ρ = 8.6 is shown. The growth of �rst maximum denotes the creation of

clusters under the in�uence of the potential. The maximum stays below 1 even

at a potential strength of V0 = 20kT which is already in the region of decagonal

directional order. The maximum becomes sharper with higher potential strengths

77



5 Hard needles

Figure 5.38: Snapshot of the long-needle system at a density of ρ = 8.6 and

a potential strength of V0 = 60kT in the region of frozen initial con�guration.

Blow-up: One-dimensional quasicrystalline positional order of the needle clusters

on two Fibonacci chains.

and the line structure of clusters begin to form. For a large substrate strength of

V0 = 60kT this is illustrated in Fig. 5.38. The needles form again clusters which

are mostly aligned along one decagonal direction. Some needle clusters deviate

from the nematic director and point along other decagonal directions reducing the

nematic order parameter below S = 1. Still the directional order parameter indi-

cates decagonal ordering. The blow-up of one region of the snapshot in Fig. 5.38

reveals that the positions of the needle clusters possess one-dimensional quasicrys-

talline order perpendicular to the nematic director. This leads to a pronounced

line structure in the two-dimensional pair correlation function as displayed in Fig.

5.36. The pair correlation function gR(r‖, r⊥) shows the positional correlations

of the needles center of mass with respect to the coordinate system whose axes

are parallel to the long and short axes of each individual particle. The order is

characterized by the two interwoven Fibonacci chains, which we identi�ed in the

substrate potential as illustrated in Fig. 3.9.

78



6 Hard spherocylinders

In this chapter we discuss the simulation results for the short- and long-spherocylinder

system, separately. We present the phase diagram and then discuss more details of

the phase ordering. In the last section, we show the results from the kinetic Monte

Carlo simulations for the mobility of the rods. Most of our �ndings presented in

this chapter are published in [B].

6.1 Short-spherocylinder system

6.1.1 Phase diagram

The phase diagram of the short rods in Fig. 6.1 exhibits several phases which

di�er by their bond-orientational, their directional, and orientational order. Be-

low the horizontal black line at a potential strength V0 ≈ 30kT , the system of

spherocylinders displays the usual phase sequence isotropic-nematic with increas-

ing area fraction η which one observes without any substrate potential. With

increasing V0 the isotropic-nematic phase transition shifts to larger η. Above the

potential strength of V0 ≈ 30kT the phase diagram is divided into regions A-D

with di�erent bond-orientational order to be discussed below. In addition three

characteristic density ranges exist. At very low area fractions of η < 0.12 (re-

gion A and B) the single rods display surface-induced bond-orientational order as

well as pronounced directional order with non-zero order parameter Φ10. In the

regime of intermediate area fractions 0.12 < η < 0.35 (regions C an D) the rods

form well separated clusters under the in�uence of the surface potential. Now,

the clusters display bond-orientational and directional order similar to the single

rods in the dilute regime. At large area fractions of η > 0.35 the clusters touch

each other. While the directional order parameter falls below Φ10 = 0.2, still a

delicate directional order is observable as we explain below. In particular, in the

gray shaded region the preferred directions of the rods lie between the symmetry
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Figure 6.1: Phase diagram of the short rods system.

directions of the surface potential. Finally, at area fractions above η = 0.19 and

su�ciently large potential strength V0, an initial isotropic state or nematic order

remains after equilibration. We now discuss the di�erent regions in more detail.

6.1.2 Bond-orientational order

The maximal �uctuations in the bond-orientational order parameter occur already

at about Ψm ≈ 0.1, so we identify bond order for Ψm > 0.1. In Fig. 6.2 we plot

bond-orientational order parameters for rods (Ψ10, Ψ20) and the center of mass of

rod clusters (ΨC10, ΨC20). Below an area fraction of η = 0.12 most rods are well

separated from each other and only a few clusters exist. At very low area fractions

η < 0.08 and large potential strengths V0 > 60kT a 20-fold bond-orientational or-

der dominates (region A in Fig. 6.1). It occurs since the system is so dilute

that nearest neighbors also occupy minima which lie in directions between the 10

symmetry directions of the substrate potential. 10-fold bond-orientational order

forms at lower potential strengths down to V0 = 40kT and for area fractions up

to η = 0.12 (region B).

For η > 0.08 most of the minima in the rod potential VR are occupied and

clusters of rods start to form. This is already visible in Fig. 6.3 at an area frac-
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Figure 6.2: Bond orientational order parameter of a 10−fold and 20−fold symme-

try for the center of mass of rods and the center of mass of clusters of rods versus

area fraction at a potential stength of V0 = 80kT .

Figure 6.3: Snapshots (left) and 2D pair correlation functions of the center of

mass of the clusters (right) for the short-rod system at V0 = 100kT and η = 0.08

in region B.
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Figure 6.4: Snapshots (left) and 2D pair correlation functions of the center of

mass of the clusters (right) for the short-rod system at V0 = 100kT and η = 0.19

in region C.

tion η = 0.08. The rods form a pattern of decagonal �ower structures and the

sharp maxima in the pair correlation function indicate the long-range positional

order with decagonal symmetry induced by the surface potential. At area frac-

tions above η = 0.12 the number of rods well exceeds the number of deep minima

in VR. Within one cluster two or more rods start to occupy the same minimum

in VR or, di�erently speaking, they connect two to three minima in the substrate

potential V (−→r ). These clusters behave now like single rods in the very dilute

regime. When the cluster density is low (region C in Fig. 6.1), they exhibit 20-

fold bond-orientational order as indicated by ΨC20 > ΨC10 in Fig. 6.2 in the range

η = 0.12 to 0.19.

Then, further increasing the area fraction η 10-fold bond-orientational order

dominates in region D which extends to large densities. In Fig. 6.4 we show

the snapshot of a rod system at η = 0.19 and V0 = 100kT together with the

pair correlation function of the center of mass of the clusters. As in the single-rod

case, the pair correlation function for the clusters shows sharp maxima. The bond-

orientational order of the clusters decays quite slowly with increasing area fraction

(Fig. 6.2). The 10-fold order parameter ΨC10 stays above 0.1 for V0 > 40kT and
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Figure 6.5: Snapshots (left) and 2D pair correlation functions of the center of

mass of the clusters (right) for the short-rod system at V0 = 100kT and η = 0.5

in region D.

all simulated area fractions η > 0.19.

In Fig. 6.5 we show a high-density system with η = 0.5. Even though the clus-

ters are not separated from each other anymore, one can still identify �ower-like

structures formed by the densely packed clusters. In these structures, the clus-

ters are oriented more along directions in between the symmetry directions of the

substrate potential, which we will investigate further below. In contrast to the

previous cases, the cluster pair correlation function now displays broader peaks

which we attribute to the following observation. The clusters connect two to three

minima of the substrate potential (for a schematic see Fig. 6.8). This creates a

broad potential well for the rods in which they perform thermal motion resulting

in the broadened peaks.

6.1.3 Decagonal directional order

As in the hard-needle system we �nd the maxima of the �uctuations of the decago-

nal directional order parameter χΦ at an approximate value of Φ10 ≈ 0.2 inde-

pendent of the system parameters. Figure 6.6 shows the decagonal directional

order parameter Φ10 as a function of the potential strength V0 for di�erent area
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Figure 6.6: Decagonal directional order parameter Φ10 plotted versus V0 for dif-

ferent area fractions.

fractions. With increasing η decagonal directional order is reduced. Finally, at

η = 0.42 and larger area fractions the directional order parameter Φ10 always stays

below 0.2 for all simulated potential strengths. However, the substrate potential

still a�ects the orientations of the rods.

In Fig. 6.7 we plot their full directional distribution function f(α) for three

di�erent area fractions and potential strengths. At a low area fraction of η = 0.19

and low potential strength V0 = 26kT (isotropic phase), the substrate potential

only induces a small modulation of the isotropic distribution. The maxima coin-

cide with the 10 symmetry directions of the decagonal substrate potential. The

directional order parameter stays below Φ10 = 0.1. The di�erence between max-

ima and minima in f(α) grows with increasing V0 until a directionally ordered

phase with Φ10 ≥ 0.2 is established. The locations of the maxima and minima

stay the same. This changes when the area fraction is increased. At η = 0.35 and

low potential strength V0 = 26kT , the preferred directions are located between

the 10 symmetry directions. In the phase diagram of Fig. 6.1 the gray shaded

region marks the parameter space where such a shift in the directions occurs. At

the highest simulated potential strength V0 = 90kT the rod system exhibits di-

rectional order with Φ10 > 0.2 and the preferred directions agree again with the
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Figure 6.7: Directional distribution function f(α) for three area fractions η and

three potential strengths V0
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Figure 6.8: Single rods and small clusters (left) occupy di�erent positions and

directions in the substrate potential than larger clusters (right) which gives rise

to the gray shaded region in the phase diagram of Fig. 6.1 (schematic drawing).

symmetry directions. In dense rod systems with a large area fraction the preferred

directions of the rods remain shifted at large potential strengths V0. We illustrate

this in Fig. 6.7 for η = 0.5. However, even at V0 = 90kT , were the maxima are

pronounced does the directional order parameter stay below Φ10 = 0.2. Note that

at a potential strength of V0 = 26kT the rod system is in the nematic phase and

the director aligns along one of the shifted preferred directions. These directions

occur when the size of the rod clusters increases from small clusters with up to

three rods per cluster to larger clusters.

The schematic drawing of Fig. 6.8 illustrates the preferred directions. Single

rods and clusters of up to three rods (Fig. 6.8, left) connect two deep minima of

the substrate potential. However, clusters consisting of four rods and more (right)

connect more shallow minima since they occupy more area which the deep minima

cannot provide. So their preferred directions lie between the symmetry directions

of the substrate potential. The mean energy of a rod in a three-particle cluster is

always below the respective value in larger clusters. So, in the high-density regime

starting at η = 0.35 the rod system consists of a mixture of small and big clusters

with a rising fraction of big clusters at larger area fractions. Hence, there is no

sharp transition from one set of preferred directions to the other set. Finally, we

�nd it remarkable that the gray shaded region in Fig. 6.1 indicating the shifted

preferred directions includes the isotropic and nematic phase, but also regions

with bond-orientational order and with frozen initial conditions. As illustrated in
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6.1 Short-spherocylinder system

Figure 6.9: Snapshot of a short rod system at V0 = 100kT and η = 0.5 with a

frozen nematic order.
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6 Hard spherocylinders

Figure 6.10: Phase diagram of the long rods.

Fig. 6.9 a certain degree of an initial nematic order can be frozen in. As in the

short needle system the maximum nematic order parameter is limited due to the

distribution of possible cluster positions with a common orientation.

6.2 Long-spherocylinder system

6.2.1 Phase diagram

Figure 6.10 shows the phase diagram of long rods which looks much simpler than

the one for short rods. Below the potential strength V0 = 20kT , one observes

the typical isotropic-nematic phase transition completely una�ected by the sub-

strate potential. Above V0 = 20kT , spherocylinders with length 3aV connect

several minima of the surface potential (see Fig. 2.3) and therefore become mainly

oriented along one of the symmetry directions. For this reason, one obtains di-

rectional order with decagonal symmetry that extends along the whole range of

area fractions in contrast to the short-rod system. Figure 6.11 demonstrates that

the directional order parameter plotted versus V0 only weakly depends on the

area fraction η. Since the rods can slide to a certain degree along the minima,

which they occupy, the positional order is not su�cient to generate a pronounced
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6.2 Long-spherocylinder system

Figure 6.11: Decagonal directional order parameter Φ10 plotted versus potential

strength V0 for di�erent area fractions η.

bond-orientational order as observed for short rods. The bond-orientational order

parameter Ψ is always below 0.1. Nevertheless, as we will see below, in the pair

correlation function one can identify preferred positions of the rods as dictated by

the substrate potential. Furthermore, rod clusters that form at increasing area

fraction show a delicate short-range order. As in a long-needle system the nematic

phase extends into the region of decagonal directional order. Finally, at higher

potential strengths the initial con�guration, for example, a nematic order, can be

frozen in.

6.2.2 Positional order

We now study in more detail positional order with the help of the two-dimensional

pair correlation function which we determine in the local frame of the rod. So we

describe positional correlations of the rod's center of mass with respect to the coor-

dinate system whose axes are parallel to the long and short axes of each individual

rod, respectively. Figure 6.12 shows the snapshot of a low-density system at area

fraction η = 0.19. The pair correlation function in the local rod frame exhibits

peaks according to the substrate potential but they are broadened due the motion

of the rods. One also clearly recognizes a stripe pattern parallel to the local rod

on which the peaks lie interrupted by blue bands with low positional correlations.
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6 Hard spherocylinders

Figure 6.12: Snapshots (left) and 2D pair correlation functions in the local rod

frame (right) for the long-rod system at V0 = 60kT and η = 0.19

They belong to the Fibonacci sequence from the substrate potential. However, our

analysis shows that nearest-neighbor minima on this Fibonacci sequence are not

occupied due to thermal motion of the rods so the pronounced stripes occur. At

increasing density clusters of rods form and positional order still exists. Now, the

nearest-neighbor minima are �lled up and the pronounced stripe pattern vanishes

as indicated in Fig. 6.13. Unlike short rods, the long rods cannot cluster together

in the same line of potential minima since their diameter approximately equals

the width of the minima. Each rod is trapped in a di�erent line of minima. In

the snapshot of Fig. 6.13 one can clearly see spaces between parallel rods. Indeed

the corresponding pair correlation function exhibits a correlation hole between

the excluded volume of the central rod (in white color) and the nearest neigh-

bors. As the relevant maxima indicate, the bond between nearest neighbors is not

along their common short axis but points along the symmetry directions of the

potential at angles ±π/5 relative to the central rod. Hence, the clusters in the

snapshot exhibit their typical rhombic shape. The distance of neighboring rods

is the smallest distance of the Fibonacci sequences associated with the substrate

potential. Compared to short rods, which at comparable area fraction [see Fig.

6.4] form well separated clusters in a close side-by-side con�guration, the behavior

of long rods with the same aspect ratio is quite di�erent. Increasing the area

fraction further, the whole system is compressed so that the rods start to touch
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6.2 Long-spherocylinder system

Figure 6.13: Snapshots (left) and 2D pair correlation functions in the local rod

frame (right) for the long-rod system at V0 = 60kT and η = 0.44.

Figure 6.14: Snapshots (left) and 2D pair correlation functions in the local rod

frame (right) for the long-rod system at V0 = 60kT and η = 0.57.
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6 Hard spherocylinders

Figure 6.15: Snapshots from two systems at an area fraction of η = 0.57 and a

potential strength of V0 = 90kT with frozen nematic order. Left: with two main

orientations and S = 0.85. Right: Almost perfect nematic order with S = 0.93.

each other. This is indicated in the pair correlation function of Fig. 6.14, where

the nearest-neighbor maximum is located at the border of the excluded volume.

Furthermore, the surface-induced positional order has vanished almost completely

since the rods �ll the whole space quite uniformly. Partially, they form elongated

clusters by ordering side by side and head to tail. Finally, decagonal directional

order is still very high since the rods strictly align along the symmetry directions.

Frozen nematic states can exhibit very high degrees of nematic order because of

this strict alignment of the rods. In Fig. 6.15 the frozen nematic order is illus-

trated with two snapshots of a system at an area fraction of η = 0.57 and at a

potential strength of V0 = 90kT . The rods are aligned along one or two symmetry

directions of the substrate. In contrast to the long needle system the order of the

rods onto the Fibonacci lines of the substrate is lost.
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6.3 Dynamics of hard spherocylinders

Figure 6.16: Figure 6.17:

Left: Mean square displacement 〈r2〉 of a single short rod in units of a2
V for

di�erent potential strengths V0. Time is measured in units of a2
V /D‖, where D‖ is

the single-rod di�usion coe�cient parallel to the rod axis [see Eq. (4.28)].

Right: Angular mean square displacement 〈ϕ2〉 and accumulated mean square

displacement parallel (〈r2
‖〉 ) and perpendicular (〈r2

⊥〉) to the rod axis at V0 =

70kT . The inset shows a snapshot of the rod positions at t = 500a2
V /D‖.

6.3 Dynamics of hard spherocylinders

6.3.1 Short spherocylinders

We now present the results of our kinetic Monte Carlo simulations on the mobility

of the rods both for single and multi-particle systems. Figure 6.16 shows the mean

square displacement of a single short rod for di�erent potential strengths. At

V0 = 10kT the mean square displacement is nearly the same as without substrate

potential. With increasing V0 the rod becomes trapped in a pair of deep potential

minima and can only leave them by thermal activation. As a result, a subdi�usive

regime develops before the rod performs normal di�usion. At V0 = 100kT the

rod stays trapped in its potential minima and the regime of normal di�usion is

not reached within the simulation time. In Fig. 6.17 we plot the angular mean

square displacement 〈ϕ2〉 and the accumulated displacements parallel (〈r2
‖〉 ) and

perpendicular (〈r2
⊥〉) to the rod axis for V0 = 70kT . Interestingly, 〈ϕ2〉 and 〈r2

⊥〉
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6 Hard spherocylinders

Figure 6.19: Mean square displacement of a short-rod system for di�erent area

fractions at V0 = 70kT .

enter the di�usive regime at the same time whereas 〈r2
‖〉 becomes di�usive more

than two decades later. The reason for this behavior is the following. Whereas

one end of the rod stays trapped in its potential minimum, the other end moves/

rotates into a neighboring minimum like a clock hand by thermal activation. This

motion contributes to both 〈ϕ2〉 and 〈r2
⊥〉. To perform a motion parallel to the

rod axis, both ends of the rod have to leave their potential minima and normal

di�usion sets in later. This also explains why the total mean square displacement

in Fig. 6.17 follows 〈r2
‖〉.

The mobility of the short rods changes dramatically when a whole ensemble of

rods is considered. In Fig. 6.19 we plot the mean square displacement at V0 = 70kT

for di�erent area fractions. In the dilute regime at η = 0.06, 〈r2〉 behaves similar to

the single-rod system and does not reach normal di�usion within the simulation

time. As soon as the rods start to cluster (region C in the phase diagram of

Fig. 6.1), their mobility rises and normal di�usion is observed. The outer rods

of a cluster are more weakly bound to the trap and can more easily leave their

potential minima by thermal activation. Nevertheless, the di�usion coe�cient is

much smaller than for free di�usion by a factor of ca. 100. Most particles stay

in their potential minima and only a few move from cluster to cluster. Further
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6.3 Dynamics of hard spherocylinders

Figure 6.20: Figure 6.21:

Left: Mean square displacement 〈r2〉 of a single long rod in units of a2
V for di�erent

potential strengths V0.

Right: Angular mean square displacement 〈ϕ2〉 and accumulated mean square

displacement parallel (〈r2
‖〉 ) and perpendicular (〈r2

⊥〉) to the rod axis at V0 =

70kT . The inset shows a snapshot of the rod positions at t = 500a2
V /D‖.

increasing the area fraction decreases the mobility again since the space between

clusters becomes more and more crowded.

6.3.2 Long spherocylinders

Compared to short rods, long rods are much more mobile when the substrate

potential is switched on and the mobility is much less a�ected by the strength

of the potential. The mean square displacement for a single long rod in Fig.

6.20 shows normal di�usion at long times even at a potential strength as high as

V0 = 100kT . The subdi�usive regime is always quite short. The high mobility

arises from the motion of the rods along the lines of minima. They act as rails along

which the rods can easily slide. To leave a rail, the rod changes its direction and

occupies another rail. This picture is con�rmed by Fig. 6.21. Now the accumulated

mean square displacement along the rod axis, 〈r2
‖〉, drastically exceeds 〈r2

⊥〉 and
determines translational di�usion. The ten symmetry directions for the rails are

clearly visible in the snapshot of Fig. 6.21. Compared to short rods, 〈ϕ2〉 is smaller

95



6 Hard spherocylinders

by a factor of ten. In an ensemble of long rods the usual crowding occurs and in

contrast to the short rods a density-induced mobility enhancement is not visible.
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7 Conclusion and outlook

We determined the phase behavior of hard rods con�ned in two dimensions under

the in�uence of a decagonal substrate potential. We took two di�erent particle

models into account. The hard needle model illustrates the phase behavior of

very slim rods. The in�uence of a �nite width of the rods is demonstrated using

the hard spherocylinder model. The interaction of the rods with the substrate

strongly depends on the ratio of the length of the rod L and the typical length

scale of the substrate potential aV . We identi�ed di�erent rod - substrate inter-

actions for three di�erent rod lengths. If the length of the rod is much smaller

than the length scale of the potential, L < aV , the interaction of the rod-like

particle with the substrate does not di�er much from the interaction of spherical

particles with the substrate. Rods with a length comparable to the length scale

of the substrate potential, L ≈ aV , can connect two minima of the substrate and

�nd the positions of their minimum potential energy in between the minima of the

substrate potential. Rods with a length of a few aV can connect more minima at

the same time. With increasing rod length, a grid structure of lines connecting the

potential minima is the most important feature of the quasicrystalline substrate.

The lines are oriented along the symmetry directions of the potential. We could

explain the grid structure from the basic features of an underlying decorated Pen-

rose tiling. In our simulations we took two rod lengths into account. The short

rods have a length of L = 1aV . The long rods are three times longer with L = 3aV .

In the short-needle system the quasi-nematic order is destroyed with increas-

ing potential strength. The system exhibits directional order where the needles

gradually form disconnected clusters located between two potential minima and

oriented along the symmetry directions of the decagonal potential. As as result,

the needle clusters exhibit the same long-range positional order as the substrate

and their relative orientations also display long-range order. Finally, at su�ciently

high densities and potential strengths it is possible to freeze in nematic order up
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7 Conclusion and outlook

to an order parameter of S = 0.7. In the region of frozen initial con�gurations a

high nematic order also results in an increased bond-orientational order.

Long needles tend to connect several potential minima with increasing poten-

tial strength and to form clusters that interact with neighboring clusters. In

contrast to short needles, extended domains of uniformly oriented clusters along

the decagonal directions form. At larger densities the interaction between nee-

dles enforces directional order to set in at lower potential strengths compared

to the short-needle system and to stabilize the nematic phase also in regions of

surface-induced directional order. For densities above the isotropic-nematic phase

transition, the needle clusters position and orient themselves along lines de�ned by

the potential minima. These lines follow a one-dimensional quasicrystalline order

that is described by two interwoven Fibonacci chains. The e�ect becomes very

pronounced for large potential strengths, where one can again freeze in nematic

order with any value of the order parameter S.

In both systems of hard spherocylinders we observe characteristic positional and

directional order with decagonal symmetry that sets in when the strength of the

surface potential exceeds a threshold value. Short spherocylinders connect two

deep minima and orient along the symmetry directions of the substrate poten-

tial similar to short needles. At low area fractions this enforces directional order

together with 10- and 20-fold bond-orientational order. With increasing area frac-

tion rods form clusters. When the cluster size exceeds three rods, they leave the

deepest minima and connect more shallow minima. This destroys directional order

along the ten symmetry directions. The directional distribution function reveals

a shift by π/10 for the preferred cluster directions. For the whole range of area

fractions, the pair correlation function shows pronounced positional order induced

by the substrate potential.

Long spherocylinders connect several minima and therefore slide more easily

along their long axis. This results in only weak positional order and precludes any

bond-orientational order for the center of mass of the rods. Pronounced directional

order sets in at lower potential strength compared to the short-spherocylinder sys-

tem. With increasing area fraction, long spherocylinders also cluster but due to

their width they occupy separate lines of minima. Further increase of area fraction
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compresses the clusters whereby the rods are pushed out of their lines of minima.

Still they stay oriented along the ten symmetry directions and the directional or-

der parameter hardly changes with increasing area fraction. When the clusters

are compressed, the weak positional order vanishes completely.

We have also investigated the mobility of the spherocylinders. The mobility of

short spherocylinders decreases with increasing potential strength since they are

trapped in their pair of minima. They leave this trap by rotating one end into

a neighboring minimum. However, translational di�usion is determined by the

hindered mobility along the rod axis. When the rods form clusters at increasing

area fraction, the rod mobility increases drastically since outer rods of the clusters

are more weakly bound so they leave their traps more easily. Long rods can slide

along their lines of minima, therefore their mobility is much less a�ected by the

substrate potential. Their di�usive motion is determined by the sliding while mo-

tion perpendicular to the rod axis is strongly hindered by the substrate potential.

The combination of a hard-rod system, which tends to form a quasi-nematic

phase in two dimensions, and a quasicrystalline substrate potential leads to fasci-

nating patterns of clustered rods especially for large potential strengths. We found

new phases with quasicrystalline directional order and quasicrystalline bond-orientational

order and new fascinating structures which exhibit a nematic and a quasicrys-

talline order at the same time. It would be very interesting to perform experiments

with the help of quasicrystalline light patterns as in Refs. [138, 139, 169] using

systems of rodlike colloidal particles. The broad diversity of rod-like colloids and

the possibility to tune the characteristic length scales of the substrate potential

should make this experimental setup an ideal testing ground for our �ndings.

Another interesting experimental setup for the realization of our �ndings are

quasicrystalline atomic surfaces as substrates for monolayers of organic rod-like

molecules of alkenes or aromatic hydrocarbons like pentacene[87]. In atomic sys-

tems it is more di�cult to �nd substrates and particles with the correct ratio of

length scales than in colloidal systems. First detailed simulations of hexane and

octane have been performed for a quasicrystalline approximant [39, 176]. With

growing density an interesting stripe pattern appears in the �rst monolayer.
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7 Conclusion and outlook

It is also appealing to use the resulting two-dimensional rod adsorbate as tem-

plate to build three-dimensional structures and to explore how well the quasicrys-

talline cluster phases extend into the third dimension. The growth of �lms on

patterned substrates is the basis for many applications like coatings or electronic

devices from epitaxial overlayers.

In our work we left out the possibility of phasonic defects of the quasicrystalline

potential. Such defects are very common in real quasicrystals and can also be

created with laser �elds. A phasonic defect introduces a break and shift in the

Fibonacci line structure of the substrate. Phasonic drifts can initiate fascinating

dynamics of adsorbed particles[111]. A phasonic drift leads to a movement of

the Fibonacci lines of the potential perpendicular to their orientation. Every line

drifts with a di�erent velocity depending on the phason mode. That may lead to

locked nematic states of rods placed onto the drifting substrate. Further computer

simulations may reveal a deeper understanding of phasonic defects and drifts of

quasicrystalline structures and its applications.
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Appendix : Decomposition of the

potential into a tiling

As shown in Fig. 3.9 all deep potential minima can be ordered along straight lines

and the distances of the lines follow two interwoven Fibonacci sequences. The

order of the distances is a hint that there must be a connection of the substrate

potential with the Penrose tiling. We already presented a way to produce decagon

patches of the Penrose tiling called cartwheels[78]. The cartwheel tiling can also

recreated with the overlap rules of the Gummelt decagons[79]. Such a decagon

overlap is shown for a second order cartwheel in the left panel of Fig. .1. In the

right panel of Fig. .1 the kite and darts tiling of a combination of two second

order cartwheels is shown. The two cartwheels are stacked above each other with

the second cartwheel has been rotated by an angle of 180°. The resulting double

cartwheel is exhibit a perfect decagonal symmetry except for the inner most cen-

tral part.

If we decorate the Gummelt decagon with a point pattern as shown in the mid-

dle panel of Fig. .2 a the double cartwheel shows a point pattern which is displayed

in the right panel of Fig. .2. In the left panel the corresponding patch of the sub-

strate potential from Eq.(3.12) is shown. The substrate potential is �ltered with

a threshold of V < −0.76. Comparing the patterns of both patches reveals that

all deep minima in the patch of the potential match positions of the points in the

double cartwheel. The point pattern seems to be not complete for minima which

are close to the threshold. We changed the threshold but there seemed to be no

possibility to create a point pattern that perfectly matches the �ltered substrate

potential.

Therefore we change the general approach of using a point pattern as a deco-

ration of the Gummelt decagon to a decagon which takes also the depth of the
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Figure .1: Left: Overlapping Gummelt decagons form a second order cartwheel

tiling. Right : Kites and darts decoration of two second order cartwheels. The

cartwheels are stacked on each other after a rotation of 180° building a almost

10−fold rotational symmetric double cartwheel.

Figure .2: Left: All regions of the substrate potential with a potential strength of

V < −0.76. Right: Distribution of points from a double cartwheel created from

Gummelt decagons with a point decoration as shown in the middle panel.
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Figure .3: Left column: Simulation results for the decorations of Gummelt

decagons of three sizes. The edge length of each decagon grows between two

rows with a factor of the golden ratio τ starting from the top. Right column: the

corresponding double cartwheel patches from the Gummelt decagons. Deviations

from the real substrate potential are below 1%.
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potential into account. We de�ne a decagon shaped patch with a value assigned

to every position inside the patch. We place the decagons in the same way like the

Gummelt decagons with the point decoration to form a double cartwheel struc-

ture with a 10−fold rotational symmetry. The value at each position in the double

cartwheel is derived by the sum of the values of each decagon contributing to this

position dived by the number of overlapping decagons. The value �eld of the

Gummelt decagon can not simply guessed like the point decoration. Therefore,

we derive the �eld decoration of the Gummelt decagon numerically. For this pur-

pose the decagon is discretized into a two dimensional data �eld. The double

cartwheel is also a discretized data �eld with values at each point derived from

the Gummelt decagon overlaps. We de�ne the energy E of the system by the sum

of di�erences between the derived values in the double cartwheel and the exact

values of substrate potential. We obtain a perfect match of the substrate poten-

tial with the double cartwheel if the energy is zero E = 0. Because of the overlap

structure of decagons, a simple minimum search algorithm for the energy E could

produces decagons in locked states with E > 0. Therefore, we apply a Monte

Carlo simulation technique to create a Gummelt decagon which produces a pat-

tern matching the substrate potential. In each Monte Carlo step the value of one

randomly chosen point in the Gummelt decagon is altered by a random amount

e0. Where e0 is a number randomly chosen from the interval [−emax, emax]. Af-

terwards the double cartwheel is build from the new decagon following the given

overlapping rules. Then the energy di�erence is calculated and the change of the

decagon patch is accepted with the usual Monte Carlo criterion.

A = min{1, exp(−∆E

kT
)} (.1)

The temperature of the system is lowered slowly to relax the decagon �eld to the

absolute minimum di�erence to the substrate potential. While doing so, emax is

adjusted to keep an acceptance ratio of a ≈ 0.5. The Monte Carlo scheme lead

to a decagon decoration which produces a double cartwheel in a very good agree-

ment with the substrate potential. We use two bigger Gummelt decagons where

the lengths of the decagon edges are increased by a factor of τ and τ 2 respec-

tively. With the bigger decagons we obtain bigger double cartwheels matching

the corresponding substrate patches. The three Gummelt decagons and the re-

sulting patches are shown in Fig. .3. As a test, we tried to produce similar decagon

patches with a size of the decagon between the small and the medium sized patch.

104



Figure .4: Left : The decoration of the biggest Gummelt decagon obtained by

simulation. Right : The decoration of the biggest Gummelt decagon obtained

from a second order cartwheel made from the smallest Gummelt decagon obtained

by simulation.

The algorithm failed to produce a matching double cartwheel. In this way, we can

be sure that we didn't �nd just a general way to produce an arbitrary patch of

potential but a real decomposition of the potential using the basic properties of a

quasicrystalline tiling.

The bigger decagons can be build from de�ation rules also known for the Gum-

melt decagons. The de�ation rules for decorated Gummelt decagons are much

more complicated than for the Penrose tiling as shown by Jeong[98]. Two de-

�ations of the Gummelt decagon are equivalent to one de�ation of the Penrose

tiling. Instead using the complicated de�ation rules of the Gummelt decagon we

take advantage of the properties of the cartwheel tilings. The Gummelt decagon

corresponds to a �rst order cartwheel tiling. We know from Fig. .1 how to build

a second order cartwheel from overlapping Gummelt decagons. The second or-

der cartwheel stems from two successive de�ations of the Penrose tiling or four

de�ations of the Gummelt decagon tiling. Starting with the Gummelt decagon

decoration displayed in the �rst row in Fig. .3 and create a second order cartwheel,

we end up with a double de�ated decagon of the same size of the Gummelt decagon

displayed at the last row of Fig. .3. In Fig. .4 the Gummelt decagon obtained by

simulation and the Gummelt decagon derived from the de�ation of the smallest

Gummelt decagon are shown. The similarity of both patches is apparent. With

the de�ation rules one can produce in principle arbitrary huge patches of the sub-

strate.
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Figure .5: Left : The decoration of the smallest Gummelt decagon with Ammann

bars from the middle-C sequence of the �rst order cartwheel. Right : The hori-

zontal Ammann bars (yellow) and the corresponding shifted Ammann bars (red)

from the double cartwheel.

The double Fibonacci sequence found in the substrate is a reminiscence of the

double Penrose tiling as an underlying structure of the decagonal substrate. The

Amman bar decoration of a cartwheel follows a Fibonacci sequence with the sym-

metry of the middle- C sequence[78]. In this tiling, the Ammann bars connecting

the lines of the lowest potential strengths and not the positions of the minima.

The bars connecting the strongest minima follow the Fibonacci sequence of the

projection method. Both Fibonacci sequences are just shifted against each other

by a short distance S what we can see in our substrate potential. On the left panel

of Fig. .5 the Ammann bar decoration of the smallest Gummelt decagon is shown

with yellow lines. On the right panel the double cartwheel with the Amman bar

decoration is also displayed with yellow lines for clarity in the horizontal direction

only. The red lines are the shifted Ammann bars which perfectly connect the

minima positions.
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