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Abstract

Second order systems of differential-algebraic equations arise naturally in many in-

dustrial applications. The classical approach of transforming a second order system into

a first order system and then discretizing the first order system may lead to certain

numerical difficulties. Therefore, a direct discretization and numerical solution of the

second order system is preferred. We study BDF methods, Runge-Kutta methods and

general linear methods for the numerical solution of second order differential-algebraic

systems in semi-explicit form and demonstrate their behavior with numerical examples.

1 Introduction

Second order systems of differential-algebraic equations (DAEs) of the form F (t, y, ẏ, ÿ) = 0
arise naturally in many technical applications. One important application is the modeling and
simulation of mechanical multibody systems, where we usually have second order differential
equations to describe the dynamics of the system coupled with some algebraic equations
describing constraints [7]. Other applications where second order DAEs frequently arise are
models of electrical circuits [10, 11]. In this paper we will restrict ourselves to second order
semi-explicit differential-algebraic systems of the form

ÿ(t) = f(t, y(t), ẏ(t), λ(t)),

0 = g(t, y(t)),
(1)

with sufficiently smooth functions f : [t0, t0 + T ]× R
my × R

my × R
mλ → R

my and
g : [t0, t0 + T ]× R

my → R
mλ and initial values y(t0) = η0, ẏ(t0) = η1, λ(t0) = λ0.

The classical approach for the numerical solution of second order differential-algebraic sys-
tems is the transformation into a first order system by introducing new variables for the first
order derivatives and then to discretize and numerically solve the first order system. The aim
of this work is to show that the direct discretization of the second order system yields better
numerical results and is able to prevent certain numerical difficulties.

For DAEs the accuracy and stability of the numerical solution strongly depends on a char-
acteristic quantity called the index, in a way that the higher the index of the DAE the more
sensitive is the numerical solution to perturbations and errors in the data. A higher index
leads to difficulties in the numerical solution as the numerical method may not converge for
higher index problems and instabilities may occur. There are several index concepts, the
differentiation index (d-index) [2, 14], the strangeness index (s-index) [18], the perturbation
index (p-index) [14] or the tractability index (t-index) [9, 19], but in this paper we will only
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consider the perturbation index, because it is best suited for higher order equations. The
notion of the perturbation index is based on the investigation of the sensitivity of a solution
of the DAE with respect to initial values and right-hand sides. For the exact definition see
[4, 14]. An extension of the definition for second order nonlinear DAEs can be given as
follows.

Definition 1.1. The differential-algebraic equation F (t, y, ẏ, ÿ) = 0 has perturbation index
(p-index) m along a solution y(t) on an interval [0, t̄], if m is the smallest integer such that
for all functions ŷ(t) having a defect F (t, ŷ, ˙̂y, ¨̂y) = δ(t), with sufficiently small δ, there exists
on [0, t̄] an estimate

‖ŷ(t) − y(t)‖ ≤ C

(

‖ŷ(0) − y(0)‖ + max
0≤ξ≤t

‖δ(ξ)‖ + max
0≤ξ≤t

‖δ′(ξ)‖ + · · · + max
0≤ξ≤t

‖δ(m−1)(ξ)‖

)

,

with a constant C.

The approach of transforming a second order DAE into a first order DAE leads to two major
problems. On the one hand it may increase the index of the DAE [21, 24] and on the other
hand the numerical method can fail [1, 2, 22]. To illustrate the first problem we consider the
following trivial example, taken from [21]:

Example 1.2. The linear second order system
[
1 0
0 0

]

ẍ(t) +

[
1 0
0 0

]

ẋ(t) +

[
0 1
1 0

]

x(t) = f(t), t ∈ I, (2)

with x(t) = [x1(t), x2(t)]
T and f(t) = [f1(t), f2(t)]

T has the unique solution
{

x1(t) = f2(t),

x2(t) = f1(t) − ḟ2(t) − f̈2(t).
(3)

Using the classical transformation to first order with

v(t) = [v1(t), v2(t)]
T = [ẋ1(t), ẋ2(t)]

T , y(t) = [v1(t), v2(t), x1(t), x2(t)]
T ,

we obtain the first order system






1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1







ẏ(t) +







1 0 0 1
0 0 1 0

−1 0 0 0
0 −1 0 0







y(t) =







f1(t)
f2(t)

0
0







, (4)

which has the unique solution







x1(t) = f2(t),

x2(t) = f1(t) − ḟ2(t) − f̈2(t),

v1(t) = ḟ2(t),

v2(t) = ḟ1(t) − f̈2(t) − f
(3)
2 (t).

(5)

The solution of the first order system requires the derivatives of f2 up to order 3 and thus
it is obvious that the p-index is 3, while the solution of the original system only requires f̈2

and thus has p-index 2. If the degree of differentiability of the function f is limited, then the
transformation to first order may be mathematically incorrect and there may not exist any
continuous solution to the resulting first order system, whereas there exist continuous solutions
to the original second order system. The extra differentiation occurring in the solution of the
first order system is responsible for the increase in the p-index. However, if we only introduce
v = ẋ1 as new variable, then no extra derivations of f are needed and, therefore, no increase
in the p-index occurs.
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As we see in Example 1.2, introducing only some derivatives in the transformation to first
order systems may avoid an increase of the index, but in general we do not know which
derivatives can be included without difficulties. To solve this problem a condensed form for
linear higher order differential-algebraic systems is introduced in [21, 24], which allows an
identification of those higher order derivatives of variables that can be replaced to obtain a
first order system without changing the smoothness requirements or increasing the index.

The second problem, i.e., the failure of numerical methods is illustrated by the following
example taken from [1, 22].

Example 1.3. Consider the second order system
[

ÿ1

ÿ2

]

= 2

[
y2

−y1

]

+ λ

[
y1

y2

]

,

0 = y2
1 + y2

2 − 1.

(6)

A corresponding first order system reads
[

ẏ1

ẏ2

]

=

[
z1

z2

]

,

[
ż1

ż2

]

= 2

[
y2

−y1

]

+ λ

[
y1

y2

]

,

0 = y2
1 + y2

2 − 1.

(7)

The equations model a particle on a circular track subject to a tangential force and form a
semi-explicit differential-algebraic system of p-index 3.
For the numerical solution of the first order system (7) we use BDF methods of order k = 1, 2
once with constant stepsize and once with variable stepsize. In Table 1 the absolute errors of
the algebraic variable λ are presented, which are obtained by solving the first order system (7)
with the BDF method of order k = 1 and the variable stepsizes given in the second column of
Table 1. We can observe large errors (displayed in bold face), whenever there is a change in
the stepsize. The reason for this effect is, that for problems of p-index ν ≥ 3 the BDF method
with k = 1 (implicit Euler method) in general produces large errors in the first ν − 2 steps
after a change of stepsize. In Table 2 the absolute errors of the algebraic variable λ are given,
which are obtained by solving the first order system (7) with constant stepsize BDF methods
of order k = 1, 2. More precisely, we use the BDF method of order k = 1 in the first step
and then BDF methods of order k = 2 in the following steps with the stepsize h = 0.005 in
the first case and h = 0.01 in the second case. Here, we observe again high errors at the first
step after the stepsize changes from 0 to h. In addition, large errors occur when the order
is changed after the first step. In general, BDF methods for solving higher index DAEs may
suffer from a reduction of the convergence order, whenever there is a change in the stepsize
or in the order of the method, see [2].

A third difficulty that arises in practice, is that the second order system may be badly scaled
and that there are disturbances and perturbations in the data, such that the transformation
to first order leads to very different solutions in the perturbed systems [14]. Furthermore, the
transformation to first order leads to systems of double dimension and it may destroy certain
structures, e.g. symmetries of the second order system as can be seen in Example 1.2.

In the following we will present numerical methods for the numerical solution of semi-explicit
second order DAEs. First, we will describe numerical methods for the numerical solution
of second order ordinary differential equations and extend these methods to the solution
of second order semi-explicit DAEs. Altogether, we will consider BDF methods, Runge-
Kutta methods and general linear methods. Finally, we give some numerical examples to
demonstrate the behavior of the discussed methods.
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Step Stepsize |λ(tj) − λj |
no. ×10−3 (BDF1)
1 1.000 2.0080

2 1.000 0.0080
3 0.200 8.0303

4 0.040 8.0348

5 0.008 8.0357

6 0.008 0.0001
7 0.016 1.0047

8 0.032 1.0048

9 0.064 1.0052

10 0.064 0.0006

Table 1: Absolute errors for the algebraic variable λ in Example 1.3 obtained by BDF methods
of order k = 1 with variable stepsizes.

Step time |λ(tj) − λj | |λ(tj) − λj |
no. tn h = 0.005 h = 0.01
1 1.0050 2.0400

2 1.0100 4.0190 2.0810

3 1.0150 1.0120

4 1.0200 0.0012 4.0350

5 1.0300 0.0013 1.0280

6 1.0400 0.0013 0.0052
7 1.0500 0.0014 0.0054

Table 2: Absolute errors for the algebraic variable λ in Example 1.3 obtained by constant
stepsize BDF methods of order k = 1, 2. We use the BDF method of order k = 1 in the first
step and then BDF methods of order k = 2 in the following steps with the stepsize h = 0.005
in the first case and h = 0.01 in the second case.

2 Numerical Methods for Second Order Systems

2.1 BDF Methods

For the direct numerical solution of second order differential-algebraic systems with BDF
methods we follow an approach introduced in [22], where a variable-step version of the implicit
Euler method for second order DAEs of p-index ν ∈ {2, 3} is introduced and a generalization
to variable-step variable-order BDF methods is given. To explain this approach we consider
the semi-explicit second order differential-algebraic initial value problem (1) of p-index 3.
Following the classical approach of transforming the second order system (1) into a first order
system leads to

ẏ0(t) = y1(t),

ẏ1(t) = f(t, y0(t), y1(t), λ(t)), (8)

0 = g(t, y0(t)),

where [y0(t), y1(t)] := [y(t), ẏ(t)].
We want to discretize systems (1) and (8) on an interval I = [t0, t0 +T ], where tn = tn−1 +hn

for all n = 1, . . . , N and hn denotes the stepsize in step n. First, we consider the first order
system (8). Approximating the first order derivatives using the implicit Euler method (BDF
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method of order k = 1) leads to the implicit Euler approximation

ŷ0,n − ŷ0,n−1

tn − tn−1
= ŷ1,n,

ŷ1,n − ŷ1,n−1

tn − tn−1
= f(tn, ŷ0,n, ŷ1,n, λn), (9)

0 = g(tn, ŷ0,n),

where ŷ0,0 = η0 and ŷ1,0 = η1. Here, ŷ0,n, ŷ1,n and λn approximate y0(tn), y1(tn) and λ(tn),
respectively. We have stated the difficulties which arise using this approach above, see also
[2, 22]. For the direct numerical solution of the second order system (1) we now exchange
order reduction and discretization. This means that the second order initial value problem
(1) is first discretized by divided differences and after that the discrete equations are written
as a system of equations. We denote by y[tn, . . . , tn−k] the k-th divided difference of y, which
is recursively defined by

y[tn] := yn,

y[tn, tn−1, . . . , tn−k] :=
y[tn, . . . , tn−k+1] − y[tn−1, . . . , tn−k]

tn − tn−k

.

For divided differences and small stepsize hn = tn−tn−1 it is well known that k!y[tn, . . . , tn−k] ≈
y(k)(tn), see [6], and thus we get the approximation

2!y[tn, . . . , tn−2] = f(tn, y0,n, y1,n, λn) + R, (10a)

0 = g(tn, y0,n), (10b)

where R denotes a remainder term. Here, yj,n is an approximation to y(j)(tn) for j = 0, 1
and λn is an approximation to λ(tn). With the relation

yj,n ≈ j!y[tn, . . . , tn−j ] ≈
yj−1,n − yj−1,n−1

(tn − tn−j)/j
,

we can write (10a) as a system of equations and obtain the discretization

y0,n − y0,n−1

tn − tn−1
= y1,n,

y1,n − y1,n−1

(tn − tn−2)/2
= f(tn, y0,n, y1,n, λn), (11)

0 = g(tn, y0,n),

where yj,0 = ηj for j = 0, 1 and tm = t0 if m < 0.
In contrast to approximation (9), which only depends on the current stepsize, the modified
Euler approximation (11) considers a mean value of the current stepsize hn and the previous
stepsize hn−1 = tn−1 − tn−2 for the approximation of y2,n. Thus, for constant stepsizes the
two approximations are the same. It is interesting to note that method (11) differs from the
implicit Euler approximation (9) only in the first step after a change of stepsize. If we have a
system of p-index 3, this is just the step where the implicit Euler method (9) produces large
errors as we have seen in Example 1.3.
Method (11) can be generalized to variable-step variable-order methods based on BDF meth-
ods. To derive the variable-step variable-order methods given in [22] we follow the idea, that
if we apply a BDF method of order k for the estimation of y(j+1)(tn), then the result should
be exact if y is a polynomial of degree at most k + j. For j = 0 this is achieved by the
ordinary variable stepsize BDF method of order k

k∑

i=1

i−1∏

m=1

(tn − tn−m)y0[tn, tn−1, . . . , tn−i] = y1,n. (12)
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For j = 1 this BDF method of order k has to be modified in order to produce exact values
of ÿ(tn) for polynomials y(t) of degree k + 1. The resulting method is given by

k∑

i=1

α
[2]
i,ny1[tn, tn−1, . . . , tn−i] = y2,n, (13)

where the coefficients α
[2]
i,n are the BDF-coefficients for the approximation of y2,n. In order

to obtain exact solutions for polynomials of degree up to k + 1, these coefficients α
[2]
i,n have

to satisfy the conditions

k∑

i=1

α
[2]
i,nỹ1[tn, tn−1, . . . , tn−i] =

(s + 1)!

(s − 1)!
ts−1
n (14)

for ỹ0(t) = ts+1 and s = 1, 2, . . . , k. In the same way, variable-step variable-order BDF
methods for systems of arbitrary high order can be constructed.
Using (12) for the approximation of the first order derivatives and (13) for the approxima-
tion of the second order derivatives, a variable-step, variable-order BDF discretization of the
second order semi-explicit system (1) is given by

k∑

i=1

α
[2]
i,ny1[tn, tn−1, . . . , tn−i] = f(tn, y0,n, y1,n, λn),

0 = g(tn, y0,n), (15)

y1,n =

k∑

i=1

i−1∏

m=1

(tn − tn−m)y0[tn, tn−1, . . . , tn−i],

for given initial values y0,0, y1,0 and λ0 and with the unknowns y1,n, y0,n and λn at time tn
and the divided differences

y0[tn, tn−1, . . . , tn−i] =

i∑

j=0

αj(y0,n−j+1 − y0,n−j),

y1[tn, tn−1. . . . , tn−i] =
i∑

j=0

α̂j(y1,n−j+1 − y1,n−j),

(16)

depending on the current unknowns y1,n, y0,n and on previous values and coefficients αj , α̂j

depending on tn, . . . , tn−i.

For the BDF method (13) of fixed order k we get different coefficients α
[2]
i,n, as the calculation

of the α
[2]
i,n depends on the current and previous stepsizes and on the accuracies of the last

taken steps. This means that we have to consider the order of the ordinary BDF methods used

for the approximation of y1,n, . . . , y1,n−i occurring in (14). As the coefficients α
[2]
i,n depend on

the current stepsizes, we have to solve a linear system of equations to determine α
[2]
i,n in each

step, provided the stepsize has changed in one of the last taken steps. This linear system is
of the form

Aα = b, (17)

where

b =








2
6tn
...

(k+1)!
(k−1)! t

k−1
n








, A =
[

ỹ
(i)
1 [tn, . . . , tn−j ]

]

i,j=1,..,k
, α =

[

α
[2]
1,n, . . . , α

[2]
k,n

]T

(18)
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arising from (14). Here, we have used

ỹ
(i)
1,s =

ks∑

l=1

l−1∏

m=1

(ts − ts−m)ỹ
(i)
0 [ts, .., ts−l] for s = n, .., n − j, (19)

with ỹ
(i)
0 (tn) = ti+1

n in the divided differences occurring in A. In this formula, ks denotes the

order of the BDF method used for approximating ỹ
(i)
1,s for s = n, . . . , n − j. If we only write

k we will always mean the order kn of the current step n.
The algorithm for the numerical solution of system (15) will be briefly described in the
following. In every step of the integration procedure we have to solve a nonlinear system of
equations with unknown values xn = [yT

0,n, λT
0,n, yT

1,n]T at time tn. This nonlinear system can
be written as

F (xn) =






∑k
i=1 α

[2]
i,ny1[tn, . . . , tn−i] − f(tn, y0,n, y1,n, λn)

g(tn, y0,n)

y1,n −
∑k

i=1

∏i−1
m=1(tn − tn−m)y0[tn, . . . , tn−i]




 = 0. (20)

In each time step this nonlinear system may be iteratively solved for xn using Newton’s
method, i.e.,

x(m+1)
n = x(m)

n − DF (x(m)
n )−1F (x(m)

n ), (21)

with a given starting value x
(0)
n . This can be written in the equivalent form

DF (x(m)
n )(x(m+1)

n − x(m)
n

︸ ︷︷ ︸

:=∆x(m+1)

) = −F (x(m)
n ). (22)

The new iterate x
(m+1)
n is then given by x

(m+1)
n = x

(m)
n +∆x(m+1). The solution of the linear

system (22) requires the evaluation of the Jacobian DF (xn) in each step. For system (20)
the Jacobian DF (xn) is given by

DF (xn) =






−fy0 −fλ0

∑k
i=1 α

[2]
i,n

1
Q

i
m=1(tn−tn−m)

− fy1

gy0 0 0

−
∑k

i=1
1

tn−tn−i
0 1




 . (23)

Here, fx denotes the partial derivative of f with respect to x, i.e., fx(.) := ∂
∂x

f(.) and for
simplicity we have omitted the arguments of the functions and the index n.

The initial guess x
(0)
n for the Newton method is formed by evaluating a predictor poly-

nomial wp(t) at tn, which interpolates xn−1−i at the last k + 1 time steps tn−1−i, i.e.,
wp(tn−1−i) = xn−1−i, for i = 0, . . . , k. For the termination of the Newton iteration we
use the same strategy that is used in the code DASSL and is described in [2]. The following
algorithm in MATLAB [20] notation summarizes the procedure.

Algorithm Modified BDF method for second order systems

INPUT: X = [xn−kn
, . . . , xn−1], T = [tn−kn

, . . . , tn]
OUTPUT: xn = [yT

0,n, λT
0,n, yT

1,n]T

1: Determine b, A as in (18);
2: α = A\b;
3: x(0) = wp(X, T ); {starting value for Newton Iteration}
4: m = 0;
5: repeat {Newton Iteration}
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6: Determine F (x(m)), DF (x(m)) as in (20), (23);
7: [L, U, P ] = lu(DF );
8: f = −P · F ;
9: z = L\f ;

10: ∆x(m+1) = U\z;
11: x(m+1) = x(m) + ∆x(m+1);
12: m = m + 1;
13: until converged
14: xn = x(m);

Here, lu(DF ) denotes the LU-decomposition of the matrix DF into an upper and lower tri-
angular matrix, multiplied with a permutation matrix, and A\b denotes Gaussian elimination
with partial pivoting as used in MATLAB.

In [22] existence and uniqueness of the solution as well as convergence of the modified implicit
Euler methods, i.e., the modified BDF method of order k=1, applied to a d-th order semi-
explicit differential-algebraic system of index ν = d + 1 has been shown. Further, multistep
methods for second order ordinary differential equations are treated in [12]. For the special
case of second order ordinary differential equations, where the first derivative does not occur
explicitly on the right-hand side there are stability, consistency and convergence results as
well as order conditions given in [12, 17].

Remark 2.1. A proof of convergence for the modified BDF methods of higher order and the
examination of stability properties of these methods when applied to second order differential-
algebraic systems are currently under investigation.

2.2 Runge-Kutta Methods

To derive Runge-Kutta methods for second order DAEs we will use the concept of colloca-
tion for the second order initial value problem. The concept of Runge-Kutta methods as
collocation methods is described in detail in [14]. The basic idea of collocation is to find
a polynomial of degree s whose derivative coincides at s given points with the vector field
of the differential equation. We will first derive the Runge-Kutta methods for second order
ordinary differential equations and later extend the approach to DAEs.
Consider the second order initial value problem

ÿ(t) = f(t, y(t), ẏ(t)),

y(t0) = η0, ẏ(t0) = η1,
(24)

with a function f : [t0, t0 + T ]×R
m ×R

m → R
m on the interval [t0, t0 + h]. The polynomial

ws(t) of degree s is a collocation polynomial for the initial value problem (24) if it satisfies
the conditions

ws(t0) = η0,

ẇs(t0) = η1,

ẅs(t0 + cih) = f(t0 + cih, ws(t0 + cih), ẇs(t0 + cih)).

(25)

We can write ẅs(t0 +xh) and ẇs(t0 +xh) by means of the Lagrange interpolation formula as

ẅs(t0 + xh) =

s∑

j=1

ẅs(t0 + cjh)Lj(x),

ẇs(t0 + xh) =
s∑

j=1

ẇs(t0 + cjh)Lj(x), for x ∈ [0, 1],

(26)
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with the Lagrange polynomials

Lj(x) =

s∏

l=1
l6=j

x − cl

cj − cl

, j = 1, . . . , s. (27)

Integrating the equations (26), it follows that

ẇs(t0 + cih) = ẇs(t0) + h

∫ ci

0

s∑

j=1

ẅs(t0 + cjh)Lj(x)dx

= ẇs(t0) + h

s∑

j=1

aijf(t0 + cjh, ws(t0 + cjh), ẇs(t0 + cjh)),

(28a)

ẇs(t0 + h) = ẇs(t0) + h
s∑

i=1

bif(t0 + cih, ws(t0 + cih), ẇs(t0 + cih)), (28b)

where the coefficients aij and bj are defined as

aij =

∫ ci

0

Lj(x)dx, bj =

∫ 1

0

Lj(x)dx, i, j = 1, . . . , s. (28c)

Further integration yields

ws(t0 + cih) = ws(t0) + h

∫ ci

0

s∑

j=1

ẇs(t0 + cjh)Lj(x)dx

= ws(t0) + hciẇs(t0) + h2
s∑

l=1

ãilf(t0 + clh, ws(t0 + clh), ẇs(t0 + clh)),

(28d)

ws(t0 + h) = ws(t0) + hẇs(t0) + h2
s∑

j=1

b̃jf(t0 + cjh, ws(t0 + cjh), ẇs(t0 + cjh)), (28e)

where we have used that
∑s

i=1 bi = 1 and
∑s

j=1 aij = ci and have defined the coefficients ãil

and b̃j via

ãil =

s∑

j=1

aijajl and b̃j =

s∑

i=1

biaij , i, j, l = 1, . . . , s. (28f)

Using the formulas (28) in each integration step we get an s-stage, implicit Runge-Kutta
method for the second order system (24) as

yn = yn−1 + hẏn−1 + h2
s∑

i=1

b̃if(tn−1 + cih, Yni, Ẏni),

ẏn = ẏn−1 + h

s∑

i=1

bif(tn−1 + cih, Yni, Ẏni),

Yni = yn−1 + hciẏn−1 + h2
s∑

j=1

ãijf(tn−1 + cjh, Ynj , Ẏnj),

Ẏni = ẏn−1 + h

s∑

j=1

aijf(tn−1 + cjh, Ynj , Ẏnj),

(29)

where we use the notation yn = ws(tn−1 + h), ẏn = ẇs(tn−1 + h) and Yni = ws(tn−1 + cih),
Ẏni = ẇs(tn−1 + cih) for i = 1, . . . , s.
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Definition 2.2. The Runge-Kutta method (29) is said to have order p, if for sufficiently
smooth problems (24) it holds that

y(t0 + h) − y1 = O(hp+1),

ẏ(t0 + h) − ẏ1 = O(hp+1).

Remark 2.3. Just demanding order p − 1 for the approximation of the derivative is not
sufficient, since the approximation to the derivative enters the approximation to the solution
itself. If the first is of order p − 1 and the second of order p, then the overall approximation
to the solution will be of order p − 1.

Convergence of the Runge-Kutta methods (29) applied to the second order ordinary differ-
ential equation (24) is treated in [12], where order conditions are specified. These order
conditions can be given as simplifying assumptions similar to the first order case, see [12]:

B(p) :

s∑

i=1

bic
k−1
i =

1

k
, for k = 1, . . . , p,

C(q) :

s∑

j=1

aijc
k−1
j =

ck
i

k
, for k = 1, . . . , q, i = 1, . . . , s,

D(ξ) :

s∑

i=1

bic
k−1
i aij =

bj

k
(1 − ck

j ), for k = 1, . . . , ξ, j = 1, . . . , s,

B̃(p) :

s∑

i=1

b̃ic
k−1
i =

1

(k + 1)k
, for k = 1, . . . , p − 1,

C̃(q) :

s∑

j=1

ãijc
k−1
j =

ck+1
i

(k + 1)k
, for k = 1, . . . , q − 1, i = 1, . . . , s,

D̃(ξ) :

s∑

i=1

bic
k−1
i ãij = bj

ck+1
i

(k + 1)k
−

ci

k
+

1

k + 1
, for k = 1, . . . , ξ − 1, j = 1, . . . , s.

These conditions are purely algebraic conditions for the coefficients of the Runge-Kutta
method (29). If C(q) and C̃(q) are satisfied, then q is called the stage order of the method.
For the notation of the coefficients we use an adaption to the general notation of Runge-Kutta
coefficients using the so-called Butcher diagram, which is given by

c1 a11 . . . a1s ã11 . . . ã1s

...
...

. . .
...

...
. . .

...

cs as1 . . . ass ãs1 . . . ãss

b1 . . . bs b̃1 . . . b̃s

or by

c A Ã

bT b̃T

where A = [aij ], Ã = [ãij ], b = [b1, b2, . . . , bs]
T , b̃ = [b̃1, b̃2, . . . , b̃s]

T and c = [c1, c2, . . . , cs]
T .

Example 2.4. We give the coefficients for two Runge-Kutta methods of the form (29) with
s = 2. To do this, we choose known Runge-Kutta collocation methods such as Gauss and
Radau-IIA methods [14] for the approximation of ẏn with coefficients aij , bi and ci and

determine ãij and b̃i using the formulas (28f). This gives the following methods.
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3−
√

3
6

1
4

3−2
√

3
12

1
24

3−2
√

3
24

Gauss 3+
√

3
6

3+2
√

3
12

1
4

3+2
√

3
24

1
24

1
2

1
2

3+
√

3
12

3−
√

3
12

1
3

5
12

−1
12

1
9 − 1

18

Radau-IIA 1 3
4

1
4

1
2 0

3
4

1
4

1
2 0

The Gauss method is of order p = 4 and the Radau method is of order p = 3.

After the development of Runge-Kutta methods for second order ordinary differential equa-
tions, we can modify these methods for the numerical solution of the second order semi-explicit
differential-algebraic system (1). A Runge-Kutta method (29) applied to (1) can be written
in the form

yn = yn−1 + hẏn−1 + h2
s∑

i=1

b̃iŸni,

ẏn = ẏn−1 + h
s∑

i=1

biŸni,

λn = λn−1 + hλ̇n−1 + h2
s∑

i=1

b̃iΛ̈ni,

λ̇n = λ̇n−1 + h
s∑

i=1

biΛ̈ni,

(30a)

where

Ÿni = f(tn−1 + cih, Yni, Ẏni, Λni),

0 = g(tn−1 + cih, Yni),
(30b)

and the internal stages are given by

Yni = yn−1 + hciẏn−1 + h2
s∑

j=1

ãij Ÿnj ,

Ẏni = ẏn−1 + h

s∑

j=1

aij Ÿnj ,

Λni = λn−1 + hciλ̇n−1 + h2
s∑

j=1

ãijΛ̈nj

(30c)

for i = 1, . . . , s and given initial values.

For the implementation it is useful to write method (30) in a slightly different form. We
summarize the variables into x = [yT , λT ]T and define Xn = [XT

n1, . . . , X
T
ns]

T with Xni =
[Y T

ni , Λ
T
ni]

T (the same holds for Ẋn and Ẍn). Further, we use the Kronecker product of two
matrices defined as follows.
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Definition 2.5. Let A be a n×m matrix with entries aij and let B be a p× q matrix. Then
the Kronecker product of A and B is the np × mq block matrix

A ⊗ B =






a11B . . . a1mB
...

...
an1B . . . anmB




 . (31)

This means that for a term (A ⊗ I)V = W with vectors V = [v1, v2, . . . , vk]T and W =

[w1, w2, . . . , wk]T the coefficients of W are given by wi =
∑k

j=1 aijvj for i = 1, . . . , k.

Using these conventions, method (30) can be written as

xn = xn−1 + hẋn−1 + h2(b̃T ⊗ Im)Ẍn,

ẋn = ẋn−1 + h(bT ⊗ Im)Ẍn,
(32a)

where Ẍn is given by the nonlinear system

F (Xn, Ẋn, Ẍn) =










F (Xn1, Ẋn1, Ẍn1)

...

F (Xns, Ẋns, Ẍns)










=










Ÿn1 − f(tn−1 + c1h, Yn1, Ẏn1, Λn1)
g(tn−1 + c1h, Yn1)

...

Ÿns − f(tn−1 + csh, Yns, Ẏns, Λns)
g(tn−1 + csh, Yns)










= 0, (32b)

with internal stages given by

Xn = (es ⊗ Im)xn−1 + h(c ⊗ Im)ẋn−1 + h2(Ã ⊗ Im)Ẍn,

Ẋn = (es ⊗ Im)ẋn−1 + h(A ⊗ Im)Ẍn.
(32c)

Here, m = my + mλ is the dimension of the system, Im is the m-dimensional identity matrix
and es = [1, . . . , 1]T of dimension s.

In each step of the integration procedure the nonlinear system (32b) has to be solved in order
to obtain values Ẍn, which can then be inserted into (32a) for the determination of the new
values xn and ẋn. Again, this nonlinear system may be solved by means of a Newton method,
where we use the Jacobian of F given by

DF (Xn, Ẋn, Ẍn) = {FẌ} + h2(Ã ⊗ Im){FX} + h(A ⊗ Im){FẊ}. (33)

Here, we have used the notation

{Fy} = blockdiag

(
∂F

∂y
(Xn1, Ẋn1, Ẍn1), . . . ,

∂F

∂y
(Xns, Ẋns, Ẍns)

)

.

The remaining procedure is analogous to that described for the BDF methods. One time
step in the Runge-Kutta integration is summarized in the following algorithm.

Algorithm Runge-Kutta method for second order systems

INPUT: xn−1 = [yT
n−1, λ

T
n−1]

T , ẋn−1 = [ẏT
n−1, λ̇

T
n−1]

T , tn−1, h,

OUTPUT: xn = [yT
n , λT

n ]T , ẋn = [ẏT
n , λ̇T

n ]T ,

1: tn = tn−1 + h;
2: Get Runge-Kutta coefficients A, Ã, b, b̃, c;

12



3: x(0) = [0, . . . , 0]T ; {starting value for Newton Iteration}
4: k = 0;
5: repeat {Newton Iteration}
6: Ẍ = x(k);
7: X = (es ⊗ Im)xn−1 + h(c ⊗ Im)ẋn−1 + h2(Ã ⊗ Im)Ẍ ;
8: Ẋ = (es ⊗ Im)ẋn−1 + h(A ⊗ Im)Ẍ ;
9: Compute F (X, Ẋ, Ẍ) as in (32b);

10: Compute DF (X, Ẋ, Ẍ) as in (33);
11: Scale DF = 1/h2DF ; F = 1/h2F ;
12: [L, U, P ] = lu(DF );
13: f = −P · F ;
14: z = L\f ;
15: ∆x(k+1) = U\z;
16: x(k+1) = x(k) + ∆x(k+1);
17: k = k + 1;
18: until converged
19: xn = xn−1 + hẋn−1 + h2(b̃T ⊗ Im)x(k);
20: ẋn = ẋn−1 + h(bT ⊗ Im)x(k);

The scaling in line 11 improves the condition number of the iteration matrix as for small
stepsizes the iteration matrix is close to singular due to the factor h2.

One-step methods for ordinary differential equations of higher order as e.g., Taylor’s series
methods, Runge-Kutta methods and Nyström methods with convergence and consistency
results are treated in [8, 17, 28]. The algebraic theory concerning the relevant order conditions
has been studied in some particular cases; see for example [16, 15, 28] where Runge-Kutta
methods for differential systems of arbitrary order are discussed. Nyström methods [12, 13]
are specially adapted to second order equations and are similar to the Runge-Kutta methods
(29), but the coefficients do not necessarily satisfy condition (28f). Convergence and order
conditions for Nyström methods applied to second order ordinary differential equations are
treated in [12]. For special second order systems, where the right-hand side does not depend
explicitly on the first derivative, the direct methods are shown to be more efficient than the
classical Runge-Kutta methods.

Remark 2.6. Convergence results and stability properties for Runge-Kutta methods applied
to second order differential-algebraic equations are currently under investigation.

2.3 General Linear Methods

The same approach as for Runge-Kutta methods for the numerical solution of second order
differential-algebraic systems can be used to construct general linear methods. General linear
methods can be seen as a generalization of multistep methods (e.g. BDF methods) and mul-
tistage methods (e.g. Runge-Kutta methods). For an introduction to general linear methods
see [3, 12]. Again, we describe the method for second order ordinary differential equations
and extend this approach to DAEs.

General linear methods are both multistage and multivalued methods. In order to obtain
methods for second order systems we model the method in the style of a Runge-Kutta method,
but with a number of k input quantities imported into and going out of step n, instead of just
one as in the case of Runge-Kutta methods. For ease of representation we restrict ourselves
to autonomous systems of second order ordinary differential equations and consider initial
value problems of the form

ÿ(t) = f(y(t), ẏ(t)), y(t0) = y0, ẏ(t0) = y1. (34)
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This is no limitation as each non-autonomous system can always be tranformed into an
autonomous system by introducing the time t as new variable, without changing the solution
behavior, see [18], Lemma 4.8.
A k-step s-stage general linear method for the numerical solution of the second order initial
value problem (34) is then given by

yn,i =

k∑

j=1

ṽijyn−1,j + h2
s∑

j=1

b̃ijf(Yn,j , Ẏn,j), (35a)

for i = 1, . . . , k, with internal stages given by

Yn,i =

k∑

j=1

ũijyn−1,j + h2
s∑

j=1

ãijf(Yn,j , Ẏn,j),

Ẏn,i =

k∑

j=1

uijyn−1,j + h

s∑

j=1

aijf(Yn,j , Ẏn,j),

(35b)

for i = 1, . . . , s, where h > 0 denotes the stepsize and tn = nh. If we define the coefficient
matrices

Ṽ = [ṽij ] ∈ R
k×k , B̃ = [b̃ij ] ∈ R

k×s, Ũ = [ũij ] ∈ R
s×k,

Ã = [ãij ] ∈ R
s×s, U = [uij ] ∈ R

s×k, A = [aij ] ∈ R
s×s,

and the vector c = [c1, . . . , cs]
T , then we can write method (35) in a more compact form as

y[n] = (Ṽ ⊗ Im)y[n−1] + h2(B̃ ⊗ Im)F (Yn, Ẏn),

Yn = (Ũ ⊗ Im)y[n−1] + h2(Ã ⊗ Im)F (Yn, Ẏn),

Ẏn = (U ⊗ Im)y[n−1] + h(A⊗ Im)F (Yn, Ẏn),

(36)

where m is again the dimension of the system and

F (Yn, Ẏn) =






f(Yn,1, Ẏn,1)
...

f(Yn,s, Ẏn,s)




, y[n] =






yn,1

...
yn,k




, Yn =






Yn,1

...
Yn,s




 and Ẏn =






Ẏn,1

...

Ẏn,s




.

In the following we will remove the Kronecker product with Im for ease of representation and
get the following representation of the general linear method

y[n] = Ṽy[n−1] + h2B̃F (Yn, Ẏn),

Yn = Ũy[n−1] + h2ÃF (Yn, Ẏn),

Ẏn = Uy[n−1] + hAF (Yn, Ẏn).

(37)

It is also conventional to write the coefficients of the method as a matrix

M =





Ã Ũ
A U

B̃ Ṽ



 . (38)

Example 2.7. If we consider the Runge-Kutta method (29) as a general linear method, then
the coefficient matrices in (37) are given by

Ṽ =

[
1 1
0 1

]

, Ũ =

[
1 c1

1 c2

]

, U =

[
0 1

h

0 1
h

]

, B̃ =

[

b̃1 . . . b̃s

b1 . . . bs

]

,

Ã = [ãij ] ∈ R
s,s, A = [aij ] ∈ R

s,s, c = [c1, . . . , cs]
T .

(39)

In (39) the coefficients aij , bi, ãij , b̃i and ci are the coefficients of the Runge-Kutta method.
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The general linear method (37) only makes sense for second order systems, if we require that
the quantities passed from step to step are in Nordsieck form, i.e.,

y[n] ≈










y(tn)
hẏ(tn)
h2ÿ(tn)

...
hk−1y(k−1)(tn)










. (40)

In addition to the approximation scheme (37) we need a so-called correct value function and
a starting procedure for the numerical solution of the second order system (34). We define
the correct value function z(t, h), which takes values in R

mk. Each of the k components of
z(t, h) represents an m dimensional function, which relates in some way to the exact solution
y(t). This means that the correct value function gives an interpretation of the values y [n],
i.e., zn = z(tn, h) is approximated by y[n], so that the global error is given by y[n] − zn. The
exact value function for a method in Nordsieck form is therefore given by

z(t, h) =








y(t)
hẏ(t)

...
hk−1y(k−1)(t)








. (41)

Further, the internal stages Yn,i and Ẏn,i approximate y(tn + cih) and ẏ(tn + cih) for i =
1, . . . , s, where y(t) is the exact solution of (34).
In general, only the initial values y(t0) = y0 and ẏ(t0) = y1 are given, so that we need a
starting procedure S(h), which specifies the starting value y[0] = S(h). This means that S(h)
approximates z0 = z(t0, h). The order of accuracy of a general linear method is defined
relative to this starting method.

Definition 2.8. A general linear method (37) has order p (relative to S), if

y[1] = z(x1, h) + O(hp+1). (42)

A general linear method (37) has stage order q (relative to S), if

Y1i = y(t0 + cih) + O(hq+1),

Ẏ1i = ẏ(t0 + cih) + O(hq+1).
(43)

When deriving general linear methods there are certain design choices to be made. The four
main parameter choices for general linear methods are

• p, the overall order of the method,

• q, the stage order of the method,

• k, the number of approximations passed from step to step,

• s, the number of stages.

We make some simplifying assumptions which make the construction of general linear meth-
ods more simple. As suggested in [27], we assume that the stage order equals the overall
order, i.e. q = p, and that k = p + 1 as well as s = p + 1 for several reasons as explained in
[27]. Therefore, we have

y[n] =










y(tn)
hẏ(tn)
h2ÿ(tn)

...
hpy(p)(tn)










+ O(hp+1), (44)

15



and the stage values satisfy

Yni = y(tn−1 + cih) + O(hp+1),

Ẏni = ẏ(tn−1 + cih) + O(hp+1), for i = 1, 2, . . . , s.
(45)

For deriving order conditions for general linear methods of the form (37) we define two shifting
matrices of size (p + 1) × (p + 1)

J =














0 0 0 . . . 0 0 0
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 0 0 0
0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0














, K =














0 0 0 . . . 0 0 0 0
0 0 0 . . . 0 0 0 0
1 0 0 . . . 0 0 0 0
0 1 0 . . . 0 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . 1 0 0 0
0 0 0 . . . 0 1 0 0














, (46)

and a basis vector Z as Z =
[
1 z z2 · · · zp

]T
for a complex parameter z. Some useful

properties of these shifting matrices are that

JT Z = zZ + O(zp+2),

KT Z = z2Z + O(zp+2).
(47)

The order conditions are then given by the following theorem.

Theorem 2.9. A general linear method (37) in Nordsieck form has order and stage order p,
if and only if

exp(cz) = z2Ã exp(cz) + ŨZ + O(zp+1),

z

h
exp(cz) =

z2

h
A exp(cz) + UZ + O(zp+1),

exp(z)Z = z2B̃ exp(cz) + ṼZ + O(zp+1).

(48)

Here, the exp function is applied component-wise to a vector. The matrix C is given by

C =
[

e c c2

2! · · · cp

p!

]

and the matrix E is given by

E =













1 1
1!

1
2! . . . 1

(p−1)!
1
p!

0 1 1
1! . . . 1

(p−2)!
1

(p−1)!

0 0 1 . . . 1
(p−3)!

1
(p−2)!

...
...

...
...

...
0 0 0 . . . 1 1

1!
0 0 0 . . . 0 1













.

Proof. The stage values Yn, Ẏn, the output approximations y[n] and the scaled second deriva-
tives h2F (Yn, Ẏn) can be represented in terms of y[n−1] using Taylor series expansions about
tn−1. Therefore,

Yn = Cy[n−1] + O(hp+1),

Ẏn =
1

h
CJT y[n−1] + O(hp+1),

y[n] = Ey[n−1] + O(hp+1),

h2F (Yn, Ẏn) = CKT y[n−1] + O(hp+1).

(49)
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Substituting the above expressions into the method (37) it follows that

Cy[n−1] = ÃCKT y[n−1] + Ũy[n−1] + O(hp+1),

1

h
CJT y[n−1] =

1

h
ACKT y[n−1] + Uy[n−1] + O(hp+1),

Ey[n−1] = B̃CKT y[n−1] + Ṽy[n−1] + O(hp+1).

(50)

By making the substitution hky(k)(tn−1) for zk, the stage order and order conditions are now

CZ = ÃCKT Z + ŨZ + O(zp+1),

1

h
CJT Z =

1

h
ACKT Z + UZ + O(zp+1),

EZ = B̃CKT Z + ṼZ + O(zp+1).

(51)

Using the relations (47), the stage order and order conditions now become

CZ = z2ÃCZ + ŨZ + O(zp+1),

1

h
zCZ =

1

h
z2ACZ + UZ + O(zp+1),

EZ = z2B̃CZ + ṼZ + O(zp+1).

(52)

The result now follows by substituting

EZ = exp(z)Z + O(zp+1),

CZ = exp(cz) + O(zp+1)
(53)

into the above stage order and order conditions.

Remark 2.10. A direct consequence of the proof of Theorem 2.9 is that the matrices Ũ , Ṽ
and U are completely defined by Ã, B̃, A and the vector c, respectively. To see this, equate
coefficients of z0, z1, . . . , zp in (51) which leads to

Ũ = C − ÃCKT ,

hU = CJT −ACKT ,

Ṽ = E − B̃CKT .

(54)

Example 2.11. A possible general linear method of order p = 2 satisfying the conditions
(54) with vector c =

[
1
4

1
2 1

]
is given below.

M =
























37
432 − 41

576
29

1728 1 1
4 0

23
108 − 1

9
5

216 1 1
2 0

13
27 − 1

18
2
27 1 1 0

4
9 − 11

48
5

144 0 1
h

0

5
9 − 1

12
1
36 0 1

h
0

4
9

1
3

2
9 0 1

h
0

13
27 − 1

18
2
27 1 1 0

4
9

1
3

2
9 0 1 0

0 0 0 0 0 1























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To start the integration it is necessary to approximate the initial Nordsieck vector at the
initial point

y[0] =








y(t0)
hẏ(t0)

...

hp+1y(p+1)(t0)








+ O(hp+1), (55)

using a starting method S(h). Up till now no starting methods have been constructed.
The question of finding good starting methods is currently under investigation. Therefore,
in numerical examples we will always start the integration with an exact initial Nordsieck
vector in this early stage of the work.
Further, for the effective implementation of a numerical method we require stepsize changes.
For a general linear method stepsize variation is more difficult than for Runge-Kutta methods,
but the Nordsieck representation makes it relatively easy to vary the stepsize. Denote by
hn = tn − tn−1 the stepsize in step n. The general linear method (37) on a non-uniform grid
is then given by

y[n] = Ṽ ỹ[n−1] + h2
nB̃F (Yn, Ẏn),

Yn = Ũ ỹ[n−1] + h2
nÃF (Yn, Ẏn),

Ẏn = U ỹ[n−1] + hnAF (Yn, Ẏn),

(56)

where the incoming and outgoing Nordsieck vectors are

y[n] =










yn

hnẏn

h2
nÿn

...

hp+1
n y

(p+1)
n










, ỹ[n−1] =










yn−1

hnẏn−1

h2
nÿn−1

...

hp+1
n y

(p+1)
n−1










. (57)

If we define a rescaling matrix D(dn) as

D(dn) =












1 0 0 . . . 0 0
0 dn 0 . . . 0 0
0 0 d2

n . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . dp−1

n 0
0 0 0 . . . 0 dp+1

n












, (58)

where dn = hn

hn−1
, then we have ỹ[n−1] = D(dn)y[n−1] and we can write the variable stepsize

method as

y[n] = ṼD(dn)y[n−1] + h2
nB̃F (Yn, Ẏn),

Yn = ŨD(dn)y[n−1] + h2
nÃF (Yn, Ẏn),

Ẏn = UD(dn)y[n−1] + hnAF (Yn, Ẏn).

(59)

Now, we return to the numerical solution of the second order semi-explicit differential-
algebraic system (1). If we use method (59) for the numerical solution of (1) and define
x = [yT , λT ]T and Xn = [Y T

n , ΛT
n ]T as in (32), we get the following method:

x[n] = ṼD(dn)x[n−1] + h2
nB̃Ẍn, (60a)
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where Ẍn is determined from the nonlinear system

F (Xn, Ẋn, Ẍn) =










Ÿn,1 − f(tn−1 + c1hn, Yn,1, Ẏn,1, Λn,1)
g(tn−1 + c1hn, Yn,1)

...

Ÿn,s − f(tn−1 + cshn, Yn,s, Ẏn,s, Λn,s)
g(tn−1 + cshn, Yn,s)










, (60b)

and the internal stages are given by

Xn = ŨD(dn)x[n−1] + h2
nÃẌn,

Ẋn = UD(dn)x[n−1] + hnAẌn.
(60c)

Solving the nonlinear system (60b) using Newton’s method requires the Jacobian of F , which
is given by

DF (Xn, Ẋn, Ẍn) = {FẌ} + h2
n(Ã ⊗ Im){FX} + hn(A⊗ Im){FẊ}. (61)

In the following we describe one step of the integration procedure used for solving the semi-
explicit second order DAE (1) with a general linear method.

Algorithm General linear method for second order systems

INPUT: x[n−1], tn−1, hn, hn−1,
OUTPUT: x[n],

1: tn = tn−1 + hn;
2: Get GLM coefficients A, Ã, U , Ũ , B̃, Ṽ , c;
3: Compute D(dn) as in (58);
4: x(0) = [0, . . . , 0]T ; {starting value for Newton Iteration}
5: k = 0;
6: repeat {Newton Iteration}
7: Ẍ = x(k);
8: X = (ŨD(dn) ⊗ Im)x[n−1] + h2

n(Ã ⊗ Im)Ẍ;
9: Ẋ = (UD(dn) ⊗ Im)x[n−1] + hn(A⊗ Im)Ẍ;

10: Compute F (X, Ẋ, Ẍ) as in (60b);
11: Compute DF (X, Ẋ, Ẍ) as in (61);
12: [L, U, P ] = lu(DF );
13: f = −P · F ;
14: z = L\f ;
15: ∆x(k+1) = U\z;
16: x(k+1) = x(k) + ∆x(k+1);
17: k = k + 1;
18: until converged
19: x[n] = (ṼD(dn) ⊗ Im)x[n−1] + h2

n(B̃ ⊗ Im)x(k);

In [3] order conditions for general linear methods applied to first order ordinary differen-
tial equations are investigated. Furthermore, general linear methods for linear DAEs are
investigated in [23] and for nonlinear DAEs that arise in circuit simulation in [26].

Remark 2.12. Convergence results for general linear methods applied to second order differential-
algebraic equations are currently under investigation.
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3 Numerical Example

We consider the following example taken from [25]. The equations of motion describe a
mechanical system consisting of just one body of mass 1 in a two-dimensional space, which
is moving on the unit circle.

[
1 0
0 1

][
ÿ1

ÿ2

]

=

[
−y1 − 2y1ẏ1ẏ2

−ẏ1 + 2y1y
2
2

]

−

[
2y1

2y2

]

λ,

0 = y2
1 + y2

2 − 1,

(62)

with the initial values

t0 = 0, y(0) =

[
0
1

]

, ẏ(0) =

[
1
0

]

, λ(0) = 0. (63)

This is a semi-explicit differential-algebraic system of p-index 3. Reducing the order by
introducing new variables for the derivatives yields the corresponding first order form

[
ẏ1

ẏ2

]

=

[
v1

v2

]

,

[
1 0
0 1

] [
v̇1

v̇2

]

=

[
−y1 − 2y1v1v2

−v1 + 2y1y
2
2

]

−

[
2y1

2y2

]

λ,

0 = y2
1 + y2

2 − 1.

(64)

In the following the second order system (62) is solved by the described modified BDF method
(15), by the Runge-Kutta method (30) with s = 2 and Radau-IIA coefficients and by the
general linear method (60) with coefficients given in Example 2.11. For comparison the first
order system (64) is solved by ordinary BDF methods, by the ordinary Radau-IIA method
of order 3 [14] and by the general linear method

M =















1
4 0 0 1 0 − 1

32

1
6

1
4 0 1 1

12 − 1
24

1
6

1
2

1
4 1 1

12 − 1
24

1
6

1
2

1
4 1 1

12 − 1
24

0 0 1 0 0 0

0 −2 2 0 0 0















(65)

with c =
[

1
4

1
2 1

]
given in [27]. For error estimation we use the relative and absolute error

tolerances RTOL = [10−4, 10−4, 10−4, 10−4, 10−4] and ATOL = [10−4, 10−4, 10−2, 10−4, 10−4]
for the variables [y1, y2, λ, ẏ1, ẏ2] and [y1, y2, λ, v1, v2], respectively.

Figure 2 displays the results obtained by solving the second and first order systems (62)
and (64) with the BDF methods for second and first order systems, respectively. We have
used constant stepsize h = 0.001 and varying order, i.e., the order is increased step by step
starting with order k = 1 up to order k = 4. The integration is performed on the interval
I = [t0, t0+0.1] using the consistent initial values (63). The results displayed are the numerical
solutions for the variables [y1, y2, λ] together with the absolute errors. We can observe that
the modified BDF methods for the second order system yield better results. For the position
coordinates y1 and y2 both methods yield similar results, but the first order formulas fail for
the algebraic variable λ, which is responsible for the higher index of the system. We observe
a highly oscillating error when we change the order of the method. When the order is kept
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constant (as in the first three steps for starting the integration and in the later steps, when
the maximal order is reached) the absolute error for λ is much lower. The high error in the
first step in the solution of the first order system is due to the changing of the stepsize from
0 to h = 0.001. Better results are obtained regarding the BDF methods for the second order
system. We can see that there are no problems in changing the order of the modified BDF
method.
Figure 3 displays the results obtained by solving the second order system (62) and the first
order system (64) with variable stepsizes and constant order k = 2 (in the first step the first
order formulas are used, from the second step on the order is kept constant). The integration
is again performed on the interval I = [t0, t0 + 0.1] using the consistent initial values (63).
Again, we can observe that the modified BDF methods for the second order system yield
better results. Especially for the algebraic variable λ the formulas for the first order system
fail due to the changing of the stepsize as the high errors indicate.
Altogether, the modified BDF methods for second order systems yield better results with
respect to changes in the stepsize and in the order, which are important for efficient numerical
methods. The high errors in the algebraic variable, which occur due to the higher index in
the first order case, do not occur for the second order methods.
Next, we have solved the second order system (62) with a 2-stage Runge-Kutta method (29) of
order 3 with Radau-IIA coefficients and the first order system (64) is solved with the ordinary
Radau-IIA method of order 3. The integration is performed on the interval I = [t0, t0 + 0.1]
using the consistent initial values (63). Figure 4 displays the corresponding results for the
first and second order system using constant stepsize h = 0.001. We can observe that the
method for the second order system yields better results. The achieved accuracy is much
higher than for the first order case, although both methods are of the same order p. In
Figure 5 the corresponding results are given for the case of variable stepsizes. Here, we can
observe that both methods yield almost the same results and no significant differences can be
observed. The Runge-Kutta method for the second order system works as well as the method
for the first order system. A real improvement using the second order system is possible in
the case when the right-hand side of the differential equation depends only on t and y, i.e.,
if we have a differential equations of the form ÿ = f(t, y). Then, the Runge-Kutta methods
for the second order system are superior to the methods for first order systems with regard
to precision and function evaluations, see [12].
In general, we can conclude that if we consider higher index DAEs, then implicit Runge-
Kutta methods are advantageous for solving these problems in comparison to BDF methods,
because they can start at a higher order. BDF codes like DASSL are designed to start the
integration with a first order method (i.e. implicit Euler method). If the index is three or
higher, this method does not converge on the first step, especially for the algebraic variables.
Carefully chosen higher order implicit Runge-Kutta methods have no difficulty in determining
an accurate numerical solution in all the variables, even on the first step, see [2].
Finally, we have solved the second order system (62) with a general linear method (60) of
order p = 2 with coefficients given in Example 2.11. The first order system (64) is solved
with the general linear method (65). In both cases the initial Nordsieck vectors are given
exactly. Again, the integration is performed on the interval I = [t0, t0 + 0.1] with consistent
initial values (63) once with constant stepsize h = 0.001 and once with variable stepsize.
The results are given in Figure 6 and 7. In both cases, that is for constant and variable
stepsizes, the method for the second order system yields better results. Especially, when we
use constant stepsize the second order formula works better regarding the accuracy of the
algebraic variable.

Our second example is the simple RLC electrical circuit [5] in Figure 1. We have a voltage
source vs(t) and R, L, C are the resistance, inductance and capacitance, respectively. The
corresponding voltage drops are denoted by vR(t), vL(t) and vC(t), respectively, and I(t)
denotes the current. Applying Kirchhoff’s laws we obtain the following circuit equations in
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Figure 1: A simple RLC circuit

the standard first order form






L 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0













İ(t)
v̇L(t)
v̇C(t)
v̇R(t)







=







0 1 0 0
1/C 0 0 0
−R 0 0 1
0 1 1 1













I(t)
vL(t)
vC(t)
vR(t)







+







0
0
0
−1







vS(t). (66)

Using the derivative of the second equation İ(t) = Cv̈c(t) this system can be written in an
equivalent second order form





0 LC 0
0 0 0
0 0 0









v̈L(t)
v̈C(t)
v̈R(t)



 =





0 0 0
0 −RC 0
0 0 0









v̇L(t)
v̇C(t)
v̇R(t)



 +





1 0 0
0 0 1
1 1 1









vL(t)
vC(t)
vR(t)



 +





0
0
−1



 vS(t).

(67)

The circuit equations (67) have been solved using the BDF method (15) of order 2, the Runge-
Kutta method (30) with s = 2 and Radau-IIA coefficients and the general linear method
(60) with coefficients given in Example 2.11. The integration is performed on the interval
I = [0, 7] using the consistent initial values [vL(0), vC(0), vR(0)] = [0.0627, 1,−1.0627] and
[v̇L(0), v̇C(0), v̇R(0)] = [−0.0222,−0.3542, 0.3765], vS(t) ≡ 0 and constant stepsize h = 0.01.
Further, we use the error tolerances RTOL = ATOL = [10−4, 10−4, 10−4, 10−4, 10−4, 10−4]
for the variables [vL, vC , vR, v̇L, v̇C , v̇R]. The results are given in Figure 8. We can observe
that the general linear method yields the best results and that the BDF method yields the
highest errors. The accuracy of the Runge-Kutta method is close to that of the general lin-
ear method. Although we have used constant order and constant stepsize the BDF method
cannot reach the same accuracy as the Runge-Kutta method or the general linear method,
but all methods yield satisfactory results for the second order differential-algebraic system.

To sum up, we can say that it is possible and advantageous to solve second order differential-
algebraic systems directly. In the case of the BDF methods the results are better as for
the corresponding first order system, when changes in the stepsize and in the order of the
methods are taken. Thus, by numerically solving the second order system directly we can
avoid certain numerical difficulties as an increasing index or the failure of the numerical
method as described before and therefore we can increase the efficiency of the numerical
methods and obtain better numerical results.
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4 Conclusion

In the numerical solution of second order semi-explicit differential-algebraic equations the di-
rect solution of the second order system is preferred to the transformation into a correspond-
ing first order system and numerically solving this first order system. When transforming
a second order DAE into a first order system certain difficulties can occur as an increase
of the index, the destruction of structures and symmetries, an increase of the dimension
and ill-conditioning. These problems can be circumvented using the direct solution of the
second order system. We have presented BDF methods, Runge-Kutta methods and general
linear methods for the numerical solution of second order differential-algebraic systems in
semi-explicit form. Certain numerical examples illustrate that we can obtain better numer-
ical results solving second order systems directly compared to the solution of corresponding
first order systems, particularly with regard to changes in the stepsize or in the order of
BDF methods. In general, Runge-Kutta methods and general linear methods seem to be
advantageous to BDF methods as numerical examples illustrate.
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Figure 2: Numerical solutions obtained by solving system (62) and (64) with ordinary and
modified BDF methods using constant stepsize h = 0.001 and varying order, i.e., starting
with order k = 1 the order is increased step by step up to order k = 4 and is then kept
constant.
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Figure 3: Numerical solutions obtained by solving system (62) and (64) with ordinary and
modified BDF methods using variable stepsizes and constant order k = 2.
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Figure 4: Numerical solutions obtained by solving system (62) and (64) with 2-stage Runge-
Kutta methods using constant stepsize h = 0.001.
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Figure 5: Numerical solutions obtained by solving system (62) and (64) with 2-stage Runge-
Kutta methods using variable stepsizes.
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Figure 6: Numerical solutions obtained by solving system (62) and (64) with a general linear
method using constant stepsize h = 0.001.
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Figure 7: Numerical solutions obtained by solving system (62) and (64) with a general linear
method using variable stepsizes.
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Figure 8: Numerical solution of the circuit equations (67) using BDF methods, a Runge-Kutta
method and a general linear method with constant stepsize h = 0.01.
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