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Abstract

Due to technological progress, mobile phones evolved into technically and
functionally sophisticated devices called smartphones. Providing compre-
hensive capabilities, smartphones are getting increasingly popular not only
for the targeted users but all. Since 2004, several malwares appeared tar-
geting these devices. General countermeasures to smartphone malwares are
currently limited to signature-based anti-virus scanners which efficiently
detect known malwares, but they have serious shortcomings with new and
unknown malwares creating a window of opportunity for attackers. As
smartphones become a host for sensitive data and applications, extended
malware detection mechanisms not basing on signatures are necessary com-
plying with the resource constraints of current mobile devices.

In this work, we tackle the field of smartphone malware. We give a
clear definition on what a smartphone actually is since an industry stan-
dard does not exist. For understanding the threat of malwares targeting
smartphones, we present an updated list including all published malwares
that were recognized by anti-virus companies until the end of 2010.

We introduce the fields of dynamic and static analysis. In the field of
dynamic analysis, a monitoring system is introduced gathering behavior-
and system-based information that are processed by a remote system using
machine learning for anomaly detection. Furthermore, a monitoring and
detection architecture for Linux-based smartphones is presented which is
used to trace execution of binaries for extracting invoked system calls.

In the field of static analysis, we discuss its applicability to the domain
of different smartphone platforms, namely Symbian OS and Android. In
both cases, function and system calls are used that are extracted from bi-
naries in a static manner. Results of the analyses are promising and showed
competitive character in comparison with standard state-of-the-art learning
algorithms, such as Naive Bayes.
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Zusammenfassung

Aufgrund des technologischen Fortschritts haben sich klassische Mobilfunk-
gerdte zu mobilen Computern entwickelt, welche innovative Techniken und
Funktionen aufweisen. Aufgrund dieser Merkmale steigt der Verbreitungs-
grad der Smartphone genannten Gerate kontinuierlich, wobei das Inter-
esse nicht nur bei gewunschten Nutzergruppen gestiegen ist; seit dem Jahr
2004 konnte ein starker Anstieg an Schadsoftware fiir Smartphones iden-
tifiziert werden. Aktuelle Gegenmanahmen zu Schadsoftware fiir Smart-
phones beschranken sich auf Signatur-basierte Verfahren, welche in der Lage
sind, bekannte Schadsoftware effizient zu erkennen. Unbekannte Schadsoft-
ware kann aufgrund der fehlenden Signatur aber nicht erkannt werden, was
wiederum ein Zeitfenster fiir schadhafte Aktionen offnet. Aufgrund der
steigenden Bedeutung der Smartphones und der darauf gespeicherten Daten
fiir die jeweiligen Nutzer, ist es erforderlich, die Moglichkeit neuer signatur-
loser Anséitze, welche unbekannte Schadsoftware fiir Smartphone-basierte
Umgebungen erkennen, zu untersuchen.

In dieser Arbeit betrachten wir das Forschungsfeld der Smartphone-
basierten Schadsoftware. Wir geben eine klare Definition des Begriffs Smart-
phone, da es hierzu keine einheitliche Meinung, noch einen gemeinsamen
Industriestandard gibt. Um die Gefahr von Schadsoftware fiir Smartphones
besser nachvollziehen zu konnen, prasentieren wir zudem eine Zusammen-
stellung aller vercffentlichten Schadsoftware bis zum Ende des Jahres 2010.

Unsere vorgestellten signaturlosen Anséatze basieren auf Methoden aus
dem Feld der statischen und dynamischen Analyse. In dem Feld der dy-
namischen Analyse stellen wir ein System vor, das Verhaltens- und System-
basierte Informationen sammelt, welche auf einem entfernten System mit
Hilfe von Verfahren des Maschinellen Lernens im Sinne der Anomalieerken-
nung verarbeitet werden. Diesem System fiihrte zu einer allgemeineren
Architektur zur Uberwachung von Linux-basierten Smartphones, welche
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wir nutzen, um Systemaufrufe aus Binardateien zu extrahieren. Die Sys-
temaufrufe wiederum werden genutzt, um Schadsoftware von normaler Soft-
ware zu unterscheiden, welches wir in einem Baum-basierten Ansatz be-
schreiben.

Neben den Ansatzen der dynamischen Analyse diskutieren wir die An-
wendbarkeit von statischer Analyse auf das Feld der Schadsoftwareerken-
nung in Smartphoneumgebungen, wobei Symbian OS und Android als Bei-
spielplattformen dienen. In beiden Féllen extrahieren wir auf statische Art
und Weise Funktions- und Systemaufrufe aus ausfithrbarem Code, um diese
zu analysieren. Die Analysen geben Riickschliisse auf die Absichten der
untersuchten Datei, wobei die erzielten Ergebnisse vielversprechend sind.
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Chapter 1

Introduction

1.1 Motivation and Approach

Mobile phones have become the central computing and communication de-
vice today. Since August 2006, more mobile phones than inhabitants are
registered in Germany [227]. As the capabilities of these devices increase,
they are not simple voice-centric handsets any more; rather they represent
one step towards realizing the vision of Mark Weiser [237] called ubiquitous
computing. In this vision, Weiser describes that classical computers will
be replaced by small, intelligent, distributed, and networked devices that
will be integrated into everyday objects and activities. This replacement
can be already observed in shops and warehouses using tags for monitoring
and controlling items. But also the evolution of smartphones can be seen
as part of this vision since they represent a possibility to making use of
technical and computational capabilities in mobile context. Smartphone is
a commonly used term for describing current comprehensive mobile phones
where no global industry definition exists. A common understanding of
this term is that these devices provide state-of-the-art technical character-
istics as well as software development environments that allow creation of
third-party applications.

With the increasing capabilities of such phones, more and more mali-
cious software (malware) targeting these devices have emerged. In 2004, the
first articles about malware for smartphones [53), [169] appeared describing
mobile devices as the next generation of targets. Since then, the number of
malware increased every month, and variants for various smartphone plat-
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forms appeared, e.g. Symbian OS, Windows Mobile, and Android. Our
assumption is that the evolution of malware for mobile devices might take
a similar direction as the evolution of PC malware. Thus, similar problems
will have to be encountered, e.g. missing signatures for unknown threats
and new malware appearing at high frequency. For instance, Bulygin [35]
showed that a MMS worm targeting random phone book numbers can in-
fect more than 700,000 devices in about three hours. Another interesting
work was presented by Oberheide et al. [162] who state that the average
time required for a signature-based anti-virus engine to become capable of
detecting new threats is 48 days. These numbers request extended security
measures for smartphones as a malware can seriously damage an infected
device within seconds.

Since Symbian OS was the major target of smartphone malware, Sym-
bian introduced mandatory application signing in their OS in 2006] for cop-
ing with this problem. Application signing was performed by third-party
companies where submitted applications are checked for meeting a certain
set of requirements, e.g. proper memory handling and certificate level. The
corresponding certificate basically grants access to different kinds of API
calls basing on the privilege level. Although the signing mechanism was
able to prevent distribution of malware targeting the 3rd version of Symbian
OS S60 for about two years, finally it got broken by Mulliner [I55]. After
this publication describing the way of breaking the system, new malware
appearedE]. This event underlines the need for extended security measures
for smartphones that are capable of detecting new and unknown malware.

Therefore, this thesis investigates and evaluates alternative approaches
to signatures which are capable of detecting new malware for smartphones
without using signatures. Here, we distinguish between approaches that
do require execution of malware for analysis (dynamic analysis) and ap-
proaches that do not require execution (static analysis). Both approaches
have their advantages and drawbacks which will be described in the cor-
responding sections. We use common smartphone platforms, like Symbian
OS, Windows Mobile, and Android, for our experiments which allows us to
generate and analyze realistic data.

'First S60 3rd device shipped in March 2006 named Nokia 3250 requiring signing.
Znttp://www.f-secure.com/weblog/archives/00001609.html, visited 28.07.2010.
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1.2. CONTRIBUTIONS

1.2 Contributions

In this work, we consider the thesis that smartphone malware can be de-
tected without using signature-based approaches. Therefore, we investi-
gated different topics within the domain of smartphones supporting this
thesis. Contributions were made to the research fields of I) smartphones
in general, IT) smartphone malware analysis, and I1I) smartphone malware
detection without using signatures. In detail, the following contributions
are made:

Smartphones: Smartphone is a commonly used term for describing cur-
rent comprehensive mobile phones where no global industry definition
exists. The smartphone follows the vision of Mark Weiser [237] in
providing ubiquitous computing to its users; therefore, it can be seen
as a milestone in computing history. We present the evolution of
smartphones and explain their differences to classic computing de-
vices. Additionally, we present small studies describing the usage of
smartphones in the year 2010.

Smartphone malware: Smartphones get increasingly popular which also
attracted malware writers beginning from June 2004. From this point
on, malware count increased steadily. For understanding the threat
of malware for smartphones, we gathered a list including all known
malicious software until the end of the year 2010 and present their key-
characteristics. Furthermore, we present a listing of current research
on countermeasures.

Smartphone malware detection using dynamic analysis: The essen-
tial point about dynamic analysis is that data is acquired at runtime
in comparison to static analysis which does not require executing bi-
naries for investigating them. This can have the advantage that inci-
dents are detected in real time enabling the system to start appropriate
countermeasures in time. Our contribution in this field is threefold.
First, we present our novel approach on monitoring Windows Mobile
and Symbian OS devices for anomaly detection. Second, we describe
an architecture that enables monitoring and detection of anomalies
on Linux-based Android devices. Third, we explain our approach on
applying dynamic analysis to data gathered from Linux smartphone
binaries used in system call trees for malware detection.
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Smartphone malware detection using static analysis: Static analy-
sis has the advantage that it is not bound to the execution of binaries
in order to work. It solely relies on the binaries themselves which
are investigated in a static manner. Our contribution to the field
of static malware detection on smartphones is twofold. First, we per-
form static analysis on executables from the Android platform in order
to extract their function calls using the command readelf. Function
call lists are compared with malware executables by classifying them
with machine learning approaches, such as PART, Prism and Near-
est Neighbor Algorithms. Our approach includes an option to share
results in a collaborative manner decreasing the amount of newly in-
fected devices significantly. Second, function calls are clustered for
indicating malicious applications.

1.3 Outline

In Chapter [2| we present the evolution and characteristics of smartphones.
We discuss similarities and differences to stationary computers and define
the characteristics of a phone which make it a smartphone. After presenting
the usage of smartphones, we give detailed insights to their security.

In Chapter [3, our ongoing research on smartphone malware is pre-
sented. We describe their evolution and present corresponding research on
countermeasures.

In Chapter [ we use dynamic analysis for user behavior- and appli-
cation behavior-based detection of smartphone malware. We show that
smartphones basing on Symbian OS or Windows Mobile can be monitored
for extracting system characteristics indicating malicious activities. Addi-
tionally, we show that tracing execution of binaries for monitoring system
calls can also be used for malware detection.

In Chapter B, we present our research applying static analysis to the
domain of smartphone malware detection. In detail, we investigate whether
static call occurrences of function and library calls can be used in order to
detect malware for Android and Symbian OS.

This thesis is concluded in Chapter [6] by summarizing this work and
highlighting the results and contributions.
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1.4 Summary of Research Activities

Aspects of this dissertation were published as a journal article [I9§], peer-
reviewed conference papers [32], 22] 2] 194 196, 199, [6, 200, 197], technical
reports [86, 192, 190, 191, 195], and a poster [193]. Additionally, content of
this work was used to teach students in seminar and project courses, as well
as to find problems to be addressed in bachelor, master, diploma theses.

Journal
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tection on android. In Proceedings of the IEEE International Congress
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Chapter 2

Smartphones - Ubiquitous
Computing Devices

Smartphone is a commonly used term for describing current comprehensive
mobile phones where no global industry definition exists. The smartphone
follows the vision of Mark Weiser [237] in providing ubiquitous computing
to its users and, therefore, can be seen as a milestone in computing history.
This thesis, in particular, refers to the security of smartphones. For under-
standing the importance of this field, a general understanding of this term
will be discussed first.

Since no global industry definition on the term smartphone exists, var-
ious published definitions are checked in Section [2.1) where a condensed one
is presented finally. In Section [2.2] hard- and software characteristics of
smartphones are shown where an essential discussion on the differences be-
tween smartphones and classic computers is presented. Since smartphones
gain more and more popularity, benefits in terms of possibilities how to
use them is presented in Section In Section [2.4] security aspects of
smartphones are presented. The evolution of smartphones can be found in

Appendix [B]

2.1 Definition

Since there is no common industry definition or understanding of the term
smartphone, we will discuss the various opinions on that term in this section
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for finally giving our own condensed definition. Giving an own definition
is necessary since the presented opinions often exclude devices from com-
petitors. In our definition we will try to cover the main characteristics of
smartphones as a basis for the usage of this term throughout this work.

Best [29] collected several descriptions on smartphones, including the
definition of Gartner: “A large-screen, data-centric, hand-held device de-
signed to offer complete phone functions whilst simultaneously functioning
as a personal digital assistant (PDA)”. A further description from Jason
Langride from Microsoft UK that Jo Best collected was: “For us, smart
phones combine traditional communication devices and provide rich appli-
cations and rich data applications”. David Wood from Symbian Ltd. says:
“Smart phones differ from ordinary mobile phones in two fundamental ways:
how they are built and what they can do. The way they’re built - using open
systems to take advantage of the skills, energy and innovation of numerous
companies from a vast range of industries - means that smart phones extend
the phenomenal track record of mobile phones by improving constantly and
rapidly, year by year”.

Fulton [95] refers to a report from the market research company ABI
describing what a smartphone is not. In this report, the early Apple iPhone
is categorized as “feature phone” and not a smartphone since it lacked
the possibility of installing native third-party applications. In the field of
telecommunication the term “feature phone” is used to describe classical
mobile phones that were extended by several features, e.g. calendar, cal-
culator, or applications running through a middleware like Java ME. Ac-
cording to Fulton, ABI uses the following definition for smartphones: “a
cellular handset using an open, commercial operating system that supports

third-party applications”.

One essential differentiation between a smartphone and sophisticated
feature phone is: a smartphone uses an operating system that supports na-
tive third-party applications. Nowadays, the term commercial in not appli-
cable any more, since open source operating system emerged, e.g. Android[]
and Openmokd? Therefore, we will omit such terms relying on the as-
sumption that these operating systems are evolving through time providing
updates to vendors and users while not being only a proprietary firmware
as known from feature phones. Additionally, the term native clarifies that

"http://android.com, visited 15.3.2010.
Zhttp://www.openmoko .org/, visited 15.3.2010.
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running applications through a separate middleware, like Java ME, will
not make a smartphone. Another essential point being included in most
statements presented here is that a smartphone is a mobile phone, sized
hand-held. This means it is easily usable by holding it in hands and pre-
vents sub-notebooks with phone functionality being categorized as smart-
phones. Regarding the statements on smartphones presented here, one com-
mon characteristic was omitted by all: the connectivity. Most smartphones
provide several interfaces allowing wired and wireless communication re-
flecting its actual purpose being a communication device.

Summing up the discussed points in section, we make the following
definition which is applicable throughout this work:

Definition 1 A Smartphone is a mobile hand-held phone that uses an oper-
ating system supporting native third-party applications and includes multiple
communication interfaces for providing connectivity.

2.2 Characteristics

Following Def. |1, we can state which criteria mobile phones have to fulfill
in order to be categorized as smartphones. Besides this definition, it is also
important to see the difference between smartphones and classic computers.
If there would not exist any differences, research on smartphones would
get obsolete since mature results from classic computers could be applied
to the field of smartphones. Additionally, for getting better insights into
smartphone platforms, hard- and software characteristics will be explained.

2.2.1 Differences between Computers and Smartphones

Smartphones represent compact mobile computer hand-helds showing sim-
ilarities to classic computers, like PCs or laptops, on hard- and software
level. Both platforms use an operating system that allows the installation
of third party software. In some cases, computer operating system com-
ponents are reused on smartphone side, e.g. Linux parts in Android, Mac
OS X parts in the iPhone, and Windows parts in Windows Mobile. Addi-
tionally, common file formats, like MP3, Video, or PDF files, allow cross
platform usage of data. On hardware side, further similarities can be seen:
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both platforms use a central processing unit (CPU), memory, persistent
storage, and in- and output devices.

In turn, the major differences between computers and smartphones
can be seen in the compact and mobile nature of smartphones. Due to
their hand-held size, smartphone architectures are planned on a very lim-
ited space meaning mostly highly integrated circuits are used for their pro-
duction. The limited size also restricts the size of the battery, probably one
of the most essential components in a smartphone providing energy for all
consumers, e.g. the CPU or display.

Although processing capabilities of smartphones increase steadilyEL and
might also even up with computers in future, the capacity of the battery
determines whether corresponding components can be integrated or not.
The CPU, for example, will normally increase power consumption when
working on a higher clock speed and communication technologies can vary
in terms of energy usageﬂ

Another important point is that unlike laptops, smartphones are in-
tended to run permanently making their owner able to be called at any
time and any place. Due to this intention, maximizing the time that a
smartphone can be used without recharging it, is an important goal. This
goal is seen as essential requirement not only for smartphone manufacturers
but also for network providers and application developers. Comparing this
with an laptop or computer application, it is currently not imaginable that
developers will consider energy constraints in their software.

Furthermore, smartphone provide various techniques for wireless com-
munication, e.g. UMTS, Wi-Fi, IrDA, Bluetooth, GSM, and GPRS. Com-
puters like laptops can also support these technologies but need to be up-
graded in most cases. Smartphones provide these technologies out of the
box.

Summing up the key differences between classic computers including
PCs and laptops, it can be stated that smartphones differ from these systems
due to (I) their highly integrated hand-held size, (IT) their optimization
towards battery life timeﬂ and (III) their out of the box support of various
communication technologies.

3See birth of Moore’s Law from [147].

43G (UMTS) normally consumes more power than Wireless LAN which can be seen
on the power usage statistics of the Google Nexus One smartphone [102].

>Optimization in terms of how long a battery will last without being recharged.

14



2.2. CHARACTERISTICS

2.2.2 Hardware Characteristics

A general description on smartphones can be seen on Figure [2.1] which
shows an example architecture of a smartphone basing on [I61]. Most of the
highlighted components are realized through integrated circuits combining
various functionalities. In this section, a subset of these components is
introduced for describing key hardware characteristics of smartphones.
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Figure 2.1: Sample smartphone architecture diagram based on [161].

Several smartphones and other hand-held devices base on an ARM
architecture, e.g. the Apple iPhone, the Motorola Droid, but also the Nin-
tendo DSﬂ Figure is an example for this. The core component, sit-
uated in the center of Figure manages all parts of the smartphone,
especially the input and output data. Processors handle application-related
instructions but also radio frequency (RF) related instructions for establish-
ing connections to phone networks. Attached components handle battery,

Shttp://en.wikipedia.org/wiki/ARM_architecture, visited 25.02.2010.
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data, external memory, user interface, sensors, cameras, audio, and wired
or wireless connections.

The most essential functionality of a smartphone remains to be making
phone calls. Therefore, smartphones include a microphone and speakers for
providing the ability to talk to others when not using a headset. Using
the subscriber identity module (SIM) card[], users are allowed access to mo-
bile phone networks through assessment and validation of the international
mobile subscriber identity (IMSI) in a home location registry (HLR). SIM
cards can be locked through a personal identification number (PIN) where it
is important to say that entering this PIN only grants access to the network
on most phones, the device is not protected through this measure. Replac-
ing the SIM card from a stolen phone will lead to full access to device, data,
and on-device services in most cases.

Table 2.1: Comparison of resistive and capacitive touch screens [133]

Capability | Resistive Capacitive
Visibility Typically very good Typically very good
indoors
Visibility Typically poor, the extra | Typically very good
sunlight layer reflects too much am-
bient light
Accuracy At least pixel-wise Theoretically accuracy
within few pixel, but prac-
tically limited by finger
size
Costs “cheap” up 10-50% more expensive
than resistive screen
Robustness | Pressure-based approach | surface can be made of re-
requires soft top layer | sistant glass
which is vulnarable to
damage
Working -15°C to 55°C 0°C to 35°C
temperature

Beside these basic capabilites given through the described components,
smartphones can provide much more functionality. A smartphone is a mo-
bile device that mostly unifies components and resulting functionalities of a

7As shown on center right side.
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cellular phone, a PDA, an audio player, a digital camera and camcorder, a
Global Positioning System (GPS) receiver, and a PC. Smartphones formerly
often used PC-like QWERTY keyboards in order to increase typing speed
and sometimes PDA-like pen displays for improved data and command han-
dling. Mechanisms were developed that additionally improve text input, like
“Text on 9 keys” (T9) which represents predictive text technology.

Nowadays, more and more touch screen LCDs are built into smart-
phones basing on a capacitive panel. These panels base on the ability of
humans to influence electrostatic fields, which is measurable in change of
capacitance [203]. Alternatively, resistive panels can be used which base
on physical pressure creating an electrical connection between two sepa-
rated layers. Both, capacitive and resistive panels have their advantages
and drawbacks, shown on Table [2.1| which bases on [133].

External devices can be attached to most smartphones e.g. for using
additional storage space or being used as storage itself via USB. Addition-
ally, memory cards like the Secure Digital (SD) card can be inserted into a
smartphone, on some device even while the system is running (hot swap),
e.g. on Nokia N93. Current high capacity cards can hold up to 128 GB. In-
serted SD card can be read and written through the phone itself or through
a computer attached via USB.

In many cases, smartphones provide access to a main camera on the
back of the phone and sometimes to a secondary front camera for video
calls.

Smartphones use different techniques for creating wireless connections
for communication purpose:

e GSM represents the second generation (2G) of mobile end-to-end com-
munication, mainly used for voice calls and services like SMS

e GPRS in combination with 2G is often described as 2.5@G, as it pro-
vides voice and packet data.

e W-CDMAP| was designed as replacement of GSM and is used in the
FOMA system in Japan and UMTY] being able to transport data
at higher speed than GSM.

8Short Message Service (SMS).
9Wideband Code Division Multiple Access (W-CDMA).
10Universal Mobile Telecommunications System (UMTS).
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e Near Field Communication (NFC) is modern technique getting de-
ployed on smartphones. A key field of application is mobile payment.

Additionally, the devices provide Bluetooth, Wireless LAN (WLAN), or
IrDAE support for shorter range wireless connectivity. Using one of these
connections, a user is able to make phone calls, use an Internet browser,
play multi-player games, or read emails.

Smartphone use various sensors for giving the operating system, ap-
plications, and user’s information on their device and environment. The
Ambient Light Sensor (ALS) can be used for controlling the brightness of
the screen. The hall sensor is used for determining the position of the phone
while the accelerometer is used to identify movements. These both sensors
enables corresponding smartphones to detect motions which can be used in
various ways, e.g. to remote control a toy car through moving the phone.

2.2.3 Software characteristics

In this section, the operating systems with the biggest share among smart-
phone platforms will be introduced as well as corresponding application
development. This will raise awareness for threatened platforms and de-
vices.

Operating Systems

Most mobile devices use proprietary OSs, which has the disadvantage that
only few or even no additional software is available. On most smartphones
this disadvantage does not exist as they mostly use one of the following stan-
dardized operating systems that allow installation of native software. Pro-
viding the ability to install additional applications allows users to customize
a device according to their software needs. Following Canalys [37], the main
competitors in this field are: Symbian OS from Symbian Ltd. [138] 46.2%,
Research In Motion (RIM) [96] with its Blackberry hand-helds 20.6%, Ap-
ple [100] 17.8%, Microsoft [51] 8.8%, and Google Android [9] 3.5%, where
the percentages show the worldwide share on the smart phone market, re-
spectively. Other hold only 3.2%. Comparing the shares with growth rates,

Unfrared Data Association (IrDA).
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Android and iPhone will gain more while Symbian and Windows Mobile
will lose importance.

Symbian Symbian Limited is a software producing company located in
London, UK. Formerly, it is was owned by several companies, like Erics-
son, Nokia, Panasonic, Samsung, Siemens and Sony Ericsson. In December
2008, Nokia took over Symbian Ltd. for transferring it to the Symbian
Foundation. According to [138], the aim of the Symbian Foundation is “To
bring to life a shared vision to create the most proven, open and complete
mobile software platform - and to make it available for free.” [13§]. Current
smartphone manufacturers that license Symbian OS are Samsung and Sony
Ericsson.

Symbian OS uses three security methods: capabilities, installation file
signing, and data-caging. Capabilities limit access to sensitive APIs. There
are three levels of limitation where on the highest level full device and net-
work access is granted to the corresponding application. These limitation
levels are defined by certificates that are used to sign Symbian OS Installa-
tion System (.SIS) files. Without a valid signing, it is not possible to install
application on Symbian OS deviced'? Data-caging extends this approach
as it limits access to the file system. Depending on the limitation coming
from the certificate, application can only write to certain areas, like the
application folder, user data folder, or system folder.

Symbian OS holds the greatest share on the world wide smartphone
market with 46.2% which can be seen as its biggest advantage in comparison
to the competitors. One drawback about the current Symbian system is
that it is facing major changes which is shown in [I39]. This can lead to a
complete new architecture forcing developers to program their applications
again from scratch. Due to its high share, research work in Section is
realized on Symbian OS.

BlackBerry (RIM) Research In Motion (RIM) provides proprietary op-
erating systems for its BlackBerry devices. BlackBerry devices got known
for their ability to send and receive emails (push email) attracting busi-
ness managers and other persons relying on email messages. Today, var-
ious people use BlackBerries resulting in 20.6% worldwide market share
and therefore being number two in the smartphone world. Applications

12 Applicable to Symbian S60 3rd.
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for Blackberry devices can be combinations of native user interfaces and
java-side application logic. Hence, security mechanisms base on Java-level
permission that can be customized to developers expectations. Most Black-
Berry devices use a QWERTY-style keyboard which can speed up email
writing.

A central advantage of the BlackBerry platform is its push email tech-
nology allowing instant transmission of emails to the devices. A disad-
vantage of the BlackBerry platform is that it does not support full native
applications decreasing the possibilities for developers to interact with the
system. Although the BlackBerry platform is very interesting, no research
work was performed on this system.

Apple iPhone The Apple iPhone is a very interesting device that can be
classified as smartphone since the day Apple released a SDK for it in early
2008 [100]. The device runs a modified version of Mac OS X, called iOS,
and includes several applications, e.g. the Safari browser, a music player,
and digital camera. Third-party software can be developed with the SDK
through subscribing to the Apple iPhone developer program.

Although the device did not introduce purely new technology on release,
the combination of functionality and design had a significant impact on the
smartphone market. Since release in June 2007, the iPhone gained a 17.8%
share on the smartphone market. Additionally, the iPhone can be seen as
the main driver of smartphone Internet usage. The iPhone has a 51% share
in submitted Internet requests, making it market leader according to [97].
In terms of smartphone applications, Apple is also market leader. Apple
announced in September 2009 that it’s application store{r_g] just surpassed the
number of two billion downloads, providing more than 85,000 applications
for more than 50 million iPhone and iPod touch customers [99].

According to the presented numbers, the iPhone is leader in several
smartphone-related fields, e.g. smartphone Internet usage, which can be
seen as its biggest advantage. Despite this leading role, iPhone development
is restricted to non-critical libraries making it hard to create system-level
applications, which most security application are. Therefore, no research
work of this thesis was performed on the Apple iPhone.

13 Apple online application store is called App Store.
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Windows Mobile The Windows Mobile operating system is based on
Windows CE and was developed for mobile devices like PocketPCs, PDAs,
smartphones, and embedded systems (e.g. smart fridges [51]). The current
version Windows Mobile 7 is also called Windows Phone 7. Windows Mobile
security employs three major approaches: security roles, security policies,
and application signing. Security roles define users or groups having pre-
set rights on a device. The most privileged role allows changing security
policies, which are rules permitting certain actions on the device, e.g. in-
stalling and running unsigned applications. Application signing principles
of Windows Mobile are very similar to the ones of Symbian OS. Basically,
Windows Mobile software should be signed in order to permit access to
sensitive APId™]

Windows Mobile holds a 8.8% percent share on the smartphone market
where its major advantage can be seen in its interoperability with other
Microsoft operating system, e.g. Windows 7. A major disadvantage of
windows mobile systems was their former insecurity, which was also stated
by the UK Communications-Electronics Security Group (CESG) [52]: “The
current CESG policy/ guidance states that Windows Mobile version 6.1 is
not deemed suitable to access, store or process RESTRICTED (IL3) data.”

In this thesis, very early research work was realized on Windows Mobile.
In Section [4.3], a monitoring client for anomaly detection was implemented
that collected information on the hosting Windows Mobile system.

Google Android Google Android [9] is a software stack that includes
an operating system, middleware and basic applications. The first Android
device was released in October 2008 being named T-Mobile G1 while being
produced by HTC [49].

The Android system is built upon the Linux 2.6 Kernel and supports
most of its functionalities. Android treats every application equal meaning
both, that a developer is able to replace every single Android program and
an Android application can be run on any Android device only being limited
by the provided functionalitied™] Google Android security mechanisms are
based on those of a Linux system. Access control, e.g. user and group
IDs, is managed where every installed application gets its own user 1D
with its specific permissions. These permissions allow finer-grained access

14 Gecurity policies can make application signing unimportant.
15Example functionalities are used in Internet tablets and navigation systems.
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adjustment for processes using certain functionalities, e.g. sending SMS
messages or dialing a phone call. As it is an open platform and its possible
large market share, one can expect that Android should be in the focus of
most malware developers.

Since the first devices were released, Android gained a market share of
3.5% on the smartphone market while it is also deployed to other systems,
e.g. netbooks [I01], tablets [122], or electronic paper devices (e-ink) [121].

Smartphone Software Development

Developing, building, and testing smartphone software requires tools which
are often included in a Software Development Kit (SDK) or Integrated De-
velopment Environment (IDE). Since applications are a central aspect of
smartphones, these software packages will be briefly introduced in this sec-
tion.

The SDK A SDK is a collection of software that gives a software devel-
oper the ability to create and deploy software for a certain framework, plat-
form, operating system, programming language or hardware. Most SDKs
are freely available on the web pages of the corresponding manufacturers.
Example SDKs can be found in Android or iPhone SDK [9, 100]. Most
SDKs are delivered with a software emulator.

The Software Emulator A software emulator gives a developer the abil-
ity to run and test software on his computer though it is developed for other
systems or platforms, e.g. Symbian OS devices. This can reduce costs, since
software prototypes can already be programed and run without buying a
real device. On the other hand, the emulator often does not support all
functionalitiesEG] of a real device. This can lead to serious problems, if not-
supported functionalities have a severe impact on the program stability.

In general, unlike a simulator which reproduces program behavior, an
emulation attempts to reproduce the same states real devices would enter
at corresponding points. Regarding current SDKs, most of the so called
software emulators only simulate connections, interfaces, and functional-
ities through mapping e.g. simulator Bluetooth port to PCs serial port.

166 g. connectivity like GSM or UMTS
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Therefore, the use of the term simulator would be more appropriate than
the term emulator which is currently commonly used.

The IDE The Integrated Development Environment is very similar to
SDKs, it often combines tools to be able to write, compile, build and debug
software. The main difference is that today’s IDEs integrate most tools into
one single tool that has graphical user interface (GUI). Then, most relevant
actions can be performed through the user interface, which often speeds up
development. Examples for IDEs for mobile devices are MS Visual Studio,
Metroworks Codewarrior, Nokia Carbide, and Eclipse.

2.3 Usage

Increasingly, smartphones have become the platform of choices for both
business and consumer. The class and types of applications being deployed
in the current generation of smartphones provide a compelling argument
for the need of increased security. For example, most banking institutions
worldwide have deployed smartphone applications that have access to a cus-
tomer account, and its sensitive data. Hence, understanding this emerging
trend is critical to our understanding of the compelling reasons for securing
the smartphone platform and corresponding infrastructure. This topic will
be covered next.

AdMob Inc., a subsidiary of Google Inc. that is specialized on mobile
advertisement, stated in its monthly mobile metrics report for February [98]
that smartphones surpassed feature phones in terms of Internet traffic share
in October 2009. Considering the smaller amount of smartphones in com-
parison to the number of feature phones, this fact underlines the meaning
of smartphone browsers and the possibility to use various communication
technologies for interconnection. Therefore, in this section, we will start
describing smartphone usage in the year 2005/06 when our research in this
field started. Additionally, we will highlight changes from the past surveys
to our current numbers.
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2.3.1 Smartphone Usage in the Years 2005/2006

In this section, we refer to a survey [213] and a monitoring experiment [230)]
which investigated the actual usage of smartphones.

Table 2.2: TNS GTI Top-10 applications/services 2005

No. | Application Usage
1. | SMS 83%
2. | Games 61%
3. | Camera 49%
4. | MMS Picture 46%
5. | PDA Functions | 36%
6. | Internet 31%
7. | WAP 30%
8. | Bluetooth 28%
9. | Email 27%
10. | Video Camera 27%

In Global Technology Insight 2005 [213], TNS Technology identified the
most used applications in 2005. The results base on data coming from 6807
people using a mobile phone (6517 persons), PDA or laptop and accessed the
Internet at least once a week. The study partly focused on the adaptation
of technology applications on mobile devices, which we used to excerpt the
top ten applications. Table shows the extracted Top-10. It is interesting
to see that the most used applications from this survey were messaging,
games, and the camera while presented results are slightly biased through
participation of a small number of laptop users.

Verkasalo et al. [230] monitored 562 smartphone users over a period of
six months where only devices were taken into account that at least provided
data from 21 active days. Table |2.3| shows the results for the overall Top
ten applications while Table shows the top ten third-party applications.

2.3.2 Smartphone Usage in the Year 2010

For verifying the somehow outdated numbers from 2006, we conducted a sur-
vey on smartphone usage including 146 participants, mostly from Germany.
This survey is part of a German diploma thesis by Tobias Himmelbach
where the work still needs to be published.
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Table 2.3: Top-10 applications by launches 2006

No. | Application Usage
1. | Logs 100%
2. | Messenger 100%
3. | Phonebook 100%
4. | Calendar 93%
5. | Browser 91%
6. | Profile application 90%
7. | Clock application 89%
8. | Camcorder 88%
9. | Calculator 81%
10. | Application Manager | 74%

Table 2.4: Top-10 3rd party application by launches 2006

No. | Application Usage
1. | File explorer 29%
2. | Browser 25%
3. | Picture application 17%
4. | Messenger 17%
5. | Text processing application | 16%
6. | Game 15%
7. | Game 13%
8. | Picture Viewer 13%
9. | Bloging tool 12%
10. | Picture Editor 12%

In this survey, interesting points could be observed regarding the usage
of smartphones. Although not considered in [213], we asked the partici-
pants whether they actually use their smartphone for making phone calls
or not. Interestingly, only 97% responded to this question positively while
first assumptions were that the missing 3% might be a statistical error ratio.
But when conducting an internal survey for a major German telecommuni-
cation service provider with more than 500 participants, we got the exact
same number. While no clear reason can be given for this, some participants
might use their smartphone only for navigation or as music player.

Comparing the numbers from the year 2006 with the ones of 2010 which
are also shown on Table [2.5] one can see that sending text messages kept
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one of the most used services of smartphones. Internet usage obviously
increased moving from sixth place to third place. Clock usage was not
considered directly in [213] but still is one of the most used functions on a
smartphone. Camera usage increased from 49% in the year 2006 to 81%. A
very interesting change was the usage for navigational tasks (80%). Another
interesting point is the increased usage of a smartphone for listening to
music. This can be explained with the increasing capabilities and storage
smartphones provide and being directly addressed in advertisement.

Table 2.5: Smartphone usage survey results from 06/2010 showing percent-
age of users using certain applications on a regular basis.

No. | Application | Usage
1. | Telephone 97%
2. | SMS 91%
3. | Internet 90%
4. | Email 87%
5. | Clock 87%
6. | Camera 81%
7. | Navigation 80%
8. | PDA 80%
9. | Music 1%
10. | Games 67%

2.4 Security

This thesis describes security techniques for detecting malicious applications
on smartphones. Therefore, background information on relevant security
principles is presented in this section. Moreover, security of smartphones is
explained through listing prevalent threats and corresponding security mea-
sures to them. Readers familiar with basic security concepts and paradigms
can jump over to Section [2.4.2]

2.4.1 Security Background

Smartphones represent compact mobile computer hand-helds. This allows
us to apply known security definitions and principles to them. Starting with

26



2.4. SECURITY

the term “security” itself: one interpretation of this word is the condition

Table 2.6: Summary on security goals according to [31], 217, [164]

Confidentiality | Data that is transmitted or stored should only be
revealed to an intended audience

Integrity Modification should be possible to detect and the
creator should be identifiable

Availability Services should be available and function cor-
rectly

of being protected against danger or loss. The Department of Defense in
the U.S.A. defines it as “a condition that results from the establishment
and maintenance of protective measures that ensure a state of inviolability
from hostile acts or influences” [163]. Bejtlich [26] states that security is the
process of maintaining an acceptable level of perceived risk where the secu-
rity process revolves around four steps: assessment, protection, detection,
and response. Bishop [31] introduces the term “security goal” to be able to
describe objectives that have to be achieved in order to state a computer
system or network is secure. These goals are confidentiality, integrity, and
avatlability where a summary on these terms is given on Table [2.6

Confidentiality According to the United States Code (U.S.C.) [217], con-
fidentiality refers to preserving authorized restrictions on information
access and disclosure, including means for protecting personal pri-
vacy and proprietary information. Generally speaking, confidentiality
refers to limiting access to data and information to authorized per-
sons. In case of computer systems, authentication methods, like user
name and password or biometric fingerprint recognition, can autho-
rize access to a system. The American NIST["| [164] states that a loss
of confidentiality is the unauthorized disclosure of information.

An example for keeping confidentiality on a certain file is to control
access to it through user file system rights. A certain user can be
assigned sole ownership and right to read, write, and execute the
file. An example for losing confidentiality is, if an attacker is able
to escalate his system rights to root level.

1"National Institute of Standards and Technology (NIST).
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Integrity Following the U.S. Code [217], integrity refers to guarding against
improper information modification or destruction, and includes ensur-
ing information non-repudiation and authenticity. Bishop [31] states
that integrity includes data integrity and origin integrity. Data in-
tegrity assures that the data is free of modifications or corruptions.
Origin integrity guarantees that the source of data and information
is marked correctly. Bishop [31] additionally explains that integrity
methods fall into two classes: prevention mechanisms and detection
mechanisms. Prevention mechanisms aim for maintaining integrity
while detection mechanisms try to identify possible alteration of data
and information. NIST [164] states that a loss of integrity is the
unauthorized modification or destruction of information.

An example for proving existing data integrity might be realized by
checking a created collision-free hash code on a certain file. An ex-
ample for loss of data integrity can be seen in a list of grades from a
teacher that was modified by a student for his own benefit. A very
simple example of lost origin integritylﬂ can be seen in the assessment
of most scientific works, e.g. bachelor, master, and Ph.D. theses. Each
work has to be free of plagiarism else origin integrity would be broken.

Availability U.S.C. [217] defines availability as ensuring timely and reli-
able access to and use of information. Hence, availability describes
whether a resource or information can be used in a timely fashion or
not. NIST [164] describes that a loss of availability is the disruption
of access to or use of information or an information system.

Denial of Service (DoS) attacks are a common example for disrupting
online services, as seen in August 2009 when twitter serviced™| were
note reachable for hours [240]. Besides obvious DoS attacks, availabil-
ity can also be harmed by unintended action, e.g. when the cleaning
sir/lady removes a power plug in server center for plugging in the
vacuum cleaner.

The goals presented on Table can be harmed through the following
threats [31]: eavesdropping, modification, masquerading, repudiation, denial
of receipt, delay, and denial of service where a summary on these terms is
shown on Table 2.7 A threat is a potential violation of security meaning

18This example also applies to data integrity.
Yhttps://www.twitter.com, visited 15.3.2009.
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that the violation does not actually need to occur but need to be protected
against [31]. Actions that lead to a violation are called attacks; those who
perform them are called attackers [31].

Table 2.7: Security threats according to [31]
Eavesdropping An entity reads information that it is not in-
or Snooping tended to read
Modification or | Data is being altered or destroyed
Alteration

Masquerading An entity claims to be another
or Spoofing
Repudiation An entity falsely denies participation in an act

Denial of receipt | An entity falsely claim not to have received a de-
livery object

Delay The delivery on an object is delayed

Denial of service | Any action that aims to reduce the availability
and / or correct functioning of services or systems

Eavesdropping Favesdropping describes the unauthorized interception of
information and is also called snooping. Examples for eavesdropping
are reading post cards that are not addressed to you or monitoring
(wireless) network traﬂiﬂ, e.g. for capturing user-names and pass-
words. In all cases, eavesdropping is passive. Measures to maintain
confidentiality can counter this threat [31].

Modification Modification describes the unauthorized change of informa-
tion and is also known as alteration [3I]. Since integrity measures
address the threat of modification the same examples apply here: a
student that breaks into the central computer of his school in order to
alter a list of grades represents the modification threat. Another real
life example for modification is whenever people exchange price tags
in shops in order to pay less than actually needed.

Masquerading The threat of masquerading, which is also called spoofing,
is given whenever an entity claims to be another entity. A very sim-
ple example is the usage of eavesdropped account login credentials.
A common real life example is the usage of faked identity cards by

20This method is also called passive wiretapping.
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under age persons in order to buy alcohol or to enter a discotheque.
Masquerading is addressed by methods that maintain integrity [31].

Repudiation The threat that an entity falsely denies participation in an
act is called repudiation of origin. An example for this, which is also
given in [31], is if a customer orders an expensive product and denies
having ordered it when it gets delivered. Integrity mechanisms cope
with this threat [31].

Denial of receipt If an entity claims that it did not receive an informa-
tion although it did, this is described as denial of receipt [31]. Using
a similar example as before: if the customer receives an expensive
product but denies this by asking the vendor whether it was already
shipped or not, this can be seen as denial of receipt. In case of com-
puter systems, methods to ensure integrity and availability counter
this threat.

Delay Delay is a threat that includes all actions that lead to a delay of
delivery of an object. An attacker can, e.g. delay the forwarding of an
email that warns employees of a company not to use a certain service
since it was misused for phishing purpose right until the people use
the service. Availability methods target this threat [31].

Denial of service Denial of service is a threat that bases on preventing
objects to be used at a certain or any time. Denial of service attacks
can be realized through exploiting communication protocol flaws that
lead to states not allowing the system to answer (e.g. timeouts). This
threat is of special interest whenever companies or institutions are
relying on responsiveness of their services, e.g. in case of online shops
or online trading. But not only commercial services are critical; if
an attacker succeeds in performing a denial of service attack on the
communication system of the police, it will be hard to coordinate the
police cars and troops. The denial of service threat can be countered
with measures ensuring availability [31].

2.4.2 Security of Smartphones
As shown in Section [2.4.1] several threats to computers are known which

also apply to smartphones. In this section, a more detailed description
on these threats will be given while suitable security mechanisms that can
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counter them are presented, too. What will not be given is a complete
taxonomy on smartphones threats and attacks. Various researchers tried
to find a tautological taxonomy for computer threats in past two decades
where none was presented yet up to our knowledge. Example approaches
can be found in [204], 136], 87].

Threat Attacker
Attacker in Attacker not in )
possession possession Device

Areas partly
Key area affected by
of thesis thesis
Attack
Malware basing on
Goals
c I A cC | A h d
A x 4 x * w arme
5 N
; ' ) Social ;
Manual deletion Replacement Reading : . '
; . engineerin
of data of files of emails g 9 Example

on contacts

Figure 2.2: Major threats to smartphones are shown on this figure. The
goals being potentially harmed refer to (C)onfidentiality, (I)ntegrity, and
(A )vailability. Additionally, the main area of this thesis is highlighted while
affected areas are also shown. In this figure, the term bug also refers to
flaws that can be exploited.

Instead, a general overview on the field of smartphones threats, which
can be seen on Figure [2.2] and corresponding attacks will be shown in the
next sections. Figure makes one major distinction: the attacker is in
possession of the device or he is not. This distinction emphasizes the daily
threat of mobile hand-held devices of potentially getting lost or stolen in
comparison to stationary computers. This work mainly targets the case that
the attacker is not in possession of the device. All approaches presented in
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this work aim for detecting malicious applications running on a smartphone.
Since one of the presented approaches bases on behavior-based detection
other areas than malware detection are also touched.

Threats to Smartphones

In this section, well-known threats and attacks against smartphones will be
presented. As stated in Def. [I} smartphones have a standardized operating
system with available SDK and various interfaces. For being able to present
threats to smartphones in a structured way, we will use Figure[2.3|that shows
a simplified view on the most common smartphone interfaces which can be
accessed through libraries included in the SDKs. Corresponding to these
interfaces, relevant threats will be described.

Wired] [ Wireless |

Device Interfaces

] : . Other (Sensors
API £:> Operating System Hlnte rfaces%

External Memory
Interfaces

Connectivity Interfaces ‘

User Interfaces

Figure 2.3: On this figure, a simplified view on the most common smart-
phone interfaces is presented. These interfaces will be used in order to
structure the presented attacks.

The presented interfaces are sorted by their parent interfaces, which are
Device Interfaces, Connectivity Interfaces, User Interfaces, and FExternal
Memory Interfaces. Attacks on other interfaces, like the ones from the
sensors, are imaginable, e.g. an attacker might influence the magnetic field
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in order to manipulate the compass or might cause signal interference for
disturbing GPS, but will not be discussed in detail due to lacking publication
of incidents. Each of the other interfaces faces various threats, where the
threats presented next are separated as shown in Figure 2.2 At the end of
this section, a summary on the threats is provided in Table [2.9

Attacker is in Possession of the Device When having a smartphone
in the hands of an attacker, e.g. device was stolen, kept unattended, or
lost, another distinction has to be made in order to be able to describe
the resulting threats: either the device operating system is accessible by
the attacker implying an attack through the User Interfaces or it is not
accessible. Access to the device operating system can be prevented by
setting up mandatory user authentication, which is possible for most current
smartphone operating systemﬂ, e.g. Android, iPhone, or Windows Mobile.
In case of iPhone and Windows Mobile, a Personal Identification Number
(PIN) or more complex pass-codes can be set.

PIN authentication is a well-known method on mobile phones to protect
access to the SIM card where most users are probably unaware that in most
cases the four digits PIN does not restrict access the device. This PIN is used
to verify the International Mobile Subscriber Identity (IMSI) in the Home
Location Registry of the corresponding network provider. If verification is
successful, access is granted to the network. The problem about this method
is that it has the purpose of controlling access to the network and not to
the device or data. Replacing the SIM card normally leads to full access to
the device.

Therefore, setting up proper authentication is very important for pro-
tecting against attacks through User Interfaces targeting the device and
data. If the device has a set authentication method@, attackers can try to
use methods known from the field of computer forensics. The first approach
might be to remove a memory card from the Fxternal Memory Interfaces,
e.g. Secure Digital (SD) or Multimedia Card (MMC). If data was stored
unencrypted, as assumable in most cases, all data can be read and modified
possibly harming the security goals confidentiality and integrity. Since the
device is in attacker’s hand, availability is also harmed. Besides the threat
of (private) information being read from a removed memory cards, these

21 Authentication methods came up with newer smartphone OS, like Android. Before,
most smartphones were lacking this feature.
22Tn this case it is assumed that this is not breakable by the attacker.
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cards can also be used in order to distribute malware, e.g. the Windows
Mobile malware called WinCE.Cxover.A [137]. Smartphone malware will
be handled more detailed in Chapter [3|

Additional steps can be taken using tools, like SIMIS 2 [73] that tar-
gets Universal Subscriber Identification Module (USIM) cardd®] or Oxygen
Forensic Suite [46] for investigating smartphones basing on all major oper-
ating systems. These tools are able to retrieve the IMSI, IMEI, contacts,
messages, emails, attachments, web browser cache, and even deleted files
without the need for special hardware; the software and a connector cable
are sufficient in most cases implying an attack through the Device Interfaces.
Since most of these tools are specialized on data extraction, the integrity
goal is not harmed. Further information and recommendation on handling
of cell phone forensics can be found in a special report of the National
Institute of Standards and Technology written by Jansen et al. [I08].

Besides the threat of forensic tools being connected to the device, the
Device Interfaces obviously can be attacked by destroying the interface me-
chanically or by giving not specified inputs, like a too high voltage, to them.

Attacker is not in Possession of the Device When the attacker is
not in possession of the device, he is limited to attacks on and through
interfaces that are accessible to him. Normally, these will be the wired and
wireless Connectivity Interfaces that include short and longer range wireless
communication interfaces. These interfaces can be attacked directly?? or
they can be used for transmitting malicious data, e.g. malware or phishing
emails.

As an example, Bluetooth was the source of many attacks in the past.
Popular attacks were called BlueSnarfing, BlueBugging, BlueJacking and
BlueSmacking. BlueSnarfing refers to the exploitation of immature Blue-
tooth implementation on some cellular- and smartphones. Using the Obex
Push Profile (OPP) that normally provides an exchange mechanism for
vCardd?)| attackers were able to secretly download known files [225], like
the corresponding file for the phone book@ or calendaﬂ The BlueBugging
attack bases on sending Hayes AT commands [48] to infiltrated phones.

Z3This tool also targets older Subscriber Identification Module (SIM) modules.
24Tn most cases the protocol itself or its implementation is attacked.

25These are electronic business cards.

Z6telecom /pb.vef

2Ttelecom /cal.vef
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By doing so, the attacker is able to perform various actions, e.g. initiation
calls, sending SMS messages, or reading the dial history [223]. BlueJack-
ing itself is not an attack; it just describes the usage of Bluetooth in order
to transmit messages to devices in range. Messages might contain a hoax
or offensive content and therefore still can be seen as threat to unknowing
users. BlueSmacking refers to a denial of service attack similar to the classic
“ping of death” attack [224]. In this attack, the targeted device will be sent
packets with predefined length that are normally used in order to determine
the round trip time (RTT). By doing so, the attacked device can be forced
into a state solely trying to answer the sent packets ending in a Denial of
Service. Besides attacks on and through the Bluetooth protocol, Bluetooth
was also used for transmitting the first malwarﬂ for smartphones called

Caribe [169)].

But not only Bluetooth can be used in order to attack a smartphone,
other communication protocols are also threatened. Engel [62] describes
the “curse of silence” attack that can result in a device not being able to
receive SMS/MMS messages any more until it is factory reseted. The attack
bases on a SMS message sent as email through modified header containing
a receiver email address longer than 32 characters. Several devices from
running Symbian OS 2nd and 3rd version are affected by this attack.

Frick and Botf®] [77] filed a patent in the year 2000 describing the so
called IMSI Catcher which is a virtual base transceiver station (VBTS).
Due to a feature of the GSM protocol, mobile nodes connect to the base
transceiver station with the perceived highest transmission power. If a new
node appears using a different area code to the former station, the mobile
device tries to connect to this new node by sending its IMEI and IMSI. An-
other feature of the GSM protocol allows the BTS to decide on the encryp-
tion to be used for communication between the BTS and a corresponding
node. In case of the VBTS, encryption will be switched off which allows
attackers to capture all communication including phone calls.

If not using an IMSI catcher, attackers aiming for capturing communi-
cation have to try to break the encryption. A successful approach in finding
secret key of the GSM A5/1 algorithm is presented by Biryukov et al. [30].
Approaches on breaking the algorithms A5/1, A5/2, and A5/3 are presented
by Barkan et al. [20].

%The term malicious software (malware) will be introduced in the next section
29Both were employed by Rohde & Schwarz
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Table 2.8: Results of the heap spray attack on mobile platform browsers
PLATFORM oS BROWSER RESULT
iPhone Mac OS X Safari System freezes.
2.2.1 (5h11) Fix requires
restart of device.
iPod Touch Mac OS X Safari System freezes.
2.2.1 (bH11) Fix requires
restart of device.
HTC G1 Google Android Google Browser crashes.
“Dream” RC33 Browser All applications
(retail) killed. Application
stack restarts.
HTC Android Google Android Google Browser crashes.
Dev Phone 1 dream_devphone Browser All applications
(developer) -userdebug killed. Application
1.0 UNLOCKED stack restarts.
HTC Compact IV | Windows Mobile Internet Throws warning.
6.1 Explorer Script can be
stopped manually.

Besides attacks on the communication of smartphones, application weak-
nesses can also be used in order to attack a device. A still unpublished work
of us bases on a memory vulnerability. The technique used to take advan-
tage of the vulnerability is known as heap spraying, executed within the
browser domain. To the knowledge of the authors, this technique was intro-
duced by persons using the pseudonym Blazde and SkyLined for attacking
Microsoft’s Internet Explorer in 2004. Following [174], heap spraying tar-
gets vulnerable programs that jump into invalid memory spaces within the
valid heap space. An essential requirement to perform heap spraying is the
ability to control the application’s heap. If an attacker managed to gain
control, he will be able to insert large amounts of so called No-Operation
slides, all ending with the final shell code to be executed, into the target
heap. A common example application, being vulnerable to heap spraying,
is the browser. In the past, Microsoft’s Internet Explorer was the primary
target for this type of attack, but other browser, as well, show similar vul-
nerabilities, e.g. Webkit-based browsers of smartphones and other mobile
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deviceﬂ. In most cases, JavaScript is used for injecting the shell code into
the heap where additional descriptions are given in [54] [185] [178], 207]. Ta-
ble[2.8|depicts affected devices and OS versions in our tests using a modified
web page to inject data into heap.

As stated formerly, one the biggest threats to smartphones is mali-
cious software harming the security of the device and user. In most cases,
smartphone malware bases on the Application Programming Interface (API)
using existing functions in order to perform malicious actions. However, in
some cases smartphone malware uses an application weakness, like the first
iPhone worm called ITkee [84]. When having a certain SSH application in-
stalled on a “jaﬂ—broken”ﬂ device, the standard password is set “alpine”
resulting in a serious vulnerability if not changed. The worm Ikee used
this vulnerability in order to log into devices using the “alpine” password
changing the background image to a photo of Rick Astleyiﬂ

Summary on Smartphone Threats Table[2.9shows a summary on the
presented attacks with corresponding threats to smartphones. Comparing
the numbers of check-marks in each row, malware, manual input by an
attacker, and Bluebugging can have the worst outcome. Of course, not all
threats have the same impact but the ones listed here include all possible
threats. Therefore, they can be seen as the most severe ones.

Prevalent Security Mechanisms in Smartphones

For protecting a smartphone against attacks, several security mechanisms
can be found built into the corresponding operating system.

For preventing unsolicited access through the User Interfaces, authen-
tication methods can be used to control access to a device. Despite the
probable assumption of many users, the prevalent “one-shot” authentica-
tion basing on a four digit PIN on start-up of the device does not restrict
access to the device; it is used to authenticate the user to the mobile phone
network. Therefore, most mobile phones do not actively use or even support
user authentication meaning if the device is lost or stolen attackers get full
access to it. Vendors of current smartphone platforms realized this problem

30 Android, iPhone, and iPod affected.
31 A modified firmware is installed giving the user more control over his device.
32Rick Astley is a music artist.
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Table 2.9: Smartphone interfaces and their threats

e | &
= | 5| 8| ¢
IR
AEEIEREIN
=l z| 2| 8|52
=R NS [ = =R N A
Device Interfaces
Manual actions by attacker v v
Forensic tools v
Connectivity Interfaces
BlueSnarfing v
BlueBugging VI IVIVIVI VY
BlueJacking
BlueSmacking v v
Curse of Silence v v
IMSI Catcher v v v
User Interfaces
Manual actions by attacker VIiIVIVIVIVI|VY
External Memory Interfaces
Manual actions by attacker v |V v IV
Application Programming Interface
Heap spraying v v
Malware VIV IVIVIVvIY

and included authentication functionality to their devices. As an example,
Android includes the possibility to set a visual pattern for authenticating
to the system. This pattern has to be drawn on a grid consisting of nine
points which can be seen on Figure 2.4]

In case of iPhone and Windows Mobile, a four digit PIN can be setf’]
Interestingly, all mass market devices we saw did not include any other
authentication method that was built-in and shipped by the vendor. Any-
how, by installing additional application it is possible to add authentication
methods to a device. The problem is that in most cases these methods

33More complex pass-code including regular characters can also be set.
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a1 & 4:02 PM

B Draw pattern to unlock

+ Emergency call

Figure 2.4: Android authentication using visual pattern

only protect a limited spacel?] [145] and not the device itself. Nevertheless,
such application together with encryption methods can be very useful when
protecting memory cards in the External Memory Interfaces. If these cards
are not protected, full access to them is very probable due to their FAT file
systemE] which does not support proper access control.

Protection of the Device Interfaces is up to the end user since these
are only threatened when an attacker has physical access to them. The
opposite can be found when considering the Connectivity Interfaces. In most
cases, the user will not have control over protecting the communication of
the device. Protection of the communication is part of the communication
protocol where the former examples [224] 223] 225] 77, 30, 20] show that
the possibility of successful attacks should not be ignored.

When looking at security mechanisms protecting against malware and
misuse of the Application Programming Interface (API), several approaches
can be found built into current smartphone operating systems. As shown
earlier, Symbian uses a certification system in order to prevent third-party
application to access restricted function calls and file system areas. For

34This can be a certain application or container file.
35Fat file system is used for interoperability reasons.
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deleting system files, for example, you will need a certificate that only Sym-
bian or phone manufacturers will get. Android uses UNIX-like user IDs to
assign specific permission to applications. Additional Java-level permission
can be set to restrict access to certain packages that allow usage of sensitive
or critical functions, e.g. calling capabilities. A comprehensive guide to
Android security mechanism can be found in [6I]. Similar to Android, the
Apple iPhone uses a sandbox system for its application to prevent applica-
tion to access other application data. Additionally, system files, resources,
and the kernel are shielded from user application space. Like Symbian, An-
droid, and Windows Mobile applications, Apple iPhone applications need
to be signed when released. The corresponding certificate that is issued by
Apple can prevent unsolicited alteration of the application while making
the origin@] traceable. Windows Mobile secures its devices through security
roles, security policies, and application signing.

But whenever these protection methods are bypassed by malware, e.g.
through an exploit in a library, no comprehensive measures are available
to secure smartphones. Most available anti-virus products for smartphones
still base on signature-based approaches®’|leaving devices infected by new or
unknown malware exposed to the malicious functionalities. This situation
can be seen as the main motivation of this thesis for finding light-weight
approaches capable of detecting new and unknown malware on smartphones.

2.5 Related Research

In this section, related work in the fields smartphones, smartphone security,
and user awareness is presented.

2.5.1 Smartphones

As stated in Section [I.1] the smartphone follows the early vision of Mark
Weiser [237] but does not reach it completely: “Ubiquitous computing en-
hances computer use by making many computers available throughout the
physical environment, but making them effectively invisible to the user”.

36Tn this case the developer is meant.
37 Although not proven, it is very likely that more comprehensive methods were not
deployed yet due to limited processing capabilities.
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Especially the invisibility is not achieved yet due to the requirement of a
screen as visual output device which is currently bound to the device itself.
Nevertheless, it is imaginable that current screens might be replaced in near
future letting Weiser’s vision become truth for smartphones.

Abowd [2] underlines the meaning of smartphones for the world of
ubiquitous computing. He states that for the time of publishing his article
in 2005, the killer applications of ubiquitous computing were person-to-
person voice communication and text messaging (SMS).

Charlesworth discusses the ascent of smartphones in his article [39]
while he also predicts their descent as soon as they get broken down into
separate components being integrated into clothing which again follows the
vision of Weiser.

Reynolds [182] talks about the implications and consequences of the
increasing amount of smartphones connecting to the Internet while consid-
ering data security issues when such devices are stolen. He also discusses the
lacking revolution of human-computer interfaces on smartphones compared
to the corresponding revolution of computing itself.

Guo et al. [85] describes possible attacks for smart-phones, which range
from privacy violation and identity theft to emergency call center DDoS
attacks and national crises, concerning their interoperability between the
telecommunication networks and the Internet. They also describe defense
solution space including smart-phone hardening approaches, Internet-side
defense, telecommunication-side defense, and coordination mechanisms that
may be needed between the Internet and telecommunication networks.

Several fields of application were presented and proposed by other au-
thors: Ravi et al. [I79] describe a protocol for the usage of smartphones
for accessing ubiquitous services, e.g. door opener service. Beale [24] shows
example applications supporting social interaction with smartphones, e.g.
a local dating service and file sharing. Cheok [42] uses smartphones for re-
alizing a modern real-life version of a capture-the-flag game. In this game,
two teams try to capture the flag of the other team while trying to protect
its own. The Flag was realized a small and hand-held box running Linux
while allowing Bluetooth connections. Yu et al. [242] describe the usage of
smartphones for supporting context-aware media recommendations. Their
approach uses local characteristics and preferences of the media player as
well as the locations, activity, and time in order to recommend media, like
images, video, or text. Raento et al. [I77] also work in the field of context-
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based computing where they provide a platform for context-aware mobile
applications.

Furthermore, smartphones find application in the field of medical helpers
as described by Leijdekkers [131]. In his work a personal heart monitoring
system using smartphones is described being capable of detecting life threat-
ening states. Additionally, interesting areas of application were pointed out
by Roussos et al. [186]:

e Mobile Phones as information service endpoint, e.g. applied as navi-
gational assistance or location based services.

e Mobile Phones as remote controllers for different devices, like televi-
sion or Hi-Fi station.

e Mobile Phones as pervasive network hubs to provide wide area con-
nectivity, e.g. for wearable systems that need to communicate in order
to transmit health-related data.

e Mobile Phones as ID tokens in order to store information used to
verify the user and information.

Using smartphones as input devices opened a new research field in Human
Computer Interaction (HCI). Ballagas et al. [19] describe smartphones as
ubiquitous input devices. Furthermore, they state that the smartphone
might even become the default psychical interface for ubiquitous comput-
ing application while providing the basis for new interaction paradigms.
Anquetil et al. [I5] show the possibility of integrating online handwriting
recognition on a smartphonerﬂ

As a final reference, Amft et al. [L1] is given. Amft et al. describe the
evolution “from backpacks to smartphones”. In this work, the past, present,
and future of wearable computers is shown where the smartphone is told to
be the future central on-body platform for general purpose computing tasks.
Several other peripheral components, like wearable computing devices and
sensors, will be able to connect to the central and invisible smartphone in
order to exchange information or computational tasks. In the opinion of the
author of this thesis, this outlook seems realistic while fulfilling the vision
of Weiser completely.

38This approach already succeeded in the year 2002.
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2.5.2 Related Research in the Field of Smartphone
Security

In Section [2.4.2] several threats and attacks on smartphones have been
presented. In this section, we will introduce related research papers in-
vestigating the possibility of new attacks as well as the feasibility of new
approaches to protect the devices.

Racic et al. [I76] demonstrate an attack, which can drain the mobile
devices battery power up to 22 times faster. This attack targets a unique
resource bottleneck in mobile devices (the battery power) by exploiting an
insecure cellular data service (MMS) and the insecure interaction between
cellular data networks and the Internet. The attack consists of two stages.
In the first stage, the attacker generates an victim list by exploiting the
MMS notification system. In the second stage, UDP packets are sent to the
victims in order to drain the battery.

Jesse D’Aguannd®| gives detailed information on how to attack RIM
Blackberry supporting networks'’}

The continuous work of Mulliner et al. 2006 [153, 1506} [152] 155] has led
to essential work concerning Windows Mobile and Symbian OS security.

Enck et al. [60] present a rule-based system in order to indicate mali-
cious potential of Android applications. Therefore, they collected the top
311 applications from android market and checked them for occurrences of
certain permission set in a configuration file of each. This check showed that
five of these applications implemented dangerous functionalities. Another
five also showed dangerous permissions but these could be argued through
provided functionality of those applications.

Ongtang et al. [I66] propose a policy enforcer for Android that hooks
into the system in order to control application at installation and at run-
time.

In [221], Traynor et al. present how to exploit open functionalities
in SMS-capable cellular networks. Using a single modem, an attacker is
able to deny voice service in scale of major cities, like Washington DC.
Using a bot net can result in whole countries being attacked. In [222] 220]

39He presented as speaker with the pseudonym “x30n”.
40proof-of-concept at http://www.praetoriang.net/presentations/blackjack.
html
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the same authors propose mitigation strategies for this attack using queue
management and resource provisioning.

Hwang et al. [92] state that embedded devices, like cellular phones,
smart cards or embedded network sensors are mostly portable, communi-
cate wireless and are battery powered or at least energy-limited. The design
of security for embedded systems differs from traditional security design, as
different characteristics can be found for each kind. There are two main
groups of characteristics that differentiate the security architecture from
Embedded System from that of workstations and servers: resource limita-
tions and physical accessibility. In their work, Hwang et al. claim that
embedded security cannot be solved at single security abstraction layer and
therefore present security measures for all abstraction layers.

2.5.3 The Role of the User in Security

In the Ph.D. thesis of Michael Becherf'I| from University of Mannheim read-
ers get pointed to the direction of security awareness and the influence of
the user on the system security. Several interesting articles were published
that are not directly related to smartphone security or malware detection
but still can open a different view on computer and smartphone system
security.

Bruce Schneier wrote several books on computer security while claim-
ing at the beginning that cryptography can solve security problems. In the
book [201], he revokes his statement saying that “weak points have noth-
ing to do with mathematics. They were in the hardware, the software, the
networks, and the people. Beautiful pieces of mathematics were made ir-
relevant through bad programming, a lousy operating system, or someone’s
bad password choice.”.

Furnell et al. [78] present results of a survey of over 340 participants
that aimed for determining their understanding of security features within
Windows XP and three popular applications. The major conclusion is that
there is a need for increased usability since a large amount of respondents
had problems with even standard security features.

A similar result is presented by Whitten et al. [239]. In their work they
describe a test where the participants were given 90 minutes in which to

41 His thesis should get published soon.
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sign and encrypt a message using PGP 5.0. Since the majority was not able
to do so successfully, they conclude that PGP 5.0 was not usable enough
although it had rich user interface.

Tossy et al. [219] recommend to train the smartphone user not to in-
stall application received via Bluetooth or MMS while Gorling [81] states
that several security researchers claim that educating the user is the best
approach to computer security. In his work, Gorling questions these state-
ments. He additionally says that “the user will circumvent a security model
where the security features clash with the tasks the user is trying to carry
out”. Therefore, security must not be added, it must be integrated in an
earl stage.

2.6 Summary and Conclusion

In this chapter we started with showing the evolution of relevant technolo-
gies in Section [B|that most likely led to today’s smartphones. Several inven-
tions, e.g. wireless transmission and mobile computing, played an important
role where smartphone contain and use a various amount of technologies for
providing services to users.

After discussing different view points on the characteristics of smart-
phones in Section 2.1, we gave our own definition in Def. [I] for having a
common understanding when using this term throughout this work. Es-
sential characteristics of smartphones include supporting native application
development as well as numerous communication interfaces on a hand-held
sized device.

In Section [2.2] we presented hard- and software characteristics of cur-
rent smartphones while using the Google Nexus One as example. The Nexus
One runs at 1 GHz and has 512 MB Ram installed which offers users a wide
range of application possibilities. Additionally, we highlighted the difference
between smartphones and classic computers which is basically the mobile
nature and the compact size of a smartphone.

For showing the evolution of smartphone usage, we compared published
surveys on smartphone usage with new ones we conducted in May 2010 in
Section [2.3] On interesting but obvious change was the increase of Internet
usage on devices. But in general, smartphone usage did not change that
much over time: a smartphone still mainly serves as voice-centric commu-
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nication device. Despite this observation, we believe that the smartphone
will follow the vision of Mark Weiser.
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Chapter 3

Malicious Software for
Smartphones

Smartphones get increasingly popular which also attracted malware writers
beginning from June 2004. From this point on, malware count increased
steadily while main target remained Symbian O] After the introduction
of application signing, the amount of emerging malware decreased while
only few news could be read on this topic for a long time. After researcher
called Collin Mulliner presented a way to break Symbian OS security, this
changed and new malware emerged.

In this chapter, we present the evolution of smartphone malwares until
the end of 2010. We describe key aspects of such malwares and list affected
platforms. Additionally, general malware countermeasures and detection
are presented. These are not specifically designed for smartphone platforms
but applicability to this domain is researched and for some methods already
proven.

The chapter is structured as follows. In Section we introduce in-
formation on malware basics. In Section [3.2] related research in the field of
smartphone malware is presented. Smartphone malware evolution is revis-
ited in Section [3.3] In Section general countermeasures and detection
approaches are presented that are currently used in order to handle malware.
A summary on this chapter is given in Section [3.5]

"http://www.symbian.org/index.php
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3.1 Introduction to Malware Basics

In this section, we discuss the danger of malware for smartphones. There-
fore, we give a brief introduction to common malware principles.

Malware is a portmanteau of the two words malicious and software,
which clearly indicates that malware is a computer program with malicious
intentions. In order to understand what these malicious intentions actu-
ally are, we introduce the terms: infection vector and infection payload.
The infection vector describes which techniques are used to distribute the
malicious application. Several known approaches are: e.g. file injection,
file transport, exploilﬂ7 or boot sector corruption. The infection payload
represents the actual content that is used to harm the victims’ machine.
Several known possibilities for payloads ard’} deleting files, denying service,
or logging keystrokes.

Table 3.1: Characteristics of viruses, worms, and Trojan horses.

Virus Worm Trojan Horse
Appearance | needs a hosting | independent malicious func-
medium program tionalities
disguised
User Inter- | usually needed usually not | usually needed
action needed
Vector such as file injec- | such as exploit | such as email
tion or boot sec- atachment or
tor download
Payload such as system | such as malware | such as back-
modification drop doors

There are three common categories of malicious software: wvirus, worm,
and Trojan horses. A virus mostly comes in a hosting medium that can be,
e.g. an executable file or a floppy disk. If the user executes this file, the virus
processes its’” malicious commands which can be almost everything the OS
allows. A worm can often spread without user interaction. Once started,
it searches for infectable victims in range. If a victim is found, it normally
uses an exploit to attach itself to the victim and then repeats this behavior.

2uses some kind of hardware, software, service, or protocol weakness

3We suggest [211] for further readings.
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Sometimes worms drop other malware that can be back-doors that allow
remote access. Bot programs installed this way can make the victim to
a remote triggered Denial of Service (DoS) attacker. A Trojan horse is a
program that is disguised, e.g. as a popular application, in order to pursue
a user to execute or install it. This is done by choosing a well-known name
from a popular game and placing the malware for download on a web page
or file sharing tool. In Table additional popular application categories
are listed that help to convince the victim to execute the malware.

Although it is not possible to categorize every malware clearly, most of
them can be usually assigned to one of the mentioned categories in [211].
On Table B.1] a short overview on the malware characteristics is given.

Malware can be propagated using several techniques and communica-
tion interfaces, ranging from an exploit to using social engineering. Regard-
ing smartphones, the most used infection mediums are Bluetooth, Internet,
MMS, Memory Card, and USB as illustrated on Figure

Memory
Interface

USB, BT,
‘ IrDA

Internet: e.g. WiFi,
GPRS, UMTS

Figure 3.1: Smartphone malware propagation.

3.2 Related Work

Smartphone security and malware detection is a rather new field of research
where topics of publications are scattered within this domain. Starting with
the first wave of Symbian OS malwares, several authors pointed to the “new”
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threat targeting smartphones, e.g. Dagon et al. [53], Jamaluddin et al. [107],
Piercy [169], Niemel& [159], Leavitt [126], and Hypponen [93].

Overviews on smartphone malware appearance were given by Tdyssy
et al. [219], Gostev [82], R3], Fleizach et al. [72], Lawton [124], Schmidt et
al. [190], and Shih et al. [205] while most of them end in 2005 or 2006. In
this work, we update these overviews by extending the list of appearances
to the end of 2008 while practically adding a new entry for the beginning
of 2009.

Android and iPhone malware propagation is still a basically not inves-
tigated field of research. Since both platforms mainly use an online store for
distributing software, new infection vectors have to be found for predicting
or simulating malware propagation. Valuable input is given by Mickens et
al. [143], Bulygin [35], and Wang et al. [234], who give interesting insights
into propagation models and estimations.

The possibility of attacking smartphones was investigated by several
researchers. Among them, the continuous work of Mulliner et al. 2006 [153,
156), 152, [155] has to be noted since essential work concerning Windows
Mobile and Symbian OS was presented. Review of techniques was also
published by Racic et al. [176] who used MMS in order to deplete the battery
of mobile phones. Becher et al. [25] presented a promising approach for
creating a worm for Windows Mobile. Unfortunately, they were lacking the
appropriate exploit for making a fully working malware. Jesse D’Aguanncﬁ
gives detailed information on how to attack RIM Blackberry supporting
networks’]

Fleizach et al. [72] introduce a simulator for mobile malware propa-
gation. Many assumptions are made and mobility in the sense of users
changing cells is not covered. Nevertheless, valuable information on pos-
sible malware propagation speed and on phone-book entry distribution is
provided.

Jamaluddin et al. [I07] evaluate the possibility that mobile phones,
like smartphones, will have to face the same sort of malware that PCs
already have to defend against. Therefore, they introduce existing and
future threats regarding these devices, and show the ease with which certain
types of malwares can be implemented.

4presented as speaker with the pseudonym “x30n”
Shttp://www.praetoriang.net/presentations/blackjack.html
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Martin et al. [I56] describe three main methods to perform attacks
preventing CPUs of mobile devices to go into sleep mode. For countering
such attacks, they propose a power-secure architecture using authentication
and energy signatures.

3.3 Smartphone Malware Evolution

Initial work on showing smartphone malware evolution was published by
Gostev [82] from Kaspersky Lab. Key results for the time span from June
2004 until August 2006 were that smartphone got an increasingly popu-
lar target for attackers where mainly Symbian OS malwares appeared. Our
work extends former descriptions where we were able to compare public and
internal data on malware appearance. Interestingly, we noticed a great dis-
crepancy between published malware appearance and corresponding avail-
able descriptions on their behaviors. Especially in the last two years, de-
scriptions on the behaviors got scarce without obvious reason.

3.3.1 Smartphone Malware from 2004 to 2008

For statistical purpose, we gathered all published malware descm’ptionﬂ
from various web pages (e.g. from F-Secure, Kaspersky, McAfee, Symantec,
Sophos, and similar) for identifying key aspects of mobile malwares. One
obvious aspect is their appearance in time. Figure|3.2/shows mobile malware
evolution from January 2004 to December 2008 based on published mobile
malwares with available behavior description.

We found 288 smartphone malwares until the end of 2008 where peeks
in new appearing malware can be found at the end of 2005 and in the middle
of 2006. It is imaginable that these peeks were caused by the introduction of
a certificate-based signing system for Symbian OS applicationd’] Malware
writers might have feared a decreasing number of possible victims moti-
vating them to increase their efforts on malware creation. In the signing
process, a trusted Symbian partner checks the complete source code and
binaries for meeting certain criteria, such as being free from memory leaks
and abusive methods. If the check is successful, the application gets signed

Smalwares lacking descriptions were ignored
"http://www.symbiansigned.com
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Figure 3.2: Mobile malware evolution basing on published malware includ-
ing descriptions on their behavior. F-Secure data was added for comparison
showing a big discrepancy between internal anti-virus vendor and published
data.

with a certificate and stays clearly identifiable through a given unique ID.
Additionally, signing restricts access to sensitive function calls from certain
APIs, e.g. network control, preventing abusive usage. Application signing
gets mandatory for the current Symbian S60 $rd Version which is installed
on most Nokia smartphones from the end of 2005.

For comparison, we requested the corresponding numbers from F-Secure
Research in Helsinkiﬂ. Comparing the numbers from Figure , you can
see that F-Secure counted 418 malwares, 130 more than we found, show-
ing that there are several malwares without publicly available descriptions.
Additionally, following the F-Secure numbers, in the middle of 2006 more
than 100 new malwares appearedﬂ

Based on published malware descriptions, we listed the malware ef-
fectﬂ which can be seen on Figure . Please note that the categories are
not disjunctive, therefore the count of malware having certain effects ex-
ceeds our total count of 288 malwares. Several different malicious behaviors
were recognized while more than half of the malwares manipulated files dis-
abling application or device. Another interesting point is that 50 malwares

8We want to kindly thank Jarno Niemela for providing us these information
90f course, it is also possible that F-Secure updated its database at that time.
10Malware effects are commonly known as infection payload.
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did not have a malfgjliﬁgﬂbwg)q\m@rél]:;eﬁétrfg)agating functionality:.

200
180 174

Count
=
o
o

Figure 3.3: Smartphone malware impact is depicted on this figure. Manipu-
lating files, including replacing and deletion, was the most common payload
of smartphone malware until 2008.

Smartphone malware uses various channels for infecting new devices.
Additionally, several other technologies, like Bluetooth, MMS or memory
card, were used for propagating these malwares as illustrated in Figure (3.4
and Figure What most malwares, especially for Symbian OS, have in
common is that they require an installation file for propagation.

All malwares basing on (Symbian OS) installation files explicitly need
user interaction for installing on the system. Therefore, most smartphone
malwares are categorized as “Trojan horses” (84%), c.f. Figure . Even
worms (15%) need user interactions in order to get installed. Hence, prop-
agation schemes cannot be compared with Windows worms using system
vulnerabilities.

Interestingly, most of the malwares target Symbian OS (283 malwares)
where only 4 Windows Mobile and 2 Java ME malwares were recognized.
The payload of the Windows Mobile and Java ME malwares included remote
access, file deletion, and abuse of the SMS in order to charge high service
usage rates.

Coming back to Figure [3.2, malware appearance decreased starting
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Smartphone Malware Propagation
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Figure 3.4: This Chart shows smartphone malware propagation channels.
Almost all smartphone malwares required manual start of the installation

process in order to infect a device. Mal by Plattf
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Figure 3.5: A: 84% of smartphone malwares are Trojan horses; B: 79% of
all smartphone malwares target Symbian-based phones.

from the middle of the year 2006. Until end of 2008, only about 100 new
malwares appeared while between the same time span from end of 2004 to
the middle of 2006 about 300 emerged. The reason for this can be seen
in the certification system of Symbian OS 3rd where devices running this
operating system version gained more and more market share at this time.
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This OS version is not vulnerable to the former malwares. Only news’s that
one spyware got certified for Symbian OS 3rd, called FlexiSpy [210], this
recalled the existing threat to this new age of smartphone OS.

In addition to the malwares “in the wild” several research activities
aimed for bypassing the security systems of smartphones. One of the lat-
est works of Collin Mulliner resulted in the ability to bypass the security
mechanisms of Symbian OS 3rd which he presented on Black Hat Confer-
ence 2008 in Japan [I54]. Shortly after, in February 2009, the first malware
targeting Symbian OS 3rd appeared using a valid certiﬁcatdﬂ

3.3.2 Smartphone Malware from 2009 to 2010
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Figure 3.6: This chart shows updated graphs on smartphone malware ap-
pearance by November 2010. Again, F-Secure data is added for comparison.

Figure [3.6| illustrates the malware growth by November 2010. Again,
our data is compared with updated F-Secure datd? where following obser-
vations and experiences were made. One was that other anti-virus vendor

Hhttp://www.f-secure.com/weblog/archives/00001609.html
12 Again, we want to thank Jarno Niemela from F-Secure for his help.

95


http://www.f-secure.com/weblog/archives/00001609.html

CHAPTER 3. MALICIOUS SOFTWARE FOR SMARTPHONES

lists seemed to get updated more steadily. In January and March 2010,
F-Secure added a lot of malware to their databases which the others had
added earlier. Additionally, listed smartphone malwares on most anti-virus
vendor pages lacked a detailed description on the payloads. Therefore, no
explicit numbers can be presented on the potential impact of most of the
malwares for the years 2009 and 2010.

1%

B Trojan Horse
M Virus
mWorm

M other

Figure 3.7: Emerged malware categories by 2010

In comparison to the earlier phases of smartphone malware, the cate-
gories almost did not change which is shown on Figure
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B Symbian OS
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® iPhone

Figure 3.8: Malware per platform by 2010

What did change was the amount of malwares for the different plat-
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forms. Windows-based smartphones cover 16% of all malwares. Android
and iPhone faced malwares; only one appeared for each platform but several
variants were generated. The iPhone malware affects “jailbroken” devices
having a SSH-client installed. Android got target of a malware named Fake-
player which pretends being a media player but instead sends SMS messages
to premium services.

M Profit-motivated

M Other

Figure 3.9: Share of profit-oriented smartphone malware

Interestingly, abusing SMS for gaining profit got a major motivation
for writing smartphone malware as illustrated in Figure [3.9, Especially
Russia was center for such kind of attacks. Most of these malwares send
text messages to Russian premium services causing high cost at victim side.
The increase of this abusive malwares is depicted in Figure [3.10L By the
time of writing this thesis, only preliminary numbers until the beginning
of November were available. But in general, an increasing interest can be
observed and since this is the only monetary model that seems to work, a
growing number of such malwares has to be expected.

3.4 Malware Detection Approaches and Coun-
termeasures

Countermeasures, which help to secure a system, can be usually taken by
installing certain hard- or software. Three main systems for computers can
be identified: firewalls, anti virus software and intrusion detection systems
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Figure 3.10: This graph shows the amount of malwares abusing premium
messaging services by the end of October 2010.

(IDS). Readers familiar with IT security tools, intrusion detection, and
malware detection principles can jump over to Chapter [4

Firewalls [135] are so called “white list”-based systems, which means
that there is a special list of rules explicitly allowing certain ports to com-
municate with internal or external peersEl. If malicious software is able to
masquerade as trusted software using a trusted port, a basic firewall will
allow all communication activities. Anti virus scanners use “black lists” in
order to detect certain threats included in the black list.

A virus scanner [212] can block viruses, worms, and Trojan horses with
real time monitoring or manual scanning. Malware is detected by scanning
for and finding a certain string or pattern, also called signature. There-
fore, the malware has to be known by the scanner. Virus scanners normally
include a specific disinfection routines corresponding to the detected signa-
tures.

Intrusion Detection Systems (IDS) [I12] formerly were systems that
monitored network traffic. Logged traffic was used by network administra-
tors in order to detect abnormal behavior. Countermeasures like closing
ports or locking systems could be taken by the administrators. IDS evolved
into intrusion prevention systems (IPS) which are able to detect certain

13¢.g. TCP/UDP
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abnormal behaviors and take preventive measures automatically. Basing
on abnormal behaviors, intrusion detection and prevention systems (IDPS)
are basically able to detect malware activity while they lack the removal
routines known from virus scanners.

Virus scanners and Intrusion Detection Systems present the basis of our
approaches. Architectures that are presented in this work will use similar
principles as shown in the following sections, where virus scanners and IDS
will be described in Section and Section [3.4.2 respectively. While
firewalls focus on restricting network traffic, virus scanners and Intrusion
Detection Systems try to detect malicious software and activities using static
and dynamic analysis. The major difference between static and dynamic
analysis is that dynamic analysis refers to data acquired on runtime while
static analysis does not. Static analysis can solely rely on data extracted
from binaries in a static manner. Methods being applied to the acquired
data for detecting malware can basically be the same to for both variants.
Corresponding explanations and definitions related to detection results are

given in Section [3.4.4]

3.4.1 Virus Scanners

In this section, we describe widely deployed virus scanners and correspond-
ing approaches to detect and counter malware. Following Szor [212], several
approaches and optimizations are used where an excerpt of these is displayed
next.

String scanning: This is the simplest approach to detecting computer
malware. It uses a sequence of bytes that should only exist in malware
and not in benign programs. An example given by Szor [212] is the
byte sequence:

0400 B801 020E 07BB 0002 33C9 8BD1 419C

This sequence represents hexadecimal application code which basically
represents assembler instructions in turn. Additionally, this sequence
also represents a signature that can be shared in order to detect mali-
cious code which might be found in several different files. A problem
about this static sequence is that a simple change in the order of the
instructions leads to a mismatch resulting in a missed detection. This
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simple reordering can be seen as the first approaches of malware writ-
ers to obfuscate their malicious code in order to mitigate detection.
In order to tackle problems with static sequences, wildcards and mis-
match scanning were introduced. Wildcards allowed skipping bytes or
byte ranges while mismatch scanning defined a fixed number of hex-
adecimal digits that could take any value. The latter approach was
especially useful in generating more generic signatures that were able
to detect whole families of malware.

Further optimizations were applied in order to increase detection speed.
Hashing is a common way to speed up search algorithms. Since classic
virus detection is a search operation, detection speed can greatly ben-
efit from hashing. Top-and-Tail and Entry-point scanning are further
methods to increase detection speed. In Top-and-Tail scanning limits
the search area to the top or tail of a file. This was useful since the
majority of early malware prefixed, appended, or replaced host files.
An interesting but unfortunately outdated approach is called hyper-
fast disk access. This approach bypasses the operating system-level
APIs in order to access hard disks directly through the BIOS. Using
these methods, a ten-times-faster file I/O could be achieved.

Smart scanning: This approach was used in order to prevent malwares to
mitigate detection through inserting no-operation (NOP) slides into
their code. Anti-virus scanners using smart scanning skipped NOP
slides and did not use them for their signatures.

Skeleton detection: This approach was invented by Eugene Kaspersky.
Skeleton detection refers to a line-by-line checking of macros in order
to identify the skeleton of essential and important macro statements.
Unimportant statements and white spaces are dropped resulting in a
better detection even for variants.

Algorithmic scanning: Following Szor [212], the term algorithmic scan-
ning is a bit misleading since it basically describes the manual cre-
ation of a virus signature whenever a generic approach fails. Early
implementation consisted of hard-coded functions integrated into the
anti-virus search engines. Due to frequent updates of the virus scan-
ners, these hard-coded detection routines often led to problems with
the stability. A solution to this was the introduction of virus scanning
languages which allow seek and read operations in their simplest form.
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Since algorithmic scanning is more expensive in terms of computa-
tional burden, this detection approach relies on measures decreasing
the amount of data to be checked. In case of anti-virus search engines,
a common measure is called filtering. A filter can be anything that is
virus-specific, e.g. information where to search, function names, and
similar. It bases on the finding that malwares typically infects only
subsets of objects. The problem about algorithmic scanning can be
seen in the inability to work on most polymorphic[jz] and encrypted
malwares.

X-RAY scanning: Detecting malware with encrypted components is an-
other important challenge that has to be addressed by detection en-
gines. Attacking the encryption of a malware is called X-RAY scan-
ning. X-RAY scanning basically takes care of encryption by searching
for encrypted malware parts on selected areas, e.g. top, tail, or near
of entry-points.

Code emulation: Code emulation bases on a virtual environment that is
created in order to observe the behavior of a suspicious application.
This application is installed into this encapsulated environment for
preventing it to infect components of the real system. Such an envi-
ronment is also called a sandboz. Bishop [31] defines a sandboz as fol-
lows: “A sandbox is an environment in which the actions of a process
are restricted to a security policy.” Sandbozes can typically be found
in anti-virus software but basically every virtualized environment can
be regarded as one. Examples for this are Android applications which
run in a separate Java-based sandbox increasing runtime security of
unknown applications.

Metamorphic malware detection: This term describes various approach-
es that try to detect malicious applications through other indicators
than, e.g. code strings. One example for this is the geometric de-
tection that monitors file system alterations of software for detecting
malicious behavior and files.

Heuristic Detection: Another common approach is called heuristic de-
tection which basically bases on machine learning algorithms. With
these, anti-virus software can detect a new malware through compar-
ing it with behavior of similar malwares or through detecting anoma-

143 certain malware having different appearances
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lous actions that indicate malicious intentions. Although having the
advantage of being able to detect unknown malwares, heuristic detec-
tion is prone to false—posz’tweﬁ.

3.4.2 Intrusion Detection Systems

IDS are also capable of detecting malware, therefore, we will introduce these
systems in this section. Scarfone et al. [I89] define intrusion detection as
a process of monitoring predefined systemﬂ like networks and hosts, for
gaining data describing the state of the monitored systems. This data is
analyzed for finding incidents that help to indicate malicious events. These
incidents may be caused by malicious activity initiated by malware. Non-
malicious actions, like typing wrong IP-addresses that point to servers where
the user is missing access authorization, can also be recognized as incidents.
Kruegel et al. [120] use a similar definition for intrusion detection with
following motivating points:

1. Surveys have shown that most computer systems are flawed by vul-
nerabilities regardless of manufacturer or purpose [123]. Users and
administrators are generally very slow in applying fixes to vulnerable
systems [I81]. As a consequence, many experts believe that computer
systems will never be absolutely secure [27].

2. Deployed security mechanism, e.g., authentication and access control,
may be disabled as a consequence of misconfiguration or malicious
actions.

3. Users of the system may abuse their privileges and perform damaging
activities.

4. Even if an attack is not successful, in most cases it is useful to be
aware of the compromise attempts (for learning purpose).

Intrusion detection systems are software tools that automatically gather
data, analyze it and identify such incidents. These systems evolved to intru-
sion prevention systems (IPS) including additional prevention capabilities.

5related terms and definitions are given in Section
6we will stick to the host-based approach in this work since it gets more detailed
information on the monitored system
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Preventive measures can be disconnecting or locking hosts that produce
incidents [I89]. For consistency reasons, we will use the term Intrusion
Detection and Prevention System (IDPS) wherever applies. An IDPS has
three key tasks:

1. Monitor system characteristics, e.g. application, network, or operating
system behavior.

2. Analyze the monitored data for detecting incidents, e.g. security pol-
icy breaches or application misbehavior.

3. Initiate measures basing on the detection results, e.g. generate report,
lock systems, or disconnect unauthorized entities.

IDPS basically use one or a combination of the following approaches
for detecting incidents [120]:

e Misuse-based system

e Anomaly-based system

Misuse-based system Misuse-based detection uses a knowledge base of
predefined patterns (signatures) that can be matched with the monitored
data. Signatures can have various forms, e.g. strings, execution stacks,
or binary information. Whenever such a recorded event matches a signa-
ture, the IDPS initiates a predefined measure on the detected malicious
activity. Misuse-based detection has the advantage of producing only few
false-positives which means detecting normal action to be malicious. But
using signatures comes with drawbacks. Since the knowledge bases is the
only source for identifying malicious events, new and unknown threats can
not be detected in most cases. Furthermore, making the signature very
broad increases the rate of falsely classified normal events. Making the sig-
nature too specific will allow attackers to easily modify their software for
not getting detected [80, 168, 238].

Anomaly-based system Scarfone et al. [I89] state that an anomaly-
based system bases on the assumption that all anomalous activities are
malicious. Therefore, the system creates a model of normality basing on
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normal activity which then enables the system to indicate anomalous ac-
tivity. Anomaly-based systems have the advantage of being basically able
to detect even unknown threats. The downside of these systems is that
they tend to produce a lot of false positives which results in a bad accuracy.
Examples for this approach are [T140, Q0, [13], T71].

Host-based Intrusion Detection Systems

A host-based intrusion detection system monitors system characteristics of
a single host for identifying suspicious activity [I89]. These characteris-
tics can contain network, system, and application information that help to
distinguish between normal and abnormal behavior on the monitored de-
vice. The techniques used by the various systems depend on the focus of
these. They can rely on a single method or cover a broad range of functions.
Common functions are:

Kernel monitoring includes tracing system calls for identifying call se-
quences matching malicious activity. Additionally, API and library
calls can be monitored for detecting intrusive and malicious behavior.

Network monitoring includes capturing data traffic on transport layer
or higher. Beside network traffic, network configuration is also of
interest, e.g. network interfaces might be set to promiscuous mode
without user interaction.

File system monitoring can be done by performing various measures.
File integrity checking cryptographic checksums can be done for verify-
ing files to be in unchanged state. File attribute checking can indicate
ongoing attacks which may include changing ownership of important
files. File access checking can indicate malicious activity on critical
files. All these measures can only indicate already ongoing attacks
since they are called periodically.

Log file monitoring bases on analyzing application output files. Applica-
tions can log incidents, commands or application usage for indicating
their status and problems. Filtering these logs can help to identify
malicious activity.

Sandboxing is a technique that uses virtual environments for running sus-
picious programs before including them to the real system. It can pre-
vent malicious programs, e.g. Trojan horses, to compromise a target
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system since malicious calls are realized within this virtual environ-
ment.

Vigna et al. [231] state that host-based intrusion detection systems
have both advantages and disadvantages when compared to network-based
intrusion detection systems. HIDS are able to access semantically rich OS-
based information whereas NIDS only see packet streams that might be
fragmented or even encrypted. Furthermore, the amount of data that has
to be handled is usually more limited. Another advantage is that HIDS tend
to be harder to bypass since several different characteristics of the system
are monitored. This makes it more difficult for attacks to evade detection
in all areas. Finally, it is easier for HIDS to counter attacks since the source
of malicious activity can be addressed directly.

The main disadvantage that is pointed out by Vigna et al. [231] is
that once a process gains administrative rights it is able to manipulate
the complete system including the HIDS. Therefore, it is essential to pre-
vent this event. Another major problem is that HIDS might influence the
system performance which also affects application usage. A NIDS is able
to monitor several hosts without affecting their performance substantially.
Furthermore, monitoring several systems simultaneously enables the system
to detected wide-spanned attacks that might not be recognized on a single
system. It also decreases maintenance costs since only one system has to be
set up and controlled. A HIDS requires installation on every system that is
planned to be monitored.

Audit Data Gathering / Monitoring Lee et al. [128] state that their
research aims to develop a systematic framework to semi-automate the pro-
cess of building intrusion detection models. A basic premise in their work is
that abusive behavior can be distinguished from normal behavior by min-
ing audit data from the corresponding system. Their IDS/framework bases
on three algorithms/methods (classification, association rule, and frequent
episode) and additional programs, which help to build detection models.
The key architecture seems to consist of sensors, detectors, and model gen-
erators. Similar approaches are described in [208], 129].

State of the Art and Taxonomies of IDSs Several publications can
be found to describe current and ongoing research, as well as commercially
available products in the field of IDSs. Stefan Axelsson [17, [I8] presents a

65



CHAPTER 3. MALICIOUS SOFTWARE FOR SMARTPHONES

survey on several research publications on IDSs. In this survey he proposes
“A Taxonomy of Intrusion Detection Principles”.

Allen et al. [§] present state of the art and best practices in IDSs.
They present example projects from research and industry and point out
organizational issues when deploying and using IDSs in companies.

3.4.3 Static Analysis versus Dynamic Analysis

As explained earlier, virus scanners and Intrusion Detection Systems try to
detect malicious software and activities using static and dynamic analysis.
The major difference between static and dynamic analysis is how the data
is acquired. Methods that are used to analyze the monitored data can be
the same for both approaches.

Static Analysis

Static analysis represents an approach of checking source code or compiled
code of applications before it gets executed. Chess and McGraw [43] state
that static analysis promises to identify common coding problems automat-
ically. While manual code checking is also a form of static analysis, software
tools are used in most cases in order to perform the checkd’} Chess and
McGraw additionally claim that good static checkers can help to spot and
eradicate common security bugs.

Static analysis can use simple pattern search operation or slightly more
complex machine learning approaches in order to detect flaws and weak-
nesses in the code of software. A simple search might aim for finding in-
secure function calls in C programs. A more complex approach might be
the usage of statistical methods in order to determine occurrences of cer-
tain calls. Either way, static analysis can be an appropriate code checking
tool that can help to improve quality or security of software. The major
drawback, which is also stated by Chess and McGraw [43], is that a static
tool’s output still needs human evaluation. This means that if a tests con-
cludes with “no errors found” there still is no guarantee that the code is
free of flaws or other issues. The results depend on the up-to-dateness of
the corresponding detection rules and methods.

17¢.g. 1TS4, Flawfinder, or RATS
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Related work can be found in Wagner and Dean [233] and in several
other publications [134, 28| 44 [71 (134 [59, [149, 235, 233, 233, (194} [196].

Dynamic Analysis

One of the first articles on dynamic analysis for security purpose was pub-
lished by Forrest et al. [74]. They used a machine learning approach using
system call histories to learn normal system behavior. Abnormal behavior in
terms of call sequences was used to indicate malicious activities. Szor [211]
states that dynamic analysis techniques focus on black-box testing. Black-
box testing is the process of executing a malward| in order to monitor
its behavior. Typical aspects that are monitored are: network port usage,
transmission of network packets, system call sequences, processes, and file
system and registryFE] changes.

Work related to dynamic analysis can be found in [23] 45|, [134], 23], 198,
131], 26, 5], 10, 14, 144].

3.4.4 Related Definitions and Terms

When talking about detection of incidents, following terms are commonly
used in order to describe the performance of detection approaches. Taking
all possible and actually happened incidents into account, the set of inci-
dents can be separated by real negatives and real positives. Real negatives
are represented by all occurred incidents that were intended to happen while
real positives are the set of incidents involved into malicious activity. These
terms are not often used@ in conjunction with scientific articles but they
are still needed in order to evaluate every detection approach.

Four classes are commonly used in order to describe detection results of
corresponding approaches. One can interpret the terminology in following
generic way:

[evaluation of the detection result] [detection result]

True negatives (TN) describe the class of events that were detected be-
ing benign where the detection result was actually true/right. False neg-

8should be done in a virtual machine
9on Windows operating systems
20since they are obvious the research community
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atives (FN) describe the class of events that were detected being benign
although they were actually malicious. This can be seen as the worst case
of every detection mechanism since it gives the users a false sense of secu-
rity which is also emphasized by Chess and McGraw [43]. Therefore, most
developers and researchers modify their detection approaches to minimize
false negatives. This comes at a cost which is often an increase of false pos-
itive (FP). False positives are incidents that were detected being malicious
where they actually were not. As an example: a mobile intrusion detection
system monitoring the behavior of a smartphone might respond to an event
where 100 short messages (SMS) were sent to contacts included in the phone
book. This incident might have been caused by a malware trying to trap
these 100 contacts or it might have been an intended messaging on New
Years Eve. In the latter, it is a false positive where the first case is a true
positive (TP) which are basically incidents such protective system should
detect. On Table[3.2] the four detection classes are aligned to the real world
classes.

Table 3.2: Detection results and reality

Reality real negatives real positives
Detected negative positive negative positive
Result true negative | false positive | false negative | true positive

The terms accuracy, TP rate, false discovery rate, precision, and FP
rate are widely used in articles describing detection approaches. Accuracy
describes the rate of correctly detected incidents where the higher accuracy
values are, the better.

TP+TN

_ 3.1
accuracy TN+ FP+FN+ TP (3.1)

The TP rate which is also called quality, hit rate, and recall refers to the
rate of correctly detected incidents out of all detected incidents. The higher
this value is, the better the detection should work.

TP
TP rate = ——t 2
rate FN+TP (3.2)

The false discovery rate describes the rate of falsely detected incidents out
of all detected incidents where the smaller the value, the better the system
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can be.

FP

FP+TP (3:3)

false discovery rate =
Precision is also called positive predictive value (PPV) and refers to the rate
of correctly detected incidents out of all positively detected events.

TP
isi = — 3.4
precision FPLTP (3.4)
The FP rate which is also called false alarm rate or fall-out shows the rate
of falsely classified benign incidents out of all benign incidents. The smaller
this value is the better the detection might work.

false alarm rat FP (3.5)
alse ala atle = @ —/——m— .
i TN + FP

All of these terms try to indicate the capabilities of certain detection
approaches but good values do not necessarily mean the detection works
well. One might consider the case of a detection system that was tested
with 1000 events where one of these was malicious. If the approach would
be capable of detecting this single incident, the accuracy and TP rate of
this system would be 1 although only one case was tested and available.
Therefore, every test run should include as much benign and malicious data
as possible. Else, the results can obviously only give indications on the
detection capabilities but no considerable numbers.

3.5 Summary and Conclusion

In this chapter, we introduced the basics of malicious software in Section|3.1
where we started with general descriptions which are applicable to most
computer systems. In Section [3.2] we presented related work in the field of
smartphone malware which leads to a detailed description on the evolution
of these malicious applications in Section [3.3, The amount of smartphone
malware increased from year 2004 on and by the end of 2010, more than 500
malwares will have appeared. While most of the smartphone malwares are
Trojan horses manipulating the system, the share of profit-oriented malware
increases steadily. By the end of 2010 more than 20% of all malwares will try
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to fool users in order to earn money through premium services that are used
secretly in background. Since this seems to be the first profitable payload,
an increase of such malware targeting smartphones can be expected.

In this work, we present various new approaches in order to detect
smartphone malware. Therefore, we also give general descriptions on de-
tection principles in Section |3.4] which includes descriptions on static and
dynamic analysis. The main parts of this thesis will then be divided by
approaches basing on either static or dynamic analysis.
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Chapter 4

Malware Detection through
Dynamic Analysis

As seen in Section [3.4.2] dynamic analysis can be part of virus scanners
and intrusion detection systems that protect host computers or networks.
The key point about dynamic analysis is that data is acquired at runtime in
comparison to static analysis which does not require executing binaries for
investigating them. This can have the advantage that incidents are detected
in real time enabling the system to start appropriate countermeasures in
time. Furthermore, single events might seem unsuspicious, but in a sequence
of events they might indicate a malicious process with the goal of harming
the system. This might also be detected by a system using dynamic analysis
in order to understand observables running a monitored system. Another
advantage of dynamic analysis is that when used in a debugger, malware
can be analyzed step by step which can lead to the generation of a signature
usable by anti-virus software. Signatures are typically a very efficient way of
detecting known malware but new and unknown malware normally cannot
be detected which is the biggest drawback of this approach.

The contribution of the chapter is three-fold. First, results on moni-
toring Windows Mobile and Symbian OS devices for anomaly detection are
presented. Second, an architecture that enables monitoring and detection
of anomalies on Linux-based Android devices is shown. Third, results on
applying dynamic analysis of smartphone binaries in a cloud-based system
are given.
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4.1 Introduction

In this section, focus is set on smartphones being monitored at runtime in
order to acquire data indicating malicious activity. Several approaches and
architectures will be presented in this section that enable dynamic analysis
of smartphone executables.

In Section 4.3 an approach to monitoring smartphones in order to
extract data (features) that can be used for remote anomaly detection is
introduced. Anomaly detection does not require signatures in order to work
which allows the detection of new and unknown malware. It can also be used
in conjunction with signature-based schemes to decrease the response time
whenever new malware emerges. For this purpose, the anomaly detection
algorithms have to learn the normal behavior of an user and device in order
to be able to distinguish between normal and abnormal, possibly malicious
actions. The extracted features are sent as vector to a remote system taking
the responsibility for extended security measures away from the probably
unaware user. These vectors are processed by methods and algorithms from
the field of artificial intelligence, like Artificial Immune Systems (AIS) [75]
or Self-Organizing Maps (SOM) [7], in order to detect abnormal behavior.

In Section [4.4] a general monitoring and detection architecture which
is also used in approaches being tested by us on the Android platform
is presented. In this section detailed descriptions on how all components
of the system interact are given. Additionally, insights into our detection
components and processes are presented.

In Section 4.5 work-in-progress in employing cloud services for detect-
ing malicious applications on smartphones is described. System calls being
made by binaries using the strace command on smartphones are monitored.
We believe malware detection can follow the cloud-computing paradigm by
processing these calls thoroughly using different techniques. For decreasing
computational burden on the smartphones, no complex call sequences are
processed. Data structures are limited to simple trees pointing to system
calls that have been made including the frequency of calls. Various classifi-
cation algorithms including Support Vector Machines and Tree Kernels on
benign and malicious binaries are evaluated. Preliminary results appear to
be promising and need more investigation.
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4.2 Related Work

Several promising approaches for anomaly detection on stationary and mo-
bile systems, such as smartphones, have been presented:

Forrest et al. [74] propose a method for anomaly detection where nor-
mality is defined by short-range correlations in a process’ system calls. Their
experiments (involving “sendmail”, “ftpd” and “lpr”) show that short se-
quences of system calls in running processes generate a stable signature for
normal behavior. The signature has low variance over a wide range of nor-
mal operating conditions and is specific to each different kind of process,
providing clear separation between different kinds of programs. Further-
more, it has a high probability of being perturbed when abnormal behavior,
such as malicious activities, occur.

Davis et al. [105] propose a host based intrusion detection engine (HIDE)
which has the goal to alert an user when a suspected attack is underway be-
fore irreparable damage is caused. Therefore, HIDE first monitors anoma-
lous behavior of the battery when it fails to go into suspension or sleep
mode. Then HIDE sends an alarm message to the user and the nearest
proxy server and starts to write logs that contain the causes of the higher
power consumption. In the next step, HIDE suggests mitigation measures.
The authors run preliminary tests on their system using “ping” command
in order to generate abnormal battery depletion activities (ABDA) which
is detectable through their engine. Further sophisticated test are required
for proving the functionality of their system.

Cheng et al. [41] developed a system that uses system status and log
file monitoring in order to detect malware infections. Therefore, a mon-
itoring client is installed on a Windows Mobile 5 device that is able to
determine its own phone number, the date, the cell id, the SMS and calling
logs. Statistical and abnormality-based analysis for processing the moni-
tored data is used. For privacy and authentication, ticketing and encryp-
tion is introduced. Whenever an infection is detected, the system alerts
the corresponding device as well as all devices with contact to the infected
one. They evaluate their approach with a simulation basing on SMS traces
coming from a cellular-network provider from India.

Buennenmeyer et al. [34] present a similar approach to Davis et al. [105]
which is monitoring current changes on a smartphone in order to detect
anomalies. The changes can be caused by malwares or external attackers,
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e.g. flooding or network probing. The monitored data is sent to a remote
server that creates profiles of each monitored device and hence is able to
detect anomalies. They evaluate the power consumption of the monitoring
and state that the client uses less than 2% of battery resources compared
with the corresponding baseline battery lifetime.

Miettinen et al. [144] designed an intrusion detection framework, which
uses host-based and network-based intrusion detection. If an anomaly is
detected on a mobile device, the device sends an intrusion alert to a back-end
server. This server is able to collect further information from network-based
sensors in order to create network related intrusion alarms when necessary.
They use a correlation engine in order to correlate the device and network
intrusion alarms.

Samfat and Molva [I87] presented a distributed intrusion detection sys-
tem for cellular networks that tries to detect abusive behavior like mas-
querading or eavesdropping in future inter-networks. They use learning
algorithms in order to obtain user profiles, which in turn are used as signa-
tures to detect abnormal behavior. Example features are call length or cell
information. They use network-based intrusion detection and do not try to
detect on-device malware.

Bose et al. [33] propose behavioral detection framework to detect mo-
bile malware, instead of common signature-based solution currently avail-
able for use in mobile devices. They represent malware behaviors based
on a key observation that the logical ordering of application actions over
time often reveals the malicious intent even when each action alone may
appear harmless. Also, they propose a two-stage mapping technique that
constructs malicious behavior signatures at run-time from the monitored
system events and API calls while studying 25 distinct families of mobile
malware in Symbian OS. They discriminate the malicious behavior of mal-
ware from the normal behavior of applications by training a classifier based
on Support Vector Machines. Detection rates from simulated and real mal-
ware samples are stated to be better than 96%.

Kang et al. [IT1I] present an approach considering system call sequences
as a classification problem on a bag of system calls. In this bag, the fre-
quency of the system calls is stored where the call ordered is dismissed.
Experimental results on public data sets show that that the frequency in-
formation is effective enough to discriminate between normal and abnormal
sequences.
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Lee et al. [127] present an approach to use data mining techniques to
discover patterns of system features that describe application and user be-
havior. Therefore, they use system call traces from the sendmail command,
as well as tepdump data in order to detect suspicious behavior.

Chaturvedi et al. [40] present an approach for capturing data-flow
behaviors on top of system call traces. Therefore, they provide a formal
definition of data-flow behaviors and present algorithms for building such
models. These models enable them to detect even sophisticated attacks
that normal system call traces-based approaches mostly do not detect. The
drawback of their approach is that the needed training data was sized from
1.4 to 4 million system calls for each trace (100 to 300 MB). Additionally,
the overhead of collecting these large-sized traces were not presented.

Nash et al. [I58] designed an IDS against an unique form of DoS
attack known as a battery exhaustion attack by taking into account the
performance, energy, and memory constraints of mobile devices. Their IDS
uses several parameters, such as CPU load and disk accesses, to estimate the
power consumption per process using a linear regression model, to identify
processes that are potentially battery exhaustion attacks.

Kim et al. [114] propose a power-aware malware-detection framework
that monitors, detects, and analyzes previously unknown energy-depletion
threats. The framework includes a power monitor which collects power
samples and builds a power consumption history from the collected samples,
and a data analyzer which generates a power signature from the constructed
history. Similarities between power signatures are measured by the Y-
distance, in order to reduce both false-positive and false-negative detection
rates.

In Schmidt et al. [197, 198] the authors demonstrate how to monitor
a smartphone running Symbian OS in order to extract features that de-
scribe the state of the device and can be used for anomaly detection. These
features are sent to a remote server, because running complex IDS on this
kind of mobile device still is not feasible, due to capability and hardware
limitations. They give examples on how to compute some of the features
and introduce the top ten applications used by mobile phone users based on
a study in 2005. The usage of these applications is recorded and visualized
and for a comparison, data results of the monitoring of a simple malware
are given.

Another battery-based IDS is presented by Jacoby et al. [106]. It mea-
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sures the device’s power consumption, which is correlated with the applica-
tion activity on the device by running a rule-based host intrusion detection
engine.

Wang et al. [235] observe the usage of DLL and API methods for train-
ing support vector machines (SVM) for behavior detection. Behavior-based
approaches normally suffer from a high false positive rate while needing a
significant amount of processing power, storage, and memory. The authors
claim an accuracy of 99% but do not present the corresponding detection
rate which would help to rate the quality of the results.

Bayer et al. [23] present a tool named TTanalyze. This tool is able to
monitor Windows applications dynamically by monitoring usage of system
and API calls. The focus of this work does not lie in the detection of
malware; the aim is to understand the malware behavior for decreasing the
window of vulnerability.

Kirda et al. [I15] present a spyware detection technique that overcomes
some of the limitations of existing signature-based approaches. Their tech-
nique is based on an abstract characterization of the behavior of a popular
class of spyware programs and applies a composition of static and dynamic
analysis to binary objects to determine if a component monitors users’ ac-
tions and reports its findings to an external entity. Their characterization
is resilient to obfuscation; independent of the particular binary image thus
can be used to identify previously unseen spyware programs. Because the
interaction with the operating system is necessary for a spyware compo-
nent, they analyze those Windows API calls that a component can use to
leak information from the current process, especially the ones that are per-
formed in response to events. For that reason, they use dynamic analysis
to monitor interaction of the component with the browser and record all
of the browser functions that are invoked in response to events, in order to
determine the code regions that are responsible for handling events. Then,
they use static analysis to examine these regions for the occurrence of sys-
tem calls relevant to the creation of threads or timers to assume that any
imported API function, which exists in that region, can be invoked in re-
sponse to an event. Finally, they have automatically generated an API call
blacklist from extracted data using frequency analysis.

In the opinion of the author, the approach of Miettinen et al. [144]
is the most promising. It regards the resource constrains of smartphones
but still allows complex analysis of indicated intrusions. With the increasing
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capabilities of smartphones, more and more functionality can be moved from
the server to the mobile devices. This approach may be supported by the
system from Samfat and Molva [I87] which would add intrusion detection
capabilities to the mobile phone network.

4.3 Monitoring Smartphones for Anomaly De-
tection

In this section, it will be demonstrated how to monitor a smartphone run-
ning Symbian or Windows Mobile operating system in order to extract
features that describe the state of the device and can be used for anomaly
detection. These features are sent to a remote server because running a
complex intrusion detection system (IDS) on this kind of mobile device still
is not feasible due to capability and hardware limitations. Examples are
given on how to compute some of the features and introduce the top ten
applications used by mobile phone users based on a study in 2005. The
usage of these applications is recorded by a monitoring client and visual-
ized. Additionally, monitoring results of public and self-written malwares
are shown. For improving monitoring client performance, principal compo-
nent analysis (PCA) is used which lead to a decrease of 80% of the amount of
monitored features. Additionally, the performance results of two approaches
are shown, basing on an Artificial Immune Systems and a Self-Organizing
Map, respectively.

This section is structured as follows. In Section [4.3.1 we give a brief
overview on the framework we use for processing the monitoring data. In
Section we show how to build a monitoring client for smartphones
and give explicit examples on values that can be extracted from Symbian
OS and Windows Mobile devices. In order to be able to learn what is
normal on smartphones, we map actions excerpted from a study on mobile
phone usage to different use cases and specify testing scenarios for these.
Examples of these together with the corresponding monitoring results are
given in Section In Section we present the results of principal
component analysis for reducing the amount of features.
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Device, Feature-Vector
RADS and Analyzation Results .

Database .

Detection Unit(s)

Web Service Provider:
Device Registration
Feature Vector Transmission
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Meta Detection Unit
Send FeatureVector /

Receive Infection Status -
-
@ User GUI Developer GUI

Monitored Mobile Device

MoDo Administration and Observation

Figure 4.1: The remote monitoring framework consists of three main com-
ponents: I) a monitoring client is installed on user side that is capable of
extracting system status information. II) The remote server receives and
analyses the data for identifying anomalies. Detection units are managed by
meta detection units being able to assign different kinds of detection units to
suitable kind of data. III) Users and developers can use an administration
and observation interface for interacting with the system.

4.3.1 The Monitoring Framework

For understanding the purpose of our work we present the corresponding
framework on Figure in which our monitoring clients are included. We
have to note that the focus of this work is describing the development of
a monitoring client for smartphones so we will not discuss design or imple-
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mentation issues concerning the global framework.

In general, our framework looks similar to the high-level system de-
scriptions of Miettinen et al. [144]. The main difference to their approach is
that do not use a correlation engine for analyzing the data. Instead, we use
components which will referred to as detection and meta detection units in
this section. Additionally, our system we will provide detailed information
on our system in comparison to the generic system recommendations made
in [144].

The framework consists of three components: smartphone monitoring
client, remote anomaly detection system (RADS), and visualization. The
client will be described in Section [1.3.2l The RADS provides a web ser-
vice for communicating with the client. The received monitored features
are stored into a database which is accessible by detection units. These
detection units analyze the data for finding anomalies which might indi-
cate malware activity. The detection units are implementations of machine
learning algorithms, e.g. AIS [75] or SOM [7], that are able to handle multi-
variate data in order to produce detection results. The meta detection units
work similar to the ordinary units except that they analyze results for weigh-
ing results from different detection algorithms. Since different algorithms
perform different on certain device usage data, using meta detection units
might improve overall detection results. The visualization indicates the
device status, incidents, and detection results.

4.3.2 The Monitoring Client

Intrusion detection can be separated into two fields: signature-based misuse
detection and anomaly detection. As the devices are monitored for anomaly
detection, it is important to monitor device data that enables differentiation
between normality and anomalies. Eugene Spafford et al. [208] points out
that host-based approaches, direct data collection techniques, and internal
sensors are preferable to network-based approaches, indirect data collec-
tion techniques, and external sensors. This was taken into account when
designing our monitoring client.
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Figure 4.2: The generic client structure is divided into three center com-
ponents that realize communication, extraction of system information, and
GUI support.

Generic Client Design

We propose a generic architecture in Figure including three main com-
ponents for the monitoring client: User Interface, Communication Module,
and Feature Extractor.

The User Interface enables client configuration, like changing server IP
address or port. It can be used to visualize the state of the monitoring
client, e.g. sending or buffering, and can indicate anomaly detection results.

The Communication Module is responsible for managing connection
states and sending or buffering the monitored features which is shown on
Figure [4.3] If the client cannot connect due to signal loss, it starts buffering
until a connection can be established. If a connection is not possible before
the buffer is filled, it adds the last extracted vector and removes the first.

The Feature Extractor has several different components for gathering
and computing features. Features describe the state of the monitored device.
They represent various measurements and observations of resources and
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Idle data sent Send current data
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connected[buffer=0]

Acquire data data ready[buffer>=threshold] Connect
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data ready[buffer<threshold] data sent connected[buffer>0]
TR
Store to buffer Send buffer
~— connection failed ~—

Figure 4.3: The possible connection states of the monitoring client

other hard- and software components. If no direct interfaces are provided by
the operating system, features are extracted by using algorithms or methods
which provide approximated results. This is done with care, as additional
encumbering of the already limited device possibly distorts the monitoring
results.

Securing the Monitoring Client As the communication or even the
monitoring client itself can be targeted by malware, it is important to se-
cure the functionality of the client. Using encryption for the communication
channel should be a proper way to secure data transmissions. Application
data does not need to be secured beyond existing application security mea-
sures since all data we extract from the system can be extracted by anyone
else. Securing the application itself is more complicated. The Symbian OS
API provides a method for setting processes to different critical levels. On
highest level, if the monitoring client process is killed, the device reboots
and restarts the process. This functionality was not added yet, as it obvi-
ously could lead to denial of service attacks on the device, but at least it
would guarantee either that the monitoring agent is running or that the user
brings the device to a specialist for fixing the problem. Another possibility
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is checking the running applications which are clearly identifiable through
an unique Symbian application ID. As soon as an unknown application is
started, it could be compared with an application white list that includes
all allowed programs. If an unknown process is started the system can kill it
or alert the user and the system. Different operating systems might support
similar functionalities where it is probable that not all clients will be able
to implement and run the same security measures.

The Symbian Client

==

? Username

¥ Password

E‘ -'1:)
NARL A
EEE.E. AR
.EE..@.EBE
0L = ORI
[ e

Figure 4.4: Nokia E61 and HTC TyTN B smartphones running the moni-
toring client.

The monitoring client was developed in Symbian C++ version S60 3rd with
“Nokia Carbide.vs” and consists of the three proposed components. The
User Interface can be used to change server port and address, to start,
stop, or move the client into the background. Further user information can
be inserted in order to control access to the remote server. For reasons
of program stability and to prevent interferences, the GUI is running in
a thread separate from the other components. Further work may even
remove the user interface to a separate application, since there is no need
to tie up GUI resources for an application running in the background. The
Communication Module uses SOAPH Web services on top of TCP/IP in
order to communicate with the server. As we found out, sending data — or

!This was formerly known as Simple Object Access Protocol.
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even just remaining in ready-to-send mode — is rather expensive in terms
of battery power. To prevent the rapid depletion of the power source, all
data is stored locally and sent in bulk after reaching a certain threshold
level. The Feature Extractor is triggered to fetch new monitored data every
20 seconds which then is sent to the server using the appropriate service.

Table 4.1: Excerpt of the extracted features

Name Complexity | Description

RAM FREE simple Indicates the amount of free
RAM in Kbyte

USER INACTIVITY | simple Indicates, if the user was ac-
tive in the last ten seconds

PROCESS COUNT medium Indicates the amount of
running processes

CPU USAGE complex Represents the CPU Usage
in percent

SMS SENT COUNT | complex Represents the amount of
SMS messages in the sent
directory

The Symbian Features Symbian OS] provides some programming in-
terfaces for extracting features, e.g. fetching the amount of free RAM or
the user inactivity time are simple API calls. But not all areas are cov-
ered by API calls, especially reading network traffic packets cannot be done
by average developers as the application programming interfaces are re-
stricted. Some other features need complex method constructs in order to
be extracted. We distinguish between three different method complexities:
simple, medium and complex. Features that can be called through Symbian
C++ interfaces taking only one or few lines of code are categorized as sim-
ple. Features that need several classes or algorithms to be computed are
marked as complez. Everything in between is marked as medium. Some of
the features can be used to identify and manage observed users or devices,
e.g. IMEIF|and IMSI[] The IMEI and IMSI are unique numbers that clearly
identify mobile devices or mobile network users. In the following, we de-
scribe how to compute some of the features shown on Table with pseudo

2This was tested on Version 9.1 S60 3rd.
3International Mobile Equipment Identity (IMEI).
4International Mobile Subscriber Identity (IMSI).
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code. Some of these will be used to visualize user activity in Section [4.3.3]
In order to present, how Symbian C++ programming looks like, we will show
the real call for getting the available RAM:

RAM FREE is a feature that can be easily extracted. All applications
need more or less RAM in order to work, so every running program/malware
should have impact on this value.

User: :LeaveIfError (HAL: :Get(
HALData: :EMemoryRAMFree, iFreeRamSize));

USER INACTIVITY indicates if a button was pressed within the last
10 seconds. If so, a “0” is returned else a “1”. This feature uses a function
that returns the absolute user inactivity time in seconds. This value is very
interesting for giving hints on activities that are not directly caused by the
user and happen automatically and/or periodically in the background.

Table 4.2: Pseudo code for indicating user activity

GET Userlnactivity Time

IF' UserlnactivityTime > 10 seconds
RETURN User is inactive
ELSE
RETURN User is active

The PROCESS COUNT can be easily computed through a while loop
that is checking the existence of processes. Each started application should
increase the process count at least by one, and so should malware.

The CPU USAGE cannot be read through a given Symbian OS interface.
While searching for an approximation we found a method described by
Marcus Groberf’| that manually checks whether the CPU is busy or not.
This is done by requesting a timer event with low priority 100 times a
second. Another request with high priority checks every second how often
the low priority request was actually called. The answer can be used to
approximate the usage of the CPU since the more the CPU is busy the less

Shttp://www.mgroeber.de/epoc.htm
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Table 4.3: Pseudo code for getting the process count

WHILE there are more processes
INCREASE counter
FETCH information from process object
STORE process information

RETURN the counter

the low priority request will be called. The following code fragment shows
the main calls and functions of this method.

Table 4.4: Pseudo code for approximating the CPU usage

CREATE new request Active Object low priority
CREATE new check Active Object high priority

SEND low priority time request
to CPU 100 times/second

CHECK number of accepted requests/second
Return approximated CPU usage/second

SMS SENT COUNT, like every feature relating to messaging (SMS,
MMS, and email), needs some more complex functions to be computed. But
once implemented, most of the messaging-related features can be extracted
using the same classes. Together with USER INACTIVITY this feature
can help to indicate malware sending messages to cost-intensive premium
services.

Table 4.5: Pseudo code for getting the amount of SMS messages sent

CREATE messaging session
CONNECT messaging session to sent folder
SELECT SMS sent folder
RETURN amount of SMS messages
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The Windows Mobile Client

The Windows Mobile monitoring client was developed in C# for Version
6.0 using Microsoft Visual Studio 2008 in the final stage. Similar to the
Symbian OS client the Windows Mobile client bases on our generic client
design. The extracted features are the same as on Symbian OS. They only
differ in the way they are called through the given Windows Mobile APIs.
In general, developing the monitoring client on Windows Mobile was easier
than on Symbian OS since provided APIs are well documented and running
the needed development and build environment does not need that much
effort as with Symbian OS. Various code examples can be found online
which are easy to integrate. Figure [4.4) shows the HTC TyTN B running
the monitoring client.

A First Android Architecture Draft

The Open Handset Alliance Project “Android”ff| aims for developing the
first complete, free, and open mobile platform. There is an ongoing debate
whether open source software is more secure than closed source software
where the most important pros and cons can be found in Lawton [125].
Since the discussion reflects various different opinions which are all argued
well, we will omit to continue the debate in this work. We only state that
open source software has the potential to be more secure where it depends
on the quality of the code reviewers whether it is or not.

Android bases on Linux kernel 2.6 and uses Java on top of Linux for pro-
viding a development and runtime environment for 3rd party applications.
The Android Java environment and byte code is not compatible to Java SE
or ME and uses a proprietary virtual machine called Dalvik VM. This is
optimized for mobile usage and provides one virtual machine instance for
each running Java application. This enables Linux to handle the instances
separately where every application is restricted by Linux file system rights.
Since the openness of Android allows modification of almost every software
component and Linux was used as core OS, this platform provides a good
foundation for building a monitoring agent benefiting from several years of
Linux security research. A first simple architecture basing on our generic
approach can be seen on Figure [£.5 Since accessing security relevant sys-
tem characteristics might be problematic using JNI native calls from Java

Shttp://code.google.com/android/, visited 15.3.2009.
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Java

Feature
Extractor

Linux

Figure 4.5: This simple monitoring architecture considers limited device
capabilities present in smartphones from the year 2006.

applications, the extractor was placed on the Linux OS layer. Application
control (GUI) and communication are placed on the Java layer since the An-
droid Java environment provides various libraries for implementing these.

C Database

Feature

Extractor Linux

Figure 4.6: This improved architecture for future smartphones includes the
idea to move storage, processing, and detection capabilities to the phone
itself.

This simple architecture can be extended following the assumption that
the capabilities of smartphones increase steadily. This means that early
client-server design decisions that moved most of the data analysis process-
ing to the server may be changed. Relocating some of the server functional-
ity to the client side will result in the reduction of communication latencies.
Additionally, having a light-weight detection on the client might lead to a
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dramatic decrease of communication data as the client could only send data
referring to already detected anomalies. Furthermore, Android provides ac-
cess to local database which can be used to store the monitored data. On
request of the server, database excerpts can be sent to the remote detec-
tion side for further analysis. The improved architecture can be found on
Figure |4.6|

The monitored feature set of android devices will be slightly different
from the one of Symbian OS and Windows Mobile. Since Linux intrusion
detection research is mature, results from various systems can be taken into
consideration, e.g. [8] and [I7]. A key issue will be to identify and merge
the most promising features known from file system, log file, connection,
and kernel monitoring systems.

4.3.3 Experiments

As our goal is to provide data that enables differentiation between normal
and malicious device usage we need to know first what actually normal
usage looks like. TNS Technology released a booklet [213] sourced from
the TNS Technology’s Global Technology Insight (GTT) 2005 where typical
user actions on mobile phones are described. We excerpted actions that
we performed on Nokia E61 and 7610 smartphones in order to monitor
normality. The corresponding software behaviors, visualized as data results,
can be found in Section [4£.3.3

Table 4.6: The top ten applications being used according to TNS in 2005,
as seen in Chapter 2

No. | Application Usage
1. SMS 83%
2. Games 61%
3. Camera 49%
4. MMS Pictures | 46%
5. PDA Functions | 36%
6. Internet 31%
7. | WAP 30%'|
8. Bluetooth 28%
9. Email 27%
10. | Video Camera | 27%

38



4.3. MONITORING SMARTPHONES FOR ANOMALY DETECTION

TNS GTI 2005 Study

As introduced in Chapter [2| the GTI 2005 bases on data coming from 6807
people aged 16 to 49, in 15 different countries. These respondents used a
mobile phone (6517 persons), PDA; or laptop and accessed the Internet at
least once a week. The study partly focused on the adaption of applications
on mobile devices which we used to excerpt the top ten actions that were
introduced in that work. These top ten actions base on the percentage of
mobile phone users who used the corresponding application and can be seen

on Table (4.6

Testing Specification

In order to perform the actions, we had to specify testing scenarios where
we had to distinguish between different use cases, for example a smartphone
user can send and receive a SMS message of various size with various recip-
ients. We identified about 40 use cases and specified a testing protocol for
each. An example protocol is given on Table

Technical Set Up

One of the used devices is a Nokia E61 smartphone which is running Sym-
bian OS 9.1 and has a QWERTY keyboard. It supports most of the conven-
tional techniques and protocols used in current smartphones, for example
WCDMA and WLAN. A 64Mb storage card is plugged which allows storage
of various files, like videos which then can be viewed on the 320 x 240 pixel
display [I60]. The installed Symbian-C'++ monitoring client was triggered
for sending a vector of features every 20 seconds to our remote server with a
public IP-address and attached database. This is done using a web service
via UMTS-connection. The feature vector that was sent has a size of less
than 8 Kbyte and contains about 50 features.

Since malware is only available for older Symbian Versions, we addi-
tionally used a Nokia 7610 running Symbian S60 version 7.x in order to
monitor Symbian malware available from P2P networks. The display has a
resolution of 176x208 pixels where the device has a weight of 118g. It uses
an ordinary cell phone keyboard and includes a MP3 player.

"This will be substituted with MP3 (19%) due to UMTS usage and increasing interest
for MP3 capabilities on devices.
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Table 4.7: The test specification for a multi-player game called Miniblaster
Preconditions:
e Miniblaster is installed on two devices
e Bluetooth is disabled
e settings in Miniblaster:
e music/sound enabled
e T'wo minutes of non-device-usage

Testing:

Launch Miniblaster on both devices
Start hosting on one device

Join game on second device

Play two rounds

Host exits game with left selection key
Second device confirms note and exits
Two minutes of non-device-usage

N Tt W

Expected Results:
e Fall of FREE RAM
e Raise of CPU USAGE
e Bluetooth gets enabled
e Data transfer

On Windows Mobile side, we used a HTX TyTN B smartphone with
similar capabilities and configurations as the Nokia E61.

Results

On Figure [4.7] to Figure the usage of most of the top ten applications
can be seen: in each case, activity leads to detectable changes in the system.
In Figure[4.7the usage of the Short Message Service is shown. It is separated
into four parts: sending empty message, writing and sending a 150-charac-
ter message, writing and sending a 300-character message, and writing and
sending a 150-character message with multiple recipients. In Figure
the usage of three different kinds of games is recorded: a simple game
called Miniblaster, a more complex game named Sky Force Reloaded, and
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Figure 4.7: Monitoring results:

Vector Count

When sending one or more text messages

(grey bottom line), the system reacts to user activity. Especially the CPU
indicates data processing triggered by the user.
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Figure 4.8: Monitoring results: Three different games were tested including
a graphical game, a complex 3D game, and the first game in multi-player

Bluetooth mode.
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Miniblaster in multi player Bluetooth mode. Figure[4.9visualizes sending an
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Figure 4.9: Monitoring results: The grey bottom line indicates the number
of sent MMS messages. Depending on the content of the message, various
processes are involved causing diverse monitoring results.

empty MMS message, writing and sending a 150-character MMS message,
and writing and sending a MMS message with attached picture. Figured.10
represents the usage of PDA functionalities; in detail it is reading a .PDF
file. Browsing the Internet can be seen on Figure where different links
were clicked and a picture was downloaded. Figure refers to sending an
image to a paired Bluetooth device. Figure displays sending of various
emails. On Figure [4.14] we used the browser to download a 8 Mbyte MP3
file which was played afterwards. Finally, Figure represents the making
of a new entry into the calendar.

What we can see although the number of vectors varies on the different
figures is that each application affects the corresponding features in a dif-
ferent way, for example gaming produces much more CPU utilization than
creating and sending MMS messages. This encourages the attempt to ap-
ply anomaly detection to the field of malware detection. A key issue that
has to be solved will be the differentiation between software and malware
with similar functionalities. The approach section follows the assumption
that having only few features that are affected in a different ways might
already enable detection algorithms to distinguish between malware and
benign software.
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Figure 4.10: Monitoring results: This very simple example shows the possi-
bilities a monitoring-based system can provide. In this case, we are opening
.PDF file which leads to an increase of CPU usage and process count. In
turn, the available memory decreases by the size of the PDF file plus the
memory required for processing and visualization. When closed, the system
returns to its initial state regarding the monitored features.
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Figure 4.11: Monitoring results: In comparison to Figure [£.10] this chart
has numerous entries. This is a good example why monitoring of devices can
get very complex and anomaly detection using such data tends to generate

false-positives.
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Figure 4.12: Monitoring results: Bluetooth data is transfered to a paired
device.
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Figure 4.13: Monitoring results: Similar to sending SMS and MMS mes-
sages, sending emails affects the monitored smartphones. One observed
difference is that writing and sending emails seems to be more resource
exhaustive in terms of CPU and RAM usage.
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Figure 4.14: Monitoring results: Downloading and listening to MP3 file
is another good example showing that every action taken has measurable
impact on the system. After listening to the MP3, the system returns to
its initial state except the amount of available hard disk space since the file
was stored on the disk.
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Figure 4.15: Monitoring results: When using calendar only minor changes
can be observed. Distinguishing between services having a similar impact on
the smartphone and mimicri-based malware can be seen as an open problem

in this field.
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Malware Monitoring Results We monitored several malwares on our
Symbian devices. On the older Nokia 7610, we recorded malicious be-
havior of Blankfont.A, Hobbes.A, Cardblock.A, Mabtal.A, Fontal.A, and
Dampig.A. Additionally, we created testing malware for the newer Sym-
bian version S60 3rd. The monitoring results can be seen on Figure to
Figure [4.24]

On Figure 4.16] monitoring results of the Symbian OS malware Blank-
font.Aﬂ can be seen. This malware replaces all icons and corresponding de-
scriptions with blank field so that the usage of these gets more complicated.
But except blank fields and icons, applications stay fully functional [65].
On Figure [4.17], the malware Hobbes.A is shown. Hobbes.A comes in a ma-
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Figure 4.16: Malware monitoring: Blankfont.A replaces icons and descrip-
tions of applications for irritating the user.

licious binary called Symantec.sis. This binary drops another binary into
the system folder of Symbian os preventing the affected device to boot up
properly. Post-infection booting will disable all smartphone functions ex-
cept calling [69]. The malware Cardblock.A is shown on Figure [4.18, On
execution, this malware sets a random password to the memory card. Ad-
ditionally, it deletes system directories which destroys handle information
for installed applications and for private data, like SMS a MMS messages
or phone numbers [66]. On Figure [4.19] the malware Mabtal. A can be seen.
Mabtal.A is a Trojan horse that drops other malwares onto the targeted
system [70].

Figure |4.20| shows the monitoring results of the malware Fontal. A. This

Shttp://www.f-secure.com/v-descs/blankfont_a.shtml, visited 25.6.2009.
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Figure 4.17: Malware monitoring: Hobbes.A drops a corrupted binary to
the system preventing the system to be able to reboot.
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Figure 4.18: Malware monitoring: Cardblock.A sets a random password on
the memory card and deletes system files.
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Figure 4.19: Malware monitoring: Mabtal.A drops malwares to the system.

malware copies a corrupted font file to the device while disabling the appli-
cation manager. Disabling the application manager prevents the user from
being able to install applications to the system. Additionally, this malware
bricks the phone on reboot meaning that it cannot be used any more due
to a dead lock in the booting process [68].
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Figure 4.20: Malware monitoring: Fontal.A copies a corrupted font file to
the system and disables the application manager.

On Figure {.21) Dampig.A is monitored. Dampig.A disables applica-
tions and installs variants of the Cabir worm. Additionally, it disables the
system file manager, messaging, phone book, and Bluetooth UI. Un-install
information are corrupted for preventing the user to un-install the malware
manually [67].
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Figure 4.21: Malware monitoring: Dampig.A disables applications and sys-
tem tools while dropping other malwares.

On Figure [£.22] the monitoring results of the malware described by [107]
is shown. This simple and naive malware is capable of sending message to
premium services. This malware was used in order to get a first impression
on how the system can get affected due to malicious activity.

On Figure [4.23] a self-written testing malware was monitored. Ex-
tended from the basis of the Jamaluddin et al. [I07] idea, we developed
a Symbian OS malware capable of taking pictures and sending these via
MMS to a predefined number in order to show that privacy-related attacks
can be easily implemented. The corresponding picture-results can be seen
on Figure [4.25) where we have to note that the users were not aware that a
picture was takenﬂ Pressing on “2” triggered the malicious process.

Additionally, tests with manipulating the phone book via SMS com-
mands succeeded too. Therefore we triggered a listener on the SMS inbox
folder that only reacted on messages containing two leading “%” characters.
Whenever such a message is received, the malware deletes the complete
phone-book. Pseudo code for both malware can be found on Procedure
and Procedure [2] listings where monitoring results are shown on Figure [£.24]

In Figure 4.22 every time the SMS SENT COUNT increases an in-
crease of processes and CPU busyness and a decrease of available RAM can
be observed. At vector count 96 we determined that a Nokia E61 device can

9The users were informed afterwards. For privacy issues, pictures were chosen, that
had an average quality.
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Figure 4.22: Malware monitoring

Vector Count

: The Jamaluddin malware [107] shows

which impact profit-motivated malware would have on a system. If badly
written, user inactivity would be a good indicator to show that a malware
is active. When hiding the malware activity within user activity, almost no
difference can be observed between malware and user-intended messaging.
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Figure 4.23: Malware monitoring:

Vector Count

Interestingly, this testing malware real-

izing camera abuse showed us that high system activity caused by applica-
tions and malwares can also have impact on your radio transmission signal

strength (top bar).
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Result: Takes and sends pictures

start KeyListener

if KeyFvent = “2” then
take picture;
add picture to MMS message;
send MMS message;

else

‘ wait;
end

[o I B R O N VD

Procedure 1 Picture malware

Result: Receives command SMS message and deletes contact list
start SMSListener
if IncomingSMS starts with “%%” then
prevent normal SMS handling;
delete contact list;
else
‘ allow normal SMS handling;
end

N O ok W =

Procedure 2 SMS malware

only hold 100 SMS messages which lead to the deletion of these. Addition-
ally, we implemented two more testing malwares. The first malware takes a
picture through the front camera, triggered by key strokes, and sends this
via MMS to a predefined number. Example pictures can be seen on Fig-
ure The second malware is remotely controlled by SMS messages. On
receive of predefined content and strings, the malware deletes the complete
phone-book.

4.3.4 Client-side Improvements

One objective was to find as many system characteristics as possible and
necessary that can be usable for any remote anomaly detection system.
After being able to retrieve 70 different features, describing the current state
of a smartphone, the system characteristics were collected continuously over
a long period of time. The resulting data was taken to evaluate common

9This class was removed since all values are already represented.
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Figure 4.24: Malware monitoring: phone-book malware

Figure 4.25: Pictures of smartphone users taken and sent by malware.

detection approaches. Furthermore, this data was analyzed in detail to
detect conspicuous details helping us to reduce the number of observed
features. These evaluations showed that 38 features can be ignored since
they had no impact on application/malware detection.

The remaining 32 features were analyzed for finding redundancies that
allow additional removal. This is necessary since processing large amounts
of data causes high CPU usage and memory consumption which is a key
issue for limited devices. Several methods for detecting redundant data
are known from the field of machine learning. Because the Principal Com-
ponent Analysis (PCA) has proven its usefulness [56], it was applied for
this task. PCA is a method that is applied to multi-dimensional data in
order to reduce the number of dimensions. This algorithm includes vari-
ous mathematical steps starting with subtracting the respective mean from
each existing dimension. Then the covariances are calculated and the cor-
responding eigenvectors and eigenvalues are determined. The features can
be ranked by the calculated eigenvalue where the lower the eigenvalue is the
less important it gets for the remote analysis.
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Table 4.8: Principal component analysis results displaying Eigenvalue (EV)
and Rank (R.)

EV R.| Feature 1 F 2 F 3 F 4 F5
0.6001| 1 | 0.38 -0.377 -0.377 -0.375 -0.375
FREE_RAM | DEBUG2 TASK_CNT| THR.CNT | PROC_CNT]
0.4414 | 2 | 0.544 +0.525 +0.521 -0.223 +0.134
BATTERY | CON CON_DEL | HD_.FREE | TASK_CNT
0.3519| 3 | -0.693 -0.683 -0.17 -0.095 +0.084
CELL_D LOCATION| USR_IDL HD_FREE | DEBUGI1
0.2749 | 4 | -0.557 +0.499 -0.381 -0.374 +0.165
USR_IDL CPU_USG | HD_FREE | USR_IDL_B| BATTERY
0.2029 | 5 | -0.600 +0.579 +0.436 -0.167 +0.154
DEBUGI1 CPU_USG | USR_IDL BATTERY | HD_FREE
0.1413| 6 | 0.678 -0.526 +0.373 +0.29 -0.119
DEBUG1 USR_IDL_B| USR_IDL CPU_USG | BATTERY
0.0934 | 7 | 0.851 -0.366 +0.274 +0.191 +0.08
HD_FREE USR_IDL BATTERY | CPU_USG | DEBUG1
0.052 | 8 | -0.733 -0.517 -0.383 +0.164 -0.064
USR.IDL.B | CPU_USG | DEBUGI1 HD_FREE | THR.CNT
0.0159| 9 | -0.706 +0.7 +0.062 -0.045 -0.043
CELL_ID LOCATION| USR_IDL USR_IDL_B| DEBUG1

For automating these steps, several tools provide methods for perfor-
ming such an analysis. For this work the Weka'] tool was used to analyze
a set of 3000 feature vectors which were recorded on a Nokia E61. This
analysis identified nine relevant classes of features. These classes represent
correlating features that have measurable impact on each other. Strong
correlation means it is less important to look at all of them. Hence, we
could reduce the number of features to one representative from each class

which can be seen on Table [4.9. The detailed results can be found on
Table 4.8

Beside the identified features from the PCA we recommend to monitor
additional features that are strongly related to smartphone malware. Hav-
ing an eye on the number of installed applications can help to track down
sources for anomalies. Whenever an anomaly appears as soon as an appli-
cation is installed, it is probable that this anomaly was caused by the newly
installed application. Since several malwares use Bluetooth and MMS in
order to propagate, it makes sense watching the connections and incoming
MMS messages. Additionally, monitoring outgoing messages can help to

Uhttp://www.cs.waikato.ac.nz/ml/weka/, visited 25.6.2009.
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Table 4.9: Ranked and recommended features are shown on this table.
While automatic feature selection led to the first nine characteristics, the
other five base on our personal experiences with smartphone malware and
corresponding anomalies.

Rank | Feature Description
1 FREE_RAM | Amount of available RAM
2 CON Created TCP/IP connections
3 USR_IDL User idle time in seconds
4 CPU_USG CPU usage in percent
5 BATTERY | Battery charge level
USR_IDL_B | Boolean user idle indicator
7 HD_FREE Amount of available hard disk space
8 THR_CNT Amount of running threads
9 CELL_ID mobile phone network cell ID
10a | INST_APPS | Number of installed applications
11a | BT_.CONN Amount of opened Bluetooth connection
12a | SMS_SENT | Amount of sent SMS messages
13a | MMS_SENT | Amount of sent MMS messages
14a | MMS_RECV | Number of received MMS messages

track malicious programs sending local data to a Trojan horse master or to
premium services in order to cause high costs. The additional features are
[Pl

marked with an “a” on Table 4.9 where a count of fourteen features was
achieved in total.

The selected features were evaluated with a labeled monitoring data
set in which the browser of the monitored device was started on few occa-
sions. When having the objective to detect malware, detecting any running
program is the first cornerstone. If it is not possible to detect anomalies
caused by such a program, then detecting anomalies caused by malware is
certainly not possible. Problems in detecting any program will otherwise
result in a high false positive rate when detecting malware. The task of
detecting any program is obviously not trivial, because other programs are
running at the same time. For anomaly detection, the normal state was
defined as the time before program to detect was started first. This normal
data was used for training.

On the detection side we used algorithms basing on self-organizing maps
(SOM) ([7], [116], and [I83]), artificial immune system (ALS) ([141], [89],
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Figure 4.26: Detection results from top: Artificial Immune System with
details on the right side, Self-organizing Map, and linear prediction.

and [79]), and an algorithm we called linear prediction in order to detect
the browser activity. The linear prediction algorithm detects changes by
checking four predecessors of a chosen feature. These four predecessors
are used for estimating a probable successor. From the difference of this
successor to the actual measured state, the anomaly value is concluded.

The accuracy, true positive rate, false positive rate, quality, and false
alarms were evaluated. Especially the true positive and false alarm rate are
of interest since they indicate how “good” the system performs; the true
positive rate describes the rate of correctly identified incidents. The false
alarm rate indicates the rate of falsely identified normal events. Figure [4.26
visualizes the results of four different feature sets. The first set was cre-
ated by feature selection based on PCA (labeled as selected). The second
set additionally includes our recommended features (labeled as selected_2).

105



CHAPTER 4. MALWARE DETECTION THROUGH DYNAMIC ANALYSIS

For better assessing the impact of the feature selection two more sets were
included. One set with all features (labeled as all) and one set of random
features that were sized identically to the selected set.

It is obvious that different detection algorithms perform different but
surprisingly the selected set caused a three times better detection of true
positives than the complete set with the AIS algorithm. The recommended
feature set resulted in a two times better true positive detection. Further
investigations showed that the reason for this is that the more features are
used in AIS the less precise its detection gets. Therefore, it can be stated
that similar algorithms benefit from smaller feature sets where the results of
the PCA work best. The SOM algorithm worked best with the complete fea-
ture set while while the SOM with our recommended set applied detected
about one percent less true positives. Reducing the amount of features
from 70 to 14 results in a save of 80% in terms of disk space. Additionally,
computation and communication costs are reduced significantly which has
a positive impact on the battery lifetime. Comparing these benefits with
the loss of one percent in true positive detection, this is a deterioration
that seems tolerable, especially in the field of mobile devices. The linear
prediction algorithm works slightly better with the PCA and our recom-
mended feature set than with the complete one. Therefore, similar simple
approaches will benefit from a reduced set too.

4.4 An Architecture for Anomaly Detection
on Android

In this section first results in creating an Intrusion Detection System for the
Android platform are presented. Therefore, the corresponding architecture
is shown in Section and a more detailed description on the general
detection system is given in Section [4.4]

Architecture

Figure [4.27] shows the architecture of the monitoring and detection client.
The bottom-up view on it starts with the Linux operating system level gen-
erating signals received by the actual monitoring components. The Linux
application level provides all the functionality needed for monitoring and
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storing device and operating system information. On Java application level
anomaly detection, detection collaboration, and detection response are re-
alized where the corresponding states can be visualized in an user interface.

Graphical User Interface
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Figure 4.27: The monitoring and detection client architecture consist of a
center part enabling monitoring of target devices and a top part that realizes
detection, communication, and other relevant tasks.

Linux Operating System Level The Linux operating system level pro-
vides events that are recognized by the monitoring system. These events

are initiated by kernel or file system changes.
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Linux Application Level The monitoring architecture on Linux appli-
cation layer consists of two programs: the monitoring application and the
control daemon. The control daemon is responsible for checking the status
and persistence of the monitoring application. The monitoring application
extracts information (features) from the Linux kernel and file system. These
features are used by the detection for creating a sense of normality. There-
fore, the features contain information about the hardware and software
states of the device. It has a generic and extensible design for modifying it
to corresponding needs.

Interconnect Daemon This is the main module of the monitoring appli-
cation. It is triggered and controlled by the event detection module
for generating vectors containing features.

Event Detection Module (EDM) This is an essential component of the
monitoring system. It recognizes changes in the kernel and file sys-
tem and generates corresponding events, e.g. new process is started.
Basing on these events, features are extracted that can vary in their
content and size. Each feature is marked with a time stamp and event
for later processing.

Kernel Monitoring Module This module extracts kernel-based features.

Examples for this are process lists, system call traces, and symbol ta-
bles.

Filesystem Monitoring Module This module extracts and verifies in-
formation on files. Examples for this are a list of open files or an
integrity check on predefined files.

Log-file Monitoring Module Since Android and many applications sup-
port logs, this module extracts information on changes and existence
of these.

Network Monitoring Module This module can extract information on
current network configurations, configuration changes, network status,
and network traffic.

Database Interface (DBI) This interface provides access to the Android
SQLite database from Linux application level. It is mainly used to
store the feature vectors created by the event detection module.
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Java Application Level The monitoring and detection architecture on
Java application layer realizes several tasks for anomaly detection, detection
collaboration, and detection response.

Detection Module The detection module runs light-weight detection al-
gorithms based on feature vector excerpts from the database. It con-
sists of a detection manager coordinating a variable amount of detec-
tion plug-ins. These plug-ins are instances of detection algorithm that
on the one hand can analyze feature vectors and on the other hand
can analyze results from different detection algorithms. Whenever co-
operative detection algorithms are used, this module can additionally
trigger the collaboration module.

Collaboration Module The collaboration module provides the means to
enable detection as well as response in a collaborative manner as an
API. Therefore, the collaboration module stores the node configura-
tion of the device in a dedicated data model. Based on this model,
interests for the collaboration can be defined that are matched against
other node configurations. Thus, partners for the purpose of collabo-
ration are found and communicated with via the communication mod-
ule.

Response Module This module enables countermeasures to detected in-
cidents.

Communication Module For exchanging feature vectors with the remote
server or collaborative peers, this module provides suitable functions
and network access.

Java Database Interface (JDBI) This interface provides access to the
Android SQLite database from Java application level. It is mainly
used to extract feature vectors and detection results recorded by the
system.

Graphical User Interface This module visualizes current monitoring, de-
tection, collaboration, and response status.

Detecting Anomalies

Approach An open system, like Android, requires protection against un-
wanted software and intrusion. In general, there are two techniques handling
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this, namely misuse detection and anomaly detection. The former method
is intended to recognize known signatures of malware and attacks, the lat-
ter to determine the degree of normality of some observables. Since there
is no malware existent for the Android device, our focus is set on anomaly
detection. Anomaly detection can be used to identify new and unknown
attacks, which in turn can be used on- and off-line to generate signatures
for fast detection in the future. Note that the detection architecture does
not need to be changed for misuse detection.

The question arises what normality means. In our approach we distin-
guish an individual and a common sense of normality. Either are learned
statistically and each device can check a system state according to both
measures.

When constructing a detection mechanism for a mobile device such as
Android, the computational costs has to be kept acceptable due to the lim-
ited resources and the need of energy saving. Thus, battery efficiency is a
guide line for the architecture. Taking this into account, complex compu-
tational task and the storage of huge data sets is outsourced to an external
server and the on-device detection algorithm is kept relatively simple. Since
each detection requires energy, the system integrity should not be checked
more often then really necessary, i.e. only on certain occasions. Hence, an
event-based approach seems more reasonable than, e.g. a time-periodical
one. Furthermore, neighbor devices are taken account in order to collabo-
rate and exchange data in the existence of an ad-hoc network.

Detection Mechanism According to our approach five major tasks have
to be handled:

1. Event detection, which is done by an event sensor (event detection
module (EDM)).

2. System monitoring, to gain information about some system observ-
ables (features) when required. For each class of event there is an
adequate monitoring module, recall Figure [£.27] the entirety of those
we will call system monaitor.

3. Detection, i.e. analyzing system features and assigning a status level,
done by the detector, which consists of a detection manager and event-
specific detection units and meta detection units.
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4. Learning, which the external server is responsible for.

5. Collaboration, which is used in the absence of external server or for
reducing the load from the external server.

Architecture Figure [4.28outlines the architecture of the detection. The
detection manager is a daemon, which can be implemented as an Android
service. It is set on auto start and on the highest priority level. The
system is prevented from stopping the detection manager via the method
setPersistent (). In this way, it is assured that it runs permanently in the
background. Normally, an activity should not be set persistent since then
it blocks system capacities.
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Figure 4.28: The architecture of detection mechanism consist of data extrac-
tion components on Linux-level and detection components on Java-level.
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The jobs which have to be accomplished by this unit is receiving signals
sent by the event detection module and starting a corresponding detection
unit. The latter are implemented as sub-activities and assign to each feature
vector a level of abnormality and return them to the detection manager. If
it exceeds a predefined threshold, the detection manager will alert the user
via GUL

The external server does the computationally intensive work of statis-
tical learning. The accumulated training data is sent from the database
of a mobile device to this server, and in turn the server provides updated
parameters for the detection to the mobile device. For a more detailed view
on learning see {4.4}

Let the interaction of these units be described by an example. As-
sume that one of the events we described occurs, e.g. new process is being
launched. This event is sensed by the event detection module, which informs
the system monitor and the detection manager immediately about which
kind of event has occurred. The system monitor then extracts some (event-
specific) system features, in this case the sequence of system calls caused
by this new process along with CPU/memory utilization and other process
data. Meanwhile the detection manager has started an event-specific de-
tection unit, i.e. the detection unit corresponding to the “process-started
event”. This detection unit evaluates then the level of alert from the feature
vector provided by the system monitor.

Server-supported Learning Whatever reasonable learning technique is
chosen, the computational costs for training cannot be carried by the mobile
device in almost all cases. Hence, the training data, gained from monitor-
ing, is gradually stored in a database and — after a certain amount of data
has been accumulated — sent to a server, where the individual detection
parameters are evaluatedm. Training data is separated according to event
class so that event specific detection parameters are determined and sent
back to mobile afterwards. Each detection unit attains in this way an un-
derstanding of normal system behavior which follows each specific event.
Furthermore, the server also calculates a common sense of normality based
on the broad statistical data of all users and makes these common param-

12This approach opens discussions on the trade-off between sending data to a remote
server which will also drain the battery and processing it on-device. For our case, our
empirical results showed that using the approach of accumulating data for sending it in
bigger chunks to a server for processing is the most efficient way to handle this.
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eters available for the detection units of each user. The reason for that
is that user behavior might switch abruptly if, e.g., a new application has
been recently installed. Then the detection unit will state a high individual
level of alert whereas it will claim that the system behavior is fairly normal
relative to other users, since some of which might have already worked with
this new application.

4.5 Tree-based Analysis for Malware Detec-
tion on Smartphones

The ubiquity of cloud computing gets more and more visible in our today’s
world. Most Internet users have been using cloud-based services for years,
e.g. Google Mail™¥], while new services are arriving with very short innova-
tion cycles. Cloud computing can offer a tremendous amount of computa-
tional power that can be used for various purposes. Even complex games
can be played in the cloud, like the third-person shooter game Quake 3. It
was converted to QuakeLivd 7| making the computational capabilities of the
terminal computer almost unimportant™ This computational power can
also be used for security-related purposes. Oberheide et al. [162] showed
that overall results of anti-virus software can be improved when using cloud
services. In their setup, Oberheide et al. constructed and deployed an
in-cloud anti-virus system called CloudAV including several detection en-
gines. Applying this kind of approach directly to low-cost computer sys-
tems, like netbooks or smartphones, is not feasible since these devices lack
the appropriate amount of resources. Therefore, it makes sense to use cloud
computing as remote service for low-cost devices relieving them from com-
putational burden similar to [I98]. The motivation for doing so is that
Oberheide et al. [162] improved detection results by 35% using their cloud-
based approach. This significant change has encouraged us to evaluate
similar approaches for detecting malware on low-cost devices, e.g. smart-
phones. Additionally, although the approach of Oberheide et al. included
behavioral-based detection, most engines used based on classic signatures
implying a weakness against new and unknown malware. Hence, cloud-
based machine learning could have a positive impact on this issue [I5]]

Bhttp://googlemail . com, visited 3.5.2009.
Mhttp://quakelive.com, visited 3.5.2009.
15Minimal requirements must be met in order to display graphics and play sounds.
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since it is basically capable of detecting unknown and new threats.

Therefore, we present an approach basing on dynamic analysis for de-
tection of malicious binaries on Linux-based smartphones basing on oper-
ating systems like Android, Maemo, MeeGo, Bada, and others. We want
to make use of the computational capabilities provided by cloud computing
while trying to keep processing effort on the devices low. Dynamic anal-
ysts for malware detection bases on acquiring processing data at runtime
through monitoring activities of the observable. Due to this real-time mon-
itoring, a lot of data can be generated making storing and computation of it
exhaustive. More over, in our case we monitor system calls made by benign
and malicious binaries which can lead to complex call sequences that need
to be stored. For decreasing complexity, we simplify the data that is stored
significantly: instead of storing complete sequences, we reduce the data to
simple trees indicating only the frequency of calls being made by each bi-
nary. Similar approaches already worked well in [196] 194]. For processing
these trees, we use tree kernels that can be used within Support Vector
Machines (SVM). SVMs tend to be resource-exhaustive in comparison to
traditional static approaches. Therefore, moving this computational work
to a remote service hosted in the cloud will have significant impact on the
battery life-time of a smartphone.

This section is structured as follows. In Section [4.5.1, we describe our
approach on using simplified system call traces for classifying them using
machine learning. Section describes the requirements, set-up, and
process of our experiments performed with real malware. Section
presents the results that have been achieved.

4.5.1 Approach

As shown more detailed in Section [4 dynamic analysis can be part of virus
scanners and intrusion detection systems that protect host computers or
networks. The key point about dynamic analysis is that data is acquired at
runtime in comparison to static analysis which does not require executing
binaries for investigating them. This can have the advantage that incidents
are detected in real-time enabling the system to start appropriate coun-
termeasures in time. In turn, dynamic analysis tends to be more resource
exhaustive than, e.g. static analysis, since it processes mass data retrieved
from real-time monitored instances. Considering this resource usage, apply-
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ing exhaustive dynamic analysis on a mobile device, like a smartphone, does
not seem feasible since it will drain the battery significantly due to higher
resource usage. Therefore, formerly it only made sense to place this kind
of analysis on stationary systems, like servers or stationary personal com-
puters. With the evolution of early computer clusters to modern “cloud”
which can provide tremendous computational power to connected devices,
resource limitations lose importance.

Several approaches use system and function call traces for indicating
malware or attacks [33, 117, 157, 157, 236] 142] which also partially include
considering function call arguments. In our case, we also work with function
and system calls where we try to simplify the approach by reducing call se-
quences to a general count of used calls. We try so since we had significant
success with a similar approach applying static analysis to system and func-
tion call references by binaries in [196], [194]. By just considering simple call
occurrences, we can decrease the computational burden of the remote cloud
system which might seem strange just after arguing that clouds make re-
source limitations less and less important. But when considering that cloud
cycles still need be paid or can be rented to costumers, being efficient in
terms of computational complexity will save money in a practical scenario.

Similar to Wagner et al. [232] we use process trees for modeling binaries.
Since process trees can get very complex, we just ignore interdependencies
of noded™ and just count the number of call occurrences resulting in a
tree having a depth of 1. Using solely these occurrences, we try to detect
differences between benign and malicious binaries, represented as anomalies.
Our aim is not to achieve a 100% detection rate, our intention is to provide
a mechanism that might be used as pre-check that is capable of indicating
malware but also can indicate the need for some more comprehensive checks
being performed in the cloud. Therefore, our approach includes five steps
that are performed within our analysis. This is depicted on Figure 4.29]

Interception of System and Library Calls

When trying to intercept system and library calls being made in the system,
two main approaches should be considered:

e Patching the Linux-kernel to intercept system-calls as described in [232]

16T this case calls being made are meant.
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Figure 4.29: Steps taken in the detection approach: I) the smartphones
traces binaries and generates tree models, II) the models are transfered to
the cloud, III) the server learns the received models, IV) new tree models
can be classified, and V) results are sent back

Figure 4.30: Excerpt from a tree showing occurrences of system calls made
the command 1lspci. The root node shows the process ID of the traced
binary. The edges show the number of system calls made, while the leafs
carry the names of the calls themselves. 1spci prints detailed information
about PCI buses and devices in the system.

e Using strace/ltrace to gather system call information

Patching the Linux-kernel has the advantage that monitoring would only
create a little overhead while additionally being harder to detect by attacker.
The disadvantages of patching the Linux-kernel are that the code will oper-
ate in kernel-space. On failure, the system will probably crash. Patching the
kernel will also result in maintenance problems: Linux-kernel is constantly
changing, maintaining this patch across versions is a headache. Writing
a loadable module instead is not a good option either since access to the
syscall-table by kernel-modules is increasingly restricted. Any code, which
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hacks around these restrictions will have similar maintenance problems as
a kernel-patch.

When looking at the option to use the strace/ltrace commands, fol-
lowing advantages can be identified. First of all, these commands work
across lots of different variants of Unix-based operating-systems making our
approach applicable to different systems. Secondly, the output-parser works
entirely in userspace and can be written in a modern high-level-language,
such as Python or Java. This can result in much less effort needed to be
spent on implementing. On the other hand, using strace/ltrace can re-
sult in a negative performance impact since due to synchronization’s issues.
Delaying the system and influencing the binary execution can result in a
decreased accuracy where final tests still need to be performed by us. An-
other disadvantage of strace/ltrace is that malware can easily detect the
usage of these commands. Some malwares prevent execution of most parts
when they detect being traced of executed within a sandbox [91] influencing
the results in turn.

Although having some disadvantages, we chose to use the strace/-
ltrace commands in order to intercept system and library calls. A main
reason for this is that we wanted to keep maintenance and programming
effort low allowing us to verify our results in a continuous manner on various
Linux/UNIX-based systems in futurd’}

From a practical perspective, we use the following command arguments
in order to intercept the system and library calls:
strace -f -r -o out /bin/executable
ltrace -f -r -o out /bin/executable
Both commands have the same output format so by writing a parser for
this format, we can import strace/ltrace output into a database we set

up.
Transformation of Intercepted Calls to Tree Models

As shown in Wagner et al. [232], complex trees can be used in order to
use them for classification. In order to save resources, we try to simplify

17Another future alternative might be the ERESI framework from http://www.
dieresis-project.org/. As soon this is ready for ARM, it may make sense to use
the commands e2dbg or etrace to obtain system- and library-call information. But for
now, using this framework in not possible.
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Figure 4.31: Excerpt from the tree resulting from the analysis of the binary
infecter virus 42

these trees significantly. We do so by ignoring any dependencies limiting
the resulting tree to information describing the number of calls made for
each system call. An excerpt from such trees can be seen on Figure [£.30]and
Figure [£.31] This partial tree contains only seven leaves while the original
one had Qﬂ. We generated trees out of standard benign Linux applications
as well as out of malware for being able to classify them with the means of
machine learning.

Learning of Normality and Detection

We use Support Vector Machines (SVM) in order to evaluate our approach.
In general, SVMs construct a hyperplane for separating instances that were
processed. Therefore, SVMs represent a classificators that need labeled
data for supervised learning. On a higher level, one can imagine an area
with dots that gets separated by a line that the SVM constructs which also
can be seen on Figure 4.32, In our case the dots would represent binaries
which should get separated to benign and malicious software.

We use a tool called SVM-light from Joachims [148] [I09] that imple-
ments the Support Vector Machine from Vapnik [228] applicable to pattern
recognition and other problems. The optimization algorithms used in SVM-
light can be found in [110, 109]. Additionally, the author states that the
algorithm has scalable memory requirements and can handle problems with
many thousands of support vectors efficiently.

For comparing the trees described in Section [4.5.1] we use a function-
ality provided by SVM-Light. SVM-Light can use tree kernels in order
to measure similarity of trees. Practically speaking, the more the trees
overlap in terms of number and kind of system calls made, the more sim-

18The tree was reduced for viewers convenience.
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Figure 4.32: Simplified view on SVM showing hyperplane and training in-
stances.

ilar they will be recognized. SVM-light reads input trees in the follow-
ing format, where -1 indicates the label for supervised learning, |BT| and
|ET| indicate begin and end of a tree, and the braces structure the tree it-
self: -1 |BT| (TREE (ARGO (A1 NP)) (ARG1 (AM-NEG RB)) (ARG2 (rel
fall)) (ARG3 (AM-TMP NNP)) (ARG4 (AM-TMP SBAR)) (ARG5 null)
(ARG6 null)) |ET|

4.5.2 Experiments

In our experiments, we recorded system call traces of about 1200 benign and
10 malicious binaries. These traces were used as input for the SVM. SVM-
light can be called in two modes: in learning and classify mode. In learning
mode, you can use various inputs for training your model. In classify mode,
you can evaluate new samples within this model.

Environment and Malware Used for Experiments

Since Linux-Smartphone malware is practically not existent yet, we decided
to run our tests on an ordinary Debian /Linux for our experiments. Basically,
smartphone Linux systems do not differ much from stationary Linux system
except that the ones for smartphones will be optimized for mobile use.
Therefore, in most cases, smartphone Linux systems will only contain a
subset of functions provided by the stationary ones plus some modifications
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addressing mobility issues. We even suppose that detecting malware would
be easier on smartphones because the environment that has to be considered
is smaller. A good comparison for this is the amount of binaries that can
be found in Android and Debian. Android contains about 100 binaries that
are installed to the system. In Debian, we found about 1300.

We used a virtual machine basing on VirtualBoved™] which is easy
to deploy. VirtualBores comes as an image that can be instantly used
for several free and/or open-source operating systems, e.g. GNULinux or
FreeNet/OpenBSD. Within this environment, we executed real malware
which we fetched from VX Heavenf", The malwares we used for evaluating
our approach target for Linux/BSD and are listed on Table [£.10] Generally
speaking, it is pretty hard to find malware for Linux containing source code.
Therefore, most of our malware set consisted of binary infectors that were
available. Additionally, it is obvious that the amount of malware might
cause problems when learning and classifying.

Table 4.10: Malwares used in experiments

Name Description

Linux.FortyTwo | infects the host twice
Linux.Adhoca infects a file in current directory
Linux.Adhocb infects a file in current directory

ELF infector
compresses text areas within files
binary infector

Linux.Arches
Linux.Arian
Linux.Csmall

Linux.Egalite

FreeBSD binary infector

Linux.Futhorca

binary infector

Linux.Fothorch

binary infector

Linux.fv binary infector

Testing Process

For keeping bias low on our evaluation, we used VirtualBoxes in order to
generate a clean snap shot of our testing system. This snap shot included
a fresh installation of Debian OS including all required tools, add-ons, and
malwares needed for our tests. We then loaded this snapshot, and executed

Yhttp://virtualboxes.or/, visited 25.6.2009.
20nttp://vx.netlux.or/, visited 25.6.2009.
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one single malware. On execution, we traced all system calls that were
made and stored them in a database using some Python scripts we wrote.
The data base was extracted and the original snapshot was reloaded. This
procedure was repeated for each malware binary. After having created a
database of system calls made by benign and malicious binaries, we used
this data to train the SVM.

4.5.3 Results and Discussion

For our statistical investigation we performed various runs of different cross-
validation, where in each loop execution the data is folded randomly into a
training set containing more than 50% of the data and a test set containing
the remaining percentage. Early results of our work-in-progress show un-
clear results that indicate problems with our data sets. When learning our
model from major parts of the benign and malicious binaries, classification
results show one to six miss-classified binaries. Considering the amount of
binaries that have been checked, results seem pretty good but when check-
ing the miss-classified files, it turned out that a high percentage of malwares
caused these problems. After investigating this in detail, we found out that
some of the malwares were too similar to benign binaries. This can have
several reasons but the most obvious one is that the malware data set is too
small and not representative. This resulted in making it very hard for the
SVM to create a proper hyperplane that is capable of separating benign from
malicious binaries. The problem is depicted on Figure [4.33] Another prob-
able reason for these results might be that the information given through
the simple trees is not sufficient. Using more complex trees may increase
computation overhead but at the same time may improve analysis results.

Nevertheless, as shown in [194] [196], relying on calling frequencies of
system calls works for detecting malware targeting smartphones. Therefore,
we have a strong belief that improvements on our data sets will have positive
impact on the results. Hence, one major task for our work will be to find
a lot more Linux malware that can be used in our experiments. Without a
significant increase of the amount of malwares, no statement can be made
whether the presented approach works well or not. Another task will be the
identification of additional machine learning approaches that might even be
parallelized for improved results.
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Figure 4.33: Trained data set resulting in miss-classification. Too many
malicious instances are located next to benign ones.

4.6 Summary and Conclusion

In this chapter we presented our research on using monitoring for anomaly
detection in order to detect malware on smartphones. Our experiments
were conducted Symbian OS, Windows Mobile, and Android.

In Section we demonstrated how a Windows Mobile and Symbian
OS smartphone can be monitored in order to transmit feature vectors to
a remote server. The gathered data is intended to be used for anomaly
detection methods that analyze the data for distinguishing between normal
and abnormal behavior. Abnormal behavior indicates malicious software
activity. Furthermore, even unknown malware can be detected although
no signatures are used. In our results we saw that most of the top ten
applications preferred by mobile phone users affect the monitored features
in different ways. This strengthens the approach of using monitoring and
anomaly detection in order to detect malware on mobile devices.

In Section [4.4] we presented a general monitoring and detection ar-
chitecture aiming for Linux-based Android platforms. This platform has
several components dedicated to essential tasks, like data acquisition or
detection, and will be our platform for future research. When running ex-
tensive analysis for detecting malware, such an architecture is needed for
realizing malware detection on smartphones. One important factor of such a
system is the monitoring capability. Malware detection will not work if the
system does not get enough information to process. In terms of complexity
this would be desirable of course, but a detection system will not be able
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to identify malware basing e.g. on the amount of available RAM. Another
important factor is the detection capability of the deployed algorithms.

Section describes our approach on using the monitoring architec-
ture from Section for gathering runtime information from Linux-based
smartphones. In particular, we traced the execution of binaries in order to
extract the system calls being invoked. We use these calls to create sim-
ple call frequency trees that are trained and analyzed in a support vector
machine. The interesting point about the call frequency trees is that they
are not complex and base on data extracted in a static way. This makes
them applicable to both, an online application store server checking sub-
mitted applications but also to on-device detection mechanisms. Since the
data is extracted in a static way, devices basically are not threatened by an
infection as they do not execute any code from the suspicious application.
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Chapter 5

Malware Detection through
Static Analysis

After having seen approaches towards dynamic analysis of malware in Chap-
ter [4] static analysis will be focused in this chapter. Static analysis can be
used to extend static pre-checks that are performed when developers upload
software to online application markets that are available for most major
smartphone platforms. Such extended pre-checks might increase malware
detection capabilities preventing malware scattering through online appli-
cation stores. Additionally, static analysis has the advantage that it is not
bound to the runtime of binaries in order to work. It solely relies on the
binaries themselves, which are investigated in a static manner. This means
that it is suitable for on- and off-device detection.

Another advantage of static analysis is that certain approaches can
be implemented using efficient and light-weight algorithms. This can turn
valuable when detection mechanisms get directly deployed on the devices
without increasing energy consumption significantly. Therefore, static anal-
ysis might be an appropriate measure to counter and even prevent malware
from infecting smartphones. The contribution of this chapter is twofold.

First, static analysis on executables from the Android platform is per-
formed in order to extract their function calls using the command readelyf.
Function call lists are compared with malware executables for classification
with PART, Prism and Nearest Neighbor Algorithms, including an option
to share results in a collaborative manner.

Second, clustering of function calls for static analysis is used. The
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results are promising where the employed mechanism might find applica-
tion at distribution channels, like online application stores. Additionally,
it seems suitable for directly being used on smartphones for (pre-)checking
installed applications.

5.1 Introduction

In this chapter, we focus on static, light-weight mechanisms for detecting
malware presence on smartphones. Our static approaches for detecting mal-
wares allow us to use simple classifiers and clustering methods which are not
very resource consuming and, therefore, also fit well to mobile needs. Pre-
vious approaches [187, 197, 33] mostly rely on external servers for removing
computational burden from the mobile device. In our case, the detection
can benefit from a server but does not have to rely on it. Thus, for process-
ing heavy-weight learning mechanism, we will benefit from the integration
of a remote server.

These presented approaches are novel to the domain of smartphones
and can extend third-party application checking for increased application
security. Additionally, not only signing processed!| can benefit from this
approach: platforms mainly using online application stores can also employ
this type of analysis for detecting malicious software, e.g. Android? or
iPhoneE]. These online stores require the submission of the to be published
application which is an appropriate time for applying the analysis. In some
cases it is possible to bypass application stores for downloading software.
Therefore, we also consider the option of moving these checks directly to
the mobile devices.

The first approach, which is presented in Section [5.3] uses clustering
of function calls in order to detect malware. Additionally, the approach
employs collaboration for security to extend our malware detection results.
Therefore, a set of entities is enabled to work on a common task without
predefined roles in a heterarchical manner. The collaborative scheme is
used to interact with other mobile devices in order to exchange detection
data and system information. It can be considered as an operation mode
whenever a mobile device is relying on the remote server but cannot access

1Such as known from Symbian OS.
Znttp://code.google.com/android, visited 28.6.2009.
3http://www.apple.com/iphone/, visited 28.6.2009.
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it. Additionally, a second approach basing on simple decision trees for
deciding the suspiciousness of the corresponding application is presented.

Our second approach, given in Section [5.4.1] uses a different method
in order to detect malware. Basing on common clustering methods, we de-
veloped a light-weight algorithm called centroid machine. This algorithm is
used in particular for detecting Symbian OS malware on the basis of func-
tion calls which suffices the requirements of mobile devices, e.g. efficiency,
speed and limited resource usage. The results of the centroid machine are
compared with the results of the light-weight naive Bayes classifier [I84] as
well as with a heavy-weight support vector machine method. This approach
is not limited to Symbian OS, but since this platform has the highest amount
of available malware among smartphone systems, we chose it for validation
purpose.

5.2 Related Work

Moser et al. [149] present a binary obfuscation scheme that relies on the
idea of opaque constants, which are primitives to load a constant into a
register. From that register an analysis tool cannot determine its value in
order to obscure program control flow, disguise access to local and global
variables, and interrupt tracking of values held in processor registers. Using
their proposed obfuscation approach, they show that advanced semantics-
based malware detectors can be evaded and static analysis techniques are
not sufficient alone to identify malware; thus, they need to be complemented
by dynamic analysis.

Several publications were made in the field of smartphone malware
detection and smartphone intrusion detection systems where tendencies can
be seen that most promising approaches involve power usage data in order to
detect attacks [158, [114] 105],B34]. Other approaches used feature vector- and
signature-based techniques in order to detect malware or anomalies [229,
A7), 187, [144), 33], 198, 197]. By now, no function call-based approaches for
smartphones are known to the authors.

Venugopal et al. [229] outline the considerations for malware detec-
tion on mobile devices. They propose a signature-based malware detection
method that is well suited for use in mobile device scanning due to its low
memory requirements and high scanning speed.
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Egele et al. [59] describe a static analysis for PHP web applications,
checking the requests while considering the call parameters for creating
more precise detection models.

Christodorescu et al. [44] use static analysis for creating assembler-
based program automatons for detecting malicious activity using the dis-
assembler IDA Prdﬂ. In particular, they address the problem of obfusca-
tion which current commercial anti-malware application still can not han-
dle properly. Their tool is called static analyzer for executables (SAFE)
and seems to be an appropriate approach for handling malware through a
stationary system. The drawback is that on-device detection requires light-
weight methods complicating a possible transfer of the presented approach
to a limited mobile device.

Bergeron et al. [28] perform a semantic analysis of binary code. Their
approach is separated into three stages: (1.) creation of an intermediate
representation, (2.) flow-based behavior analysis, and (3.) static verifica-
tion of critical behaviors against security policies. Flow-based analysis is a
valuable technique for investigating malware but currently not suitable for
smartphones due to resource constraints.

Kriigel et al. [I18] use static analysis on binaries in order to detect
kernel-level rootkits via instruction sequences before corresponding mod-
ules get loaded into kernel. They state that their prototype did not pro-
duce any false-positive while detecting all tested rootkits. Additionally, the
authors refer to a problem caused by “the exponential explosion of possible
paths that need to be followed” which clearly indicates that currently, this
approach cannot be applied to smartphones. These paths are created by
creating states of the observed machine for analysis of control flows.

Provos [I72] wrote a tool capable of generating and enforcing policies
concerning system calls. The “Systrace” tool is intended to be efficient and
does not impose significant performance penalties while currently aiming
for stationary Linux/Unix systems.

Warrender et al. [236] compare sequences of system calls in order to
distinguish normal from abnormal behavior. They test four methods with
increasing complexity, e.g. Hidden Markov Models (HMM) and come to the
conclusion that although HMM achieves the best accuracy, the less complex
ones are sufficient. The problem remains that analyzing call sequences is a
complex task currently not suitable for smartphones.

4http://www.hex-rays.com/idapro/, visited 28.6.2009.
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We present a method of static analysis of executables by disassem-
bly. Essential characteristics like system and library functions are extracted
and build the basis for identifying malware. Such identification is done
by a classifier, which is implemented using machine learning algorithms.
Static analysis of executables is a well explored technique, recall for in-
stance Christodorescu and Jha [44] or Zhang and Reeves [243] who propose
such analysis to establish a similarity measure between two executables in
order to identify metamorphic malware. Kruegel et al. describe static dis-
assembly in [I19]. Wang, Wu and Hsieh [235] present data mining methods
to discriminate between benign executables and viruses, whose dynamically
linked libraries and application programming interfaces are statically ex-
tracted. Support vector machines are used for feature extraction, training
and classification. Eskin et al. [63] apply machine learning methods on a
data set of malicious executables. Based on their data set they empirically
show that the rule inducer RIPPER and naive Bayes estimators outperform
simple signature-based scanner.

Mutz et al. [I57] state that common system call-based approaches do
not consider call arguments. This enables attackers to create methods for
evading detection. They propose two primary improvements upon existing
system. The first improvement applies multiple detection models to system
call arguments. This enables them to analyze the system call arguments
from various perspectives. The second improvement describes a sophisti-
cated method for aggregating the results from all applied detection models.
This method bases on Bayesian networks for classifying and improves de-
tection accuracy and resilience against evasion attempts.

Liu et al. [134] propose a finite state automaton extended by call stack
information for effectively capturing the control flow of programs. They use
static analysis for creating a base model and add dynamic learning on call
sequences. Detection results show that this approach has higher detection
capabilities than static approaches alone. Additionally, the system has a
lower false positive rate than models created by dynamic learning alone.

Wagner et al. [233] present an approach extracting non-deterministic
finite automaton (NDFA) models from application source code. Then, the
corresponding system calls of that application are traced for compliance to
the created model at runtime. The presented results are still preliminary
where the monitoring overhead for detecting attacks is high.

Different from these publications, the use of Android allows us to mod-
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ify the system even at kernel-level. Therefore, up to our knowledge, this is
the first time that a light-weight on-device function call analysis is investi-
gated for smartphones.

We present a method of static analysis of executables by disassembly.
Essential characteristics like system and library functions are extracted and
form the basis for identifying malware. Identification is done by machine
learning classifiers. Static analysis of executables is a well explored tech-
nique. Zhang and Reeves [243] propose a static analysis to establish a sim-
ilarity measure between two executables in order to identify metamorphic
malware. Kruegel et al. describe static disassembly in [119]. Wang, Wu and
Hsieh [235] present data mining methods to discriminate between benign
executables and viruses, whose dynamically linked libraries and application
programming interfaces are statically extracted. They use support vector
machines for feature extraction, training, and classification. Eskin et al.
[63] apply machine learning methods on a data set of malicious executables.

Ad-Hoc networks can be considered as the enabling technology for the
realization of collaborative intrusion detection among Android devices. In
that scope, new challenges arise from the inherent dynamic characteristics
of these networks.

Zhang et al. [244] mention that intrusion detection in mobile comput-
ing environment may benefit from distributed and cooperative approaches.
In this regard, they propose to use anomaly detection models constructed
using information available from the routing protocols. Huang et al. [12]
present a cluster-based detection approach for intrusion detection system
and showed that they could maintain the same level of detection perfor-
mance as an original per-node detection scheme with less host CPU utiliza-
tion. Sterne et al. [209] propose a generalized, cooperative intrusion detec-
tion architecture with dynamic topology and clusterheads. These cluster-
heads are determined according to valuable characteristics, e.g. distance,
bandwidth etc. and they perform special tasks like aggregation and analysis
of monitoring results. A general overview of intrusion detection in Ad-Hoc
Networks is given in [216].

All these approaches target in special security concerns arising in Ad-
Hoc networks, whereas our approach is striving for the opportunities Ad-
Hoc networks offer. In this context, Bye et al. [36] present an overlay
framework including an algorithm to find common groups and exchange
security related data, e.g. monitoring results.
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5.3 Static Analysis of Executables for Col-
laborative Malware Detection on Android

This section, describing our respective first approach on static analysis, is
structured as follows. Section describes how the data for our approach
is collected. Section presents our detection approach. Results are used
for collaboration scenario in Section Finally, we discuss the results in
Section [5.3.4l

5.3.1 System and Function Call Analysis on Android

The overall system realizes a client-server architecture which can be seen
on Figure [5.1] It basically provides three main functionalities: On-device
analysis, Collaboration, and Remote analysis. The client gathers data for
supporting these functionalities. For improving detection, data can be ex-
changed between two mobile clients in a collaborative manner. This data
can consist, e.g. of detection results or anomalous feature vectors. When-
ever on-device detection is not feasible, the client can send data to the
remote server. In turn, the server can send detection results back to the
client. Additionally, it can send commands for reconfiguring the client.

Data Extraction Architecture

The Android Java framework, as of time writing, only offers a restricted set
of Java methods in order to access the underlying OS-level, e.g. it is not
possible to get a list of all running system processes. In order to extract
further information, a mediator is required that collects the desired data on
OS-level and delivers it to an upper lying software stack. Responsible for
this task is a self-written tool called Interconnect Daemon, a Linux server
daemon which consists of several modules, e.g. system monitors. Additional
module tasks are scanning the file system, creating hashes from important
files, or waiting for operating system signals to indicate events.

The various modules work on top of Android’s system binaries, mostly
supported via toolbox, an all-in-one statically compiled binary. Toolboz of-
fers a number of standard Linux system commands with a limited set of

131



CHAPTER 5. MALWARE DETECTION THROUGH STATIC ANALYSIS

Remote Detection
Server

Remote
Analysis

Remote
Analysis

On-device

On-device \
Analysis J Analysis
I
Q - >
Collaboration
Monitoring and Monitoring and
Detection Client Detection Client

Figure 5.1: The overall system architecture includes a monitoring and de-
tection client installed on a smartphone and a remote server that processes
received data. Clients can share detection devices for improving detection
quality.

parameters. Additional tools were added: busybox’| supports a far greater
number of Linux commands with appropriate parameters; straceﬂ offers de-
bugging and system call tracing capabilities. Further descriptions can be
found in [195].

Creating a Training Set With Readelf

For this approach, a specific module within the Interconnect Daemon was
responsible for identifying and extracting all Linux system executables, to
be precise, all ELF (Executable and Linking Format) object files (excluding
shared libraries). These executables (mostly in /bin) hold static information
which can be read out with the appropriate reader, in our case readelf. Most
interestingly, the readelf outputs the static list of referenced function calls
for each system command. The following example shows the first lines of
the output of readelf running on a system command (/bin/ls):

Symbol table ’.dynsym’ contains 104 entries:
Num: Value Size Type Bind Vis Ndx Name

Shttp://www.busybox.net/, visited 7.7.2009.
Shttp://sourceforge.net/projects/strace/, visited 7.7.2009.
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0: 00000000 O NOTYPE LOCAL DEFAULT UND

1: 00000000 622 FUNC GLOBAL DEFAULT UND abort@GLIBC_2.0 (2)

2: 00000000 29 FUNC GLOBAL DEFAULT UND __errno_location@GLIBC_2.0 (2)
3: 00000000 84 FUNC GLOBAL DEFAULT UND sigemptyset@GLIBC_2.0 (2)

4: 00000000 52 FUNC GLOBAL DEFAULT UND sprintf@GLIBC_2.0 (2)

5: 00000000 433 FUNC GLOBAL DEFAULT UND localeconv@GLIBC_2.2 (3)

6: 00000000 10 FUNC GLOBAL DEFAULT UND dirfd@GLIBC_2.0 (2)

7: 00000000 87 FUNC GLOBAL DEFAULT UND __cxa_atexit@GLIBC_2.1.3 (4)

[...]

We identified a number of Linux system commands within Google An-
droid (less than 100). After extracting those, inspecting them with readelf,
and extracting the lists of function calls, this data formed our benign train-
ing set. In order to build a set of malicious training examples, we selected ap-
proximately 240 different malwares, found via Google Search, and extracted
the static lists of function calls with the same method as described above.
The malware set consisted of virus, worms, and Trojans specifically designed
for Linux (not specifically designed for Android’s ARM-architecture). A
few malwares have been successfully compiled for ARM-architecture and
compared with its i386-counterpart. The results showed only very minor
differences leading us to the conclusion that using this set as preliminary
malicious training set was a valid approach. The combination of both be-
nign and malicious data set formed our final training set which has been
used for further analysis.

5.3.2 Classification of Executables through Static Anal-
ysis

The executables can be fairly well identified as normal and malicious by
simply looking at the names of the functions and calls appearing at the
output of readelf. In the sequel, we will call these names simply attributes,
which are grouped in relocation and dynamic attributes due to their ap-
pearance at the readelf output. The combined attribute set is an union of
the relocation and dynamic attribute set. The set of attributes is further
split: an attribute is in the set of mutual attributes if there is at least one
malware ELF and at least one normal ELF whose readelf output contains
it, whereas an attribute is in the set of all attributes if it is contained in
the readelf output for at least one ELF, no matter if malicious or normal.
Eventually, six attribute classes are gained by the just mentioned discrimi-
nation, the sizes of which are presented in table 5.1} An attribute class will
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be denoted by N. The attribute class which is, for instance, both dynamic
and mutual have the shape X = { abort, _errno_location, sigemptyset, ... }.

Table 5.1: Sizes of the attribute classes

relocation | dynamic | combined
mutual attributes 174 145 189
all attributes 1662 2284 2816

The question arises whether these attribute sets have the potential to
distinguish normal from malicious executables. By applying several state-of-
the-art classifiers, it turned out this is the case for most of them. The table
below indicates accuracy parameters, i.e. correctly classified instances rate
(CC), detection rate (DR), and false positive rate (FP), for each attribute
set and each applied classifier due to our data set. To check the generalizing
ability of the trained classifiers, stratified ten fold cross validation is used,
where each fold is constructed randomly. The data mining package wekd[’|
served as test environment.

Table 5.2: Accuracy values of classifiers according to attribute sets
relocation \ dynamic \ combined
mutual attributes

Accur. | CC | DR | FP | CC | DR | FP | CC | DR | FP
Prism | 0.78 | 0.70 | 0.00 | n.V. | n.V | n.V. | 0.78 | 0.70 | 0.00
PART | 0.94 | 0.99 | 0.15| 0.97 | 1.00 | 0.12 | 0.97 | 1.00 | 0.12
n. Nb [ 0.92]0.98|0.21 090 |0.92]0.130.96 | 0.98 | 0.11
all attributes
Prism | 0.81 | 0.76 | 0.00 | 0.83 | 0.76 | 0.00 | 0.83 | 0.77 | 0.00
PART | 0.95 | 1.00 | 0.16 | 0.97 | 1.00 | 0.12 | 0.97 | 1.00 | 0.12
nNb 0.9410.99 | 0.12 ] 0.96 | 0.99 | 0.10 | 0.96 | 0.99 | 0.10

Three classifiers of different kinds are applied to our data. The classifier
PART extracts decision rules from the decision tree learner C4.5 [76]. Prism
is a simple rule inducer which covers the whole set by pure rules [38]. Both
take the interdependencies of attributes into account and are — once learned
— efficient classifiers. The computational costs of learning could be shifted
to a server, then mobile devices will be provided by rules. Prism produces in
all cases we tested no false positive whereas it performs less well in detecting
malware, and a higher set of rules (from 10 to 30) are usually induced than

"http://www.cs.waikato.ac.nz/ml/weka/, visited 7.7.2009.
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with PART, which is satisfied with 2 to 12 rules. Our third classifier is
the nearest Neighbor algorithm (nNb). We used the following light-weight
version of this standard classifier: Let M, N be the sets of malicious and
normal ELFs respectively, and let X be an attribute set and p a metric on
{0,1}™. An ELF is represented by z = (2;);ex Where a component z; is
equal to 1 if this ELF has attribute ¢ and equal to 0 if not. Here the simple
metric
p(ey) = le—ul, Tor oy € {0,130
ien

is applied. By d(x, K) = infyex p(z, k) the distance of z to a subset K C
{0,1}™ is denoted. The classifier ¢ maps a formatted readelf output of an
ELF z to the state space {malicious, normal},

(5.1)

{malicious, if d(z, M) < d(z,N),
p(r) =
normal, else.

The computational complexity of the detection by ¢ is of acceptable order,
namely O(|R]| - (]M] + |N|)). Nearest neighbor detection has the advantage
that no server is required for training and that it behaved in our test sta-
ble w.r.t. thinning of the attribute set: if the most distinctive attributes
due to our rules are omitted, the accuracy parameters of nNb do not vary
significantly. A drawback is that the attributes of each single malicious or
normal ELF have to be stored, which is acceptable in our case but might
become inconvenient with a growing data basis.

The detection map in ([5.1)) makes binary decisions whereas it delivers
no statement on the certainty of judgment. A simple solution is the strictly
increasing function ¢ : {0, 1} — [0, 1] which is derived from Equation (5.1])
by affine linear transformation, where an output of 0 means that investigated
ELF is normal and 1 that the ELF is malicious with probability one. The
values in between represent the level of maliciousness. In

Lr(x), if r(z) € [0,1],
Pla) = LB (2) + B i r(2) € (1,00),
1 if d(x, M) = 0.

the ratio of the distance to normal set and the distance to malware set
is abbreviated by r(z) = d(z,N)/d(x,M). If the output of ¢ overcomes
a threshold 6 € (0,1) it might be concluded that the ELF is malicious.
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For the threshold of 1/2 ¢ will lead to the same decision as ¢. If a lower
false positive rate is desired, increase threshold 6. Note that this will be
accompanied by a worse detection rate; recall the ROC graph in Figure [5.2]

Detection Rate

00 0.1 02 03 04
False Positives

Figure 5.2: ROC graph for nNb with varying threshold and detection func-
tion @

5.3.3 Static Analysis Using Decision Trees

In this section, we present a simple decision tree for deciding the suspicious-
ness of the corresponding application. It uses basically the same basis as
the foregoing experiment except that in this case all binaries found on the
Android system were considered]

Additionally, this example also refers to the intrusion detection system
presented in Section £.4] The considered event class is now the execution
of a binary and the system observables are the static function calls of this
executable. Information about functions which might be called by an ex-
ecutable is gained by means of disassembling, which is done by the Linux
commands readelf and objdump in our case, recall Linux man pages. We
show that normal executables are distinguishable from abnormal, which are
represented by Linux malware, on the basis of function appearance in the
static table. In our approach the set of normal executables consists of 94

8Even those binaries that were installed by us.
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edata =y
gethostbyname = y
| sigaction = y: normal
| sigaction = n: malicious

gethostbyname = n

| fork =y

| strerror =y

| | getgrgid = y: malicious
| | getgrgid = n: normal

| strerror = n: malicious

| fork = n: normal

edata = n
exit = y: malicious
exit = n
| fprintf = y: malicious
fprintf = n

| uname = y: malicious

uname = n

| execv = y: malicious

execv = n

| malloc = y: malicious
malloc = n

| putchar = y: malicious

| putchar = n

| | memmove = y: malicious
| | memmove = n: malicious

Figure 5.3: Decision tree 1. y means that the function appears in the static
table of an executables, n that not. This simple tree result in a detection
rate higher than 95%.

Android Linux commands, mostly found in /bin, and the set of abnormal
executables consists of Linux malware, via Google search we found 240 of
the latter.

We induced decision rules in the following way. First, the set of func-
tions, appearing in our normal and malicious set, is reduced by taking only
those functions which appear in the malware set and normal set. This
is done to exclude any Android specific calls, which are not called in the
Linux malware. Second, we apply principal component analysis to reduce
further the number of functions we will look at. Third, decision rules are
created based on the remaining functions. With the help of the decision
tree learner ID3, developed by Quinland [I75], we created two efficient and
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__bss_start =y
| gethostbyname = y

| | sigaction = y: normal

| | sigaction = n: malicious

| gethostbyname = n

| | fork =y

| | strerror =y

I | | getgrgid = y: malicious
| | | getgrgid = n: normal

|

|

|
|
|
| | strerror = n: malicious
| fork = n: normal
bss_start = n
printf = y: malicious
printf = n
|  fprintf
fprintf
| execv = y: malicious
execv = n
| memmove = y: malicious
n

y: malicious
n

memmove =

|
|
|
[
[
[
[
[

[ | | | | perror = y: malicious
[ I | | | perror = n: malicious

Figure 5.4: Decision tree 2 also achieves detection rates higher 95%.

accurate decision rules based on different function sets, see Figure [5.3| and
Figure [5.4]

The accuracy parameters are determined by stratified ten-fold cross
validation. The malware detection rates are higher than 95% for both de-
cision trees; the rate of false positives, i.e. normal executables erroneously
classified as malicious, is 13% for the first and 11% for the second decision
tree, respectively.

5.3.4 Collaborative Intrusion Detection

The collaborative approach is supposed to be support for the server on the
one hand, but on the other hand a fall-back alternative, in the case the server
is not available due to failure, attack or loss of communication channel. In
particular, we show how to use the results of the detection scheme presented
in Section in a collaborative manner. We introduce the overall approach,
give a sample scenario, conduct simulations and discuss the results.
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Approach

The collaboration module is triggered when a specific event takes place.
Subsequently, communication is established with neighboring nodes for the
assistance. A request takes place for support, e.g. computation or avail-
able information. Next, responses are collected and an action is taken after
evaluating them. Figure [5.5] gives an illustrative example of the collabora-
tion scheme in the context of the Collaborative Malware Detection scenario
presented in the following.

Based on the approach presented in Section [5.3.2] we extend the on-
device detection with a collaborative approach. We introduce an uncer-
tainty interval [0 — x, 6], triggering the collaboration mechanism. Hence,
the neighboring nodes are requested to determine the detection status ac-
cording to their classifier. The initiating node collects the responses and
builds the arithmetic mean. If the average of the responses is still below 6,
the executable is defined as benign, otherwise as malicious. We conducted
simulations for this specific scenario.

Simulation

We set up a simulation environment reflecting the characteristics of the ad
hoc network scenario. 100 nodes are used in a simulated area of 1500 x 1500
units with transmission range of 200 units. A unit is an abstract term for
a distance measure, e.g. meter. In each round, a node is able to commu-
nicate to one or several present nodes in his neighborhood determined by
his transmission range. The conduction of the algorithm lasts four rounds:
worm tries to infect, request for collaboration, response, and evaluation. We
performed 100 runs with 100 rounds per run. Nodes are mobile and move
every round according to a random walk model with a maximum of (+/-)5
units in each dimension. The attack vector is based on worm propagation,
e.g. the Cabir worm [124]. Initially, a device is selected randomly to be in-
fected. Then, the worm tries to infect all devices in transmission range. We
apply the aforementioned collaborative detection scheme. If a new device
becomes infected, the worm propagates further. If the worm is classified
as malicious by a device, this device is removed from the set of susceptible
devices.

We define the threshold for detection as 6 = 0.5. If the return value is
higher, the installed application is considered malicious and removed from
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9
9

Figure 5.5: Collaborative Malware Detection: [- An infected node tries
to install a malicious program to the target device. II- The detection status
1s determined. In the case, the status is within the uncertainty interval,
following steps are triggered. III- A request is sent out to the meighboring
nodes with a feature vector containing output of static ELF analysis of the
program. 1V- Each neighbor nodes determines the detection status of the
application according to its trained classifier. V- The initiating node is
informed about the results. VI- FEvaluation of results; if joint status still falls
in the uncertainty interval or below, the node becomes infected. Otherwise,
it 1s removed from the set of susceptible nodes.
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the set of susceptible nodes. If the return value is lower, in case of non-
collaborative scenario the node becomes infected. For the simulation, we
have two varying input variables. The first is the uncertainty interval [ —
x,0], where we use as x values from 0 to 0.5 in steps of 0.1.

The second input variable is the distribution function for the initial
detection values. These are assigned according to normal distribution with
a varying mean p and a standard deviation o of 1. All resulting values in
the interval [—2pu, 2u] are normalized to the interval [0, 1]. Afterwards, for
each applied distribution the mean is shifted by continuously adding 0.1. In
the case, a value becomes bigger than one, it is set to one.

Results and Discussion

160 Interval 0.00-0.50
M Interval 0.10-0.50
140
& Interval 0.20-0.50
M Interval 0.30-0.50
120

M Interval 0.40-0.50
M Non Collaborative

100

80

60

Number of Infections

40 -

20 -

Mean 0.5 Mean 0.55 Mean 0.60 Mean 0.65

Figure 5.6: Simulation results of the collaborative scheme show that collab-
oration can significantly lower number of infections.

The results of the simulation are depicted in Figure [5.6, The chart
shows the resulting number of infected devices with respect to the initial
detection value distribution and varying uncertainty intervals. The first
observation is that an increasing uncertainty interval reduces the false neg-
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ative rate. In other words, if the collaborative scheme is executed more
frequently, this results into fewer infections. On the other hand, it can
be seen that the higher the detection value is, the more the collaborative
scheme becomes effective. In the first distribution (1 = 0.5), the fraction of
the “Interval 0.40 -0.5” approach to the non collaborative approach is 80 per
cent whereas with the third distribution (@ = 0.6) this fraction decreases
to 32 percent. The most costly combination in terms of communication is
= 0.5 and the uncertainty interval x = 0.5. Here, the averaged maximum
of communication acts took place in round 2 with 0.4 per node. Although
we focused on decreasing false negative rate, we assume false positives can
be reduced by this approach similar as it is shown by Luther et al. in [141].
A collaborative scheme is susceptible to attacks. An extensive use of re-
sources, e.g. to drain the battery, can be prevented by defining an explicit
counter to serve only a maximum number of requests per time.

5.4 Detecting Symbian OS Malware through
Static Analysis

This section represents our second approach and is structured as follows.
In Section [5.4.1] we describe how we collected our data set on which our
work is basing on. Section [5.4.2] presents our approach towards static anal-
ysis of Symbian OS function calls for detecting malicious applications. In
Section [5.4.3] we discuss the corresponding results.

5.4.1 Function Call Extraction from Symbian OS Ex-
ecutables

Only few malwares are known for current Symbian OS 3rd. First malware
targeting Symbian OS 3rd appeared in February 2009 which used a valid
certificate. This happened shortly after Collin Mulliner presented a way to
bypass the security mechanisms of Symbian OS 3rd at Black Hat Conference
2008 in Japan. Mulliner additionally stated that he was wondering why no
one else was trying this common approach earlier.

In this section, we consider using the former Symbian platform version,
namely Symbian OS 2nd, for benefiting from the huge amount of existing
malwares. Although these binaries base on the older version of Symbian
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OS, we believe that the results of this work can also be applied to the newer
versions of Symbian OS. The main reason for this is that from a function call
perspective most of the calls remained the same while some were removed
and new ones were added?l

Over 300 malwares appeared up to date for Symbian OS 2nd, [190]. We
start by eliminating malwares which are simple file containers (installers)
overwriting critical files and which are based on similar code bases some-
times only changing the name of the installation file or the installation note.
After filtering, we ended up with data sets consisting of 33 Symbian OS 2nd
malwares as well as on 49 popular applications for the same version. 33
malwares obviously do not form a statistically proven set but it is the only
possibility to work on real data for smartphone platforms. One could argue
that researching stationery systems can lead to transferable solutions for
smartphones. But, as a reminder, key differences between these systems
have to be taken into account:

e Smartphone are highly connected while frequent connection changes
through different networks interfaces are common, e.g. 2G, 2.5G, 3G,
Wi-Fi

e Smartphones are single-user systems in most cases which allows to
disregard aspects of multi-user systems.

e Most cellular networks use NAT to assign IP-Addresses to cellular-
and smartphones which decreases the possibility of attacking IP ad-
dresses directly.

e Smartphone operating systems allow developing security systems in a
less complex environment.

e Although smartphones provide various functionality, their main pur-
pose is the usage of communication-centric services, like phone, mes-
saging, and nowadays Internet applications.

e In our opinion, most critical threats to smartphones are DoS attacks,
information stealing, and financial service charge abuse.

9http://wiki.forum.nokia.com/index.php/Differences_between_S60_2nd_
and_3rd_Edition, visited 16.7.2009.
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These aspects encourage us to stick to real malwares for research. Ignoring
research on such platform due to limited data sets can result in millions of
unprotected users.

We used IDA Prd" for extracting the function calls. Comprehensive
tutorials can be found online as well as in [58]. While exploring the instal-
lation binaries, we faced the problem that not all could be “unpacked” by
IDA Pro. To solve this problem we used a tool called “UnSI"Y]" that was
able to give us access to the corresponding files. As an alternative, the tool
“SISInfd™" can be used to do the same.

Table 5.3: Mapping of variables and functions

Variable | Mapping

X database of executables
x executable
Q union of function calls from all z € X
w function call in

P(Q2) power set of
X, class of benign executables in X
X, class of malicious executables in X
© most frequent calls from both X, and A
A top 14 calls from ©

fim(w) | frequency of attributes in X,

1y (w) frequency of attributes in X;,

oy (w) standard deviation in X},

We state that our findings can be applied to mobile devices. One draw-
back of this statement is of course that IDA Pro is not available for any
smartphone platform. But our research has shown that implementing sim-
ilar relevant functionality on current and future smartphone platforms will
be possible. In case of Android you can install the readelf["] application
which delivers detailed information on relocation and symbol tables of each
ELF object file. Most interestingly, it outputs the static list of referenced
function calls for each application chosen.

YOhttp://www.hex-rays.com/idapro/, visited 16.7.2009.
http://developer.symbian.com/main/tools_and_sdks/developer_tools/
critical/unsis/index. jsp, visited 16.7.2009.
“http://www.niksula.cs.hut.fi/~jpsukane/sisinfo.html} visited 16.7.2009.
3http://unixhelp.ed.ac.uk/CGI/man-cgi?readelf+1, visited 16.7.2009.
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5.4.2 Static Function Call Analysis on Symbian OS
Binaries

Descriptive Statistics

When extracting function calls we only take into account the function name
itself without considering parameters or arguments. The set of all functions,
appearing in at least one of the executables in our database X, will be de-
noted by €2, the elements of which are the attributes in our machine learning
approach. The static function call analysis retrieves for each executable x
a set of functions, which establishes the map

300 ! ! T T T T T T T

250 .

200 1

Number

of calls 150 |

100 1

0 10 20 30 40 50 60 70 80 90 100
Percentage of malware using the same calls

Figure 5.7: Function calls in malware: the x-axis displays the percentage
of malware; the y-axis displays the number of common calls from €2 which
appear in the malware. The dotted line reveals that there are about 50 calls
which appear in 70% of the malwares.

P(©)

X —
r — ((z),

(5.2)
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where P(£2) is the power set of €.

In this section we reveal some facts on the appearance of function calls
in the executables we analyzed and present a descriptive statistic on the
attribute distributions. In our database we deal with 33 malicious and 49
benign programs. Overall, 3620 unique function calls where discovered,
where 254 of these only appeared in malware, i.e. they are never called by
any benign program. The graph in Figure gives a rough overview on the
attribute distribution on the malware class. It reveals that there are almost
50 attributes in 2 which appear in 70% of the malware, and about 40 which
appear in the static analysis of 80% of the malware. Note that the curve in
Figure declines steeply beyond the 85% mark. Malware detection with
a rate higher than 90% is unreachable by simple methods, such as looking
at single attributes. The results from Figure clearly emphasize that
despite of that we already filtered out malwares with similar code bases the
other still remain similar. This underlines estimations that most Symbian
OS malwares base on a very small set of initial malware source code.

Feature Extraction. To make our detection system more efficient it
should only be based on a subset of (2. Additionally, one should not rely on
single malware-specific calls since they may be replaced or omitted in future.
To increase robustness with respect to such call replacements, one should
take calls into account which are standard and widely used, i.e. calls ap-
pearing frequently in both malware and benign programs. The set of these
calls will be denoted by ©. Some characteristics of the most malware-typical
calls in © are presented in Figure |5.8 and will be called A. An attribute
w € ) is regarded as more malware-typical the greater the quantity gets.

t(w) = fim(w) — (fn(w) + 363(w)) (5.3)

where ji,,(w) = ﬁ > wex, Lwec()y 18 the frequency of the attribute within
the malware class X, (for ‘1’ being the indicator function which equals 1 if
the underscored statement is true and 0 if not), fi,(w) the frequency within
the benign programs,

. I ]
= \/|Xb|——1 > (Muecy — f)?

TEAX
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CObexClient::Put ’ ‘ 4

CObexClient::NewL ’ ‘ i

RSocketServ::FindProtocol ’ ‘ A

CObexClient::Connect ’ ‘ i

CObexClient::Disconnect ’ ‘ 7

TBTSockAddr::BTAddr ’ ‘ i

RHostResolver::GetByAddress ’ ‘ )

MCoeViewDeactivationObserver::
MCoeViewDeactivationObserver_Reserved_2

BaflUtils::CopyFile ’ ‘ i

TDes16::UpperCase ’ ‘ 4

CEikAppUi::HandleCommandL ’ ‘ b

TBTSockAddr::SetBTAddr ’ ‘ I

RHostResolver::Open U b

BaflUtils::DeletefFil I )

Figure 5.8: Top function calls indicating malware: the z-axis shows the
attributes of A, the y-axis their appearance frequencies. Black displays the
frequency in benign programs (fi,(w)), light-gray the frequency in benign
programs plus three times standard deviation (f,(w) + 36,(w)), dark-gray
the frequency in malware (fi,,(w)). The longer the dark-gray bar gets, the
higher the probability is that a program is malicious, premising the call
occurs in the static analysis.
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the empirical standard deviation within the benign class X;,. Three times
o is chosen in since it is a common empirical rule, meaning that for
a real random variable almost all values lie within 3 standard deviations of
the mean [I73]. As our final feature set A, we picked attributes with the
greatest t(w) > 0 values and w € ©.

Detecting Malware by Means of Machine Learning

With the simple statistical methods of the previous section, detection rates
of more than 90% can not be achieved. In order to gain better detection
precision and accuracy we employ machine learning techniques. By ap-
plying appropriate models, we take the interdependencies of attributes into
account. We propose an algorithm called centroid machine, designed for de-
tecting Symbian OS malware on the basis of function calls. This suffices the
requirements of mobile devices, i.e. being efficient, fast, and light-weight.
Furthermore, we compare the quality of centroid machine with a version
of a support vector machine and a naive Bayes classifier [I84] since every
simple classifying algorithm has to keep pace with these state of the art
approaches.

Definition of “Centroid Machine”. The centroid machine classifies an
executable via clustering. Each cluster is defined by a centroid, where the
clusters are called ¢, and ¢, for the malicious and benign classes respectively.
An executable is classified as malicious if it is closer to ¢, and benign if it
is closer to ¢,. To make such distance calculations possible, we have to map
the set of attributes into a metric space via the kernel function

. P(Q) — R

: Q — (5.4)
C ZL:‘l 1{0.)1'60} €

for an ordered Q = {wy,...,wyq}. The set R forms a metric space with
the euclidean distance d. After applying the attribute-extracting function
¢ from (5.2)), we attain a kernel which operates directly on the set of exe-
cutables £k = ko (.

A centroid for a class j € {‘malicious’, ‘benign’} is chosen in a way that
minimizes the sum of squared euclidean distances d to all data points of her
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Table 5.4: Statistical figures characterizing the quality of different learning
models, excerpt from a 10-fold cross-validation. Model approach, malware
detection rate, accuracy of the approach, attribute set, and number of at-
tributes in set are shown.

Model Detection Rate | Accuracy | Set | Attributes

Centroid Machine 0.9667 0.9875 Q 3620

Centroid Machine 0.9505 0.9750 e 254

Centroid Machine 0.9333 0.9650 A 14

Naive Bayes 0.7890 0.9020 A 14

Binary SVM 0.9800 0.9194 A 14
class X

. . 2/ A
¢j = min E d*(f1,x).
,LLE]R‘Ql
CCEX]'
Then, our classifier can be defined as a map C assigning each executable
one of the classes ¢, or ¢.

O res { malicious, if d(k(z),cn) < d(k(z), cp) (5.5)

benign, else.

In order to vary the sensitivity we introduce an alarm threshold 5 € [0, 00|
such that any x is classified as malware if

d(k(z), cm)

d(k(z), cp) <h (56)

and classified as benign otherwise. This means with increasing (3, proba-
bility increases that arbitrary checked executables will be detected as mali-
cious. Figure [5.9] visualizes the aforementioned classification.

5.4.3 Results and Discussion

For our statistical investigation we performed 1000 runs of ten-fold cross-
validation, where in each loop execution the data is folded randomly into a
training set containing 9/10-th of the data and a test set containing the re-
maining one tenth. We applied the algorithms with different attribute sets,
which are the aforementioned €2, ©, and A. As a representative for support
vector machine classifiers, we employed the implementation of Chang and

149



CHAPTER 5. MALWARE DETECTION THROUGH STATIC ANALYSIS
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Figure 5.9: Sample clusters of executables with benign center of gravity ¢,
and malicious ¢, in relation to checked executable k(z).

Chih—JenE based on the algorithm proposed by Scholkopf et al. [202] with
standard parameters. We also varied the SVM parameters, but results did
not improve significantly. We used MatLah"| as learning environment.

On Table [5.4] the averages of classification rates are displayed. Note
that Centroid Machine outperforms naive Bayes and has even a better ac-
curacy than the heavy-weight support vector machine. Also note that the
dramatic attribute reduction from 3620 to only 14 is accompanied by an
acceptable decline of detection rate and accuracy. This reveals the possi-
bility to only take a relatively small subset of 2 into account while keeping
the discriminative potential of the attribute set. This potential small subset
of features also allows moving detection logic to mobile devices while not
encumbering the devices significantly. By varying the alarm threshold 5 of
the centroid machine in Formula the sensitivity varies. The resulting
ROC-graph is depicted in Figure while the area under the curve is
AUC = 0.9318.

Referring to Figure[5.8] the function calls from A point to Bluetooth-
based calls giving a good indication for detecting malware. Due to this
numbers, we can additionally state that most sophisticated”| Symbian OS

41ibsvm: a library for support vector machines, 2001, http://www.csie.ntu.edu.
tw/~cjlin/libsvm.

1°MATLAB, The Language of Technical Computing., R2008b, The MathWorks,
Inc. http://www.mathworks. com, visited 18.7.2009.

16This represents the intersected top 14 calls from Symbian OS mal- and software.

1"Malwares being more sophisticated than ones only overwriting files through exploit-
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Figure 5.10: ROC curve for the centroid machine for varying alarm thresh-
old 3 from (5.6). The area under the curve is AUC = 0.9318.
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malwares obviously use at least Bluetooth for propagation.

Revisiting drawbacks considering static analysis as presented from Moser
et al. [149], it is not trivial to estimate the vulnerability of centroid to com-
mon obfuscation techniques. Since direct usage of machine code is very
uncommon in Symbian OS applicationd™] appearance of related initial func-
tion calls should be detected. Additionally, since our approach only relies
on the function calls themselves and not call sequences, modification on the
sequences do not harm our approach.

5.5 Summary and Conclusion

In this chapter, we discussed the applicability of static analysis to the do-
main of smartphone platforms in order to detect and prevent infections by
malwares. Similar to Chapter [4 our experiments were performed on two
platforms: Android and Symbian.

Android represents a great opportunity for researching security aspects
on mobile devices, like smartphones. Since it is set open source, this is the
first time that most smartphone functionalities and APIs will be available
to common developers. This availability and access to the whole system
allows critical research on fundamental aspects of smartphones, in our case
security. Using static ELF analysis turned out to be an efficient way to
detect malware on Android using simple classifiers or decision trees. These
results can be improved when applying collaborative measures which can
reduce the false-negative rate.

Besides Android, we also investigated applicability of static analysis to
Symbian OS since this platform was the main target for malware writers in
the past. In terms of dynamic analysis, Symbian OS needs a lot of effort!]
in order to gain meaningful data that can indicate an infection on runtime.
Static analysis can bypass this limitation since it only needs access to the
binary itself. We described a set of Symbian OS malware analyzed by a
clustering method called centroid. This clustering method was validated
with the analyzed malware set. Centroid is based on a static function call
analysis and distinguishes malicious from benign program by a learning con-

ing features from the Symbian OS installation system.
8Drivers use machine code.
9This includes the acquisition of an valid manufacturer certificate.
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cept. Furthermore, we compared its quality parameters with some standard
state-of-the-art learning algorithms and showed that it is competitive. Ad-
ditionally, it is having the advantage of being lighter, which makes it more
appropriate for the requirements of a smartphone platform. Moreover, we
presented an attribute reduction method by which we successfully reduced
dimensionality dramatically without significant loss of detection quality.

153



CHAPTER 5. MALWARE DETECTION THROUGH STATIC ANALYSIS

154



Chapter 6

Conclusions

6.1 Summary

In Chapter [2, the evolution of smartphones including a definition of the
term smartphone is presented. This is necessary in order to have a common
understanding of the term throughout this work since no industry standard
exists for this. As smartphone hard- and software characteristics change
in a continuous manner, a sample smartphone is presented and differences
between classic computers and smartphones are discussed additionally. For
being able to describe smartphone usage in the year 2010, a survey with
about 150 participants is conducted. Additionally, smartphone security is
discussed and corresponding threats and mitigation strategies are presented.

In Chapter 3, smartphone malware and its evolution until the end of
2010 is introduced. For understanding ongoing research in the field of anti-
malware, commonly used approaches and related work for coping with this
threat are presented. This includes signature-based detection, heuristic de-
tection, and detection basing on intrusion detection systems. In this chap-
ter, the fields of dynamic and static analysis are also introduced.

Chapter [4] describes contributions in the field of dynamic analysis. A
monitoring system gathering behavior- and system-based information that
are processed by a remote system using machine learning for anomaly de-
tection is presented. Detected anomalies indicate activity of malicious ap-
plications, e.g. an application that is sending short messages to premium
services without knowledge of the user. Anomaly detection has the ad-
vantage over classic signature-based approaches that it can be capable of
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detecting even unknown threats. A drawback of anomaly detection can be
seen in its typically high false-positive rate. Furthermore, a monitoring and
detection architecture for Linux-based smartphones is presented which is
used to trace execution of binaries. In particular, invoked system calls are
monitored and a call frequency tree for analyzing these using a support
vector machine as classificator is created.

In Chapter 5], the applicability of static analysis to the domain of smart-
phone platforms is discussed. Two different platforms for the experiments
are used: on the one hand Symbian OS, since this was the major target of
smartphone malware providing samples of both malicious and benign soft-
wares, and on the other hand Android, since this allowed modifications on
system level. In both cases function and system calls are extracted from
binaries for being analyzed in a static manner. Results of the analyses are
promising and show that the presented methods are even competitive with
standard state-of-the-art learning algorithms, e.g. Naive Bayes.

6.2 Contributions and Results

The contribution of this work is a collection of information and methods for
smartphone malware detection. The presented approaches base on either
static or dynamic analysis and include all relevant steps starting from data
extraction and observables until detection mechanism being run on- or off-
device. The individual contributions can be summarized as follows:

Smartphones: The evolution of smartphones is presented and their differ-
ences to classic computing devices are explained. Key characteristics
of smartphones are that they are hand-held mobile phones with stan-
dardized OS supporting native third-party applications. Additionally,
small studies describing the usage of smartphones in the year 2010 are
presented.

Smartphone malware: A list including all known malicious softwares un-
til the end of the year 2010 is gathered and their key-characteris-
tics are presented. Until November 2010, more than 450 Malware
appeared affecting most major smartphone platforms: Symbian OS,
Windows (Mobile), Android, and iPhone. Additionally, the motiva-
tion for creating smartphone malware shifted towards profit-oriented
reasons. 20% of all malwares in November 2010 abused messaging for
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sending text messages to premium services. Furthermore, a listing of
current research on countermeasures is given.

Smartphone malware detection using dynamic analysis: A novel ap-
proach on monitoring smartphones for anomaly detection is presented.
In this approach, system status information is extracted that is used in
machine learning-based methods for indicating anomalies. It is shown
that device usage has measurable impact on the system status and,
hence, can potentially detect malicious software and even manual at-
tacks. Fifteen features are recommended for detecting system status-
based anomalies on Symbian OS-based smartphones. Additionally,
an architecture that enables monitoring and detection of anomalies
on Linux-based Android devices is described which is used in a cloud-
based system. More experiments are required using extended data set
containing samples from benign and malicious applications.

Smartphone malware detection using static analysis: Static analysis
on executables from the Android platform is performed and results
from classification with PART, Prism and Nearest Neighbor Algo-
rithms, including an option to share results in a collaborative manner,
are presented. Static analysis can bypass limitations on data acquisi-
tion since it only needs access to the binary itself. Additionally, even
methods with low complexity like Nearest Neighbor perform very well
when handling function call-based static data. A similar approach
is presented that uses function calls from Symbian OS binaries in a
static manner. The Centroid Machine is presented which outperforms
common state-of-the-art classifier, like naive Bayes and SVM, when
using a very small attribute set for detection malware. In particu-
lar, the Centroid Machine detected 96% where naive Bayes and SVM
detected 90% and 91%, respectively.

As listed in the introduction, aspects of this dissertation were published
as journal article [I9§], peer-reviewed conference papers [32], 22 21, 194], 190,
199, 6, 200, 197], technical reports [86, 192, 190, T9T], 195], and poster [193].
Additionally, content of this work was used to teach students in seminar
and project courses, as well as to find problems to be addressed in bachelor,
master, diploma theses.
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6.3 Open Issues and Future Work

Most of our approaches suffer the absence of quantity and variety malware
running on a recent operating system. Therefore, it will be an ongoing task
to identify and analyze malware that can be used within our experiments.

In case of the runtime monitoring of smartphones, gathering more data
from different smartphones running operating systems, like Google Android
or iPhone, will be one of the tasks that we will focus in future. Furthermore,
we will start to test methods from various fields from machine learning in
order to attempt to detect the malicious activities similar to Oberheide et
al. [162]. A first step towards this can be seen in Luther et al. [I41] where
biological inspired techniques for analyzing feature-based network data.

In case of the Android-based approaches involving static analysis, static
ELF analysis turned out to be an efficient way to detect malware on An-
droid using simple classifiers. These results can be improved when applying
collaborative measures which can reduce the false-negative rate. Further in-
vestigations are needed in order to evaluate our findings using real Android
hardware and malware. Real resource consumption will be a significant in-
dicator whether this system can be extended to more complex tasks, e.g.
adding more semantic information to the collaborative approach or using
more complex classifiers.

In general, it can be assumed that malware detection on smartphones
will be a hot topic in the future. Due to increased popularity of smartphones,
more and more people will be threatened by upcoming malware. And since
these device continuously gain new capabilities, usage will increase leading
to more and more victims. Creating application online stores, as known
from Apple and Android, was a good step towards protecting users against
malicious software. Before being accessible in these stores, tests are run
in order to check submitted applications for unintended behavior. Unfor-
tunately, malware writers find ways to bypass these kinds of checks which
underlines the omnipresent threat of malware. For these cases, on-device
protection is the only possibility for keeping security at acceptable level.
Five years ago, on-device detection was not realizable on a large scale of
device due to restricted and limited hardware. Nowadays, devices run at 1
GHz and new dual processor architectures are announced making on-device
detection feasible. Hence, future research will cover the topic of on-device
detection for being able to protect smartphone users against malware.
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APPENDIX A. ACRONYMS

Appendix A

Acronyms

API
BT
CPU
DoS
Email
FOMA
GPRS
GSM
GUI
IDS
IMEI
IMSI
P
IrDA
J2ME
KVM
MMC
MMS
(O]
SDK
SIS
SMS
TCP
UMTS
W-CDMA
WiFi

Application Programming Interface
Bluetooth

Central Processing Unit

Denial of Service

Electronic Mail

Freedom of Mobile Multimedia Access
General Packet Radio Service

Global System for Mobile Communications
Graphical User Interface

Intrusion Detection System
International Mobile Equipment Identity
International Mobile Subscriber Identity
Internet Protocol

Infrared Data Association

Java 2 Micro Edition

“Kilobyte” Virtual Machine

Multimedia Card

Multimedia Messaging System
Operating System

Software Developing Kit

Symbian Installation System

Short Message Service

Transmission Control Protocol

Universal Mobile Telecommunications System

Wideband Code Division Multiple Access
Wireless Fidelity
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Appendix B

The Evolution of Smartphones

Popularity of smartphones increases steadily while the provided technology
has taken a long path until today. For showing this long path, a long-term
look on the evolution of smartphone technology will be given in this section
describing a time span of about 4500 yearﬂ The content of this section is
not directly related to the topic of “smartphone security” but gives inter-
esting insights to the technological evolution of mobile telecommunication
and mobile computing?}

Starting with the Sumerian abacus constructed about 2700-2300 BC [94],
aided computing begun already in ancient times. The abacus represents a
tool for performing arithmetic operations representing probably the first
mobile computing device ever.

Another important event in history was the use of binary numbers,
a general basis of computer technology. Following Sachnez et al. [188],
an Indian writer named Pingala was the first to use a binary system for
describing rhythm structure of poetry near the year 200. Binary numbers
are obviously the fundament of modern computing and telecommunication
technology.

Willhelm Schickard’s mechanical calculating machine from 1623 [226]
can also be seen as a milestone in smartphone evolution. This first me-
chanical calculator was able to add and subtract 6 digit numbers where
“carry overs” needed manual interaction. This machine was followed by the

! Most of the relevant technologies were developed in the last 200 years are presented.
2 Additional entries that might be interest refer to Charles Babbage, Ada Loverlace,
COLOSSUS, ENIAC, Janos von Neumann, and Alan Turing.
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“Analytical Engine” of Charles Babbage which can be seen as the prede-
cessor of modern computers. Nowadays, highly complex calculation can be
performed on mobile computing devices, like smartphones.

In 1833 Gauss and Weber succeeded in transmitting the first telegraphic
message over a distance of about 1 kilometer [I70]. Besides successful at-
tempts from other researchers, e.g. Morse in the year 1837, the telegraph
can be seen as another major step towards modern communication technol-
ogy.

Further important technological progress was achieved by Antonio Muec-
ci [113] and Alexander Bell. Meucci invented a voice communication appa-
ratus in 1857. He filed a patent caveatﬂ on this in 1871 where he did not
extend the caveat in 1874 which would have costed $10 USD. This basically
allowed Alexander Bell to issue a patent caveat on the telephone 1876. Fol-
lowing the New York Times [215], Bell and Watson were the first to hold
a wired conversation in the same year. The findings of Muecci, Gauss, and
Weber enabled the development of wireless telephony.

Another interesting event in smartphone evolution was the introduction
of QWERTY Keyboards with the Sholes and Glidden typewriters in 1878.
Since current computer and smartphone keyboards still use a very similar
key layout, several discussion were made on the actual usability and reason
for the initial layout which you can see on Figure [B.I] Some argue that this
layout minimizes jamming of the metallic bars used in typewriters. Others
even state that the layout aims for slowing down typist for also minimizing
jams [55]. QWERTY keyboards can be found on most early smartphones
easening typing data.

In 1888 Friedrich Reinitzer [I80] was the first to publish on phenomenons
related to melting and freezing of cholesteryl benzoate. Pointing Otto
Lehman to these characteristics, Lehman published an article on floating
Crystalsﬂ [130]. Key characteristics from these crystals were: 1.) the exis-
tence of two melting points II.) the reflection of circularly polarized light
and III.) the ability to rotate the polarization direction of light. 80 years
later, in 1968, the first Liquid Crystal Display (LCD) was built, basing on
these essential findings. Current smartphones mainly use LCDs for their
displays though a shift towards Organic light-emitting diodes (OLED) can
be seen.

3A preliminary and less complex patent application was filed.
4The original term was “fliessende Kristalle”.
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Figure B.1: QWERTY keyboard image taken from a patent filed in
1878 [206]. The image shows that the basic keyboard layout of modern
computers did not change for more than 130 years.

After several decades of short range wireless telegraphy research, Gugli-
elmo Marconiﬂ was the first to extend range significantly from some hundred
meters to about 1.5 kilometers in 1895. He was able to achieve this by
positioning the antennas vertically while letting them having contact to
the ground. Wireless communication, such as early wireless telegraphy, is
obviously one of the most fundamental achievements that influenced the
modern mobile information and communication technologies.

The development of wireless communication was followed by another
technological milestone: the transistor. In 1926, Julius Edgar Lilienfeld was
the first to patent the principle of a transistor while the first working one
was constructed and patented by Oskar Heil [132], 88]. The Transistor can
be seen as a key component in modern electronics.

According to Horst ZuS(ﬂ the Zuse Z1 developed by his father Konrad
Zuse was the first freely programmable binary computer in the world. It was
constructed in the living room of Konrad Zuse’s parents and was finished in
1938. The finished Z1 was using a vacuum cleaner engine, weighed about
1000 kg and was running at about 1 Hertz.

In 1956, the first fully automatic mobile phone system was commercially
released by Ericsson in Sweden. It did not require any manual interaction
on base station side and was named Mobiltelefonisystem A (MTA).

®Marconi did acknowledge this later in his Nobel Award speech. See: Marconi, “Wire-
less Telegraphic Communication: Nobel Lecture, 11 December 1909.” Nobel Lectures.
Physics 1901-1921. Amsterdam: Elsevier Publishing Company, 1967: 196-222. Page 206.

Shttp://www.horst-zuse.homepage.t-online.de/z1.html, visited 23.02.2010.
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The invention of Integrated Circuits (IC) is another important event in
smartphone and electronics history. Early work in this field was patented
by Werner Jacobi in 1949 [4] where the invention of the actual IC is credited
to Jack Kilby [104]. For his part of this achievement, Kilby won the Nobel
prize in the year 2000.

Originating from [147] in 1965, “Moore’s Law” has been applied to
transistor-based electronics, like modern computers, for decades now. Basi-
cally, this law describes a trend in computing evolution, in which the number
of transistors that can be placed on an integrated circuit doubles approx-
imately every two yeard’] From 1970 until today, actual development can
be applied to this law, disregarding minor deviations.

In 1970, Abramson [3] and his team at the University of Hawaii de-
ployed the ALOHAnet, using low-cost radio systems to create a computer
network connecting the different campuses of the university. Challenges and
solution faced in the ALOHAnet project influenced the later development
of Ethernet.

Following Ray Tomlinson [218], it is very probable that he was the first
person to send an email from one computer to another. The exact con-
tent of that message is unknown but Ray Tomlinson states that it might
have been “QWERTYUIOP” or something similar using two computer con-
nected through ARPANET. In general, email is credited having been the
killer application for ARPANET and hence, having remarkable share in the
evolution of the Internet.

On 14th April 2009, Hewlett Packard had been awarded the “IEEE
Milestone in Electrical Engineering and Computing” for its HP-35 calcula-
tor. In 1972, the HP-35 was the first hand-held-sized scientific calculator
in world to perform transcendental functions, such as trigonometric, loga-
rithmic, and exponential functions [214]. This calculator can be seen as the
beginning of sophisticated hand-held computing and hence being ancestor
for most mobile computing devices.

In 1979, Sony introduced its “TPS L2 Walkman” being the first small
and portable cassette player with earphones. Smartphones include MP3-
Players representing the modern replacement of mobile cassette and com-
pact disc players.

In 1980, Japanese Companies, like Sharp, Casio or Matsushita produced

"Originally, Moore predicted a doubling every year.
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the first hand-held computers at clock speed of 1 MHz.

The Nordic Mobile Telephony (NMT) system was the first fully-auto-
matic cellular phone system. It was opened in Norway and Sweden in 1981
and also had commercial service in Saudi Arabia at that time. NMT is
using an analog communication technique and represents a first generation
(1G) mobile phone network.

In 1989, GRiD systems introduced its GRiDPad hand-held computer
at a clock speed of 10 MHz supporting handwriting recognition.

A Finnish operator called “Radiolinja” [167] was the first to run a
Global System for Mobile Communications (GSM) second generation (2G)
phone network in 1991. GSM originated from a memorandum of under-
standing that was signed by 13 European countries to develop a common
cellular phone system in 1987 [16]. GSM originally used two codecs for
transmitting a voice spectrum of 3.1 kHz: Half Rate (6.5 kbit/s) and Full
Rate (13 kbits/s) [1].

An elementary step towards today’s smartphone was the joint venture
of IBM and BellSouth, resulting in the final release of the IBM Simon in
1994. The IBM Simon was a device combining functionalities of a cellu-
lar phone, a personal digital assistant, a pager and a fax machine. RAM
and ROM were each sized 1 Mb and the black and white touch screen sup-
ported a resolution of 160x293 pixels. Some sources claim that the Simon
was the first smartphone ever [47, [165] but considering our definition of a
smartphone to follow in Section it was not.

In 1996, Microsoft Windows CE version 1.0 was released as an operating
system supporting devices called “hand-held PCs (HPC)”. Today, different
components of the current Windows CE are used in different operating
systems, which are: Windows Mobile Classic (formerly Pocket PC), Win-
dows Mobile Standard (SmartPhone), and Windows Mobile Professional
(formerly PocketPC Phone Edition) [50].

EPOCI16 is an operating system that was developed by Psion in the
end of the eighties. It can be seen as the predecessor of EPOC32 which
was released in 1997 (version 1.0). A year later, in 1998, Symbian Ltd. was
founded including that EPOC32 was renamed to Symbian OS. Nowadays,
this relation still can be seen through the starting command for the Symbian
OS emulator, which is epoc.

In 1999, the general packet radio service (GPRS) was introduced repre-
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senting a circuit switched packet-oriented best effort service. For each trans-
mission, GPRS established a fixed circuit for being able to send packet-based
data. GPRS can provide data rates of 56-114 kbits/s while fixed transmis-
sion rates and delivery times cannot be guaranteed. GPRS is considered as
service being placed between second and third generation (2.5G) of mobile
phone networks while it was standardized by ETSI [64] and now is under
control of 3GPP [1].

The first phone supporting native third-party applications through an
public SDK was the Nokia 9210. Therefore, it can be seen as the first
smartphone according to our definition which is described more detailed
in the next section. The 9210 was part of Nokia’s Communicator series
in 2001 and ran Symbian 6.0. Its LCD screen supported a resolution of
640x200 pixel while being able to display 4096 colors. The device provided
14 Mb memory to applications and 2 Mb to users. Additionally, it had an
interface for Multi Media Cards (MMC) with up to 16 Mb storage [103].

The Kyocera QCP 6035 was the first smartphone that was released on
the U.S. market. It was a combination of a Palm PDA with phone and
Internet capabilities. Since it was using Palm OS, third-party application
could be installed to the device making it a real smartphone. It supported
voice-dialing and used a 20 MHz processorf|

In 2002, the first commercial Universal Mobile Telecommunications
System (UMTS) network of the third generation (3G) was started by NTT
DoCoMo’s Freedom of Mobile Multimedia Access (FOMA) which is an im-
plementation of UMTS [57]. In the same year, the first Research in Mo-
tion (RIM) Blackberry device was released that included push email ser-
vices [150].

Improving GSM (2G) and GPRS (2.5G) in terms of data transmission
rates and delay, Enhanced Data Rates for GSM Evolution (EDGE) (2.75G)
was developed providing a theoretical maximum bandwith of 473.6 kbits/s.
This is about four times more than GPRS provided.

In 2003, the first UMTS handsets appeared on the market where it
is not clear, which device was the very first of the following ones: the
NEC e-606, the Motorola A839, or the NOKIA 6650. According to [241]
the complexity of mobile phones increased with these first UMTS devices
significantly. Considering the integrated circuits, an ordinary 2.5G handset

8http://www.kyocera-wireless.com/qcp-6035-smartphone/index.htm, visited
11.11.2010.
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with EDGE support had 13 ICs, the Nokia 6650 29, the Motorola device
68, and the NEC e-606 108.

Windows Mobile 2003 was released in June 2003 where this operating
system as the first Windows Mobile version to be affected by smartphone
malware. In July 2004, the virus WinCE.Duts.A was discovered. This virus
attaches itself to every executable that was not infected beforehand. One
month earlier, Symbian OS (S60) was hit by the first smartphone malware
ever which propagated via Bluetooth.

In June 2007, Apple Inc. introduced the Apple iPhone in United States
of America and sold more than 1.1 million device in fourth quarter 2007
world wide [146]. Sales rates indicated a great success of the iPhone not
only in the United States. Key characteristics of the first iPhone were an
ARM architecture, four or 8 GB of memory, a LCD screen with 18-bit colors
and a resolution of 320x480 pixel. Furthermore, it was using a touchscreen
as main user input interface. Interestingly, the first iPhone did not support
UMTS, instead it used EDGE and WiFi for higher data transmission rates.
Another interesting point is that at time of release, there was no SDK
available for the iPhone and no announcement that there will be one in
future [100].

About one year later in October 2008, the first Android handset called
HTC Dream was released. Android is an almostf’| open source operating sys-
tem for mobile devices using a customized Linux Kernel beneath a modified
Java environment [9]. Android not only supports native third party appli-
cations, it also allows developers and researchers to replace key components
on the system using special developer devices. On most other platforms,
access to critical parts of the system is restricted or forbidden. In Spring
2010, the Google Nexus One got available running at 1 GHz having Android
2.1 installed [102].

A summary of these events is listed on Table and hence represents
the evolution of smartphones in a compact format. When considering this
evolution, it of course interesting to discuss the possible future of these
devices. From the authors point of view, it is more than obvious that
the computational and storage capabilities of these devices will increase.
Additionally, it is probable that Weiser’s [237] vision will become truth
also in context of smartphones. The device will shrink and may get an
essential part of clothings, bags and similar things. The only remaining

9Most parts are set open source except, e.g. some drivers and proprietary applications.
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visible parts will be input and output devices, although visability could
be also understood as part of virtiual environments, e.g. keyboards being
projected on desks, body parts or walls. Smartphones might even get the
central computation environment for people since they will provide all the
[T-related functionality required being packed into a mobile format.
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Table B.1: Significant historic events in smartphone evolution

Year

Event

2700-2300 BC
200
1623
1833
1857
1868
1888
1895
1926
1938
1956

1959
1965
1968
1971
1971
1972
1980
1981
1989

1991
1994
1996
1996
1998
1999
2001
2001
2002
2002
2003
2003
2003
2007
2008
2010

Sumerian abacus

Use of binary numbers

Calculator

Telegraph

Antonio Meucci invented a “sound telegraph”
QWERTY keyboard (first typewriter)
Liquid crystals were discovered

Wireless transmission by Guglielmo Marconi
Transistor

Binary computer Z1 from Konrad Zuse
Mobile Telephone system A (MTA) by Erics-
son (0G)

Integrated circuit (IC)

“Moore’s Law”

First LCD

Wireless computer network ALOHAnet
First email

First scientific calculator

Matsushita hand-held computers at 1 MHz
Nordic Mobile Telephony (NMT) (1G)

Grid systems hand-held computer at 10 MHz
supporting handwriting recognition

First GSM network (2G)

IBM Simon

Palm Pilot

Windows CE

Symbian Ltd.

GPRS Networks (2.5G)

Nokia 9210 Communicator at 66 MHz
Kyocera QCP-6035 at 20 MHz

First commercial UMTS network (3G)

First Blackberry push email device

EDGE (2.75G)

First UMTS devices

Windows Mobile 2003

Apple iPhone at 412 MHz

HTC Dream (Android) at 528 MHz

Google Nexus One (Android) at 1 GHz
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Appendix C

List of Extractable Values from
Symbian OS

In Table you can find some more of the extractable information from
Symbian OS devices. These information can be accessed by using the given
APIs. The following values base on API calls, that were granted using a
developer certificate that basically every developer can request. Further
values, e.g. mobile network information or very sensitive OS data can be
accessed using a phone manufacturer approved certificate that only trusted
partners of Symbian Ltd. can acquire. The table is has three columns,
where the name of the extractable values, the complexity of computing,
and a description is given.

More Features extracted on Symbian OS devices

Name Complexity Description

KEYLOCK STATUS simple Is Keylock activated?

USER INACTIVITY TIME | simple Time in seconds, where user was
inactive

BATTERY CHARGE | medium Battery charge level

LEVEL

BATTERY STATUS medium Power supply plugged?

CONNECTION DATA medium How many connection interfaces

are used and which amount of data
was sent (e.g. WLAN, 3G, BT,

IrDA, ..)
DATE AND TIME medium Date and time on the device
DISK DATA medium Size, available space
FILE SYSTEM DATA medium files
IMEI medium Device identification
IMSI medium User identification
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More Features extracted on Symbian OS devices

Name Complexity Description

IP ADDRESS medium IPv4 and IPv6 Address if assigned

REMOVABLE DATA medium Size, available space

REMOVABLE PLUGGED medium Is a storage module plugged?

PROCESSES medium Running processes, tasks, and
threads

CONTACT LIST medium Represents the whole contact list

INSTALLED APPLICA- | complex List of installed applications (IDs,

TIONS names)

OS DATA complex CPU usage, available RAM, RAM
size

MAIL DATA complex Inbox, Outbox, Sentbox, Draft, re-
ceipents, contents

MMS DATA complex Inbox, Outbox, Sentbox, Draft, re-
ceipents, contents

SMS DATA complex Inbox, Outbox, Sentbox, Draft, re-
ceipents, contents

LOCATION complex Cell and GPS information
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Appendix D

Malware List

The following tables represent the malwares that could be excerpted from
online virus databases. The table gives names, types, days, months, years,
and descriptions of the corresponding malwares. The tables are sorted by
the discovery dates where the earliest date listed was chosen from the differ-
ent databases. Please note, that due to a lack of detailed public information,
no addtional valuable data after 2008 can be given on smartphone malware.

Malware List

Name Type | D| M| Y Payload

Palm.Libertycrack Troj. 8 | 30| 2000 | Deletes applications and files

Palm.Vapor Troj. 9 | 22| 2000 | Deletes applications and files

Palm.Phage Virus | 9 | 25| 2000 | Deletes applications and files

Palm MTX.IT.A Virus | 7 | 7 | 2001 | displays messages

SymbOS.Cabir.A Worm | 6 | 15| 2004 | replicates via Bluetooth

WinCE.Duts.A Virus | 7 | 17| 2004 | appends itself to all non-infected
exe

SymbOS.Skulls Troj. 11| 19| 2004 | replaces files, disables apps

SymbOS.Cabir.B Worm | 11| 22| 2004 | replicates via bt, same as cabir.a
only txt different

SymbOS.Cdropper.H Troj. 11| 30| 2004 | drops

SymbOS.Skulls.B Troj. 11| 30| 2004 | replaces files, disables apps, and
drops

SymbOS.Cdropper.C Troj. 11| 30| 2004 | drops

SymbOS.Cdropper.A Troj. 12| 9 | 2004 | replaces files, drops, disables
apps

SymbOS.Cabir.E Worm | 12| 14| 2004 | replicates via bt, only txt is dif-
ferent to cabir b

SymbOS.Cabir.D Worm | 12| 14| 2004 | replicates via bt, only txt and
filename changed
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Malware List

Name Type | D M| Y Payload

SymbOS.Cabir.C Worm | 12| 14| 2004 | replicates via bt, only txt is dif-
ferent to cabir.b

SymbOS.Cdropper.B Troj. | 12| 22| 2004 | drops

SymbOS.Cabir.J Worm | 12| 22| 2004 | replicates via bt and creates files

SymbOS.Skulls.C Troj. 12| 22| 2004 | replaces files, disables apps

SymbOS.MGDropper Troj. 12| 22| 2004 | replaces files and disables apps,
drops cabir

SymbOS.Cabir.H Worm | 12| 22| 2004 | replicates via bt

SymbOS.Cabir.G Worm | 12| 22| 2004 | replicates via bt

SymbOS.Cabir.I Worm | 12| 29| 2004 | replicates via bt

SymbOS.Cabir.L Worm | 12| 29| 2004 | replicates via bt

SymbOS.Cabir.F Worm | 12| 30| 2004 | replicates via bt, only filename
changed

SymbOS.Cdropper.M Troj. | 12| 30| 2004 | drops cabir.j

SymbOS.Cabir.K Worm | 12| 30| 2004 | replicates via bt and creates files

SymbOS.Cabir. T Worm | 1 | 5 | 2005 | replicates via bt, only filename
changed

SymbOS.Cabir.N Worm | 1 | 5 | 2005 | replicates via bt, only filename
changed

SymbOS.Cabir.O Worm | 1 | 5 | 2005 | replicates via bt, only filename
changed

SymbOS.Cabir.P Worm | 1 | 5 | 2005 | replicates via bt, only filename
changed

SymbOS.Cabir.R Worm | 1 | 5 | 2005 | replicates via bt, only filename
changed

SymbOS.Cabir.Q Worm | 1 | 5 | 2005 | replicates via bt, only txt and
filename changed

SymbOS.Cabir.S Worm | 1 | 5 | 2005 | replicates via bt ,only txt and
filename changed

SymbOS.Skulls.D Troj. 1 | 5 | 2005 | drops cabir.m, disables apps,
shows image to screen

SymbOS.Cabir.M Worm | 1 | 6 | 2005 | propagates via bt, only txt and
filename changed

SymbOS.Lasco.A Worm | 1 | 10| 2005 | replicates via bt, file injection
bases on cabir.h source

SymbOS.Cdropper.D Troj. 2 | 1 | 2005 | drops cabir variants and shows
messages

SymbOS.Cdropper.E Troj. 2 | 1 | 2005 | drops cabir.b and locknut

SymbOS.Locknut Troj. | 2 | 2 | 2005 | drops cabir variants and replaces
files which cause a dysfunctional
device

SymbOS.Commwarrior. A Worm | 3 | 7 | 2005 | replicates via bt and mms
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Name Type | D M| Y Payload

SymbOS.Commwarrior.B Worm | 3 | 7 | 2005 | replicates via bt and mms, does
not choose clock for deciding on
replication method

SymbOS.Dampig.A Troj. | 3 | 8 | 2005 | drops cabir variants disables
apps replaces files

SymbOS.Drever.A Troj. 3 | 21| 2005 | disables apps

SymbOS.Drever.B Troj. | 3 | 22| 2005 | disables app

SymbOS.Skulls.F Troj. | 3 | 22| 2005 | drops cabir variants and lock-
nut.b replaces files, disables apps
flashed skull pictures

SymbOS.Drever.C Troj. 3 | 22| 2005 | replaces files, disbles apps-virus
scanners

SymbOS.Skulls.F Troj. | 3 | 24| 2005 | drops cabir variants and lock-
nut.b, replaces files disbles apps,
shows skulls

SymbOS.Skulls.E Troj. | 3 | 24| 2005 | replicates via bt drops variants
cabir disables apps

SymbOS.Skulls.H Troj. | 3 | 30| 2005 | drops cabir variants and lock-
nut.b, replaces files, disables
apps

SymbOS.Skulls.G Troj. 3 | 30| 2005 | disables apps, replaces files

SymbOS.Mabir.A Worm | 4 | 4 | 2005 | replicates via bt and mms, listen
on incoming mms and sms and
answers with infected mms

SymbOS.Fontal. A Troj. | 4 | 6 | 2005 | replaces files, prevents reboot

SymbOS.Hobbes. A Troj. 4 | 17| 2005 | replaces files, disables app,s pos-
sibly only phone calls work

SymbOS.Locknut.B Troj. | 4 | 18| 2005 | drops cabir.v and locknut.b pre-
vents boot installs corrupted files

SymbOS.Cabir.V Troj. | 4 | 29| 2005 | replicates via bt, only filename is
changed

SymbOS.Cabir.Y Troj. | 4 | 29| 2005 | replicates via bt, only name
changed

SymbOS.Skulls.I Troj. | 5 | 5 | 2005 | drops cabir variants and lock-
nut.b, replaces files, disables
apps

SymbOS.Skulls.K Troj. | 5 | 9 | 2005 | drops cabir.m, replaces files, dis-
ables apps

SymbOS.AppDisabler.A Troj. | 5 | 18| 2005 | disables apps

SymbOS.Skulls.J Troj. 6 | 13| 2005 | drops appdisabler.a which drops
cabir.y and locknut.b, disables
apps, replaces files
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Malware List

Name Type | D M| Y Payload

SymbOS.Singlejump.C Troj. 6 | 15| 2005 | disables files, drops single-
jump.b, uses modified variant of
cabir to replicate

SymbOS.Fontal.B Troj. 6 | 22| 2005 | replaces files, prevents reboot,
disables apps

SymbOS.Skulls. M Troj. 6 | 22| 2005 | replaces files, disables apps

SymbOS.Doomboot.A Troj. | 7 | 7 | 2005 | replaces files, prevents reboot
drains power through sending
commwarrior.b via bt prevent re-
boot

SymbOS.Doomboot.B Troj. | 7 | 14| 2005 | replaces files, prevents reboot

SymbOS.Skulls.L Troj. 7 | 14| 2005 | replaces files, drops cabir vari-
ants, disables apps

SymbOS.Doomboot.C Troj 7 | 21| 2005 | replaces files, prevents reboot

SymbOS.Cabir.U Worm | 7 | 27| 2005 | replicates via bt

SymbOS.Blankfont.A Troj. | 8 | 10| 2005 | replaces files

SymbOS.Cabir.Z Troj. 8 | 31| 2005 | replicates via bt, only filename
changed

SymbOS.Fontal.C Troj. |9 | 7 | 2005 | replaces files, disables apps, pre-
vents rebooting

SymbOS.Doomboot.D Troj 9 | 7 | 2005 | prevent reboot, replaces files

SymbOS.Skulls.N Troj. 9 | 16| 2005 | replaces files, disables apps

SymbOS.Doomboot.E Troj. 9 | 19| 2005 | prevents reboot, replaces files

SymbOS.Doomboot.G Troj. 9 | 22| 2005 | drops commwarrior.a+b and
fontal.a, replaces files, prevents
rebooting

SymbOS.Cardtrap.A Troj. | 9 | 22| 2005 | copies windows malware to mem
card, replaces files, disables apps

SymbOS.Skulls.O Troj. | 9 | 22| 2005 | drops fontal.a and commwar-
rior.b, replaces files, disables
apps

SymbOS.Doomboot.F Troj. | 9 | 22| 2005 | drops skulls.d, cabir.m, and
fontal.a, replaces files, prevents
reboot

SymbOS.Appdisabler.D Troj. | 9 | 23| 2005 | replaces files, disables apps

WinCE.Brador.A Troj. 9 | 23| 2005 | backdoor

SymbOS.Appdisabler.E Troj. 9 | 23| 2005 | drops cabir.b, replaces files, dis-
ables apps

SymbOS.Cardtrap.B Troj. | 9 | 23| 2005 | drops doomboot.a, copies win-
dows malware to memory card,
replaces files, disables apps

SymbOS.Skulls.P Troj. | 9 | 26| 2005 | drops mabir.a, prevents reboot-
ing, replaces files, disables apps
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Name Type | D M| Y Payload

SymbOS.Singlejump.D Troj. 9 | 26| 2005 | drops cabir variants, replaces
files, disables apps, prevents re-
booting, malware renamed to
onehop.d

SymbOS.Skulls.Q Troj. 9 | 27| 2005 | drops commwarrior.b and cabir
variants, replaces files, disables
apps

SymbOS.Appdisabler.F Troj. 9 | 27| 2005 | replaces files, disables apps

SymbOS.Appdisabler.G Troj. | 9 | 29| 2005 | replaces files, disables apps,
drops cabir variants

SymbOS.Cardblock.A Troj. 10| 3 | 2005 | deletes files, sets password to
memory card

SymbOS.Skulls.R, Troj. 10| 4 | 2005 | drops mabir.a, replaces files, dis-
ables apps

SymbOS.Fontal.C Troj. 10| 4 | 2005 | replaces files, disables apps, pre-
vents rebooting

SymbOS.Cardtrap.C Troj. 10| 7 | 2005 | drops components of doomboot.a

SymbOS.Commwarrior.C Worm | 10| 14| 2005 | replicates via bt, mms, and mem-
ory card

SymbOS.Cabir.V Worm | 10| 24| 2005 | replicates via bt, only filename is
changes

SymbOS.Cardtrp.D Troj. 11| 9 | 2005 | replaces files, disables apps,
drops malwares as doomboot
component

SymbOS.Doomboot.M Troj. 11| 10| 2005 | replaces files, prevents rebooting,
drops caommwarrior.f

SymbOS.Doomboot.N Troj. 11| 10| 2005 | replaces files, prevents rebooting

SymbOS.Locknut.C Troj. 11| 10| 2005 | replaces files, disables apps, pre-
vents rebooting, drops cabir.b

SymbOS.Skulls.S Troj. 11| 10| 2005 | drops cabir.f, replaces files, dis-
ables apps

SymbOS.Skulls. T Troj. 11| 11| 2005 | replaces files, disables apps,
drops locknut.c

SymbOS.Cardtrap.G Troj. 11| 11| 2005 | drops windows malware to mem-
ory card, drops doomboot com-
ponents

SymbOS.Cardtrap.F Troj. 11| 14| 2005 | replaces files, disables apps, pre-
vents rebooting

SymbOS.Skulls.U Troj. 11| 14| 2005 | drops locknut.a and doomboot.a
components drops cabir.b cabir.x
locknut.c mgdropper.a replaces
files, disables apps
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Malware List

Name Type | D M| Y Payload
SymbOS.Skulls.V Troj. 11| 18| 2005 | replaces files, disables apps,
drops mgdropper.a locknut.a
doomboot.a cabir.b cabir.x
SymbOS.Pbstealer. A Troj. 11| 21| 2005 | reads private information and
send this via bt (contact data)
SymbOS.Doomboot.P Troj. 11| 28| 2005 | replaces files, prevents reboot
SymbOS.Drever.D Troj. 11| 28| 2005 | replaces files, disables apps
SymbOS.Ruhag.C Troj. 11| 28| 2005 | replaces files, disables apps
SymbOS.Cardtrp.H Troj. 11| 28| 2005 | installs to memory card, replaces
files, disables apps
SymbOS.Fontal.G Troj. 11| 29| 2005 | replaces files, disables apps, pre-
vents rebooting
SymbOS.Doomboot.I Troj. 11| 29| 2005 | replaces files, disables apps, pre-
vents rebooting
SymbOS.Fontal.D Troj. 11| 29| 2005 | replaces files, disables apps,
drops commwarrior.b
SymbOS.Fontal.E Troj. 11| 29| 2005 | replaces files, disables apps, pre-
vent rebooting
SymbOS.Fontal.D Troj. 12| 2 | 2005 | replaces files, disables apps, pre-
vents rebooting
SymbOS.Hidmenu.A Troj. 12| 3 | 2005 | replaces files
SymbOS.Pbstealer.B Troj. 12| 4 | 2005 | read provate information and
sends this via bt
SymbOS.Pbstealer.B Troj. 12| 5 | 2005 | reads private information and
sends this via bt
SymbOS.Doomboot.Q Troj. 12| 5 | 2005 | replaces files, disables apps, pre-
vents rebooting
SymbOS.Bootton.C Troj. 12| 7 | 2005 | replaces files, disables apps, pre-
vents rebooting
SymbOS.Cardtrap.I Troj. 12| 12| 2005 | replaces files, disables apps, in-
stalls windows malware to mem
card
SymbOS.Cardtrp.K Troj. 12| 12| 2005 | replaces files, disables apps, in-
stalls windows malware to mem
card
SymbOS.Cardtrap.J Troj. 12| 12| 2005 | reaplces files disables apps, in-
stalls windows malware to mem
card
SymbOS.Cardtrap.L Troj. 12| 12| 2005 | replaces files, disables apps,
drops windows malware to
memory card manipulates pri-
vate data (deletes calendar and
phonebook)
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Name

Type

D

M

Y

Payload

SymbOS.Singlejump.I

Troj.

12

13

2005

replaces files, disables apps,
drops doomboot components

SymbOS.Skulls.O

Troj.

12

13

2005

replaces files, disables apps,
drops fontal a and commwar-
rior.b

SymbOS.Skulls.P

Troj.

12

13

2005

replaces files, disables apps,
drops mabir.a cabir variants
doomboot and fontal compo-
nents

SymbOS.Cardtrap.M

Troj.

12

14

2005

replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Skulls.Q

Troj.

12

14

2005

replaces files, disables apps,
drops commwarrior.b and doom-
boot compnents

SymbOS.Cardtrap.N

Troj.

12

14

2005

replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Bootton.D

12

14

2005

drops doomboot.a and cabir.g,
replaces files, disables apps

SymbOS.Dampig.B

Troj.

12

15

2005

drops cabir disables apps re-
places files

SymbOS.Cabir. W

Worm

12

15

2005

replicates via bt, only filename
changed

SymbOS.Cardtrap.O

Troj.

12

15

2005

replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Doomboot.R

12

15

2005

replaces files, disables apps, pre-
vents rebooting

SymbOS.Cabir. W

Troj.

12

15

2005

replicates via bt, only filename
changed

SymbOS.Dampig.C

Troj.

12

16

2005

replaces files, disables

drops malware

apps,

SymbOS.Cardtrap.P

Troj.

12

16

2005

replaces files, disables apps,
drops windows malware to mem-
ory card

SymbOS.Bootton.B

Troj.

12

25

2005

replaces files, prevents reboot

SymbOS.Bootton.A

Troj.

12

25

2005

replaces files, disables apps

SymbOS.Singlejump.F

Troj.

12

28

2005

replaces files, disables apps, pre-
vents rebooting, sends single-
jump.b to bt devices in range
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Name

Type

D

M

Y

Payload

SymbOS.Singlejump.G

Troj.

12

28

2005

replaces files, disables apps,
drops doomboot.a components
sends doomboot.a to bt devices
in range

SymbOS.Singlejump.H

Troj.

12

28

2005

reaplces files disables apps, pre-
vents rebooting, sends cabir-
dropper to device in bt range

SymbOS.Pbstealer.C

Troj.

2006

reads private information and
sends this via bt

SymbOS.Pbstealer.D

Troj.

18

2006

reads private information and
sends this via bt

SymbOS.Bootton.E

18

2006

replaces files, prevents rebooting

SymbOS.Sendtool. A

Troj.

18

2006

spreads other malware via bt
user interaction needed

SymbOS.Cardtrap.P

Troj.

22

2006

replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Cardtrap.R

Troj.

27

2006

replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Cardtrap.S

Troj.

27

2006

replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Cardtrap.Q

Troj.

27

2006

replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Cardtrap.T

Troj.

2006

replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Cardtrap.E

Troj.

2006

replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Cardtrap.X

Troj.

2006

replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Cardtrap.U

Troj.

2006

replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Cardtrap.X

Troj.

2006

replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Cardtrap.V

Troj.

2006

replaces files, disables apps, in-
stalls windows malware to mem
card
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Name Type | D M| Y Payload

SymbOS.Cardtrap. W Troj. 2 | 8 | 2006 | replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Cardtrap.Y Troj. | 2 | 11| 2006 | replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Cardtrap.AB Troj. 2 | 17| 2006 | replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Cardtrap.Z Troj. 2 | 17| 2006 | replaces files, disables apps, in-
stalls windows malware to mem
card

J2ME.RedBrowser.a Troj. 2 | 28| 2006 | abuses messaging system

SymbOS.Cardtrap.AA Troj. | 3 | 6 | 2006 | replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS. Appdisabler.I Troj. 3 | 7 | 2006 | replaces files, disables apps

SymbOS.Commwarrior.D Worm | 3 | 9 | 2006 | replicates via bt and mms, only
txt is changed

SymbOS.Mabtal. A Troj. | 3 | 10| 2006 | drops mabir.a, fontal.a, and lock-
nut.b

WinCE.Cxover.A Worm | 3 | 15| 2006 | replicates via MS ActiveSync

SymbOS.Doomboot.S Troj. | 3 | 16| 2006 | replaces files, prevents rebooting

SymbOS.Commwarrior.E Worm | 3 | 17| 2006 | replicates via bt and mms

SymbOS.Commdropper.D | Troj. | 3 | 20| 2006 | sends commwarrior.e via mms

SymbOS.Cdropper.L Troj. 3 | 23| 2006 | drops cabir.ad

SymbOS.Cardtrap.AC Troj. | 4 | 5 | 2006 | replaces files, disables apps, in-
stalls windows malware to mem
card

SymbOS.Cdropper.N Troj. | 4 | 6 | 2006 | drops cabir.a

WinCE.Letum.A Worm | 4 | 8 | 2006 | replicates via MS information
reads private data sends itself to
captured addresses, uses usenet
registry entries to propgate in
usenet

SymbOS. Arifat.A Troj. | 4 | 13| 2006 | reads private information (user
password logger) and sends this
via sms

SymbOS.Blankfont.B Troj. | 4 | 16| 2006 | replaces files, prevents rebooting

WinCE.Brador.B Troj. 5 | 6 | 2006

SymbOS.Commdropper.C | Troj. | 5 | 17| 2006 | drops commwarrior.h

SymbOS.Commwarrior.F Worm | 5 | 17| 2006 | replicates via bt and mms

SymbOS.Mabtal.B Troj. | 5 | 17| 2006 | drops mabir.a
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Name Type | D M| Y Payload
SymbOS.Commdropper.A | Troj. 5 | 17| 2006 | drops commwarrior variants
SymbOS.Bootton.F Troj. | 5 | 17| 2006 | replaces files, prevents reboot
SymbOS.Commwarrior.H Worm | 5 | 18| 2006 | replicates via bt and mms
SymbOS.Commwarrior.G Worm | 5 | 18| 2006 | replicates via mms and bt, reads
private information(local contact
list)
SymbOS.Commdropper.B | Troj. | 5 | 18| 2006 | drops commwarrior.a+b-c
SymbOS.Cardtrp.AF Troj. 5 | 19| 2006 | replaces files, disables apps, in-
stalls windows malware to mem-
ory card
SymbOS.RommWar.A Troj. 5 | 19| 2006 | replaces files, disables apps and
buttons
SymbOS.Stealwar.B Troj. 5 | 20| 2006 | drops  commwarrior.a, pb-
stealer.a, and rommwar.a
SymbOS.Stealwar.C Troj. | 5 | 20| 2006 | drops  pbstealer.f, cabir .k,
mabir.a, and commwarrior.b
SymbOS.Stealwar.E Troj. 5 | 20| 2006 | drops cabir.a, commwarrior.a,
and pbstealer.f
SymbOS.Stealwar.D Troj. 5 | 20| 2006 | drops cabir.k, pbstealer.f, and
commwarrior.c
SymbOS.Stealwar.A Troj. | 5 | 20| 2006 | drops pbstealer, commwarrior,
or cabir
SymbOS.Cardtrap.AE Troj. | 5 | 21| 2006 | replaces files, disables apps, in-
stalls windows malware to mem
card
SymbOS.Cardtrap.AD Troj. 5 | 24| 2006 | reaplces files disables apps, in-
stalls windows malware to mem
card
SymbOS.Commwarrior.I Worm | 5 | 25| 2006 | replicates via bt and mms
SymbOS.RommWar.B Troj. | 5 | 25| 2006 | replaces files, prevents rebooting
SymbOS.Doomboot.T Troj. 5 | 25| 2006 | replaces files drops commwar-
rior.l prevents rebooting
SymbOS.RommWar.D Troj. 5 | 25| 2006 | reaplces files disables apps and
buttons
SymbOS.RommWar.C Troj. | 5 | 25| 2006 | replaces files, prevents rebooting
SymbOS.Romride.B Troj. 6 | 2 | 2006 | replaces files disables files
SymbOS.Romride. A Troj. | 6 | 2 | 2006 | replaces files, disables apps
SymbOS.Romride.E Troj. 6 | 5 | 2006 | replaces files, disables apps
SymbOS.Commwarrior.L Worm | 6 | 5 | 2006 | replicates via bt and mms
SymbOS.Romride.D Troj. 6 | 5 | 2006 | replaces files, disables apps
SymbOS.Commwarrior.K Worm | 6 | 5 | 2006 | replicates via bt and mms
SymbOS.Commdropper.D | Troj. | 6 | 5 | 2006 | drops commwarrior.e
SymbOS.Romride.C Troj. 6 | 5 | 2006 | replaces files, disables apps
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Name Type | D M| Y Payload
SymbOS.Commwarrior.J Worm | 6 | 6 | 2006 | replicates via bt and mms
SymbOS.Commdropper.E | Troj. | 6 | 6 | 2006 | drops commwarior.d
SymbOS.Romride.F Troj. 6 | 21| 2006 | replces files disables apps
SymbOS.Romride.H Troj. | 6 | 21| 2006 | replaces files, disables apps
SymbOS.Romride.G Troj. 6 | 21| 2006 | reaplces files disables apps
SymbOS.Dropper.A Troj. | 6 | 22| 2006 | drops windows malware
SymbOS.Commdropper.G | Troj. 6 | 22| 2006 | drops commwarrior.m
SymbOS.Cardtrp.AG Troj. | 6 | 22| 2006 | reaplces files disables apps, in-
stalls windows malware to the
memory card
SymbOS.Commwarrior.N Worm | 6 | 22| 2006 | replicates via bt and mms
SymbOS.Commwarrior.M Worm | 6 | 22| 2006 | replicates via bt and mms
SymbOS.Commdropper.F | Troj. | 6 | 23| 2006 | drops commwarrior.k
SymbOS.Cdropper.F Troj. 6 | 28| 2006 | drops cabir variants
SymbOS.Cdropper.K Troj. | 6 | 28| 2006 | drops cabir.b components
SymbOS.Cdropper.G Troj. | 6 | 28| 2006 | drops cabir and skulls compo-
nents
SymbOS.Cdropper.I Troj. | 6 | 28| 2006 | drops locknut and cabir
SymbOS.Cdropper.J Troj. | 6 | 29| 2006 | drops cabir.b
SymbOS.Cdropper.O Troj. 6 | 30| 2006 | drops cabir.a+b
SymbOS.Cdropper.R Troj. | 6 | 30| 2006 | drops cabir
SymbOS.Dampig.D Troj. 6 | 30| 2006 | drops dampig.a and cabir vari-
ants
SymbOS.Cdropper.S Troj. | 6 | 30| 2006 | drops cabir variants
SymbOS.Doomboot.U Troj. | 6 | 30| 2006 | replaces files, prevents rebooting
SymbOS.Cdropper.P Troj. | 6 | 30| 2006 | drops cabir variants
SymbOS.Cdropper.Q Troj. | 7 | 2 | 2006 | drops cabir variants
SymbOS.Doomboot. W Troj. | 7 | 4 | 2006 | replaces files, prevents reboot
SymbOS.Doomboot.V Troj. | 7 | 4 | 2006 | replaces files, prevents reboot
SymbOS.Ruhag.D Troj. | 7 | 5 | 2006 | replaces files, disables apps
SymbOS.Ruhag.E Troj. | 7 | 6 | 2006 | replaces files, disables apps
SymbOS.Cabir.X Worm | 7 | 6 | 2006 | replicates via bt, only file name
changed
SymbOS.Skulls.R Troj. 7 | 6 | 2006 | replaces files, disables appsdrops
mabir.a
SymbOS.Commdropper.H | Troj. | 7 | 7 | 2006 | drops commwarrior.g
SymbOS.Doomboot. X Troj. | 7 | 7 | 2006 | replaces files, prevents rebooting
SymbOS.Mabir.B Troj. | 7 | 8 | 2006 | replicates via mms and bt
SymbOS.Doomboot.P Troj. | 7 | 26| 2006 | replaces files, prevents rebooting
SymbOS.Commwarrior.Q Troj. | 8 | 1 | 2006 | replicates via bt mms memory
card uses browser
SymbOS.Bootton.G Troj. | 8 | 8 | 2006 | replaces files, prevents rebooting
J2ME.Wesber.a Troj. |9 | 6 | 2006 | abuses nessaging
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SymbOS.Blankfont.C Troj. 9 | 10| 2006 | replaces files, disables apps, pre-
vents rebooting
SymbOS.Appdisabler.L Troj. 10| 26| 2006 | reaplces files disables apps
SymbOS.Appdisabler.K Troj. 10| 26| 2006 | replaces files, disables apps
SymbOS.Appdisabler.J Troj. 10| 26| 2006 | replaces files, disables apps
SymbOS.Keaf Worm | 10| 29| 2006 | reads private information abuses
messaging (sends link for down-
loading itself to all contacts)
SymbOS.Appdisabler.M Troj. 10| 31| 2006 | replaces files, disables apps
SymbOS.Appdisabler.N Troj. 11| 7 | 2006 | replaces files, disables apps
SymbOS.Appdisabler.Q Troj. 11| 7 | 2006 | replaces files disableas apps
SymbOS.Appdisabler.O Troj. 11| 7 | 2006 | replaces files, disables apps
SymbOS.Stealwar.F Troj. 11| 7 | 2006 | doprs cabir.a commwarrior.a
mosquit.a lasco.a pbstealer.f
SymbOS.Appdisabler.P Troj. 11| 7 | 2006 | replaces files, disables apps
SymbOS.Cardtrap.AH Troj. 11| 7 | 2006 | replaces files, disables apps in-
stall windows malware to mem
card
SymbOS.Romride.I Troj. 111 9 | 2006 | reaplces files causes boot loop
SymbOS.Flerprox. A Troj. 1119 | 2006 | reaplces files disables apps
SymbOS.Romride.J Troj. 11| 9 | 2006 | replaces files replaces files causes
boot loop
SymbOS.Appdisabler.R Troj. 11| 11| 2006 | replaces files, disables apps
SymbOS.Appdisabler.S Troj. 11| 29| 2006 | replaces files, disables apps
SymbOS.Appdisabler.T Troj. 12| 11| 2006 | replaces files, disables apps
SymbOS.Appdisabler.U Troj. 12| 11| 2006 | reaplces files disables apps
SymbOS.Commdropper.J Troj. 12| 22| 2006 | drops commwarrior.e
SymbOS.Commwarrior.T Troj. 1 | 15| 2007 | replicates via bt mms memory
card
SymbOS.Commwarrior.h Worm | 1 | 15| 2007 | reads private data replicates via
mms and bt
SymbOS.RommWar.c Troj. 1 | 25| 2007 | no description available
SymbOS.Cabir.AD Troj. 1 | 25| 2007 | replciates via bt, only filename
changed
SymbOS.Cabir.Al Troj. 1 | 25| 2007 | replicates via bt
SymbOS.Cabir.AE Troj. 1 | 25| 2007 | replicates via bt
SymbOS.Commwarrior.i Worm | 2 | 11| 2007 | replicates via bt and mms
SymbOS.Mrex.a Troj. 3 | 27| 2007 | no description available
SymbOS.Viver.A Troj. | 5 | 15| 2007 | abuse messaging
SymbOS.Viver.B Troj. | 5 | 17| 2007 | abuses messaging
SymbOS.Feaks.a Troj. | 5 | 29| 2007 | abuses messaging
SymbOS.Appdisabler.V Troj. | 5 | 29| 2007 | replaces files, disables apps
SymbOS.Feak.a Troj. 5 | 29| 2007 | no description available
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SymbOS.Bootton.H Troj. 6 | 27| 2007 | reaplces files prevents rebooting

SymbOS.Bootton.I Troj. | 6 | 28| 2007 | replaces files, prevents rebooting

SymbOS.Fontal.i Troj. 7 | 31| 2007 | replaces files, disables apps

SymbOS.SHT.a Troj. | 8 | 29| 2007 | no description available

SymbOS.Skuller.af Troj. 8 | 31| 2007 | no description available

SymbOS.Delcon.a Troj. | 8 | 31| 2007 | no description available

SymbOS.Pbstealer.f Troj. | 8 | 31| 2007 | abuses messaging read private in-
formation

SymbOS.Appdisabler. W Troj. 8 | 31| 2007 | replaces files, disables apps

SymbOS.Appdisabler.x Troj. 10| 31| 2007 | no description available

SymbOS.HatiHati.a Worm | 12| 13| 2007 | abuses mesaging replicates via
mmc

SymbOS.Fonzi.a Troj. | 1 | 5 | 2008 | no description available

SymbOS.Killav.a Troj. 1 | 10| 2008 | replaces files, disables apps

SymbOS.Beselo.a Worm | 1 | 2 | 2008 | replicates via bt and mms

SymbOS.Cabir.o Worm | 1 | 23| 2008 | no description available

SymbOS.Beselo.b Worm | 1 | 23| 2008 | replicates via bt and mms

SymbOS.Lasco.b Worm | 1 | 26| 2008 | no description available

SymbOS.Acallno.b Troj. 1 | 26| 2008 | no description available

SymbOS.Kiazha.A Troj. | 3 | 4 | 2008 | reads private information

SymbOS.Multidropper.A Troj. 3 | 4 | 2008 | drops

SymbOS.Flocker.A Troj. | 4 | 29| 2008 | abuses messaging

SymbOS.Commwarrior.AA | Worm | 5 | 20| 2008 | drops

SymbOS.Commdropper.L Troj. | 5 | 20| 2008 | drops

SymbOS.Beselo.E Worm | 5 | 20| 2008 | replaces files, drops

SymbOS.Pbstealer.H Troj. | 5 | 20| 2008 | sends files

SymbOS.Pbstealer.I Troj. 5 | 20| 2008 | sends files

SymbOS.Cabir.H Worm | 9 | 8 | 2008 | drops

J2ME.Konov.A Troj. 10| 27| 2008 | sends email, infects Windows
PCs

J2ME.Konov.B Troj. | 11| 3 | 2008 | sends email, infects Windows
PCs

WinCE.PMCryptic.A Troj. 11| 18| 2008 | drops, uses memory card

Please note, that due to a lack of detailed public informa-
tion, no addtional valuable data after 2008 can be given on

smartphone malware.
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