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„Orpheus could not aspire to charm the wild beasts with his music until the end
of time. However, one could have hoped that Orpheus himself would not become
a wild beast.“

Julien Benda
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Zusammenfassung

André Wagner

Computer Vision and Computer Algebra

In Multiview-Geometrie, einem Teilgebiet der Computer-Vision, werden Bilder
mit Kameras von 3D-Objekten aus verschiedenen Perspektiven aufgenommen.
Diese Arbeit studiert Multiview-Geometrie mit Methoden aus der Computer-
Algebra. Hauptprobleme des Maschinellen Sehens sind die Objektrekonstruktion
und die Bestimmung der Kameraparameter. In diesen beiden fundamentalen
Fragestellungen erzielen wir neue Erkenntnisse unter der Voraussetzung, dass
zusätzliche Informationen über die ursprünglichen dreidimensionalen Objekte
zur Verfügung stehen.

In Multiview-Geometrie beschreibt die Multiview-Varietät die Beziehungen
der Bildpunkte in verschiedenen Bildern. Wir entwickeln zwei Verallgemeine-
rungen der Multiview-Varietät, die Rigid Multiview-Varietät und die Unlabeled
Multiview-Varietät. Beide Varietäten sind durch konkrete Anwendungsbeispiele
im Maschinellen Sehen motiviert. Sie können benutzt werden, um Qualität und
Geschwindigkeit der Identifikation von Markern auf 3D-Objekten zu verbes-
sern. Die Rigid Multiview-Varietät wird mengentheoretisch beschrieben und ein
Triangulierungs-Algorithmus für die Unlabeled Multiview-Varietät konzipiert.

Der 8-Punkt Algorithmus ist einer der wichtigsten Algorithmen in Multiview-
Geometrie und einer der meist genutzten Algorithmen, um die Fundamental-
matrix zu bestimmen. Es ist bekannt, dass er bei Bildern vom Einheitswürfel
unabhängig von der Lage der Kameras scheitert. Wir erweitern diese Aussage
auf Bilder von allgemeinen kombinatorischen Würfeln. Für diesen Fall beschrei-
ben wir einen neuen Algorithmus, der die Qualität der Rekonstruktion der
Fundamentalmatrix im Vergleich zum 7- und 8-Punkt Algorithmus drastisch
verbessert.

Abschließend bestimmen wir Teilschnitte der primären Zerlegung der mengen-
theoretischen Gleichungen der Veronese-Varietät. Da die Veronese-Varietät ein
Binomial-Ideal ist, können wir diese wir mit Hilfe von Kombinatorik beschreiben.
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Abstract

André Wagner

Computer Vision and Computer Algebra

In multiview geometry, a field of computer vision, images of a three-dimensional
scene are taken by several cameras from various perspectives. We dedicate
ourselves to studying multiview geometry by means of computer algebra. Three-
dimensional scene and camera parameter reconstruction is at the core of computer
vision. This thesis obtains novel results about these two fundamental topics
in certain cases if additional information about the original three-dimensional
scene is available.

The multiview variety encodes the space of three-dimensional points seen
through various views. We extend the knowledge about the multiview variety to
two generalizations of it, the rigid multiview variety and the unlabeled multiview
variety. These two varieties are inspired by specific applications in computer
vision. They can be used to improve and speed-up the identification of unlabeled
marker configurations. We give a set-theoretical description of the rigid multiview
variety and design a triangulation algorithm for the unlabeled multiview variety.

The 8-point algorithm is one of the most important algorithms in multiview
geometry, and the most commonly used algorithm for fundamental matrix
estimation. It is known that the unit cube defeats the 8-point algorithm. We
extend this result to all combinatorial cubes. Two perspective projections of a
combinatorial cube defeat the 8-point algorithm independent of the position of
the cameras. In this case we describe a new algorithm that drastically improves
the quality of reconstruction of the fundamental matrix compared to the 7- and
8-point algorithm.

Finally we determine subintersections with omitted single intersectands of
the primary decomposition of the set-theoretic equations of the Veronese variety.
As the Veronese variety is an binomial ideal, these can actually be described by
combinatorial means.
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Chapter 1

Introduction

This thesis is concerned with computer algebra approaches to computer vision.
Multiview geometry is at the core of computer vision. In multiview geometry
images of a three-dimensional scene are taken by several cameras from various
perspectives. It has a vast number of applications, like real-time scene analysis
and autonomously driving cars. When multiple cameras view a three-dimensional
scene, then numerous geometric relations between the two-dimensional and three-
dimensional scenes relate to algebraic constraints. In particular, the case of
multiview geometry seems to be manageable for computer algebra due to the
low dimension of the varieties related to it. In recent years, computer algebra
systems [GS; Dec+16] have made great progress. Problems that used to be
out of reach computationally are now attackable. The research in this thesis
is strongly influenced by methods from computer algebra. The first chapters
are in direct relation to multiview geometry. In the last chapter our knowledge
about algebraic vision and computer algebra systems is used to solve problems in
classical commutative algebra, as of that we have implemented several algorithms
in software systems like polymake [GJ00], Macaulay 2 [GS], Singular [Dec+16]
and matlab [MAT16].

We are only concerned with pinhole cameras. A pinhole camera can be
modeled as a 3× 4 matrix with real entries. Such a camera maps a world point
in the three-dimensional projective space P3 down to an image point in the
projective plane P2. This camera model is the most commonly used model and
is algebraically nice to handle. Among multiple views the image points must
satisfy the multilinear constraints. For all pairs of images these are the bilinear
constraints given by the fundamental matrix F ∈ R3×3, for all triplets of images
these are the trilinear constraints given by the trifocal tensor T ∈ R3×3×3, and
so on. These relations among images are crucial to three-dimensional scene and
camera position reconstruction.

The first approaches to the field of algebraic vision have already been made in
[Hr97]. Heyden and Åström were one of the first to phrase multiview geometry in
the language of algebraic geometry and already used Gröbner basis approaches.
The multiview variety VA is the algebraic variety of the relations between multiple
images, e. g. the algebraic variety cut out by the multilinear constraints. Heyden
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and Åström prove that the relations between all pairs of pictures are sufficient to
cut out VA set-theoretically. Later in [AST13] a generating system for the prime
ideal of the multiview variety and a universal Gröbner basis was determined.
The prime ideal is generated by all bilinear and trilinear constraints. Further
a universal Gröbner basis is given by all bilinear, trilinear and quadrilinear
constraints. Up to isomorphism the multiview variety of four cameras itself can
be constructed from the 2-minors of a generic 4× 4 matrix. Thus the multiview
variety can be studied via binomial ideals. Many computer vision algorithms
are based on the descriptions above.

Figure 1.1: Upper left: Training VRmagic’s Eyesi indirect
ophthalmoscope. Lower left: Eyesi optical tracking system. Right:
Eyesi device and multiview sketch. Pictures courtesy of VRmagic.

Anyhow this dissertation is not purely driven by algebraic interests, but it
investigates various application motivated scenarios in multiview geometry with
algebraic methods. The individual topics have been worked out in discussions
with VRmagic, a company for ophthalmic surgery simulation using augmented
reality. In their medical simulator Eyesi, a trainee surgeon is performing a
simulated ophthalmic surgery. The surgeon wears a virtual reality headset with
four cameras mounted at the front. Active or passive markers are attached to
simulator instruments. In Figure 1.1 the black screen (upper left) and the lens
(right) depict such a simulator device with marker configurations attached. The
markers can be freely placed on each device. Different problems arise in this
context:
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• How to improve the reconstruction with a prior knowledge of the relative
Euclidean distance of the markers in the three-dimensional scene?

• What are “good or bad” choices of marker configurations for robust recon-
struction of camera positions?

• How to identify the markers in the two-dimensional pictures, if they are
unlabeled?

In Chapters 2-5 the mathematical foundations providing answers to such ques-
tions are laid. These results also yield improvements to ophthalmic surgery
simulations and similar, even more general problems, in computer vision. Novel
results about the image relations, three-dimensional scene and camera position
reconstruction are obtained for the case that additional information about the
original three-dimensional scene is available. In these cases we construct rela-
tions between multiple views and design algorithms to reconstruct the structure
defining objects of the multiview geometry. There are essentially two such crucial
objects that need to be restored in the majority of applications, e.g. world
points and cameras. Both cases are covered for special scenarios. We also apply
our knowledge in algebraic vision to purely theoretical results in commutative
algebra, namely understanding the set-theoretical description of the Veronese
variety and its primary decomposition.

In Chapter 2 a brief introduction to the mathematical basics in this disserta-
tion is given.

In Chapter 3 we study a generalization of the multiview variety. The
multiview variety itself is not capable of addressing additional constraints in
the three-dimensional scene. Our aim is to make use of additional constraints
among multiple world points. Think of taking pictures of a three-dimensional
marker configuration. The relative Euclidean distance between marker pairs is
fixed. Obviously, two world points seen from one camera can map to the same
image points independently on their Euclidean distance. However, when multiple
cameras view two world points, then their Euclidean distance gives algebraic
relations between the two-dimensional pictures. The multiview variety is not
able to address these constraints directly. The rigid multiview variety V (JA) is
the product of two multiview varieties, where the image points are projections
of all pairs of world points with a fixed Euclidean distance of one. Despite
the complexity of the rigid multiview variety in Theorem 3.7, we determine
a complete set-theoretical description of this variety. Our proof is somewhat
more general, such that we extend it in Theorem 3.10 to broad classes of related
varieties even with multiple world points present.

In Chapter 4 we make use of mathematical optimization software and apply
it to the results of Chapter 3. Our aim is to improve the accuracy of the
triangulation problem when rigid data is available. Especially, we are interested
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in global optimization solvers. However, our computational experiments exhibit
difficulties for standard global polynomial and non-linear solvers to deal with
the rigid approach to triangulation.

Chapter 5 is about a common problem of multiview geometry, namely
that the image point correspondences are unknown. This means that the
image data is unlabeled. We try to determine whether there is a labeling of
the image points such that they could have been seen by the given camera
configuration. Two equivalent descriptions of the so called unlabeled multiview
variety Symm(VA) are used. This is the variety that takes all possible labelings
of the image points into account. It can either be formulated by using the
Chow variety to give a description in terms of symmetric tensors, or by taking
unions of multiview varieties with interchanged image point correspondences
(Proposition 5.4). We reconstruct the unlabeled world point configuration
and design the unlabeled triangulation algorithm (Algorithm 2) that solves the
triangulation problem [HZ03, §9.1] in the unlabeled case. For large numbers of
pictures, this is much faster then going through all possible permutations of
image point correspondences. Subsequently, the ambiguities of the unlabeled
triangulation problem are analyzed.

In Chapter 6 we are concerned with reconstructing the fundamental matrix
for a family of world point configurations. The most commonly used method
to reconstruct the fundamental matrix is the 8-point algorithm [HZ03, §11.2].
We say that an algorithm to reconstruct the fundamental matrix is defeated
by a world point configuration in (P3)n if the algorithm fails to produce a
unique fundamental matrix from the projections in (P2)n of that world point
configuration, independent on the choice of cameras. It is known that the unit
cube defeats the 8-point algorithm. We extend this result to all combinatorial
cubes in R3 by using the Turnbull-Young invariant [TY26]. To understand the
interplay between combinatorics and the 8-point algorithm we implemented
several algorithms of numerical linear algebra in the open source software
system polymake [GJ00]. Further we analyze when a reconstruction of the
fundamental matrix is possible for two perspective projections of the vertices of
a combinatorial cube. We then deduce a new algorithm (Algorithm 4) for this
pathological situation. Algorithm 4 is based on projections onto rank deficient
matrices by a singular value decomposition. Algorithms implemented for this
chapter are being used in polymake [GJ00] in polyhedral computations.

Finally, in Chapter 7 we aim at understanding a complete intersection within
the Veronese ideal. The second Veronese ideal In is generated by the 2-minors of
a generic-symmetric n×n matrix. It contains, as a natural complete intersection,
the ideal Jn which is generated by the principal 2-minors of a generic-symmetric
n× n matrix. This ideal cuts out the second Veronese variety set-theoretically,
and it was studied classically, e.g. by Gröbner [Grö65]. Both ideals In and Jn
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are generated purely by binomials. In Theorem 7.11 sub-intersections of the
primary decomposition of Jn, where one intersectand is omitted, are determined.
Since the Veronese ideal itself is a prime component of Jn, computing these
sub-intersections is a generalization of taking the colon ideal In : Jn. This is
part of a bigger scheme. In Theorem 7.23 we determine the sub-intersection
of the primary decomposition of general Laurent binomial ideals where one
intersectand is omitted. Methods used in this chapter are at the interplay
between combinatorics and algebra. In general binomial ideals have been used
to construct various worst case scenarios of computer algebra. Only a few
ideal-theoretic constructions actually preserve binomiality. Our combinatorial
approach yields insight about this fact for ideal quotients of binomial ideals.
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Chapter 2

Preliminaries

We use this chapter as a brief introduction to the mathematical concepts of
this thesis. Further we aim to a establish a common notation that is usually
kept throughout the dissertation. Two different mathematical fields are mainly
covered, computer vision and binomial ideals. Their essential definitions and
results for the following chapters are pithy introduced in the sections below. The
statements presented here are well known in their communities.

2.1 Introduction to Multiview Geometry

In multiview geometry images of a three-dimensional scene are taken by several
cameras from various perspectives. Algebraic vision is an emerging field of
multiview geometry concerned with interactions between computer vision and
algebraic geometry. A central role in this endeavor is played by projective
varieties that arise in multiview geometry [HZ03]. We give a brief introduction to
multiview geometry and usually stick to the notation established here throughout
the dissertation for multiview geometry.

The set-up is as follows: A camera is a linear map from the three-dimensional
projective space P3 to the projective plane P2, both over R. We represent n

u2

f2f1

u1

X

e21e12

Figure 2.1: Two-view geometry
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cameras by matrices A1, A2, . . . , An ∈ R3×4 of rank 3. A world point X ∈ P3 is
mapped by the perspective relation of the camera Aj ∈ R3×4

AjX = λjuj, λj ∈ R \ {0}

to the image point uj ∈ P2. The kernel of Aj is the focal point fj ∈ P3. Each
image point uj = (uj0, uj1, uj2) ∈ P2 of camera Aj has a line through fj as its
fiber in P3. This is the back-projected line. On that back-projected line lies the
world point X ∈ P3. A camera is called normalized if it is of the form [I | c] for
some vector c ∈ R3, with I ∈ R3×3 being the identity matrix.

We assume throughout the thesis that the focal points of the n cameras are
in general position, i.e. all distinct, no three on a line, and no four on a plane.
Let βjk denote the line in P3 spanned by the focal points fj and fk. This is the
baseline of the camera pair Aj, Ak. The image of the focal point fj in the image
plane P2 of the camera Ak is the epipole ekj. Note that the baseline βjk is the
back-projected line of ekj with respect to Aj and also the back-projected line of
ejk with respect to Ak. See Figure 2.1 for a sketch.

For three cameras Aj, Ak, Al the plane spanned by their focal points is called
trifocal plane.

Fix a point X in P3 which is not on the baseline βjk, and let uj and uk be
the images of X under Aj and Ak. Since X is not on the baseline, neither image
point is the epipole for the other camera. The two back-projected lines of uj
and uk meet in a unique point, which is X. This process of reconstructing X
from two images uj and uk is called triangulation [HZ03, §9.1].

The triangulation procedure amounts to solving the linear equations

Bjk

 X

−λj
−λk

 = 0 where Bjk =

[
Aj uj 0

Ak 0 uk

]
∈ R6×6. (2.1)

For general data we have rank(Bjk) = rank(Bjk
1 ) = · · ·= rank(Bjk

6 ) = 5, where
Bjk
i is obtained from Bjk by deleting the i-th row. Cramer’s Rule can be used to

recover X. Let ∧5B
jk
i ∈ R6 be the column vector formed by the signed maximal

minors of Bjk
i . Write ∧̃5B

jk
i ∈ R4 for the first four coordinates of ∧5B

jk
i . These

are bilinear functions of uj and uk. They yield

X = ∧̃5B
jk
1 = ∧̃5B

jk
2 = · · · = ∧̃5B

jk
6 . (2.2)

There is a bilinear relation between image points if a reconstruction X is possible.
We can derive this relation from the equation system of Equation 2.1. This
equations system is solvable if a reconstruction X from uj and uk is possible.
Hence det(Bjk) = 0 must be satisfied. The equation det(Bjk) = 0 is bilinear in
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the indeterminates uj and uk.

det(Bjk) = 0⇔ uTkFuj = 0, with F ∈ R3×3

The matrix F is called fundamental matrix. F is only defined up to scale and
its entries Frs ∈ R can be computed from the camera matrices Aj, Ak as

Frs = (−1)r+s det
[
(Aj)r
(Ak)s

]
∈ R, r, s ∈ [3],

where (·)n is obtained by deleting the n-th row. Thus (Aj)n is a 2× 4 matrix.
The triangulation can also be based on multiple views. Then B denotes the

matrix constructed from all views

B


X

−λ1

...
−λn

 = 0 where B =


A1 u1 0 . . . 0

A2 0 u2
. . . 0

...
... . . . . . . ...

An 0 . . . 0 un

 ∈ R3n×(4+n).

(2.3)
In practice this equation system is surely not solved with Cramer’s rule, however
by a singular value decomposition and similar approaches [HS97]. We note that
in most practical applications, the data u1, . . . , un will be noisy, in which case
triangulation requires techniques from optimization, see [AAT12; KH05] to only
state a few.

Based on multiple views we can derive multilinear relations, which the image
points must satisfy in order for a reconstruction X being possible. Unlike
in the two-view case these relations are not unique and are obtained from
requiring that the maximal minors of B vanish. Let σ ⊆ [n] with |σ| = k and
Aσ = (ATσ1 , . . . , A

T
σk
) then define the matrix Bσ as

Bσ =

Aσ1 uσ1
... . . .

Aσk uσk

 . (2.4)

In that notation the matrix B{jk} aligns with the previously defined matrix Bjk.
The multilinear equations are formed as maximal minors of the matrices Bσ. For
more than four views the maximal minors of Bσ, |σ| ≥ 5 are monomial multiples
of the maximal minors of Bσ, 2 ≤ |σ| ≤ 4 obtained from two, three and four
views. Thus they do not contain any new information and it suffices to compute
the maximal minors of the matrices Bσ with 2 ≤ |σ| ≤ 4 to obtain all relevant
multilinear relations.
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The multiview variety VA of the camera configuration A = (A1, . . . , An) was
defined in [AST13] as the closure of the image of the rational map

φA : P3 99K P2 × P2 × · · · × P2,

X 7→ (A1X,A2X, . . . , AnX).
(2.5)

The points (u1, u2, . . . , un) ∈ VA are the consistent views in n cameras. The
prime ideal IA of VA was determined in [AST13, Corollary 2.7]. It is generated by
the

(
n
2

)
bilinear polynomials det(Bjk) plus

(
n
3

)
further trilinear polynomials. A

universal Gröbner basis of IA is given by the maximal minors of the matrices Bσ

with 2 ≤ |σ| ≤ 4 [AST13, Theorem 2.1]. See [Li17] for the natural generalization
of this variety to higher dimensions. As the multilinear relations can be expressed
via maximal minors of matrices with certain entries being indeterminates, the
multiview variety is a determinantal variety.

2.2 Introduction to Binomial Ideals

Chapter 7 is concerned with a special class of polynomial ideals called binomial
ideals. These contain a rich combinatorial structure and faster algorithms are
known to compute their generating sets and Gröbner bases. Many worst case
scenarios in commutative algebra have been constructed using binomial ideals,
e.g. the double exponential complexity for Gröbner bases [MM82] and the upper
bound in the effective Nullstellensatz [Kol88]. Even the multiview variety of
four and less views can be written up to a change of coordinate system as a
binomial (toric) ideal. Binomial ideals have been extensively studied in [ES96].

By a binomial in a polynomial ring K[Nn] := K[x1, · · · , xn] over the field K
we mean a polynomial with at most two terms, say axα+bxβ, where a, b ∈ K and
α, β ∈ Zn+. A binomial ideal is defined as an ideal solely generated by binomials.

Example 2.1. Consider the four camera matrices

A1 =

1 0 0 0

0 1 0 0

0 0 1 0

 , A2 =

1 0 0 0

0 1 0 0

0 0 0 1

 , A3 =

1 0 0 0

0 0 1 0

0 0 0 1

 , A4 =

0 1 0 0

0 0 1 0

0 0 0 1


the multiview ideal is a binomial ideal and is generated by the binomials

IA = 〈 u11u41−u10u42, u31u40−u30u41, u21u40−u20u42,

u12u31−u10u32, u22u30−u20u32, u12u21−u11u22,

u21u32u41 − u22u31u42, u11u32u40 − u12u30u42,

u10u22u40 − u12u20u41, u10u21u30 − u11u20u31 〉.

Any multiview ideal for n ≤ 4 cameras in linearly general position is isomorphic
to the ideal of this example under a change of coordinate system in the image
planes.
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Many other famous varieties can be expressed via binomial ideals, so are the
Segre, Veronese ideals determinantal ideals of two minors from a generic matrix,
respectively generic-symmetric matrix.

Example 2.2. The Veronese ideal I2,4 ⊂ Q[a, b, c, d, e, f ] of degree two in four
variables is generated by the 2-minors of the generic-symmetric matrixa b c

b d e

c e f

 .
There are only a few ideal-theoretic constructions that actually preserve

binomiality, e.g. if I is a binomial ideal and p a binomial then the colon ideal
I : p usually is not a binomial ideal. In that context it almost seems miraculous
that binomial ideals possess a minimal primary decomposition into binomial
ideals [ES96, Theorem 2.1, Corollary 2.2].

It is easier first to study Laurent binomial ideals. Consider the ring K[Zn] =
K[x1, · · · , xn, x−1

1 , · · · , x−1
n ] of Laurent polynomials with coefficients over the

field K. Again a Laurent binomial ideal is an ideal solely generated by binomials
in K[Zn]. Any binomial axα+ bxβ in the Laurent ring can be written as xm− cm
for some m ∈ Zn and cm ∈ K∗. It is known that any Laurent binomial ideal
can be constructed from a partial character ρ and a sublattice Lρ of Zn. By
partial character we mean a homomorphism ρ from the sublattice Lρ of Zn to
the multiplicative group K∗. The Laurent binomial ideal then is defined as

I(ρ) := 〈xm − ρ(m) : m ∈ Lρ〉.

If L is a sublattice of Zn, then the saturation of L is the lattice

sat(L) := {m ∈ Zn|dm ∈ L for some d ∈ Z}.

A Laurent binomial ideal is prime if its lattice is saturated. Chapter 7 strongly
relies on the following Theorem due to Eisenbud and Sturmfels [ES96, Theorem
2.1,d), Corrolary 2.2], which enables us to write down the prime decomposition
of Laurent binomial ideals.

Theorem 2.3 (Eisenbud, Sturmfels 1996). Let K[Zn] be a Laurent ring over an
algebraically closed field K of characteristic zero. Let ρ be a partial character
on Lρ ⊆ Zn. Write g for the order of sat(Lρ)/Lρ. There are g distinct partial
characters ρ1, . . . , ρg of sat(Lρ) extending ρ. The minimal prime decomposition
of I(ρ) ⊆ K[Zn] is

I(ρ) =

g⋂
i=1

I(ρi).
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With a little care and more formality Theorem 2.3 can be extended to more
general fields. The result above can be transferred to binomial ideals. Let
m+,m− ∈ Zn+ denote the positive part and the negative part of a vector m ∈ Zn.
Given a partial character ρ on Zn we define the polynomial ideal

I+(ρ) := 〈xm+ − ρ(m)xm− : m ∈ Lρ〉 ∈ K[Nn].

Now if I ∈ K[Nn] is a binomial ideal not containing any monomial, then there
is a unique partial character ρ on the lattice Zn such that the colon ideal
I : (x1, . . . , xn)

∞ = I+(ρ). The statement of Theorem 2.3 continues to hold if
we replace I(−) by I+(−) and prime by primary.

The most well studied class of binomial ideals are toric ideals. Due to
their strong connection to regular triangulations of point configuration by the
Sturmfels correspondence, they are of high interest to commutative algebra as
to discrete geometry.

Consider the matrix M ∈ Rm×n, then the toric ideal I associated to the
sublattice L = {m ∈ ker(M),m ∈ Zn} of Zn is the binomial ideal

I := 〈xm+ − xm− : m ∈ ker(M),m ∈ Zn〉 ∈ K[Nn].

The multiview ideal of four views can actually be written not just as a
binomial ideal, but even as a toric ideal.

Example 2.1 (Continued). Consider the matrix

M =


AT1 AT2 AT3 AT4
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,

where 1 = [1, 1, 1] and 0 = [0, 0, 0]. The multiview ideal of Example 2.1 is a
toric ideal associated to the matrix M .

Since a toric ideal I is generated by the integer points m ∈ Zn in the kernel
of M , it is frequently of interest to look at the fibers. For b ∈ NM the fiber of b
with respect to M is defined as

M−1[b] := {α ∈ Nn :Mx = b}.

Now if xα−xβ ∈ I, then α−β ∈ ker(M) andMα = b, Mβ = b. Therefore α
and β are in the same fiberM−1[b]. Consider the monoid NM := {Mu : u ∈ Zn}.
Then every binomial in I is homogeneous with respect to the multigrading NM .
The multidegree of the binomial xα − xβ is Mα =Mβ.
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Example 2.1 (Continued). Consider the bilinear polynomial u12u21−u11u22

between camera one A1 and two A2. Its exponent vectors m+,m− and multidegree
b are

m+ = (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0), m− = (0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

b = (0, 1, 1, 0, 1, 1, 0, 0) .

Many more interesting features of binomial ideals are known and we recom-
mend reading [Stu96, §4] and [ES96] for a more detailed introduction.
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Chapter 3

Rigid Multiview Variety

3.1 Introduction

The analysis of the multiview variety in [AST13] was restricted to a single world
point X ∈ P3. In this chapter we study the case of two world points X, Y ∈ P3

that are linked by a distance constraint. Consider the hypersurface V (Q) in
P3 × P3 defined by

Q = (X0Y3 − Y0X3)
2 + (X1Y3 − Y1X3)

2 + (X2Y3 − Y2X3)
2 −X2

3Y
2

3 . (3.1)

The affine variety VR(Q) ∩ {X3=Y3=1} in R3 × R3 consists of pairs of points
whose Euclidean distance is 1.

f2f1

X
Y

u2u1 v1 v2

Figure 3.1: Two-view geometry of two rigid points

The rigid multiview map is the rational map

ψA : V (Q) ↪→ P3 × P3 99K (P2)n × (P2)n,

(X, Y ) 7→
(
(A1X, . . . AnX), (A1Y, . . . AnY )

)
.

(3.2)

The rigid multiview variety is the image of this map. This is a 5-dimensional
subvariety of (P2)2n. Its multi-homogeneous prime ideal JA lives in the polyno-
mial ring R[u, v] = R[ui0, ui1, ui2, vi0, vi1, vi2 : i = 1, . . . , n], where (ui0:ui1:ui2)
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and (vi0:vi1:vi2) are coordinates for the ith factor P2 on the left respectively right
in (P2)n × (P2)n. Our aim is to determine the ideal JA. Knowing generators
of JA has the potential of being useful for designing optimization tools as in
[AAT12] for triangulation in the presence of distance constraints.

The choice of world and image coordinates for the camera configuration
A = (A1, . . . , An) gives our problem the following group symmetries. Let N be
an element of the Euclidean group of motions SE(3,R), which is generated by
rotations and translations. We may multiply the camera configuration on the
right by N to obtain AN = (A1N, . . . , AnN). Then JA = JAN since V (Q) is
invariant under SE(3,R). For M1, . . . ,Mn ∈ GL(3,R), we may multiply A on
the left to obtain A′ = (M1A, . . . ,MnA). Then JA′ = (M1 ⊗ . . .⊗Mn)JA.

The chapter is organized as follows. In Section 2 we present the explicit
computation of the rigid multiview ideal for n = 2, 3, 4. Our main result, to be
stated and proved in Section 3, is a system of equations that cuts out the rigid
multiview variety V (JA) for any n. Section 4 is devoted to generalizations. The
general idea is to replace V (Q) by arbitrary subvarieties of (P3)m that represent
polynomial constraints on m ≥ 2 world points. We focus on scenarios that are
of interest in applications to computer vision.

Our results in Propositions 3.1, 3.3, 3.4 and Corollary 3.2 are proved by com-
putations with Macaulay2 [GS]; for details see Section 3.5. Following standard
practice in computational algebraic geometry, we carry out the computation on
many samples in a Zariski dense set of parameters, and then conclude that it
holds generically.

3.2 Two, Three and Four Cameras

In this section we offer a detailed case study of the rigid multiview variety when
the number n of cameras is small. We begin with the case n = 2. The prime ideal
JA lives in the polynomial ring R[u, v] in 12 variables. This is the homogeneous
coordinate ring of (P2)4, so it is naturally Z4-graded. The variables u10, u11, u12

have degree (1, 0, 0, 0), the variables u20, u21, u22 have degree (0, 1, 0, 0), the
variables v10, v11, v12 have degree (0, 0, 1, 0), and the variables v20, v21, v22 have
degree (0, 0, 0, 1). Our ideal JA is Z4-homogeneous.

Throughout this section we shall assume that the camera configuration A
is generic in the sense of algebraic geometry. This means that A lies in the
complement of a certain (unknown) proper algebraic subvariety in the affine
space of all n-tuples of 3× 4-matrices. All our results in Section 2 were obtained
by symbolic computations with sufficiently many random choices of A (see
Section 3.5 for details). Such choices of camera matrices are generic. They will
be attained with with probability 1.
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Proposition 3.1. For n = 2, the rigid multiview ideal JA is minimally gener-
ated by eleven Z4-homogeneous polynomials in twelve variables, one of degree
(1, 1, 0, 0), one of degree (0, 0, 1, 1), and nine of degree (2, 2, 2, 2).

We prove this result by sufficiently many random computations with the
computer algebra system Macaulay2 [GS]. A slightly simplified version of the
code is shown in Listing 3.1 in Section 3.5.

Let us look at the result in more detail. The first two bilinear generators are
the familiar 6× 6-determinants

det

[
A1 u1 0

A2 0 u2

]
and det

[
A1 v1 0

A2 0 v2

]
. (3.3)

These cut out two copies of the multiview threefold VA ⊂ (P2)2, in separate
variables, for X 7→ u = (u1, u2) and Y 7→ v = (v1, v2). If we write the two
bilinear forms in (3.3) as u>1 Fu2 and v>1 Fv2 then F is a real 3 × 3-matrix of
rank 2, known as the fundamental matrix [HZ03, §9] of the camera pair (A1, A2).

The rigid multiview variety V (JA) is a divisor in VA × VA ⊂ (P2)2 × (P2)2.
The nine octics that cut out this divisor can be understood as follows. We write
B and C for the 6× 6-matrices in (3.3), and Bi and Ci for the matrices obtained
by deleting their ith rows. The kernels of these 5× 6-matrices are represented,
via Cramer’s Rule, by ∧5Bi and ∧5Ci. We write ∧̃5Bi and ∧̃5Ci for the vectors
given by their first four entries. As in (2.2), these represent the two world points
X and Y in P3. Their coordinates are bilinear forms in (u1, u2) or (v1, v2), where
each coefficient is a 3× 3-minor of

[
AT1 , A

T
2

]
. For instance, writing ajki for the

(j, k) entry of Ai, the first coordinate of ∧̃5B1 is

−(a32
1 a23

2 a34
2 − a32

1 a24
2 a33

2 − a33
1 a22

2 a34
2 + a33

1 a24
2 a32

2 + a34
1 a22

2 a33
2 − a34

1 a23
2 a32

2 )u11u20

+(a32
1 a13

2 a34
2 − a32

1 a14
2 a33

2 − a33
1 a12

2 a34
2 + a33

1 a14
2 a32

2 + a34
1 a12

2 a33
2 − a34

1 a13
2 a32

2 )u11u21

−(a32
1 a13

2 a24
2 − a32

1 a14
2 a23

2 − a33
1 a12

2 a24
2 + a33

1 a14
2 a22

2 + a34
1 a12

2 a23
2 − a34

1 a13
2 a22

2 )u11u22

+(a22
1 a23

2 a34
2 − a22

1 a24
2 a33

2 − a23
1 a22

2 a34
2 + a23

1 a24
2 a32

2 + a24
1 a22

2 a33
2 − a24

1 a23
2 a32

2 )u12u20

−(a22
1 a13

2 a34
2 − a22

1 a14
2 a33

2 − a23
1 a12

2 a34
2 + a23

1 a14
2 a32

2 + a24
1 a12

2 a33
2 − a24

1 a13
2 a32

2 )u12u21

+(a22
1 a13

2 a24
2 − a22

1 a14
2 a23

2 − a23
1 a12

2 a24
2 + a23

1 a14
2 a22

2 + a24
1 a12

2 a23
2 − a24

1 a13
2 a22

2 )u12u22.

Recall that the two world points in P3 are linked by a distance constraint (3.1),
expressed as a biquadratic polynomial Q. We set Q(X, Y ) = T (X,X, Y, Y ),
where T (•, •, •, •) is a quadrilinear form. We regard T as a tensor of order 4.
It lives in the subspace Sym2(R4)⊗ Sym2(R4) ' R100 of (R4)⊗4 ' R256. Here
Symk( · ) denotes the space of symmetric tensors of order k.

We now substitute our Cramer’s Rule formulas for X and Y into the quadri-
linear form T . For any choice of indices 1≤i≤j≤6 and 1≤k≤l≤6,

T
(
∧̃5Bi , ∧̃5Bj , ∧̃5Ck , ∧̃5Cl

)
(3.4)
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is a multi-homogeneous polynomial in (u1, u2, v1, v2) of degree (2, 2, 2, 2). This
polynomial lies in JA but not in the ideal IA(u) + IA(v) of VA × VA, so it can
serve as one of the nine minimal generators described in Proposition 3.1.

The number of distinct polynomials appearing in (3.4) equals
(

7
2

)2
= 441. A

computation verifies that these polynomials span a real vector space of dimension
126. The image of that vector space modulo the degree (2, 2, 2, 2) component of
the ideal IA(u) + IA(v) has dimension 9.

We record three more features of the rigid multiview with n = 2 cameras.
The first is the multidegree [MS05, §8.5], or, equivalently, the cohomology class
of V (JA) in H∗

(
(P2)4,Z

)
= Z[u1, u2, v1, v2]/〈u3

1, u
3
2, v

3
1, v

3
2〉. It equals

2u2
1v1 + 2u1u2v1 + 2u2

2v1 + 2u2
1v2 + 2u1u2v2 + 2u2

2v2

+2u1v
2
1 + 2u1v1v2 + 2u1v

2
2 + 2u2v

2
1 + 2u2v1v2 + 2u2v

2
2.

This is found with the built-in command multidegree in Macaulay2 [GS].
The second is the table of the Betti numbers of the minimal free resolution

of JA in the format of Macaulay2 [GS]. In that format, the columns correspond
to the syzygy modules, while rows denote the degrees. For n = 2 we obtain

0 1 2 3 4 5
total: 1 11 25 22 8 1

0: 1 . . . . .
1: . 2 . . . .
2: . . 1 . . .
7: . 9 24 22 8 1

The column labeled 1 lists the minimal generators from Proposition 3.1. Since
the codimension of V (JA) is 3, the table shows that JA is not Cohen-Macaulay.
The unique 5th syzygy has degree (3, 3, 3, 3) in the Z4-grading.

The third point is an explicit choice for the nine generators of degree (2, 2, 2, 2)
in Proposition 3.1. Namely, we take i = j ≤ 3 and k = l ≤ 3 in (3.4). The
following corollary is also found by computation:

Corollary 3.2. The rigid multiview ideal JA for n = 2 is generated by IA(u) +

IA(v) together with the nine polynomials Q
(
∧̃5Bi, ∧̃5Ck

)
for 1 ≤ i, k ≤ 3.

We next come to the case of three cameras:

Proposition 3.3. For n = 3, the rigid multiview ideal JA is minimally generated
by 177 polynomials in 18 variables. Its Betti table is given in Table 3.1.

Proposition 3.3 is proved by computation. The 177 generators occur in eight
symmetry classes of multidegrees. Their numbers in these classes are

(110000) : 1 (220111) : 3 (220220) : 9 (211211) : 1

(111000) : 1 (211111) : 1 (220211) : 3 (111111) : 1
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0 1 2 3 4 5 6 7 8 9 10 11
total: 1 177 1432 5128 10584 13951 12315 7410 3018 801 126 9

0: 1 . . . . . . . . . . .
1: . 6 . . . . . . . . . .
2: . 2 21 6 . . . . . . . .
3: . . 6 36 18 . . . . . . .
4: . . 1 12 42 36 9 . . . . .
5: . 1 . . . . . . . . . .
6: . 24 108 166 120 42 6 . . . . .
7: . 144 1296 4908 10404 13873 12300 7410 3018 801 126 9

Table 3.1: Betti numbers for the rigid multiview ideal with
n = 3.

For instance, there are nine generators in degree (2, 2, 0, 2, 2, 0), arising from
Proposition 3.1 for the first two cameras. Using various pairs among the three
cameras when forming the matrices Bi, Bj, Ck and Cl in (3.4), we can construct
the generators of degree classes (2, 2, 0, 2, 1, 1) and (2, 1, 1, 2, 1, 1).

Table 3.1 shows the Betti table for JA in Macaulay2 format. The first
two entries (6 and 2) in the 1-column refer to the eight minimal generators of
IA(u) + IA(v). These are six bilinear forms, representing the three fundamental
matrices, and two trilinear forms, representing the trifocal tensor of the three
cameras (cf. [AO14], [HZ03, §15]). The entry 1 in row 5 of column 1 marks the
unique sextic generator of JA, which has Z6-degree (1, 1, 1, 1, 1, 1).

For the case of four cameras we obtain the following result.

Proposition 3.4. For n = 4, the rigid multiview ideal JA is minimally generated
by 1176 polynomials in 24 variables. All of them are induced from n = 3. Up to
symmetry, the degrees of the generators in the Z8-grading are

(11000000) : 1 (22001110) : 3 (22002200) : 9 (21102110) : 1

(11100000) : 1 (21101110) : 1 (22002110) : 3 (11101110) : 1

We next give a brief explanation of how the rigid multiview ideals JA were
computed with Macaulay2 [GS]. For the purpose of efficiency, we introduce
projective coordinates for the image points and affine coordinates for the world
points. We work in the corresponding polynomial ring

Q[u, v][X0, X1, X2, Y0, Y1, Y2].

The rigid multiview map ψA is thus restricted to R3 × R3. The prime ideal of
its graph is generated by the following two classes of polynomials:
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1. the 2× 2 minors of the 3× 2 matrices[
Ai · (X0, X1, X2, 1)

> ui

]
,
[
Ai · (Y0, Y1, Y2, 1)

> vi

]
, (3.5)

2. the dehomogenized distance constraint

Q
(
(X0, X1, X2, 1)

>, (Y0, Y1, Y2, 1)
>).

From this ideal we eliminate the six world coordinates {X0, X1, X2, Y0, Y1, Y2}.
For a speed up, we exploit the group actions described in Section 3.1. We

replace A = (A1, ..., An) and Q = Q(X, Y ) by A′ = (M1A1N, ...,MnAnN)

and Q′ = Q(N−1X,N−1Y ). Here Mi ∈ GL3(R) and N ∈ GL4(R) are chosen
so that A′ is sparse. The modification to Q is needed since we generally use
N /∈ SE(3,R). The elimination above now computes the ideal (M1⊗ . . .⊗Mn)JA,
and it terminates much faster. For example, for n = 4, the computation
took two minutes for sparse A′ and more than one hour for non-sparse A.
For n = 5, Macaulay2 ran out of memory after 18 hours of CPU time for
non-sparse A. The complete code used in this chapter can be accessed via
http://www3.math.tu-berlin.de/combi/dmg/data/rigidMulti/.

One last question is whether the Gröbner basis property in [AST13, §2]
extends to the rigid case. This does not seem to be the case in general. Only in
Proposition 3.1 can we choose minimal generators that form a Gröbner basis.

Remark 3.5. Let n = 2. The reduced Gröbner basis of JA in the reverse
lexicographic term order is a minimal generating set. For a generic choice of
cameras the initial ideal equals

in(JA) = 〈u10u20, v10v20, u
2
10u

2
21v

2
10v

2
21, u

2
10u

2
21v

2
11v20v21, u

2
10u

2
21v

2
11v

2
20,

u2
11u

2
20v

2
10v

2
21, u

2
11u20u21v

2
10v

2
21, u

2
11u

2
20v

2
11v20v21,

u2
11u

2
20v

2
11v

2
20, u

2
11u20u21v

2
11v20v21, u

2
11u20u21v

2
11v

2
20 〉.

For special cameras the exact form of the initial ideal may change. However, up
to symmetry the degrees of the generators in the Z4-grading stay the same. In
general, a universal Gröbner basis for the rigid multiview ideal JA consists of
octics of degree (2, 2, 2, 2) plus the two quadrics (3.3). This was verified using
the Gfan[Jen] package in Macaulay2 [GS]. Analogous statements do not hold
for n ≥ 3.

3.3 Equations for the Rigid Multiview Variety

The computations presented in Section 2 suggest the following conjecture.

http://www3.math.tu-berlin.de/combi/dmg/data/rigidMulti/
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n\degree 2 3 6 7 8 total timing (s)

2 2 9 11 < 1
3 6 2 1 24 144 177 14
4 12 8 16 240 900 1176 130
5 20 20 100 1200 3600 4940 24064

Table 3.2: The known minimal generators of the rigid multiview
ideals, listed by total degree, for up to five cameras. There are
no minimal generators of degrees 4 or 5. Average timings (in
seconds), using the speed up described above, are in the last

column.

Conjecture 3.6. The rigid multiview ideal JA is minimally generated by 4
9
n6−

2
3
n5 + 1

36
n4 + 1

2
n3 + 1

36
n2 − 1

3
n polynomials. These polynomials come from two

triples of cameras, and their number per class of degrees is

(110..000..) : 1 · 2
(
n
2

)
(220..111..) : 3 · 2

(
n
2

)(
n
3

)
(220..220..) : 9 ·

(
n
2

)2
(211..211..) : 1 · n2

(
n−1

2

)2

(111..000..) : 1 · 2
(
n
3

)
(211..111..) : 1·2n

(
n−1

2

)(
n
3

)
(220..211..) : 3·2n

(
n
2

)(
n−1

2

)
(111..111..) : 1 ·

(
n
3

)2

At the moment we have a computational proof only up to n = 5. Table 3.2
offers a summary of the corresponding numbers of generators.

Conjecture 3.6 implies that V (JA) is set-theoretically defined by the equations
coming from triples of cameras. It turns out that, for the set-theoretic description,
pairs of cameras suffice. The following is our main result:

Theorem 3.7. Suppose that the n focal points of A are in general position in
P3. The rigid multiview variety V (JA) is cut out as a subset of VA × VA by the
9
(
n
2

)2 octic generators of degree class (220..220..). In other words, equations
coming from any two pairs of cameras suffice set-theoretically.

With notation as in the introduction, the relevant octic polynomials are

T
(
∧̃5B

j1k1
i1

, ∧̃5B
j1k1
i2

, ∧̃5C
j2k2
i3

, ∧̃5C
j2k2
i4

)
,

for all possible choices of indices. Let HA denote the ideal generated by these
polynomials in R[u, v], the polynomial ring in 6n variables. As before, we write
IA(u) + IA(v) for the prime ideal that defines the 6-dimensional variety VA × VA
in (P2)n × (P2)n. It is generated by 2

(
n
2

)
bilinear forms and 2

(
n
3

)
trilinear forms,

corresponding to fundamental matrices and trifocal tensors. In light of Hilbert’s
Nullstellensatz, Theorem 3.7 states that the radical of HA + IA(u) + IA(v) is
equal to JA. To prove this, we need a lemma.
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A point u in the multiview variety VA ⊂ (P2)n is triangulable if there exists
a pair of indices (j, k) such that the matrix Bjk has rank 5. Equivalently, there
exists a pair of cameras for which the unique world point X can be found by
triangulation. Algebraically, this means X = ∧̃5B

jk
i for some i.

Lemma 3.8. All points in VA are triangulable except for the pair of epipoles,
(e12, e21), in the case where n = 2. Here, the rigid multiview variety V (JA)
contains the threefolds VA(u)× (e12, e21) and (e12, e21)× VA(v).

Proof. Let us first consider the case of n = 2 cameras. The first claim holds
because the back-projected lines of the two camera images u1 and u2 always
span a plane in P3 except when u1 = e12 and u2 = e21. In that case both
back-projected lines agree with the common baseline β12. Alternatively, we can
check algebraically that the variety defined by the 5× 5-minors of the matrix B
consists of the single point (e12, e21).

For the second claim, fix a generic point X in P3 and consider the surface

XQ =
{
Y ∈ P3 : Q(X, Y ) = 0

}
. (3.6)

Working over C, the baseline β12 is either tangent to XQ, or it meets that quadric
in exactly two points. Our assumption on the genericity of X implies that no
point in the intersection β12 ∩XQ is a focal point. This gives

(A1X,A2X,A1YX , A2YX) = (A1X,A2X, e12, e21). (3.7)

The point (A1X,A2X) lies in the multiview variety VA(u). Each generic point
in VA(u) has this form for some X. Hence (3.7) proves the desired inclusion
VA(u) × (e12, e21) ⊂ V (JA). The other inclusion (e12, e21) × VA(v) ⊂ V (JA)

follows by switching the roles of u and v.
If there are more than two cameras, then for each world point X, due to

general position of the cameras, there is a pair of cameras such that X avoids
the pair’s baseline. This shows that each point is triangulable if n ≥ 3.

Proof of Theorem 3.7. It follows immediately from the definition of the ideals
in question that the following inclusion of varieties holds in (P2)n × (P2)n:

V (JA) ⊆ V
(
IA(u) + IA(v) +HA

)
.

We prove the reverse inclusion. Let (u, v) be a point in the right hand side.
Suppose that u and v are both triangulable. Then u has a unique preimage

X in P3, determined by a single camera pair {Aj1 , Ak1}. Likewise, v has a unique
preimage Y in P3, also determined by a single camera pair {Aj2 , Ak2}. There
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exist indices i1, i2 ∈ {1, 2, 3, 4, 5, 6} such that

X = ∧̃5B
j1k1
i1

and Y = ∧̃5C
j2k2
i2

.

Suppose that (u, v) is not in V (JA). Then Q(X, Y ) 6= 0. This implies

Q(X, Y ) = T (X,X, Y, Y ) = T
(
∧̃5B

j1k1
i1

, ∧̃5B
j1k1
i1

, ∧̃5C
j2k2
i2

, ∧̃5C
j2k2
i2

)
6= 0,

and hence (u, v) 6∈ V (HA). This is a contradiction to our choice of (u, v).
It remains to consider the case where v is not triangulable. By Lemma 3.8,

we have n = 2, as well as v = (e12, e21) and (u, v) ∈ V (JA). The case where u is
not triangulable is symmetric, and this proves the theorem.

The equations in Theorem 3.7 are fairly robust, in the sense that they
work as well for many special position scenarios. However, when the cameras
A1, A2, . . . , An are generic then the number 9

(
n
2

)2 of octics that cut out the
divisor V (JA) inside VA × VA can be reduced dramatically, namely to 16.

Corollary 3.9. As a subset of the 6-dimensional ambient space VA × VA, the
5-dimensional rigid multiview variety V (JA) is cut out by 16 polynomials of
degree class (220..220..). One choice of such polynomials is given by

Q
(
∧̃5B

12
i , ∧̃5C

12
k

)
, Q

(
∧̃5B

12
i , ∧̃5C

13
k

)
Q
(
∧̃5B

13
i , ∧̃5C

12
k

)
, Q

(
∧̃5B

13
i , ∧̃5C

13
k

) for all 1 ≤ i, k ≤ 2.

Proof. First we claim that for each triangulable point u at least one of the
matrices B12 or B13 has rank 5, and the same for v with C12 or C13. We prove
this by contradiction. By symmetry between u and v, we can assume that
rk(B12) = rk(B13) = 4. Then u3 = e31, u2 = e21, and u1 = e12 = e13. However,
this last equality of the two epipoles is a contradiction to the hypothesis that
the focal points of the cameras A1, A2, A3 are not collinear.

Next we claim that if B12 has rank 5, then at least one of the submatrices B12
1

or B12
2 has rank 5, and the same for B13, C12 and C13. Note that the bottom 4×6

submatrix of B12 has rank 4, since the first four columns are linearly independent,
by genericity of A1 and A2. The claim follows.

3.4 Other Constraints and More Points

In this section we discuss several extensions of our results. A first observation is
that there was nothing special about the constraint Q in (3.1). For instance, fix
positive integers d and e, and let Q(X, Y ) be any irreducible polynomial that
is bihomogeneous of degree (d, e). Its variety V (Q) is a hypersurface of degree
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(d, e) in P3 × P3. The following analogue to Theorem 3.7 holds, if we define the
map ψA as in (3.2).

Theorem 3.10. The closure of the image of the map ψA is cut out in VA × VA
by 9

(
n
2

)2 polynomials of degree class (d, d, 0, . . . , e, e, 0, . . .). In other words, the
equations coming from any two pairs of cameras suffice set-theoretically.

Proof. The tensor T that represents Q now lives in Symd(R4)⊗ Syme(R4). The
polynomial (3.4) vanishes on the image of ψA and has degree (d, d, e, e). The
proof of Theorem 3.7 remains valid. The surface XQ in (3.6) is irreducible of
degree e in P3. These polynomials cut out that image inside VA × VA.

Remark 3.11. In the generic case, we can replace 9
(
n
2

)2 by 16, as in Corollary 3.9.

Another natural generalization is to consider m world points X1, . . . , Xm

that are linked by one or several constraints in (P3)m. Taking images with
n cameras, we obtain a variety V (JA) which lives in (P2)mn. For instance,
if m = 4 and X1, X2, X3, X4 are constrained to lie on a plane in P3, then
Q = det(X1, X2, X3, X4) and V (JA) is a variety of dimension 11 in (P2)4n.
Taking 6×6-matrices B,C,D,E as in (2.1) for the four points, we then form

det
(
∧̃5Bi, ∧̃5Cj, ∧̃5Dk, ∧̃5El

)
for all 1 ≤ i, j, k, l ≤ 6. (3.8)

For n = 2 we verified with Macaulay2 that the prime ideal JA is generated by
16 of these determinants, along with the four bilinear forms for VA4.

Proposition 3.12. The variety V (JA) is cut out in VA4 by the 16
(
n
2

)4 polyno-
mials from (3.8). In other words, the equations coming from any two pairs of
cameras suffice set-theoretically.

Proof. Each polynomial (3.8) is in JA. The proof of Theorem 3.7 remains valid.
The planes (Xi, Xj, Xk)

Q intersect the baseline β12 in one point each.

To continue the theme of rigidity, we may impose distance constraints on
pairs of points. Fixing a nonzero distance dij between points i and j gives

Qij = (Xi0Xj3 −Xj0Xi3)
2 + (Xi1Xj3 −Xj1Xi3)

2 + (Xi2Xj3 −Xj2Xi3)
2 − d2

ijX
2
i3X

2
j3.

We are interested in the image of the variety V = V (Qij : 1 ≤ i < j ≤ m) under
the multiview map ψA that takes (P3)m to (P2)mn. For instance, for m = 3, we
consider the variety V = V (Q12, Q13, Q23) in (P3)3, and we seek the equations for
its image under the multiview map ψA into (P2)3n. Note that V has dimension
6, unless we are in the collinear case. Algebraically,

(d12 + d13 + d23)(d12 + d13− d23)(d12− d13 + d23)(−d12 + d13 + d23) = 0. (3.9)

If this holds then dim(V) = 5. The same argument as in Theorem 3.7 yields:
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Corollary 3.13. The rigid multiview variety ψA(V) has dimension six, unless
(3.9) holds, in which case the dimension is five. It has real points if and only
if d12, d13, d23 satisfy the triangle inequality. It is cut out in VA

3 by 27
(
n
2

)2

biquadratic equations, coming from the 9
(
n
2

)2 equations for any two of the three
points.

3.5 Computations

We performed several random experiments in this Chapter. Our hardware was a
cluster with Intel Xeon X2630v2 Hexa-Cores (2.8 GHz) and 64GB main memory
per node. The software was Macaulay2 [GS], version 1.8.2.1. All computations
were single-threaded.

The tests were repeated several times with random input. The exact running
times vary, even with identical input; the Table 3.2 lists the average values. It is
not surprising that increasing n, the number of cameras, increases the running
times considerably. Therefore we adapted the number of experiments according
to n.

For all the statements in Section 3.3 regarding two cameras, (i.e. n = 2)
we performed at least 1000 computations, with one exception. The statement
regarding the universal Gröbner basis in Remark 3.5 is based on 20 experiments.
Regarding three and four cameras (i.e., n ∈ {3, 4}) we performed at least 100
computations each. For n = 5 we performed at least 20 computations each.

In Listing 3.1 we show Macaulay2 code which can be employed to establish
Proposition 3.1. The complete code for all our results can be accessed via
http://www3.math.tu-berlin.de/combi/dmg/data/rigidMulti/.

Lines 1–4 define the rings in which the computations take place. Lines 6–7
produce random camera matrices. Here the code shown differs slightly from the
code used. Lines 7 – 13 produces random generic cameras by the definition of
generic given in [AST13, §2]. However, our experiments suggest that it suffices
to check that the focal points of the cameras are in linearly general position.
The multiview map φA from (2.5) is encoded in lines 17–21. Line 13 is the rigid
constraint (3.1). The actual computation is the elimination in line 23. The
rigid multiview ideal JA is defined in lines 25–26, and the final output are the
multidegrees of JA.

In these computations the world coordinates are dehomogenized by setting
the last coordinate to 1, as explained at the end of Section 3.2. Notice that the
code below line 7 does not need to be modified if we increase n.

http://www3.math.tu-berlin.de/combi/dmg/data/rigidMulti/
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1 R1 = QQ[u_(1,0)..u_(1,2)] ** QQ[u_(2,0)..u_(2,2)] **
2 QQ[v_(1,0)..v_(1,2)] ** QQ[v_(2,0)..v_(2,2)];
3 R2 = QQ[X_0..X_2] ** QQ[Y_0..Y_2];
4 S = R1 ** R2;
5
6 n = 2;
7 AList=0
8 while (numgens minors(4,transpose matrix AList)=!=binomial(n*3,4))do(
9 AList={};

10 for i from 1 to n do(
11 A_i=random(ZZ^3,ZZ^4,Height=>20);
12 AList=AList| entries A_i; )
13 );
14
15 I = ideal();
16 for j from 1 to n do (
17 I = I + minors(2,A_j * (genericMatrix(S,X_0,3,1)||matrix{{1}})|
18 genericMatrix(S,u_(j,0),3,1));
19 I = I + minors(2,A_j * (genericMatrix(S,Y_0,3,1)||matrix{{1}})|
20 genericMatrix(S,v_(j,0),3,1)); );
21 I = I + ideal((X_0-Y_0)^2 + (X_1-Y_1)^2 + (X_2-Y_2)^2-1);
22 I = eliminate({X_0,X_1,X_2,Y_0,Y_1,Y_2},I);
23
24 F = map(R1,S);
25 J = F(I);
26
27 degrees(J)

Listing 3.1: Compute JA for two cameras
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Chapter 4

Triangulation via the Rigid
Multiview Variety

4.1 Introduction

There are many different optimization formulations known to solve the triangula-
tion problem with presence of noise, these are essential to computer vision. Most
of the algorithms use local optimization to reconstruct the world point. However
a few of them also give global optimality certificates by using semidefinite pro-
gramming [AAT12; KH05]. The rigid multiview variety can be understood as a
generalization of the multiview variety. A natural question in that context is
whether one can use the rigid multiview variety V (JA) to formulate an algorithm
to improve the quality of the reconstruction by additional enforcing the rigidity
constraints.

Let û ∈ (R2)n be a vector of given noisy data. This is one world point
X ∈ R3 seen through n cameras. We introduce a vector of indeterminates
u ∈ (R2)n of the same length 2n. We write ui = (u

(1)
i , u

(2)
i ) corresponding to the

two coordinates in the i-th copy of R2, and we write ũ for the homogenization
which describes a point in the space (P2)n. More precisely, we choose a chart
such that ũi = (ui, 1) for all i. Similarly, we have v̂, v, vi and ṽ for the same
kind of information derived from a second world point Y ∈ R3. Finally, let X̃, Ỹ
be the homogenizations of X, Y and δ be the Euclidean distance between X, Y .

For noisefree points on the rigid multiview variety, we can use the classical
triangulation approach to reconstruct the world points. For two views this can
be done by solving Equation 2.1. In practice with multiple views this is usually
done by a singular value decomposition of the matrix B from Equation 2.3. For
noisy points the triangulation problem aims to find the maximum likelihood
estimate of X for given noisy data. We try to extend this problem to the rigid
multiview variety. Then the rigid triangulation problem is to find the maximum
likelihood estimate of u, v given the distance δ between X, Y and noisy data
û, v̂. We propose the rigid triangulation problem:
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min
(u,v)

∑
i

(
‖ui−ûi‖2+‖vi−v̂i‖2

)
: AiX̃ = λiũi, AiỸ = µiṽi , ‖X−Y ‖2 = δ2. (4.1)

The optimization problem aims to be as close as possible in its formulation to
the one of the classical triangulation problem in [AAT12], however it is able to
account additional information.

4.2 Projecting Onto the Rigid Multiview Variety

We can use the rigid multiview variety V (JA) to eliminate the variables X and
Y from Equation 4.1.

argmin
(u,v)

∑
i

(
‖ui − ûi‖2 + ‖vi − v̂i‖2

)
: (ũ, ṽ) ∈ V (JA) . (4.2)

A solution of Equation 4.2 is a point (ũ, ṽ) on the rigid multiview variety
V (JA) which is closest to given data (û, v̂) ∈ (R2)n× (R2)n. This means that we
are orthogonally projecting the points of (P2)n onto the rigid multiview variety.
After projecting onto V (JA) one can simply use a singular value decomposition
to reconstruct X, Y [HS97], because the rigid multiview variety V (JA) is a subset
of the multiview variety VA.

A set-theoretical description of WA is given in Theorem 3.7. There are two
types of constraints. First the bilinear ones and second the octics of Equation
3.4. Hence the optimization problem (4.2) can be rewritten as

argmin
(u,v)

∑
i

(
‖ui − ûi‖2 + ‖vi − v̂i‖2

)
:

ũjFijũi = 0, ∀i, j
ṽjFij ṽi = 0, ∀i, j

Q(∧̃5B
jk
i , ∧̃5C

jk
i ) = δ, ∀i, j, k

Not all octics are needed for a set-theoretical description, by Corollary 3.9 in
total only 16 octics suffice. For two views even four octics are sufficient.

4.3 Computational Experiments

We used the formulations of Equation 4.1 and Equation 4.2 as input to different
mathematical optimization solvers and software, like SeDuMi [Stu99], Mosek
[ApS15], fmincon [MAT16], SCIP [Gam+16], GloptiPoly 3 [HLL09], YALMIP
[Lof05]. We aimed to employ these solvers only with out of the box methods.

The data was taken from the Model House data set. It consists of ten
different camera positions and 672 world points. We applied additional Gaussian
noise onto the images of the data set with standard deviation between 0%− 10%
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of the image sizes and zero mean. Since the algorithms used are sensitive to
scaling of the fundamental matrix, we divide the fundamental matrices by the
largest singular value. Using the local nonlinear constraint solver fmincon of
MATLAB, for n = 2 cameras the solver mostly converges and gives compatible,
yet slightly inferior results to the SDP approach of [AAT12]. However, adding
the rigidity constraints seems not to improve the quality of the reconstruction
and often fails for instances whenever n ≥ 3.
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(a) Image data approximation.
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(b) World data approximation.

Figure 4.1: Comparison between our rigid triangulation ap-
proach with fmincon and non-rigid triangulation SDP approach
of [AAT12]. y-axis measures the distance between data and

approximation.

For global optimization we worked with YALMIP and GloptiPoly 3 accessing
the solvers SeDuMi and Mosek. There we used the solvemoment and solvesos
methods of YALMIP. Both of them failed: solvemoment got stuck in YALMIP’s
preprocessing routine, and SeDuMi did not even get started. The method
solvesos usually did not converge or got stuck in YALMIP’s preprocessing routine.
The method msol of GloptiPoly 3 using the fourth moment relaxation did not
converge within a day of computing time.

We also employed SCIP with the global nonlinear constraint solver IPOPT.
The rigid multiview variety V (JA) is the topological closure of the set

SA := {(u, v) ∈ (P2×P2)n : AiX = λiui, AiY = µivi, ‖X−Y ‖2 = δ2}, (4.3)

where X, Y ∈ P3 and λi, µi ∈ R\{0}. By replacing V (JA) with SA in Equation
4.2 noisy image points are projected onto SA instead onto V (JA). We obtain
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the optimization problem

min
(u,v)

∑
i

(
‖ui−ûi‖2+‖vi−v̂i‖2

)
: AiX̃ = λiũi, AiỸ = µiṽi , ‖X−Y ‖2 = δ2. (4.4)

This formulation has the advantage that we indirectly avoid the octics, whose
high degree leads to severe numerical instabilities. We can eliminate λi, µi
from these equations. Since X̃ and Ỹ are embedded into P3 at height one, the
perspective relations AiX̃ = λiũi is equivalent to AiX̃||ũi. Hence we obtain
AiX̃ × ũi = 0. This is the same approach described in Equation 3.5. SCIP
could find within 30 seconds an optimality gap of 100%, however it failed to
converge. GloptiPoly 3 could not certifiy global optimality for computable
moment relaxations.

4.4 Conclusion

The way we constructed the set-theoretical equations of the multiview variety
strongly depends on Cramer’s rule to triangulate the original world point coordi-
nates. We then insert these into the Euclidean distance constraint. In practice
Cramer’s rule is a bad choice to solve linear equation system and is numerically
instable. Other methods like singular value decomposition are used to obtain
solutions. However, we are bound to using Cramer’s rule to obtain an implicit
description of the rigid multiview variety V (JA). Thus the octics of Equation 3.4
inherit this numerical instability and even amplify it. This results in an instable
optimization problem, which is hard to handle. Clearly the high degree of the
constraints makes it extremely difficult for solvers to obtain good results. One
could use different methods instead of sums of squares to certify non-negativity.
A possible choice would be circuit polynomials in combination with geometric
programming [DIW16]. These are conjectured not to depend that much on the
total degree of the involved polynomials. We are currently working on such
an approach. Anyhow, unluckily the rigid multiview variety V (JA) does not
inherit many of the algebraic properties of the multiview variety VA. The rigid
constraints actually destroy many of the nice features of the multiview variety
VA. For example V (JA) is not generated by multilinear constraints nor is it
Cohen-Macaulay. At first sight it might seem surprising that using first moment
relaxations to project onto the multiview variety VA works as done in [AAT12],
but probably this goes back to the multiview variety being very well behaved.
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4.5 Code

The code in Listings 4.1 describes our approach to project onto the rigid multiview
variety V (JA). We used Matlab 2016a and GloptiPoly 3.8. The code usually
terminated. However, the SDP relaxation used in the computation where not
tight and thus a solution could not be extracted due to an incomplete monomial
basis.

The code gets the data input ûi → u1mes, Ai → A1, δ → dist as noted in
lines 1-3. In lines 6-9 the variables ui → ui of the optimization problem and
their embeddings ũ→ uihom into projective space P2 are defined. Lines 12-16
construct the set-theoretical constraints of V (JA). Only four of the 36 octics
are chosen as one can read of from lines 29 and 31. Line 19 defines the objective
function. Finally, lines 22-24 set up the SDP. Appended in lines 26-53 are the
custom user functions used in this code snippet.
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1 % Input: Image data: u1mes, u2mes, v1mes, v2mes
2 % cameras: A1, A2
3 % distance (delta^2): dist
4
5 % variables
6 mpol u1 2; u1hom=[u1;1];
7 mpol u2 2; u2hom=[u2;1];
8 mpol v1 2; v1hom=[v1;1];
9 mpol v2 2; v2hom=[v2;1];

10
11 % the two bilinear equations
12 BilinU=u2hom’*F*u1hom;
13 BilinV=v2hom’*F*v1hom;
14
15 % rigid constraints
16 rigid=rigidConstraint(u1,u2,v1,v2,A1,A2,dist);
17
18 % distance between variables and data
19 edist=eucdist([u1;u2;v1;v2]’,[u1mes;u2mes;v1mes;v2mes]’);
20
21 % Gloptipoly 3 input
22 K=[rigid==0, BilinU==0, BilinV==0];
23 P = msdp(min(edist), K);
24 [status,obj] = msol(P);
25
26 %%%%%%%%%%%%%%%%%%%%%
27 function [ceq] = rigidConstraint(u1,u2,v1,v2,A1,A2,dist)
28 ceq=[];
29 for i=1:2 % only 4 octics are chosen
30 X=triangulationViaCramersRule(u1,u2,A1,A2,i);
31 for j=1:2
32 Y=triangulationViaCramersRule(v1,v2,A1,A2,j);
33 ceq=[ceq rigidPolynomial(X,Y,dist)];
34 end
35 end
36 %%%%%%%%%%%%%%%%%%%
37 function X = triangulationViaCramersRule(x,y,A1,A2,i)
38 xzeros=[x(1);x(2);1;0;0;0];
39 yzeros=[0;0;0;y(1);y(2);1];
40 B=[vertcat(A1,A2) xzeros yzeros];
41 X=[-det(B([1:i-1,i+1:end],2:6)),
42 det(B([1:i-1,i+1:end],[1 3 4 5 6])),
43 -det(B([1:i-1,i+1:end],[1 2 4 5 6])),
44 det(B([1:i-1,i+1:end],[1 2 3 5 6]))];
45 %%%%%%%%%%%%%%%%%%%
46 function Q = rigidPolynomial(X,Y,dist)
47 Q= (X(1)*Y(4)-Y(1)*X(4))^2+(X(2)*Y(4)-Y(2)*X(4))^2+
48 (X(3)*Y(4)-Y(3)*X(4))^2-dist^2*X(4)^2*Y(4)^2;
49 %%%%%%%%%%%%%%%%%%%
50 function f = eucdist(x,xMeasurement)
51 x=reshape(x,2,[]);
52 xMeasurement=reshape(xMeasurement,2,[]);
53 diffMat=x-xMeasurement;
54 diffMat=reshape(diffMat,1,[]);
55 f=sum(sum(diffMat.^2));

Listing 4.1: Projecting onto V (JA).
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Chapter 5

Relations and Triangulation of
Unlabeled Image Points

5.1 Introduction

In many computer vision applications, the correspondences among views are
unknown. Hence the m world points in P3 and their images points in P2 will
be unlabeled. To study such questions, we propose to work with the unlabeled
multiview variety. This is the variety of products of multiview varieties [AST13]
with unknown correspondences. An unlabeled point configuration in (P2)m is
a point in the Chow variety Symm(P2) [Lan, §8.6]. Algebraically the unlabeled
multiview variety is the image of the multiview variety under the quotient map(
(P2)m

)n → (
Symm(P2)

)n for the symmetric group S(m) action. Our focus is
mostly on two unlabeled points. We design Algorithm 2 to triangulate two
unlabeled points.

While labeled world and image configurations are points in (P2)m and (P2)m,
unlabeled image configurations are points in the Chow varieties which live as
subvarieties in Symm(P2) and Symm(P3). This is the variety of ternary forms
that are products of m linear forms (cf. [Lan, §8.6]), respectively quaternary
forms that are products of m linear forms. It is embedded in the space P(

m+2
m )−1

of all ternary forms of degree m.
We define the unlabeled multiview variety to be the closure of the image of

the rational map ζA

ζA : Symm(P3) 99K (Symm(P2)
)n
.

Then ζA maps an order m symmetric 4× . . .× 4 tensor to n order m symmetric
3× . . .× 3 tensors. For each world point these tensors have one axis. This gives
rise to the unlabeled multiview variety Symm(VA) in

(
P(

m+2
m )−1

)n, where VA is
the multiview variety. Let X, Y ∈ P3 be two labeled world points. We denote
their images in the i-th picture as ui, vi,

AiX = λiui, AiY = µivi, λi, µi ∈ R \ {0}.
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Then ui = (ui0, ui1, ui2) and vi = (vi0, vi1, vi2) are the coordinates of the image
points.

Example 5.1. Let m = n = 2. The Chow variety Sym2(P2) is the hypersurface
in P5 defined by the determinant of a symmetric 3× 3-matrix N = (N ij)i,j∈[3].
From the two image points ui, vi we can construct an unlabeled image point on
the Chow variety Symm(P2), this is the symmetric matrix N = uiv

T
i + viu

T
i . Up

to the symmetry of coordinates of N , this reads as

N00
1 = 2u10v10, N11

1 = 2u11v11, N22
1 = 2u12v12,

N01
1 = u11v10 + u10v11, N02

1 = u12v10 + u10v12, N12
1 = u12v11 + u11v12.

The quotient map (P2)2 → Sym2(P2) ⊂ P5 is given by the formulas above.
Similarly, for the two unlabeled images of the second camera we use

N00
2 = 2u20v20, N11

2 = 2u21v21, N22
2 = 2u22v22,

N01
2 = u21v20 + u20v21, N02

2 = u22v20 + u20v22, N12
2 = u22v21 + u21v22.

We compute the image of VA × VA in P5 × P5, denoted Sym2(VA). Its ideal
has seven minimal generators, three of degree (1, 1), and one each in degrees
(3, 0), (2, 1), (1, 2), (0, 3). The generators in degrees (3, 0) and (0, 3) are det(N1)

and det(N2). The five others depend on the cameras A1, A2.

If m = 2 we can use symmetric matrices in Sym2(R4) and Sym2(R3) to
describe the unlabeled multiview variety, even for n larger than two. This is
computationally easier to handle. Then the unlabeled world point configuration
of the two labeled world pointsX, Y ∈ P3 can be represented by a symmetric 4×4
rank two matrix M = XY T + Y XT . The unlabeled image point configuration
of two labeled image points in the i-th picture ui, vi ∈ P2 can be represented by
the symmetric 3× 3 rank two matrix Ni = uiv

T
i + viu

T
i .

Remark 5.2. Since X, Y, ui, vi are points in projective spaces the symmetric
rank two matrices M, Ni are only defined up to scale.

For a symmetric 4× 4 rank two matrix M that is suitably generic, ξA maps
the matrix M to n symmetric 3× 3 of rank two matrices. Thus the unlabeled
analogue of the perspective relation AX = λu for a pinhole camera A ∈ R3×4

reads as
A(XY T + Y XT︸ ︷︷ ︸

=M

)AT = λ(uvT + vuT︸ ︷︷ ︸
=N

), λ ∈ R \ {0} (5.1)

The unlabeled multiview map of two points is

ξA : Sym2(P3) ↪→ Sym2(R4) 99K
(
Sym2(R3)

)n
,

M 7→ (A1MAT1 , . . . , AnMATn ).
(5.2)



5.2. Relabeling the Unlabeled 37

If m = 2 the unlabeled multiview variety Sym2(VA) is the closure of the image
of the rational map ξA.

We will pay special attention to the algebraic variety V (ξA) of the closure of
the image of ξA in Section 5.3.

5.2 Relabeling the Unlabeled

The Chow variety is a tool to easier handle unlabeled points, in order to
understand the geometry it is sometimes more convenient not to think about
unlabeled points as symmetric tensors. While in the section above we viewed two
unlabeled points as one point on the Chow variety Symm(P2), in this section we
will stick to unlabeled points as points in P2 and P3. Let ω be the map that takes
a labeled point configuration in (P2)m to its unlabeled configuration represented
as a symmetric tensor, e.g. if n = 2, m = 2 then ω takes (u, v) and (v, u), both
in P2 × P2, to the same symmetric matrix uvT + vuT . By construction of the
Chow variety the closure of the preimage of the unlabeled multiview variety
under the map ω is the union of labeled multiview varieties with the labeling of
their image points interchanged.

Example 5.3. The image points u1, v1, u2, v2 ∈ P2 are on the product of two
two-view varieties if they satisfy

uT2 Fu1 = 0 and vT2 Fv1 = 0.

The image points u1, v1, u2, v2 ∈ P2 are on the closure of the preimage under ω
of the unlabeled two-view variety of two points if they satisfy (s. Figure 5.2)(

uT2 Fu1 = 0 and vT2 Fv1 = 0
)
or
(
vT2 Fu1 = 0 and uT2 Fv1 = 0

)
. (5.3)

f1

u1

f2

v1 u2

v2

X Y
M

N2

N1

Figure 5.1: Unlabeled two-view geometry.
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f1

u1

f2

v1

u2

v2

X Y

uT2 Fu1 = 0

vT2 Fv1 = 0

(a) u1 ∼ u2, v1 ∼ v2.

f1

u1

f2

v1

u2

v2uT2 Fv1 6= 0

vT2 Fu1 6= 0

(b) v1 ∼ u2, u1 ∼ v2.

Figure 5.2: The two multiview varieties with permuted image
point correspondence.

This variety is cut out set-theoretically by the ideal〈
(uT2 Fu1)(v

T
2 Fu1), (u

T
2 Fu1)(u

T
2 Fv1), (v

T
2 Fv1)(v

T
2 Fu1), (v

T
2 Fv1)(u

T
2 Fv1)

〉
.

The approach of Example 5.3 extends to more pictures and more unlabeled
world points. The idea here is to permute the labeling of the image points in
each picture. Each permutation of image points gives a new product of multiview
varieties with permuted coordinates. The union over all these product varieties
then is the unlabeled multiview variety.

We construct a graph with all the image points as vertices, see Figure 5.3.
Let G be the n-partite complete graph on n ·m vertices, where each partition of
G has cardinality m. Let K ⊂ G be a perfect n-dimensional matching and by
K we denote the set of all such perfect n-dimensional matchings on G. For a
fixed K we denote Pi(j), that is an image point u∗j in the j-th picture, as the
vertex in the j-th partition of G in the i-th path Pi of K, with i ∈ [n], j ∈ [m].

In this section we have not been working with unlabeled points in Symm(P2)

but with labeled points (P2)m and their orbits under group action on the image
points of the symmetric group. The following theorem illustrates the relation
between these two approaches.

Proposition 5.4. The closure of the preimage under ω of the unlabeled multiview
variety is the union of products of multiview varieties, with permuted image
points correspondences⋃

K∈K

(
VA
(
P1(1), P2(1), . . . , Pn(1)

)
× . . .× VA

(
P1(m), P2(m), . . . , Pn(m)

))
.
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P1(1) = u21

P2(1) = u31

P3(1) = u11

P1(1) = u22

P2(1) = u32

P3(1) = u12

P1(1) = u2n

P2(1) = u3n

P3(1) = u1n

Figure 5.3: Permuted image point correspondence graph.

Proof. The usual multiview variety knows the labeling of the images points, how-
ever the unlabeled does not. Thus the preimage under ω of the unlabeled variety
is nothing but the union of all multiview varieties with permuted image point
correspondences. A permuted image point correspondence is an n-dimensional
matching through the n images, as depicted in Figure 5.3. Taking the union over
all such possible correspondences yields the preimage of the unlabeled multiview
variety.

Remark 5.5. The multiview variety is cut out set-theoretically by the bilinear
constraints, if the cameras are in linearly general position [Hr97]. Thus the
unlabeled multiview variety is cut out by the products of bilinear constraints.

The usual two-view triangulation does result in either zero solutions (u1, u2

are not on the two-view variety), one solution (u1, u2 are on the two-view variety)
or a one-dimensional linear subspace of solutions (u1, u2 are the epipoles). The
situation is a little different if we forget the labeling of the image points. Anyway,
the triangulation problem still amounts in intersecting the back-projected lines.
The reconstruction of the original world points is called unlabeled triangulation.
In the following its ambiguities are studied. The unlabeled triangulation is
ambiguous if there are two or more unlabeled world point configurations that
project down to the same unlabeled image point configuration.

Proposition 5.6. Let n=m=2. The unlabeled triangulation is not unique, if
and only if the image points are on the unlabeled multiview variety and satisfy
the two conditions

|e12, u1, v1| = 0, |e21, u2, v2| = 0 .
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e21e12e12 e21f1

u1

f2

v1

u2
v2

X

X ′

Y

Y ′

Figure 5.4: Ambiguous unlabeled two-view triangulation.

If the image points u1, u2, v1, v2 are distinct from the epipoles e1, e2, then there
are exactly two possible unlabeled world point pairs (X, Y ) and (X ′, Y ′) that are
possible reconstructions.

Proof. By construction the arrangement of the four back-projected lines of
u1, u2, v1, v2 have the focal points f1 and f2 as intersection points. Such that the
triangulation is ambiguous the four back-projected lines must have at least four
additional intersections. Thus the back-projected lines need to be coplanar by
the Veblen-Young axiom. Because u1, u2, v1, v2 are on the unlabeled multiview
variety this is equivalent to eij, u1, v1 being collinear, as depicted in Figure 5.4.
Now if e12, u1, v1 are pairwise distinct and e21, u2, v2 are pairwise distinct, then
the back-projected lines have in total six intersections of which four are not the
focal points.

Remark 5.7. Let n=m=2. In world coordinates the ambiguity of the unlabeled
triangulation revolves around the world points X, Y and the baseline β12 through
the focal points f1, f2 being coplanar. Hence the pencil of planes with the baseline
β12 as its axis encodes the ambiguities of the two view unlabeled triangulation.

The ambiguity of the unlabeled triangulation of two views and two unlabeled
points extends to the case n = 2,m ≥ 2.

Corollary 5.8. If a subset of the world point configuration and the baseline βij
are coplanar, then the unlabeled triangulation is ambiguous.

Proof. Follows immediately from Proposition 5.6.

When a subset of k unlabeled world points and the baseline are on one
plane, then all their back-projected lines intersect each other pairwise. There
are in total k2 such intersection points. To construct an alternative world
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point configurations, each back-projected line has to be used exactly one time.
Otherwise the resulting image point configuration does not align with the original
image point configuration.

Remark 5.9. Consider k world points that are coplanar with the baseline, then
there are k! different solutions to the unlabeled triangulation from two views.

For generic points on the unlabeled multiview variety the back-projected
lines intersect in only two points and the reconstructing of the unlabeled world
point configuration is unique.

When m > 2 the back-projected lines represent a line arrangement in P3,
where through each focal point m lines pass. Let the intersection degree of a
point in P3 denote the number of back-projected lines that intersect in that point.
The unlabeled triangulation amounts to find points in P3 with intersection degree
equal to n that are distinct from the focal points. A configuration of world
points is a valid triangulation of the image points if it covers all back-projected
lines.

f1

f2

f3

Figure 5.5: The blue and brown vertices describe different
world point configurations that project to the same unlabeled
image point configuration. The dashed lines denote the missing

incidences in Pappus’s hexagon theorem.

In general classifying the ambiguities of the unlabeled triangulation is a
complex problem.

For three views n = 3 and three unlabeled points one can employ Pappus’s
hexagon theorem to construct an ambiguous unlabeled triangulation. In this
case a configuration that possesses an ambiguous unlabeled triangulation must
lie on the trifocal plane. Figure 5.5 depicts such an situation on the trifocal
plane.

5.3 Two Unlabeled Points

In this section we will only consider the case of two (m=2) unlabeled world
points. The complicated part of the unlabeled multiview map of Equation 5.2 is
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the rank two constraint on the symmetric matrix M . However if M has rank
two we can be sure that its projections Ni have rank two.

Lemma 5.10. The matrices Ni have rank at most two if M has rank two. If
M = XY T +Y XT , then N can be written as Ni = uvT +vuT for some u, v ∈ P2.

Proof. If M has rank two, then rk(Ni) = rk(AiMAT
i ) ≤ 2. The second state-

ment is obtained from the fact

Ai(XY T + Y XT )AT
i = AiX(Y Ai)

T + AiY (XAi)
T = λiuv

T + vuT = λNi.

Remark 5.11. The reverse of the second statement of Lemma 5.10 does not hold
Ni = uvT + vuT ∀ i � M = XY T + Y XT

We first analyze Sym2(VA) by dropping the rank two constraints in ξA. This
gives us the rational map

θA : Sym2(R
4) ���

(
Sym2(R

4)
)n
,

M 	→ (A1MAT
1 , . . . , AnMAT

n ).

We will denote the ideal and the variety of the closure of the image of as Iθ and
Vθ. This variety is a relaxation of the unlabeled multiview variety Sym2(VA).
The map θA is linear in the entries of the symmetric matrix M , thus by row-wise
vectorizing the upper triangular entries of M ∈ Sym2(R

4) to
# «

M ∈ R10 the map
θA can be rewritten in its standard form of linear equations, with the coefficient
matrices Ãi. In the coordinates of Ai = (ajk)j∈[3],k∈[4] the coefficient matrix Ãi

then reads as

Ãi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a211 a11a21 a11a31 a221 a21a31 a231
2a11a12 a12a21 + a11a22 a12a31 + a11a32 2a21a22 a22a31 + a21a32 2a31a32
2a11a13 a13a21 + a11a23 a13a31 + a11a33 2a21a23 a23a31 + a21a33 2a31a33
2a11a14 a14a21 + a11a24 a14a31 + a11a34 2a21a24 a24a31 + a21a34 2a31a34
a212 a12a22 a12a32 a222 a22a32 a232

2a12a13 a13a22 + a12a23 a13a32 + a12a33 2a22a23 a23a32 + a22a33 2a32a33
2a12a14 a14a22 + a12a24 a14a32 + a12a34 2a22a24 a24a32 + a22a34 2a32a34
a213 a13a23 a13a33 a223 a23a33 a233

2a13a14 a14a23 + a13a24 a14a33 + a13a34 2a23a24 a24a33 + a23a34 2a33a34
a214 a14a24 a14a34 a224 a24a34 a234

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the according rational map is

θ̃A : P9 ��� (P5)n,
# «

M 	→ (Ã1
# «

M, . . . , Ãn
# «

M),
(5.4)

This map strongly resembles the conventional multiview map of Equation 2.5 and
can be understood as a higher dimensional analog of it. We use the techniques
developed in [Li17] for a more general setup to describe the closure of the image
of θ̃A in Corollary 5.16. But we first study the unlabeled triangulation. The
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results we obtain to understand the unlabeled triangulation will come in handy
for Corollary 5.16.

Let σ ⊆ [n] with |σ| = k and Ãσ = (ÃT
σ1
, . . . , ÃT

σk
), then define Bσ as

Bσ =

⎡⎢⎣Ãσ1

#«

Nσ1

... . . .
Ãσk

#«

Nσk

⎤⎥⎦ . (5.5)

Let the unlabeled focal point fij of the cameras Ai and Aj be fij := fif
T
j +fjf

T
i .

Proposition 5.12. Let n = m = 2. Let N1 and N2 be two generic points on
the unlabeled two-view variety and denote their unlabeled triangulation MΔ =

XY T + Y XT . Then rk(B{1,2}) = 10 and there exists λ1, λ2 ∈ R, such that

span
(
(

#  «

f12, 0, 0)
T , (

# «

MΔ, λ1, λ2)
T
)
= ker(B{1,2}).

Proof. Since N1 and N2 are generic points on the unlabeled multiview variety
the triangulation is unique and MΔ = XY T + Y XT is its solution. Hence
there are λ1, λ2, such that (

# «

MΔ, λ1, λ2) is in ker(B{1,2}). On the other hand
Ãi

# «

M = λi
#«

N i is equivalent to AiMAT
i = λiNi, thus inserting f1f

T
2 + f2f

T
1 gives

A1

(
f1f

T
2 + f2f

T
1

)
AT

1 = 0 and inserting gives A2

(
f2f

T
1 + f1f

T
2

)
AT

2 = 0. Hence
for λ1 = λ2 = 0 the vector (

#«

f 12, 0, 0) is in ker(B{1,2}).

Remark 5.13. By the proof of Proposition 5.12 ker(Ã{i,j}) is spanned by
#«

f ij.

Proposition 5.14. Let n ≥ 3. For a generic choice of cameras A1, . . . , An the
matrix Ãσ has full rank.

Proof. The unlabeled focal point fij is the kernel of the submatrix Ã{i,j}. Since
fij does not depend on the other cameras it is not in the kernel of any of the
other Ãk for a generic choice of cameras.

We can use the matrix Bσ to design a triangulation algorithm for the
unlabeled multiview variety. We call this algorithm the unlabeled triangulation
algorithm. The Proposition 5.12 indicates that the unlabeled triangulation is
more complicated than the usual labeled triangulation. By Propositions 5.6 and
Corollary 5.8 it can have multiple solutions. Especially the case of two views is
more elaborate. Nonetheless it has a unique solution for generic points on the
unlabeled multiview variety. We need a lemma before we can state the unlabeled
triangulation algorithm.

Lemma 5.15. Consider a two-dimensional linear subspace V ⊂ Sym2(R
4)

spanned by two symmetric matrices. Suppose that V contains two distinct rank
two symmetric matrices M1,M2 ∈ Sym2(R

4), such that rk(M1 −M2) = 4. Then
the symmetric matrices M1,M2 are the only rank two symmetric matrices in V .
Also the subspace V contains no rank three symmetric matrix.
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Proof. We can choose M1 and M2 as basis of V . The rank two matrices in V can
be computed as some roots of det(αM1 + (1− α)M2). Clearly zero and one are
roots of this univariate polynomial. However the roots of det(αM1 + (1− α)M2)

are the generalized eigenvalues to the matrix equation M1x = α(M2−M1)x, x ∈
R4. But since M1 has rank two the generalized eigenvalue α = 0 has double
algebraic and geometric multiplicity. Then switching the roles of M1 and M2

shows that α = 1 also has double algebraic and geometric multiplicity.

The unlabeled triangulation of two views results in finding the rank two
matrices in linear two-dimensional subspaces. That subspace is constructed from
ker(Bσ). We can find these matrices by finding the roots of a univariate quartic
polynomial, as their determinant needs to vanish. If we only consider generic
points on the unlabeled multiview variety, this polynomial has exactly two real
solutions, the unlabeled focal point fij and the unlabeled triangulation MΔ of
the unlabeled image points.

Input: N1, N2 generic points on the unlabeled multiview variety;
Output: MΔ unlabeled triangulation of N1, N2;
begin

1. Compute an element m of kerBσ, that is not a multiple of
#«

f 12;

2. The first ten entries of m represent a symmetric 4× 4 matrix M ;

3. Compute the quartic polynomial det(αM + (1− α)f12);

4. It factors to α2(α− c)2, c ∈ R;

5. Compute c; MΔ := cM + (1− c)f12;

end
Algorithm 1: Unlabeled triangulation problem for two views.

Proof. Since M and f12 are symmetric with real entries det(αM+(1−α)f12) only
has real roots. By construction α = 0 is a root. Because (N1, N2) ∈ Sym2(VA)

there is a real value α = c such that MΔ := cM + (1− c)f12. Now by Lemma
5.15 these two roots are the only roots of det(αM + (1− α)f12).

Since the roots of the univariate quartic polynomial det(αM + (1− α)f12)

have double multiplicity for generic points, we can find the roots by using the
quadratic formula.

If n ≥ 3, then the procedure is simple and amounts to computing kerBσ,
because the kernel is one-dimensional for generic data by Proposition 5.14. The
complete triangulation algorithm can be stated as follows:
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Input: N1, . . . , Nn generic points on the unlabeled multiview variety;
Output: M∆ unlabeled triangulation of N1, . . . , Nn;
if n=2 then

use Algorithm 1;
else

1. Compute the generator m of kerBσ;

2. The first ten entries of m represent the symmetric matrix M∆;

end
Algorithm 2: Unlabeled triangulation problem.

Proof. Correctness of Algorithm 2 follows from correctness of Algorithm 1.

In some cases one might not want to keep on working with symmetric
matrices, but actually reconstruct the original world points. This amounts to
find a decomposition of M∆ into XY T + Y XT . Finding such a decomposition
is equivalent to splitting a degenerate quadrics P3 into two planes. To do this,
the approach studied in [RG11] for quadrics in P2 generalizes to our case, if one
replaces the adjoint matrix adj(M∆) by the 6× 6 matrix of signed 2-minors of
M∆.

We go back to studying the relaxed ideal Iθ. With the help of Proposition
5.12 we are able to determine the generators of the prime ideal Iθ of the image
of θA.

Corollary 5.16. Let σ ⊆ [n]. Then the ideal Iθ of the image of θA is generated
by the maximal minors of Bσ (for all 3 ≤ |σ| ≤ 10), and the 11-minors of Bσ

(for all |σ| = 2).

Proof. By [Li17, §2.2] the ideal is generated by the rk(Ãσ) + |σ| minors of Bσ.
If |σ| = 2 then by the proof of Proposition 5.12 the matrix Ãσ has rank nine. If
3 ≤ |σ| ≤ 10 then Ãσ has full rank by Proposition 5.14. Further maximal minors
of matrices Bσ with |σ| ≥ 11 are monomial multiples of the other maximal
minors. We obtain a generating set by just computing the minors of correct
size.

Remark 5.17. Let n=2. Consider the ideal generated by the 11-minors and the
ideal generated by the three degree (1, 1) polynomials of Example 5.1. These
two ideals are equal.

Clearly the relaxed ideal Iθ is not a good relaxation of Sym2(VA), but it can
easily be tightened by enforcing the singularity condition det(Ni) = 0. We define
the ideal

I ′θ := Iθ + 〈det(N1), . . . , det(Nn)〉.

Still it is possible to construct rank two matrices on the variety V (I ′θ) that are not
on Sym2(VA). Let be N1 = e12v

T + veT12, v ∈ P2. Then rk(B) ≤ 10 independent
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of N2, thus requiring that the 11 × 11 minors of B vanish (s. Corollary 5.16)
does not impose any constraints on N2. Remember that Equation 5.3 gives
a description of the preimage of the unlabeled two-view variety of two points.
However (

V (eT12Fu2)× V (vT1 Fv2)
)
∪
(
V (eT12Fv2)× V (vT1 Fu2)

)
gives constraints on v1, v2, u2, namely (vT2 Fu1 = 0 or vT2 Fv1 = 0). Thus not all
points of {

(e12v
T
1 + v1e

T
12, N2) : v ∈ P2, N2 ∈ Sym2(R4)

}
(5.6)

are on the unlabeled multiview variety Sym2(VA), but they are on V (I ′θ).

Proposition 5.18. For n=2, the unlabeled multiview variety is minimally gen-
erated by 7 polynomials in 12 variables. It is Cohen-Macaulay and its Betti table
is given in Table 5.1.

Proof. By Remark 4.4 of [AST13] the toric set-up of Example 2.1 is universal in
the sense that every multiview variety with cameras in linearly general position
is isomorphic to the multiview variety of Example 2.1. Since the unlabeled
multiview variety with cameras in linearly general position is the union of
multiview varieties with correspondences interchanges, any unlabeled multiview
variety is isomorphic to the unlabeled multiview variety with the camera matrices
of Example 2.1. For two views we only chose the camera matrices A1 and A2 of
Example 2.1 and then ran the code of Listing 5.1 in Macaulay2 [GS] with these
cameras as input.

Remark 5.19. For cameras in linearly general position we have the freedom of
choice of a world coordinate system in P3 and coordinate systems in the images
in P2 without changing the unlabeled multiview variety up to isomorphism. In
that sense we can freely choose five cameras with focal points in linearly general
position to compute an isomorphic description of the unlabeled multiview variety.

As we see in Example 5.1 the generators of the unlabeled two-view variety
of two points (n = 2, m = 2) fall into three different classes according to their

0 1 2 3 4
total: 1 7 11 8 3

0: 1 . . . .
1: . 3 2 . .
2: . 4 6 . .
3: . . . 2 .
4: . . 3 6 3

Table 5.1: Betti numbers for the unlabeled multiview ideal
with n = 2.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13
total: 1 60 468 1580 3071 4765 5715 4741 2808 1257 428 102 15 1

0: 1 . . . . . . . . . . . . .
1: . 9 6 . . . . . . . . . . .
2: . 20 102 159 145 66 12 . . . . . . .
3: . 24 273 932 1242 468 60 . . . . . . .
4: . . 12 123 609 2116 2709 1800 657 123 12 . . .
5: . 7 75 366 1075 2115 2934 2941 2151 1134 416 102 15 1

Table 5.2: Betti numbers for the unlabeled multiview ideal
with n = 3.

multidegree, namely the ones with multidegree (1, 1), the ones with degree type
(2, 1) and the ones with degree type (3, 0). The ones of degree type (3, 0) are
the determinants of N1 and N2.

Proposition 5.20. The ideal of three degree (1, 1) equations of the unlabeled
two-view variety is a subset of the ideal generated by the entries of N2FN1.

Proof. The statement has been checked for sufficiently many random choices of
camera pairs with Macaulay2 [GS], see Section 5.5 for details.

We currently have no way to construct the generators with degree type (2, 1).
However we do believe that they relate to the variety of Equation 5.6.

The following statements have been derived with Macaulay2 [GS]. They are
concerned with the prime ideal of the unlabeled multiview variety of three, four
and five views.

Proposition 5.21. For n=3, the unlabeled multiview variety is minimally gen-
erated by 60 polynomials in 18 variables and its Betti table is given in Table
5.2.

Proof. Similarly to the proof of Proposition 5.18 we choose special cameras to
compute the unlabeled multiview variety. Here the cameras A1, A2 and A3 of
Example 2.1 were chosen for the computation with Macaulay2 [GS].

Proposition 5.22. For n=4, the unlabeled multiview variety is minimally gen-
erated by 215 polynomials up to degree six in 24 variables. For n=5, the unlabeled
multiview variety is minimally generated by 620 polynomials up to degree six in
30 variables.

Proof. Similarly to the proof of Proposition 5.18 we choose special cameras to
compute the unlabeled multiview variety. For n = 4, the cameras of Example
2.1 were chosen for the computation with Macaulay2 [GS]. For n = 5, we chose
the four cameras of Example 2.1 and additionally the normalized camera with
focal point e1 = (1, 0, 0, 1) for the computation with Macaulay2 [GS].
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The unlabeled rigid multiview variety is the image of the rigid multiview
variety V (JA) ⊂ VA ×VA under the quotient map that takes two copies of (P2)2

to two copies of Sym2(P)
2 ⊂ P5. This quotient map is given by (u1, v1) 	→

N1, (u2, v2) 	→ N2.

Example 5.1 (Continued). We can get equations for the unlabeled rigid
multiview variety, if we intersect the ideal JA with the subring R[N1, N2] of
bisymmetric homogeneous polynomials in R[u, v]. This results in nine new
generators which represent the distance constraint. One of them is a quartic of
degree (2, 2) in (N1, N2). The other eight are quintics, four of degree (2, 3) and
four of degree (3, 2).

5.4 More than Two Unlabeled Points

The study of more than two unlabeled points is quite more elaborate compared
to the case of two points as done in Section 5.3. In general, equations describing
the Chow variety are unknown. Also when more than two unlabeled points
are present we work with symmetric tensors instead of symmetric matrices.
In Section 5.3 we strongly relied on tools from matrix algebra, these are not
available or far more complicated for symmetric tensors. We can still extend
some results to the case of m ≥ 3.

One can construct a point M on the Chow variety Symm(P
3) from their

unlabeled world configuration X1, . . . , Xm by taking the sum over all permuted
tensors products

M =
∑

π∈S(m)

(
Xπ(1) ⊗ . . .⊗Xπ(m)

) ∈ R4×...×4,

where S(·) denotes the symmetric group. The tensor M is symmetric and
only defined up to scale. Thus it can be embedded in P(

m+3
m )−1. Similarly,

the unlabeled image point configurations are represented by symmetric tensors
Ni ∈ R3×...×3 defined up to scale, embedded in P(

m+2
m )−1. The perspective relation

of Equation 5.1 for a pinhole camera A ∈ R3×4 generalizes to

M(A, . . . , A︸ ︷︷ ︸
m times

) = λN.

We can vectorize this equation above as done in the Section 5.3. This yields the
linear equation

Ã
# «

M = λ
#«

N

for some coefficient matrix Ã, with
(
m+2
m

)
rows and

(
m+3
m

)
columns. Let σ ⊆ [n]

with |σ| = k and Ãσ = (ÃT
σ1
, . . . , ÃT

σk
) then define (analogously to the two point

case of Equation 5.5) the matrix Bσ as
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Bσ =

⎡⎢⎣Ãσ1

#«

Nσ1

... . . .
Ãσk

#«

Nσk

⎤⎥⎦ .
This matrix has k

(
m+2
m

)
rows and columns

(
m+3
m

)
+k. The unlabeled triangulation

MΔ can be reconstructed from the matrix Bσ. Similar to the two point case one
can construct the unlabeled focal point of m views, this is

f[m] :=
∑

π∈S(m)

(
fπ(1) ⊗ . . .⊗ fπ(m)

) ∈ R3×...×3.

For exactly m views the unlabeled focal point concatenated with m zeros
(

#«

f [m], 0, . . . , 0) is in the kernel of B[m]. For m+ 1 views the kernel of B[m+1] is
one-dimensional and MΔ can be computed by linear algebra.

It is of interest to characterize the pictures of m unlabeled points using
n cameras and their ambiguities. Further it would be desirable to know the
prime ideal of Symm(VA) for any n and m. In Propositions 5.18, 5.21 and 5.22
generators of degree at most six appear, thus we believe that the generators of
Symm(VA) can be constructed from the information obtained by two and three
views.

5.5 Computations

We performed several random experiments. Our hardware was a cluster with
Intel Xeon X2630v2 Hexa-Cores (2.8 GHz) and 64GB main memory per node.
The software was Macaulay2 [GS], version 1.9.2 [GS]. All computations were
single-threaded.

Our result in Proposition 5.20 was proved by computations with Macaulay2
[GS]. Following standard practice in computational algebraic geometry, we
carried out the computation on many samples in a Zariski dense set of parameters,
and then conclude that it holds generically. Further instead of using special
cameras as we did in the proofs of Propositions 5.18, 5.21, 5.22, we were also
able to compute the unlabeled multiview variety with random cameras as input.

The computations were repeated several times with random input. It is not
surprising that increasing n, the number of cameras, increases the running times
considerably. In particular using the toric setup of Example 2.1 is much faster
than choosing dense camera matrices Ai.

For Proposition 5.20 we performed at least 1000 computations to verify its
correctness. Example 5.1 was checked with 50 choices of random cameras.

In Listing 5.1 we show Macaulay2 code which can be employed to establish
Proposition 5.18.
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Lines 1–4 define the rings in which the computations take place. Lines 6–14
produce random camera matrices. However, our experiments suggest that it
suffices to check that the focal points of the cameras are in linearly general
position. The unlabeled multiview map θA from Equation 5.3 is encoded in lines
17–21. Lines 13–14 are unlabeled perspective relations (Equation 5.1) and line
26 are the determinantal constraints on the matrices. The actual computation
is the elimination in line 28. The unlabeled multiview variety is defined in lines
30–31.
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1 ImageRing=QQ[a00,a01,a02,a11,a12,a22]**QQ[b00,b01,b02,b11,b12,b22]
2 WorldRing=QQ[m00,m01,m02,m03,m11,m12,m13,m22,m23,m33]
3 MultipleRing=QQ[l,k]
4 S=WorldRing**ImageRing** MultipleRing
5
6 --generate random camera matrices
7 n = 2;
8 AList=0;
9 while (numgens minors(4,transpose matrix AList)=!=binomial(n*3,4))do(

10 AList={};
11 for i from 0 to n-1 do(
12 A_i=random(ZZ^3,ZZ^4,Height=>20);
13 AList=AList| entries A_i; )
14 );
15
16 --create matrices corresponding to unlabeled points
17 M=genericSymmetricMatrix(S,m00,4);
18 N_0=genericSymmetricMatrix(S,a00,3);
19 N_1=genericSymmetricMatrix(S,b00,3) ;
20
21 --unlabeled multiview map
22 I=ideal(
23 A_0*M*transpose A_0-l*N_0,
24 A_1*M*transpose A_1-k*N_1,
25 l*k-1 ,
26 det(N_0),det(N_1))+minors(3,M);
27
28 time I = eliminate({m00,m01,m02,m03,m11,m12,m13,m22,m23,m33,l,k},I)
29
30 F = map(ImageRing,S);
31 J = F(I);

Listing 5.1: Compute Sym2(VA) for two cameras.
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when the 8-point algorithm is defeated by the vertices of a combinatorial cube
by using a modified version of the 7-point algorithm in this case.

There are multiple papers in multiview geometry which are concerned with
critical configurations [May12; HK07]. Critical configurations in two-view ge-
ometry are point configurations consisting of n world points together with the
two focal points fi ∈ P3 of the cameras. For these configurations there exist
two ambiguous fundamental matrices. They are a feature of the geometry itself
and not of the choice of algorithm used to reconstruct the fundamental matrix
F ∈ R3×3. Hartley and Kahl [HK07] give the complete description of critical
configurations in multiview geometry. In the two-view case a necessary condition
for a focal and world point configuration to be critical, is that the n world points
Pi ∈ P3 and the two camera centers fi lie on a ruled quadric [Kra41]. Thus it is
not possible to reconstruct a unique fundamental matrix, independent of the
chosen algorithm. Here we consider world point configurations where the 8-point
algorithm always fails to reconstruct the fundamental matrix independent of the
camera centers. These configurations are related to critical configurations but
they do not align. There are only a few results about these configurations and
usually rely on dimensional degeneracies, e.g. too many points on a plane or
on a line. In this case the quadric running through the n points and the two
cameras centers is degenerate. For example in [Phi98] it is shown, that all points
but one on a plane defeat the 8-point algorithm. If we add the two focal points
to this configuration then the point off the plane and the focal points span a
plane. Hence we can fit a ruled quadric of two intersecting planes through the
n+ 2 points.

By Pi ∈ Pk we denote the i-th point in a point configuration P = (P1, . . . , Pn)

of n points in Pk. Pinhole cameras are represented as 3× 4 matrices Aj with
real entries. If two image points Xi, Yi in two different pictures are perspective
projections of the same world point Pi they must satisfy the perspective relation
A1Pi = λiXi, A2Pi = µiYi with λi, µi ∈ R \ {0}. As these equations must be
satisfied at the same time one can deduce a bilinear relation which both points
must satisfy.

Y T
i FXi = 0,

where F is the fundamental matrix. To reconstruct the fundamental matrix
from the image point configurations X, Y ∈ (P2)n different algorithms are
available [HZ03, §11]. The most commonly used algorithm to reconstruct the
fundamental matrix is the 8-point algorithm [HZ03, Algorithm 11.1]. However
standard implementations of the 8-point algorithm assume that the image point
configurations are suitably generic, such that the fundamental matrix F can
be determined as the solution of a system of linear equations. For exact data
the 8-point algorithm then is as follows. Via vectorizing F ∈ R3×3 denoted by
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Input: Two image point configurations X, Y ∈ (P2)n;
Output: The fundamental matrix F ;
begin

1. Compute Z ∈ R8×9 from X, Y ;

2. Compute the kernel
#«

F of Z;

3. The nine coordinates of
#«

F form the fundamental matrix F ;

end
Algorithm 3: 8-point algorithm (without noise)

#«

F ∈ R9 it can be computed as the kernel of the matrix

Z =

⎡⎢⎣X1 ⊗ Y1

...
Xn ⊗ Yn

⎤⎥⎦ ∈ Rn×9,

where Z is the row wise tensor product of the image point configurations
X, Y ∈ (P2)n. The kernel of Z is one-dimensional and

#«

F = ker(Z). This yields
the fundamental matrix F ∈ R3×3. One necessary condition for the 8-point
algorithm to successfully compute a fundamental matrix is

dim(ker(Z)) = 1. (6.1)

Algorithm 3 states the 8-point algorithm in the absence of noise.
However, even if condition 6.1 is violated and the 8-point algorithm fails to

construct a fundamental matrix, it is sometimes possible to retrieve a unique
fundamental matrix using a different algorithm by additionally enforcing the
rank two constraint of the fundamental matrix F , namely if there exists a unique
rank two matrix in the kernel of Z.

Example 6.1. Let P = conv(±e1 ± e2 ± e3) be a standard cube and

A1 =

⎡⎢⎣1 0 0 2

0 1 0 3

0 0 1 2

⎤⎥⎦ , A2 =

⎡⎢⎣1 0 0 2

0 1 0 3

0 0 1 1

⎤⎥⎦
then

X =

⎡⎢⎣1 3 1 3 1 3 1 3

2 2 4 4 2 2 4 4

1 1 1 1 3 3 3 3

⎤⎥⎦ , Y =

⎡⎢⎣1 3 1 3 1 3 1 3

2 2 4 4 2 2 4 4

0 0 0 0 2 2 2 2

⎤⎥⎦
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and

Z =

⎡⎢⎢⎢⎢⎢⎣
1 2 1 2 4 2 0 0 0
9 6 3 6 4 2 0 0 0
1 4 1 4 16 4 0 0 0
9 12 3 12 16 4 0 0 0
1 2 3 2 4 6 2 4 6
9 6 9 6 4 6 6 4 6
1 4 3 4 16 12 2 8 6
9 12 9 12 16 12 6 8 6

⎤⎥⎥⎥⎥⎥⎦
The kernel of Z is two-dimensional and the 8-point algorithm is defeated by the
vertices of P . However, there is only one matrix in ker(Z) that is of rank two

F =

⎡⎢⎣ 0 1 0

−1 0 0

0 0 0

⎤⎥⎦
and a unique reconstruction of F is possible.

6.2 The 8-Point Algorithm and a Cube

A quadric in P3 is defined by the algebraic equation pTQp = 0, where Q ∈ R4×4

and p ∈ P3. Since this is a quadratic equation in the indeterminate p we
can choose the matrix Q to be symmetric. Clearly Q and any multiple of it
λQ, λ ∈ R define the same quadric. By a slight abuse of notation we will refer
to both the quadric and the matrix defining the quadric as Q.

One can try to fit a quadric through a point configuration P ∈ (P3)n, then
every point in the configuration gives a linear equation on the ten entries of the
symmetric matrix Q. This results in a linear equation system with indeterminate
vector

#«

Q = [Q00, . . . , Q04, Q11, . . . , Q14, Q22, Q23, Q24, Q33, Q34, Q44]. Its coeffi-
cient matrix can be constructed with the Veronese map. The Veronese map ν2,4
in degree two and four indeterminates is the map from the four indeterminates
to all monomials of degree two in these indeterminates.

ν2,4 : P3 → P9

[x1, x2, x3, x4] 	→ [x2
1, x1x2, x1x3, x1x4, x

2
2, x2x3, x2x4, x

2
3, x3x4, x

2
4].

For convenience of notation we apply the map ν2,4 to each point in a configura-
tion separately. The map ν2,4 applied to P ∈ (P3)n gives a matrix ν2,4(P ) ∈ (P9)n.
Therefore, if there exists a quadric Q through the points in a configuration
P ∈ (P3)n, it can be computed via the linear equation system ν2,4(P )

#«

Q = 0.
The rank of Z is very essential to the 8-point algorithm and there is a relation

to ν2,4(P ).

Lemma 6.2. Let A1, A2 be two cameras and P ∈ (P3)n be a world point
configuration. Let A1Pi = λiX ∈ (P2)n and A2Pi = μiY ∈ (P2)n, then the rank
of Z is bounded by the rank of ν2,4(P ).
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Proof. The statement can be rewritten. The number of linear independent equa-
tions in the system of linear equations yTi Fxi = 0 is bounded by the number of
linear independent equations in the system of linear equations P T

i QPi = 0, where
Q is a 4×4 generic symmetric matrix of indeterminates. Without loss of general-
ity we assume that ν2,4(P ) is of k and the first k equations P T

1 QP1, . . . , P
T
k QPk

are independent. Setting Q = AT2 FA1 we can write every point in the span of Z
as yTFx =

∑
n κiy

T
i Fxi =

∑
n κiP

T
i A

T
2 FA1Pi =

∑
n κiP

T
i QPi with κi ∈ R and

by the independence of the first k equations P T
1 QP1, . . . , P

T
k QPk we get

yTFx =
∑
k

κiP
T
i QPi =

∑
k

κiy
T
i Fxi.

Let P ∈ (P3)10 represent a configuration of ten points. The question whether
the ten points of P are inscribable to a quaternary quadric has been studied in
classical algebraic geometry. However, no geometric interpretation is known up
till now and it probably would be too complicated to be of any use. In algebraic
terms this condition can easily be phrased as det(ν2,4(P )) = 0. Turnbull and
Young give a description of the PGL(3) invariant det(ν2,4(P )) = 0 in the bracket
algebra (Turnbull-Young invariant) [TY26]. Later the Turnbull-Young invariant
has been straightened to a bracket polynomial of degree 5 with 138 monomials
[Whi88]. Using the vertex labeling of Figure 6.2 the Turnbull-Young invariant
given in [Whi88, p. 8-9] reduces to the bracket polynomial

[0135] [0247] [1268] [3469] [5789]− [0134] [0257] [1268] [3569] [4789] +

[0125] [0346] [1378] [2479] [5689]− [0124] [0356] [1378] [2579] [4689] ,
(6.2)

where 0,1, · · · ,9 denote the points in the configuration [P, f1, f2] ∈ (P3)10.
We use this invariant to show that ν2,4(P ) is not of full rank if the points in

P are the vertices of a combinatorial cube.

3 1

20

6

7

8

9

5 = f2

4 = f1

Figure 6.2: The chosen labeling of world points and camera
centers.
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Proposition 6.3. Let P be the vertices of a combinatorial cube in R3, then the
rank of ν2,4(P ) is at most seven.

Proof. Consider the equation system ν2,4([P, f1, f2]). These are the equations
P T
i QPi concatenated with the two equations fTi Qfi of two arbitrary points
f1, f2 ∈ P3. If the rank of ν2,4(P ) is at most seven, then the rank of equation
system ν2,4([P, f1, f2]

T ) is at most nine. Thus the ten points of the configuration
[P, f1, f2] ∈ (P3)10 are in special position and are inscribable to a quarternary
quadric. This is equivalent to satisfying the Turnbull-Young invariant. We
checked with Macaulay2 [GS] that the polynomial of Equation 6.2 vanishes
for all combinatorial cubes with the eight vertices P = [0,1,2,3,6,7,8,9]

independent of the choice of the two points f1 = [4] and f2 = [5].

Without using some speed-ups and simplifications solving Equation 6.2 is
computationally out of reach. Thus we performed the computation in Macaulay2
[GS] as follows. Since we are only interested in points in R3 we fixed the fourth
coordinate of every point to one. Further we have the freedom of choice of a
coordinate system in R3. We choose the point 0 as the origin and the points 3,
2, 9 as the three unit vectors. This implies that 1 is on the xy-plane, 5 is on
the xz-plane and 7 is on the yz-plane. The Macaulay2 [GS] code used to check
Proposition 6.3 can be found in Listing 6.1.

Remark 6.4. Miquel’s Theorem [Bob+08, p. 18] states: Consider a combinatorial
cube in R3 with planar faces. Assume that the vertices of three neighboring faces
of the cube are circular, then the three circles determined by the triples of vertices
corresponding to three remaining faces of the cube all intersect in one point.

The point of intersection of the three circles is a vertex of the combinatorial
cube. A combinatorial cube whose vertices of three neighboring faces are circular
is sometimes called Miquel cube. Seven vertices are sufficient to define a Miquel
cube. It is easy to see that all vertices of Miquel’s cube lie on a sphere.

Proposition 6.5. Let P be the vertices of a combinatorial cube in R3. If the
quadric going through P, f1, f2 is a sphere, then Proposition 6.3 and Miquel’s
Theorem are equivalent.

Proof. Consider the subset P ′ = P \Pi of the vertices of the combinatorial cube
with the vertex Pi omitted. Since ν2,4(P ) is of rank seven at most the equation
P T
i QPi = 0 is linear dependent from the equations obtained from the points in
P ′. Hence if the vertices of P ′ are on a sphere, so is Pi on that sphere. Thus
all vertices of the six faces of P are circular and Miquel’s Theorem holds. On
the other hand since all vertices of Miquel’s cube lie on a sphere and the points
vertices of P ′ are sufficient to define a Miquel cube, the matrix ν2,4(P ) is of rank
at most seven.



6.3. Reconstruction of F From Cubes 59

Due to Proposition 6.3 we understand the behavior of the 8-point algorithm
if its input configurations X, Y are images of the vertices of a combinatorial
cube.

Theorem 6.6. Let A1, A2 be two arbitrary cameras and let P ∈ (P3)8 be the
vertices of a combinatorial cube. Then the 8-point algorithm with input A1P,A2P

fails to compute a fundamental matrix F . It is defeated by the vertices of P .

Proof. By Proposition 6.3 the matrix ν2,4(P ) has at most rank seven, thus by
Lemma 6.2 the matrix Z has at most rank seven. Hence the assumption in the
8-point algorithm that Z has at least rank eight is not satisfied.

Theorem 6.6 states that if we take two pictures from the vertices of a
combinatorial cube, then the matrix Z has at most rank seven and thus the
8-point algorithm is not able to compute the fundamental matrix.

Remark 6.7. Unlike to the conditions on critical configurations Theorem 6.6
does not impose any constraints on the camera centers.

6.3 Reconstruction of F From Cubes

Even if dim(ker(Z)) = 2 it is sometimes possible to reconstruct the fundamental
matrix F . Since the matrix Z is of rank at most seven one can try to reconstruct
the fundamental matrix by additionally enforcing the singularity condition of the
fundamental matrix. Solving for F means finding the real roots of a univariate
cubic polynomial. However for certain regions in R3 × R3 of the two focal
points, this polynomial has more than one solution and a unique reconstruction
of F is not possible. These regions are semi-algebraic sets. We study these
by first studying the simplest case, when P are the vertices of the unit cube
Cu = 1/2 · conv(±e1 ± e2 ± e3).

For the three-dimensional unit cube Cu the matrix Qu ∈ Sym4(R) defining
the family of quadrics through its vertices diagonalizes to Qu = diag(α, β, γ, δ),
α, β, γ, δ ∈ R, such that α + β + γ + δ = 0. This results in a two parameter
family of quadrics running through the eight vertices of Cu. If we include the
two camera centers then there is exactly one quadric Q running through all ten
points and it is given as the solution of the linear equation system

tr(Q) = 0

cT1Qc1 = 0

cT2Qc2 = 0

⇔

 1 1 1 1

x2
1 x2

2 x2
3 x2

4

y2
1 y2

2 y2
3 y2

4


︸ ︷︷ ︸

:=M


α

β

γ

δ

 = 0 (6.3)

where f1 = [x1, x2, x3, x4] and f2 = [y1, y2, y3, y4]. By Cramer’s rule we construct
the solution of this linear equation system, as the vector of the four signed
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maximal minors of the matrix M,
∣∣∣∣∣∣∣
1 1 1

x2
2 x2

3 x2
4

y2
2 y2

3 y2
4

∣∣∣∣∣∣∣ , −
∣∣∣∣∣∣∣
1 1 1

x2
1 x2

3 x2
4

y2
1 y2

3 y2
4

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
1 1 1

x2
1 x2

2 x2
4

y2
1 y2

2 y2
4

∣∣∣∣∣∣∣ , −
∣∣∣∣∣∣∣
1 1 1

x2
1 x2

2 x2
3

y2
1 y2

2 y2
3

∣∣∣∣∣∣∣
 . (6.4)

We denote by f ∗2 ∈ P3 the coordinate wise square of the vector f ∈ P3. Then
Equation 6.4 can be written as the cross product of three vectors (1, 1, 1, 1)T ×
f ∗21 × f ∗22 .

Let Q ∈ Sym4(R) be the quadric running through the vertices of a combina-
torial cube C and the two camera centers f1, f2 . Further let Qu ∈ Sym4(R) be
the quadric running through the vertices of the unit cube Cu and the cameras
centers g1, g2.

Proposition 6.8. If there is a projective transformation T ∈ PGL(3) from Cu to
C, then (1, 1, 1, 1)T×f ∗21 ×f ∗22 has the same sign pattern as (1, 1, 1, 1)×Tg∗21 ×Tg∗22

and Q,Qu have the same sign pattern.

Proof. Let P ∈ (P3)10 be the vertices of C together with f1, f2 and Pu be the
vertices of Cu together with Tg1, T g2.

(P T
u QuPu)ii = 0∀ i⇔ (P TT TQuTP )ii = 0∀ i⇒ T TQuT = Q.

Now by Sylvester’s law of inertia Q and Qu have the same sign pattern.

From Proposition 6.8 we are able to compute the type of the quadric Q by
finding a projective transformation that maps the vertices of C to the vertices
of Cu. In particular Q is ruled if T TQuT = Q is ruled.

Remark 6.9. If we interpret the vector of diagonal entries of Q as a point in
P3 the condition (1, 1, 1, 1)T × f ∗21 × f ∗22 is equivalent to [α, β, γ, δ] being on the
intersection of the three planes with normal vectors [1, 1, 1, 1], f ∗21 , f ∗22 ∈ P3.

The quadric is ruled if [α, β, γ, δ] has a sign pattern of the following types
[−,−,+,+], [+,−,+,−], or [−,+,+,−]. The boundaries of the components of
the semi-algebraic set (where the signature of the quadric changes) are given as
the vanishing set of the determinants α , β, γ and δ of Equation 6.4.

In some cases the signature changes, but still the quadric stays non-ruled.
Therefore, to get a more explicit answer for this example it is useful to break up
the symmetry of Equation 6.4. Since the quadric is independent on a scaling
factor of Q we can set the last diagonal entry without loss of generality to
δ = 1. Thus the equation system of Equation 6.3 degenerates to an equation
system of three equations in three variables and we can solve it explicitly. Then
Q = diag(α, β,−α− β − 1, 1). There are two distinct cases when the quadric is
ruled:
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Figure 6.3: Region of failure (orange) of the 8-point algorithm
(enforcing the singularity constraint) with a unit cube as input.
We fixed the focal point of the first camera and randomly sampled

the focal point of the second camera in a chosen plane.

1. If α, β ≤ 0 and α + β ≤ −1.

2. If α, β have different signs and α + β ≥ 1.

The vector of diagonal entries of Q then is given up to scale by
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6.4 How to Handle Pictures of Cubes

In the sections above we did not consider noisy pictures. As seen in Theorem 6.6
the rank of Z drops by at least one if we take pictures of combinatorial cubes.
However, in the presence of noise the matrix Z ∈ R8×9 again is of rank eight,
but it is close to being singular. This results in a very bad performance of the
algorithm in practice and we strongly advise against using it. It is simply the
wrong choice of algorithm, since it is incapable of dealing with this set-up.
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Input: Two image point configurations X, Y ∈ (P2)n;
Output: The fundamental matrix F ;
begin

1. Normalize X, Y

2. Compute Z ∈ R8×9 from X, Y ;

3. Compute Z ′ that minimizes the Frobenius norm of |Z − Z ′|.
Z ′ := U diag(σ1, . . . σ7, 0, 0)V

T .

4. Compute the two generators f1 and f2 of ker(Z ′) and solve
det(αF1 + (1− α)F2) = 0

if det(αF1 + (1− α)F2) has multiple real roots then
Choose the solution that minimizes the residual error on X, Y .

end
end

Algorithm 4: Cube-8-point algorithm.

As discussed in Section 6.2 the matrix Z has at most rank seven in the
noisefree case, hence a standard implementation of the 7-point algorithm run on
a 7-element subset of vertices can be used to retrieve the fundamental matrix.
Thus a natural fix for the flaw of the 8-point algorithm is to use a modified
version of the 7-point algorithm, that allows eight points as inputs. We use
singular value decomposition on Z to obtain a matrix Z ′ ∈ R8×9 that is of rank
seven and minimizes the Frobenius norm of |Z − Z ′|. Let Z = UDV T be the
singular value decomposition of Z, then by the Eckart-Young-Mirsky theorem
Z ′ = U diag(σ1, . . . σ7, 0, 0)V

T . Now we use the 7-point algorithm to obtain (one
to three) possible solutions for the fundamental matrix. If there are multiple
solutions, we chose the one that minimizes the residual error on the input points.
The 8-point algorithm for cubes is given in Algorithm 4.

6.5 Numerical Experiments

We performed random tests on synthetic data to compare the performance of
different algorithms. To do so, we sampled random cubes within the box [−1, 1]3.
The cameras were chosen with focal points roughly on a sphere with radius six.
Gaussian noise was applied onto the images with standard deviation between
0%− 10% of the image sizes and zero mean. For each noise level we chose 2000
random samples and respectively computed 2000 approximations of fundamental
matrices. As a measure to analyze the results of the algorithm we used the
metric on the Grassmanian between two linear subspaces, namely the angle
between the vectorization of the true fundamental matrix and the approximated
fundamental matrix.
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Figure 6.4: Comparison between algorithms to reconstruct
the fundamental matrix. Plotted is the distance as angle (rad)
between two one-dimensional subspaces versus the noise level.

The modified version of the 8-point algorithm for cubes (Algorithm 4) gives
good results. Its running time is almost the same as of the usual 7-point
algorithm, but unlike the unmodified version it is noise correcting. It also gives
better results than algorithms that rely on non-linear optimization to estimate
the fundamental matrix, like the Gold Standard algorithm [HZ03, Algorithm
11.3]. These algorithms usually use an initial guess of the fundamental matrix
computed via the 8-point algorithm. But the results of the 8-point algorithm are
so far off from the true fundamental matrix, such that the non-linear solvers get
stuck in a local optimum far off from the global one. However by using estimates
of the fundamental matrix computed with the modified 8-point algorithm for
cubes (Algorithm 4) the Gold Standard algorithm can be improved. For example
using an estimate of the fundamental matrix computed with Algorithm 4 as initial
input, instead of a fundamental matrix computed with the 8-point algorithm
[HZ03, Algorithm 11.1], improves the Gold Standard algorithm [HZ03, Algorithm
11.3]. In Figure 6.4 this version of the Gold Standard algorithm is denoted by
Cube Gold Standard.

Note that there are also global solvers to find fundamental matrices based
on semidefinite programming [Bug+15]. Noteworthy the situation in our case
is different from the one depicted [Bug+15]. Usually there are more than 8
correspondent image point pairs available. In [Bug+15] ten points and more
are considered. Thus due to noisy data the matrix Z is of rank nine. For
the pathological case of only eight points and a rank drop in Z, Algorithm 1
in [Bug+15] has not been able to certify global optimality solutions based on
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GloptiPoly 3 [HLL09].
If one has the freedom of choice to place the eight points in P3 we suggest

using the skew octagon for a more robust reconstruction of the fundamental
matrix. The skew octagon is computational the optimal solution to various
sphere placement problems, e.g. the Thomson problem see [Bro17].

6.6 Computations

Below you can find the code we used to check Proposition 6.3. Lines 2-12 define
the vertices of a cube. Lines 16-19 define the facets of the cube. In lines 24-36
the reduced Turnbull-Young invariant of Equation 6.2 is defined. This invariant
vanishes in the quotient ring S = R/J of line 21.
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1 R=QQ[x_1..x_15]
2 Cube=matrix{
3 {0,0,0,1}, --0
4 {x_1,x_2,0,1}, --1
5 {0,1,0,1}, --2
6 {1,0,0,1}, --3
7 {x_10,x_11,x_12,1}, --4 f_1
8 {x_13,x_14,x_15,1}, --5 f_2
9 {x_5,0,x_6,1}, --6

10 {0,x_3,x_4,1}, --7
11 {x_7,x_8,x_9,1}, --8
12 {0,0,1,1}} --9
13
14 -- the six facets of the cube are coplanar
15 -- their determinants vanish
16 J=ideal(
17 det submatrix(Cube,{0,1,2,3},),det submatrix(Cube,{6,7,8,9},),
18 det submatrix(Cube,{0,3,6,9},),det submatrix(Cube,{1,2,7,8},),
19 det submatrix(Cube,{0,2,7,9},),det submatrix(Cube,{1,3,6,8},))
20
21 S=R/J
22 F=map(S,R)
23 -- the remaining 4 bracket monomials of the Turnbull-Young invariant
24 p=F(
25 det submatrix(Cube,{0,1,3,5},)*det submatrix(Cube,{0,2,4,7},)*
26 det submatrix(Cube,{1,2,6,8},)*det submatrix(Cube,{3,4,6,9},)*
27 det submatrix(Cube,{5,7,8,9},)-
28 det submatrix(Cube,{0,1,3,4},)*det submatrix(Cube,{0,2,5,7},)*
29 det submatrix(Cube,{1,2,6,8},)*det submatrix(Cube,{3,5,6,9},)*
30 det submatrix(Cube,{4,7,8,9},)+
31 det submatrix(Cube,{0,1,2,5},)*det submatrix(Cube,{0,3,4,6},)*
32 det submatrix(Cube,{1,3,7,8},)*det submatrix(Cube,{2,4,7,9},)*
33 det submatrix(Cube,{5,6,8,9},)-
34 det submatrix(Cube,{0,1,2,4},)*det submatrix(Cube,{0,3,5,6},)*
35 det submatrix(Cube,{1,3,7,8},)*det submatrix(Cube,{2,5,7,9},)*
36 det submatrix(Cube,{4,6,8,9},))

Listing 6.1: Vanishing of Turnbull-Young Invariant.
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Chapter 7

Veronesean Almost Binomial
Almost Complete Intersections

7.1 Introduction

Ideals generated by minors of matrices are a mainstay of commutative algebra.
Here we are concerned with ideals generated by 2-minors of generic-symmetric
matrices. Ideals generated by arbitrary minors of generic-symmetric matrices
have been studied by Kutz [Kut74] who proved, in the context of invariant
theory, that the quotient rings are Cohen–Macaulay. Results of Goto show that
the quotient ring is normal with divisor class group Z2 and Gorenstein if the
format of the generic-symmetric matrix has the same parity as the size of the
minors [Got77; Got79]. Conca extended these results to more general sets of
minors of generic-symmetric matrices [Con94a] and determined Gröbner bases
and multiplicity [Con94b].

Here we are concerned only with the binomial ideal In generated by the
2-minors of a generic-symmetric (n× n)-matrix, which is a matrix with inde-
terminates as entries. This ideal cuts out the second Veronese variety and was
studied classically, for example by Gröbner [Grö65]. It contains a complete
intersection Jn generated by the principal 2-minors (Definition 7.3). Coming
from liaison theory one may ask for the ideal Kn = Jn : In on the other side of
the complete intersection link via Jn. In this chapter we determine Kn.

Example 7.1. Consider the ideal J3 = 〈ad−b2, af−c2, df−e2〉 ⊂ Q[a, b, c, d, e, f ]

generated by the principal 2-minors of the generic-symmetric matrix
(
a b c
b d e
c e f

)
.

It is easy to check, for example with Macaulay2 [GS], that J3 is a complete
intersection and has a prime decomposition J3 = I3 ∩K3 where

I3 = J3 + 〈ae− bc, cd− be, ce− bf〉

is the second Veronese ideal, generated by all 2-minors, and

K3 = J3 + 〈ae+ bc, cd+ be, ce+ bf〉
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is the image of I3 under the automorphism of Q[a, . . . , f ] that maps b, c, and e
to their negatives and the remaining indeterminates to themselves. As a very
special case of Theorem 7.11 we find that the generator ae+ bc is the generating
function of the fiberu ∈ N6 :

2 1 1 0 0 0

0 1 0 2 1 0

0 0 1 0 1 2

 · u =

2

1

1




of the Z-linear map V3 that defines the fine grading of Q[a, . . . , f ]/I3. For n ≥ 4

the extra generators are not binomials anymore and Kn is an intersection of ideals
obtained from In by twisting automorphisms (Definition 7.7). In Example 7.12,
for n = 4, we find K4 = J4 + 〈p〉 for one quartic polynomial p with eight terms.

General results on liaison theory of ideals of minors of generic-symmetric
matrices have been obtained by Gorla [Gor07; Gor10]. Our methods rely on the
combinatorics of binomial ideals and since Kn is not binomial we cannot explore
the linkage class with the present method. Instead we are motivated by general
questions about binomial ideals and their intersections. For example, [KM14,
Problem 17.1] asks when the intersection of binomial ideals is binomial. From
the primary (in fact, prime) decomposition of Jn we remove In and intersect
the remaining binomial prime ideals. The result is not binomial. If n is even,
Kn = Jn + 〈p〉 for one additional polynomial p. In the terminology of [Ber63],
Kn is thus an almost complete intersection. It is also almost binomial, as it is
principal modulo its binomial part [JKK16, Definition 2.1]. If n is odd, then
there are n additional polynomials (Theorem 7.11). While these numbers can
be predicted from general liaison theory, our explicit formulas reveal interesting
structures at the boundary of binomiality and are thus a first step towards [KM14,
Problem 17.1]

We determine Kn with methods from combinatorial commutative algebra,
multigradings in particular (see [MS05, Chapters 7 and 8]). The principal obser-
vation that drives the proofs in Section 7.2 is that the Veronese-graded Hilbert
function of the quotient K[x]/Jn becomes eventually constant (Remark 7.14).
The eventual value of the Hilbert function bounds the number of terms that a
graded polynomial can have. The extra generators of Kn are the lowest degree
polynomials that realize the bound. We envision that this structure could be
explored independently and brought to unification with the theory of toral
modules from [DMM10]. Our results also have possible extensions to higher
Veronese ideals as we outline in Section 7.3.

Denote by cn :=
(
n
2

)
the entries of the second diagonal in Pascal’s triangle.

Throughout, let [n] := {1, . . . , n} be the set of the first n integers. The second
Veronese ideal lives in the polynomial ring K[Ncn+1 ] in cn+1 indeterminates over
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a field K. For polynomial rings and quotients modulo binomial ideals we use
monoid algebra notation (see, for instance, [KM14, Definition 2.15]). We make
no apriori assumptions on K regarding its characteristic or algebraic closure,
although care is necessary in characteristic two. The variables of K[Ncn+1 ] are
denoted xij , for i, j ∈ [n] with the implicit convention that xij = xji. For brevity
we avoid a comma between i and j. We usually think about upper triangular
matrices, that is i ≤ j. The Veronese ideal In is the toric ideal of the Veronese
multigrading NVn, defined by the (n× cn+1)-matrix Vn with entries

(Vn)i,jk :=


2 if i = j = k,

1 if i = j, or i = k, but not both,

0 otherwise.

That is, the columns of Vn are the non-negative integer vectors of length n

and weight two. For b ∈ NVn, the fiber is V −1
n [b] = {u ∈ Ncn+1 : Vnu = b}.

Computing the Vn-degree of a monomial is easy: just count how often each
row or column index appears in the monomial. For example, deg(x12xnn) =

(1, 1, 0, . . . , 0, 2). We do not distinguish row and column vectors notationally,
in particular we write columns as rows when convenient. Gröbner bases for a
large class of toric ideals including In have been determined by Sturmfels [Stu96,
Theorem 14.2]. The Veronese lattice Ln ⊂ Zcn+1 is the kernel of Vn. The rank of
Ln is cn since the rank of Vn is n and cn+1 − n = cn. Lemma 7.2 gives a lattice
basis. With {eij, i ≤ j ∈ [n]} a standard basis of Zcn+1 , we use the following
notation

[ij|kl] := eik + ejl − eil − ejk ∈ Zcn+1 .

Then [ij|kl] is the exponent vector of the minor xikxjl − xilxjk.

7.2 Decomposing and Recomposing

Lemma 7.2. The set

B = {[in|jn] : i, j ∈ [n− 1]}

is a lattice basis of the Veronese lattice Ln.

Proof. Write the elements of B as the columns of a (cn+1×cn)-matrix B. Deleting
the rows corresponding to indices (i, n) for i ∈ [n] yields the identity matrix Icn .
Thus B spans a lattice of the correct rank and that lattice is saturated. Indeed,
the Smith normal form of B must equal the identity matrix Icn concatenated
with a zero matrix. Thus the quotient by the lattice spanned by B is free.
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The Veronese ideal contains a codimension cn complete intersection Jn
generated by the principal 2-minors.

Definition 7.3. The principal minor ideal Jn is generated by all principal 2-
minors xiixjj − x2

ij of a generic-symmetric matrix. The principal minor lattice
L′n is the lattice generated by the corresponding exponent vectors [ij|ij], i, j ∈ [n].

It can be seen that the principal minor lattice is minimally generated by
[ij|ij]. It is an unsaturated lattice meaning that it cannot be written as the kernel
of an integer matrix, or equivalently, that the quotient Zcn+1/L′n has torsion.
Since there are no non-trivial coefficients on the binomials in Jn, Proposition 7.5
below says that it is a lattice ideal with lattice L′n. The twisted group algebra
in [KM14, Definition 10.4] is just a group algebra. Its torsion subgroup is given
in the following proposition.

Proposition 7.4. The principal minor lattice is minimally generated by

B′ = {2[in|jn] : i 6= j ∈ [n− 1]} ∪ {[in|in] : i ∈ [n− 1]}.

Furthermore the group Ln/L′n is (isomorphic to) (Z/2Z)cn−1.

Proof. It holds that 2[in|jn] = [in|in] + [jn|jn] − [ij|ij] and the map which
includes the span of the elements [ij|ij] into L′n is unimodular. A presentation
of the group can be read off the Smith normal form of the matrix whose columns
are a lattice basis. Since B′ is a basis of L′n, the columns and rows can be
arranged so that the diagonal matrix diag(2, . . . , 2, 1, . . . , 1) with cn−1 entries 2
is the top (cn × cn)-matrix of the Smith normal form. Any entry below a two is
divisible by two and thus row operations can be used to zero out the bottom
part of the matrix. This yields the Smith normal form.

The difference between the basis in Definition 7.3 and B′ is that the transition
matrix from B to B′ is diagonal. Thus it is easy to describe the half open
fundamental parallelepiped of B′.

If char(K) = 2, then Jn is primary over In. In all other characteristics one
can see that the Veronese ideal In is a minimal prime and in fact a primary
component of Jn. These statements follow from [ES96] and are summarized in
Proposition 7.10 below. Towards this observation, the next proposition says
that Jn is a mesoprime ideal.

Proposition 7.5. Jn is a mesoprime binomial ideal and its associated lattice
is L′n.

Proof. According to [KM14, Definition 10.4] we show that Jn = 〈xu+−xu− : u ∈
L′n〉, since the quotient by this ideal is the group algebra K[Zcn+1/L′n]. By the
correspondence between non-negative lattice walks and binomial ideals [DES98,
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Theorem 1.1] we prove that for any u = u+ − u− ∈ L′n, the parts u+, u− ∈ Ncn+1

can be connected using moves [ij|ij] without leaving Ncn+1 .
The vectors u+, u− can be represented by upper triangular non-negative

integer matrices. From Definition 7.3 it is obvious that all off-diagonal entries of
u+ − u− are divisible by two. Since

〈xu+ − xu− : u ∈ L′n〉 : xij = 〈xu
+ − xu− : u ∈ L′n〉

for any variable xij, we can assume that u+ and u− have disjoint supports and
thus individually have off-diagonal entries divisible by two. Consequently the
moves [ij|ij] allow to reduce all off-diagonal entries to zero, while increasing the
diagonal entries. As visible from its basis, the lattice L′n contains no nonzero
diagonal matrices and thus u+ and u− have been connected to the same diagonal
matrix.

Remark 7.6. From Proposition 7.4 it follows immediately that the group al-
gebra K[Zcn+1]/JnK[Zcn+1] is isomorphic to K[Zn ⊕ (Z/2Z)cn−1]. In particular
K[Ncn+1 ]/Jn is finely graded by the monoid NVn ⊕ (Z/2Z)cn−1 .

Definition 7.7. A Z2-twisting is a ring automorphism of a (Laurent) polynomial
ring that maps the indeterminates either to themselves or to their negatives.

The lattice points in a fundamental parallelepiped of L′n play an important
role in the following developments. The most succinct way to encode them is
using their generating function (which in this case is simply a polynomial in the
Laurent ring K[Zcn+1 ]). The explicit form, of course, depends on the coordinates
chosen. The next lemma is immediate from the definition of B′.

Lemma 7.8. Let M = {[in|jn] : i 6= j ∈ [n− 1]}. The generating function of
the fundamental parallelepiped of B′ is

pn =
∏
m∈M

(xm + 1) =
∏
m∈M

(xm
+

+ xm
−
)

It is useful for the further development to pick the second representation of
pn in Lemma 7.8 as a representative of pn in polynomial ring K[Ncn+1 ]. Its image
in the quotient K[Ncn+1 ]/Jn also has a natural representation. The terms of pn
can be identified with upper triangular integer matrices which arise as sums of
positive and negative parts of elements of M . A positive part of [in|jn] ∈ M
has entries 1 at positions (i, j) and (n, n) while a negative part has two entries
1 in the last column, but not at (n, n). Modulo the moves B′, any exponent
matrix of a monomial of pn can be reduced to have only entries 0 or 1 in its
off-diagonal positions.
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Remark 7.9. A simple count yields that pn has Vn-degree (n−2, . . . , n−2, 2cn−1).
In the natural representation of monomials of pn as integer matrices with entries
0/1 off the diagonal, there is a lower bound for the value of the (n, n) entry.
To achieve the lowest value, one would fill the last column with entries 1

using negative parts of elements of M , and then use positive parts (which
increase (n, n)). For example, if n is even, there is one term of pn whose last
column arises from the negative parts of [1n|2n], [3n|4n], . . . , [(n− 3)n|(n− 2)n]

and then positive parts of the remaining elements of M . If n is odd, then there
is one term of pn, whose n-th column is (1, . . . , 1, σn−1) for some value σn−1.
In fact, since |M | = cn−1, the lowest possible value of the (n, n) entry is
σn−1 = cn−1 − bn−1

2
c.

The primary decomposition of Jn is given by [ES96, Theorem 2.1 and
Corollary 2.2].

Proposition 7.10. If char(K) = 2, the Jn is primary over In. In all other
characteristics, there exists 2cn−1 Z2-twisting φi with i ∈ [cn−1], such that the
complete intersection Jn has prime decomposition

Jn =
⋂
i

φi(In). (7.1)

Theorem 7.11. If n is odd intersecting all but one of the components in (7.1)
yields ⋂

i6=l

φi(In) = Jn + 〈φl(p+
n,i) : i ∈ [n]〉,

where p+
n,i ∈ K[Ncn+1] are homogeneous polynomials of degree (n−1)2

2
that are

given as generating functions of the fibers V −1
n [(n− 2, . . . , n− 2) + ei]. If n is

even, then the same holds for a single polynomial p+
n of degree n(n−2)

2
, given as

the generating function of V −1
n [(n− 2, . . . , n− 2)].

The proof of Theorem 7.11 occupies the remainder of the section after the
following example.

Example 7.12. The complete intersection J4 is a lattice ideal for the lattice L′4.
In the basis B′, it is generated by the six elements

{2[i4|j4] : i < j ∈ [3]} ∪ {[i4|i4] : i ∈ [3]}.

Three of the six elements correspond to principal minors:

x11x44 − x2
14, x22x44 − x2

24, x33x44 − x2
34

The other elements give the binomials

x2
12x

2
44 − x2

14x
2
24, x

2
13x

2
44 − x2

14x
2
34, x

2
23x

2
44 − x2

24x
2
34
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These six binomials do not generate J4, but J4 equals the saturation with respect
to the product of the variables [MS05, Lemma 7.6]. The 23 = 8 minimal prime
components of Jn are obtained by all possible twist combinations of the monomials
±x14x24, ±x14x34, ±x24x34. Consider the polynomial

p4 = (x12x44 + x14x24)(x13x44 + x14x34)(x23x44 + x24x34),

which is the generating function of the fundamental parallelepiped of L′4 in the
basis B′ and of V4-degree (2, 2, 2, 6). In the Laurent ring K[Z10], the desired ideal
J4 : I4 equals J4 + 〈p4〉. To do the computation in the polynomial ring, we need
to saturate with respect to

∏
ij xij. If n is even, this saturation generates one

polynomial, if n is odd, it generates n polynomials. Here, where n = 4, the ideal
J4 : I4 is generated by J4 and the single polynomial

p+
4 = x11x22x33x44 + x11x23x24x34 + x13x14x22x34 + x12x14x24x33

+ x13x14x23x24 + x12x14x23x34 + x12x13x24x34 + x12x13x23x44.

Modulo the binomials in J4, the polynomial p+
4 equals p4/x

2
44 (Lemma 7.18).

As a first step towards the proof of Theorem 7.11 we compute the monoid
Q under which K[Ncn+1 ]/Jn is finely graded, meaning that its Q-graded Hilbert
function takes values only zero or one. That is, we make Remark 7.6 explicit.

Lemma 7.13. Fix b ∈ cone(Vn) for some n. The equivalence classes of lattice
points in the fiber V −1

n [b], modulo the moves B′, are in bijection with set of 0/1
matrices u ∈ {0, 1}cn+1 of the following form

• uii = 0, for all i ∈ [n]

• uin = 0, for all i ∈ [n]

• b− Vnu ∈ Nn.

Proof. Each equivalence class of upper triangular matrices has a representative
whose off-diagonal entries are all either zero or one. The bijection maps such an
equivalence class to the cn−1 entries that are off-diagonal and off the last column.
To prove that this is a bijection it suffices to construct the inverse map. To this
end, let u satisfy the properties in the statement. In each row i = 1, . . . , n, there
are two values unspecified: the diagonal entry and the entry in the last column.
Given bi, and using the choice of representative modulo B′ whose last column
entries is either 0 or 1, fixes the diagonal entry too by linearity. Therefore the
map is a bijection.

Remark 7.14. If bi ≥ (n − 2) for all i ∈ [n], then any 0/1 upper triangular
(n− 2)-matrix is a possible choice for the off-diagonal off-last column entries of
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u in Lemma 7.13. An upper triangular (n− 2)-matrix has cn−1 entries. Thus
all those fibers have equivalence classes modulo B′ that are in bijection with
{0, 1}cn−1 . In particular, each of those fibers, has the same number of equivalence
classes.

Remark 7.15. Remark 7.14 implies that in the Vn-grading, K[Ncn+1 ]/Jn is toral
as in [DMM10, Definition 4.3]: its Vn-graded Hilbert function is globally bounded
by 2cn−1 .

If n is odd, then (n − 2, . . . , n − 2) /∈ NVn. Therefore the minimal (with
respect to addition in the semigroup cone(Vn)) fibers that satisfy Remark 7.14
are (n− 1, n− 2, . . . , n− 2), . . . , (n− 2, . . . , n− 2, n− 1). If n is even, there is
only one minimal fiber.

For the proof of Theorem 7.11 it is convenient to work in the quotient ring
K[Ncn+1]/Jn. Since In ⊇ Jn and In is finely graded by NVn, each equivalence
class is contained in a single fiber V −1

n [b] and each fiber breaks into equivalence
classes. The following definition sums the monomials corresponding to these
classes for specific fibers.

Definition 7.16. The minimal saturated fibers are the minimal fibers that
satisfy Remark 7.14. The generating function of the equivalence class in a
minimal saturated fiber is denoted by p+

n,i. That is

p+
n,i =

∑
a∈V −1

n [bi]/L′n

xa ∈ K[Ncn+1 ]/Jn.

where bi := (n− 2, . . . , n− 2) + ei if n is odd and bi = (n− 2, . . . , n− 2) if n is
even.

If n is even, Definition 7.16 postulates only one polynomial which is simply
denoted p+

n when convenient. Sometimes, however, it can be convenient to keep
the indices.

Remark 7.17. The construction of a generating function of equivalence classes
of elements of the fiber in Definition 7.16 can be carried out for any fiber of Vn.
For the fiber (n− 2, . . . , n− 2, 2cn−1) we get the polynomial pn from Lemma 7.8.

The quantity σn−1 = cn−1 − bn−1
2
c (that is cn−1 − n−2

2
= (n−2)2

2
for even n,

and cn−1 − n−1
2

= (n−1)(n−3)
2

for odd n) appeared in Remark 7.9 and shows up
again in the next lemma: it almost gives the saturation exponent when passing
from the Laurent ring to the polynomial ring.

Lemma 7.18. As elements of K[Ncn+1]/Jn, if n is even then, xσn−1
nn p+

n,i = pn,
and if n is odd, then, xσn−1+1

nn p+
n,i = xinpn.

Proof. If n is even, the product xσn−1
nn p+

n,i has Vn-degree (n− 2, . . . , n− 2, 2cn−1).
If n is odd, the degree of xσn−1+1

nn p+
n,i equals (n − 2, . . . , n − 2, 2cn−1 + 1) + ei.
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Now these products equal pn if n is even and xinpn if n is odd by Remarks 7.14
and 7.17.

Lemma 7.19. If n is odd, then for any triple of distinct indices i, j, k ∈ [n], in
K[Ncn+1 ]/Jn we have xijp+

n,k = xjkp
+
n,i.

Proof. By Proposition 7.5, the variables are nonzerodivisors on K[Ncn+1]/Jn.
The multidegree of p+

n,k satisfies the conditions of Remark 7.14, thus there are
bijections between the monomials of xijp+

n,k and xjkp+
n,i. Since all relations in

Jn are equalities of monomials, multiplication with a variable does not touch
coefficients.

The following lemma captures an essential feature of our situation. Since
the Vn-graded Hilbert function of K[Ncn+1 ] is globally bounded, there is a notion
of longest homogeneous polynomial as one that uses all monomials in a given
Vn-degree. If such a polynomial is multiplied by a term, it remains a longest
polynomial.

Lemma 7.20. The Vn-graded Hilbert functions of the K[Ncn+1 ]/Jn-modules, 〈pn〉
and 〈p+

n,i〉, i = 1, . . . , n take only zero and one as their values.

Proof. We only prove the statement for 〈pn〉 since the same argument applies
also to 〈p+

n,i〉. The claim is equivalent to the statement that any f ∈ 〈pn〉 is
a term (that is, a monomial times a scalar) times pn. Let f = gpn with a
Vn-homogeneous g. Let t1, . . . , ts be the terms of g. Since pn is the sum of all
monomials of degree deg(pn), and multiplication by a term does not produce
any cancellation, the number of terms of tipn equals that of pn. By Remark 7.14,
the monomials in degree deg(tipn) are in bijection with the monomials in degree
deg(pn), and therefore all tipn are scalar multiples of the generating function of
the fiber for deg(tipn).

Lemma 7.21. For any i ∈ [n], 〈p+
n,i〉 :

(∏
ij xij

)∞
= 〈p+

n,k : k ∈ [n]〉.

Proof. If n is odd, the containment of p+
n,k in the left hand side follows immedi-

ately from Lemma 7.19. If n is even, it is trivial. For the other containment, let f
be a Vn-homogeneous polynomial that satisfies mf ∈ 〈p+

n,i〉 for some monomial m.
We want f ∈ 〈p+

n,k : k ∈ [n]〉. By Lemma 7.20, mf = tp+
n,i for some term t. Since

mf has the same number of terms as f and also the same number of terms as
tp+
n,i, this number must be 2cn−1 . By Remark 7.14, the only Vn-homogeneous

polynomials with 2cn−1 terms are monomial multiples of the p+
n,k for k ∈ [n].

Proposition 7.22. (Jn + 〈pn〉) :
(∏

ij xij

)∞
= Jn + 〈p+

n,j, j ∈ [n]〉.
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Proof. Throughout we work in the quotient ring S := K[Ncn+1 ]/Jn and want to
show

〈pn〉 :
(∏

ij

xij

)∞
= 〈p+

n,j, j ∈ [n]〉.

Lemma 7.18 gives the inclusion ⊇, since it shows that, modulo Jn, a monomial
multiple of p+

n,i is equal to either pn or xinpn and thus lies in 〈pn〉. For the other
containment let

f ∈ 〈pn〉 :
(∏

ij

xij

)∞
,

that is mf ∈ 〈pn〉 for some monomial m in S. This implies mf = gpn for
some polynomial g ∈ S. By Lemma 7.18, xinmf = g′p+

n,i for some g′ ∈ S. So,
xinmf ∈ 〈p+

n,i〉 and thus f ∈ 〈p+
n,i〉 : xinm. Lemma 7.21 shows that f ∈ 〈pn,k :

k ∈ [n]〉.

Having identified the minimal saturated fibers, the longest polynomials, and
computed the saturation with respect to the variables xij, we are now ready to
prove Theorem 7.11.

Proof of Theorem 7.11. After a potential renumbering, assume φ1 is the identity.
It suffices to prove the theorem for the omission of the Veronese ideal i = 1 from
the intersection. The remaining cases follow by application of φl to the ambient
ring.

Consider the extensions JnK[Zcn+1 ] and InK[Zcn+1 ] to the Laurent polynomial
ring. By the general Theorem 7.23⋂

i6=1

φi(InK[Zcn+1 ]) = JnK[Zcn+1 ] + 〈pn〉.

Pulling back to the polynomial ring, we have⋂
i6=1

φi(In) = (Jn + 〈pn〉) : (
∏
xij

xij)
∞.

Contingent on Theorem 7.23, the result now follows from Proposition 7.22.

We have reduced the proof of Theorem 7.11 to a general result on intersection
in the Laurent ring. It is a variation of [ES96, Theorem 2.1]. According to [ES96,
Section 2], any binomial ideal in the Laurent polynomial ring K[Z] is defined
by its lattice L ⊂ Zn of exponents and a partial character ρ : L→ K∗. Such an
ideal is denoted I(ρ) where the lattice L is part of the definition of ρ.

Theorem 7.23. Let K be a field such that char(K) is either zero or does not
divide the order of the torsion part of Zn/L and I(ρ) ⊂ K[Zn] be binomial. Let
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I(ρ) = I(ρ′1) ∩ . . . ∩ I(ρ′k) be a primary decomposition of I(ρ) over the algebraic
closure K of K. Omitting one component I(ρ′i∗) yields⋂

i6=i∗
I(ρ′i) = I(ρ) + ρ′i∗(pL)

where pL is the generating function of a fundamental parallelepiped of the lat-
tice L.

Proof. A linear change of coordinates in Zn corresponds to a multiplicative
change of coordinates in K[Zn]. Since the inclusion of L ⊂ Zn can be diagonalized
using the Smith normal form, one can reduce to the case that I(ρ) is generated
by binomials xqii − 1. This case follows by multiplication of the results in the
univariate case. The univariate case, in turn, is up to scaling given by the
polynomials (xn − 1)/(x− 1).

The assumption on char(K) in Theorem 7.23 can be relaxed at the cost of a
case distinction similar to that in [ES96, Theorem 2.1].

The explicit form of pL depends on a choice of lattice basis. Because the
notions lattice basis ideal and lattice ideal are not the same in the polynomial
ring (they are in the Laurent polynomial ring), one needs to pull back using
colon ideals to get a result in the polynomial ring. Even if in the Laurent
ring the subintersection in Theorem 7.23 is principal modulo I(ρ), it need not
be principal in the polynomial ring (as visible in Theorem 7.11). It would be
very nice to find more effective methods for binomial subintersections in the
polynomial ring, but at the moment the following remark is all we have.

Remark 7.24. Under the field assumptions in Theorem 7.23, let I ⊂ K[Nn] be a
lattice ideal in a polynomial ring with indeterminates x1, . . . , xn. There exists a
partial character ρ : L→ K∗ such that I = I(ρ) ∩K[Nn]. The intersection of all
but one minimal primary component of I is

(I(ρ) + ρ(pL)) ∩K[Nn] = (I + ρ(p)m) : (
n∏
i=1

xi)
∞.

where pL is the generating function of a fundamental parallelepiped of L, and m
is any monomial such that ρ(pL)m ∈ K[Nn].

7.3 Extensions

The broadest possible generalization of the results in Section 7.2 may start from
an arbitrary toric ideal I ⊂ K[Nn], corresponding to a grading matrix V ∈ Nd×n,
and a subideal J ⊂ I, for example a lattice basis ideal. One can then ask when
the quotient K[Nn]/J is toral in the grading V . The techniques in Section 7.2
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depend heavily on this property and the very controllable stabilization of the
Hilbert function. One can get the feeling that this happens if J ⊂ I is a lattice
ideal for some lattice that is of finite index in the saturated lattice kerZ(V ).
However, such a J cannot always be found: by a result of Cattani, Curran, and
Dickenstein, there exist toric ideals that do not contain a complete intersection
of the same dimension [CCD07].

A more direct generalization of the results of Section 7.2 was suggested to us
by Aldo Conca. The d-th Veronese grading Vd,n has as its columns all vectors of
length n and weight d. The corresponding toric ideal is the d-th Veronese ideal
Id,n ⊂ S = K[NN ] and it contains a natural complete intersection Jd,n defined
as follows. The set of columns of Vd,n includes the multiples of the unit vectors
D := {dei, i = 1, . . . , n}. For any column v /∈ D, let fv = xdv−

∏
i x

vi
dei

. Then J =

〈fv : v /∈ D〉 ⊂ Id,n is a complete intersection with codim(Jd,n) = codim(Id,n).
It is natural to conjecture that a statement similar to Proposition 7.5 is true.
In this case, however, the group L/L′ (cf. Proposition 7.4) has higher torsion.
This implies that the binomial primary decomposition of J exists only if K
has corresponding roots of unity. By results of Goto and Watanabe [GW78,
Chapter 3] on the canonical module (cf. [BH98, Exercise 3.6.21]) the ring S/I is
Gorenstein if and only if d|n, so that J : I is equal to J+(p) for some polynomial
p exactly in this situation.

In Section 7.2, the notation can be kept in check because there is a nice
representation of monomials as upper triangular matrices (Proposition 7.5,
Lemma 7.13, etc.). To manage the generalization, it will be an important task
to find a similarly nice representation. It is entirely possible that something
akin to the string notation of [Stu96, Section 14] does the job. Additionally,
experimentation with Macaulay2 will be hard. For example, for d = 3, n = 4,
the group L/L′ from Proposition 7.4 is isomorphic to (Z/3Z)13 which means
that a prime decomposition of J3,4 has 1 594 323 components. Computing
subintersections of it is out of reach. It may be possible to compute a colon
ideal like (J3,4 : I3,4) directly, but off-the-shelf methods failed for us.
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Chapter 8

Discussion

Computer vision is a rich field with many challenges for computer algebra and
algebraic geometry. In this thesis we prosperously employed many algebraic
methods to different problems of multiview geometry.

The multiview variety VA is a principle object in multiview geometry. Here
we look into two natural generalizations of it, the rigid multiview variety V (JA)

and unlabeled multiview variety Symm(VA). Both varieties appear naturally in
the context of computer vision. The behavior of both varieties has been analyzed
successfully. For the rigid multiview variety V (JA) a set-theoretical description
is given in Theorem 3.7. Moreover, a triangulation algorithm (Algorithm 2) in
the unlabeled case is constructed. Nonetheless many things remain to be solved.
For V (JA) and Symm(VA) we still do not have any methods to construct their
prime ideals. Similarly to the multiview variety VA in both cases it seems the
prime ideal can be obtained from the information that the bilinear and trilinear
relations possess. Table 3.2 and Proposition 5.22 point towards this conjecture.
Additionally the ambiguities of the unlabeled triangulation are not completely
characterized.

Anyhow one can use both varieties to formulate optimization problems that
project onto these, minimizing the distance with respect to some chosen norm.
This becomes relevant when real world data is used and the image points are
given noisy. one could then use triangulation to reconstruct the original world
points, if a point on the varieties is found by solving such an optimization
problem. In Chapter 4 we aimed to use mathematical optimization software to
project onto the rigid multiview variety. However the rigid multiview variety
seems to be too complicated for a straightforward approach. We would be
highly interested in formulating an optimization problem based on the V (JA).
To obtain globally optimal solutions this would probably require to exploit the
structure of the equations of V (JA).

For the varieties VA, V (JA), Symm(VA) and triangulation algorithms the
cameras are assumed to be known. However in many real world use cases
this information is not available. Thus often the fundamental matrix needs to
be computed from the image data at first. The main algorithm used in that
pursuit is the 8-point algorithm. Chapter 6 describes an ill-conditioned set of
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this algorithm. A promising direction for future work could aim to completely
classify the world point configurations that defeat the 8-point algorithm. If the
world points are in convex position, we can construct a polytope with the points
of that configuration as vertices. One could at first ask if those configurations
that defeat the 8-point algorithm can be classified by the combinatorial type of
the polytope associated to them. A combinatorial cube is a convex 3-polytope
with eight vertices. In total there are 257 different combinatorial types of 3-
polytopes with eight vertices. Enumerating one representative per equivalence
class and checking if it defeats the 8-point algorithm could be an initial step in
that direction.

We completely characterize the colon ideal φ(Jn) : In with Theorem 7.11,
for some partial character on the Veronese lattice Ln. Theorem 7.24 states
that this description could be an artifact of a more general fact. We conjecture
that Theorem 7.24 holds true not just for Laurent binomial ideals but even
for binomial ideals I+ in the polynomial ring. This is based on substantial
computational evidence. Even though most of the statements developed from
the special case of φ(Jn) : In hold true in general, the whole proof seems to be
deeply involved.
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