
Uncertainty & Learning

in Global Climate Analysis

vorgelegt von

Diplom-Physiker

Alexander Lorenz

aus Plauen

von der Fakultät VI – Planen Bauen Umwelt

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Wirtschaftswissenschaften (Dr. rer. oec.)

genehmigte Dissertation

Gutachter:

Prof. Dr. Ottmar Edenhofer

Prof. Dr. Hermann Held

Promotionsausschuss:

Prof. Dr. Volkmar Hartje (Vorsitz)

Prof. Dr. Ottmar Edenhofer

Prof. Dr. Hermann Held

Tag der wissenschaftlichen Aussprache: 14.02.2012

Berlin 2012

D83





3

Contents

Abstract 5

Zusammenfassung 7

Acknowledgements 9

1 Introduction 11

1.1 The Physics of Climate Change 11

1.2 The Impacts of Climate Change 13

1.3 The Economics of Climate Change Mitigation 15

1.4 Uncertainty and Learning in Global Climate Analysis 18

1.5 Thesis Outline 21

2 Climate Targets under Uncertainty: Challenges and Remedies 25

2.1 Introduction 27

2.2 Fixed Targets 29

2.3 Adjusting Targets 31

2.4 Conclusions 33

2.5 References 34

2.6 Supplement 36

3 How important is Uncertainty for the Integrated Assessment of Climate Change? 39

3.1 Introduction 41

3.2 How to measure the importance of Uncertainty and Perfect Learning? 44

3.2.1 The decision problem 44

3.2.2 Metrics for measuring the Importance of Uncertainty and Perfect Learning 46

3.2.3 A simple example: Quadratic Benefits and Costs of Mitigation 48

3.3 Importance of Uncertainty in MIND 50

3.3.1 The Model of Investment and Technological Development (MIND) 51

3.3.2 Importance of Uncertainty and Perfect Learning in MIND 51



4 Contents

3.3.3 The Marginal Costs - Benefit picture of MIND 55

3.3.4 Functional Dependencies within MIND 57

3.4 Changes in the Model Structure 60

3.4.1 Constant relative risk aversion η 60

3.4.2 Exponential Damages 61

3.4.3 Linear Carbon Climate Response 62

3.5 Conclusion 64

3.6 Appendix 66

3.7 References 66

4 Anticipating Climate Threshold Damages 69

4.1 Introduction 71

4.2 Model and Methodology 73

4.2.1 Problem Formulation 73

4.2.2 Terminology 73

4.2.3 The Integrated Assessment Model MIND 74

4.2.4 Implementation of Learning about Climate Sensitivity and Damage Am-

plitude 75

4.2.5 Implementation of Learning about Threshold Damages 75

4.3 Results 76

4.3.1 Learning about Climate Sensitivity and Damage Amplitude 76

4.3.2 Learning about Threshold Damages 77

4.4 Conclusions 81

4.5 Appendix 81

4.6 References 82

5 Synthesis and Outlook 85

5.1 Formulating the Climate Problem under Uncertainty and Learning 86

5.2 Importance of Uncertainty for Global Climate Analysis 88

5.3 Importance of Anticipating Future Learning 89

5.4 General Outlook and further Research Questions 92



5

Abstract

Climate change, the 21st centuries challenge for cooperative human decision making, is sur-

rounded by large uncertainties concerning the scientific understanding of the climate system, of

climate change induced changes of natural and social systems and of the impacts of those changes

on human economic activities and human welfare in general. Parts of these uncertainties will be

resolved as science advances and new observations are made. This learning will allow refining the

decisions undertaken to cope with the climate problem.

This thesis is dedicated to examine the role of uncertainty and future learning in the formal assess-

ment of optimal global mitigation strategies for global warming. The central contributions of this

study are contained within three research articles.

The first article investigates the validity of the cost-effectiveness framework when applied to the

case of climate targets under uncertainty and future learning. The study highlights two major con-

ceptual problems of this formalism, namely the possibility of negative value of information and

infeasibility of the whole decision criterion. As a consequence an alternative decision framework

is proposed, the so-called cost-risk analysis, which avoids those conceptual problems but still re-

mains based on climate targets.

The second article is motivated by the clash between the general scientific intuition that epistemic

uncertainties about the climate system and climate damages should play a major role in determin-

ing optimal mitigation policies (and the resulting welfare gain compared to doing nothing) and

the results from the integrated assessment models that show only insignificant influence of those

uncertainties. We introduce a method of assessing the importance of uncertainty both in its impact

on optimal policy and in its impact on the welfare gain from acting upon climate change. We then

use a representation of the integrated assessment model MIND that allows linking the decomposed

value of climate policy to the structural form of the functions representing the climate cause-effect

chain, thereby understanding the negligible effect of uncertainty from the model structure. Finally

we propose some changes to the model structure that result in large impacts from including uncer-

tainty.

The third article investigates the circumstances under which the anticipation of future learning

about tipping-point-like threshold climate damages would be important for the determination of

near term mitigation decisions. We show that this is only the case if the learning occurs within

a narrow anticipation window. In this case far stronger near term mitigation is optimal to keep

the option open to avoid the threshold in case it turns out to lead to severe damages. The location

and width of this window is found to be sensitive to the DM’s flexibility to reduce emissions. If

reducing this flexibility in the MIND model, may this represent political or social barriers, the

anticipation window moves towards the present and broadens considerably, thereby increasing the

importance of including future learning into the analysis of climate change.

The articles are put into perspective by an introduction into the field that lays out the general

linking research questions and general conclusions.
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Zusammenfassung

Der Klimawandel, als zentrale Herausforderung des 21. Jahrhunderts für globale Kooperation, ist
gekennzeichnet durch enorme Unsicherheiten im wissenschaftlichen Verständnis des Klimasys-
tems, klimainduzierter Veränderungen natürlicher und sozialer Systeme sowie der Folgen dieser
Veränderungen für menschliches Wirtschaften und die allgemeine Wohlfahrt. Teilweise werden
diese Unsicherheiten durch Fortschritte der Wissenschaft und neue Beobachtungen aufgelöst wer-
den können. Dieses zukünftige Lernen wird es ermöglichen, getroffene Entscheidungen zum Kli-
maschutz zu revidieren und an neue Situationen anzupassen.

Diese Dissertation widmet sich der Untersuchung der genauen Rolle dieser Unsicherheiten und
der Möglichkeit zukünftigen Lernens für die formale Analyse optimaler Vermeidungsstrategien
des Klimawandels. Die zentralen Beiträge dieser Arbeit sind in drei wissenschaftlichen Artikeln
dargelegt.

Der erste Artikel untersucht axiomatische Zielkonflikte bei der Anwendung der so genannten
"Kosten-Effektivitäts" Analyse auf Klimaziele unter Unsicherheit. Die Studie stellt zwei zen-
trale konzeptionelle Probleme dieses Formalismus fest, wenn man zusätzlich die Möglichkeit
zukünftigen Lernens einbezieht: die Möglichkeit, dass zusätzliche Information negativen Wert
zugeschrieben bekommt und die Möglichkeit der Unlösbarkeit des ganzen Entscheidungskriteri-
ums. Als Konsequenz wird ein alternatives Entscheidungskriterium vorgestellt, die sogenan-
nte "Kosten-Risiken" Analyse. Diese basiert immer noch auf der Angabe einzuhaltender Kli-
maschranken, vermeidet jedoch die benannten Probleme.

Die Motivation für den zweiten Artikel liefert der Widerspruch zwischen einer wissenschaftlichen
Intuition und den aktuellen Modellergebnissen. Die Intuition sieht einen starken Einfluss epis-
temischer Unsicherheiten auf die Bestimmung optimaler Vermeidungsstrategien und deren Ein-
fluss auf die Wohlfahrt (im Vergleich zum "Nichtstun"). Die Modelle hingegen zeigen nur einen
marginalen Einfluss dieser Unsicherheiten. Diese Studie entwickelt eine Methode, mit der man
die Wichtigkeit von Unsicherheit bestimmen kann, sowohl im Sinne des Einflusses auf die opti-
male Politik als auch im Sinne der Wohlfahrtsveränderung, die diese Politik hervorruft. Weiterhin
wird eine Darstellung des Modells MIND verwendet, die es ermöglicht, die vorgestellte Metrik
zur Messung der Wichtigkeit mit der Struktur der Funktionen zu verbinden, die die Kausalkette
des Klimawandels im Modell abbilden. Damit kann man die insignifikante Rolle von Unsicher-
heit direkt aus der Modellstruktur ableiten. Davon ausgehend testen wir einige, in der Literatur
diskutierte, Änderungen der Modellstruktur bezüglich ihres Einflusses auf die Wichtigkeit von
Unsicherheit.

Der dritte Artikel untersucht die Umstände unter denen die Antizipation zukünftigen Lernens über
Klimaschäden aus dem Überqueren eines sogenannten Tipping Points einen signifikanten Einfluss
auf die kurzfristige Vermeidungsstrategie ausübt. Wir zeigen, dass dies nur der Fall ist, wenn
das Lernen in einem engen "Antizipations-Zeitfenster" stattfindet. In diesem Fall ist eine strik-
tere kurzfristige Vermeidungsstrategie optimal, um die Option zu erhalten, im Falle schlechter
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Nachrichten über die Schäden des Tipping Points selbigen nicht zu überqueren. Die Lage und Bre-
ite dieses "Antizipations-Zeitfensters" ist stark abhängig von der Flexibilität, die Treibhausgase-
missionen zu reduzieren. Wenn man diese herabsetzt, beispielsweise um politische oder soziale
Barrieren zu repräsentieren, so bewegt sich das "Zeitfenster" näher zur Gegenwart und verbreit-
ert sich deutlich. Damit wird die Wichtigkeit von Antizipation für kurzfristige Entscheidungen
erhöht.

Eingefasst werden die Artikel von einer Einleitung in das generelle Forschungsumfeld, die
auch die zentralen, verbindenden, Forschungsfragen einführt, und einer Zusammenfassung, die
Schlussfolgerungen und weitere Forschungsschritte vorstellt.
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Chapter 1

Introduction

Anthropogenic climate change is one of the most prominent and most pressing global problems of

the unfolding century. While the basic principles of the cause-effect chain from human economic

activity to changing global climate conditions are well understood, large uncertainties remain in

the quantification of potential future evolution pathways of the climate system and the resulting

consequences for human civilization. However, during the last decades an enormous amount of

insights and evidence have been gathered and our understanding of the complex socio-economic-

climate system advances. Hence uncertainties and the expectation of future advances in system

knowledge are prominent features of the global climate problem.

This thesis aims at contributing to the assessment of the importance of these features of uncertainty

and learning for the integrated assessment of climate change mitigation policies. This will help

to clarify the justification of their prominence in the ongoing debate. This chapter introduces the

broader context of this thesis and clarifies its objectives. The basic physics of climate change is

reviewed in Section 1.1. Sections 1.2 and 1.3 introduce the economic approach to the analysis

of climate change. The issues rising from the recognition of uncertainties and learning about

key components of the combined socio-economic-climate system and the ways these problems

are approached in the literature are reviewed in Section 1.4. Within in this context, Section 1.5

introduces the objectives and structure of the thesis.

1.1 The Physics of Climate Change

The basic processes of anthropogenic global warming are well understood. A number of human

activities like pasturing land, cutting down forests, producing livestock, and especially the burning

of fossil fuels, leads to an increased flow of greenhouse gases (e.g. carbon dioxide, methane,

etc) into the atmosphere. This increases the atmospheric concentration of those gases above the

pre-industrial equilibrium level. As those greenhouse gases are transparent for incoming short

wave radiation from the sun but nearly opaque for the long wave heat radiation from the surface

of the earth a higher concentration of greenhouse gases perturbs the energy balance between the

incoming solar shortwave radiation and the outgoing longwave radiation which determines the

earth’s surface temperature. The resulting radiative forcing at the top of the atmosphere leads to
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an increase in GMT (until new equilibrium of the radiation balance). This basic concept of the

greenhouse effect was already described by Arrhenius (1896).

From the industrial revolution (1850) the atmospheric concentration of greenhouse gases (mea-

sured in CO2 equivalents) has increased by about 50%, from 287 ppm (parts per million) to 433

ppm in 2004 (Solomon et al., 2007). Global emissions of carbon dioxide equivalent greenhouse

gases as of 2004 amounted to 49 Gt (Trenberth et al., 2007) and have been increasing by about

4% per year ever since. In 2009 the CO2-only emissions summed up to 29.5 Gt (compared to

27.7 Gt in 2005) (IEA, 2011). This led to an addition of 2 ppm of CO2 in the atmosphere per

year on average between 2004 and 2009 (Stern, 2007), with a current atmospheric CO2 concen-

tration of 389 ppm (as measured at Mauna Loa in September 2011, Conway & Tans, 2011). In the

same period (1850-2005), global mean temperature increased by 0.76±0.19 ◦C, at an accelerating

rate. The warming over the last 50 years is almost double that of the previous 100 years (Tren-

berth et al., 2007). Given our sound understanding of the thermodynamics of the climate system

it is very unlikely that those changes in temperature can be explained without external forcing

(like changes in solar irradiation, volcanic forcing, and anthropogenic activities). As temperature

has been strongly increasing when non-anthropogenic factors would be likely to have produced

a cooling effect, attribution studies find it very likely that it has been anthropogenic greenhouse

gas emissions that have caused most of the observed warming since the mid-20th century (p60,

Solomon et al., 2007).

During the last century, and especially within the last decades, a large number of changes in both

the global and regional parts of the climate systems have been detected: melting of glaciers all

over the world, changes in regional temperature and precipitation patterns, a rise in the global sea

level of about 25 cm, and an increase of 0.7 ◦C in the global mean temperature within the last

century (IPCC, 2007). Due to the large inertia of the climate system, stemming from the enor-

mous capacity of the oceans to store heat and the already large, accumulated athmospheric carbon

pool, this warming would continue for centuries even if greenhouse gas emissions were stopped

immediately. Following Ramanathan & Feng (2008), when keeping athmospheric CO2 concen-

tration constant at the 2005 level (but reducing the emission of aerosols over the 21st century),

we would be committed by the current cumulative emissions to an expected global warming of

2.4(1.4−4.3) ◦C above pre-industrial temperatures.

Although the thermodynamics of global warming are well understood, prognoses of future changes

in the different climate subsystems are inherently difficult, due to some less understood processes

that define the dynamics of the climate system. The sign and amplitude of different feedback

mechanisms like the water vapor feedback and the radiative forcing from changing cloud cover

are still highly uncertain. Additionally a large number of uncertain parameters in our representa-

tion of the climate system influence the cause-effect chain of global warming. Prominent examples

of uncertainties are the so-called climate sensitivity (Roe & Baker, 2007), the equilibrium change

in mean global surface temperature due to a doubling of atmospheric CO2 concentration from the

pre-industrial level, and the transient climate response (Stott et al., 2006), that describes the im-

mediate temperature response to a 1% yearly increase in CO2 concentration at the point where the

doubled concentration level is reached. Projections of global mean temperature within the 21st
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century are also highly uncertain. In the absence of any climate policy, the IPCC predicts a global

warming of 4.0(2.4− 6.4) ◦C above pre-industrial mean temperatures to be reached by the year

2100 (Meehl, 2007).

The role of these uncertainties and potential future improvements in our knowledge is the central

matter of this thesis and will be introduced in more detail in Section 1.4.

1.2 The Impacts of Climate Change

A large number of changes in the global climate system are expected to accompany the rise in

global mean temperature or follow from it. Global sea levels are expected to rise by 0.18−0.59m

by the end of this century (IPCC, 2007). Newer estimates see the potential for even greater in-

creases (Vermeer & Rahmstorf, 2009). Due to varying regional compositions of the drivers of sea

level rise (SLR) its regional extent is also expected to differ significantly (Yin, 2009). Precipi-

tation will change both in amplitude and in the regional distribution (IPCC, 2007). Widespread

mass losses from glaciers and reductions in snow cover over recent decades are projected to accel-

erate throughout the 21st century, reducing water availability, hydropower potential, and changing

seasonality of flows in regions supplied by meltwater from major mountain ranges (IPCC, 2007).

One of the most important aspects of the impact of global warming is that for a given change in

global temperature, the regional changes can differ enormously. Thus a “moderate” global warm-

ing of about 2 ◦C above pre-industrial temperatures can lead to tremendous changes in different

climate subsystems and sensitive regions. The most severe changes in regional climates have been

observed in the Arctic, where the temperature change is two times as high as the global mean

(Trenberth et al., 2007). The minimum extent of the Arctic sea ice cover during summer has de-

creased by about 30% over the last decades (Stroeve, 2011). If this disaggregation is going to

continue at the same speed, the Arctic Ocean could be ice-free in summer by 2050. Addition-

ally, once the sea ice cover falls below a certain level of thickness, it becomes more vulnerable to

changes in regional weather conditions. Hence the volatility of sea ice cover increases and thus

the predictability of future changes decreases significantly. There are indications for the latidud-

inal position of the inner tropical convergence zone (ITCZ) changing in response to temperature

gradients between the northern and southern hemisphere (Broccoli et al., 2006). As temperature

increase in response to a rise in athmospheric greenhouse gas levels is expected to vary regionally,

this could mean that the ITCZ, as a band of highest precipitation, could move, thus regions with

once high levels of precipitation could dry up while others will encounter higher seasonal precipi-

tation events. This change will also lead to a corresponsing movement of the arid belt that follows

outside of the ITCZ.

A second important feature of global warming concerns the (partial) irreversibility of climate

change . Although the projections of global mean temperature are smooth over time, i.e. a linear

response to the forcing, this does not have to hold for regional changes. A number of climate

subsystems have been identified that can react in a strongly non-linear fashion to changes in the

overall forcing. Those so-called tipping elements (Lenton et al., 2008) were introduced to describe
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the components of the Earth system that can be switched – under particular conditions – into a

qualitatively different state by small perturbations. Thereby the term ‘tipping point’ is used to

refer to the critical point (in forcing and a feature of the system) at which such a transition is

triggered. Furthermore, most of these subsystems show hysteresis behavior, which means that

once such a tipping element reaches another stable state, a simple reversion of the forcing will in

general not suffice to switch the system back into its original state. Examples of these systems are

the thermohaline circulation in the north Atlantic, the Amazon Rainforest, and the South Asian

monsoon circulation. Another example is the Greenland ice sheet.

Some of these systems are characterized by the existence of a positive feedback mechanism that

causes the transition in the system, once the forcing passes the ‘tipping point’. In the case of

the Greenland ice sheet, increased melting due to higher temperatures leads to a lowering of the

thickness of the ice sheet. But by lowering the altitude of the maximum thickness, the surround-

ing temperature increases even more, which further exacerbates the melting process. Once the

thickness has fallen below a certain threshold, the total disaggregation of the ice sheet cannot be

stopped by simply bringing the temperatures back to normal.

Besides the regional positive feedbacks which can lead to a tipping behavior in climate subsys-

tems, there also exist a number of positive feedbacks on a global scale. The greenhouse effect

of water vapor, as part of the overall greenhouse effect, is one of the potential, global positive

feedbacks. As the global temperature is increased by the greenhouse effect from airborne water

vapor, even more water enters the atmosphere and thereby further strengthens the greenhouse ef-

fect. However, the strength of this feedback is not known precisely as several complications occur

(Forster et al., 2007). The radiative effect from increasing water vapor content is decreasing by a

spectral saturation effect. A second example of a global feedback is the dependence of the ability

of the oceans to store CO2 from the atmosphere on the global temperature itself. This ability is

influenced by temperature increases through a multitude of effects (see Fung et al., 2005): Warm-

ing reduces solubility of carbon, increases ocean stratification, reduces vertical mixing, and slows

the thermohaline circulation. This also impacts on the oceanic biological productivity. Partially

loosing the capacity of storing CO2 in the oceans would further increase the greenhouse effect. Fi-

nally, there are some other sources of potentially drastic global positive feedbacks. Large amounts

of CO2 and methane are stored in the permafrost soil of the northern hemisphere and even larger

amounts of methane are stored at the bottom of the marine continental shelf regions in the form of

methane hydrates. An increase in regional temperatures and oceanic temperature could lead to a

large scale release of those greenhouse gases into the atmosphere and lead to a drastic, so-called

‘run-away greenhouse effect’ of uncertain but tremendous amplitude (e.g. Keller et al., 2007;

Lenton, 2011). The bedeviling feature of these non-linear mechanisms is the inherent uncertainty

about the location of the tipping points and about the consequences of a switching for other parts

of the climate system. However there are some instances of abrupt changes in the past of the Earth

system found in paleo-climatic data, that might represent switches of tipping elements, and there

are also some methods for early warning about approaching a tipping point from observations

(Dakos et al., 2008; Held & Kleinen, 2004; Lenton, 2011).

Uncertainty and potentials for future learning prevail in each of the mechanisms for climate change
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impacts, especially in the non-linear subsystems. Those uncertainties add another dimension to

the overall uncertainty about climate change and will also be tackled in this thesis.

1.3 The Economics of Climate Change Mitigation

The impacts of climate change on the earth system are not of concern per se. During its long his-

tory, the earth has experienced many drastic or abrupt changes within the climate system, like the

so-called snowball earth events (Hoffman et al., 1998) or major meteoric impact events (Alvarez

et al., 1980). Thus, from a very aggregated perspective one could say that abrupt and extreme

changes within the climate system are “quite normal”. Such events caused massive changes in

atmospheric composition, the global mean temperature, and regional conditions for life, resulting

in the extinction of 95% of all species. Anthropogenic climate change differs from those events:

The observed and expected changes in natural systems take place with unrecedented speed (100’s

rather than 100000’s of years). Human society has adapted to the relatively stable climate of the

past holocene and whenever the climate deviated slightly from this holocenic "stable state" soci-

eties suffered and whole civilisations broke down. Therefore the changes in the natural systems

due to anthropogenic climate change will have large impacts on human activities, health and con-

ditions for human life in general. Furthermore, as human activities are the cause of the current

changes in the climate system, and additional climate change could be avoided by stringent mit-

igation policies, the problem of anthropogenic climate change belongs to the realm of decision

problems. Economic theory provides tools for evaluation of climate induced damage as well as

for decision making in the climate context.

One of the major threats from climate change is not the change in the mean state of regional climate

variables but the rising probability of extreme events like droughts, floods, or storms. Both kinds

of impacts, changes in the mean state and a higher risk of extremes, will impact humans differently

across regions, income groups, age groups and other attributes. Sea level rise, for example, will

mainly impact coastal regions by increasing the risk for extreme flooding events that threaten

human life, health and infrastructure. However, other regions would be affected indirectly. As a

sea level rise of 0.5− 1m would increase the number of people under risk of coastal flooding by

up to 200 million (NRC, 2011), large migration movements are expected to follow from climate

change impacts. A moderate increase of temperature would also lead to different impacts across

world regions, as the northern hemisphere (e.g. Russia, Scandinavia, or northern Germany) might

even benefit from increased crop yields while arid and warm regions like southern Europe or sub-

Saharan Africa will encounter drastic reductions in crop yields from reduced water availability

and soil erosion (Edenhofer et al., 2010). Welfare economics provides the means to evaluate the

impacts of climate change and aggregate them to a measure of losses to human welfare. However

such an evaluation poses several severe challenges. Firstly, the inherent uncertainties in predicting

all necessary aspects of climate change relevant to the damage assessment are immense. Secondly,

the incommensurability of different impacts poses an enormous problem for their aggregation, e.g.

when comparing losses in biodiversity to an x% decrease in agricultural productivity. And finally,

some very intricate normative issues arise, when aggregating climate damages over time, regions
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and over uncertain possible future states of the world (Stern, 2007; Nordhaus, 2008a; Dasgupta,

2008): how to value future damages against current welfare, how to value damages inflicted on

rich people relative to damages inflicted on poor people, and how to weigh the risk of catastrophic

damages?

Economic Theory provides two important insights for managing climate change. First, the climate

change phenomenon is described as a failure of markets to anticipate the social damages inflicted

by economic activities. This provides the economic rational for a regulating authority to inter-

vene and internalise the negative effects from climate change. The non existence of an effective

global market regulation body leaves this intervention to be negotiated between many sovereign

countries that are in a competitive situation on the global markets. This delivers an explanation

as to why global action to mitigate dangerous anthropogenic interference with the climate sys-

tem, as stipulated by UNFCCC, Art. 2, is so difficult to achieve although the potentially drastic

consequences of unmitigated climate change are provided by science. Second, it provides some

important concepts to analyze the trade-offs between current and future generations, between rich

and poor regions and between the costs of mitigation and the risk of unmitigated climate damage.

Climate change related damage caused by anthropogenic greenhouse gas emissions comprise a

market failure as each emitter of greenhouse gases only experiences a tiny part of the overall dam-

age from climate change. Thus the emitter does not anticipate the causal link between her actions

and the resulting negative implications. A large number of self interested actors that compete

on the global market would thus not agree on any non-trivial mitigation action. This situation is

equally referred to as a market failure, an externality, or a common good problem (Hardin, 1968).

The solution to a common good problem is that the governmental authority regulating the market

(and representing social interest) puts a price on the activity that creates the externality. Thereby

the external damages get internalized and the market once again efficiently implements the social

interest.

In the context of climate change this solution corresponds to the installation of a globally bind-

ing regime that puts a price on greenhouse gas emissions, either explicitly, by a carbon tax, or

implicitly, by a binding limit on absolute emissions combined with a trading scheme of carbon

emission permits (Weitzman, 1974). In the absence of further externalities, like technological

spillovers (Leimbach & Baumstark, 2010), and without uncertainty about mitigation costs and

damages, both instruments efficiently internalize the climate externality. The handling of multiple

externalities and asymmetric information would require additional policy instruments and repre-

sent a field of research on their own. The practical implementation of a globally binding climate

regime has not been successful up to now (COP 16, 2010). The lack of an authority regulating

the global market, the diversity of interests of the different major economic actors, the inherent

difficulty of including the interests of future generations, and the difference between those actors

who cause(d) climate change and those who will experience the damage are major obstacles for

such and agreement. However, at least the UN have collectively recognized the issue of climate

change mitigation by (loosely) committing to a target of constraining global warming to a 2◦C

increase from the pre-industrial global mean temperature (COP 16, 2010). Furthermore, unilateral

commitments for mitigation of greenhouse gas emissions have been piloted by several countries
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(www.climateactiontracker.org). However, one can entertain some doubt as to whether those ac-

tions will suffice to counteract climate change.

Focusing on the trade-offs inherent to the question of the appropriate level of mitigation action,

economic theory provides two different approaches. The first one includes a full monetization

and aggregation of climate damages as well as mitigation costs and aims at a formal cost-benefit

analysis of mitigation actions (as done e.g. by Nordhaus, 1994 , 2008a). The second approach

refrains from monetizing damages and provides an assessment of climate related risks instead.

By fixing the risk exposure to a certain level, cost efficient mitigation policies can be derived

(Schneider & Mastrandrea, 2005; Held et al., 2009). While the choice of an optimal policy is

included in the first approach and has to be done ex post within the second approach, economists

use to emphasize that the main benefit of both methods lies in the exploration of the consequences

of alternative policy scenarios rather then delivering the one optimal solution (Weitzman, 2011).

When considering the problems in the assessment of damage and the dependence on normative

settings discussed above, a healthy warning about the use of formal cost-benefit analyses seems

more than appropriate.

The formal implementation of both approaches is done in so-called integrated assessment mod-

els (IAMs), which include a representation of the socio-economic and the climate system. This

way both the impact from economic activities on the climate system and the impact from climate

change on economic activity are captured within one modeling framework. The pioneering work

in this field is the DICE model by Nordhaus (1994). Integrated Assessment models vary in the

detail and methodology of the description of the single subsystems as well as in the choice of

normative settings. Large parts of controversies about differing results from IAMs can actually be

related to the choice of normative parameters (Stern, 2007; Nordhaus, 2006). What they have in

common though, is that they mostly only consider mitigation in terms of reductions in GHG emis-

sions (exceptions are e.g. Ingham et al., 2007, Bosello et al., 2010, who also consider adaptation).

Taking into account the whole chain of causes and effects of climate change, along the so-called

Kaya identity (see Waggoner & Ausubel, 2002, a comprehensive set of policy levers is thinkable

to reduce climate change impacts: Limiting population growth, per capita economic output, en-

ergy intensity of economic activity, carbon intensity of energy production (and other activities like

agriculture and transport), or capturing greenhouse gases at the production site, combined with

storing it (Carbon Capture and Storage), would decreases greenhouse gas emissions. Methods

like the enhancement of oceanic carbon uptake through iron fertilization (Boyd et al., 2007) and

the reduction of atmospheric carbon content through “air capture” (Lackner et al., 2008) are aim-

ing at managing the carbon cycle directly to avoid an increase in athmospheric concentration of

greenhouse gases. The atmospheric radiation balance could be influenced by emitting aerosols or

enhancing low level cloud cover by emission of sea salt particles, both of which have a cooling ef-

fect. Another possibility would be the installation of orbital “sun blocking” facilities, like mirrors.

While the carbon management is aimed at undoing the harm of anthropogenic carbon emissions,

the radiation management only aims at combating global warming and leaves out other effects, like

the acidification of the oceans (Keith, 2001). Formerly both groups of methods, carbon cycle and

radiation management have been summarized under the term “geo-engineering”. As these options
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come with potential side effects of highly uncertain types and magnitudes, from a risk perspective

they are to be seen as a measure of last resort rather than a primary policy option (Victor, 2009).

Finally there will be the necessity to cope with the impacts of climate change by adapting the the

changing natural systems and by building up resilience towards extreme events.

1.4 Uncertainty and Learning in Global Climate Analysis

As highlighted by the different examples above, uncertainty is a pervasive feature of global cli-

mate policy analysis, because it is inherent in all parts of the cause effect chain of the integrated

assessment of climate change: from future population change, over economic development, energy

intensity of economic activity, intensity in greenhouse gas emissions from the generation process

of final energy carriers, the carbon cycle, the temperature response to increases greenhouse gas

concentrations, and the impacts of a changing carbon content and temperature of the environment

on biological, social and economic systems. Our understanding of every single step of this process

chain is hampered by uncertainty.

Within the integrated assessment of climate change, these uncertainties influence both, the strin-

gency of optimal mitigation policy and the welfare implications from different possible mitigation

strategies. The amplitude and direction of these impacts determine the "importance" of accounting

for uncertainty and learning within the integrated assessment of climate change.

Uncertainty influences optimal climate policy in different ways. Decision makers (DMs) are gen-

erally modeled to be risk averse. This means that they dislike uncertainty, i. e. they are worse off

when given an expectation of different possible, but uncertain, outcomes instead of the outcome

for the expected value of the underlying parameter determining the outcomes. This attitude is rep-

resented by a concavity in the DM’s utility function, which describes how much welfare, or utility,

the DM derives from a given level of consumption of goods. If uncertainty is directly represented

on the level of consumption, the DM’s risk aversion is the only reason for disliking uncertainty.

However, if the DM is uncertain about a parameter that itself influences the consumption level, the

concavity of utility with respect to this uncertain parameter can also arise from a concavity in the

dependency of the consumption level on the uncertain parameter. For the optimal stringency of

climate policy the differential effect of uncertainty between different decisions is important: is the

uncertainty the DM dislikes greater or smaller when committing to ambitious mitigation instead

of following a business as usual scenario? The more ambitious the mitigation scenario, the less the

deviation of the climate system from its current state and the less the uncertainties about climate

change induced damages. On the other hand a strict mitigation scenario induces uncertainties in

the social costs of mitigation. It remains an empirical question which of the mentioned effects

dominates the analysis.

The uncertainties about the socio-economic system and the climate system might change over

time due to observations or improvements in scientific understanding of the underlying system.

Future learning, in general, involves two effects on optimal climate policy. After receiving new

information the DM might want to adjust her policy to the new state of knowledge. In the absence
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of a multi agent framework, when only one DM plays a “game against nature” she will always

be better off when she has the possibility to learn simply because there might be some cases

where adjusting the policy after learning leads to welfare gains against keeping to the default “no

learning policy”, but at least she can always simply chose the default policy so she cannot be worse

off (Gollier,2004).

In addition to the post-learning adjustments in the policy, the DM might also want to change his

near-term policy anticipating future learning. This might be due to irreversibility following the

decisions. For example the DM might want to strengthen her effort in near-term mitigation to

keep the option open to stay below a climate tipping point if she will learn about the location or

severity of such a threshold in the future. On the other hand she might want to decrease her effort

in the near term to avoid sunk costs of early mitigation in case she learns in the future that climate

change damage is not as severe as expected. This has been used as an argument to postpone

investments into mitigation of GHG emissions until more is known about the impacts of climate

change (for a theoretic presentation of the argument see (Baker, 2006).

Which side plays out to be dominant depends on the representation of flexibility and irreversibility

in decisions and on the representation of uncertainties and future learning possibilities, hence it is

an empirical question.

It is not only an empirical question whether uncertainty and learning lead to more or less strin-

gent short-term emission reductions but also how significant those adjustments of optimal climate

policy are in terms of additional welfare gains, compared to the overall net social benefit of acting

upon climate change. As the comprehensive handling of uncertainties and future learning possibil-

ities highly complicates the integrated assessment of optimal mitigation policy, it has to be asked

how much we would lose in terms of welfare when applying a suboptimal policy, derived from an

analysis that neglects uncertainty or learning.

The literature that is concerned with epistemic uncertainty and future learning can be divided into

studies on the effect of uncertainty and on the effect of learning. Thereby the focus is mostly on the

effect of uncertainty and learning on optimal (near term) decisions and less on the welfare effects

from the adjustments of optimal decisions due to the accounting for uncertainty and learning.

Within integrated assessment models (IAMs) the effect of uncertainty about the climate system

or about climate damage is found to only lead to small changes in the optimal stringency of mit-

igation policy compared to a situation where all uncertain parameters are fixed to their expected

value (Peck & Teisberg, 1993; Webster et al., 2008). This result changes when uncertainty about

the normative parameters of the decision framework is included (Pizer, 1997). This uncertainty

leads to strong changes in optimal policy (up to 30% in cumulated emissions). Another source

for high impacts of uncertainties is the inclusion of so-called “fat tailed distributions” of climate

response or climate induced damage, as investigated by Weitzman (2009). He showed that in this

case the existence of low probability, high impact events from climate change leads to significantly

higher mitigation efforts and can even dominate the cost-benefit analysis in the sense that, under

certain assumptions, society would be willing to spend almost all of its GDP to prevent a very

unlikely catastrophic future. Schmidt et al. (2011a) show that even without including fat tailed

distributions uncertainty can have a substantial effect on optimal policy, if the heterogeneity of the
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climate damage distribution across the global population is taken into account.

The question of whether the adjustment of an optimal policy to uncertainty leads to significant

changes in the welfare gain from acting upon climate change has received less attention (an ex-

ception is Pizer, 1997).

Chapter 3 builds upon this example and embarks on the issue of determining the importance of

explicitly accounting for uncertainty within the integrated assessment of climate change. The

benefit of accounting for uncertainty can be evaluated by comparing the outcome of a best guess

policy in a deterministic setting with an expected value maximizing policy under uncertainty.

Chapter 3 argues that accounting for uncertainty is important if it leads to significant changes in

optimal mitigation policy which in turn leads to significant changes in the net welfare benefit from

mitigation action. A framework is developed that allows to analyse this measure of the importance

of accounting for uncertainty within an integrated assessment model and to relate the importance

to the functional structure of the climate cause effect chain. The negligible magnitude of welfare

changes due to introduction of uncertainty found in many other studies is confirmed and related to

compensating factors from different steps within the cause effect chain.

Within the literature, the effect of future learning on optimal near-term mitigation decisions is

termed the so-called “anticipation effect”. Studies employing the expected utility maximization

framework found that this anticipation effect on near-term mitigation decisions is small (Peck &

Teisberg, 1993; Ulph & Ulph, 1997; Webster, 2002; Webster et al., 2008; O’Neill & Melnikov,

2008). Again, the welfare effect from this anticipative behavior has received less attention, which

is understandable in the absence of an effect on decisions. Within the risk management approach

mentioned above (Section 1.3), that maximises welfare under the constraint of limiting the risk of

crossing a climate treshold to a certain probability, a far higher impact of the anticipation of future

learning on near-term decisions and resulting welfare gains has been found (Webster et al., 2008;

Bosetti et al., 2008). However, as is shown in Chapter 2 (Schmidt et al., 2011b), adopting this

approach leads to axiomatic inconsistencies when learning is included. Keller et al. 2004 have

found that the impact of the anticipation of future learning strongly increases if uncertainty about

highly non-linear climate damage, e.g. from tipping elements in the climate system, are included.

While the theoretic literature agrees that a strongly non-linear relationship between the decisions

of a problem and the resulting welfare, together with irreversibilities, can lead to anticipation

effects (see e.g. Baker, 2002) a systematic analysis of the significance of these anticipation effects

is still missing.

Chapter 4 enters the discussion at this point and develops a framework for investigating the im-

portance of anticipation of future learning, both in terms of changes in optimal decisions and in

resulting welfare gains. Building upon the work of Keller et al. (2004) it first introduces a notation

of the so-called expected value of anticipation that results from a decomposition of the overall

expected value of future information into the welfare gain from pre-learning and post-learning

decisions adjustments. While the overall expected value of future information is important when

comparing the importance of the reduction of different possible uncertainties, the expected value

of anticipation measures the importance of explicitly including future learning into the analysis

of an optimal short-term policy. Chapter 4 shows that anticipation can become crucial both in
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terms of necessary adjustments of pre-learning emissions and resulting welfare gains if learning

about an irreversible threshold is included. Conditions on the time of learning and the threshold

characteristic are determined, for which this is the case. They can be summarized as a narrow

“anticipation window”.

1.5 Thesis Outline

Summarizing the discussion above, this thesis contributes to the question of whether uncertainty

and learning play an important role in the integrated assessment of climate change by developing

a framework for testing the importance within complex models that allows to relate the magni-

tude of the welfare effect from uncertainty and learning to the functional model structure. The

framework is applied to investigate the circumstances under which anticipation of future learning

about tipping-point-like threshold damages leads to significant changes in the optimal near-term

mitigation policy and corresponding welfare improvements. Additionally the viability of different

decision frameworks for the investigation of optimal mitigation under uncertainty and learning is

investigated. This analysis is conducted within the three core chapters of the thesis (Chapters 2-4).

The Chapters will be outlined in the following and the author’s contributions to each of the single

articles will be mentioned.

Chapter 2: This chapter is to be seen as a methodological prerequisite for the central analysis

of this thesis as it investigates the acceptance of a growingly popular decision criterion for the

analysis of uncertainty and future learning.1 Climate Targets are becoming ever more influential

as witnessed by the recent adoption of the 2◦C target by UNFCCC COP 15. As a consequence,

many studies limit themselves to finding least-cost solutions to achieve these targets in a cost-

effectiveness analysis. This article first argues that the 2◦C target, for instance, is only meant to be

met with a certain probability if uncertainty about global warming is taken into account. Meeting

it with certainty would simply be too costly or even impossible. Cost-effectiveness analysis for

the resulting probabilistic targets is then shown to imply major conceptual problems that prevent

the consideration of learning about uncertainty, which constitutes an essential part of the problem.

The article therefore proposes an alternative decision criterion that performs a trade-off between

aggregate mitigation costs and the probability of crossing the target. This criterion avoids the con-

ceptual problems of cost-effectiveness analysis and is still to some extent based on given climate

targets. This article has been published as “Schmidt, M.G.W., A. Lorenz, H. Held, E. Kriegler

2011. Climate Targets under Uncertainty: Challenges and Remedies. Climatic Change: Letters

104 (3-4): 783-791”. M.G.W. Schmidt conceived the idea for this research, performed the analy-

sis and wrote the article. The co-authors, and A. Lorenz in particular, contributed with extensive

discussions concerning all stages of the analysis as well as with several internal revisions of the

manuscript.

Chapter 3: A common result from the cost-benefit literature is that the inclusion of uncertainty

1The following description of Chapter 2 is taken from Schmidt (2011).
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about the climate system response to anthropogenic greenhouse gas emissions and the climate in-

duced damages has only small effects upon the stringency of optimal climate mitigation and the

resulting welfare gain from adjusting the policy to uncertainty. This negligibility of “normal” un-

certainty within the integrated assessment of climate change clashes with the common intuition,

at least of the authors, that uncertainty has to be of great importance. This study presents new

insights into the source of the negligible uncertainty effect. Unlike previous studies, we go beyond

general findings on sufficient conditions for a negligible uncertainty effect. Since such conditions

are not fulfilled by integrated assessment models, the magnitude of the uncertainty adjustment ef-

fect becomes an empirical question. We present a method to analyze the importance of uncertainty

by tracing it through the cause-effect chain from greenhouse gas emissions to temperature change

to induced climate damage to welfare implications. This allows us to explain the negligible un-

certainty effect as a result of compensating factors in the cause-effect chain. More concretely, we

introduce a decomposition of the overall benefit of climate policy into single components: The

benefit of the best guess policy, the re-evaluation of the best guess policy under uncertainty, and

the value of adapting the optimal policy to uncertainty. We extend the decomposition to the case

of perfect learning and analyze the relative importance of all components in the MIND model.

Additionally we project the complex integrated assessment model to an a-temporal marginal cost-

benefit picture. This allows us to connect the different components of the overall benefit of climate

policy to the functional form of the marginal benefits and costs. This understanding of the miss-

ing uncertainty effect allows to identify changes in the formulation of the climate cause effect

chain that would lead to significant impacts from uncertainty. Examples are more convex climate

damages (e.g. exponential damages) or a less concave (e.g. linear) response of temperature to

cumulated emissions. This article has been submitted to Climate Change Economics as “Lorenz,

A., E. Kriegler, H. Held, M.G.W. Schmidt. How important is Uncertainty for the Integrated As-

sessment of Climate Change?”. The research question for this article was jointly developed by all

four authors. A. Lorenz developed the article design, conducted the analysis and wrote the article.

The co-authors, and especially E. Kriegler, contributed with extensive discussions and with several

thorough internal reviews of revised versions of the manuscript.

Chapter 4: Uncertainty, and especially learning about strongly non-linear, tipping-elements-like

damages, might have a strong influence on near-term mitigation decisions. This article system-

atically investigates both, the changes in optimal near-term mitigation effort and the associated

welfare gain relative to the overall benefit from learning due to the anticipation of future learning

about the threshold damage. The analysis, conducted within the IAM MIND shows that learning

about threshold damage is of significance if and only if the learning happens within a specific, nar-

row, “anticipation” time window. In this case, the additional early mitigation effort keeps the op-

tion open to prevent crossing the threshold if the future learning reveals severe threshold damage.

Future learning has no significant effect on near-term policy otherwise. Within the “anticipation

window” the welfare gain from anticipating future learning is significant and contains nearly the

complete value of information. Learning is still valuable, but not its anticipation, if it happens ear-

lier (outside the anticipation window), if the DM is flexible enough to react after the information
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has arrived, conditional on the message. Additionally, the article introduces some novel concepts

for the analysis of the separate welfare effect from anticipation of future learning. This article

has been accepted for publication in Environmental Modelling and Assessment as “Lorenz, A.,

M.G.W. Schmidt, E. Kriegler, H. Held. Anticipating Climate Threshold Damages.” The research

question and design for this article was developed jointly by all four authors. The analysis was

performed by A. Lorenz, who also wrote the main part of the article. M.G.W. Schmidt made sub-

stantial contributions to conceptualizing the results and rewriting the manuscript in several internal

revisions.

Chapter 5 summarizes the results from the different articles and draws some conclusions for the

importance of accounting for uncertainty and anticipating future learning in the decision process.

Requirements for further analysis and future research questions are given in an Outlook.
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Abstract We start from the observation that climate targets under uncertainty
should be interpreted as safety constraints on the probability of crossing a certain
threshold, such as 2◦C global warming. We then highlight, by ways of a simple exam-
ple, that cost-effectiveness analysis for such probabilistic targets leads to major con-
ceptual problems if learning about uncertainty is taken into account and the target
is fixed. Current target proposals presumably imply that targets should be revised in
the light of new information. Taking this into account amounts to formalizing how
targets should be chosen, a question that was avoided by cost-effectiveness analysis.
One way is to perform a full-fledged cost-benefit analysis including some kind of
monetary damage function. We propose multi-criteria decision analysis including a
target-based risk metric as an alternative that is more explicite in its assumptions and
more closely based on given targets.

1 Introduction

Climate targets have been widely discussed since the United Nations Framework
Convention on Climate Change (UNFCCC 1992). More recently, the European
Union (European Council 2005) and the Copenhagen Accord (UNFCCC 2009)
adopted the 2◦C-target, which calls for limiting the rise in global mean temperature
with respect to pre-industrial levels to 2◦C.
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There are large uncertainties involved in climate change. Under probabilistic
uncertainty about climate sensitivity, for instance, a certain emissions policy leads
to a probability distribution on temperature increases. It is in general impossible or
at least very costly to keep the entire distribution below 2◦C, for instance. Therefore,
under uncertainty climate targets should rather be interpreted as safety constraints
on the probability of crossing a certain threshold such as 2◦C. Such probabilistic
targets have been studied amongst others in den Elzen and Meinshausen (2005),
Meinshausen et al. (2006, 2009), den Elzen and van Vuuren (2007), den Elzen et al.
(2007), Keppo et al. (2007), Rive et al. (2007), Schaeffer et al. (2008).
The uncertainty surrounding climate change will at least partly be resolved in the

future, which is called “learning”. Uncertainty about climate sensitivity, for instance,
will be reduced by future advances in climate science. This will change the probability
of crossing a certain threshold for a given policy. But it will also allow to adjust
climate policy. Since there are irreversibilities and inertia both in the climate system
and the economy, it is not only important to adapt to new information but also to
choose an anticipating near-term climate policy that provides flexibility to adapt to
future information. There is an extensive literature on whether such a policy is more
or less stringent. For an overview of the theoretical and the integrated assessment
literature see Lange and Treich (2008) and Webster et al. (2008), respectively.
Cost-effectiveness analysis (CEA) determines climate policies that reach a given

climate target at minimum costs. It takes targets as (politically) given and does not
answer the question of what an optimal target should be in the light of the available
information. In Section 2 we highlight that CEA for fixed probabilistic targets
leads to major conceptual problems if learning is taken into account. Therefore,
and because it is presumably part of current policy proposals anyway, we have to
take into account that targets will be adjusted to new information. This demands
formalizing how targets are determined based on the available information and by
balancing costs and benefits in a broad sense. This is discussed in Section 3. Hence,
the condensed message of this letter is that learning is an important part of the
climate problem, and that if learning is taken into account, it is not a viable option to
just perform CEA for a given climate target but necessary to formalize how targets
should be determined.
More precisely, in Section 2 we highlight that a decision maker performing CEA

for a fixed probabilistic target might be worse off with learning than without and
consequently reject to learn. Furthermore, we show that she can also be unable to
meet even the probabilistic interpretation of her target due to learning. We do this by
using results from the literature on decision making under uncertainty and a simple
example. Both problems are strong arguments for not using CEA for probabilistic
targets if learning is considered.
In Section 3, we discuss ways to take the adjustment of targets to new information

into account. One way is a full-fledged cost-benefit analysis (CBA) including a mon-
etary climate damage function. CBA applied to the climate problem has numerous
detractors. Amain point of criticism is that CBA “conceal[s] ethical dilemmas“ (Azar
and Lindgren 2003) and difficult value, equity, and subjective probability judgments
concerning climate impacts. Alternative approaches based on a precautionary or
sustainability principle in turn do not have a clear formalization. As a middle ground,
we explore multi-criteria decision analysis based on a trade-off between aggregate
mitigation costs and a climate target based risk metric such as the probability of
crossing the target threshold.
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2 Fixed targets

Exemplarily, we consider a temperature target and uncertainty about climate sen-
sitivity denoted by θ , but analogous results hold for any probabilistic target. The
target consists of a temperature threshold Z of global warming, e.g. Z = 2

◦C,
and a maximum acceptable threshold exceedance probability Q. We will also call
the threshold exceedance probability the “risk” and Q the “risk tolerance”. We
denote the vector of greenhouse gas emissions over time by E(t), the resulting
temperature trajectory by [T(E, θ)](t), and aggregate mitigation costs not including
any climate damages by C(E). C(E) can also be a utility function of costs. The
risk as a functional of emissions is given by R(E) =

∫

dθ f (θ)2(Tmax(E, θ) − Z ),
where f (θ) is the probability density function, 2(·) is Heaviside’s step-function, and
Tmax(E, θ) = maxt[T(E, θ)](t) is the maximum temperature. If yet nothing is learned
about the uncertainty, CEA for the probabilistic target reads as

min
E

C(E),

s.t. R(E) ≤ Q. (1)

Costs are minimized such that the probability of crossing the threshold, or the risk,
is no larger than Q. Due to the constraint on a probability, such a problem is called
a chance constrained programming (CCP) problem (Charnes and Cooper 1959). For
an extensive numerical investigation of this problem see Held et al. (2009). The
equivalence to Value-at-Risk constrained problems is shown in Section 1 of the
Supplement.
In order to include learning, we consider a simple so called act-learn-act frame-

work. That means the decision maker first decides on emissions before learning,
denoted by E1(t), t ≤ tl . At time tl with probability qm she receives a signal or
messagem that is correlated with θ , and she updates her prior probability distribution
f (θ) and risk metric R(E) to a posterior distribution f (θ |m) and risk Rm(E) =
∫

dθ f (θ |m)2(Tmax(E, θ) − Z ) according to Bayes’ rule. Subsequently she decides
on emissions after learning, denoted by Em(t), t > tl , which in general depend on the
message that has been received. A dynamic extension of CCP then reads as

min
E1

{

∑

m∈M

qm min
Em

{

C(E1, Em)
}

}

,

s.t. Rm(E1, Em) ≤ Q, ∀m ∈ M, (2)

Hence, expected costs are minimized such that the posterior probability of crossing
the threshold is no larger than Q for all messages m. Equation 2 is not the only way
to extend CCP to an act-learn-act framework. An alternative formulation is obtained
by constraining the expected value of the probability of crossing the threshold across
all messages, i.e.

∑

m∈M qm Rm(E1, Em) ≤ Q. This alternative is also discussed below.
A similar problem to Eq. 2 was studied in O’Neill et al. (2006). For the special case

of Q = 0, where the target has to be met with certainty, it was studied in Webster
et al. (2008), Johansson et al. (2008), and Bosetti et al. (2009). Q = 0 is problematic
because it is likely to be infeasible if the upper tail of the probability distribution of
climate sensitivity is taken into account. Schaeffer et al. (2008), for instance, report
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a non-zero probability of crossing 2◦C even if greenhouse-gas concentrations were
stabilized at current levels. And even if Q = 0 were feasible, it would lead to very
high mitigation costs and arguably does not correspond to current target proposals.
Webster et al. (2008), for instance, report a cost-effective carbon tax of more than
$250/ton from 2040 on for the 2◦C target.
For Q 6= 0, i.e. if the threshold doesn’t have to be avoided with certainty, CCP as in

Eq. 2 leads to conceptual problems. A decision maker performing CCP can be worse
off with learning than without, and therefore reject to learn if possible. Most people
would say this is unacceptable for a normative decision criterion, better information
should be valuable. The benefits from learning can be measured by the expected
value of information, EVOI =

∑

m∈M qmC(El
1
, El

m) − C(Enl), where El
1
, El

m and Enl

are optimal emissions before, after, and without learning, respectively. Hence, the
EVOI is simply the difference in expected costs (or utility) between the case with
and the case without learning. The possibility of a negative EVOI in CCP was first
noted by Blau (1974) for a linear program and clarified in Hogan et al. (1981, 1984).
Details of these papers were criticized by Charnes and Cooper (1975, 1983), but a
rigorous analysis confirming the problem has been provided by LaValle (1986). In
Section 2 of the Supplement, we show that CCP violates the independence axiom of
von Neumann and Morgenstern, and we cite results that show that this necessarily
leads to the possibility of a rejection of learning.
Here we construct a simple example for providing an intuition why the EVOI can

be negative. We assume that climate sensitivity θ can take only three values with
equal probability, θ = 2, 3, 4

◦C. We also assume that if the threshold is avoided for
a certain value of climate sensitivity, it is also avoided for all lower values. Finally,
we assume Q = 50%. We now compare the case without learning with the case of
immediate perfect learning where the true value of θ is revealed at tl = 0, i.e. before
any decisions have to be made. The case of partial learning, where the posterior dis-
tributions are non-degenerate, is discussed in Section 3 of the Supplement. There are
three policy options: Stay below the threshold for (I) only θ = 2

◦C, (II) θ = 3
◦C (and

hence also θ = 2
◦C), (III) θ = 4

◦C. (I) is the cheapest and least stringent, (III) the
most expensive and stringent alternative.Without learning, policy (II) is the cheapest
alternative with admissible risk of 1/3. With learning, the choice depends on the true
value of θ . If θ = 2

◦C, (I) is the cheapest admissible alternative, if θ = 3
◦C it is (II),

and if θ = 4
◦C it is (III). We have EVOI= (1/3 C(I) + 1/3 C(I I) + 1/3 C(I I I)) −

C(I I). It is negative if abatement costs are sufficiently convex in emissions reductions
so that C(I) + C(I I I) > 2C(I I).
We have argued that climate targets under uncertainty probably cannot or should

not be met with certainty. A second conceptual problem is that if learning is taken
into account, even the resulting probabilistic targets can generally not be met. This
was first noted for a generic linear CCP problem by Eisner et al. (1971, they call
Eq. 2 “conditional-go approach”). If, for instance, the threshold could not be avoided
for θ = 4

◦C in our simple example, it would be possible to limit the probability of
crossing the threshold to 50% without learning but not in the “bad” learning case
where θ = 4

◦C is revealed as the true value. More generally, under perfect learning
any probabilistic target with a threshold that cannot be avoided with certainty in the
prior becomes infeasible. Perfect learning is not a bad approximation in the long run,
and, as mentioned before, most thresholds such as 2◦C arguably cannot be avoided
with certainty given current information. If the probabilistic target is infeasible in
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some learning cases, it is unclear how to perform CCP. Infeasibility could be avoided
by relaxing the target threshold from 2◦C to 3 or 4◦C, for instance. But the problem
of a negative EVOI would persist as long as a chance constraint is applied. Besides, it
would mean that the 2◦C target can not be considered, which is problematic in itself.
Intuitively, what drives the results above is (i) the fact that the set of feasible (or

target complying) emissions trajectories changes depending on what is learned and
(ii) that the benefits of target compliance are not taken into account in the objective
function. If the optimal policy without learning, i.e. (II) in our example, were feasible
in all learning cases, neither infeasibility due to learning nor a negative EVOI would
be possible. The latter is because choosing (II) in all learning cases would guarantee
the same expected costs as without learning. And if sufficient benefits and not only
the costs of choosing (III) instead of (II) if θ = 4

◦C is revealed were taken into
account in the objective function, the EVOI would be positive despite a change in
the set of feasible trajectories. In Section 3 we discuss how to include the benefits in
the objective function.
The feasible emissions trajectories change because the probabilistic target is fixed

and independent of what is learned and because the corresponding chance constraint
was put on each individual posterior distribution. As mentioned before, CCP in an
act-learn act framework could alternatively be formulated with a constraint only on
the expected value of the probability of crossing the threshold across the different
learning cases. Eisner et al. (1971) call this a “total probability constraint”, and
LaValle (1986) an “ex ante constraint”. In this formulation the same trajectories are
feasible with learning as without and the problems do not occur (see also LaValle
1986). But specifically this would mean that not reducing emissions at all if θ = 4

◦C
is learned and staying below the threshold in the other two learning cases would
be an admissible strategy. The expected probability of crossing the threshold would
only be 1/3. I would also be the cheapest feasible strategy because it implies the least
emissions reductions. It is a questionable recommendation, though, not to reduce
emissions at all after learning θ = 4

◦C only because the probability of crossing the
target would have been zero if something else had been learned. In decision theory
it would be called a violation of consequentialism (e.g. Machina 1989).
The problems of CCP are known since the 1970s, and CCP is still widely used

in many different areas from aquifer remediation design (Morgan et al. 1993) to air
quality management (Watanabe and Ellis 1993). If learning about uncertainty and
adjustment to new information can safely be neglected for a given problem, then
CCP can be a satisfactory and intuitive decision criterion under uncertainty. This is
the case if either little is learned, or if the EVOI is not of interest and the system
is flexible enough so that anticipation of learning is not important. In the climate
problem, though, learning and system inertia play an important role and should be
taken into account in determining climate policy. Therefore, CCP, in our view, is not
a suitable option.

3 Adjusting targets

In the preceding section we held the probabilistic target, i.e. the temperature thresh-
old Z and the risk tolerance Q, fixed and independent of what is learned, and
we did not include any benefits from target compliance in the objective function.
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Current policy proposals, such as the 2◦C target arguably assume that targets will
be adjusted to new information in the future. The Copenhagen Accord explicitly
mentions the “consideration of strengthening the long-term goal referencing various
matters presented by the science” (UNFCCC 2009). In this section we discuss how
to adjust targets and how to avoid the problems of CCP by including the benefits of
target compliance in the objective function and by balancing costs and benefits in a
broad sense.
One possibility is to assume that climate targets and optimal climate policy can

be derived by a full-fledged CBA including a monetary climate damage function.
As mentioned in the introduction, this kind of CBA has numerous critics. One of
their main points is that by combining all damages in a monetary damage func-
tion, including loss of life, biodiversity, and the damages resulting from the highly
uncertain disintegration of the West Antarctic Ice Sheet, for instance, CBA rather
“conceals[s] ethical dilemmas” (Azar and Lindgren 2003) and difficult value, equity,
and subjective probability judgments than highlighting them to decision makers (see
the discussion in Azar and Lindgren 2003). Besides, it would be useful to have a
decision criterion that is at least to some extend based on politically given climate
targets.
As a consequence of the problems of CCP, Bordley and Pollock (2009) suggest

in an engineering context to specify an additional target threshold for the costs and
then to minimize the probability of crossing either threshold. Jagannathan (1985)
uses a simple trade-off between costs and threshold exceedance probability in order
to avoid a negative EVOI. Applied to the climate context, a linear form reads as

min
E1

{

∑

m∈M qm min
Em

{

wC (E1, Em) + Rm (E1, Em)
}

}

, (3)

The normative parameter w determines the trade-off between costs and risk. It
equals the per centage points of risk increase that would be accepted in ex-
change for a unit decrease in costs. We will call Eq. 3 cost-risk analysis (CRA).
CRA can be seen as a weighted multi-criterion decision analysis or also as a
CBA in a broader sense. In contrast to CCP, the benefits, namely the reduction
of risk, are now included in the objective function. The trade-off is assumed to
be linear in order to have an equivalence to the expected utility maximization
maxE1

{
∑

m∈M qmmaxEm

{∫

f (θ |m)A (E1, Em, θ)
}}

with A(E1, Em, θ) = −(wC(Em) +

2(Tmax(E1, Em, θ) − Z )). The conceptual problems encountered for CCP therefore
cannot occur (see also Section 2 of the Supplement). Jagannathan (1987) suggests to
consider non-linear trade-offs as well, but we could not find a convincing non-linear
form of the trade-off that is still equivalent to an expected utility maximization (see
also LaValle 1987).
Mastrandrea and Schneider (2004, 2005) develop a risk management framework

based on the probability of exceeding a threshold of “dangerous anthropogenic inter-
ference” (UNFCCC 1992) as risk metric. But they only report different risk levels for
different stabilization targets and do not formalize the final trade-off between costs
and risk, which becomes necessary if learning is included in the analysis. This could be
done in CRA. Schneider and Mastrandrea (2005) also propose a more sophisticated
risk metric that better represents the temperature path dependence of risk. It is based
on the concept of maximum exceedance amplitude (MEA: by how many Kelvin the
target threshold is exceeded) and the concept of degree years (DY: the area above
the threshold between the temperature trajectory and the threshold). The expected
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value of some function 8 of MEA and DY could also be used as a risk metric in
CRA, Rm(Em) =

∫

f (θ |m)8 (MEA(E1, Em, θ), DY(E1, Em, θ)).
The main difference between CRA and standard CBA is that the former makes

the necessary trade-offs between mitigation costs and impacts (risks) on a more
aggregate level, directly in the objective function, and thereby more explicitly and
to some extent based on given targets. Thus, the main difference is the framing of
the decision. The main difficulty of CRA, as of most multi-criteria decision analyses,
is that it is hard for decision makers to specify the value of the trade-off parameterw,
i.e. to value a probability of crossing a threshold in terms of costs, for instance. But
we would argue that at least for non-market and highly uncertain impacts, it might
still be easier to specify and more practical than a monetary climate damage function.
More specifically, the following combination of standard CBA and CRA might

better suit the climate problem than a pure CBA, CRA or CEA. Market-damages,
whose value can be estimated by observing markets without significant externalities,
are included over a damage function, which in turn is included in the cost metric
C(E). Non-market impacts like loss of life and public goods, impacts from highly
uncertain climate tipping-points, as well as wider societal impacts like migration and
conflict are included over an aggregate, climate target-based risk metric R(E). As
highlighted before, valuing these impacts is inherently difficult, and there is no way
around some kind of multi criteria decision analysis. Instead of mixing the value
judgments concerning these impacts with market impacts in a monetary damage
function as in standard CBA, an aggregrate trade-off between a target-based risk
and aggregate mitigation costs might be a more practical framing of the problem.

4 Conclusions

Climate targets such as the 2◦C target probably cannot or are not supposed to be
met with certainty. They should rather be interpreted as probabilistic targets. Cost-
effectiveness analysis (CEA) for such targets constitutes a chance-constrained pro-
gramming (CCP) problem. Transferring results from the literature to the climate
context, we have highlighted that CCP can imply a negative expected value of infor-
mation, which most people would consider normatively unsatisfactory. Furthermore,
even a probabilistic interpretation of relevant targets, such as the 2◦ target, becomes
infeasible if learning is taken into account, so that it is unclear how to perform CCP
at all. Consequently, and because it is arguably part of the current target proposals,
we have discussed how to avoid the problems by adjusting climate targets to new
information and by balancing benefits and costs in a broad sense. A prominent way to
do this is cost-benefit analysis (CBA) including a monetary climate damage function.
But specifying such a damage function is notoriously difficult and controversial. We
took the problems of both CBA and CEA asmotivation for asking, whether there is a
middle-ground between a full-fledged CBA and CEA. Partly based on previous
suggestions in the literature, we discussed a combination of a damage function for
market impacts and a more aggregate target-based risk metric for non-market and
highly uncertain catastrophic impacts as a promising candidate.
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Supplement

Matthias G.W. Schmidt · Alexander Lorenz · Hermann

Held · Elmar Kriegler

1 Value-at-Risk

A probabilistic target is essentially equivalent to a limit on the Value-at-Risk (VaR) in finance. The x%-VaR,

or VaR at the x% confidence level, of a financial position equals the x-percentile of the distribution of the

uncertain losses of the position. In other words, with x% certainty, losses will be smaller than the x%-VaR.

Hence, we can formulate the probabilistic target as a constraint on the VaR in the distribution of maximum

temperature: The (1−Q)-VaR has to be smaller or equal than a given threshold, such as 2◦C.

2 Violation of the Independence Axiom

We shortly introduce some basic decision theoretic terminology and formulate CCP as a preference relation on

simple lotteries. Subsequently, we show that CCP does not fulfill the independence axiom by von Neumann and

Morgenstern. There is an extensive literature on the consequences of relaxing the axioms of von Neumann and

Morgenstern. We shortly review one result that shows that the possibility of a rejection of learning encountered

in the main text follows from violation of the independence axiom.

A simple lottery describes an uncertain outcome. It is defined by the set of possible outcomes with their

respective objective or subjective probability. For the climate example without learning every emissions path

can be assigned a simple lottery. This lottery is defined by the vector of relevant outcomes, here maximum

temperature and mitigation costs, and the probability (density) for these outcomes. So we denote lotteries

by LE,f := {(Tmax(E, θ), C(E)) , f(θ)}. In a mixed lottery, the outcomes of a first stage lottery are again

lotteries. We denote the mixture of two lotteries L1 and L2 with mixing probability β by βL1 + (1− β)L2.

The ordering of simple lotteries implied by CCP as in Eq. (1) in the main text is akin to a lexicographic

ordering. Lexicographic orderings consist of a hierarchy of orderings like a lexicon: words with the same first

letter are ordered according to the second letter and so on. The primary ordering (≻1) in CCP is according to

whether the probabilistic target is met or not. It strictly prefers all emissions plans that meet the target over
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plans that do not (L1 ≻1 L2 ⇔ (R (L1) ≤ Q) ∧ (R (L2) > Q), where ∧ is the logical AND). But unlike for

typical lexicographic orderings, the primary ordering in CCP does not lend itself to a definition of indifference

as “none of the two lotteries is strictly preferred to the other” (L1 ≃1 L2 ⇔ (¬(L1 ≻1 L2)) ∧ (¬(L2 ≻1 L1)),

where ¬ is the logical NOT). Such a definition would imply indifference between all emissions plans that meet

the target and all of those that do not. When applying the secondary ordering in CCP, i.e. preference of the less

costly plan over the more costly one (L1 ≻2 L2 ⇔ C(L1) < C(L2)), to these two indifference classes, it will

produce a sensible ordering of the plans that meet the target. But it would identify the business-as-usual case

with zero emissions reductions as the preferred strategy among those that miss the target. This would be clearly

unsatisfactory. In this sense CCP preferences can be regarded as incomplete and indifference in the primary

ordering is limited to plans that meet the target (L1 ≃1 L2 ⇔ (R(L1) ≤ Q) ∧ (R(L2) ≤ Q). The primary and

secondary ordering in CCP allow differentiating between plans meeting and violating the target, and between

plans that all meet the target, but not between plans that all miss the target. Alternatively to having an

incomplete primary ordering, one could assume indifference in the primary ordering between plans that don’t

meet the target and apply a different, more satisfactory secondary ordering than cost minimization to these

plans. However, the incompleteness is not necessarily problematic, because it still allows for the formulation of

an overall preference relation

L1 ≻ L2 ⇔ (L1 ≻1 L2) ∨ ((L1 ≃1 L2) ∧ (L1 ≻2 L2)) (1)

that has the desirable properties of asymmetry (L1 ≻ L2 ⇒ ¬(L2 ≻ L1)) and negative transitivity (¬(L1 ≻

L2) ∧ ¬(L2 ≻ L3) ⇒ ¬(L1 ≻ L3) (Kreps, 1988)). In particular, it allows identifying a choice set of most

preferred strategies. However, the target infeasibility due to learning discussed in the main text has shown

that the choice set of CCP can become useless, i.e. will indiscriminately include all available strategies, if no

strategy can meet the target.

CCP as in Eq. (1) violates both the continuity and the independence axiom by von Neumann and Mor-

genstern. We only discuss the latter here. Independence is violated because the chance constraint cannot be

formulated as a set of separate, or independent, constraints for each state of the world. The avoidance of

the threshold in one state of the world, via the chance constraint, has an influence on the need to avoid the

threshold in other states of the world. More formally, independence would be fulfilled if for any three lotteries

L1, L2, L3 and for all β ∈ (0, 1] we had

L1 ≻ L2 ⇒ {βL1 + (1− β)L3 ≻ βL2 + (1− β)L3} (2)

So independence means that the preferences are not changed by mixing the same lottery L3 into two given

lotteries L1 and L2. This is not the case for CCP because of the primary ordering according to the chance

constraint. E.g., it is possible that R(L2) < R(L1) < Q < R(L3), C(L2) > C(L1) and (βR(L2) + (1 −

β)R(L3)) < Q < (βR(L1)+ (1−β)R(L3)), i.e. both L1 and L2 fulfill the chance constraint but L2 is less risky

and gives higher costs than L1. L3 does not fulfill the constraint and β is chosen such that the mixed lottery

of L2 and L3 fulfills the constraint, whereas the mixed lottery of L1 and L3 does not. We then have L1 ≻ L2

and βL1 + (1− β)L3 ≺ βL2 + (1− β)L3, which shows non-independence.
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The possibility of a decision maker being worse off with learning than without that we encountered in the

main text follows from violation of the independence axiom. Wakker (1988) proves the following consequence:

¬Independence∧ Correct anticipation of future decisions ∧ Consequentialism

⇒ Information can make decision maker worse off. (3)

So if the antecedents are fulfilled including violation of the independence axiom, then the receipt of additional

information can make the decision maker worse off. We have already shown that CCP violates the independence

axiom. Future decisions are also anticipated correctly. It is correctly anticipated that after receipt of a message,

the target will have to be met based on the updated posterior information. More critical is the assumption of

consequentialism. Consequentialism intuitively means that only current and future payoffs have an influence

on current decisions. Past outcomes and foregone options have no influence on current decisions. CCP as in

Eq. (2) of the main text is consequentialist because the chance constraint is applied to every single posterior,

and forgone risk in other learning cases is not taken into account.

3 Partial Learning
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One might object to the simple example in the

main text that the EVOI only becomes negative

because we consider perfect learning. Under per-

fect learning the posterior risk has to be reduced

to zero and not only 50%. So the target stringency

is effectively increased by learning. But firstly, per-

fect learning is probably not unrealistic in the long

run, so the decision criterion should be able to han-

dle it. Secondly, the same problems occur for par-

tial learning, where the uncertainty is only reduced

from a prior to a non-degenerate posterior distri-

bution. Consider the prior and posterior distribu-

tions shown in Fig. 1. If maximum temperature is

monotonic in climate sensitivity θ, i.e. if the target

is met for θ1 it is met for all θ ≤ θ1, then we can

translate the risk tolerance into a maximum value of θ, for which the target threshold has to be avoided. This

value, of course, depends on what is learned. It decreases from about 3◦C to about 2◦C in the “good” learning

case (posterior 1) and increases to about 4◦C in the bad case (posterior 3). These are the same values for θ as

in the perfect learning example in the main text. Hence, we would get the same negative EVOI.
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How important is Uncertainty for the Integrated

Assessment of Climate Change?

Alexander Lorenz∗†, Elmar Kriegler∗, Hermann Held‡, Matthias G.W. Schmidt∗

Abstract

We investigate the importance of explicitly accounting for uncertainty in the as-

sessment of optimal global climate policy. The benefit of accounting for uncertainty

can be evaluated by comparing the outcome of a best guess policy in a deterministic

setting with an expected value maximizing policy under uncertainty. We apply the

approach to the case of uncertainty about the temperature response to greenhouse gas

emissions and climate induced damage in the integrated assessment model MIND. In

accordance with the literature we find that the welfare gain from adjusting climate

policy to uncertainty is negligible. We use a decomposition of the uncertainty adjust-

ment effect to explain its negligible magnitude in the standard setting as a result of

compensating factors in the climate cause-effect chain from emissions to damage to

welfare implications. We demonstrate several changes in the model structure, such

as exponential climate damage and linear climate-carbon response that can lead to

a significant welfare gain from explicitly accounting for uncertainty in climate policy

analysis.

1 Introduction

Global Climate Change Analysis is surrounded by large uncertainties about key parameters

in the socio-economic system and the climate system. The uncertainties arise from imper-

fect knowledge about the dynamics of the subsystems, from internal short term dynamics

or stochasticity and from the long time lag between cause and effect within the climate

system (Tol, 1999). Analysts use models that integrate the socio-economic system and

the climate system to assess long term strategies to mitigate climate change (Nordhaus,
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1994). A key question concerning uncertainty and climate change assessment is whether

the analysts should explicitly account for uncertainty in their integrated assessment models

to capture the effect of uncertainty on decisions? An initial intuition would be, that under

uncertainty about the climate response to greenhouse gas emissions and resulting climate

damage the risk of very high damage beyond the mean damage is introduced. Assuming a

right-skewed damage distribution and some degree of risk aversion, one would be willing to

undergo stronger emission reductions than in the best-guess case to better insure against

high damage scenarios. Insuring against those high damage scenarios would also become

more valuable than simply reducing average climate damage, thus we would expect climate

policy to become more valuable under uncertainty compared to the best-guess case.

Over the last two decades following the pioneering work of Nordhaus [1994], many

contributions have been made to check the intuition described above, and to answer the

question how explicitly accounting for uncertainty changes the optimal climate policy (e.g.

Keller et al., 2004; Wirl, 2007; Heal & Kristrï¿œm, 2002, and references therein) . Some

studies (e.g. Pizer, 1997) also investigated the welfare effect from introducing uncertainty.

A common result has emerged from cost-benefit analyzes with integrated assessment models

that optimize the trade-off between mitigation costs of reducing greenhouse gas emissions

and climate change induced damage costs (e.g. see Nas, 1996): Although the optimal

climate policy might change significantly due to the introduction of uncertainty, the welfare

gain associated with adjusting the policy to uncertainty is negligible (Pizer, 1997). One

exception is the work of Weitzman [2010] who shows that the effect of uncertainty can

become significant and even dominating if fat tailed probability distributions for the climate

damage are considered. Under certain conditions, such fat tailed climate damage can lead

to unbounded expected welfare losses.

Parts of the uncertainties about the climate system and climate change induced damage

may be resolved by future learning, both passively via observing the state of the coupled

socio-economic-climate system (Kelly & Kolstad, 1999) and actively via investing into new

measurements and leveraging paleo-information (Lorenz et al., 2009). This would allow to

adapt mitigation policy to new information. The welfare implications of the possibility to

learn and adjust to new information has also gained much attention (e.g. see Nordhaus

& Popp, 1997; Karp & Zhang, 2006; Ingham et al., 2007). Here a general finding is that

adapting climate policy to new information can lead to significant welfare gains.

What is the explanation for the negligible effect of uncertainty in cost-benefit analyzes

of climate policy? As pointed out in the literature, uncertainty has no effect on decisions

and welfare if the model is (nearly) linear in the uncertain parameters (see e.g. Baker,

2006; Lange & Treich, 2008). Furthermore the marginal utility of the model also needs to

be non-linear in the uncertain parameter for the optimal decisions to be effected, as they

are determined by the trade-off between marginal benefits and costs. For the importance

of future learning for short-term actions Webster [2002] has argued that so-called “cross-

period interactions” in utility are a necessary condition for future learning to affect short-

term decisions. However the existence of such a dependency of future utility on today’s

2

42 How important is Uncertainty for the Integrated Assessment of Climate Change?



decisions is not sufficient for a strong influence of future learning, as different cross-period

interactions could lead to contradicting influences from future learning on today’s decisions

that might cancel each other out. However these theoretical findings do not explain why

uncertainty has nearly no effect on welfare within the more complex integrated assessment

models, as those models do incorporate a number of (partly strong) nonlinearities as well

as cross-period interactions: the welfare function, the temperature response to carbon

emissions, the damage function, etc.

This study presents new insights into the source of the negligible uncertainty effect.

Unlike previous studies, we go beyond general findings on sufficient conditions for a neg-

ligible uncertainty effect. Since such conditions are not fulfilled by integrated assessment

models, the magnitude of the uncertainty adjustment effect becomes an empirical question.

We present a method to analyze the importance of uncertainty by tracing it through the

cause-effect chain from greenhouse gas emissions to temperature change to induced climate

damage to welfare implications. This allows us to explain the negligible uncertainty effect

as a result of compensating factors in the cause-effect chain.

More concretely, we introduce a decomposition of the overall benefit of climate policy

into single components: The benefit of the best guess policy, the re-evaluation of the best

guess policy under uncertainty, and the value of adapting the optimal policy to uncertainty.

We extend the decomposition to the case of perfect learning and analyze the relative

importance of all components in the MIND model. Additionally we project the complex

integrated assessment model to an a-temporal marginal cost-benefit picture. This allows us

to connect the different components of the overall benefit of climate policy to the functional

form of the marginal benefits and costs.

Applying this methodology to the integrated assessment model MIND we can identify

the following reasons for the negligible effect of accounting for uncertainty in the model:

First, the overall benefit of climate policy is constrained by the saturation of the emis-

sions to temperature change relationship compensating for the non-linearity in the climate

damage function and by the consumption smoothing property of the welfare function.

Second, this assessment does not change significantly under uncertainty because the addi-

tional marginal welfare benefit of reducing a unit of emissions becomes only significant for

large mitigation effort, where mitigation costs are already high. Third, the welfare gains

from adjusting the mitigation policy under uncertainty are limited because of the strongly

increasing mitigation costs.

Using this understanding of the relationship between the model formulation, the shape

of the marginal benefits and costs, and the components of the benefit of climate policy, we

introduce several changes in the model structure to create a significant welfare effect from

uncertainty. These changes include a sensitivity analysis with respect to the parameter of

constant relative risk aversion, a switch towards exponential damage and an implementa-

tion of a linear climate response to cumulative carbon emissions as proposed by Metthews

et al. [2009].

The paper is structured as follows: Section 2 introduces the general climate decision
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problem under uncertainty and (perfect) learning and describes the decomposition of the

overall benefit of climate policy into the single components determining the benefit of cli-

mate policy under uncertainty. The decomposition is illustrated within a simple analytical

model of climate change with quadratic costs and benefits of mitigation. In Section 3

the framework is applied to the Model of Investment and Technological Development

(MIND). The importance of introducing uncertainty is compared to the overall benefit

of acting against climate change and to the benefits from perfect learning. The sensitiv-

ity of the results towards changes in normative parameters is evaluated. The marginal

cost-benefit picture of the model as well as the functional dependency along the climate

cause-effect chain is presented to investigate the origin of the negligible welfare effect from

uncertainty. In Section 4 several changes to the model structure are investigated with

respect to their influence on the importance of uncertainty: changes in the parameter of

constant relative risk aversion, exponential damage, and linear climate carbon response.

Section 5 concludes.

2 How to measure the importance of Uncertainty and Perfect

Learning?

2.1 The decision problem

First, we formulate the general decision problem incorporating uncertainty and (perfect)

learning in its simplest version. We only consider one decision period. The principle

agent (DM) decides upon a set of decision variables x, like investments, emission control

rates, etc. The decisions might also represent a whole time path of single decisions x(t).

Depending upon the decisions and upon the state of the world (SOW) the DM derives

an overall welfare U(x, θ). Uncertainty about the SOW is represented by a probability

distribution π(θ).

Technically speaking we model an open loop optimal control problem and thus neglect

the effect of changes in available information over time. The problem now is to maximize

the overall expected utility V (x, π):

max
x

V (x, π) = max
x

∑

j

π(θj)U(x, θj) . (1)

Second, we introduce the cases of the DM’s information structure relevant for the

climate change example. The random variable θ represents the uncertain magnitude of the

temperature response to greenhouse gas emissions and of climate change induced damage.

The DM’s knowledge, or belief, about the values of the uncertain climate response and

damage is represented by the probability distribution function π(θ). The general case of

uncertainty is simply denoted by π. The degenerate case, where the DM is certain about

4

44 How important is Uncertainty for the Integrated Assessment of Climate Change?



θ taking the value θj is defined via:

πj ≡ π







1 θ = θj

0 else
. (2)

Two special cases of the degenerate distribution are the case of no climate damage at all,

denoted by π0, and the case of certainty about θ taking its expected value, denoted by π̄:

π0 ≡ π







1 θ = 0

0 else
, π̄ ≡ π







1 θ =
∑

j π(θj)θj

0 else
. (3)

Third, utilizing the decision framework and the special instances of information struc-

ture, we define the following four policy scenarios, relevant for measuring the importance

of uncertainty and perfect learning:

The No-Control Case (NC): We define the policy case of “no-control” as the opti-

mal policy in the absence of any climate damage: x̂0 ≡ argmaxx V (x, π0). The rationale

behind this definition stems from the difference between the non cooperative and the co-

operative solution of a decentralized market economy. In such an economy a no-control

behavior is caused by the imperfect cooperation of a large number of decision makers. In

a competitive setting each decision maker only anticipates her own small share of global

climate induced economic damage leading to an almost total neglect of the climate problem

in individual decisions. Thus the climate problem is called an externality to the market.

In a fully cooperative setting the single actors would optimize their combined welfare and

thus correctly anticipate global warming. Within the model, we simulate the lack of co-

operation by making the DM ignorant towards climate change. Within our setting the

no-control case is not only suboptimal due to the lack of mitigation efforts, but addition-

ally the savings rate cannot be adjusted to the observed climate damage. Thus the benefit

from internalizing climate damage is slightly exaggerated. However, this error is small, as

the savings rate adjustment due to climate damage only becomes significant for very high

levels of climate damage (D ≫ 50%).

The Best-Guess Case: We define the optimal policy under certainty about climate

response and damage by x̂1 ≡ argmaxx V (x, π̄). This is the common approach to take the

expected value of the uncertain parameters as best guess values.

The Uncertainty Case: We define the optimal decision under uncertainty about

climate response and damage by x̂2 ≡ argmaxx V (x, π).

The Perfect Information Case: For comparing the importance of uncertainty

and learning we consider the case of immediate perfect learning. The information about

the true state of the world is revealed before any decision has been made. Any other

implementation of partial or later learning leads to less benefits of information thus we

consider the limiting case of what can be gained by learning about the SOW. We define

the optimal decision under perfect information by x̂3(θj) ≡ argmaxx V (x, πj). From the ex
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ante perspective there is no longer a single optimal policy, but a set of policies conditional

on what has been learned before deciding. The expected utility over all possible messages

that might have been revealed is given by W ≡
∑

k q(k)V (x̂3(θj), πkj), whereby in the

case of consistent learning the probability qk of getting message πkj is simply equal to the

probability πj of the revealed state θj .

2.2 Metrics for measuring the Importance of Uncertainty and Perfect

Learning

Figure 1: Welfare levels for the combinations of

policy scenarios [x̂0, x̂1, x̂2, x̂3(θ)] and information

structures [π0, π̄, π] that are relevant for defining

importance metrics. Also shown are relevant wel-

fare differences, measured in ∆CBGE.

In this section we use the nomenclature de-

fined above to introduce metrics that mea-

sure the different components of the overall

benefit of climate policy separately. Com-

bining the above defined policy scenarios

[x̂0, x̂1, x̂2, x̂3(θ)] with the possible assump-

tions of how the world reacts to the policy

decisions, represented by information struc-

tures [π0, π̄, π], leads to 12 possible out-

comes in terms of expected utility V (or W

in case of perfect learning), from which only

7 outcomes are of further interest. Those

are depicted schematically in Fig.1.

The welfare differences between those

cases, measured as changes in certainty and

balanced growth equivalents (∆CBGE, see

Appendix 5), can be used as metrics for the

importance of the different effects of uncer-

tainty in welfare terms:

The relevant measure for the im-

portance of climate policy in a best-

guess world is the net benefit of re-

acting to climate change, i.e. chang-

ing from x̂0 to x̂1, BCP(x̂1, π̄) =

∆CBGE [V (x̂1, π̄), V (x̂0, π̄)]. This benefit

of climate policy is usually small compared

to the mitigation costs within a cost-efficiency framework, as it already combines the ben-

efits from reducing climate damage with the costs of mitigation.

Introducing uncertainty has two effects: First, the valuation of policies x̂0 and x̂1

changes. If, for all x, the (expected) utility V (x, π̄) is concave (convex) in the uncertain

parameter θ, the expected utility for x̂0 and x̂1 in the uncertain case (π) will be smaller

(larger) than in the best-guess case (π̄) (Fig. 1 shows the case of concave utility). As the
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benefit of climate policy BCP(x, π̄) is defined as difference between two levels of (expected)

utility the behavior of BCP(x, π̄) for a switch between the best-guess and the uncertainty

case depends on the curvature of the marginal (expected) utility in the uncertain parameter

θ. If, for all x, the marginal (expected) utility is convex (concave) in θ, then the increase

(decrease) of (expected) utility due to uncertainty in θ compared to the best guess θ̄ is

smaller (larger) for x̂1 than for x̂0. Hence the benefit of adopting the optimal climate

policy from the best guess world increases (decreases) when evaluated in the uncertain

world: BCP(x̂1, π) > (<)BCP(x̂1, π̄). The difference between the benefit from the best

guess policy in the uncertain world and the certain world is denoted by ∆BCP(x̂1) =

BCP(x̂1, π)− BCP(x̂1, π̄).

Second, when not only evaluating the solution of the best guess world under un-

certainty but explicitly maximizing the expected utility, the optimal climate policy will

change (from x̂1 to x̂2). This possibility of adjusting climate policy to uncertainty leads

to an increase in overall expected utility, denoted as Benefit of Adjusting to Uncertainty,

BOAU ≡ BCP(x̂2, π)− BCP(x̂1, π).

Taking both effects of uncertainty into account, the overall benefit from optimally

responding to climate change under uncertainty BCP(x̂2, π) can be divided into three

parts:

BCP(x̂2, π) ≡ BCP(x̂1, π̄) + ∆BCP(x̂1) + BOAU . (4)

A common measure for the “strength” of this adjustment effect is the absolute or relative

change in optimal decisions itself, i.e..∆x̂ ≡ (x̂2 − x̂1)/x̂1 (e.g. see Tol et al., 1999). We

argue that the comparison of optimal policies is insufficient to decide upon the importance

of including uncertainty as even a large ∆x does not necessarily has to correspond to a

large BOAU. To assess the importance of uncertainty and of optimizing expected utility,

we compare the single contributions of Eq. 4 normalized to their sum.1.

Introducing (perfect) learning allows the DM to adjust her policy to the received signal.

As a limiting case of early learning, the optimal policy can be chosen conditional on the

perfect knowledge about the respective state of the world, x̂3 = x̂3(θ). The expectation

for the overall welfare is now not taken over uncertain states of the world, but over the

possible messages leading to certain states of the world. To be consistent with the ex ante

knowledge, the distribution over the messages has to be identical to the distribution over

the SOW in the uncertain case. The benefit of perfect learning is measured by comparing

the expected utility with and without learning. The Value of Perfect Information is defined

via: VPI(π) ≡ BCP(x̂3(θ), π) − BCP(x̂2, π). The relative importance of perfect learning

can be compared to the importance of maximizing under uncertainty and the importance

of reevaluating the optimal best guess policy by dividing the overall benefit of acting upon

climate change under perfect learning into the components:

BCP(x̂3(θ), π) ≡ VPI(π) + BCP(x̂1, π̄) + ∆BCP(x̂1) + BOAU , (5)

1As done by Pizer [1997], who uses the relative measure BOAU/BCP(x̂2, π) to assess the importance
of optimizing under uncertainty.
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and then comparing the normalized contributions of the single effects.

2.3 A simple example: Quadratic Benefits and Costs of Mitigation

We apply a simple analytical model of costs and benefits for climate change mitigation to

illustrate the three components of the overall benefit to act upon climate change in the case

of uncertainty. We will also use the simple setting to illustrate the connection between the

different welfare effects from including uncertainty and the marginal expected benefits and

costs of mitigation. Later this “marginal cost-benefit” picture will be used to understand

the finding of small effects from uncertainty in the more complex integrated assessment

model MIND.

Let x denote the level of abatement of greenhouse gas emissions relative to the no-

control case in a simple one period framework. The abatement leads to benefits B(x, θ)

due to reduced climate damage and comes with costs of mitigation C(x). The dependence

of B on the state of the world (SOW) θ denotes the uncertainty in climate damage and

benefits of mitigation. The decision problem is to maximize the net benefits of mitigation:

max
x

U = EθB(x, θ)− C(x) . (6)

Trivially, the optimal abatement level in the no-control case is x̂0 = 0. To be able to

derive the optimal policies in the best guess and uncertainty case, x̂1,x̂2 and resulting

welfare changes analytically, we choose quadratic benefits and costs of mitigation, i.e.

B(x, θ) = a1x
2 + f(θ)x + c1 and C(x) = a2x

2 + b2x + c2, similar to the model used by

Karp & Zhang [2006].We assume the benefits and damage to vanish for zero mitigation:

c1 = c2 = 0. The SOW is a normally distributed random variable: θ = N (µ, σ2). For

simplicity we assume f(θ) to take the form f(θ) = θ2. By solving the first order condition

for x the optimal solutions for the best guess and the general case of uncertainty read:

x̂1 =
1

2

µ2 − b2
a2 − a1

, x̂2 =
1

2

µ2 + σ2 − b2
a2 − a1

. (7)

Fig. 2 shows the marginal benefits and costs for the best guess and the uncertain case.

Presented this way, the benefits of climate policy can be illustrated simply as areas between

the curves for marginal costs and benefits. For our functional setup, the three components

from Eq. 4, normalized to the overall benefit of climate policy under uncertainty, are

fully determined by the “strength” of the uncertainty effect on decisions, i.e. by ∆x̂ :=

σ2/(µ2 − b2). The relative contributions of the components are shown in Fig. 3. For

amplitudes of the relative change in optimal policies due to uncertainty ∆x̂ that would be

considered significant, e.g. 10%, the welfare gain from adjusting the optimal policy is much

lower (1%), nearly the whole benefit of acting upon climate change is already realized by

choosing, and reevaluating, the best-guess climate policy. Only very large adjustments of

optimal policy ∆x̂ > 45% lead to a significant (> 10%) contribution to the overall benefit

of climate policy.
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uation of best-guess policy under uncertainty in

lighter Grey, value of adapting optimal policy to

uncertainty in darker green) of acting upon climate

change under uncertainty depending on the ampli-

tude of uncertainty σ2/(µ2
− b2).

The optimal policy can also be derived graphically within the (marginal) cost bene-

fit picture. The optimal best guess policy is determined by the intersection between the

marginal costs and the marginal benefits for the expected value of the uncertain parame-

ter. The optimal policy under uncertainty is determined by the intersection between the

marginal costs and the expected marginal benefits. The size of the three components of

the overall benefit of climate policy under uncertainty is determined by the slope and cur-

vature of the marginal benefits and costs and by the slope and curvature of the difference

between the expected marginal benefits in the uncertainty case and the marginal benefits

in the best guess case, called the marginal risk premium MRP.

Assuming simple polynomial costs C(x) = xα and benefits B(x) = xβ , the slope and

curvature of the marginals is determined by α and β. For the costs of mitigation the

common assumption is to take α > 2, thus the marginal costs are convex increasing in the

mitigation effort. For the benefits of mitigation the situation is not clear. Depending on

β, three regimes would be possible: For 0 < β < 1 the marginal benefits are decreasing,

for 1 < β < 2 they are concave increasing and for β > 2 they are convex increasing. Fig. 4

shows examples from the different regimes and the resulting benefits of best guess climate

policy, here the marginal benefits are normalized by B′(x, β) = βx(β−1)/(β · 0.5(β−1)) such

that the marginal benefits coincide at x = 0.5 for all β. Clearly the benefit of climate

policy decreases with increasing β.

Introducing uncertainty changes the marginal benefits. Commonly one assumes the

benefits to be convex in the uncertain parameter θ, thus the marginal benefits increase due

to uncertainty. However the slope and curvature of the marginal risk premium MRP ≡
∑

i π(θi)B(x, θi)−B(x,
∑

i π(θi)θi) are not clearly determined. The benefit from adapting
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the benefit of reevaluating the best guess policy

is marked as green area and the benefit of adapt-

ing the policy to uncertainty is marked as orange

area. The different shadings result from the differ-

ent MRP realizations.

the policy to uncertainty (BOAU) is strongly influenced by the MRP. Fig. 5 shows a case

of convex increasing marginal benefits with different possible MRP functions. The BOAU

increases the more convex increasing the MRP. If the curvature of the MRP itself does not

depend on the mitigation level x, then the increasing BOAU with increasing convexity of

the MRP is contrasted with a decrease in the reevaluation of the benefit of climate policy.

3 Importance of Uncertainty in MIND

Why does accounting for uncertainty about the climate response and the climate dam-

age change the results in standard applications of integrated assessment models of climate

change only to a small degree? In this section we investigate this question by replacing

the simple analytic model by the more complex integrated assessment model MIND, and

applying the decomposition of the benefit of climate policy presented above. For this pur-

pose, we introduce uncertainty and immediate perfect learning about climate sensitivity

and the severity of climate change induced damage into the MIND model (Section 3.1).

First, we reproduce the findings in the literature (e.g. Pizer, 1997; Manne, 1995) that

explicitly including uncertainty has a small influence on the benefit of climate policy (Sec-

tion 3.2). We then interpret the MIND model in the “cost-benefit” picture from Section 2.3

(Section 3.3) and resolve the functional dependencies between the decision variables and

the resulting marginal benefits and costs of climate change mitigation to shed light on the

prerequisites for a significant effect of uncertainty (Section 3.4 ).
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3.1 The M odel of Investment and Technological Development (MIND)

We employ the M odel of Investment and Technological Development (MIND) (Edenhofer

et al., 2005) in its stochastic version presented by Held et al. [2009]. Additionally we

include learning as introduced to the model by Lorenz et al. [2011]. MIND is a model

in the tradition of the Ramsey growth model and similar to the well-known DICE model

(Nordhaus, 1993). The version we use differs from the classical Ramsey model in two

major aspects: Firstly, the production sector depends explicitly on energy as production

factor, that is provided by a crudely resolved energy sector. The energy sector contains

(i) fossil fuel extraction, (ii) secondary energy production from fossil fuels, and (iii) re-

newable energy production. The macroeconomic constant-elasticity-of-substitution (CES)

production function depends on labor, capital and energy as input factors. Secondly, tech-

nological change is modeled endogenously in two ways. The DM can invest into research &

development activities to enhance labor and energy efficiency. Additionally, productivity

of renewable and fossil energy producing capital increases with cumulative installed capac-

ities (learning-by-doing). We assume welfare to be an inter-temporally separable isoelastic

utility function of per capita consumption with a constant relative risk aversion η = 1.5

that is changed for the sensitivity study later on. It takes the form:

U(c(I, s)) =

te
∑

t0

L(t) ·
1

1− η

[

(

[c(I, s)](t)

L(t)

)1−η

− 1

]

e−ρtdt , (8)

where I = (IK, IR&D, IFossil, IRenewables) is the vector of investment flows in the different

sectors over time, s is the unknown state of the world, ρ is the pure rate of social time

preference taken to be 0.01/yr, and L(t) is an exogenously given population scenario.

Investments are related to the global consumption [c(I, s)](t) via the budget constraint:

Ynet(t, s) = [c(I, s)](t) +
∑

n

In(t, s) , c(I, s) ≥ 0 , (9)

with the Gross World Product (GWP) Ynet net of climate related damage. Ynet is related

to gross GWP over Ynet = Ygross ·DF , where DF is a multiplicative damage factor defined

by the damage function (see Roughgarden & Schneider, 1999):

DF (T ) =
1

1 + a · T b
. (10)

3.2 Importance of Uncertainty and Perfect Learning in MIND

The uncertainties about climate sensitivity and climate damage are described by proba-

bility distribution functions. The information about climate sensitivity CS is modeled by

a log-normal distribution by Wigley & Raper [2001]: π̄(CS) = LN (0.973, 0.4748). The

uncertainty about climate damage is taken to influence the amplitude a of the damage

factor, but not the exponent b, which is taken as constant b = 2. The distribution over a is

derived from a normal distribution over the parameter a′ inDF (T )∗ = 1/[1+(T/a′)2], with
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a′ = N (18, 5). This choice of the mean is near to the best guess case by Nordhaus [2008]

(a = 0.0028 vs. our a = 0.0030). The uncertainty range is inspired by the distribution by

Gerst et al. [2010], who chose a = N (0.0028, 0.0013), but due to the inverse distribution,

higher damage values are favored by our distribution. For the numerical implementation

we draw samples of size n from the distributions according to a scheme related to descrip-

tive sampling (see Saliby, 1997). The uncertainty space is divided into n hypercubes. Each

hypercube i carries a chosen probability weight wi and is represented by the expected value

of the parameters on this hypercube. For simultaneous uncertainty about both climate sen-

sitivity and damage, each dimension is sampled with four equi-probable points which are

combined to only four learning paths for the perfect learning comparison according to the

descriptive sampling scheme (instead of 16 learning paths with a full factorial design). We

tested the influence of the low sampling size on the results by complementing the analysis

with a sampling of 10× 10 samples in CS and a for the case of uncertainty vs. best guess.

The results did not change significantly.

Fig. 6 shows the welfare changes, relative to the no-control case, for the different sce-

narios with and without uncertainty within the MIND model. First, the benefit from

acting upon climate change is small relative to the net costs due to the existence of climate

change. In other words only a small part of the climate change induced welfare losses can

be countered by mitigation policy. This observation stays the same in the uncertain set-

ting, although the best guess climate policy leads to higher benefits against the no-control

policy with uncertain damage. The welfare benefit from adapting the optimal policy is

nearly invisible, whereas the welfare gain from perfect learning is significant. This finding

compares to only small changes in optimal emission pathways from the best guess to the

uncertain policy against strong changes in case of perfect learning (see Fig. 7)..

In a study close to this one, Pizer [1997] investigated the effect from explicitly including

uncertainty into the DICE model by Nordhaus [1994]. He not only considered uncertainty
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about the socio-economic and the climate system but also about the normative parameters

of risk aversion and pure rate of time preference. He found that the uncertainty about the

normative parameters by far dominates the uncertainties about the socio-economic system.

We perform a sensitivity study of the uncertainty components towards the parameter of

constant relative risk aversion. The necessary scenarios for optimal climate policies under

best guess, uncertainty and perfect learning have been evaluated for 8 different values of η.

The resulting changes in the partition of the benefit of optimal climate policy are depicted

in Fig. 8 for the case of uncertainty and in Fig. 10 for the case of perfect learning. The

changes in optimal decisions between the best guess and the uncertainty case are depicted

in Fig. 9.

From Fig. 8 a clear ordering of the different components of the overall benefit of climate

policy emerges: The main part of the overall benefit of climate action can be realized by

simply taking the optimal best guess policy. However, reevaluating this best guess policy in

an uncertain information setting significantly increases the benefit. The changes in optimal

decisions between the best guess and the uncertainty setting (see Fig. 9) are at least partly

significant, e.g. a > 5% change in cumulative carbon emissions for the next two centuries.

But the resulting welfare effect from this adjustments (BOAU) is insignificant for the whole

range of η, thus the explicit incorporation of uncertainty into the optimization only plays

a minor role. From Fig. 10 one can see that the contribution from perfect learning by far

dominates the contribution from adapting to uncertainty. With increasing η, the value of

perfect learning even dominates all other components. Summarizing the numbers indicates

that within MIND uncertainty about the climate response to anthropogenic carbon emis-

sions and about climate induced damage is not important for the assessment of optimal

climate change mitigation whereas perfect learning clearly changes the picture.

An additional interesting feature of the sensitivity study with respect to relative risk

aversion η is the rapidly decreasing overall benefit of climate policy for increasing η. For

values of η > 2 the benefit from acting upon climate change gets lower than 0.01% of

change in CBGE consumption. This can be explained with the dual role of the parameter

η. Within the expected utility framework employed in most studies of optimal global miti-

gation assessment the parameter η represents both, the DM’s constant relative risk aversion

and her aversion to fluctuations of consumption over time. With increasing risk aversion,

the DM reacts with stricter policies to minimize the uncertainty in climate impacts. But

with increasing aversion to consumption fluctuations over time, within an overall growing

economy the DM’s incentive to shift consumption from the future towards the present

becomes stronger. Within MIND, obviously the second effect is stronger, as the mitigation

effort decreases with η, and therefore the benefit from acting upon climate change also

decreases. A separation of both roles of η can be achieved within a normative satisfying

setting by Treager (2009, and references therein). This is left for future studies.
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energy resources (inresex), investments in the cap-

ital stock of fossil energy carriers (infossil), and in-
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3.3 The Marginal Cost - Benefit picture of MIND

In the following we apply the marginal cost-benefit picture from Section 2.3 to the MIND

model to understand the reasons for the small welfare effect from explicitly including un-

certainty about the climate response and climate induced damage. Therefore we interpret

the welfare benefit from choosing the optimal policies x̂1, x̂2 instead of the no-control pol-

icy x̂0 as composition of mitigation benefits B(x, θ) and mitigation costs C(x), analogue to

Sec. 2.3. For any climate policy x we defineB(x, π) ≡ {[U(x, π)− U(x, π0)]− [U(x̂0, π)− U(x̂0, π0)]}

as the difference in the welfare impacts due to the existence of climate induced damage

between the policies x and x̂0. Thereby π indicates a world with climate damage, and π0

indicates a world without climate damage. We define mitigation costs C(x) of policy x

as: C(x) ≡ [U(x̂0, π0)− U(x, π0)]. This is the loss in welfare for choosing a suboptimal

policy x instead of the optimal policy x̂0 in a world without climate damage (π0). Simple

calculus shows, that this choice actually delivers the desired composition for any policy x:

B(x, π)− C(x) = {[U(x, π)− U(x, π0)]− [U(x̂0, π)− U(x̂0, π0)]}

− [U(x̂0, π0)− U(x, π0)]

= U(x, π)− U(x̂0, π) .

Using this composition, the problem of finding the optimal climate policy x̂ for a

given information setting (Eq. 1) can be rewritten as maximizing the difference between

mitigation benefits and costs. This can be recast in an a-temporal cost-benefit picture

by identifying the intersection of the marginal benefits (dB(x, π)/dx) and marginal costs

(dC(x)/dx). The intersection point on the x-axis corresponds to the optimal policies x̂1

(using B(x, π̄) or x̂2 (using B(x, π)). Numerically the benefits and costs for a given policy

x are calculated by evaluating welfare differences as relative changes in CBGEs (see Sec. 5).

To be able to inspect the cost-benefit picture visually we additionally need to project

the multi-dimensional decision variable x on a single-dimensional quantity. Thereby we

loose the exact equivalence between the welfare picture and the cost-benefit picture. The

goal is to choose a projection x → x̃ that approximates the welfare effect of uncertainty

with high accuracy and allows an interpretation of the small amplitude. We achieve the

one-dimensional projection by introducing a constraint on cumulative emissions in a setting

without climate damage. For a constraint above 3165GtC the no-control policy emerges.

With decreasing levels of admissible cumulative emissions, the DM reacts by adjusting the

investments into the different energy technologies (see Fig. 11). With increasing stringency

of the constraint on cumulative emissions the investments into R&D in energy efficiency

increase, as well as the investments into carbon free renewable energy. Contrary, the invest-

ments in carbon intensive fossil energy carriers and the corresponding resource extraction

sector decrease.

Introducing a dense sampling in the cumulative emissions constraint and evaluating

the resulting policies in settings with and without uncertainty allows to construct the cost-
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aversion η is set to 2, this can be compared to the

other values investigated in Sec. 4.1.

benefit picture for the MIND model (see Fig. 12). The marginal benefits for the best

guess case are derived by fixing all uncertain parameters to their expected value while the

expected marginal benefits are derived by applying the cost-benefit decomposition to the

expected utility. The fluctuations in the Grey curves, that represent the raw data from

the model can be explained by the limited temporal resolution of the model (5 yrs). When

optimizing under a binding constraint with increasing stringency (such as the constraint

on cumulative emissions), the timing of the mitigation effort to stay below the constraint

can only be adjusted within this limited temporal resolution. This leads to small jumps in

the overall welfare and thus also in marginal welfare and in marginal benefits and costs.

The bold black lines are polynomial fits to the raw data.

Analogue to Section 2.3 the optimal mitigation effort for the best guess and the un-

certainty setting can be obtained as intersections between the marginal costs and the

(expected) marginal benefits of mitigation. The different contributions to the overall ben-

efit of acting upon climate change can be visualized as areas between the benefit and cost

curves. The pie chart in the upper left corner shows their relative contributions to the

overall benefit of climate policy. A comparison between the optimal values of cumulative

emissions derived from the marginal picture and those derived from the “correct” welfare

optimization shows the “error” of the approximation. The optimal level of mitigation in

cumulative emissions is represented within an 4% error, while the welfare effects of uncer-

tainty are overestimated by up to 5%.
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Nevertheless the cost-benefit picture allows to identify reasons for the negligible uncer-

tainty effect. First, the overall value of acting upon climate change is constraint due to the

convex increasing functional form of both (expected) marginal benefits and marginal

costs. The combination of these functional forms lead to a very small area between both

curves and thus, a small overall benefit of climate policy. This result is somewhat counter

intuitive as one would assume climate damage to be convex increasing in temperature and

temperature more or less linearly connected with mitigation effort and thus would expect

decreasing marginal benefits. The reason for the counter-intuitive result from the MIND

model is discussed further below. If marginal benefits were concave increasing in the miti-

gation effort or even decreasing, for fixed intersection points x̂1 and x̂2, the overall benefit

of climate policy would increase. However, the same is not true for the value of adapting to

uncertainty (BOAU) that is represented by the darker green “triangle” within Fig. 12. For

fixed x̂1 and x̂2 more concave marginal benefits would increase the BOAU, but even more

so the other components of the BCP, thus the relative importance of explicitly including

uncertainty would even decrease.

Second, the marginal risk premium, that is the difference between expected marginal

benefits under uncertainty and marginal benefits for the expected parameter values, only

increases linearly in the mitigation effort and with a small slope. Together with the strongly

convex increasing marginal costs, this leads to a relatively small difference between the two

optimal policies x̂1 and x̂2. To increase the BOAU, one would need to either increase the

slope of the MRP or even better, increase the convexity of the MRP in the mitigation

effort. Both measures would lead to a larger difference between the marginal benefits in

the best guess and the uncertainty case and thus to a larger difference between x̂1 and x̂2.

However, increasing only the slope of the MRP would also increase the reevaluation effect

of the best guess policy (lighter Grey area) and thereby limiting the relative importance

of the BOAU.

3.4 Functional Dependencies within MIND

To find an explanation for both results, the slope and curvature of marginal benefits and

the small MRP, we apply the marginal representation to the single steps in the climate

cause-effect chain. The absolute and marginal functional form of the individual elements

of the chain are shown in Fig. 13. This allows us to investigate in detail how the slope and

curvature are determined in the integrated assessment model MIND.

The (cumulative) emissions lead to a rising concentration of greenhouse gases in the

atmosphere and increasing radiative forcing. The maximum forcing reached for different

levels of mitigation effort is shown in panel a. The maximum total forcing is concave

increasing in cumulative emissions and concave decreasing in mitigation effort respectively.

This can be explained by the saturation effect represented by the logarithmic relation from

concentration to forcing. With increasing atmospheric concentration of carbon dioxide,

the frequency band in which CO2 absorbs the outgoing radiation saturates, thus a further
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Figure 13: Functional dependencies of individual components in the cause-effect chain of

climate change on mitigation effort measured in terms of cumulative emissions reductions from

the BAU emissions of 3165 GtC in the period 2010 − 2200 : (a) maximum radiative forcing,

(b) maximum temperature change, (c) damage in % of net GDP for the maximum temperature

change, (d) net present value (NPV) of gross output including mitigation costs, but excluding

climate damage, (e) welfare equivalent damage measured in %∆CBGE, and (f) welfare benefits

measured in %∆CBGE. Shown are the functions (continuous lines) and the marginal functions

(dashed lines). For those quantities that depend on the uncertain SOW the best guess value is

shown in darker Grey and the expected value of the uncertain setting is shown in darker green.

The original model data are shown in lighter Grey, where as the functional dependencies are

polynomial fits of the data.
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increase in concentration leads to less and less additional radiative forcing. The same

concave behavior, increasing in cumulative emissions and decreasing in mitigation effort,

occurs for the maximum temperature increase max(T ), shown in panel b. The global mean

temperature reacts to changes in radiative forcing. The overall temperature response is

determined by the amplitude (climate sensitivity) and time scale (ocean diffusivity) of a

simple impulse response model. The climate damage that is incurred by the maximum

temperature change, measured in % of net GDP, is shown in panel c. Panel d shows the

net present value of gross output excluding climate damage, aggregated over time by an

endogenous discount rate ρt ≡ δ + η · gt, where δ is the pure rate of time preference, η is

the rate of constant relative risk aversion and gt is the endogenously determined growth

rate of consumption. The gross economic output is concave decreasing in the mitigation

effort, leading to convex increasing mitigation costs in GDP terms, which are derived by

subtracting the gross output curve from the gross output of the no-control case x = 0.

Multiplying the damage factor, DF = 1/(1 + D), where D are the net GDP damage

from panel c, with the gross GDP in each time step gives the time series of net GDP

that constrains the investment decisions and consumption level via a budget equation.

Thus both the costs from mitigation (as seen in the gross GDP) and the climate damage

lower the consumption level and thus the welfare. The welfare equivalent damage for the

different mitigation scenarios, shown in panel e, is derived by evaluating the difference in

CBGE between a case with the damage factor DF as above and a case without damage

(but with mitigation costs), where DF = 1. Formally the welfare damage is given as

∆CBGE(V (x, π0), V (x, π/π̄)) or in loose notation as U(x, π0) − U(x, π/π̄). Normalizing

the welfare damage to the no-control case delivers welfare benefits from mitigation, shown

in panel f. Formally this normalization is done by subtracting the welfare damage for

the no-control case, leaving us with the definition of benefits from Section 3.3 U(x0, π0)−

U(x0, π)− (U(x, π0)− U(x, π)) = B.

The two most interesting features in the cost-benefit picture of MIND are the positive

slope and the convex curvature of the marginal benefits of mitigation. Concerning the

slope of the marginal benefits in welfare, the explanation can already be found in panels

b and c. The marginals of maximum (Panel c) and welfare equivalent damage (Panel

e) are decreasing in the mitigation effort implying increasing marginal benefits. As can

be seen from a comparison of panel c and e, this behavior is not a result of the welfare

evaluation of climate damage (although it is strengthened by it), but already present in

the marginal of the maximum damage. Since the maximum damage is convex increasing

with rising temperature, their marginal is increasing with temperature as well. The fact

that their marginal is decreasing when plotted against increasing mitigation effort instead

of temperature, due to concave instead of convex decreasing maximum damage, points to

the fact that the concavity found in the temperature response to mitigation dominates

the convexity of damage in rising temperature. Thus, we find that the saturation of the

emissions to temperature change relationship over-compensates the non-linearity in the

climate damage function, leading to increasing instead of decreasing marginal benefits of
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mitigation, and thus limiting the overall benefit of the best guess climate policy (the dark

Grey area in Fig. 2).

The convexity of marginal welfare benefits in mitigation effort however does not orig-

inate from the combination of maximum temperature with the damage function, but

emerges from the welfare valuation of climate damage. This can be seen by comparing

the convex decreasing marginal of maximum damage (panel c) to the concave decreas-

ing marginal of welfare equivalent damage (panel e). Hence, the influence of the welfare

function, i.e. of the normative parameters of constant relative risk aversion η and pure

rate of time preference ρ determines the curvature of the marginal benefits. Comparing the

marginal benefits for the best guess case and the case of uncertainty, it can be seen that the

convexity increases when accounting for uncertainty, implying a convex increasing MRP.

Thus, the additional marginal welfare benefit of reducing a unit of emissions under uncer-

tainty grows with increasing mitigation effort. This works against a large contribution of

re-evaluating the best guess climate policy under uncertainty (DBCP; light Grey area in

Fig. 2), and favors a larger relative contribution of adjusting the mitigation policy under

uncertainty (BOAU; orange area in Figure 2). However, due to the strongly increasing

marginal mitigation costs, the welfare gains from adjusting the mitigation policy remain

small.

Another important observation in the cause-effect chain is the small influence of un-

certainty about climate sensitivity and the correlated time lag of the climate response

(panel b). The expected maximum temperature increase for uncertain cs is slightly shifted

towards lower levels, which in itself is counter intuitive, as uncertainty about cs has an

asymmetric upper tail. The explanation for this could be the correlation between climate

sensitivity and the time scale of climate response due to the observations of 20thcentury

global mean temperature. Higher values of climate sensitivity are connected to longer time

scales of temperature response, thus the temperature increase will only show later. In

combination with the limited time horizon due to discounting this limits the influence of

high cs values. In addition, the marginal maximum temperature increase shows nearly no

change from best guess to the expected case. Thus the uncertainty about cs can not lead

to a change in marginal benefits due to uncertainty.

4 Changes in the Model Structure

Which assumptions about the climate cause-effect chain would lead to a significant welfare

gain from adapting the optimal policy to uncertainty? In this section we investigate several

changes in the model structure and their influence on the cost-benefit picture and the

BOAU.
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Figure 14: Sensitivity of the marginal cost-benefit picture of MIND with respect to changes in the

parameter of constant relative risk aversion η. Shown are the pictures for η = 0.75(left), η = 1.5(middle),

η = 3(right). The legend is equivalent to Fig. 12.

4.1 Constant relative risk aversion η

We have shown in Section 3.4 that the curvature of the welfare function, represented by

the parameter of constant relative risk aversion η, strongly influences the curvature of the

marginal benefits of mitigation. We have also shown (Section 2.3) that the curvature of

the marginal benefits strongly influence the overall benefit of climate policy. We use these

dependencies and investigate the relative importance of adjusting the optimal policy to

uncertainty depending upon the parameter of constant relative risk aversion. The changing

cost-benefit pictures of MIND are shown in Fig. 14 for values of η between 0.75 and 3.

The effects of the curvature of the welfare function are manifold: The first, and most

important one, is a scaling effect. As already shown in Fig. 8, the overall net benefit

of climate policy strongly decreases with increasing η. This effect can be explained by

the dual role of η. It does not only represent risk aversion, but also the DM’s aversion

towards inter temporal fluctuations in consumption. If this aversion is high, the DM

prefers a smooth, constant consumption stream over a fluctuating, increasing one. In

a growing economy with consumption growth in the future the decision maker prefers

to delay mitigation as it would require to divert consumption into early investments in

carbon free energy technologies. This effect can already be seen in the baseline cumulative

emissions (the number given as label below the figures). Hence the net benefits from

mitigation, i.e. reduced climate damage minus mitigation costs, are lower for a high η

as mitigation reduces early consumption. The second effect concerns the curvature of the

marginal benefits. This effect is directly evident: as discussed in Sec. 2.3, the exponent η

of the welfare function obviously directly determines the curvature of the marginal welfare

depending on consumption.

In combination both effects result in increasing absolute overall benefits of climate

policy and increasing absolute welfare gains from adjusting climate policy to uncertainty

with decreasing η . However, the relative contribution of the BOAU to the benefit of

climate policy decreases with η.
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4.2 Exponential Damage

Unlike Weitzman [2010] who focused on the potential fat tails of the distribution on climate

sensitivity and climate damage we are searching for a setting in which a strong impact of

uncertainty on optimal mitigation efforts also occurs for thin tailed distributions. As stated

before a stronger increase, and convexity, in the marginal risk premium in welfare terms

for rising mitigation effort would lead to a stronger BOAU.

First , we replace the standard quadratic formulation of the damage function by an

exponential formulation:

DFe =
1

1 + k · exp(T
l
)− k

. (11)

We choose the parameters k and l such that the exponential damage in net GDP,

k · exp(T/l) − k equal the standard formulation at T = 3° for the best guess case. We

assume a normally distributed l with l = N (2.2571, 0.61). Together with k = 0.01, this

choice leads to a best guess marginal damage function which is nearly identical to the

standard best guess marginal damage function used in the previous section. However, the

expected marginal damage function is far more convex in temperature than in the quadratic

case. Thus the marginal risk premium in net GDP damage increases more strongly. The

resulting difference in the marginal of the maximum damage is shown in rows a and b

of Fig. 15 together with the identical maximum temperature functions and the resulting

cost benefit pictures. The change towards exponential damage shows several interesting

effects: First, as we have chosen identical best guess marginal damage, the optimal policy

in the best guess case also does not change, but the higher marginal risk premium leads

to an increased x̂2. The welfare benefit from adapting the policy to uncertainty increases

significantly and now contributes 13% to the overall benefit of climate policy (instead of 4%

in the quadratic case). The increase in the relative contribution of the BOAU is dampened

by the fact that the effect of reevaluating the best guess policy under uncertainty is also

strongly increasing. This is due to the fact, that the expected marginal benefits do not only

increase more strongly than before but are also shifted upwards over the whole domain.

Second, the change towards exponential damage leads to at least partly increasing expected

marginal damage in net GDP. However this shift in the slope of the marginal damage is not

strong enough to be reflected in the expected marginal benefits, it “gets lost” through the

convolution with the welfare function. Finally, compared to the case of quadratic damage,

the overall value of climate policy more than doubles for the assumption of exponential

damage, with more than two thirds of the benefit due to taking uncertainty into account.

4.3 Linear Carbon Climate Response

Finally, we replace the climate module by a linear relationship between cumulative carbon

emissions and increase in global mean temperature that has been found by Matthews et

al. [2009] within an ensemble of state of the art climate models. By introducing the
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Figure 15: Maximum temperature change, maximum climate damage in net GDP, and
marginal cost benefit picture for four different structural model settings: (a) standard cli-
mate module and quadratic damage function, (b) standard climate module and exponential
damage function, (c) linear climate carbon response and quadratic damage function, and
(d) linear climate carbon response and exponential damage function. The functional rela-
tions are shown in darker Grey for the best guess case and in darker green for the expected
value of the uncertainty case. The dashed lines represent the marginal functions. The fluc-
tuating lines in lighter Grey are the original model data. The smooth lines are polynomial
fits to the data. The legend for the cost benefit pictures is analogous to Fig. 12.
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so called carbon climate response (CCR) parameter, the relationship between global mean

temperature change (relative to pre industrial) ∆T and cumulative carbon emissions reads:

∆T (t) = CCR ·
t′
∑

t0

e(t′) , (12)

where e are globally aggregated carbon emissions. Within the model ensemble, Matthews

et al. [2009] found a carbon climate response of CCR = 1.5[1.0 − 2.1]°C/TtC. The val-

ues in square brackets mark the 5 and 95 quantile. We choose a log-normal distribution

for the CCR with CCR = LN (log(1.461), 0.23), which gives the best fit to the quantiles

and 1.5°C as expected value. The resulting maximum temperature, maximum net GDP

damage and the cost benefit pictures are shown in rows c and d of Fig. 15. In row c

the linear climate carbon response is combined with quadratic damage and in row d with

exponential damage from Sec. 11. Considering the maximum temperature response, the

difference between the best guess case and the expected case under uncertainty nearly van-

ishes. This is clear, as the uncertain parameter CCR now enters linearly into the function,

thus the expectation operator only acts on the parameter itself. Thus the uncertainty in

the climate system is now irrelevant for the mitigation problem. But even more interesting

is the change in the best guess maximum temperature function itself. It declines more

strongly in the mitigation effort than before. This leads to a stronger difference between

the best guess and expected damage. The changed curvature of the climate response leads

to convex decreasing net GDP damage. However, the increasing slope of the marginals

is changed back to decreasing marginal welfare equivalent damage further downstream by

the welfare function. Hence the marginals in the welfare benefit are still increasing, but

less convex than before. Compared to the standard climate module, the overall benefit of

climate policy increases strongly (by a factor of X), but the individual contributions of the

three components remain largely unchanged. In particular, the welfare contribution from

adapting the optimal policy to uncertainty is still negligible.

Combining the linear climate carbon response with exponential damage amplifies the

distinct features of the two cases. The convexity in expected net GDP damage gets strong

enough to “survive” the convolution with the welfare function leading to initially decreas-

ing expected marginal benefits in welfare terms. This further increases the benefit from

reevaluating the best guess policy. The BOAU stays small.

Summarizing the results from this Section, the functional formulation of the building

blocks of the climate cause-effect chain (temperature response, climate induced damage and

the aggregated welfare function) and especially their marginals determine the strength of

the effect of including uncertainty. Thereby the non-linearities in the temperature response

and the damage function partly compensate each other. Everything else equal, the impor-

tance of adjusting policies to uncertainty becomes the more important the more convex

the damage function, the lower the risk aversion parameter and the lower the concavity of

the maximum temperature in cumulative emissions.
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5 Conclusion

We applied a decomposition of the overall benefit of acting upon climate change into its

single components to measure the importance of uncertainty and perfect learning within

the integrated assessment model MIND.

Uncertainty influences both, the optimal mitigation policy and the expected utility of dif-

ferent policies. Including uncertainty explicitly is important, if it leads to a significant

change in the optimal policy (before any potential future learning) that in turn leads to

a significant change in the benefit gained from acting upon climate change. Uncertainty

might also be considered relevant, but would not have to be included explicitly into the

optimization framework, if it significantly changed the assessment of the benefit of climate

policy compared to the best guess case (reevaluation effect), even though the optimal cli-

mate policy (before learning) did not change significantly.

Within the MIND model the reevaluation effect is dominating the welfare gain from ad-

justing the policy under uncertainty, while perfect learning is dominating both of these

effects. Overall, the welfare effect of accounting for uncertainty is rather small, which fur-

ther corroborates the findings in the literature.

To understand the origin of these findings, we projected the complex MIND model to an

a-temporal marginal cost-benefit picture and resolved the functional relationship between

the single steps of the climate cause-effect chain. Thereby we located the origin of the

negligible welfare gain from adapting the optimal policy to uncertainty. This benefit of

anticipating uncertainty (BOAU) is only of significant size if uncertainty leads to non-

linear shifts in the marginal benefits of mitigation, that would lead to a convex strongly

increasing marginal risk premium with increasing mitigation effort.

In the standard model setting with a quadratic damage function and a zero-dimensional

climate-carbon response box model, this behavior was constrained by the saturation of

the emissions to temperature change relationship compensating for the non-linearity in the

climate damage function and by the consumption smoothing property of the welfare func-

tion. Thus for seeing a significant influence from including uncertainty one has to consider

alternative model settings that induce a strongly convex increasing marginal risk premium

(MRP).

Two such changes in the model setup, an exponential climate damage function and a linear

climate carbon response have been implemented. We showed that those changes to the

model structure indeed can lead to a strongly convex increasing MRP and a significant

uncertainty effect.

The other feature that constrains the importance of including uncertainty is the strongly

increasing marginal mitigation cost curve in the model. Thus a change in the convexity of

marginal mitigation costs, especially reducing the strong increase for higher levels of mit-

igation would also lead to more significant uncertainty effects. This is of special interest

as it emphasizes the combined importance of the modeling of mitigation options and the

impact and damage formulation for the overall importance of uncertainty for the integrated
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assessment of climate change.

These results come with the usual caveats. The employed integrated assessment model

MIND, although more complex than quasi-analytical cost-benefit models and the com-

monly used DICE model, still includes a strongly simplified representation of the cause-

effect chain of climate change.The representation of uncertainty and learning had to be

constrained to a few sample points and to the limiting case of perfect learning, and we

only investigated the effect from a single information setup.

Thus this study should not be seen as an attempt to find a conclusive answer to the question

whether accounting for uncertainty and learning is important for the assessment of climate

policy. Rather, we present an approach to decompose and trace the uncertainty effect in

complex integrated assessment models, which we believe will prove useful to improve our

understanding about the effect of structural model assumptions on the significance of the

uncertainty effect.

A Comparing Welfare across different scenarios

As (expected) utility is only defined up to an affine transformation, we use differences in the

certainty and balanced growth equivalents (CBGE), as presented by Anthoff & Tol [2009],

to compare different scenarios. The certainty equivalent of an uncertain consumption

outcome is an amount of consumption the DM would demand instead of a distribution

of outcomes to get the same expected utility. The same principle works for the balanced

growth equivalent: here the consumption path, that possibly varies over time, is replaced

by a path consisting of an initial consumption level that growth over time with a constant

growth rate α and gives the same utility. If one is only interested in relative changes in

the CBGE between different scenarios, the measure is independent of the growth rate α.

Thus the relative change in CBGE, denoted by ∆CBGE, can be interpreted as fraction of

consumption the DM would be willing to pay, now and forever, to switch from a scenario

with lower CBGE to the other scenario. Formally the ∆CBGE for isoelastic utility reads:

∆CBGE [EU1, EU2] ≡











(

EU1

EU2

)1−η
− 1 for η 6= 1

exp

(

EU1−EU2∑
T

t0
Pt(1+ρ)t

)

− 1 for η = 1
. (13)
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Abstract Several integrated assessment studies have

concluded that future learning about the uncertainties

involved in climate change has a considerable effect on

welfare but only a small effect on optimal short-term

emissions. In other words, learning is important but

anticipation of learning is not. We confirm this result in

the integrated assessment model “model of investment

and technological development” for learning about cli-

mate sensitivity and climate damages. If learning about

an irreversible threshold is included, though, we show

that anticipation can become crucial both in terms of

necessary adjustments of pre-learning emissions and

resulting welfare gains. We specify conditions on the

time of learning and the threshold characteristic, for

which this is the case. They can be summarized as a

narrow “anticipation window.”
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1 Introduction

Climate change poses a formidable global problem.

Climate impacts may occur over a wide range of sectors,

countries and time. Moreover, the regions most vulner-

able to the impacts differ from those responsible for

the largest parts of emissions. Although climate science

has gained a profound understanding of the elementary

processes underlying climate change, big uncertainties

about its magnitude and implications remain. These sci-

entific uncertainties will be reduced in the future, and it

will be possible to adjust climate policy accordingly.1

Investments in mitigation of greenhouse gas emissions

are at least partially sunk or irreversible, respectively.

The combination of uncertainty, learning about uncer-

tainty and irreversibility makes it interesting to study

the effect of anticipation of future learning on optimal

near-term climate policy. Important questions in this

context are: Should society wait for better information

about the climate system and climate damages before

committing to mitigation measures or should it miti-

gate preemptively? Does anticipation of future learning

yield significant welfare increases?

A theoretical literature has established theorems

about the sign of the anticipation effect, i.e., the effect

of anticipation of future learning on optimal short-term

decisions. In very simple two-periodmodels, a Bayesian

decision maker (DM) is characterized by a goal

1We will assume that learning eventually reveals the true values
of parameters. For interesting examples, where new informa-
tion might narrow the uncertainty around a false value, see
Oppenheimer et al. [30] and Kriegler [19].
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function U(x1, x2, s), where s is the state of the world,

and the decision variables xt, t ∈ {1, 2} denote direct

consumption of a generic good, emissions of a pollu-

tant, or investment decisions. The DM first chooses x1,

then gets somemessage y containing information about

the uncertain s, and finally chooses x2. The question

under consideration is: In which direction does the

optimal first period decision x1 change depending on

the informativeness of y? The most general answer to

this question has been given by Epstein [9], who showed

that it depends on the properties of the 2nd-period value

function j(x1, π) ≡ maxx2

∑

s πsU(x1, x2, s), where πs is

the probability of s. More information (in the sense

of Blackwell [4]) unambiguously, i.e., independent of

the specific form of the information structure (in the

sense of Marschak andMiyasawa [23]), leads to a lower

optimal level of x1 if and only if ∂ j/∂x1 is convex

in πs. One strand of the literature applies Epstein’s

condition in simple analytically solvable models (see,

e.g., Kolstad [18]; Gollier et al. [12]). In more complex

models, though, Epstein’s condition is of limited value

for two reasons: Firstly, it is hard to apply because it

is difficult to determine the convexity of the marginal

value function in πs. Therefore, Baker [2] and and

Salanie and Treich [34] have recently provided neces-

sary and sufficient conditions for the primitives of the

model, i.e., U(x1, x2, s) instead of j(x1, π), for being

able to decide upon the anticipation effect unambigu-

ously: U has to be separable in s, which means that U

has to be linear in some function g(s). Unfortunately,

most integrated assessment models do not belong to

this class; thus, further investigation and imposition of

more structure on the model and information setup will

be necessary to come to a satisfactory answer.

The integrated assessment literature has therefore

focused on explicitly calculating optimal short-term

decisions under learning in more complex numerical

models. A few studies have investigated the effect of

learning under a climate target O’Neill et al. [28],

Bosetti et al. [5], Johansson et al. [14], and parts of

Webster et al. [40]. The latter, e.g., find that antic-

ipation of learning about climate sensitivity leads to

significantly stronger short-term emission reductions

under a strict targets. However, Schmidt et al. [36]

argue that this effect results from a disputable interpre-

tation of climate targets as targets that have to be met

with certainty. Investigations of the anticipation effect

in cost-benefit analysis include Peck and Teisberg [31],

Yohe and Wallace [42], Kelly and Kolstad [17], Leach

[22], and parts of Webster et al. [40]. See Lange and

Treich [21] for a review. These studies have shown that

learning has generally a small effect on optimal short-

term decisions, whereas the question of the welfare gain

due to anticipatory changes in pre-learning decisions

was not addressed.

Here, we confirm this result in the integrated assess-

ment model “model of investment and technological

development” (MIND) for two key uncertainties of the

climate problem, namely climate sensitivity and climate

damages. We find considerable values of information

but insignificant gains from anticipating learning. We

then focus on the question whether the anticipation of

learning about a tipping point-like irreversible thresh-

old damage is important. This was already done with a

different model and somewhat different focus by Keller

et al. [16]. We advance on this analysis by investigating

the welfare gain from anticipation, by using a different

integrated assessment model, and by performing addi-

tional sensitivity analysis. We find that the anticipation

of learning about threshold damages can lead to sig-

nificant welfare gains if learning takes place in a specific

“anticipation window,” which depends on the threshold

under consideration and the flexibility of the decision

maker to reduce emissions. Thereby, the largest welfare

gain due to anticipation does in general not result from

the largest anticipatory change of near-term emissions.

The paper is structured as follows: Section 2 shortly

introduces the problem formulation, the terminology of

the expected value of anticipation, and the integrated

assessment model MIND. The results from learning

about climate sensitivity and smooth climate damages

are presented in Section 3.1. Section 3.2 focuses on

learning about irreversible, tipping point-like threshold

damages and includes the main results. Section 4 con-

cludes with potential implications for climate policy. A

table of the nomenclature we will use is shown on the

right.

Nomenclature

BAU Business as usual

BOCP Benefit of climate policy

(C)BGE (Certainty) and balanced growth equivalents

CEVOI Conditional expected value of information

DM Decision maker

EVOA Expected value of anticipation

EVOI Expected value of information

(E)VPI (Expected) value of perfect information

MIND Model of investment and technological

development

RnD Research and development
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2 Model and Methodology

2.1 Problem Formulation

We introduce learning, i.e., the change of information

available to the DM over time, in its simplest possible

form. The overall time horizon is split into a first period

before and a second period after a one-time updating of

information at learning point tlp. A strategy consists of

first period decisions (investments) x1 = I(t), t0 < t ≤

tlp and second period decisions x2(y) = I(y)(t), tlp <

t ≤ T, which are conditional on messages y. The prob-

lem of the decision maker is now to maximize the

outcomes of the chosen strategy in terms of an inter-

temporally separable, aggregated expected utility.

The learning between the two periods can formally

be described by the concept of an information struc-

ture. The terminology follows Marschak and Miyasawa

[23] as presented in Jones and Ostroy [15]. We denote

states of the world and messages, or observations, by

s ∈ S and y ∈ Y, respectively. Let π and q be prior

probability vectors on S and Y, respectively. Let π y

be a posterior probability vectors on S after receipt of

message y and 5 the matrix whose columns are the

π y. If the learning is consistent, which is ensured by

applying Bayes’ rule to update the prior probabilities,

it holds

πs =
∑

y

qyπ
y
s . (1)

Therefore, we will shortly denote the information struc-

ture by the tuple (5, q).

Using this notation, the recursive optimization prob-

lem reads:

max
x1

∑

s

πsu1,s(x1) +
∑

y

qymax
x2

∑

s

π y
s u2,s(x1, x2, y)

=: EU(5, q) , (2)

where u1,s(·) and u2,s(·) are the vectors of utility in

period 1 and 2, respectively, with elements equal to

utility for a specific state of the world s. We solve

the problem numerically in the equivalent, but more

convenient, sequential form

max
x

y
1 ,x

y
2

∑

y qy

∑

s π
y
s

(

u1,s

(

x
y
1

)

+ u2,s

(

x
y
1, x

y
2

))

,

s.t. x
j
1 = xk

1, ∀ j 6= k. (3)

Here, the constraint ensures that only second period

decisions can be tailored to the messages.

2.2 Terminology

We will distinguish between a “no learning” case, rep-

resented by an information structure with posterior

distributions equal to the prior distribution, and a

“learning” case in which the probability distribution

narrows between the two time periods due to the

received messages y. We will further distinguish two

learning cases: Either the DM anticipates future learn-

ing before it happens or not. Learning has both an

effect on optimal pre- and post-learning decisions, i.e.,

x1 and x2, both of which have a positive effect on

welfare. The pre-learning adjustments are due to the

anticipation of future learning, whereas post-learning

adjustments can be made even if the learning is not

anticipated. This is shown schematically in Fig. 1.

We now introduce several concepts that separate the

effect of anticipated and non-anticipated learning. The

benefits from adjusting post-learning decisions to new

information for given first period decisions can be mea-

sured by the conditional expected value of information

(CEVOI). Formally

CEVOI(x1, 5, q) ≡ V(x1; 5, q) − V(x1; π, 1) , (4)

where V(x1; 5, q) is the so-called value function,

namely the optimal second period utility for given

first period decisions and information structure

(5, q), V(x1; 5, q) =
∑

y qy maxx2

∑

s π
y
s u2,s(x1, x2).

V(x1; π, 1) is the value function without learning.

Fig. 1 Schematic plot of optimal emissions over time under
different information scenarios and for two learning paths
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The anticipatory adjustment of first period decisions

to future learning can be measured by the expected

value of anticipation (EVOA):

EVOA(5, q) ≡
∑

s

πsu1,s(x∗
1) + V(x∗

1, 5, q)

−

(

∑

s

πsu1,s(x′
1) + V(x′

1, 5, q)

)

, (5)

where x∗
1 and x′

1 denote the optimal first period deci-

sions with and without learning, respectively.

The overall wealth benefits from future learning

can be measured by the expected value of information

(EVOI). It is defined as the difference between ex-

pected utility with and without learning

EVOI(5, q) ≡ EU(5, q) − EU(π, 1)

=
∑

s

πsu1,s(x∗
1) + V(x∗

1, 5, q)

−

(

∑

s

πsu1,s(x′
1) + V(x′

1, π, 1))

)

= CEVOI(x′
1, 5, q) + EVOA(5, q) , (6)

The EVOI could be used to decide about the imple-

mentation of a certain observation campaign or scien-

tific program providing certain information. The EVOI

would therefore be compared to the implementation

costs. The relevance of anticipatory changes in short-

term policy as part of the overall benefits from infor-

mation can be measured by the ratio EVOA/EVOI.

CEVOI, EVOA, and EVOI are defined as differ-

ences in expected utility, which are not invariant with

respect to linear affine transformations of utility. To

obtain this invariance, we use the concept of balanced

growth equivalents (BGE) due to Mirrlees and Stern

[24]. The BGE is defined as an initial level of consump-

tion γ such that the balanced growth path c(t) = γ ·

exp(αt) yields the same expected utility as the original

consumption path. Since we consider uncertainty and

learning, we use the certainty equivalent BGE (CBGE)

defined by Anthoff and Tol [1], where the certainty

equivalent is with respect to the uncertain state of the

world and the learning paths. For constant relative risk

aversion η, the relative change in CBGE is:

1CBGE =
γ (EU) − γ (EU′)

γ (EU′)

=







[

EU
EU′

]
1

1−η − 1 η 6= 1

exp
(

EU−EU′

∑T
t=0 Lt(1+ρ)−t

)

− 1 η = 1 ,
(7)

where EU and EU′ are expected utility with and with-

out learning, respectively, and the other denominations

are population Lt and a discount factor due to impa-

tience (1 + ρ)−t. It can easily be shown that relative

changes in CBGE are independent of the growth rate

α (Anthoff and Tol [1]). Intuitively, a 1% reduction

inCBGE, for instance, can be interpreted as a perma-

nent loss of consumption of 1%.

2.3 The Integrated Assessment Model MIND

We use the MIND (Edenhofer et al. [7]).2 We use

the version from Held et al. [13] and add anticipated

learning about uncertainty (see Section 2.1), but we

leave out carbon capturing and sequestration (CCS) for

tractability. Edenhofer et al. [7] and Held et al. [13]

perform cost-effectiveness analysis for a given climate

target. We have shown elsewhere (Schmidt et al. [36])

that cost-effectiveness leads to conceptual problems if

learning about uncertainty is taken into account. There-

fore, we perform cost-benefit analysis.

MIND is a model in the tradition of the Ramsey

growth model and similar to the well-known DICE

model (Nordhaus [26]). The version we use differs from

the classical Ramsey model in three major respects:

Firstly, the production sector depends explicitly on en-

ergy as production factor that is provided by a crudely

resolved energy sector. The energy sector contains (a)

fossil fuel extraction, (b) secondary energy production

from fossil fuels, and (c) renewable energy production.

The macroeconomic constant-elasticity-of-substitution

(CES) production function depends on labor, capital,

and energy as input factors. Secondly, technological

change is modeled endogenously in two ways. The so-

cial planner can invest into research and development

activities to enhance labor and energy efficiency. Ad-

ditionally, productivity of renewable and fossil energy

producing capital increases with cumulative installed

capacities (learning by doing). Thirdly, a simple en-

ergy balance model is used to translate global CO2

and SO2 emissions
3 to radiative forcing and changes

in global mean temperature (Petschel-Held et al. [32];

Kriegler et al. [20]). SO2 emissions are coupled to CO2

emissions with an exogenously declining ratio of sulfur

per unit CO2 representing desulfurization. Radiative

2Modified model versions feature an endogenous carbon captur-
ing and sequestration (CCS) module (Bauer [3]), a more elabo-
rate carbon cycle and atmospheric chemistry module (Edenhofer
et al. [8]), and parametric uncertainty (Held et al. [13]).
3The emissions are induced by (a) endogenous consumption
of fossil fuels and (b) exogenous CO2 emissions from land-use
change (SRES A1T).
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forcing from other greenhouse gases and aerosols is

included as exogenous scenario (see Held et al. [13]).

We assume welfare to be an inter-temporally separa-

ble isoelastic utility function of per capita consumption

with a constant relative risk aversion of η = 2. It takes

the form:

U(c(I, s)) =

te
∑

t0

L(t) ·
1

1 − η

×

[

(

[c(I, s)](t)

L(t)

)1−η

− 1

]

e−ρtdt , (8)

where I = (IK, IR&D, IFossil, IRenewables) is the vector of

investment flows in the different sectors over time, s is

the unknown state of the world, ρ is the pure rate of

social time preference taken to be 0.01/year, and L(t) is

an exogenously given population scenario. Investments

are related to the global consumption [c(I, s)](t) via the

budget constraint:

Ynet(t, s) = [c(I, s)](t) +
∑

n

In(t, s) , c(I, s) ≥ 0 , (9)

with the gross world product (GWP) Ynet net of cli-

mate related damages. Ynet is related to gross GWP

over Ynet = Ygross ·DF, where DF is a multiplicative

damage factor defined by the damage function (see

Roughgarden and Schneider [33]):

DF(T) =
1

1 + a · Tb
. (10)

For some of the results, we will limit the flexibility

of the decision maker in MIND in one of two ways.

First, we introduce a maximum flexibility in emissions

changes 1Emax/year as the maximum possible relative

emissions change in one year both upward and down-

ward. This inflexibility is assumed to originate from

processes that are not included in the model MIND,

such as political or societal constraints. Second, we

limit the use of different mitigation options in MIND

and particularly renewable energy and investments in

energy efficiency. This increases the costs for emission

reductions and thus lowers the flexibility in emission

reductions. The influence of these two different kinds

of inflexibility on the value of learning and anticipation

is investigated.

2.4 Implementation of Learning About Climate

Sensitivity and Damage Amplitude

We now consider a perfect learning case, i.e., messages

y reveal the true state of the world. We focus on

uncertainty about climate sensitivity CS, defined as

equilibrium temperature change for a doubling of at-

mospheric CO2 concentration from pre-industrial level,

and on uncertainty about the climate damage parame-

ters a and b in Eq. 10. We consider learning about

climate sensitivity and damages separately as well as the

combined effect of learning about both uncertainties

simultaneously. The time of arrival of new information

is varied between early (tlp = 2030), intermediate (tlp =

2050), and late learning (tlp = 2070). The uncertainties

are described by probability distribution functions that

are given explicitly in Appendixes 1 and 2. For the

numerical implementation, we draw samples of size n

from the distributions according to a scheme related to

descriptive sampling (see Saliby [35]). The uncertainty

space is divided into n hypercubes. Each hypercube

i carries a chosen probability weight wi and is repre-

sented by the expected value of the parameters on this

hypercube. Thereby we do not choose an equiprobable

spacing but choose a few central sampling points that

carry the main part of probability and complement

them by some points at the outer margin of probability.

This technique of explicitly sampling the 1st and 99th

percentile allows us to account for the low-frequency

high-impact events in the tails of the distributions. For

the implementation of learning about single uncertain-

ties, we choose a sampling size n = 5. For the simulta-

neous learning about both uncertainties, each dimen-

sion is sampled with four equiprobable points which

are combined to only four learning paths according to

the descriptive sampling scheme (instead of 16 learning

paths with a fully factorial design).

2.5 Implementation of Learning About

Threshold Damages

Keller et al. [16] have found significant changes in

emissions due to anticipation of learning if a highly non-

linear irreversible threshold is included in the analysis.

More specifically, they considered a possible shutdown

of the North Atlantic thermohaline (THC) circulation

(Broecker [6]). We add to this study by focusing on the

welfare benefits from anticipation, i.e., the EVOA, by

usingMIND as a model featuring endogenous technical

change, and by performing a sensitivity analysis with

respect to learning time, flexibility in emissions reduc-

tions, threshold temperature, and damages.

Hence, in addition to the damage function in Eq. 10

by Nordhaus [25], we consider explicit tipping point-

like threshold damages. Similar to Keller et al. [16],

who considered a threshold in atmospheric CO2 con-

centration depending on climate sensitivity, we as-

sume that the temperature T0, at which the threshold

occurs, is known, but the resulting damages DFthresh
are uncertain. The damages are added to Nordhaus’s
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damage factor DF leading to output net of damages,

Ynet = Ygross ·DFthresh. We assume that the threshold is

irreversible, i.e., if it has been crossed, the threshold

damages continue to be incurred even if temperature

returns to values below the threshold. This can be

expressed formally as

DFthresh(t, In,t, s) =
1

1 + a · Tb + Dthresh(s) · ξ(t, In,t, s)
,

(11)

where Dthresh(s) is the amount of damages in the uncer-

tain state of the wold s and ξ(t, xt, s) indicates whether

the threshold was crossed before time t in the state s for

given decisions up to time t, In,t. ξ is defined as

ξ(t, In,t, s) = 1 −

t
∏

t′=t0

[1 − 2(T(t′, In,t, s) − T0)] , (12)

and equals one if the threshold was crossed in the past

and zero if not. Here, 2 is Heavyside’s step function.

For simplicity, we only consider perfect learning

about the threshold-damage amplitude Dthresh, which

can only take two values, Dthresh = [Dx, 0]. Damage

Dthresh = Dx occurs with probability p and damage

Dthresh = 0 with 1 − p, such that the expected dam-

age EDthresh = 1.5% of net GDP is in accordance with

empirical estimates for the expected impact of a THC

shutdown by Tol [37]. We calculate the EVOI and

the EVOA for different threshold temperatures T0,

threshold damages Dx (where p is adjusted such that

expected net damages are unchanged, whereas the

expected gross damage factor DFthresh changes), and

learning points tlp.

3 Results

3.1 Learning About Climate Sensitivity

and Damage Amplitude

The welfare benefits from learning about climate sen-

sitivity and standard climate damages, measured by the

EVOI, are listed in Table 1. Learning about damages

leads to an increase in CBGE of about 0.1% for early

learning. When asking for the importance of including

learning into the analysis of optimal climate policy, this

value might best be compared to the overall benefit

of climate policy (BOCP). The BOCP is the welfare

difference between BAU and optimal policy measured

in CBGE. It amounts to 0.12% CBGE in case of un-

certain climate sensitivity and 0.14% CBGE in case

of uncertain damages. Including learning about dam-

ages increases the BOCP by (21.8–64.5)% for late and

early learning, but learning about climate sensitivity by

only 1.75-4.95%. Hence, learning about damages can

substantially increase the benefits from climate policy.

Learning about climate sensitivity is less valuable by

roughly an order of magnitude.

Simultaneous learning about both uncertainties

strongly increases the EVOI, e.g., up to 0.45% for early

learning. That relates to an increase of the BOCP by

up to 347%. Hence, learning multiplies the benefits

from climate policy if both parameters are uncertain.

States of the world characterized by extreme values in

both parameters imply very high damages. These can

be mitigated after learning without having to spend the

associated costs in all states of the world.

Also shown in Table 1 is the proportion of the EVOI

that is obtained by anticipatory changes in pre-learning

decision, i.e., the ratio EVOA/EVOI (see Section 2.2).

We see that it is generally small (< 2%). The welfare

benefits from anticipating future learning about dam-

ages or climate sensitivity is negligible.

The result that learning implies only very small anti-

cipatory changes in optimal pre-learning decisions

in cost-benefit analysis was already found in other

integrated assessment models (see, e.g., Ulph and Ulph

[38]; Nordhaus and Popp [27]; Webster [39]; O’Neill

and Melnikov [29]; Webster [40]). Why could we have

expected an effect in the model MIND? As shortly

discussed in Section 1, optimal first period decisions

change, if the derivative of the second period, ex post

value function V2(x1, π
y
s ) = maxx2

∑

s π
y
s u2,s(x1, x2)

with respect to the first-period decision x1 is non-linear

in the vector of posterior probabilities π
y
s (Epstein [9]),

α∂/∂x1V2(x1, π
i
s) + (1 − α)∂/∂x1V2(x1, π

j
s ) 6= ∂/∂x1V2

Table 1 The EVOI measured in %CBGE of the no-learning case and the EVOA/EVOI ratio for different scenarios: perfect learning
about CS and damages separately as well as jointly and for early, intermediate, and late learning

CS Damages CS and Damages

tlp EVOI (%) EVOA/EVOI (%) EVOI (%) EVOA/EVOI (%) EVOI (%) EVOA/EVOI (%)

2030 0.006 0.004 0.09 0.29 0.45 0.022

2050 0.004 0.15 0.06 0.53 0.33 0.112

2070 0.002 0.20 0.03 1.77 0.22 0.287

CS climate sensitivity
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Fig. 2 The EVPI for different values of Dx and T0. The EVPI
is measured in %CBGE of the no-learning case. Tc denotes the
temperature the decision maker is already committed to cross.
For T0 > T1(Dx), avoiding the threshold is optimal for perfect
information that Dthresh = Dx. For T0 > T2(Dx), avoiding the
threshold is optimal even in the no-learning case. Te is never
reached for any information setup

(x1, απ i
s + (1 − α)π

j
s ). Obviously, a necessary precon-

dition for this is that the optimal second period utility

V2 actually depends on the first period decision x1

and the derivative is non-zero. MIND includes several

such cross-period interactions that are not present in

other integrated assessment models. More specifically,

it features multiple capital stocks, a knowledge stock,

and learning by doing in technologies. However, the

numerical results above clearly show that the effect of

anticipation is negligible in this setting.

3.2 Learning About Threshold Damages

3.2.1 The Expected Value of Perfect Information

We start by considering two extreme cases: Either the

decision maker has perfect information, i.e., learning

occurs before any decision is to be taken, or she does

not learn at all. Figure 2 shows the associated expected

value of perfect information (EVPI)4 for different val-

ues of the threshold specific damages Dx occurring

4The EVPI is defined as the difference in welfare between the
case of perfect information and the no-learning case. It is mea-
sured in%CBGE of the no-learning case.

with mean-adjusted probability p(Dx) (see Section 2.3)

and different threshold temperatures T0. Also shown

is the critical temperature T2(Dx) that divides the pa-

rameter space into two regimes: (A) For all threshold

temperatures T0 < T2, it is optimal without learning

to cross the threshold, and (B) for all T0 ≧ T2, it is

optimal without learning to stay below the threshold. A

further separation occurs within regime A: For thresh-

old temperatures T0 < T1(Dx), it is optimal to cross

the threshold even in case of perfect information as

the mitigation costs more than outweigh the threshold

damages.

The EVPI is zero for high values of T0 > Te because

information about a threshold that is not crossed for

the optimal policy without threshold damages is useless.

However, the same is not true for very low values

of T0 < Tc, when the decision maker is committed to

cross the threshold. The information about the received

threshold damages is still valuable as it is used to adjust

the savings rate. At a certain T0, the EVPI reaches a

maximum. For lower T0, the emissions reductions that

are necessary to avoid the threshold are too costly.

For higher T0, the avoided threshold damages decrease

because higher T0 are only reached later in time, and

thus, the corresponding damages are discounted.

Since the EVOA is bounded from above by the

EVOI and the EVOI is bounded from above by the

EVPI, the potential benefits from anticipation are

larger in regime A than in regime B. We also note

from Fig. 2 that the EVPI is increasing in Dx, although

expected damages are held constant by reducing the

probability of the threshold when increasing Dx. This

is due to the risk aversion of the decision maker, which

makes her prefer a low Dx with a higher probability to

a higher Dx with a low probability.

3.2.2 The Value of Anticipation

Now we investigate the dependence of the EVOI and

the EVOA on the time of learning tlp. Figure 3 shows

the EVOA and EVOI for learning points between the

year tlp = 2010 and tlp = 2080 in steps of 5 years. It also

shows the cumulative anticipatory changes in emissions

(1E) before learning relative to the no-learning case.

The EVOI decreases from the EVPI obtained in 2010

to zero for tlp = 2200. The latter is essentially the no-

learning case. The EVOA has to be zero for tlp = 2010

because there are simply no pre-learning decisions to

be made. It is also zero for tlp = 2200 because the

discounted utility after this time is too small to justify

anticipation.

Within regime A, where the threshold is crossed

in the case of no learning, three different regimes of
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Fig. 3 Expected value of information (EVOI), expected value
of anticipation (EVOA), and relative changes in cumulative pre-
learning emissions in anticipation of learning (1E) are shown
depending on the time of learning tlp. The dashed lines mark
three distinct regimes of anticipation (I–III). The two black points

in 2040 and 2045 mark local optima that are only slightly worse
compared to the shown “optimal” path

anticipative behavior can be identified. They are indi-

cated in Fig. 3: (I) For early learning, it is possible to

avoid the threshold easily by adjusting the post-learning

decisions. Doing so in case Dthresh = Dx is learned leads

to a substantial EVOI without the need for down-

ward anticipation. Not having to anticipate downward

benefits the case where Dthresh = 0 is learned. There is

even some upward anticipation to come closer toward

the solution that would be optimal for perfect informa-

tion about Dthresh = 0.

(II) For increasing tlp, there is less time between

learning and crossing the threshold (without adjust-

ments). Since mitigation costs are convex, this in-

creases the costs of avoiding the threshold in the

“bad case” (Dthresh = Dx) by post-learning adjustments

alone. Therefore, in regime II, the DM lowers pre-

learning emissions compared to the no-learning case.

The benefits of doing so experienced in the “bad”

case outweigh its costs in the “good” case. For further

increasing tlp, avoiding the threshold with post-learn

adjustments alone becomes physically infeasible. The

motive for anticipation is then to keep the option open

to avoid the threshold in the bad case in the first place.

The associated costs increase with tlp.

(III) At the border between regimes II and III, these

costs reach a point, at which the decision maker is

indifferent between keeping the option open and not

keeping the option open, i.e., crossing the threshold

also in the “bad” case. This leads to local optima with

identical expected utility. Two of them are indicated by

black dots in the upper panel of Fig. 3. Although the

threshold is crossed for both learning paths in regime

III, learning about the damages has a value, as wit-

nessed by the significant EVOI for tlp > 2040 in Fig. 3.

The reason is that learning still enables the DM to

adjust her savings rate to damages and thus to perform

consumption smoothing. More specifically, savings are

decreased after crossing the threshold if the threshold is

“bad”. Finally, regime III shows a positive anticipation

effect in emissions. However, the benefits from this

anticipation are negligible.

In conclusion, downward anticipation for being able

to avoid the threshold at all, or at low costs, in the bad

case is the dominant effect. Anticipation of learning

about threshold damages leads to a significant welfare

gain only if the learning occurs within a specific time

window t1 < tlp < t2. This “anticipation window” is nar-

row, and it spans at most one decade. Due to the 5-

year time steps in MIND, it is not possible to determine

its exact extent. The fact that the anticipation window

is narrow is explained by the relatively high flexibility

of the model in increasing or decreasing emissions. We

will discuss this further in Section 3.2.4.

3.2.3 Availability of Renewable Energy

We investigate the origin of the anticipation window

by focusing on the anticipation effect in the decision

variables. These are investments in renewable energy,

fossil energy, RnD aimed at improving labor or energy

efficiency, and investments in the aggregate macro-

economic capital stock. The cumulative anticipatory

changes of the decision variables relative to the case

without learning are shown in the left panel of Fig. 4.

The right panel shows the cumulative post-learning

adjustments up to 2200 separately for Dthresh = 0 and

Dthresh = Dx. The resulting EVOI and EVOA are

shown in Fig. 5.

The main option for reducing emissions used by

the model is substituting fossil energy by renewable

energy. Renewables are used to avoid the threshold

after learning in regime I and for anticipatory emission

reductions in regime II. The latter can be seen by

comparing the “all options” case in Fig. 5 with the case,

where the usage of renewables is restricted to be lower

than in business-as-usual (“no renewables”), which is

not zero but very little. The EVOA vanishes in the lat-

ter case. Apparently, anticipatory emissions reductions

via reductions in energy demand or increased energy

efficiency would be too costly. Hence, the existence of

the anticipation window rests on the availability of a

sufficiently cheap and flexible, carbon free, substitute
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Fig. 4 The anticipation effect (left) and post-learning decisions (right) both in cumulative decision variables and with and without the
availability of renewable energy

for fossil energy. However, too much flexibility would

again diminish the EVOA because adjustments could
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Fig. 5 Expected value of information (EVOI), expected value
of anticipation (EVOA), and relative changes in cumulative pre-
learning emissions in anticipation of learning (1E) are shown
depending on the time of learning tlp. Shown are three scenarios
differing in the availability of mitigation options. In the “no
renew” case, the usage of renewable energy is restricted to be
lower than in the business-as-usual case where renewables are
only used in the twenty-second century to counter the scarcity
of fossil energy. In the “only-fossils” case, other options, like
investments into “R&D” in energy and labor efficiency, are also
not available

be made entirely after learning. This suggest that an

intermediate flexibility generates anticipation.

3.2.4 Sensitivity of the “Anticipation Window”

Now we investigate the sensitivity of the anticipation

window with respect to T0, Dx and the flexibility of

the decision maker to change emissions over time. The

results are shown in Fig. 6a–c.

Dependence on Threshold Position T0 With rising

threshold specific temperature T0, the maximum of the

EVOI decreases because the threshold is crossed later

in time and less mitigation efforts are needed to stay

below the threshold. For the same reason, the antici-

pation window is pushed toward later learning points.

As already discussed above, for T1 < T0 < T2, which is

the case for T0 ∈ [2, 2.3]°C, anticipation occurs to stay

below the threshold in the high-damage case. Now we

compare this result with one for T0 > T2, where the

threshold is avoided even in the no-learning case. In the

latter case, there is no incentive for downward antici-

pation, but the before mentioned incentive for upward

anticipation in order to optimize the good learning case

occurs. This leads to an EVOA that slowly increases

with tlp up to a maximum beyond which a higher pre-

learning deviation from the optimal no-learning path
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Fig. 6 Sensitivity of the anticipation effect: EVOI, EVOA, and
the anticipatory relative changes in cumulative pre-learning CO2

emissions are shown as a function learning time tlp. a The depen-
dence on different threshold temperatures T0, b the dependence

on the damage amplitude Dx, c the dependence on different ex-
ogenous inflexibilities 1Emax of the decision maker in reducing
or increasing emissions

leads to too high costs in the bad case. Although the

absolute values of the EVOA and EVOI are smaller

for high T0, anticipation remains important in relative

terms (EVOA/EVOI ratio).

Dependence on Mean Threshold Damages Dx Fig. 6

shows that both the EVOI and the EVOA are in-

creasing in the threshold damage Dx. The anticipation

window is slightly shifted toward earlier learning points

for small threshold damages. This is due to the fact that

the equilibrium between the mitigation costs to keep

the threshold open in the bad case and the threshold

damages is shifted toward lower values by decreasing

Dx. The relative importance of anticipation remains

large.

Dependence on an Artif icial Emissions Flexibility

1Emax The limited maximum emission flexibility

1Emax is assumed to originate in processes that are not

represented in the model, such as political and socioe-

conomic inertia. The first effect of limited flexibility is

to move the curve toward lower values of tlp. Since the

ability to react to new information is now limited, antic-

ipation becomes necessary for earlier learning times. In

the limit of very low flexibility (1E < 1%/year) (not

shown), the EVOA vanishes and even the EVOI for

perfect learning in 2010 decreases as the decisionmaker

cannot avoid crossing the threshold. In this case of low

flexibility, the information can only be used to postpone

the crossing of the threshold to later times by reducing

emissions, but not to avoid the threshold.
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4 Conclusions

We first introduced and clarified some terminology that

can be used to assess the importance of anticipation

of future learning. In particular, we introduced the

concept of an expected value of anticipation.

We then investigated future learning about two key

parameters of the climate problem, climate sensitivity

and climate damages. We used the integrated assess-

ment model MIND to calculate the welfare benefits

from learning and the implications of anticipation of

future learning for optimal near-term climate policy

in terms of changes in the cumulative pre-learning

emissions. The welfare benefits from learning were

significant but benefits due to anticipation of this learn-

ing were not. This confirmed previous results in the

literature.

We then investigated anticipated learning about un-

certain threshold damages. The anticipation of learning

leads to both higher and lower pre-learning emissions

depending on the severity and position of the threshold.

The welfare gains from this anticipation were in general

considerably higher for downward anticipation (lower

pre-learning emissions) than for upward anticipation

(higher pre-learning emissions).

However, anticipation was only important if learn-

ing occurred within a specific, narrow time window,

which depended on the flexibility of the decision maker

to reduce and increase emissions. Inside this window,

the welfare benefits due to anticipation can contribute

almost the entire value of information (≈ 95%). The

strongest anticipation effect on pre-learning emissions

did in general not lead to the strongest welfare gain.

There was even one point in time such that learning

at this point leads to two equally preferred solutions

whereof one avoids the threshold and the other one

does not.

The existence of a significant anticipation effect

rested on the assumption of highly nonlinear dam-

ages and the availability of a flexible, scalable, and

relatively cheap substitute for fossil energy. However,

the anticipation effect was increased if the flexibility

of adjusting emissions was reduced by other means

than the availability of renewable energy. We showed

this by introducing exogenous constraints on emissions

changes motivated as political constraints or processes

not represented in the model.

The analysis we have performed is only semi-

quantitative and conclusions come with some caveats.

The known limitations of all integrated assessment

models with their highly simplified representation of

the socioeconomic and physical processes apply. The

representation of the threshold, the resulting dam-

ages, flexibility, uncertainty, and the learning process

(as one-time perfect learning) could certainly be im-

proved. More complex learning processes could be

studied by changing toward a dynamic programming

framework. Studying multiple and partly reversible

thresholds occurring at uncertain temperatures could

lead to more complex pattern of anticipation. All this,

of course, would make the numerical solution more

difficult.

Beside these limitations, a clear implication for real

world climate policy can be drawn from our study:

Although we are actually uncertain about both the po-

sition of potential thresholds as well as about their eco-

nomic impacts, anticipating uncertain thresholds can

be an important argument for lower emissions but not

higher emissions.
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Appendix 1: Climate Sensitivity

The climate module of MIND calculates the tempera-

ture response to anthropogenic forcing induced by CO2

and SO2 (which are coupled to CO2 emissions) and

exogenous forcing from other greenhouse gases:

Ṫ = µ
(

ln
(

C/Cpi

)

+ fSO2
+ fOGHG

)

− αT , (13)

where C is current and Cpi pre-industrial atmospheric

CO2 concentration, T denotes global mean tempera-

ture anomaly, and µ the radiative forcing for a doubling

of pre-industrial atmospheric CO2 content divided by

the heat capacity of the ocean (dominating the inertia

of the climate system) and ln 2. The parameter α is

the response rate of the climate to changes in radiative

forcing. It is linked to climate sensitivity CS via:

CS =
µ

α
ln 2 . (14)

Actually, both µ and α in the temperature equa-

tion are uncertain and correlated via the global mean

temperature record of the last two centuries (e.g.,

see Forest et al. [10]; Frame et al. [11]). For simplic-

ity, we assume a perfect correlation and 1
µ

= 1
µ̄

− 10 ·

exp(−0.5 CS). The acceptability of this assumption can

be assessed in Fig. 7.

The temperature response is now fully determined

by CS. As prior information about CS we take a

log-normal distribution from Wigley and Raper [41]:

π̄(CS) = LN (0.973, 0.4748).
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Appendix 2: Climate Damages

The uncertain parameters a and b in the exponential

damage function DF(T) = 1
1+a Tb are determined from

an expert-based assessment done by Roughgarden and

Schneider [33]. They provide a joint probability distri-

bution for both parameters. We use their methodology

to derive the damage functions that are representative

for the quantiles described by the sampling probability
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Fig. 8 Samples taken according to a descriptive sampling scheme
from a joint probability distribution of the damage function pa-
rameters a and b from Roughgarden and Schneider [33]. Shown
are the damage functions representative for the quantiles q with
probability weights ωi = [1, 20, 60, 18, 1]% that have been used
within the experiments

weights ωi. Figure 8 shows the damage functions that

represent the quantiles chosen for our experimental

setup: ωi = [1, 20, 60, 18, 1]%.
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Chapter 5

Synthesis and Outlook

The focus of this thesis is the assessment of the role of accounting for uncertainty and learning

in the integrated assessment of optimal global climate change mitigation policy. Within the inte-

grated assessment of climate change, the climate problem is framed as a decision problem for a

representative agent (decision maker; DM) who aims at maximizing global social welfare by opti-

mally chosing a level of greenhouse gase mitigation that balances the economic costs of mitigation

and the climate change induced damages. In this framework the decision maker is facing substan-

tial uncertainties in all parts of the underlying cause-effect chain. The importance of accounting

for uncertainty can be assessed by comparing a situation in which the decision maker (DM) faces

multiple possible outcomes of his decisions, each with a known probability of occurrence, to the

situation in which the DM is certain to face the expected outcome. Some of the DM’s uncer-

tainty about the socio-economic and the climate system will be resolved by future observations

and scientific progress. The importance of anticipating these future learning possibilities about

uncertainty can be assessed by comparing two situations: The case of uncertainty is compared to

a situation in which the DM initially is uncertain about the outcomes, but over time receives new

information about the probabilities of the outcomes and thus can adjust his or her decision towards

the new situation. In this context, the three main research questions are: how important is uncer-

tainty for optimal climate mitigation policy? How important is the prospect of future learning for

optimal climate mitigation policy? And which decision frameworks are applicable to analyzing

optimal climate policy under uncertainty and learning? This thesis interprets the questions for the

importance of accounting for uncertainty and learning along the line that uncertainty and learning

are important for the analysis if their inclusion significantly changes both, the optimal emission

policy itself and the net welfare gain from adopting an optimal climate policy instead of following

the business as usual approach. As the answers to the first two questions strongly depend on the

decision framework the climate problem is stated in, the third question underlies both of the oth-

ers.

Contributions to the answers of all three questions have been made within this thesis. They are

summarized in the following. The final section concludes with a general outlook and future re-

search requirements.
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5.1 Formulating the Climate Problem under Uncertainty and

Learning

The most commonly used framework within the integrated assessment modeling of climate

change under uncertainty is the expected utility (EU) maximization. This is due to the fact, that

the von Neumann-Morgenstern axioms underlying the EU framework represent widely accepted

norms of rational decision making under uncertainty (Machina, 1987). The straight forward

implementation of the EU framework is given by the so-called cost-benefit analysis (CBA), that

incorporates the costs of mitigation as well as a monetized representation of climate induced

damages and thus the benefits of mitigation. Two of the main criticisms of CBA are the pure

inability to monetize certain non-market damages, and more broadly, the incommensurability

of different kinds of damages, e.g. the comparison of losses of biodiversity to damages to

infrastructure.

Another EU implementation, the also often used cost-efficiency analysis (CEA) refrains from

monetizing climate induced damage directly and thereby avoids the criticism. The trade-off

between mitigation and benfits of avoiding certain levels of climate change is conducted implicitly

by choosing a certain limit (or target) in a variable describing the amplitude of climate change

which then constrains the EU maximization.

In the more recent past, many studies have calculated the implications of a certain temperature

target, e.g. the 2◦C target adopted by the UN in Cancun (UNFCCC, 2010). Chapter 2 confirms

findings from the older literature in decision theory that this cost-efficiency approach runs into

axiomatic problems if uncertainty and learning are included in the analysis. As argued by Held et

al. (2009), for applying a climate target under uncertainty the information about the maximum

temperature to reach is not sufficient, but it has to be accompanied by a measure of probability

with which the target is to be kept, as it is in principle not possible to keep the “whole distribution”

of temperatures below a given threshold. This method, of constraining not temperature but rather

probability for crossing a temperature, is called chance constraint programming. Chapter 2

shows that this chance constraint programming framework can lead to normatively unappealing

consequences when future learning is included. These consequences are the possibility of

negative expected value of information and the possibility of infeasibility of the decision problem

due to learning, both are derived from an axiomatic analysis and are demonstrated within the

context of an intuitive example. The possibility of negative value of future information stems

from the fact that the framework does not include an explicit tradeoff between the risk of crossing

the temperature threshold and the associated costs. Keeping the target fixed irrespective of what

is learned is more costly in a convex, nonlinear way if “extreme” messages are received. Thus

a decision maker complying with this framework would actually pay for not having to receive

new information, which is not desirable from the common normative perspective. The potential

infeasibility of the decision problem due to uncertainty results from the fact that in some future

learning scenarios it is not only more costly, but impossible to maintain the given probabilistic

climate target. The point here is that the decision criterion is incomplete as it does not give advice

on how to proceed in this situation.
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Chapter 2 continues by proposing an alternative decision criterion that does not use a fixed proba-

bilistic climate target but allows for, and requires, a trade-off between mitigation costs and the risk

of exceeding the target. This so-called cost-risk analysis (CRA) pays tribute to the fact that some

kind of trade-off between the “bad” and “good” consequences of a decision needs to be included

for each state of the world, to make the EU maximization feasible under uncertainty and learning.

However, this trade-off does not necessarily include a complete monetization of climate damage

but can be done on a more aggregated level. It may also still include the notion of a climate target.

The information requirements for assessing the DM’s preferences are equally high in a CBA and

a CRA. The question of which formulation is more practical, in that real decision makers really

behave as if following one of the problem formulations and the factual estimation of the necessary

preference parameters is left for further studies.

There are other critiques of the standard EU framework, two of which are the inability to han-

dle so-called structural, or deep, uncertainty, and the representation of different kinds of aversion

against large differences in consumption (across states of the world, time, people, etc.) with only

one parameter. The former is a feature in observed decision-making of people being averse to not

knowing the probabilities of the outcomes they have to decide about. Several frameworks have

been proposed to handle this aspect of deep uncertainty from which the model of ambiguity due

to Klibanoff et al. (2009) seems to be the most promising one. However, due to computational

complexity, up to now, the model still awaits its application in the more complex integrated as-

sessment models of climate change. The latter problem of disentangling the parameters of relative

risk aversion from the parameter of inter-temporal substitution elasticity in consumption has been

on the agenda at least since the 1970s. The necessity to do so arises from the observation that real

world decision makers reveal different levels of aversion to both effects. Thus, a consistent disen-

tangling of both parameters could deliver an explanation of several observed paradoxes. Kreps &

Porteus (1978) first proposed such a framework. It allows the desired disentanglement but it in-

troduces an intrinsic preference of the DM for early or late resolution of uncertainty. This is again

normatively undesirable as it means that the DM would even pay money for useless information,

i.e. if she could not adjust her actions according to the new information. This deficiency has cur-

rently been overcome by a framework that simultaneously solves both problems: disentanglement

of aversion parameters, in combination with neutrality towards the timing of uncertainty resolu-

tion (see Traeger, 2009, and references therein). As with the Klibanoff model for ambiguity, the

widespread application of the Traeger model, and especially the combination of both approaches,

proposes very exciting challenges for further research.

But even if the correct formulation of the decision problem for the integrated assessment of cli-

mate change has been found, and one could argue that with the models mentioned above we are

close to getting there, the challenge remains of finding, or estimating, or choosing, the normative

parameters. The outcomes of the integrated assessment and the role of uncertainty and learning

rest upon the choice of those parameters. The philosophical debate is still open as to whether

one should measure those parameters in the markets, as done by Nordhaus (2008b), or set them

normatively as done by Stern (2007).
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5.2 Importance of Uncertainty for Global Climate Analysis

There is a widespread intuition, at least amongst scientists, that uncertainty surrounding climate

change and its potential impacts is a crucial element of the problem of climate change. Hence,

intuitively, the explicit inclusion of uncertainty about, say, climate sensitivity and climate damage

amplitude into an integrated assessment model should have a strong impact on both the optimal

global mitigation policy and the resulting net welfare benefits of acting upon climate change.

However, from the standard IAMs, which formally implement a CBA, this result is not supported

(see e.g. Nordhaus & Popp, 1997; Saphores, 2004). The standard solution of a low carbon price

that moderately increases over time, the so-called policy ramp, does not change significantly when

uncertainty is included.

Several changes to the model formulation have been proposed that lead to considerable effects

from uncertainty, such as the consideration of fat-tailed probability distributions by Weitzman

(2010), or including heterogeneous damage, as in Schmidt et al. (2011a). However, only a few

other studies have investigated the influence of including uncertainty (and perfect learning) on the

welfare gain from acting upon climate change, e.g. Pizer (1997). Chapter 3 investigates the origin

of the negligible welfare effect in a “standard” IAM and proposes several changes to the structure

of the IAM itself that would lead to considerably higher welfare effects from the inclusion of un-

certainty.

The overall net welfare benefit of acting optimally with respect to climate change under uncer-

tainty is decomposed into three components: The benefit of optimally acting on climate change

under certainty, the change of the benefit of this action due to the inclusion of uncertainty, and the

benefit of adjusting the action from the optimal action under certainty to the optimal action under

uncertainty. It is proposed to use the last term, the welfare benefit of adjusting the mitigation ac-

tion to uncertainty, relative to the overall welfare benefit of acting on climate change as a metric

for the importance of including uncertainty into the integrated assessment of climate change.

Furthermore, the IAM MIND is projected onto an a-temporal marginal cost-benefit picture of cu-

mulative emission reductions that lead to marginal mitigation costs and marginal benefits from

reducing climate damages. This picture allows linking the elementary components of the benefit

of climate policy (BCP) to the functional structure (temperature response, consumption losses due

to damages and mitigation effort, and welfare effects of the former, all depending on the level of

cumulative emission reductions) of the climate cause and effect chain within MIND.

The key finding is that the welfare gain from explicitly including uncertainty is only significant if

it leads to nonlinear shifts in the marginal functions within the cause-effect chain, e.g. a nonlinear

increase in marginal damages (marginal w.r.t. cumulative emission reductions). Such a change in

turn leads to a difference in the expected marginal net welfare benefits of mitigation under uncer-

tainty compared to certainty, the so-called marginal risk premium, that is convex increasing. In this

situation the additional benefit from adjusting the mitigation level to the situation of uncertainty

can take up a significant part of the overall net benefit of mitigation, thus uncertainty is important.

These necessary shifts in the marginal functions within the climate cause-effect chain originate

from the nonlinear damage function and the nonlinear utility function. The function of maximum
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temperature increase in cumulated mitigation efforts is only weakly nonlinear, and uncertainty

does not change the form of the marginal function, only shifts it slightly upward. This weak non-

linearity explains why uncertainty about climate sensitivity, however prominently discussed, has

only a very small influence on optimal policy decisions.

Another important finding is that for the importance of uncertainty the curvature of the marginal

functions in the climate cause-effect chain matters. Here the curvature of the maximum temper-

ature function in cumulative mitigation efforts and the curvature of the corresponding damage

function compensate each other to some extent and thereby weaken the overall impact of uncer-

tainty.

Generalising this result, it shows how the structure of one part of the cause-effect chain can in-

fluence the importance of uncertainty within another part. The effect of including uncertainty in

climate sensitivity on the choice of optimal climate policy and the resulting increase in welfare is

small. However, if changing the damage function from a quadratic to a more nonlinear shape, the

importance of CS uncertainty increases.

The utility function and thus the normative parameters of pure time preference and of constant

relative risk aversion also have a very strong impact on the importance of uncertainty, as well as

on the overall net welfare benefit from acting upon climate change. This also corroborates the

findings in the literature, e.g. by Pizer (1997), that uncertainty about normative parameters would

by far dominate uncertainty about the climate system.

Due to the limitations of the model employed within our analysis, Chapter 3 can provide no gen-

eral answer to the question of the importance of uncertainty for the integrated assessment, but what

it does offer is a comprehensive set of measures to assess the importance of the different effects of

uncertainty and learning separately within a fairly complex integrated assessment model. Future

research will investigate the applicability of the approach to even more complex models which

comprise more realistic representations of the climate system. The study is also to be expanded

to the impact of other uncertainties, as it already has been shown that a combination of two single

parameter uncertainties is in no way additive in the aggregated outcome. A similar model decom-

position could be tested for the assessment of anticipative learning (as partly done in Chapter 4)

and for the inclusion of other changes to the model, like the introduction of regional inequity, new

industry sectors, changes in the climate representation, etc.

5.3 Importance of Anticipating Future Learning

As already demonstrated with respect to the importance of uncertainty, this thesis is not only

concerned with the question of the change of near-term decisions due to anticipation of future

learning, but also with the resulting changes in welfare gains from climate policy. To investigate

these changes, the notion of the so-called expected value of anticipation is introduced by decom-

posing the overall expected value of future information into the welfare gain from pre-learning

and post-learning decision adjustments.

This decomposition is then applied to the study of future learning about climate sensitivity and
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amplitude of climate induced damage within a simple exogenous one time learning framework

with the integrated assessment model MIND. Thereby we confirm the findings in the literature

that although future learning about those quantities has a significant overall expected value of

information the value of anticipating this future learning by changing near-term decisions is neg-

ligible. Chapter 4 continues by introducing uncertainty and future learning about the amplitude

of additional damage stemming from the crossing of a tipping point like threshold in temperature,

representing e.g. a breakdown of the north Atlantic thermohaline circulation as introduced by

Keller et al. (2004), or the partial destabilization of the west Antarctic ice sheet. We show that an-

ticipatory changes in near-term emissions towards more mitigation can become crucial to harvest

the value of learning. This is the case, if the value of new information cannot be used after the

learning occurred, due to the fact, that the DM would already be committed to cross the threshold

by pre-learning actions. Thus the expectation of future learning alone, without knowing what will

be learned, leads to stronger pre-learning mitigation action, thereby keeping the option to mitigate

the threshold in case the threshold damages would be severe. In this case almost the complete

value of information is due to anticipation. However, this significant value of anticipation only

occurs if the learning takes place in a specific “anticipation window”. If learning happens earlier,

the whole value of information can be simply harvested by post-learning adjustments. If learning

happens later, anticipatory changes necessary to maintain the option to avoid the threshold become

too expensive and thus the DM already commits herself to crossing the threshold irrespectively of

what is learned. This significantly lowers the overall value of information and thus also the value

of anticipation. Within the standard model setting of MIND the “anticipation window” is quite nar-

row, spanning approximately one decade. This is due to the high flexibility of the model to change

emissions on short notice to moderate costs. The location and width of the window is strongly

sensitive to this flexibility. When introducing an additional inflexibility into the model, whether it

represents political or social barriers to fast emission reductions, the anticipation window moves

towards the present and becomes broader. The maximum value of anticipation decreases, as the

inflexible emission trajectories are necessarily suboptimal compared to the flexible ones.

A straight forward extension of the work of Chapter 4 would be the inclusion of multiple thresh-

olds that might depend on different climate variables and not only on global mean temperature.

The estimates of damages arising from the crossing of the thresholds should be revised in the light

of new research on climate change impacts. However, the main result that future learning only in-

fluences near-term decisions if strong nonlinearities, e.g. from irreversibility, come into play, will

remain. Another extension would be to replace the simple one-time perfect learning by a more

advanced representation of the learning process, whether it is learning at multiple points in time

or even endogenous learning. The latter in particular might lead to stronger dependencies between

future learning possibilities and short-term decisions as the expected marginal welfare after learn-

ing is then potentially influenced by both, potential path dependencies (stock effects, thresholds,

irreversibilities) from the first period, and changes in the post-learning probability distribution due

to first period actions. However, the formal requirements in terms of computational needs (like

efficiently implementing dynamic programming for large models) and informational needs (for-

malizing endogenous learning functions for different technologies and sectors) to represent the
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uncertainties and learning processes are huge; at this point of time they seem prohibitively so.

One very interesting extension of the work would be its application to the so-called Dismal Theo-

rem by Weitzman (2009). He proposed that under certain conditions, that include fat-tailed proba-

bility distributions for uncertain climate responses, exponential damage from climate change and

sufficiently high risk aversion of the DM, the marginal utility of mitigation can be unbounded.

This means that any single ton of mitigated carbon would be worth nearly the whole economic

output, or putted the other way round, the DM would spend nearly the whole economic output

to avoid a very unlikely but catastrophic tail event. Several critics of the applicability of Weitz-

man’s argument have been put forward, e.g. by Nordhaus (2009). Another crucial assumption

that has received less attention, is the fact that Weitzman’s DM acts in an a-temporal framework,

i.e. she cannot change her decisions in the mid-term. Thus an argument against the Dismal The-

orem put forward (not formally) by Myles Allen and David Frame (communication at the 2011

Tanner lecture, on 2011-05-21 in Oxford, UK) refers to the possibility of mid-term corrections

once the DM can foresee that the unlikely tail events are becoming reality. From the perspective

of Chapter 4 this argument refers to the flexibility of the decision maker to harvest the (really

large) expected value of future information from learning about the (potentially catastrophic) cli-

mate damage nearly completely by post-learning decisions. From what we have learned from

Chapter 4, however, this is only true when either the climate damage are reversible or the learning

leading to mid-term corrections takes place early enough to be outside the anticipation window.

If the DM finds herself inside the anticipation window, the learning about the potentially catas-

trophic damages is only valuable if she reacts in the short-term, thus the fat tails again have a

paramount influence on current decision making. As the processes that may lead to catastrophic

climate damage are arguably all highly nonlinear and include significant hysteresis behavior, only

a situation outside the anticipation window could be used as an argument against Weitzman. Thus

the open question again is an empirical one, for the position of the thresholds in the system and

for the possibility of our future ability to cope with irreversibility by means of geo-engineering or

climate control options.

Another interesting extension of this work, especially in the context of potentially catastrophic

climate change is the combination of the framework from Chapter 4 with the preference structure

by Traeger (2009), mentioned above. In his framework discounting due to pure impatience is no

longer allowed, instead the DM discounts the future due to increasing uncertainty. The interesting

part of this extension is that now different future scenarios are discounted differently accord-

ing to the confidence in this specific projection. Thus the application of Traeger’s framework

to catastrophic climate change would probably deliver a solution for the problem of dominating

catastrophic fat tails of climate damages. The framework established in Chapter 4 could be used

to check the validity of such a proposition, especially when including mid-term corrections and

endogenous learning as above.
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5.4 General Outlook and further Research Questions

The results of this thesis rest on the general assumptions of the welfare economic framework em-

ployed. Thus a general direction for further research is to release or extend some of the underlying

assumptions.

One possible expansion is the recognition of heterogeneity within different parts of the model

setup. Schmidt et al. (2011a) investigate the influence of heterogeneous climate damage on the

certainty premium a decision maker would be willing to pay for ruling out uncertainty. They

find that if the climate damage is only imposed on a minor fraction of the population the risk

premium can increase substantially. This can partly be countered by implementing efficient insur-

ance markets or allowing for measures of self-insurance. In expansion one could be interested in

additionally considering an initially heterogeneously wealthy population. This would surely again

increase the effect of damage uncertainty.

The same is true when considering other sources of inequity between different actors and parts of

the total population, like inequity between regions (e.g. see Anthoff et al. 2009).

An even stronger impact of uncertainty in terms of changes in welfare gains from different policies

would be expected when adopting a framework put forward by Sterner and Persson (2008), who

argued that climate impacts would be more severe when not hitting one aggregated global output

providing sector but would hinder the production of very specific single sectors, like an envisaged

“environmental good production”. If the goods from those separate sectors where only limited in

their possibility to being substituted for each other, damage to one sector could not only lead to

limited growth or even recession of this single sector but due to the low elasticity of substitution,

the overall welfare impact from uncertainty about damage would be highly increased.

The assumption of infinitely ongoing exponential aggregated economic growth itself is a very

strong one. Besides the normative question of whether such a growth regime is a “good” thing,

in that it optimally provides happiness, it is also questionable whether such an exponential tra-

jectory is an adequate description of realistic assumptions about future economic growth. As the

theoretical foundation of long-term economic growth is still not satisfying, a first step for further

research about systematic uncertainty would be a sensitivity study with respect to the assumption

of exponential economic growth.

Gerst et al. (2010) go in this direction, by modelling economic growth as an exponential process

with a stochastic yearly growth rate. However, one could argue, as done e.g. by Ayres & Warr

(2009), that the processes driving economic growth are not stochastic in nature but result from

several processes that are partly continuous and partly discontinuous in nature. These are popula-

tion change, expansion and interconnection of markets, and technological, scientific, and societal

innovation. To include those processes in a satisfying way into a general framework of long-

term economic growth proposes an enormous challenge to the economic profession. Once this is

achieved, the climate problem, or better, the ecological constraints of our planet, can be understood

as (temporary) boundaries that induce technological change. So it might even be the other way

round, that the climate challenge and the planetary constraints work as drivers for the economy

and overcoming them, whether by behavioral change, by decarbonizing the economy, introduction
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of climate management or even the expansion of markets beyond the planetary boundaries through

access to cheap space travel, will be what ensures ongoing exponential growth in the future. To

investigate the role of scientific uncertainty about the system boundaries of the earth system in

such an integrated growth framework is an exciting challenge for future research.

Summarizing, this thesis has contributed to evaluating the importance of including uncertainty and

learning into the integrated assessment of climate change mitigation policy. This importance turns

out to be low under standard assumptions about the cause-effect chain of climate change. How-

ever, several plausible structural changes in the representation of the climate cause-effect chain

have been positively tested with respect to their potential to significantly increase the importance

of uncertainty and learning. This thesis has also provided the means to conduct more of these tests

with regard to changes proposed in this final chapter. Without waiting for the results of those tests,

a, in this sense somewhat hasty, personal conclusion can be drawn from this thesis: that I person-

ally tend to lean towards our initial intuition that uncertainty and learning are dominant aspects

of climate change analysis and that our formal framework is far from being able to represent this

important feature properly. Some important first steps have already been made to improve this

situation. But another bold effort has to be undertaken, maybe even more so than the original idea

to put together economic and physical models, to overcome the shortcomings of model represen-

tation of uncertainty and its impacts. Only than can the integrated assessment of climate change

lead to policy implications that real world decision makers could base their real decisions upon.
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