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Abstract

In the derivation of fluctuation relations, and in stochastic thermodynamics in general, it is tacitly
assumed that we can measure the system perfectly, i.e., without measurement errors. We here
demonstrate for a driven system immersed in a single heat bath, for which the classic Jarzynski
equality (e 7W=4F) = 1holds, how to relax this assumption. Based on a general measurement
model akin to Bayesian inference we derive a general expression for the fluctuation relation of the
measured work and we study the case of an overdamped Brownian particle and of a two-level system in
particular. We then generalize our results further and incorporate feedback in our description. We
show and argue that, if measurement errors are fully taken into account by the agent who controls and
observes the system, the standard Jarzynski—Sagawa—Ueda relation should be formulated differently.
We again explicitly demonstrate this for an overdamped Brownian particle and a two-level system
where the fluctuation relation of the measured work differs significantly from the efficacy parameter
introduced by Sagawa and Ueda. Instead, the generalized fluctuation relation under feedback control,
(e=PW=AR=I} — 1 holds only for a superobserver having perfect access to both the system and
detector degrees of freedom, independently of whether or not the detector yields a noisy measurement
record and whether or not we perform feedback.

1. Introduction

During the last two decades we have seen an enormous progress in the understanding and description of the
thermodynamic behavior of small-scale systems, which are strongly fluctuating and arbitrary far from
equilibrium. This includes, e.g., a consistent thermodynamic description at the single trajectory level and the
discovery of so-called fluctuation relations which, in a certain sense, promote the status of the second law of
thermodynamics from an inequaltiy to an equality. A number of excellent review articles and monographs from
different perspectives can be found in [1-7].

A tacit assumption underlying this framework, which is usually never discussed in any detail, is that we must
be able to measure the stochastic trajectory z(¢) of a system perfectly, i.e., without measurement errors, in order
to establish the framework of stochastic thermodynamics and to derive fluctuation relations. In practise, we
know, however, that this is an experimental challenge for very small systems and, to put this thought even
further, this might be the major obstacle in finding a fully satisfactory generalization of stochastic
thermodynamics to quantum systems.

Extending the framework of stochastic thermodynamics to the case of incomplete or only partially available
information has only recently attracted interest [8—13]. In our context, the results of Garcia-Garcia et al [13],
who have also derived a modified Jarzynski equality (MJE) for faulty measurements, are of particular
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importance. Our results are indeed in agreement with their theory, though our point of view and derivation
differs from them as we will discuss further in the main text below.

In addition, we also go one step beyond and include feedback based on faulty measurement results in our
theory. In fact, the state of knowledge of the observer is of crucial importance in control theory and determines
how ‘effective’ the feedback control can be applied. However, if the experimentalist is forced to perform
feedback based on faulty measurement results, it seems logical that she also uses the same (faulty) detector to
infer other statistical properties of the system. Thus, we argue that, in order to extend stochastic
thermodynamics to the case of feedback control with measurement errors, it is of crucial importance to take this
measurement error consistently into account also during the time where no feedback is performed but where we
still need to measure the system. This has indeed crucial consequences as we will examine below.

Outline: The article starts with a derivation of the standard Jarzynski equality (JE) based on a stochastic path
integral method in order to establish the mathematical tools we will need in the following. Then, the rest of the
article is divided into two main parts: section 3 treats the case without feedback control and section 4 the case
with feedback control. In both cases we derive a general expression for the MJE of the measured work
distribution for arbitrary measurement errors (equations (20) and (35)). In general, however, these might be
extremely difficult to compute. Therefore, we present analytical results (underpinned by numerical simulations)
for the two paradigmatic cases of an overdamped Brownian particle (OBP) in a harmonic potential and a two-
level system (TLS). At all times we try to physically motivate our results and shift most lengthy computations to
the appendix. Furthermore, we comment on the use of mutual information in the JE in section 5. Finally, in
section 6 we discuss our findings and point out to possible future applications.

2. Derivation of the JE for a driven system in a heat bath

Consider a system described by a Hamiltonian H, (;)(z). Here, zmight denote the position and momentum of a
particle (i.e., z = (x, p)) or the discrete state of a system (such as spinup ordown, z € { T, | }). Theresults
derived below are independent of this consideration and we will use the notation of a continuous variable z most
of the time. Next, suppose the system is in contact with a thermal bath at inverse temperature § and initially at

t = Oinequilibrium withit, i.e., p,_,(z) = e 0@ /Z,with Z, = f dz e 0@, Then, we change the
Hamiltonian from t = 0to t = t; as described by an arbitrary but fixed protocol A (¢). Consequently, the work
performed on the system,

W= Wiz Efotf dt X(t)w’

along each trajectory z(t) = z becomes a stochastic quantity whose fluctuations are bounded by the following
relation, which is also known as JE[14, 15],

ey

(e”FW=AR), — 1. )

Here, (...), denotes an average over all possible system trajectories z and AF = —3~!(InZ; — In Z) denotes
the change in equilibrium free energy. Equation (2) can be derived in different ways and we will use stochastic
path integrals and the method of time-reversed trajectories below.

In the formalism of stochastic path integrals the average of a trajectory-dependent quantity X [z] can be
expressed as [16]

(X[z]), = f Dlz] Plal Xz, 3)

where D[z] denotes a measure in the space of trajectories z and P[z] the probability density (with respect to this
measure) of choosing a trajectory z. We now divide the time interval [0, #;]into N time steps of duration

0t = t¢/N. A particular trajectory Z is then approximated by its coordinates z; = z(#) attimes #; = ko,

0 < k < N,such that

Z(t) - [Z()r Zl)--~)ZN] = Z. (4)
Note that the limit N — oo by keeping t/fixed is implied. The work along the trajectory is the discretized version

of equation (1),

N

Wzl = > (Hy(zc-1) — Hy, (z6-D)s )
k=1

where \; denotes the value of the external control parameter at time #. Furthermore,

fD[z]:fdzofdzl...fdzN, 6)
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where f dz denotes an integral over a continuous variable (e.g., for an OBP) or a discrete sum (e.g., for a TLS).
The probability density for a particluar path is given by

Plz()] = py, (z0)p), (20 = 20p), (21 — 22) ... p) (2n—1 — 2N). ()

Here, p, (zo) is the initial equilibrium distribution and p A @K1 — 2k) denotes the transition probability from
Z_1 1o z in time 0t where the driving protocol has the value A;. This factorization implicitly assumes Markovian
system dynamics.

Of particular importance now will be the notion of a time-reversed path, denoted by
Z'(t) = (2%, 251 ..2q] = Z', with time-reversed driving protocol” X (t) = /\*(tf — t). Here z" indicates the
time-reversal of z, e.g., if zx = (x, p;) for a particle with position x; and momentum py, then
z¢¥ = (xx, —py). The probability density for such a path is

Pl = by (Z;\kl)P)\T\, (ZITI - Z;\kl— D P)j‘(zl* - Z(;k)- (8)
As usual in stochastic TD, we assume microreversiblity (or local detailed balance) [17-19]

p/\i(z,zk — lek—l) = Py, (zk_1 — Zk)eﬂls‘fk(zk—lﬂzk), 9)

where 6g, (zx—1 — z) = 0q, is the heat absorbed by the system during the time interval [#;_1, #]. Due to
normalization, we can write

1 = f DIZ] PilZ]

0 P MG B, Bé,
[ Pz Py @0py, o — 2™ py oy 1 — zy)e iy

P (20) (10)

f p)\*(ZITT) (6046
= [ Dlal Pl ettt — [Dig) Pl
PAO(ZO)

*
Py (an) oFalz]

Py, (z0)

where we used D[z] = D[z] and introduced the heat §q[z] = 0q, +---+ 0qy absorbed along the full
trajectory z. Since the system is initially in equilibrium (in the forward as well as in the backward process), we
have

() Z
PR~ 20 exp [ B(H () — Hoy )] (1
Py, (z0) Zn

and furthermore H N (@) — H % (20) = Hyy (znv) — Hy,(20) = Ae(z, zf). By the first law of thermodynamics
the energy difference between initial and final state along the trajectoryis Ae(zy, z¢) = gq[z] + W [z]. Then,
from equation (10) for N — oo (keeping tfixed) the original JE follows immediately:

1= fD[z] Plz] eArFe= Wzl = (¢=FW=AD) (12)

To be precise and to emphasize that the statistical average (...), is taken over the system trajectories we explicitly
use a subscript z. This will change in the following.

3. MJE without feedback

Suppose now we measure the system coordinate z continuously with measurement outcome y, which in general
can involve measurement errors and suppose the true system dynamics are inaccessible or hidden. Then the
original JE, evaluated with the accessible measurement data, is in general not equal to unity, but depends on the
difference of the true and measured work distribution.

More specifically, we introduce the conditional probability p, (y|z) to obtain measurement outcome y given
a particular state z of the system. The probability distribution of measurement outcomes y after a measurement
is then

P = [dp, 0120 @). (13)

Given a particular measurement outcome , the state of the system after the measurement is given by Bayes’ rule
and reads

2 Note thatin the presence of a magnetic field (or any other odd variable in the Hamiltonian) the sign of the field also changes under time-
reversal.




10P Publishing

NewJ. Phys. 18 (2016) 113042 CW Wichtler et al

! : ! time

Y ? y(t)

Figure 1. Stochastic trajectory (z, y)(¢) (black) in the extended phase space of trajectories. The path z(¢) of the system (blue) is the
projection onto the z-subspace and the measured trajectory y(¢) (red) is the projection onto the subspace of measurement. In general,
measured and system trajectories are different.

P, (yl2)p(2)
P

The case of a perfect measurement, as usually considered in stochastic thermodynamics, is described by

p,(y|z) = b, (where 6, , denotes the Kronecker delta for a discrete state space or the Dirac distribution for a
continuous system). It is then actually redundant to explicitly distinguish between the state of the system and the
measurement result because py; (y) = p(z = y)and p'(z]y) = §,,, (the final state is pure and coincides with the
measurement result).

p'ly) = (14)

3.1. General case

In order to incorporate the measurements on the system, we expand the phase space to the phase space of
measured and true trajectories (see figure 1). A stochastic path in this extended space is denoted by (z, y) and the
probability of choosing such a path is simply denoted by P[z, y]. The trajectory z of the system is the projection
of the whole trajectory onto the z-subspace and the probability distribution of this true stochastic path is given
by Plz] = f DlylPlz, yl. Equivalently, the measured trajectory y lives in the y-subspace and its probability

distribution is P[y] = f D[z] P[z, y]. Discretizing the time interval [0, t¢] again into N time steps, the
probability density of a path in the space of system and measured trajectories will be factorized as

Plz, yl = py, 20> ¥)Py, 0> Yoy = 26 1) - Pay(@N—1 Yn_1 — N> Va)- (15)

Our main assumptions are that the evolution of the system is independent of the measurement process and that
the outcome of a measurement y; only depends on the state of the system z; at time #;, i.e., we assume

P Gk-1 Vi1 = 2 ) = Py, (21— 20, (il 20)- (16)

This can be seen as a Markov assumption for the measurement apparatus, i.e., the previous measurement result
¥, does not influence the system evolution and the next measurement result. The conditional probability
P, (#:|zr) quantifies the uncertainty of the measurement (see equations (13) and (14)).

The measured work W, [y] along a measurement trajectory vy is defined as in equations (1) and (5) by
interchanging z with y and is in general different from the true work W = W [z]. Even on average it might be
that (W, [yl)y = (W [z]),. Nevertheless, we assume that the Hamiltonian of the system is known to us and
unchanged by the measurement; the only mistake is in the measurement outcome y (see [ 13] for the case of
different Hamiltonians).

From an experimental point of view it only makes sense to consider the distribution of measured work and
we may write the average of the exponential of measured work and free energy difference AF as

(e PWu=2P) f Dly] Ply] e #Wall-AF) — f DIylDlz] Plz, y] e Wulrl-AF)

N
- f DIylDlz] Plz[] p, (ylz)e? Wnl=2P) 17)

i=0

where in the last step we used (16). Again the assumption of microreversibility (see equation (9)) allows us to
write equation (17) as

N "
<efﬂ(WnﬁAF)>y = fD[y]D[Z] pT[Z‘r]H pm(yilzi)e*ﬂAeT(ZOaZf)eaéqT[Zt]e*ﬁvvm[Y]. (18)
i=0
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Here, Ae' (zg, zr)and 6q" [2'] are the energy difference and the exchange of heat with the reservoir along the
system’s backward trajectory, respectively. The first law also holds for the backwards paths of the system,
Ae" = —Ae(zg, zr) = WT[Z] + 6q'[2'] and assuming time-reversal symmetry of the measurement,
P,z = p,( yl.*lzi*), we can further simplify equation (18) to

N
(7= aR)y = f DIyIDlzl PUZI]] p, (e ye M ey

i=0

— [ DIyI DLzl Pz, yi1edWaty1-w e, 19)

where we have used that the measured work is asymmetric under time reversal, W,L [y'] = —W,,[y], which
directly follows from the corresponding property of the true work. Thus, one finally arrives at the following
expression for the MJE:

(e P BB — (eBWa WDy, . (20)

This expression results from a formal manipulation and is at this point, however, still explicitly dependent on the
(backward) trajectories z' of the system and is therefore of limited practical use. Later on we will see how to
overcome this difficulty for various examples were we use equation (20) as our formal starting point. Note that
depending on the probability distribution p (W, W) an expansion in terms of the moments of the distribution
could be also attempted.

Asan important limiting case we immediately see that for a perfect measurement, p,, (;lzx) = 6, 4, the
measured work coincides with the work of the system, W, [y] = W [z], and the right-hand side becomes unity
recovering the original JE (see equation (2)). Moreover, the right-hand side of equation (20) may also be equal to
one if there is a certain symmetry in the driven system, such that W, [y"] = W [2] (see, e.g., section 3.2).

Finally, let us comment on recent work by Garcia-Garcia et al [ 13], who also derive a modified JE including
measurement errors and which is equivalent to our result, equation (20). However, their point of view as well as
the derivation differ from the present approach. Garcia-Garcia et al introduce the error
Elz, yl = W[z] — W, [y] of system and measured work and derive a fluctuation theorem for the joint
distribution of the measured work and this error [13]:

p' (W, E)

———————— = (W, + E — AF).
g~ Pt ) @1

From the latter relation, one can immediately derive equation (20). Thus, whereas all measurement errors in [13]
are incorporated at the level of the final work distribution p’(W,, E), we start with a particular measurement
model for the state of the system expressed in terms of p,, (¥, |zx). This is closer to a microscopic modeling of the
situation because any measurement model for the system p,, (,|zx) will also yield a certain work distribution
p' (W, E), whereas for a given work distribution p’(W,,, E) there might be many different measurement models
(and even different systems) which yield the same p’(W,,, E). Thus, our findings show a completely different
path to derive fluctuation theorems in the presence of measurement errors. Whether our approach or the one of
[13]is superior might depend strongly on the specific situation and the system under study.

In the following sections we examine two paradigmatic systems for which the right-hand side of
equation (20) can be evaluated analytically, namely an OBP in a harmonic potential in section 3.2 and a TLS in
section 3.3.

3.2. Overdamped Brownian motion
We consider the overdamped dynamics of a particle in a harmonic potential in one-dimension such that the
Hamiltonian of the system is only given by the potential energy:

Hy»(@) = Vay(@) = fi ) (2 = o)™ (22)

The stiffness f, ;) as well as the center of the potential 1, (,, can be altered in time by an external driving protocol
A (). To simulate the system dynamics we use the Langevin equation

(1) = —=fDVy(, (2) + 2DE() (23)

with diffusion constant D, which is related to the friction constant y by the Einstein relation D = (3y)~!, and
Gaussian white noise & (¢).

We specify our measurement model by assuming that the measured position of the particle y; is normally
distributed around the real position z; with a standard deviation of g;,,,

Lo 1 (zi — 3)?
P,(ylz)) = ) CXP(_W ) (24)
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such that, if 0,, — 0, the conditional probability becomes a Dirac distribution and the measured coordinate
coincides with the true coordinate of the particle. Such a Gaussian measurement model might be a good
approximation for a noisy measurement without systematic error (i.e., we have (y) = (z)) and simplifies a lot
analytical calculations.

Note that the Langevin equation (23) now merely presents a convenient numerical tool. From the point of
view of the observer, it has no objective reality unless ¢,, = 0. The correct state of knowledge of the observer
would be indeed described by a stochastic Fokker—Planck equation [20, 21].

3.2.1. Continuous driving protocol
Evaluating the general expression, equation (20), for a continuous and piecewise differentiable (c.p.d.) driving
protocol A (t) yields (see appendix A.1 for the derivation)

(e FWu=BP))  — =ol,00f (25)

where Af = f, 0~ f\0)- Theright-hand side of the above equation equals unity for g,, = 0 corresponding to
the original JE. Similarly, if we vary the width of the potential periodically such that f, , = f, by then the
original JE is also recovered. However, this attribute is, as far as we know, specific to the model of the OBP with c.
p-d. driving protocol. In general the right-hand side will be different from one. Interestingly, shifting the center
[ (1) of the potential has no effect at all on the MJE. Furthermore, if we define an effective free energy,

AF = AF + 0% Af,which may be interpreted as an additonal contribution due to the uncertainty of the
measurements, a JE of the form (e‘*"(Wm‘AF )), = lholds.

3.2.2. Instantaneous change of driving protocol (‘quench’)

We also derive in appendix A.2 an analytic expression for the MJE for an instantaneous change of the system
Hamiltonian at a time t,,, (also called a ‘quench’). We consider here that the position and the width of the
parabola is altered at the same time and is constant before and after t,,,. We find

1 2620%1](;(0) A/’l’z
exp

hao 2.2 Lo ’
200 1 + 20%;,,~—=A
1+ 2060 foﬂAf mfx(rp f

where Ay = ey — M) is the difference of the center of the parabola before and after t,,, *.

<e*ﬁ(Wm7AF)>y — (26)

3.2.3. Numerics

In order to verify our findings we performed Brownian dynamics (BD) simulations and used the weighted
ensemble path sampling algorithm [23], which shifts the computational resources towards the sampling of rare
trajectories, which have the largest impact on the JE. It has been shown that this method is statistically exact for a
broad class of Markovian stochastic processes [24]. Please note that we set 3 = 1 for all simulations in this paper.

As asimple example we change both parameters of the potential continuously and linearly in time. We
choose f, ;) = fy (o) + atand p, ) = 1, + o't. For this driving scheme we find very good agreement of BD
simulation and the analytic expression, equation (25), which is presented in figure 2 (left).

Furthermore, we compare equation (26) with simulation results where intially the Hamiltonian of the
system is given by Hy = f, o, (z — 1 (p))* and which is instantaneously changed to Hy = f,\(rf) (z — ,uwf))2 at
t,,- In figure 2 (right) we show the results of the BD simulation (marks) as well as the analytic expression (line) for
different values of g,, verifying our findings also for a quench.

3.3. Two-level system
Consider a driven system consisting of two energy levels, a ground state with energy ¢ (,)(¢) and an excited state
with energy ¢, ;) (e), coupled to a heat bath with inverse temperature . The master equation (ME) describing

this system is
d(B®) pf— e a0 e b, (1) @
dt pe (t) - e*ﬂ&))\(l)/z _ eﬂw‘)\(l)/z pe (t) .

> Asaside remark note that equation (25) cannot be reproduced from equation (26) although a quench can be modeled as a limit of a series of
continuous functions. This has nothing to do with the phenomenon of absolute irreversibility [22]. Instead, from our derivation in

appendix A.1 it becomes apparent that this procedure would require us to interchange the limit of the series of continuous functions with an
integral, which is only allowed for a uniformly convergent series, but a series of continuous functions converging to a quench (which is not
continuous) is not uniformly convergent (but pointwise instead).
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Figure 2. Left: comparison of BD simulation (marks) and the analytic expression (equation (25), line) where the system is driven
continuously and we choose f, ) = 4.0, & = 2.0, p, ) = 0.0 and o’ = 2.0. Right: results of simulation and the analytic expression

fora quench of the OBP (see equation (26)), where f, ,, = 2.0, fM’f) = 4.0, 1) = 0.0and gy = 1.0. The quench is performed
attime t,, = tr/2. For both driving schemes ty = 5.0, D = 2.0 and we choose At = 0.0001.

Here, we denoted the energy gap of excited and ground state by w ;) = €\¢)(e) — e\)(g) and Be/e (t) denotes
the probability to find the system in the ground/excited state.

We measure the state of the system continuously with (1 — 7) being the probability of measuring the state of
the system correctly and consequently 7 of measuring it wrongly, i.e., we set
B Oilz) = A = oy o+ n(1 = 6, ) withn € [0, 1].

3.3.1. Continuous driving protocol
The MJE of the TLS, where the external control parameter A (¢) is c.p.d., can be well approximated by (see
appendix A.3 for the derivation)

(e BW"=AP) A, exp(—nﬂfotf dt wx(r>(1’§(f) - PgT (t))), 28)

where p; 70 () denotes the probability that the system is in the ground/excited state in the backward process at

time ¢, respectively. Furthermore, w () denotes the energy gap of the TLS. We remark, that for a c.p.d. protocol
with non-differentiable pointsat 0 < # < ... < tx < ty we have to split the integral at the respective points as

j(‘) Yt = fo “dt+ ft “d 4+ ‘ft‘ 7 dt. Moreover, equation (28) is exact up to first order in 7. For higher
1 K

orders (say %) we have to assume that P[z;, ...,z;] ~ p(z;) ... p(z;) which seems to be remarkably well
justified (see our numerical results below). In fact, though this result strictly holds only for slow driving, orders
of n¥ for k > 1become negligible since 17 € [0, 1], hence, justifying our approximation. Furthermore, it is
important to note that for the evaluation of the right-hand side of equation (28) we only need to solve for the
average evolution of the system (as dictated by the master equation); it is not necessary to have access to higher
order statistics.

3.3.2. Instantaneous change of driving protocol (‘quench’)
For a quench we assume thatat ¢, with 0 < ¢,, < t; the energy levels are shifted instantaneously and are held
constant before and after. Then, the MJE is given by (see appendix A.4 for the derivation)

(e POVAR) =1 — [l — pl (tn)e? — pl (e 7247, (29)

where Aw' = wy H — WA © and wy () is defined as before. Note that both relations for the TLS (equation (28)
and (29)) give the original JE for perfect measurement ( = 0).

3.3.3. Numerics

To test these expression, we performed Monte Carlo (MC) simulations for different values of € [0, 0.3] for
two driving schemes. First, the driving scheme varies the energy levels continuously and linearly in time, i.e.,
wr@) = wo + at. Infigure 3 (left) we plotted the left-hand side of equation (28) from MC simulations (marks)
and the right-hand side from numerical integration of the associated ME of the backward protocol (line). As one
can see, the approxiamtion of the MJE, equation (28), is in very good agreement with the simulation results for
small values of 7. Note that a value of = 0.3 corresponds to a very large error of the conditional probability

P, (7;|zi) because for a value of 7 = 0.5 the measurement becomes identical to infering the system state by a fair
coin toss. We also test equation (29) where we change the driving protocol instantaneously, i.e.,

7
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Figure 3. Left: comparison of MC simulation (marks) and numerical integration of the right-hand side of equation (28) fora
continuously driven TLS, where v = 1.6w§ and wy = 1. Right: simulation results of a quench of the TLS at t,,, = t/2 compared with
numerical evaluation of equation (29) with o/ = 2.0wp and wy = 1. For both driving schemes I" = 10~7/A¢, At = 0.001 and

ty = 3.0.

Wiy = wo + &’O(t — t,,). Here, we find perfect agreement of simulation (marks) and numerical integration
(line), which is shown in figure 3 (right).

4, MJE with feedback

Feedback describes the situation in which the state of the system is measured and the evolution of the system is
manipulated by applying an external control scheme depending on the measurement outcome. The change of
the JE and other fluctuation theorems under feedback has recently attracted a lot of attention, in theory [25-34]
aswell as in experiments [35, 36]. A prominent and the first example of a generalized JE incorporating feedback
by performing a single measurement on a stochastic thermodynamic system at a time ¢,,, with measurement
outcome y,, is the relation derived by Sagawa and Ueda [25]:

(e Wlzly,]=AF () >z,ym = 1. (30)

The so-called efficacy parameter y, which determines ‘how efficiently we use the obtained information with
feedback control’ [25], depends on the probability p i ( y::) of obtaining the time-reversed outcome y:: in the

backward process:

= [, P, O (31)

Note that in the backward process we use the time-reversed driving protocols X (t, y,) according to the
measurement statistics of y,,, obtained in the forward process. Especially, there is no feedback control in the
backwards process.

Now, in the derivation of equation (30), the particular measurement yielding outcome y,,, (on which the
feedback control is based) is allowed to have measurement errors. However, the left-hand side of equation (30) is
evaluated along the system trajectories z, which may be inaccessible, especially from an experimental point of
view where our knowledge about the situation is solely based on the measurement trajectories y. We therefore
propose a generalization of the JE under feedback control where measurement errors are taken consistently into
account. Starting with a general description in section 4.1 we look again at the two specific examples of an OBP in
aharmonic potential including a model of an information ratchet in section 4.2 and a feedback controlled TLS in
section 4.3 and verify our analytic results by simulations. Furthermore, in section 5 we discuss the relation of the
MJE under feedback and the mutual information.

4.1. General case

Let us suppose we measure our system as we did without feedback control but at one instance in time, denoted t,,,
with 0 < t,, < tf, the protocol is changed according to the measurement outcome y,, such that the protocol is
fixed beforet,,,i.e., A = A(t)fort € [0, t,,]andis dependent on y,, after t,,,, i.e., A = A(t, y,) fort € (¢, t7].
The work applied to the system, which now depends on y,,,, is given by

OH\»[z(1)]
o\

OH)\(1,y,5[2(1)]
NG

The same equation holds also for the measured work W, [y|y, ] by interchanging z with y (keepingy,,,). The
probability of a path in phase space (z, y) under feedback control is denoted by Py, )[z, yland we again assume

Wizy,] = fo "t A + ft Tt A y) (32)

8
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thatit factorizes into the probability density of the system trajectory Py, )[z], which now explicitely depends on
¥m> and the conditional probabilities [[; p,, (2|2 (see equation (16)). Then, the MJE with feedback control an be
expressed as

<efﬂ(Wm[nym]fAF(ym))>y:fp[z]p[y] PA(ym)[Z: yl e~ BWulyly,l—AF(3,))

N
= [ DD Pagyl2I[] b, Grlee binl-AF 0, (33)

i=0

Note, that the difference in free energy does now also depend on the measurement outcome, i.e.,, AF = AF(y, ),
because the Hamiltonian of the system at time ¢;depends on y,,,. Using again the condition of microreversiblity
(see equation (9)) and assuming time-reversal symmetry of the conditional probabilities, p, (yilz;) = p,,( yl.*lzi*),
the following equation holds:

—B (W, A
(e~ FWnlyly,) F(ym))>y

N
— [ DD PrglZ1]] 5, (f1ef)e s 008 00+ Wb
i=0

B f DIZDIy] Piiy)lz, yleWEleMalyIn) (34)

From equation (34) we immediately obtain the MJE in the presence of feedback control:

(e BMWlylyI=AF (L)) — <eﬂ(W,Zlv*ly,,,JfW‘*[Z“Ime)>Ztyf’ (35)

which looks remarkably similar to equation (20). Here, W,L [y* |3, and WT 2| 7,,] are the measured and true
work, respectively, in the backward process applying the time-reversed protocol X (t, y ) according to the
measurement outcome y,, in the forward process. We stress that we do not perform any feedback in the
backward process equivalently to [25]. Analogously to the efficacy parameter y (see equations (30) and (31)) we
call the right-hand side of equation (35) measured efficacy parameter,

/ Tyt _wWirgt
A = (B D= WD), (36)

because the JE is evaluated using the measured trajectories. Note the subtle distinction between equations (30)
and (35). Equation (30) starts with { exp(— 3 (W — AF))), which experimentally requires an error-free detector
to evaluate it. We instead start with ( exp(— 3 (W — AF))), which can be directly evaluated also with a faulty
detector. Our final theoretical result (36) then depends on z" indeed. However, based on this definition we show
below how to overcome this difficulty for various examples. Furthermore, note that a complementary analytical
analysis confirming our results has been reported in [37] for the example of the Szilard engine.

In the limiting case of perfect measurement, p, (ylzx) = 6, ,,, equation (35) simplifies to

(e Mabin=8F0), — [ DIZIDIY'] Pyl [] bypared Oty ind=w 1D
i

= f DIylPx,ly'1= f dyg - f &y Preoy O - PO = ) (37)

Due to normalization of conditional probabilites, it holds that the integrals of all yk* with k < m are equal to
unity, hence,

fdy;; fdy()* P)\’;’(%”)(y;;) p/\ﬁ(yl* — y(;k)
= [ [ pon 00 e O = = [ A pa, O (38)

_ f dz Py, @)

Only in this case the efficacy y and the measured efficacy ,, are the same as it should be.

However, for a measurement outcome y,, including errors, y deviates from ~, . The interpretation and
physical significance of the difference between y and ,, can be explained as follows: consider two observes Alice
and Bob. Suppose that Alice measures the state of the system with a faulty detector whereas Bob measures the
system with a perfect detector. Furthermore, suppose that only Alice performs the feedback control based on her
measurement result at time #,,,. Then, if Alice evaluates the JE of the work done on the system along her measured
trajectories, she will observe the result , . In contrast, Bob—given the correct system trajectories and knowledge
about the feedback action of Alice and her faulty detector—is able to verify the standard Sagawa—Ueda relation
with the efficacy parameter y.
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4.2. Overdamped Brownian motion

As an explicit example, for which we can evaluate the right-hand side of equation (35) analytically, we look again
atan OBP in a harmonic potential (see section 3.2) and assume that the center of the potential is intially at

Iy = 0and thewidthis f, (. Both parameters will be changed instantaneously at time t,,, if the measured
position at that timeis y, > 0, the position to Faep) and the stiffness to f, 1)) Otherwise, for y, < 0,the
potential remains unchanged. For this specific example equation (35) can be evaluated explicitly and we obtain
(see appendix A.5)

KOy ) Mrzf
exp K Af

1 1
Y = —|1 + ——=crfc —Hh
2 1+ “Af
f)\(tf)

5 39
1+ 39

f/\(rf)

where v = 20f, ol
For the special case of only altering f, ., and keeping the position of the parabola fixed, i.e., s, ) = Moy
equation (39) reduces to
~1/2
Y = 1 1+ [1 + ZﬂMAfofn (40)
2 Alty)

On the other hand, if the stiffness is held constant, f, @ = fi o= f, but the parabola is shifted, we find

Von = %(1 + ez(fg“'f""’)zerfc[—utf JBA + 2fBo2)]). (41)

We have varified equations (39)—(41) by perfoming BD simulations for various driving schemes (not shown
here) and will discuss the paradigmatic model of an ‘information ratchet’ [25] in the next paragraph in more
detail also showing numerical results.

4.2.1. Information ratchet

The Brownian particle is initially in thermal equilibrium in the harmonic potential with center . We then
measure the position of the particle y,, at time t,,, and perform the following feedback scheme:if y, > p, + L
with L > 0being constant, we shift the center of the potential p1,., = py + 2L,if y, < py + L we donothing.
We then replace 11, — (1, + 2L and start over again after some transient relaxation time. By repeatingly
performing this feedback protocol, we can actually move the average position of the particle to the right, ideally
without performing work. Here, AF = 0 holds throughout the whole process. Furthermore, one can also
extract work from the system by this feedback control if the particle is transported against a potential gradient as,
e.g.,in the experiment [35]. For a single step of the ratchet, where we put 11, = 0 for simplicity, the measured
efficacy with feedback control is given by

1 + 4fB0;

Y :% erfe| ———— L + e8P herfc —Lij— foow || (42)
2 2
g + 20’m E + 20’m

The derivation follows the same steps as in appendix A.5 but the integral of y’: is splitted at L instead of 0.
Equation (42) differs from the efficacy parameter y of the original information ratchet [25],

v = erfc S . (43)

1

@ + 20 fn
In figure 4 (left) we plot the solutions of the two equations above as function of the variance of the measurement
0y,- The two equations coincide for the case of perfect measurement. However, for finite values of o;, the efficacy
y of the feedback control (dashed line) is lower than for perfect measurement: if the measurement has an error,
then the potential will be shifted even though the real position of the particle may not be greater than L. Then we
may actually apply work to the system instead of extracting it and the average value of extracted work is lower for
noisier measurements.

If we look at the work we measure using the same apparatus as we have used to measure y,,, (line), we see that
with increasing measurement error oy, the measured efficacy +, also increases in strong contrast to y. Since the
measured work is given in terms of the measured position y,, of the particle, we always apply the ‘correct’
feedback scheme from the observer’s point of view. Thus, we (the observer) always think that we extract work.
This can also be seen in the distribution of measured (purple) and system (blue) work in figure 4 (right), where
the probability of measured work is only non-zero for W,, < 0. To support this claim even further, we can

10
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Figure 4. Left: efficacy parameter y (dashed) and measured efficacy ~,, (line) as function of the measurement error as well as results
from BD simulation (marks) with f = 2.0 and L = 0.5. Right: probability distribution of the work extracted and performed by the
system (blue) and the extracted measured work (purple) for the information ratchet with o,,/0 = 1.0 where 0 = 25f Y172,

calculate the average measured and system work by integration of equation (32) over zand y,,,, where the integral
isnon-zero onlyif y, > L. The difference of them results in

_ — g2 |8 _ fBe
(Wlyly, ) — (Wlzly,l) = —4fLo,, R eXP{ T+ K} <0 (44)

where £ = 2fo?,. Thus, on average the measured extracted work (note that in our convention work is positive if
itis done on the system) from the system will be greater than the true extracted work and even increases with g;,,.
For alarger value of ;, the probability distribution pr; (7, (see equation (13)) of the measured position y,,, is
broader (i.e., has alarger variance) than p (z), butstill has the same mean value as p (z). Then, measurement
outcomes with y, > L are more frequent and +,, increases.

4.3. Two-level system

Similarly to the derivation of the MJE of the TLS without feedback we find with feedback for a c.p.d. but at this
point unspecified driving protocol an approximation for the modification of the original JE (see appendix A.6
for details):

Ym = Z [(1 - n)p)j(zm) (Zm)exp(_nﬁfdt w)f(t,zm)(pe,)ﬁ(zm)(t) - pg,,\*(zm)(t)))

zme{g e}
= e Gep (<18 [ 4t exaBen® = B, ®) | (45)

Here, p, y(,,(*) is the probability for the system to be in state z (ground or excited) at time ¢ in the backward
process with the backward protocol according to the measurement outcome y,,, (ground or excited state) in the
forward process. We again note that we do not apply feedback in the backward process and that equation (45) is
valid under exactly the same conditions as discussed below equation (28). Furthermore, wy ), ) is the energy gap
as defined in section 3.3 with the time-reversed protocol according to the outcome of the forward process. For a
c.p.d. protocol with non-differentiable points the integral in equation (45) is again split into parts at the
respective points. For most driving protocols with feedback we have considered numerically (not shown here)
equation (45) is a very good approximation.

For a driving protocol that is not continuous in time, we find a different expression. Here, we assume as in
the case without feedback, that before and after #,, the protocol is constant and that a quench is performed at
time t,,,. We then find for the MJE (see also appendix A.6)

Y= Do [ =mp, v,y Em) + 00,y (Em)e e Cn], (46)
zm€{g.e}
where p, (. ) () denotes the probability of the system to be in state z,,, at time t,,, in the backward process with
the backward protocol according to the measurement outcome y, = z,,. Here, we introduced the
complementary state Z,, to z,, (i.e., if z,, = g then z,, = e and vice versa). Furthermore,
AWy ,)(Zm) = Wx (12,0 (Zm) — WX 0,2,)Zm) A0d Wi (1,2,) (Zm) = EX(1,2,)(Zm) — EX(1,2,) Em)-
We will now discuss an example of a protocol with a quench in detail in the next paragraph.

4.3.1. Conditional swap
As aspecific example, for which we can extract work from a single heat bath by measuring the state of the TLS at
time t,,,, we discuss a feedback operation which we calll a conditional swap: if at time #,,, the measured state of the

11
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Figure 5. Left: efficacy parameter y of the system (dashed) and measured efficacy +,, (line) as function of the measurement error  as
well as results from MC simulation (marks) for the conditional swap operation at ¢,, = t7/2 with I' = 10~7/At, At = 0.001 and
ty = 3.0. Right: work distribution of the system (top) and the measured work distribution (bottom) of the conditional swap for
different values of 5.

TLS y,, is the excited state, we interchange the two energy levels such that we extract work of w = ¢, — &, ifthe
system state z,, is the excited one and perform work of —wif z,, = g.If y, = g we do nothing. We compare our
findings (see equation (46)) of this conditional swap to the corresponding expression of the efficacy parameter y,
which is given for this specific example by

vy=01 - 77)2Pg,,\T(g)(tm) + ZUPe,A(g) (tm). (47)

Note that in the model of the conditional swap Pox(o) (tw) = B, x (e (Em) and p, X (tw) = Py e (tm)-

We show the difference of y (dashed) and ~,, (line) for different values of 57 in figure 5 (left). As one can see,
for a perfect measurement they result in the same value. However if 77 is greater than zero, the two differ. The
explanation is very similar to the one of the information ratchet discussed in section 4.2: if the measurement y,,
involves errors, the two states are sometimes interchanged even though the system may be in the ground state
resulting in work applied to the system instead of extracting work from the system. If we look at the work
distribution of the system (see figure 5 right top), one can see that for values 7 > 0, the extracted work becomes
less whereas the probability of applying work to the system increases with measurement error (note that in our
convention work is negative if it is done by the system). Then the efficacy parameter is lower than without
measurement error. On the other hand, if we look at the measured work (see figure 5 right bottom), which is
calculated from the measured state of the system, we only measure positive work extraction from the system by
perfoming the conditional swap. Furthermore, the probability of measuring the excited state of the system is
always larger than the actual probability of the system to be in the excited state if p, (¢,,) < 1/2 (asin our case),

Py o (tw) = (1= mp,(tw) + 1, (t) = P, (tw) + N1 = 22, (tw) > p, (tw). (48)

Therefore, the probability of extracting work from the system and therefore ~, increases with larger values of 7.

5.JE with mutual information

We have seen that the classic JE (e 77 W~2P) = 1 in general holds only if the system is observed perfectly and no
feedback is performed. If one of the conditions is violated, we have in general (e #W=25)) =« 1. However, in
case of feedback at a given time t,,, Sagawa and Ueda and others have found that [25-34]

<eﬂ3(WIZIyy,,lfAF(ym))fl(zm,ym)»y = 1. (49)

/m

— Oh 2m)

=1ln PO zm)_
. . . . ) POWPGn) — . L
right-hand side of the ‘Jarzynski—Sagawa—Ueda relation’ equal to unity again. This result provides us with a nice

interpretation because it tells us that the amount of work we can extract from the system is bounded by
(I (3> Zm) )z,,> Which can be viewed as the amount of correlations established during the measurement.
Unfortunately, in case of measurement errors, validating equation (49) requires to be able to observe the
system perfectly during the time where it is not controlled. But this again raises the question of how this might be
achieved because this means that the detector of the experimentalist is only faulty previous to the feedback step
and otherwise correct. Equation (49) could be therefore viewed as an ‘objective’ fluctuation theorem which a
second ‘superobserver’ with perfect access to both the system and detector degrees of freedom would observe. In
contrast, the MJE we have considered so far could be called a ‘subjective’ fluctuation theorem which is based on
the knowledge of the observer only.

Thus, by adding the stochastic mutual information I (z,,,, y,, to the exponent we can make the

12
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In fact, we will now show that by taking the full stochastic mutual information between the system and
detector into account, defined as

Iz, y] = In (M) (50)
Plz]Py]
yields a fluctuation theorem of the form
(e BVEM-AFG-TGy), = (51)

which holds without and with measurement errors and without and with feedback, even if the feedback is
performed continuously, i.e., every time step 6¢. However, the latter relation may be invalid for some error-free
feedback control processes where absolute irreversiblity is inherent [38]. We remark that the validity of
equation (51) without feedback and with measurement errors was already noted in [ 13] and with feedback with
or without measurement errorsin [27, 29, 32].

To prove equation (51) we note the chain of equalities

<e<ﬁ(W[ZIY]fAF(Y))fI(z,y)>Zy = fD[y]D[Z]P[z, y]e*ﬂ(Wm[ZW]*AF(Y))M
’ Plz, yl
- f DIyl Ply] f Dz]Plz]e? Walzlyl-AF 1)
= [Dy1PIyl = 1. (52)

Here, we used that the JE f D[z] P[z]e P WnlzlYI=AFM) = 1 holds for every fixed measurement record y and
(consequently in case of feedback) any control protocol A (¢, y).

Thus, the mutual information seems to be a universal quantity in order to establish fluctuation theorems
where not only the system but also the detector has to be taken into account, although it does not possess an
obvious thermodynamic interpretation in case without feedback. Unfortunately, finding some (non-trivial)
quantity G = G [y] such that the MJE can be corrected, i.e., such that (e (W =25~ )y = 1,remains an open
problem at the moment.

6. Conclusions and outlook

In the present paper, we generalized the original JE expressed in terms of the ‘true’ work done on the system to an
equation for arbitrary measurement errors based on the measurement record y. The key ingredient for this was
the conditional probability distribution p, (y|z), which quantifies the uncertainty of a measurement outcome y
given that the system state is zand which defines an abstract measurement model. In fact, by shifting the
attention from z to y we only did a first step in generalizing stochastic thermodynamics to the presence of
measurement errors because much more sophisticated inference schemes could have been considered as well
(we actually did not even use equation (14) in our derivations leaving this interesting problem to future work).

Then, using the formalism of stochastic path integrals, we derived the MJE without feedback (Equation (20))
and with feedback control (equation (35)). These expressions were general (under the assumption of a
Markovian measurement apparatus), but explicitely involve system trajectory dependent quantities. For two
important paradigmatic examples we could overcome this difficulty and express the MJE in terms of fixed
Hamiltonian parameters or average quantities, which can be computed based on a master equation. For an OBP
trapped in a harmonic potential the expressions derived were exact, whereas for the TLS exact solutions were
only found for quenches and very good approximations for continuous driving protocols. We also checked our
findings with simulation results. In the limiting case of perfect measurement the general MJE equations result in
the original JE without and with feedback. For the non-ideal case we hope that our theory provides a convenient
way to explain the always noisy statistics in experiments, which have beautifully demonstrated the validity of the
JE and other fluctuation theorems within the given statistical accuracy so far, see, e.g., [39-47].

Furthermore, in case of feedback control the correct handling of measurement errors is even more
important because we put the obtained information back into the system to influence its future behavior. Here,
we have seen that the measured efficacy +,, may exceed the system efficacy y and, contrary to previous intuition,
increases with larger measurement errors, which we have calculated explicitely for an information ratchet of an
OBP and a conditional swap of the TLS. Furthermore, we showed that the ‘Jarzynski—Sagawa—Ueda relation’ by
incorporating the full stochastic mutual information always holds for a ‘superobserver’ who has access to the
measured and system trajectories, without and with measurement errors and without and with feedback.

Finally, we would like to mention that a lot of research has already been carried out to understand the
stochastic thermodynamics of coarse-grained systems, see, e.g., [48—58]. In there, given a set of microstates, a
subset of observable states is introduced, which defines the coarse-graining and which is sometimes explicitly
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modeled by a detector or sensor. Based on the observability of this subset, the changed laws of (stochastic)
thermodynamics are investigated. Though one can argue that both approaches pursue the same research goal, it
is worthwhile to point out that our approach is in principle different. First, the coarse-graining approach still
assumes that it is possible to observe the particular subsets perfectly, i.e., error-free, and second, it is also
implicitly assumed that it is actually possible to find these subsets or to physically model a detector, but this
might be challenging for some large detectors such as a camera. Nevertheless, the question to what extend our
approach based on an abstract measurement model p, (y|z) is equivalent to an explicit detector model with
underlying coarse-grained system dynamics is, in our point of view, interesting to study in the future.
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Appendix

A.1. Derivation of MJE for continuous driving of OBP

In this section we derive the analytic expression of the MJE for an OBP in a harmonic potential in one-
dimension, namely equation (25). We assume the external control parameter ) (¢) to be c.p.d. throughout this
section. The discretized work along a trajectory z given the Hamiltonian in equation (22) becomes

= 2_(&f, 7y = 26 [ fuly zir + S Lfily)s (A1)

where 0f, = f, — f,, » OLfuly, = fy oy, — fy, 1), ,and 6 [l = Iy Mii -, “i,;] . For the example
considered here, itholds that z* = z;and yl.* = J.
By factorizing Pz, y] (see equation (16)) one can express the right-hand side of the general equation (20) as

(2 Wiy = [ D1z Pl [y o [ T 1,020
x exp (B(6fy, ¥} — 26Lfuly, 3 — 8fy 27 + 261 fuly,, 20} 1. (A2)

Assuming a normal distribution of p,, (y:|z;) (see equation (24)) we find after integration over all y;:

<e/3(wrtn* WT)>Z",Y* = H 1

i1 = 2ﬁ5fx_,-“afn

e 28%,,
X fD[Z] 'PI[z]eXp 721:2ﬁ5f)\;—03n f'u'])\xﬂ

8y ) p- (A3)

Note that for the integral over y to converge the standard deviation of the measurement must obey
1
T o T
5 | f )\ZH |

This means that in an experimental setup (or also for simulations), in which the width of the potential is varied
between two measurements by a finite value of ALy the deviation of measured and system coordinate cannot be

(A4)

arbitrarily large.
We firstlook at the integral of equation (A.3): in thelimit N — oo the time steps d¢ = t;/N become
infinitesimal and we can write the term in the exponential approximately as

23%72
S s P 6 )2
o 208 o~ ¢ Uiy = O 20

~ exp {Zﬁzaﬁldtj;f de ([ fuly ) — f;f(t)z(t))z} = x, (A.5)

where the prime (e.g, f’) denotes a derivative with respect to time . Note that the additional d¢ in front of the
integral is correct. Furthermore, this step is only exact provided that the protocol is differentiable. However, as
longas it is continuous and only non-differentiable at a finite number of points 0 < # < ... < tx < ts this
argument can be easily generalized by splitting the integral at the respective places (i.e.,

f dr + f dt + - + f i dt) and by observing that due to the continuity ¢f i and 6 [ fu],! | remain

infinitesimal small at all pomts Then, by the mean value theorem of integration we know that there exists a
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§ € [0, tr]such that
* = exp {Zﬁzafndt([fﬂ]gj(@ - f,(T(E)Z(g))Z}~ (A.6)

And hence, this term becomes 1 for N — oo, i.e., dt — 0.
Therefore, equation (A.3) simplifies to

<eﬁ(wr‘fl*wf)>z¢’y7 fr H l

i [17256f)\?10'3n

which holds for N — oc. In the last step, we write the product as an exponential and use an approximation of
the logarithm up to first order:

~ H (1 + 03,88, ), (A7)

<€‘ﬁ(w'i’7w?)>zf’y‘r = exp (Zln(l + ofnﬂéf/\jﬂ)) ~ exp (oi,@(f/\o — i) (A.8)
Taking thelimit N — oo, f, = f,,,and f, = f,, Wearriveatequation (25).

A.2. Derivation of MJE for instantaneous driving of OBP

Here, we derive equation (26), where we assume that the stiffness of the harmonic potential as well as the
position are instantaneously changed at the same time 7. Since the driving protocol is constant before and after
twyitholds that of \» = Oaswellas §[fulyi == Oforall k = m.In this case the right-hand side of

equation (20) reads after integration over all y, and z; with k = m:

. . 1 (Zm - m)2
(ePWiWDy o — f dz, p'(zm) f dy,, > eXP{ L }
Um

21 20 ;%1

x exp (B8fyi  ym = 260fuli, Y — O ni | 2+ 260 fulyy,,, 2m)- (A.9)

m+1

Foraquenchitholds that 6f: = f, o — fwf) = —Af and equivalently
Mf“]ALH = fio M) — f/\(tf) Fingy) = —A[ fu]. Then, the integration over y,,, yields

(eBWa= WDy, s

1 { 203%2,
exp >
J1 + 2Af602, 1 + 2Affos,

For the integral over y,, to converge, it must again hold that o2, < (23 |Af) .
We now use, that for the harmonic potential the probability distribution of the position of the OBP in
equilibrium (initial system state) is Gaussian distributed with mean s, (rf) and variance (2f, - y~'/2in the time-

= [ dzup’ 2 (—ALful + Afzm>2}. (A.10)

reversed protocol. The integration over z,, then finally yields equation (26).
Note that, the integral over z,, only converges if

5 1 f)\(tf)
Oy < .
2ﬁ|Af| f)\(o)

(A.11)

A.3. Derivation of measured Jarzynski equation for a TLS with continuous driving

In this section we derive the analytic expression of the MJE for a driven TLS, namely equation (28). We assume
that the protocol A (¢) changes continuously and is piecewise differentiable as in appendix A.1. For the TLS it
alsoholdsthat z* = zand y* = y.Theworkalonga trajectory z can be discretized as

Wlz] = Z(EAi(Zi—l) — e, (zi) = Z&Ai(ziﬂ)- (A.12)

Equivalently, the measured work is given by W,, [y] = 3=; éex, (y;_ ).
Then we can evaluate the right-hand side of equation (20) analytically as follows:

(8 Wn=WH) 1

! Yi

= ZPT[ZT]H Z[(l — n)é)’pzy' + 77(1 — 6}/,-,2,‘)]eﬂ(éﬂz‘%ﬂ(y")ib‘s)‘}ﬂ(Zi)) (A13)
ZT

= Z’PT[ZT]H ((1 - 27]) + 77[eﬁ(ée*?ﬂ(g)i&*ill(zi)) + eﬂ(ée*?ﬂ(6)755*?+1(Zi))]).
7 i

15



10P Publishing

NewJ. Phys. 18 (2016) 113042 CW Wichtler et al

Here, > =3, ... X2, denotesall the sumsover z; and ée Al (zx_1) is defined as in equation (A.12) with the

time-reversed protocol X (¢). To further simplify equation (A.13) we introduce the complementary state Z such
that z; = zi forallk, i.e.if zx = e then Z;y = g and vice versa. Consequently,

(I Wi WhY, = Zp*[z‘f]n ((1 = 2n) + 1 + &, @750, G0, (A.14)
For large N we approximate

B (68 (z,) 68

1+e (Z’)) ~ 24+ ﬁ(é&/\ (Z) - 65/\r (Zl)) =2+ 661) (AIS)

such that we can write equation (A.14) simply as

(7MWW = SSPT [T (1 + 06y, (A.16)

Writing the product explicitely yields

(eBWi=Wh), Zp (2] Z _(77,8)” Z x| (A.17)
We now make the crucial assumption that P¥[zy,, ...,z¢,] ~ p'(z) ... p'(2x,)- Then,
(eBOV-WhY, ZZW) Z p @), . P (2)6i — (A.18)
z n=0 Y

To ensure this equality, we introduced a ‘rest’ term R of the form

_ By’
= ZZPT (zi)%6}

(”ﬂ ! 22 P @) ("ﬁ A ZZP( %8} + (A-19)

ij zj,zj

taking care of the sums where at least two of the indices i, ..., i, are equal. But then all terms of R are atleast of
the order (9(%) and therefore vanish for N — oo. Hence, we are left with evaluating

N
(P Wi Why 4 = Z—(nﬂ)“ SN i@ - P26 (A.20)
i= 0 e EnZigs - Zi,
Taking thelimit N — oo, we can write
. . bey (@) —deyr (@) _ ,
lim X = Jim —2& ket = EX(a 0 (Z0) — Ext.n(@0)s (A.21)

6t—0 Ot 5t—0 ot
where we again assumed that the protocol is differentiable (see the remark below for the case of a c.p.d. protocol).

Evaluating the sums over z; and writing the sums over i; as integrals (by taking N — 00), equation (A.20) finally
reads

(P W= WHY 4 i ii’(_nn(n@ f T dr Wy (p (1) — p;(t))), (A.22)
n—o ! 0

where we denote the time derivative of the energy gap of the TLSby w1,y = €x¢y(€) — €xp(g) and the
probability of the system to be in the ground/exited state at time ¢; by p; 1. (L) both in the backward protocol of
the driving scheme. Note that equation (A.22) is exact up to first order in .

Finally, we remark that for a c.p.d. protocol with non-differentiable pointsat 0 < ; < ... < tg < tsthe
result above readily generalizes and in equation (A.22) we have to split the integral at the respective points as

tf f t tf
f dt:f dt+f dt + - + [ ar. (A.23)
0 0 h

tx

A.4. Derivation of MJE for a TLS for instantaneous driving

In this section we derive equation (29), i.e. an expression for the MJE of a TLS, where the energy levels are
changed instantaneously at one moment in time t,, with 0 < t,, < t; and are constant before and after. Since
the energy levels are constant before and after t,,,, it follows that ée AL (z;) = Oforall i = mandalso

be AL (z;) = Oforalli == m. Then the right-hand side of equation (20) simplifies to
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<ea(w,j,fW%)>ztYT _ Zp-r[z-r] [1—n( — eﬂ(ég;lﬂ(zm)fé‘sA;H(Zm)))]
-
z

= 3 pf (a1 — (1 — 7 GOy (24
zm€{g.e} o
Summing over z,,, equation (A.24) can be written as
BWT— + , + _3Aw
(e WD)y = 1= (1 = p (t)e”™ — pf (tw)e P2, (A.25)

where Aw' = w X(ty) — W (0)- Note that this equation is exact for N — oo (6t — 0).

A.5. Derivation of the Brownian particle under feedback

For the derivation of equation (39), the MJE under feedback, we assume that 1, (,, = 0 initially and changes
instantaneously at ¢, to 1, ) if y;,, > 0. Similarly, the width f, , changes from f, ; to f, ” instantaneously if
¥, > 0. Since the form and the position of the potential is fixed before and after applying the feedback, it holds
OH) () () = Oforall k = m and the same is true for z;. Then the measured efficacy parameter reads after
integration over all z; and yj with k = m:

You = f dz, f 0 () ) i Ol 2in) €7 o 00 =05 B, (A26)

The integral of y,, splits into two parts: one in which we alter the potential (y, > 0) and one where we do
nothing (y,, < 0):

0
R
(PO VD) = [z [ Ay ol Ol

0
+ f dz,, f dymp)d‘ 0, )(Zm)pm (ymlzm)eﬁ(6H*L+1(Vm)(y'”)76H*zz+1(”m)(zm)). (A.27)
0 m

The conditional probability p,, (3,,1z,) is again assumed to be Gaussian with a standard deviation of g;,, (see
equation (24)). Moreover, the probability p (. <0) (z,,) (no feedback) is the canonical distribution of the

harmonic potential centered at 1, © and width f, © and the probability p . (>0) (z,,) (feedback) is the canonical
distribution centered at 1, ) and width f) e because we are in equilibrium before applying the backwards

protocol. Then the first term of equation (A.27) becomes 1/2 after integration of z,, and y,,,. If feedback ist
applied (3, > 0)itholds

5HA;‘;,+1(ym)(J’m) - 5HA;L+1(Zm) = (J[A(()) - fA(tf))(J’,fl - Zr?v) - 2fA(rf) /’L)\(tf)(Zm = - (A.28)

Then after integration over z,,, and y,,, of the second part of equation (A.27) one arrives at equation (39).

A.6. Derivation for the TLS under feedback

Here, we derive the analytic expression of the MJE for a driven TLS under feedback, equation (45). We again
assume that the driving protocol changes continuously and depends on the measurement outcome y,,, at time t,,,.
Then, the measured efficacy parameter of the TLS is given by

Y= 2> PxoplZ1]] [ = mby 2+ n(1 — &, 2] O om0 =0 0mE), (A.29)
z yT k

Since the driving protocol depends on y,,,, we can write +, as:

o = S PRI = )8y + 1A = 6,2, ]€H O ) =601 1)

zZ y,
X H Z(l = Moy + (1 — 5ykka)eﬂ(éﬁkwwn(zk)_‘%Akmw(}’k)) . (A.30)
k=m A

Summing over all y; results in
Y= P> ProlZ1(1 =6y, ., + (1 = 6, 5, )]e? Comonm =16, 0
7y,

x ] (1 = 2m) + Il + @750, )

k=m

~ DD Puold1A = 6, 2, + 01 = 8, 2,)]

Z y,

x ] (1 = 2m) + pl1 + @750, 6, (A31)

k=m
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For the last step we approximated
exp {5 (65/\m+1(}/m) (ym) - 65)\m+1()’m) (Zm) } ~ 1 (A32)

for the single pointat k = m. This is justified because the final integral does not depend on the value of a single
point as long as we change the protocol continuously. Following the same intermediate steps as in appendix A.3
we arrive at

Ym = Z [(1 - n)éym,zm + 77(1 - 6)/m,zm)][p)3‘(},m)(zm)

Zm> Y
8 eXp{*ﬂ "f dt @, 0 Bux g ® = Loy 1) }]

Finally, by summing over y,,, we arrive at equation (45).

For an instantenous change of the driving protocol, where we assume that the Hamiltonian of the TLS is
constant before and after the quench at time t,,,, 6, () (2n) and ey, 5, (3;,) are the only terms different from
zero. Then, equation (46) follows immediately from evaluating the sum over y,,, in equation (A.29).

(A.33)
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