
Inflating a Rubber Balloon
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������� A spherical balloon has a non-monotonic pressure-radius characteristic. This fact leads to interest-
ing stability properties when two balloons of different radii are interconnected, see [1, 2, 3]. Here, however,
we investigate what happens when a single balloon is inflated, say, by mouth. We simulate that process and
show how the maximum of the pressure-radius characteristic is overcome by the pressure in the lungs and
how the downward sloping part of the characteristic is ‘bridged’ while the lung pressure relaxes.
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The ����� � �� characteristic, which dictates the dependence of the pressure jump ���� across
the membrane of a spherical rubber balloon on its radius �, is non-monotonic, see [1] and
Figure 1. If the stress–strain relation of rubber is of the Mooney–Rivlin type, the analytic
form of the ����� � �� relation reads
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�� and �� are the thickness and the radius of the balloon, respectively, before inflation, and ��
and ��� are the two constants of a Mooney–Rivlin material. For a typical rubber balloon we
have
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For brevity we introduce 	 � � ��
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The free energy 
� of the balloon results from integration
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Figure 1. Pressure-radius characteristic.
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where ��� � ��
�
� �� is the volume contained in the balloon before inflation.

The question arises of how the part with negative slope is traversed as we inflate the
balloon. In order to obtain an answer, we consider a model which, in our understanding,
simulates the inflation of a balloon by mouth.

�� ������	�� 	�����	��

Figure 2 shows a schematic view of our ‘inflation apparatus’. It consists of the balloon, a
cylinder with piston of cross section 
, a linearly elastic spring, and two valves  and �.
The volume of the cylinder represents the volume of the lungs and the force in the spring
represents the muscle forces that push the air into the balloon.
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Figure 2. Model for lung and balloon.

Inflation usually occurs in several steps � � �� �� � � �, of which each one has four phases,
namely:

�� ‘Inhaling’. We begin the �th step with a balloon of radius ���� . Valve � is closed and
valve  is open; the spring is unloaded and the initial volume of the cylinder is ��� . That
volume is increased by lifting the piston so that the volume becomes �� ��	 . Then valve
 is closed.

�� ‘Pressurizing’. The piston is released so that the air in the cylinder is compressed by the
spring to the volume ��� . The value of the pressure is then called �.

�� ‘Inflating’. Upon opening valve � the compressed air will enter the balloon, which in-
creases to the radius �� with the corresponding pressure �� .

�� ‘Changing pressure’. Valve � is closed and valve  is opened so that the pressure ��� in
the cylinder drops to the external pressure ��. The process is then repeated.

�� ���	�	��	�

It is our objective to calculate the radii �� for a prescribed pressure �, or a prescribed spring
constant � . These are the radii for which–at the end of the phase ��—the system of spring,
cylinder and balloon are in equilibrium. The condition for the equilibrium is the existence of
a minimum of the available free energy. In the present case that energy has the form [3]
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energy of
the spring.

(3.1)

� is the specific free energy of the air in the reference state ��� ���; it is a constant.
The pressures �� and �� are related to �� and �� , or �� and �� , respectively, by the

ideal gas relation �� � ���. Therefore, the available free energy is a function of �� , ��� �,
�� � ��

�
� � and �� . The total number � � �� � �� of molecules is constant during the

phases �� of inflation, but it depends on �. Indeed, we have
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so that the number �� equals the sum of the—always equal—cylinder filling and of the
balloon filling reached in the ��� ��th step.

A necessary condition for equilibria requires that the derivatives of  with respect to ��,
� and �� vanish. From this condition we obtain easily

�� � �� pressure in balloon = pressure in cylinder

�� � �� �
	

 � ��� � ��� � pressure jump at piston = spring pressure

�� � �� � ��� � ��� pressure jump at balloon = membrane pressure.

(3.3)

These are three equations for the equilibrium values of ��, �, and �� in each step of
inflation. Each one of these values depends on the step number �, because we have �� �� �
��� � �� ���.

The solution of Equation (3.3) must be found numerically. There are several solutions
which are not all stable. In a stable equilibrium the matrix of second derivatives of the
available free energy  in Equation (3.1) with respect to ��, � and �� must be positive
definite. This is a sufficient condition for a minimum of . The exploitation of the condition,
however, is extremely cumbersome and therefore we proceed differently.
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We assume that the equilibria equations (3.3)� and (3.3)� of piston and membrane are
established so quickly that the slower trend to establish the equilibrium (3.3)� between
cylinder and balloon always sees Equations (3.3)� and (3.3)� satisfied. If this is so, we may
use Equations (3.3)� and (3.3)� to determine �� ��� and �� ���. We obtain
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Equation (4.1)� for �� ��� follows from Equation (4.1)� with
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as the solution of a quadratic equation. With Equation (4.1)��� the function �� ��� � ��
determines an ensemble of curves parametrized by �� or, equivalently, ���� . Note that, with
Equation (3.2), there is a one-to-one correspondence between ���� and �� , since �� ���

��
�
� �

is monotonic.
Figure 3 shows that ensemble of curves, each one in the interval ���� � � � �� . All

individual curves

��
�� ���� �� begin at the height �� ��. In the first step we have � � � and

���� equals ��, the radius of the uninflated balloon. The first step ends at �� where

��
�� ����

intersects the curve �� ���. Vertically above that point at the height �� �� the curve

��
�� ���

starts and it runs through to �� where it intersects the curve �� ���, etc. Thus we see the zigzag
curves of Figures 3 and 4 appear. The vertical branches represent the inhaling and pressurizing
steps with the closed valve�, while the arcs represent the inflating step. Equilibria exist in the
lower tips where the arcs touch the balloon characteristic �� ������. In Figure 3 we observe
how much effort it may take to overcome the pressure maximum of that characteristic, when
� is only slightly higher than the barrier. But the labour is rewarded, once the barrier is
overcome because afterwards the balloon inflates in a single step with decreasing pressure to
obtain a much bigger radius than that with which it began.

Figure 4 shows the same process with the difference that � is now large, so that a strong
lung is at work. The pressure barrier of the balloon is overcome in the first step.

The data for which Figures 3–6 are drawn were chosen as follows.
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Figure 3. The zigzag line represents the cylinder pressure during inhaling, pressurizing and inflating for a

pressure that is minimally larger than the pressure barrier. The smooth line represents the pressure-radius

characteristic of the balloon.

Figure 4. The zigzag curve shows the pressure in the cylinder, when the maximal pressure � is much

bigger than the pressure barrier. Equilibria exist in the lower tips.
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Figure 5. ���� with two minima and three points of intersection of the � curves.
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We continue to consider the partial equilibria in which only the equilibrium condition (3.3)�
is not yet satisfied, while the conditions (3.3)� and (3.3)� are already satisfied. In this case,
we may write the available free energy  in Equation (3.1) as a function of �. We obtain
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Figure 6. ���� with one minimum and one point of intersection of the � curves.
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where �� ��� and �� ��� as well as �� ��� are given by Equation (4.1).
��� is drawn in the lower part of Figure 5 for the second step of the inflation process

and for the small pressure � to which Figure 3 refers. ��� has three extrema corresponding

to the three points of intersection of the curves

��
�� ��� and �� ���, see upper part of Figure 5.

(Note that in Figure 3 we do not see these three intersections, since we have cut off the curve

��
�� ��� at the first point of intersection.)

The central extremum is a maximum and therefore corresponds to an unstable state. The
other two extrema are minima and therefore they represent stable states. Starting from ���� the
balloon will find the ������ minimum with �� � ���� , since it cannot overcome the energetic
barrier. In the seventh step the left minimum—and the maximum—have been eliminated.
The � curves have only one point of intersection (see Figure 6) and the balloon expands
strongly.

�� �	
��

	��

Rubber as such and, in particular, the material of rubber balloons is not strictly a Mooney–
Rivlin material. There are semi-empirical formulae that fit the experimental ��� �� curves
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better; see, for example, [4, 5, 6]. A peculiarity of these improved constitutive relations is
that the balloons may lose spherical symmetry at a certain radius. This interesting aspect of
balloon physics does not appear here, since we treat rubber as a Mooney–Rivlin material.
We do mention in this context the expert review on hyperelasticity of rubbers—among other
topics—by M. F. Beatty [7]. An interesting work on non-spherical balloons may also be found
in [8].
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