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Abstract

Explainable artificial intelligence aims to make complex machine learning models
interpretable. Having access to transparent prediction processes is crucial to ensure
the safe, trustworthy and fair use of machine learning in science, industry and society.
Unfortunately, many widely used models such as deep similarity models, graph neural
networks and Transformer models, are highly non-linear and structured in ways that
challenge the extraction of meaningful explanations.

The well-established layer-wise relevance propagation explanation method with
its theoretical foundation in deep Taylor decomposition serves as a methodological
anchor to develop explanation techniques that consider the particular model structure.
Specifically, we investigate how to explain dot product similarity, graph neural network
predictions and self-attention modules in Transformer models.

We observe that this can require to go beyond standard explanations in terms
of input features that result in second-order and higher-order attributions. This
motivates to extend existing approaches for the evaluation and visualization of
explanation techniques to these new types of explanations.

In parallel to these methodological contributions, we investigate how these
methods can be used in different domain applications. In particular, we apply
the different explanation methods to a variety of use cases. We build and explain a
similarity model designed to represent numerical content in the digital humanities
to study the evolution of the history of science, revisit image classification by
visualizing the relevance flow through the different processing layers and turn to
natural language processing to investigate gender bias in Transformer models as well
as analyze Transformer explanations during task-solving.

Throughout our experiments and analyses, we demonstrate that a careful
treatment of model structure in explanation methods can improve their faithfulness,
result in better explanations and enable novel insights.






Zusammenfassung

Erklarbare kiinstliche Intelligenz zielt darauf ab, komplexe maschinelle Lernmodelle
interpretierbar zu machen. Der Zugang zu transparenten Vorhersageprozessen ist
entscheidend fiir die sichere, vertrauenswiirdige und faire Nutzung des maschinellen
Lernens in Wissenschaft, Industrie und Gesellschaft. Leider sind viele weit verbreitete
Modelle wie tiefe Ahnlichkeits-Modelle, neuronale Graphennetze und Transformer-
Modelle duflerst nichtlinear und in einer Weise strukturiert, die die Berechnung
verlasslicher Erklarungen erschwert.

Die etablierte Methode der layer-wise relevance propagation mit ihrer theoreti-
schen Grundlage in der tiefen Taylor-Dekomposition dient hier als methodologischer
Anker fir die Entwicklung von Erkldrungstechniken, welche besondere Eigenschaften
der Modellstruktur beriicksichtigen. Konkret untersuchen wir, wie Skalarprodukt-
Ahnlichkeit, Berechnungen von Graph Neural Networks und Attention-Module in
Transformer-Modellen erklédrbar gemacht werden kénnen.

Dies kann erfordern, iiber Standarderklédrungen in Bezug auf Eingangsmerkmale
hinauszugehen und Attributionen zweiter und héherer Ordnung zu beriicksichtigen.
Dies motiviert die Ausweitung bestehender Ansétze zur Evaluation und Visualisierung
von Erklarungstechniken auf diese neuen Arten von Erklarungen.

Parallel zu diesen methodologischen Beitrdgen untersuchen wir, wie diese
Methoden in verschiedenen Anwendungsbereichen eingesetzt werden kénnen. Ins-
besondere wenden wir die verschiedenen Erklarungsmethoden auf eine Vielzahl
von Anwendungsfillen an. Wir entwickeln und machen ein Ahnlichkeitsmodell zur
Darstellung numerischer Inhalte in den digitalen Geisteswissenschaften erkliarbar, was
es uns ermoglicht die Entwicklung der Wissenschaftsgeschichte zu untersuchen. Zudem
untersuchen wir Bildklassifizierungs-Modelle und visualisieren den Relevanzfluss durch
die verschiedenen Verarbeitungsebenen, wenden uns der Verarbeitung natiirlicher
Sprache zu, untersuchen geschlechtsspezifische Voreingenommenheit in Transformer-
Modellen und analysieren aufgabenspezifische Transformer-Erklarungen.

In unseren Experimenten und Analysen zeigen wir, dass eine sorgfiltige
Behandlung von strukturierten Informationen zu besseren Erklarungen fiihrt und
neue Erkenntnisse ermoglicht.
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Introduction

Recent developments in machine learning have enabled impressive advances that are
already widely used in the sciences, industry and our everyday lives. Especially deep
learning has led to progress in many challenges that range from object recognition,
image segmentation, reinforcement learning, machine translation and language
modeling, to protein-structure prediction and quantum-chemical dynamics [1, 2,
3,4, 5, 6].

This variety of applications motivates the use of specifically structured model
architectures and data representations that are suited to the particular domain. For
example, similarity between images is well represented by models that consist of
two branches of convolutional neural networks (CNNs). In contrast, relationships
between elements, e.g., words or molecules, are best encoded in the graph structure of
graph neural networks (GNNs). More recently, the rise of attention mechanisms, and
especially Transformers, which are models that stack several attention modules for
the processing of sequences, have become the default architecture choice for natural
language processing (NLP) and the modeling of many sequential data tasks [7].

While these highly non-linear models often achieve human or beyond human
levels of performance, users and machine learning experts alike are often not able to
fully understand their complex decision processes. The field of explainable artificial
intelligence (explainable AI) aims to increase model transparency and enable the
development of more trustworthy systems for the safe and robust use of machine
learning [8, 9, 10, 11, 12].

Consider a machine learning model that is trained to separate dogs from cats.
Given the set of cat images readily available, we would now like to understand
what features of the image are most relevant for the model to infer the correct
prediction. Standard explanation methods produce a heatmap over the input image
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that highlights these features, and hence provide information to the user for evaluation
and a better understanding of the model prediction.

In the fast-growing field of explainable Al, various approaches have been developed,
ranging from self-explainable models designed to be directly interpretable [13, 14, 15],
perturbation analyses that iteratively mask parts of the input to observe which are
most relevant to change the prediction [16, 17, 18], the analysis of model gradients
that represent the change of the model function for a given input [19, 20, 21, 22|, to
computing propagation-based explanations which progressively redistribute the model
prediction through the layered network architecture following a set of redistribution
rules [20, 23, 24, 25]. Herein supervised settings have been the standard scenario,
and recently, explainable AI methods have been extended to semi-supervised and
unsupervised models, including clustering [26] and anomaly detection [27, 28].

The danger of defective or unexpected model behavior has accompanied the
standard approach of training large models with ever-increasing datasets. This has
made it difficult to guarantee reasonable, i.e., intentional, human-understandable
and causal solutions that comply with the aims and functions of explainable Al
Examples include deep neural network (DNN) models that can predict object classes
in images but ground their prediction on background information [29, 30], or that
can be fooled by imperceptible input changes [31, 32], language processing systems
that make correct inferences using deficient heuristics [33, 34], and reinforcement
learning agents that choose death repeatedly instead of mastering more challenging
game levels [35]. Such defective model solutions where the model makes a correct
decision using a ‘wrong’ or unexpected strategy are known as ‘Clever Hans’ strategies
[30].

These examples highlight that we need reliable and robust explanations that
are not prone to disguise the relevant model strategies or to produce unstable
explanations. Explanation techniques are available for standard machine learning
models and applications such as CNNs for object detection. But, we will observe
that the complexity of specifically structured models requires careful development of
explanation methods. Some of these methods motivate explanations that go beyond
the common explanation in terms of input features, e.g., heatmaps over input images,
resulting in explanations that highlight more complex feature interactions.

Before machine learning models can be used to extract reliable inferences, a
careful evaluation of explanation methods is needed. The development of controllable
evaluation scenarios and an extension of current evaluation methods to these new
types of explanations are thus required. This raises the question of what properties
a successful explainable model should fulfill. In the literature, numerous desired
explanation properties have been proposed [36, 37, 38, 12]. These can be separated
into automated evaluation approaches that assess faithfulness, sparsity, robustness or
computational efficiency, and human evaluations that investigate understandability,
accuracy as compared to human annotations or correlation to psychophysical signals.

This thesis considers the process from model formulation, implementation and
evaluation to domain application, and finally, the generation of insights. In particular,
we focus on the established and theoretically well-founded layer-wise relevance
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propagation (LRP) method [23, 25] as the starting point to develop propagation-
based explanation techniques for similarity models, graph neural networks and
Transformers. Their respective model structure requires a careful decomposition of
the model prediction to the input components. The resulting layer-wise propagation
rules necessary to compute relevance scores are developed and evaluated against
common baseline methods. We apply these novel explanation methods to a variety
of use cases: we build and explain a similarity model designed to represent numerical
content in the digital humanities (DH) to study the evolution of the history of
science, revisit image classification by visualizing how a class decision is formed
through the different processing layers, and turn to language-processing systems to
investigate gender bias in Transformer language models and analyze their explanations
in comparison to human attention during task-solving.

1.1 Contributions and Structure of the Thesis

The overall structure of the thesis is summarized in Figure 1.1. We demonstrate in the
following how explanations for specifically structured models, particularly similarity
models, GNNs and Transformers, can be developed. The relevant fundamentals in
explainable Al, including an introduction to the layer-wise relevance propagation
technique, are introduced in Chapter 2. Then we continue with our findings and
analyses in the following main chapters:

Chapter 3 In this chapter, we develop a method that computes explanations for
similarity models. We introduce similarity as a dot product computation and describe
how this model structure can be represented using second-order terms that signal
interactions between features. This results in a baseline for explaining similarity based
on the Hessian. Then we introduce BiLRP, a method that computes theoretically
founded and robust explanations for deep similarity models by decomposing the
dot product similarity to pairs of input features. We further demonstrate the
effectiveness of BILRP in experiments on similarity between natural images, video
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data and historical illustrations. This leads to a use case in the digital humanities,
in which we build a task-specific and interpretable similarity model that enables us
to extract corpus-level insights.

Chapter 4 In this chapter, we introduce explanations for graph neural networks.
We first describe the specific structure underlying typical GNN models and identify a
formulation using higher-order terms that describes how the GNN structure interacts
to computes its prediction. This leads us to the introduction of GNN-LRP, which is
a method to compute higher-order explanations for graphs. We evaluate GNN-LRP
on a set of synthetic and real-world examples, and in a use case on image recognition,
GNN-LRP enables us to identify flawed model behavior.

Chapter 5 In this chapter, we investigate explanations for the widely-used
Transformer architecture. We observe that the gradient in Transformers requires
specific treatment to reflect the model prediction reliably and meet the desired
principle of conservation. Further, we look into the structures that break conservation
and find that self-attention heads and layer normalization computations are the
main factors. We introduce new propagation rules to produce better explanations
and evaluate their effectiveness compared to other commonly used Transformer
explanations. We finally turn to two use cases in detecting biased model behavior
and alignment of Transformer explanations to human task-reading.

We then conclude this thesis in Chapter 6, which includes a summary of our main
findings, a discussion of their implications and an outlook on promising future
directions.

The main contributions are as follows:

e Second-Order explanations: layer-wise relevance propagation for deep
similarity models. (Chapter 3) We introduce an explanation technique
that decomposes the output of (deep) similarity models. The specific model
structure motivates our BiLRP explanation method that considers second-order
feature contributions to highlight the relevance of feature interactions. We test
our method on both toy and real-world datasets, and reveal ‘Clever Hans’-type
behavior using our visualization technique that connects pairs of relevant input
features.

e Building explainable similarity models for the digital humanities
to extract historic insights. (Chapter 3) We build an explainable table
similarity model based on representing dense numerical content via a ‘bag-of-
bigrams’ representation. This enables a previously not possible corpus-level
analysis, which reveals spatio-temporal insights into the evolution of knowledge
in early modern times.

« Higher-order explanations for graph neural networks with GNN-LRP.
(Chapter 4) The forward propagation in GNNs requires the computation
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through interaction blocks that are closely entangled to the input graph.
To make GNN predictions explainable, we perform a Taylor expansion that
results in higher-order feature contributions from which we extract walk-based
explanations. We demonstrate the usefulness of the GNN-LRP explanation
method to gain insights into synthetic growth graphs and image classification
models.

o Better explanations for Transformer models. (Chapter 5) We
demonstrate how better explanations for Transformer models can be obtained
by carefully handling the non-conserving self-attention and layer normalization
computations. The resulting propagation rules can largely reconstitute
conservation of the model prediction score and offer the most faithful
explanations in our evaluation experiments.

¢ Alignment of human attention with Transformer explanations in NLP.
(Chapter 5) We investigate how well different language model attention vectors,
relevance scores, and a cognitive model align to eye tracking-based human
attention. We use correlation scores and a perturbation-based analysis and
identify a trade-off between correlation to human attention, faithfulness and
sparsity during task-solving on two NLP tasks.

1.2 Relation to Previously Published Work

The main contributions and findings of this thesis are based on the following
publications:

O. Eberle, J. Biittner, F. Krautli, K.-R. Miller, M. Valleriani and
G. Montavon. Building and Interpreting Deep Similarity Models. In IEEFE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 3,
pp. 1149-1161, 2022.

T. Schnake, O. Eberle, J. Lederer, S. Nakajima, K.T. Schiitt, K.-R. Miiller
and G. Montavon. Higher-Order Explanations of Graph Neural Networks
via Relevant Walks. In IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

O. Eberle*, S. Brandl*, J. Pilot, A. Sggaard. Do Transformer Models Show
Similar Attention Patterns to Task-Specific Human Gaze? In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics,
2022. (*equal contribution)

A. Ali, T. Schnake, O. Eberle, G. Montavon, K.-R. Miiller and L. Wolf. XAI
for Transformers: Better Explanations through Conservative Propagation.
(accepted to ICML), 2022.
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This thesis includes additional contents from the following papers:

O. Eberle, J. Biittner, H. El-Hajj, G. Montavon, K.-R. Miiller and
M. Valleriani. From Large Data Collections to Historical Insights: A
Machine Learning Analysis of Astronomical Tables in Early Modern
Textbooks. (in preparation), 2022.

H. El-Hajj, M. Zamani, J. Biittner, J. Martinetz, O. Eberle, N. Shlomi,
A. Siebold, G. Montavon, K.-R. Miiller, H. Kantz and M. Valleriani. An
Ever-Expanding Humanities Knowledge Graph: The Sphaera Corpus at
the Intersection of Humanities, Data Management, and Machine Learning.
Datenbank Spektrum, 2022.

All co-authors of these works have kindly agreed to the use of content, figures, and
results from the works above for this thesis.



Fundamentals

To make modern machine learning applicable, we need to reliably extract the
underlying mechanisms relevant for a decision in a way that is understandable
to humans. Numerous different methods have been proposed to explain the workings
of increasingly complex architectures. In the following, we will give an overview of
existing explanation approaches and then focus on layer-wise relevance propagation
(LRP) [23, 39], which will serve as the foundation of the introduced techniques
in the following chapters. We then consider desired criteria for explanations and
summarize ways to quantify them in objective automated settings and subjective
human evaluation.

2.1 Explainable Artificial Intelligence

Explainable AI has provided machine learning with techniques that reveal what
data features contribute the most to a model prediction. This offers an additional
way to validate models beyond common evaluation procedures. While high model
performance is a central goal of machine learning systems, the roles and functions
of explainable AI cover many crucial aspects that go beyond test-set accuracy |8,
9, 40, 41]. Explanations are important to (i) justify the use of a specific model
and by this (ii) foster trust and verifiability in machine learning, and can (iii) bring
safety and security to sensitive applications, i.e., in medicine, defense, commerce
or entertainment use. In parallel, explanations (iv) offer control over complex
systems by providing information to identify unexpected model behavior, which
can subsequently be used for model improvement. Thus, they play an important
role in (v) robustifying models against data bias and dealing with data shifts, and
(vi) improving their performance and efficiency during development and debugging.
Explanations further provide a basis for (vii) the development of more complex model
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architectures that go beyond simple linear methods and, by this, (viii) foster the
discovery of novel insights and data patterns. With the extensive use of machine
learning across science and society, it has become more and more important to explain
the inner workings of models to (ix) ensure compliance and legislative requirements
put in place by organizations and governments. These diverse demands increasingly
inform the development and selection of machine learning systems, which remains
challenging for complex systems.

Less complex early machine learning systems are often directly interpretable, e.g.,
by observing the value of coefficients in linear and logistic regression or tracing the
learned rules in a decision tree. But the successful use of complex models in the
sciences and industrial applications has caused a shift towards increasingly deep,
non-linear architectures. This has resulted in the black-box scenario in which model
decisions are not directly interpretable by humans. The emerging field of explainable
AT [8, 10, 11, 12] thus aims to develop techniques that allow to comprehend the inner
workings of machine learning models while preserving their performance.

There exist various definitions of understandability, interpretability, explainability,
comprehensibility or transparency that are often difficult to isolate. Generally,
the idea of making a model decision understandable to an end-user emerges as a
common definition [11, 40]. In the following, we use these terms mentioned above
interchangeably and adopt a definition focusing on the function of explainable Al
systems. Among others, they refer to methods that improve trust in machine learning
systems by providing insight into model decisions and why they were made, opening
the underlying strategies of a model, and increasing robustness while reducing bias
[42, 40].

2.2 Approaches to Explainable AI

Approaches to Explainable Al can be divided broadly into ante-hoc and post-hoc
approaches, which we will introduce in the following sections.

2.2.1 Ante-Hoc Explanations

Ante-hoc techniques refer to models that use structures that are interpretable before
training. Such methods are directly interpretable or self-explainable, e.g., due to their
linear structure. This can also include more complex models that have been designed
to be interpretable such as linear regression models, which use directly interpretable
coeflicients, decision trees that build an interpretable hierarchical decision structure,
additive models that learn linear relationships between interpretable input features
[43, 44, 45], and Bayesian networks that represent connections between features
using a probabilistic graphical model offering a direct way to infer dependencies
between variables [46, 47, 48]. Other works have proposed prototype methods that
summarize dataset characteristics using distance measures and provide interpretable
prototypical representations [49, 50, 51], and models with attention modules that
provide intuitively understandable importance scores over features [52, 14, 53].
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While ante-hoc models are appealing due to their built-in interpretability, this
also constrains the design and transfer of such models. An additional problem is
that for deeper architectures, it remains unclear how faithful their explanations are
with respect to the model prediction since they typically focus on a part of the full
processing pipeline, e.g., a single attention-block of the larger models or a linear
readout that computes the output from a more complex, not directly interpretable
model.

In practice, many influential models, e.g., convolutional neural networks,
recurrent neural networks, generative adversarial networks, graph neural networks
and self-attention models, are not interpretable by design and hence post-hoc
explanations provide methods to make these models explainable.

2.2.2 Post-Hoc Explanations

Post-hoc approaches produce explanations after the model has been trained, providing
flexibility during model design and selection [41]. Many modern machine learning
models thus rely on post-hoc methods to explain their prediction strategies. For
a standard explanation scenario, assume a trained (deep) model f : R? — R with
input * = (z1, ..., 74) and an output f that provides a prediction score indicating
certainty for the presence of a specific feature and for which an explanation is to be
computed subsequent to the prediction phase.

One approach to measure what features x, are most relevant can be performed
via perturbation of the input [16, 17, 18]. For this, each feature z, or groups
thereof are occluded and the change in output is measured producing the relevance
Ry, = f(x) — f(x\p). This process is repeated iteratively until a full explanation
R = (Ry, ..., Rq) is computed. While this approach does not require a particular
structure except being a function, it assumes locality of relevant features, requires
repeated model re-evaluation for each perturbation, and is unable to give detailed
insight into inner model processing.

Another approach to explainable Al is using surrogate functions that make
complex models explainable by replacing the original model function with a local
approximation around the current input data. For this, the parameters of a simple
self-explainable model are optimized to produce the original model prediction as
proposed in Local Interpretable Model-Agnostic Explanations (LIME) [17] and
variants thereof [54, 55].

The idea of assigning attribution scores according to a feature’s contribution to
the observed output prediction has been formalized in the Shapley value [56]. For
this, all possible groups of feature combinations are evaluated and thus, the effect of
adding or removing a specific feature can be observed via marginalization. With a
growing number of features, the possible combinations increase exponentially and
different approximation schemes have been proposed to make computations feasible
[57, 44, 58]. Based on the Shapley value, the SHAP method has offered a framework
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that relies on additive feature importance and approximates Shapley values in the
context of explaining classifiers [57].

Alternatively, gradient-based methods compute derivatives of the model function
with respect to the input [59], for example, sensitivity analysis for which R, =
(0f(z)/0zp)? [20] or saliency given by R, = (0f(z)/0xz;,) [19]. Other popular
gradient-based approaches are Gradient x Input [21], which can be seen as special
case of LRP, and Integrated Gradients [22]. These methods thus give insight into
which parts of the input features, e.g., pixels in images, contribute to an increased or
decreased prediction score. While this generally provides a straightforward way to
analyze any differentiable machine learning model, the complex structure of deep
neural networks can result in unstable and noisy gradients [60, 61], as we will also
discuss later in this section.

The complex structure of deep models motivates approaches that focus on a more
easily analyzable model decomposition into simpler components. The decomposition
of any network neuron can, for example, be performed via a deconvolution process [16]
that iteratively projects activity layer-wise back to the input. Instead of observing
neuron activity directly, gradients of the activations can be used as the salient signal,
as proposed in Guided Backpropagation [24]. This latter approach has been widely
adapted and propagation-based explanations are a key concept in computing post-hoc
explanations, including Excitation Backpropagation [62] and layer-wise relevance
propagation (LRP) [23].

From a theoretical perspective, a direct way to approximate a non-linear model
f(x) is to use a Taylor decomposition at some root & [25]:

f(x) = f(Z) + Z V(@) (xi — 7)) + %Z (V2 £ (@) (w3 — To) (@ — Tir) + .
(2.1)

and choose root points such that f(x) = 0 and higher-order terms vanish. Relevance
scores are then directly given by the first-order terms in Equation (2.1). However,
resulting relevance scores have been found to be unstable, which mirrors instabilities
of deep neural networks. This includes shattered gradients, which refers to the noisy
gradient behavior in deep networks [60, 63], and their vulnerability towards small
and imperceptible input perturbations that strongly affect the model prediction [61].

Various propagation-based techniques have been proposed to produce more robust
explanations, of which we focus on layer-wise relevance propagation in the following.

2.3 Layer-wise Relevance Propagation

Layer-wise relevance propagation (LRP) offers a framework to decompose a possibly
complex deep neural network prediction and computes explanations by highlighting
relevant data features [23, 25, 8]. To trace back in what ways the features x, of input
& have contributed to the model prediction f(x), we are interested in finding relevance
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2.3 Layer-wise Relevance Propagation

scores R, that connect the prediction back to the input features f(z) ~ >, R, with
the sum going over input features, i.e., pixels in an image or tokens in a sequence,
indexed by p. Relevance R, indicates positive contribution for R, > 0 and negative
contribution for R, < 0, which provides an intuitive way to decompose the network
prediction.

An additional desired property requires that relevance propagation in neural
networks is conservative such that f(z) =3, R holds true. This means that the
total sum of relevance remains unchanged throughout the network computations and
relevance can not be generated nor reduced. Such layer-wise conservation is easy
to implement and implies global conservation of relevance. For deep networks with
multiple layers, this conservation can thus be applied to consecutive computations
between layer [ and [ 4 1:

f@)=..= > R =Ry = . =3 RD. (2.2)
p

del+1 del
We denote the relevance from neurons k at layer [ + 1 as R,E/,Hl) . Then, the lower
level relevance at neuron j can be computed by summing over received messages
Rg.lizl) from neurons k in the higher layer [ + 1:
0 _ (1,1+1)
R =% R (2.3)
k

The relevance message is generally proportional to the ratio defined by quantities g;z,

which is the contribution of neuron j to the activation of neuron & and the relevance
(I+1),

observed R; " :

O Yk (I+1)
Rk S R’ (2.4)
Finally, the full relevance of neuron j is computed by pooling over all incoming
messages R = > Rjp.

Depending on the network type, layer index and neuron type, different propagation
rules have been proposed to compute g;ji. These include the a-rule that weights
positive and negative contributions differently, the w?-rule that distributes relevance
according to the squared weight magnitude, or the v-rule that favors positive over
negative contributions [64]. Here, we focus on the LRP-v rule given by:

aj - (wj +ywh
gO _ Y (wjk +7 ]k) -R,(CH_I), (2.5)

L=
TR ag - (wyk + ywy,)

with lower-level neuron activation aj, the weight wj; between neuron j and k and
parameter v, which controls the preference of positive contributions using the rectified
weight w;?g. Compared to naive computations of relevance scores from first-order
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gradients as discussed above, this offers a more robust way to compute relevance
redistribution by reducing gradient noise and using more stable gradients [64].

Notably, these redistribution rules can be integrated into the Deep Taylor
Decomposition framework (DTD) [25], which considers LRP as a repeated Taylor
decomposition of the relevance expressed as a function of lower activations a evaluated
at some root point a [25]:

Ry(a) = Ri(a) + ) [Vf(@)l; (a5 — ;) + ... (2.6)

J

In order to arrive at a closed-form solution for equation (2.6) a relevance model
Ry.(a) is used to substitute Ry (a). Then, one can select R, and @ such that higher-
order terms vanish and fulfill R(a) = Ri(a) [25]. Depending on the choice of @,
different redistribution rules can be captured and related directly to the mathematical
foundation offered by the DTD framework.

In the following chapters, we will encounter settings where the model structure
requires consideration of non-vanishing second-order and higher-order terms.

2.4 Developing Propagation Rules

In this thesis, we will develop propagation rules for different model architectures.
We typically follow a succession of steps to arrive at an appropriate propagation
procedure. While this process can vary for the specific model at hand, the following
summarizes the key steps.

+ Formalize the model prediction function f(z) and analyze the dependencies of
the input x and the general structure to compute activation scores a; during the
layer-wise computations.

+ Express the relevance score, i.e., Ri(a) for a simple feed-forward network with
consecutive layers j and k, and with the observed activation vector a at the lower
layer j.

+ Perform a Taylor-Expansion of the relevance score at some root point a (cf.
Eq. 2.6).

« For a closed-form solution, define a relevance model to substitute the original
relevance score, i.e., Ri(a) with Ri(a). This relevance model locally approximates
the true function and should be easier to analyze.

+ Select an appropriate root point a based on domain membership and such that a
is close to typical activations and, if possible, the Taylor expansions simplifies.

After arriving at a propagation scheme for the different model layers, their
implementation can often be achieved with minimal additional software code. For
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example, we can alter the forward computations to match the propagation rules and
then perform layer-wise computations by calling the gradient in the backward pass.
This does not affect the model predictions or its parameters and leaves the original
model behavior unchanged.

2.5 Approaches to Evaluating Explainable Al

The evaluation of explainable Al systems is still considered an open problem but
has recently received growing attention [65, 37, 66, 67, 41, 68, 69]. Assessing the
quality of explanations has often relied merely on a qualitative inspection. This
assumes that humans are able to judge what distinguishes good from bad explanations
accurately. Unfortunately, this does not necessarily hold since humans can disagree
or might not be able to make sense of the provided explanation [67, 70], unknowingly
apply a different reasoning strategy [71, 72|, or be influenced by various biases when
judging evaluation quality, e.g. representation or confirmation bias [72, 73]. This
highlights that when evaluating explanations, it is important to separate approaches
that measure how well a method explains the model from approaches that focus on
explaining a particular ground truth. For example, an explanation can be able to
capture the model prediction very faithfully while not being aligned to some provided
ground truth. Conversely, explanations that align well to a ground truth may not
reflect the underlying model prediction properly [74, 75, 76].

The many roles and functions of explainable Al are reflected in a wide range
of desired criteria an explanation could meet [37, 38, 68]. Common desiderata
for explanations include fidelity, understandability, sufficiency, low construction
overhead and efficiency [36], which can serve as a guidelines to judge explanations.
To address and quantify different desiderata, various approaches have been proposed.
In the following, we divide the evaluation of explainable Al systems into two main
directions [12, 40]: objective evaluation focused on automated methods to evaluate
the quality of explanations and human-centered evaluations that include human or
human-annotated material during the evaluation process.

2.5.1 Objective Evaluation

Similar to the different measures used for evaluating model performance, such as
cross-entropy loss or accuracy, various evaluation approaches and metrics exist for
explanations. These are often designed to measure specific desiderata for explanations.
Selecting the appropriate one depends on the task and domain at hand, and can
be further constrained by physical limitations, legislative requirements or cognitive
characteristics [74].

Common evaluation metric can be grouped into example-based, model-based
and attribution-based explanations, with the latter being the most widely adopted
approach [77, 68].

Example-based explanations aim to extract specific instances useful to explain the
model behavior or illustrate characteristics of the data distribution itself, typically by
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extracting prototypes or identifying counterfactual and adversarial instances [78, 79].
To evaluate the explanations quantitatively, the geometric structure, as characterized
by the distance among the set of selected instances, has been proposed [80].
Model-based explanations cover ante-hoc approaches, for which the model can be
evaluated directly, as well as post-hoc approaches, for which the model is first made
explainable and then evaluated. Metrics focus on measures of the model-explanation
complexity, i.e., using the model depth or size [81], the number of operations or
the number of parameters used to compute a relevant local effect [82], predictor
importance [83], and agreement scores between true and explained model [82].
Most widely used approaches consider attribution-based explanations, which order
or measure the relevance of input features and determine a relation between input
features and importance for the model prediction. We focus on common desiderata
and summarize widely used evaluation approaches into the following groups [36, 69]:

« Faithfulness (or fidelity) measures the effect of a certain (e.g., highly relevant)
feature on the model prediction. It is a common desired property of explanations
and captures whether the explanation faithfully explains the model. Typical ap-
proaches to measure faithfulness include (pixel-)flipping [23] or region perturbation
procedures [65], computing correlations between attribution strength and change
in model outcome [84], and selectivity of the most relevant features to strongly
affect the prediction [8].

« Complexity (or sparsity) evaluates whether the explanation is able to identify small
subsets of features that explain the model prediction [85]. It thus addresses the
desired property of understandability (or comprehensiveness) since a more sparse
solution is typically more user-understandable. Sparsity can be measured using
metrics such as Gini coefficients or entropy scores [86].

+ Sufficiency aims to measure how well an explanation is able to provide sufficient
information about the model prediction process. This is typically formalized using
conditional distributions, which measure how likely a certain prediction is to be
observed given some feature or set thereof as provided by the explanation [87, 88].

« Axiomatic rules can be defined to address specific desired properties of an
explanation, usually with the goal to meet certain constraints, such as conservation,
invariance properties of explanations, completeness or sensitivity [23, 22].

Furthermore, a variety of methodologies have been proposed to test adequacy of
explanations. Examples include robustness that aims to measure how strongly
explanations vary for nearby data points [89, 8, 90|, randomization that determines
if explanations are able to pass sanity checks by testing if gradual randomization
of model parameters produces increasingly different explanations compared to the
original [91], and localisation that computes to what extent an explanation matches
ground truth data [92].

This variety of evaluation approaches and metrics illustrates that choosing an
appropriate procedure is complex and future efforts are needed to standardize
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the evaluation of explainable AT methods. We note that this even applies to
the standard scenario for explanations in image classification. When explanations
are specifically structured, e.g., by considering higher-order information, standard
evaluation approaches may not be directly applicable, and we will demonstrate how
measuring properties such as faithfulness can be adapted to this setting.

2.5.2 Human Evaluation

While automated metrics are crucial to assess explanation quality, eventually,
explanations serve as a way to communicate the model decision process to human
users. Designing evaluation procedures to test explanations against human ground
truth or judgments requires interdisciplinary efforts of machine learning, cognitive
science, and associated disciplines. In this section, we provide a brief introduction
into key aspects that concern human evaluation of machine learning, and specifically
explanations, and refer to following papers and reviews for further reading, i.e., [93,
38, 40].

Explanations can be designed and targeted toward different user groups, and
with that, their goals and evaluation procedures can change [94]: machine learning
novices including typical end-users tend to focus on model transparency, trustworthy
explanations and avoiding biased predictions, computer experts are additionally
interested in visualization and inspection of mechanisms as well as fine-tuning and
selecting their own models, and machine learning experts focus also on making models
interpretable to mitigate identified model misbehavior.

Human evaluation studies have been designed to judge various aspects of the
human-machine interaction to attain these goals. To increase user confidence, trust
and reliability in expert systems, deep neural network models and intelligent agents
have been evaluated using human judgments [95, 40]. These qualities require an
understanding of model mechanisms, which has been studied by accessing if provided
explanations enable or facilitate the development of an internal mental model [96, 97,
98, 99]. Additionally, it was found that certain characteristics of an explanation are
judged as preferred, e.g., humans prefer fewer and simpler explanations over more
complex ones [98]. It has been studied which explanations are useful to detect wrong
model strategies and thus help to debug machine learning models by users [100, 101,
102], and to determine their usefulness for task solving in work environments [96,
103].

In order to evaluate these different functions of human evaluations, a range of
different approaches are commonly used. These include computing statistical analyses
on closed-ended questionnaires using pre-defined scales [96, 104, 95], collecting
judgments from qualified users about the accuracy of explanations and how typical
the explanation is given the sample [105, 106], and asking humans to infer the
predicted class from the explanation, and record their accuracy and confidence
levels [107, 108, 44, 109, 110]. To test whether an explanation aids the user in
building a causal understanding, the System Causability Scale aims to measure
specific properties of an interaction between humans and an explanation system,
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such as effectiveness, efficiency, and user satisfaction in a given scenario [111]. Other
works have focused on presenting humans with the input data and ground truth class
and letting them annotate the relevant parts to create a human explanation [108,
22, 112, 75], measuring psychophysical signals during task-solving to compare the
model generated explanations against human rationales [113, 114, 115, 116, 117], and
testing if biasing models towards human rationales improves and robustifies model
performance [118, 115, 114, 119, 120].

Besides quantitative approaches, qualitative assessment of evaluation quality using
open-ended questions and interviews or recordings of human-machine interaction
have been conducted [40].

These studies highlight that using human signals in machine learning and, in
particular, explainable Al is a promising direction that aims to promote successful
human-machine interactions. Human-centered studies have addressed many aspects of
model explanations, most notably focusing on their alignment to human explanations
and their predictions, as well as the quantifiable benefit of explanations regarding
user trust towards models. In this thesis, we will use a dataset of human task-reading
patterns to compare human rationales against language model explanations.

2.6 Limitations and Challenges

Throughout this thesis, we will encounter various limitations and challenges of modern
machine learning models. Here we summarize key aspects and challenges relevant to
this thesis in the context of explainable Al and structured explanations.

2.6.1 Explanation Complexity

Typical explainable AT methods explain model processing in terms of model inputs,
e.g., heatmaps over images or input sequences. This attribution of the prediction to
the input features does not necessarily capture the full complexity of processing in
a machine learning model. It thus motivates approaches that go beyond heatmap
explanations. Consequently, the question of the appropriate explanation complexity
arises. As a guideline, the explanation should be complex enough to capture the
model and data structure appropriately without obfuscating relevant processing steps
while at the same time selecting a level of abstraction that is as simple as possible
and can be understood by the user. For example, pairwise feature interactions in
similarity models can be considered for a more detailed understanding of which
features are relevant for the similarity prediction, as we will see in Chapter 3.

Standard explanation methods aim to represent the reasoning process of a model
with the goal of producing one single explanation. Alternatively, it has been argued
that explanation complexity should reflect the reasoning process of human users,
i.e., novices or domain experts, which result in different explanations of varying
explanation complexity [121, 122, 123].

This thesis will focus on producing explanations for different types of complex
models. As we will see, some specific model structures are more accurately described
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as explanations of higher complexity. We will additionally see how a resulting complex
explanation can be represented in simpler ways, e.g., via visualization or pooling
strategies.

2.6.2 Limitations of Post-Hoc Explanations

It has been argued that post-hoc explanations can produce misleading explanations
[30, 74]. This has been demonstrated by comparing various post-hoc explanation
approaches and observing that a range of methods can produce different and
sometimes even contradictory or paradoxical explanations for the same model [124,
74].

Not all methods answer the same question and thus different outcomes are to
be expected, i.e., sensitivity methods trace which input features change the model
prediction score most, whereas LRP computes which input features are most relevant
for a given classification score and thus explains the actual prediction. A similar visual
representation, e.g., in heatmaps, can be misleading without additional information
about the underlying principles and the specific question that an explanation method
addresses.

In addition, not all post-hoc explanation methods are equally robust and faithful
to the model prediction. For example, it was shown that naive input gradients become
increasingly variable and unreliable for deeper models [60, 63], and that their ranking
in evaluation settings can differ considerably, e.g., when evaluating faithfulness [65,
125]. Hence, post-hoc explanation methods approximate a model’s prediction process
and their ability to capture this process has to be evaluated thoroughly.

Post-hoc explanations are designed to explain the model function and thus a
successful explanation does not necessarily align with ground-truth observations.
This can result in faithful explanations that contradict the user’s real-world intuition.
Machine learning models infer a relation between the presented training data and the
respective labels. This process can identify a correlation between observation and
outcome but does not indicate a causal relationship. Expressed differently, a feature
can correlate strongly with a certain class, but this does not indicate this class is the
cause for the feature’s appearance. Such effects are known as spurious correlations
that describe relationships not linked via a causal relationship [126, 127, 128]. As we
will see in the next section, machine learning models can adopt unexpected strategies.

2.6.3 The ‘Clever Hans’ Effect

The various ways that modern machine learning models can bias their predictions in
unexpected ways are known as ‘Clever Hans’ strategies [30], ‘anti-causal learning’
[129], or ‘shortcut learning’ [130]. This effect has been observed in many real-
world scenarios that achieve human-level performance but fail in employing correct
prediction strategies [29, 30, 35, 33, 34]. This severely hinders the safe and reliable
use of machine learning. To deal with the ‘Clever Hans’ effect, we need to detect
such misbehavior and identify strategies to overcome them in a subsequent step.
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The diagnosis of ‘Clever Hans’ effects is a highly relevant research direction for
which different solutions have been proposed. Standard machine learning pipelines
evaluate model performance on test sets that are from the same data distribution
as the training set, which can result in unintended model solutions if the data
distribution is not sufficiently general. This motivates the use of additional out-
of-domain datasets to test generalization capabilities [130] and thus a low model
performance of the latter can indicate the presence of a ‘Clever Hans-type behavior.
A different approach is the use of explainable Al to extract relevant features that a
model prediction is based on. This offers a way for the user to inspect and control
model learning strategies and flag unwanted examples. More recently, the automated
and dataset-wide detection of ‘Clever Hans’ predictors has been explored [30, 128].

Resolving such invalid strategies is an important challenge, and promising
directions concern the choice of model architecture, the training data and its
distribution as well as the optimization loss function itself. But it is generally
not easy to understand which changes can resolve a ‘Clever Hans’ effect. For example,
adding more training data does not necessarily improve model generalization [131,
132]. Instead, different approaches have been proposed to either unlearn identified
artifacts in an already trained model [133, 134, 135, 128], or to regularize models
during training, for which an additional learning signal about the desired explanation
is provided [136, 137, 138|.
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Second-order Explanations in
Building and Interpreting Deep
Similarity Models

Many learning algorithms such as kernel machines, nearest neighbors, clustering, or
anomaly detection, are based on distances or similarities. To safely use similarities
for training machine learning models or applications in downstream tasks, we would
like to verify that they are bound to meaningful data patterns. We make similarities
interpretable by providing detailed explanations that connect the observed similarity
to the interaction between relevant features in the data. We develop BiLRP, a
scalable and theoretically founded method to systematically decompose the output of
an already trained deep similarity model on pairs of input features. Our method can
be expressed as a composition of multiple explanations computed using layer-wise
relevance propagation (LRP), which was shown to scale to highly nonlinear models.
In our experiments, we demonstrate that BiLRP robustly explains complex similarity
models, e.g., built on VGG-16 deep neural network features. Then, we turn to an
open problem in the digital humanities and build a model for the detailed assessment
of similarity between historical documents such as astronomical tables. For this highly
engineered and problem-specific similarity model, BiLRP provides transparency and
brings verifiability, which enables us to draw corpus-level historical insights.
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This chapter is based on the following works and partly includes already published
material from:

[139] O. Eberle, J. Biittner, F. Krautli, K.-R. Miiller, M. Valleriani and G. Montavon.
Building and Interpreting Deep Similarity Models. In IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 44, no. 3, pp. 1149-1161, 2022.

[140] O. Eberle, J. Biittner, H. El-Hajj, G. Montavon, K.-R. Miiller and M. Valleriani.
From Large Data Collections to Historical Insights: A Machine Learning Analysis
of Astronomical Tables in Early Modern Textbooks. (in preparation), 2022.

3.1 Introduction

Building meaningful similarity models that incorporate prior knowledge about the
data and the task is an important area of machine learning and information retrieval
[141, 142]. Good similarity models are needed to find relevant items in databases
[143, 144, 145]. Similarities (or kernels) are also the starting point of many machine
learning models, including discriminative learning [146, 147], unsupervised learning
[148, 149, 150, 151], and data embedding and visualization [152, 153, 154].

An important practical question is how to select the similarity model appropriately.
Assembling a labeled dataset of similarities for validation can be difficult since the
labeler would need to inspect meticulously multiple pairs of data points and assign
exact real-valued similarity scores. As an alternative, selecting a similarity model
based on performance on some proxy task can be convenient, e.g., [155, 156, 157,
158]. In both cases, however, the selection procedure is exposed to a potential lack
of representativity of the training data, which can result in ‘Clever Hans’ effects (cf.
Section 2.6.3). Here, we aim for a more direct way to assess similarity models and use
explainable Al to identify the data features that support the similarity prediction.

In the following, we bring explainable Al to similarity and consider similarity
models of the type: y(z,a’) = (¢pro---od1(x), ¢pro---o¢i(x')), i.e., dot products
built on some hidden layer of a deep neural network. We assume the similarity model
to be already trained. Explanation techniques developed in the context of classifiers,
e.g., [23, 159], cannot be directly applied since they typically assume some form of
local linearity whereas dot products have bilinearity. This motivates the here used
explanation method that adapts to this new setting. Our method, named ‘BiLRP’,
is illustrated in Fig. 3.1. BiLRP explanations can be produced in three steps:

+ Step 1: Feed a pair of inputs to the neural network to compute the feature
representations.

« Step 2: Compute an LRP explanation for each dimension of the two feature
representations.

« Step 3: Apply an outer product between the two collections of LRP explanations.

The output of BiLRP is an attribution of the predicted similarity score to the pairs
of input features (e.g., pixels) of the two inputs.

BiLRP can be embedded in the theoretical framework of deep Taylor decomposi-
tion [25]. Specifically, the procedure can be expressed as a collection of second-order
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Figure 3.1: The BiLRP method for explaining similarity. Resulting explanations
indicate the relevant interaction in terms of pairs of input features.

Taylor expansions performed in each layer. Elements of these expansions identify the
exact layer-wise redistribution strategy. Additionally, BILRP can be interpreted as
building a robustified Hessian of the similarity model at every layer. This procedure
allows us to extract meaningful explanations, even when the similarity is built on
complex deep neural networks.

We apply BiLRP on similarity models built at various layers of the well-established
VGG-16 image classification network [160]. Our explanation method brings useful
insights into the strengths and limitations of each similarity model. In addition,
we illustrate how the insights brought by BiLRP can inform the development of
an improved similarity model. We then move to an open problem in the digital
humanities that aims to infer similarities between tables and extract detailed historical
relations between them [161]. This enables us to study historical processes and
knowledge evolution at scale. For this, we build a similarity model that is not built
from standard pretrained features and instead uses engineered features that are
task-specific and able to handle the high heterogeneity of historical corpora. Again,
BiLRP proves useful by inspecting the similarity model and validating it from limited
data. Altogether, the BiLRP method brings transparency into similarity, which is a
key ingredient of machine learning, and paves the way for the systematic design and
validation of similarity-based machine learning models in an efficient, fully informed,
and human-interpretable manner.

3.1.1 Related Work

To gain insights into the similarity structure of large datasets, methods such as LLE
[162], diffusion maps [163], or t-SNE [154] provide directly interpretable embeddings
by projecting data points in a low-dimensional subspace where relevant similarities
are preserved. While these methods provide useful visualization, their purpose is
more to find global coordinates to comprehend a whole dataset than to explain why
two individual data points are predicted to be similar. We focus here on approaches
that have addressed explaining individual predictions, considering joint feature
interactions, and applications of similarity in machine learning models.
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Individual Predictions The question of explaining individual predictions has
been extensively studied in the context of machine learning classifiers. Methods
based on occlusions [16, 18], surrogate functions [159, 44|, and gradients [59, 19, 164,
22] have been proposed. Other approaches have used linear combinations of latent
feature representations [165], or reverse propagation [23, 16] to highlight the most
relevant features. Some approaches have been extended to unsupervised models, e.g.,
anomaly detection [166, 167] and clustering [26], and attention models have also been
developed to explain tasks different from classification, such as image captioning [168|
or similarity [169]. Our work goes further in this direction and explains similarity
built on general neural network models by identifying relevant pairs of input features.

Joint Feature Explanations Several methods for explaining model predictions
using joint features have been proposed. Some of them extract feature interactions
globally [170, 171]. Other methods produce individual explanations for simple
pairwise matching models applied to the input features [172], or to activation maps
of a convolutional network [173]. Other methods incorporate explicit multivariate
structures into the model to identify joint contributions [174], or compute pairwise
interaction effects using cross derivatives [175]. Estimating the integral of the
Hessian has been proposed as another method to extract joint feature explanations
in nonlinear models [176]. In comparison, our BiLRP method leverages the deep
layered structure of the model to robustly explain predicted similarity in terms of
input features.

Applications of Similarity in Models Several works improve similarity models
by leveraging prior knowledge or ground truth labels. Proposed approaches include
structured kernels [177, 141, 178, 179], and siamese or triplet networks [180, 181, 182,
183, 184]. Beyond similarity, collaborative filtering [185], transformation modeling
[186], and information retrieval [187] also rely on building high-quality matching
models between pairs of data. We follow an orthogonal objective here since we
assume an already trained, well-performing similarity model and aim to make it
explainable to enhance its verifiability and enable the extraction of insights from it.

3.2 Towards Explaining Similarity

In this section, we present approaches to explain the predictions of an already trained
similarity model in terms of its input features. We first discuss the case of a simple
linear model, and then extend the concept to more general nonlinear cases.

Let us begin with a simple scenario where , 2’ € R? and the similarity score is
given by some dot product y(z,z’) = (Wx, Wz'), with W a projection matrix of
size h x d. The similarity score is bilinear with (2, 2’). This score can be naturally
attributed to pairs of input features (4,4') by rewriting it as the sum:

y(m7 x/) = Eii’ (W,iv W,i’> ’ xix;’
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and identifying the elements of the sum as the respective contributions. We observe
that input features interact to produce a high or low similarity score.

In practice, more accurate models of similarity can be obtained by relaxing the
linearity constraint. Consider a similarity model y(x, ') = (¢(x), ¢(2’)) built on
some abstract feature map ¢: R? — R" which we assume to be differentiable. A
simple and general way of attributing the similarity score to the input features is to
compute a Taylor expansion [23] at some reference point (&, &'):

y(z,2') = y(, &)
+ 32 [Vy(@, )i (zi — %)
+ 2o [Vy(@, @) (2}, — 7))
+ 3 V(@ @) air (w3 — T) (2 — T)
+...

Here, V? denotes the Hessian. The explanation is obtained by identifying the multiple
terms of the expansion. As for the linear case, some of these terms can be attributed
to pairs of features (i,i'). For special choices of functions, namely when ¢ is a
piecewise linear positive homogeneous function, we find that choosing the reference
point (Z,&') = 0 - (x, x’) with ¢ close to zero leads to a simplified ‘Hessian x Product’
formulation:

y(@,2') = L [V2y(@, )i i 2, (3.1)

where second-order contributions can be directly computed. We will use this Hessian-
based formulation as a baseline method in the evaluation experiments.

3.3 Explaining Similarity with BiLRP

In the following, we introduce the BiLRP method for explaining similarities. It is
based on combining second-order Taylor expansions for producing explanations in
terms of pairs of input features and the layer-wise relevance propagation (LRP) [23]
technique that robustly explains complex deep neural network predictions [8, 188]
(cf. Section 2.3).

BiLRP assumes as a starting point that the similarity score is structured as a
dot product over features of a neural network:

y(mvm,) = <¢L Ot O@bl(m)a ¢L O O¢1(m/)>'

The functions ¢, ..., ¢r are the different layers of the network and can either be
linear/ReLU layers, or more general positively homogeneous functions. We note, the
same network can also be written as a single network y(x,x’) = ¢y o--- o1 (x,x’)
where 1 summarizes the two branches of the computation. Then, inspired by LRP,
the BiLRP method applies a message passing procedure from the top layer where
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y(z,x')

Figure 3.2: Annotated diagram to illustrate the map used by DTD to derive BiLRP
propagation rules. The map connects activations at some layer to relevance in the layer
above.

the similarity score is produced to the input layer where the explanation is formed.
However, unlike standard LRP, BILRP sends messages between pairs of neurons that
jointly contribute to the similarity score.

We next describe how these messages are obtained from second-order Taylor
expansions in Section 3.3.1. We discuss the theoretical properties of BILRP in Section
3.3.2 and demonstrate how it can be interpreted as building a robustified Hessian of
the similarity model. Finally, Section 3.3.3 shows how BiLRP can be computed in
a way that makes use of multiple LRP computations, thereby considerably easing
implementation.

3.3.1 Deriving BiLRP Propagation Rules

To build meaningful propagation rules, we use the ‘deep Taylor decomposition’ (DTD)
[25] framework that consists of applying Taylor expansions at each layer to identify
how redistribute the prediction to the layer below.

Assume we have already run a few steps of propagation starting from the output
up to some intermediate layer of the network. At this stage, we have an attribution
of the similarity score on pairs of neurons at this layer. Let Rpi be a ‘relevance
score’ that measures the share of similarity that has been attributed to the pair of
neurons (k, k') at this layer. In the DTD framework, this quantity is first expressed
as a function of the vector of activations a in the layer below. The relation between
these two quantities is depicted in Fig. 3.2. Then, DTD seeks to perform a Taylor
expansion of the function Ryi/(a) at some reference point a:

Rypr(a) = Ry (a)
+ 22V Ri (@)l - (a5 — aj)
+ 25 [VRy (@)l - (aj — ajr)
+ 37 [V Ry (@)1 - (aj — aj) (a0 — ayr)
T
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3.3 Explaining Similarity with BiLRP

so that messages R;j. i can be identified. In practice, the function Ry (a) is
difficult to analyze because it subsumes a potentially large number of forward and
backward computations. Therefore, DTD introduces the concept of a ‘relevance
model’ Ry (a), which locally approximates the true function Ry (a), but only
depends on the neighboring parameters and activations [25]. Assume that relevance
propagated up to a certain layer can be modeled as

Ry (@) = agap ci,

i.e., a product of activations in the two branches of the similarity computation,
multiplied by a term ¢y assumed to be constant and set in a way that }A%kk/(a) = Ry
This relevance model is also justified later in Proposition 3. Then, DTD seeks to
propagate the modeled relevance to the layer below by identifying the terms of a
Taylor expansion. In the following, we distinguish between (i) linear/ReLU layers,
and (ii) positively homogeneous layers (e.g. min- or max-pooling). For each case, we
first specify the specific relevance model, select and analyze appropriate root point
choices and finally arrive at the layer propagation rule.

Linear/ReLU Layers
For linear/ReLU layers [189], the relevance model can be written as:
]:—Ekk’ (a) = QAL Ckk'
+ +
— () (Syapw) o

When neurons ay, and ay are jointly activated (i.e. ag, agr > 0), a second-order Taylor
expansion of Ry at some reference point a is given by:

Ry (@) = (X ajwir) (X5 ajrwyre) crr
+ 32505 — a5 win (X ajrwjine ) crrs
+ 205 (325 @jwsn) (ay — ajo)wyp e
+ ij/(a]‘ - aj)wjk(aj/ - 6j/)wj/k/ckk/.
BiLLRP chooses the reference point a to be subject to the following two constraints:

1. The point should be very close to the ReLU hinges of neurons k and k" (but
still on the activated domain)

2. The point should lie on the plane {a(t,t')| ¢, € R} where

[a(t,t)]; = aj —ta; - (1+7 - Luy,>0)
[at,t)]y = ajy —t'aj - (1 +7 - 1u,,,>0),

with v a hyperparameter.
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We can now analyze the different terms of the expansion at this reference point and
see that the zero-order term vanishes, and the first-order terms are also zero because
the reference point is chosen at the intersection of the ReLLU hinges of neurons k&
and k', hence the non-differentiated term is zero. The interaction terms are given by
Rjjr i = tt'ajajp(wji) p(wjr )crry with p(wjr) = wji + ’ywjk with the remaining
product of parameters tt’ still to be resolved. Because we expand a bilinear form,
and since zero-order and first-order terms vanish, the constraint ij, Rjjr g = Rypr
must be satisfied. This constraint allows us to resolve the product tt’, leading to the
following closed-form expression for the interaction terms:

ajaj p(wjk)p(wj) R
G’ ajajzp(wjk)p(w]/k/)

/.

Rjjre i =
77 Z

This propagation rule is also consistent with the case where a; or ay are zero and
where no relevance needs to be redistributed. Aggregate relevance scores for the
layer below are obtained by summing over neurons in the higher layer:

Rjjr =2 g Bjjrionr
_ Z ajaj p(wjk)p(wj) R (3.2)
o 25 ajaj p(wik) p(wyk)

This last equation is the propagation rule used by BiLRP to propagate relevance in
linear/ReLU layers. This propagation rule can be seen as a second-order variant of
the LRP-v rule [64] used for explaining DNN classifiers. From this rule it follows
that a pair of neurons (7, j') is assigned relevance if the following three conditions
are met:

(i) it jointly activates,
(ii) some pairs of neurons in the layer above jointly react,
(iii) these reacting pairs are themselves relevant.

Positively Homogeneous Layers

When a; and ays are positively homogeneous functions of their input activations, i.e.,
min- and max-pooling layers, the relevance model can be expressed in terms of the
Hessian:

ékk/(a) = QrQ' Crk!
= (3 aj[Varl;) (X ajr[Vaw]y) crw

— Z]j’ ajaj/ [vQCLkak/]jj/Ckk/.

The last form can also be interpreted as the interaction terms of a Taylor expansion of
Ry at a = ea with € almost zero. Zero-order and first-order terms of the expansion
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vanish, and interaction terms can be rewritten in a propagation-like manner as:

ajaj [Viagaw];j
Z]]/ a;a; [V akak/]j]

Rjjre ik = k!

and finally, we arrive at the BiLRP propagation rule for positively homogeneous
layers

aja; | V agagl;i
= Ry (3.3)
ez % Z]J/ ajaj[V2aga];j

This propagation rule has a similar interpretation to the previous case. In particular,
it also requires for (j, j') to be relevant that the corresponding neurons activate, that
some neurons (k, k') in the layer above jointly react and that the latter neurons are
themselves relevant.

3.3.2 Theoretical Properties of BiLRP

An important property of LRP [23] is conservation, i.e., the relevance scores assigned

to the input features sum to the prediction output!. Similar results can be obtained
for BiLRP.

Proposition 1. For deep rectifier networks with zero biases, BiLRP is conservative,
i.e. > Rio = y(z, ).

Proof. We first show conservation when propagating with Eq. (3.2) in a linear/ReLU
layer:

a;a;plw W i1t
S Ry ZZ j j/’ k) P( jk) Ry

I i i kK ]j’ a]a’] p(w]k)p(w]/k?’)

22 ajag p(wik) p(wjig)
=y =y i S Ry = Y R
o 2 ajagp(wik) p(wyn)

The same conservation property can be shown for the propagation rule in Eq. (3.3).
Because these rules are applied repeatedly at each layer, we get the chain of equalities
where we observe that conservation also holds globally:

i Rivv =+ =255 Rjje = Y Biw = -+ = y(=, ).

A result due to [21] is that application of a special case of LRP (referred by [64] as
LRP-0, or LRP-vy with v = 0) at each layer of the network produces an explanation
that is equivalent to Gradient x Input. A similar result can be shown for BiLRP.

Proposition 2. When v =0, explanations produced by BiLRP reduce to those of
Hessian x Product.

In LRP, exact conservation requires using non-dissipative propagation rules (e.g. LRP-0 and
LRP-v), as well as avoiding contribution of biases (e.g. by training a model with biases set to zero).
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Proof. Relevance scores in linear/ReLU layers can be rewritten as R;j; = ajajicj;
and Ryp = agapcgr and observing that for v = 0, we have p(wjr) = wji, the
propagation from one layer to another can be written for Eq. (3.2) as:

Qg ag’

Ciil = WikW ;! k! CL k!
3J Z JEW'k kk
Lk’ Z] a]w]k Z]’ aj'wj’k’

= Z WikWjk Lay>01a,,>0Ckk
Kk

=Y [Vawl;[Vaw]jcrw,
v

and similarly for Eq. (3.3) as:

cjjt = >_[V2araw]jjcrw
kE’

= Z[Vak]j[Vak/]j/ckk/.
kk'

For the considered class of functions, this relation is equivalent to the formula for
propagating second-order derivatives (cf. [190]), where ¢;j; and cgp denote [V2y];;r
and [V2y]u respectively. Hence, we finally arrive at the quantity c;y = [Vl
and therefore R;; = xix;, ¢ 18 equivalent to ‘Hessian x Product’. This theoretical

connection also hints at a more robust behavior of BILRP when v > 0. In this case
the discontinuity of the ReLLU derivative disappears, and the propagation procedure
can consequently also be interpreted as building a robustified Hessian of the similarity
model. We demonstrate empirically in Sections 3.5 and 4.5 that non-zero values of
give better explanations.

We highlight in the following the product structure of relevance scores produced
by BiLRP at each layer. The modeling of c;;, cppr,... as constant leads to easily
analyzable relevance models from which the BiLRP propagation rules an be derived.

Proposition 3. The relevance computed by BiLRP at each layer can be rewritten as
Rjj = ajajicjjr, where cj is locally approximately constant.

Proof. In the top layer, we have cgrr = lig(x)=id(k), Which is constant and where
‘id’ is a function returning the neuron index in its respective branch. Applying an
inductive argument, assume that at some layer, cgy is locally approximately constant,
we would like to show that the same holds for c;; in the layer below. Relevance
scores in Eq. (3.2) can be rewritten as R;; = ajajcjjr with

+ +
ciyr = Y p(wi)p(wjr) (3 a5wie)” (Xy aywiw)
oW T agagp(wik) p(wyi)

The term c;; depends on a; and aj only through nested sums, which can be
seen as diluting the effect of these activations, and the term cpis that we have
assumed as a starting point to be locally approximately constant. Similarly,
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for Eq. (3.3), the redistributed relevance can be written in product form using
cjjr = Sopw [V2akaw]jjcpre. This time, ¢ depends on local activations through
a combination of a nested sum and a second-order differentiation, with the same
diluting effect as above, and the term cgs which is locally approximately constant.

Overall, in both cases, the weak dependency of c;;» on local activations provides
support for treating this term as constant in the relevance model used by DTD.

3.3.3 BiLRP as a Composition of LRP Computations

A limitation of a direct application of the propagation rules of Section 3.3.1 is
that we need to handle at each layer a number of relevance scores, which grows
quadratically with the number of neurons. Consequently, for large neural networks,
a direct computation of these propagation rules is unfeasible. However, the relevance
scores at each layer can also written in the factored form:

Rip = S0 | RemRivm
Rjj =Yt _ i RjmRjim,

where h is the dimension of the top-layer feature map. The proof relies on the insight
that the dot product similarity at the top layer can be rewritten in a factored form,
and from which the above relevance scores can then be factorized [139]. Then, the
factors can be computed iteratively as:

_ajp(wig)
Ry 3.4
Z Z a;jp(w;k) ; 34
for linear/ReLU layers, and
aj Vak
_GIVARG R, 3.5
Z > ayVa, (3:5)

for positively homogeneous layers. The relevance scores that result from applying
these factored computations are strictly equivalent to those one would get if using
the original propagation rules of Section 3.3.1.

Furthermore, in comparison to the (# neurons)? computations required at each
layer by the original propagation rules, the factored formulation only requires
(# neuronsx 2h) computations. The factored form is therefore especially advantageous
when h is low. In the experiments of Section 4.5, we will improve the explanation
runtime of our similarity models by adding an extra layer projecting output activations
to a smaller number of dimensions.

Lastly, we observe that Equations (3.4) and (3.5) correspond to common rules
used by standard LRP. The first one is equivalent to the LRP-v rule [64] used
in convolution/ReLU layers of DNN classifiers. The second one corresponds to
the way LRP commonly handles pooling layers [23]. These propagation rules
apply independently on each branch of the similarity model. Thus, BiLRP can
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Similarity computatlon BiLRP explanation

Figure 3.3: Illustration of our approach to compute BiLRP explanations. Left: In
the forward pass of the neural network, input examples are mapped until the layer
at which the similarity model is built. Right: One pass of LRP is computed for each
neuron activation in this layer during the backward pass. The resulting relevance arrays
from each branch are recombined into a single explanation of predicted similarity that
contains the relevance scores for each feature interaction.

be implemented as a combination of a series of LRP computations that are then
recombined at the input layer:

h
BILRP(y,@,a') = > LRP([¢, 0+ -+ 0 ¢}, @) @ LRP([61, 0 -+ - 0 61}, @),

m=1

This modular approach to compute BiLRP explanations is presented in Fig. 3.3.
BiLRP can therefore be easily and efficiently implemented based on existing
explanation software. We note that the modular approach described here is not
restricted to LRP and other explanation techniques could be used in the composition
to compute the respective relevance maps. This would however lose the interpretation
of the explanation procedure as a deep Taylor decomposition.

3.4 Visualization of BiLRP Explanations

To make the additional information of explanations that capture feature interactions
human-interpretable, we have developed visualization approaches described in the
following. The relevant features that contribute to the similarity prediction can be
described by the polarity and magnitude between a pair of features as well as their
respective location. In scenarios for which the number of features is small, BILRP
explanations can be visualized directly by representing relevant feature interactions
using connecting lines between features. Polarity can be indicated by coloring the line
in red for positive relevance scores, and in blue for negative scores. The magnitude
of these scores can be rendered using an opacity parameter . However, the number
of possible connections grows quadratically with the number of features and we use
the following two approaches, coarse-graining and a specific rendering approach, to
reduce the visual explanation complexity and to make them easier to comprehend.
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3.4.1 Coarse-Grained Explanations

With increasing input dimensions d, the resulting BILRP explanation of size d? can
grow quite large. In practice, similarity does not necessarily need to be attributed
to every single pair of pixels or input dimensions. A coarse-grained explanation in
terms of groups of features jointly representing a super-pixel, a character, or a word,
is often sufficient. Let (Zy,Zs,...) and (Z}],Z5,...) be two partitions of features for
the two input examples & and x’. These partitions form the coarse-grained structure
in terms of which we would like to produce an explanation. Coarse-grained relevance
scores are then given by:

Rrp =3 x> ier Riir-

When the original explanation is conservative, it can be verified that the same holds
for the coarse-grained explanation (3 77 Rz = Y 770 Y ierr Riit = D i Riir)-

3.4.2 Rendering Explanations

When rendering all lines in the explanation tensor, it can be difficult to separate
the typically many low-relevant lines from the few highly-relevant ones. In order
to further reduce the visual complexity of the explanation scores, we set @ = 0 for
zero or near zero relevance scores, and o = 1 for the largest scores and render the
explanation as described in Algorithm 1.

Algorithm 1 Rendering of BiILRP explanations

Rz < 3 ier D e Riw (coarse-graining)
Rrz <+ Rrp/ E[R:,)] (normalization)
Rz < Rgp — clip(Rzz, [—1,1]) (sparsification)
A=h-1
Rrp + Clip(RZI/, [—A, A])/A (thresholding)
for RII’ 7é 0 do

a = |Rzp|P (set opacity)

if Rz7+ > 0 then
connect(Z,Z’, red, «)
else
connect(Z,Z’, blue, «)
end if
end for

The procedure pools relevance scores on super-pixels, normalizes them, shrinks them
so that only a limited number of connections need to be plotted, thresholds them
so that they fit into a finite color space, and raises them to some power p. The
parameter [ controls the level of sparsification and we tune it mostly for computational
reasons. The parameter h forces all scores beyond a certain range to be plotted to
the maximum opacity value. The parameter p lets the explanation focus on all or
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the highest relevance scores. A large value for p makes the visualization more easily
interpretable, however contributions to similarity that are spread to a larger group
of input features can become visually imperceptible.

3.5 Evaluation of BiLRP

This section tests the ability of the BILRP method to produce faithful explanations.
Generally, ground-truth explanations of machine learning predictions, especially
nonlinear ones, are hard to acquire [8, 66]. Thus, we consider a synthetic scenario to
evaluate whether the correct feature interactions are highlighted by the explanation
method. We use a hard-coded similarity model and train a neural network to match
the predictions of the former exactly. The structure of the hard-coded model is
chosen such that extract ground-truth explanations in the form of relevant interacting
features can be obtained. After training, the extracted explanations from the neural
network should match for a faithful explanation method. This setting allows us to
obtain ground-truth explanations to evaluate BILRP against baseline methods.

Setup The hard-coded similarity model takes two random sequences of 6 digits
as input and counts the number of matches between them. The matching elements
between the two sequences form the ground truth explanation. The neural network
receives an input matrix @ € RS’FX 10" with each row representing the encoding of a
digit in the form of a vector R}ro. We introduce correlation between the digit vectors
to make the task more difficult and avoid undesired solutions, e.g., memorizing input
sequences. The input is then fed through two hidden layers of size 100 and a top
layer of size 50 that computes the output feature map. The network is trained for
10, 000 iterations of stochastic gradient descent to minimize the mean square error
between predictions and ground-truth similarities. After training, the neural network
can solve the task perfectly with a final error of 1075.

Benchmark Methods Because there is currently no well-established method for
explaining similarity, we consider three simple baselines and use them as a benchmark
for evaluating BiLRP:

— ‘Saliency’: R;y = (%‘U;’)Q
— ‘Curvature: R;y = ([V2y(z,2')]ii)?

— ‘Hessian x Product’: Ry = z;al, [V2y(z, )]

Results FEach explanation method produces a scoring over all pairs of input features,
i.e., a (6 x 10) x (6 x 10)-dimensional explanation. The latter can be pooled over
embedding dimensions to form a 6 X 6 matrix connecting the digits from the two
sequences as introduced in Section 3.4.1. Results are shown in Fig. 3.4. A better
matching between the ground truth data and the produced connectivity pattern
indicates a better explanation method, which we measure using the average cosine
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similarity (ACS). High scores are shown in red, low scores in light red or white, and

negative scores in blue.

Truth Saliency Curvature  Hess x Prod BiLRP

ACS: 0.31 0.30 0.77 0.89

Figure 3.4: Benchmark comparison on synthetic data, which offers ground-truth
similarity explanations. The ability of an explanation method to match this ground
truth is measured using the average cosine similarity (ACS).
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8 o7s
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T T T
7=0.0 0.25 0.5 0.75 v=1.0

Figure 3.5: Effect of the BILRP parameter « on the average cosine similarity between
the explanations and the ground truth.

We observe that the ‘Saliency’ baseline does not differentiate between matching
and non-matching digits. This is explained by the fact that this baseline is not
output-dependent and thus does not know the task. Although sensitive to the output,
the ‘Curvature’ baseline does not improve over Saliency. The ‘Hessian x Product’
baseline, which can be seen as a special case of BILRP with v = 0, matches the
ground truth more accurately but introduces some spurious negative contributions.
By choosing an appropriate BILRP parameter v (here set to 0.09), these negative
contributions are considerably reduced.

This visual inspection is validated quantitatively by considering a large number
of examples and computing the ACS between the produced explanations and the
ground truth with an ACS of 1.0 indicating a perfect match with the ground truth.
‘Saliency’ and ’Curvature’ baselines have low ACS. The accuracy is strongly improved
by ‘Hessian x Product’ and further improved by BiLRP.

The effect of the parameter v of BILRP on the ACS score is shown in Fig. 3.5.
We observe that the best parameter « is small but non-zero. Like for standard LRP,
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the explanation can be further fine-tuned, e.g., by setting the parameter v different
at each layer or by considering a broader set of LRP propagation rules [191, 64].

3.6 Interpreting Deep Similarity Models

Next, we will use BiLRP to gain insight into more complex similarity models that
are built on the well-established VGG-16 convolutional neural network [160] that
was trained on the task of object classification.?

Setup We build the similarity model on the output activation at a particular
processing layer and compute a dot product on the neural network activations by
computing

y(:c, CL'/) = <VGG;31 (ZB),VGG;gl((B,»,

using layer 31 that corresponds to the last layer of features before the classification
step. The mapping from input to layer 31 is a sequence of convolution/ReLU and
max-pooling layers. It is therefore explainable by BiLRP. However, the large number
of dimensions entering in the dot product computation (512 feature maps of size
35 X 3—h2 where w and h are their dimensions), makes a direct application of BiLRP
computationally expensive. To reduce the computation time, we add a random
projection layer after the last layer that maps activations to a lower-dimensional
subspace. In our experiments, we find that projecting to 100 dimensions provides
sufficiently detailed explanations and achieves the desired computational speedup.
We set the BiLRP parameter v to 0.5,0.25,0.1,0.0 for layers 2-10, 11-17, 18-24,
25-31, respectively. For layer 1, we use the z8-propagation rule, which specifically
handles the pixel domain [25]. Finally, we apply an 8 x 8 pooling on the output of
BiLRP to reduce the size of the explanations. Visualization parameters are given in
Appendix A.1.

Results Figure 3.6 (A-F) shows our BiLRP explanations on a selection of image
pairs taken from the Pascal VOC 2007 dataset [192] and resized to 128 x 128
pixels. Positive relevance scores are shown in red, negative scores in blue, and score
magnitude is represented by opacity. Example A shows two identical images being
compared. BiLRP finds that eyes, nose, and ears are the most relevant features to
explain similarity for a cat. Example B shows two different images of birds. Here,
the eyes are again contributing to the high similarity. In Example C, the front part
of the two planes is matched. Examples D and E show cases where the similarity is
not attributed to what the user may expect. In Example D, the horse’s muzzle is
matched to a sheep’s head. In Example E, while we expect the matching to occur
between the two large animals in the image, the true reason for the similarity is

2Demonstration code for implementing BiLRP is available at: https://github.com/oeberle/
BiLRP_explain_similarity
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3.6 Interpreting Deep Similarity Models

Figure 3.6: Application of BiLRP to a dot product similarity model built on VGG-16
features at layer 31. Top: BiLRP explanations on different pairs of input images from
the Pascal VOC 2007 dataset. Red and blue colors indicate positive and negative
contributions to the similarity. Bottom: Effect of the BiLRP parameter v on the
explanation.

a small white calf in the right part of the first image. In example F, the scene is
cluttered, does not let appear any meaningful similarity structure, and we observe
that while a cat appears in both images these are not highlighted by the explanation.
We also see in this last example that a substantial amount of negative relevance
appears, indicating that several joint patterns contradict the similarity score.

The effect of the parameter  on the explanation is shown in Fig. 3.6 (G). A low
value of v gives noisy explanations with many negative scores. A high value of ~
produces explanations that are mainly positive but also less selective for the exact
patterns of similarity. Intermediate values of v produce the best explanations. In
addition, we demonstrate the effect of different rendering parameters p as presented
in Figure 3.7. Here, we select p = 2, which results in explanations of visual complexity
that are visually not too sparse yet not overly complex.

Overall, the BiLRP method enables insight into the strengths and weaknesses of
a similarity model by revealing the features and their relative poses and locations
that the model is able or not able to match.
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Figure 3.7: Effect of the parameter p on the rendering of the explanation. The higher
the parameter p, the sparser the explanation.

3.6.1 How Transferable is the Similarity Model?

Through their layered structure, deep neural networks extract feature representations
at different processing steps that provide a natural framework for multitask and
transfer learning [193, 194]. DNN-based transfer learning has seen many successful
applications [195, 196, 197]. In this section, we investigate the problem of transferring
a similarity model to some task of interest. We will use BiLRP to compare different
similarity models, and show how their ability to transfer feature representations can
be assessed from an inspection of BiLRP explanations.

Setup We take the pretrained VGG-16 model and build dot product similarities
after each max-pooling layer at layers 5,10, 17,24, 31:

YO (x,2') = (VGG.5(x), VGG 5(z')),

) (2, 2') = (VGG (@), VGG ().

Like in the previous experiment, we add to each feature representation a random
projection onto 100 dimensions to make explanations faster to compute. In the
following experiments, we use similarity in the context of different identification
tasks. The two datasets ‘Unconstrained Facial Images’ (UFI) [198] and ‘Labeled
Faces in the Wild’ (LFW) [199] are used in a face identification task, for which a
good similarity model is needed to extract the closest matches in the training data
reliably [181, 200]. Our third dataset focuses on historical illustrations from ‘The
Sphaera Corpus’ [161, 201]. This material is composed of 358 scanned academic
textbooks from the 15th to the 17th century and contains texts, illustrations and
tables related to astronomical studies. The similarity between these entities is of
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interest, as it can serve to consolidate historical networks and enable the automated
analysis of historical material at scale [184, 202, 203]. We will focus on similarity
between historic illustrations and return later to the Sphaera corpus in an extended
use case study on computational tables in Section 3.8.

Input images of faces and illustrations are fed to the neural network as images
of size 64 x 64 pixels and 96 x 96 pixels, respectively. We choose for each dataset a
pair composed of a test example and the most similar training example, and for each
pair, we compute the BiLRP explanations.

layer 17 layer 31

Unconstrained Facial Images (UFI)

Labeled Faces in the Wild (LFW)

1011 R T R RN

Illustrations —

Figure 3.8: Application of BiLRP to study how similarity built on VGG-16 features
transfers to various datasets. The resulting explanations of the similarity score are
shown for different processing steps at layers 17 and 31 of the VGG-16 model.

Results We present results for the similarity model at layer 17 and 31 in Fig. 3.8
and observe that the explanation of similarity at layer 31 is focused on a limited set
of features: the eyes or the nose on face images, and a reduced set of lines on the
Sphaera illustrations. In comparison, explanations of similarity at layer 17 cover a
broader set of features. These observations suggest that similarity is built on features
from the highest layers that are potentially capable of capturing very fine variations,
e.g., for the eyes, might not have kept sufficiently many other features to match
images accurately.
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To verify this hypothesis, we train a collection of linear SVMs on each dataset
where each SVM takes as input activations at a particular layer. On the UFI
dataset, we use the original training and test sets. On LFW and Sphaera, data
points are assigned randomly with equal probability to the training and test set.
The hyperparameter C' of the SVM is selected by grid search from the set of values
{0.001,0.01,0.1,1, 10,100, 1000} over 4 folds on the training set. Test set accuracies
for each dataset and layer are shown in Table 3.1.

Table 3.1: Accuracy of an SVM built on different layers of the VGG-16 network and
for different datasets.

layer
dataset  # classes 5 10 17 24 31
UFI 605 0.45 057 0.62 0.54 0.19
LFW 61 0.78 0.86 0.92 0.89 0.75

Sphaera 111 093 096 0.98 097 0.96

These results support the hypothesis initially constructed from the BiLRP
explanations. The Overspecialization of top layers on the original task leads to
a sharp drop in accuracy on the target task. Best accuracies are instead obtained
using features from the intermediate processing layers.

3.6.2 How Invariant is the Similarity Model?

To further demonstrate the potential of BILRP for characterizing a similarity model,
we consider the problem of assessing its invariance properties. Representations that
incorporate meaningful invariance are particularly desirable as they enable learning
and generalizing from fewer data points [204, 205, 206]. Invariance can, however,
be difficult to measure in practice: On one hand, the model should respond equally
to the input and its transformed version. On the other hand, the response should
be selective [207, 208], i.e., not the same for every input. In the context of neural
networks, a proposed measure of invariance that implements this joint requirement
is the local/global firing ratio [208].

Setup We consider an invariance measure for similarity models based on the
local/global similarity ratio:

<y($, m/)>locad .

Inv =
<y<w’ wl)>global

(3.6)

The expression (-)jocal denotes an average over pairs of transformed points (which our
model should predict to be similar), and (-)global denotes an average over all pairs of
points.

We study the layer-wise forming of invariance in the VGG-16 network. We use
the ‘UCF Sports Action’ video dataset [209, 210], where consecutive video frames
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readily provide a wealth of transformations (translation, rotation, rescaling, etc.),
which we would like our model to be invariant to, i.e., produce a high similarity
score. Videos are cropped to a square shape and resized to size 128 x 128. We define
(-)1ocal to be the average over pairs of nearby frames in the same video (At < 5), and
(-) global to be the average over all pairs, also from different videos.

Table 3.2: Invariance measured by Eq. (3.6) at various layers of the VGG-16 network
on the UCF Sports Action dataset.

layer
5 10 17 24 31

INV‘2.30 231 243 287 4.00

Results We present invariance scores obtained for similarity models built at various
layers in Table 3.2. Invariance increases steadily from the lower to the top layers of
the neural network and reaches a maximum score at layer 31. We now take a closer
look at the invariance score in this last layer by applying the following two steps:

(i) The invariance score is decomposed on the pairs of video frames that directly
contribute to it, i.e., through the term (-)joca1 of Eq. (3.6).

(ii) BiLRP is applied to these pairs of contributing video frames in order to produce
a finer pixel-wise explanation of invariance.

Figure 3.9: Explanation of measured invariance at layer 31. Left: The similarity matrix
associated to a selection of video clips. The diagonal band outlined in black contains
the pairs of examples in (-)1ocal. Right: BILRP explanations for selected pairs from the
diagonal band.
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With this two-step analysis, we take a detailed look at the similarity structure
that underlies the invariance score for a selection of videos and pairs of video frames,
as shown in Fig. 3.9. The first example shows a diver rotating counterclockwise as
she leaves the platform. We observe that the contribution to invariance is attributed
to the different parts of the rotating body in expected ways. The second example
shows a soccer player performing a corner kick. While part of the invariance is
attributed to the player moving from right to left, a considerable amount of relevance
is also attributed in an unexpected manner to the static corner flag behind the player.
The last example shows a golf player as he strikes the ball. Again, invariance is
unexpectedly attributed to a small red object in the grass. This small object would
have likely been overlooked, even after a preliminary inspection of the input images.

The reliance of the invariance measure on unexpected objects in the image (corner
flag, small red object) can be seen as another example for ‘Clever Hans’ behavior
[30]. The high nominal model performance on a given task can mislead the user
to believe that the model works as intended. Similar ‘Clever Hans’ effects can be
observed beyond video data, e.g., when applying the similarity model to historical
illustrations in the Sphaera corpus. Figure 3.10 shows two pairs of illustrations
whose content is equivalent up to a rotation and for which our model predicts a high
similarity score. In both cases, BiLRP reveals that the high similarity is not a result
of correctly matching the rotated patterns but instead capturing the interaction of
fixed elements at the center and the border of the image.

Figure 3.10: Pairs of illustrations from the Sphaera corpus explained with BiLRP.
The high similarity originates mainly from matching fixed features in the image rather
than capturing the rotating elements.

Overall, we have demonstrated that BiLRP can be useful to identify unsuspected
and potentially undesirable reasons for high measured invariance. Practically,
applying this method can help to avoid deploying a model with false expectations in
real-world applications.

3.7 Building Better Similarity Models

In this section we discuss how to produce better and more useful similarity models
with the help of BILRP. First, we show in Section 3.7.1 how the interpretable feedback
provided by BiLRP can be used to fix a flawed similarity model. Then, we turn to
a use case in Section 3.8, where we build a domain-specific similarity model in the
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digital humanities, which is both predictive and explainable with BiLRP, and that
enables the discovery of historical insights.

3.7.1 Fixing a ‘Clever Hans’ Similarity Model

In the example of Fig. 3.10, BILRP has revealed a Clever Hans effect of the similarity
model. We observe that the model assigns high similarity between rotated images
not by matching the rotated elements, but by matching the few elements that are
invariant to such rotation. With this particular decision structure, the model will
likely not generalize well to a broader set of images.

A simple mitigation strategy to force rotation invariance into the model, is to
compute the similarity score for all flips and rotations 7,7’ of the two input images
and output the maximum similarity score:

y" ) (@, a') = max y(r(x),7'(2")).
Note that 7,7' can be expressed as a linear operation on their input, and the
maximum function is also locally linear. With these simple transformations, BiLRP
remains applicable and the explanation is obtained in this case by applying BiLRP
to the flips/rotations corresponding to the highest similarity score. Explanations of
similarities predicted by the improved model are shown in Fig. 3.11.

Figure 3.11: Pairs of illustrations from the Sphaera corpus and BiLRP explanation for
the improved similarity model. Similarity captures rotating elements such as letters.

Compared to the original model (Fig. 3.10), some of the rotating patterns are
now being matched, for example, the sequence of letters ‘tic’ in the first pair of
images. However, this simple enhancement does not resolve all weaknesses of the
similarity model. In the second pair of images, we observe that the actual image
content, e.g., the planet’s triangular shadow, remains largely unattended. Therefore,
further enhancements of the similarity model, e.g., extracting additional features
from the images, are needed. Comprehensively fixing a similarity model would
require a specific analysis through many pairs of data points and their corresponding
explanations to systematically turn explanatory feedback into model improvements,
as discussed in Section 2.6.3.
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3.8 Use Case: Extracting Historical Insights in a Corpus-
Level Analysis of Astronomical Tables

We now turn to another challenge in the digital humanities that addresses the
automated processing of historical computational tables. These could so far only be
very selectively addressed due to the meticulous analysis process and the limited
number of experts needed to comprehend a single table. The high data heterogeneity
precludes the use of similarity models that are built from standard pre-trained feature
extractors. Instead, we use an engineered similarity model that can address the
peculiarities of historical data.

We use this approach to assess similarity between numeric tables extracted from
highly heterogeneous historical textbooks. We consider scanned numeric tables from
the Sphaera Corpus [161]. The tables in the corpus typically report astronomical
measurements or calculations of the positions of celestial objects in the sky. We take
a closer look at two exemplary table pages later in Fig. 3.13 (left).

Traditionally, historical research questions are investigated by considering single
case studies involving close reading and evaluating predefined sets of hypotheses on
limited data. To trace the history of science at scale, we are interested in analyzing
the evolution of scientific knowledge and its mechanisms, such as homogenization
and divergence of knowledge. But, the possibilities to analyze how science could
evolve in geographical and temporal dimensions are currently limited. The sheer
number of historical sources that would have to be analyzed in detail exceeds human
possibilities.? Instead, we develop a machine learning-assisted approach. For this
historical analysis, we require a well-predicting model that is able to robustly handle
the high data heterogeneity and for which we can also verify that meaningful and
reliable data features support the obtained predictions.

3.8.1 Heterogeneity in the Sphaera Corpus

The challenges posed by heterogeneous data are a key limiting factor to automate
processes and generally, heterogeneity can be characterized by a lack of uniform
composition across samples in a dataset and makes up more than 90% of big data
[211]. Tt is also a characteristic feature of historical corpora, which can be attributed
to the printing process that has resulted in various irregularities and the more recent
and non-standardized digitization process across libraries and research institutions.
We illustrate some examples of the heterogeneity present in the Sphaera corpus using
digit and non-digit patches in Figure 3.12. Other sources of heterogeneity include the
very different states of preservation that have resulted in damaged, folded, wrinkled,
stained or de-saturated pages. The print process has also introduced noise due to

3The Spheara corpus contains & 10,000 table pages for which an expert would need to carefully
inspect each of the individual digits composing the table, and possibly their location in the table. A
manual assessment of similarity would require a meticulous examination of each table content from
which similarity scores can subsequently be computed, or 10,000 x 10,000 manual pairwise table
comparisons for an optimal result.
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Figure 3.12: Examples of Sphaera corpus patches that illustrate the large variability
in historical printing. All patches are extracted from the scanned material before any
pre-processing is applied. Left: Digit patches with human-annotated bounding boxes.
Right: Non-digit patches used as a contrastive learning signal. Patches are extracted via
randomly sampling regions from non-table pages.

the tedious task of typesetting tables with many numbers, resulting in unwanted
variations between identical tables. Many more sources of heterogeneity in the
Sphaera corpus can be identified, which precludes using standard machine learning
solutions. For example, end-to-end training pipelines assume that large amounts of
training data from sufficiently variable sources are available to handle more complex
data robustly. Instead, we use an ‘atomization-recomposition’ approach that is able
to make inferences using very few annotated material at a lower data complexity.

3.8.2 Atomization-Recomposition Approach

In an initial atomization step, the complex superposition of many features is
broken up into the smallest semantically meaningful unit, e.g., single digits. These
representations act as the basic building blocks which offer the possibility to
handle heterogeneity, robustness and invariance properties at an intermediate data
complexity. After the atomization model is trained to detect these building blocks
robustly, it can be used to recompose more complex and task-relevant features.

Atomization

To handle the high number of different printers and publishers who printed astronomic
tables in the Sphaera corpus and the corresponding number of different font types
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and sizes in combination with the heterogeneous quality of the digitized sources we
use a digit recognition model. For this, we build a convolutional neural network
and apply ReLU layers between the convolutional layers, except at the final layer.
The encoder network outputs 10 activation maps {a;(z)};2, for the digits 0-9. For
each digit j the network is trained to output a Gaussian blob positioned at the
digit location in map {a;(x)}. At the final layer we subtract a small bias term
b = 0.1 before the ReLLU layer in order to attenuate background activity. To model
variations in scan orientation and size, we identify the page scaling factor s and
rotation @, for which the single-digit activation maps are maximally activated (sum
of activations). The model is built from linear/ReLU and positive homogeneous
layers to remain explainable with BiILRP while retaining the necessary representation
power. Additional details on the architecture are given in Appendix A.2.1.

Recomposition

After handling the different sources of heterogeneity, we are now able to extract
single-digit activation maps robustly. These will serve as the basis to recompose
more complex and task-relevant features, which in our case are compositions of
single-digits such as bigrams. We compute bigram maps by applying an element-wise
‘min’ operation
ol (@;5,0) = min {a; (:5,0), 7(ax(@:5,0))},

which signals the presence of bigrams jk € 00-99 and can be seen as a continuous
‘AND’ [166] operation. In addition, we build features that detect isolated single digits
j € -0-—9- with - indicating that no digit activity is present in the neighborhood.

The function 7 represents a translation operation shifting activation maps by dzx.
We use multiple shifts as candidate alignments and identify digit compositions by
applying a spatial max-pooling layer:

a;(@) = max {al}) (@)}

The ‘max’ operation can be interpreted as a continuous ‘OR’, and determines at each
location whether a bigram has been found for at least one candidate alignment. This
results in a total of 110 feature maps, from which we extract a summarized vector
representation by globally pooling the evidence for each feature. This implements
translation invariance regarding the exact feature location. The final representation
is computed either by sum-pooling over the bigram activation layers or an additional
peak detection step that extracts a discrete feature count map from the activation
maps (cf. Appendix A.2.1.2).

3.8.3 Verifying the ‘Bigram Network’ with BiLRP

We next verify our approach on the task of predicting table similarity using BiLRP.
Examples of commonly used validation procedures include precision-recall curves
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Figure 3.13: Explainable Al and machine learning in the digital humanities. Left:
T-SNE visualization of the collection of tables from the Sphaera Corpus [161] from which
we extract two tables with identical content. Right: Detailed BiLRP explanations of
predicted similarities between the two input tables for our bigram approach and the
pretrained object recognition model VGG-16.

or the ability to solve a proxy task (e.g., table classification) from the predicted
similarities. These approaches require end-to-end label information, which is difficult
to obtain for the type of data considered here. Furthermore, when the labeled data
is not sufficiently representative, these procedures are potentially affected by the
‘Clever Hans’ effect.

In the following, we will use the explanatory feedback offered by BiLRP to verify
that the model indeed uses the desired numerical features to predict similarity. We
take a pair of tables (x, ), which a preliminary manual inspection has verified to
be similar. We then apply BiLRP to explain:

(i) the similarity score at the output of our engineered task-specific ‘bigram
network’,

(ii) the similarity score at layer 17 of a generic pretrained VGG-16 network.

For the bigram network, the BiILRP parameter « is set to 0.5 at each convolution
layer. For the VGG-16 network, we use the same BiLRP parameters as in Section
4.5. We show examples of our analysis in Fig. 3.13 (right).

The bigram network similarity model correctly matches pairs of digits in the two
tables. Furthermore, these relevant interactions are produced between sequences
occurring at different locations, thereby verifying the structural translation invariance
of the model. Pixel-level explanations further validate the approach by showing that
individual digits are matched in a meaningful manner. In contrast, the similarity
model built on VGG-16 does not distinguish between the different pairs of digits.
Furthermore, part of the similarity score is supported by task-irrelevant aspects,
such as table borders. In addition, BiLRP offers a way to extract relevant feature
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interactions at different granularity, e.g., on a more coarse level by pooling relevance
over pixel locations that results in patch-level explanations or a very detailed
explanation on the level of interacting individual pixels, as shown in Fig. 3.13
(right). Hence, for this particular table similarity task, BiLRP can establish the
superiority of the bigram network over VGG-16.

This assessment could be obtained from a single pair of tables. If, instead, we
had applied a validation technique that relies fully on similarity scores, significantly
more data would have been needed in order to reach the same conclusion with
confidence. This sample efficiency of BiLRP (and by extension, any successful
explanation technique) for the purpose of assessing reasonable model behavior is
especially important in the digital humanities or other scientific domains, where
ground-truth labels are often scarce and expensive to obtain.

3.8.4 Generating Corpus-Level Historical Insights

After having extracted representations for the full Sphaera Table Corpus we are now
in the position to analyze corpus-level trends at scale. In the following, we describe
two examples that we have identified: temporal shifts and geographical singularities
in printing.

Temporal Shifts in Printing

Many interesting phenomena in the history of science are linked to the evolution of
knowledge over time as scientific insights are being transformed, diverge into new
directions, and knowledge is extended or forgotten [212, 213, 214]. In the following,
we aim to investigate such effects in the Sphaera Table corpus and perform an
over-time analysis of the full corpus statistics.

Setup The books of the Sphaera corpus that contain at least one page of tables
were printed during a period of 153 years (1494-1647), over which publication rates
changed considerably. We use a sampling-based temporal analysis to deal with this
imbalanced distribution of available table pages over time. For each time step t; we
assign a sampling probability to each book page from a truncated normal distribution
N (t;, 0?) which sets probabilities for data points outside the interval (t; — o, t; + o)
to zero. At every step we sample N = 80 data points, determine their cluster
membership label, construct the cluster count histogram of size 1 x k and compute
the entropy H (pe) = — > p Peik 108(par k) of the cluster probability vector py € RI*F,
By this we measure to what extent new material can be grouped into previous clusters,
i.e., reproducing already established semantics versus populating new areas in the
embedding space, i.e., adding novel scientific knowledge, by computing the entropy
of the table distribution over clusters. We apply different digit density thresholds by
selecting all tables from a time step that have at least {0, 100, ..,300} digits.
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Figure 3.14: Corpus-level analysis of the Sphaera table pages. Top: Temporal evolution
of knowledge displayed by computing the entropy of cluster membership vectors (number
of tables in each cluster) for each time step. Gray to black lines correspond to a random
embedding baseline, colored lines correspond to the data from our corpus. Different
colors indicate a filtering threshold on the digit density per page, i.e., all pages containing
at least 100 digits. The clusters are shown as t-SNE visualization for three time intervals
indicating active clusters and cluster disk diameter is proportional to cluster size. We
observe a marked drop in entropy for tables with extensive numerical content between
1540 and 1560. This drop disappears after removing the fine-5 group, a subset of
tables that occur in Finé books that we identified as the dominant factor driving the
entropy change. Bottom: Geographical analysis of knowledge distribution for each print
location in alphabetical order using relative entropy. Low-output cities (<=100 tables)
are colored in light gray. For three selected cities, t-SNE visualization of the distribution
of the printed tables is provided.

Results The resulting entropy evolution is shown in Figure 3.14 (top). We observe
two particularly notable features that we describe in to following. First, around
t=1550 we find that the entropy is minimized and modulated by the digit density. A
subsequent historical investigation of the clustering distributions that were responsible
for the strongest absolute change in entropy between ¢ = {1540, ..., 1560} reveals that
this dip is likely the result of an exceptional episode, the printing of essentially the
same work five times between the years 1551 and 1555 by the same printer. This
work, Oronce Finé’s Sphere, contains many particularly high-density tables. If the
analysis is repeated with these five books artificially removed from the corpus, the
dip disappears as shown by the dashed magenta line in Figure 3.14 (top), which
suggests that it is indeed due to this particular episode in the printing history. This
provides proof of concept that we are able to identify singularities in the history of
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printing by our method of analysis, such as the unusually frequent reissue of a specific
book in a short period. Overall, our findings suggest that focusing on high-density
tables is necessary to reveal interesting temporal entropy changes at the full corpus
level. This can be explained by the fact that low-density tables carry less specific
mathematical information that does not vary greatly over time and instead often
contain more basic tables such as enumerated lists or table of contents.

Second, we observe a trend of increasing entropy until roughly 1570, when
saturation sets in. Lower entropy suggests that scientific knowledge encoded in
numerical tables stayed closer to previously published material, while higher entropy
signals the addition of semantically new tables. The books of the corpus, which all
focus on the same core knowledge, are printed in more and more places and reached
an ever-widening audience in this period. This effect can be described as knowledge
homogenization. Novel contents are added to this existing core of knowledge in
different ways, which signals processes of innovation during the first 100 years of the
period considered.

These processes could be identified from the entropy curves for the investigated
corpus of numerical tables. We next turn to a second analysis of effects related to
specific print locations.

Geographical Singularities in Printing

To study the varying knowledge production expressed by the tables printed, we use
the measure relative entropy for each of the 32 different book printing centers that
are distributed all over Europe.

Setup We calculate the difference between the observed cluster entropy H(p) to the
maximum attainable entropy at this location H (pmax). The latter quantifies for each
city the entropy of a hypothetical, uninformed and uniformly distributed production
process without memory of its print history and without outside influences. In this
scenario, none of the printed tables is expected to be similar to any other. Thus, the
relative entropy can be understood as a measure of the redundancy created by the
actual process of content production and distribution in print as compared to this
hypothetical process for each location.

Results Our analysis in Figure 3.14 (bottom) shows that relative entropy varies
strongly between print locations and that the minimum is reached for the cities of
Frankfurt am Main and Wittenberg. This result indicates that astronomic tables
printed in the treatises produced in Wittenberg and Frankfurt are more homogeneous
and, therefore that textbooks in general were more similar to each other than those
produced in other print locations. In Frankfurt, we identified that low relative
entropy can be attributed to the fact that a great part of its book production was
constituted by many reprints of the same editions. However, in Wittenberg the
case is different. It is known that the main Protestant Reformers, Martin Luther
and Philipp Melanchthon, meticulously designed and supervised the curriculum of
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the Wittenberg University [215] and that they worked in close contact with the
different printers and publishers that had moved their businesses to Wittenberg after
the Reformation [216]. Thus, we can conclude that the homogeneity of the works
produced in Wittenberg was due to political control of scientific knowledge executed
by the Reformers. This interpretation is consistent with and backed by the fact
that printed material on astronomic studies developed in the same period, mostly in
Wittenberg, remained constant for many decades and was highly influential all over
Europe [217, 218].

To summarize, we have presented how explainable Al can aid in enabling novel
scientific insights into domains for which sufficiently annotated material and end-
to-end learning are not feasible. Our atomization-recomposition approach is built
with transparency in mind that allows expert users, in our case historians, to
verify the extracted representations. Our corpus-level analyses have resulted in two
historically plausible singularities that describe knowledge evolution along temporal
and geographical axes.

3.9 Summary and Discussion

In this chapter, we have developed explanations that reflect the specific structure
present in similarity models. As demonstrated, it is important to get a detailed and
human-interpretable explanation of the predicted similarity before using it to train a
practical machine learning model. We have introduced a theoretically well-founded
method to explain similarity in terms of pairs of input features. The proposed
BiLRP method can be expressed as a composition of LRP computations and brings
explanations to the novel scenario of explaining similarity. The usefulness of BiILRP
was showcased on the task of understanding similarities as implemented by the
VGG-16 neural network, where it could predict transfer learning capabilities and
highlight clear cases of ‘Clever Hans’ predictions. Furthermore, for a practically
relevant problem in the digital humanities, BILRP was able to demonstrate with
very limited data the superiority of a task-specific similarity model over a generic
VGG-16 solution.

Limitations BiLRP inherits several properties from LRP, including its theoretical
connection to the deep Taylor decomposition and robustness. This lack of robustness
is a typical limitation of methods relying on the model derivatives, especially when
the function to be analyzed is a deep neural network [63, 8]. The use of more robust
propagation rules, such as LRP-vy can alleviate some of these effects resulting in
better explanations as presented in Section 3.5. LRP also inherits its dependence on
the specific model implementation and in our description of BiILRP, we have made
assumptions on the type of network layers, e.g., positively homogeneous functions.
While this includes many standard layers, in particular Linear/ReLU, Max-Pooling
and Min-Pooling layers, this sets constraints on the architecture choices for which
our analysis, e.g., on conservation, holds.
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Nevertheless, in practice, the BiILRP procedure developed here can serve as a
general strategy that consists of an initial computation of relevance contributions
from each branch at every output neuron and a subsequent construction of the full
relevance tensors that contain the feature-wise interaction scores. However, some
BiLRP properties such as conservation and the direct connection to the Hessian
formulation may not hold for other relevance propagation schemes.

For high-dimensional output feature maps, the LRP computation from each
feature neuron required by BiLRP, can become computationally expensive. In our
experiments on natural images using VGG-16, we have applied a random projection
layer to reduce complexity considerably. While both theoretical and experimental
findings support the efficiency and effectiveness of random projections [219, 220,
221, 222], the dimensionality reduction introduces some noise in the explanation
since different random projections may lead to different results. We observed in our
experiments that we could attain the desired speed-up of computations by selecting
a projection dimension of 100, which resulted in consistent and sufficiently detailed
explanations. Promising projection approaches for future work include principle
component analysis, clustering of local activations or sparse projections of the model
output, which can serve to further reduce representation complexity in meaningful
ways and alleviate computational costs.

Evaluating whether fine-grained similarity explanations accurately explain ground
truth data, especially in real-world scenarios, is an open problem. We initially
explored to test this on natural image datasets (e.g., MS COCO [223]) but observed
that this was not feasible due to a number of reasons discussed next. Inspired by
heatmap evaluations that compute overlap between explanation and segmentation
maps or bounding boxes for the considered class label [65, 224], we experimented with
quantifying the observed similarity flow as computed by BiLRP between bounding
boxes. For this, we used BiLRP explanations between same-class image pairs and
computed how much relevance one bounding box receives from the other and vice
versa. Similar to previous findings [224], we observed that this worked well for pairs of
closely cropped objects without complex image backgrounds but, in general, did not
provide a robust way for ground truth evaluation and we did eventually not further
pursue these experiments. As reported in several experimental findings [29, 225, 30],
image classification DNNs often ground their predictions not on the object alone but
also on the background and surrounding scene. This makes a segmentation-based
evaluation in real-world settings already difficult for standard heatmap explanations
and even more infeasible for the case of evaluating feature interactions. In addition,
explanations typically do not match segmentation masks since they highlight only
the relevant image features and object parts for the prediction instead of the full
object [65].

Assessing a method’s ability to explain the model prediction faithfully is commonly
performed using a feature flipping analysis and observing the impact on the prediction.
In settings that go beyond first-order explanations, this requires a procedure to add
or remove the isolated interaction of features. In CNNs this is challenging since
a masking of pixels will also affect other interactions due to the overlapping of
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neighboring receptive fields. In the next chapter, we will further investigate this in
the context of higher-order explanations for GNNs.

This currently impedes the evaluation of explanations that consider feature
interactions on real-world data. Until specific ground-truth annotations of similarity
become available, we consider synthetic datasets a well-suited approach to judging
explanation quality.

Similarity computations play a crucial role in machine learning. However, a high
and plausible similarity score may not necessarily be grounded in the expected features.
Our developed BiLRP approach has allowed us to compute detailed explanations
for similarity scores by identifying relevant interactions between pairs of features.
It provides an example of a model structure that motivates explanations beyond
first-order terms. It thus enables verification of similarity predictions widely used
in downstream tasks, such as information retrieval and visualization, and supports
improving machine learning models.
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Higher-order Explanations in Graph
Neural Networks

Graph neural networks (GNNs) are a widely used approach to represent and
make predictions on data that is best represented via graphs. Since the layer-wise
computations directly act on the input graph, GNNs preclude the use of explainable
AT approaches designed for standard neural networks. In the following, we consider
the graph explanation as a group of relevant features that result from a higher-order
expansion of the graph prediction. These higher-order contributions can be computed
via specific back-propagation schemes such as layer-wise relevance propagation
(LRP) and present a novel approach to explaining GNNs. The resulting GNN-LRP
explanation method is evaluated using specifically developed perturbation schemes
that are designed to use this additional information. Our results demonstrate the
benefit of going beyond attributions on input features alone and the comparable
or better performance compared to existing graph explanation approaches. We
further present how our method can be used to extract explanations for binary graph
classification and study the evolution of feature assembly throughout processing in a
deep neural network for image recognition.

This chapter is based on the following work and partly includes already published
material from:

[226] T. Schnake, O. Eberle, J. Lederer, S. Nakajima, K.T. Schiitt, K.-R. Miiller and
G. Montavon. Higher-Order Explanations of Graph Neural Networks via Relevant
Walks. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
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4. Higher-order Explanations in Graph Neural Networks

4.1 Introduction

A broad variety of important problems can be represented using a graph structure,
ranging from parsing trees in language processing, to social interaction networks or
molecular graph structures. In order to efficiently represent and infer predictions
from such structured data, GNNs [227, 228, 229] have been proposed and provide
a modeling framework for various tasks [230, 231, 232, 233, 234, 235]. To ensure
the robust and safe use of machine learning in engineering, science and society,
explainable Al develops methods that make model predictions and their inner
workings interpretable [10, 37, 12]. In GNNs, the model computations are tightly
entangled with the input graph and thus computing explanations solely at the level
of the input may not be sufficient to represent the complexity of the model.

This chapter focuses on how this structure can be used to extract theoretically
well-founded graph explanations that faithfully reflect the complexity of the internal
model mechanism. More specifically, the layered GNN computations can be analyzed
using a higher-order Taylor expansion, which results in an attribution of the prediction
in terms of collections of edges. These can be seen as walks into the input graph,
e.g., expressed via a sequence of nodes to be traversed, which offers a novel way to
interpret the GNN prediction beyond node or edge attributions.

We find that the higher-order expansion can be represented using first-order
terms, which can be computed using a modified backward propagation procedure as
illustrated in Figure 4.1 (left). This enables the use of the well-studied LRP method
[23] to compute walk-based explanations on graphs and results in our GNN-LRP
explanation method.

To evaluate these new types of graph explanations to previous approaches and
methods, we develop graph perturbation schemes inspired by pixel-flipping [65] to
quantify the faithfulness of identified features by each explanation method with
respect to the model prediction.

We demonstrate in the following how the GNN-LRP approach can be used to
gain insights into image classifiers that we view as a GNN operating on pixel lattices.
The resulting explanations produce detailed and reliable explanations of the internal
model processes that offer a new and insightful view on the inner computations. This
highlights the usefulness of our method by considering the full GNN procedure from
input to output prediction.

4.2 Related Work

In the following, we give an overview of related work for our graph explanation
method. In particular, we focus on work that considers explanations using higher-
order information and then summarize explanation techniques specifically designed
for GNNs.
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Figure 4.1: Overview of computing graph explanations using GNN-LRP. Left: After
the forward prediction, the explanation procedure starts at the GNN output and layer-
by-layer computes the graph walks relevant for the prediction. Right: A detailed
GNN-LRP illustration shows an annotated forward pass through a single aggregate-
combine interaction block. Nodes J and K in consecutive layers a and b highlight
how relevance scores are obtained during the subsequent relevance propagation step.
Relevance scores are only considered for existing walks in the input graph.

Higher-Order Explanations As demonstrated in the previous Chapter 3, second-
order information can be used to attribute model predictions to pairs of input
features, e.g., using the model’s Hessian [139, 176, 236]. This presents a natural
way to go beyond the sole identification of the most important features and in
addition, offers a more detailed view on model computations by highlighting the
relevant pairs of interacting features. We have seen that this is especially suited to
bilinear computations such as dot product similarity. Second-order and higher-order
explanations have also been incorporated by using an explicit sum-of-interactions
structure [174]. Similarly, the extraction of higher-order feature interaction has been
proposed via an iterative algorithm, which inspects neural network weights at the
different layers [170].

Explaining Graph Neural Networks To make GNNs explainable, most methods
have focused on attributions to nodes or edges of the input graph. Explanation
techniques such as Grad-CAM or Excitation Backprop have been extended to the
GNN model and use an attribution on nodes to explain the graph prediction [237].
Furthermore, identifying relevant subgraphs has been used as a general strategy to
find an interpretable representation of the GNN prediction [238, 239, 240]. Similarly,
the PGExplainer [241] and GNNExplainer [242] extract the relevant subgraph using
an optimization procedure that maximizes the mutual information between a GNN
prediction and subgraph candidates. In language processing, graph convolutional
networks (GCNs) have been explained in terms of input nodes and edges using
LRP explanations [243]. In a different approach, reinforcement learning has been
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4. Higher-order Explanations in Graph Neural Networks

proposed to generate graphs that maximize a specific class prediction, which highlights
characteristic graph patterns [244]. Other related approaches have focused on
generating causal GNN explanations [245, 246]. Most similar, to our approach are
the PGMExplainer method [247], which learns a probabilistic graphical model that
measures the probability for different higher-order feature interactions in the model,
and the GraphMask approach [248] that learns binary edge masks for each layer to
test, which edges are most relevant for the prediction. Both methods are optimized
to represent the prediction strategy of a GNN via an optimization criterion, which
can result in unstable solutions and introduces additional complexity to the model.

In the following, we aim to extend explanations beyond attribution to the input
graph’s nodes, edges, or subgraphs. We develop a method that extracts higher-order
feature attribution via a backward propagation procedure that computes explanations
in terms sequences of features.

4.3 Explaining GNNs using Higher-Order Explanations

The following section introducs GNNs before we turn to the development of our
graph explanations using a Taylor-expansion of the graph model. We will introduce
two explanation techniques, namely GNN-GI and GNN-LRP that make use of higher-
order attributions, and finally present how specific propagation rules can be developed
and implemented in practice.

4.3.1 Graph Neural Networks

GNNs [227, 249] are specific types of neural networks that receive a graph G that is
formalized by a set of nodes N and their edge connections £ as an input. This graph
structure can be summarized by the connectivity or adjacency matrix A. In a typical
GNN, this input graph is not only used in the fist layer but it appears also at later
processing layers, which motivates to go beyond a standard explanation in terms of
input features. This general formulation of GNNs via adjacencies and interaction
blocks allows for a flexible adaptation of various graph structures, including directed,
undirected, spatial, temporal, labeled, unlabeled, and many other graph structures
[250, 251, 252].

A graph neural network can be constructed by a sequence of interaction blocks
that are the different layers in our model. Every block ¢t = 1...T computes a graph
representation H; € R"*% where n is the number of nodes in the input graph and
dy is the dimensionality of the node embedding. The representation in a given block
is computed via an initial aggregate function that receives information from nodes in
the neighborhood and a subsequent combine function that processes this information
into aggregated node representations [253].
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These two processing steps connect the representations H; i and H; of
consecutive blocks as:

aggregate: Z; = AH; ; .
combine: Hy = (C¢(Z4 k) s (4.2)

with adjacency matrix A of size n x n, Z; i the row of Z; associated to node K,
and C; representing the ‘combine’ function.

Starting from some initial state Hy € R™ % these two steps are repeated for
each processing layer, and a final readout function g to compute the desired GNN
prediction is applied:

f(A, H()) = g(HT(A, HT_l(A, e H1 (A, Ho)))) (43)

4.3.2 Higher-order Explanations in GNNs

In a standard approach, we would derive an explanation of the graph prediction using
a Taylor expansion of f(Hjy) that only considers the dependency of the GNN on the
initial state Hy. As mentioned before, the input graph occurs repeatedly as an input
in later processing steps, and thus this approach solely focuses on the relevance of a
node in the input layer. Thereby, it ignores its effect on later processing layers and
does not capture more complex relations between nodes.

Instead of computing the decomposition with respect to the initial state Hy we
will next consider the ‘true’ input A. As we have seen, it appears as a multiplicative
term in the aggregate step and we will identify these interactions using a higher-order
Taylor expansion of f(A).

Assuming that f(A) is smooth on the relevant input domain, we can compute a
T-order Taylor expansion at some reference point A:

1 o f
A) = N oy
f(A) %aB!aAgl...a)\gT i

Ag oo Agp + L (4.4)

Rp

with Ag := (¢ — Xg) and where we define ap! :=[[¢ ape! with ap ¢ being the
number of edge occurrences £ in the bag-of-edges B. The sum goes over all bags
B of T edges. Thus, these terms in the sum represent the joint effect of multiple
edges on the GNN prediction that we are interested in. With ‘+...’” we denote the
non-expanded terms of lower or higher edge than 7.

Equation 4.4 presents a well-founded and general formulation of how the GNN
structure interacts to produce the prediction. We observe that this formulation in
terms of bag-of-edges requires the computation of higher-order derivatives, which
calls for specific computation software and does not scale favorably to more complex
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4. Higher-order Explanations in Graph Neural Networks

architectures. Hence, we introduce the concept of a walk-based explanations with
walk W = (..., J,K,L,...) that represents an ordered sequence of nodes J, K, L
between consecutive blocks. In the following, we focus on this representation using
interactions between nodes to describe the layer-wise propagation process.

Furthermore, it can be shown that the non-expanded terms vanish for piecewise
multilinear positively homogeneous functions such as GNNs with ReLU nonlinearity
and without biases: choosing the reference point A = sA in the limit of s — 0 leads
to the conservation property >z Rg = f(A), and that the bag-of-edges relevance Rp
can be represented as a sum over walks Rz = > yyc5 Ry [226]. The latter walk-based
representation produces detailed information on how the different edges interact
along the block layers, and allows for a straight-forward implementation following
the sequence of computation layers. Using this node-based formulation, we can now
compute the relevance of a walk directly by:

0 0 ... ~ ~
Ry = 7 <8)\§K (8)\}@ (N — %L)) ()‘?}K_AZK)> (4.5)

with A%, being the connection between nodes J and K in consecutive blocks, *. ..
denotes placeholders for the leading and trailing walk nodes, and root points chosen
such that walks in A coincide with walks in A — A (cf. [226] for a full derivation).
This nesting of the individual blocks enables us to analyze each block iteratively from
the last network layer back to the input features, and to propose the computation as a
series of nested ‘Gradient x Input (GI)’ computations Rk, = [VRKL._.(K*)]J')\JK.
This graph explanation technique results in our ‘GNN-GI’ baseline that we will use
in our experiments. We will also observe, that this baseline presents a special case of
our more general ‘GNN-LRP’ method.

Furthermore, the analysis of each interaction block can itself be challenging. For
example, the interaction blocks used in the graph isomorphism network (GIN) model
[254], can be composed of multiple layers that make it difficult if not impossible to
choose an accurate root point A* for the Taylor expansion.

9

We now consider an extension of deep Taylor decomposition (DTD) [25] which
consists of replacing the Taylor expansion of the layered model by several Taylor
expansions performed at each layer (cf. Section 2.3). For standard neural networks,
DTD leads to the robustified LRP method [23, 64] in comparison to naive gradient-
based approaches. In the following we will use this approach and apply LRP to the
individual GNN interaction blocks. This results in the ‘GNN-LRP’ graph explanation
technique.

From DTD to GNN-LRP

In the following, we will focus on the graph convolutional network (GCN) [250]. In a
GCN, each interaction block is composed of a linear aggregate function with positive
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4.3 Explaining GNNs using Higher-Order Explanations

adjacencies, followed by a linear/ReLLU combine function:

aggregate: 2z = > ; Ajrhy

combine: A% = max (0,3, 2% wap)

Here, h% denotes the activation of some neuron with index a inside the node J. The
notation ), represents a sum over all neurons a composing a node plus a hardcoded
neuron ‘0’ with activation z% = 1 and with bias wg,. We further simplify the notation
by omitting the star symbol for variable Ajx. An annotated diagram of the GCN
prediction and relevance procedure is given in Figure 4.1 (right).

In the following, we first redistribute relevance layer-wise to the intermediate
representation zx before then distributing relevance to the adjacencies Ag. The
additional granularity introduced by considering neurons instead of only graph nodes
results in additional relevance attribution to these neurons (e.g., relevance RY; ).

As part of DTD, we define the following relevance model RY; (zx) =
RS (zr) ch; . Tt is a product of the neuron activation (which is a function of
the intermediate representation), and a term that is constant and set in a way
that the relevance model matches the true relevance R’}@m locally. We can now
follow the typical LRP-procedure and attribute the relevance score to neurons of the
intermediate representation using a first-order Taylor expansion at some specific root
point zx for each output neuron b:

a 8Rb a sa
RK‘Zb = &I;QL'" o (2% — Zk)- (4.6)
K ZK

We then sum over all relevance contributions from neurons in the layer above, i.e.

R%.; =3, R%" . We next attribute these relevance scores to the adjacencies A jx
in the aggregate step. Again, we define a relevance model R} ; = 2% (Ak) %k

and compute the first-order terms of a Taylor expansion:

a 8§(II(L Y
TKL = o5 e . “(Ask — AJk)- (4.7)
K

Now, for the first Taylor expansion we set the root points Zx in Egs. (4.6) and (4.7)
to the intersection of the line {zx — szg ©® (1 + Y1ly,0) | s € R} and the ReLU
hinge, with + being a factor that favors root points towards more positive neuron
activations zg.

Inserting this root point in Eq. (4.6) results in the relevance messages R%;° =
2% wap § (1 + v1lw,,> 0) cl}{ 1. With wgp, denoting the weight connects neuron a and
neuron b. By resolving the parameter s and pooling relevance messages coming from
the multiple output neurons, we obtain the propagation rule:

a 3 Zic(Wab +yW00)
KL... KL...
7 a2 (Wap + ywgy)
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Similarly, for propagation in the aggregate layer, we find root point S\k = 0 and
injecting this root point in Eq. (4.7) results in the following propagation rule:

Ak hG

———R% . 4.9
e (49)

a —
JKL... —

Finally, we arrive at the GNN-LRP relevance propagation scheme to compute walk-
based explanation:

Aschw!,
kL. = R (4.10)
JKL... KL...5
; EJ,a )\Jth}wa

with w' = w + yw™'. The propagation rule can be seen as a generalization of
the LRP-v rule [64] to the GCN. In parallel to the connection between LRP and
Gradient x Input, for v — 0 explanations produced by GNN-LRP become equivalent
to those of the proposed GNN-GI baseline.

This framework to derive GNN-LRP rules can be applied to any graph network
resulting in GNN-LRP procedures for various GNN architectures as we summarized
in [226]. Tt requires that the GNN model can be formulated as successive computation
of aggregate and combine steps as given in Equations (4.1) and (4.2).

4.3.3 Implementation of GNN-LRP

In order to implement GNN-LRP, we can apply a set of implementation tricks using
a set of forward/backwards hooks. These modify the LRP gradient computations
along isolated walks through the graph. For example, GNN-LRP for a GCN can be
easily implemented by rewriting the combine function of each interaction block as:

P+ ZW,
Qt — IDt ® [P(ZtWt) @ IDt]Cst.
H;, +— Q: ® Mg + [Q¢]est. © (1 — M),

where []cs. detaches the quantity to which it applies from the gradient, M represents
a mask that selects node K, and ® and @ refer to the element-wise multiplication
and division respectively. The variables P, and Q; denote intermediate hidden
representations. The automatic differentiation capabilities of machine learning
software in which standard layers such as convolution or pooling are already predefined
allow the implementation of GNN-LRP even for more complex GNN architectures
with minimal changes necessary to the code.
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4.4 FEvaluation of GNN-LRP

In the following, we test the GNN-LRP method on various types of GNNs and several
graph prediction tasks. We begin with a qualitative inspection of explanations
comparing different explanation baselines and then turn towards the quantitative
evaluation of these approaches.!

4.4.1 Qualitative Evaluation

In order to validate the extracted explanations, we investigate a user-controllable
two-class synthetic problem that we call ‘BA-growth’.

Setup For this, we modulate the growth parameter in Barabasi-Albert graphs, [255]
and assign ‘class 1’ for growth parameter 1 or ‘class 2’ for higher growth parameters
that result in a growth behavior in which new nodes are attached preferably to
low-degree nodes. We consider a graph isomorphism network (GIN), which have
been found to be a powerful GNN architecture and that differ from standard GCNs
by using a multilayer perceptron for the ‘combine’ step [254]. In the following, we use
two interaction blocks with each consisting of a two-layer network with 32 neurons
per node at each layer to aggregated node features into node embeddings. The initial
state Hy is a matrix of size n x 1 filled with ones, which indicates that nodes do
not have intrinsic information. The GIN receives as input the connectivity matrix
A= fi/ 2 where A is the adjacency matrix augmented with self-connections. The
GIN is trained on this task until convergence, where it reaches an accuracy above
95 %. More details on the model and its training are given in Appendix A.3.1. After
training, we take an input graph from class 1 and explain the GIN prediction using
GNN-LRP. We use the LRP parameter v = 2 and v = 1 in each layer of the first
and second interaction blocks, respectively.
We compare GNN-LRP to a selection of other GNN explanation methods:

— Pope et al. [237]: The method views the GNN as a function of the initial state
Hj and performs an attribution of the GNN output on nodes in Hy. This
framework lets the user choose the technique to perform attribution on Hy. In
our benchmark, we use the techniques Gradient x Input (GI) and LRP.

— GNN-GI: This simple baseline replaces the LRP steps in the GNN-LRP
procedure by Gradient x Input steps and serves as a baseline for higher-order
graph explanations. It can also be seen as a special case of GNN-LRP with
parameter v = 0.

— GNNEzplainer [242]: The method runs an optimization procedure that identifies
a selection of edges that maximize the model output prediction. This procedure
thus identifies a mask M = o(R) with o denoting the logistic sigmoid function

1Our code implementation of GNN-LRP and the experimental analyses are available at: https:
//git.tu-berlin.de/thomas_schnake/paper_gnn_lrp
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that maximizes the prediction f(M ® A). Finally, the explanation is directly
given by R.

Results Explanations produced by each method are shown in Fig. 4.2. The
method by Pope et al. [237] highlights relevant nodes for the prediction. It is
difficult to determine from the explanation whether the highlighted nodes are relevant
by themselves or if they are relevant in relation to their neighbors. The GNN-GI
baseline and the GNN-LRP method provide a higher level of granularity, which allows
distinguishing between the contribution of an individual node and its interactions
with other nodes. Compared to GNN-LRP, the GNN-GI baseline tends to be less
selective, with spurious positive or negative relevance, and is generally more noisy
(we will return to this effect later in Section 4.5). While the GNNExplainer [242]
highlights similar relevance patterns as GNN-LRP, its explanations are less detailed.
This first qualitative analysis suggests that GNN-LRP is the only method in our
benchmark that computes explanations with the desired robustness and a high level
of detail.

Pope

(LRP) GNN-GI  GNN-LRP GNNExplainer

Figure 4.2: Comparison of different explanation techniques on one example from the
BA-growth dataset. GNN-LRP and GNN-GI produce more detailed explanations than
the other methods, and GNN-LRP explanations appear more robust than GNN-GI.

4.4.2 Quantitative Evaluation

Standard methods to evaluate graph explanations use attributions at the input level
without considering higher-order information or including the structure of the graph
specifically. To make use of this specific structure, we will consider approaches to
evaluating graph explanations that focus on identifying relevant subgraphs or groups
thereof.

Subgraph Selection Conceptually, in order to judge the performance of the
different explanations, we are interested in identifying a sequence of subgraphs that
is created by incrementally adding or removing nodes. Generally, finding an optimal
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feature ordering is computationally intractable for graphs with many numbers of
features. Instead, we consider a local approximation that selects the next feature
that most strongly affects the model prediction. This approach offers the flexibility
to be applied to both node-based as well as edge-based explanations and can also be
applied to make use of higher-order information present in walk-based explanations.

Evaluation metrics In the following, we use this approach in two evaluation task
settings: First, we consider the task of ‘model activation’. We start with an empty
subgraph S and evolve the sequence of subgraphs by adding at each step the node to
the subgraph that maximally affects the relevance score Rs. After adding each node
to the graph, we observe the output of the GNN for the true class f(S). We measure
the area under this activation curve (AUAC) which is higher the more faithful the
explanation method is. A faithful explanation method thus can correctly identify a
subgraph that produces a high GNN output for the true class.

Instead of iteratively growing the subgraph, in the ‘model pruning’ task, we build
a sequence by removing nodes from the graph. Here we are interested in quantifying
what explanation produces a sequence of subgraphs that minimally affects the model
output. Again, using the local approximation of the optimal sequence of subgraphs,
we remove the next least relevant node at each step. We record the model output
when pruning G according to the feature ordering, use the resulting subgraph as input
to the model and observe the difference in model output between the original and
pruned graph |f(S) — f(G)|. The resulting area under the pruning curve (AUPC) is
used to judge the different explanations methods. A low AUPC indicates an effective
ordering since a small absolute relevance score should not strongly affect the model
prediction.

Setup We next compute AUAC and AUPC scores to asses the explanation method’s
ability to explain the model. For the synthetic BA-growth dataset, we use GCN,
GIN, and spectral network models with each consisting of two interaction blocks and
neuron embeddings of 128, 32 and 32 at each layer. In addition, we consider two
real-world datasets. We use the Stanford Sentiment Treebank (SST) [256] dataset
for sentiment classification in movie reviews. The syntactic sentence information is
encoded via a graph with nodes corresponding to word tokens. Finally, we interpret
the VGG-16 pre-trained image recognition network [160] as a graph neural network
operating on a lattice of size 14 x 14 that starts at convolutional block 3. Each node
here represents the collection of activations at a specific spatial location. Additional
details for each network and data setting are given in Appendix A.3.

Results Results for the activation task are presented in Table 4.1 (left). We
find that on the BA-growth dataset GNN-LRP outperforms all other explanations
methods on average. The nearest competitors are Pope et al. [237] (together with
LRP), and the GNNExplainer [242]. This result further supports our qualitative
analysis at the beginning of Section 4.4. For the pruning task, we show results in
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Table 4.1: Evaluation of GNN explanation methods across datasets and models using
activation and pruning tasks. Best performing methods are shown in bold. Left:
Activation task scores as measured using the area under the activation curve (AUAC).
Higher AUAC is better. Right: Pruning task scores as measured using the area under

the pruning curve (AUPC). Lower AUPC is better.
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Figure 4.3: GNN-LRP comparison against other explanation methods. We compare
the distribution of individual AUAC and AUPC scores from the BA-growth dataset on
GCN, GIN and spectral network models. The x-axis shows the score for the comparison
method and the y-axis for GNN-LRP. Left: AUAC comparison for the activation task.
Points above the diagonal indicate better performance of GNN-LRP. Right: AUPC
comparison for the pruning task. Points below the diagonal indicate better performance

of GNN-LRP.

Table 4.1 (right) and find that GNN-LRP outperforms most of the other baseline
methods in each of the experimental setups. It is overall the most effective method
at affecting the model output minimally for the least relevant features.

We take a closer look at the distribution of AUAC and AUPC scores and observe
that GNN-LRP provides systematically better explanations, as shown by the majority
of points above the diagonal for the activation task in Fig. 4.3 (left). For the pruning
task, we observe a similar pattern in Fig. 4.3 (right), with most GNN-LRP points
achieving lower scores below the diagonal compared to other methods. For the
spectral network, the distribution is generally less clear, and we observe that methods
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4.4 Evaluation of GNN-LRP

tend to identify different explanations, which can result in better performance on
some samples but fail for others, as for example for the Pope (GI) model. Overall,
GNN-LRP performs comparable or better than the other explanation approaches.

In addition, we test the sensitivity of GNN-LRP towards its hyperparameter ~ as
shown in Figure 4.4. For the activation task, we observe that any choice of parameter
~v > 1 delivers comparably high AUAC performance. When setting v = 0, which
results in the GNN-GI method, we observe the lowest performance scores. Regarding
the choice of ~ in the pruning task, we observe that larger values of v achieve superior
performance and that any choice of parameter v > 2 results in low and very similar
AUPC scores. These findings again support the increased robustness of the modified
gradient computation when using non-zero values of ~.

Activation Pruning
4 e — e ——— e ——— e ———— — GCN 3.5 .g. —e— GCN
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Figure 4.4: Effect of the parameter v on GNN-LRP. Results are shown for GCN, GIN
and spectral network models trained on the BA-growth dataset. Left: AUAC scores for
the activation task. Right: AUPC scores for the pruning task.

Metric comparison Similar to our AUAC and AUPC metric, fidelity and sparsity
have been proposed to evaluate GNN explanations [237, 257]. We compare the
different metrics using the GCN model trained on the BA-growth dataset. In Figure
4.5, we show the averaged curves of the activation and pruning task, along the results
of the fidelity metric when removing the most positive (fidelity™) and most negative
(fidelity ™) relevant features. We observe that the performance of the interpretation
methods aligns with the other evaluation metrics and that GNN-LRP achieves a
performance that is comparable or better than that of other models. This indicates
that achieving a good performance in any of these metrics requires an explanation to
be sparse and faithful. Additionally, activation and pruning tasks also reflect if the
explanation method differentiates properly between important and redundant graph
features, which is similar to what the sparsity measure does. Thus, the activation and
pruning tasks reflect the trend captured by a variety of existing evaluation methods
and present a robust and informative summary to assess the quality of explanations.
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4.5 Use Case: Revisiting Image Classification

In parallel to the emergence of high-performing image recognition networks,
explainable Al has adopted their use as the standard scenario to develop and evaluate
explanations. The resulting heatmaps provide information about the importance of
input image pixels and have been studied intensively [19, 16, 23, 17, 21, 22|. In this
following use case, we revisit explanations for image classification and observe new
ways to explain the inner model processing.

Setup A convolutional neural network (CNN) can be seen as a particular GNN
operating on lattices of pixels. CNN predictions have so far mainly been explained
using heatmaps highlighting pixels that are the most relevant for a given prediction
[16, 23, 22]. Heatmaps are a useful representation summary of the decision structure,
but they do not reveal the more complex strategies of a network that have been
used to progressively build the prediction layer after layer. By viewing CNNs as
graph neural networks and extracting relevant walks in the resulting pixel lattice, we
demonstrate that the GNN-LRP method can provide explanations to comprehend
these internal model strategies better. We consider the well-established VGG-16
network [160]. It consists of a collection of blocks interleaved by pooling layers, where
each block is composed of a sequence of convolution and ReLU layers. We use the
pretrained version of the VGG-16 network without batch normalization.

Efficient Computation The VGG-16 neural network is deep and the number of
possible walks grows exponentially with neural network depth. Hence, we marginalize
explanations to only consider the position of the walk at the input and at the output
of a block. This is easily achieved by using a mask-based implementation and
removing all masks except those at the input and output of the block. We then
compute explanations for block 3, 4, and 5, respectively. To cope with the large
spatial lattices in each block, we make use of a multi-mask strategy, which further
accelerates computations by exploiting the local connectivity of nodes caused by the
receptive field size of 7 in each of the VGG-16 blocks. We then identify selections of
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4.5 Use Case: Revisiting Image Classification

nodes (K)kex at a given layer, such that their receptive fields in the layer below are
disjoint and thus, multiple walks can be processed in parallel by choosing the mask
to be a grid with stride 7. This allows us to collect all relevant walks at the given
block using 49 backward passes.

We analyze two exemplary images? that the VGG-16 network predicts as ‘teapot’
and ‘dumbbell’; respectively. We set the LRP parameter to v = 0.5 in block 3, reduce
the ~ value in each subsequent block by a factor of two, and choose v = 0 in the
top-level classifier.

input image walks in VGG:Block3 walks in VGG:Block4 walks in VGG:Block5
“;-‘$\:}4§§“<," \\§§z‘/'é‘” ! o
S .>> M NN/ !% }

Pope (LRP) GNN-GI GNN-LRP
; ; Figure 4.6: Top: Relevant walks in the
pixel lattice explaining the prediction
of the VGG-16 network on two input
_ : \ images that are correctly classified as
BB \ \Y// ‘teapot’ and ‘dumbbell’; respectively. In
sesecce: / /\ A7 AN b.}z “. each vector field, arrows connect block
|~ }#L -~ | ot input nodes to the relevance-weighted
. : & Z-X f"/ - » average position of the block output
e nodes. Left: Detailed view of relevance
it . flow comparing GNN-LRP with different
| explanation techniques on Block 4.
- N A
. gY\‘iu— ..... e o SN

Results The resulting explanations are shown in Figure 4.6 (top) for the two
images at multiple blocks of the VGG-16 network. For the first image, Block 3

’Images are from https://www.pigsels.com/en/public-domain-photo-fjjsr and https://
www.pigsels.com/en/public-domain-photo-fiffy, rescaled and cropped to the relevant region to
produce images of size 224 x 224, which are the standard input size for VGG-16.
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detects local edges in the teapot, then, in Block 4, the walks converge to center
points of specific parts of the teapot, e.g. the handle and the spout and the knob,
and finally, the walks converge in Block 5 to the center of the teapot, which can
be interpreted as composing the different parts of the teapot. For this exemplary
image, we further observe in Fig. 4.6 (left) the advantageous properties of GNN-LRP
compared to more basic explanation methods. The GNN-GI baseline also produces a
vector field; however, it is significantly noisier than the one produced by GNN-LRP.
The method by Pope et al. [237] robustly highlights relevant nodes at the input of the
given block, but it does not reveal where exactly these features are being transported
to for use in the subsequent block.

For the second image, we investigate a known ‘Clever Hans’ strategy where the
network classifies images as ‘dumbbell’ by detecting both the dumbbell and the arm
that holds it [258]. Using GNN-LRP we observe that Blocks 3 and 4 detect the
arm and the dumbbell separately, and then Block 5 composes them into a single
‘dumbbell-arm’ concept, as shown by the walks for both objects converging to some
center point near the wrist. These insights could not have been obtained from a
standard pixel-wise heatmap explanation.

Overall, our GNN-LRP method can be used to comprehensively inspect the
prediction of an image classifier beyond what would be possible with a standard
pixel-wise heatmap explanation. This deeper explanation capability allows us to
understand the detailed structure of image classifications better, and shed more light
on anecdotal ‘Clever Hans’ effects observed in the context of a widely-used image
classification model.

4.6 Summary and Discussion

In this chapter, we have focused on developing explanations for GNNs, which are
a widely applicable and popular model choice for making predictions on problems
best represented using graphs. The close entanglement of the input graph with the
layered GNN computations makes the explanation of GNNs a challenging problem.

Our resulting GNN-LRP method reflects this by using groups of graph features
that are derived from higher-order Taylor expansions and that go beyond solely
considering input features. We have seen that GNN-LRP can be seen as a more
general and robust case of our proposed GNN-GI baseline. In quantitative evaluation
experiments, we have demonstrated that the additional explanation depth that arises
from the nested interaction structure between GNN and input graph outperforms
other graph explanation methods. We have introduced the activation and pruning
task scenarios to measure a method’s ability to explain the model prediction. Our
relevance-based ordering of subgraph sequences extends standard approaches such as
pixel-flipping to include higher-order information. The resulting AUAC and AUPC
scores from our evaluation experiments on different GNN models and data have
demonstrated the effectiveness of GNN-LRP.
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The high quality and usefulness of GNN-LRP was further demonstrated in a use
case in image classification. GNN-LRP explanations have enabled us to gain insight
into the inner mechanisms of convolutional blocks and to trace the emergence of
undesired ‘Clever Hans’ behavior in the popular VGG-16 model. A careful analysis
of the GNN structure has thus resulted in robust and detailed graph explanations.

Limitations Computing higher-order interactions in GNN-LRP explanations,
requires a full forward and backward pass for each possible walk through the graph
model. The computational efficiency of the method is thus limited by the number of
layers and the resulting exponential number of walks. For suitable applications, the
required computations can be significantly reduced by coarse-graining of multiple
graph nodes resulting in a pooling of walks that can be implemented efficiently into
the masking approach. Alternatively, a partial computation of graph walks may be
sufficient, e.g., by computing walks only for selected layers or defining a relevance
threshold that skips less relevant walks. Recent work has shown that GNN-LRP can
be computed more efficiently in linear dependence of the number of graph layers
using a subgraph attribution approach [259].

Furthermore, GNN-LRP requires the implementation of tailored propagation
rules, which also applies to other explanation methods such as GraphMask [248].
Some explanation techniques, including GNNExplainer [242] and PGExplainer [241],
are based on a direct evaluation of the model function or its gradient, while the GNN-
LRP method requires access to the internal representation at each layer to implement
appropriate propagation rules. We have aimed to keep the additional implementation
effort minimal by introducing the efficient implementation approaches introduced in
Section 4.3.3.

To asses whether GNN-LRP explanations faithfully explain the model, we have
used both synthetic and real-world datasets in our activation and pruning task
analysis. Our results suggest that they do provide additional relevant information
over simple attribution to input features. In order to also evaluate if walk-based
explanations accurately match ground truth data in the context of more complex
real-world scenarios, suitable data and ground truth annotations are needed.

The ability of GNNs to learn relations between features makes them both a
flexible and powerful method for many complex problems. So far, we have considered
walk-based explanations for single input instances. While this has offered interesting
and detailed insights into specific decision strategies, it remains open how to extract
dataset-wide prediction strategies from higher-order explanations.

Overall, a careful analysis of the structure of typical GNN architectures has
motivated the explanation of their predictions using higher-order feature interactions.
Compared to common approaches that attribute relevance to nodes, edges, or
subgraphs at the input level, this results in novel walk-based explanations. This has
broad implications for studying the prediction strategies of GNNs and can inform
many important tasks, including model refinement and insight discovery across
disciplines.
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Transformer Explanations

Transformers have become an important architecture choice of machine learning and
essentially present the default model of choice for any natural language processing
task. This necessitates the development of reliable methods for increasing their
transparency. Various explainability approaches have been proposed to understand
inner processing beyond the inspection of attention weights that have been found
to be of limited faithfulness with regard to the model prediction. More recent
approaches have considered gradient information to represent the model prediction
more faithfully. We demonstrate that the gradient in a Transformer reflects the
function only locally. Our analysis identifies the attention head and the layer
normalization layers as main sources of unreliable explanations and we develop a
more stable way for propagation through these layers. This approach can be seen
as an extension of the well-established LRP method to Transformer models. We
observe both theoretically and empirically that it overcomes the deficiency of a naive
gradient-based approach and achieves state-of-the-art explanation performance. In
two Transformer use cases, we further study the usefulness of these explanations. We
demonstrate how Transformer explanations can be used to investigate biased model
behavior. In addition, we investigate the alignment between human reading patterns
and attributions extracted from a variety of models and attribution approaches. We
give complimentary insights on an observed trade-off between faithfulness, entropy
and human correlation scores, and our analysis demonstrates the influence the
choice of explanation method can have on the observed alignment to human attention.
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This chapter is based on the following works and partly includes already published
material from:

[260] O. Eberle*, S. Brandl*, J. Pilot, A. Sggaard. Do Transformer Models Show
Similar Attention Patterns to Task-Specific Human Gaze? In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics, 2022. (*equal
contribution)

[261] A. Ali, T. Schnake, O. Eberle, G. Montavon, K.-R. Miiller and L. Wolf. XAI
for Transformers: Better Explanations through Conservative Propagation. (accepted
at ICML), 2022.

5.1 Introduction

Transformer models [14] have attracted increasing interest and have shown strong
performance in domains such as natural language processing (NLP) [14, 4, 262],
vision [263], or graph tasks [264, 265]. Yet, their typically very high complexity (up
to billions of parameters [266]) makes these models notoriously intransparent and
their predictions inaccessible to the user. Transformer models are also applied in
potentially sensitive domains, e.g., as support in cancer detection [267] or recruiting
processes [268]. This further motivates the development of methods that explain
their decisions since they allow to verify whether the model makes fair decisions and
does not systematically discriminate against specific classes or user groups [269, 270].
This is especially urgent since many instances of biased Transformer predictions have
already been identified [271, 272, 273, 274, 275], and a unified and robust way to
evaluate fairness is still missing [276, 277].

To bring explainable AI to Transformer models, we focus on the axiom of
conservation that underlies several popular explanation techniques, i.e., [23, 44, 22].
We embed our analysis in the layer-wise relevance propagation (LRP) framework
[23], which allows us to analyze conservation at the level of individual modules
and layers of the Transformer model. Our analysis reveals that the conservation
properties of existing explanation techniques can severely break when extended to
Transformer models. We introduce in the following how theoretically well-grounded
Transformer explanations can be obtained. The resulting rules can be implemented in
straightforward ways by ‘detaching’ parts of the forward computation and extracting
explanations using specific backpropagation schemes.

We compare our approach to state-of-the-art baseline explanation methods for
Transformers, including attention-based and gradient-based approaches. For the
quantitative analysis, we perform different input perturbation schemes that track
the model’s behavior when least or most relevant features are added to or removed
from the input sequence. We find that carefully handling the gradient results in
clearly improved conservation and quantitatively better explanations that outperform
the here considered baselines for most tasks. In two use cases, we investigate the
usefulness of Transformer explanations to detect model bias and study their alignment
to human reading.
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5.2 Related Work

This section summarizes the different approaches proposed to explain Transformer
models. These can be divided into methods that extract the attention scores from each
Transformer block, treating them as directly interpretable attribution, gradient-based
methods, and perturbation-based methods.

Attention-based Explanations The extraction of attention vectors from an
attention module is a widely-used and intuitive way to understand or visualize the
inner workings of a model [278]. It is a central design principle for the Transformer
architecture, but it has remained difficult to assess whether attention scores are
directly interpretable and faithful representations of the model prediction process.
Growing evidence supports the hypothesis that attention may not be a robust
explanation [279, 280]. Besides the simple extraction of the raw attention weights,
there have been attempts to use the attention heads for defining more elaborate
explanation mechanisms, such as ‘Attention Rollout’ and ‘Attention Flow’ [281]. More
recently, other ways to aggregate attention information have been developed [282, 283].
These have provided empirical evidence that Transformers can be made explainable
to a significant extent, especially in combination with gradient information.

Gradient-based Explanations Other authors incorporate gradient methods to
explain Transformer models, such as integrated gradients [284] or input gradients
[76]. The gradient methods Saliency, Gradient x Input or Guided Backpropagation
have already been applied in numerous models and domains and were also applied
to Transformer models [76]. In particular, there have been multiple attempts to
implement the LRP method [23] in Transformers [285] and other attention-based
models [105]. In addition, LRP has been applied to explain predictions of other
models on NLP tasks [286], such as the popular BERT model [4]. Other approaches
to gradient propagation in Transformer blocks were proposed in [282, 283], where the
relevancy scores are obtained by combining attention scores with LRP or attention
gradients.

Perturbation-based Explanations Additionally, different perturbation-based
analyses have been used to gain insights into the processing of Transformers. Input
reduction has been used to determine the most relevant parts of the input sequence
by observing change in model confidence [287, 272] or computing Shapley values
[44, 76]. Other approaches have focused on sequence probing, e.g., by permuting
or swapping tokens and observing resulting changes in attention weights [288] or
by measuring how strongly internal sequence representations are distorted by such
permutations [289].

73



5. Transformer Explanations
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Figure 5.1: Extraction of explanations in Transformers models. Typical models are
built from several blocks of Transformer blocks that extract sequence representations
using nonlinear computations in attention head and layer norm modules. These non-
linearities include bilinear, softmax and division by the softnorm. The relevant variables
used to compute layer-wise relevance scores R(x) are annotated. A: The attention
head computes a matching between a set of key-value pairs that is used as a gating to
decide what elements of the query are maintained. B: The layer norm layer computes
elementwise statistics over the mean and standard deviation to normalize the block
output.

5.3 A Theoretical View on Explaining Transformers

To gain a better theoretical understanding of the problem of explaining Transformers,
we take the same ‘axiomatic approach’ used for analyzing and developing explainable
AT in the context of standard deep neural networks [290, 291, 22, 39, 292]. A central
axiom used in explainable Al, especially for the task of attribution, is conservation.
The conservation axiom states that attribution scores assigned to input variables
must sum to the observed model prediction score at the output. Central explainable
Al methods that include LRP [23], Gradient x Input [21, 293, 292]), Integrated
Gradients [22], or Shapley Values [291, 44], are either designed to satisfy conservation,
have been shown to satisfy it, or can be derived from it directly. Owverall, this
highlights the importance of conservation as a desired principle for explanations.
The LRP framework [23] considers a particularly strong form of conservation,
where each layer, component, or even neuron in the network is subject to the
conservation axiom. In particular, the ‘relevance’ received by a given component
(e.g., layer or neuron) from the layer above must be fully redistributed to the layer
below. Many relevance propagation rules have been developed within the LRP
framework to address the specificities of different data and architectures. Notably,
the popular Gradient x Input (GI) method, commonly viewed as a gradient-based
method, can be embedded in the LRP framework [21, 294, 39]. This can serve as
a starting point for developing improved propagation rules. With this embedding
into LRP, a detailed analysis of the GI explanation procedure can be performed
to identify layers or components where the conservation breaks and derive better
propagation rules for these layers in a second step. We provide a diagram of the
standard Transformer attention block in Fig. 5.1 and illustrate relevance propagation
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through the attention head and LayerNorm. Next, we turn towards an analysis of
the gradient computation in these layers.

Denote by (z;); and (y;); the vectors of neurons representing the input and
output of some layer or component of interest in a neural network, and by f the
output of the neural network. To further analyse the attributions on these two vector
representations, we compute Gradient x Input attributions, which can be seen as a
special case of LRP [23, 39]:

R(y;) = y; - (0f/0yj).

Recall that the gradients at different layers of a neural network are related via the
chain rule as follows:

dy; of
Z o By (5.3)

6.%1
Injecting Eq. (5.1) and Eq. (5.2) into Eq. (5.3), the gradient propagation rule can be
converted into an equivalent relevance propagation rule:

Z Oy Tip (5.4)

ox; yj

where we use the convention 0/0 = 0. With the embedding of GI into the LRP
framework, we next study whether GI is conservative layer-wise or at the level of
the given component, by testing if -, R(z;) = >=; R(y;) is satisfied. If this holds for
every component of the neural network, then conservation also holds globally. We
will now show that two components of the Transformer, namely attention heads and
LayerNorm, cause a significant break of conservation and therefore require improved
propagation rules.

5.3.1 Propagation in Attention Heads

Let us consider the attention head, which uses a multi-head attention mechanism
that uses query, key and value embeddings and, which are the core component of
Transformers [14]. Standard attention heads have the structure

Y = softmax( —— (X'Wg)(XWk)" ) X, (5.5)

1
Vg
where X = (7;); and X’ = (2); are the input sequences of token embeddings,
Y = (y;); is the sequence of output embeddings, dx denotes the dimensionality of
the key-vector, and Wyq k v} are learned matrix projections. In the equation above,

we omitted the multiplication by the embedding Wy, since the latter can be viewed
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as a subsequent linear layer and can therefore be treated separately. For the purpose
of our analysis, we rewrite Eq. (5.5) as:

Y = Z ZiPij, (5.6)
i
where
_ exp(gij)
i = =t
! > exp(qir)
is the softmax computation and ¢;; = ﬁxIWKVVg x; is the matching function

between two input sequences. Note that the output of Eq. (5.6) depends on the
input tokens both explicitly, via the term x;, and via the gating term p;;, which itself
depends on x and x’. Also, we observe that for each index j, we have an associated
distribution p; = (pi;)i, and we denote by E;[-] and Cov;(-,-) the expectation and
covariance over this distribution, e.g. E;[z] = 3, ipi;.

We analyze the relevance propagation associated with applying Gradient x Input
to the Transformer model. We define input token relevance as R(z;) = z; (9f/0x;)
and R(z}) = x’;(af/ax;-), and output token relevance as R(y;) = y}-—(af/f)yj).

In order to analyze gradient behavior in the attention head module, we first recall
that output y; is computed by a weighting of input z; using attention probabilities

Dij:

‘ exp(gii
yj = Y wipi; with pg; = a(.”) and a; =) exp(gij),
i J i
with g;; denoting q(z;, xg) Thus, we require partial derivatives of p;; with respect
to token sequences x; and x; in order to compute the full module gradients.
As shown in [261], the following terms define how relevance is redistributed to

the two input sequences z; and m; in the attention head module:

Do R(@i) =D R(y) +D_Ejla; - (v~ Ejfa]) ] g;j
and
> R(xy) =D Ejl(a; — Ejlag))z ] %-
i J v

After summing both relevance terms we arrive at

S R@i) + YR = S R(wy) + X (sl — EjlasDe]
? J J J 8f

+Ejlg;-(z— Ej[x])T])aT/j‘
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Making the further assumption that the first sequence of tokens and the softmax
input both have expected value zero, we obtain the simplified form:

SR + Y RE) = Y Rly) + 3 2C0v;a5,0) o0

6yj

This implies that conservation between layers may not hold in the presence of
covariates between ¢.; and . Since ¢.; is a function of x, such dependencies are likely
to occur and we will introduce in Section 5.4 an alternative propagation rule that
retains the conservation property and also results in more faithful explanations.

5.3.2 Propagation in LayerNorm

We now turn to an analysis of the commonly used ‘LayerNorm’ in Transformers,
which computes normalization statistics over the hidden units in each layer. For
our analysis, we focus on the core part of LayerNorm, consisting of centering and
standardization (cf. [190]):

x; — Elz]

€ + Var|z] (5.7)

Yi =

Here, E[] and Var[-] denote the mean and variance over all activations of
the corresponding channel (and potentially minibatch). The subsequent affine
transformation can be handled using standard propagation rules for linear layers.
Then, the core part of LayerNorm can be decomposed into two parts consisting of
z;

centering z; = x; — E[z], and rescalin R
g T i (2] g Y T B

where E[] is computed over a uniform distribution, i.e. E[z] = % 3; #; and value €
added to the denominator for numerical stability. An analysis of the relevance for
both computation steps results in the following terms [261]: for the centering step
this results in

" R(i) = R(;),
and for the rescaling step in
E[2?]
ZR IE@ = ( - TE[%Q]) %:R(y])

After combination with the centering step, we obtain the conservation equation:

Var|z

ZL:R(%) N <1 - € + Var[z >ZR vi),
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where conservation holds only approximately for large values of €. Thus, conservation
is not satisfied and breaks especially strong when ¢ is small compared to Var|z],
which is usually the case.

5.4 Better LRP Rules for Transformers

This layer-wise analysis revealed deficiencies of Gradient x Input that we further
address in the following. The integration of GI as as a special case of LRP lets us
replace the implicit propagation rules in attention heads and LayerNorm, which
we identified as breaking conservation, by specific propagation rules that conserve
relevance by design.

Specifically, we make a locally linear approximation of the attention head
during computation of explanations by viewing the gating terms p;; as constants.
Consequently, these terms can be interpreted as a linear weighting that locally maps
the input sequence x to the output sequence y. We can then use the canonical LRP
rule for linear layers defined as

Ria) =Y =—"L—R(y;)  (AH-rule)
J

i’ Tyt Pi§

to propagate the relevance scores from the layer output to the layer input. With
such a reformulation, we note that the query sequence z’ appears disconnected,
and consequently, we have implicitly 7?,(:1:;) = 0. Phrased differently, the relevance
signal is not propagated through the attention weights and only considers the value
features. This strategy has also been used and justified theoretically for LSTM blocks,
[295] where it was shown empirically to yield superior performance compared to
gradient-based methods, in particular Gradient x Input, and it was recently applied
in image captioning models [296].

Furthermore, to address the particularly severe break of conservation in
LayerNorm, we use again a locally linear approximation at explanation time, by
viewing the multiplicative factor a = (/e + Var[x]) ! as constant. The LayerNorm
operation can then be expressed by the linear transformation aCx with centering
matrix C' and entries Cj; = ;5 — % and N denoting the length of the input sequence.
Using again the same standard LRP rule for linear layers with weights aC, we obtain:

B zi - (055 — +)
R(z;) = zj: S (35” fj %)R(yj) (LN-rule)

where the factor o present in the numerator and denominator cancels out. We will
next introduce efficient ways to implement these obtained rules for the attention
head and LayerNorm computations.
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Implementation of propagation rules

In practice, these rules do not need to be implemented explicitly and we observe
that they are effectively the same rules as those induced by Gradient x Input, with
the gating and rescaling terms in their respective layers treated as constant. By
detaching the respective terms in the forward pass, we can prevent the gradient
from propagating through them. In standard machine learning software, this can be
implemented by adding a detach() call to a variable. This results in an updated
computation graph that declares this variable as not requiring a gradient. We use
the following implementation trick for the rules introduced above. To compute the
improved LRP explanation, rewrite Eq. (5.6) as

Y; = Z wi[pij] .detach()
)

in every attention head, and rewrite Eq. (5.7) as

z; — E[z]
€ + Var[z]

Yi = [
.detach()

in every LayerNorm. Then we can extract the LRP explanation by simply calling
Gradient x Input on the resulting function f. This implementation makes the
method straight-forward to use, as it simply consists of adding detach() calls at
the appropriate locations in the neural network code and then running standard
Gradient X Input. Furthermore, the computation time is at least as good as
Gradient x Input, or even better due to the simplified gradient computation.

5.5 Evaluating Transformer Explanations

The evaluation approach is tested on Transformer models trained on various datasets.
We benchmark the performance of our method against other commonly used
approaches for explaining Transformer architectures. As a first step, we analyse the
desired principle of conservation and then continue with quantitative perturbation
experiments.!

Datasets We use the following NLP datasets from natural language processing to
evaluate the different explanation approaches. We consider sentiment classification
on the SST-2 [256] and IMDB datasets [297] for binary classification into negative
or positive sentiment. In addition, we use the TweetEval Dataset [298] for tweet
sentiment classification, hate detection and emotion recognition. From the SILICONE
Dataset [299] we use the tasks of emotion detection (Semaine) and utterance sentiment
analysis (Meld-S).

1Our code for the implementation and analysis is available at: https://github.com/AmeenAli/
XAI_Transformers
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Benchmark Methods First, we compare to a ‘GradientxInput’ [300, 21,
76] baseline without considering any modifications to the individual gradient
computations as described in Section 5.3. In addition, we compute averages over last-
layer attention head vectors (‘Attention-last’) [301], as well as ‘Rollout’ and attention
flow (‘A-flow’) [281], which capture the layer-wise structure of deep Transformer
models in comparison to raw attention head analysis. Attention flow views the
attention network as a flow graph with nodes describing tokens and edges that define
the maximal flow possible between them. The ‘Generic Attention Explainability’
(GAE) method combines attention gradients with attention relevance scores, resulting
in state-of-the-art performance in explaining Transformer architectures [282].

We consider two variants to improve the LRP-based explanation technique. First
‘LRP (AH)’ where propagation through attention heads is handled via the AH-rule
described in Section 5.4. For any other layer, we use the Gl-equivalent propagation
rule by simply propagating gradient without detaching terms. The second variant,
which we call ‘LRP (AH+LN)’, additionally propagates through the LayerNorm
using the LN-Rule.

5.5.1 Relevance Conservation

Setup To analyze the desired conservation properties and the insights about
propagation rules from Section 5.3, we consider two Transformer models trained on
the SST-2 and IMDB datasets. We compute both GAE and GI as well as LRP (AH),
LRP (LN) and LRP (AH+LN) explanations. Since attention scores used in attention
flow and rollout are normalized to be probability distributions they are not designed
to be conservative and are not considered here. To inspect conservation properties,
we compare the score produced at the output of the Transformer network against
the sum of explanation scores over input features of the network. For this purpose,
the input features are the positionally encoded embedding vectors present in the first
layer. A fully conserving method results in points that lie on the identity diagonal
line since no additional relevance should be produced or disappear.

Results The results are shown in Fig. 5.2. Our LRP (AH + LN) approach produces
explanations that reflect the output score much more closely than GAE, GI and the
partial application of the LN or AH rule, although mild breaks of conservation still
occur. In addition, we observe that for GAE and GI the sum of explanation scores is
not or very weakly correlated to the model output, which highlights the need for better
Transformer explanations. Overall, this indicates that the proposed propagation rules
work as intended and mitigate the lack of conservation in Transformer self-attention
blocks. Next, we would like to verify if this is also reflected in an improved ability to
explain the underlying model predictions.
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Figure 5.2: Conservation, or lack thereof, for different attributions in a Transformer
model for sentiment classification on SST-2 (top row) and IMDB (bottom row). The
x-axis represents the output score against the y-axis showing the sum of explanation
scores over the input sequence. Each point in the scatter plot represents one dataset
sample. The closer the points to the diagonal, the more conservative the explanation
technique.

5.5.2 Quantitative Faithfulness Evaluation

We test the performance of different explanation methods using an input perturbation
scheme in which the most or least relevant input nodes are considered.

Setup For the activation task, a good explanation gives an ordering from most to
least relevant nodes that, when added to an empty sequence, activates the network
output maximally and as quickly as possible. Thus, we observe the output probability
pe(z) of the correct class ¢ and report the area under the activation curve (AUAC)
with higher AUAC indicating a more faithful explanation with respect to the correct
prediction.

In the pruning task, we start with the original sequence and remove nodes in the
order from smallest to largest absolute values. We measure AU-MSE, which is the
area under the mean squared error (yo — ¥m, )%, with the model output logits of the
unpruned model yy and y;,, representing the sequence after applying the masking m;
at step t to the input graph. A lower AU-MSE is desired and indicates that removing
less relevant nodes has little effect on the model prediction.

The activation task starts with an empty sentence of ‘UNK’ tokens, which are
then gradually replaced with the original tokens in the order of highest to lowest
relevancy. In the pruning task, we remove tokens from lowest to highest absolute
relevance by replacing them with ‘UNK’ tokens [281].

Results In Table 5.1 we report results for the activation and pruning tasks and
observe that the handling of the gradient in the attention head (AH) and layer
normalization (LN) during backpropagation indeed results in consistently better
performance across all datasets. We see the best performance when applying both
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the detaching of gating and rescaling terms (AH+LN). In addition, explanations
based on gradient information are superior to raw attention-based methods (A-Last,
Rollout, A-Flow). Figure 5.3 shows activation and pruning curves for the SST-2 and
IMDB dataset in a Transformer model. The application of the specific gradient rules
leads to a gradual improvement over naive gradient implementations of GI, especially
during the transition from very relevant to less relevant inputs for the activation
task. This suggests that the improved LRP explanations are systematically more
effective at determining the most relevant input nodes while attributing low relevance

to task-irrelevant input nodes.
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Figure 5.3: Evaluation of explanations using input perturbations. Results are shown
for the activation task, where the most relevant nodes are added first, and for pruning,
where nodes of least absolute relevance are removed first. Left: Results for SST-2
sentiment classification. Right: Results for the IMDB dataset.

Table 5.1: Evaluation of Transformer explanation methods across various datasets using
activation and pruning tasks. Best performing methods are shown in bold. A-Flow is a
computationally very expensive method and was therefore omitted for larger datasets.
Left: Activation task scores as measured using the area under the activation curve
(AUAC). Higher AUAC is better. Right: Pruning task scores as measured using the
area under the pruning curve (AUPC). Lower AUPC is better.

Activation Pruning
] = 2 =
B v E  wn g i g E @ E
Mmoo = £ P m o = £ F DR
e d =2 &3 ¢ e 4 2 &3 ¢
Method £ »n = B B =2 ® Method £ »n =& B B 2 ®
Random 673 .664 516 .640 .484 .460 432  Random 2.16 3.97 4.25 9.12 2.87 2.54 1.92
A-Last 7708 712 542 .663 515 483 451  A-Last 1.65 2.56 3.73 7.77 1.90 1.74 1.42
A-Flow 4 A-Flow S22 - - o o
Rollout 738 713 554 .659 .520 489 441  Rollout 1.04 243 2.85 6.55 1.71 1.53 1.40
GAE 872 821 675 .762 .611 548 532  GAE 1.63 2.26 2.21 7.40 1.61 1.56 1.37
GI 920 .847 652 .772 .651 591 529  GI 0.87 2.10 2.09 6.69 1.41 1.57 1.43
LRP(AH) 911 .855 .675 .797 .668 .594 .544  LRP(AH) 0.77 2.02 1.83 6.43 1.43 1.69 1.38

LRP (LN) 935 .907 .735 .829 .710 .632 .593 LRP (LN) 0.69 1.78 1.55 5.02 1.25 1.50 1.13
LRP(AH+LN) .939 .908 .750 .838 .713 .635 .606 =~ LRP(AH+LN) 0.65 1.56 1.47 4.88 1.23 1.48 1.08
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Figure 5.4: Investigating gender bias in a pre-trained DistilBERT model for sentiment
classification on SST-2 movie reviews. Distribution of normalized name occurrences over
relevance scores is shown along with sentence samples that contain names that most
(top rows) or least (bottom rows) influence a classification towards positive or negative
sentiment.

5.6 Use Case A: Analyzing Bias in Transformers

We now use our method on a popular Transformer architecture, DistilBERT [302],
to study the detection of systematic bias in machine learning systems through
explainable Al

Setup We download the publicly available checkpoint for sentiment classification
on SST-2 from HuggingFace? and apply the implementation trick introduced in
Section 5.4. In order to detect such bias, template-based approaches, i.e. ‘<name> is
a successful <job__title>’, have been used to test the behavior of the model regarding
different systematic relations between, for example, demographics and most likely
model predictions [271, 272, 273, 274, 275]. While this is a flexible approach, it
involves the risk of producing model inputs out of the training distribution and thus
can cause unstable predictions.

Instead, we study relevance attribution to bias-sensitive groups of tokens that
are of interest. This example explores the possible gender bias in sentiment analysis
using the DistilBERT model. For this, we explain the difference between positive and
negative model outputs for sentiment classification in order to observe which entities
and related gender may exhibit a tendency to be more/less relevant to change the
classification toward a positive or negative sentiment.

Results In Figure 5.4 (left), we observe that there is no consistent bias for female
or male names in the DistilBERT model. Overall, there are more male than female
names in the dataset, but the distributions of positive/negative sentiment attributed
to them are similar. However, we do observe biased model responses towards certain
entity categories: After ranking entities based on their assigned relevance from most
to least relevant in Figure 5.4 (right) we observe that common Western male names
such as ‘lee’, ‘barry’ or ‘coen’ can modulate sentiment the strongest towards positive.
Interestingly, the first female entity, ‘sally jesse raphael’, is ranked high because of

’https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english
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her typically male family name ‘raphael’. At the other extreme, among the names
with the strongest negative impact on sentiment, we find a non-Western family name
(‘chan’) and male political figures (‘saddam hussein’, ‘castro’).

We further note that because our explainable Al-based approach disentangles
the contribution of individual words from that of other words in the sentence, our
approach is more immune to confounders than a naive approach that would simply
look at the correlation between name occurrence and predicted sentiment.

5.7 Use Case B: Task-Solving in Humans and Trans-
formers

The usefulness of learned self-attention functions often correlates with how well it
aligns with human attention [113, 114, 115, 116, 303]. In the following, we evaluate
how well attention flow [281] in large language models, namely BERT [4], RoBERTa
[304] and T5 [305], aligns with human eye fixations during task-specific reading,
compared to other shallow sequence labeling models [306, 14] and a classic, heuristic
model of human reading [307]. To compare the different model attributions and
the heuristic model across task-specific English reading tasks, we use a publicly
available dataset with eye-tracking recordings of twelve English native speakers [308].
It contains data from two different task scenarios, one for sentiment analysis on SST
movie reviews and the other for relation extraction on Wikipedia. 3

5.7.1 Methods

Next, we briefly describe our used methods and refer to Appendix A.4.2 for additional
details on model architectures, optimization and hyperparameter choices.

Human reading To compute human attention vectors, we extract and average
word-based total fixation times across participants and focus on relation extraction
and sentiment reading samples from the task-specific reading (TSR) subset of the
ZuCo corpus. We refer to this as the ‘TSR (ZuCo)’ case in the following.

Models The superior performance of Transformer architectures across broad sets
of NLP tasks raises the question of how task-related attention patterns really are.
We use both pre-trained uncased BERT-base [4] as well as fine-tuned BERT models
on the respective tasks. BERT was originally pre-trained on the English Wikipedia
and the BookCorpus. Additionally, we use the RoBERTa model, which has the same
architecture as BERT and demonstrates better performance on downstream tasks
using an improved pre-training scheme and the use of additional news article data
[304]. The Text-to-Text Transfer Transformer (T5) uses parallel task-training and

30ur code for the analysis and to reproduce the results is available at: https://github.com/
oeberle/task_gaze_transformers
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has demonstrated state-of-the-art performance on several transfer tasks including
sentiment analysis and natural language inference [305].

In addition, we evaluate different ways of extracting token-level importance scores
based on attention. We collect attention representations and compute the mean
attention vector over the last layer heads to capture the mixing of information in
Transformer self-attention modules [301], which we denote as last for the Transformer
models considered here. In addition, we consider attention flow, which captures the
layer-wise attention structure of Transformer models [281] .

In order to apply LRP to large-scale Transformer architectures, we have to
consider any architecture choices that affect the gradient computation as discussed
previously. The original BERT model differs from our previous scenario in the
following ways: (i) it uses an overall deeper architecture that consists of 12 self-
attention layers, (ii) the GeLU non-linearity is used as an activation function between
two linear readout layers after each self-attention computation, and, (iii) a hyperbolic
tangent is applied as an activation function after the pooling layer. We can treat the
non-linear activation functions o(x) = tanh(x) and o(x) = gelu(z) via application of
the following trick that has been used in various forms for the efficient implementation
of propagation rules [12, 226, 261]. It does not affect the forward prediction of the
model but considers the gradient of the identity id(x) during the backward pass and
is by design relevance conserving;:

Zd(xl) .detach()

i = id() |

Combined with the layer-wise application of the AH and LN rules, we then extract
explanations from deeper Transformer models and, in our study, focus on task-tuned
BERT models, which we refer to as the ‘BERT (LRP)".

We ground our analysis on Transformers by comparing them to relatively shallow
models that were trained from scratch. We train a standard CNN [309] network with
multiple filter sizes on pre-trained GloVe embeddings [310]. Another widely-used
model that paved the way for Transformer-type models is the shallow multi-head
self-attention network [52]. We use a version of this shallow self-attention model
using GloVe vectors as embedding initialization in combination with a linear read-out
layer. For both models, we extract relevance scores over tokens using LRP, for which
we pool relevance over the embedding dimensions [311, 312].

As a cognitive model for human reading, we compute task-neutral fixation times
using the E-Z Reader model [313]. The E-Z Reader is a multi-stage, hybrid model,
which relies on an n-gram model and several heuristics that are based on theoretical
assumptions and include the role of word predictability and average saccade length.
Additionally, we compare to a frequency baseline using word statistics of the BNC
(British National Corpus, Kilgarriff [314])* as proposed by Barrett et al. [115].

4We compute the negative log-transformed probability of each lower-cased token corresponding
to an inverse relation between word-frequency and human gaze duration [315]
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Metric To compare models with human attention, we compute the Spearman
correlation between human and model-based importance vectors both on a token-
level by concatenating individual sentences, and and on a sentence-level [301]. This
enables us to distinguish unrelated effects caused by varying sentence length from
token-level importance. As described before, we extract human attention from
gaze (ZuCo), simulated gaze (E-Z Reader), averaged last layer attentions (BERT,
RoBERTa, T5), relevance scores (CNN; self-attention) and inverse token probability
scores (BNC).5 We use tokenization as present in the ZuCo dataset to align sentences
across tokenizers and apply max-pooling of scores when bins are merged.

5.7.2 Results

In the following, we present our results on how well different attributions patterns
align to human attention during task-solving. We further investigate in what ways
they differ by analyzing sparsity levels and assess faithfulness.
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Figure 5.5: Spearman correlation analysis between human attention and different model
attributions in two task settings. Solid bar edges indicate sentence-level correlations in
contrast to a token-level analysis. Left: Sentiment Reading on the SST dataset. Right:
Relation Extraction on Wikipedia. Correlations are statistically significant with p < 0.05
unless stated otherwise (ns: not significant).

Human correlation To measure how well model-based token attributions and
human attention patterns for sentiment reading and relation extraction align, we
compute pair-wise correlation scores as displayed in Figure 5.5. Reported correlations
are statistically significant with p < 0.05 if not indicated otherwise (ns: not
significant). After ranking based on the correlations on sentence-level, we observe
differences between sentiment reading on SST and relation extraction on Wikipedia
for the different models. For sentiment reading, the E-Z Reader and BNC show the
highest correlations followed by the Transformer attention flow values. For relation
extraction, we see the highest correlation for BERT attention flows (with and without

SFirst and last token bins from each sentence are ignored to avoid the influence of sentence border
effects in Transformers [53] and for which the E-Z Reader does not compute fixations.
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fine-tuning) followed by the E-Z Reader. On the lower end, computing means over
Transformer attentions across the last layer shows weak to no correlations for both
tasks. The shallow architectures result in low to moderate correlations with a gap
to the best attention flow correlation scores. BERT (LRP) shows relatively weak
correlation, more similar to levels of Transformer last, and lower than the shallow
self-attention model.

Sparsity analysis Averaged sentence-level entropy is used to measure sparsity
levels of the different attributions. We compensate for the different sentence lengths
by performing a stratified analysis such that every length occurs equally often. As
summarized in Table 5.2, we find that BERT, RoBERTa and T5 attention flow, the
E-Z Reader and BNC baseline obtain similar levels of sparsity as human attention (at
around 3.4-3.6 bits). Entropies are lower for the shallow networks with self-attention
(LRP) at 1.8-2.2 bits and CNN (LRP) at around 2.9 bits. The BERT explanations
extracted using the LRP (AH+LN) rule result in moderate entropy levels between the
very sparse shallow models and the least sparse cases (TSR, E-Z Reader, Transformer
flow) at levels of 2.9-3.1 bits. The shallow models were trained from scratch for the
respective tasks whereas all other models (including human attention) are heavily
influenced by a more general modeling of natural language, which might explain why
Transformer attributions are more broadly distributed over all tokens. This analysis
thus highlights that attributions show varying levels of sparsity across models and
attribution methods.

Table 5.2: Mean entropy over all sentences for each task setting. Lower entropy means
sparser token importance. The maximal entropy of a uniform model is at 4.09 bits.

TSR (ZuCo)
E-Z Reader
BNC inv prob
CNN (LRP)
self-attention
(LRP)

BERT (LRP)
BERT flow 11
RoBERTa
flow 11

T5 flow 11
BERT last
RoBERTa last
T5 last

SR | 344 3.44 3.40 293 216 3.11 3.57 3.61 3.61 2.37 2.65 2.45
TSR 3.38 346 3.39 298 181 292 3.54 3.60 3.63 248 2.56 2.29

Faithfulness We further test the ability of both human and model-based
attributions to activate the correct output neuron using a gradual flipping of features
[287]. By this, we aim to test how effective the exact token ranking based on
attribution scores is at producing the true output probability in a task-tuned BERT
model. As presented in previous chapters, such measures of faithfulness are typically
used to test how sensitive a given model responds to a specific flipping order as
provided by an explanation of this same model. Here, we perform the analysis
according to a ranking order that we extract from a set of models or human-based
rankings. Faithfulness can now be understood as the combination of this model and
its respective attribution approach. Hence, a high score may not only be achieved by
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a faithful method but also by a model that processes information in favorable ways,
e.g., models that by design produce more sparse explanations.

In the following, we perform the flipping of features using fine-tuned BERT models
for both sentiment classification and relation extraction as the reference model and
present results in Figure 5.6. In our analysis, we observe that adding tokens according
to absolute token probability (BNC prob) results in worse performance than randomly
adding tokens as to be expected. From-scratch trained models (CNN and self-
attention) are more effective in selecting task-relevant tokens than any Transformer
attention flow, the E-Z Reader and human reading. The BERT explanations using the
improved LRP rule (AH+LN) result in the most effective Transformer explanation,
with only the CNN (LRP) achieving a more faithful explanation. In parallel, the
most sparse shallow self-attention explanations are less faithful. Adding tokens based
on human attention is as effective for the sentiment task as the E-Z Reader. For the
relation extraction task, human attention vectors provide the most effective flipping
order after the relevance-based methods and we observe that all Transformer flows
perform comparably in both tasks.

The observed difference in sparsity levels might explain the advantage of CNNs
and shallow self-attention models in this analysis. The early addition of few but very
relevant words has a strong effect on the model’s decision when compared to less
sparse attributions as observed in Transformer flow or human reading.

0.7
—— TSR (ZuCo)

—— E-Z Reader
===+ BNC prob
CNN (LRP)
self-attention (LRP)
RoBERTa flow 11
—— T5 flow 11
BERT flow 11
BERT (LRP)
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Figure 5.6: Feature flipping experiment. Tokens are ordered according to different
attribution methods and added from most to least relevant to an empty input sentence.
Observed probability for the true class is shown. Left: Activation curves for sentiment
reading on SST-2. Right: Results for relation extraction on Wikipedia.

To summarize, this case study illustrates the trade-off between human alignment,
sparsity levels and model faithfulness. In our experiments, we observe that the
more sparse and faithful explanations with regard to a task-tuned BERT model
show moderate correlation to human fixations, and and vice versa, the strongest
correlation to human reading patterns is observed for less faithful explanations. This
is in line with previous findings that gradient-based methods are often more faithful
[279, 280, 283, 282], but more faithful explanations do not always agree more with
human rationales [75, 316]. Our findings highlight that the selected explanation
method can strongly affect the observed alignment between machine learning model

88



5.8 Summary and Discussion

and human rationales. Therefore the selected approach should be carefully evaluated
using objective explainable Al measures to ensure that the explanation reflects the
task model’s prediction process.

5.8 Summary and Discussion

In this chapter, we have proposed better explanations for Transformer models.
The central role of Transformers in machine learning and their strong uptake in
practical applications have highlighted the importance of bringing transparency to
their decisions. Within the LRP framework, we have shown that Gradient x Input
fails to implement conservation, a common property of attribution techniques.
Our analysis has highlighted that specific architecture choices such as attention
heads and layer normalization need to be addressed specifically in order to ensure
conservation and faithful explanations. Our experiments have demonstrated that
our method systematically achieves state-of-the-art faithfulness scores. In addition,
we have showcased our explanation technique on the problem of detecting biases
in a widely used sentiment classification model. Our explanation technique was
able to characterize model bias in a detailed manner without having to generate
counterfactual examples and the risk of stepping out of the data manifold. In another
use case, we have investigated the alignment of different attribution approaches
to task-specific human reading in English native speakers. We found that high
faithfulness does not equal high correlation with human rationales. This suggests
that both pre-trained language models and humans are regularized by natural
language contexts, which can result in suboptimal task-solving strategies that do not
necessarily present the most effective solution to a task.

Limitations Our experiments have focused on sequence classification scenarios
consisting of a sequence encoder combined with a readout module that computes the
model prediction. In practice, Transformers have been used in many task settings,
which have introduced a great variety of architectures built from basic Transformer
sub-modules. This includes additional encoder-decoder attention modules in sequence-
to-sequence tasks [14, 305], or cross-modality encoders and co-attention modules
[317] for vision-and-language reasoning [318]. Generally, we observe that the great
variety of Transformer architectures requires careful implementation of propagation
rules and specific architecture choices may need additional treatment, as we have
observed in Section 5.7.1 for specific non-linear activation functions.

In our evaluation of Transformer explanation methods, we have focused on
faithfulness and the desired principle of conservation. Faithfulness has arguably
become the standard way of assessing how well an explanation method is able to
explain the model predictions. Our choice of including conservation as a desired
principle was informed by observations that explanations on basic Transformers
were not able to produce plausible attributions using naive Gradient x Input. As we
have demonstrated, the observed relevance did not conserve the model prediction
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score throughout the self-attention modules. Further theoretical and experimental
analysis revealed that the attention head and layer normalization modules are the
main factors that lead to a break in conservation. We have thus used conservation
as a guiding principle to inform the development of better propagation rules and
perform objective evaluation using activation and pruning tasks.

In our use case A, we have demonstrated that explanations are a promising
candidate to detect model bias and increase the fairness of machine learning systems.
During the design of our study on gender bias in movie reviews, we have found that
this approach can be difficult to implement since suitable datasets are sparse and
template-based approaches lack robustness. We note that the here investigated case
of representational gender bias is only one example of many possible ways models
can be biased in undesired ways [319, 320].

In use case B, we have investigated the relation between human reading patterns
and different model attribution methods during task-solving. We observe that the
choice of the method can strongly affect the respective alignment to human attention,
as shown by the differences in correlation scores, e.g., between BERT attention
flow and BERT (LRP). This emphasizes that in order to make robust inferences
from explanations, the selected explanation method should be assessed thoroughly.
Explanations that best explain the model prediction, may not coincide with human
reading and task-solving strategies since models do not necessarily learn human-
like concepts, and humans might over-look corpus correlations between labels and
simple features [321]. Thus, perfectly aligning humans and machines may not be
feasible or even a desired goal, yet human gaze information was shown to be a
useful learning signal to improve model performance: Human attention patterns
were used to regularize learning during model training resulting in comparable
or improved task performance for part-of-speech tagging [322, 118, 115], sentence
compression [114], detecting sentiment [323, 119] or reading comprehension [120]. In
these works, gaze data is used without consideration of the specific task, questioning
to what extent human reading is task-modulated and if models would even be able to
further benefit from task-specific human signals. To better understand such internal
model mechanisms, faithful explanations can help to gain more nuanced insights into
task-related strategies that go beyond observing parameter changes in response to
task-tuning [324, 325].

Overall, our analysis of Transformer explanations has highlighted that common
explainable AI methods will not necessarily continue to work well on Transformer
models. We have seen that desired principles for explanations such as conservation
can guide the way towards improved propagation rules. The resulting explanations
offer to analyze the steadily growing number of Transformer variants and allow
insights for their understanding and improvement.
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We conclude this thesis with a summary of our key findings and discuss their wider
implications and contributions thereof. This includes an outlook on promising future
research and application areas.

6.1 Summary and Discussion

This thesis has aimed to bring interpretability to highly predictive models that have
gained wide popularity in the machine learning community but remained challenging
to make explainable. The specific structure of such models motivated the use of
carefully designed explanation techniques. We have considered three such model
architectures, deep similarity models, graph neural networks and Transformers, and
demonstrated how propagation-based methods could be developed to compute robust
explanations for each scenario.

6.1.1 Methods

In Chapter 3, we have introduced ‘BiLRP’, which is an explanation method for deep
similarity models. It decomposes the dot product similarity score on pairs of input
features. BiLRP is embedded into the framework of the deep Taylor decomposition
method, which resulted in second-order terms that represent the interaction between
features. These accurately describe which pairs of features are most or least relevant
to produce a particular similarity score. In experiments, we have confirmed that
BIiLRP gives more robust explanations compared to approaches such as Saliency or
Hessian x Product that we have proposed here. Our analysis of similarity models
has thus enabled detailed insight into model mechanisms and data structure.
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Next, we have introduced ‘GNN-LRP’, a method that computes explanations in
graph neural networks in Chapter 4. Their layered aggregation-and-combine structure
on the input graph has resulted in higher-order terms during the derivation using a
deep Taylor expansion. We have described these higher-order interactions between
nodes via walks through the network. In experiments on synthetic and real-world
data, we have found that GNN-LRP outperforms other graph explanation methods
that rely solely on explanations in terms of input nodes or edges, which suggests that
the model is explained more faithfully using higher-order information. Both BiLRP
and GNN-LRP have illustrated how higher-order information naturally emerges in
a layer-wise, Taylor-based decomposition of the model prediction and presents an
appropriate explanation complexity for these models. These explanations additionally
offer the flexibility to explain at different levels of granularity by pooling relevance
over specified dimensions such as image patches or subgraphs. The consideration of
high-order information should thus be informed by the structure of the model and
input, and generally, the lowest available explanation complexity should be chosen
to avoid an unnecessarily complex attribution.

For Transformer models, we have observed that the break of conservation caused
by specific structures in the self-attention blocks has resulted in unsatisfactory
explanation quality. In Chapter 5, we have developed better explanations for
Transformer architectures and introduced LRP propagation rules that handle the non-
conserving layer normalization and attention head modules. We have demonstrated
that these improved LRP rules result in more faithful explanations that can explain
the Transformer prediction process better than naive gradient computation and
previously proposed Transformation explanation approaches.

These methods contribute to a novel direction of explainable AI methods that
go beyond heatmaps over input features if needed and demonstrate how robust
explanations can be designed and evaluated by considering their distinct structure.

6.1.2 Evaluation

For the objective evaluation of explanations, we have used activation task procedures
that iteratively add the most relevant features to observe how strongly they activate
the correct output neuron. A similar procedure was introduced to remove the least
relevant features to check if the model is only minimally affected. We have contributed
an extension of pixel-flipping to higher-order explanations, which considers the
additional information available when deciding which feature to select next. The
resulting area under the curve serves as a measure of faithfulness, which is arguably
the most commonly used approach to quantify a method’s ability to explain the
model. In addition to the evaluation using faithfulness, we have observed that the
principle of conservation is not met by common Transformer explanations, including
Gradient x Input. We have further described under which conditions conservation is
fulfilled for BiLRP, GNN-LRP and the Transformer LRP propagation rules.
Additionally, we explored a case study in which we compared language models to
human reading patterns. We investigated the agreement between task-dependent
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human attention with different model-based attribution vectors and found that the
quality of the used explanation method can strongly affect the correlation strength
between humans and machines. We have observed that faithful explanations tend
to be sparser than human attention vectors, and conversely, explanations that
match human sparsity levels, i.e., Transformer attention and attention flow, have
resulted in lower faithfulness. Our results suggest that the alignment of humans
to language models depends strongly on the selected model architecture and the
selected explanation method.

6.1.3 Robustness of Models

We have identified numerous instances of ‘Clever Hans’ behavior in popular machine
learning models. By viewing VGG-16 as a graph, our GNN-LRP method enabled us
to trace how objects are assembled from distinct parts throughout the convolutional
encoder blocks. This allowed us to observe how co-occurring objects, e.g. a ‘dumbell’
that often appears together with an ‘arm’, are merged into a single object ‘arm-
dumbell’-a model strategy that will not generalize well. This previously observed
effect (cf. [258]) could now be analyzed using the detailed information provided by
GNN-LRP explanations, which provide information for future mitigation strategies.

We further demonstrated the usefulness of explanations to identify flawed
strategies and improve machine learning models. The lack of rotation and translation
invariance during the processing of historic illustrations could be mitigated using the
insights offered by BilRP. A similar lack of invariance emerged in the frame-to-frame
analysis of sports videos. While invariance score across VGG-16 layers were highest
for the last encoding layer 31, the explanations produced by BiLRP revealed undesired
model behavior. This includes ‘Clever Hans’ cases, for which similarity between
frames was attributed surprisingly to interactions of background features instead of
subjects in the foreground. Thus, high nominal accuracy or invariance scores can be
misleading and explainable Al offers a way to verify these model properties to guide
model development towards high robustness and performance.

6.1.4 Application and Insights

In a series of use cases, we have used our explanation methods to extract insights
and explored their role in enabling new applications and research directions. In close
collaboration with historians of science, we have developed a machine learning-assisted
approach that allowed us to infer the similarity structure in a highly heterogeneous
corpus of early modern computational tables. This enabled us to study the emergence
and evolution of science in the 15th to 17th century at unprecedented scale and
granularity. Using BiLRP, we have verified that our model that relies on representing a
dense numerical table via a bag-of-bigrams, e.g. ‘01’ or ‘98’, indeed grounds similarity
on the desired numerical features instead of attributing relevance to task-irrelevant
page elements (such as drawings or surrounding text). Our automated corpus-
wide analysis has enabled us to study the spatio-temporal evolution of knowledge
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and innovation, which highlighted singularities that could further be supported by
historical evidence.

In NLP, modern corpora have demonstrated to bias large-scale language models
towards undesired predictions that are based on characteristics such as gender,
ethnicity or age. Instead of probing bias-sensitive tokens in a template-based
approach, our developed Transformer LRP-based explanations have allowed us
to directly quantify how relevant a given entity is to change the sentiment prediction
towards a positive or negative classification. In our experiment using the widely-
used DistilBERT Transformer model, we did not observe a corpus-level gender bias.
However, we have identified biases that are specific to certain categories, e.g., Western
male names are most likely to produce a positive sentiment, whereas non-Western
surnames have the opposite effect. Hence, this relevance-based approach has offered
detailed insight into biases by comparing the relevance of an entity to influence the
model prediction.

The development of robust explainable AI methods is thus a crucial step to
investigate and resolve pressing issues of modern machine learning models.

6.2 Outlook

After the analysis of our results, we now provide an overview of promising future
directions for the development of explainable AI methods. We focus in particular on
directions that demand considering the model structure and ways to evaluate and
gain insights from resulting explanations.

6.2.1 Transfer to Similar Structures and Models

The increasingly complex design of modern architectures often requires that methods
such as LRP have to be continuously extended to robustly explain these models.
Directly applicable gradient-based methods may produce satisfactory results for
simple models, but gradient behavior becomes unstable for deep models [41]. This
necessitates to develop more robust explanations. In our experiments, we evaluated
and used different explanation methods for a selection of different architectures and
domains. These insights and analyses can be further extended and applied to obtain
better explanations for complex models in the future.

Many practical challenges in machine learning require inputs from different
sources, e.g., in hospital applications this can include medical scans and text data
about a patient’s condition, which motivates multi-model learning [326, 327, 328].
Modeling multi-modal data requires considering interactions between the respective
feature representations and using an intermediate fusion step to combine different
modalities. Highly non-linear deep architectures are commonly used to learn suitable
representations, and dot products are a natural choice to detect joint patterns across
modalities [329, 317, 328]. This structure makes computing explanations technically
challenging, and our BiLRP approach of explaining similarity predictions is well-
suited to explain such multi-modal feature interactions. Additionally, the analysis of
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not directly interpretable latent variables, e.g., in the context of generative adversarial
networks and learning shared latent spaces using dot products, have so far required
specifically designed explainable models to become interpretable [330, 331, 332, 333].
The BiLRP approach offers to explain such latent variables to understand respective
feature interactions better.

The popularity of GNNs has resulted in many use cases, including temporal
sequences [334, 335] and multi-modal data [336, 337, 338], that we have not considered
here. These approaches may require specific treatment to arrive at walk-based
explanations through time. We expect that GNN-LRP extends naturally to variants
of standard GNNs that can be formulated via repeated aggregate-and-combine
computations on an adjacency matrix.

Relation networks that represent relational reasoning processes gained increasing
interest and learn complex relations between features [339, 340]. Conceptually, these
approaches use specifically structured computations such as attentional similarity and
graph networks to represent interactions between entities [340, 341, 342, 343, 344].
Our introduced explanation methods can be used to highlight the relevant higher-
order feature interactions, which enables detailed insights into complex reasoning
strategies.

Related graph approaches have used Transformer-based architectures [264], which
motivate to capture higher-order interactions with a focus on the joint contribution
of data features. This again highlights that considering structure is important during
selection or development of appropriate explanation methods.

The unwavering influence of Transformer models and modules on machine learning
has resulted in numerous extensions, modifications and applications of the model
considered here. This large variety motivates to develop explainable Al that robustly
explains these variants. For example, a seemingly small change of an activation
function can severely break conservation, and hence modifications such as cross-
modality encoders and co-attention modules [317, 318] must be carefully analyzed
before extracting propagation-based explanations. More work and community efforts
are needed to implement robust explanation techniques for the most commonly used
architectures.

6.2.2 Evaluation Datasets and Ground Truth Explanations

To evaluate progress in explainable Al in consistent ways, it is important to distinguish
between approaches that test the ability of an explanation method to faithfully reflect
the model prediction, and its ability to match a given ground truth.

Common procedures that compute faithfulness of an explanation method rely on
masking certain parts of the input to observe change in the model prediction. This
served as a starting point to develop a masking-based approach that is applicable to
higher-order explanations as introduced in Section 4.4.2. Moreover, it can serve as a
general strategy for future evaluations of higher-order feature interactions, and is
also applicable to second-order interactions, e.g., in similarity models.
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This extension can require to extract subgraphs (cf. Section 4.4.2). Since
evaluating all possible subgraphs is computationally not feasible for complex models,
we have used approximation schemes, i.e., local approximation. Further development
of approaches to extract relevant subgraphs in efficient and accurate ways poses an
important future direction.

To address how well an explanation method is able to match a given ground
truth, requires to develop and make available standardized datasets. In order to
challenge explanation methods that consider higher-order information, these should
be sufficiently complex and go beyond binary or few label classification settings. Since
currently no appropriate ground truth data that considers higher-order interactions
exists, evaluation procedures so far have to be designed to match this ground truth of
lower complexity. For graph explanations, the BA-2motif dataset [241] has provided
ground truth edge annotations for two types of classes that differ in one particular
edge and has been used to confirm the effectiveness of GNN-LRP in addition to
perturbation-based evaluation [226]. While the higher-order information did provide
an advantage when compared to standard input explanations, it would be interesting
to observe what data and tasks are structured in ways that can not be explained
accurately using standard explanations alone.

Thus, the development of more sophisticated synthetic datasets is an important
future direction. This allows to control the underlying features and the level of
ground truth complexity better. Tasks that are best described using such higher-
order interactions are especially suited. Ground truth that evolves along additional,
e.g., spatial or temporal, axes could provide appropriate data which may be used in
causal reasoning graphs [345, 346], or task-solving in temporal networks [334, 335].
In addition, pairwise interactions have recently been used to test directly feature
importance for relational reasoning between objects [339, 175], which could provide
a future benchmark for second-order methods on synthetic data.

Collecting ground truth annotations for real-world data that considers higher-
order information is generally challenging. These require annotations on a fine-grained
level that match the level of granularity of features that the prediction is grounded
in, e.g., the matching of cat ear and eye features for similarity between cats, while
focusing less on overall body outline or other class-typical features. For example, in
the case of similarity, the lack of a clear definition of what features make two data
points similar further impedes the collection of ground truth. It requires to decide
on what level annotations are to be collected: high-level features such as individual
object parts or more low-level color or texture features.

Human similarity judgment tasks developed to evaluate the agreement between
humans and machines [347, 348] may be useful to provide pairs of input data that are
considered similar by annotators, thereby using an implicit definition of similarity.
In order to directly measure if the appropriate features are used by the model to
build similarity, appropriate segmentation and their pair-wise interactions will be
necessary to quantify the accuracy of explanations.

While the human evaluation of explanations is often acknowledged as an important
direction, it remains difficult to define robust protocols to collect ground truth
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explanations and measure their alignment, especially for scenarios that consider
interactions between features. The resulting limited availability of data and the
large variety of study designs currently impede the development of standardized
community benchmarks. Future work is needed to define and unify the gold standards
to measure agreement between models and human data, e.g., using information-
theoretic approaches [349]. As we have observed, the eye fixation-based attention
scores in human reading are strongly regularized by natural reading patterns, which
illustrates the need to separate such task-independent priors from task-specific
contributions.

6.2.3 Better Models using Explainable Al

We have seen that developing reliable explanations requires a careful analysis of
models and methods. Assuming we have access to such explanations, another
important future challenge is to use them to improve machine learning towards more
efficient, robust and fair models.

Our analysis that focused on particular model structures, e.g., graph networks
or self-attention modules, can inform the design of future architectures. Using
well-studied model components over very specific network functions that do not
significantly boost performance can thus facilitate to make machine learning more
transparent and connect them to existing theoretical frameworks. This approach can
provide a trade-off between selecting less flexible self-explainable models, and using
inexplicable high-performing models.

The identification of undesired prediction strategies is an important first step to
improve performance of machine learning models. As we have observed throughout
this thesis, models can be flawed in many different ways, e.g., caused by a lack of
invariance or spurious correlations between features, which motivates to alleviate or
remove them in strategic and reliable ways. The automated detection and mitigation
of model artifacts has been explored recently [128], and future work is needed to
investigate how the additional information provided by higher-order explanations
can be used to correct flawed model behavior.

The widening reach of more complex models, with application to sensitive and
high stake areas such as medical diagnosis, automated decisions-making, or finance,
emphasizes the need for transparent and robust predictions. Explanations are
thus crucial to detect and correct unwanted model biases, for example, when using
similarity models for information retrieval tasks across diverse demographics or
Transformer models for robust language processing in fair and transparent ways.
Propagation-based methods hereby offer direct ways to decompose model predictions
at different processing steps and enable pinpointing the modules or processing layers
that are most sensitive to bias models in undesired ways. In addition, approaches
that investigate diverse types of biases and systematically detect them at scale are
much needed in future work.
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Explainable Al thus plays a central role in guiding this search for better
architectures, data and optimization schemes, and our methods provide reliable
and detailed explanations to inform this process.

6.2.4 Scientific Insights

The increasing use of machine learning across various scientific fields has not only
enabled the large-scale analysis and automatic organization of big data but has
also started to be a valuable tool for the generation of novel domain insights, e.g.,
in quantum chemistry [350, 230, 6, 351], the climate and earth sciences [352, 353,
354], astronomy [355, 356], biomedicine [357, 358] or neuroscience [359, 360, 361,
362]. Besides the direct insights gained from these models, explainable AI offers
to verify these model computations and brings an additional layer of information
on the level of individual inputs, full datasets or corpora, and model computations.
The potentially high complexity of problems encountered in the sciences motivates
the use of specifically structured models. In order to extract domain insights and
information about the structure of the problem itself, appropriate explanations are
needed. For example, GNN-LRP can support researchers by providing detailed and
scientifically valuable explanations in graph-based models for quantum chemistry
[226].

Such machine learning-assisted insight discovery has most widely been used in the
natural sciences [363], and consequently, other domains have been challenged to profit
from machine learning techniques. In future work, under-represented languages or
low-resource problems in the historical sciences can benefit from better Transformer
explanations to verify robust model behavior in the absence of annotated material
and ground truth explanations. Since the here addressed architectures are popular
choices for many of the aforementioned machine learning applications, having access
to faithful explanations opens vast possibilities to study models and data in the
future.

In conclusion, explainable AI is a powerful and important direction for making
machine learning usable. The complexity and structure of state-of-the-art architec-
tures require careful theory, implementation and evaluation to extract meaningful
explanations and build safe, robust and trustworthy models.
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Supplementary Details

A.1 Details for Rendering BiLRP Explanations

Below we provide the parameters selected for visualizing BiLRP explanations as
presented in Section 3.6-3.7.1 and Section 3.8. A description of the visualization
procedure is given in Section 3.4.

Table A.1: Parameters used on each dataset for rendering BiLRP explanations.

Dataset input size pool l h »p
Pascal VOC 2007 128 x 128  8x8 025 13 2
Faces (UFI & LFW) 64 x 64 4x4 03 60 1
UCF Sport 128 x 128 8§ x8 025 20 1
Sphaera (illustrations) 96 x 96 6x6 025 15 2
Sphaera (tables) 140 x 140 20x20 0.01 4 2

A.2 Details for Use Case - Digital Humanities

The following provides additional details on methods and implementation for our
use case in modeling historical numerical tables in Section 3.8.

A.2.1 Digit Recognition Model Architecture

The recognition architecture consists of two main encoder modules, namely, (i)
the ‘encoder’ and (ii) the ‘convolutional encoder’ that together form the 7-layer
neural network. The digit recognition model was implemented in the PyTorch
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NeuralOCR(

(encoder): Sequential(
(0): R2Conv([8-Rotations], kernel_size=3, stride=1, padding=1, bias=False)
(1) : ReLU(inplace=True)
(2): R2Conv([8-Rotations], kernel_size=3, stride=1, padding=1, bias=False)
(3): ReLU(inplace=True])
(4): R2Conv([8-Rotations], kernel_size=5, stride=1, padding=2, bias=False)
(5): ReLU(inplace=True)
(6): R2Conv([8-Rotations], kernel_size=5, stride=1, padding=2, bias=False)
(7): GroupPooling([8-Rotations])

)

(convolutional_encoder): Sequential(
(0): Conv2d(64, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)
(1): ReLU(inplace=True)
(2): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(3): ReLU(inplace=True)
(4): Conv2d(32, 10, kernel_size=(1, 1), stride=(1, 1), bias=False)

Figure A.1: Atom recognition model.

1.8.1 [364] framework. We build a convolutional neural network that consists of
multiple layers of convolutional layers that consist of either standard or equivariant
[365] convolutional layers. An earlier version of this network consists of standard
convolution layers instead of equivariant convolutional layers [139]. We use the
network for the historical insights and analyses as presented in Figure A.1. It consists
of an initial 4-layer equivariant convolutional block with filter sizes {3x3, 3x3, 5x5,
5x5} and 8-rotational groups, which ensures that low-level feature detectors are
learned to be invariant to translations and rotations on the R%-plane. Thus, features
required to recognize digits (such as lines, arches or circles) generalize over spatial
input transformations resulting in increased data efficiency. We apply ReLU layers
between all convolutional layers except at the final layer in a block. A final pooling
layer selects the maximally activating map from the equivariant group. Subsequently,
these features are learned to be combined into digits detectors using a stack of
three standard convolution layers of kernel sizes {5x5, 1x1, 1x1} which output 10
activation maps {aj(a:)}jlgl for the digits 0-9. For each digit j the network produces
a Gaussian blob positioned at the digit location in map {a;(x)}. We subtract a
small bias term b = 0.1 before the ReLLU layer to attenuate background activity in
the final layer. To model variations in scan orientation and size, we identify the
page scaling factor s and rotation #, for which the single-digit activation maps are
maximally activated (sum of activations).

A.2.1.1 Modeling Invariances

Local Scale and Rotation Invariance We further robustify the learned
representations against style and scale heterogeneity by augmenting the training
data patches using the following transformations: (i) We apply rotations of £10°,
(ii) translations of the patch by (0.025ximg _width/height in x- and y-direction, (iii)
proportional scaling of the full patch by a factor in the range (0.8 — 1.2x) using
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bilinear interpolation and (iv) shearing transformation of (£5°) along both spatial
directions. A random value from the specified range is sampled and added to the
training dataset for each possible augmentation. We sample as many augmented
data points as there are annotated patches.

Global Scale Invariance Global scale differences in the corpus can be caused by
either (i) different sizes of the used woodblock during printing, i.e. larger or smaller
typesetting, but also (ii) from the resolution differences that can result in several
orders of pixel height and width spans in the data. In order to model both sources in
parallel, we chose to implement a multi-scale feature pyramid approach similar to the
framework of steerable pyramids [366]. This has the advantage of parameter-efficacy
since no additional trainable parameters are introduced and model transparency
since the multi-scale approach is based on the linear decomposition of the image
at different scales from which the most activating feature scale is chosen and thus,
remains fully explainable.

Using bilinear interpolation, we re-scale the image to a reference height or width of
1200 pixels at reference scale s = 1.0 (depending on portrait or landscape orientation).
Resulting input images are collected for every scale s € S = {sy,...,1.0,..., sk} and
fed through the atom-recognition network. The scale s* = maxses > ; a;j(x;s)
maximizing the spatially pooled activity over all features j is then chosen for the
further processing.

Global Rotation Invariance Similarly, there exist differences in page orientation
that can be caused by either (i) the printing process itself when the printer considered
a table or illustration to be better readable in landscape orientation, but also (ii)
from the scan process. We model both of these as in the previous section concerning
scale by including page input rotations § € © = {—90,0,90}° and select the rotation
that maximizes activity 6" = maxgece 3_; a;j(x; ).

A.2.1.2 Activity Peak Detection

The bigram network outputs can now be used to directly spatially pool activity.
While this is a simple and viable approach that does produce meaningful similarity it
is not always clear how the pooled activity corresponds to one bigram on a page. A
pooled activity of 100 can correspond to two very prototypical bigrams that activate
the network very strongly or four weakly activated less prototypical examples. Besides
thresholding before pooling, we propose to use a standard peak detection process
to convert the raw activation maps into bigram count maps. We start from a set of
100 bigram maps aj;, with jk = {00, ...,99} which are added to 10 maps for isolated
digits a; with i ={_0_,..., 9 } resulting in a = (a;, a;). Since the max-pooling
used for the bigrams reduces the activity levels in comparison to the isolated digit
maps, we introduce a scaling parameter « to the latter a; = a;/«. Next, we subtract
a bias term - max(, ) a(,,,) computed as the product of relative scaling parameter
B and the maximum pixel value in all maps. The resulting maps are rectified, which,
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similarly to the processing applied to the single-digit activation maps, reduces weak
background activity. Then, for each of the 110 feature maps, we extract the feature
regions that occur at all non-zero locations and compute all peaks using the center of
activity mass. We determine the linkage matrix using the distances between centers
and perform a hierarchical clustering to group close-by activated pixels into groups
of pixels that belong to a bigram. To limit the size of clustered regions, we define
a maximum distance parameter d. We select optimal parameters using histogram
Pearson correlation scores on the training patches and set a = 3, f = 0.12 and

d = 15.

A.3 Details for Experiments on GNN models

We next give additional details on the design, training, and implementation of the
GNN models used in Section 4.4, and applied to the synthetic BA-growth dataset
for predicting graph types, the Stanford Sentiment Treebank dataset for sentiment
classification, and the VGG-16 convolutional neural network for object classification.

A.3.1 GNNs trained on Synthetic Data

We use synthetic datasets to train different GNN architectures, which allows us to
generate arbitrary large datasets to train well-performing and robust GNN models.

Data The synthetic dataset BA-growth consists of graphs of 20 nodes, generated
from two different classes. The first class consists of Barabési-Albert graphs [255]
with a growth parameter 1. For each sample, we start with a graph of two connected
nodes, and at each step, we add an additional node and connect it to a node N from
the current graph G randomly from the distribution

_ degree(N)
> nreg degree(N7)

The second class has a higher growth parameter than 1, where every fifth node gets
connected to two nodes from the current graph instead of one. For the second class,
we use the following inverse preferential attachment model that selects nodes without
replacement and with probability

p(N)

B degree(N)~!
S Areg degree(N7) 1

pN)

GNN Models We train the BA-growth dataset on GCN, GIN and the spectral
network models using binary cross-entropy loss. Each model is built from two
interaction layers with dimensionality of hidden nodes of 128 neurons for the GCN,
and 32 neurons for the GIN and the spectral network. We assume no additional
information about the nodes at the input layer and set the initial state Hy to
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a vector filled with ones. For the spectral network, we use the power expansion
A= [A~0, %A~1, iA~2] as the input in each layer. We require biases to be non-positive,
which avoids the the presence of factors that can not be attributed in meaningful
ways. To achieve this, we reparametrize the biases using b = —0.5log(1 + exp(—2by))
and optimize by instead of b.

After creating train and test sets that each consist of 100,000 randomly selected
text samples, we use SGD optimization and set the learning rate at each iteration to
n = 0.001/(1 + iteration/1000). We observe an average accuracy of 95 %, 96 % and
97 % for GCN, GIN and the spectral network on the test set.

A.3.2 Sentiment Analysis on SST

Data We use a GCN model to predict the sentiment of the Stanford Sentiment
Treebank (SST) dataset [256]. We filter all samples of neutral sentiment and create
a two-class dataset by merging ‘positive’ and ‘very positive’ as well as ‘negative’
and ‘very negative’ samples, respectively. This results in 6920 train and 1821 test
samples. We extract the dependency tree for each samples using the spaCy package
en_core_web_sm [367].

GNN Model The initial state Hy is built from text example (G,1), with graph
G = (A, N), where A is the adjacency matrix of the dependency tree, N are the words
of the text, and [ is the sentiment label of the graph. To find an initial representation
of the sentence, given by N, we take vector representations of a pretrained FastText
[368] word embedding h,, of dimension 300 provided by torchnlp [369], a randomly
initialized word embedding h,, an embedding for the part-of-speech h, and an
embedding for the stemmed words h;. We set the network initialization to be
Hy = [hy, hy, hp, by), where we keep h,, fixed during training and h,, h, and hy
learnable. In the forward propagation, we apply a feed-forward neural network (FFN)
with ReLLU activation simultaneously on each embedded word in Hy, to obtain a
hidden representation of dimension dj of each word. Resulting embeddings are
further processed using T intleractioln blocks (of same type as a GCNs [250]) with

connectivity matrix A = D" 2 AD™ 2, D = diag((>; A;;);) and A is the adjacency
matrix of the undirected input graph with added self-connections. Another FFN
with ReLLU activation is applied and followed by the final readout step for which
we use a global average pooling in node direction to compute a vector of dimension
dy, followed by a linear layer to map representations onto the target dimension. A
softmax layer is used subsequently to output class probabilities.

We train the network for 50 epochs with the cross-entropy loss between the output
and label [, and the Adam optimizer [370] with learning rate n = 2e — 4. We use
hidden dimension d; = 10, the number of layers T'= 3 and in Hy we used h, = 70,
hp, = 30 and h; = 50 respectively. We obtain a test set accuracy of approximately

77%.
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A.3.3 VGG-16

We use the pretrained VGG-16 neural network (without batch normalization) provided
by the PyTorch library and do not change its structure or pretrained parameters.

A.4 Details for Experiments on Transformer models

Below we provide experimental details for our experiments on evaluating Transformer
explanations in Section 5.5.

A.4.1 Sequence Classification

For the NLP experiments, we consider binary sentiment classification on the SST-2
and IMDB datasets which contain 11,844 and 50,000 movie reviews, respectively.
In addition, we use the TweetEval Dataset for tweet classification on sentiment
(59,899), hate detection (12,970) and emotion recognition (5,052). Furthermore, the
SILICONE Dataset is used for emotion detection (Semaine 13,708) and utterance
sentiment analysis (Meld-S 5,627). For SST-2 and IMDB sentiment classification,
the embeddings module and the tokenizer are initialized from pre-trained BERT-
Transformers (textattack/bert-base-uncased-{sst-2/imdb}). For training, we use
batch sizes of bs = 32 and optimize the model parameters using the AdamW optimizer
with a learning rate of Ir = 2e — 5 for a maximal number of T" = 20 epochs or until
early stopping for decreasing validation performance is reached. We follow the same
settings for the Twitter-X, Meld-S and Semaine datasets, except that we initialize the
embedding model and the tokenizer from a commonly used HuggingFace pre-trained
BERT-Transformer (bert-base-uncased)?.

A.4.2 Details for Use Case B: Task-Solving in Humans and Trans-
formers

In the following, we provide details on models, optimization and attribution methods
used in our use case B in Section 5.7.

CNN The CNN models use 300-dimensional pre-trained GloVe 840B [310]
embeddings. Input sentences are tokenized using the SpaCy tokenizer [371]. We use
150 convolutional filters of filter sizes s = [3,4,5] with ReLU activation, followed
by a max-pooling-layer and apply dropout of p = 0.5 of the linear classification
layer during training. For training, we use a batch size of bs = 50 and train all
model parameters using the Adam optimizer with a learning rate of Ir = le — 4
for a maximum number of 7" = 20 epochs. For all model training, we apply early
stopping to avoid overfitting during training and stop optimization as soon as the
validation loss begins to increase. To compute LRP explanations, we use the LRP-v
propagation rule with v = 0. for the linear readout layers [64]. We take absolute

https://huggingface.co/bert-base-uncased
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values over resulting relevance scores since we find they correlate best with human
attention in comparison to raw and rectified processing. For propagation through
the max-pooling layer we apply the winner-take-all principle and for convolutional
layers we use the LRP-v redistribution rule and select v = 0.5 after a search over
v =[0.,0.25,0.5,0.75, 1.0] resulting in largest correlations to human attention.

Self-Attention Model The multi-head self-attention model again uses 300-
dimensional pre-trained GloVe_840B embeddings and is tokenized via SpaCy. The
architecture consists of k = 3 self-attention heads for the SR task and k& = 8 for
REL. The resulting sentence representation is then fed into a linear classification
readout layer with v = 0., which we also use for the relevance propagation to input
embeddings. During optimization we use lr = le — 4, bs = 50 and T = 50.

Transformer Models We use standard BERT-base-uncased architectures and
tokenizers as provided by the huggingface library [7]. For BERT-base fine-tuning
we use [r = le — 5 for REL and Ir = 1e — 6 for SR, bs = 32 and T = 50 for both
tasks. For RoBERTa and T5 we use the RoBERTa-base and T5-base checkpoints

and respective tokenizers.

E-Z Reader We use version 10.2 of the E-Z Reader with default parameters
and 1000 repetitions. Cloze scores, i.e. word predictability scores, were therefore
computed using a 5-gram Kneser-Ney language model [372] as provided by the SRI
Language Modeling Toolkit [373] and trained on the 1 billion token dataset [374].
The resulting perplexity on the held-out test set was ppl = 81.9. Then, word-based
total fixation times are computed from the E-Z Readers trace files and averaged over
all subjects.

After fine-tuned all neural network models, we report the following performance over
five runs in Table A.2.

Acc (SR) F1(SR) | Acc (REL) F1 (REL)

self-attention 69.0+£0.2 64.5+22 | 67513 55.5+£2.0
CNN 71.3£02 69.8+1.7|74.0£19 68.7+48
BERT-base 76.0£0.1 67.0+3.0| 78315 T72.7+3.3

Table A.2: Accuracy and F1 scores after fine-tuning on the respective task dataset
over five runs: sentiment reading on SST (SR) and relation extraction on Wikipedia
(REL). Samples that overlap with the ZuCo dataset were filtered out.
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