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Abstract
A theory for diffusivity estimation for spatially extended activator–inhibitor dynamics
modeling the evolution of intracellular signaling networks is developed in the math-
ematical framework of stochastic reaction–diffusion systems. In order to account for
model uncertainties, we extend the results for parameter estimation for semilinear
stochastic partial differential equations, as developed in Pasemann and Stannat (Elec-
tron J Stat 14(1):547–579, 2020), to the problem of joint estimation of diffusivity and
parametrized reaction terms. Our theoretical findings are applied to the estimation of
effective diffusivity of signaling components contributing to intracellular dynamics of
the actin cytoskeleton in the model organism Dictyostelium discoideum.
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1 Introduction

The purpose of this paper is to develop the mathematical theory for statistical infer-
ence methods for the parameter estimation of stochastic reaction–diffusion systems
modeling spatially extended signaling networks in cellular systems. Such signaling
networks are one of the central topics in cell biology and biophysics as they provide
the basis for essential processes including cell division, cell differentiation, and cell
motility (Peter 2017). Nonlinearities in these network may cause rich spatiotemporal
behavior including the emergence of oscillations and waves (Beta and Kruse 2017).
Furthermore, alterations and deficiencies in the network topology can explain many
pathologies and play a key role in diseases such as cancer (Condeelis et al. 2005). Here
we present a method to estimate both diffusivity and reaction terms of a stochastic
reaction–diffusion system, given space–time structured data of local concentrations
of signaling components. We mainly focus on the estimation of diffusivity, whose
precision can be increased by simultaneous calibration of the reaction terms.

To test this approach, we use fluorescence microscopy recordings of the actin
dynamics in the cortex of cells of the social amoeba Dictyostelium discoideum, a
well-established model organism for the study of a wide range of actin-dependent
processes (Annesley and Fisher 2009). A recently introduced stochastic reaction–
diffusion model could reproduce many features of the dynamical patterns observed in
the cortex of these cells including excitable and bistable states (Alonso et al. 2018;
Flemming et al. 2020;Moreno et al. 2020). In combination with the experimental data,
this model will serve as a specific test case to exemplify our mathematical approach.
Since in real-world applications the available data will not allow for calibrating and
validating detailed mathematical models, in this paper we will be primarily interested
in minimal models that are still capable of generating all observed dynamical fea-
tures at correct physical magnitudes. The developed estimation techniques should in
practice be as robust as possible w.r.t. uncertainty and even misspecification of the
unknown real dynamics.

The impact of diffusion and reaction in a given model will be of fundamentally
different structure and it is one of the main mathematical challenges to separate
these impacts in the data in order to come to valid parameter estimations. On the
more mathematical side, diffusion corresponds to a second-order partial differential
operator—resulting in a strong spatial coupling in the given data, whereas the reaction
corresponds to a lower order, in fact 0 order, in general resulting in highly nonlinear
local interactions in the data. For introductory purposes, let us assume that our data
is given in terms of a space- and time-continuous field X(t, x) on [0, T ] × D, where
T is the terminal time of our observations and D ⊂ R

2 a rectangular domain that
corresponds to a chosen data segment in a given experiment. Although in practice the
given data will be discrete w.r.t. both space and time, we will be interested in applica-
tions where the resolution is high enough in order to approximate the data by such a
continuous field. Our standing assumption is that X(t, x) is generated by a dynamical
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system of the form

∂t X(t, x) = θ0�X(t, x) + FX (t, x), (1)

where� is the Laplacian, given by�X(t, x) = ∂2x1X(t, x)+∂2x2X(t, x), x = (x1, x2),
which captures the diffusive spreading in the dynamics of X(t, x). The intensity of
the diffusion is given by the diffusivity θ0. Finally, F is a generic term, depending on
the solution field X(t, x), which describes all non-diffusive effects present in X(t, x),
whether they are known or unknown. A natural approach to extract θ0 from the data
is to use a “cutting-out estimator” of the form

θ̂0 =
∫ T
0

∫
D Y (t, x)∂t X(t, x)dxdt

∫ T
0

∫
D Y (t, x)�X(t, x)dxdt

=
∫ T
0 〈Y , ∂t X〉dt
∫ T
0 〈Y ,�X〉dt

, (2)

where Y (t, x) is a suitable test function. In the second fraction of (2), we use the
functional form for readability. In particular, we write X = X(t, x) for the solution
field. We will also write Xt = X(t, ·) for the (spatially varying) solution field at a
fixed time t . In order to ease notation, we will use this functional form from now on
throughout the paper. It is possible to derive (2) from a least squares approach by
minimizing θ �→ ‖∂t X − θ�X‖2 with a suitably chosen norm. If the non-diffusive
effects described by F are negligible, we see by plugging (1) into (2) that θ̂0 is close
to θ0. If a sound approximation F to F is known, the estimator can be made more
precise by substituting ∂t X by ∂t X −F X in (2). A usual choice for Y is a reweighted
spectral cutoff of X , which leads to the spectral approach described below.

Under additional model assumptions, e.g., if (1) is in fact a stochastic partial differ-
ential equation (SPDE) driven by Gaussian white noise, a rather developed parameter
estimation theory for θ0 has been established in Pasemann and Stannat (2020) on the
basis of maximum likelihood estimation (MLE).

In this paper, we are interested in further taking into account also those parts ofFX

corresponding to local nonlinear reactions. As a particular example, we will focus on
a recently introduced stochastic reaction–diffusion system of FitzHugh–Nagumo type
that captures many aspects of the dynamical wave patterns observed in the cortex of
motile amoeboid cells (Flemming et al. 2020),

∂tU = DU�U + k1U (u0 −U )(U − u0a) − k2V + ξ, (3)

∂t V = DV�V + ε(bU − V ). (4)

Here, we identify θ0 = DU and the only observed data is the activator variable, i.e.,
X = U .

Therefore, in this example the non-diffusive part of the dynamics will be further
decomposed as F = F + ξ , where ξ is Gaussian white noise and F = F(U ) encodes
the non-Markovian reaction dynamics of the activator. The inhibitor component V
in the above reaction–diffusion system is then incorporated for minimal modeling
purposes to allow the formation of traveling waves in the activator variableU that are
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indeed observed in the time evolution of the actin concentration. This model and its
dynamical features is explained in detail in Sect. 2.1.1.

As noted before, it is desirable to include this additional knowledge into the
estimation procedure (2) by subtracting a suitable approximation F of the—in
practice—unknown F . Although (3), (4) suggest an explicit parametric form for F ,
it is a priori not clear how to quantify the nuisance parameters appearing in the sys-
tem. Thus, an (approximate) model for the data is known qualitatively, based on the
observed dynamics, but not quantitatively. In order to resolve this issue, we extend (2)
and adopt a joint maximum likelihood estimation of θ0 and various nuisance parame-
ters.

The field of statistical inference for SPDEs is rapidly growing, see Cialenco (2018)
for a recent survey. The spectral approach to drift estimation was pioneered by Hübner
et al. (1993), Huebner and Rozovskii (1995) and subsequently extended by various
works, see, e.g., Huebner et al. (1997), Lototsky and Rosovskii (1999), Lototsky and
Rozovskii (2000) for the case of non-diagonalizable linear evolution equations. In
Cialenco and Glatt-Holtz (2011), the stochastic Navier–Stokes equations have been
analyzed as a first example of a nonlinear evolution equation. This has been generalized
by Pasemann and Stannat (2020) to semilinear SPDEs. Joint parameter estimation for
linear evolution equations is treated in Huebner (1993), Lototsky (2003), see also
Piterbarg and Rozovskii (1996) for a discussion. Besides the spectral approach, other
measurement schemes have been studied. See, e.g., Pospíšil andTribe (2007), Bibinger
and Trabs (2020), Bibinger and Trabs (2019), Chong (2019a), Chong (2019b), Khalil
and Tudor (2019), Cialenco and Huang (2019), Cialenco et al. (2020), Cialenco and
Kim (2020), Kaino and Uchida (2019) for the case of discrete observations in space
and time. Recently, the local approach has been worked out in Altmeyer and Reiß
(2020) for linear equations, was subsequently generalized in Altmeyer et al. (2020b)
to the semilinear case and applied to a stochastic cell repolarization model in Altmeyer
et al. (2020a).

The paper is structured as follows: In Sect. 2, we give a theory for joint diffusivity
and reaction parameter estimation for a class of semilinear SPDEs and study the spatial
high-frequency asymptotics. Special emphasis is put on the FitzHugh–Nagumo sys-
tem. In Sect. 3, the biophysical context for thesemodels is discussed. The performance
of our method on simulated and real data is evaluated in Sect. 4.

2 Maximum Likelihood Estimation for Activator–Inhibitor Models

In this section, we develop a theory for parameter estimation for a class of semilinear
SPDE using a maximum likelihood ansatz. The application we are aiming at is an
activator–inhibitor model as in Flemming et al. (2020). More precisely, we show
under mild conditions that the diffusivity of such a system can be identified in finite
time given high spatial resolution and observing only the activator component.
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2.1 TheModel and Basic Properties

Let us first introduce the abstract mathematical setting in which we are going to derive
our main theoretical results. We work in spatial dimension d ≥ 1. Given a bounded
domainD = [0, L1]×· · ·×[0, Ld ] ⊂ R

d , L1, . . . , Ld > 0, we consider the following
parameter estimation problem for the semilinear SPDE

dXt = (
θ0�Xt + Fθ1,...,θK (X)

)
dt + BdWt (5)

with periodic boundary conditions for � on the Hilbert space H = L̄2(D) = {u ∈
L2(D)| ∫D udx = 0}, together with initial condition X0 ∈ H . We allow the non-
linear term F to depend on additional (nuisance) parameters θ1, . . . , θK and write
θ = (θ0, . . . , θK )T , θ1:K = (θ1, . . . , θK ) for short. Without further mentioning it,
we assume that θ ∈ � for a fixed parameter space �, e.g., � = R

K+ . Next, W
is a cylindrical Wiener process modeling Gaussian space–time white noise, that is,
E[Ẇ (t, x)] = 0 and E[Ẇ (t, x)Ẇ (s, y)] = δ(t − s)δ(x − y). In order to introduce
spatial correlation, we use a dispersion operator of the form B = σ(−�)−γ with
σ > 0 and γ > d/4, describing spectral decay of the noise intensity. Here, σ is the
overall noise intensity, and γ quantifies the decay of the noise for large frequencies in
Fourier space. In addition, γ determines the spatial smoothness of X , see Sect. 2.1.2.
The condition γ > d/4 ensures that the covariance operator BBT is of trace class,
which is a standard assumption for well-posedness of (5), cf. Liu and Röckner (2015).

Denote by (λk)k≥0 the eigenvalues of−�, ordered increasingly,with corresponding
eigenfunctions (�k)k≥0. It is well known (Weyl 1911; Shubin 2001) that λk 
 
k2/d

for a constant 
 > 0, i.e., limk→∞ λk/(
k2/d) = 1. The proportionality constant

 is known explicitly [see, e.g., Shubin (2001, Proposition 13.1)] and depends on
the domain D. Let PN : H → H be the projection onto the span of the first N
eigenfunctions, and set XN := PN X . For later use, we denote by I the identity
operator acting on H . For s ∈ R, we write Hs := D((−�)s/2) for the domain of
(−�)s/2, which is given by

(−�)s/2x =
∞∑

k=1

λ
s/2
k 〈�k, x〉�k,

and abbreviate | · |s := | · |Hs for the norm on that space whenever convenient. We
assume that the initial condition X0 is regular enough, i.e., it satisfies E[|X0|ps ] < ∞
for any s ≥ 0, p ≥ 1, without further mentioning it in the forthcoming statements.
We will use the following general class of conditions with s ≥ 0 in order to describe
the regularity of X :

(As) For any p ≥ 1, it holds

E

[

sup
0≤t≤T

|Xt |ps
]

< ∞. (6)
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Our standing assumption is that X is well posed in the sense that there exists a proba-
bilistically and analytically weak solution X ∈ C(0, T ; H) to (5), unique in the sense
of probability law, such that (A0) holds. This is a consequence, for example, of the
assumptions from Liu and Röckner (2015, Theorem 5.1.3).

2.1.1 An Activator–Inhibitor Model

An important example for our analysis is given by the following FitzHugh–Nagumo
type system of equations in d ≤ 2 [cf. Flemming et al. (2020)]:

dUt = (DU�Ut + k1 f (|Ut |L2 ,Ut ) − k2Vt )dt + BdWt , (7)

dVt = (DV�Vt + ε(bUt − Vt ))dt, (8)

together with sufficiently smooth initial conditions. Here, f is a bistable third-order
polynomial f (x, u) = u(u0 − u)(u − a(x)u0), and a ∈ C1

b(R,R) is a bounded
and continuously differentiable function with bounded derivative. The boundedness
condition for a is not essential to the dynamics of U and can be realized in practice
by a suitable cutoff function.

TheFitzHugh–Nagumo systemFitzhugh (1961),Nagumoet al. (1962) originated as
a minimal model capable of generating excitable pulses mimicking action potentials
in neuroscience. Its two components U and V are called activator and inhibitor,
respectively.

The spatial extension of the Fitzhugh–Nagumo system, obtained via diffusive cou-
pling, is used to model propagation of excitable pulses and two-phase dynamics. In
the case of the two phases, low and high concentration of the activator U are realized
as the stable fixed points of the third-order polynomial f at 0 and u0. The unstable
fixed point au0, a ∈ (0, 1), separates the domains of attraction of the two stable fixed
points. The interplay between spatial diffusion, causing a smoothing out of concen-
tration gradients with rate DU , and the local reaction forcing f , causing convergence
of the activator to one of the stable phases with rate k1, leads to the formation of tran-
sition phases between regions with low or high concentration of U . The parameters
determine shape and velocity of the transition phases, e.g., low values of a enhance the
growth of regions with high activator concentration. This corresponds to the excitable
regime, as explained in Flemming et al. (2020).

Conversely, a high concentration of the inhibitor V leads to a decay in the activator
U , with rate k2. In the excitable regime, this mechanism leads to moving activator
wave fronts. The inhibitor is generated with rate εb in the presence ofU and decays at
rate ε. Its spatial evolution is determined by diffusion with rate DV . Finally, choosing
a as a functional depending on the total activator concentration introduces a feedback
control that allows to stabilize the dynamics.

A detailed discussion of the relevance for cell biology is given in Sect. 3. More
information on the FitzHugh–Nagumo model and related models can be found in
Ermentrout and Terman (2010).

For this model, we can find a representation of the above type (5) as follows: Using
the variation of constants formula, the solution V to (8) with initial condition V0 = 0
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can be written as Vt = εb
∫ t
0 e

(t−r)(DV �−ε I )Urdr . Inserting this representation into
(7) yields the following reformulation

dUt =
(
DU�Ut + k1Ut (u0 −Ut )(Ut − au0)

− k2εb
∫ t

0
e(t−r)(DV �−ε I )Urdr

)
dt + BdWt

= (θ0�Ut + θ1F1(Ut ) + θ2F2(Ut ) + θ3F3(U )(t)) dt + BdWt

(9)

of the activator–inhibitor model (7), (8) by setting θ0 = DU , θ1 = k1u0ā, θ2 = k1,
θ3 = k2εb, F = 0 for some ā > 0 and

F1(U ) = −a(|U |L2)

ā
U (u0 −U ), (10)

F2(U ) = U 2(u0 −U ), (11)

F3(U )(t) = −
∫ t

0
e(t−r)(DV �−ε I )Urdr . (12)

Here eDV �−ε I is the semigroup generated by DV� − ε I . Note that F3 now depends
on the whole trajectory of U , so that the resulting stochastic evolution Eq. (9) is no
longer Markovian.

For the activator–inhibitor system (7), (8), we can verify well-posedness directly.
For completeness, we state the optimal regularity results for both U and V , but our
main focus lies on the observed variable X = U .

Proposition 1 Let γ > d/4 + 1/2. Then there is a unique solution (U , V ) to (7), (8).
Furthermore, U satisfies (As) for any s < 2γ − d/2+ 1, and V satisfies (As) for any
s < 2γ − d/2 + 3.

The proof is deferred to “Appendix A.1.”

2.1.2 Basic Regularity Results

In the semilinear SPDE model (5), the nonlinear term F is assumed to satisfy [cf.
Altmeyer et al. (2020b)]:

(Fs,η) There is b > 0 and ε > 0 such that

|(−�)
s−2+η+ε

2 Fθ1:K (Y )|C(0,T ;H) ≤ c(θ1:K )(1 + |(−�)
s
2 Y |C(0,T ;H))

b

for Y ∈ C(0, T ; Hs), where c depends continuously on θ1:K .

In particular, if F(Y )(t) = F(Yt ), this simplifies to

|Fθ1:K (Y )|s−2+η+ε ≤ c(θ1:K )(1 + |Y |s)b (13)
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for Y ∈ Hs . In order to control the regularity of X , we apply a splitting argument
(see also Cialenco and Glatt-Holtz 2011; Pasemann and Stannat 2020; Altmeyer et al.
2020b) and write X = X + X̃ , where X is the solution to the linear SPDE

dXt = θ0�Xtdt + BdWt , X0 = 0, (14)

whereW is the same cylindrical Wiener process as in (5), and X̃ solves a random PDE
of the form

d X̃ = (θ0�X̃t + Fθ1:K (X + X̃)(t))dt, X0 = X0. (15)

Lemma 2 The process X is Gaussian, and for any p ≥ 1, s < 2γ − d/2 + 1:

E

[

sup
0≤t≤T

|Xt |ps
]

< ∞. (16)

Proof This is classical, see, e.g., Da Prato and Zabczyk (2014), Liu and Röckner
(2015). 
�
Proposition 3

(1) Let (As) and (Fs,η) hold. Then for any p ≥ 1:

E

[

sup
0≤t≤T

|X̃t |ps+η

]

< ∞. (17)

In particular, if s + η < 2γ − d/2 + 1, then (As+η) is true.
(2) Let G : C(0, T ; H) ⊃ D(G) → C(0, T ; H) be any function such that (Fs,η)

holds for G. Then for s < 2γ − d/2 + 1 and p ≥ 1:

E

[

sup
0≤t≤T

|G(X)(t)|ps+η−2

]

< ∞. (18)

In particular,

E

∫ T

0
|G(X)(t)|2s+η−2dt < ∞. (19)

Proof

(1) For t ∈ [0, T ] and ε > 0,

|X̃t |s+η ≤ |S(t)X0|s+η +
∫ t

0
|S(t − r)Fθ1:K (X)(t)|s+ηdr

≤ |X0|s+η +
∫ t

0
(t − r)−1+ε/2|Fθ1:K (X)(t)|s−2+η+εdr
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≤ |X0|s+η + 2

ε
T

ε
2 sup
0≤t≤T

|Fθ1:K (X)(t)|s−2+η+ε

≤ |X0|s+η + 2

ε
T

ε
2 c(θ1:K )(1 + |X |C(0,T ;Hs ))

b,

where θ1, . . . , θK are the true parameters. This implies (17). If s + η < 2γ −
d/2+ 1, then a bound as in (17) holds for X by Lemma 2, and the claim follows.

(2) This follows from

E

[

sup
0≤t≤T

|G(X)(t)|ps+η−2

]

≤ cE

⎡

⎣

(

1 + sup
0≤t≤T

|Xt |s
)bp

⎤

⎦ < ∞. (20)


�

These regularity results form the basis for the asymptotic analysis of diffusivity
estimation, as explained in the next section.

2.2 Statistical Inference: The General Model

The projected process PN X induces a measure Pθ on C(0, T ;RN ). Heuristically [see
Liptser and Shiryayev (1977, Section 7.6.4)], we have the following representation
for the density with respect to P

N
θ
for an arbitrary reference parameter θ ∈ �:

dPN
θ

dPN
θ

(XN ) = exp

(

− 1

σ 2

∫ T

0

〈
(θ0 − θ0)�XN

t , (−�)2γ dXN
t

〉

− 1

σ 2

∫ T

0

〈
PN (Fθ1:K − Fθ1:K )(X), (−�)2γ dXN

t

〉

+ 1

2σ 2

∫ T

0

〈
(θ0 − θ0)�XN

t + PN (Fθ1:K − Fθ1:K )(X),

(−�)2γ
[
(θ0 + θ0)�XN

t + PN (Fθ1:K + Fθ1:K )(X)
]〉
dt
)

.

By setting the score (i.e., the gradient with respect to θ of the log likelihood) to
zero, and by formally substituting the (fixed) parameter γ by a (free) parameter α, we
get the following maximum likelihood equations:

θ̂N
0

∫ T

0
|(−�)1+αXN

t |2Hdt =
∫ T

0
〈(−�)1+2αXN

t , PN Fθ̂N
1:K

(X)〉dt

−
∫ T

0
〈(−�)1+2αXN

t , dXN
t 〉,

−θ̂N
0

∫ T

0
〈(−�)1+2αXN

t , ∂θi PN Fθ̂N
1:K

(X)〉dt
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= −
∫ T

0
〈(−�)2αPN Fθ̂N

1:K
(X), ∂θi PN Fθ̂N

1:K
(X)〉dt

+
∫ T

0
〈(−�)2α∂θi PN Fθ̂N

1:K
(X), dXN

t 〉.

Any solution (θ̂N
0 , . . . , θ̂N

K ) to these equations is a (joint) maximum likelihood esti-
mator (MLE) for (θ0, . . . , θK ). W.l.o.g. we assume that the MLE is unique, otherwise
fix any solution. We are interested in the asymptotic behavior of this estimator as
N → ∞, i.e., as more and more spatial information (for fixed T > 0) is available.
While identifiability of θ1, . . . , θK in finite time depends in general on additional struc-
tural assumptions on F , the diffusivity θ0 is expected to be identifiable in finite time
under mild assumptions. Indeed, the argument is similar to Cialenco and Glatt-Holtz
(2011), Pasemann and Stannat (2020), but we have to take into account the dependence
of θ̂N

0 on the other estimators θ̂N
1 , . . . , θ̂N

K . Note that the likelihood equations give the
following useful representation for θ̂N

0 :

θ̂N
0 =

− ∫ T
0 〈(−�)1+2αXN

t , dXN
t 〉 + ∫ T

0 〈(−�)1+2αXN
t , PN Fθ̂N

1:K
(X)〉dt

∫ T
0 |(−�)1+αXN

t |2Hdt
. (21)

By plugging in the dynamics of X according to (5), we obtain the following decom-
position:

θ̂N
0 − θ0 =

∫ T
0 〈(−�)1+2αXN

t , PN Fθ̂N
1:K

(X)〉dt
∫ T
0 |(−�)1+αXN

t |2Hdt

−
∫ T
0 〈(−�)1+2αXN

t , PN Fθ1:K (X)〉dt
∫ T
0 |(−�)1+αXN

t |2Hdt
−

∫ T
0 〈(−�)1+2αXN

t , BdWN
t 〉

∫ T
0 |(−�)1+αXN

t |2Hdt
.

(22)

The right-hand side vanishes whenever for large N the denominator grows faster than
the numerator in each of the three fractions. In principle, strong oscillation of the
reaction parameter estimates θ̂N

1:K may influence the convergence rate for the first
term, so in order to exclude undesirable behavior, we assume that θ̂N

1:K is bounded in
probability1. This is a mild assumption which is in particular satisfied if the estimators
for the reaction parameters are consistent. In Sect. 2.3, we verify this condition for
the case that F depends linearly on θ1:K . Regarding the third term, we exploit the
martingale structure of the noise in order to capture the growth in N . Different noise
models may be used in (5) without changing the result, as long as the numerator grows
slower than the denominator. For example, the present argument directly generalizes

1 A sequence of estimators (θ̂N )N∈N is called bounded in probability (or tight) if supN∈N P(|θ̂N | >

M) → 0 as M → ∞.
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to noise of martingale type2. Now, the growth of the denominator can be quantified as
follows:

Lemma 4 Let α > γ − d/4− 1/2, let further η, s0 > 0 such that (As) and (Fs,η) are
true for s0 ≤ s < 2γ + 1 − d/2. Then

∫ T

0
|(−�)1+αXN

t |2Hdt 
 E

∫ T

0
|(−�)1+αX

N
t |2Hdt (23)


 CαN
2
d (2α−2γ+1)+1 (24)

in probability, with

Cα = T
2α−2γ+1d

2θ(4α − 4γ + 2 + d)
. (25)

Proof Using Proposition 3 (i), the proof is exactly as in Pasemann and Stannat (2020,
Proposition 4.6). 
�
Theorem 5 Assume that the likelihood equations are solvable for N ≥ N0, assume
that (θ̂N

i )N≥N0 is bounded in probability for i = 1, . . . , K. Let α > γ − d/4 − 1/2
and η, s0 > 0 such that (As) and (Fs,η) hold for any s0 ≤ s < 2γ + 1 − d/2. Then
the following is true:

(1) θ̂N
0 is a consistent estimator for θ0, i.e., θ̂N

0
P−→ θ0.

(2) If η ≤ 1 + d/2, then Nr (θ̂N
0 − θ0)

P−→ 0 for any r < η/d.
(3) If η > 1 + d/2, then

N
1
2+ 1

d (θ̂N
0 − θ0)

d−→ N (0, V ), (26)

with V = 2θ0(4α − 4γ + d + 2)2/(Td
2α−2γ+1(8α − 8γ + d + 2)).

Proof By means of the decomposition (22), we proceed as in Pasemann and Stannat
(2020). Denote by θ̂

full,N
0 the estimator which is given by (21) if the θ̂N

1 , . . . , θ̂N
K are

substituted by the true values θ1, . . . , θK . In this case, the estimation error simplifies
to

θ̂
full,N
0 − θ0 = −cN

∫ T
0 〈(−�)1+2α−γ XN

t , dWN
t 〉

√∫ T
0 |(−�)1+2α−γ XN

t |2Hdt
(27)

with

cN =
√∫ T

0 |(−�)1+2α−γ XN
t |2Hdt

∫ T
0 |(−�)1+αXN

t |2Hdt
.

2 The generalization of our results to the case of multiplicative noise depends crucially on the noise model,
see, e.g., Cialenco and Lototsky (2009), Cialenco (2010). This is beyond the scope of the present work.
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By Lemma 4, the rescaled prefactor cN N 1/2+1/d converges in probability to√
C2α−γ /Cα . The second factor converges in distribution to a standard normal dis-

tribution N (0, 1) by the central limit theorem for local martingales (see Liptser and
Shiryayev 1989, Theorem 5.5.4 (I); Jacod and Shiryaev 2003, Theorem VIII.4.17).
This proves (26) for θ̂

full,N
0 . To conclude, we bound the bias term depending on

θ̂N
1 , . . . , θ̂N

K as follows, using |PNY |s2 ≤ λ
(s2−s1)/2
N |PNY |s1 for s1 < s2: Let δ > 0.

Then

∫ T

0
〈(−�)1+2αXN

t , PN Fθ̂N
1:K

(X)〉dt

≤
(∫ T

0
|(−�)1+αXN

t |2Hdt
) 1

2
(∫ T

0
|(−�)αPN Fθ̂N

1:K
(X)|2Hdt

) 1
2

� N
1
d (2α−2γ+1)+ 1

2

(∫ T

0
|(−�)αPN Fθ̂N

1:K
(X)|2Hdt

) 1
2

� N
2
d (2α−2γ+1)+1− η−δ

d

(∫ T

0
|(−�)γ+ 1

2− d
4 −1+ η−δ

2 PN Fθ̂N
1:K

(X)|2Hdt
) 1

2

,

so using (F2γ+1−d/2−δ,η),

∫ T
0 〈(−�)1+2αXN

t , PN Fθ̂N
1:K

(X)〉dt
∫ T
0 |(−�)1+αXN

t |2Hdt
� c(θ̂N

1:K )N−(η−δ)/d

As c(θ̂N
1:K ) is bounded in probability and δ > 0 is arbitrarily small, the claim follows.

The remaining term involving the true parameters θ1, . . . , θK is similar. This concludes
the proof. 
�

It is clear that a Lipschitz condition on F with respect to θ1:K allows to bound
θ̂N
0 − θ̂

full,N
0 in terms of |θ̂N

1:K − θ1:K |N−(η−δ)/d for δ > 0, using the notation from
the previous proof. In this case, consistency of θ̂N

i , i = 1, . . . , K , may improve the
rate of convergence of θ̂N

0 . However, as noted before, in general we cannot expect θ̂N
i ,

i = 1, . . . , K , to be consistent as N → ∞.

2.3 Statistical Inference: The Linear Model

We put particular emphasis on the case that the nonlinearity F depends linearly on its
parameters:

dXt =
(

θ0�Xt +
K∑

i=1

θi Fi (X) + F(X)

)

dt + BdWt . (28)
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This model includes the FitzHugh–Nagumo system in the form (9). We state an
additional verifiable condition, depending on the contrast parameter α ∈ R, which
guarantees that the likelihood equations are well posed, among others.

(Lα) The terms F1(Y ), . . . , FK (Y ) are well defined as well as linearly independent in
L2(0, T ; H2α) for every non-constant Y ∈ C(0, T ;C(D)).

In particular, condition (Lα) implies for i = 1, . . . , K that

∫ T

0
|(−�)αFi (X)|2Hdt > 0. (29)

For linear SPDEs, similar considerations have been made first in Huebner (1993),
Chapter 3. The maximum likelihood equations for the linear model (28) simplify to

AN (X)θ̂N (X) = bN (X), (30)

where

AN (X)0,0 =
∫ T

0
|(−�)1+αXN

t |2Hdt,

AN (X)0,i = AN (X)i,0 = −
∫ T

0
〈(−�)1+2αXN

t , PN Fi (X)〉dt,

AN (X)i, j =
∫ T

0
〈(−�)2αPN Fi (X), PN Fj (X)〉dt

for i, j = 1, . . . , K , and

bN (X)0 = −
∫ T

0
〈(−�)1+2αXN

t , dXN
t 〉

+
∫ T

0
〈(−�)1+2αXN

t , PN F(X)〉dt,

bN (X)i =
∫ T

0
〈(−�)2αPN Fi (X), dXN

t 〉

−
∫ T

0
〈(−�)2αPN Fi (X), PN F(X)〉dt

for i = 1, . . . , K .
In order to apply Theorem 5, we need that the estimators θ̂N

1 , . . . , θ̂N
K are bounded

in probability.

Proposition 6 In the setting of this section, let η, s0 > 0 such that (As) and (Fs,η)
are true for s0 ≤ s < 2γ + 1 − d/2. For γ − d/4 − 1/2 < α ≤ γ ∧ (γ − d/4 −
1/2 + η/2) ∧ (γ − d/8 − 1/4 + η/4), let (Lα) be true. Then the θ̂N

i , i = 0, . . . , K,
are bounded in probability.
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The proof of Proposition 6 is given in “Appendix A.2.” We note that the upper
bound on α can be relaxed in general, depending on the exact asymptotic behavior of
AN (X)i,i , i = 1, . . . , K . Proposition 6 together with Theorem 5 gives conditions for
θ̂N
0 to be consistent and asymptotically normal in the linearmodel (28). In particular,we
immediately get for the activator–inhibitor model (7), (8), as the linear independency
condition (Lα) is trivially satisfied and η can be chosen arbitrarily close to 2:

Theorem 7 Let γ > d/4. Then θ̂N
0 has the following properties in the activator–

inhibitor model (7), (8):

(1) In d = 1, let γ − 3/4 < α ≤ γ . Then θ̂N
0 is a consistent estimator for θ0, which

is asymptotically normal as in (26).
(2) In d = 2, let γ − 1 < α < γ . Then θ̂N

0 is a consistent estimator for θ0 with

optimal convergence rate, i.e., Nr (θ̂N
0 − θ0)

P−→ 0 for any r < 1.

So far, we have presented a theory of parameter estimation for stochastic reaction–
diffusion models, with special emphasis on activator–inhibitor systems. In the next
chapter, the context of this class ofmodels for intracellular actin dynamics is discussed.

3 Application to Activator–Inhibitor Models of Actin Dynamics

The actin cytoskeleton is a dense polymer meshwork at the inner face of the plasma
membrane that determines the shape and mechanical stability of a cell. Due to the
continuous polymerization and depolymerization of the actin filaments, it displays
a dynamic network structure that generates complex spatiotemporal patterns. These
patterns are the basis of many essential cellular functions, such as endocytic processes,
cell shape changes, and cell motility (Blanchoin et al. 2014). The dynamics of the
actin cytoskeleton is controlled and guided by upstream signaling pathways, which
are known to display typical features of non-equilibrium systems, such as oscillatory
instabilities and the emergence of traveling wave patterns (Peter 2017; Beta and Kruse
2017). Here we use giant cells of the social amoeba D. discoideum that allow us
to observe these cytoskeletal patterns over larger spatial domains (Gerhardt et al.
2014). Depending on the genetic background and the developmental state of the cells,
different types of patterns emerge in the cell cortex. In particular, pronounced actin
wave formation is observed as the consequence of amutation in the upstream signaling
pathway—a knockout of the RasG-inactivating RasGAP NF1—which is present for
instance in the commonly used laboratory strain AX2 (Veltman et al. 2016). Giant
cells of NF1-deficient strains thus provide a well-suited setting to study the dynamics
of actin waves and their impact on cell shape and division (Flemming et al. 2020).

In Fig. 1a, b, we show a normal-sized and a giant D. discoideum cell in the wave-
forming regime for comparison. Images were recorded by confocal laser scanning
microscopy and display the distribution of mRFP-LimE�, a fluorescent marker for
filamentous actin, in the cortex at the substrate-attached bottom membrane of the cell.
As individual actin filaments are not resolved by this method, the intensity of the
fluorescence signal reflects the local cortical density of filamentous actin. Rectangular
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(A) Single cell (C) Section of a giant cell(B) Giant cell
Experiments

Simulations
(E) Giant cell (F) Periodic boundaries(D) Single cell

Fig. 1 Actinwaves in experiments (top) andmodel simulations (bottom). aNormal-sized cell with a circular
actinwave.bGiant cell with several fragmented actinwaves. c Subsection of the cortical area of the giant cell
shown in (b), indicated as dotted green rectangle. Experimental images are confocal microscopy recordings
of mRFP-LimE� expressingD. discoideum AX2 cells, see Gerhardt et al. (2014). (Bottom) Simulations of
the stochastic reaction–diffusion model (3), (4) in a (d) small and e large domain, defined by a dynamically
evolving phase field and f with periodic boundary conditions. For details on the phase field simulations,
see Flemming et al. (2020). (Scale bars, 10µm) Details on the numerical implementation can be found in
“Appendix B”

subsections of the inner part of the cortex of giant cells as displayed in panel (C) were
used for data analysis in Sect. 4.

Many aspects of subcellular dynamical patterns have been addressed by reaction–
diffusion models. While somemodels rely on detailed modular approaches (Beta et al.
2008; Peter 2017), others have focused on specific parts of the upstream signaling
pathways, such as the phosphatidylinositol lipid signaling system (Arai et al. 2010) or
Ras signaling (Fukushima et al. 2019). To describe wave patterns in the actin cortex
of giant D. discoideum cells, the noisy FitzHugh–Nagumo type reaction–diffusion
system (3), (4), combined with a dynamic phase field, has been recently proposed
(Flemming et al. 2020).

In contrast to the more detailed biochemical models, the structure of this model is
rather simple. Waves are generated by noisy bistable/excitable kinetics with an addi-
tional control of the total amount of activatorU . This constraint dynamically regulates
the amount ofU around a constant level in agreement with the corresponding biolog-
ical restrictions. Elevated levels of the activator represent typical cell front markers,
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such as active Ras, PIP3, Arp2/3, and freshly polymerized actin that are also concen-
trated in the inner part of actin waves. On the other hand, markers of the cell back,
such as PIP2, myosin II, and cortexillin, correspond to low values ofU and are found
outside the wave area (Schroth-Diez et al. 2009). Tuning of the parameter b allows to
continuously shift from bistable to excitable dynamics, both of which are observed in
experiments with D. discoideum cells. In Fig. 1d–f, the results of numerical simula-
tions of this model displaying excitable dynamics are shown. Examples for bounded
domains that correspond to normal-sized and giant cells are shown, as well as results
with periodic boundary conditions that were used in the subsequent analysis.

Model parameters, such as the diffusivities, are typically chosen in an ad hoc fash-
ion to match the speed of intracellular waves with the experimental observations. The
approach introduced in Sect. 2 now allows us to estimate diffusivities from data in
a more rigorous manner. On the one hand, we may test the validity of our method
on in silico data of model simulations, where all parameters are predefined. On the
other hand, we can apply our method to experimental data, such as the recordings of
cortical actin waves displayed in Fig. 1c. This will yield an estimate of the diffusivity
of the activator U , as dense areas of filamentous actin reflect increased concentra-
tions of activatory signaling components. Note, however, that the estimated value
of DU should not be confused with the molecular diffusivity of a specific signaling
molecule. It rather reflects an effective value that includes the diffusivities of many
activatory species of the signaling network and is furthermore affected by the specific
two-dimensional setting of the model that neither includes the kinetics of membrane
attachment/detachment nor the three-dimensional cytosolic volume.

4 Diffusivity Estimation on Simulated and Real Data

In this section, we apply the methods from Sect. 2 to synthetic data obtained from
a numerical simulation and to cell data stemming from experiments as described in
Sect. 3.We follow the formalism fromTheorem5andperformaFourier decomposition
on each data set. Set φk(x) = cos(2πkx) for k ≤ 0 and φk(x) = sin(2πkx) for k > 0,
then �k,l(x, y) = φk(x/L1)φl(y/L2), k, l ∈ Z, form an eigenbasis for −� on the
rectangular domain D = [0, L1] × [0, L2]. The corresponding eigenvalues are given
by λk,l = 4π2((k/L1)

2 + (l/L2)
2). As before, we choose an ordering ((kN , lN ))N∈N

of the eigenvalues (excluding λ0,0 = 0) such that λN = λkN ,lN is increasing.
In the sequel, we will use different versions of θ̂N

0 which correspond to different
model assumptions on the reaction term F , concerning both the effects included in the
model and a priori knowledge on the parametrization. While all of these estimators
enjoy the same asymptotic properties as N → ∞, it is reasonable to expect that
they exhibit huge qualitative differences for fixed N ∈ N, depending on how much
knowledge on the generating dynamics is incorporated. In order to describe the model
nonlinearities that we presume, we use the notation F1, F2, F3 as in (10), (11), (12).
As a first simplification, we substitute F1 by F̃1 given by

F̃1(U ) = −U (u0 −U ) (31)
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in all estimators below. This corresponds to an approximation of the function a by
an effective average value ā > 0. While this clearly does not match the full model,
we will see that it does not pose a severe restriction as a(U ) tends to stabilize in the
simulation. Recall the explicit representation (21) of θ̂N

0 . As before, K is the number
of nuisance parameters appearing in the nonlinear term F . We construct the following
estimators which capture qualitatively different model assumptions:

(1) The linear estimator θ̂
lin,N
0 results from presuming K = 0 and F = 0.

(2) The polynomial or Schlögl estimator θ̂
pol,N
0 , where K = 0 and

F(u) = k1u(u0 − u)(u − āu0)

= −k1āu0u(u0 − u) + k1u
2(u0 − u)

= θ1 F̃1(u) + θ2F2(u)

for knownconstants k1, u0, ā > 0, θ1 = k1u0ā, θ2 = k1. The correspondingSPDE
(5) is called stochastic Nagumo equation or stochastic Schlögl equation and arises
as the limiting case ε → 0 of the stochastic FitzHugh–Nagumo system.

(3) The full or FitzHugh–Nagumo estimator θ̂
full,N
0 , where K = 0 and

F(u) = k1u(u0 − u)(u − āu0) − k2v

= θ1 F̃1(u) + θ2F2(u) + θ2F3(u) (32)

with θ1 = k1u0ā, θ2 = k1 and θ3 = k2εb, where v is given by vt =∫ t
0 e

(t−r)(DV �−ε I )urdr . As before, k1, k2, u0, ā, Dv, ε > 0 are known.

Furthermore, wemodify θ̂
full,N
0 in order to estimate different subsets of model parame-

ters at the same time.We use the notation θ̂
i,N
0 , where i is the number of simultaneously

estimated parameters. More precisely, we set θ̂1,N0 = θ̂
full,N
0 , and additionally:

(1) The estimator θ̂2,N0 results from K = 1 and Fθ1 given by (32) for known θ2, θ3 > 0.
This corresponds to an unknown ā.

(2) The estimator θ̂3,N0 results from K = 2 and Fθ1,θ2 given by (32). Only θ3 is known.

(3) The estimator θ̂
4,N
0 results from K = 3 and Fθ1,θ2,θ3 given by (32). All three

parameters θ1, θ2, θ3 are unknown.

In all estimators in this section, we set the regularity adjustment α = 0. This is a
reasonable choice if the driving noise in (7), (8) is close to white noise.

It is worthwhile to note that θ̂
lin,N
0 is invariant under rescaling the intensity of

the data, i.e., substituting X by cX , c > 0. This has the advantage that we do not
need to know the physical units of the data. In fact, the intensity of fluorescence
microscopy datamay vary due to different expression levels of reporter proteins within
a cell population, or fluctuations in the illumination. While invariance under intensity
rescaling is a desirable property, the fact that nonlinear reaction terms are not taken
into account may outweigh this advantage, especially if the SPDE model is close
to the true generating process of the data. This is the case for synthetic data. The

123



59 Page 18 of 34 Journal of Nonlinear Science (2021) 31 :59

Fig. 2 Performance of diffusivity estimators on simulated data under different model assumptions in the
spatial high-frequency regime. Solid black line is plotted at the true parameter θ0 = 1 × 10−13, dashed
black line is plotted at zero. In all displays, we restrict to N ≥ 25 in order to avoid artifacts stemming from
low resolution

discussion in Sect. 4.1 shows that even if the model specific correction terms in (21)
vanish asymptotically, their effect on the estimator may be huge in the non-asymptotic
regime, especially at low resolution level. However, real data may behave differently,
and a detailed nonlinearmodelmay not reveal additional information on the underlying
diffusivity, see Sect. 4.4.

4.1 Performance on Synthetic Data

First, we study the performance of the mentioned estimators on simulations. The
numerical scheme is specified in “Appendix B.” While we have perfect knowledge
on the dynamical system which generates the data in this setting, it is revelatory to
compare the different versions of θ̂N

0 which correspond to varying levels of model mis-
specification. The simulation shows that a(|Ut |L2) fluctuates around a value slightly
larger than 0.15. We demonstrate the effect of qualitatively different model assump-
tions on our method in Fig. 2 (top left) by comparing the performance of θ̂ lin,N0 , θ̂pol,N0 ,

and θ̂
full,N
0 . The result can be interpreted as follows: As θ̂

lin,N
0 does not see any infor-

mation on the wave fronts, the steep gradient at the transition phase leads to a low
diffusivity estimate. On the other hand, θ̂

pol,N
0 incorporates knowledge on the wave

fronts as they appear in the Schlögl model, but the decay in concentration due to the
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Fig. 3 Sensitivity of (left) θ̂
lin,N
0 and (right) θ̂

2,N
0 to different noise levels. Solid black line is plotted at

θ0 = 1 × 10−13, and dashed black line is plotted at zero. As before, we restrict to N ≥ 25 in the plots

presence of the inhibitor is mistaken as additional diffusion. Finally, θ̂ full,N0 contains
sufficient information on the dynamics to give a precise estimate. In Fig. 2 (top right),
we show the effect of wrong a priori assumptions on ā in θ̂

full,N
0 . Even for N = 800,

the precision of θ̂
full,N
0 clearly depends on the choice of ā. Remember that there is no

true ā in the underlying model, rather, ā serves as an approximation for a(|Ut |L2).
Better results can be achieved with θ̂

2,N
0 , θ̂

3,N
0 , and θ̂

4,N
0 , see Fig. 2 (bottom left): θ̂2,N0

has no knowledge on ā and recovers the diffusivity precisely, and even θ̂
4,N
0 performs

better than the misspecified θ̂
full,N
0 from the top right panel of Fig. 2.

4.2 Discussion of the Periodic Boundary

In Fig. 2 (bottom right), we sketch how the assumption of periodic boundary conditions
influences the estimate. While θ̂

2,N
0 works very well on the full domain of 200 × 200

pixels with periodic boundary conditions, it decays rapidly if we just use a square
section of 75 × 75 pixels. In fact, the boundary conditions are not satisfied on that
square section. This leads to the presence of discontinuities at the boundary. These
discontinuities, if interpreted as steep gradients, lower the observed diffusivity. Hence,
a first guess to improve the quality is to mirror the square section along each axis and
glue the results together. In this manner, we construct a domain with 150×150 pixels,
on which θ̂

2,N
0 performs well. We emphasize that, while this periodification procedure

is a natural approach, its performance will depend on the specific situation, because
the dynamics at the transition edges will still not obey the true underlying dynamics.
Furthermore, by modifying the data set as explained, we change its resolution, and
consequently, a different amount of spectral information may be included into θ̂

2,N
0

for interpretable results.

4.3 Effect of the Noise Intensity

In Fig. 3, we study the effect of varying the noise level in the simulation. We compare
θ̂
lin,N
0 , which is agnostic to the reaction model, to θ̂

2,N
0 , which incorporates a detailed
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Fig. 4 In all displays, we restrict to N ≥ 25 in order to avoid artifacts stemming from low resolution.
Dashed black line is plotted at zero (top). Performance of different diffusivity estimators on (top left) cell
data and (top right) periodified cell data (bottom). The effects of applying a kernel with bandwidth σ̄ is
shown for (bottom left) not periodified and (bottom right) periodified data

reaction model. While θ̂
2,N
0 performs well regardless of the noise level, the quality of

θ̂
lin,N
0 tends to improve for larger σ . In this sense, a large noise amplitude hides the
effect of the nonlinearity. This is in line with the observations made in Pasemann and
Stannat (2020, Section 3). We note that the dynamical features of the process change
for σ = 0.2: In this case, due to the strong fluctuations stemming from the noise, the
model is no longer capable of generating traveling waves.

4.4 Performance on Real Data

A description of the experimental setup can be found in “Appendix B.” The concen-
tration in the data is represented by grey values ranging from 0 to 255 at every pixel.
This range is standardized to the unit interval [0, 1], in order to match the stable fixed
points of the bistable polynomial f in the reference case u0 = 1. Note that this is
necessary for all estimators except θ̂

lin,N
0 . We compare θ̂

lin,N
0 with θ̂

2,N
0 , θ̂

3,N
0 , and

θ̂
4,N
0 , which are more flexible than θ̂

pol,N
0 and θ̂

full,N
0 . In Fig. 4 (top left) the behav-

ior of these four estimators on a sample cell is shown. Interestingly, the model-free
linear estimator θ̂

lin,N
0 is close to θ̂

3,N
0 and θ̂

4,N
0 , which impose very specific model

assumptions. This pattern can be observed across different cell data sets. In particular,
this is notably different from the performance of these three estimators on synthetic
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data. This discrepancy seems to indicate that the lower-order reaction terms in the
activator–inhibitor model are not fully consistent with the information contained in
the experimental data. This can have several reasons; for example, it is possible that
a more detailed model reduction of the known signaling pathway inside the cell is
needed. On the contrary, θ̂

2,N
0 seems to be comparatively rigid due to its a priori

choices for θ2 and θ3, but it eventually approaches the other estimators. Variations in
the value of u0 have an impact on the results for small N but not on the asymptotic
behavior. In Fig. 4 (top right), the cell from Fig. 4 (top left) is periodified before eval-
uating the estimators. As expected from the discussion in Sect. 4.2, the estimates rise,
but the order of magnitude does not change drastically.

4.5 Invariance under Convolution

Given a function k ∈ L1(D), define Tk : Hs(D) → Hs(D), s ∈ R, via u �→ k ∗ u =∫
D k(· − x)u(x)dx , where k and u are identified with their periodic continuation. It is
well known that Tk commutes with �, i.e., Tk ◦ � = � ◦ Tk . Thus, if X is a solution
to a semilinear stochastic PDE with diffusivity θ , the same is true for Tk X : While the
nonlinearity and the dispersion operator may be changed by Tk , the diffusive part is
left invariant, in particular the diffusivity of X and Tk X is the same. Based on this
observation, a comparison between the effective diffusivity of X and Tk X for different
choices of k may serve as an indicator if the assumption that a data set X is generated
by a semilinear SPDE (5) is reasonable in the first place, and if the diffusion indeed
can be considered to be homogeneous and isotropic. We use a family of periodic
kernels k = kσ̄ , σ̄ > 0, which are normed in L1(D) and coincide on the reference
rectangle [−L1/2, L1/2] × [−L2/2, L2/2] with a Gaussian density with standard
deviation σ̄ . In Fig. 4 (bottom), the effects of applying Tkσ̄

for different bandwidths
σ̄ are shown for one data set and its periodification. While the diffusivity of the data
without periodification on the left-hand panel is slightly affected by the kernel, more
precisely, its tendency to fall is enlarged, the graphs for the effective diffusivity of the
periodified data are virtually indistinguishable. Periodification seems to be compatible
with the expected invariance under convolution, even if the periodified data are not
generated by a semilinear SPDE but instead by joining smaller patches of that form. In
total, these observations are in accordance with the previous sections and suggest that
the statistical analysis of the data based on a semilinear SPDE model is reasonable.

4.6 The Effective Diffusivity of a Cell Population

We compare the estimated diffusivity for a cell population consisting of 36 cells. The
boundaries in space and time of all samples are selected in order to capture only the
interior dynamics within a cell, and consequently, the data sets differ in their size. On
the one hand, the estimated diffusivity tends to stabilize in time, i.e., the number of
frames in a sample, corresponding to the final time T , does not affect the result much.
On the other hand, the size of each frame, measured in pixels, determines the number
of eigenfrequencies that carrymeaningful information on the process. Thus, we expect
that N can be chosen larger for samples with high spatial resolution.We formalize this
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Fig. 5 The samples are evaluated (top)without or (bottom)with periodification. θ̂3,N0 with (left) N = Nconst
or (right) N = Nstop is plotted against Nstop. The least squares fit is shown in red. The p value in each plot
corresponds to a t-test whose null hypothesis states that the slope of the regression line is zero. Clearly, the
slope is more notable in the case N = Nconst

intuitionwith the following heuristic: Let rx and ry denote the number of pixels in each
row and column, resp., of every frame in a sample. Let Nstop = �4rxry/M2�, where
M ∈ N is a parameter representing the number of pixels needed for a sine or cosine to
extractmeaningful information. That is, a square of dimensions rx×ry = M×M leads
to Nstop = 4, so in this case only the eigenfunctions �k,l , k, l ∈ {−1, 1} are taken into
account, whose period length is M in both dimensions. In our evaluations, we choose
M = 12 for the data without periodification and M = 24 for the periodified data sets.
We mention that the cells are also heterogeneous with respect to their characteristic
length dx and time dt , given in meters per pixel and seconds per frame for each data
set.3 However, a detailed quantitative analysis of the resulting discretization error is

beyond the scope of our work. In Fig. 5, we compare the results for θ̂
3,Nstop
0 with

θ̂
3,Nconst
0 within the cell population, where Nconst = 899 is independent of the sample
resolution. Evaluating the estimator at Nstop decorrelates the estimated diffusivity from
the spatial extension of the sample. The results for different cells have the same order

3 Further tests indicate that the estimated diffusivity correlates with the characteristic diffusivity dx
2
/dt .

A more detailed examination of the discretization effects and other dependencies which are not directly
related to the underlying process is left for future research. Also, it would be interesting to understand the
extent to which the effective diffusivity in the data is scale dependent.
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Fig. 6 Estimation of the reaction parameter θ1 on (left) simulated data and (right) cell data. All times are
given in seconds, relative to the first frame. As before, we restrict to N ≥ 25

of magnitude, which indicates that the effective diffusivity can be used for statistical
inference for cells within a population or between populations in future research.

4.7 Estimating�1

When solving the linearMLE equations in order to obtain θ̂
2,N
0 , we simultaneously get

an estimate θ̂
2,N
1 for θ1 = k1u0ā. Note that u0 = 1 by convention, and θ2 = k1 = 1 is

treated as known quantity in this case. Thus, θ1 can be identified with ā. In Fig. 6 we
show the results for θ̂1,N1 on simulated data (left) and on a cell data sample (right). Note

that in general, we cannot expect to observe increased precision for θ̂
2,N
1 as N grows,

because the reaction term is of order zero.4 However, it is informative to consider also
the large time regime T → ∞, i.e., to include more and more frames to the estimation
procedure. In the case of simulated data, a oscillates around an average value close
to 0.15, which should be considered to be the ground truth for ā. This effective value
ā is recovered well, even for small T , with increasing precision as T grows. Clearly,
this depends heavily on the model assumptions. In the case of cell data, the results
are rather stable. This indicates that it may be reasonable to use the concept of an
“effective unstable fixed point ā of the reaction dynamics, conditioned on the model
assumptions included in θ̂

2,N
0 ,” when evaluating cell data statistically.

4.8 The Case of Pure Noise Outside the Cell

If the data set does not contain parts of the cell but rather mere noise, the estimation
procedure still returns a value. This “observed diffusivity” (see Fig. 7) originates com-
pletely from white measurement noise. More precisely, the appearance and vanishing
of singular pixels is interpreted as instantaneous (i.e., within the time between two
frames) diffusion to the steady state. Thus, the observed diffusivity in this case can be
expected to be even larger than the diffusivity inside the cell. In this section, we give a

4 According to Huebner and Rozovskii (1995), the maximum likelihood estimator for the coefficient of a
linear-order zero perturbation to a heat equation with known diffusivity converges only with logarithmic
rate in d = 2.
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Fig. 7 As before, we restrict to N ≥ 25. (left) Effective diffusivity outside the cell, plot for one data set.
Dashed line is plotted at zero. (right) Comparison of the energy inside and outside the cell. Both data sets
have the same spatial and temporal extensions

heuristical explanation for the order of magnitude of the effective diffusivity outside
the cell.

We work in dimension d = 2. Assume that a pixel has width x > 0. This value is
determined by the spatial resolution of the data. For simplicity, we approximate it by a
Gaussian densityφ0(y)with standard deviation σ0 = x

2 . This way, the inflection points
of the (one-dimensional marginal) density match the sharp edges of the pixel. Now,
using φ0 as an initial condition for the heat equation on the whole spaceR2, the density

φt after time t is also a Gaussian density, with standard deviation σt =
√

σ 2
0 + 2θ t ,

obtained by convolution with the heat kernel. The maximal value f tmax of φt is attained
at y = 0 with f tmax = (2πσ 2

t )−1 = (2π(σ 2
0 + 2θ t))−1. Now, if we observe after time

t > 0 at the given pixel an intensity decay by a factor b > 0, i.e.,

b f tmax ≤ f 0max, (33)

this leads to an estimate for the diffusivity of the form

θ ≥ (b − 1)
σ 2
0

2t
. (34)

For example, set t = 0.97s and x = 2.08×10−7 m, as in the data set from Fig. 7 (left).
The intensity decay factor varies between different pixels in the data set, reasonable
values are given for b ≤ 30. If b = 30, we get θ ≥ 1.6 × 10−13 m2/s, for b = 20,
we get θ ≥ 1 × 10−13 m2/s, and for b = 15, we have θ ≥ 7.8 × 10−14 m2/s. This
matches the observed diffusivity outside the cell from Fig. 7, which is indeed of order
1 × 10−13 m2/s: For example, with N = Nstop = �4rxry/M2� and M = 12, as in

Sect. 4.6, we get Nstop = 165 and θ̂
lin,Nstop
0 = 1.36 × 10−13 m2/s for this data set

consisting of pure noise. In total, this gives a heuristical explanation for the larger
effective diffusivity outside the cell compared to the estimated values inside the cell.

It is important to note that even if the effective diffusivity outside the cell is larger,
this has almost no effect on the estimation procedure inside the cell. This is because
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the total energy AN (X)0,0 of the noise outside the cell is several orders of magnitude
smaller than the total energy of the signal inside the cell, see Fig. 7 (right).

5 Discussion and Further Research

In this paper, we have extended the mathematical theory of parameter estimation of
stochastic reaction–diffusion system to the joint estimation problem of diffusivity
and parametrized reaction terms within the variational theory of stochastic partial
differential equations. We have in particular applied our theory to the estimation of
effective diffusivity of intracellular actin cytoskeleton dynamics.

Traditionally, biochemical signaling pathways were studied in a purely tempo-
ral manner, focusing on the reaction kinetics of the individual components and the
sequential order of the pathway, possibly including feedback loops. Relying on well-
established biochemical methods, many of these temporal interaction networks could
be characterized. However, with the recent progress in the in vivo expression of flu-
orescent probes and the development of advanced live cell imaging techniques, the
research focus has increasingly shifted to studying the full spatiotemporal dynamics
of signaling processes at the subcellular scale. To complement these experiments with
modeling studies, stochastic reaction–diffusion systems are the natural candidate class
of models that incorporate the relevant degrees of freedom of intracellular signaling
processes. Many variants of this reaction–diffusion framework have been proposed
in an empirical manner to account for the rich plethora of spatiotemporal signaling
patterns that are observed in cells. However, the model parameters in such studies are
oftentimes chosen in an ad hoc fashion and tuned based on visual inspection, so that
the patterns produced in model simulations agree with the experimental observations.
A rigorous framework that allows to estimate the parameters of stochastic reaction–
diffusion systems from experimental data will provide an indispensable basis to refine
existing models, to test how well they perform, and to eventually establish a new gen-
eration of more quantitative mathematical models of intracellular signaling patterns.

The question of robustness of the parameter estimation problem with respect to
specific modeling assumptions of the underlying stochastic evolution equation is
an important problem in applications that needs to be further investigated in future
research. In particular, this applies to the dependence of diffusivity estimation on
the domain and its boundary. In this work, we based our analysis on a Fourier
decomposition on a rectangular domain with periodic boundary conditions. A nat-
ural, boundary-free approach is using local estimation techniques as they have been
developed and used in Altmeyer and Reiß (2020), Altmeyer et al. (2020b), Altmeyer
et al. (2020a). An additional approach aiming in the same direction is the application
of a wavelet transform.

It is a crucial task to gather further information on the reaction term from the data.
Principally, this cannot be achieved in a satisfactory way on a finite time horizon, so
the long-time behavior of maximum likelihood-based estimators needs to be studied
in the context of stochastic reaction–diffusion systems. We will address this issue in
detail in future work.
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To conclude, statistical inference for stochastic partial differential equations is an
emerging field, which increasingly attracts the attention of mathematical research.
When applied to experimental data coming from microscopy observation, it will pro-
vide a beneficial tool for the quantitative analysis of subcellular pattern formation.
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Appendix A. Additional Proofs

A.1 Proof of Proposition 1

We prove Proposition 1 by a series of lemmas. First, we show that (7), (8) is well
posed inH = L2 × L2. First note that for any u, v ∈ L2(D) and x ∈ R:

〈∂u f (x, u)v, v〉L2 � |v|2L2 (35)

as ∂ f (x, u) is bounded from above uniformly in x and u.

Lemma 8 There is a unique H-valued solution (U , V ) to (7), (8), and

E

[

sup
0≤t≤T

|(Ut , Vt )|pH
]

< ∞ (36)

for any p ≥ 1.

In particular,

E

[

sup
0≤t≤T

|Ut |pL2

]

< ∞, E

[

sup
0≤t≤T

|Vt |pL2

]

< ∞ (37)

for any p ≥ 1.

Proof of Lemma 8 This follows from Liu and Röckner (2015, Theorem 5.1.3). In order
to apply this result, we have to test the conditions (H1), (H2′), (H3), (H4′) (i.e.,
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hemicontinuity, localmonotonicity, coercivity, and growth) therein. SetV = H1×H1.
Define A(U , V ) = (A1(U , V ), A2(U , V )) with

A1(U , V ) = DU�U + k1 f (|U |L2 ,U ) − k2V , (38)

A2(U , V ) = DV�V + ε(bU − V ). (39)

As B = (−�)−γ is constant and of Hilbert–Schmidt type, we can neglect it in the
estimates. In order to check the conditions , we have to look separately at A1 and
A2. The statements for A2 is trivial by linearity, so we test the parts of the conditions
corresponding to A1. (H1) is clear as f (x, u) is a polynomial in u and continuous in
x . (H2) follows from (35) via

H−1〈A1(U1, V1) − A1(U2, V2),U1 −U2〉H1

� k1H−1〈 f (|U1|L2 ,U1) − f (|U2|L2 ,U2),U1 −U2〉H1

+ k2|V1 − V2|L2 |U1 −U2|L2

� k1H−1〈∂u f (|U1|L2 Ṽ )(U1 −U2),U1 −U2〉H1

+ k1H−1〈∂x f (x̃,U2)(|U1|L2 − |U2|L2),U1 −U2〉H1

+ C‖(U1, V1) − (U2, V2)‖2H
� k1|∂x f (x̃,U2)|L2

∣
∣‖U1‖L2 − ‖U2‖L2

∣
∣ |U1 −U2|L2

+ C‖(U1, V1) − (U2, V2)‖2H
� (1 + |∂x f (x̃,U2)|L2)‖(U1, V1) − (U2, V2)‖2H

for some x̃ ∈ R and Ṽ : D → R, and |∂x f (x̃,U2)|L2 = |u0a′(x̃)U2(u0 − U2)|L2 �
|U2|L2 + |U 2

2 |L2 . With |U 2
2 |L2 = |U2|2L4 � |U2|2H1 , we see that local monotonicity as

in (H2) is satisfied by taking ρ((u, v)) = c|u|2
H1 ≤ c|(u, v)|2V . Now, for (H3),

H−1〈A1(U , V ),U 〉H1 ≤ −DU |U |2H1 + k1H−1〈 f (|U |L2 ,U ),U 〉H1

+ k2|U |L2 |V |L2

� −DU |U |2H1 + k1〈∂u f (|U |L2 , Ṽ )U ,U 〉L2

+ C‖(U , V )‖2H
� −DU |U |2H1 + C |U |2L2 + C‖(U , V )‖2H

for some Ṽ : D → R, again using (35). Finally,

|A1(U )|2H−1 � DU |U |2H1 + k1| f (|U |L2 ,U )|2H−1 + k2|V |2L2 ,

so it remains to control | f (|U |L2 ,U )|2
H−1 � | f (|U |L2 ,U )|2

L1 � |U |2
L1 + |U 2|2

L1 +
|U 3|2

L1 , andwe have |U |2
L1 � |U |2

L2 as well as |U 2|2
L1 = |U |4

L2 and |U 3|2
L1 = |U |6

L3 �
|U |6

H1/3 � |U |2
H1 |U |4

L2 . Thus, (H4) is true. Putting things together, we get that Liu
and Röckner (2015) is applicable for sufficiently large p ≥ 1, and the claim follows.

�
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In order to improve (37) to the H1-norm, it suffices to prove coercivity, i.e., (H3)
from Liu and Röckner (2015), for the Gelfand triple H2 ⊂ H1 ⊂ L2.

Lemma 9 The solution (U , V ) to (7), (8) satisfies (A1), i.e., for any p ≥ 1:

E

[

sup
0≤t≤T

|Ut |pH1

]

< ∞, E

[

sup
0≤t≤T

|Vt |pH1

]

< ∞. (40)

Proof This is done by

L2〈A1(U , V ),U 〉H2 ≤ −DU |U |2H2 + k1〈∂u f (|U |L2 ,U )∇U ,∇U 〉L2

+ k2|U |H1 |V |H1

� −DU |U |2H2 + C |U |2H1 + C‖(U , V )‖2H1×H1 ,

where (35) has been used componentwise. By Liu and Röckner (2015, Lemma 5.1.5)
we immediately obtain (40). 
�

Remember that by integrating (8), we can write (7) as

dUt = (DU�Ut + θ1F1(Ut ) + θ2F2(Ut ) + θ3F3(U )(t))dt + BdWt , (41)

where we adopted the notation from (10), (11), (12).

Lemma 10 The process (U , V ) satisfies (As) for some s > 1.

Proof LetU = U + Ũ be the decomposition ofU into its linear and nonlinear part as
in (14),(15). We will prove

E

[

sup
0≤t≤T

|Ũt |pWs,q

]

< ∞ (42)

for any p, q ≥ 1 and s < 2. As γ > d/4 in d ≤ 2, there is s > 1 such that (42) is
true for U with q = 2, and the claim follows. Let us now prove (42). First, note that
by Lemma 9 and the Sobolev embedding theorem in dimension d ≤ 2, (42) is true
for Ut with any p, q ≥ 1 and s = 0. For k ∈ N, by |Uk

t |pLq = |Ut |kpLkq , we see that
polynomials in U satisfy (42) with s = 0, too. In particular, using that a is bounded,

E

[

sup
0≤t≤T

|Fi (Ut )|pLq

]

< ∞ (43)

for i = 1, 2 and p, q ≥ 1. A simple calculation shows that the same is true for F3. As
in the proof of Proposition 3, we see that

sup
0≤t≤T

|Ũt |η,q ≤ |U0|η,q + 2

ε
T

ε
2 sup
0≤t≤T

|θ1F1(U ) + θ2F2(U ) + θ3F3(U )|Lq

with η < 2, q ≥ 1 and ε = 2 − η, and the proof is complete. 
�
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Proof of Proposition 1 In d ≤ 2, Hs is an algebra for s > 1, i.e., uv ∈ Hs for u, v ∈ Hs

Adams and Fournier (2003). Together with the assumption that a is bounded, it follows
immediately that (Fs,η) holds for F1, F2 separately (with K = 0) for any s > 1 and
η < 2. For F3, we have for any δ > 0:

sup
0≤t≤T

|F3(Ut )|s+2−δ ≤ sup
0≤t≤T

∫ t

0
|e(t−r)(DV �−ε I )Ur |s+2−δdr (44)

≤ sup
0≤t≤T

∫ t

0
(t − r)−1+δ/2|Ur |sdr (45)

≤ 2

δ
T

δ
2 sup
0≤t≤T

|Ut |s, (46)

so F3 satisfies (Fs,η) even with s ∈ R, η < 4. It is now clear that the (Fs,η) holds for
F = θ1F1 + θ2F2 + θ3F3 for any s > 1 and η < 2 (with K = 3). The claim follows
from Proposition 3 (i) for U and (ii) for V , noting that V = εbF3(U ). 
�

A.2 Proof of Proposition 6

This section is devoted to proving Proposition 6. A similar argument can be found in
Huebner (1993), Chapter 3 for linear SPDEs. We start with an auxiliary statement,
which characterizes the rate of det(AN (X)). For simplicity of notation, we abbreviate
aNi := AN (X)i,i for i = 0, . . . , K . While there is a trival upper bound det(AN (X)) �
aN0 . . . aNK obtained by theCauchy–Schwarz inequality, the corresponding lower bound
requires more work. Our argument is geometric in nature: AGramianmatrix measures
the (squared) volume of a parallelepiped spanned by the vectors defining the matrix.
The argument takes place in the separable Hilbert space L2(0, T ; H2α), and we find a
(uniform in N ) lower bound on the (K +1)-dimensional volume of the parallelepiped
spanned by the vectors PN (−�)X , PN F1(X), . . . , PN FK (X). While the latter K
components (and thus their K -dimensional volume) converge, the first component
gets eventually orthogonal to the others as N grows. This is formalized as follows:

Lemma 11 Let η, s0 > 0 such that (As) and (Fs,η) are true for s0 ≤ s < 2γ +1−d/2.
Let γ − d/4 − 1/2 < α ≤ γ − d/4 − 1/2 + η/2. Under assumption (Lα), we have

det(AN (X)) � aN0 . . . aNK . (47)

In particular, AN (X) is invertible if N is large enough.

Proof The argument is pathwise, so we fix a realization of X . We abbreviate 〈·, ·〉α :=
〈·, ·〉L2(0,T ;H2α) and ‖·‖α := | · |L2(0,T ;H2α); further, we write F0(X) = �X in order
to unify notation. By a simple normalization procedure, it suffices to show that

lim inf
N→∞ det

((〈
PN Fi (X)

‖PN Fi (X)‖α

,
PN Fj (X)

‖PN Fj (X)‖α

〉

α

)

i, j=0,...K

)

> 0. (48)
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Let ε > 0 and choose N0, N1 ∈ N with N0 ≤ N1 such that:

• ‖PN Fi (X) − Fi (X)‖α < ε‖Fi (X)‖α and ‖Fi (X)‖α/‖PN Fi (X)‖α < 2 for i =
1, . . . , K and N ≥ N0. This is possible due to α ≤ γ − d/4 − 1/2 + η/2.

• ‖PN0F0(X) / ‖PN F0(X)‖α ‖α < ε for N ≥ N1. This is possible as ‖PN F0(X)‖α

diverges due to α > γ − d/4 − 1/2.

Now one performs a Laplace expansion of (48) in the first column. Each entry of the
matrix in (48) can be bounded by 1 trivially, but we can say more:

∣
∣
∣
∣

〈
PN F0(X)

‖PN F0(X)‖α

,
PN Fi (X)

‖PN Fi (X)‖α

〉

α

∣
∣
∣
∣ ≤

∣
∣
∣
∣

〈
PN0F0(X)

‖PN F0(X)‖α

,
PN0Fi (X)

‖PN Fi (X)‖α

〉

α

∣
∣
∣
∣

+
∣
∣
∣
∣

〈
(PN − PN0)F0(X)

‖PN F0(X)‖α

,
(PN − PN0)Fi (X)

‖PN Fi (X)‖α

〉

α

∣
∣
∣
∣

≤
∥
∥
∥
∥

PN0F0(X)

‖PN F0(X)‖α

∥
∥
∥
∥

α

+
∥
∥
∥
∥
(I − PN0)Fi (X)

‖PN Fi (X)‖α

∥
∥
∥
∥

α

≤ ε + 2ε

for N ≥ N1 with i = 1, . . . , K , where we used the Cauchy–Schwarz inequality and
the choice of N0, N1. Consequently, in order for (48) to be true, it suffices to show for
the (0, 0)-minor:

lim inf
N→∞ det

((〈
PN Fi (X)

‖PN Fi (X)‖α

,
PN Fj (X)

‖PN Fj (X)‖α

〉)

i, j=1,...K

)

> 0. (49)

By (Lα), we have

det

((〈
Fi (X)

‖Fi (X)‖α

,
Fj (X)

‖Fj (X)‖α

〉

α

)

i, j=1,...K

)

> 0, (50)

so (49) holds true by continuity for i = 1, . . . , K . 
�
Proof of Proposition 6 As before, we formally write F0(X) = �X in order to unify
notation. By plugging in the dynamics of X , we see that for i = 0, . . . , K ,

bN (X)i =
∫ T

0
〈(−�)2α−γ PN Fi (X), dWN

t 〉 +
K∑

k=0

θk AN (X)i,k . (51)

Thus, with b̄N (X)i = ∫ T
0 〈(−�)2α−γ PN Fi (X), dWN

t 〉 and θ = (θ0, . . . , θK )T , this
read as

AN (X)θ̂N (X) = b̄N (X) + AN (X)θ, (52)

i.e.,

θ̂N − θ = A−1
N (X)b̄N (X). (53)
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Using the explicit representation for the inverse matrix AN (X)−1, we have

θ̂N
j − θ j = 1

det(AN (X))

K∑

i=0

(−1)i+ j det(A
(i, j)
N (X))b̄N (X)i , (54)

where A
(i, j)
N (X) results from AN (X) by erasing the i th row and the j th column.

Remember that by Lemma 4, aN0 
 CαN
2
d (2α−2γ+1)+1. Further, due to α ≤ γ −

d/4 − 1/2 + η/2, aNi /aN0 → 0 in probability for all i = 1, . . . , K . Now, by the
Cauchy–Schwarz inequality, each summand in the numerator can be bounded by
terms of the form

K∏

k=0

aNk
|b̄N (X)i |√
aNi aNj

(55)

for i, j = 0, . . . , K . Thus, by Lemma 11, in order to prove the claim it remains to find

a uniform bound in probability for the terms of the form |b̄N (X)i |/
√
aNi aNj . Now, for

i = 1, . . . , K ,

E

[
b̄N (X)2i

]
= E

[(∫ T

0
〈(−�)2α−γ PN Fi (X), dWN

t 〉
)2]

(56)

= E

[∫ T

0
|(−�)2α−γ PN Fi (X)|2Hdt

]

< ∞ (57)

uniformly in N as α < γ − d/8 − 1/4 + η/4. Further, (aN0 )−1/2 converges to zero
in probability, while (aNi )−1/2 converges to a positive constant for i = 1, . . . , K . For
i = 0, the reasoning is similar: By Proposition 3 and Lemma 4, we have

E

[
b̄N (X)20

]

 E

[∫ T

0
|(−�)1+2α−γ X

N
t |2Hdt

]


 C2α−γ N
2
d (4α−4γ+1)+1. (58)

Together with aN0 ∼ N
2
d (2α−2γ+1)+1 and α ≤ γ , this yields that b̄N (X)20/a

N
0 (and

consequently |b̄N (X)0|/
√
aN0 aNj for j = 0, . . . , K ) is bounded in probability. The

claim follows. 
�

Appendix B. Methods

Numerical Simulation

For the evaluation in Sect. 4 and Fig. 1f, we simulated (7), (8) on a square with side
L = 75, with spatial increment dx = 0.375, for t ∈ [T0, T1), T0 = 500, T1 = 700,

123



59 Page 32 of 34 Journal of Nonlinear Science (2021) 31 :59

with temporal increment dt = 0.01, using an explicit finite difference scheme, of
which we recorded every 100th frame. We choose T0 = 500 in order to avoid artifacts
stemming from zero initial conditions at T = 0. We set b = 0.2, γ = 0, σ = 0.1 and
a(x) = 0.5− b+ 0.5(x/(0.33u0L2) − 1). In Sect. 4.3, we use additional simulations
with σ = 0.05 and σ = 0.2.

For single and giant cell simulations in Fig. 1d, e, we solve (7), (8) on a square
with side L = 75, with spatial increment dx = 0.15, for t ∈ [0, T ], T = 1000, with
temporal increment dt = 0.002, using an explicit finite difference scheme together
with a phase field model Flemming et al. (2020) to account for the interior of the
single and giant cells, corresponding, respectively, to an area of A0 = 113µm2 and
A0 = 2290µm2. We used b = 0.4 and a(x) = 0.5 − b + 0.5(x/(0.25u0A0) − 1).
The noise terms are chosen as in Flemming et al. (2020), with σ = 0.1 and kη = 0.1
in the notation therein.

For both simulations, the remaining parameters are DU = 0.1, DV = 0.02, k1 =
k2 = 1, u0 = 1, ε = 0.02. The unit length is 1µm, and the unit time is 1s.

Experimental Settings

For experiments, D. discoideum AX2 cells expressing mRFP-LimE� as a marker
for F-actin were used. Cell culture and electric pulse-induced fusion to create giant
cells were performed as described in Gerhardt et al. (2014), Flemming et al. (2020).
For live cell imaging, an LSM 780 (Zeiss, Jena) with a 63x objective lens (alpha
Plan-Apochromat, NA 1.46, Oil Korr M27, Zeiss Germany) was used. The spatial
and temporal resolution was adjusted for each individual experiment to acquire image
series with the best possible resolution, while protecting the cells from photodamage.
Images series were saved as 8-bit tiff files. For image series where the full range of
256 pixel values was not utilized, the image histograms were optimized in such a way
that the brightest pixels corresponded to a pixel value of 255.
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