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Abstract
In the derivation offluctuation relations, and in stochastic thermodynamics in general, it is tacitly
assumed that we canmeasure the systemperfectly, i.e., withoutmeasurement errors.We here
demonstrate for a driven system immersed in a single heat bath, forwhich the classic Jarzynski
equality ( )á ñ =b- -De 1W F holds, how to relax this assumption. Based on a generalmeasurement
model akin to Bayesian inferencewe derive a general expression for thefluctuation relation of the
measuredwork andwe study the case of an overdamped Brownian particle and of a two-level system in
particular.We then generalize our results further and incorporate feedback in our description.We
show and argue that, ifmeasurement errors are fully taken into account by the agent who controls and
observes the system, the standard Jarzynski–Sagawa–Ueda relation should be formulated differently.
We again explicitly demonstrate this for an overdamped Brownian particle and a two-level system
where thefluctuation relation of themeasuredwork differs significantly from the efficacy parameter
introduced by Sagawa andUeda. Instead, the generalizedfluctuation relation under feedback control,

( )á ñ =b- -D -e 1W F I , holds only for a superobserver having perfect access to both the system and
detector degrees of freedom, independently of whether or not the detector yields a noisymeasurement
record andwhether or not we perform feedback.

1. Introduction

During the last two decades we have seen an enormous progress in the understanding and description of the
thermodynamic behavior of small-scale systems, which are strongly fluctuating and arbitrary far from
equilibrium. This includes, e.g., a consistent thermodynamic description at the single trajectory level and the
discovery of so-called fluctuation relations which, in a certain sense, promote the status of the second law of
thermodynamics from an inequaltiy to an equality. A number of excellent review articles andmonographs from
different perspectives can be found in [1–7].

A tacit assumption underlying this framework, which is usually never discussed in any detail, is that wemust
be able tomeasure the stochastic trajectory ( )tz of a systemperfectly, i.e., withoutmeasurement errors, in order
to establish the framework of stochastic thermodynamics and to derivefluctuation relations. In practise, we
know, however, that this is an experimental challenge for very small systems and, to put this thought even
further, thismight be themajor obstacle infinding a fully satisfactory generalization of stochastic
thermodynamics to quantum systems.

Extending the framework of stochastic thermodynamics to the case of incomplete or only partially available
information has only recently attracted interest [8–13]. In our context, the results of García-García et al [13],
who have also derived amodified Jarzynski equality (MJE) for faultymeasurements, are of particular
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importance. Our results are indeed in agreement with their theory, though our point of view and derivation
differs from themaswewill discuss further in themain text below.

In addition, we also go one step beyond and include feedback based on faultymeasurement results in our
theory. In fact, the state of knowledge of the observer is of crucial importance in control theory and determines
how ‘effective’ the feedback control can be applied. However, if the experimentalist is forced to perform
feedback based on faultymeasurement results, it seems logical that she also uses the same (faulty) detector to
infer other statistical properties of the system. Thus, we argue that, in order to extend stochastic
thermodynamics to the case of feedback controlwithmeasurement errors, it is of crucial importance to take this
measurement error consistently into account also during the timewhere no feedback is performed butwherewe
still need tomeasure the system. This has indeed crucial consequences aswewill examine below.

Outline: The article starts with a derivation of the standard Jarzynski equality (JE) based on a stochastic path
integralmethod in order to establish themathematical tools wewill need in the following. Then, the rest of the
article is divided into twomain parts: section 3 treats the casewithout feedback control and section 4 the case
with feedback control. In both cases we derive a general expression for theMJE of themeasuredwork
distribution for arbitrarymeasurement errors (equations (20) and(35)). In general, however, thesemight be
extremely difficult to compute. Therefore, we present analytical results (underpinned by numerical simulations)
for the two paradigmatic cases of an overdamped Brownian particle (OBP) in a harmonic potential and a two-
level system (TLS). At all timeswe try to physicallymotivate our results and shiftmost lengthy computations to
the appendix. Furthermore, we comment on the use ofmutual information in the JE in section 5. Finally, in
section 6we discuss ourfindings and point out to possible future applications.

2.Derivation of the JE for a driven system in a heat bath

Consider a systemdescribed by aHamiltonian ( )( )lH zt . Here, zmight denote the position andmomentumof a
particle (i.e., ( )=z x p, ) or the discrete state of a system (such as spin up or down, { }Î  z , ). The results
derived below are independent of this consideration andwewill use the notation of a continuous variable zmost
of the time.Next, suppose the system is in contact with a thermal bath at inverse temperature β and initially at
t=0 in equilibriumwith it, i.e., ( ) ( )( )= b

=
- lp z Zet

H z
0 0

0 with ( )( )ò= b- lZ zd e H z
0

0 . Then, we change the
Hamiltonian from t=0 to =t tf as described by an arbitrary butfixed protocol ( )l t . Consequently, thework
performed on the system,

[ ] ˙ ( )
[ ( )]

( )( )ò l
l

= º
¶

¶
l

W W t t
H t

z
z

d , 1
t t

0

f

along each trajectory ( ) =tz z becomes a stochastic quantity whose fluctuations are bounded by the following
relation, which is also known as JE [14, 15],

( )( )á ñ =b- -De 1. 2W F
z

Here, á¼ñz denotes an average over all possible system trajectories z and ( )bD = - --F Z Zln lnf
1

0 denotes
the change in equilibrium free energy. Equation (2) can be derived in different ways andwewill use stochastic
path integrals and themethod of time-reversed trajectories below.

In the formalismof stochastic path integrals the average of a trajectory-dependent quantity [ ]X z can be
expressed as [16]

[ ] [ ] [ ] [ ] ( ) òá ñ =X Xz z z z , 3z

where [ ] z denotes ameasure in the space of trajectories z and [ ] z the probability density (with respect to this
measure) of choosing a trajectory z.We nowdivide the time interval [ ]t0, f intoN time steps of duration
d =t t Nf . A particular trajectory z is then approximated by its coordinates ( )ºz z tk k at times d=t k tk ,
 k N0 , such that

( ) [ ] ( ) ¼ =t z z zz z, , , . 4N0 1

Note that the limit  ¥N by keeping tf fixed is implied. Thework along the trajectory is the discretized version
of equation (1),

[ ] ( ( ) ( )) ( )å= -l l
=

- --W H z H zz , 5
k

N

k k
1

1 1k k 1

where lk denotes the value of the external control parameter at time tk. Furthermore,

[ ] ( )ò ò ò ò= ¼z z zz d d d , 6N0 1
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where ò zd denotes an integral over a continuous variable (e.g., for anOBP) or a discrete sum (e.g., for a TLS).
The probability density for a particluar path is given by

[ ( )] ( ) ( ) ( ) ( ) ( ) =   ¼ l l l l -t p z p z z p z z p z zz . 7N N0 0 1 1 2 1N0 1 2

Here, ( )lp z00
is the initial equilibriumdistribution and ( )l -p z zk k1k

denotes the transition probability from

-zk 1 to zk in time dt where the driving protocol has the value lk. This factorization implicitly assumesMarkovian
systemdynamics.

Of particular importance nowwill be the notion of a time-reversed path, denoted by
( ) [ ]† †* * *= ¼ =-t z z zz z, , ,N N 1 0 , with time-reversed driving protocol2 ( ) ( )† *l l= -t t tf . Here *zk indicates the

time-reversal of zk, e.g., if ( )=z x p,k k k for a particle with position xk andmomentum pk, then

( )* = -z x p,k k k . The probability density for such a path is

[ ] ( ) ( ) ( ) ( )† † * * * * ** * * =  ¼ l l l-p z p z z p z zz . 8N N N 1 1 0N N 1

As usual in stochastic TD,we assumemicroreversiblity (or local detailed balance) [17–19]

( ) ( ) ( )( )* **  = l l
bd

- -
-p z z p z z e , 9k k k k

q z z
1 1

k k
k k k1

where ( )d d º-q z z qk k k k1 is the heat absorbed by the systemduring the time interval [ ]-t t,k k1 . Due to
normalization, we canwrite
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wherewe used [ ] [ ]† =z z and introduced the heat [ ] d d dº + +q q qz N1 absorbed along the full
trajectory z. Since the system is initially in equilibrium (in the forward as well as in the backward process), we
have

( )
( )

[ ( ( ) ( ))] ( )
*

*
*

*b= - -l

l
l l

p z

p z

Z

Z
H z H zexp 11

N

N
N

0

0
0

N

N

0

0

and furthermore ( ) ( ) ( ) ( ) ( )** - = - º Dl l l lH z H z H z H z e z z,N N f0 0 0N N0 0 . By thefirst law of thermodynamics
the energy difference between initial and final state along the trajectory is ( ) [ ] [ ]D = +e z z q Wz z, f0 . Then,
from equation (10) for  ¥N (keeping tf fixed) the original JE follows immediately:

[ ] [ ] ( )[ ] ( ) ò= = á ñb b bD - - -Dez z1 e e . 12F W W Fz
z

To be precise and to emphasize that the statistical average á¼ñz is taken over the system trajectories we explicitly
use a subscript z. This will change in the following.

3.MJEwithout feedback

Suppose nowwemeasure the system coordinate z continuously withmeasurement outcome y, which in general
can involvemeasurement errors and suppose the true systemdynamics are inaccessible or hidden. Then the
original JE, evaluatedwith the accessiblemeasurement data, is in general not equal to unity, but depends on the
difference of the true andmeasuredwork distribution.

More specifically, we introduce the conditional probability ( ∣ )p y zm to obtainmeasurement outcome y given
a particular state z of the system. The probability distribution ofmeasurement outcomes y after ameasurement
is then

( ) ( ∣ ) ( ) ( )ò¢ =p y zp y z p zd . 13
m m

Given a particularmeasurement outcome y, the state of the system after themeasurement is given by Bayes’ rule
and reads

2
Note that in the presence of amagnetic field (or any other odd variable in theHamiltonian) the sign of thefield also changes under time-

reversal.
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( ∣ )
( ∣ ) ( )

( )
( )¢ =

¢
p z y

p y z p z

p y
. 14m

m

The case of a perfectmeasurement, as usually considered in stochastic thermodynamics, is described by
( ∣ ) d=p y zm y z, (where dy z, denotes theKronecker delta for a discrete state space or theDirac distribution for a

continuous system). It is then actually redundant to explicitly distinguish between the state of the system and the
measurement result because ( ) ( )¢ = =p y p z ym and ( ∣ ) d¢ =p z y y z, (thefinal state is pure and coincides with the
measurement result).

3.1. General case
In order to incorporate themeasurements on the system,we expand the phase space to the phase space of
measured and true trajectories (see figure 1). A stochastic path in this extended space is denoted by ( )z y, and the
probability of choosing such a path is simply denoted by [ ] z y, . The trajectory z of the system is the projection
of thewhole trajectory onto the z-subspace and the probability distribution of this true stochastic path is given
by [ ] [ ] [ ]  ò=z y z y, . Equivalently, themeasured trajectory y lives in the y-subspace and its probability

distribution is [ ] [ ] [ ]  ò=y z z y, . Discretizing the time interval [ ]t0, f again intoN time steps, the
probability density of a path in the space of system andmeasured trajectories will be factorized as

[ ] ( ) ( ) ( ) ( ) =  ¼ l l l - -p z y p z y z y p z y z yz y, , , , , , . 15N N N N0 0 0 0 1 1 1 1N0 1

Ourmain assumptions are that the evolution of the system is independent of themeasurement process and that
the outcome of ameasurement yk only depends on the state of the system zk at time tk, i.e., we assume

( ) ( ) ( ∣ ) ( ) = l l- - -p z y z y p z z p y z, , . 16k k k k k k m k k1 1 1k k

This can be seen as aMarkov assumption for themeasurement apparatus, i.e., the previousmeasurement result

-yk 1does not influence the system evolution and the nextmeasurement result. The conditional probability
( ∣ )p y zm k k quantifies the uncertainty of themeasurement (see equations (13) and(14)).
Themeasuredwork [ ]W ym along ameasurement trajectory y is defined as in equations (1) and(5) by

interchanging z with y and is in general different from the truework [ ]=W W z . Even on average itmight be
that [ ] [ ]á ñ ¹ á ñW Wy zm y z. Nevertheless, we assume that theHamiltonian of the system is known to us and
unchanged by themeasurement; the onlymistake is in themeasurement outcome y (see [13] for the case of
differentHamiltonians).

From an experimental point of view it onlymakes sense to consider the distribution ofmeasuredwork and
wemaywrite the average of the exponential ofmeasuredwork and free energy differenceDF as

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] ( ∣ ) ( )

( ) ( [ ] ) ( [ ] )

( [ ] )

    

  

ò ò
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á ñ = =
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- -Dp y z

y y y z z y

y z z

e e , e

e , 17

W F W F W F

i

N

m i i
W F

y
y y

y

0

m m m

m

where in the last stepwe used(16). Again the assumption ofmicroreversibility (see equation (9)) allows us to
write equation (17) as

[ ] [ ] [ ] ( ∣ ) ( )( ) † † ( ) [ ] [ ]† † †  ò á ñ =b b bd b- -D

=

- D -p y zy z ze e e e . 18W F

i

N

m i i
e z z q W

y
z y

0

,m f m0

Figure 1. Stochastic trajectory ( )( )tz y, (black) in the extended phase space of trajectories. The path ( )tz of the system (blue) is the
projection onto the z-subspace and themeasured trajectory ( )ty (red) is the projection onto the subspace ofmeasurement. In general,
measured and system trajectories are different.
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Here, ( )†De z z, f0 and [ ]† †dq z are the energy difference and the exchange of heat with the reservoir along the
systemʼs backward trajectory, respectively. Thefirst law also holds for the backwards paths of the system,

( ) [ ] [ ]† † † † †dD = -D = +e e z z W qz z, f0 and assuming time-reversal symmetry of themeasurement,
( ∣ ) ( ∣ )* *=p y z p y zm i i m i i , we can further simplify equation (18) to

[ ] [ ] [ ] ( ∣ )

[ ] [ ] [ ] ( )

( ) † † [ ] [ ]

† † † ( [ ] [ ])

† † † †

† † † †

* *  

  

ò
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á ñ =
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b b b

b

- -D

=
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-

p y zy z z

y z z y

e e e

, e , 19

W F

i

N

m i i
W W

W W

y
z y

y z

0

m m

m

wherewe have used that themeasuredwork is asymmetric under time reversal, [ ] [ ]† † = -W Wy ym m , which
directly follows from the corresponding property of the truework. Thus, one finally arrives at the following
expression for theMJE:

( )( ) ( )† †
† †á ñ = á ñb b- -D -e e . 20W F W W

y z y,
m m

This expression results from a formalmanipulation and is at this point, however, still explicitly dependent on the
(backward) trajectories †z of the system and is therefore of limited practical use. Later onwewill see how to
overcome this difficulty for various examples werewe use equation (20) as our formal starting point. Note that
depending on the probability distribution ( )† †p W W, m an expansion in terms of themoments of the distribution
could be also attempted.

As an important limiting case we immediately see that for a perfectmeasurement, ( ∣ ) d=p y zm k k y z,k k
, the

measuredwork coincides with thework of the system, [ ] [ ]=W Wy zm , and the right-hand side becomes unity
recovering the original JE (see equation (2)).Moreover, the right-hand side of equation (20)may also be equal to
one if there is a certain symmetry in the driven system, such that [ ] [ ]† † † †=W Wy zm (see, e.g., section 3.2).

Finally, let us comment on recent work byGarcía-García et al [13], who also derive amodified JE including
measurement errors andwhich is equivalent to our result, equation (20). However, their point of view aswell as
the derivation differ from the present approach. García-García et al introduce the error

[ ] [ ] [ ]= -E W Wz y z y, m of system andmeasuredwork and derive afluctuation theorem for the joint
distribution of themeasuredwork and this error [13]:

( )
( )

( ) ( )† b
¢

¢ - -
= + - D

p W E

p W E
W E Fln

,

,
. 21m

m
m

From the latter relation, one can immediately derive equation (20). Thus, whereas allmeasurement errors in [13]
are incorporated at the level of thefinal work distribution ( )¢p W E,m , we start with a particularmeasurement
model for the state of the system expressed in terms of ( ∣ )p y zm k k . This is closer to amicroscopicmodeling of the
situation because anymeasurementmodel for the system ( ∣ )p y zm k k will also yield a certainwork distribution

( )¢p W E,m , whereas for a givenwork distribution ( )¢p W E,m theremight bemany differentmeasurementmodels
(and even different systems)which yield the same ( )¢p W E,m . Thus, ourfindings show a completely different
path to derivefluctuation theorems in the presence ofmeasurement errors.Whether our approach or the one of
[13] is superiormight depend strongly on the specific situation and the systemunder study.

In the following sections we examine two paradigmatic systems forwhich the right-hand side of
equation (20) can be evaluated analytically, namely anOBP in a harmonic potential in section 3.2 and aTLS in
section 3.3.

3.2.OverdampedBrownianmotion
Weconsider the overdamped dynamics of a particle in a harmonic potential in one-dimension such that the
Hamiltonian of the system is only given by the potential energy:

( ) ( ) ( ) ( )( ) ( ) ( ) ( )m= = -l l l lH z V z f z . 22t t t t
2

The stiffness ( )lf t aswell as the center of the potential ( )ml t can be altered in time by an external driving protocol
( )l t . To simulate the systemdynamics we use the Langevin equation

˙ ( ) ( ) ( ) ( )( )b x= - ¢ +lz t DV z D t2 23t

with diffusion constantD, which is related to the friction constant γ by the Einstein relation ( )bg= -D 1, and
Gaussianwhite noise ( )x t .

We specify ourmeasurementmodel by assuming that themeasured position of the particle yi is normally
distributed around the real position ziwith a standard deviation of sm,

( ∣ )
( )

( )
ps s

= -
-⎛

⎝⎜
⎞
⎠⎟p y z

z y1

2
exp

2
, 24m i i

m

i i

m
2

2

2
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such that, if s  0m , the conditional probability becomes aDirac distribution and themeasured coordinate
coincides with the true coordinate of the particle. Such aGaussianmeasurementmodelmight be a good
approximation for a noisymeasurement without systematic error (i.e., we have á ñ = á ñy z ) and simplifies a lot
analytical calculations.

Note that the Langevin equation (23)nowmerely presents a convenient numerical tool. From the point of
view of the observer, it has no objective reality unless s = 0m . The correct state of knowledge of the observer
would be indeed described by a stochastic Fokker–Planck equation [20, 21].

3.2.1. Continuous driving protocol
Evaluating the general expression, equation (20), for a continuous and piecewise differentiable (c.p.d.) driving
protocol ( )l t yields (see appendix A.1 for the derivation)

( )( )á ñ =b s b- -D - De e , 25W F
y

fm m
2

where ( ) ( )D º -l lf f ft 0f
. The right-hand side of the above equation equals unity for s = 0m corresponding to

the original JE. Similarly, if we vary thewidth of the potential periodically such that ( ) ( )=l lf f t0 f
, then the

original JE is also recovered.However, this attribute is, as far as we know, specific to themodel of theOBPwith c.
p.d. driving protocol. In general the right-hand sidewill be different fromone. Interestingly, shifting the center

( )ml t of the potential has no effect at all on theMJE. Furthermore, if we define an effective free energy,
˜ sD º D + DF F fm

2 , whichmay be interpreted as an additonal contribution due to the uncertainty of the
measurements, a JE of the form ( ˜)á ñ =b- -De 1W F

y
m holds.

3.2.2. Instantaneous change of driving protocol (‘quench’)
Wealso derive in appendix A.2 an analytic expression for theMJE for an instantaneous change of the system
Hamiltonian at a time tm (also called a ‘quench’).We consider here that the position and thewidth of the
parabola is altered at the same time and is constant before and after tm.Wefind

( )( ) ( )

( )

( )

( )

( )
bs

b s m

b s
á ñ =

+ D

D

+ D
b l- -D

l

l

l

l

⎧
⎨⎪

⎩
⎪⎪

⎫
⎬⎪

⎭
⎪⎪f

f

f
e

1

1 2

exp
2

1 2
, 26W F

y
f

f

m

m
f

f
2

2 2
0

2 2

2 2

m

tf
tf

0 0

where ( ) ( )m m mD º -l lt 0f
is the difference of the center of the parabola before and after tm

2.

3.2.3. Numerics
In order to verify ourfindingswe performedBrownian dynamics (BD) simulations and used theweighted
ensemble path sampling algorithm [23], which shifts the computational resources towards the sampling of rare
trajectories, which have the largest impact on the JE. It has been shown that thismethod is statistically exact for a
broad class ofMarkovian stochastic processes [24]. Please note that we set b º 1 for all simulations in this paper.

As a simple examplewe change both parameters of the potential continuously and linearly in time.We
choose ( ) ( ) a= +l lf f tt 0 and ( ) ( )m m a= + ¢l l tt 0 . For this driving schemewefind very good agreement of BD
simulation and the analytic expression, equation (25), which is presented infigure 2 (left).

Furthermore, we compare equation (26)with simulation results where intially theHamiltonian of the
system is given by ( )( ) ( )m= -l lH f z0 0 0

2 andwhich is instantaneously changed to ( )( ) ( )m= -l lH f zf t t
2

f f
at

tm. Infigure 2 (right)we show the results of the BD simulation (marks) as well as the analytic expression (line) for
different values of sm verifying our findings also for a quench.

3.3. Two-level system
Consider a driven system consisting of two energy levels, a ground state with energy ( )( )el gt and an excited state
with energy ( )( )el et , coupled to a heat bathwith inverse temperature β. Themaster equation (ME) describing
this system is

( )

( )

( )

( )
( )

( ) ( )

( ) ( )
= G -

-

bw bw

bw bw

-

-

l l

l l

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟t

p t

p t

p t

p t

d

d
e e

e e
. 27

g

e

g

e

2 2

2 2

t t

t t

3
As a side remark note that equation (25) cannot be reproduced from equation (26) although a quench can bemodeled as a limit of a series of

continuous functions. This has nothing to dowith the phenomenon of absolute irreversibility [22]. Instead, fromour derivation in
appendix A.1 it becomes apparent that this procedure would require us to interchange the limit of the series of continuous functions with an
integral, which is only allowed for a uniformly convergent series, but a series of continuous functions converging to a quench (which is not
continuous) is not uniformly convergent (but pointwise instead).
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Here, we denoted the energy gap of excited and ground state by ( ) ( )( ) ( ) ( )w e eº -l l le gt t t and ( )p tg e denotes
the probability tofind the system in the ground/excited state.

Wemeasure the state of the system continuously with ( )h-1 being the probability ofmeasuring the state of
the system correctly and consequently η ofmeasuring it wrongly, i.e., we set

( ∣ ) ( ) ( )h d h d= - + -p y z 1 1m k k y z y z, ,k k k k
with [ ]h Î 0, 1 .

3.3.1. Continuous driving protocol
TheMJE of the TLS, where the external control parameter ( )l t is c.p.d., can bewell approximated by (see
appendix A.3 for the derivation)

˙ ( ( ) ( )) ( )( )
( )

† ††òhb wá ñ » - -b
l

- -D ⎜ ⎟⎛
⎝

⎞
⎠t p t p te exp d , 28W F

t

t gy
0

e

m f

where ( )†p tg e
denotes the probability that the system is in the ground/excited state in the backward process at

time t, respectively. Furthermore, ( )†wl t denotes the energy gap of the TLS.We remark, that for a c.p.d. protocol
with non-differentiable points at < < ¼ < <t t t0 K f1 wehave to split the integral at the respective points as

ò ò ò ò= + + +t t t td d d d
t t

t

t

t

t

0 0

f

K

f1

1

2
.Moreover, equation (28) is exact up tofirst order in η. For higher

orders (say hk)we have to assume that [ ] ( ) ( ) ¼ » ¼z z p z p z, ,i i i ik k1 1
which seems to be remarkably well

justified (see our numerical results below). In fact, though this result strictly holds only for slow driving, orders
of hk for k 1become negligible since [ ]h Î 0, 1 , hence, justifying our approximation. Furthermore, it is
important to note that for the evaluation of the right-hand side of equation (28)we only need to solve for the
average evolution of the system (as dictated by themaster equation); it is not necessary to have access to higher
order statistics.

3.3.2. Instantaneous change of driving protocol (‘quench’)
For a quenchwe assume that at tmwith < <t t0 m f the energy levels are shifted instantaneously and are held
constant before and after. Then, theMJE is given by (see appendix A.4 for the derivation)

[ ( ) ( ) ] ( )( ) † †† †há ñ = - - -b b w b w- -D D - Dp t p te 1 1 e e , 29W F
g m e my

m

where †
( ) ( )† †w w wD º -l lt 0f

and ( )†wl t is defined as before. Note that both relations for the TLS (equation (28)
and (29)) give the original JE for perfectmeasurement (h = 0).

3.3.3. Numerics
To test these expression, we performedMonte Carlo (MC) simulations for different values of [ ]h Î 0, 0.3 for
two driving schemes. First, the driving scheme varies the energy levels continuously and linearly in time, i.e.,

( )w w a= +l tt 0 . Infigure 3 (left)weplotted the left-hand side of equation (28) fromMC simulations (marks)
and the right-hand side fromnumerical integration of the associatedMEof the backward protocol (line). As one
can see, the approxiamtion of theMJE, equation (28), is in very good agreement with the simulation results for
small values of η. Note that a value of h = 0.3 corresponds to a very large error of the conditional probability

( ∣ )p y zm k k because for a value of h = 0.5 themeasurement becomes identical to infering the system state by a fair
coin toss.We also test equation (29)wherewe change the driving protocol instantaneously, i.e.,

Figure 2. Left: comparison of BD simulation (marks) and the analytic expression (equation (25), line)where the system is driven
continuously andwe choose ( ) =lf 4.00 , a = 2.0, ( )m =l 0.00 and a¢ = 2.0. Right: results of simulation and the analytic expression
for a quench of theOBP (see equation (26)), where ( ) =lf 2.00 , ( ) =lf 4.0tf

, ( )m =l 0.00 and ( )m =l 1.0tf
. The quench is performed

at time =t t 2m f . For both driving schemes =t 5.0f , =D 2.0 andwe choose D =t 0.0001.
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( )( )w w a= + ¢Q -l t tt m0 . Here, wefind perfect agreement of simulation (marks) and numerical integration
(line), which is shown infigure 3 (right).

4.MJEwith feedback

Feedback describes the situation inwhich the state of the system ismeasured and the evolution of the system is
manipulated by applying an external control scheme depending on themeasurement outcome. The change of
the JE and other fluctuation theorems under feedback has recently attracted a lot of attention, in theory [25–34]
aswell as in experiments [35, 36]. A prominent and the first example of a generalized JE incorporating feedback
by performing a singlemeasurement on a stochastic thermodynamic system at a time tmwithmeasurement
outcome ym is the relation derived by Sagawa andUeda [25]:

( )( [ ∣ ] ( )) gá ñ =b- -De . 30W y F y
y

z
z,m m

m

The so-called efficacy parameter γ, which determines ‘how efficiently we use the obtained informationwith
feedback control’ [25], depends on the probability ( )( )† *lp yy mm

of obtaining the time-reversed outcome *y
m
in the

backward process:

( ) ( )( )† *òg = ly p yd . 31m y mm

Note that in the backward process we use the time-reversed driving protocols ( )†l t y, m according to the
measurement statistics of ym obtained in the forward process. Especially, there is no feedback control in the
backwards process.

Now, in the derivation of equation (30), the particularmeasurement yielding outcome ym (onwhich the
feedback control is based) is allowed to havemeasurement errors.However, the left-hand side of equation (30) is
evaluated along the system trajectories z, whichmay be inaccessible, especially from an experimental point of
viewwhere our knowledge about the situation is solely based on themeasurement trajectories y .We therefore
propose a generalization of the JE under feedback control wheremeasurement errors are taken consistently into
account. Startingwith a general description in section 4.1we look again at the two specific examples of anOBP in
a harmonic potential including amodel of an information ratchet in section 4.2 and a feedback controlled TLS in
section 4.3 and verify our analytic results by simulations. Furthermore, in section 5we discuss the relation of the
MJE under feedback and themutual information.

4.1. General case
Let us supposewemeasure our system aswe didwithout feedback control but at one instance in time, denoted tm
with < <t t0 m f , the protocol is changed according to themeasurement outcome ym such that the protocol is
fixed before tm, i.e., ( )l l= t for [ ]Ît t0, m and is dependent on ym after tm, i.e., ( )l l= t y, m for ( ]Ît t t,m f .
Thework applied to the system,which nowdepends on ym, is given by

[ ∣ ] ˙ ( )
[ ( )] ˙ ( )

[ ( )]
( )

( )( ) ( )
ò òl

l
l

l
=

¶
¶

+
¶

¶
l l

W y t t
H t

t t y
H t

y
z

z z
d d , . 32m

t t

t

t

m

t y

m0

,m

m

f
m

The same equation holds also for themeasuredwork [ ∣ ]W yym m by interchanging z with y (keeping ym). The
probability of a path in phase space ( )z y, under feedback control is denoted by [ ]( )l z y,ym andwe again assume

Figure 3. Left: comparison ofMC simulation (marks) and numerical integration of the right-hand side of equation (28) for a
continuously driven TLS, where a w= 1.6 0

2 and w º 10 . Right: simulation results of a quench of the TLS at =t t 2m f comparedwith
numerical evaluation of equation (29)with a w¢ = 2.0 0 and w º 10 . For both driving schemes G = D- t10 7 ,D =t 0.001 and

=t 3.0f .
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that it factorizes into the probability density of the system trajectory [ ]( )l zym , which now explicitely depends on
ym, and the conditional probabilities ( ∣ ) p y zi m i i (see equation (16)). Then, theMJEwith feedback control an be
expressed as

[ ] [ ] [ ]

[ ] [ ] [ ] ( ∣ ) ( )

( [ ∣ ] ( ))
( )

( [ ∣ ] ( ))

( )
( [ ∣ ] ( ))

  

  

ò

ò 

á ñ =

=

b
l

b

l
b

- -D - -D

=

- -Dp y z

z y z y

z y z

e , e

e . 33

W y F y
y

W y F y

y
i

N

m i i
W y F y

y
y

y

y

0

m m m
m

m m m

m
m m m

Note, that the difference in free energy does now also depend on themeasurement outcome, i.e., ( )D = DF F ym ,
because theHamiltonian of the system at time tf depends on ym. Using again the condition ofmicroreversiblity
(see equation (9)) and assuming time-reversal symmetry of the conditional probabilities, ( ∣ ) ( ∣ )* *=p y z p y zm i i m i i ,
the following equation holds:

[ ] [ ] [ ] ( ∣ )

[ ] [ ] [ ] ( )

( [ ∣ ] ( ))

† †
( )

† ( ( ) ( ) [ ∣ ])

† †
( )

† † [ ∣ ] [ ∣ ]

†
† †

†
† †

* * * *  

  

ò

ò



á ñ

=

=

b

l
b d

l
b

- -D

=

- D - +

-

p y zz y z

z y z y

e

e

, e e . 34

W y F y

y
i

N

m i i
y q y W y

y
W y W y

y
y

y

z y

0

e

m m m

m
m m m m

m
m m m

From equation (34)we immediately obtain theMJE in the presence of feedback control:

( )( [ ∣ ] ( )) ( [ ∣ ] [ ∣ ])† † † †
† †á ñ = á ñb b- -D -e e , 35W y F y W y W yy

y
y z

z y,
m m m m m m

which looks remarkably similar to equation (20). Here, [ ∣ ]† †W yym m and [ ∣ ]† †W yz m are themeasured and true
work, respectively, in the backward process applying the time-reversed protocol ( )†l t y, m according to the
measurement outcome ym in the forward process.We stress that we do not perform any feedback in the
backward process equivalently to [25]. Analogously to the efficacy parameter γ (see equations (30) and (31))we
call the right-hand side of equation (35)measured efficacy parameter,

( )( [ ∣ ] [ ∣ ])† † † †
† †g º á ñb -e , 36m

W y W yy z
z y,m m m

because the JE is evaluated using themeasured trajectories. Note the subtle distinction between equations (30)
and (35). Equation (30) starts with ( ( ))bá - - D ñW Fexp z which experimentally requires an error-free detector
to evaluate it.We instead start with ( ( ))bá - - D ñW Fexp y which can be directly evaluated alsowith a faulty
detector. Our final theoretical result (36) then depends on †z indeed.However, based on this definitionwe show
belowhow to overcome this difficulty for various examples. Furthermore, note that a complementary analytical
analysis confirming our results has been reported in [37] for the example of the Szilard engine.

In the limiting case of perfectmeasurement, ( ∣ ) d=p y zm k k y z,k k
, equation (35) simplifies to

[ ] [ ] [ ]

[ ] [ ] ( ) ( ) ( )

[ ∣ ] ( ) † †
( )

† ( [ ∣ ] [ ∣ ])

( )
†

( )

†
† † † †

† * * * * *

* *

* *

  

 

ò

ò ò ò

 dá ñ =

= = ¼ ¼ 

b
l

b

l l l

- -D - -

y y p y p y y

z y z

y y

e e

d d . 37

W y F y
y

i
y z

W y W y

y N y N

y
y

y z
,

0 1 0

m m m
m i i

m m m

m N m 0

Due to normalization of conditional probabilites, it holds that the integrals of all *y
k
with <k m are equal to

unity, hence,

( ) ( )

( ) ( ) ( )

( )

( )

( )

( ) ( )

( )†

* * * * *

* * * * * * *

* *

* *

* * *

ò ò
ò ò ò
ò

¼ ¼ 

= ¼ ¼  =

=

l l

l l l

l

+

y y p y p y y

y y p y p y y y p y

z p z

d d

d d d

d .

38

N y N

N m y N m m m y m

m z m

0 1 0

1

N m

N m m m m

m

0

Only in this case the efficacy γ and themeasured efficacy gm are the same as it should be.
However, for ameasurement outcome ym including errors, γ deviates from gm. The interpretation and

physical significance of the difference between γ and gm can be explained as follows: consider two observes Alice
and Bob. Suppose that Alicemeasures the state of the systemwith a faulty detector whereas Bobmeasures the
systemwith a perfect detector. Furthermore, suppose that only Alice performs the feedback control based on her
measurement result at time tm. Then, if Alice evaluates the JE of thework done on the system along hermeasured
trajectories, shewill observe the result gm. In contrast, Bob—given the correct system trajectories and knowledge
about the feedback action of Alice and her faulty detector—is able to verify the standard Sagawa–Ueda relation
with the efficacy parameter γ.
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4.2.OverdampedBrownianmotion
As an explicit example, for whichwe can evaluate the right-hand side of equation (35) analytically, we look again
at anOBP in a harmonic potential (see section 3.2) and assume that the center of the potential is intially at

( )m =l 00 and thewidth is ( )lf 0 . Both parameters will be changed instantaneously at time tm if themeasured
position at that time is >y 0m , the position to ( )ml tf

and the stiffness to ( )lf tf
. Otherwise, for <y 0m , the

potential remains unchanged. For this specific example equation (35) can be evaluated explicitly andwe obtain
(see appendix A.5)

( )
( )( ) ( )

( ) ( ) ( )

g m
b k kb m

= +
+ D

-
+

+ D + Dk

l
k

l
k

l l l

⎛

⎝

⎜⎜⎜

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

⎞

⎠

⎟⎟⎟f

f

f

f

f

1

2
1

1

1
erfc

1

1
exp

1
, 39m

f

t
t

f

t

f

0
2

tf

f

f

tf

f

tf

where ( )k b sº lf2 m0
2 .

For the special case of only altering ( )lf t and keeping the position of the parabolafixed, i.e., ( ) ( )m m=l lt 0f
,

equation (39) reduces to

( )( )

( )
g b s= + + Dl

l

-⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

f

f
f

1

2
1 1 2 . 40m

t
m

0 2

1 2

f

On the other hand, if the stiffness is held constant, ( ) ( )= =l lf f ft 0f
, but the parabola is shifted, wefind

( [ ( ) ]) ( )( )g m b bs= + - +bm s f f
1

2
1 e erfc 1 2 . 41m

f
t m

2 2tf m

f

2

Wehave varified equations (39)–(41) by perfoming BD simulations for various driving schemes (not shown
here) andwill discuss the paradigmaticmodel of an ‘information ratchet’ [25] in the next paragraph inmore
detail also showing numerical results.

4.2.1. Information ratchet
The Brownian particle is initially in thermal equilibrium in the harmonic potential with center m0.We then
measure the position of the particle ym at time tm and perform the following feedback scheme: if  m +y Lm 0
with >L 0 being constant, we shift the center of the potential m m= +> L2t t 0m

, if m< +y Lm 0 we donothing.
We then replace m m + L20 0 and start over again after some transient relaxation time. By repeatingly
performing this feedback protocol, we can actuallymove the average position of the particle to the right, ideally
without performingwork.Here,D =F 0 holds throughout thewhole process. Furthermore, one can also
extract work from the systemby this feedback control if the particle is transported against a potential gradient as,
e.g., in the experiment [35]. For a single step of the ratchet, wherewe put m = 00 for simplicity, themeasured
efficacywith feedback control is given by

( )g
s

bs

s
= -

+
+ -

+

+
b

b s

b

⎛

⎝

⎜⎜⎜

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎞

⎠

⎟⎟⎟
L

L
f1

2
erfc

2
e erfc

1 4

2
. 42m

f m

f L m

f m
1 2

8
2

1 2
m

2 2 2 2

The derivation follows the same steps as in appendix A.5 but the integral of *y
m
is splitted at L instead of 0.

Equation (42) differs from the efficacy parameter γ of the original information ratchet [25],

( )g
s

= -
+

b

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
L

erfc
2

. 43

f m
1 2

Infigure 4 (left)weplot the solutions of the two equations above as function of the variance of themeasurement
sm. The two equations coincide for the case of perfectmeasurement. However, forfinite values of sm the efficacy
γ of the feedback control (dashed line) is lower than for perfectmeasurement: if themeasurement has an error,
then the potential will be shifted even though the real position of the particlemay not be greater than L. Thenwe
may actually applywork to the system instead of extracting it and the average value of extractedwork is lower for
noisiermeasurements.

If we look at theworkwemeasure using the same apparatus aswe have used tomeasure ym (line), we see that
with increasingmeasurement error sm, themeasured efficacy gm also increases in strong contrast to γ. Since the
measuredwork is given in terms of themeasured position ym of the particle, we always apply the ‘correct’
feedback scheme from the observerʼs point of view. Thus, we (the observer) always think thatwe extract work.
This can also be seen in the distribution ofmeasured (purple) and system (blue)work infigure 4 (right), where
the probability ofmeasuredwork is only non-zero for <W 0m . To support this claim even further, we can
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calculate the averagemeasured and systemwork by integration of equation (32) over z and ym, where the integral
is non-zero only if >y Lm . The difference of them results in

[ ∣ ] [ ∣ ]
( )

( )s
b

p k
b

k
á ñ - á ñ = -

+
-

+

⎧⎨⎩
⎫⎬⎭W y W y fL

f f L
y z 4

1
exp

1
0, 44m m m

2
2

where k b s= f2 m
2 . Thus, on average themeasured extractedwork (note that in our conventionwork is positive if

it is done on the system) from the systemwill be greater than the true extractedwork and even increases with sm.
For a larger value of sm the probability distribution ( )¢p ym m (see equation (13)) of themeasured position ym is
broader (i.e., has a larger variance) than ( )p z , but still has the samemean value as ( )p z . Then,measurement
outcomeswith >y Lm aremore frequent and gm increases.

4.3. Two-level system
Similarly to the derivation of theMJE of the TLSwithout feedbackwe findwith feedback for a c.p.d. but at this
point unspecified driving protocol an approximation for themodification of the original JE (see appendix A.6
for details):

( )
( )

( ) ( ) ˙ ( ( ) ( ))

( ) ˙ ( ( ) ( )) ( )

{ }
( ) ( ) ( ) ( )

(¯ ) ( ¯ ) (¯ ) (¯ )

† † † †

† † † †

ò

ò

åg h hb w

h hb w

» - - -

- - -

l l l l

l l l l

Î

⎡
⎣⎢

⎤
⎦⎥

p z t p t p t

p z t p t p t

1 exp d

exp d . 45

m
z g e

z m t z e z g z

z m t z e z g z

,
, , ,

, , ,

m

m m m m

m m m m

Here, ( )( )†lp tz y, m
is the probability for the system to be in state z (ground or excited) at time t in the backward

process with the backward protocol according to themeasurement outcome ym (ground or excited state) in the
forward process.We again note that we do not apply feedback in the backward process and that equation (45) is
valid under exactly the same conditions as discussed below equation (28). Furthermore, ( )†wl t y, m

is the energy gap
as defined in section 3.3with the time-reversed protocol according to the outcome of the forward process. For a
c.p.d. protocol with non-differentiable points the integral in equation (45) is again split into parts at the
respective points. Formost driving protocols with feedbackwe have considered numerically (not shownhere)
equation (45) is a very good approximation.

For a driving protocol that is not continuous in time, wefind a different expression.Here, we assume as in
the casewithout feedback, that before and after tm the protocol is constant and that a quench is performed at
time tm.We thenfind for theMJE (see also appendix A.6)

[( ) ( ) ( ) ] ( )
{ }

( ) (¯ )
( )

† †
†(¯ )åg h h= - +l l

b w

Î

D lp t p t1 e , 46m
z g e

z z m z z m
z

,
, ,

m

m m m m
zm m

where ( )( ¯ )†lp tz z m,m m
denotes the probability of the system to be in state zm at time tm in the backward process with

the backward protocol according to themeasurement outcome ¯=y zm m. Here, we introduced the
complementary state z̄m to zm (i.e., if =z gm then ¯ =z em and vice versa). Furthermore,

( ) ( ) ( )( ¯ ) ( ¯ ) ( ¯ )† † †w w wD º -l l lz z zz m t z m z m, 0,m f m m
and ( ) ( ) ( ¯ )( ¯ ) ( ¯ ) ( ¯ )† † †w e e= -l l lz z zt z m t z m t z m, , ,m m m

.
Wewill nowdiscuss an example of a protocol with a quench in detail in the next paragraph.

4.3.1. Conditional swap
As a specific example, for whichwe can extract work from a single heat bath bymeasuring the state of the TLS at
time tm, we discuss a feedback operationwhichwe calll a conditional swap: if at time tm themeasured state of the

Figure 4. Left: efficacy parameter γ (dashed) andmeasured efficacy gm (line) as function of themeasurement error aswell as results
fromBD simulation (marks)with =f 2.0 and =L 0.5. Right: probability distribution of the work extracted and performed by the
system (blue) and the extractedmeasuredwork (purple) for the information ratchet with s s = 1.0m where ( )s b= -f2 1 2.
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TLS ym is the excited state, we interchange the two energy levels such that we extract work of w e e= -e g if the
system state zm is the excited one and performwork of w- if =z gm . If =y gm wedonothing.We compare our
findings (see equation (46)) of this conditional swap to the corresponding expression of the efficacy parameter γ,
which is given for this specific example by

( ) ( ) ( ) ( )( ) ( )†g h h= - +l lp t p t1 2 2 . 47g g m e g m, ,

Note that in themodel of the conditional swap ( ) ( )( ) ( )† †=l lp t p tg g m e e m, , and ( ) ( )( ) ( )† †=l lp t p te g m g e m, , .

We show the difference of γ (dashed) and gm (line) for different values of η infigure 5 (left). As one can see,
for a perfectmeasurement they result in the same value. However if η is greater than zero, the two differ. The
explanation is very similar to the one of the information ratchet discussed in section 4.2: if themeasurement ym
involves errors, the two states are sometimes interchanged even though the systemmay be in the ground state
resulting inwork applied to the system instead of extractingwork from the system. If we look at thework
distribution of the system (see figure 5 right top), one can see that for values h > 0, the extractedwork becomes
less whereas the probability of applyingwork to the system increases withmeasurement error (note that in our
conventionwork is negative if it is done by the system). Then the efficacy parameter is lower thanwithout
measurement error. On the other hand, if we look at themeasuredwork (see figure 5 right bottom), which is
calculated from themeasured state of the system,we onlymeasure positive work extraction from the systemby
perfoming the conditional swap. Furthermore, the probability ofmeasuring the excited state of the system is
always larger than the actual probability of the system to be in the excited state if ( ) <p t 1 2e m (as in our case),

( ) ( ) ( ) ( ) ( ) ( ( )) ( ) ( )h h h¢ = - + = + -=p t p t p t p t p t p t1 1 2 . 48
y e m e m g m e m e m e m
m

Therefore, the probability of extractingwork from the system and therefore gm increases with larger values of η.

5. JEwithmutual information

Wehave seen that the classic JE ( )á ñ =b- -De 1W F in general holds only if the system is observed perfectly and no
feedback is performed. If one of the conditions is violated, we have in general ( )á ñ ¹b- -De 1W F . However, in
case of feedback at a given time tm Sagawa andUeda and others have found that [25–34]

( )( [ ∣ ] ( )) ( )á ñ =b- -D -e 1. 49W y F y I z y
y

z
z

,
,m m m m

m

Thus, by adding the stochasticmutual information ( ) ( )
( ) ( )

ºI z y, lnm m
p y z

p y p z

,m m

m m
to the exponentwe canmake the

right-hand side of the ‘Jarzynski–Sagawa–Ueda relation’ equal to unity again. This result provides uswith a nice
interpretation because it tells us that the amount of workwe can extract from the system is bounded by

( )á ñI y z,m m z y,m m
, which can be viewed as the amount of correlations established during themeasurement.

Unfortunately, in case ofmeasurement errors, validating equation (49) requires to be able to observe the
system perfectly during the timewhere it is not controlled. But this again raises the question of how thismight be
achieved because thismeans that the detector of the experimentalist is only faulty previous to the feedback step
and otherwise correct. Equation (49) could be therefore viewed as an ‘objective’fluctuation theoremwhich a
second ‘superobserver’with perfect access to both the system and detector degrees of freedomwould observe. In
contrast, theMJEwe have considered so far could be called a ‘subjective’fluctuation theoremwhich is based on
the knowledge of the observer only.

Figure 5. Left: efficacy parameter γ of the system (dashed) andmeasured efficacy gm (line) as function of themeasurement error η as
well as results fromMC simulation (marks) for the conditional swap operation at =t t 2m f with G = D- t10 7 ,D =t 0.001 and

=t 3.0f . Right: work distribution of the system (top) and themeasuredwork distribution (bottom) of the conditional swap for
different values of η.
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In fact, wewill now show that by taking the full stochasticmutual information between the system and
detector into account, defined as

[ ] [ ]
[ ] [ ]

( )


=
⎛
⎝⎜

⎞
⎠⎟I

P
z y

z y

z y
, ln

,
, 50

yields a fluctuation theoremof the form

( )( [ ∣ ] ( )) ( )á ñ =b- -D -e 1 51W F Iz y y z y
z y

,
,

which holdswithout andwithmeasurement errors andwithout andwith feedback, even if the feedback is
performed continuously, i.e., every time step dt . However, the latter relationmay be invalid for some error-free
feedback control processes where absolute irreversiblity is inherent [38].We remark that the validity of
equation (51)without feedback andwithmeasurement errors was already noted in [13] andwith feedbackwith
orwithoutmeasurement errors in [27, 29, 32].

To prove equation (51)wenote the chain of equalities

[ ] [ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ]

[ ] [ ] ( )

( [ ∣ ] ( )) ( ) ( [ ∣ ] ( ))

( [ ∣ ] ( ))

  
 


   

 

ò

ò ò
ò

á ñ =

=

= =

b b

b

- -D - - -D

- -D

y z z y
z y

z y

y y z z

y y

e , e
,

e

1. 52

W F I W F

W F

z y y z y
z y

z y y

z y y

,
,

m

m

Here, we used that the JE [ ] [ ] ( [ ] ( )) ò =b- -Dz z e 1W Fz y ym holds for every fixedmeasurement record y and
(consequently in case of feedback) any control protocol ( )l t y, .

Thus, themutual information seems to be a universal quantity in order to establishfluctuation theorems
where not only the systembut also the detector has to be taken into account, although it does not possess an
obvious thermodynamic interpretation in casewithout feedback. Unfortunately, finding some (non-trivial)
quantity [ ]=G G y such that theMJE can be corrected, i.e., such that ( )á ñ =b- -D -e 1W F G

y , remains an open
problem at themoment.

6. Conclusions and outlook

In the present paper, we generalized the original JE expressed in terms of the ‘true’work done on the system to an
equation for arbitrarymeasurement errors based on themeasurement record y . The key ingredient for this was
the conditional probability distribution ( ∣ )p y zm , which quantifies the uncertainty of ameasurement outcome y
given that the system state is z andwhich defines an abstractmeasurementmodel. In fact, by shifting the
attention from z to y we only did afirst step in generalizing stochastic thermodynamics to the presence of
measurement errors becausemuchmore sophisticated inference schemes could have been considered aswell
(we actually did not even use equation (14) in our derivations leaving this interesting problem to future work).

Then, using the formalismof stochastic path integrals, we derived theMJEwithout feedback (Equation (20))
andwith feedback control (equation (35)). These expressions were general (under the assumption of a
Markovianmeasurement apparatus), but explicitely involve system trajectory dependent quantities. For two
important paradigmatic examples we could overcome this difficulty and express theMJE in terms offixed
Hamiltonian parameters or average quantities, which can be computed based on amaster equation. For anOBP
trapped in a harmonic potential the expressions derivedwere exact, whereas for the TLS exact solutionswere
only found for quenches and very good approximations for continuous driving protocols.We also checked our
findings with simulation results. In the limiting case of perfectmeasurement the generalMJE equations result in
the original JEwithout andwith feedback. For the non-ideal case we hope that our theory provides a convenient
way to explain the always noisy statistics in experiments, which have beautifully demonstrated the validity of the
JE and other fluctuation theoremswithin the given statistical accuracy so far, see, e.g., [39–47].

Furthermore, in case of feedback control the correct handling ofmeasurement errors is evenmore
important becausewe put the obtained information back into the system to influence its future behavior. Here,
we have seen that themeasured efficacy gm may exceed the system efficacy γ and, contrary to previous intuition,
increases with largermeasurement errors, whichwe have calculated explicitely for an information ratchet of an
OBP and a conditional swap of the TLS. Furthermore, we showed that the ‘Jarzynski–Sagawa–Ueda relation’ by
incorporating the full stochasticmutual information always holds for a ‘superobserver’who has access to the
measured and system trajectories, without andwithmeasurement errors andwithout andwith feedback.

Finally, wewould like tomention that a lot of research has already been carried out to understand the
stochastic thermodynamics of coarse-grained systems, see, e.g., [48–58]. In there, given a set ofmicrostates, a
subset of observable states is introduced, which defines the coarse-graining andwhich is sometimes explicitly
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modeled by a detector or sensor. Based on the observability of this subset, the changed laws of (stochastic)
thermodynamics are investigated. Though one can argue that both approaches pursue the same research goal, it
is worthwhile to point out that our approach is in principle different. First, the coarse-graining approach still
assumes that it is possible to observe the particular subsets perfectly, i.e., error-free, and second, it is also
implicitly assumed that it is actually possible tofind these subsets or to physicallymodel a detector, but this
might be challenging for some large detectors such as a camera. Nevertheless, the question towhat extend our
approach based on an abstractmeasurementmodel ( ∣ )p y zm is equivalent to an explicit detectormodel with
underlying coarse-grained systemdynamics is, in our point of view, interesting to study in the future.
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Appendix

A.1. Derivation ofMJE for continuous driving ofOBP
In this sectionwe derive the analytic expression of theMJE for anOBP in a harmonic potential in one-
dimension, namely equation (25).We assume the external control parameter ( )l t to be c.p.d. throughout this
section. The discretizedwork along a trajectory z given theHamiltonian in equation (22) becomes

[ ] ( [ ] [ ] ) ( )å d d m d m= - +l l l- -W f z f z fz 2 , A.1
i

i i1
2

1
2

i i i

where d = -l l l -
f f f

i i i 1
, [ ]d m m m= -l l l l l- -

f f f
i i i i i1 1

and [ ]d m m m= -l l l l l- -
f f f2 2 2

i i i i i1 1
. For the example

considered here, it holds that * =z zi i and * =y y
i i.

By factorizing [ ] z y, (see equation (16)) one can express the right-hand side of the general equation (20) as

[ ] [ ] [ ( ∣ )
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( ) † † †† †
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† † † †
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b d d m d d m
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Assuming a normal distribution of ( ∣ )p y zm i i (see equation (24))we find after integration over all yk:
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Note that for the integral over yk to converge the standard deviation of themeasurementmust obey

∣ ∣
( )

†
s

b d
<

l +
f

1

2
. A.4m

2

k 1

Thismeans that in an experimental setup (or also for simulations), in which thewidth of the potential is varied
between twomeasurements by afinite value †d l +

f
k 1
, the deviation ofmeasured and system coordinate cannot be

arbitrarily large.
Wefirst look at the integral of equation (A.3): in the limit  ¥N the time steps =t t Nd f become

infinitesimal andwe canwrite the term in the exponential approximately as

{ }
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t
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2 2

2
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2 2

0

2

i

i i

f

1

1 1

where the prime (e.g, ¢f ) denotes a derivative with respect to time t. Note that the additional dt in front of the
integral is correct. Furthermore, this step is only exact provided that the protocol is differentiable. However, as
long as it is continuous and only non-differentiable at afinite number of points < < ¼ < <t t t0 K f1 this
argument can be easily generalized by splitting the integral at the respective places (i.e.,

ò ò ò+ + +t t td d d
t

t

t

t

t

0 K

f1

1

2 ) and by observing that due to the continuity †d l +
f

i 1
and [ ] †d m l +

f
i 1
remain

infinitesimal small at all points. Then, by themean value theoremof integrationwe know that there exists a
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[ ]x Î t0, f such that

{ ([ ] ( )) } ( )( ) ( )† † b s m x= ¢ - ¢l x l xt f f zexp 2 d . A.6m
2 2 2

Andhence, this termbecomes 1 for  ¥N , i.e., td 0.
Therefore, equation (A.3) simplifies to
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which holds for  ¥N . In the last step, wewrite the product as an exponential and use an approximation of
the logarithmup tofirst order:

( ) ( ( )) ( )( )† †
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2 2m
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Taking the limit  ¥N , ( )=l lf f t0 0
and ( )=l lf f tN N

, we arrive at equation (25).

A.2.Derivation ofMJE for instantaneous driving ofOBP
Here, we derive equation (26), wherewe assume that the stiffness of the harmonic potential as well as the
position are instantaneously changed at the same time tm. Since the driving protocol is constant before and after
tm, it holds that †d =l +

f 0
k 1

aswell as [ ] †d m =l +
f 0

k 1
for all ¹k m. In this case the right-hand side of

equation (20) reads after integration over all yk and zkwith ¹k m:
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For a quench it holds that ( ) ( )†d = - º -Dl l l+
f f f ft0m f1

and equivalently

[ ] [ ]( ) ( ) ( ) ( )†d m m m m= - º -Dl l l l l+
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. Then, the integration over ym yields
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For the integral over ym to converge, itmust again hold that ( ∣ )s b< D -f2m
2 1.

We nowuse, that for the harmonic potential the probability distribution of the position of theOBP in
equilibrium (initial system state) is Gaussian distributedwithmean ( )ml tf

and variance ( )( )b l
-f2 t

1 2
f

in the time-

reversed protocol. The integration over zm thenfinally yields equation (26).
Note that, the integral over zm only converges if
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A.3.Derivation ofmeasured Jarzynski equation for aTLSwith continuous driving
In this sectionwe derive the analytic expression of theMJE for a driven TLS, namely equation (28).We assume
that the protocol ( )l t changes continuously and is piecewise differentiable as in appendix A.1. For the TLS it
also holds that * =z z and * =y y . Thework along a trajectory z can be discretized as

[ ] ( ( ) ( )) ( ) ( )å åe e de= - ºl l l- - --W z z zz . A.12
i

i i
i

i1 1 1i i i1

Equivalently, themeasuredwork is given by [ ] ( )de= å l -W yym i i 1i
.

Thenwe can evaluate the right-hand side of equation (20) analytically as follows:

[ ] [( ) ( )]

[ ] (( ) [ ])

( )

( )

† † ( ( ) ( ))

† † ( ( ) ( )) ( ( ) ( ))

† †
† †

†

† †

†

† † † †





å  å

å 

h d h d

h h

á ñ

= - + -

= - + +

b

b de de

b de de b de de

-

-

- -

l l

l l l l

+ +

+ + + +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟z

z

e

1 1 e

1 2 e e .

A.13

W W

i y
y z y z

y z

i

g z e z

z y

z

z

,

, ,

m

i

i i i i
i

i
i

i

i i
i

i i
i

1 1

1 1 1 1

15

New J. Phys. 18 (2016) 113042 CWWächtler et al



Here, †å = å ¼ åz zz N 0
denotes all the sums over zk and ( )†del -zk 1

k
is defined as in equation (A.12)with the

time-reversed protocol ( )†l t . To further simplify equation (A.13)we introduce the complementary state z̄k such
that ¯ ¹z zk k for all k, i.e. if =z ek then ¯ =z gk and vice versa. Consequently,
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For largeNwe approximate
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such that we canwrite equation (A.14) simply as
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To ensure this equality, we introduced a ‘rest’ term of the form
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taking care of the sumswhere at least two of the indices ¼i i, , n1 are equal. But then all terms of are at least of

the order ( )
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1 and therefore vanish for  ¥N . Hence, we are left with evaluating
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Taking the limit  ¥N , we canwrite
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wherewe again assumed that the protocol is differentiable (see the remark below for the case of a c.p.d. protocol).
Evaluating the sums over zik andwriting the sums over ik as integrals (by taking  ¥N ), equation (A.20)finally
reads
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wherewe denote the time derivative of the energy gap of the TLS by ˙ ˙ ( ) ˙ ( )( ) ( ) ( )† † †w e e= -l l le gt t tk k k
and the

probability of the system to be in the ground/exited state at time ti by ( )†p tg e i , both in the backward protocol of

the driving scheme.Note that equation (A.22) is exact up tofirst order in η.
Finally, we remark that for a c.p.d. protocol with non-differentiable points at < < ¼ < <t t t0 K f1 the

result above readily generalizes and in equation (A.22)wehave to split the integral at the respective points as
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A.4.Derivation ofMJE for a TLS for instantaneous driving
In this sectionwe derive equation (29), i.e. an expression for theMJE of a TLS, where the energy levels are
changed instantaneously at onemoment in time tmwith < <t t0 m f and are constant before and after. Since
the energy levels are constant before and after tm, it follows that ( )†de =l +

z 0i
i 1

for all ¹i m and also

( ¯ )†de =l +
z 0i

i 1
for all ¹i m. Then the right-hand side of equation (20) simplifies to
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Summing over zm, equation (A.24) can bewritten as
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where †
( ) ( )† †w w wD = -l lt 0f

. Note that this equation is exact for  ¥N (d t 0).

A.5.Derivation of the Brownian particle under feedback
For the derivation of equation (39), theMJE under feedback, we assume that ( )m =l 00 initially and changes
instantaneously at tm to ( )ml tf

if >y 0m . Similarly, thewidth ( )lf t changes from ( )lf 0 to ( )lf tf
instantaneously if

>y 0m . Since the form and the position of the potential isfixed before and after applying the feedback, it holds
( )( )d =l +H y 0y kk m1

for all ¹k m and the same is true for zk. Then themeasured efficacy parameter reads after
integration over all zk and ykwith ¹k m:
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The integral of ym splits into two parts: one inwhichwe alter the potential ( >y 0m ) and onewherewe do
nothing ( <y 0m ):
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The conditional probability ( ∣ )p y zm m m is again assumed to beGaussianwith a standard deviation of sm (see
equation (24)).Moreover, the probability ( )( )†l <p zy m0m

(no feedback) is the canonical distribution of the
harmonic potential centered at ( )ml 0 andwidth ( )lf 0 and the probability ( )( )† lp zy m0m

(feedback) is the canonical
distribution centered at ( )ml tf

andwidth ( )lf tf
, becausewe are in equilibriumbefore applying the backwards

protocol. Then thefirst termof equation (A.27) becomes 1/2 after integration of zm and ym. If feedback ist
applied ( >y 0m ) it holds

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )† †d d m- = - - - -l l l l l l+ +
H y H z f f y z f z y2 . A.28y m m t m m t t m m0

2 2
m m m f f f1 1

Then after integration over zm and ym of the second part of equation (A.27) one arrives at equation (39).

A.6.Derivation for the TLS under feedback
Here, we derive the analytic expression of theMJE for a driven TLS under feedback, equation (45).We again
assume that the driving protocol changes continuously and depends on themeasurement outcome ym at time tm.
Then, themeasured efficacy parameter of the TLS is given by
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Since the driving protocol depends on ym, we canwrite gm as:
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Summing over all yk results in
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For the last stepwe approximated

{ ( ( ) ( )} ( )( ) ( )b de de- »l l+ +y zexp 1 A.32y m y mm m m m1 1

for the single point at k=m. This is justified because thefinal integral does not depend on the value of a single
point as long as we change the protocol continuously. Following the same intermediate steps as in appendix A.3
we arrive at

{ }
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Finally, by summing over ymwe arrive at equation (45).
For an instantenous change of the driving protocol, wherewe assume that theHamiltonian of the TLS is

constant before and after the quench at time tm, ( )( )del + zy mi m1
and ( )( )del + yy mi m1

are the only terms different from
zero. Then, equation (46) follows immediately from evaluating the sumover ym in equation (A.29).
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