Inflating a Rubber Balloon
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Abstract: A spherica balloon has a non-monotonic pressure-radius characteristic. Thisfact leadsto interest-
ing stability properties when two balloons of different radii are interconnected, see [1, 2, 3]. Here, however,
we investigate what happens when a single balloon is inflated, say, by mouth. We simulate that process and
show how the maximum of the pressure-radius characteristic is overcome by the pressure in the lungs and
how the downward sloping part of the characteristic is‘bridged’ while the lung pressure relaxes.
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1. CHARACTERISTIC OF A SPHERICAL BALLOON

The ([ps] , ) characteristic, which dictates the dependence of the pressure jump [ p;] across
the membrane of a spherical rubber balloon on its radius r, is hon-monotonic, see [1] and
Figure 1. If the stress—strain relation of rubber is of the Mooney—Rivlin type, the anaytic
form of the ([ps] , r) relation reads

=2 (2 (2)) (-2 (2) ). wy

dy and ry are the thickness and the radius of the balloon, respectively, beforeinflation, and s,
and s_, arethe two constants of a Mooney—Rivlin material. For atypica rubber balloon we
have

sy =3 bar, s_; = —0.3 bar, and @ = 0.5 x 1072 (1.2
ro
For brevity weintroduce K = — —- = 10.

S_1
The free energy F'» of the balloon results from integration
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Figure 1. Pressure-radius characteristic.
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where Vzy = %wg is the volume contained in the balloon before inflation.

The question arises of how the part with negative slope is traversed as we inflate the
balloon. In order to obtain an answer, we consider a model which, in our understanding,
simulates the inflation of a balloon by mouth.

2. MODELLING INFLATION

Figure 2 shows a schematic view of our ‘inflation apparatus’. It consists of the balloon, a
cylinder with piston of cross section F, a linearly elastic spring, and two valves 4 and B.
The volume of the cylinder represents the volume of the lungs and the force in the spring
represents the muscle forces that push the air into the balloon.
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piston - massless
A - spring constant

P, - external pressure
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Figure 2. Model for lung and balloon.

Inflation usually occursin several stepsi = 1,2, . . ., of which each one has four phases,
namely:

i1 ‘Inhaling’. We begin the ith step with a balloon of radius r;,_;,. Vave B is closed and
valve 4 is open; the spring is unloaded and the initial volume of thecylinderis ¥z, . That
volumeisincreased by lifting the piston so that the volume becomes 1 ..., . Then valve
A isclosed.

i ‘Pressurizing’. The piston isreleased so that the air in the cylinder is compressed by the
spring to the volume ¥, . The value of the pressureisthen called P.

iz ‘Inflating’. Upon opening valve B the compressed air will enter the balloon, which in-
creases to the radius r; with the corresponding pressure p;.

iy ‘Changing pressure’. Valve B is closed and valve 4 is opened so that the pressure p; in
the cylinder drops to the external pressure p,. The processis then repeated.

3. EQUILIBRIA

It is our objective to calculate the radii »; for a prescribed pressure P, or a prescribed spring
constant 4 . These are the radii for which—at the end of the phase i3;—the system of spring,
cylinder and balloon are in equilibrium. The condition for the equilibrium is the existence of
aminimum of the available free energy. In the present case that energy has the form [3]
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A=N, len;,f'i0 + N3 kT1n pg p&; + (Nz +Ng)a(T,p,)+  freeenergy
of theair in
Zand B

3 do r 2 o 4
+5 (slg> Vio [2 (;) +(3) -3 free energy
of the

K <(%>4 49 (r’&f B 3>] balloon (31)

work of
+po(Vz +V3) external
pressure pg

e _ 5 energy of
tam(Vz =V )*. the spring.
a isthe specific free energy of the air in the reference state (7, po ); it is a constant.

The pressures pp and p, arerelated to Nz and V3, or N; and V, respectively, by the
ideal gasrelation pV = NkT. Therefore, the available free energy isafunction of Nz, (Nz),
Vs = 3 and V,. Thetota number N = Ny + N, of molecules is constant during the

3
phases i3 of inflation, but it depends on i. Indeed, we have

47
]V,kT: PVZ() +pB(i—1) ?r?_l, (32)
so that the number N; equals the sum of the—always equa—cylinder filling and of the
balloon filling reached in the (i — 1)th step.
A necessary condition for equilibriarequiresthat the derivatives of 4 with respect to N3,
rand ¥, vanish. From this condition we obtain easily

P =Pz pressurein balloon = pressure in cylinder
Pz —Po = %(Vz —Vz4)  pressurejump at piston = spring pressure (3.3)
P —po = [ps] (r) pressure jump at balloon = membrane pressure.

These are three equations for the equilibrium values of N, r, and V; in each step of
inflation. Each one of these values depends on the step number i, because we havep, V, =
(N; — N )KT.

The solution of Equation (3.3) must be found numerically. There are several solutions
which are not all stable. In a stable equilibrium the matrix of second derivatives of the
available free energy 4 in Equation (3.1) with respect to N, » and ¥, must be positive
definite. Thisisasufficient condition for aminimum of 4. The exploitation of the condition,
however, is extremely cumbersome and therefore we proceed differently.
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4. THE PRESSURE EQUILIBRIUM BETWEEN CYLINDER AND BALLOON

We assume that the equilibria equations (3.3), and (3.3); of piston and membrane are
established so quickly that the slower trend to establish the equilibrium (3.3); between
cylinder and balloon always sees Equations (3.3); and (3.3); satisfied. If thisis so, we may
use Equations (3.3), and (3.3)3 to determine p () and p (7). We obtain

pz(r) —po = Fi_z (Vz(r) = Vz4 ) and
2
P (r) —po =255t (rTo - (r70)7> (1 ~r <%) ) , With

Vo) = 5 (B Vou )+ /1 (B V) (VAT o (9 50°)

(4.1)

Equation (4.1); for ¥ (r) follows from Equation (4.1); with

1 1 4 .
pz(r) = 7 (N; — N3 ) kT = A (N,kT—pB (r)?rs)

as the solution of a quadratic equation. With Equation (4.1); 5 the function pz (r) — po
determines an ensemble of curves parametrized by N; or, equivalently, ;_; . Note that, with
Equation (3.2), there is a one-to-one correspondence between r;_, and N;, since p; () %ﬁ
is monotonic.

Figure 3 shows that ensemble of curves, each one in theinterval r,_; < r < r;. All

individual curves;gg (r) — po begin a the height P — py. Inthefirst step we havei = 1 and
ri_1 equas rg, the radius of the uninflated balloon. The first step ends at r;, where 1(912) (r1)

intersects the curve pg (r). Verticaly above that point at the height P — p, the curve ;(922) (r)
startsand it runsthrough to r, whereit intersectsthe curve pg (r), etc. Thuswe seethe zigzag
curvesof Figures3and 4 appear. Thevertical branchesrepresent theinhaling and pressurizing
stepswith the closed valve B, whilethe arcs represent theinflating step. Equilibriaexistinthe
lower tips where the arcs touch the balloon characteristic pp () — po. In Figure 3 we observe
how much effort it may take to overcome the pressure maximum of that characteristic, when
P is only dlightly higher than the barrier. But the labour is rewarded, once the barrier is
overcome because afterwards the balloon inflatesin asingle step with decreasing pressure to
obtain a much bigger radius than that with which it began.

Figure 4 shows the same process with the difference that P is now large, so that astrong
lung is at work. The pressure barrier of the balloon is overcome in the first step.

The data for which Figures 3-6 are drawn were chosen as follows.

d . N
si— = 1'5“03% K=10 py=1lbar T =290K

ro

Veo = 107m®, Vy =4 x107°m®, Vi = 4.5 x 107%m?
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Figure 3. The zigzag line represents the cylinder pressure during inhaling, pressurizing and inflating for a
pressure that is minimally larger than the pressure barrier. The smooth line represents the pressure-radius
characteristic of the balloon.
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Figure 4. The zigzag curve shows the pressure in the cylinder, when the maximal pressure P is much
bigger than the pressure barrier. Equilibria exist in the lower tips.
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Figure 5. A(r) with two minima and three points of intersection of the p curves.

2.236 x 1094 - Figures 3,5, 6 P = 1.02236 bar
;—2 = for —
2.5 x 10°4 L Figure 4 P = 1.025bar

5. AVAILABLE FREE ENERGY AS A FUNCTION OF r

We continue to consider the partia equilibriain which only the equilibrium condition (3.3),
is not yet satisfied, while the conditions (3.3), and (3.3); are already satisfied. In this case,
we may write the available free energy 4 in Equation (3.1) as afunction of ». We obtain

4 . 3 d
A—N,a(T,pO) = pz VZ lnp—z +p3 —Wr‘slnp—B-i—— (Sl—o) VBO
Po 3 po 2 )

X [2 (%)Z (%)4—3+K<(%>4+2 (%‘“)2 —3>]
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Figure 6. A(r) with one minimum and one point of intersection of the p curves.

47 A
+ Do <Vz + ?7‘3> + SR (Vz —Vza )2> (5.1

wherep; (r) and pp (r) aswell as V; (r) are given by Equation (4.1).
A(r) isdrawn in the lower part of Figure 5 for the second step of the inflation process
and for the small pressure P to which Figure 3 refers. A(r) has three extrema corresponding

. . . 2 .
to the three points of intersection of the curves ;(72) (r) and p3 (r), see upper part of Figure 5.
(Notethat in Figure 3 we do not see these three intersections, since we have cut off the curve

;(922) (r) at thefirst point of intersection.)

The central extremum isamaximum and therefore corresponds to an unstable state. The
other two extremaare minimaand therefore they represent stable states. Startingfromr,_; the
balloon will find the nearest minimumwith»; > r;_;, sinceit cannot overcome the energetic
barrier. In the seventh step the left minimum—and the maximum—have been eliminated.
The p curves have only one point of intersection (see Figure 6) and the balloon expands
strongly.

6. DISCUSSION

Rubber as such and, in particular, the materia of rubber balloons is not strictly a Mooney—
Rivlin material. There are semi-empirical formulae that fit the experimenta (p,r) curves
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better; see, for example, [4, 5, 6]. A peculiarity of these improved congtitutive relations is
that the balloons may lose spherical symmetry at a certain radius. Thisinteresting aspect of
balloon physics does not appear here, since we treat rubber as a Mooney—Rivlin material.
We do mention in this context the expert review on hyperelasticity of rubbers—among other
topics—by M. F. Beatty [ 7]. Aninteresting work on non-spherical balloons may also befound
in[8].

REFERENCES

(1
(2
(3]
(4
(9]
6l
(7]

(8

Atkins, J. E.and Rivlin, R. S.: Large Elastic Deformations of Isotropic Materials IX. The Deformation of Thin Shells,
Davy Faraday Laboratory of the Roya Institution, 1951.

Dreyer, W, Mdller, I. and Strehlow, P: A Study of Equilibria of Interconnected Balloons. Q. J. Mech. Appl. Mech.,
35, 419-440 (1982).

Mdller, |.: Thermodynamics. Pitman, Boston, MA, 1985.
Alexander, H.: Tensileinstability of initially spherical balloons. Int. J. Eng. Sci., 9, 151-162 (1971).
Needleman, A.: Necking of spherical membranes. J. Mech. Phys. Solids, 24, 339-352 (1977).

Haughton, D. M. and Ogden, R. W.: Ontheincremental equationsinnon-linear elasticity I1. Bifurcation of pressurized
balloons. J. Mech. Phys. Solids, 26, 111-138 (1978).

Bestty, M. F: Topicsinfinite dasticity: hyperelasticity of rubber, elastomers and biological tissues—with examples.
Appl. Mech. Rev, 40, 1699-1734 (1987).

Stephan, V.: Die Berechnung der Form lufigefiillter Ballons und deren Stabilitdt, Diplomathesis, TU Berlin, 1989.



