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Abstract

This thesis studies ultrafast relaxation processes in semiconducting single-walled carbon nanotubes
(SWCNTs) related to the fundamental process of photoluminescence excitation (PLE) and
pump-probe experiments. Using carbon nanotube Bloch equations within the density matrix
formalism we resolve ultrafast relaxation dynamics in momentum and time. This microscopic view
elucidates the pathway of optically generated non-equilibrium carriers via intra- and intersubband
scattering with optical and acoustic phonons approach to equilibrium within the lowest lying
conduction subbands. Our analytical solutions of the Boltzmann-like scattering equations have
successfully explained the influence of the tube intrinsic intersubband gap and subband curvature.
In addition, the derived tube and phonon-mode specific electron-phonon matrix elements
emphasize the influence of the coupling strength. Our model demonstrates that intersubband
scattering is only possible with a sufficiently large energy provided by an optical phonon mode.
Furthermore, we show that these optical phonons dominate during the intra-subband relaxation
within the first hundred femtoseconds, while acoustic phonons with their small continuous energy
primarily govern the relaxation towards equilibrium. The derived dynamics enabled us to extract
relaxation times that exhibited clearly different timescales: processes driven by optical phonons
occur within a few hundred femtoseconds, while those driven by acoustic phonons acting towards
the band edge take up to a few picoseconds. Compared to experimental pump-probe studies on
semiconducting SWCNTs, we find that the calculated relaxation times in the picosecond range fit
very well with the observed initial decay time from the measured multiexponential differential
transmission curves. Using our theoretical model we ascribed the observed picosecond relaxation
time to intraband scattering about the band edge with acoustic phonons. Our approach allows us to
study a large number of nanotubes, predicting a strong diameter and a weak chirality dependence
of the relaxation times. A recent pump-probe study tuning the excitation and probe energy
resonant around the optical transitions E22 and E11 observed a slowing-down of probing towards
E11 in excellent agreement with our model.
We also studied the effects of field enhancements of nanostructured hybrid electrode surfaces that
has been fruitfully utilized to analyze biological systems in surface-enhanced Raman (SE(R)R)
spectroscopy studies. The complete Maxwell equations were solved using finite-element methods
with a view toward topology optimization for field enhancement in experimentally investigated
hybrid systems. With field distribution calculations we comprehensively describe the observed
effects in SE(R)RS experiments for probe-molecules adsorbed to a multilayered (Ag−SiO2−Pt)
electrode. Our results have enabled experimentalists to understand the nature of defects in the Pt
film, which generate localized surface plasmons (LSPs) and field hot spots rising the average
SE(R)RS enhancement to approx. 80%. Our model successfully predicted a recent experimental
study on a semiconductive nanostructured titanium dioxide (TiO2) electrode. The observed rising
enhancement factor dependence on the anodization voltage may be straightforwardly rationalized
from our calculations revealing that the this trend originates from the increasing anisotropy in the
surface morphology.



In summary, this thesis contributes to the understanding of the fundamental PLE process and also
unfold the relevant phonon scattering channels of the observed relaxation time behavior in
two-color pump-probe studies by affording microscopically resolved relaxation dynamics in
semiconducting single-walled carbon nanotubes. Additionally, our field enhancement calculations
of nanostructured electrodes reveal the underlying mechanisms that shall enable the optimization
of hybrid devices for surface chemistry and biological application.



Zusammenfassung der Dissertation
Phonon-Induced Ultrafast Relaxation Processes and Local Enhancement of Electric Fields:
A Theoretical Work on Semiconducting Carbon Nanotubes and Nanostructured Electrodes

Die vorgelegte Dissertation beschäftigt sich mit ultraschnellen Relaxationsprozessen in hal-
bleitenden einwandigen Kohlenstoffnanoröhrchen (SWCNTs) und trägt bei zum Verständnis des
fundamentalen Prozesses der Photolumineszenz-Anregung sowie korrespondierenden Pump-Probe-
Experimenten.
Durch die Herleitung von Kohlenstoffnanoröhrchen-Bloch-Gleichungen, die auf dem Formalismus
der Dichtematrix basieren, wird eine in Impuls und Zeit aufgelöste ultraschnelle Relaxationsdy-
namik erzeugt. Die mikroskopische Betrachtungsweise erlaubt es den Bewegungsverlauf von
optisch angeregten Nichtgleichgewichts Ladungsträgern ins Gleichgewicht nachzuvollziehen.
Dieser wird von Intra- und Intersubband-Streuprozessen mit optischen und akustischen Phononen
innerhalb der energetisch niedrigsten beiden Leitungsbänder bestimmt. Die analytischen Lösungen
der Boltzmann-ähnlichen Streugleichungen erlauben die Interpretation der Relaxationsdynamik,
durch die jedem Nanoröhrchen eigene Bandlücke und Krümmung der Subbänder. Darüber hinaus
wird mittels durch die spezifischen Nanoröhrchen und der Phononenmoden hergeleiteten Elektron-
Phonon-Matrixelemente der Einfluss der Kopplungsstärke hervorgehoben. Unser Modell zeigt auf,
dass Intersubband-Streuung nur mit einer ausreichend großen Energie möglich ist, wie sie von
einer optischen Phononenmode zur Verfügung gestellt wird. Weiterhin wird gezeigt, dass jene
optischen Phononen bei der Intersubband-Relaxation während der ersten hundert Femtosekunden
dominieren, während akustische Phononen durch ihre kleine kontinuierliche Energie in erster
Linie die Relaxation ins Gleichgewicht führen. Die numerisch simulierte Dynamik ermöglicht
es, Relaxationszeiten zu extrahieren, die deutlich unterschiedliche Zeitskalen aufweisen: Durch
optische Phononen getriebene Prozesse treten innerhalb weniger hundert Femtosekunden auf,
während die durch akustische Phononen in Richtung Bandkante ablaufenden Relaxationszeiten
bis zu einigen Pikosekunden reichen. Im Vergleich zu experimentellen Pump-Probe-Studien an
halbleitenden SWCNTs stellt sich heraus, dass die berechneten Relaxationszeiten im Bereich
von Pikosekunden sehr gut mit der beobachteten anfänglichen Abklingzeit der gemessenen multi-
exponentiellen differentiellen Transmissionskurven übereinstimmen. Mit unserem theoretischen
Modell können wir die beobachtete Pikosekunden-Relaxationszeit Intraband-Streuprozessen mit
akustischen Phononen nahe der Bandkante zuordnen. Unser Ansatz ermöglicht es uns darüber
hinaus, eine große Anzahl von Nanoröhrchen zu studieren, woraus sich die Vorhersage einer starken
Durchmesser- und einer schwachen Chiralitätsabhängigkeit der Relaxationszeiten ergibt. In einer
aktuellen Pump-Probe-Studie, in der die Pump- und Probe-Energie resonant um die optischen
Übergänge E22 und E11 variiert wurde, konnte eine Verlangsamung der Relaxationszeiten bei der
Ausrichtung der Probe-Energie zu E11 beobachtet werden, was hervorragend mit unserem Modell
übereinstimmt.
Desweiteren wurden die Auswirkungen von Feldverstärkungen an nanostrukturierten Oberflächen
von Hybridelektroden untersucht, die erfolgreich eingesetzt werden können, um biologische Sys-
teme in oberflächenverstärkten Raman-(SE(R)R)-Spektroskopie-Studien zu analysieren. Die



vollständigen Maxwell-Gleichungen wurden hierbei unter Verwendung von Finite-Elemente-
Methoden im Hinblick auf die Optimierung der Topologie zur Feldverstärkung in den experi-
mentell untersuchten Hybridsystemen gelöst. Mit Berechnungen zur elektrischen Feldverteilung
beschreiben wir ausführlich die beobachteten Effekte in SE(R)RS-Experimenten für Proben-
moleküle, adsorbiert an einer mehrschichtigen (Ag−SiO2−Pt) Elektrode. Unsere Ergebnisse
ermöglichten es den Experimentatoren, den Einfluß der Fehlstellen in der Pt-Film-Oberfläche zu
verstehen, die ihrerseits lokalisierte Oberflächenplasmonen (LSPs) und Field Hotspots erzeugten,
wodurch die durchschnittliche SE(R)RS-Verstärkung 80 % erreichte. Das entwickelte Modell
wurde daraufhin erfolgreich in einer fortführenden aktuellen experimentellen Studie an halbleit-
enden nanostrukturierten Titandioxid (TiO2) Elektroden erweitert. Die beobachtete ansteigende
Verstärkung in Abhängigkeit von der Anodisierungsspannung kann direkt aus den Berechnungen
abgeleitet werden, wobei sich herausstellt, dass dieser Trend der zunehmenden Anisotropie der
Oberflächenmorphologie zu Grunde liegt.
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• C. Köhler, T. Watermann, and E. Malic
”Time- and momentum-resolved phonon-induced relaxation dynamics in carbon nanotubes”
J. Phys.: Cond. Matter 25 (2013)
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• K. Ly, C. Köhler, A. Fischer, J. Kabuß, F. Schlosser, M. Schoth, A. Knorr, and I. M. Wei-
dinger
”Induced surface enhancement in coral Pt island films attached to nanostructured Ag elec-
trodes”
Langmuir 28, 5819 (2012)
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• Olga A. Dyatlova, Christopher Köhler, Ermin Malic, Jordi Gomis-Bresco, Janina Maultzsch,
Andrey Tsagan-Mandzhiev, Tobias Watermann, Andreas Knorr, Ulrike Woggon
”Scattering of electrons with acoustic phonons in single-walled carbon nanotubes” Confer-
ence on Lasers and Electro-Optics (CLEO); May 2012; San Jose, USA



Contents

1 Preliminaries 1

2 Theoretical Foundation of the Dynamical Equations 5
2.1 Hamiltonians Introducing the Model System . . . . . . . . . . . . . . . . . . . . 6
2.2 Calculation of the Dynamics within the Heisenberg Picture . . . . . . . . . . . . 8

2.2.1 Free Carrier and Optical Coupling . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Relaxation Dynamics with Electron - Phonon Scattering Rates . . . . . . 9
2.2.3 Boltzmann Scattering Terms - Fermi’s Golden Rule and Pauli Blocking . 12

2.3 Analytical Solution of the Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Scattering Prefactors and Jump Amplitudes

- The Influence of Subband Curvature - . . . . . . . . . . . . . . . . . . 15
2.3.2 Electron Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Launching the Carbon Nanotube 19
3.1 Microscopic Properties of Carbon Nanotubes:

Electronic, Phononic and Optical Features . . . . . . . . . . . . . . . . . . . . . 20
3.1.1 Electronic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Entering the Reciprocal Space - On the Way to One Dimension . . . . . 24
3.1.3 From Graphene to Carbon Nanotubes - Reducing the Dimension through

Zone-Folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 Density of states (DOS) in One Dimension . . . . . . . . . . . . . . . . 32
3.1.5 Family Patterns: Metallic versus Semiconducting CNTs . . . . . . . . . 33

3.2 Phonon Modes - Optical and Acoustic Dispersions . . . . . . . . . . . . . . . . 34
3.3 Matrix Elements Describing the Coupling . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Between External Fields and the Nanotube: Optical Matrix Element (OME) 35
3.3.2 Within the Nanotube: Electron-Phonon Coupling (EPC) . . . . . . . . . 36

3.4 At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Relaxation Dynamics in Semiconducting Nanotubes 39
4.1 Experimental Techniques on Nanotubes . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Photoluminescence Excitation (PLE) . . . . . . . . . . . . . . . . . . . 40



CONTENTS

4.1.2 Ultrafast Pump-Probe Experiments . . . . . . . . . . . . . . . . . . . . 43
4.1.3 Dielectric Screening in Single Walled Carbon Nanotubes . . . . . . . . . 47

4.2 Carrier Relaxation Dynamics via Electron-Phonon Scattering . . . . . . . . . . . 48
4.2.1 Simulation of the Excitation . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Relaxation Channels in Semiconducting Carbon Nanotubes . . . . . . . 49
4.2.3 Intrasubband Scattering: One-Color Pump-Probe . . . . . . . . . . . . . 51
4.2.4 Excitation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.5 Dependence on Diameter and Chirality . . . . . . . . . . . . . . . . . . 55

4.3 Intra- and Intersubband Dynamics-Two Color Pump-Probe Studies . . . . . . . . 57
4.3.1 Relaxation Dynamics of the Semiconducting (23,0) Zig-Zag Tube . . . . 57
4.3.2 Excitation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.3 Diameter and Chirality Dependence . . . . . . . . . . . . . . . . . . . . 63

4.4 An Experimental Motivated Two Color Pump-Probe Study . . . . . . . . . . . . 68
4.4.1 Modeling the Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Detuning of the Probe Energy . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.3 Detuning of the Pump Energy . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Field Enhancement Calculations of Plasmonic and Non-Plasmonic Electrodes 75
5.1 Enhancement of the Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.1 Time-Harmonic Maxwell Equations . . . . . . . . . . . . . . . . . . . . 76
5.1.2 An Electronic Gas in Motion:

Collective Behavior of Electronic Density Fluctuations . . . . . . . . . . 77
5.1.3 Classification of Plasmons . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Numerical Simulation of Field Enhancement using the Finite Element Method . . 80
5.2.1 Simulation of a Single Nanosphere . . . . . . . . . . . . . . . . . . . . . 80
5.2.2 Two Coupled Multilayered Nanospheres . . . . . . . . . . . . . . . . . . 81

5.3 Surface Enhanced Resonant Raman Spectroscopy . . . . . . . . . . . . . . . . . 81
5.4 A Nanostructured Multilayer Electrode :

Field Enhancement via Plasmonic Material Features . . . . . . . . . . . . . . . . 83
5.5 A Study of a Nanostructured (TiO2) Electrode:

Field Enhancement by Raising the Anisotropy of the Morphology . . . . . . . . 86
5.6 At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Photoluminescence Enhancement of CNTs via Coupling to Noble Metal Nanoparti-
cles
-An Outlook- 91
6.1 π-Hybrids Exhibiting Novel Properties of Enhancement Mechanisms . . . . . . 92
6.2 Discussion of the Origins of the Observed Effects . . . . . . . . . . . . . . . . . 94

6.2.1 Enhancement Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Energy Shift of the E11 Transition . . . . . . . . . . . . . . . . . . . . . 96

ii



CONTENTS

6.3 At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Conclusion 99

8 Appendix 103
8.1 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.1.1 Instantaneous Scattering-Markovian Dynamics . . . . . . . . . . . . . . 103
8.1.2 Bath Approximation for the Phononic System . . . . . . . . . . . . . . . 104

8.2 Phonon Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2.1 Optical Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2.2 Acoustic Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.3 Solution of the δ -Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.4 Basic Constants Used in the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 108

iii



CONTENTS

iv



If it disagrees with experiment, it’s wrong. In that simple statement is the key to
science. It doesn’t make any difference how beautiful your guess is, it doesn’t
matter how smart you are who made the guess, or what his name is... If it
disagrees with experiment, it’s wrong. That’s all there is to it [1].

R. P. Feynman

1
Preliminaries

Carbon nanotubes are low-dimensional carbon nanostructures [2], first synthesized and observed
1991 by Iijima [3]. They are viewed as rolled-up cylinders of graphene of sp2 bonded carbon atoms
[4] being hollow in contrast to the earlier invented carbon fibers. While their length can reach
up from micro- to centimeters their diameters are ranging down to one nanometer, CNTs bridge
the quantum microscopic world with the macroscopic one. Through this confinement the carriers
have only the possibility to move freely along the cylindrical tube axis [2]. Therefore, they are a
perfect one-dimensional system to study basically the interactions between electrons and phonons
for example. The rolling up of CNTs imposes additional periodic boundary conditions to the wave
functions implied in the systems, selecting only some of the electronic states that are present in
graphene. Thus, even if graphene is a semi-metal, CNTs can be either metallic or even semiconduct-
ing, depending upon the chiral vector c. Semiconducting CNTs exhibit emission of photons due to
the band-to-band radiative recombination of the electron-hole pair. This makes them very relevant
for optoelectronic fundamental and applied research [5]. Furthermore, they inherit from graphene
its exceptional properties: They have a remarkably high stiffness, extremely good conduction and
electron mobility [6, 7, 8]. Carbon fibers and graphite had been employed since the 1970s due
to their strength-to-weight ratio in e.g. manufacturing fly rods [9] and aircraft construction [10].
Recently carbon fibers have been replaced in the F-35 Lightning II stealth fighter by CNTs, since
they are ”widely considered one of the strongest materials ever invented - several times stronger
than carbon fiber reinforced plastic (CFRP), yet lighter by about 25-30% ” [10]. Carbon nanotubes
are further used in miniaturizing electronics designing novel field-effect transistors [11, 12] or
serving as data storage devices [13]. Time resolved photoluminescence spectroscopy is one of
the most important techniques of characterizing carbon nanotubes [14]. In this sense a thorough
microscopic understanding of the ultrafast relaxation dynamics of non-equilibrium carriers is a
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Figure 1.1: The process of photoluminescence excitation (PLE) given by photo absorption at the E22 and
photo emission at the E11 transition. These transitions being unique for a certain (n1,n2) species, allows
the clear identification of different CNTs. Through the confinement in one dimension the PLE chart shows
sharp peaks for the different chiralities. The measured intensity of the emission is plotted over the excitation
and emission wavelength. The PLE map uncover the semiconducting (7,5), (7,6), (6,5), (9,4) and (8,4)
CNTs contained in the sample.

prerequisite for the creation of optoelectronic devices based on CNTs [15, 16]. From our work we
ruled out which relaxation channels for the phonon-induced non-radiative relaxation dynamics
are relevant and how they can be addressed to the observed relaxation times of corresponding
pump-probe experiments [16, 17]. Besides ultrafast relaxation dynamics of nanostructures, field
enhancement via plasmons for example is another current prospering research topic in physics.
Possible material applications are developed utilizing enhancement mechanisms between solids on
the nanoscale like quantum dots, graphene or carbon nanotubes with noble metal nanoparticles
of different shapes. Combining a metal nanosphere with one-dimensional quantum dots led to
the novel concept of the SPASER [18]. Bringing a two-dimensional graphene layer together with
plasmonic nanostructures increased the efficiency of photo-detectors up to 20 times [19]. In novel
π-hybrid structures from Au nanorods with single walled carbon nanotubes [20] the quantum yield
within the photoluminescence process was observed to be 18 times larger in comparison to the
usually lower one of the ”naked” tube. Surface enhanced Raman spectroscopy (SE(R)RS) is a well
established method to detect biological molecules [21]. Since the Raman signal of these molecules
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CHAPTER 1. PRELIMINARIES

is in general very low, the generation of high electric fields at the surface of an underlying electrode
is the key-feature for an enhanced scattered Raman signal. Therefore, the knowledge of the origin
and mechanism of such enhancement effects is pointing the way how to nanostructure and optimize
these electrodes.
The thesis is structured as follows: In chapter 2 we explain the theoretical basics using density
matrix theory and derive analytically the equations of motion for the polarization and occupation
probabilities leading to a dynamical picture. Chapter 3 introduces the structural and electronic
properties of carbon nanotubes and present their optical and electron-phonon matrix elements. The
following chapter 4 contains our work on the phonon-induced relaxation dynamics of semicon-
ducting CNTs contributing to the understanding of photoluminescence excitation and pump-probe
spectroscopy experiments. We simulate the intraband dynamics of optically excited non-equilibrium
with optical and acoustic with a single- band model and compare our results with experimental
differential transmission curves. As a result we assign the experimental fast relaxation time compo-
nent in the picosecond range to intraband scattering with acoustic phonons. We further extend the
system to a two-band model enabling intersubband scattering channels with optical phonons. From
this, we investigate the full relaxation dynamics in recent two-color pump-probe studies uncovering
the underlying microscopic scattering mechanisms leading to the observed dependencies for tuning
the pump and probe energies around the optical E22 and E11 transitions. Chapter 5 introduces
the reader to field enhancements of nanostructured electrodes. The experimental observed effects
are rationalized by the performed calculations by solving the full Maxwell equations within a
finite-element method. We reveal two effects: field enhancement through the excitation of localized
surface plasmons as also the influence of increasing the anisotropy of the surface morphology.
The last chapter 6 brings the both topics of this thesis together. Providing an outlook on forward
going investigations by introducing novel π-hybrids of Setaro et al. , composed of gold nanorods
attached to carbon nanotubes. The experimentally observed specific enhancements within PLE
measurements and the measured blue-shift are discussed on the gained insights of our investigations
in the previous chapters.
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2
Theoretical Foundation of the Dynamical

Equations

To obtain insight into the relaxation processes taking place in the relevant conduction subbands
between the process of absorption and emission of the photoluminescence excitation, cp. Chap.
4, one would like to know the dynamics of the excited electrons, i.e. the temporal evolution of
their occupation probabilities. In this thesis we make use of the density matrix theory. Established
by John v. Neumann [22] in the year 1927 with ”the translation of statistical mechanics concepts
into the language of quantum mechanics” [23] it was also introduced independently by Lev. D.
Landau and Felix Bloch [24, 25]. It provides for example the calculation of microscopic quantities
like the polarization and occupation probabilities for electrons and phonons. From the interaction
of electrons and phonons the dynamics of both quasiparticles can be calculated and studied. The
results give access to time and momentum resolved carrier dynamics. The displayed relaxation
behavior includes how the carrier distributions scatter from one point of energy to the next under
phonon absorption or emission within energy and momentum conserving Markovian processes.
From the dynamics of the carrier occupation probabilities we further extract relaxation times
which can be compared to experiment. The relaxation times depend on the electronic structure of
the solid, which in our case is the band structure of carbon nanotubes and the coupling between
the interacting quasiparticles. The scattering partners for the carrier relaxation being optical and
acoustic phonons leading to relaxation times ranging from femto- to picoseconds, respectively.



2.1. HAMILTONIANS INTRODUCING THE MODEL SYSTEM

2.1 Hamiltonians Introducing the Model System

The investigation of the temporal evolution of the microscopic polarization, electronic and phonon
occupations are based on the Hamilton operator in second quantization [26, 27]

H = Hcar +Hphon +Hcar−phon +Hcar−lf, (2.1)

including the free-carrier Hcar and free phonon Hphon parts, the carrier-phonon interaction Hcar−phon
and carrier light field coupling Hcar−lf within a semi-classical treatment.
The free contributions state:

Hcar +Hphon = h̄

(
∑
λk

ω
λ
k a†

λ k
a

λ k
+∑

γq
ω

γ
qb†

q γ
b
−q γ

)
, (2.2)

with the unperturbed free electron and phonon energies ελ
k = h̄ωλ

k and ε
γ
q = h̄ω

γ
q , respectively. The

operators a†
λ k

and a
λ k

create and annihilate an electron with the wave vector k in an electronic

subband λ . Similarly, b†
q γ

and b
−q γ

create and annihilate a phonon in the mode γ with the wave
vector q. These operators have to satisfy the following anti-commutator relations for fermions (e.g.
electrons or holes): [

ax ,a†
y

]
+
= δxy

[
a(†)x ,a(†)y

]
+
= 0, (2.3)

and the commutator relations for bosons (e.g. phonons):[
bx ,b†

y

]
−
= δxy

[
b(†)x ,b(†)y

]
−
= 0, (2.4)

whereby the commutator is defined as
[
bx ,b

†
y
]
− = bxb†

y − b†
ybx and the anti-commutator as[

ax ,a
†
y
]
+
= axa†

y + a†
yax . To couple the system to an external light field (e.g. a laser) a semi-

classical carrier-light coupling is used which will now be derived in more detail following the book
of Scully [28]:
The carrier light field Hamiltonian is based on the fundamental interaction of a carrier, for example
an electron in an external electromagnetic field expressed by the gauge invariant vector A(r, t) and
scalar φ(r, t) potential called minimal coupling:

Hcar−l f =
1

2me
[p− e0A(r, t)]2 + e0φ(r, t)+V (r), (2.5)

with the electronic charge e0 and mass me (being the rest mass, since the calculations are non-
relativistic). The canonical momentum operator is denoted by p = −ih̄∇r [29] and V (r) is an
internal electrostatic potential being the atomic binding potential of carbon in case of nanotubes
(graphene respectively). Choosing the radiation gauge, i.e. ∇ ·A = 0 and φ = 0 leads to the
above mentioned unperturbed carrier Hamiltonian in first quantization Hcar =

p2

2me
+V (r) and

6



CHAPTER 2. THEORETICAL FOUNDATION OF THE DYNAMICAL EQUATIONS

the atom-field part Hcar−lf =− e0
me

pA(r, t)+ e2
0

2me
A(r, t)2. Under the assumption that A(r, t) takes

only small values one can neglect the quadratic term A(r, t)2. Applying the formalism of second
quantization [30]: 〈

Ψ
+(r, t)|− e0

me
pA(r, t)|Ψ(r, t)

〉
, (2.6)

under the usage of the Heisenberg field operators

Ψ
(†)(r, t) = ∑

λk
Φ

(∗)
λk(r)a

(†)
λk(t) , (2.7)

leads to the semi-classical light matter Hamiltonian

Hcar−l f = ih̄
e0

me
∑
λλ
′
∑
kk′

Mλλ
′

kk′
A(t)a†

λ k
a

λ
′k′
, (2.8)

with the vector potential A(t) in dipole approximation. Within this approximation the photonic
wave vector is assumed to be too small to transfer a momentum to the electrons. Therefore, only
vertical (k = k

′
) optical transitions between the valence and conduction bands are considered.

The vector potential A(r, t) can be assumed to be position independent by fixing r = r0, which
is in the simplest case setting r0 = 0 and therefore A(r, t) ≈ A(t). The optical matrix element
Mλλ

′

kk ′
=
〈
Φλ

k
(r)|∇r|Φλ

k′
(r)
〉

expresses the transition between the electronic Bloch wave functions
for a crystal with N atoms which in momentum space are given via:

φ
λ
k (r) =

1√
N ∑

R j

eikR j ϕ(r−R j), (2.9)

with R j running over all lattice vectors and ϕ being the atomic wave functions of carbon, cp.
section 3.1.3.
The carrier-phonon interaction is described through

Hcar−phon = ∑
λλ
′k

∑
γ q

(
gλλ

′
γ

kq a†
λ k +q

a
λ
′k

b
γ q

+h.c.
)
, (2.10)

with the electron-phonon matrix element gλλ
′
γ

kq . The general form of the carrier phonon interaction
Hcar−phon and the free phonon Hamiltonian Hphon is independent from the mode (acoustic or optical)
and from the coupling (via a deformation potential or the polar Fröhlich coupling) [31]. Since,
within the described tight-binding approach, cp. section 3.1.3, the valence and conduction bands
are assumed to be symmetric in the optically relevant region. We therefore estimate the dynamics
of electrons and holes around the K-point to be identical.

7



2.2. CALCULATION OF THE DYNAMICS WITHIN THE HEISENBERG PICTURE

2.2 Calculation of the Dynamics within the Heisenberg Picture

The dynamics of a microscopic quantity represented by a time-dependent operator X = X(t)
are calculated in the Heisenberg picture, i.e. the operators are time dependent while the spatial
dependencies are included in the matrix elements which is expressed by letting the nabla operator
∇r act on the electronic wave functions φ λ

k (r). Applying the Ehrenfest Theorem [32] by considering
the expectation value we yield the temporal evolution, i.e. the dynamics of the desired microscopic
quantity:

dt
〈
X
〉
=

1
ih̄

〈
[X ,H]−

〉
+
〈
∂tX
〉
, (2.11)

with the commutator relation [X ,H]− := XH −HX . Because the observables do not have an
explicit time dependence the partial derivation vanishes. Equation (2.11) will be in the following
referred to as the Heisenberg equation of motion.

2.2.1 Free Carrier and Optical Coupling

The dynamics for the free carrier energy and the interaction with an external field Hcar−l f within
the semi-classical treatment is calculated for the microscopic polarization pk =

〈
a†

ika jk
〉

and the
population probabilities ρ l

k =
〈
a†

lkalk
〉

where i and j label the valence and conduction subbands
Vs and Cs respectively with s = 1,2, ..., while l runs over both subband species. The polarization
according to [31] is defined by creating an electron within the valence while annihilating one
simultaneously in the conduction band. The dynamical equations reads:

dt pk = −i∆ωk pk +Ω
CsVs
k

(
ρ

Vs
k −ρ

Cs
k

)
, (2.12)

dtρ
Cs
k = 2Im

{[
Ω

CsVs
k

]∗
pk

}
=−dtρ

Vs
k , (2.13)

with the band gap ∆ωk =

{
ε

Cs
k −ε

Vs
k

h̄

}
and the Rabi frequency Ω

CsVs
k (t) = i e0

me
MCsVs

k ·A(t).

In the following we will use the common abbreviation for the total time derivation dtx := ẋ.
Referring to the mirror symmetry between the valence and conduction bands in the vicinity of the
K-point the equations for the population dynamics are assumed to be ρ

Cs
k =−ρ

Vs
k with respect to

the Fermi energy, which means that while electrons scatter via interacting with phonons towards
the band edge of the conduction, holes scatter towards the band edge of the respective valence
bands. Switching to the electron-hole picture the electron (hole) populations are identified with the
populations of the conduction (valence) band ρe

k = ρ
Cs
k and ρh

k = 1−ρ
Vs
k [33] leading to:

ṗk =−i∆ωk pk− iΩCsVs
k

(
1−ρ

e
k−ρ

h
k

)
. (2.14)

Assuming that the density of electrons and holes in the conduction and valence bands are equal
we define ρ

Cs
k := ρe

k = ρh
k . With this, we have the equations for the polarization and electronic

8



CHAPTER 2. THEORETICAL FOUNDATION OF THE DYNAMICAL EQUATIONS

occupations:

ṗk = −i∆ωk pk− iΩCsVs
k (1−2ρ

Cs
k ), (2.15)

ρ̇
Cs
k = 2Im

{[
Ω

CsVs
k

]∗
pk

}
, (2.16)

for optical coupling between the valence and conduction bands. The further hole-phonon dynamic
within the valence bands does not influence the electron-phonon scattering processes in the conduc-
tion bands (neglecting phonon induced dephasing processes, where the dynamic of the valence
bands couples to the polarization) since it only affects the initial optical coupling process between
the valence and conduction bands via the polarization.

2.2.2 Relaxation Dynamics with Electron - Phonon Scattering Rates

Including the electron-phonon interaction Hcar−phon the equations for the polarization and occu-
pations, cp. Eq. (2.15− 2.16) are expanded by scattering and dephasing terms ρ̇ l

k|sc, ṗk|deph
describing the non-radiative relaxation dynamics during and after the non-linear optical excitation
of the solid, cp. Eq. (2.17-2.18). It further allows to calculate the dynamics of the phonon occu-
pations nγ

q =
〈
b†

qγb−qγ

〉
for arbitrary phonon modes labeled by γ , cp. Eq. (2.19). In sum we get a

system of coupled differential equations [34, 35]:

ṗk =−i∆ωk pk + iΩCsVs
k

(
1−2ρ

l
k

)
− ṗk|deph,

ρ̇
l
k = 2Im

{[
Ω

CsVs
k

]∗
pk

}
+ ρ̇

l
k|sc,

ṅγ
q = ṅγ

q|sc.

(2.17)

(2.18)

(2.19)

Inserting the Hamiltonian for carrier-phonon interaction in Eq. (2.11) yields the equations of
motion (EOM) of the respective dephasing and scattering terms leading to phonon assisted density
matrices which can be solved under the Markov and factorization approximations. Phonon-assisted
density matrices [36] are introduced by taking the expectation value of electron-phonon interaction
Hamiltonian: 〈

Hcar−phon
〉
= ∑

λλ
′k

∑
γ q

[
gλλ

′
γ

kq Aλ λ ′ γ
k+qkq +g∗λλ

′
γ

kq E∗λ λ ′ γ
kk+qq

]
. (2.20)

This defines the phonon assisted absorption and emission being of of hermitian character, i.e.
A∗ = E. Throughout the thesis we will abbreviate the absorption and emission density matrices
with:

Aλ λ ′ γ
k+qkq :=

〈
a†

λk+qa
λ
′k

b
γ q

〉
Eλ λ ′ γ

kk+qq :=
〈
a†

λka
λ
′k+q

b†
γq
〉

. (2.21)

They describe two microscopically different scattering processes: Absorption and Emission of a
phonon by raising or lowering the energetic state and momentum of an electron. These processes are

9
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Figure 2.1: Scattering vertices between electrons and phonons: A) Absorption of a phonon (+q,+h̄ω),
leads to a lifting of the electron into a higher energy state and gaining positive momentum.
B) The inverse scattering process of phonon emission (−q,−h̄ω) lowers the electronic state by losing
momentum.

usually visualized by a Vertex displaying the energy and momentum conservation of the respective
process (see Ref. [30]), cp. Fig. 2.1. These mixed quantities lead to second order contributions
which are obtained through repeated usage of Eq. (2.11). They will occur in the equations for
the electronic populations and the dephasing of the polarization through phonon scattering. To
emphasize the basic procedure for the following considerations we rewrite the assisted quantities
in a more general way:

Axyz
123 :=

〈
a†

x1ay2bz3,
〉

Exyz
123 :=

〈
a†

x1ay2b†
z3
〉
, (2.22)

with xyz labeling the energies and 123 the electronic and phononic momenta. In first order the
factorization of the assisted density matrices yields expectation values of one phononic creation
and annihilation operator, i.e. coherent phonons:〈

a†
x1ay2bz3

〉
=
〈
a†

x1ay2
〉〈

bz3
〉
δxyδ12. (2.23)

Considering a homogeneous system the bosonic wave vector equals zero, i.e. no momentum can be
transferred to the fermionic system. On the next stage scattering processes including momentum

10



CHAPTER 2. THEORETICAL FOUNDATION OF THE DYNAMICAL EQUATIONS

transfer can be described through the dynamics of A and E. The reapplication of Eq. (2.11)
with Hcar−phon with the assisted densities matrices produces different kinds of expectation values:
mixed ones consisting of two fermionic and two bosonic and one with four fermionic creation and
annihilation operators. The latter can be split up using the Hartree-Fock factorization:〈

a†
Aa†

BaC aD

〉
≈
〈
a†

AaD

〉〈
a†

BaC

〉
−
〈
a†

AaC

〉〈
a†

BaD

〉
. (2.24)

Therefore, the temporal evolution of the electron-phonon scattering contributions A and E, cp. Eqs.
(2.22) are given as:

ih̄dtA
xyz
123 =

[
ε

y
2− ε

x
1 + h̄ω

z
3

]
Axyz

123

+∑
λ

g∗λyz
2,1−q,3 < a†

x1a
λ1 >

[
nz

3 +1
]

−∑
λ
′
g∗xλ ′z

1−q,2,3 < a+
λ
′2

ay2 > nz
3

−∑
λλ
′
g∗λλ

′
z

1−q,2,3

〈
a†

x1a
λ1

〉〈
a†

λ
′2

ay2

〉
, (2.25)

ih̄dtE
xyz
123 =

[
ε

y
2− ε

x
1− h̄ω

z
3

]
Exyz

123

−∑
λ

gλxz
1,2−q,3 < a†

λ2ay2 >
[
nz

3 +1
]

+∑
λ
′
gyλ ′z

1,2−q,3 < a†
x1a

λ ′1 > nz
3

+∑
λλ
′
gλλ

′
z

1,2−q,3

〈
a†

λ2ay2

〉〈
a†

x1a
λ ′1

〉
. (2.26)

Neglecting memory effects, i.e. applying the Markov Approximation, cp. Chap. 8.1.1, these
equations can be integrated directly. Therefrom, δ -functions arise which conserve the momentum
dependent energies via absorption or emission of phonons. Inserting the integrated scattering terms
into the EOMs on the first stage Boltzmann-like equations for carrier-phonon interaction can be
derived. This gives us access to the microscopic carrier dynamics of the electron-phonon induced
dephasing and scattering for the polarization and occupations, respectively:

ṗk|deph =
1
ih̄ ∑

qγ

∑
λλ
′

[
+g jλ

′
γ

k−qqAiλ
′
γ

kk−qq−gλ iγ
kq Aλ jγ

k+qkq +g∗λ jγ
kq E iλγ

kk+qq−g∗iλ
′
γ

k−qqEλ
′
jγ

k−qkq

]
, (2.27)

ρ̇
l
k|sc =

1
ih̄ ∑

qγ

∑
λλ
′

[
+glλ

′
γ

k+qqAlλ
′
γ

kk−qq−gλ lγ
kq Aλ lγ

k+qkq +g∗λ lγ
kq E lλγ

kk+qq−g∗lλ
′
γ

k−qqEλ
′
lγ

k−qkq

]
. (2.28)

Analogously the temporal evolution of the phonon distributions can be calculated:

ṅγ
q|sc =

1
ih̄ ∑

λλ
′k

[
+g∗λλ ′γ

k−qEλ ′ λ γ

kk−q−q−gλλ ′γ
k−q Aλ λ

′
γ

k−qkq

]
. (2.29)
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2.2.3 Boltzmann Scattering Terms - Fermi’s Golden Rule and Pauli Blocking

From the temporal integration of the assisted density matrices within the Markov Approximation
the scattering terms for the dephasing of the polarization, as well as the electronic and phonon
occupation dynamics have been derived. The dephasing in the polarization splits up into a diagonal
and an off-diagonal term driven by pk and pk′

ṗk|deph = Tk pk +Uk pk′ , (2.30)

with

Tk =
π

h̄ ∑
qγ±

C2V2

∑
λλ
′
|gλλγ

k−q|
2
δ

(
ε

λ
′

k′
− ε

λ

k
∓ h̄ω

γ

q

)
V λ

′
γ±

k′q
, (2.31)

Uk =
π

h̄ ∑
qγ±

V2C2

∑
λλ
′
|gλλ

′
γ

k−q |
2
δ

(
ε

λ

k′
− ε

λ

k
∓ h̄ω

γ

q

)
W λγ±

kq , (2.32)

containing Pauli blocking terms and phonon emission and absorption contributions:

V λ
′
γ±

k′q
:= ñγ

q±
ρ

λ
′

k′
+ ñγ

q∓

(
1−ρ

λ
′

k′
)
, (2.33)

W λγ±
kq := ñγ

q±

(
1−ρ

λ

k

)
+ ñγ

q∓ρ
λ
k , (2.34)

with the emission and absorption of a phonon respectively ñγ

q± = nγ
q +

1
2 ±

1
2 and k

′
= k±q.

For the occupations of the electrons in the respective subbands we yield the microscopic Boltzmann
equation [37]:

ρ̇
l
k
|sc =−

2π

h̄ ∑
qγ∓

∑
λ

|glλγ

k′q
|2δ

(
ε

λ

k′
− ε

l
k
∓ h̄ω

γ

q

)
F lλγ∓

kk′q
(2.35)

with
F lλγ∓

kk′q
:= ñγ

q∓ρ
l
k

(
1−ρ

λ

k′
)
− ñγ

q±ρ
λ

k′
(

1−ρ
l
k

)
, (2.36)

under the premiss that l 6= λ . For the numerical calculations within the thesis we will treat the

phonons as a bath being approximated by the Bose-Einstein distribution nΓTO
q0

=

(
1− e

h̄ωΓTO
0

kBT

)−1

at room temperature (T = 300K) with the constant phonon energy h̄ωΓTO
0 = 192meV around the

Γ-point. The equations of motion and their analytical solutions for the phonon dynamics can be
found in the Appendix. To identify the scattering terms included in the Boltzmann equation we
rewrite Eq. (2.35) explicitly, aiming on the second lowest conduction subband C2 (for the lowest
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CHAPTER 2. THEORETICAL FOUNDATION OF THE DYNAMICAL EQUATIONS

subband the equations are symmetric replacing C2 by C1):

ρ̇
C2
k (ia) =

−2π

h̄ ∑
qγ

{
|gC2γ

k+q|
2
δ (εC2

k+q− ε
C2
k − h̄ω

γ
q )
[ Phonon Absorption︷ ︸︸ ︷

nγ
qρ

C2
k (1−ρ

C2
k+q)−

Phonon Emission︷ ︸︸ ︷
(nγ

q +1)ρC2
k+q(1−ρ

C2
k )
]

︸ ︷︷ ︸
(1)

+ |gC2γ

k−q|
2
δ (εC2

k−q− ε
C2
k + h̄ω

γ
q )
[
(nγ

q +1)ρC2
k (1−ρ

C2
k−q)−nγ

qρ
C2
k−q(1−ρ

C2
k )
]

︸ ︷︷ ︸
(2)}

,

(2.37)

ρ̇
C2
k (ie) =

−2π

h̄ ∑
qγ

{
|gC2C1γ

k+q |
2
δ (εC1

k+q− ε
C2
k − h̄ω

γ
q )
[
nγ

qρ
C2
k (1−ρ

C1
k+q)− (nγ

q +1)ρC1
k+q(1−ρ

C2
k )
]

︸ ︷︷ ︸
(3)

+ |gC2C1γ

k−q |
2
δ (εC1

k−q− ε
C2
k + h̄ω

γ
q )
[
(nγ

q +1)ρC2
k (1−ρ

C1
k−q)−nγ

qρ
C1
k−q(1−ρ

C2
k )
]

︸ ︷︷ ︸
(4)}

,

(2.38)

where we split up the equations for the dynamics of the electron occupation ρ̇k
C2 into intra (ia)

- and intersubband (ie) scattering terms. We have therefore four terms describing the scattering
between the three energy states εk +q , εk and εk −q : two intra- ((1) and (2)) and two intersubband
((3) and (4)) terms respectively, cp. Fig. 2.2. Every single term contains a scattering process under
phonon emission to a lower energetic state and phonon absorption to a higher one, whereby the first
is governed with (nγ

q +1) and the latter with (nγ
q). The (1−ρ

Cs
k ) terms ensure the Pauli Principle,

resulting in the condition that the state of in-scattering has to be empty.
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2.2. CALCULATION OF THE DYNAMICS WITHIN THE HEISENBERG PICTURE

Figure 2.2: Sketch of the energy and momentum conserved electron relaxation processes under phonon
emission and absorption expressed by the δ -function in Eq. 2.35. Intra- (left) and intersubband (right)
scattering within and between the lowest lying conduction subbands C1 and C2 are visualized.
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2.3 Analytical Solution of the Dynamics

The equations of motion (2.30,2.35) will be solved analytically to the stage where only the
time integration is the numerical task within a Runge-Kutta Algorithm. This leads beside a fast
computation time to a deeper insight into the physical mechanisms of the dynamics and the impact
of arising scattering prefactors. for the principal derivation we refer the interested reader to the
Appendix.

2.3.1 Scattering Prefactors and Jump Amplitudes
- The Influence of Subband Curvature -

The derived equations for semiconductors of arbitrary dimension will be now applied to the
structure of carbon nanotubes regarding the one dimensional confinement aspect of electrons and
phonons. We limit the possibilities of subband couplings to the modeling of photoluminescence
excitation and pump-probe experiments, taking into account the two lowest conduction C1,C2
and highest lying valence subbands V1,V2. According to the procedure described in the previous
section we rewrite the occurring energy conserving δ -functions in the equations (2.30,2.35,8.13)
by assuming a parabolic band structure in the vicinity of the K-point ε l

k±q = αl k2. Solving the
δ -function for q leads to a quadratic equation exhibiting zero points q0. The analytical solutions
for the polarization state:

ṗk|deph =−
L
h̄ ∑

γ∓

(
Tk(q0)pk +Uk(q0)pk′

)
, (2.39)

with the analytically solved terms for diagonal and off-diagonal dephasing:

Tk(q0) = |gγ
q0
|2 1

|Vλγ

k∓|
V lγ±

kk̃q0
Uk(q0) = |gγ

q0
|2 1

|Wλγ

k∓|
W lγ±

kk̃q0
, (2.40)

with k̃ = k∓q0.
The carrier occupations for conduction band electrons are derived,

ρ̇
l
k|sc =−

L
h̄ ∑

γ∓

(
IAk(q0)+IEk(q0)

)
, (2.41)

containing intra- and interband scattering:

IAk(q0) = |glγ
k̃
|2 1

|Xlγ
k∓|

X lγ±
kk̃q0

IEk(q0) = ∑
λ

|glλγ

k̃
|2 1

|Ylλγ

k∓ |
Y lλγ±

kk̃q0
, (2.42)

whereby the latter one has to be summed up over the next lying subband λ 6= l.
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2.3.2 Electron Dynamics

Optical Modes-Constant Jump Amplitudes

Within the same electronic subband, i.e. for intrasubband scattering the evaluation of the energy
conservation within the δ -function with constant phonon energies results in the zero points:

qΓTO
0 = ql ΓTO

k ∓ =±k±

√
k2∓

εΓTO
q0

αl
, (2.43)

with the associated scattering prefactors

Wl ΓTO
k ∓ = Xl ΓTO

k ∓ = 2αl

√
k2∓

εΓTO
q0

αl
, (2.44)

resembling the quadratic dependence of the electronic dispersion. The scattering efficiency depends
on the specific tubes through the corresponding diameter d and the band structure parameters
entering in the scattering prefactor Xl ΓTO

k ∓ .
For intersubband scattering processes with different subband curvatures αλ 6= α

λ
′ we derive

qΓTO
0 = qlλ ΓTO

k ∓ =±k±

√
αl

αλ

k2∓ 1
αλ

(
εΓTO

q0
+

(
c∓l ∆ε lλ

))
, (2.45)

with c∓l =∓ standing for the upper and c∓l =± for the lower subband. The energetic gap between
the subbands is denoted by ∆ε lλ = ε l

k− ελ
k . The prefactor follows analogously

Vλ ΓTO
k ∓ =Ylλ ΓTO

k ∓ = 2αλ

√
αl

αλ

k2∓ 1
αλ

(
εΓTO

q0
+

(
c∓l ∆ε lλ

))
. (2.46)

Acoustic Modes - Linear Jump Dependence

For acoustic phonons we assume a linear phonon dispersion around the Γ-point [38],cp. Fig. 4.10:

h̄ω
ΓLA
q = h̄cs|q| ≈ β

ΓLA|q|, (2.47)

with the velocity of acoustic phonons cs = 2× 104 m
s and the reduced Planck constant h̄ =

0.658eV fs the slope is β ΓLA = 0.013eVnm. This leads to the condition that a scattering event
with acoustic phonons is only possible when the linear phonon dispersion cuts the parabolic
approximated electronic band structure. From this we derive the zero points

qΓLA
0 = ql ΓLA

k ∓ =±2k∓ β ΓLA

αl
, (2.48)
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CHAPTER 2. THEORETICAL FOUNDATION OF THE DYNAMICAL EQUATIONS

with the according linear scattering prefactors

XlΓLA
k∓ =±2αlk∓β

ΓLA . (2.49)

They explicitly display that the scattering efficiency for acoustic phonons depends on the relation
between the slope β ΓLA of the phononic and the curvature αl of the electronic dispersion. In
contrast to optical phonons the absolute value dependence for the acoustic mode leads to four
different phonon occupation functions:

nΓLA−up
q0

=

[
exp
(

β ΓLA

kBT

∣∣∣∣−2k± β ΓLA

αl

∣∣∣∣)]−1

, (2.50)

nΓLA−down
q0

=

[
exp
(

β ΓLA

kBT

∣∣∣∣2k∓ β ΓLA

αl

∣∣∣∣)]−1

, (2.51)

which take into account the up and down scattering process and also that the slope β can have
positive and negative sign.

2.4 At a Glance

On the basis of the density matrix theory we derived coupled equations of motion for the micro-
scopic polarization pk and occupations ρ l

k for carriers within the conduction and valence subbands
to describe the non-radiative relaxation dynamics in carbon nanotubes. Due to the confinement to
one-dimension we were able to further solve the equations of motion analytically beyond the occur-
ring delta-functions in the Boltzmann scattering terms. From this, we yield scattering prefactors
which will be of importance for the upcoming interpretation of the relaxation dynamics.
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3
Launching the Carbon Nanotube

The solids at the heart of this thesis are single-walled carbon nanotubes or briefly CNTs. They have
polarized the attention of the physics and material science community since Iijima synthesized
and observed them 23 years ago in 1991 [3]. CNTs are tiny hollow cylinders obtained by cutting
graphene in specific direction for a certain length and rolling it up. Exposing a high aspect ratio with
diameters of few nanometers and lengths of micro- to centimeters, CNTs bridge the microscopic
quantum world with the macroscopic one. The rolling up process of CNTs imposes additional
periodic boundary conditions to the wave functions implied in the systems, selecting only some of
the electronic states that are present in graphene. Thus, even if graphene is a semi-metal, CNTs can
be either metallic or even semiconducting, depending upon their chiral vector c. Semiconducting
CNTs exhibit emission of photons due to the band-to-band radiative recombination of the electron-
hole pair. This makes them highly relevant for fundamental and applied research in optoelectronics.



3.1. MICROSCOPIC PROPERTIES OF CARBON NANOTUBES:
ELECTRONIC, PHONONIC AND OPTICAL FEATURES

3.1 Microscopic Properties of Carbon Nanotubes:
Electronic, Phononic and Optical Features

The investigation of the electron and phonon dynamics, i.e. their interaction via scattering leading
to relaxation dynamics gives insight into non-radiative ultrafast processes. These are the essential
processes which occur between optical excitation and radiative recombination in semiconducting
nanostructures. We will investigate such processes from non-equilibrium into equilibrium driven by
electron-phonon interaction enabling intra- and intersubband relaxation. Therefore, the knowledge
of the electronic band structure, the phononic dispersion relations and the coupling elements
between the involved quasi-particles in carbon nanotubes is needed. These properties differ from
other nanostructures since every single tube has its own one-dimensional features which will be
emphasized in our calculations through their specific band edge energies ε l

k0
and curvatures of the

subbands αl .

3.1.1 Electronic System

Graphene is Rolled Up - Structure Through Symmetry

To understand the properties of CNTs we have to start with graphene, the material that is wrapped
up into a cylinder forming the tube. Of course this is not the way nanotubes are fabricated but
the concept leads to workable results. As a consequence of the process of rolling up the two
dimensional graphene layer, the created carbon nanotube is one-dimensional. The term ”one-
dimensional” is related to the degrees of freedom for quasi-particles within the solid. Since the

Figure 3.1: Vector relations of graphene in the direct lattice. The lattice vectors a1 and a2 span the unit cell
containing two carbon atoms labeled A and B.
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CHAPTER 3. LAUNCHING THE CARBON NANOTUBE

tube is about a few nanometers in its diameter and up to several micrometers in length, the motion
of carriers is confined to one dimension.
In graphene the unit cell is spanned by two lattice vectors

a1 =
a0

2

(√
3,+1

)
a2 =

a0

2

(√
3,−1

)
, (3.1)

with the lattice constant a0 =
√

3ac−c = |a1| = |a2| = 0.246nm, where ac−c = 0.142nm is the
nearest neighbor distance between two carbon atoms in graphite [39], cp. Fig. 3.1. A CNT can
be descried by either its diameter d and chiral angle ϑ or its chiral indicies n1,n2. These two
properties will play a key role in the individual behavior of relaxation processes for every single
tube, determining the electronic properties as also appearing in the electron-phonon coupling.
We will derive in the next sections the dependency of collective patterns on the diameter and the
chiral angle. Both structural properties d and ϑ are contained in the chiral vector along which the
graphene sheet is rolled up into the tube, cp. Fig. 3.2. It is composed as a linear combination of the
graphene basis vectors a1 and a1

c = n1a1 +n2a2 , (3.2)

via the scalar valued chiral indices (n1,n2). These two indices represent the full information of a
nanotube both geometric and electronic. The absolute value of c represents the circumference of a
CNT. Since the diameter of a cylinder is proportional to its circumference d = c

π
and the absolute

value of the chiral vector is

c = |c|= |n1a1 +n2a2|= a0
√

N12, (3.3)

the diameter can be written with the chiral indices

d =
a0

π

√
N12 , (3.4)

with N12 := n2
1 +n1n2 +n2

2. The angle ϑ = ∠(c,a1) enclosing the chiral with the direction of the
graphene lattice vector is called chiral angle. This angle defines in which direction the graphene
sheet is rolled up. From the scalar product of these two vectors

c ·a1 = |c||a1|cosϑ , (3.5)

we can express the chiral angle

ϑ = arccos

[
n1 +

1
2 n2√

N12

]
, (3.6)

like for the diameter via the chiral indices n1,n2.
Perpendicular to the chiral vector c, the smallest corresponding graphene lattice vector a defines
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ELECTRONIC, PHONONIC AND OPTICAL FEATURES

Figure 3.2: The geometrical relations between the translational period a and the circumference vector c.

via its absolute value the repeated translational period along the tube axis, cp. Fig. 3.2. This vector
can be also determined by the chiral indices n1,n2

a =− 1
gcd R

(
[2n2 +n1]a1− [2n1 +n2]a2

)
, (3.7)

with the integer

R=

{
3, if (n1−n2)

3 gcd ∈ Z

1, if (n1−n2)
3 gcd /∈ Z,

(3.8)

where gcd abbreviates the greatest common divisor between the chiral indices n1,n2.
Thus the translational period is given through

a = |a|= a0
√

3N12

gcd R
. (3.9)

The number of graphene hexagons in the nanotube unit cell Nhexa can be derived from the ratio
between the area of the nanotube and the graphene unit cell

|a× c|
|a1×a2|

=
|a| · |c|sin π

2
|a1×a2|

=

√
3a0N12

gcd R

2√
3a0

=
2N12

gcd R
= Nhexa. (3.10)
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CNTs

0°    30°

Figure 3.3: Classification of carbon nanotubes via their chiral angles ϑ into chiral and achiral tubes, whereby
the latter cover the special case of ϑ = 0

◦
and ϑ = 30

◦
called zig-zag and armchair tubes according to the

form of their unit cell edges.

Because the graphene unit cell contains only two carbon atoms localized at the positions 1
3(a1+a2)

and 2
3(a1 +a2) the number of carbon atoms in it follows directly

Ncarbon = 2Nhexa =
4N12

gcd R
. (3.11)
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The value of the chiral angle ϑ ranges from 0
◦

to 30
◦
. Therefore, CNTs are classified into three

structured types through their chiral angle. The tubes with an angle between 0
◦
< ϑ < 30

◦
are

called chiral tubes. On the other hand we have two types of high symmetry for tubes that have a ϑ

at the upper or lower limit of the range of the chiral tubes. Zig-Zag tubes with n2 = 0 and ϑ = 0
◦

and armchair tubes with n1 = n2 and ϑ = 30◦. The names originate from the edge of the unit cells
that resembles armchair or zig-zag chains. These two types build the group of the so called achiral
tubes in contrast of the chiral ones. The achiral CNTs have small unit cells and therefore contain
4n carbon atoms, while the chiral tubes can be more extended and contain hundreds of atoms. For
example the achiral (23,0) tube contains 84 and in opposite the chiral (7,5) tube 436 carbon atoms
within its unit cell.

3.1.2 Entering the Reciprocal Space - On the Way to One Dimension

To realize the one dimensionality for CNTs one has to think in the reciprocal space which is
a mathematical construction described first by Josiah Willard Gibbs 1881 in his book ’Vector
Analysis’ as the reciprocal system which was further developed in crystallography to the reciprocal
lattice. In solid state theory this conception has been extended to the reciprocal space to describe
the quantum mechanical behavior of the so called quasi-particles, e.g. electrons and phonons
within the solid. It will also be the key for understanding the energy and momentum conservation

Γ

M

K

K'

Figure 3.4: Reciprocal lattice of graphene displaying the Brillouin Zone and with the high symmetry points
Γ, M, K and K

′
spanned by k1 and k2.
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underlying the scattering processes. Straight forward we obtain the reciprocal lattice vectors from
the direct lattice vectors, cp. Eq. (3.1):

k1 =
2π

a0

(
1√
3
,+1

)
k2 =

2π

a0

(
1√
3
,−1

)
. (3.12)

Keeping on with the notation and composition of the book of Reich et al. [7] we review the
quantized wave vector k⊥ being perpendicular and the continuous reciprocal lattice vector kz being
parallel to the tube axis:

k⊥ =
1

gcd Nhexa R

(
[2n1 +n2]k1 +[n1 +2n2]k2

)
kz =

1
Nhexa

(
−n2k1 +n1k2

)
. (3.13)

The absolute value of both vectors is given through

|k⊥|=
2π

|c|
m |kz|=

2π

|a|
, (3.14)

with m labeling the subbands arising from the quantization of k⊥ within the zone-folding approach
which will be described in the following section.

3.1.3 From Graphene to Carbon Nanotubes - Reducing the Dimension through
Zone-Folding

Since a CNT is based on graphene, which is rolled up into a cylinder, its electronic band structure
is derived from that of graphene. The process of rolling up introduces periodic boundary conditions
that are described through the zone-folding approximation [7, 2]. We will discuss this concept more
detailed at the end of this section. The derivation of the energy dispersion relation of graphene in
tight-binding and nearest neighbor approximation is presented in a very clear way in the previous
quoted Ref. [7] and we will summarize here. The access to the band structure of a solid like
graphene can be attributed to the solution of the time independent Schrödinger Equation

Hψk(r) = εkψk(r), (3.15)

for an electron in a periodic potential. In our case this is the periodic lattice potential of the ionic
cores of carbon. The solution is an eigenvalue problem of the perturbed Hamiltonian with the k
wave vector dependent eigenvalues Ekand the eigenfunctions ψk(r) which are a linear combination
of the electronic wave functions

ψk(r) =
A,B

∑
j

C j
kΦ

j
k(r), (3.16)

with j running over the two sublattices A and B contained in the unit cell. Within the tight-binding
approximation [40, 41] the superposition of wave functions for isolated carbon atoms can be
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expressed by the linear combination of the atomic wave functions ϕ:

Φ
j
k(r) =

1√
N

N

∑
R j

eik·R j ·ϕ(r−R j), (3.17)

where N is the number of unit cells in the crystal and R j are the lattice vectors in real space. This
implies that we assume the electrons to be tightly bound to their atomic nuclei. Starting from
isolated atoms with defined eigenfunctions and -values their wave functions overlap by decreasing
the distance between them, which shapes the chemical bonds and forms the crystal. As a result of
this process, the electronic energies broaden and build up continuous bands. We simplify the last
equation to the unit cell of graphene. If we substitute the eigenfunctions ψk(r) in the Schrödinger
Equation by the combination of the electronic wave functions and multiplying both sides with two
equivalent Bloch functions ΦA

k and ΦB
k for the two sublattices, we obtain a system of two linear

equations:

CA[HAA
k − εkSAA

k ]+CB[HAB
k − εkSAB

k ] = 0, (3.18)

CA[HBA
k − εkSBA

k ]+CB[HBB
k − εkSBB

k ] = 0, (3.19)

with the interacting matrix elements Hi j =
〈
ϕi|H|ϕ j

〉
of the Hamiltonian and the overlap between

the Bloch functions Si j =
〈
ϕi|ϕ j

〉
. This linear equation system has a non trivial solution only if the

secular determinant vanishes |H− ε
j

kS|= 0. By the fact that the atoms in the graphene unit cell
are equivalent, we yield a symmetric situation and the matrix elements simplify to HAA = HBB,
HAB = (HBA)∗ and SAA = SBB, SAB = (SBA)∗. Therefore, the secular equation can be written as∣∣∣∣ HAA

k − εkSAA
k HAB

k − εkSAB
k

(HAB
k )∗− εk(SAB

k )∗ HAA
k − εkSAA

k

∣∣∣∣= 0. (3.20)

Evaluating this 2×2 determinant and using the quadratic formula yields the eigenvalues for the
conduction and the valence band

ε
C,V
k =Q∓

√
Q2−|HAA|2 + |HAB|2, (3.21)

with

Q=
HAASAA−R{HAB(SAB)∗}

|SAA|2−|SAB|2
. (3.22)

Neglecting the overlap between the wave functions, i.e. setting SAA = 1 and SAB = 0 we yield the
formula for the band structure of graphene

ε
C,V
k = HAA±|HAB|, (3.23)

which was first derived 1947 by Wallace [42]. Applying the nearest-neighbor approximation, which
will describe in the following in more detail we can assume that HAA

k = const.= HAA since only
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the self interaction of atom A has to be taken into account. The crossing of the π and π∗ bands at
the K-point at the Fermi energy EF leads to

HAA−|HAB
k |= HAA + |HAB

k |= EF = 0, (3.24)

yielding the band structure of graphene in tight-binding and nearest-neighbor approximation:

ε
C,V
k =∓|HAB

k |. (3.25)

Nearest-Neighbor Approximation

The unit cell of graphene contains two atoms labeled A and B, respectively, cp. Fig. 3.1. Using
the symmetry that the two atoms are equal we now expand the theory by taking the interaction
of the first nearest-neighbors into account. For atom A the matrix element which is given via its
self-interaction and summation over all other atoms A

′
in the crystal [7]:

HAA =< ψA|H|ψA′ >=
1
N ∑

R
A

∑
R

A′

〈
eik·R

A ϕ(r−RA )|H|eik·R
A′ ϕ(r−RA′ )

〉
, (3.26)

,resembled by the summation over all A atoms. We consider the interaction with the three B atoms
shown in Fig. 3.1 which belong to sublattice B. Therefore, the second sum contains only the term
with RA′ = RA which simplifies the equation to

HAA =
1
N ∑

RA

eik·(RA−RA) 〈ϕA(r−RA)|H|ϕA(r−RA)〉=: ε2p.

(3.27)

This shows that HAA is constant within the interaction of the first nearest neighbors. By knowing
the Hamiltonian and the atomic orbitals ϕA it is possible to calculate ε2p. The matrix element
between the atoms A and B can be approximated by

HAB = 〈ϕA|H|ϕB〉 ≈
1
N ∑

RA

∑
Ri=1,2,3

eik(RA−Ri) 〈ϕA(r−RA)|H|ϕA(r−Ri)〉 , (3.28)

whereby the second sum runs over all three nearest neighbors of atom A. Considering the vectors
bi connecting the atom located at r0 with its three nearest neighbors at ri, cp. Fig. 3.1 being a
linear combination of the graphene lattice vectors a1 and a2 yields:

HAB = γ0

3

∑
j=1

eik·b j , (3.29)

with the carbon-carbon interaction energy γ0 =: 〈ϕA(r−RA)|H|ϕA(r−RB)〉 being constant be-
cause the distances for all first three nearest-neighbors are equal. We further define the nearest
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neighbor sum

fk :=
3

∑
j=1

eik·b j , (3.30)

which sums up the scalar products between the connecting vectors of the first 3 nearest-neighbor
atoms and the reciprocal wave vector k. This leads us to the energy dispersion relation of graphene

ε
l
k =

ε0± γ0| fk|
1± s0| fk|

, (3.31)

with l = V,C denoting the valence and conduction bands, respectively. The values of the tight-
binding parameters can be obtained from experimental data [7]. The overlap parameter is ac-
cordingly s0 = 0.07 and the interaction energy γ =−2.7eV For the relaxation processes within
photoluminescene and pump-probe experiments we rely on the optically important K-point, cp.
Fig. 3.6. The valence and conduction bands are assumed to be mirror symmetric with respect to the
Fermi energy EF , i.e. EV =−EC. This implies that we may neglect the self interaction, i.e. we set
ε0 = 0eV and the overlapping is s0 ≈ 0. Therefore, we can write the band structure of graphene as

ε
l
k =±γ0| fk| . (3.32)

With the previous made assumptions we yield a symmetric valence- and conduction band character-
istic that crosses at the K-point and delivers a twofold bigger gap at the Γ-point than at the M-point.
This is the reason why graphene is called a semi-metal which will play an important role for its
band structure and thus the electronic properties of carbon nanotubes.

Zone Folding - Cutting Lines in Graphene

The process of rolling up the graphene sheet to form the CNT boundary conditions onto the
electronic band structure of graphene arise. While the wave vector along the axis of the tube kz is
quasi-continuous, the wave vector k⊥ perpendicular to it has to be quantized. The electronic wave
functions ψk, which are the eigenfunctions of the stationary Schrödinger equation (3.15) can be
written for an electron in a crystal as a Bloch wave function via the Bloch Theorem

ψk(r) = ψk(r)eik·c = ψk(r+ c), (3.33)

with the condition, that after a complete translation the wave functions have to match, i.e. according
to the unrolled graphene they have to be equal at the edges of the sheet. This leads to the condition
that the scalar product between the electronic wave and chiral vector has to be periodic within the
multiple of 2π . Since k⊥ and c are parallel we have the relation

k · c = m ·2π = |k⊥||c|cos∠(k⊥,c). (3.34)
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Figure 3.5: Cutting lines plotted onto the electronic band structure of the graphene Brillouin Zone constitut-
ing the semiconducting (23,0) zig-zag tube. The subbands introduced by zone folding are labeled with m
and reach from (−Nhexa

2 ,+Nhexa
2 ].

Resolving this equation yields the absolute value of the quantized perpendicular wave vector

k⊥ = m
2
d
, (3.35)

which scales inverse with the diameter of the tube. By this, the Brillouin-zone of graphene is
divided into m equally separated allowed lines corresponding to the subbands of the CNT. The
integer m represents a new quantum number describing the angular momentum of the electron. Its
conservation will be the basis of the selection rules for optical transitions in CNTs. The cutting
lines run from

(
−Nhexa

2 ,+Nhexa
2

]
with an interval of 2/d being parallel to the tube axis. Nevertheless,

the zone folding method is an approach which neglects existing curvature effects of the cylindrical
tube. For tubes with diameters larger than 0.8nm it has been shown to be a suitable approximation
[43, 44]. From Eq. (3.35) it is clear, that by raising the diameter, the distance between these lines
vanish and the band structure of graphene is again achieved.
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ELECTRONIC, PHONONIC AND OPTICAL FEATURES

Electronic Band Structure of Carbon Nanotubes

The wave vector of graphene k is divided in the continuous kz component along the axis of the tube
and k⊥ perpendicular to it which is quantized according to the zone folding approach introduced
above

k =
m

2N12

(
[2n1 +n2]k1 +[n1 +2n2]k2

)
− 1

Nhexa

(
[n2]k1− [n1]k2

)
. (3.36)

2/d

Figure 3.6: Sketch of the concept of cutting lines for a semiconducting carbon nanotube. The cutting lines
create conic sections of the Dirac cones at the K-points within the graphene Brillouin-Zone leading to the
one-dimensional band structure of CNTs.
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Inserting this quantized wave vector into the equation for the band structure of graphene, cp. Eq.
(3.32) with

| f (k)| =
√

3+2cos(k(a1 −a2))+2cos(ka2)+2cos(ka1) (3.37)

=
√

3+2cos(2π(k1 − k2))+2cos(2πk2)+2cos(2πk1)

leads to the band structure of carbon nanotubes [45]:

EVsCs
kz

(m) =±γ0
√

3+2cos [A]+2cos [B]+2cos [C] (3.38)

where we used the abbreviations:

A = πm
[

2n1 +n2

N12

]
−2π

[
n2

Nhexa

]
kz, (3.39)

B = πm
[

n1 +2n2

N12

]
+2π

[
n1

Nhexa

]
kz, (3.40)

C = A−B. (3.41)

-30-30
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K-pointK'-point

Ekz[eV]

kz[1/nm]

4

2

10-10-20-40-50

Figure 3.7: Calculated band structure for the semiconducting (23,0) tube. Around the optically relevant
K-point the lowest lying subbands are plotted.
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3.1.4 Density of states (DOS) in One Dimension

The density of states in a certain energy interval describes the number of states of levels which are
available for being occupied. In momentum space the DOS depends on the dimensionality of the
system:

D(ε) =
1

Ld ∑
k,l,s

δ (ε− ε
l
k), (3.42)

with d denoting the dimensions of the considered system, l =V,C the energy band and s the spin
quantum number[2]. In the case of one-dimensional structures like CNTs (wires) the confinement
leads to a divergence at the band edges of the subbands of the electronic band structure. Those
singular points are known as van Hove singularities. In their surrounding, the DOS scales as ε−

1
2 .

Through the approximation of the electronic band structure around the K-point with parabolas
ε l

k = αlk2 + ε l
0 the DOS can be written as [2]:

D(ε) =
8

2π
∑

l

∫
dk′

1
|2αl(k

′− kl
0)|

δ (kl− k
′
) = ∑

l

2
π
√

αl

1√
ε l− ε l

0

. (3.43)

Only for values larger than the band edge energy ε l > ε l
0 the DOS has a positive value, while

towards the band edge the above mentioned divergences occur, i.e. the van Hove singularities.
In Fig. The transitions labeled as E22 and E11 in Fig. 6.5 will be in the focus for our relaxation
dynamic studies, as they rule the optical emission process we will consider in this thesis.

-1

-0.5

0

0.5

1

0 2 4 6 8 10

E
n
er

g
y
 [

eV
]

Density of states [eV/nm]

(7,5)
(7,6)
(8,4)

E22
(8,4)

E11
(8,4)

Figure 3.8: Density of States for the (7,5), (7,6) and (8,4) tube showing the characteristic one-dimensional
divergence behavior towards the band edge scaling with ε−

1
2 . The DOS is plotted for the in PLE and

pump-probe experiments relevant first and second optical transitions E11 and E22, [46].
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3.1.5 Family Patterns: Metallic versus Semiconducting CNTs

Depending on their structure we showed how nanotubes can be divided according to their chiral
indices into armchair, zig-zag and chiral tubes. As a consequence of folding the graphene sheet into
nanotubes, only some of the in graphene available states will be allowed for the resulting tubes. If
the allowed states will pass through the K-point, the resulting tube will be metallic, otherwise it will
be semiconducting. Exploiting the results of the zone-folding scheme and applying the boundary
conditions at the K-point, we get the condition whether a tube is semiconducting or metallic:

K · c = 1
3
(k1−k2) · (n1a1−n2a2) = m ·2π, (3.44)

with

m =
n1−n2

3
, (3.45)

depending on if the difference between the chiral indices can be divided by three without remainder.
The semiconducting tube families split of into two subfamilies the +1 and−1, whether the allowed
line next to the K point is located on the KM or on the KΓ side.
Altogether we can embrace 3 families:

metallic ⇔ mod 3(n1−n2) = 0

+1 semiconducting ⇔ mod 3(n1−n2) = +1

-1 semiconducting ⇔ mod 3(n1−n2) =−1

(3.46)

For our investigations of the photoluminescence process only semiconducting tubes are of interest,
as they allow band-gap radiative recombination.
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3.2 Phonon Modes - Optical and Acoustic Dispersions

Figure 3.9 displays the phonon dispersion of graphite. Filled dots are experimental values and open
dots represent ab initio calculations of graphene. It can be seen that for optical phonons at the Γ

and K point two sharp kinks occur which are called Kohn anomalies[48]. The phonon modes in
the vicinity of these two points denoted with Γ−E2g and K−A

′
1 exhibit a strong electron-phonon

coupling [2]. At the Γ point the doubly degenerated E2g mode splits up into a TO and LO mode.
Since we constrain with our calculations on intravalley scattering processes, i.e. Γ-phonons the
transferred phononic momentum is very small q≈ 0. We can validly approximate the dispersion
of the optical phonons involved in our processes as constant with a value of h̄ωΓTO

q ≈ εΓTO
0 = 192

meV [47] for the TO mode. For acoustic phonons we assume a linear phonon dispersion around the
Γ point [38], cp. Fig. 4.10: h̄ωΓLA

q = h̄cs|q| ≈ β ΓLA|q|, with the velocity of acoustic phonons being
cs = 2× 104 m

s and the reduced Planck constant h̄ = 0.658eV fs the slope of the approximated
acoustic dispersion follows β ΓLA = 0.013eVnm. Furthermore, we note that beside the optical
and acoustic other important phonon modes in carbon nanotubes exit. A special unique in CNTs
existing phonon mode is the radial breathing mode [49]. Within our investigations we revealed that
the coupling strength is found to be to small and therefore it was concluded that this mode was has
not a decisive influence onto the ultrafast non-radiative relaxation processes within the considered
conduction subbands.

Figure 3.9: Phonon dispersion of graphite obtained from inelastic x-ray scattering (filled dots) and ab initio
calculations (open dots). The longitudinal (LO) and transverse (TO) optical phonon branches are displayed
exhibiting special kinks around the Γ and K point. Since the optical phonons can be assumed to be constant
in vicinity of the Γ-point the acoustic branch exhibit an approximately linear dispersion. Picture taken from
[47].
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3.3 Matrix Elements Describing the Coupling

3.3.1 Between External Fields and the Nanotube: Optical Matrix Element (OME)

Through the external excitation of a solid with laser light in a pump-probe experiment or from a
HgXe lamp of a photo-luminescence spectrometer electrons are excited from the valence to the
conduction band. In theory this is viewed as an absorption process of a photon providing the energy
for the electron transfer, mostly neglecting the very small but not vanishing photon momentum
resulting in a vertical transition. The Hamiltonian that describes this coupling between the external
field in the semi-classical treatment contains the scalar product of the vector potential A(t) with the
optical matrix element Mλλ

′

kk′
. In second quantization the optical matrix element (OME) is given

via the transition probability between two different quantum mechanical states represented by the
graphene Bloch functions in tight-binding expressed by the linear combination of the atomic 2 pz

orbitals. In the derivation of the p ·A Hamiltonian the optical matrix element was introduced

Mλλ
′

kk′
=
∫ +∞

−∞

d3r ψ
λ ∗
k (r)∇rψ

λ
′

k′
(r), (3.47)

with the wave functions of the energy bands, which can be viewed as the summation of the
Bloch functions of the carbon atoms A and B in the graphene unit cell. Within the nearest
neighbor approximation for interband processes between valence and conduction bands the OME
for graphene states:

MVsCs

kk′
=

Mc√
|fk|− s2

0|fk|4
Re
[ 3

∑
i=1

eikbi
bi

bi
f∗k

]
(3.48)

with the constant optical matrix element for the two nearest neighbor atoms [50, 51]

Mc = 〈φ(r+Ri)|∂z|φ(r)〉 (3.49)

which is 3.00145nm−1, calculated from the effective nucleus charge number Z = 4.01286 obtained
from the variation of the hydrogen wave function for an overlap value of s0 = 0.13 [52].
Without overlapping, i.e. s0 = 0, the coefficients for the valence and conduction band state

CVs,Cs
A (k) =±CVsCs

B (k)
fk
|fk|

(3.50)

where ±CVs,Cs
B (k) =± 1√

2
with the minus denoting the conduction and the plus sign valence band.

Inserting the quantized wave vector of graphene, cp. Eq. (3.36), i.e. applying zone folding, we can
finally express the optical matrix element as a function of the chiral indices (n1,n2), the subband
index m and the continuous wave vector along the tube axis kz [53]

Mkz =
Mc

2
√

N12 · |fk|

[
(n1−n2)cos[C]− (2n1 +n2)cos[A]+ (n1 +2n2)cos[B]

]
, (3.51)
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Figure 3.10: Light polarized perpendicular (left side) and parallel (right side) to the tube axis along the
z-direction while the propagation is perpendicular to this axis

with

|fk|=
√

3+2cos[A]+2cos[B]+2cos[C]. (3.52)

According to different authors [54, 55] light which is polarized perpendicular (cp. Fig. 3.10) to the
tube axis has no impact, originating in the optical selection rules from the quantum mechanical and
depolarization (’Antenna’) effects from classical electromagnetic theory. Thus taking only light
parallel polarized to the nanotube axis into account allows to focus the optical matrix element to its
z-component cp. Eq. (3.51).

3.3.2 Within the Nanotube: Electron-Phonon Coupling (EPC)

We repeat the electron-phonon interaction the Hamiltonian from chapter 2:

Hcar−phon = ∑
λλ
′k

∑
γ q

(
gλλ

′
γ

kq a†
λ k +q

a
λ
′k

b
γ q

+h.c.
)

(3.53)

with the electron-phonon matrix element gλλ
′
γ

kq . For the case of CNTs we can rely on the matrix
element of graphene and derive that for CNTs. Under the premiss that curvature effects do not have
a remarkably impact on the electron-phonon coupling in tubes, the following equalization can be
done [56]:

|gtu|2Atu = |ggr|2Agr, (3.54)
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with Agr =
√

3
2 a2

0 and Atu = |c× a| = πda being the unit cell area of graphene and the carbon
nanotube, respectively. Since a and c are perpendicular, having |c|=πd we yield:

|gtu|2 = |ggr|2
√

3a2
0

2πL
1
d
, (3.55)

whereby the length of the tube L enters through a normalization factor 1
N from the EPC element as

shown in [56] multiplied with the length of the unit cell a (a = L
N ).

Intra- and Intersubband Coupling with Transverse Optical Phonons

Modeling the electronic dynamics in the two lowest lying subbands we have to consider intraband
coupling elements which we also assume for interband scattering between the conduction subbands.

|gλλγ
gr |2 = < g2

Γ,gr >F [1∓ cos(Θ+Θ
′
)]. (3.56)

The ∓ refers to the phonon modes γ = LO/TO with Θ being the angle between the electronic k
and the phononic q vector and Θ

′
between k+q. With the equalization Eq. (3.54) we obtain for

nanotubes:

|gλλγ

tu |2 = < g2
Γ,gr >F

√
3a2

0
2πdL

[1∓ cos(Θ+Θ
′
)]. (3.57)

Since in metallic nanotubes k and q are parallel to the tube axis, Θ
′
and Θ can only take the value

0 or π . Therefore, intraband coupling with LO phonons vanishes and leads to a factor of 2 for the
coupling strength with the Γ TO phonon mode. This implies that inter- and intrasubband relaxation
is driven by Γ TO phonons and we finally have:

|gΓTO
tu |2 = < g2

Γ,gr >F

√
3a2

0
πdL

. (3.58)

In semiconducting nanotubes the band structure is parabolic and exhibit a band gap in the few
hundred meV range. To extrapolate the formulas, which are derived for metallic nanotubes one
would have to take an extra angle dependence into account [48].

Intrasubband Coupling with Longitudinal Acoustic Phonons

To obtain the carrier-phonon coupling elements, we follow the derivation for graphene from Ref.
[38]:

|ggr|2 =
D2h̄

2mωqAgr
|q|2[1+µλcos(φk−q−φk)], (3.59)

µ,λ =±1 is the chirality index with µ,λ = 1 for the conduction band. In the case of intraband
coupling φk−q = φk as also λ = µ yielding

|gΓLA
tu (q)|2 = h̄2

L
D2

πmβ ΓLA
1
d
|q|, (3.60)
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with the deformation potential D = 16eV and the mass density of graphene m = 7,6 · 10−8 g
cm2 .

We point out the explicit dependence on the modulus of the phonon momentum |q|, which is in
contrast to the corresponding coupling element for optical phonons.

3.4 At a Glance

In this chapter we introduced the special properties of carbon nanotubes onto their one-dimensional
confinement of the acting quasiparticles. We derived the band structure stemming from graphene,
the optical matrix element including the allowed optical transitions and the electron-phonon
coupling for acoustic and optical phonons in CNTs. Beside this, the different possibilities of rolling
up the graphene sheet produce a huge variety of tubes which have different basic features, e.g.
exhibiting a band gap or not, i.e. being semiconducting or metallic in contrast to its mother material
being only the latter one.
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4
Relaxation Dynamics in Semiconducting

Nanotubes

The physical process of photoluminescence excitation (PLE) is in the case of CNTs the primary
process for assigning the tube chirality by their optical transition energies E11 and E22. The
main aim of this chapter is to understand the non-radiative relaxation process of optically excited
non-equilibrium carriers through scattering with optical and acoustic phonons. The calculations
are based on the density matrix theory giving microscopic access to in time and momentum
resolved carrier dynamics. It is major challenge to distinguish the different contributions of the
experimentally observed differential transmission spectra and their resulting relaxation times.
Comparing the experimental spectra to theoretical calculations the observed relaxation times
can be addressed to inter- and intrasubband carrier scattering with optical and acoustic phonons.
The relaxation times extracted from the obtained dynamics are offering a direct comparison to
recent two-color pump-probe experiments done by O. Dyatlova in the group of Prof. U. Woggon
[16, 17]. Due to the flexible control of the input parameters like the duration and frequency of the
exciting pulse it is possible to adapt the variation of the pump and probe energy to the experimental
investigations. The developed theory allows moreover the simulation for a wide range of tubes
opening the analysis on global behaviors like diameter and chirality dependence for semiconducting
carbon nanotubes.



4.1. EXPERIMENTAL TECHNIQUES ON NANOTUBES

4.1 Experimental Techniques on Nanotubes

The experimental techniques on carbon nanotubes lead to specific insights of their optical and
electronic and phononic properties. Raman spectroscopy enables the characterization of different
phonon modes occurring in a tube and also their coupling strength with electrons [57, 49]. Pho-
toluminescene excitation (PLE) spectroscopy allows the specific identification of a CNT by its
unique optical transition energies. This works only for semiconducting tubes since a band gap is
a prerequisite. The intensities emitted by the tubes contained in the sample are measured (there
are always more than one tube in a sample) by driving a range of excitation wavelengths through.
Pump-probe spectroscopy can determine relaxation times within the process of PLE resolving
timescales down to femtoseconds [58].

4.1.1 Photoluminescence Excitation (PLE)

The PLE technique is performed by analyzing the emission spectra of a material while tuning the
energy of the excitation photons. No emission means that the excitation energy is below the band
gap. PLE is the process of emission of light (photons) from a solid that is in the state of lower
energy and after absorption of light at high frequency gets into an excited state of non-equilibrium.
The carrier relaxation towards an equilibrium ground state causes the emission of a photon whose
energy is related to the band gap value of the material [6]. For CNTs this process is assigned to
the well defined optical transition energies Eii with i = 1,2 exhibiting divergences in the density of
states, the Van Hove Singularities that dominate the process of light absorption and emission, cp.

E22

E11

Figure 4.1: The process of optical absorption and emission within the single particle picture for photolumi-
nescence excitation (PLE), reflecting the scientific knowledge in 2007, adapted from [6].
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Process Scattering partners Energy region Timescale
Absorption electron-photon E22 tpulse depen-

dent
Relaxation electron-phonon E22 to E11 hundred of fs

up to ps
Emission electron-photon E11 ns

Table 4.1: Identifying the subprocesses of photoluminescence excitation (PLE) assigning within which
energy region which scattering partners are leading to different relaxation timescales. We note that the PLE
process covers a range of 10−6 in time.

the right side of Fig. 4.1.
Bachilo et al. published spectroflurimetric measurements on isolated single walled carbon nan-
otubes in aqueous surfactant suspensions [14]. The authors obtained distinct electronic absorption

Figure 4.2: PLE in greater detail: A) generating non-equilibrium carriers via photon absorption with
the following redistribution R) through scattering with optical and acoustic phonons and final radiative
recombination under photon emission E) for a semiconducting nanotube. For the relaxation of the holes we
assume at this stage a symmetric behavior of the scattering dynamics with the same phonon modes as for the
electrons.
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Figure 4.3: My own PLE map recorded with the friendly permission and help from Dr. A. Setaro in the
group of Prof. S. Reich. The measured intensity of the emission is plotted over the excitation and emission
wavelength. The sample contained (7,5), (7,6), (6,5), (9,4) and (8,4) tubes identified through their unique
transition energies E22 for absorption and E11 for emission.

and emission transitions for more than 30 different tube species. Combining the measured results
with resonant Raman data, enabled them to associate each optical transition to a certain nanotube
identified by their chiral indices (n1,n2). By mapping the luminescence spectra as a function of the
excitation energy they created a two dimensional plot.
The largest intensities of the joint density of states (JDOS) in correspondence of the van-Hove
singularities make the PLE process essentially given by the photo absorption at the E22 and the
photo emission at the E11 transition. As these transitions are unique for a certain (n1,n2) species,
their determination allows the clear identification of different CNTs. Through the confinement
in one dimension the PLE charts show sharp peaks for the different chiralities. The general de-
scription of the PLE process in CNTs can be found e.g. in [6, 59]. Figure 4.1 displays a sketch of
photoluminescence excitation with the state of knowledge in the year 2007 including the radiative
and non-radiative subprocesses. In table 4.1 the timescales on which the respective processes
take place are summarized. By our investigations we gained a detailed insight in the process of
non-radiative carrier relaxation between absorption and emission. The absorption, emission and
relaxation processes for resonant excitation are shown in greater detail in Fig. 4.2 . We extracted
how carriers relax from the excited non-equilibrium state into the thermalized equilibrium one
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under the emission of transverse optical (TO) and longitudinal acoustic (LA) phonons between
the lowest conduction subbands C2 and C1 before radiative recombination takes place. For the
relaxation dynamics between the absorption at E22 and the recombination at E11, we are able to
address the corresponding phonon modes and how they can be assigned via the obtained relaxation
times in the differential decay spectra of corresponding experiments [16, 17]. To understand how to
measure and obtain such a spectrum I did my own PLE chart in the group of Prof. S. Reich, cp. Fig.
4.3. The plot shows the observed emission intensity over the excitation and emission wavelength.
Cutting along these axes yields the emission and absorption at fixed energy points. The transition
energies of absorption E22 and emission E11 can be used to identify the tubes present in the sample.
As the excitation source a HgXe lamp has been used and the desired wavelength was selected
through a grating. The emission spectrum got recorded with an InGaAs detector. Repeating this
process under different excitation wavelengths we obtained the PLE chart.

4.1.2 Ultrafast Pump-Probe Experiments

While continuous wave photoemission spectroscopy provides insight into the structure of the
electronic density of states of the material by providing the position of the Van Hove singularities,
the relaxation dynamics in a solid state can be studied through time resolved spectroscopic tech-
niques. Among them, pump-probe spectroscopy can investigate the ultrafast processes which occur
between different energy levels like the subbands in carbon nanotubes. The structure is excited with
a strong pump laser pulse, i.e. with a high intensity, creating a non-equilibrium carrier density at a
certain energy point through a defined wavelength of the pump laser. In the band to band transition
picture this is viewed as the pumping of electrons from the valence into the empty conduction

pump pulse

probe pulse

delay time    t

(7,5) tube

Δ

Figure 4.4: Sketch of pump-probe spectroscopy for the (7,5) carbon nanotube related to the upcoming
experiments [17]. The tube is excited via a strong pump pulse with a width of t pump ≈ 190fs followed by
weaker probe pulse with t probe ≈ 300fs within a delay time ∆t.
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Figure 4.5: Differential transmission curves recorded from two-color pump-probe measurements. The
measured transmission signal resulting from both pulses ∆T = ∆T (∆t) related to the signal T without the
pump pulse yields the differential transmission spectrum (DTS) ∆T

T with respect to the delay time ∆t between
the pump and probe pulse. Pump and probe energies are chosen resonant to the transition energies E22 and
E11. The inset displays the fitting with a bi-exponential decay function, taken from [16].

subband. A second weaker laser beam, called probe, is used to monitor the change in the induced
carrier density at defined energies. When the probe energy equals the pump energy one would
speak of a one-color pump-probe experiment. For the multi-subband structure of single-walled
carbon nanotubes, at this constant energy levels both of the lowest lying subbands can be involved.
In contrast, in a two-color pump-probe experiment the wavelengths of the two lasers are different,
which will be in the focus of the experiments described by our calculations in section 4.4.

Differential Transmission Curves-Assigning of Relaxation Processes

A number of one- and two-color pump-probe experiments measuring the relaxation dynamics of
non-equilibrium carriers have been performed, revealing different relaxation times and offering
a variety of possible explanations. Here we give a short overview of these experimental results
within the last years in the field of carrier relaxation dynamics in carbon nanotubes [60, 61, 58,
62, 63, 64, 65] which is adapted from our previous publication [16]. Ostojic et al. observed decay
times within two different timescales. One in the range between 5 to 20ps and a faster component
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between 0.3 to 1.2ps. The slower times are viewed as the lower boundary of radiative lifetimes
resulting from interband carrier recombination, while the faster times have been identified with
the non-radiative intraband relaxation of carriers in tubes that have been excited non-resonantly
[60]. With ultrashort sub 10fs pump pulses Manzoni et al. resolved intersubband exciton relaxation
and obtained a decay time constant of 40fs [58]. Within a two-dimensional nonlinear optical
experiment on nanotubes Graham et al. observed also a bi-exponential decay with a fast time
component of 0.12fs and a slower one of 1.25ps [65]. In experiment the transmission signal over
the delay time between the pump and probe pulses are measured, cp. Fig. 4.5. On a first view
such curves, being plotted in half logarithmic scale and normalized to one, can be divided into
different stages. First, the transmission signal raises within a few hundred femtoseconds to its
maximum, followed by a multi-exponential decay of the signal. In all experiments of Dyatlova et al.
a three-exponential decay of the differential transmission signal is observed, whereby the samples
differ in their composition. In Ref. [16] the sample contained up to 17 different tube species and
while in Ref. [17] the samples have been chirality enriched with a dominating tube specie. In both
cases the fastest relaxation time τ1 of the signal decay within the first few picoseconds is followed
by a second time τ2 ranging from approximately 7 up to 50ps. Finally a third component τ3 on a
timescale of hundreds of picoseconds up to nanoseconds has been measured. With our calculations
we reveal relaxation times from intra- and intersubband carrier dynamics via electron-phonon
scattering from hundreds of femtoseconds up to the first picoseconds. These times we compared to
the experimentally obtained fastest relaxation time τ1. The other two timescales are beyond the
current state of our simulation, which could be embedded by extending the model to the process of
radiative recombination of the relaxed carriers at E11. The task is now to interpret the observed
decay times with our theoretical microscopic model and to assign which electron-phonon scattering
processes leading to them. From our calculations, cp. Eq. (2.17) and (2.18) we plot the temporal
evolution of the electronic population ρ l

ε(t) within the subbands l = C2,C1 at certain points in
energy. The occupation probabilities of the exemplary semiconducting (23,0) zig-zag tube for the
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Figure 4.6: Occupation probabilities ρ l
ε fitted at Eexc within C2 and lowered via optical phonon scattering

within C1 at Eexc− εΓTO
q0

. On the left side the occupations are plotted linear over time, exhibiting a much
smaller but broadened distribution (red line) arising after intersubband scattering with optical phonons. The
right side displays the logarithmic version with both curves shifted to zero and normalized to 1.
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upper subband C2 at the excitation energy Eexc and lower C1 at Eexc− εΓTO
q0

are displayed in Fig.
4.6. On the left side the linear over time and on the right side the half-logarithmic representation
with their maxima normalized to 1 and shifted to zero are shown. The raise of the occupation
in the upper subband reflects the excitation via the external pulse by building up the electronic
occupation probability to its maximum. For the lower subband the scattered electronic distribution
is broadened and lowered. In the half-logarithmic representation the subsequent decay of the
occupation probability shows a linear dependence within the first 2 picoseconds. Comparing the
curves for both subbands in the half-logarithmic representation the raise of the occupation of the
lower is slower than for the upper subband. This broadened slower rise of the electronic distribution
reflects the process of intersubband scattering with optical phonons and can be identified with the
observed raise of the experimental differential transmission signal. The rising times for the latter
one can be estimated to a few hundred femtoseconds [66] which is in good agreement with the
theoretical simulated relaxation times we will extract in the next sections.
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4.1.3 Dielectric Screening in Single Walled Carbon Nanotubes

The surrounding medium of a nanosystem can weaken the Coulomb interactions and therefore
reduce the excitonic binding energies. This has been theoretically and experimentally demonstrated
for single walled carbon nanotubes [67, 68]. In a medium with a relative dielectric constant
εr = 1, the electron-electron as also the electron-hole interaction is interfered via the Coulomb
interaction. The first leads to a repulsive renormalization of the band gap while the attractive
coupling of the latter forms a bound state, i.e. excitons which is an important effect in carbon
nanotubes [69, 70, 71, 72, 73, 74]. The solution samples mainly containing (7,5), (7,6) and (8,7)
tubes investigated by Dyatlova et al. which we compare with our theoretical studies on relaxation
dynamics exhibit an averaged dielectric background constant εbg = 1.8±0.1. The excitonic binding
energies Eb

ii for the first three transitions of the semiconducting (10,0) zig-zag tube are plotted as
a function of the dielectric background constants εbg, cp. Fig. 4.7 (a) . Apparently for εbg in the
range between 1 and 2 the excitonic binding energies Eb

22 and Eb
11 for transitions being important in

our simulation are reduced approximately by 55%. With an increasing εbg the absorption spectrum
of the lowest excitonic transition E11 of the (7,5) tube shifts towards the free-particle Van Hove
singularity, cp. Fig. 4.7 (b). These results indicate that the electron-hole interaction is strongly
weakened via an increasing external screening and therefore the formation of excitons is suppressed.
From this, we can state that for tubes in samples with high dielectric screening and therefore weak
Coulomb interaction it is justified to focus on electron-phonon interaction since this mechanism is
dominating the carrier relaxation.

(a) (b)

Figure 4.7: (a) The influence of the dielectric background constant εbg on the excitonic binding energy Eb
ii

for the first three transitions of the semiconducting (10,0) zig-zag tube. (b) Absorption spectra for the (7,5)
tube for different εbg. With increasing values it exhibits a red shift to lower energies towards the free-particle
Van Hove singularities, taken from [67, 68].
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4.2 Carrier Relaxation Dynamics via Electron-Phonon Scattering

4.2.1 Simulation of the Excitation

The excitation of the tube with light is achieved within a semi-classical treatment expressed via the
light matter Hamiltonian, cp. section 2.1:

Hcar−l f = ih̄
e0

m0
∑
λ λ
′
∑
kk′

Mλ λ
′

kk′
·A(t)a†

λ k
a

λ
′k′
. (4.1)

The vector potential A(t) (within dipole approximation) builds up a polarization between the
second lowest valence and conduction bands V2 and C2. It contains a slow varying Gaussian shaped
envelope with an amplitude A0 and an exponential part with a temporal pulse width σt and a cosine
part modeling the fast oscillations driven by the external excitation frequency ωexc:

A(t) = A0 exp
[
−t2

2σ2
t

]
cos
(

Eexc

h̄
t
)
, (4.2)

with the excitation frequency corresponding to the excitation energy h̄ωexc = Eexc.
The width of the pulse duration tpulse is given in Full Width Half Maximum (FWHM) which is
related to σt via tpulse = 2

√
2ln2 σt . We compare pulses with different durations in Fig. 4.8. An ultra

short pulse (yellow) with a width of tpulse = 28fs in FWHM and an amplitude of A0 = 0.13
[

eVfs
e0 nm

]
,

which we used in the most of our theoretical investigations in comparison to a five times wider
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Figure 4.8: Gaussian shaped excitation pulses A(t) over time: a) short pulse width of tpulse = 28fs (FWHM)
and an amplitude of A0 = 0.13

[ eV f s
e0 nm

]
. b) five times larger pulse width of tpulse = 190fs and A0 = 0.05

[ eV f s
e0 nm

]
as used in the simulation for experiment [17]. The pulses are shifted to the maximum of their amplitude to
avoid losses within the numerical simulation.
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pulse (red) with tpulse = 190fs and A0 = 0.05
[

eVfs
e0 nm

]
according to the setup used in the experiment

of Dyatlova et al. [17] are plotted. The amplitude is chosen appropriate to keep the area under
the envelope, i.e. the energy of the pulse constantly small to prevent high electronic occupation
probabilities. Otherwise, since we are dealing with the Boltzmann-Equation, cp. Eq. (2.35) strong
Pauli-Blocking would show up.

4.2.2 Relaxation Channels in Semiconducting Carbon Nanotubes

The one-dimensional band structure of single-walled carbon nanotubes around the K-points can be
viewed within the zone folding approximation as conic sections of the Dirac cone in graphene, cp.
section 3.1.3. Depending whether the cutting lines hit the K-point or not a linear (without band
gap) or a parabolic band structure exhibiting a band gap in the eV range is obtained dividing the
tubes in metallic and semiconducting, respectively [2]. For our investigations of the photolumi-
nescence excitation only semiconducting nanotubes are of interest, since a band gap for radiative
recombination is necessary. The channels for the electronic relaxation processes via scattering with
optical phonons are sketched in Fig. 4.9. We assume in the vicinity of the K-point mirror symmetry
of the valence and conduction subbands with respect to the Fermi energy EF , cp. section 3.1.1.
Furthermore, in the case of zig-zag tubes the parabolic band structure is also mirror symmetric
respectively to the energy axis (y-axis). Optical excitation of a tube around the K-point at a certain
energy implies the excitation of two points in energy cutting the parabola. Therefore, a relaxation

Figure 4.9: Sketch of the intra- and intersubband relaxation channels of a semiconducting zig-zag tube.
Green arrows depict intra- and red intersubband scattering via optical phonons. The optical excitation takes
place at a constant energy and hence at the two cutting points with the C2 parabola. Due to mirror symmetry
we can simulate the relaxation on one side of the parabola taking both relaxation channels into account by
doubling the electron-phonon coupling.
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process with a constant optical phonon energy includes two relaxation channels as depicted for
the case of intra- and intersubband scattering with green and red arrows, respectively. Because of
the latter described mirror symmetry, we can simulate the relaxation dynamics at one side of the
parabola and take the second scattering channel into account by a 2 times stronger electron-phonon
coupling element. For acoustic phonons the phonon energy is not a constant value. The phonon
dispersion is approximated as a linear function around the Γ-point of graphene and further adapted
to carbon nanotubes. In Fig. 4.10 the scattering mechanism with acoustic phonons in nanotubes is
sketched. A scattering event between a carrier and an acoustic phonon is only possible, when the
electronic scattering process in momentum and energy matches the linear approximated phononic
dispersion. From Eq. (2.47) we can estimate, that within the relevant region of the relaxation
dynamics the acoustic phonons can reach a maximum energy of about 40meV. Because the energy
of an acoustic phonon failed to be large enough to overcome the energetic distance between the
concerned subbands an intersubband-scattering is unlikely and therefore not investigated.

scattering via acoustic 

phonons determined by 

C1

ϵ
0
1

+1

Figure 4.10: Sketch of exemplary intraband scattering processes via acoustic phonons with a linear
phonon dispersion (orange lines) along the parabolic approximated electronic band structure of a random
semiconducting carbon nanotube. For scattering towards the band edge the necessary phonon momentum
is smaller than for scattering events starting further away at higher energies. We note that the slop of the
acoustic phonon dispersion is much lower than displayed in the sketch. Picture taken from [75].
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4.2.3 Intrasubband Scattering: One-Color Pump-Probe

We start with the case of intrasubband relaxation dynamics considering optical and acoustic
phonon modes first separately and finally together. From this we compare the influence of the
electronic relaxation behavior and emphasize the competition of the phonon mode dependent
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Figure 4.11: Relaxation dynamics of optically excited electrons for the (14,1) tube. Panel (a) displays
the electronic occupation probability ρ

C1
ε (t) in the lowest subband C1 resolved in energy and time. A

Gaussian-like non-equilibrium carrier distribution at 0.74eV is generated via optical pumping of carriers
at Eexc = 1.47eV. Within a few picoseconds the carriers relaxed by scattering with optical and acoustic
phonons towards the band edge into equilibrium, cp. the Fermi-like distribution. In panel (b) the discrete
and continuous acting of the optical and acoustic relaxation behavior with a contour plot is displayed, taken
from [76].
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induced relaxation channels. Our here presented investigations and results are published in [76].
Through the evaluation of the coupled dynamical equations of the microscopic polarization pk and
electronic occupations ρ

C1
k we are able to simulate the relaxation dynamics with optical (ΓTO) and

acoustic (ΓLA) phonon modes for the exemplary (14,1) semiconducting nanotube, cp. Fig. 4.11.
Within the optical excitation via a Gaussian pulse with tpulse = 28fs (in FWHM), an amplitude of

A0 = 0.13
[

eVfs
e0nm

]
and an excitation energy of Eexc = 1.47eV corresponding to the E22 transition, a

non-equilibrium distribution is generated around 0.74eV, i.e. E22/2 by lifting electrons from the
valence to the conduction subband. We focus on the electronic dynamics, since the hole dynamics
has no influence on the further electron relaxation. Therefore, we constrain to the conduction
subbands within the band to band transition picture. The electrons are redistributed to energetically
lower states by emission of optical phonons with a constant energy of εΓTO

q0
= 0.192eV. From the

energy region below 0.54eV the carriers relax towards the band edge ε
C1
0 in smaller getting energy

steps via scattering with acoustic phonons. Finally the carrier distribution is going into equilibrium
by building up a Fermi-like distribution around 0.35eV≈ ε

C1
0 , cp. Fig. 4.11 (b). The entire process

is subjected to the conservation of energy and momentum stemming from the Boltzmann equation
(2.35) within the Markov approximation. For a detailed comparison we plotted the electronic
occupation probability over energy at different times for the cases of intrasubband relaxation driven
with (a) optical, (b) acoustic and (c) optical with acoustic phonons together, cp. Fig. 4.12.
(a) Optical phonons:

The relaxation process starts with a non-equilibrium electronic distribution at 0.74eV and goes into
the equilibrium state around 0.35eV≈ ε

C1
0 . For the case of optical phonon scattering this takes up to

2ps cp. Fig. 4.12 (a). We see a redistribution in discrete steps of the phonon energy εΓTO
q0

= 0.192eV
due to the energy conservation inherent Markovian dynamics. Therefore, within the available energy
region of 0.39eV two scattering processes are possible leading to pronounced carrier occupations
at approximately 0.55 and 0.36eV during the first hundreds of femtoseconds after the optical
excitation. The pronounced Markovian kink raising at 0.54eV reflects the singularity resulting

from the analytical scattering prefactor Xl ΓTO
k ∓ = 2αl

√
k2∓ εΓTO

q0
αl

in Eq. (2.35). The observed kink

in the carrier occupation is an artifact of the Markov approximation [77]. A smooth Fermi function
cannot be reached within the Markov approximation and without considering the Coulomb-induced
carrier-carrier interaction. An exponential fit of the time-resolved occupation probability at the
excitation energy yields an optical phonon-induced relaxation time of τ IA

C1
= 360fs.

(b) Acoustic phonons:
The relaxation dynamics from the interaction with acoustic phonons is significant slower compared
to optical phonons exceeding to a timescale of approximately 30ps being fifteen times larger than
with optical phonons. We also obtain an nearly six times larger relaxation time of τ IA

C1
= 2.1ps.

This can be ascribed to the almost flat acoustic phonon dispersion relation allowing scattering
processes with small momentum transfer q, which conserve energy and momentum at the same
time. Since the carrier-phonon coupling element scales with |q|, the relaxation dynamics governed
by acoustic phonons is slowed down. Compared to the case of optical phonons, the relaxation is
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Figure 4.12: Snap shots of the electronic occupation probabilities ρ
C1
ε (t) over energy from Fig. 4.11 (a)

at relevant times. The generated non-equilibrium electrons around 0.74eV are redistributed via electron-
phonon interaction into equilibrium in the vicinity of the band edge of C1. In Comparison: electron dynamics
through scattering with optical (a), acoustic (b), and (c) optical and acoustic phonons together. Figure taken
from [76].

not characterized by discrete scattering steps, since the dispersion relation of the considered ΓLA
phonons is linear. As a result, the excited carriers scatter in smaller getting steps to energetically
lower states and can reach spectral regions in the vicinity of the band edge.
(c) Optical and acoustic phonons:
Allowing both phonon modes, optical and acoustic together we arrive at a relaxation dynamics
passing on up to 15ps, cp. Fig. 4.12(c). Within the initial 500fs optical phonons dominate the
carrier relaxation. Beyond, on a picoseconds time scale, acoustic phonons start to be important
giving rise to a Fermi-like distribution. The Markov feature vanishes due to the additional relaxation
channel via emission of acoustic phonons. The exponential fit reveals a decreased relaxation time of
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τ IA
C1

= 280fs reflecting the higher scattering efficiency via the doubled number of relaxation channels
compared to the relaxation dynamics including only optical or acoustic phonons, respectively.

4.2.4 Excitation Energy

Referring to the equations of motion (2.17) and (2.18) the variation of the pump energy, i.e. Eexc

under accordingly probing at the same energy will have an influence on the relaxation times
depending on the respective dominating phonon modes. The exponential fit yielding the relaxation
time is performed at the excitation energy, i.e. Eexc = Epump = Eprobe modeling one-color pump-
probe experiments. We vary Eexc from the former fixed value of 1.47eV towards the band edge of
the energetically lowest subband C1. When scattering with optical phonons the carrier dynamics
becomes accelerated for reducing the energy from 1.47 to 1.18eV resulting in a decrease of the
relaxation time by approximately 44%, cp. the red solid line in Fig. 4.13 (b). The reason for this

behavior origins in the previous focused scattering prefactor Xl ΓTO
k ∓ = 2αl

√
k2∓ εΓTO

q0
αl

. For lower

excitation energies, the electronic momenta k involved in scattering processes become smaller
leading to larger scattering rates, which scales with 1/Xl ΓTO

k ∓ , cp. Eq. (2.42). In contrast, for
acoustic phonons, the relaxation time increases by approximately 23%, cp. Fig. 4.13 (a). This
can be understood through the dependence of the carrier-phonon coupling element on the phonon

2.2

2.4

2.6

R
el

ax
at

io
n

ti
m

e
τ

[p
s]

(a) Acoustic phonons

0.2

0.3

0.4

1.2 1.3 1.4 1.5

Excitation energy [eV]

(b)

Acoustic & optical phonons

23%

44%

33%

Optical  phonons

Figure 4.13: Influence of the excitation energy on the relaxation times for the (14,1) tube. We contrast the
electronic relaxation time trend of the interaction with (a) acoustic, (b) only optical and optical and acoustic
(dashed line) phonons, taken from [76].
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momentum |q|. Reducing the excitation energy also limits the momentum |q| to smaller values
resulting in a slowed-down relaxation dynamics, i. e. the relaxation time increases for smaller
excitation energies. This effect prevails even through the density of states increases toward the band
minimum resulting in a larger number of available scattering partners. Considering acoustic and
optical phonons yields the fastest relaxation times since every phonon mode creates an effective
relaxation channel. Like with only optical phonons we see a similar acceleration behavior towards
the band edge which is slightly weaker than for optical phonons alone, cp. 44% versus 33%. Now
the interplay of both phonon modes contribute: on one hand side we have smaller phonon momenta
q towards the band edge, i.e. for lowering the excitation energy and on the other side the smaller
getting electronic momenta k in the prefactors lead to shorter relaxation times.

4.2.5 Dependence on Diameter and Chirality

We extend at this stage our relaxation dynamic studies to variety of tubes considering:

• tubes with different diameters obeying nearly the same chiral angle ϑ

• scanning the range of chiral angles between 0
◦
< ϑ < 30

◦
with nearly constant diameter d

The excitation energy Eexc is fixed to the second optical transition E22 where the fitting of the
electronic occupation decay will be performed.

Diameter:
We chose tubes (n1,1) with nearly constant chiral angle ϑ ≈ 4.3

◦−2.1
◦

covering diameters from
0.9 to 1.8nm. We simulate consistently the scattering with acoustic, optical, and both phonon
modes together. In all three cases we see a slow-down trend in the relaxation times for tubes
with larger diameters, which origins in the 1

d dependence of both electron-phonon couplings,
cp. Eq. (3.58,3.60). For acoustic phonons the relaxation time increases from 1.2 to 7ps by a
factor of approximately six, cp. Fig. 4.14 (a). This results from the explicit dependence of the
electron-phonon coupling element for the LA mode on the absolute value of the transferred phonon
momentum. For larger tube diameters the subband curvature αl increases. Since we pump and
probe at the E22 transition we reach with increasing tube diameters further to the band edge of the
lower subband ε

C1
0 of the respective tube. The excitation closer to the band edge leads to smaller

phononic momentum transfer and therefore the coupling is weaker, cp. Fig. 4.13. This yields
directly to a slow down of the relaxation dynamics and finally larger relaxation times. In contrast,
the relaxation times for scattering with optical phonons decrease for diameters larger than 1.5nm in
spite of the 1/d-dependence of its electron-phonon coupling element, cp. Eq. (3.58). This can be
traced back to the variation of the excitation energy with the diameter. One has to keep in mind that
we fixed the excitation Eexc to the transition energy E22. Because for CNTs with large diameters
E22 decreases. This results in faster relaxation times, cp. Fig. 4.13 (b). Thus, scattering becomes
more efficient at lower excitation energies.
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Figure 4.14: Relaxation time performance with respect to the diameter for constant excitation energy
Eexc = E22 of each single tube. The investigated tubes with (n1,1) exhibit a slight change of the chiral angle
ϑ ≈ 4.3

◦ −2.1
◦
. Same phonon mode selection for (a) and (b) as used before, cp. Fig. 4.13, taken from [76].

Chirality:
Now we vary the chiral angle from zig-zag to armchair tubes by increasing the angle from ϑ = 0◦

to ϑ = 30◦with a minor change in diameter. We chose CNTs along the exemplary Kataura branch
2n1 + n2 = 29 including the so far discussed (14,1) tube, cp. Fig. 4.15. The relaxation times
in dependence of the chiral angle do not show such a strong change, in particular because the
subband curvature almost does not alter. The relaxation time τ IA

C1
is nearly independent of the chiral

angle for optical phonons, cp. Fig. 4.15 (b). This results from two counteracting mechanisms:
The 1/d dependence of the optical coupling element slows down the relaxation time, whereas the
reduced excitation energy for CNTs with increasing chiral angle gives rise to an acceleration of the
dynamics. An increase by approximately 30% in the relaxation times can be seen for interaction
with acoustic phonons, cp. Fig. 4.15 (a). This originates to some extend from the slight diameter
change along the investigated Kataura branch and the high sensitivity of the electron-phonon
coupling for acoustic phonons.
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Figure 4.15: Relaxation time dependence under the variation of the chiral angle from ϑ = 0
◦

to ϑ = 30
◦

for tubes along the Kataura branch 2n1 +n2 = 29. We mention, that a slight change in diameter from 1.14 to
1.29nm exists, taken from [76].

4.3 Intra- and Intersubband Dynamics-Two Color Pump-Probe Stud-
ies

We now extend the model by taking the second higher lying conduction subband C2 into account.
This allows us to study new features like intersubband relaxation driven by electron-phonon
scattering and its impact on the intraband dynamics of each subband. Further the influence of
the intrasubband relaxation channels on the intersubband times will be investigated. A result of
these studies will be, that intersubband scattering is only possible via optical phonons, since the
energy of acoustic phonons is to small to overcome the energetic distance between the conduction
subbands in semiconducting nanotubes. Also it will show up, that the subsequently C1 intrasubband
relaxation has no impact on the intersubband relaxation times. The investigations will follow the
concept of the last section to show how the extended two-band includes the one-band model and
which findings will change.

4.3.1 Relaxation Dynamics of the Semiconducting (23,0) Zig-Zag Tube

We simulate the relaxation dynamics by exciting, i.e. pumping the exemplary (23,0) zig-zag tube
at Eexc = Epump = 1.8eV which is approximately 0.464eV above the band edge of C2 to study the
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resulting relaxation dynamics through the interplay of the different electron-phonon interaction.
We perform the following electron-phonon scattering scenarios:

• (a) optical intra- and intersubband

• (b) acoustic intra- and optical intersubband

• (c) acoustic and optical intra- and optical intersubband

,cp. Fig.4.16. For (a) we see, that the non-equilibrium electronic occupation raising at 0.9eV
scatters within 1.2ps along C2 in equidistant steps of the optical phonon energy εΓTO

q0
towards the

band edge ε
C2
0 . During the first hundred femtoseconds the distribution raises in the lower subband

C1, indicating the intersubband scattering with optical phonons. The following intraband relaxation
towards ε

C1
0 into equilibrium is achieved on a timescale of 2.5ps. In contrast for intraband scattering

with acoustic phonons (b) the electron occupation relaxes energetically downwards continuously
in the range from 0.9− 0.8eV within C2 while leading to a broadened intersubband scattered
distribution around 0.708eV in C1. From there the electrons are quasi-continuously scattered
reaching further to the band edge since the decreasing phonon momenta allow subsequently smaller
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Figure 4.16: Phonon-induced relaxation dynamics of optically excited non-equilibrium carriers within the
two lowest lying subbands C2 (left side) and C1 (right side). Three cases are considered: Intrasubband
relaxation via optical (a), acoustic (b) and (c) optical together with acoustic phonon modes. The respective
intersubband scattering for all cases is driven with optical phonons, since the acoustic phonon energy is to
small to overcome the energetic separation between the subbands.
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pure intersubband intra- and intersubband 

Figure 4.17: Sketch of the different relaxation channels for the simulated cases. The right side displays
the pure intersubband relaxation τ IE

C2−C1
from the upper C2 into the lower C1 subband suppressing the

intrasubband relaxation, while on the left the full relaxation containing intra- and intersubband relaxation
τ IA&IE

C2
is shown.

energy steps in comparison to the large constant optical phonon energy. In combination of both
phonon modes (c) we can see that optical phonons dominate intraband relaxation within the first
hundred femtoseconds in C2 and the first picosecond in C1. For the relaxation in the upper C2
subband acoustic phonons do not account much. In contrast within the lower subband they play a
major role for the redistribution into the equilibrium state resulting in a larger timescale from 1ps
up to 20ps of the dynamics. We extract relaxation times via the same fitting routine used for the
intraband case for the intra- and intersubband relaxation times. We perform the fit at Eexc in the
upper and reduced by the optical phonon energy εΓTO

q0
in the lower subband, i.e. the point in energy

where the electron distribution raises after intersubband scattering. First we simulate the full
relaxation with all intrasubband relaxation channels allowed, cp. the left side of Fig. 4.17 obtaining
the relaxation times τ IA&IE

C2
and τ IA

C1
. To extract only the intersubband relaxation times τ IE

C2−C1
we

suppress the intrasubband relaxation within C2. Therefore, the non-equilibrium distribution can
just relax via intersubband scattering into C1, cp. right side Fig. 4.17. We summarize the relaxation
times extracted for the different scattering scenarios in table 4.2:

Scattering partner τ IA& IE
C2

[ps] τ IA
C1

[ps] τ IE
C2−C1

[ps]
(a) optical 0.317 0.334 0.742
(b) acoustic 0.432 0.492 0.742
(c) acoustic & optical 0.228 0.267 0.741

Table 4.2: Relaxation times extracted for the semiconducting (23,0) zig-zag tube for the three scattering
scenarios (a)-(c). The tube is pumped at 1.8eV with pulse width of tpulse = 28fs and A0 =

[
0.13 eV f s

e0 nm

]
. The

fitting is performed for the upper C2 at Eexc and for the lower C1 subband at Eexc− εΓTO
q0

.
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4.3.2 Excitation Energy

For the exemplary semiconducting (23,0) tube we study the influence of the excitation energy Eexc

on the relaxation dynamics within the two band model. We vary Eexc from 1.4 to 2.1eV under
the consideration of the interplay from the different phonon modes according to our previous
investigations. The extracted relaxation times for the upper C2 and lower C1 subband include
now intra and intersubband relaxation dynamics, cp. Fig. 4.18. Within the upper subband C2
the relaxation dynamics fastens up for all three cases (a)-(c) by lowering Eexc, cp. upper panel in
Fig. 4.18. The strongest trend is obtained for scattering with optical phonons (b) by lowering the
relaxation times about 51%. With acoustic phonons (a) the relaxation times change only slightly in
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Figure 4.19: Intersubband relaxation times fitted at the excitation energy for scattering with (a) acoustic, (b)
optical phonons and (c) both modes together.

the upper subband by 11% and with both modes combined by 39%. Interestingly the behavior for
the lower subband C1 shows a significant difference comparing the electronic relaxation dynamics
from scattering with acoustic or optical phonons. This origins like in the one-band model in the
dependence of the acoustic carrier-phonon element on the phonon momentum |q|. For smaller
excitation energies the transferred phonon momentum is reduced which results in a slow down of
the relaxation dynamics, cp. Fig. channel-sketch-acoustic. We have to note that in this investigation
we choose a much more extended range of energy emphasizing a larger trend of the relaxation
time behavior. With optical phonons we see a slight decrease of the relaxation times of 15% when
changing to smaller excitation energies. In opposite, for the interaction with acoustic phonons after
a similar decrease in the range of 2.1−1.8eV the relaxation times show a large slow down up to
approximately 2.13ps for decreasing the excitation energy to 1.4eV, cp. (a) in the lower panel
of Fig. 4.18. With optical phonons the decrease behavior of the relaxation times are reflected by
the prefactors X and Y for intra- and intersubband scattering , cp. Eq. (2.44) and (2.46). Since
both depend on the electronic momentum k and therefore on the energy of the band structure
ε l

k = αlk2 + ε l
0 it follows that for lower energies within the subbband the prefactors are smaller

and hence the scattering rates are larger and the relaxation times fasten up. For optical phonon
scattering this prevails in both subbands. Below 1.7eV the relaxation times in the lower subband
slow shortly down but the global trend fastens up. This is a remnant of the Markov approximation
occurring via fitting the temporal decay of the electronic distribution, which is most prominent for
the large energy steps of optical phonons. The minor change of the relaxation times in the lower
subband C1 compared to the large on in the upper subband C2 stems from the fact that the electrons
cannot scatter further due to the energy conservation and constant optical phonon energies. In
comparison non-equilibrium electrons generated closer the band edge in the upper subband have
an extra intersubband relaxation channel and can scatter further into the lower subband C1. To
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extract relaxation times for the intersubband scattering process with optical phonons we neglected
the intrasubband relaxation channels of the upper subband C2, cp. Fig. 4.17. We fitted the temporal
decay of the non-equilibrium electron distribution at the excitation energy. In the lower subband C1
we again simulated scattering with acoustic and optical phonon modes solely and together. We
obtain a linear slow down for an increasing excitation energy from approx 0.57 to 0.85ps, cp. Fig.
4.19. A clear distinction between the relaxation scenarios (a)-(c) cannot be made. Therefore, we
can conclude that the further relaxation processes in the lower subband have no influence on the
intersubband relaxation times. In comparison to the case of intra- and intersubband relaxation, cp.
Fig. 4.18 the relaxation times for the different scattering cases are clearly distinguishable within C2
due to intrasubband relaxation channels. Also the relaxation is faster due to the doubled number of
relaxation channels.
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4.3.3 Diameter and Chirality Dependence

Diameter

We also extend our studies analog to the single-band model to a variety of tubes considering the
two cases: change in diameter with constant chiral angle and tuning the chiral angle ϑ from 0 ◦

up to approximately 30 ◦. Within the two band model, the behavior of the relaxation times for the
interaction with the acoustic and optical phonon modes is investigated for intra- and intersubband
relaxation. For both cases the excitation energy Eexc is fixed to 1.8eV. The fit is performed for the
upper subband C2 at Eexcand the lower subband C1 at the point where the electronic distribution
raises after intersubband scattering, i.e. Eexc− εΓTO

q0
. Figure 4.20 displays the relaxation times

τ IA& IE
C2

and τ IA
C1

for varying the diameter from 1.57 to 2.51nm covering zig-zag tubes with the
constant chiral angle ϑ = 0 ◦. With (a), (b) and (c) the intrasubband scattering via acoustic, optical
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Figure 4.20: The relaxation times for the upper and lower subband τ IA&IE
C2

and τ IA
C1

as a function of the
nanotube diameter d for the cases of electron-phonon interaction (a)-(c).The excitation setup is kept consistent
to the previous studies:Eexc = 1.8eV, tpulse = 28fs and A0 =

[
0.13 eV f s

e0 nm

]
. Since we chose zig-zag tubes the

chiral angle is constant, i.e. ϑ = 0 ◦.
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Figure 4.21: Intersubband relaxation times in dependence of the tube diameter fitted at the Eexc within C2
according to Fig. 4.17.

and both phonon modes combined in both subbands is depicted. We plotted both relaxation times
for C2 and C1 together in the same panel to emphasize their strong sensitivity on the tube diameter.
As expected from the previous investigation, we find faster relaxation times in the upper subband
C2. Reducing the diameter leads to an acceleration of the relaxation dynamics in both subbands for
all three cases. The relaxation times decrease approximately 50% for acoustic, 55% for acoustic
and optical and 60% for scattering with only optical phonons. These trends can be ascribed to
the explicit dependence of the electron-phonon coupling elements |gγ

q0 | (γ = ΓTO,ΓLA) on the
diameter. For optical phonons (b) below 1.6nm, τ IA& IE

C2
and τ IA

C1
become similar. This origins in

the increase of the energetic difference between the two subbands with decreasing diameter mainly
the intersubband gap ∆ε , cp. Fig. 4.22. The energy gap clearly exceeds the optical phonon energy
εΓTO

q0
= 192meV leading to inefficient intersubband scattering. Therefore, the dynamics in the

two subbands is determined only by the intrasubband scattering and no difference between both
relaxation times can be made, cp. Fig. 4.20 (b). The slowed-down relaxation dynamics for tubes
with large chiral angles can be explained by the slight increase of the diameter, when varying the
chiral angle from the zig-zag to the armchair configuration. The influence on the intersubband
relaxation is with a fastening of 51% for lowering the tube diameter much stronger in comparison
to the variation of the excitation energy of the single tube with constant diameter.
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Chirality

We complete our investigations of the intra- and intersubband relaxation dynamics on the (23,0)
tube with the variation of the chiral angle. We chose tubes exhibiting only a small change in
diameter of 0.24nm to keep the influence of the strong diameter dependence shown in the previous
section low. The subband gap ∆ε between the band edges of C2 and C1 decreases therefore also
slightly by approximately 13% with increasing chiral angle, cp. Fig. 4.22. The presented tubes
cover the whole range of chiral angles from ϑ = 0

◦
for the (23,0) zig-zag to ϑ = 27,8

◦
for the

armchair like (16,14) tube. The pump energy (Epump = Eexc) is consistently set to 1.8eV with
a pulse width of tpulse = 28fs and an amplitude of A0 = 0.13

[ eV f s
e0nm

]
, following the setups of the

diameter studies. For both subbands we see that with increasing chiral angle with only acoustic (a)
or optical (b) and optical with acoustic modes combined (c) the relaxation times τ IA&IE

C2
and τ IA

C1

slow slightly down about 19% for C2 and 23% for C1, cp. Fig. 4.23. This results, like in the case
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Figure 4.23: Influence of the chiral angle ϑ on the relaxation times in the upper and lower subband τ IA& IE
C2

and τ IA
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comparing the different intraband relaxation channels with optical and acoustic phonons. The
variation of ϑ from 0

◦
to 27,8

◦
correspond to tubes along the Kataura branch 2n1 +n2 = 46, while the tube

diameter show just slight increase from 1.8 to 2nm.
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Figure 4.24: The intersubband relaxation time τ IE
C2−C1

behavior in dependence of the chiral angle ϑ . Again
the subsequent C1 intraband relaxation has no influence on the intersubband relaxation dynamics.

of only intraband relaxation in the single-band model, cp. section 4.2.5, from the slight change of
the diameter from 1.8 to 2nm. Also for the intersubband relaxation time τ IE

C2−C1
this prevails by a

slow down from 0.74 to 0.9ps by varying the chiral angle ϑ from the zig-zag to the armchair-like
configuration.
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4.4 An Experimental Motivated Two Color Pump-Probe Study

4.4.1 Modeling the Experiment

To test the presented theoretical model of inter- and intrasubband relaxation dynamics we will
finally compare it to recent two-color pump-probe spectroscopy experiments done by O.Dyatlova
et al. in the group of Prof. U. Woggon. The experiments have been performed with enriched
chiralities samples of the semiconducting (7,5) and (7,6) carbon nanotubes which we will label
sample (A) and (B), respectively. For the investigations of the relaxation process within a tube it
is crucial to have samples with a high purity of a single nanotube chirality. In general a sample
contains more than one tube species resulting from the growing mechanisms. This causes, that
tubes are not spatially separated and tube-tube interactions leading to energy transfers cannot be
excluded. The hereafter presented results of our mutual stimulated experimental and theoretical
research can be found in our present paper [17]. As a first step, the experimental characterization
of the samples is done within the earlier described photoluminescence excitation spectroscopy. A
pulsed titanium sapphire laser was used for exciting the samples to obtain the PLE maps shown in
Fig. 4.25. From this 14 different excitation energies between 1.82−2.04eV have been selected
and the emission in the range from 1.05 to 1.35eV have been recorded. The obtained PLE maps
for the (A) and (B) samples are displayed as contour plots of the photoluminescence intensity
over the excitation and emission energy ranges. Via the intensity peaks sample (A) exhibit clearly
(7,5) tubes while for sample (B) beside the desired (7,6), also (7,5) and (8,3) tubes show up.
In comparison with reference [14] the transition energies E22 and E11 have been determined for
the (7,5) tubes in sample (A) and the (7,6) tubes in sample (B). These values have been further
used as the pump and probe energies in the following studies. To estimate the chiral purity of the
(7,5) and (7,6) species in the (A) and (B) samples, respectively absorption measurements have

Figure 4.25: The recorded photoluminescence excitation spectra from sample (A) being enriched with (7,5)
and sample (B) with (7,6) tubes. The photoluminescence intensity over the emission for the respective
excitation energies are displayed, taken from [17].
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Figure 4.26: Sketch of the possible electron relaxation channels of the (7,5) tube with constant optical
phonon and smaller getting acoustic phonon scattering steps. The redistribution process from at E22/2
generated non-equilibrium (red Gaussian) into equilibrium displayed by the Fermi-distribution around ε

C1
0

(orange), taken from [17].

been performed. The chiral purity of the (7,5) and (7,6) tubes has been estimated via absorption
measurements of the respective (A) and (B) samples. The absorption profiles have been fitted
with Lorentzian curves and the resulting enclosed area has been integrated. The chiral purity
of the (7,5) and (7,6) species for the (A) and (B) sample have been estimated to be 49% and
24%, respectively. The observation of the relaxation dynamics is performed via energy-selective
two-color pump-probe experiments. We described the setup in principal in section 4.1.2 and refer
the reader for more details to our paper [17]. With the possibility to tune the wavelengths of the
synchronized pump and probe laser systems, the behavior of the relaxation dynamics between
the lowest lying C2 and C1 subbands have been investigated. For our theoretical simulation we
applied the experimental setup considering the special case of resonant pumping at E(7,5)

22 . this leads
directly to the relaxation of the non-equilibrium electronic distribution into C1 via intersubband
scattering with optical phonons with subsequent optical and acoustic intraband relaxation. In
Fig. 4.26 the relaxation channels and the relaxation behavior constraint to this setup are sketched.
First, electrons are pumped by the external laser field through the resonant transition E(7,5)

22 into
the C2 subband (a) from where they scatter directly into the lower conduction subband C1 via
optical (TO) phonons (b) and finally relax through interaction with acoustic (LA) phonons into
an equilibrium towards the band edge ε

C1
0 . We evaluated the equations of motion, cp. Eq. (2.19)

numerically for the carrier occupations ρ
C2,C1
ε (t) close to the experimental setup pumping optically

resonant to the earlier determined E(7,5)
22 transition with a pulse width of tpulse = 190fs in FWHM.
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Figure 4.27: Time and momentum resolved inter- and intrasubband relaxation dynamics of the (7,5) tube.
Pumped resonantly at E22 with a pulse width of tpulse = 190fs and an amplitude A0 = 0.05

[
eVfs
e0nm

]
. Carriers

are injected at the band edge ε
C2
0 = E22/2 scattering further under emission of ΓTO phonons within a

few hundred femtoseconds into C1. From there they are finally redistributed via acoustic phonons into a
Fermi-like equilibrium on a picosecond timescale, taken from [17].

Thus, a non-equilibrium distribution of electrons is generated at the band edge ε
C2
0 and we trace

the dynamics of the electronic occupations along C2 and C1. The phonons are treated within
a bath approximation as a Bose-Einstein distribution (cp. Appendix) at room temperature, i.e.
T = 300K. The phonon-induced dephasing of the microscopic polarization, cp. Eq. (2.39) is
approximated via an average dephasing rate h̄γ = 12.5meV. The calculated carrier occupations
are depicted in Fig. 4.27 as a function of energy and time for the experimentally investigated (7,5)
tube. The generated non-equilibrium distribution at the band edge ε

C2
0 , i.e. E22/2 = 1.05eV relaxes

during the first hundred femtoseconds through intersubband-scattering via ΓTO phonons into the
lower subband C1 decreased by the optical phonon energy εΓTO

q0
. The occupation peak evolves

at 0.77eV after 1ps. This directly reflects the experimental rise time. From this point, intraband
scattering within C1 via ΓTO and simultaneously ΓLA phonons towards the band edge ε

C1
0 takes

place. The dominant process is the emission of optical phonons. Intraband scattering within the
lowest subband C1 via ΓLA phonons leads to a Fermi distribution on a picosecond timescale, cp.
the thermal occupation after 5ps in Fig. 4.27.

4.4.2 Detuning of the Probe Energy

With the described experimental pump-probe setup it is possible to change the wavelength of the
probe beam, i.e. tuning the probe energy between E22 and E11. In the experiment two groups of
curves have been recorded for the (7,5) tube. Two probe measurements have been performed close
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Figure 4.28: Left side: Differential transmission spectrum for sample (A) with the prominent (7,5) tube.
The pump energy is set to the second optical transition E(7,5)

22 to 1.924eV. The probe pulse is located near
to the first optical transition E(7,5)

11 at 1.209eV and 1.563eV, which is 179meV above the band edge ε
C1
0 .

Right Side: Relaxation time dependence of the probe energy for a pump energy set constant to 1.92eV
corresponding to E(7,5)

22 displaying an acceleration of the relaxation dynamics towards higher probe energies,
adapted from [17].

to E(7,5)
11 : Eprobe−I = 1.21eV, Eprobe−II = 1.25eV. Furthermore two curves have been recorded by

probing approximately 300meV higher in energy at Eprobe−III = 1.48eV and Eprobe−IV = 1.56eV.
In every measurement the tube has been pumped resonantly to the energy of its second transition
energy at Epump = 1.924eV≈ E22. We compare the differential transmission curve obtained by
probing at Eprobe−IV with the temporal evolution of the electron occupation ρ

C2
k at the corresponding

energy in the lower subband. For the theoretical calculations we refer to the conduction bands and
therefore to their band edges ε

C2
0 and ε

C1
0 . These are the half of the value of the transition energies

E22 and E11 under the assumption that the valence and conduction bands are symmetric, cp. Sec.
3.1.3. The recorded differential transmission spectra of the (7,5) sample for the highest and the
lowest probe energy are displayed in half logarithmic representation, cp. left side of Fig. 4.28.
A clear difference to faster relaxation dynamics, i.e. an acceleration of the relaxation dynamics
towards higher probe energies is observed. In the theoretical simulation the probe energy can be
obtained through fitting the temporal decay of the electronic occupation ρ

Cs
k yielding relaxation

times between two distinct k values. This implies how the distribution decays from one fixed energy
point to the next possible via momentum conserving scattering with the respective phonon modes.
Through the variation to larger probe energies, i.e. higher positions of energy in the subband, cp.
Fig. 4.26 the transfer of the phonon momentum for a possible scattering process is enhanced. Due
to the linear dependence of q occurring in the acoustic electron-phonon matrix element this leads
to stronger electron-phonon coupling and therefore the decay of the carrier distribution is fastened
up. Since the temporal evolution of ρk is connected to the inverse of the relaxation time τ−1, the
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Figure 4.29: Left Side: Differential transmission spectrum measured for sample (B) with the prominent (7,6)
tube. The probe energy is set to E(7,6)

11 ≈ 1.102eV. The pump pulse is tuned around E(7,6)
22 ≈ 1.923eV = EVII

to EV = 1.982eV and EVI = 1.880eV. Right side: Dependence of the relaxation times for different pump
energies at the fixed probe energy 1.3eV of the (7,6) tube. The relaxation times are hardly affected under
this change, adapted from [17].

latter one decreases to shorter times with increasing phonon momentum transfer, i.e. stronger
electron-phonon coupling, which the theoretical curve on the right side of Fig. 4.28 explains.

4.4.3 Detuning of the Pump Energy

For two-color pump-probe spectroscopy it is from interest to exclude influences of the pump energy
for the following relaxation dynamics. Therefore, the probe beam was set to a constant energy
according to the lowest optical transition energy of the (7,6) tube. This energy was previously
determined via PLE to E(7,6)

11 ≈ 1.102eV. Now the pump beam was tuned to higher and lower
excitation energies EV = 1.982eV and EVI = 1.880eV around the second allowed optical transition
EVII = 1.923eV≈ E(7,6)

22 . Within this large detuning range of ±50meV the observed DTS spectra,
shown on the left side in Fig. 4.29 do not differ evidently and no change for the relaxation times
can be concluded. Our corresponding calculations support this observation revealing no significant
variations for the fastest decay component in the picosecond range, cp. right side Fig. 4.29. This
underlines, that the point of energy where the non-equilibrium electrons enter does not effect on
the further decay strength of the carrier distribution. Referring to the equations of motion for
polarization and carrier occupation (2.17 and 2.18), it is clear that the pump energy Epump = Eexc

enters via the external vector potential A(t) modeling the excitation pulse with the Rabi frequency
Ω

CsVs
k at a fixed point, cp. Eq. (4.2). Therefore, the pump energy has just an influence on the

optical coupling. The further electron-phonon Boltzmann scattering terms are unaffected from
the energetic position of the external coupling. Hence, the change of the starting position of the
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non-equilibrium carrier distribution has no impact on the following redistribution process and the
relaxation times do not alter, which is in agreement with the experimental observations.

4.5 At a Glance

We investigated the non-radiative relaxation dynamics driven by electron-phonon scattering for
semiconducting nanotubes within PLE and pump-probe experiments:

• for the interplay between acoustic and optical phonons we state: intraband relaxation is driven
initially within the first hundred femtoseconds via optical and on a picosecond timescale via
acoustic phonons towards the band edge

• the fastest relaxation times are obtained for both phonon modes taken into account, since
every phonon-induced relaxation channel enhances the scattering efficiency

• simulations with a two-band model being close to two-color pump-probe to experiments
unveil:
intersubband scattering between the lowest lying subbands is shown to be driven only via
optical phonons

• large tube diameters lead to a slow down of the relaxation times through weaker electron-
phonon coupling |gΓTO/ΓLA|2 ≈ 1

d

• intersubband relaxation times τ IE
C2−C1

are unaffected by the phonon species of the subsequent
intrasubband relaxation within C1

• the chiral angle of the tube has a low impact on the relaxation times

• compared to optical, acoustic phonons reveal a more pronounced relaxation time dependence
on diameter and chirality

• tuning the probe while the pump energy is held constant reveals:
probing toward the band edge the relaxation time slows remarkably down due to the inverse
proportional dependence of the relaxation times to the acoustic phonon momentum

• tuning the pump energy with probing at the same energy yields:
the relaxation times stay unaffected since the change of the starting position of the non-
equilibrium carrier distribution has no effect on the following temporal redistribution
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phonon modes τ IA
C1

[ps] τ IA&IE
C2

[ps] τ IE
C2−C1

[ps]
Acoustic 0.5-2.2 0.43-0.38 0.85-0.57
Optical 0.4-0.3 0.38-0.18 –”–
Optical & Acoustic 0.26-0.25 0.25-0.15 –”–

Table 4.3: The obtained relaxation times from our two-band model simulation varying the excitation energy
Eexc for the semiconducting (23,0) tube. We have a clearly faster relaxation within the upper C2 in contrast
to the lower C1 subband due to additionally intersubband scattering channels. The largest relaxation times
are obtained for low Eexc with acoustic phonons towards E11.

phonon modes τ IA
C1

[ps] τ IA&IE
C2

[ps] τ IE
C2−C1

[ps]
Acoustic 0.43-0.88 0.38-0.73 0.6-1.24
Optical 0.25-0.65 0.23-0.57 –”–
Optical & Acoustic 0.23-0.5 0.18-0.4 –”–

Table 4.4: Relaxation times for the variation of the tube diameter. The main impact of the d−1 diameter
influence through the optical phonon matrix element can be explicitly seen in the times for the intersubband
scattering.

phonon modes τ IA
C1

[ps] τ IA&IE
C2

[ps] τ IE
C2−C1

[ps]
Acoustic 0.47-0.6 0.45-0.55 0.75-0.9
Optical 0.34-0.42 0.31-0.39 –”–
Optical & Acoustic 0.25-0.34 0.24-0.29 –”–

Table 4.5: Relaxation times for the variation of the chiral angle. Beside the small change in diameter the
relaxation times are nearly unaffected.

74



5
Field Enhancement Calculations of Plasmonic and

Non-Plasmonic Electrodes

The field enhancement calculations describing high electric field intensities created by localized sur-
face plasmons and high curvatures at surfaces is based on the classical theory of electromagnetism.
The physics is contained in the dielectric response function ε(ω) of the material and its geometrical
surface properties. The calculated field enhancement distributions to explain the observed effects in
surface enhanced resonance Raman (SE(R)R)spectroscopy experiments can be viewed as localized
surface plasmons (LSP) since the spatial extension of the area of interest is below the excitation
wavelength. The LSPs are considered as an external driven oscillating dipole and thus emitting
electromagnetic radiation. With this ansatz we describe the induced surface field enhancement in a
coral platinum (Pt) island film [78] via the excitation of LSPs. We modeled a realistic electrode
close to the experimentally yielded SEM pictures. Introducing hole-like defects in the platinum
coating leads to an increase of the number of the incoming photons onto the lower lying silver
(Ag) support. Furthermore, through the defects sharp edges occur within the Pt film creating high
field intensities via such geometrical anisotropies. The latter possibility of enhancement origins
in the surface morphology of the hybrid electrode. Another recent experiment done in the group
of Prof. P. Hildebrandt and Prof. I. M. Weidinger demonstrates the enhancement behavior in a
potential dependent SE(R)R study at a nanostructured TiO2 electrode, a non-plasmonic material,
by increasing the surface morphology. We also supported these findings with our calculations [79].



5.1. ENHANCEMENT OF THE ELECTRIC FIELD

5.1 Enhancement of the Electric Field

The Raman scattering signal measured around the surface of a solid state can be enhanced through
resonant coupling to a localized surface plasmonic mode of a nanostructured noble metal. This can
be, for example, a sphere, a rod, or an underlying substrate formed as a bulk structure. The theory
we apply here is based on classical electrodynamics solving time-harmonic Maxwell equations
for a stationary case under boundary conditions between different media. Input parameters are the
dielectric function, i.e. the permittivity ε = ε(ω), geometrical aspects of the surface structure and
properties of the excitation source (e. g. a laser) like wavelength and polarization of the emitted
radiation. We theoretically unveil underlying enhancement mechanisms leading to high electric
field intensities explaining the observed increased Raman signals for probe molecules like the heme
protein cytochrome c (Cyt-c) or cytochrome b5.

5.1.1 Time-Harmonic Maxwell Equations

The electric field E is calculated from scattering theory for particles being smaller than the
wavelength of the external excitation. Classical electromagnetism can be fully described through a
coupled system of linear partial differential equations for the four field vectors. These Maxwell
field equations are given for an inertia system within resting media written in the SI-system [80]:

∇×H = ∂tD+ j, (5.1)

∇×E =−∂tB, (5.2)

∇ ·D = ρ, (5.3)

∇ ·B = 0, (5.4)

with E and B being the electric and magnetic field strength, D and H the electric and magnetic
excitation, conventionally called dielectric displacement and magnetic field strength. The first
equation (5.1) explains that electric currents including the displacement current are leading to a
magnetic excitation while (5.2) describes that the temporal change of the magnetic field strength is
creating an electric field. Via these two equations the magnetic and electric field are connected.
Equation (5.3) reveals that the source of the electric excitation is the electric charge while Eq. (5.4)
states the magnetic field strength is source free, i.e. magnetic monopoles do not exist.
The fields within the solid are described by the material equations:

D = ε0ε(r, t)E = ε0E+P, (5.5)

B = µ0µ(r, t)H = µ0 (H+M) , (5.6)

where P and M stand for the macroscopic polarization and magnetization, respectively. The
occurring constants are the permittivity ε0 =

1
c2

0µ0
≈ 8.854188×10−12 As

Vm and the permeability in
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vacuum µ0 = 1.256637×10−6 Vs
Am . Here, we focus on the enhancements of the electric field E.

Furthermore, we constrain to the stationary behavior of E, which is applicable through experiment
in which the nanostructures are excited by a laser with a fixed wavelength. Therefore, the transient
part vanishes on very short timescales. Under these considerations a time-harmonic ansatz can be
applied:

E(r, t) = E
′
(r)e−iωt , (5.7)

leading to an electric field equation separated in time and space:

∇×
[

1
µ

[
∇×E

′
]]
−ω

2
εE2 = 0, (5.8)

where the curl curl ∇× (∇×) operator acts only on the space dependent electric field E
′
(r). The

material is characterized by its dielectric function ε(r, t) entering via the complex representation in
the frequency domain

ε(r,ω) = ε1(r,ω)+ iε2(r,ω) = (n+ iκ)2, (5.9)

with the first part representing intra- and the second interband transitions. From the right hand side
it can be seen that ε(r,ω) is composed of the refractive index n and the extinction κ representing
the real and the imaginary part, respectively. Both wavelength dependent material parameters are
taken from tables of the book of Palik [81] for further calculations.

5.1.2 An Electronic Gas in Motion:
Collective Behavior of Electronic Density Fluctuations

The idea of introducing the plasmon can be traced back to the work of Bohm and Pines in 1952
when they first defined quantized plasma oscillations in bulk material as a collective excitation of
the electron density [82]:
”The valence electron collective oscillations resemble closely the electronic plasma oscillations
observed in gaseous discharges. We introduce the term ’plasmon’ to describe the quantum of
elementary excitation associated with this high-frequency collective motion.”
The displacement of the electron gas through an external electric field with respective to the heavy

ions which are assumed to be static is preliminary picture in the frame of classical electrodynamics
[30], cp. Fig. 5.1. Once the electron gas or plasma is excited in the direction of the applied field the
Coulomb interaction between it and the positive background generated by the ionic cores leads to a
restoring force and the plasma starts to oscillate. To describe this classically, the Drude-Lorentz
model will be sketched briefly following the standard derivations [83] combining the Drude model
[84] describing the conductivity of free electrons with the characterization of dipole oscillators
within the Lorentz model. The idea starts with Newtons second law [85]:
”Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua
vis illa imprimitur”,
stating that the change of motion for a body is proportional to the force acting onto it. Or in the
more generally valid form that the temporal change of the momentum of a body is caused by a
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Figure 5.1: Sketch within the classical picture of the oscillating electron gas with respective to the heavy
ionic cores.

force. Referring to Fig. 5.1 this force accelerates negative charged point masses, the electrons in
x-direction:

med2
t x+meγdtx+meω

2
0 x =−e0E(t) =−e0E0e−iωt , (5.10)

with an acceleration term for the electrons and a damping term resulting from the restoring force of
the ionic cores. The driving term arises from the electric field strength which is further rewritten
as an amplitude E0 and an exponential function e−iωt with ω being the angular frequency of the
exciting light field. Substituting with x = x0e−iωt we have an equation for x

x(t) =
e0

me

1
(ω2

0 +ω2 + iγω)
E(t), (5.11)

which can be rewritten via the definition for the polarization of a gas

P =−ne0x, (5.12)

with n being the density of electrons. Inserting the polarization, cp. Eq. (5.7) we have

D = ε0E
(

1−
e2

0n
meε0

1
ω2 + iγω

)
, (5.13)

from which we can conclude the expression for the dielectric function

ε(ω) = 1−
ω2

pl

ω2 + iγω
, (5.14)
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introducing the plasma frequency of a free electron gas

ωpl =

√
e2

0n
meε0

, (5.15)

being a square root function of the density n of the electrons.

5.1.3 Classification of Plasmons

The following considerations are inspired from the book of Le Ru [86]. The original definition
above according to Pines does not hit the physical mechanism which is responsible for the field en-
hancements used and observed in the previous mentioned surface Raman spectroscopy experiments
with the wavelength of the laser light ranging in the visible spectrum. Therefore, an electromagnetic
wave interacts with the noble metal, i.e. the free-electron plasma. The resulting electromagnetic
waves in the metal are mixed photon-plasmon modes called plasmon-polaritons. With focus on
the surface of the nanostructure we deal with an interface between a metal (e.g. Au or Ag) and a
dielectric medium (e.g. air, vacuum, H2O,SiO2,...). At such interfaces propagating longitudinal
charge density waves have been predicted later by Ritchi [87] experimentally observed by Powell
[88] and quantized as modes in the work of Stern [89]. Since plasmons themselves can exit without
coupling to photons (transverse electromagnetic waves), in the case of surface plasmons this is
not possible because retardation effects are not negligible. The mixed mode, sharing the energy
between the plasmon and photon is strictly speaking a surface plasmon-polariton. From the point,
that our calculations will be done in the limit of the electrostatic case we may refer to the pure
surface plasmon modes as an approximation of the surface plasmon polariton by neglecting the
photon contribution [86]. According to the dimensional comparison between the wavelength of
the external excitation and the extension of the nanostructure the localized surface plasmon will
be introduced in the following. To come back to the role of the plasmonic effects for the SE(R)R
spectroscopy experiments we see, that within the optical response of the solid state its dielectric
function ε(ω) contains all information that needed. This material characterizing function will be
the input quantity for our numerical simulations.

Localized Surface Plasmon (LSP)

Surface plasmons are non-localized evanescent waves at planar surfaces. The localized types which
cannot propagate are called localized surface plasmon (LSP). The LSP can be viewed classically as
a dipole oscillation which is generated through carrier separation alternating in particles smaller
than the exciting wavelength, cp. Fig. 5.2. Spheres (10− 100nm) resonantly excited at their
material depending plasma frequency, i.e. ωexc = ωpl emit therefore a new electric field which is
enhanced in its intensity. The excitation wavelength used in the experiments of Khoa Ly et al. [78]
is set to λ = 413nm and the average size in the area of interest of the nanostructured electrode is
about 50 to 100nm restricting us to the case of localized surface plasmon polaritons.
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Figure 5.2: When the considered area (e.g. the diameter of a sphere) is smaller than the wavelength of the
external excitation the surface plasmon is localized and can be viewed as an oscillating dipole generated
through the spatial separation of the electrons from the ionic cores.

5.2 Numerical Simulation of Field Enhancement using the Finite El-
ement Method

5.2.1 Simulation of a Single Nanosphere

In this section we will give an insight how the field enhancement calculations are performed using
the Finite Element Solver JCMwave. For detailed technical explanations we refer the reader to
the work of Pomplun et al. [90].To emphasize an example we will model a single gold nanosphere
and proceed with two coupled silver spheres covered with a variable platinum coating. The gold

Figure 5.3: Simulation of a gold nanosphere surrounded with H2O. From left to right are displayed: (a) the
triangulated geometry setup of a half-sphere which will be rotated along the y-axis, (b) a cut through the
generated sphere in the x-y plane and (c) the distribution of the absolute value of the electric field |E|.

nanosphere has a diameter of 60nm with a 2nm thick dielectric SiO2 spacer and is surrounded
with water. As a first step we built up the geometry of the considered structure in the x-y plane
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with the y-axis being the rotation axis. The simulation of the sphere can due to the symmetry of
the sphere be restricted to a two dimensional problem. This two dimensional layout is further
discretized into finite subspaces. Here triangles are used to create a mesh onto the structure via
the Finite Element Method, cp. Fig. 5.3 (a). The excitation with light is modeled as planar waves
traveling from the front, i.e. along the z-axis into the paper plane. The polarization is chosen to
be linear and parallel with respect to the rotation axis. The wave equation (5.8) is further solved
on every triangle including the three corner points plus the side lengths. Extrapolating these
values to the inner surface of the triangle yields the values for the electric field in all three space
components Ex,Ey and Ez for the complete triangle. With these calculated values the rectangular
mesh displayed in Fig. 5.3 (b) is generated. The distribution of the absolute value of the electric
field strength |E|= ExE∗x +EyE∗y +EzE∗z is shown in (c) using false colors

(
blue for low and red

for high values of |E| in
[V

m

] )
with respective to a x-y plane cut of the simulated three dimensional

nanostructure. The intensity of the field enhancement distributions at the north and south pole of the
nanosphere are decaying with further distance which is similar to the oscillation of a dipole. Since
the diameter of the sphere is below the wavelength of the excitation we see this effect represented
by the localized particle plasmon which we described in the previous section.

5.2.2 Two Coupled Multilayered Nanospheres

As a preliminary stage of the multilayered electrode investigations we simulated two coupled
nanospheres with increasing thickness of the platinum coating by lowering at the same time the
distance between them. The multilayered structures are composed as follows: two equally separated
silver (Ag) spheres with a radius of 30nm with fixed centers and therefore constant distance to
each other. Each sphere is surrounded by a 2nm thick dielectric spacer of SiO2 and finally covered
with a variable platinum coating. The field enhancements are calculated for increasing platinum
thicknesses from 1−8nm with a simultaneously decrease of the surface distance between the two
spheres from 10− 2nm, cp. Fig. 5.4. Like for the single sphere we see a long range plasmon
excitation, cp. Fig 5.4 (a). Since the enhancement of the electric field between the spheres is
lowered by the screening of the increasing Pt coating the further increase of the Pt thickness leads to
a close vicinity between the spheres and a strong increase of the field enhancement appears, cp. Fig.
5.4 (b-c). A direct comparison between the thickness of the Pt coating versus the distance between
the sphere surfaces exposes the two counteracting processes: screening versus enhancement. The
first arises through the extended Pt coating and the latter via proximity effects of the closer getting
surfaces of the two spheres. The proximity effects will be of importance for the interpretation of
the experimental observations we are going to describe within our field enhancement calculations
in the following sections.

5.3 Surface Enhanced Resonant Raman Spectroscopy

The experiments have been performed in the group of Prof. I. Weidinger by Dr. K. Ly. For their
investigations they used the scattered enhanced signal within surface-enhanced resonant Raman
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Figure 5.4: Coupled Ag nanospheres with a constant 2nm dielectric SiO2 spacer and a from 1nm to 8nm
variable Pt coating. The increasing Pt thickness leads to a decrease of the surface distance between the
spheres from 10nm to 2nm while the center of the Ag spheres are fixed for all cases. The simulation
sequence from left to right shows two counteracting processes: screening due to rising Pt coating versus
enhancement via proximity effects.

spectroscopy (SE(R)RS) to spatially detect and characterize the interaction of probe molecules like
mercaptopyridine or the heme protein cytochrome c adsorbed to a multilayered Ag−SiO2−Pt
electrode [78], cp. Fig. 5.5. These systems are not only interesting for basic research but also
open a way to produce biological sensors. We briefly introduce the concept of SE(R)RS for
the understanding of the underlying physical mechanisms. The effect that the Raman signal of
molecules in close vicinity respectively adsorbed to roughened metal surfaces is enhanced up to
105 times in comparison to unprepared surfaces is described in the work of Fleischmann [92]. Via
the gain of the electric field strength amplitude E0 of the incoming laser light on the surface of
the support material the adsorbed probe molecule is excited. Thus a Raman signal is exhibited
which is further amplified due to coherent superposition leading to an enhancement factor of the
signal corresponding to the absolute value of the electric field amplitude g = |E|4. In the case of
resonantly exciting an electronic transition of the probe molecule (resonant Raman spectroscopy)
this leads to further amplification of the Raman signal intensity.
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Distance 

to Surface

1-5 nm

Figure 5.5: Adsorption of the probe molecules mercaptopyridine and protein cytochrome c on the multilay-
ered Ag−SiO2−Pt electrode. Picture adapted from [91].

5.4 A Nanostructured Multilayer Electrode :
Field Enhancement via Plasmonic Material Features

After the preliminary studies we apply the introduced model to describe and interpret the observed
effects in SE(R)RS experiments with probe molecules attached to an Ag-SiO2-Pt electrode. The
following description of our theoretical work in cooperation with the above mentioned experimental
group and is published in [78]. The production process of the Ag−SiO2−Pt electrode proceed as

Figure 5.6: Process of preparation of the multilayered Ag− SiO2 − Pt electrode. From left to right:
electrochemically roughening of the Ag bulk, coating with the SiO2 dielectric spacer and deposition of a Pt
island film. Picture adapted from [78].
.

follows: first a cylindrical Ag bulk electrode was roughened electrochemically and coated with a
SiO2 dielectric spacer of controlled thickness. Completing the structure, the whole electrode was
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covered via electrochemical deposition with Pt creating a coral-like structured island film, cp. Fig.
5.6. Since the size of the Pt corals is smaller than that of the Ag support a non perfectly closed
surface is resulting. The scanning electron microscope (SEM) picture of the final electrode, cp. Fig.
5.7 compares the Ag with the final Pt coated electrode. From this, one can estimate the size of the
Pt nanocorals up to (30±10)nm. The theoretical modeling of the geometry layout is shown in Fig.

Figure 5.7: Scanning electron microscope picture showing (A) an Ag−SiO2 and (B) an Ag−SiO2−Pt
electrode. In comparison the coral size of the final electrode (B) is smaller indicating a non-perfectly closed
surface. Picture taken from [78].

5.8. In y-direction we have an infinite long Ag bulk with a height of 100nm. On this bulk we added
three half spheres (bumps) with a radius of r0 = 42.5nm resembling the average Ag coral size. To
account the asymmetry of the real electrode two spheres have been set close together within 6nm
while a third one was placed further away in a distance of 62.5nm with respective to the center of
the second half-sphere. This Ag structure is accordingly to the above described electrode layered
by a 2nm thin dielectric SiO2 spacer and covered with a Pt coating of 5nm thickness. To simulate
the excitation of the external electromagnetic field we model plane waves propagating along the
x direction incoming from the right side. The polarization is linear and parallel respective to the
y-axis. According to the experiment, the wavelength is set to λ = 413nm and the vector amplitude
|E0|= 1

[V
m

]
. Through the choice of E0, the absolute value of the electric field resembles the total

field enhancement. The previous described application of SE(R)R spectroscopy on different probe
molecules and silica coating thicknesses revealed, that a non perfect coating of the Pt island film
promotes the efficiency of the induced SER activity [78]. The field enhancement distributions
obtained from the calculated values of |E| for the modeled structure shown in Fig. 5.8, reveal the
impact of a non-perfectly closed surface, cp. Fig. 5.9. On the left side the closed defect free Pt film
exhibit a strong field enhancement between the bumps being in close vicinity, while no surface
enhancement in the wider gap and at the top of the half spheres occurs. In comparison with the
simulation of the non-perfectly closed Pt surface hybrid electrode, being more realistic concerning
to the SEM picture of the created Ag−SiO2−Pt structure, cp. Fig. 5.7 (B), a different pattern of
the field enhancement distribution shows up. The overall field enhancement increase remarkably,
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Figure 5.8: Two dimensional layout of the simulated Ag− SiO2− Pt electrode after the triangulation
process. The asymmetric distribution of the bumps in close vicinity (6nm) and wider range (42.5nm) is not
chosen arbitrary for the field enhancement simulation.

mainly in contrast to the closed defect free Pt film. Large enhancements, so called Hot Spots occur
at areas where no surface enhancement has been observed before: at the top of the half spheres as
also within the wider gap between the second and the third bump. This can be traced back to the
fact, that through the non-perfectly closed Pt coating the incoming light reaches now the plasmonic
active underlying Ag support creating localized surface plasmons, being responsible for field
enhancements. Extremely high local enhancements are observed at the sharp edges, which have
been introduced through the hole like defects in the geometry of the hybrid electrodes. Comparing
both structures we read out the absolute value of the electric field |E| 1nm above the Pt surface
at equidistant coordinates. For the adsorbents used in the experiments being attached within this
distance the measured enhancement of the Raman signal can be expressed via g = |E4|. Therefore,
we can state, that for the non-perfect Pt film the average SE(R)RS enhancement per surface area
is approximately 80% higher. In conclusion two mechanisms of the field enhancement can be
identified: Through the induced hole-like defects in the Pt coating localized surface plasmons
at the Ag substrate are excited from the incident electromagnetic excitation which enhance the
electric field around the Pt surface. Furthermore, the geometrical structure of the coral-like islands
produces sharp edges leading to an anisotropic shape creating strong local field enhancements in
the sense of the lightning rod effect [93, 94].
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Figure 5.9: Comparison of the calculated field enhancement distributions for two cases: A perfectly closed
Pt film (left) and the more close to experiment hybrid electrode (right) with hole like defects resembling the
SEM picture with coral islands, cp. Fig. 5.7 (B). Picture modified from [78].

5.5 A Study of a Nanostructured (TiO2) Electrode:
Field Enhancement by Raising the Anisotropy of the Morphol-
ogy

The electrode which will now be investigated is made of nanostructured titanium dioxide TiO2,
which is in contrast to Ag or Au a non-plasmonic material [79]. Since TiO2 is semiconductive,
plasmons cannot be excited due to the fact that the prerequisite of a free electron gas is not given.
TiO2 shows a high biocompatibility being nontoxic and environmentally friendly and is therefore
of great interest for biomedical applications [95, 96]. As a probe molecule in this study the heme
domain of human sulfite oxidase cytochrome b5 (cyt b5) is taken. The observed SE(R)R effect
in contrast to the previous described findings for the multilayered Ag−SiO2−Pt electrode has
been suggested to result from a chemical mechanism [97, 98] and not from a surface plasmon
resonance. The SEM images of the anodized TiO2 electrode are shown in Fig. 5.10. While (A)
displays the electrode under an applied anodization voltage of 10V, (C) is recorded after the
voltage was doubled to 20V. The respective magnifications (B) (10V) and (D) (20V) document the
increase of the surface roughness, i.e. the accumulation of the anisotropy by raising the anodization
voltage. It can be seen that during this process the surface roughness of TiO2 is highly increased
and therefore the electrode exhibits a larger surface. Also the shape of the nanostructured surface
is getting more anisotropic. The SE(R)R measurements done in the group of Prof. I. Weidinger
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and Prof. P. Hildebrandt revealed that by the change of the surface properties via the described
anodization process the enhancement factor raise up from 2.4 to 8.6. The above suggested chemical
mechanism is depends on the fact that the probe molecules are bound directly to the TiO2 surface.
This is not the case here, which is rationalized in previous measurements of Weidinger et al.
[99] where the average distance between the surface and the edge of the heme protein such as
cyt b5 is approximately 1.5nm. So the induced charge transfer transition taking place within
(sub)picoseconds presume a shorter distance than the measured one, thus making a fast electron
transfer unrealistic. From this we proposed another explanation based on electromagnetic effects
enabling the surface morphology of the TiO2 electrode being responsible for the enhanced intensity
of the SE(R)R signal. The previous mentioned lightning rod effect [93, 94] depending on the
stage of anisotropy of the considered nanostructured electrode could explain the occurrence of
large electric field intensities in the vicinity of high curvatures of the surface of the electrode even
the material is a not plasmonic active. To check this hypothesis, calculations of the electric field
enhancement were performed using the dielectric function of rutile TiO2 [100]. An electrode-like
surface was approximated by ellipsoidal half spheres on a flat bulk electrode which was expanded
to infinity along the y-axis. A plane wave with a wavelength of λ0 = 413nm propagating along the
x direction, incident from the right side and parallel polarized to the y- (rotation) axis represented
the external electromagnetic field. Two half ellipsoids were set in close distance to each other,
while a third one was positioned further away. The only parameter that has been varied was the
aspect ratio of the two half axes of the half ellipsoids. For an aspect ratio of 1 no significant field

Figure 5.10: SEM images of the TiO2 electrode at different stages of anodization: (A) with 10 V and (C)
with 20 V. The pictures (B) and (D) are magnified images of (A) and (C), respectively. Picture taken from
[79].
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a) c)b)

d) e) f)

Figure 5.11: Dependence of the field enhancement from the stage of anisotropy. The incoming electric
field amplitude |E0|= 1

[V
m

]
allows direct comparison of the displayed enhancement. The TiO2 electrode

modeled as half ellipsoids with varying aspect ratios from 1 to 6 according to (a) to (f). Picture modified
from [79].

enhancement can be seen, cp. Fig. 5.11 (a). The local field close to the TiO2 surface is increased for
aspect ratios of 2 (b) and 3 (c). Here, no difference between the two closely adjacent half ellipsoids
and the isolated are found. When the aspect ratio is further increased to 4 (d), a strong electric field
enhancement is evaluated in the gap between the two adjacent half ellipsoids. Extending the aspect
ratio to 5 (e) and finally 6 (f) does not alter the overall field enhancement but the position of the
Hot Spot in the gap changes. Assuming that the enhancement of the electric field is the same for
the incident light (|E0|) as for the Raman scattered light, the forth power of the calculated values
correspond to the enhancement factor of the Raman scattering. This leads to a broad distribution of
the local Raman enhancement ranging from 1 to approximately 400. Therefore, the experimentally
determined enhancement factors of up to 10 referring to the average value of all adsorbed molecules
contributing to the detected intensity can be well rationalized by the calculations.
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CHAPTER 5. FIELD ENHANCEMENT CALCULATIONS OF PLASMONIC AND
NON-PLASMONIC ELECTRODES

5.6 At a Glance

We investigated the origin of experimentally observed enhanced Raman signals for the probe
molecules heme protein cytochrome c (Cyt-c) and cytochrome b5 adsorbed to a multilayered Ag−
SiO2−Pt electrode and a nanostructured titanium dioxide TiO2, respectively. The experimental
observed effects are rationalized by the performed calculations by solving the full Maxwell
equations within a finite-element method. We reveal with our investigations mainly two effects of
leading to field enhancements:

• through the excitation of localized surface plasmons (LSPs) (depends on the electronic
material properties)

• influence of high curvature effects increasing the anisotropy of the surface morphology
originating from the lightning rod effect [94]
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6
Photoluminescence Enhancement of CNTs via

Coupling to Noble Metal Nanoparticles
-An Outlook-

Not only to hybrid electrode structures like the one investigated in the last chapter different probe-
molecules have been attached creating strictly speaking a new physical system with its own special
properties. Through the adsorption of molecules to the surface of carbon nanostructures, for
example a new field of hybrid systems with distinct and controllable properties was opened [101].
This chapter tries to build a bridge between the special properties of single walled carbon nanotubes
studied within the PLE process in the prior chapters 3 and 4 and the influences of nanostructured
noble metals leading to intense field enhancements. The experiments done by Dr. A. Setaro and M.
Glaeske in the group of Prof. S. Reich created a new type of nanostructures called π-hybrids. They
are composed of semiconducting single-walled carbon nanotubes combined with gold nanorods
of different size, cp. Fig. 6.1. The novel structure exhibits an enhancement in the intensity of
PLE emission spectra and a measured blue shift with respect to the spectra of the pristine carbon
nanotube. The strength of both effects depend on the specific properties of the tube. We will
introduce and describe the experiments and further make the attempt to formulate which underlying
enhancement mechanisms could explain the findings.



6.1. π-HYBRIDS EXHIBITING NOVEL PROPERTIES OF ENHANCEMENT MECHANISMS

6.1 π-Hybrids Exhibiting Novel Properties of Enhancement Mecha-
nisms

In general carbon nanotubes show a very low Photoluminescence yield within the the process of
PLE which we extensively studied in our work on relaxation dynamics. The values range from
0.05% for CNTs in solution [102] to 3% for suspended [103] up to 20% for tubes dispersed with
special oxygen-excluding surfactants [104]. Experiments performed with CNTs deposited on Au
films showed ten-folds enhancements in the emission spectra of the tubes whose E22 transition
matched with the plasmonic frequencies of the Au surface [105]. In the work of Setaro and Glaeske
a novel approach leading to an enormous PLE enhancement up to factors of 8 for the (7,6) and
20 for the (8,4) tube has been made. The authors combined gold nanorods (AuNR) with average
lengths and diameters of 100nm and 20nm with single walled carbon nanotubes being up to a
few micrometers in length, cp. Fig. 6.1. This has been achieved by a variant of the micelle
swelling technique [106] where to non water soluble SWCNTs have been added gold nanorods
(AuNR) stabilized with micelles in water, cp. Fig 6.2. To point out the plasmonic character of
the system, the nanoplasmonic colloidal dispersion have been called π-hybrids. The π-hybrids
have further been investigated within photoluminescence excitation experiments and compared to
samples only containing nanotubes without the AuNR, labeled CTAB. The CTAB sample shows
prominent intensity peaks from which the (9,4), (7,5), (7,6) and (8,4) tubes have been identified,
cp. the PLE charts in Fig. 6.3. Further, the PLE chart for the π-hybrid sample shows an extensive

Figure 6.1: SEM picture of the π-hybrid deposited on a grid substrate, [107]. The size scale difference
between the nanorods and the nanotubes indicates that the coupling is a local effect.
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Figure 6.2: A new class of hybrids composed of gold nanorods of 100nm in proximity to carbon nanotubes
being up to a few µm in length. Picture taken from [20].

enhancement of the intensity for mainly the π-hybrids composed from the (7,6) and (8,4) tubes.
By considering a single excitation and a single emission wavelength a comparison of the emission
and excitation spectra of both samples show interesting results. In the excitation spectra different
enhancements of the maximal intensities for the tube transitions E(8,4)

22 , E(7,6)
22 and E(9,4)

22 lying
along the fixed emission wavelengths are observed. In the emission spectra beside the intensity
enhancement a blue shift for the hybrid with respective to the comparative sample shows up. The
same position of the intensities in the excitation spectra indicate that the E22 transition for these
tubes do not alter in the π-hybrid formation. In contrast, the shifting of the intensity peaks to larger
energies within the emission spectra of the π-hybrid sample exhibit, that the E11 transition energy
changes. In other words the band gap energy E11 is exceeding to larger values or the radiative
recombination of the electrons with the holes starts at higher energies and the relaxation of the
excited carriers does not reach the E11transition, i.e. the lifetime of the excitons is shortened.
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Figure 6.3: PLE charts obtained for the sample containing (a) only CNTs denoted with CTAB and (b) the
π-hybrid samples. Along a constant excitation energy including the maximum intensities of the (7,5) and
(7,6) tubes, i.e. their E22 transition energies a cutting line (β ) of the PLE chart yield the emission spectra
shown in (d). An analogue cut (α) at a constant emission wavelength passing the intensity maxima of the
(8,4), (7,6) and (9,4) tube provide the excitation spectra shown in (c). Within the excitation and emission
spectra an intensity enhancement is observed comparing the π-hybrid with the CTAB sample. Interestingly
in the emission spectra also a blue shift towards smaller wavelengths, i.e. larger energies of the π-hybrid
with respect to CTAB sample occurs, taken from [20].

6.2 Discussion of the Origins of the Observed Effects

The investigation of the π-hybrids revealed two effects:

• enhancement of the excitation and emission intensities depending on the specific tube

• blue shift in the range of 20meV in the emission spectra for the π-hybrid with respective to
the pristine tube, i.e. a change of E11 to higher energies.

We now discuss the observed effects and try to give an interpretation of the possible physical
origins with the knowledge gained from our results of the relaxation dynamics in CNTs and the
field enhancement calculations from the previous chapters.
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(6,5)

(8,4)

(7,6)

(7,5)

(9,4)

Figure 6.4: Absorption spectra for gold nanorods (AuNR) exhibiting the transverse (TP) and longitudinal
(LP) plasmon absorption bands. The gray shaded area displays the range in which the enhancement of the
tubes contained in the π-hybrids is observed. That the range of main enhancement does not cover the area of
maximum absorption of the plasmonic gold nanorods indicates that the enhancement does not rely on the
plasmonic features of the AuNR, [108].

6.2.1 Enhancement Effect

As mentioned, the enhancements differ remarkably with respect to the considered chiral species. It
can be seen that the enhancement of the PLE intensity for the (8,4) tube in comparison with the
(7,5) tube is about 5 times larger, cp. Fig. 6.4. Thus we compare the density of states for both tubes,
cp. Fig. 6.5. For the (8,4) tube the density of states of the E11 and E22 transition is about 3.4 and
approximately 3 times larger with respective to the (7,5) tube. This reveals that the tube specific
density of states could be a feature which would be transferred to the π-hybrid being therefore
responsible for the different strengths of enhancements. Furthermore, comparing the absorbance of
the gold nanorods with the enhancement of the tubes emission it can be seen, cp. Fig. 6.4 that the
wavelength range for the maxima of the transverse and longitudinal plasmon frequencies of the
AuNR do not cover the area in which the enhancement of the PLE intensities is observed. From
this, we can conclude that the plasmonic features of the AuNR are not the only contribution for
the observed enhancement of the π-hybrid. That implies that other mechanisms come into play
behind this phenomena. As the separation between the maximum of the enhancement and the
plasmon band is approximately 200meV the phonon modes of the CNT could be responsible for
the mediation of the excitation from the AuNR. We plan to extend our previous relaxation studies
(see Chap. 4) to the case where coupling to noble metal nanostructures will assume a keyrole in the
optical process.
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Figure 6.5: Density of States for the investigated (7,5), (7,6) and (8,4) tube. The DOS is plotted over
energy for the first and second optical transition energies E11 and E22, respectively [46].

6.2.2 Energy Shift of the E11 Transition

The second effect of shifting the lowest energy transition towards higher energies for the π-hybrid
can have several explanations which we try to sketch in the following. The surface plasmon
properties of the AuNR alone cannot fully explain the experimental observations, we shall take into
account. The proximity effect like the one we studied within our field enhancement calculations
in the previous chapter could be considered. By bringing several noble metal nanostructures in
close vicinity to the nanotube high electric fields would arise from. These fields could now have an
remarkable influence the electronic properties of the involved nanotube. It has been shown, that
such high intense local fields could alter the band structure of a semiconductor such a way, that
so called subband gaps can open up constituting a forbidden area within the band structure where
the carriers cannot relax any further [109]. Thus these subband gaps could reduce the excitonic
lifetime through recombination of electron and holes before they would have been relaxed through
carrier-phonon scattering towards the band edges of the lowest lying subbands. This could result
in a blue shift in the optical spectra and an enhanced Raman signal indicating a change in the
electron-phonon coupling. In [110] the authors describe via exciton dynamic calculations for
nanowire assemblies with Au nanoparticles that in the emission spectra of their produced hybrid
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superstructure the observed occurring blue shift results from a shortening of the excitonic lifetimes.

6.3 At a Glance

We presented the novel designed Π-hybrids from Setaro et al. exhibiting an enormous enhancement
depending on the specific tube and a measurable blue-shift with respective to the pristine tube.
For the first observation the tube specific DOS could be a key feature that is transferred to the
π-hybrids and furthermore the phonon modes of the CNT could be responsible for the mediation of
the excitation from the AuNR. The effect of shifting to higher energies could result from proximity
effects arising from the close vicinity of the AuNR, creating high intense local fields that subband
gaps can open up reducing the excitonic lifetime.
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Conclusion

In the above thesis we have investigated ultrafast relaxation processes of optically excited carriers
in semiconducting single-walled carbon nanotubes (SWCNTs) via the density matrix formalism.
Time- and momentum-resolved relaxation dynamics have been calculated by including the phonon-
induced intra- and inter-subband scattering channels [15]. This enables us to deduce the pathways
of non-equilibrium carriers that are traced back to within the lowest lying conduction subbands
for a variety of semiconducting CNTs. We found that the different scattering dynamics resulting
from the respective phonon mode lead to experimentally-distinguishable relaxation times. Our
calculations unveil that optical phonon modes -with their large discrete energies, give rise to relax-
ation times within a few hundred femtoseconds. In contrast, acoustic phonons lead to relaxation
times in the range of only a few picoseconds. This may be ascribed to the restrictions imposed by
energy and momentum conservation; the smaller slope of the acoustic phonons versus the relevant
electronic bands only allows scattering processes with small momentum transfer. Since the acoustic
carrier-phonon coupling element scales linearly with the phonon momentum, its dynamics are
slower in relation to the optical phonons [76]. Using a recent experimental two-color pumpprobe
study revealing a bi-exponential decay, we were able to assign the observed faster picosecond
decay time τ1 to intraband scattering with acoustic phonons in the vicinity of the E11 transition
[16]. Moreover, through an extensive analytical treatment of the equations of motion we were
able to investigate a large variety of semiconducting tubes with a view towards global relaxation
time-dependencies like diameter and chirality. We unveiled the impact of tube specific parameters
like the conduction subband gap and their respective curvatures. Our investigation of the diameter
and chirality dependence revealed that the fastest dynamics occur primarily for zig-zag tubes of
relatively small diameter. We observed a partially contrasting behavior for acoustic and optical
phonons due to their correspondingly different phonon dispersion relations, resulting in different



scattering efficiencies. On enabling intersubband channels in an extended two-band model we
demonstrated that intersubband scattering processes may only be mediated via optical phonons;
the energy of acoustic modes is not large enough to pass the energetic separation between the
subbands. A recent experiment with chirality-enriched CNT samples of (7,6) and (7,5) tubes
pumped and probed resonantly to E22 and E11, respectively, found a fast component τ1 in the
range between 6 and 15 ps. This fast relaxation time was found to be in excellent accord with our
theoretically predicted relaxation times stemming from intraband scattering with acoustic phonons.
Furthermore, we computed the diameter dependence of this relaxation time. On probing energies
just below the E11 transition while keeping the pump energy constant at E22, a slowing-down
behavior has been observed experimentally. This observation was successfully rationalized via our
theoretical model, thereby proving the impact of acoustic phonons and revealing relaxation times
in the picosecond range towards E11, [17]. It actually originates from the linear acoustic phonon
momentum transfer deriving from the electron-phonon matrix element. This linear dependence
leads to a weaker coupling between the scattering processes near the band edge and therefore to
a slowing-down of the corresponding relaxation. Remarkably, varying the pump energy, while
keeping the probe energy constant, revealed relatively constant relaxation times. We rationalized
this observation by arguing that the pump energy acts via the optical coupling and does not have an
impact on subsequent relaxation process. We believe that these insights shall aid the understanding
of scattering processes important for the relaxation dynamics of photoluminescence excitation
process driven by acoustic and optical phonons. Overall, the study of the close competition between
intra- and intersubband scattering is found to be critical in interpreting pumpprobe experiments.
Towards the goal of designing optimal geometries for field enhancement in experimentally-
investigated hybrid systems, the full Maxwell equations were solved using a finite element method
employing the Maxwell Solver JCMsuite (in collaboration with the Konrad-Zuse Institut Berlin).
This led to the calculation of the field enhancement distribution for a multilayered platinum cov-
ered silver (Ag−SiO2−Pt) electrode. Such a model system closely corresponds to SE(R)RS
experiments for molecules attached to silica coated nanostructured Ag electrodes. We were able to
successfully trace the experimental results to hole-like defects in the Pt film that generated field
hot-spots raising the average SE(R)RS enhancement to approx. 80%, as elucidated in Ref.[78].
The induced defects in the Pt island film gave rise to incident electromagnetic excitation onto the
underlying Ag substrate creating localized surface plasmons (LSPs) leading to an enhancement
of the electric field in the vicinity of the Pt coating. Additionally, the geometrical structure of
the coral-like islands were observed to produce sharp edges resulting in an anisotropic shape
creating strong local field enhancements akin to the lightning rod effect [93, 94]. Next, we fruitfully
applied our model to a titanium dioxide (TiO2) electrode allowing the probing of the cofactor
of immobilized cyt b5 by SE(R)R spectroscopy. The observed increasing enhancement factor
dependence relying on the anodization voltage was rationalized from our calculations, revealing
that this trend stems from the burgeoning anisotropy of the surface morphology, as detailed in [79].
Finally, we presented a current experiment on novel nanostructures called π-hybrids [20, 107].
It exhibits an enhancement in the intensity of PLE emission spectra and a measured blue-shift
with respect to the spectra of the pristine carbon nanotube. The strength of both effects depend
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on the specific properties of the tube. Our insight to the relaxation dynamics of semiconducting
CNTs and field enhancement processes shall facilitate the future work on such novel π-hybrids
in order to comprehend the exhibited enhancement of their emission spectra. The appreciation of
the underlying mechanisms shall enable the optimization of the morphology of the π-hybrids for
targeted optoelectronic applications.
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8
Appendix

8.1 Approximations

8.1.1 Instantaneous Scattering-Markovian Dynamics

To perform the analytic integration of the phonon assisted quantities we use the Markov Approxi-
mation. For a differential equation

ih̄ dty(t) = y(t) ·∆E + f (t), (8.1)

we yield through integration

ih̄ y(t) = y0 · ei∆E·t +
∫ t

t0
dt ′ f (t ′) · ei∆E·t . (8.2)

Setting the initial value y0 to zero, meaning that at the initial point in time no coherences exit and
letting the lower integration limit go to t0 =−∞ we can transform the integral to:

ih̄ y(t) =
∫ t

−∞

dt ′ f̃ (t ′) · eiE f̃ ·t ′ · ei∆E·(t−t ′) =
∫ t

−∞

dt ′ f̃ (t ′) · ei(∆E−E f )·(t−t ′) · eiE f̃ ·t . (8.3)

Substituting the integration variable with s = t− t
′
, ds =−dt

′
and −∞→ ∞, t→ 0 we have:

ih̄ y(t) =
∫

∞

0
ds f̃ (t− s) · ei(∆E−E f )·s · eiE f̃ ·t . (8.4)

The essence of this approximation is the negligence of the memory kernel of the integral, i.e.
f̃ (t − s) ≈ f̃ (t). Physically a particle retains memory of previous scattering events with other



8.1. APPROXIMATIONS

carriers in the system. Within the Markov approximation we neglect all these memory effects,
which means that only processes that fulfill the energy conservation, expressed by the δ -function
are taken into account:

y(t) =− i
h̄

f̃ (t) · eiE f̃ ·t
∫

∞

0
ds ei(∆E−E f )·s =− i

h̄
f (t)

∫
∞

0
ds ei(∆E−E f )·s. (8.5)

Using the relation for the δ -function [111] we have

1
i

∫
∞

0
dk eikx−εk =

1
x+ iε

=
x− iε

x2 + ε2 = P
1
x
− iπδ (x), (8.6)

with P being the principal value of the integral, demanding that for the integration over 1
x the

negative and positive area parts (which become infinite) have to compensate each other. In general
this value is neglected and only the δ -function represents the integral. Finally the integration of the
differential equation within the Markov approximation yields:

y(t) =− i
h̄

π ·δ (∆E) · f (t) (8.7)

8.1.2 Bath Approximation for the Phononic System

Within this approximation the phonons are treated as a thermal bath surrounding the fermionic
electrons. The phononic system cannot be influenced through the transferred scattering energy of
the electrons. Therefore, the bath is not driven out of equilibrium. The expectation values of the
creation and annihilation operators define the phononic occupation number which is given via the
Bose-Einstein distribution. Thus the phonon distribution depends on the temperature of the bath:

nγ
q =< b+−qγbqγ >=

1
exp
( h̄ω

kbT

)
−1

. (8.8)

With this assumption the expectation values vanish

< bqγ > = 0, (8.9)

< b+−qγ > = 0, (8.10)

< b+−qγb+−qγ > = 0, (8.11)

< bqγbqγ > = 0, (8.12)

because coherences don’t exist in thermal equilibrium. This approximation is used within our
calculations with at room temperature T = 300K.
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8.2 Phonon Dynamics

The equation of motion for the dynamics of the phonon distributions reads:

ṅγ
q|sc =

2π

h̄ ∑
λλ
′k

|gλλ ′γ
kq |

2
δ

(
ε

λ
k+q− ε

λ
′

k − h̄ω
γ
q

)
Zλλ

′
γ

kq , (8.13)

with
Zλλ

′
γ

kq := ρ
λ
k+q

(
1−ρ

λ
′

k

)(
nγ

q +1
)
−
(

1−ρ
λ
k+q

)
ρ

λ
′

k nγ
q. (8.14)

We note, that now the summation runs over the electronic momenta k and different bands λλ ′.
Analogous to the electronic distribution expectation values for two electronic and one phononic
operator occur which are treated similarly within the Hartree-Fock factorization. This leads to a
Boltzmann scattering equation displaying the emission and absorption of phonons between two
electronic states represented by a single delta-function. For the electronic dynamics three different
states have to be considered. Because the emission and absorption of phonons are equal processes,
two states are sufficient. The choice of δ (ελ

k −q
− ελ

′

k
+ h̄ω

γ

q
) would also have been possible. For

the phonon distributions considering the dynamics in and between the two lowest lying conduction
subbands the summation of λλ

′
runs over C1,C2. To obtain the analytical solution of the phonon

occupation dynamics we have to solve now the δ -function depending on the electronic momentum
k. Therefore, the zero points of f (k) have to be calculated which is done for different phonon
modes in the following. The general analytic solution of the phonon dynamics states for an arbitrary
phonon mode γ:

ṅγ
q|sc =−

L
h̄ ∑

λλ
′
|gλλ ′γ

k0q |
2 1

|Zλγ
q |

Zλλ
′
γ

k0q̃q , (8.15)

with q̃ = k∓ k0.

8.2.1 Optical Modes

For optical phonon modes the electronic zero points

k0 = kλ ΓTO
q =

q
2

(
h̄ωΓTO

αλ q−2

)
, (8.16)

depend on the inverse square of the phonon momentum. The resulting prefactors

Zλ ΓTO
q = 2αλ q , (8.17)

scale linear with the phonon momentum q. This scattering transfer for the electronic distributions
reflects the constant phonon energy, whereas for the electron dynamics the scattering transfer
contains a root dependence reflecting the approximation of a parabolic band structure.
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8.2.2 Acoustic Modes

The zero points calculated for an acoustic mode state

k0 = kλ ΓLA
q = αλ q2

(
β

αλ

|q|
q2 −1

)
. (8.18)

The prefactor in contrast does not change since the first derivation dk f (k) is constant. Therefore,
the prefactors for optical and acoustic phonons emphasizes to be the identical:

ZλΓLA
q = ZλΓTO

q . (8.19)
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8.3 Solution of the δ -Function

In the following we will describe the procedure how the δ -function can be solved in the case of
one-dimensional structures like nanotubes and discuss the emerging scattering prefactors and jump
amplitudes. Through the δ -function the energy between two fermionic levels under emission or
absorption of a boson is conserved:

δ
(
ε

x
1±2− ε

y
1± ε

z
2

)
. (8.20)

The Boltzmann scattering equations have the same structure given through a summation over
the momenta of the scattering partners. They include the electron phonon coupling element

gλλ
′
γ

k g
in second order perturbation theory, a function P(k) containing the Pauli blocking terms

of the fermions and occupations of the bosons and the momentum dependent energy conserving
δ -function. The latter we can rewrite, as it represents a function f (k), as sum of δ -functions of the
difference between its variable and the zero points of the inner function weighted with the absolute
value of the first derivation at the zero points kn [111]

∑
k

δ ( f (k))P(k) = ∑
k

∑
n
|dk f (k)|−1

δ (k− kn)P(k). (8.21)

The discrete summation over the variable can be transferred into an integration

∑
k
=

1
∆k ∑

k
∆k −→ L

2π

∫
dk, (8.22)

with ∆k = 2π

L or L ∆k = 2π with L standing for the length of the solid, which in case of CNTs is
the length of the tube. Using the definition of the δ -function [111]∫

dkδ (k− k0)P(k) = P(k0), (8.23)

leads to the analytical expression

∑
k

δ ( f (k))P(k) =
L

2π
|dk f (k0)|−1 P(k0), (8.24)

in which sense the above derived Boltzmann-like scattering equations are now formulated.
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8.4 Basic Constants Used in the Thesis

physical constant symbol SI units eV-K-nm-fs-e0 units

Planck constant h̄ 1.054573 ·10−34 Js 0.658212eVfs

speed of light in vacuum c 2.997925 ·108 m/s 2.997925 ·102 nm/fs

elementary charge e0 1.602177 ·10−19 C 1.e0

Boltzmann constant kB 1.380658 ·10−23 J/K 8.617386 ·10−5 eV/K

electron mass m0 9.109390 ·10−34 kg 5.685631fs2 eV/nm2

mass of carbon C12 MC12 1.994425 ·10−26 kg 1.244812 ·10−7 fs2 eV/nm2

Table 8.1: The natural constants are given in SI-units as also in eV-K-nm-fs-e0 units. The latter one have
been used within the simulation of the relaxation dynamics in CNT dimensions.
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[16] Olga A. Dyatlova, Christopher Köhler, Ermin Malic, Jordi Gomis-Bresco, Janina Maultzsch,
Andrey Tsagan-Mandzhiev, Tobias Watermann, Andreas Knorr, and Ulrike Woggon. Ul-
trafast relaxation dynamics via acoustic phonons in carbon nanotubes. Nano Letters,
12(5):2249–2253, 2012.

[17] Olga A. Dyatlova, Christopher Koehler, Peter Vogel, Ermin Malic, Rishabh M. Jain, Kevin C.
Tvrdy, Michael S. Strano, Andreas Knorr, and Ulrike Woggon. Relaxation dynamics of
carbon nanotubes of enriched chiralities. Phys. Rev. B, 90:155402, Oct 2014.

[18] David J. Bergman and Mark I. Stockman. Surface plasmon amplification by stimulated
emission of radiation: Quantum generation of coherent surface plasmons in nanosystems.
Phys. Rev. Lett., 90:027402, Jan 2003.

[19] T.J. Echtermeyer, L. Britnell, P.K. Jasnos, A. Lombardo, R.V. Gorbachev, A.N. Grigorenko,
A.K. Geim, A.C. Ferrari, and K.S. Novoselov. Strong plasmonic enhancement of photovolt-
age in graphene. Nature Communications, 2.

[20] Mareen Glaeske and Antonio Setaro. Nanoplasmonic colloidal suspensions for the enhance-
ment of the luminescent emission from single-walled carbon nanotubes. Nano Research,
6(8):593–601, 2013.

[21] K. Kneipp, M. Moskovits, and H. Kneipp. Surface-Enhanced Raman Scattering: Physics
and Applications. Springer, Berlin Heidelberg, 2006.

[22] J. von Neumann. Wahrscheinlichkeitstheoretischer aufbau der quantenmechanik.
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-
Physikalische Klasse, 1927:245–272, 1927.

[23] Ugo Fano. Density matrices as polarization vectors. Rendiconti Lincei, 6(2):123–130, 1995.

[24] L. D. Landau. The damping problem in wave mechanics. Z. Phys., 45.

[25] F. Bloch. Nuclear induction. Phys. Rev., 70:460–474, Oct 1946.

[26] F. Rossi and T. Kuhn. Theory of ultrafast phenomena in photoexcited semiconductors. Rev.
Mod. Phys., 74:895–950, Aug 2002.

[27] M. Kira and S. W. Koch. Many-body correlations and excitonic effects in semiconductor
spectroscopy. Progress in Quantum Electronics, 30(5):155 – 296, 2006.

110



BIBLIOGRAPHY

[28] Marlan O. Scully and M. Suhail Zubairy. Quantum Optics. Cambridge University Press,
1997.

[29] Wolfgang Pauli. Pauli Lectures on Physics Volume 5: Wave Mechanics. Dover Pubn Inc,
2000.

[30] H. Haken. Quantenfeldtheorie des Festkörpers. B. G. Teubner Stuttgart, 1973.
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