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Summary

Rapid technological advances coupled with modern analysis methods has
increased the quantity of geographical data and has therefore improved
monitoring of local, regional and global environmental phenomena at
much �ner detail. Despite these advances, insu�cient data interoperability
remains to be a barrier to reusability, discovery and access to geographical
information. To overcome this heterogeneity it is crucial to generate syntactic
interoperability, which determines �xed standards in data exchange, but also
semantic interoperability, a possibility to generate comparability by using
shared descriptions with unambiguous meaning stored in semantic systems.
In the �eld of nature conservation, semantic heterogeneity is a big challenge
since national and regional data acquisition methodologies vary broadly.
Moreover, trans-national data (which are required for multi-national legal
processes like the EU Habitats Directive (HabDir), the Water Framework
Directive or INSPIRE) are generated bottom-up, using mostly national or
regional acquisition guidelines.

This dissertation addresses four aspects of interoperability in nature
conservation. The �rst part provides a methodology for semantic mediation
of remote-sensing based data products, which were generated in di�erent
countries in Europe by taking into account di�ering sensor types
and base classi�cation schemes. The results indicate that automated,
semantic-based data transformation is feasible, but is highly dependent on
the conceptualisation of the respective nomenclatures. Therefore transparent,
hierarchical nomenclatures are far more important for transferability than the
sensor or study area.

The second part applies the developed method in an up-scaling application
to generate a comparable automated delineation of selected habitats in
di�erent countries by generating transferable aggregation rules. For the
di�erent habitats in the two sites an accuracy of above 70% was achieved in
regard to a manual, expert-based delineation. This meets approximately the
percentages of the comparison of two manual delineations since the process of
manual delineation is always subjective and highly dependent on the personal
quali�cation and perception of the surveyor and therefore inherits a high
degree of uncertainty.

The third part addresses the challenge of generating reproducible
and formalised information in remote-sensing analysis in a semantic,
ontology-based classi�cation approach. This approach combines advanced
machine learning algorithms and ontological data management and
classi�cation. It produces results with similar quality to established machine
learning algorithms like Extra Tree Classi�er (ET) but preserves transferable
classi�cation rules and ontological formalism.

The fourth part evaluates the automated aggregation approach of part two
in respect to manual, expert-based delineation and gives recommendations
for the international guidelines in terms of scale e�ects, minimum mapping
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units and the potential of the usage of remote sensing-based data sets in
automated up-scaling procedures for European legal purposes.

Semantic systems inherit great potential for nature conservation in terms
of data storage, information retrieval and derivation and comparability
of data. This thesis shows this potential by proving feasibility of
semantic transformation between di�erent nature conservation data sets, the
application of this transformation procedure in up-scaling processes, and
the ability to use semantic-based technologies in classi�cation procedures.
It therefore indicates that using semantic systems for data interoperability in
nature conservation is possible but underlies, up to now, certain limitations.
From a technical point of view the main restrictions are the absence of
theme-speci�c controlled vocabularies and semantic infrastructures which are
increasingly developed and provided by regional and international authorities.
With regard to the content of the nature conservation data, limitations
occur because of the high degree of uncertainty in data acquisition, semantic
impreciseness of data descriptions and natural gradients in the composition
of habitats.
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Zusammenfassung

Technologische Veränderungen gepaart mit modernen Analysemethoden
haben die Menge an geographischen Daten in den letzten Jahren erheblich
erhöht. Diese Entwicklung hat das Potential, lokale, regionale und globale
Umweltphänomene in einem verbesserten Detaillierungsgrad zu erfassen.
Trotz dieser Fortschritte bleibt ungenügende Dateninteroperabilität ein
Hemmnis für die Wiederverwendbarkeit, die Au�ndbarkeit und den
Zugang zu geographischer Information. Um diese Datenheterogenität zu
überwinden ist es zunehmend entscheidend semantische Interoperabilität zu
gewährleisten. Semantische Systeme geben die Möglichkeit Vergleichbarkeit
zwischen Datenpaketen zu generieren indem sie gemeinsame eindeutige
Beschreibungen nutzen. Im Bereich des Naturschutzes ist semantische
Heterogenität eine groÿe Herausforderung, da sich nationale und
internationale Erhebungsvorschiften zwischen den verschiedenen Ländern
erheblich unterscheiden. Darüber hinaus werden transnationale Richtlinien
wie die Flora-Fauna-Habitat Richtlinie oder die Wasserrahmenrichtlinie mit
buttom-up Ansätzen erstellt, wobei mehrheitlich nationale und regionale
Erhebungsrichtlinien verwendet werden.

Diese Dissertation adressiert vier Aspekte von Interoperabilität im
Naturschutz. Der erste Teil stellt eine Methode zur semantischen Mediation
von fernerkundungsbasierten Datenprodukt vor, die in unterschiedlichen
Ländern Europas mit unterschiedlichen Sensortypen und Nomenklaturen
erstellt wurden. Die Ergebnisse zeigen, dass eine automatisierte semantische
Datentransformation möglich, die Qualität der Ergebnisse allerdings
stark von der Konzeptualisierung der zugehörigen Nomenklaturen
abhängig ist. Daher sind transparente, hierarchische Nomenklaturen
für die Vergleichbarkeit wesentlich wichtiger als Sensoren oder das
Untersuchungsgebiet.

Der zweite Teil wendet die entwickelte Methode in einer räumlichen
Hochskalierungsanwendung an, um mit Hilfe von überführbaren
Generalisierungsregeln vergleichbare, automatisierte Abgrenzungen von
ausgewählten Habitattypen in unterschiedlichen Ländern zu erzeugen. Für
die verschiedenen Habitattypen in den zwei Untersuchungsgebieten konnte
eine Übereinstimmung von über 70% zu einer manuellen, expertenbasierten
Habitatabgrenzung erreicht werden. Das entspricht etwa einem Vergleich
von zwei manuellen Abgrenzungen da der Prozess der manuellen Kartierung
immer Subjektiv ist, stark von der persönlichen Quali�kation und
Wahrnehmung des Kartierers abhängig ist und somit einen hohes Maÿ
an Ungenauigkeit beinhaltet.

Der dritte Teil adressiert die Herausforderung, reproduzierbare
und formalisierte Information mit Hilfe von Fernerkundung in einem
semantischen, ontologiebasierten Klassi�kationsansatz herzustellen. Dieser
Ansatz kombiniert fortschrittliche Methoden des maschinellen Lernens mit
ontologischem Datenmanagement und Klassi�kation. Er erstellt Ergebnisse
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mit vergleichbarer Qualität wie etablierte Algorithmen des maschinellen
lernens, bewahrt aber transferierbare Klassi�kationsregeln und ontologischen
Formalismus.

Der vierte Teil evaluiert den automatisierten Aggregationsansatz
des zweiten Teils hinsichtlich einer manuellen, expertenbasierten
Habitatabgrenzung und gibt Empfehlungen für internationale Richtlinien
in Form von Skalene�ekten, Mindestkartiereinheiten und dem Potential der
Nutzung von Fernerkundungsdatensätzen in automatisierten räumlichen
Hochskalierungsanwendungen.

Semantische Systeme beinhalten ein groÿes Potential für den Naturschutz
in Form von Datenspeicherung, Informationsgewinnung und der Ableitung
von Datenvergleichbarkeit. Diese Arbeit zeigt dieses Potential auf
indem sie die Machbarkeit semantischer Transformation zwischen
verschiedenen Naturschutzdatensätzen belegt und deren Anwendung
in räumlichen Hochskalierungsanwendungen aufzeigt. Darüber hinaus
werden Möglichkeiten zur Nutzung von semantischen Systemen für
Klassi�kationsprozesse aufgezeigt. Die Arbeit zeigt daher, dass semantische
Systeme für Dateninteroperabilität im Naturschutz nutzbar sind, aber
bislang einigen Einschränkungen unterliegen. Von einem technischen
Punkt sind die maÿgeblichen Restriktionen nicht vorhandene thematische,
kontrollierte Vokabulare und semantische Infrastruktur, die zunehmend
von nationalen und internationalen Behörden entwickelt und bereitgestellt
werden. Hinsichtlich des Inhalts von Naturschutzdaten ergeben sich
Einschränkungen aufgrund der Unsicherheiten in der Datenaufnahme, der
semantischen Ungenauigkeit bei der Datenbeschreibung und natürlicher
Verläufe der P�anzenzusammensetzungen von Habitaten.
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Introduction

This thesis consists of four papers that are addressing the interoperability
challenges of Geoinformation (GI) systems and data management in the �eld
of nature conservation monitoring. The selected papers have been published
or submitted in peer-reviewed journals and are reprinted here as chapters
of this thesis. This chapter provides the introduction of the thesis, which
relates the individual parts to each other and puts them into perspective.
That includes background information, a description of the problems, and
how the solutions I propose resolve these problems.



2 1 Introduction

1.1 Data interoperability - A major challenge in the big

data era

The rapid increase in quantity of geographical data and advanced analysis
methods holds great promise for the monitoring of local, regional and
global phenomena regarding the earth's surface and environment, but
insu�cient data interoperability remains to be a barrier to reusability,
discovery and access to geographical information (Parsons et al., 2011).
The increasing quantity of earth observation data leads on the one hand
to a higher degree of automation in the analysis and therefore has the
potential to be comprehensible and reproducible. On the other hand it
is one of the big challenges in the �eld of (geo-) information science to
develop standards and methods to structure and compare these heterogeneous
data (Perego et al., 2012) to be able to �nd suitable data sources and
integrate them in processes of large-scale analysis (Knoblock and Szekely,
2013). To overcome this heterogeneity, it is crucial to generate syntactic
and schematic interoperability, which determines �xed standards in data
exchange (like the ones from the Open Geospatial Consortium (OGC)), but
also semantic interoperability. Semantic interoperability makes it possible
to generate comparability by using shared descriptions with unambiguous
meaning stored in semantic systems (Bishr, 1998). Due to initiatives like the
Infrastructure for Spatial Information in the European Union (INSPIRE) and
�xed exchange formats and standards developed by the OGC andWorld Wide
Web Consortium (W3C), the implementation of syntactic interoperability in
Europe has already made signi�cant progress whereas semantic and schematic
interoperability has yet to be realised.

Currently, most Earth System Science data are held and managed in
hierarchical (simple folder structures) or relational �le systems (e.g. data
bases) (Parsons et al., 2011). Connections or relationships between data of
di�erent origins are facilitated by using metadata (e.g. in eXtensible Markup
Language (XML) schemas) or primary key/foreign key relationships stored
in relational databases. An increasingly popular, more speci�c concept of
linking data is the idea of the semantic web, which interrelates data through
a graph data model that does not rely on a �xed schema. The advantages
are that nodes of information can be easily added (horizontally scalable),
discovery of information can be facilitated because the user does not have
to have detailed knowledge of the underlying schema to generate queries
and the degree of comparability between data of di�erent sources can be
derived automatically through evaluation of the given linkages. The Resource
Description Framework (RDF))1 and the associated OWL2 represent the
W3C standards for the storage of semantic web data. Currently, there
are large projects by European institutions (e.g. European Environmental

1 https://www.w3.org/standards/techs/rdf#w3c_all
2 https://www.w3.org/standards/techs/owl#w3c_all
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Agency (EEA), Joint Research Centre (JRC)) (Perego et al., 2012) to foster
the usage of these technical advances in founded projects (like GeoKnow
3, SmartOpenData4, MELODIES 5), in the INSPIRE working groups
(Tschirner et al., 2011) or by the institutions itself 6 7. Interoperability on the
European level shall therefore be provided by taking into account common
linked reference vocabularies (so called thesauri or shared vocabularies),
which are considered to be the most promising solutions for resource
annotation (Bishr, 1998; Fugazza, 2011). This includes the representation
of the INSPIRE registry8 (which serves as a terminology for INSPIRE
metadata) and the INSPIRE data model (Tirry et al., 2014) in RDF as well
as additional topic-related dictionaries (Perego et al., 2012) which shall be
developed by trans-national domain experts.

1.2 Implications of data heterogeneity for European

nature conservation strategy

In the �eld of biodiversity monitoring, geographical data is collected as a
basis for trans-national legal processes in Europe. Comparability of this data
in terms of spatial distribution is especially important because area and
evaluation status determine the funding strategy de�ned in the prioritised
action framework (PAF) of each member state.

1.2.1 European legal tools for biodiversity preservation and

subsequent classi�cation schemes

Human population growth combined with rapid industrialisation,
urbanisation and modern intensive agricultural techniques have caused
a dramatic decline in the quality and area of Europe's habitats (Mücher
et al., 2009; European Environment Agency, 2007). This trend is widely
recognised by national and international institutions, which therefore rati�ed
a binding international convention to conserve wild �ora and fauna and their
natural habitats known as the Berne Convention (Council of Europe, 1979).
To comply with the convention, the European Union (EU) adopted the EU
Habitats Directive (HabDir) and the Birds Directive (BD) in 1992 - two key
elements of Europe's nature conservation policy. Part of this directive is the
founding of the largest international network of protected areas known as
3 http://geoknow.eu/Welcome.html
4 http://www.smartopendata.eu
5 http://www.melodiesproject.eu/
6 http://www.eea.europa.eu/about-us/what/seis-initiatives
7 https://datahub.io/organization/eu-linked-data
8 https://ies-svn.jrc.ec.europa.eu/projects/registry-development/wiki
/RDF_format
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the Natura 2000 network (Popescu et al., 2014). The EU's environmental
policy framework additionally includes non-binding legal instruments like
action plans (e.g. the EU biodiversity action plan), strategies (e.g. the EU
biodiversity strategy) and further programmes. Furthermore, the EU also
aims to ful�ll its international commitment to the Convention on Biological
Diversity (CBD), which forms an international agreement on biodiversity
protection signed by 168 participating countries.

The Natura 2000 network includes around 18% of the European land
surface identi�ed in 28 countries. It can be divided in Special Protected
Areas (SPA) for birds (protected under the BD) and respectively the
Special Areas of Conservation (SAC) for the HabDir. Due to the variety
of regional, national and european habitat classi�cations and mapping
approaches there is a wide range of de�nitions and nomenclatures of habitats.
Even on the European level there are several schemes such as the CORINE
Biotopes (Moss and Wyatt, 1994) nomenclature, the Palaearctic habitat
classi�cation (Devilliers and Devilliers-Terschuren, 1996), the Annex I of
the HabDir (European Commission, 2007), the European Union Nature
Information System (EUNIS) habitat classi�cation (Davies et al., 2004),
the Phytosociological alliances of the European Vegetation Survey (Rodwell
et al., 1995), the Natural Vegetation of Europe (Bohn and Gollub, 2006), and
the BioHab General Habitat Categories (Bunce et al., 2008). Since even the
classi�cation schemes that are relevant for the HabDir, namely the EUNIS
and the Annex I, still di�er methodologically and regarding their content
(Mücher et al., 2009), it seems like a unreachable goal to directly compare
and link the large number of regional and local nomenclatures. In fact, most of
the Natura 2000 information originate from national or local mappings, which
are translated from the local nomenclatures into the corresponding Natura
2000 or EUNIS class. This is, due to the number of de�ning parameters
(area coverage of certain land cover types, appearance of species or species
compositions, trophic level etc.) not a straightforward task and therefore
includes considerable inaccuracy. Due to these reasons pan-european data
comparability is hardly attempted in the nature conservation domain
which hampers consistent monitoring, retrieval and examination of nature
conservation areas.

1.2.2 Interoperability of remote sensing-based products in the

�eld of Natura 2000 monitoring

Remote sensing o�ers vast opportunities for the large-area monitoring of
biodiversity (Corbane et al., 2015). This includes the mapping of land
cover and broad habitat categories at an over-regional to global scale
(Hansen et al., 2013; Friedl et al., 2010) but also more detailed assessments
deriving individual species or other �ne scale indicators (Förster et al., 2008;
Spanhove et al., 2012). But, as there is a variety of sensors, resolution and
analysis procedures, the present approaches often lack in reproducibility,
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transferability and comparability since there is no shared conceptualisation
in the developed applications (Nieland et al., 2015b). At present, there
have been no standardised classi�cation methodologies to get harmonised
output products, and no benchmarking system even exists for the great
variance of remote sensing-based analysis techniques. In practice, remote
sensing always depends on data availability in combination with the
right classi�cation procedure. Forcing data producers to use standardised
approaches would in many cases lead to less customisation and less quality
of remote sensing output products (Vanden Borre et al., 2011). Hence,
the remote sensing community is increasingly aware of the discrepancy
between tailored regional products and comprehensive applicability. However,
international policies (such as those mentioned in section 1.2.1) strongly rely
on the comparability of spatial data collected on a regional level. Therefore,
traditional remote sensing classi�cation approaches do not always reach an
operational user-basis especially when used to deliver very detailed and often
locally-adapted environmental information. In fact, they are often driven by
application examples and intended to measure and classify speci�cs that are
de�ned in existing directives, guidelines, and the subsequent nomenclatures.

A possible solution to overcome this heterogeneity problem is to build
up well-formalised shared vocabularies and link them to the tailored
remote-sensing products to be able to infer comparability automatically and
thereby preserve higher-level interoperability.

1.2.3 Interoperability of �eld mapping for nature conservation in

Europe

Until now, almost all European Natura 2000 data and statistics are based
on extensive �eld surveys. Habitat delineation in the �eld is a complex
task which requires extensive ecological knowledge and experience. Field
surveys are therefore very time-consuming and expensive and hard to realise
comprehensively over large areas. Since habitat mapping responsibilities are
at the Member state of the European Union (MS) level or even at the level
of the federal states in most countries, the acquisition methodologies broadly
vary across the EU. Most MS have their own mapping guidelines which
are afterwards transformed or aggregated into valid classi�cation schemes
accepted for the HabDir reporting.

Several studies showed that, due to the subjectivity and personal
perception of the surveying ecologist, the conventional mapping procedures
can not achieve su�cient comparability, even when using the same
nomenclature and interpretation guidelines (Cherrill and Mcclean, 1999;
Cherrill and McClean, 1999). This e�ect is compounded when trying
to compare data from di�erent sources with di�erent conceptualisations.
Therefore, multiple studies try to develop methodologies to structure, store
and link observed �eld data to �xed semantic systems to achieve broader
interoperability, reusability and improve retrieval of such information (Bowers
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et al., 2010; Cao et al., 2011; Walls et al., 2014). This seems like a consequent
step to support digital administration processes and foster discovery and use
of governmental data (Reichman et al., 2011). In order to use the limited
�nancial options of the EU in the best possible way and be sure to support
the most endangered areas, the comparability of the respective information
is essential.

1.2.4 Semantic systems' role in data interoperability

The European Interoperability Framework (EIF) de�nes interoperability
as �the ability of disparate and diverse organisations to interact towards
mutually bene�cial and agreed common goals, involving the sharing of
information and knowledge between the organisations,.., by means of the
exchange of data between their respective Information and Communications
Technology (ICT) systems� (Commission, 2010). This includes legal and
organisational but also technical and semantic interoperability. In this
de�nition technical interoperability refers to the speci�cation of open
interfaces, data formats and protocols whereas semantic interoperability
describes the understandability of the precise meaning of exchanged
information by people, applications and institutions involved. Goals of
the establishment of semantic interoperability are to make information
and processing tools accessible and detectable as well as understand and
employ the discovered information independent of software, platform or
its physical location. The European Commission therefore sees the urgent
need of an organised joint e�ort towards harmonisation of methodologies
and processes (Commission, 2010) by expanding semantic interoperability.
Semantic interoperability and the use of semantics for the integration of
geographic integration is also subject of many studies in the GI community
(Janowicz et al., 2012; Rodriguez and Egenhofer, 2003; Visser et al., 2002;
Kavouras et al., 2005; Lutz et al., 2009). Therefore, di�erent types of analysis
methods and semantic data structures were utilised to generate comparability
between geographical information. It can be achieved by using semantic
data structures of di�erent logical strength, such as RDF-based data models
which represent a family of W3C recommendations originally designed for
metadata, controlled vocabularies with its W3C standard Simple Knowledge
Organization System (SKOS) or so-called triple/quad stores which are
databases which use graph structures for semantic queries. In this thesis,
I propose using OWL standard as it is able to store ontologies of richer
expressiveness by providing additional concept constructors such as equality,
characteristics and cardinality of concepts.
An ontology is an �explicit formal speci�cation of a shared conceptualisation�
(Gruber, 1993), where conceptualisation can be described as a way of thinking
about a domain (Uschold, 1998). By using ontologies to enrich Remote
Sensing (RS)-based data products with machine-interpretable semantics,
implicit relationships between the descriptions of datasets can be found by
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performing automatised logical reasoning (see chapter 2 and 3). To use the
full potential of semantic systems for data interoperability there are still
several open research questions, especially regarding semantic comparability
and semantic queries to foster information retrieval.

1.3 Hypothesis and Research Questions

To overcome the semantic heterogeneity problems presented in the previous
section and support data interoperability on an international level, the
�rst overall objective is to demonstrate the applicability of semantic
systems to support pan European data interoperability in the �eld
of biodiversity monitoring. This objective is addressed by designing a
technique for automatised semantic annotation of remote sensing imagery
in an ontology-based classi�cation process and developing a procedure for
automatised data transformation of classi�cation schemes of di�erent origins
and locations. The second overall objective is to evaluate the importance of
spatial scale and up-scaling processes for the European nature conservation
strategy.

This objective is addressed by developing an automatised aggregation
procedure for habitats which can be utilised in conjunction with a systematic
analysis of the scale parameter and can be linked to semantic systems to
generate overall interoperability.

Based on the two overall objectives the following research questions are
presented:

1. Which methods are feasible to generate data interoperability in the �eld
of biodiversity monitoring in Europe?

2. How can semantic systems support up-scaling processes in hierarchical
remote sensing-based classi�cation frameworks to generate interoperable
outcomes?

3. What possibilities are there to combine machine learning algorithms with
ontologies to utilise the bene�ts of semantic data storage?

4. How important is scale as a parameter for the interoperability of nature
conservation areas?

1.4 Structure of this thesis

The structure of this thesis is summarised in �gure 1.1. The �rst chapter
introduces the interoperability problems and e�orts in Europe to resolve
them, focusing on the nature conservation domain and especially the
European conservation network Natura 2000. Furthermore it provides the
main research subjects, the research questions, gives an overview and outline
of the thesis.
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Chapter II proposes an observation-based, bottom-up ontology
engineering approach for remote sensing applications. This methodology
was used to resolve semantic heterogeneity problems in remote sensing
classi�cation results by taking into account ontology-based automatic
reasoning in combination with matchmaking processes based on semantic
generalisation. Chapter III proposes a spatial aggregation approach, which is
based on the developments of Chapter II. It combines automated up-scaling
processes based on spatial reclassi�cation of pre-classi�ed remote sensing
imagery and semantic data transformation. This chapter therefore gives a
practical example of semantic mediation and interoperability of geo-spatial
data in the �eld of remote sensing-based biodiversity monitoring.

Chapter IV proposes a new RS classi�cation methodology using data
mining approaches to �ll the so-called �semantic gap� by providing automated
semantic annotation.

Chapter V gives a closer look at the aggregation procedure proposed in
Chapter III and examines the in�uence of a minimum mapping unit and the
kernel size of the reclassi�cation algorithm for the automated delineation of
certain Natura 2000 habitat classes. Finally, chapter VI synthesises the results
and gives and overall conclusion regarding the proposed research questions.
Furthermore it provides recommendations for future research.

Chapters II to VI were written as stand-alone manuscripts and were
published or are pending publication in international peer-reviewed journals.
The chapters were published or submitted as follows:

Chapter II Nieland, S., Kleinschmit, B. and Förster, M.
(2015): Using ontological inference and hierarchical
matchmaking to overcome semantic heterogeneity
in remote sensing-based biodiversity monitoring.
International Journal of Applied Earth Observation
and Geoinformation, 37, pp. 133-141. doi: http://dx.
doi.org/10.1016/j.jag.2014.09.018

Chapter III Nieland, S., Moran, N., Kleinschmit, B. and Förster,
M. (2015): An ontological system for interoperable
spatial generalisation in biodiversity monitoring.
Computers & Geosciences, 84, pp. 86-95. doi:http:
//dx.doi.org/10.1016/j.cageo.2015.08.006

Chapter IV Moran, N., Nieland, S., Kleinschmit, B. (2017):
Combining machine learning and ontological data
handling for multi-source classi�cation of nature
conservation areas.International Journal of Applied
Earth Observation and Geoinformation, 54, pp.
124-133. http://dx.doi.org/10.1016/j.jag.2016.
09.009

http://dx.doi.org/10.1016/j.jag.2014.09.018
http://dx.doi.org/10.1016/j.jag.2014.09.018
http://dx.doi.org/10.1016/j.cageo.2015.08.006
http://dx.doi.org/10.1016/j.cageo.2015.08.006
http://dx.doi.org/10.1016/j.jag.2016.09.009
http://dx.doi.org/10.1016/j.jag.2016.09.009
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Chapter V Nieland, S., Kleinschmit, B. and Förster, M. (Preprint
submitted to Landscape Ecology): Finding the
optimal scale for habitat mapping - a remote
sensing-based aggregation approach

The stand-alone manuscripts were developed in teamwork. Hence, more
than one author were included in the writing process of the presented
research. Apart from chapter IV all chapters were written by the author
of this thesis and were than subsequently revised by the co-authors. Chapter
IV was written by Thomas Niklas Moran as it was part of his master thesis.
The conceptual development and research idea of this chapter was developed
by the author of this thesis and re�ned and implemented by Niklas.

The utilised data sets were partly pre-processed by cooperation
institutions. The data which were used but not processed as part of this
work are named here:

• Chapter II and III and V are based on remote sensing classi�cation results
produced by the Research Institute for Nature and Forest (INBO) and
the Flemish Institute for Technological Research (VITO) for the study
site Kalmthoutse Heide in Belgium. The classi�cation of the study site
Döberitzer Heide was conducted by Luftbild Umwelt Planung Gmbh
(LUP).

• All data sources used in the classi�cation process in chapter IV were
provided by AgroScience GmbH. This includes the segmented orthophotos
as well as indices of the digital terrain and surface model and the satellite
imagery.

Each chapter includes the subsections introduction, methods, results,
discussion, and conclusion resulting in a limited amount of recurring material
throughout the thesis. Considering the inner structure of the stand-alone
manuscripts, these redundancies are retained to allow the reader the
undisturbed study of single aspects of this work. Due to this repetition
and to reasons of readability, subsections were not included in the table
of contents of this work. The contents of the pre-published articles have
remained unchanged in this thesis.
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Overcoming semantic heterogeneity in

biodiversity monitoring

Simon Nieland, Birgit Kleinschmit, Michael Förster

Summary. Ontology-based applications hold promise in improving spatial data
interoperability. In this work we use RS-based biodiversity information and
apply semantic formalisation and ontological inference to show improvements
in data interoperability/comparability. The proposed methodology includes
an observation-based, �bottom-up� engineering approach for remote sensing
applications and gives a practical example of semantic mediation of geospatial
products. We apply the methodology to three di�erent nomenclatures used for
RS-based classi�cation of two heathland nature conservation areas in Belgium
and Germany. We analysed sensor nomenclatures with respect to their semantic
formalisation and their bio-geographical di�erences. The results indicate that a
hierarchical and transparent nomenclature is far more important for transferability
than the sensor or study area. The inclusion of additional information, not
necessarily belonging to a vegetation class description, is a key factor for the future
success of using semantics for interoperability in RS.

Published as Using ontological inference and hierarchical matchmaking to
overcome semantic heterogeneity in remote sensing-based biodiversity

monitoring in the International Journal of applied earth observation and
geoinformation c⃝Elsevier
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2.1 Introduction

Semantic interoperability's importance for data harmonisation has often been
discussed in geographic information integration (Janowicz, 2012; Hess et al.,
2007; Kavouras et al., 2005; Rodriguez and Egenhofer, 2003; Visser et al.,
2002; Lutz et al., 2009). In addition to syntactic interoperability, thoroughly
de�ned by OGC standards, heterogeneity of underlying semantics represent
an unsolved barrier for data integration, data discovery and knowledge
sharing - especially in a variety of RS-based applications (Arvor et al., 2013;
Blaschke, 2010).

Although RS products and classi�cation procedures often implicitly
use semantics for developing rule-sets or indicators there is a lack of
structured, computer-readable formalisation within the given classi�cation
approaches. RS-based classi�cation conceptualises a real world object or
phenomenon (entity) and produces its mapping (symbol). When trying
to compare classi�cation results, naming con�icts (di�erent descriptions
for the same conceptualisation or one ambiguous description for di�erent
conceptualisations) and conceptual con�icts (di�erent conceptualisations for
the same mapping) occur, leading to semantic heterogeneity (Kuhn, 2005).

The described heterogeneity hamper the examination of RS output
information which is especially problematic when it is required for
multi-national legal processes as is the case for the HabDir ((Council
Directive) 92/43/EEC, 1992) and the EUWater Framework Directive (WFD)
((Council Directive) 2000/60/EEC, 2000). A comparable thematic depth is
needed for the subsequent decision making process. Due to the semantic
diversity of RS results, such products are either not considered useful or in the
early stages of development (Manakos, 2013). Several approaches (Lutz et al.,
2009; Visser et al., 2002; Rodriguez and Egenhofer, 2003; Durbha et al., 2009;
Mena and Illarramendi, 2000; Kavouras et al., 2005; Schwering and Raubal,
2005) were applied to achieve semantic interoperability of spatial data by
using ontologies based on the RDF or OWL. What these approaches all have
in common is the matchmaking process; a technique used to �nd equivalent
information that �t to the particular subject of interest. Matchmaking
between spatial datasets can be generated by using similarity values. Often
based on dictionaries, thesauri, other RDF/OWL-based data structures (Hess
et al., 2007; Rodriguez and Egenhofer, 2003; Kavouras et al., 2005; Fonseca
et al., 2006) or geospatial concepts and their geometrical models (Schwering
and Raubal, 2005), similarity values indicate the degree of correspondence
between entities. Additionally, matchmaking can be achieved by reasoning
about the formalised concepts of one speci�c domain ontology (Decker
et al., 1998) and its aligned upper level ontology (Cruz and Sunna, 2008).
Multi-ontology systems in combination with query rewriting techniques have
also been used to generate matchmaking (Mena and Illarramendi, 2000).
Furthermore, a �hybrid ontology� approach where a shared vocabulary is
applied for the formalisation of concepts and inter-ontological reasoning was
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used in several systems (Lutz et al., 2009; Visser et al., 2002; Durbha et al.,
2009).

Several studies have proposed using observations for geo-ontologies.
(Janowicz, 2012; Couclelis, 2010; Frank, 2003). In so-called observation-driven
engineering approaches ontological primitives (classes in the ontology that are
not conceptualised) represent elementary concepts that can be derived from
observations. Therefore, included primitives are restricted to observations
or derived by aggregation of observed phenomena. Conceptualised classes
in the developed ontology can be assigned to upper level ontologies to
foster a broader interoperability. Starting with the semantic descriptions of
observations in a bottom-up ontology engineering approach preserves the
bene�t of semantic diversity and local conceptualisations without giving up
interoperability (Janowicz, 2012).

Recent approaches of RS classi�cation are bound to semantic web
standards proposed by the World Wide Web Consortium W3C and therefore
allow the utilisation of semantic reasoning in the classi�cation process
(Andrés et al., 2012; di Sciascio et al., 2013; Belgiu et al., 2014). These
approaches are not broadly used in the RS community, despite recent
discussions touting their bene�ts (Arvor et al., 2013). Heterogeneity in
classes based on RS analysis are resulting from the fact that classi�cation
procedures are speci�ed through electromagnetic signals, whereas indicators
of �eld surveys and nomenclatures re�ect the composition of parameters
de�ned in the particular area of research or cognitive interest. In many cases
RS classi�cation techniques are adapted to classes which are optimised for
manual interpretation of aerial imagery or �eldwork through the aggregation
of the primitive classi�cation results to the target classes. Consequently, these
primitive classi�cations conceal information because users or customers only
have the generalised mapping without its underlying conceptualisation.

A better conceptualisation of RS outputs in RDF/OWL-based structured
metadata would not only lead to a better re-usability and exchangeability, but
would additionally improve spatial information retrieval (Arvor et al., 2013).
Inferring relations between data requirements or products and existing data
or nomenclatures is a bene�t that is already broadly used in other research
areas (Bard and Rhee, 2004).

The main objectives of this work are to

• propose an observation-based, bottom-up ontology engineering approach
for RS applications, which will be used for solving semantic
heterogeneity problems in RS classi�cation results by taking into account
ontology-based automatic reasoning in combination with matchmaking
processes based on generalisation,

• give a practical example of semantic mediation of geospatial data in the
�eld of RS-based biodiversity monitoring
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• and analyse certain criteria of selected areas (similarity of sensors, number
of classes, similarity of geographical region) in regard to their in�uence
on used indicators and subsequently their e�ect on data interoperability.

A big future challenge of RS research is to transform local or regional
classi�cation outputs into interoperable, comparable information. Since there
are existing interoperability approaches in other research domains, we
contribute to the existing research by addressing the need for interoperability
with a novel semantic approach that is based on ontological subsumption.

2.2 Methodology

This section proposes a bottom-up, observation-based ontology engineering
approach and shows how it can be used for data interoperability in a
prototype application.

2.2.1 Study sites and existing habitat data

We analyse RS classi�cation results of Natura 2000 heathland areas and
corresponding nomenclatures for this study. The Natura 2000 sites are
heathland and grassland habitats in Flanders (Belgium) and Brandenburg
(Germany).

Kalmthoutse Heide1 (abbr. FL), located in northern Belgium is mainly
covered with dry and wet heathland, inland dunes, water bodies and forests
Chan2012.

The 6 broader habitat classes at level 1 are gradually arranged into
subcategories that re�ect the de�nitions of the habitat structure as well as
the structures and functions that are crucial for the assessment of habitat
quality (Thoonen et al., 2013).

The second study site, Döberitzer Heide2, located in eastern Germany is
characterized by heathland and grassland vegetation, humid meadows and
woods on predominantly dry and sandy soils.
For the Döberitzer Heide, two classi�cation hierarchies are available (see
table 2.1). The nomenclature for multi-temporal, high resolution (HR) and
hyper-spectral analysis (abbr. BB-HyMap) extends the federal nomenclature
towards speci�c plant communities. These plant communities are used
as indicators for the evaluation of habitat conservation status (Schuster
et al., 2015). Additional class attributes were already included in the
federal nomenclature. Since only parts of the developed and well-formalised
BB-HyMaP nomenclature have been classi�ed within this study, a synthetic
dataset was created to acquire more signi�cant information about the quality
1 http://natura2000.eea.europa.eu/Natura2000/ SDF.aspx?site=BE2100015
2 http://natura2000.eea.europa.eu/Natura2000/ SDF.aspx?site=DE3444303
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of the semantic transformation process. It uses the extent and pixel-size of
BB-VHR and includes one band with corresponding class values.

The multi-temporal classi�cation was performed by Schuster et al. (2015)
with 21 RapidEye scenes covering dates from March to October (Schuster
et al., 2015). The classes were created using federal habitat descriptions and
�eld-based mapping in Brandenburg.

Habitat classi�cation with very high spatial resolution (VHR) imagery
was realised using a knowledge-based classi�cation approach. The
development of the classi�cation procedure can be divided in the following
steps. Initially, suitable indicators are selected, which are limited to those
that can be derived from VHR RS imagery. In the next step, these indicators
can now be used to develop a hierarchical classi�cation schema. To validate
the separability of the determined classes by using a discriminant analysis,
each class has to be associated with representative ground truth areas. The
developed hierarchical schema is the basis for the multi-level, pixel-based
classi�cation procedure. To be able to analyse the variability in the imagery
statistically, the classi�cation procedure uses a hybrid system of supervised
and unsupervised classi�cation modules (Frick, 2006). Therefore, image data
has to be structured and relative values (Normalized Di�erence Vegetation
Index (NDVI), texture, spatial arrangement) have to be derived.

2.2.2 Hybrid ontology model

The basis of this work is a hybrid ontology model, which combines single
and multiple ontology approaches (Wache et al., 2001; Lutz and Klien,
2006; Lutz et al., 2009; Visser et al., 2002). The fundamental concept of
this approach is to describe the classi�cation results of di�erent regions,
each with its own ontology. In contrast to multiple ontology approaches,
the concepts of the �local� ontologies are based on primitives and properties
of a shared vocabulary that are stored in upper level domain ontologies
(Guarino, 1998; Lutz et al., 2009). The main advantages of this methodology
are to keep the �exibility of a multi-ontological approach and preserve
comparability by using a shared vocabulary. An important characteristic
of the shared vocabulary is its independence from existing classi�cation
approaches and sensors. Compared with the observation-driven ontology
engineering approach proposed by Janowicz (2012), the shared vocabulary's
classes describe an observed phenomenon instead of merely conceptualising
possible spectral signatures or indices of sensors. In this work the shared
vocabulary stores qualitative attributes of the RS classi�cation process, while
the local ontologies formalise the classi�cation outputs. Semantic annotation
of classi�cation products are realised in the prototype software using a
PostGIS database back-end.

Furthermore we describe the shared vocabulary ontology as a �domain
ontology�, while ontologies that formalise speci�c concepts of a respective
region are referred to as �local ontologies�.
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2.2.3 Description logics and reasoning

In this work Description Logic (DL) is used for formal knowledge
representation, providing the formal basis for the web ontology language
(OWL) (Schmidt-Schauss and Smolka, 1991). For the ontological modelling
the Attributive Concept Language with Complements (ALC) is used,
which includes so-called elementary descriptions and concept descriptions
(see table 2.2). Basic syntactic elementary descriptions represent atomic
concepts (unary predicates), atomic rules (binary predicates) and individuals
(constants), whereas complex concept descriptions are built from these
elementary descriptions with concept constructors (union, intersection,
complement, universal restrictions, existential quanti�cations) (Baader and
Werner, 2003; Lutz et al., 2009). The universal concept includes the set of all
individuals in the domain. The bottom concept de�nes an empty set.

A DL knowledge base can be divided into a TBox containing the
terminology (description of relations between concepts and roles) and an
ABox containing assertions about named individuals and concepts. Since
this work focuses on relations between complex concept descriptions, further
developments refer to the TBox language features.

Table 2.2: Concept constructors of the developed ontology

(A|) (A|) (atomic concept)
*top* ⊤ (universal concept)
*bottom* ⊥ (bottom concept)
(not E) ¬ E (complement)
(and E) E1 ∩ E2 (intersection)
(or E) E1 ∪ E2 (union)
(only E) ∀ R.E (universal restriction)
(some E) ∃ R.E (existential quanti�cation)

Implicit relations between complex concepts and atomic concepts can be
inferred automatically by performing logical reasoning. The �rst task is to
determine whether a newly de�ned concept makes sense or is inconsistent.
The second reasoning task is to decide whether a complex concept A is
subsumed by a concept B. subsumption in a TBox T is identi�able in every
model of T if the set of concepts denoted by A is a subset of the set denoted
by B (Donini, 2003) (see �gure 2.1.1).

If AT ⊆ BT then A ⊑T B (2.1)

Equivalence between concept A and B with respect to T can be proven
if the set of concepts denoted by A equates the set denoted by B for every
model I of T (Donini, 2003) (see �gure 2.1.2)
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If AT ⊆ BT then A ≡T B (2.2)

Disjointness between concept A and B with respect to T can be proven if
the union between the set of concepts denoted by A is null for every model I
of T (Donini, 2003) (see �gure 2.1.3).

AT ∩ BT = ∅ (2.3)

Since reasoning over big ontologies is often time-consuming we use the
reasoner Hermit, which is based on a hypertableau and hyperresolution
calculi providing fast and e�cient reasoning capabilities and making this
task technically feasible (Motik et al., 2009).

Hence, it is possible using the reasoner to build up one RS classi�cation
hierarchy of two regions (a and b) by formalising classi�cation keys with
shared vocabulary in DL. Figure 2.1 shows a schematic representation of
subsumption (1), equivalence (2) and disjointness reasoning (3) and illustrates
the construction of a combined concept hierarchy (ab).
However, the constructed hierarchy's structure needs to be taken into
account as it is not an undirected graph in which every node only has one
super-element, but is instead a directed acyclic graph, whose elements can
have multiple super-elements.

2.2.4 Hierarchical matchmaking

Since the main focus of this work is to �nd relations in RS outputs classi�ed in
di�erent regions and with di�ering methodologies, we developed an algorithm
which is able to perform equality tests between the concepts of the two regions
on ascending levels of the inferred hierarchy.
Since RS-based nomenclatures are often described in a hierarchical way,
matchmaking based on �ontological subsumption� (furthermore referred
to as hierarchical matchmaking) is a practical technique for achieving
comparability. We decided against using a similarity model because of the
hierarchical structure of the RS outputs, the very detailed descriptions and
the minimal di�erences between the classes in RS products (Cruz and Sunna,
2008; Rodriguez and Egenhofer, 2003).

Inputs to the algorithm (see algorithm 1) are sets of concepts of region
A (Ca) and region B (Cb) (see Figure 2.2). Region A and B include
complex concept descriptions (Ca1, Ca2, Ca3,..., Can/ Cb1, Cb2, Cb3,. . .Cbn)
which formalise the region's classi�cation results by using elementary
descriptions of the shared vocabulary. The function getequivalentClasses(Cai)
returns equivalent classes of Cai that are situated in region B. If any
direct equivalences are given back from the reasoner the destination
concepts can directly be assigned to the origin concept (Cai). If not,
the number of hierarchy levels above concept Cai have to be identi�ed
(getNumberofSuperClassLevels(Cai))(that means the number of potential
upscaling processes until reaching the universal concept). The function
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Fig. 2.1: Schematic representation of subsumption, equivalence and
disjointness reasoning

testLevelEquivalence() returns concepts of the hierarchy level z that are
equivalent to the origin concept Cai and are situated in region B. Therefore
searching for the correct stage in the classi�cation schema is iteratively
extended to the next general level until a match can be found. Thus, the
return value of the algorithm is a set of pairs including the origin concepts
(Cai) and corresponding destination concepts (Cbx). Since the algorithm is
able to generate equivalence checks between all concepts included in the local
ontologies, all possible transformations between the nomenclatures have been
realised (see table 2.3).
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Algorithm 1: Finding matches between concepts C of region a and b
in iteratively extending generalization levels
Data: A �nite set of concepts of region A (Ca), which includes

Concepts(Ca1, Ca2, Ca3,.., Can) and region B (Cb), which includes
the concepts(Cb1, Cb2, Cb3,..., Cbn)

Result: A set of matching pairs
def getMatchingPairs(Ca):

for i in Ca:

if getequivalentClasses(Cai) != null :
matchingPairs[Cai] = getequivalentClasses(Cai)

else:
numberOfSuperClassLevels =
getNumberOfSuperClassLevels(Cai)
for z in range(0, numberOfSuperClassLevels):

if testLevelEquivalence(Cai, z) != null :
matchingPairs[Cai] = testLevelEquivalence(Cai, z)
break

return matchingPairs

2.2.5 Formalisation of classi�cation outputs

Well-formalised semantics of classi�cation keys are the fundamental basis of
this work.
The Dolce Ultra-Light ontology (DUL) 3 provides the basis for the
Semantic Sensor Network Ontology (SSN) 4 (Compton et al., 2012),
developed by the W3C's Semantic Network Incubator Group, and
the Stimulus-Sensor-Observation ontology design pattern (Janowicz and
Compton, 2010). We chose DUL as top-level ontology mainly to provide
broader interoperability to applications realised with SSN and respectively
DUL, as this is a recommended framework to model monitoring services based
on sensor observations.

Furthermore, we formalise certain heathland and grassland habitats
protected under the HabDir. The basic concepts, which are stored in a shared
vocabulary and used to describe important indicators for these habitats, have
been adopted from the developed classi�cation schemes. From an ecological
point of view, the so-called �indication� is the most suitable principle to
generate scienti�cally correct and comprehensive examination of objectives
regarding nature conservation (Frick, 2006). The derived indicators should be
particularly sensitive to changes of relevant environmental factors. Indicators
are parameters which can be measured or derived to determine and evaluate a
complex ecological phenomenon that cannot be described directly (Niemeijer,
2002). To develop correct and consistent indicators, the indicators were
cross-checked with the developers of the regarded classi�cation hierarchies.
3 http://www.loa.istc.cnr.it/ontologies/DUL.owl
4 http://purl.oclc.org/NET/ssnx/ssn
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Therefore, the shared vocabulary represents a hierarchy of indicators, which
are detectable by using RS classi�cation techniques. This is stored in
an OWL2 RDF/XML syntax based ontology, including implicit concept
constructors such as relations between classes (e.g. disjointness), equality
and characteristics of properties (e.g. symmetry).

Figure 3.2 shows a fragment of the domain ontology describing a RS-based
biodiversity indicator entity. Concepts are illustrated as ellipses, black arrows
denote inheritance relationships while grey arrows show concept constructors.
The hierarchy includes examples of implicit relations between indicators. For
instance, domination of common rushes (Juncus e�usus, L.) can be used as a
wetness indicator, and fallow land is an area not currently used by humans.
Indicators which are mutually exclusive (e.g. used and unused or wet and
dry), can be described as disjoint. By inferring this simple ontology fragment
there is already implicit knowledge revealed. For example, habitats which are
dominated by common rushes cannot be dry, or habitats with the attribute
�Natural� cannot be used for agriculture. Currently, the shared vocabulary
includes 120 concepts describing indicators for remote sensing-based Natura
2000 habitat monitoring 5.

In the local ontologies, basic concepts for RS-based classi�cation can now
be described through the analysed indicators. For instance a concept �Gt�
(dry grassland) of region A can be described as:

Gt: Gt ⊆ G
Gt ≡ ((∃hasQuality.Dry) ∩
(∃hasQuality.SandDominated)) ∪
((∃hasQuality.Dry) ∩
(∃hasQuality.Grassdominated))

while a concept natural permanent dry grassland in region B can be
formalised as:
Gpnd: Gpnd ⊆ Gpn

Gpnd ≡ ((∃hasQuality.Grazing) ∪
(∃hasQuality.Mowing) ∩
(∃hasQuality.Natural)) ∪
((∃hasQuality.SemiNatural) ∪
(∃hasQuality.Dry) ∩
(∃hasQuality.Grassdominated))

By inferring these classes �Gpnd� can be identi�ed as a subclass of �Gpn�
(natural permanent grassland) and �Gt�. That means, �Gpnd� includes all
attributes of �Gt,� therefore �Gt� is a potential up-scaling/transfer target
class.
5 http:/www.user.tu-berlin.de/simon.nieland/ontologies/
MS_MONINA_InteroperabilityOntology.owl
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2.2.6 Validation

In order to achieve an objective validation, a reference transformation was
created by taking into account ecological expertise from test sites and
classi�cation hierarchies. First, all the classes of the test sites were listed
in a table and related indicators have been added by analysing detailed class
descriptions. Secondly, indicators have been compared and used as a basis
for �nding equivalent classes in the other nomenclatures. For example, the
class �dry grassland rich in cryptogams� (BB-VHR) can be described as dry
grassland dominated by cryptogams (>30%) with potential parts of open soil.
This class was developed for the assessment of class 2330 (inland dunes with
open Corynephorus and Agrostis grasslands). By analysing the nomenclature
of FL class Sfm, we can identify it as a corresponding category since it includes
low, open vegetation on (partly) �xed sand dunes, predominantly covered by
mosses and lichens (≥ 60%).

To achieve an objective validation of the semantic transformation in
terms of thematic accuracy, e�ciency and practicability, the results were
compared to the manual transformation for the two test sites. To evaluate
the correctness of the results we adopted the concept of recall and precision,
which is mainly used in information retrieval (Korfhage, 1997). In our case,
precision describes the percentage of found valid equivalence relations on all
relations, whereas recall illustrates the portion of found valid equivalence
relations on all valid relations.

2.3 Results

Table 2.4 shows the result for the test case Flanders to BB-VHR
nomenclature. Note that not all of the classes of the nomenclature are present
in the dataset and that the classi�cation procedures use classes at di�erent
levels of the hierarchy. Therefore the total number of classes in table 2.4
does not have to match one level of the hierarchy (see table 2.1). The results
shown in table 2.4 indicate that there is just one equivalent class in the two
regions; consequently, thematic up-scaling was applied for all other classes in
order to achieve comparable datasets in regard to their content. Therefore
the generalisation level is expressed by the number of up-scaling procedures
necessary to generate equivalent geospatial datasets of the two exemplary
test cases. Table 2.3 gives an overview of necessary up-scaling processes in
the performed semantic transformations.

Figure 2.4 illustrates the classi�cation result of study area FL (level 1),
which was derived from an airborne hyperspectral scanner. Level 2 shows
the same dataset visualised in the nomenclature of classi�cation BB-VHRS,
whereas level 3 demonstrates the nomenclature used for classi�cation of
BB-HyMap imagery. Due to the necessary semantic upscaling processes the
nomenclatures of level 2 and level 3 contain fewer classes, but the main
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Table 2.4: Result semantic transformation from Flanders (FL) to
Brandenburg (BB-VHR). Classes of the origin region Flanders are named
in their original description. The �rst letter represents the broad habitat
category (H - Heathland, A - Arable land, S - Sand dunes, G - Grassland,
F- Forest, W - Water). The remaining letters indicate the attributes of the
classi�ed habitat (t - temporary, b- bare, c - crops/ or Calluna dominated
(heath classes), o - other, w - wet, e - Erica dominated, d - dry, a- adult/
or agriculture (grassland), y - young, m - mixed age/ or molinia encroached
(heathland)/or maize (arable land), g - grass encroached, j - Juncus E�uses
dominated, n- natural or seminatural, f - �xed).

Origin class Destination class Number of
(FL) (BB - VHR) thematic up-scaling

processes

Acm SpeciesOfArableLand 2
Aco SpeciesOfArableLand 2

CLOUD
Fcpc SpeciesOfArableLand 2
Fcps Wood 2
Fdb Vegetated 2
Fdqz Wood 2
Gpap GrasslandIntensive 1
Gpar GrasslandIntensive 1
Gpj SpeciesOfWetGrassland 0
Gpnd SpeciesOfDryGrassland 1
Gt GrasslandIntensive 1
Hdca DrySandHeath 2
Hdcm DrySandHeath 2
Hdco DrySandHeath 2
Hdcy DrySandHeath 2
Hgmd SpeciesOfDryGrassland 1
Hgmw Grassland 2
Hwe Heathland 3
Sfgm SpeciesOfDryGrassland 2
Sfmc MossDominatedAreas 1
Sfmp MossDominatedAreas 1

UNCLASS
Wou Water 1
Wov Water 2
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categories (heathland, arable land, grassland, open soil, forest and water)
can be di�erentiated in all levels. Moreover, it shows that nearly all classes
and a high percentage of spatial coverage could be transferred. Table 2.5

Table 2.5: Results of semantic transformation

Transformation type Total
correct
relations

Discovered
relations

Correct
relations

Prec. Rec.

FL → BB-HyMap 24 23 21 91.3 87.5
FL → BB-VHR 24 23 21 91.3 87.5
BB-HyMap → FL 61 57 51 89.5 83.6
BB-HyMap →
BB-VHR

61 51 44 86.3 72.1

BB-VHR → FL 21 21 17 81.0 81.0
BB-VHR →
BB-HyMap

21 19 18 94.7 85.7

shows that for some classes more than one relation is correct. For example
�Grassland Intensive� in region BB can either be transferred to Gp (Grassland
permanent) or to Gt (Grassland temporary) in nomenclature FL. Both classes
describe intensively used agricultural grassland and the di�erence is only in
degree of usage. Whereas Gp is permanent grassland used for hay and/or
pastures, Gt is periodically used for crops. If there is no equivalence detectable
and the manual transformation also does not show any relation class, the
discovered relation "no equivalence" is considered to be correct.

All results have precision values between 81.0 and 94.7 and respectively
recall values from 72.1 to 87.5. Transfers from Flanders to Brandenburg
nomenclatures seem to perform slightly better than transfers from
BB-HyMap nomenclature. For BB-VHRS nomenclature, transfer results are
diverse, with one very good result from BB-VHR to BB-HypMap and
one slightly worse result from BB-VHRS to FL. Generally, transfers from
Flanders to Brandenburg achieve better results than the reverse, whereas the
intra-regional transformation has no clear tendencies in terms of the quality
of the transformation process.

2.4 Discussion

In this study we presented an ontology engineering approach for RS
applications (in this case heathland and grassland habitat classi�cation), and
introduced a hierarchical matchmaking algorithm that found direct relations
between nomenclatures based on di�erent RS classi�cation methodologies
and sensors in di�erent regions.
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Generally, the presented approach of using ontology engineering and
matchmaking for interoperability issues in RS-based monitoring is feasible.
The results show that in most cases the prototype application produces
equivalent outcomes to manual work.
The outcomes indicate that the transfer between nomenclatures designed for
very similar sensors (like FL and BB-HyMap) do not show better results
than transferring between sensors with very di�erent spectral and spatial
resolutions (BB-VHR and FL, BB-VHR and BB-HyMap). Since we have
only analysed three nomenclatures this trend cannot be clearly con�rmed.
Moreover, the quality of the formalisation as well as the geographical
region and the e�ects of sensor similarity (in terms of spatial and spectral
characteristics) seem to have an impact on interoperability. Nomenclatures
that are used for similar or equal sensors, such as the ones in FL and
BB-HyMap, produced good results in both directions, whereas nomenclatures
of the same region (BB-VHR and BB-HyMap) had varying results. Also,
results of the transfer between nomenclatures from di�erent sensors and
regions (BB-VHRS and FL) produced mostly (BB-VHR to FL) successful
results. Therefore the in�uence of class formalisation seems to be higher than
regional and sensor di�erences.

The described indicators and methodologies of image analysis for
biodiversity monitoring re�ect the challenge of evaluating and designating
nature conservation areas predominantly from RS information. Since at
present most of the monitoring data is generated by manual �eld work, the
results had to be evaluated by taking into account ecological health criteria.
We see two main reasons for the gap between ecological and RS perspectives.
Problems in the matchmaking process occur if the integrated logic of the
hierarchies, which are mainly ecological conceptualisations, do not match the
logic of the underlying ontology.
Another problem occurs when the RS-based indicator does not correspond
with one from an ecological perspective, or a class does not contain all
indicators which are necessary for an accurate evaluation. In this case it would
be necessary to include indicators that cannot be assessed by RS into the
shared vocabulary. Addition of ecological indicators in the shared vocabulary
could improve interoperability with more �eld-based nomenclatures and
observations aiding in transferability. From a RS perspective, the de�nition
of a classi�cation hierarchy is often neglected and poorly documented. Before
starting an actual classi�cation, the RS and ecology experts should be
more detailed in class descriptions by giving more metadata and additional
attributes to better substantiate class choice. With these descriptive variables
a better transferability could be implemented without using the same
nomenclature for nature conservation classes.
In comparison to other studies on ontology alignment and interoperability
issues (Visser et al., 2002; Rodriguez and Egenhofer, 2003) the proposed
matchmaking approach is focused on the unique requirements of remote
sensing classi�cation semantics. Approaches based on similarity measures,
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as used in many examples for semantic mediation (Cruz and Sunna, 2008),
are more �exible in regard to the structure of the ontology, but due to their
complexity (weighting of relations, symmetry/asymmetry) and calibration
di�culties lead to unacceptably high false matches. Regarding the varying
challenges and demands of RS research, standardisation does not seem
realistic. In fact, the diversity in methods and implied semantics re�ects the
variety of conceptualisations in di�erent regions, which are based on culture
and social conventions (Vanden Borre et al., 2011). Therefore, semantic
heterogeneity of habitat objects should not be understood as a �problem�,
but rather a challenge on how to structure, describe and store information in
a way that allows inference on relations and comparability.

The main problem in modelling ontological concepts is that experts have
to include as much implicit knowledge as possible. Solving the implicit
knowledge problem would then require fewer criteria for successful reasoning
(Klien, 2008). Therefore it is necessary to request the expert to include
certain attributes for classi�ed concepts. In order to achieve completeness
in formalisation, critical attributes for di�erentiation have to be identi�ed
and included explicitly.

Although the approach might be in�uenced by slight regional adaptations
(e.g. di�erent plant communities of a more Atlantic or Continental in�uenced
heathland), we show that a transfer of results is possible without a
time-consuming adaptation and re-application of the various classi�cation
algorithms. Since resources for RS tasks are limited, the introduced
hierarchical matchmaking is an appropriate solution for the still-existing
heterogeneity of RS products.

2.5 Conclusion

The proposed methodology shows potential in terms of the transferability
of RS output products. The storage of classi�cation meta-information in
OWL/RDF ontologies based on existing upper ontologies (DUL) leads to a
better usability and comparability of RS products. Using knowledge-based
reasoning for interoperability issues in RS seems to be an obvious step
and is increasingly supported by experts of di�erent research �elds (Arvor
et al., 2013; Janowicz, 2012). This work is a �rst step in developing
capable methodologies for this challenging task. The results of the exemplary
case showed, that a good formalisation of classes is crucial for good
interoperability. Giving domain experts the chance to formalise the semantics
of the object of study in a computer readable way is a signi�cant step towards
the interoperability of RS-based monitoring data.

Furthermore, the developed ontology represents a basis for a number
of possible applications. Using the presented ontology for cross-regional,
semantic-based generalisation and information retrieval of RS output data
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would be a further step towards comparable reporting in monitoring
activities.
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Simon Nieland, Birgit Kleinschmit, Michael Förster

Summary. Semantic heterogeneity remains a barrier to data comparability and
standardisation of results in di�erent �elds of spatial research. Because of its
thematic complexity, di�ering acquisition methods and national nomenclatures,
interoperability of biodiversity monitoring information is especially di�cult. Since
data collection methods and interpretation manuals broadly vary there is a need for
automatised, objective methodologies for the generation of comparable data-sets.
Ontology-based applications o�er vast opportunities in data management and
standardisation. This study examines two data-sets of protected heathlands in
Germany and Belgium which are based on remote sensing image classi�cation and
semantically formalised in an OWL2 ontology. The proposed methodology uses
semantic relations of the two data-sets, which are (semi-) automatically derived
from remote sensing imagery, to generate objective and comparable information
about the status of protected areas by utilising kernel-based spatial reclassi�cation.
This automatised method suggests a generalisation approach, which is able to
generate delineation of SAC of the European biodiversity Natura 2000 network.
Furthermore, it is able to transfer generalisation rules between areas surveyed with
varying acquisition methods in di�erent countries by taking into account automated
inference of the underlying semantics. The generalisation results were compared
with the manual delineation of terrestrial monitoring. For the di�erent habitats
in the two sites an accuracy of above 70% was detected. However, it has to be
highlighted that the delineation of the ground-truth data inherits a high degree of
uncertainty, which is discussed in this study.

Published as An ontological system for interoperable spatial generalisation
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3.1 Introduction

Reducing biodiversity loss is a key global environmental challenge and
is addressed by a variety of global, national, and regional initiatives
(Butchart et al., 2010). To properly assess progress made in retaining
the existing biodiversity, advanced measuring and monitoring systems are
needed (Magurran et al., 2010). Although there are a number of di�erently
scaled monitoring programs, comparing acquired data is a crucial but
often neglected task. The European Habitats Directive (Council Directive)
92/43/EEC (1992) was established to provide a consistent and comprehensive
basis for biodiversity monitoring and nature conservation activities. The
so-called Natura 2000 network collects this information as reports produced
by each member state every six years. Due to the federal structure
of the European Union and the di�erences in data delivery approaches
of the various nature conservation authorities there is a high demand
for innovative technical solutions to realise a comparable, comprehensive
monitoring program.

Generally, information about biodiversity can be gained by �eld mapping,
species modelling, and remote sensing. Various publications have highlighted
the bene�ts of remote sensing in conservation biology and demonstrated
standarisation of monitoring results and hence transferability is possible.
Yet, even for the remote sensing-based mapping of the Natura 2000 areas,
various methods of deriving nature conservation data (semi-) automatically
(Thoonen et al., 2010; Bock et al., 2005; Frick and Weyer, 2005; Vanden
Borre et al., 2011; Schuster et al., 2011; Corbane et al., 2015) are available.
It is necessary to generate applications that are able to use the produced
information to generate interoperable and therefore comparable outcomes.
International decision-makers rely on the comparability of this kind of
information to evaluate policy options. Since remote sensing-based products
in the �eld of Natura 2000 monitoring are usually generated for local or
regional purposes and produced with a range of sensors, image processing
methodologies and nomenclatures; thematic harmonisation of this spatial
information is crucial for international policy-making (Arvor et al., 2013;
Schmeller et al., 2014).
Classes derived by remote sensing are often based on indicators (e.g. the
Normalised Di�erence Vegetation Index, homogeneity, biomass, etc.) (Buck
et al., 2014) which have to be restructured to vegetation or habitat classes
de�ned in regulations (as is the case for the Habitats Directive). However,
there is often a data mismatch between what administrative classes represent
and the information contained in a remote sensing signal. To give an example:
using a remote sensing signal we can accurately di�erentiate between open
soil, heath, and grassland. However, in a certain combination (percentage)
and spatial proximity, these three components form a heathland habitat
according to the habitats directive. To automatically aggregate this class,
a spatial reclassi�cation is needed.
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This work proposes a spatial reclassi�cation approach, which is able to extend
existing generalisation methods (Thoonen et al., 2010; van der Kwast et al.,
2011) by using semantic relations and inference to generate comparability of
the outcomes of di�erent regions with regard to its content. It represents a
further enhancement and detailed evaluation of the methodology developed
by Nieland et al. (2014). This procedure is independent from classi�cation
approaches and sensors and can therefore be applied to data from multiple
input sources to generate interoperable data-sets.
The main objectives of this paper are to:

• propose a kernel reclassi�cation algorithm that is able to generalise
remote sensing classi�cation results to Natura 2000 habitats and show
its functionality and applicability,

• give a practical example of semantic mediation and interoperability
of geo-spatial data in the �eld of remote sensing-based biodiversity
monitoring by combining spatial reclassi�cation with ontology-based data
handling.

3.2 Related work

The utilisation of ontological reasoning for interoperable data management
is an increasingly accepted method in the �eld of geo-spatial research. This
refers mainly to applications, which use shared conceptualisations to generate
comparability of categories included in di�erent data models (Durbha et al.,
2009; Buccella et al., 2009; Lutz et al., 2009; Visser et al., 2002). Ontologies
can be used to facilitate information exchange between di�erent components
of work�ows (van Zyl et al., 2012; Zhao et al., 2009), as a bridge between
di�erent data structures (Nieland et al., 2015a; Kavouras et al., 2005),
nomenclatures or databases (Martino and Albertoni, 2011) or as a basis to
advance retrieval (Visser et al., 2002) and discovery (Stock et al., 2013) of
information. An overview of recent usage of ontologies in GIScience is given
in table 3.3.

In the �eld of remote sensing, ontologies have been applied by using
observations (Andrés et al., 2013; Belgiu et al., 2014; Forestier et al., 2013;
di Sciascio et al., 2013) as a basis for further reasoning. This so-called
observation-driven geo-ontology engineering approach (Janowicz, 2012;
Couclelis, 2010) uses ontological primitives (concepts in the ontology that
cannot be further reduced) that can be derived from observations. Semantic
descriptions of categories can be further conceptualised by taking into account
these primitives in a bottom-up approach and then assigned to upper level
ontologies to foster a broader interoperability. This technique therefore allows
semantic diversity of categories and local formalisation without giving up
comprehensive interoperability. Although there are promising approaches in
ontology-based classi�cation there are, until now, very few applications (Lutz
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et al., 2009) that make use of its possibilities for improving interoperability.
Previously the way to compare remote sensing classi�cation results was
to have remote sensing experts manually map the classi�ed categories. In
order to cope with the constantly increasing amounts of data and remote
sensing classi�cations, there is a need for automatised methods that are able
to generate comparable data. This is especially needed for supranational
and international treaties and obligations. Spatial Reclassi�cation Kernels
(SPARK) have been developed for remote sensing-based classi�cation of
heterogeneous categories in the urban environment (Barnsley and Barr,
1996). This methodology has been adapted for use in the �eld of habitat
mapping as it properly deals with between-class spectral confusion and
within-class spectral variation of especially very high resolution satellite data
(Keramitsoglou et al., 2005; Kobler et al., 2006). It has already been used to
generalise biodiversity indicators to habitat patches (Thoonen et al., 2010).

Table 3.1: Fields of ontological research in GIScience and exemplary
publications

Research �eld Area of application References
Remote sensing Agent-based image analysis Hofmann et al. (2015)

for Remote-sensing data

Detection of building types Belgiu et al. (2014)
from airborne Laser
Scanning

Coastal image
interpretation

Forestier et al. (2013)

Classi�cation of high Andrés et al. (2012)
resolution satellite imagery di Sciascio et al. (2013)

Interoperability matchmaking using Kavouras et al. (2005)
of geo-spatial data similarity measures Hess et al. (2007),

Schwering and Raubal
(2005)

matchmaking Durbha et al. (2009)
through reasoning Cruz and Sunna (2008)

Nieland et al. (2015a)
Work�ow wild�re detection van Zyl et al. (2012)
management generic/theoretical Zhao et al. (2009)

description
Data discovery environmental impact of Stock et al. (2013)
and retrieval port extension

transfer of Visser et al. (2002)
land-cover products
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3.3 Method

This section illustrates the developed methodology of generalising remote
sensing classi�cation results to Natura 2000 habitat patches. It furthermore
highlights the possibility of developing an application, which is able to
interact with a OWL ontology to produce fully interoperable results.
By taking advantage of the underlying semantics, the application is
able to use the logic and relations of the given class descriptions to
generate comparable Natura 2000 habitats throughout di�erent regions and
classi�cation approaches.

3.3.1 Method overview
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Fig. 3.1: Overview of the applied methodology. The semantic framework
uses a hybrid ontology model to transfer classi�cation nomenclatures of
one test site to another. By taking into account the results of the transfer,
generalisation rules of region A can be applied to region B. The reclassi�cation
module aggregates classi�ed categories to actual habitat patches in a two step
approach, on basis of these generalisation rules.

The semantic backbone of this work is a semantic framework, which
includes the formalisation of remote sensing classi�cation outputs of
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exemplary heathland sites in Belgium and Germany (see section 3.3.8). Figure
3.1 illustrates the methodological concept and the technical work�ow of
this work. The formalisation takes the form of a hybrid ontology model,
which includes a shared vocabulary and several local ontologies (see 3.3.2).
These local ontologies formalise classi�cation outputs of the observed test
sites (see Figure 3.1). Since the ontology is stored in OWL2/XML we are
able to perform mediation between the concepts of the local ontologies by
using a semantic engine, which achieves comparability by taking into account
hierarchical matchmaking developed by Nieland et al. (2015a). The data
storage and management can be accomplished in a database backend, which
stores class values of region A and region B. Therefore the semantic engine
reads the class values of the test regions from the database, performs a
semantic mediation between the associated concepts in the local ontologies
and writes the resulting class relations back into the database. Thus, the
system is able to export data-set A with data-set B's legend and vice versa
and apply generalisation rules of test region A to region B.

Within the system, the generalisation is performed in the reclassi�cation
module, which is divided in a kernel reclassi�er and an interpolator. The
reclassi�er performs the actual reclassi�cation which is then followed by the
interpolator module. The interpolator eliminates patches under the (MMU)
and patches with multiple labels are assigned to the nearest unambiguous
class. Finally, the interpolator performs a nearest neighbor interpolation to
�ll in the generated gaps (see section 3.3.5). The system outputs habitat
patches in both regions, that are produced with equivalent rules with respect
to the content of the classes.
The software is built on several open source programming frameworks with
a PostgreSQL database backend. The reclassi�cation module is developed
in the Python programming language using numpy/scipy (Oliphant, 2007)
packages for numerical programming and interpolation. Spatial operations
and analyses have been generated by using GDAL version 1.11.1 and Python
GDAL bindings. Time-critical parts have been realised in C++ using the
python ctypes library. The manual ontological formalisation has been realised
with the open source software Protégé 1 while the semantic reasoning has
been implemented with the help of OWLAPI and the HermiT hypertableau
reasoner (Motik et al., 2009) in Java. The reclassi�cation tool is freely
available 2 and will be published under an open source license. The code
for semantic reasoning and database management can be requested from the
authors.
1 http://protege.stanford.edu/
2 https://gitlab.tubit.tu-berlin.de/simon.nieland/kernelreclassi�cation.git
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3.3.2 Formalisation of remote sensing classi�cation outputs in

OWL2

The hybrid ontology model has been developed manually and contains
a shared vocabulary, which includes possible attributes of heathland and
grassland habitats and provides a structured vocabulary and their logical
relations to the so-called �local� ontologies. Additionally, this OWL2/XML
ontology includes implicit concept constructors like relations between classes,
(e.g. disjointness), cardinality, equality and characteristics of properties (e.g.
symmetry) or richer typing of properties. Figure 3.2 illustrates an ontology
fragment of the shared vocabulary. It shows a biodiversity indicator entity
with selected, associated concepts. Indicator concepts are illustrated as
ellipses, continuous arrows represent inheritance relationships while dashed
arrows show concept constructors. The graph structure includes examples of
implicit logic relations between indicators. Currently, the shared vocabulary
includes 120 concepts for Natura 2000 heathland habitat evaluation. The
top concept is a so-called biodiversity indicator entity, which is a super
concept of actual indicators like moisture, species domination or dominating
�xators that can be further subdivided in more speci�c indicators (e.g.
dry or moist, grass dominated or dominated by cryptogams etc.). Concept
constructors describe on the one hand e.g. that an area, which is dominated
by xeric grassland is dry or a dune that is �xated by mosses is rich
in cryptogams (equivalence). On the other hand concept constructors can
express disjointness (concepts that do not have a common element) like e.g.
dry and moist.

3.3.3 Inferring class relations

This work uses DL for formal knowledge representation stored in an OWL2
ontology (see 3.3.2). It can be used to automatically infer implicit class
relations of the underlying ontology by performing logical reasoning (Donini,
2003). Therefore, it is possible to achieve matchmaking between classes
in di�erent regions by using ontological subsumption, and equality tests
in ascending levels of the classi�cation hierarchies (Nieland et al., 2015a).
This task was implemented in a semantic engine, which is able to transfer
nomenclatures of di�erent origin into another by taking into account the local
ontologies and respective shared vocabulary (see Figure 3.1).

3.3.4 Generalisation rules

Since a lot of ecological research and knowledge has lead to the current
national and international nomenclatures in the �eld of biodiversity
monitoring and evaluation, the aim of this approach is to use this knowledge
to generalise data sources of di�erent origins (e.g. sensor type, region,
methodology) with regard to their content to achieve comparable results.
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For this study, generalisation rules for several heathland habitat types have
been adapted from the previous study of Thoonen et al. (2010) (see table 3.2).
The rules describe habitat classes with ranges of percent spatial coverage of
classi�ed indicators.

Table 3.2: Exemplary generalisation rule for class 2330

Indicator range of occurrence
within a habitat

Heathland 0-50%
Dry Heathland 0-50%
Wet Heathland 0-10%

Heathland grass-encroached 0-50%
Heathland grass-encroached, 0-10%

molinia, wet
Heathland grass-encroached, 0-50%

molinia, dry
Sand 0-100%

Sand bare 0-70%
Grassland 0-100%

Grassland permanent, 0-100%
natural, dry

Grassland permanent, 0-100%
natural, wet

Grassland permanent, 0-100%
arti�cial

Grassland temporary, 0-100%
arti�cial
Water 0-10%

Agriculture 0-10%

3.3.5 Generalisation algorithm

For the spatial generalisation approach, a method that is based on a modi�ed
SPARK approach was used (Barnsley and Barr, 1996). This contextual
classi�cation method uses the spatial arrangement and size of pre-classi�ed
satellite imagery to de�ne more complex classes. We realised the algorithm
by using an adjustable, rectangular moving window, which analyses the local
characteristics of coverage to assign a generalised class value to its centre
pixel. As already mentioned, Natura 2000 habitat classes (e.g heathland) can
contain a complex mixture of sub-classes, for example a composition of wet
or dry heathland, bare sand, ruderal or wet grassland, water bodies, shrubs
etc. In contrast to the original SPARK methodology, our procedure does



42 3 Interoperable spatial generalisation in biodiversity monitoring

not contain a pre-classi�cation process, since it uses already existing remote
sensing classi�cation results generated by local experts. Another modi�cation
to the original SPARK algorithm is that the rules for applying a label
to a centre pixel are already well de�ned in the national nomenclatures.
Therefore these coverage rules, based on expert knowledge, can be used
instead of template kernels that are representative of the habitat classes
to be derived (see section 3.3.2). The proposed method uses a two-step
approach to overcome known drawbacks (see section 3.5) in traditional spatial
reclassi�cation kernels (van der Kwast et al., 2011) (see �gure 3.3).

S F S S S 

S S H H S 

S H H H F 

S H H F F 

H H H H H 

Kernel Reclassifier Interpolator 

Frequency table Characteristic Kernel 

Rule 

a b 

d c 

H S F 

Count 12 9 4 

Percent 48 36 16 

H 0-100 

S 0-50 

F 0-20 

Fig. 3.3: Two step approach of the modi�ed SPARK methodology. Part
A shows the kernel reclassi�er with an schematic 5x5 kernel. Input is a
classi�cation result, which illustrates the classi�ed categories in di�erent
colors (see Part A and Part B(a)). The kernel includes three classes (Sand(S),
Forest(F), Heath (H)). The kernel reclassi�er performs a calculation of the
class frequency in a frequency table and compares the outcomes to the
associated rule. If the kernel correspond to all formulated rules the centre
pixel (grey) can be assigned. The Interpolator eliminates patches that have
not been assigned (b) and patches that are under a certain MMU (c) and
interpolates gaps in a nearest neighbor interpolation procedure (d).

In the �rst step of the procedure a moving window labels its centre pixel
according to the prede�ned rules (see section 3.3.4). The appropriate size
can be de�ned by iterating the process over prevalent window sizes (3x3,
5x5, nxn, 33x33) (see section 3.3.6). Making sure that the spatial variation
of the subject of interest �ts to the result and avoiding too big kernel sizes at
the same time reduces smoothing e�ects and leads to more signi�cant results
(van der Kwast et al., 2011).
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Since the rules were created for manual �eldwork and adapted to this
methodology, areas of multiple labels occur in the result. Mostly transition
areas have been a�ected by this phenomenon. Due to the circumstance,
that transitional areas are explicitly excluded in the class descriptions they
were not included in the mapping. Thus, in the second step the algorithm
eliminates patches with multiple labels and patches that are under a given
minimum patch size (see 3.3.6). Consequently, pixels which have been
assigned to multiple labels, have been assigned to the nearest unambiguously
de�ned class. If the pixel has been assigned to disjoint classes, then it is
eliminated and gets interpolated. Subsequently, the processing step uses
a nearest neighbour interpolation3 procedure to �ll the emerging gaps by
assigning the value at the data point closest to the point of interpolation.

Furthermore, it is possible to use relations between the semantic
descriptions of the components, which are used in the generalisation rules
to enhance interoperability between Natura 2000 objects. Therefore it
is necessary to know that for example class �Hdc� (heath, dry, calluna
dominated) of one region is equal to class �Dry sand heath� of another region.
Since we are able to derive equality relations by inferring class relations of
the underlying ontology (see 3.3.3), generalisation can be performed in several
regions equally.

3.3.6 Optimal kernel size and MMU

To examine the best �tting kernel size and minimum mapping unit (MMU),
the percentages of the output objects, generated in the reclassi�cation
procedure, can be compared to the average coverage of a reference data-set.
For the description of the results, accuracy assessments were performed for
each combination of kernel size and MMU using the F-measure (Halder
et al., 2009). This class-wise assessment index represents the harmonic mean
between precision (p) and recall (r) of a class i as:

(F )i =
2 ∗ pi ∗ ri
pi + ri

(3.1)

The kernel size and MMU, in which the F-measure is at its maximum, can
be considered as best �tting. Therefore, window sizes from 3x3 to 33x33 (and
respectively MMU's from 100 to 1300 m2) were calculated to determine the
ideal parameters by analysing the results of the applicability tests (see 3.3.7
and 3.4.3). As expected, the optimal parameters are strongly dependent to
the characteristics of the respective target class. Therefore an optimal kernel
size and corresponding MMU was calculated for each Natura 2000 target
class and applied to the data sets of both test sites.
3 http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/
scipy.interpolate.griddata.html
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3.3.7 Validation

The results of the interoperable spatial generalisation described above, were
validated by two independent methods (see Figure 3.4).
For validating the functionality of the method, the percentage coverage of
the remote sensing-based input data-set was compared with percentages of
the resulting objects. This comparison will give an indication of the general
quality of the generalisation method based on the originally used input
data-set. In the �rst step of this procedure the percentage of coverage will
be calculated for each resulting habitat object. In the next step the results
will be compared to the percentages of the generalisation rule and will be
evaluated (see Table 3.5).

Since high quality functional validation results do not ensure correctness
of the result with respect to nature conservation and biodiversity monitoring,
the practical applicability of the method was evaluated by an independent
data-set. To implement this, the percentage coverage of the �eld-based
mapping of the focus habitats (data-sets were available for both study sites)
was compared with percentages of the resulting generalised objects (see
Figure 3.4).

Fig. 3.4: General Framework of the validation methods. The hatched area
stands for the percentage of correctly assigned objects.

3.3.8 Study sites and analysed habitat classes

The input data-sets for this study are the results of remote sensing-based
classi�cation of Natura 2000 heathland areas in the regions Kalmthoutse
Heide (Belgium/Flanders) and Schorfheide (Germany/Brandenburg). The
data-sets extend over an area of approximately 20 km2 in Belgium and
115 km2 in Brandenburg respectively. The focus of this work are selected
heathland habitat classes. The classi�cations, performed by Thoonen et al.
(2010) and Frick and Weyer (2005), used di�erent sensors and classi�cation
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methodologies (Nieland et al., 2015a). In order to minimise scale e�ects,
the data from Schorfheide (resolution 0.6 m * 0.6 m) was resampled to
the resolution of the Kalmthoutse Heide (2.4 m * 2.4 m) using a majority
resampling technique. Table 3.3 shows Natura 2000 classes that are present

Table 3.3: Analysed Natura 2000 classes and number of applied rules

Habitat code Habitat name Number of
rules

2330 Inland dunes with open 16
Corynephorus and Agrostis

4030 European dry heaths or 16
/ 2310 Dry sand heaths with

Calluna and Genista

in both test sites. Since there are only marginal di�erences between class
�Dry heath with Calluna and Genista� (2310) and �European dry heath�
(4030) the two classes cannot be easily distinguished with remote sensing
imagery. As the baseline classi�cations used both habitat classes as a joint
class, the subsequent spatial generalisation in this work is adopting the
nomenclature. The two test sites vary in their history, heterogeneity, as
well as species composition. While the Kalmthoutse Heide is situated in
the atlantic biogeographic region with a higher share of moisture related
indicator species, the Schorfheide is situated in the continental region, with
less precipitation and fewer species. Moreover, the Kalmthoutse Heide is a
former military training ground while the Schorfheide is a former hunting
ground and is dominated by wetlands and natural forest (Holsten et al., 2009).
Besides these di�erences, the general composition of heathland habitats are
the contribution of open soil, heath and (to a lesser extend) grassland and/or
forest. These components should be comparable within a consistent nature
conservation network in Europe to ensure proper assessment of necessary
genetic and functional diversity. These two very di�erent sites of the same
habitat types are suited to test a reliable transfer of an interoperable spatial
generalisation.

3.4 Results

The results of the spatial generalisation process were evaluated for optimal
MMU and kernel size, the functionality as well as the applicability on the
available data-sets.
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3.4.1 Optimal MMU and kernel size

The results show, that in the case of Flanders there are di�erences between
optimal MMU and optimal kernel size in applicability and functionality tests
(see table 3.4). The optimal MMU varies between 400 and 1000 m2, depending
mainly on the habitat type.

On the contrary, the optimal kernel size is much smaller when applied for
the functionality validation (between 5 and 11) compared to the applicability
validation (between 17 and 27). For the further validation process we
chose the optimal MMU and kernel size regarding the applicability and
functionality tests in the test site Flanders.

Table 3.4: Results of the assessment of the best �tting MMU in Flanders
and Brandenburg. The �eld �type� describes either functionality evaluation
(func.) and applicability evaluation (app.) in the test site Flanders

Habitat type optimal optimal
class kernel size MMU
2330 func. 5 600
2330 app. 17 900

2310/4030 func. 11 1000
2310/4030 app. 27 400

3.4.2 Functionality evaluation

Table 3.5 shows the results of the functionality tests for the test site in
Flanders and Brandenburg. The high percentages of polygons according to
the respective rule (73.74% to 100.0%) shows that the algorithm generates
patches that are mostly corresponding to the de�ned rules. However, the
best �tting MMU and kernel size (see table 3.5) according to the F-measure
does not correspond to the optimal MMU and kernel size according to the
functionality test. Therefore, the results of this assessment are improved by
taking into account the optimal kernel size of the functionality evaluation
(see table 3.4).

3.4.3 Applicability evaluation

Table 3.5 shows the results of the accuracy assessment in the test sites
Flanders and Brandenburg. The higher user accuracies for class 2310 and
2310/4030 than producer accuracies in the optimal applicability in Flanders
suggests that the algorithm tends to underestimates these classes. The results
for the optimal functionality are underestimated for class 2330 and strongly
overestimated for class 2310/4030.
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In the region of Brandenburg, the results for the optimal functionality
have similar trends like the results of Flanders. For the optimal
applicability class 2330 shows an underestimation whereas class 2310/4030
is overestimated. Therefore it seems, that the semantic transformation does
not necessarily downgrade the quality of the generalisation. For 2310/4030
the transferred generalisation rules even show much better results than the
ones in the origin region.

Figure 3.5 visualises the outcomes of both test sites. A visual evaluation
gives the impression that the core areas of respective classes could be derived
correctly in both test sites but the outer delineation di�ers. Especially in
parts where rather small gaps between two areas of the same class occur,
the manual delineation tends to have more distinct generalisation than the
automatised method.

3.5 Discussion

The presented approach shows that a transferable spatial generalisation
method for habitat classes derived by remote sensing products is possible.
The described framework derives convincing results for its functionality, while
the applicability, for several reasons discussed below, is not completely given.

The modi�ed SPARK methodology uses a two-step approach to overcome
two of the three drawbacks as stated by van der Kwast et al. (2011). The
�rst drawback is the inability to specify window size a priori. The two
other disadvantages are target class-boundary smoothing e�ects and the fact
that rectangular kernels often do not su�ciently represent the shape of the
object of interest. By using di�ering window sizes and MMUs, we ensure
that (see section 3.3.6) the spatial variation �ts to the result. Furthermore,
using improperly sized kernel sizes can be avoided. Moreover, smoothing
e�ects are reduced and more signi�cant results are produced. Eliminating
ambiguous pixels assigned to multiple classes in the interpolation module
also contributes to reducing smoothing e�ects. In fact, conservation areas
rarely have strict thematic borders, therefore smoothing e�ects can not be
regarded as an important factor in this �eld of object recognition. Comparing
automated classi�cation approaches to manual delineation is always di�cult
since manual interpretation can never be objective and results do not
perfectly match the de�ned rules (Spanhove et al., 2012). Thus, the di�erences
regarding the best MMU and kernel size in the functionality and applicability
evaluation can have three di�erent types of errors, beside the ones resulting
from the methodology itself.

First, the rules can be incorrect and do not adequately represent the
de�ned classes. Although the rules were selected with great care and together
with ecologists and regional experts, the very general scope of the Habitats
Directive does not adequately convey the speci�c objectives of regional
nature conservation (Förster et al., 2008). Local experts, for instance, tend
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to overestimate locally relevant species and underestimate locally abundant
species. These errors are highly signi�cant for Natura 2000's mapping of
SACs.

Second, there are inaccuracies in the remote sensing-based analysis and
respective output data-sets. Obviously, there are di�erent uncertainties in
remote sensing outcomes (Rocchini et al., 2013), which vary from dividing
gradual changes in vegetation composition in discreet classes to scale issues,
depending on the spatial resolution of the remote sensing data-set. A variety
of di�erent methods have been developed for ecosystem monitoring to take
these uncertainties into account: Maximum Entropy Modelling (Stenzel
et al., 2014), regression models (Feilhauer et al., 2011), multivariate analysis
(Schmidtlein et al., 2007), fuzzy logic approaches (Rocchini et al., 2010), a
priori additional knowledge via geo-data (Förster and Kleinschmit, 2014),
and spectral unmixing (Somers et al., 2011). Generally, the main reason for
uncertainties in remote sensing analyses is a improper scale match between
�eld data and the resolution of the remotely sensed data (Small, 2001). This
can either produce smoothing e�ects on the re�ectance variability (by using
too coarse resolution)(Avena et al., 1999; Lechner et al., 2009) or lead to
intra-class variation and noise if the spatial resolution of the remotely sensed
data is too high (Nagendra and Rocchini, 2008; Rocchini et al., 2013). In
our case, especially for indicators with small spatial occurrence, the mixed
pixel problem has signi�cant in�uence on uncertainty. However, the proposed
method retains this implicit error while generalising. Nevertheless, it might be
the case that the selection of the most appropriate MMU and KS minimizes
the discrepancy between the �eld sampling and the spatial resolution of the
remote sensing-based product.

Third, the manual delineations do not �t perfectly to the de�ned habitats.
The best �tting kernel size and MMU in the presented method are dependent
on the applicability and functionality of the algorithm. But good results
in the functionality test do not necessarily ensure good results of the
applicability and vice versa. However, the greater the di�erences between best
�tting MMU and kernel size based on applicability and the ones based on
functionality, the more correspondence between created rules and delineated
habitat patches based on �eldwork diverge. Unfortunately, at present no
standard spatial reference size (e.g. MMU) for habitat monitoring in Europe
exists. This question should be addressed to ecologists and included in future
mapping guidelines. Habitats requiring a large contiguous area, should have
a larger MMU applied, while small-sized habitats should be classi�ed with
a �ner MMU (Förster et al., 2008). In a larger context this is part of the
Modi�able Area Unit Problem (MAUP), which states that the areal units
can be arbitrary and modi�able, depending of the method of aggregating or
generalizing the geo-information (Openshaw, 1984). The resulting bias can
lead to the so-called ecological fallacy (Holt et al., 1996). There are a variety of
proposed techniques solving the MAUP by supplying more objectivity to the
method of generalizing. Object Based Image Analysis (OBIA) is often used for
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segmenting remote sensing images to derive the intrinsic scale of the dominant
landscape objects composing a scene (Hay et al., 2003). The estimation of
scale parameter tool (ESP) is frequently used to �nd the optimal balance
between over and undersegmentation (Dragut et al., 2010). The proposed
method of this study to estimate the optimal MMU could solve the problem,
that each landscape element or habitat implies its own intrisic scale and
requires subsequently a di�erent unit-size.

With the discussed points in mind, especially in regard to the
impreciseness of the reference data, the generalisation results are quite good.
The transfer of generalisation rules also produced satisfying results. For
class 2310/4030 the analyses show even better outcomes in the destination
region than in the origin region, whereas the results for class 2330 are only
slightly worse in the destination region (see table 3.5). The analyses show that
the described methodology produces objective, comparable and reproducible
generalisation results in di�erent regions in regard to the content of the
respective nomenclatures.

Therefore, patch reconstruction with the help of spatial reclassi�cation is
a possible solution for the challenge of creating objective Natura 2000 habitat
delineation.

3.6 Conclusion

This work addresses the urgent need to improve data availability and
comparability in the �eld of nature conservation monitoring to assist
European countries with the challenging task of protecting threatened
species and habitats (Schmeller et al., 2014). We showed that automated
delineation of heathland habitats using spatial reclassi�cation on the basis
of remote sensing classi�cation results is technically feasible. Furthermore,
generalisation rules can be transferred to another region by taking into
account the semantics of the respective classi�cation nomenclatures stored
in an OWL ontology.

Since the described procedure is dependent on several inputs, the
uncertainties in the accuracy assessment are rather high. The quality of the
generalisation process is always linked to the quality of the remote sensing
classi�cation outputs. Furthermore, uncertainties in the generalisation
algorithm and respective interpolation can produce lower accuracies. Finally,
manual object delineation is always subjective and therefore also includes
rather large uncertainties.
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Combining machine learning and ontological

data handling

T. Niklas Moran, Simon Nieland, Gregor Tintrup gen. Suntrup, Birgit
Kleinschmit, Michael Förster

Summary. Manual �eld surveys are expensive and time-consuming and could
be supplemented and streamlined by using RS for biodiversity monitoring.
RS is critical to meet requirements of existing laws such as the EU HabDir
and more importantly to meet future challenges. The full potential of RS
has yet to be harnessed as di�erent nomenclatures and procedures hinder
interoperability, comparison and provenance. Therefore, automated tools are
needed to use RS data to produce comparable, empirical data outputs that
lend themselves to data discovery and provenance. These issues are addressed
by a novel, semi-automatic ontology-based classi�cation method that uses data
mining algorithms and OWL ontologies that yields traceable, interoperable and
observation-based classi�cation outputs. The method is tested on EUNIS grasslands
in Saarburg, Rheinland-Palatinate. The developed methodology is a �rst step in
developing observation-based ontologies in the �eld of nature conservation. The
performed tests show promising results for the determination of the grassland
indicators wetness and alkalinity with an overall accuracy of 85% for alkalinity
and 76% for wetness.

Published as Combining machine learning and ontological data handling for
multi-source classi�cation of nature conservation areas in the International
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4.1 Introduction

Recognizing the importance of functioning ecosystems to reduce biodiversity
loss, the European Union has implemented an environmental conservation
framework to protect and conserve vital habitats in accordance with the
CBD. An integral part of this framework is the HabDir ((Council Directive)
92/43/EEC, 1992), which established the Natura 2000 network of habitats.
The directive requires member states to conserve and monitor designated
habitats and submit a report every six years. Environmental data to
determine biodiversity status must be collected to comply with reporting
requirements. Comparing data used for these reports is di�cult because
of varying data collection methods and acquisition nomenclatures used
by nature conservation authorities in each member state (Vanden Borre
et al., 2011). The main issue is in the subjective nature of �eld surveys
to identify habitats (Cherrill and McClean, 1999; Cherrill and Mcclean,
1999; Hearn et al., 2011; Nieland et al., 2015b). Furthermore, habitat
status is mainly generated in bottom-up approaches taking into account
the national and regional interpretation guidelines (Vanden Borre et al.,
2011; European Commision Joint Research Centre, 2013). This subjective and
time-consuming task of conducting �eld surveys could be partially replaced
with an automated RS method that uses Geographic Object Based Image
Analysis (GEOBIA) to reduce subjectivity, costs and time.

RS o�ers opportunities to collect and automatically interpret large
amounts of computer-readable data useful for nature conservation and
biodiversity monitoring (Corbane et al., 2015; Vanden Borre et al., 2011;
Mayer and Lopez, 2011). RS image analysis implicitly incorporates the
expertise of the person performing the analysis, reducing reproducibility
as the analyst ultimately chooses class membership in non-crisp boundaries
between classes. This can be divided into RS knowledge (spectral signature,
remote sensing indices, etc.) and �eld knowledge (feature properties, spatial
relations, etc.) (Andrés et al., 2013), which is often neither completely
nor explicitly de�ned as it is based on trial and error but in�uences the
classi�cation (Arvor et al., 2013). To ensure accuracy and applicability of
classi�cation outputs for conservation, experts with detailed knowledge of
the sites are needed to interpret the RS data. The distance between the
high-level semantics used by experts to describe domain concepts and the
low-level information quanti�ed from data is referred to as the �semantic
gap� (Smeulders et al., 2000).

Ontologies can help bridge the �semantic gap� and allow for better
data transferability, knowledge and work�ow management (provenance)
and logical consistency (Janowicz, 2012). The standards-compliant format
designed and adopted to express rich semantics and enable the �Semantic
Web� is called the OWL 1. The format supports multiple syntaxes yet de�nes
1 http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/
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the RDF (subject, predicate, object triplets) saved as XML as a common
exchange format. Moreover, through the use of reasoners (inference engines)
that infer logical consequences over axioms and asserted facts and verify
consistency, one can discover new knowledge (Arvor et al., 2013; Andrés
et al., 2013). RS and �eld expert knowledge can be digitized in ontologies,
thus allowing for a hierarchy of concepts for improved automatic image
annotation and retrieval using concepts from both �elds to produce more
accurate results (Srikanth et al., 2005). Janowicz (2012) advocates for more
observation-driven ontologies and for including machine learning, statistics
and data mining to construct ontological primitives. While published research
on using observation-based ontologies for biotope classi�cations is limited,
the available research using ontologies in RS research is brie�y summarized
below.

Ontologies modeled on the Land Cover Classi�cation System and the
General Habitat Category were integrated into tools used to monitor and
protect areas in the EU (Arvor et al., 2013). The authors note that
using the taxonomy of the di�erent classi�cation systems makes it possible
to include expert knowledge in the process. Lucas et al. (2015) used
pixel-based analysis and GEOBIA for greater classi�cation accuracy which
relies on a rule-base created by an expert. Other research includes urban
building classi�cation using a three-layered architecture (di Sciascio et al.,
2013) and another using semi-automated classi�cation using the Random
Forest classi�er to determine variable importance of features from airborne
laser scanner data (Belgiu et al., 2014). Ontologies have also been paired
with di�erent algorithms to automatically acquire classi�cation rules: a
genetic programming algorithm (Forestier et al., 2012) and the C4.5 data
mining algorithm (Sheeren et al., 2006). In biodiversity monitoring research,
ontologies have been demonstrated to improve spatial data interoperability
(Nieland et al., 2015a,b) and have been shown to aid in discovery of new
relationships to consider for habitat management (Pérez-Luque et al., 2015).
The addition of fuzzy data types to OWL and the development of a fuzzy
spatial reasoner holds great promise for the future of GEOBIA ontology
research using remote sensing (Belgiu et al., 2014; Bobillo and Straccia,
2015). More recently a multi-scale fuzzy spatial reasoner was developed that
could have signi�cant impact on this research (Argyridis and Argialas, 2015).

Even though researchers recently developed a number of indicators using
di�erent sensors for habitat evaluation (Nagendra et al., 2013), classi�cation
procedures and rule-sets were not formalized to be computer-readable and
therefore su�er from similar transferability and reproducibility problems
as manual habitat mapping (Arvor et al., 2013; Nieland et al., 2015a,b).
Therefore, a formalized computer-readable ontology could help solve these
problems and allow scientists to see how the classi�cation was performed
and be aware of possible incompatibilities before combining data (Janowicz,
2012). Furthermore, there are no standardized trans-national habitat
evaluation RS indicators (Lucas et al., 2015; Vanden Borre et al., 2011).
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Therefore, technical solutions to increase interoperability by thematically
harmonizing environmental data and systematize data collection methods
from remote sensing inputs in an automated work�ow are needed.

The EIONET Action Group on Land monitoring in Europe (EAGLE)
is an expert group that seeks to harmonize Land Cover (LC) and Land
Use (LU) nomenclatures using an object-oriented data model that eases
translations between nomenclatures (Arnold et al., 2013). The many
di�erent nomenclatures used in Europe each have their own speci�c
thematic conceptualization suited towards a speci�c scale and data collection
method- reducing the ability to compare thematic maps. Since LU and
LC are interconnected and in�uence one another, nomenclatures often
incorporate both de�nitions into one class making separation di�cult. To
overcome this problem the EAGLE data model describes landscapes in
three main components: land cover (abiotic, vegetation, water) land use
(agriculture, forestry, etc.) and characteristics (bio-physical, cultivation etc.).
The increased interoperability and transferability of RS data and the semantic
layer on top helps decision-makers to better assess and compare outcomes.

In this paper we propose an automated system that can classify dry, mesic
and wet grasslands according to the EUNIS biotope classi�cation schema
using earth observation data, existing thematic maps (biotope, forestry, etc.),
and expert knowledge formalized in an ontology with rules generated by
machine learning algorithms. Combining machine learning algorithms with
ontology-based classi�cation has, to our knowledge, not yet been done and
is a �rst in remote sensing research. This method contributes to the goal
of empirically derived rule creation and enhances data interoperability and
comparison as proposed by Janowicz (2012). The main goals of this paper
are:

• to develop a RS classi�cation methodology using a DT approach in
combination with ontological formalism to generate highly interoperable,
reproducible and exchangeable classi�cation procedures and results,

• apply the methodology to indicators used to separate grassland habitats
de�ned under EUNIS

• and evaluate the developed approach by comparing it to an ensemble
classi�cation algorithm (ET). 2.

4.2 Method

This section proposes an ontology-based classi�cation approach which uses
a DT for the semantic annotation procedure. It furthermore describes the
study area including available geo-data and the semantic conceptualization of
classes in the nature conservation domain. To evaluate the generated results
the outcomes were compared to a highly randomized tree classi�er called
2 http://scikit-learn.org/stable/modules/ ensemble.html#extremely-randomized-trees
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ET, which is a tree-based ensemble classi�er (Breiman, 2001) known to be
suitable for this kind of classi�cation problems (Qian et al., 2014; Franke
et al., 2012; Hladik et al., 2013; Barrett et al., 2014).

4.2.1 Study area, data and classi�cation nomenclature

The study area for this work is the administrative district of Saarburg.
The district has an area of approximately 200km2 and is located in the
southwest of the federal state of Rheinland Pfalz - Rhineland Palatinate
(RLP), Germany. Luxembourg borders the area to the west and the federal
state of Saarland to the south. RLP is in�uenced by western European
Atlantic climate and there is an economically and culturally important
viticulture industry along the Mosel and Rhine rivers (see �gure 4.1).

Fig. 4.1: The location of Saarburg (in purple) in relation
to Rhineland-Palatinate. Map on right c⃝Thunderforest,
Data c⃝OpenStreetMap contributors.

To evaluate the developed methodology this work tries to demonstrate
possibilities to support the federal administration of RLP performing
their regional biotope mapping as well as ful�lling its European reporting
obligations de�ned in the HabDir. Therefore we chose the nomenclature of
the EUNIS to classify biotopes as it directly satis�es the HabDir and has
already been semantically transferred to the local mapping nomenclatures.
A consistent classi�cation process could be realized by describing EUNIS
classes with biophysical and anthropogenic indicators that are supposed
to be derivable with the help of the available data bases. To achieve an
accurate formalization of the regarded habitats, selected indicators de�ned in
EUNIS, were adopted to meet the requirements of RS analysis. Furthermore
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certain indicators of EAGLE's object-oriented data model were used to
describe land use, land cover and additional characteristics (biophysical and
anthropogenic). The EAGLE terms were adopted when possible to increase
interoperability and further re-use. Table 4.1 illustrates the selected EUNIS
categories and subsequent descriptive indicators.

Table 4.1: Class descriptions of of classi�ed Natura 2000 habitats. A '-'
denotes 'none' and the �rst letter of each value is used to safe space.
Vegetation type: {graminaceous, herbaceous}

E
U
N
IS
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E Grasslands and lands dominated by forbs, mosses
or lichens

h - -

E1 Dry grasslands g dry -
E1.2 Perennial calcareous grassland and basic steppes g dry alkaline
E1.7 Non-Mediterranean dry acid and neutral closed

grassland
g dry neutral/

acid
E2 Mesic grasslands g mesic -
E3 Seasonally wet and wet grasslands g wet -

The thematic reference data consists of the federal biotope map (partially
updated 2015), agricultural data (updated every year), forestry data (2014)
and a soil map that is based on the ALKIS (Amtliches Liegenschaftskaster
Informationssystem- Automated Land Registration Map) (partially updated
2015). To generate valid and consistent testing and training data for the
classi�cation, these data were combined to create a comprehensive thematic
data basis for RLP (see �gure 4.2). Consistency checks and manual validation
have been carried out to ensure reliability and account for di�erent quality
and age of the underlying data sources. To ensure the comparability of these
base data sets, they were characterized with a common semantic reference
model of indicators that have been developed on the basis of the EAGLE
data model and the EUNIS (see subsection 4.2.3). Thus, all base data sets
were conceptualized by using the developed indicators (such as wetness,
alkalinity etc.) and can therefore be used as testing and training data for
certain categories that therefore serve as class labels for the machine learning
algorithm.

All described processes are based on pre-segmented data, generated
using GEOBIA. For this pre-segmentation step mainly two types of data
were taken into account: digital, multi-spectral (B, G, R, NIR) orthophotos
(Year:2012-2013, 0.2m resolution) and a Digital Surface Model (DSM) (0.5m
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resolution) which was generated by applying automated stereo matching.
To receive object heights the DSM was normalized by the subtraction of a
LiDAR based DTM (res. 0.5 m). These data therefore represent the basis
for all segmentation and classi�cation procedures. The iterative object-based
pre-classi�cation was performed by Tintrup gen. Suntrup et al. (2015) in a
multi-resolution approach (Baatz et al., 2001). A basic land cover extraction
is performed by the segmentation process which also follows the EAGLE
data model when possible. This includes the main land cover classes trees,
shrubs, herbaceous/graminaceous vegetation, bare soil, heath, lichens and
mosses, reeds, arti�cial surfaces, water plants and forbs. Furthermore, based
on the available input data (Digital Terrain Model (DTM), Digital Elevation
Model (DEM) orthophotos), various zonal statistics could be calculated for
the resulting objects (see 4.6). Hence, the actual classi�cation process is based
on two RapidEye scenes from 2014 with 34 indices derived from the DTM,
DEM and orthophotos.

Fig. 4.2: 1) The segmentation process uses orthophotos, satellite (RapidEye)
and a DSM. The min/max, mean, median, mode, std deviation is calculated
for SAGA wetness index, Topographic Position Index (TPI), etc. 3) The
QA (quality assurance) removes con�icts in the thematic maps (biotope,
agriculture, etc) 4) The segmented data that �ts within the thematic polygons
is unioned together.
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4.2.2 Overview of the ontological classi�cation process

Figure 4.3 gives an overview of the method using the indicator wetness as
an example. The wetness level is essential to di�erentiate dry, mesic and wet
grassland habitats according to the second level of the EUNIS nomenclature
(see table 4.1). The developed system is comprised of (1) the preparation of
reference data, including a spatial union of the base data sets (pre-segmented,
pre-classi�ed aerial photos and thematic maps (see 4.2.1) and the attachment
of subsequent semantic characteristics (see 4.2.3), (2) the selection of training
and validation data (see 4.2.6), the generation of classi�cation rules (see
4.2.4) using machine learning algorithms and �nally (4) the ontology-based
classi�cation process (see 4.2.5).

The software relies on a PostgreSQL database with PostGIS extensions
and various open source Python and Java libraries to interact with the
database, convert �les and execute a reasoner over the created OWL ontology
(see 4.2.5). This reasoner can perform A-Box and T-Box reasoning over the
de�ned axioms. Relationships between objects (subsumption, disjointedness,
etc.) are discovered and checked for consistency during T-box reasoning.
Using software, such as Protégé, users can see how the de�ned axioms are
related in the stored OWL knowledge base and check for logical consistency.
If OWLIndividuals (objects) are in the knowledge base then A-Box reasoning
can also be performed �nding if any of the individuals �t into the de�ned
classes.

4.2.3 Semantic characterization

Semantic characterization is crucial as the resulting segmentation output
determines the quality of the later identi�cation step as the data mining
algorithms require characteristic biotopes to train on. Using EUNIS class
descriptions and interpretation guidelines (European Commission, 2007), a
set of indicators tailored to the available input data for our test area were
created. Detailed analysis of the EUNIS nomenclature showed that some
indicators do not lend themselves to easily be detected by RS data. Therefore
indicators were added to produce a meaningful formalization of the classes.
The formalization can be written to an OWL ontology, which is able to store
complex logical connections (axioms) in an OWL �le.

An OWL ontology is composed of classes, individuals and properties.
Classes are sets of individuals and properties come in two forms: an object
property de�nes a relationship between two individuals and a data property
places a data type constraint on the individual (W3C OWL Working Group,
2009). We use environmental variables (e.g., wetness, acidity, vegetation type,
etc.) from the classi�cation schemes and concepts from EAGLE to preserve
interoperability by using this well-formalized vocabulary. All used indicators
for this research are shown in Table 4.1. Examples of the EUNIS classes,
E1 Dry grasslands and E1.2 Perennial calcareous grassland and basic steppes
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Fig. 4.3: 1) The thematic maps (land cover, biotope, soil, etc.) are unioned
together and spatial statistics on various parameters (e.g. spectral, terrain,
texture, etc.) are calculated for each combined polygon. 2) Training and
testing data are created and saved in the database. 3) The rules are generated
for each indicator from training data. 4) The rules are imported into the OWL
ontology along with the testing data as individuals. The reasoner performs
A-box reasoning to determine class membership.
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modeled with selected remote sensing indicators are written in description
logic (DL) below:

E1 ≡ ∃has_eagleVegetationType {�graminaceous�}
∩ ∃has_nat�oWetness {�dry�}

and

E1.2 ≡ ∃has_eagleVegetationType {�graminaceous�}
∩ ∃has_nat�oWetness {�dry�}
∩ ∃has_nat�oAcidity {�alkaline�}

Since the EUNIS nomenclature exclusively di�erentiates grasslands
between alkaline and acid or neutral acidity status, class E1.7 is formalized
as follows:

E1.7 ≡ ∃has_eagleVegetationType {�graminaceous�}
∩ ∃has_nat�oWetness {�dry�}
∩ (∃has_nat�oAcidity {�neutral�}
∪ ∃has_nat�oAcidity {�acid�})

Figure 4.4 shows two fragments of the developed domain ontology. All
EUNIS grassland classes beginning with E are sub-classes of the category
"EUNIS". All derived indicators are sub-classes of the concept "Indicators".
Class vegetationType, shows a peculiarity, since it has been characterized
as tree or shrub or herbaceous, whereas graminaceous is an indicator and
sub-class of herbaceous at the same time. The same counts for the concept
"wetness", categorized as wet or dry or mesic and acidity, categorized as
acid or neutral or alkaline (see table 4.1).

4.2.4 Rule generation

The DT classi�er, which is an "optimised classi�cation and regression tree
(CART)" was chosen as the base classi�er for this methodology (Breiman
et al., 1984). It generates rules to separate indicator labels, such as dry,
mesic and wet that are then formalized in an OWL2 ontology to be able to
use ontology-based reasoning for classi�cation. To realize this task, the DT
was parsed using a depth-�rst search algorithm (Cormen, 2009). Starting
with the root node, the algorithm follows the left branch, visiting all children
until it reaches the terminal leaf node. This branch lineage becomes the �rst
rule. The nodes of the DT contain decision thresholds, the values variable
shows the number of samples assigned to each class at that node (see �gure
4.5) multiplied by the class weight and the entropy displays the information
gain at that node. The class weight is calculated as:

n_samples
n_classes * bincount ( y )

(4.1)
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All nodes visited before reaching the leaf node are chained with a logical
�AND� together to create a rule. The rule is assigned to the class with the
most members correctly classi�ed at that leaf node. The process continues
until all leaf nodes are visited. The rules are joined together by logical �OR"s
and become a set of rules for the indicator under investigation. A portion of
a decision tree trained on the indicator class ,wetness is depicted in �gure
4.5.

Fig. 4.5: A section of the right-side of a DT trained on alkaline indicator
with the white node being the root node. Blue is alkaline while orange is not
alkaline (class 1 and 0, respectively).

An example rule from the DT is shown below. The class "0" (non-alkaline)
from �alkaline� has a rule that is generated by the decision tree algorithm as
seen in 4.1 below. The �rst name is the feature/statistic's name, followed by
a threshold. For the DT, the last number is the node in the tree where the
threshold comes from. This information is not currently being used.

Listing 4.1:
re_ndvi_mean ,>,0.525677,0,

prcu_max , > , -1.005882 ,162

re_ndvi_median , > ,0.602015 ,168

Listing 4.2:
<ObjectUnionOf >

<ObjectIntersectionOf >

<DataSomeValuesFrom >

<DataProperty IRI="#has_re_ndvi_mean"/>

<DatatypeRestriction >

<Datatype abbreviatedIRI="xsd:double"/>

<FacetRestriction facet="&xsd;maxExclusive">

<Literal datatypeIRI="&xsd;double">0.5257 </Literal >

</FacetRestriction >

</DatatypeRestriction >
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</DataSomeValuesFrom >

<DataSomeValuesFrom >

<DataProperty IRI="#has_prcu_max"/>

<DatatypeRestriction >

<Datatype abbreviatedIRI="xsd:double"/>

<FacetRestriction facet="&xsd;maxExclusive">

<Literal datatypeIRI="&xsd;double"> -1.0059</Literal >

</FacetRestriction >

</DatatypeRestriction >

</DataSomeValuesFrom >

<DataSomeValuesFrom >

<DataProperty IRI="#has_re_ndvi_median"/>

<DatatypeRestriction >

<Datatype abbreviatedIRI="xsd:double"/>

<FacetRestriction facet="&xsd;maxExclusive">

<Literal datatypeIRI="&xsd;double">0.602</Literal >

</FacetRestriction >

</DatatypeRestriction >

</DataSomeValuesFrom >

</ObjectIntersectionOf >

</ObjectUnionOf >

Listing 4.2 shows listing 4.1 in an OWL/XML representation. The rule has
a collection of DataSomeValuesFrom within a nested datatype restriction
corresponding to the rule threshold. A class can be de�ned by many rules
containing multiple datatype properties that are chained together with logical
AND (intersection) operators. The rules are then joined by a logical OR
(union) operator as can be seen in the outer ObjectUnionOf. The rule can
be written in description logic as shown in 4.2.4.

non-alkaline ≡ ∃has_re_ndvi_mean{> 0.535677}
∩ ∃has_prcu_max{> -1.005882}
∩ ∃has_re_ndvi_median{> 0.602015}

4.2.5 Ontology-based classi�cation

After the algorithms produce rules for each indicator, these are added as
facet restrictions to the OWL ontology. The polygons from the testing
table are loaded from the database as OWLIndividuals into the same
ontology. Furthermore, a reasoner can perform A-Box and T-Box reasoning
over the de�ned axioms. In this procedure relationships between objects
(subsumption, disjointedness, etc.) are discovered and checked for consistency
during T-box reasoning. Using software for ontology engineering and
management, such as Protégé, users can see how the de�ned axioms are
related in the stored knowledge base (OWL) and check for logical consistency.
If OWLIndividuals (objects) are in the knowledge base then A-Box reasoning
can also be performed �nding if any of the individuals �t into the de�ned
classes. As EUNIS is an hierarchically structured classi�cation scheme, testing
that the formalization follows the same hierarchy is important. In this work
the reasoner FaCT++ was used to classify all polygons by applying A-box
reasoning over the rules. The classi�cation results by the reasoner are written
to the database (see �gure 4.3). For the calibration and selection of suitable
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parameters for the classi�cation algorithm the evolutionary search algorithm
sklearn-deap3 was used based on the Distributed Evolutionary Algorithms in
Python (DEAP) (Fortin et al., 2012; Beyer and Schwefel, 2002).

The optimal parameters for the DT were determined by using 10
evolutions, a population size of 50, tournament size of 3 and a gene mutation
probability of 0.1 (Fortin et al., 2012). The parameters for the DT that
in�uence classi�cation accuracy include: minimum samples leaf, minimum
samples split, the max depth, the max features and the criterion ('entropy'
or 'gini').

4.2.6 Validation

For the training and testing of the described algorithm, only polygons
greater than 10m2 were selected. Furthermore they had to be identi�ed
as herbaceous or graminaceous plants according to the pre-segmentation.
Finally, to evaluate the quality of the results in respect to recently more
popular ensemble classi�cation approaches the outcomes were compared to
an ET reference classi�cation (see table 4.2). We use precision4 (positive
predictive value), recall5 (sensitivity, true positive rate), and f-score6 to
determine the accuracy of classi�cation results. The precision score (4.2) is a
re�ection of how many of the objects that were classi�ed were true positives.
Recall (4.3) shows the classi�er's ability to �nd all relevant objects (positive
samples). The f-score is the harmonic mean of the precision and recall.

true positives
true positives + false positives

(4.2)

true positives
true positives + false negatives

(4.3)

2 ∗ precision * recall
precision + recall

(4.4)

First the rules are generated for each indicator and the metrics in 4.2, 4.3
and 4.4 are saved for accuracy analysis and for later scrutiny. The results for
each indicator is saved in the database. Objects that meet the rule as de�ned
in 4.1 are assigned to that class. The classi�ed result is then compared with
the actual class label to determine the quality of the results. The data were
divided into 60% for training and 40% for validation. The DT undergo a
3 https://github.com/rsteca/sklearn-deap
4 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.

precision_score.html#sklearn.metrics.precision_score
5 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.

recall_score.html#sklearn.metrics.recall_score
6 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_

score.html#sklearn.metrics.f1_score

https://github.com/rsteca/sklearn-deap
 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score .html#sklearn.metrics.precision_score
 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score .html#sklearn.metrics.precision_score
 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.ht ml#sklearn.metrics.recall_score
 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.ht ml#sklearn.metrics.recall_score
 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html# s klearn.metrics.f1_score
 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html# s klearn.metrics.f1_score
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5-fold cross validation to verify results and the DT with the highest overall
accuracy DT was chosen.

4.3 Results

4.3.1 Classi�cation

For both indicators the ET classi�ed more accurately than the DT in both
precision and recall. The di�erence in recall between the classi�ers was smaller
than the precision. The small di�erence between recall, precision and f-score
suggests that the DT balances precision and recall. The classi�ers ranked
features di�erently according to importance but the TPI was used by both
classi�ers to classify grassland wetness.

Table 4.2: Classi�cation results of indicators using ET. The average value
illustrates a weighted average over all regarded objects

Indicator Class Precision Recall F-score Support

alkaline
non alkaline 0.99 1.0 0.99 5036
alkaline 1.00 0.69 0.82 203
avg 0.99 0.99 0.99 5239

wetness

dry 1.0 0.73 0.85 200
mesic 0.95 1.00 0.97 4455
wet 0.95 0.65 0.77 584
avg 0.95 0.95 0.94 5239

Table 4.3: Classi�cation of indicators using DT and FaCT++ reasoner. The
average value illustrates a weighted average over all regarded objects

Indicator Class Precision Recall F-score Support

alkaline
non alkaline 0.99 0.99 0.99 5036
alkaline 0.70 0.75 0.73 203
avg 0.98 0.98 0.98 5239

wetness

dry 0.65 0.72 0.69 200
mesic 0.95 0.93 0.94 4455
wet 0.62 0.69 0.65 584
avg 0.90 0.89 0.90 5239

4.3.2 Most important features

The ET relied heavily on TPI while the DT determined RapidEye Normalized
Di�erence Red Edge Index (NDRE) was the most important feature with TPI
being second most important.
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Table 4.4: Top 5 features as selected by ET and DT for wetness indicator and
alkaline indicator

indicator ET DT
wetness TPI RapidEye NDRE

Wind E�ect TPI
SAGA Wetness Index SAGA Wetness Index
Di�use Insolation Catchment Area
Morphometric Protection Index
(MPI)

Wind E�ect

alkaline Wind E�ect NDVI from RapidEye
Di�use Insolation TPI
TPI Green from Orthophotos
RapidEye NDRE Di�use Insolation
SAGA Wetness Index Terrain Ruggedness Index (TRI)

As can be seen in table 4.4 the ET ranked one parameter's di�erent statistics
as the most important; in the case of wetness the TPI and for alkalinity the
wind e�ect index.

4.3.3 Reasoning

Figure 4.6 shows the result of the reasoning process. In comparison to the
original class model (see �gure 4.4) the reasoner generated a consistent
class hierarchy in a subsumption procedure. Therefore, parameters (e.g. wet,
dry, alkaline) of the indicator categories acidity, wetness, vegetation type
were identi�ed as sub-classes of the respective category. In addition, the
indicator "graminaceous" was recognized as a sub-class of "herbaceous".
Even more important are the results of the reasoning process for the
EUNIS classes. Based on the assigned indicators the hierarchical structure
of the nomenclature was revealed. This refers to level two of the EUNIS
nomenclature which were assigned as sub-classes of E because E has only one
specifying indicator (herbaceous) whereas E1, E2 and E3 have one additional
indicator (dry, mesic, wet). Furthermore the identi�cation of graminaceous
as sub-class of herbaceous led to the conclusion that: E1 must be a sub-class
of E because E contains the indicator herbaceous whereas E1 contains
the indicator graminaceous. The classes E1.2 and E1.7 were assigned as
sub-classes of E1 because they include the indicator dry and additionally
have an acidity indicator.

Saarburg has only one EUNIS dry alkaline grassland type: E1.2. The
reasoner classi�es E1.2 with 95% precision. The high precision rate means
that dry alkaline grasslands are rarely incorrectly classi�ed. The classi�er was
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not able to identify all relevant positive samples and had 7 false positives.
The only other explicitly de�ned non-alkaline biotope (neutral/acid) is E1.7,
which had too few objects for training and testing.

4.4 Discussion

Since one of our research aims was to use the EUNIS nomenclature
formalized in an OWL ontology to generate reproducible, interoperable
and exchangeable classi�cation outputs, we chose the DT as the base
classi�er for the proposed methodology. This study therefore follows the
request of Janowicz (2012) to combine machine learning processes with
semantic-based data handling to preserve interoperability and re-usability
of classi�cation processes by using semantic web standards like OWL2. The
results clearly show the advantages of ontological classi�cation approaches
(see section 4.3.3) in terms of knowledge management and the ability to
use ontological reasoning for classi�cation, subsumption and consistency
purposes. Ontological classi�cation can support broader interoperability
by applying usable and exchangeable W3C standard compliant data
structures and allow vocabularies to be shared via Linked Data. Being
able to analyze the rules generated and at the same time perform T-Box
reasoning on the conceptual model (in this case EUNIS) allows a clear
iterative process where experts can tune the conceptual model or �nd
errors in the reference areas. Furthermore this reduces the likelihood of
systemic errors from going unnoticed when using a "black box" model
which analyze data in n-dimensional space which is hard for humans to
interpret. Importing and using vocabularies from other scienti�c �elds such
as geology can potentially increase accuracy. The results therefore con�rm
previous studies on ontological classi�cation and knowledge management
(Forestier et al., 2012; Belgiu et al., 2013; Argyridis and Argialas, 2015)
and additionally indicate possibilities of a direct integration of ontologies
in machine-learning-based classi�cation processes. The classi�cation shows
promising results for the indicators alkalinity and wetness with an overall
accuracy of 85% for alkalinity and 76% for wetness. This con�rms the
results of related studies (Franke et al., 2012; Otukei and Blaschke, 2010),
which successfully applied the DT algorithm for grassland conservation
and land cover change. The proposed methodology facilitates formalized
conceptualization by being able to visualize class hierarchies and interact
with the results of A-box and T-box reasoning. New relations between classes
can be de�ned with varying relationships (intersection, union, etc.) and terms
can be imported from di�erent linked data sources. Even though the classi�er
only reached 70% and 65% precision score for alkaline grasslands and dry
grasslands respectively (4.2), it was able to correctly classify 95% of dry and
alkaline grasslands (E1.2).
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By using the hierarchy, polygons can be inspected to determine which
of the rules were not met for class membership. Furthermore, the high
recall rate in identifying dry alkaline grasslands suggests that the EUNIS
conceptualization is accurate.

In comparison to the ET classi�er (overall accuracy for 90% for alkalinity
and 86% for wetness) the DT classi�er shows considerable lower results. This
leads to the conclusion that the ET classi�er is better suitable for this kind of
classi�cation problem and that the ontological approach should be extended
to ensemble-based classi�ers in the future.

The importance of the TPI in determining the wetness of grasslands
suggests that the wetter grasslands are found in areas lower than their
surrounding. The DT's use of the NDRE to classify the wetness of grasslands
is also supported by other studies (Schuster et al., 2012). Furthermore,
inspecting the incorrectly classi�ed polygons points to a problem with smaller
boundary polygons which straddle dry and mesic biotopes. The same proved
to be true for wet polygons that were wrongly classi�ed as mesic.

4.5 Conclusion

This work illustrates a methodology for the combination of ontology-based
knowledge management and machine learning for classi�cation of multiple
spatial data sources. The main advantages include facilitating expert
knowledge management and the reasoning capabilities of ontologies like
subsumption and consistency checks. Furthermore, the generated ontology
can be uploaded to the Linked Data Cloud or be used in other studies.
Alternatively, the applied DT classi�cation methodology shows good results
but does not reach the accuracy of ensemble-based classi�ers like the ET, the
methodology shall be transferred to ensemble-based classi�ers in the future.

4.6 Appendix

4.6.1 Ontologies

The OWL ontology with rules generated by the DT algorithm used in this
study is located at: http://www.niklasmoran.com/ontologies/saarburg_
grasslands.owl

4.6.2 Indices used for classi�cation

http://www.niklasmoran.com/ontologies/saarburg_grasslands.owl
http://www.niklasmoran.com/ontologies/saarburg_grasslands.owl
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Table 4.5: Indices used for classi�cation. OP describes indices of the
orthophotos, SAT describes indices derived from RapidEye satellite data.

Based on dtm/dem
Based on multi-spectral
orthophotos (OP)/ satellite data
(SAT)

Aspect Red, Green, Blue (OP)
Catchment Area Bare Area Index
Convergence Index Normalized Di�erence Vegetation

Index (Op & SAT)
Curvature Classi�cation Normalized Di�erence Wetness

Index (Op & SAT)
Double Di�erence Vegetation Index Near Infrared (Op & SAT)
Diurnal Anisotropic Heating Panchromatic (OP)
Di�use Insolation Normalized Di�erence Red-Edge

(SAT)
Flow Accumulation Grey-level Co-occurrence Matrix

(GLCM)
Morphometric Protection Index
Multiresolution Ridge Top Flatness
Index
Multiresolution Valley Bottom
Flatness Index
Pro�le Curvature
Slope
SAGA Wetness Index
Total Insolation
Topographic Position Index
Terrain Ruggedness Index
Wind E�ect
Normalized Digital Surface Model
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Finding the optimal scale for habitat mapping

Simon Nieland, Birgit Kleinschmit, Michael Förster

Summary. The size and scale of habitats is an important mapping parameter
in habitat monitoring as it strongly in�uences the assessment of protected areas.
To objectify Natura 2000 monitoring, procedures are needed to identify optimal
mapping scales of habitats.
Objectives This work proposes a work�ow for automated delineation of selected
Natura 2000 heathland and grassland habitats based on remote sensing outputs and
aggregation rules. It examines the in�uence of a MMU and KS for the automated
delineation of certain Natura 2000 habitat classes and compares a manual with an
automated aggregation procedure.
Methods This work uses an aggregation procedure based on SPARK to delineate
certain heterogeneous habitats and illustrates a methodology of �nding the
optimal MMU and KS for each habitat type. It furthermore compares automated
aggregation results with manual delineation performed by surveyors.
Results The automated, remote sensing-based aggregation approach achieved
similar correspondence to Natura 2000 mapping rules as the manual mapping
(between 30-60% agreement). Optimal MMU and KS depend on the particular
Natura 2000 habitat type. Combined, multi-class assessments achieved better
results than analyses with only one destination class.
Conclusions This analysis showed that each habitat type has its optimummapping
scale, which cannot easily be implemented in manual interpretation guidelines.
Automated class assignment makes scale speci�c evaluation easier and can improve
the spatial accuracy and comparability of the results. Natura 2000 management
should try to develop well-balanced interpretation guidelines, which better represent
the conceptualisations applied in the mapping methodologies.

Submitted as Finding the optimal scale for habitat mapping - a remote
sensing-based aggregation approach to Landscape Ecology c⃝Elsevier
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5.1 Introduction

The loss of biological diversity is one of today's key environmental challenges.
Preserving nature is a global concern, as it provides critical ecosystem services
(Vanden Borre et al., 2011). The HabDir and the BD of the EU can be
regarded as international legal tools for nature protection and are the legal
basis for Natura 2000, the largest international network of protected areas
(Popescu et al., 2014) . In order to create a sustainable and comprehensive
monitoring program across Europe, the HabDir obliges each EU member
state to provide a report on the status of the designated nature conservation
areas every six years. Reports are expected to use the habitat types from
the �European Nature Information System� (EUNIS) or the habitat types
listed on Annex I of the Habitats Directive (Evans, 2006). Since data of
these nomenclatures are mostly derived from national or local mappings
and subsequent nomenclatures, there is an interoperability gap regarding the
thematic content of this kind of information (Nieland et al., 2015b; Louette
et al., 2011).

Mapping habitats requires su�cient experience in surveying, a thorough
knowledge of plant species and sociology, soil processes, management
activities and environmental dynamics in general (Schmidtlein et al., 2014).
Since there is often no clear thematic border but rather a �oristic gradient
between di�erent habitat classes, delineation is always subjective and
dependent on the personal perception of the surveying ecologist (Schmidtlein,
2004). Additionally, on-site habitat delineation is particularly di�cult as in
most protected zones there are areas, which cannot be accessed or surveyed
comprehensively. Therefore, the spatial variability of the mapped areas is
often inadequately represented (Lucas et al., 2007) and mappings of di�erent
surveyors, using the same standard mapping method, rarely match each other
(Cherrill and McClean, 1999). In fact, on an international level, agreements
between maps are even worse since data sets, which use a European
nomenclature, are mostly derived from national products with di�ering
descriptions and conceptualisations. These incongruences are problematic
for harmonization and comparability of Europe's nature conservation data.
Förster et al. (2008) and Vanden Borre et al. (2011) state that until now,
there is no existing standard, which de�nes the spatial reference size of
a habitat (e.g. a MMU)). Mapping guidelines sometimes include MMU's
but these are mostly the same for all habitats and re�ect rather practical
issues (e.g. the operability of the mapping in the �eld) than the optimal
size in regard to characteristics and variability of a certain class (Vanden
Borre et al., 2011). As a matter of fact di�erent habitat types are mapped
in di�ering scales due to the experience of the surveyor and the spatial
characteristics of the designated class which leads to scaling, grouping and
zoning problems described in the MAUP (Openshaw, 1984). It is known,
that the MAUP has a substantial in�uence on all kinds of ecological studies,
especially the ones dealing with aggregation issues (Jelinski and Wu, 1996).
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For example prevalent tree species like Luzulo-Fagetum beech forests (Natura
2000 code 9110) are mapped rather extensively, whereas habitat types with
very special requirements regarding the local characteristics like e.g. Molinia
meadows (Natura 2000 code 6410) are mapped on a very detailed level.
This is especially relevant for habitat types that contain di�erent types of
land cover and respective species (e.g. a heathland habitat that contains
water, bare sand, dry heath, wet heath, dry grassland etc.). Due to its
heterogeneous structure and comparatively small dispersion area, heathlands
represent a challenge for Natura 2000 monitoring and are therefore perfectly
suitable as a use-case for the application of aggregation approaches (Thoonen
et al., 2013). Often, the delineation of habitats has a direct in�uence on
the outcome of preservation assessment. If, for example, a dry heathland
area is delineated very strictly the preservation status would be considered
favourable, but the same area could have an unfavourable preservation status
by expanding the outer border to parts which have negative in�uence on the
designation (e.g. in our example grass or tree encroached areas). Therefore,
in regard to interoperability of nature conservation data, �xed standards
for habitat delineation are needed to ensure comparable monitoring across
Europe (Manakos 2013).

Remote sensing has considerable potential to realise this challenging task
by providing biophysical and biochemical indicators of ecosystem functioning
(like Leaf Area Index etc.) (Skidmore et al., 2015) and is able to map some
�ne-scale indicators (e.g. ground cover of certain species), which can be used
to estimate the conservation status of habitats (Spanhove et al., 2012). When
considering remote sensing data for mapping or monitoring biodiversity, the
spatial resolution (sensor pixel size) of the sensor is an important parameter
in�uencing the estimation and measurement of vegetation diversity (Levin,
1992; Stohlgren et al., 1997) and therefore crucial for the reporting of
ecologically valuable habitats. This is especially relevant when assessing
a suitable scale to map the object of interest (Hengl 2006; Stohlgren et
al. 1997), which inherits a number of scale matching problems (Rocchini
et al., 2010). It is an often underestimated but essential part of remote
sensing products to �nd the right balance between pixel size and species
diversity sampling unit (Rocchini et al., 2015). Similarly, when generalising
remote sensing classi�cation results of species to habitats, the number of
included pixels should be larger than the number of classes required for
the generalisation rules, while a generalisation with a high number of pixels
might lead to omitting smaller areas. A method to generalise classi�cation
results are Reclassi�cation Kernels as introduced e.g. by (Barnsley and Barr,
1996), which are utilized in several application �elds, such as urban mapping
(van der Kwast et al., 2011) or habitat delineation (Keramitsoglou et al.,
2015). While it is well known that reclassi�cation kernels and the MMU
in�uence the quality of a generalisation product, to our knowledge there has
been no systematic study to date to �nd suitable parameters for habitat
mapping. Furthermore no studies respond to the demands of (Corbane et al.,
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2015) and (Vanden Borre et al., 2011) to analyse the typical surface area
range in which especially heterogeneous habitat types occur. Therefore, this
work

• proposes a work�ow for automated delineation of selected Natura 2000
heathland and grassland habitats based on aggregation rules,

• examines the in�uence of MMU and kernel size (KS) for the automated
delineation of certain Natura 2000 habitat classes and

• compares a manual with an automated generalisation procedure and
evaluate the results in regard to the descriptions of the respective
interpretation manuals.

5.2 Method

Method This section gives an overview of the spatial aggregation procedure,
illustrates the evaluation approach and shows the methodology of �nding
the optimal MMU and scale (kernel size) for each habitat type and
comparing automated aggregation results with manual delineation performed
by surveyors.

5.2.1 Study area and Data

The input data set for this study is a remote sensing-based classi�cation of
an area in the nature conservation area Kalmthoutse Heide in Belgium1 (see
�gure 5.2). The area is approximately 20km2 and is mainly covered by dry
and wet heathland, grassland, water bodies and forest. The classi�cation
was performed by Thoonen et al. (2010) and is based on AHS-160
Airborne hyper-spectral images (2.5m ground resolution). The classi�cation
process uses a hierarchical classi�cation framework which takes into account
contextual information. It includes over-arching land cover types on the �rst
level (such as heathland, grassland, forest, water, sand dunes, arable land)
and iteratively classi�es those areas into more detailed habitat characteristics
until the fourth level is reached (the age structure of the Calluna Vulgaris,
or grassland species like Nardus Stricta etc.) (Thoonen et al., 2013).

5.2.2 Generalisation Rules

Since habitat types are mostly composed of several indicators a generalisation
regarding the content and the spatial distribution of their characteristics
and coverage is needed. According to the Natura 2000 manual (European
Commission, 2007), for example a heathland habitat of the class �4030-
European dry heath� can include parts of bare soil, dry and wet heathland,
1 http://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=BE2100015
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shrubs, encroached grassland areas and mosses or lichens. Therefore rules of
percent coverage are necessary to delineate the habitat (see table 5.1). These
rules are mainly included in the descriptions of the respective nomenclatures
(cite interpretation manual). Basis for this work are rules created by the
INBO taking into account the mapping guidelines of the habitats directive
(Thoonen et al., 2010). Table 5.1 shows the observed Natura 2000 habitat
classes. Since class �4030 - European Dry Heath� and class �2310 - Dry Sand
Heath with Calluna and Genista� were not considered as dividable by remote
sensing these two classes have been combined for this work. It is even di�cult
for surveyors to di�erentiate between 2310 and 4030 areas in the �eld and for
certain areas both habitat types were identi�ed as correct (De Graaf et al.,
2009).

Table 5.1: Selected Natura 2000 habitats, descriptions and subsequent
generalisation rules. Abbreviations: heathland (H), dry heathland (Hd), wet
heathland(Hw), grass encroached heathland (Hg), grass encroached, wet
heathland dominated by molinia (Hgmw), grass-encroached, dry heathland
dominated by molinia(Hgmd), sand (S), grassland (G), dry, permanent
natural grassland (Gpnd), permanent grassland dominated by juncus e�usus
(Gpj), agricultural permanent grassland (Gpa), temporary grassland (Gt) ,
sand and dry, permanent natural grassland (SandGpnd), arable land (A),
forest(F), water (W)

Habitat
code

Description Generalisation rule (ranges in % ground
coverage)

2330 Inland dunes with
open Corynephorus

and Agrostis
grasslands

H:0-50, Hd:0-50, Hw:0-10, Hg:0-50,
Hgmw:0-10, Hgmd:0-50, S:0-100, G:0-100,
Gpnd:0-100, Gpj:0-10, Gpa:0-10, Gt:0-10,
SandGpnd:50-100, F:0-15, W:0-10, A:0-10

2310/
4030

Inland dunes with
Calluna heath/

European dry heath

H:30-100, Hd:0-100, Hw:0-50, Hg:0-100,
Hgmw:0-50, Hgmd:0-80, S:0-70, G: 0-70,

Gpnd:0-70, Gpj:0-10, Gpa:0-10,
SandGpnd: 0-70, F:0-30, W:0-10, A:0-10

4010 Northern Atlantic
wet heaths with
Erica tetralix

H:30-100, Hd:0-50, Hw:0-100, Hg:0-100,
Hgmw:0-100, Hgmd:0-50, S:0-10 ,G:0-10,
Gpnd:0-10, Gpj:0-10, Gpa:0-10, Gt:0-10 ,
SandGpnd:0-10 , F:0-30 , W: 0-30 , A:

0-10
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5.2.3 Generalisation Algorithm

The Aggregation algorithm is based on the SPARK introduced by (Barnsley
and Barr, 1996). This contextual aggregation procedure generates complex
classes out of existing thematic raster datasets. Based on an adjustable,
rectangular moving window, the number of pixels according to each thematic
class can be analysed and the percent coverage of the classi�ed characteristics
can be calculated for each kernel. As already mentioned each class has
its individual descriptions and can contain a complex mixture of spatial
characteristics, such as bare sand, dry grassland species or heath species on
dry soil etc. If the percentages regarding the coverage �t to the pre-de�ned
rules (see table 5.1) the centre pixel can be assigned to the respective class
(see �gure 5.1).

Fig. 5.1: Overview aggregation algorithm. The Kernel Reclassi�er (left) uses
a characteristic, rectangular moving kernel to produce frequency tables for
each sector, which are compared to the respective rule. If the frequency
table matches the requirements of the corresponding rule, the centre pixel
is assigned to the subsequent habitat class. The interpolatorion (right) uses
the results of the reclassi�cation (2), eliminates objects that are smaller than
the de�ned MMU (3) and interpolates the occurring gaps with a spatial
nearest neighbour interpolation (4). The results are then evaluated regarding
its functionality by taking into account the base dataset (1) (see section 5.2.4).
Adapted from (Nieland et al., 2015a)

For this work the original SPARK algorithm was partly adopted, as it
was not necessary to include a pre-classi�cation process, since the procedure
uses existing remote sensing classi�cation results instead of classifying the
imagery itself. Another di�erence to SPARK is that the aggregation rules
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were de�ned by taking into account respective class descriptions (see section
5.2.1) instead of generating characteristic template kernels that typify the
habitat classes.

To provide consistent and unambiguous results the proposed procedure
uses a two-step approach (see �gure 5.1). In the �rst step the kernel labels its
centre according to the de�ned rule. This procedure iterates over prevalent
KS (3x3 to 45x45 = 56m2 to 12, 656m2) to examine its in�uence on the level
of correspondence between the percent coverage according to the rule and the
actual generated coverage. Since the rules are created for manual �eldwork
and based on ecological characteristics rather than being perfectly adjusted
as non-overlapping rules, multiple labels do occur in the results. These pixels
are mostly transitional areas, which according to the interpretation manual,
are not to be classi�ed as a certain class. In the second step the algorithm
eliminates pixels with multiple labels and areas that are below an adjustable
MMU and performs a nearest neighbour interpolation to �ll the resulting
gaps. In order to evaluate the correctness and the bene�t of the second
processing step the results were calculated including the second step (all
classes at once) and without the second step (every class separately). The
former will be further referred to as �multi-class approach� whereas the latter
will be called �one-class approach�. In order to examine in�uences of the MMU
on the level of correspondence to the de�ned rules the results were iteratively
calculated for MMUs between 100m2 to 9, 900m2 in steps of 100m2. A kernel
size larger than 45x45 and an MMU greater than 9, 900m2 was not calculated
because overlaps of di�erent habitat types occur. Especially the classes with
a smaller spatial extent (inland dunes / 2330) would not be detected, because
a surrounding larger class will be increasingly preferred with a growing kernel
size and smaller patches would be erased due to a large MMU (see �gure 5.2).
Moreover, combining high kernel sizes and large MMU's result in very few
objects. That means there is mostly only one very large object left, which
is relatively consistent regarding its spatial characteristics. Therefore, results
with higher KS and MMU stay stable until dropping to zero when this object
would be deleted.

5.2.4 Evaluation

To evaluate the automated delineation results and compare them to the
respective rules, the number of pixels of the original classi�cation result inside
each delineated habitat object was calculated and compared to restrictions of
the corresponding rule. This can either be done for the manual delineation or
for the automated delineation in each scale (MMU and kernel size) (see 5.3).
This procedure provides on the one hand information about objectivity and
manual mapping compliance and gives on the other hand the possibility to
determine optimal MMU and kernel sizes for each habitat class. Therefore,
the evaluation will be divided into two parts, the functionality evaluation
(proves the correctness of the rules) and the applicability evaluation (proves
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the correspondence of the generalisation result and the manual delineation)
(Nieland et al., 2015b).

5.3 Results

The following section illustrates the results of the manual and automated
habitat delineation and assesses the reproducibility, comparability and
accuracy of the resulting datasets. Since very few strict habitat borders exist
and transitions between habitat classes are gradual rather than abrupt, there
is, in most cases, no right or wrong delineation. Therefore, we try to analyse
to which degree the produced areas �t to a certain standard (in our case the
rules developed on basis of the HabDir and reference �eld) and which scale
(MMU) is appropriate for the mapping of certain habitat classes. Regarding
the results, there is a recognisable overestimation of class 2310/4030 and an
underestimation of class 4010 in the automated delineation, while class 2330
has no clear trend regarding under- or overestimation (see �gure 5.2). The
multi-class approach (top) appears more generalised and connected, whereas
the one-class approach is more fragmented, especially for class 4010.

Table 5.2 illustrates the level of agreement between the generated rules
and the manual delineation of the protected areas. It shows the percent
correspondence of the manually delineated habitat areas that match the
respective rule to the ones that do not match the rules. It furthermore
shows the results for all regarded objects and additionally divides the results
in three size classes (under 0.5 ha, 0.5-1 ha and over 1 ha). The overall
correspondence ranges between 44.89% for class 4010 to 61.74% for class
2310/4030. Class 2330 has better rule-correspondence with objects under
0.5 ha and worse results over 1 ha, whereas class 2310/4030 shows better
results with larger objects (over 1 ha) and performs worse on small objects
(under 0.5 ha). Class 4010 has similar correspondence in all size classes
(40.00%-46.66%).

Figure 3 shows the evaluation of the multi-class approach in a heat map
illustration. For the functionality evaluation, the maximum values range from
89.47% (class 4010) to 100% (class 2330 and 2310/4030) correspondence.
It can be recognised that MMU as well as KS have an in�uence on the
results. The best results for class 2330 occur with average to high MMU
(800− 9900m2) and small KS (3 to 10), whereas class 4010 has its optimum
at very high KS (41-43) and MMU (6000 − 9900m2). Class 2310/4030
achieves the highest functionality results for medium to high MMU (over
4000m2) in all KS. Since high KS as well as high MMU are reducing the
number of areas that have to be investigated, the calculations of areas with
high KS and MMU refer to only a few objects per class.
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Fig. 5.2: Results of the aggregation of the multi-class (top) and single-class
(bottom) approach. From left to right: (1) top: The manual delineation. Each
colour represents one class. Bottom: The classi�cation result. Each colour
represents one derived class (2-4) Results of the aggregation algorithm (with
optimal combination of MMU and KS) of class (2) 2310/4030 (KS: 7, MMU:
5700), (3) 2330 (KS: 21, MMU: 9500) and (4) 4010 (KS: 3,MMU: 1800)
compared to the manual delineation. The crosshatched part illustrates areas
that are present in the automated classi�cation result and not in the manual
delineation. The linear hatched part illustrates areas that are present in the
automated classi�cation result and not in the manual delineation.

The applicability evaluation illustrates the correspondence between the
multi-class, two-step reclassi�cation approach and the manual delineation.
The values describe the percent spatial correspondence of the automated
reclassi�cation and the manual delineation. The results show an optimum
agreement between 40 and 55.5 per cent but, in contrast to the functionality
evaluation for class 2330 and 2310/4030, the best results occur at higher KS
and MMU. Class 2330 has an optimum around KS 23 and MMU 9900m2,
whereas class 2310/4030 generates an optimum around KS 9 and MMU
5500m2. Class 4010 has its optimum at KS 3 and small to medium MMU
(around 2000m2). To discuss and evaluate the results of the automated
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Table 5.2: Agreement between manual delineation and rules. Obj (Sum)
speci�es the total amount of manually delineated objects per class. The
per cent agreement illustrates the proportion of resulting objects, which are
matching or not matching the corresponding rule.

Habitat
class

(HabDir)

Spatial
dimension

(m2)

Obj.
according
to rule

Obj. not
according
to rule

Obj
(Sum)

Per cent
agreement

2330 total 16 17 33 48.48
<5000 5 5 10 50.00

5000-9900 7 5 12 58.33
>1000 4 7 11 36.37

4010 total 101 124 225 44.89
<5000 42 48 90 46.66

5000-9900 18 27 45 40.00
>9900 41 49 90 45.56

4030/2310 total 142 88 230 61.74
<5000 53 48 101 52.48

5000-9900 32 17 49 65.31
>9900 57 23 80 71.25

delineation in respect to scale questions it is essential to make sure that a
bigger KS and larger MMU leads to output objects with a higher mean surface
area. The results show a strong correlation between object area and KS and
MMU. The bigger the used MMU and KS, the bigger the resulting mean area
in the output data set. The same relationship holds the Shannon diversity
index, which measures the fragmentation in the resulting data set in respect
to the subsequent classes. SHDI describes the proportion of the landscape
occupied by the class i. As anticipated, the fragmentation is high for small
KS and MMU and becomes smaller with rising values of both variables (see
�gure 5.3).

The functionality evaluation of the one-class approach shows similar
percent ranges to those in the multi-class approach (see �gure 5). They reach
from around 23% (medium to big KS and small MMU in class 4010) to 100%
(high MMU and small KS in class 2330 and high MMU in all KS for class
2310/4030). Class 2330 and 4010 seem to prefer small KS and medium to
high MMU's whereas 2310/4030 has good results at high MMU in all KS.

The applicability evaluation shows a similar trend in all three studied
habitat classes. High KS's have better agreement to the manual delineation
whereas the MMU seems to have a limited in�uence on the correspondence.

SHDI = −
m∑
i=1

Pi lnPi (5.1)

Figure 5: Relation between SHDI, MMU and KS in the output data set.
Colours indicate the SHDI total of the output datasets.
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Fig. 5.3: Relation between SHDI, MMU and KS in the output data set.
Colours indicate the SHDI total of the output datasets.

5.4 Discussion

The presented work compares an automated habitat aggregation approach
to a manual approach and tries to evaluate the underlying principles of their
structure. That involves on the one hand the composition of the habitat
areas in respect to land cover categories and other biophysical parameters
and on the other hand the minimum size of the habitats. The rather low
correspondence of the manual delineation with the developed aggregation
rules clearly re�ects the subjectivity of �eld mapping mentioned by (Cherrill
and McClean, 1999) and (Lucas et al., 2007) and illustrates the MAUP in the
practical work of �eld surveys. Comparability of aggregated ecological data
remains challenging and hinders interoperability on an international level.

Dry grasslands on inland dunes (2330) have a rather small ecological
niche. Therefore, the rules de�ned by (Thoonen et al., 2010) are set very
rigidly, especially for the occurrence of forest, water, agriculture, intensively
used grassland, and wet heathland in the kernel (see table 5.1). Hence,
in linear delineation as well as in kernel-based generalisation, this class is
non-contiguous and fragmented (see �gure 5.2-1 and 5.2-3). This is can also be
seen in the functionality evaluation (see �gure 5.4 and 5.5), where 2330 shows
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2330 

4010 

2330 

4010 

2310/4030 2310/4030 

Fig. 5.4: Left: Functionality evaluation of the multiclass, two-step
classi�cation approach. Right: Applicability evaluation of the multiclass,
two-step classi�cation approach. Colours indicate the level of correspondence
(in %) to the de�ned rule.
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2330 

4010 

2330 

4010 

2310/4030 2310/4030 

Fig. 5.5: Left: Functionality evaluation of the one-class classi�cation
approach. Right: Applicability evaluation of the multiclass, two-step
classi�cation approach. Colours indicate the level of correspondence (in %)
to the de�ned rule.
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best results at low KS (3-11) which re�ects the small spatial dispersion of this
class. The manual delineation tends to be more generalised, which is evident
by looking at the peak around MMU 8000−9900m2 for a KS of 21 to 31 in the
applicability evaluation for the one-class and the multi-class approach (�gure
4 and 7). The MMU seems to have limited in�uence on functionality and
applicability, since it is clearly positive to retain even small patches, while a
maximum patch size (when the �rst correctly classi�ed habitat patches drop
out of the generalisation process) was not reached until MMU of 9900m2.
The con�icting results of the applicability evaluation and the functionality
evaluation lead to the conclusion that either the manual delineation does
not adequately correspond to the rules, or that the rules are not su�ciently
suitable for the mapping of the respective classes.

The dry heathland (2310/4030) has a larger spatial dispersion than the
other classes in the study area. The de�ned rules are more general than for
2330 and cover wider ranges of the di�erent heathland types as well as forest
(see table 5.1). Consequently, dry heathland areas, when implementing the
generalisation rules cover larger areas. However, the rules clearly overestimate
the spatial expansion of this class compared to the manual delineation
independently from the selection of KS and MMU. For rule functionality, the
level of correspondence increases with larger MMU (above approx. 2000m2)
and KS (above approx. 9) for the multi-class and one-class approach, which
can be expected with more general rules, preferring larger patches. Since the
manual delineation seems to be more speci�c (preferring smaller patches)
than the generalisation rules, the relatively small optimal KS (7) and MMU
(5700m2) for the applicability also indicate that the manual delineation have
been detailed for these habitat classes. Further, in some parts of the study
site, the presence of wet and dry heath is very fragmented which makes
distinguishing between the di�erent habitats hard and subjective. Therefore,
from an ecological view, both classes are possible in some cases depending on
the delineation.

The rules for wet heathland (4010) areas include larger ranges for most
heathland types as well as water, while minimizing the inclusion of di�erent
grassland types. Applying the rules irrespective of MMU and KS leads to
an under-representation of the habitat compared to the manual delineation.
While the rules performed best for smaller KS (3-13) in the one-class
reclassi�cation, the trend is inverse (KS of 43 and 45 perform best) with the
multi-class approach. This is also re�ected in the applicability evaluation.
Larger KS results in a better applicability in the one-class reclassi�cation,
while the KS of 3 has the highest level of correspondence in the multi-class
approach. When comparing the resulting habitat maps it is clearly visible
that the reclassi�cation at KS 3 produces many small objects which were
eliminated and added to the class 2310/4030, when the KS was higher than
3. Therefore, KS 3 estimates a higher spatial proportion of 4010 in the test
area, which leads to better results at KS 3 in all MMUs. The reasons for the
underestimation of class 4010 are on the one hand that the heathland occurs
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in the undergrowth of trees and is therefore only partly recognisable with
remote sensing images, on the other hand some areas were assigned as 4010
in the manual delineation which are allocated as 2310/4030 in the automated
delineation. From the authorsâ�� perspective this is partly because class
4010 is overestimated in the manual delineation. Better-balanced rules can
be a solution for this problem.

Generally, the manual delineation tends to be more generalised than the
automated one. Even with large KS and very smooth habitat borders the
manual delineation supplies more generalised information. The results of the
one-class and the multi-class approach show similar quality, but when looking
at the maps (see �gure 5.2) the multi-class approach is much cleaner with less
unwanted fragments and therefore superiorly re�ects a manual delineation
approach. Given the overall results of this systematic aggregation, it could
be shown, that a generalisation of habitats from basic remote sensing derived
vegetation classes is possible. The functionality of the classes could be tested
su�ciently. While smaller and more disperse classes show a higher level
of correspondence at smaller KS, largely distributed habitat show better
agreement at larger KS. The MMU was less in�uential, because the accuracy
did not decrease with MMUs greater than 1 ha, which is very surprising
because of the absence of a MMU in the interpretation guidelines. Only for
the class 2310/4030 there is a clear tendency to show a higher functionality
with larger patches. Overall, it seems that the correct composition of the
habitat as de�ned in table 1 (and re�ected via KS) is much more important
than the overall size of a habitat (as re�ected by the MMU). The applicability
of the results depends to a large extent on the reference data from the
manual delineation of habitats. Manual delineations tend to prede�ne a
certain patch size of the habitats, which can be found in the optimal levels of
correspondence of the applicability tests. However, this contradicts very often
the �ndings of the functionality. While the best application of the rules for dry
grassland on inland dunes could be found at low KS, the best applicability was
found at much higher KS, due to the inherent generalisation process of the
manual mapping. The inverse phenomena could be found with dry heathland
areas, where the generalisation results came up with more general patches
than the manual mapping. Subsequently, the optimal KS of the functionality
test was much lower than for the applicability evaluation. Generally, the
results of the multi-class approach are more di�cult to interpret than for
the one-class approach. This can be expected as the aggregation implicitly
includes the habitat or plant competition. The multi-class approach worKS
very well for classes with mainly non-overlapping rules (as classes 2330
and 2310/4030 in this case). However, overlapping rules cause misleading
results for the separation of habitat types. An example is the high level of
correspondence for class 4010 at KS 3. The class rules between 2310/4030
and 4010 overlap, leading to strong over- and underestimations. Therefore,
overlapping in class de�nition should be handled with great care to prevent
imbalanced results.
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Functionality and applicability evaluation can have di�erent types of
errors (Nieland et al., 2015b). This includes �rstly the manual delineation and
the rule-base of the habitats. Although habitat mapping in the study area
was performed with great care, the results often include a generalisation,
which does not match the given rules of aggregation. As shown in this
example, it is not just a matter of de�ning a MMU or KS per habitat, but
rather to de�ne the expected coverage percentages of di�erent vegetation
components, when going out in the �eld. This should decrease the discrepancy
of manual mapping and applying the rule-base. The aggregation rules are
chosen to correspond with the HabDir, but the objectives of the regional
nature conservation agency are not always in agreement with the more
overarching general European goals do not perfectly (Förster et al., 2008).
Remote sensing classi�cation might also include a variety of impreciseness
(Rocchini et al., 2013) ranging from gradients in habitat changes (instead
of crisp classes) to scale issues between classes and sensor resolution (Small,
2001).

5.5 Conclusion

Automated remote sensing-based aggregation procedures can be a big
advantage for the designation of nature conservation areas especially in
respect to reproducibility and comparability of mapping results on an
international level. This procedure increases objectivity which is on the
one hand a big bene�t for comparability and comprehensive evaluation of
nature conservation areas, but may on the other hand hamper site managers
to include site speci�c characteristics depending on the personal expertise
and experience. This analysis clearly showed that each habitat type has its
optimum mapping scale, which, due to the increasing complexity, cannot
easily be implemented in manual interpretation guidelines. Automated class
assignment makes scale speci�c evaluation easier and can therefore also
improve the spatial accuracy of the results. Moreover, the presented study
reveals spatial inconsistencies between expert derived generalisation rules
from species to habitats (functionality) and expert-based �eld mapping
results (applicability). It might be valuable for future mapping and
monitoring to provide an upper and lower spatial limit (in terms of KS or
MMU) derived from functionality to match these expectations when applying
the rules in the �eld. The results furthermore illustrate that the spatial
extension of the observed area (KS) is more important than the actual
area of the individual object (MMU). Therefore, the MAUP has a higher
relevance to the results than the MMU. This leads to the conclusion that
Natura 2000 management should not focus on MMUs but rather try to
develop well-balanced interpretation guidelines, which better represent the
conceptualisations applied in the mapping methodologies.
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Synthesis

This chapter provides a synthesis of the presented thesis by relating the
developed results to the overall objectives stated in the introduction of this
work. This comprises a detailed discussion of the research questions including
the consequent outcomes and recommendations for future research.
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6.1 Conclusions

This thesis investigates the interoperability problems and their possible
solutions in the context of biodiversity monitoring. Based on the research
questions stated in the introduction, this section discusses the results of
the previous chapters and gives a summarised recapitulation based on the
individual research questions and the two overall research objectives.

Thus, the overall objective to demonstrate applicability of semantic
systems to support pan European data interoperability will be answered by
re�ecting the �ndings of the �rst three research questions and the associated
chapters 2, 3 and 4. All developed methodologies showed the potential
and feasibility of semantic systems for data interoperability and proved the
applicability of ontologies for data management.

The second overall objective to evaluate the importance of spatial scale
and up-scaling for European nature conservation could be answered in
chapter 3 and 5 and will be re�ected in the associated research questions.
These chapters clearly demonstrate the importance of spatial consideration
for remote sensing-based nature conservation and support the application of
automated up-scaling and segmentation processes.

6.1.1 Suitable techniques for data interoperability in Natura 2000

monitoring

Research Question: Which methods are feasible to generate data
interoperability in the �eld of biodiversity monitoring in Europe?

Overcoming data heterogeneity in trans-national data infrastructures is a
widely known challenge in the GI community (see chapter 1). As stated in
several publications (Fugazza, 2011; Perego et al., 2012; Fonseca et al., 2002;
Bishr, 1998), semantic systems are the most promising solution to tackle the
demanding task of data heterogeneity. In the �eld of nature conservation
there are several initiatives which deal with comparability and exchange
of biodiversity information (Walls et al., 2014; Lapp et al., 2011) taking
into account so-called thesauri or shared vocabularies. The establishment
of shared vocabularies spanning di�erent research domains is desireable, but
requires lots of domain speci�c discussions and e�ort. E�orts mainly focus
on the structure and storage of knowledge which is certainly important but
seems often too conceptual for scientists conducting research. However, there
is a lack of straightforward application examples when dealing with observed
biodiversity data, especially in the remote sensing domain.

Chapter II and III propose a matchmaking approach between remote
sensing classi�cation results of di�erent study areas in di�erent countries
by using semantic systems. The results clearly show that semantic
transformation of remote sensing-based classi�cation results is technically
feasible. However, the quality of this kind of automatised comparison
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always strongly depends on the conceptualisation of the classes and class
hierarchies. Since there is, until now, no well-established vocabulary for
remote sensing and nature conservation, a shared vocabulary was built up
to explicitly describe the available data products. Without this tailored
reference vocabulary a satisfying semantic transformation would have not
been possible. Therefore, there should be a focus on developing such
shared vocabularies and support institutions and networks with the aim of
developing these valuable thesauri.

The results of chapter II demonstrate that more detailed nomenclatures
are more likely to be transferable to nomenclatures that focus on certain
elements of the subject of interest than the reverse. The nomenclature
used in the Kalmthoutse Heide, for example, was created especially to
evaluate heathland areas but also includes good formalisation for other
broad habitat types, whereas the nomenclature of the Döberitzer Heide
has a strong focus on Natura 2000 grasslands. Consequently, there have
been more semantic up-scaling processes while transforming from Döberitzer
Heide to Kalmthoutse Heide than from Kalmthoutse Heide to Döberitzer
Heide. Regarding the thematic accuracy in combination with the number
of necessary semantic up-scaling processes per transformation, it seems
that an increase of the number of semantic up-scaling processes leads
to decreasing accuracy of the transferability. The results show that the
storage of classi�cation meta-information in OWL/RDF ontologies and
conceptualisation of the subsequent classes with shared vocabularies lead
to a better usability and comparability of remote sensing products. Using
formalised knowledge bases and reasoning capability for interoperability
issues in remote sensing seems to be an obvious step and is increasingly
supported by experts of di�erent research �elds (Arvor et al., 2013; Janowicz,
2012).

There are two main requirements which are fundamental for realising
automatised matchmaking processes in GI systems. First, there have to
be well-formalised, structured reference vocabularies (domain ontologies)
which allow formalisation of the often highly specialised applications and
data products. These vocabularies have to be developed by the respective
domain experts and stored in formal data structures of the semantic web (e.g.
RDF, SKOS or OWL). Second, data producers have to use these references
or respectively include semantic annotation in their analysis or production
chains.

For the Natura 2000 legal purposes, matchmaking approaches represent
the opportunity to evaluate the status of European's nature conservation
areas comprehensively and therefore ensure the protection and support of the
most threatened regions. The statistical comparison of nature conservation
areas in di�erent countries or regions could be realised by taking into account
semantic matching procedures in Spatial Data Infrastructure (SDI)'s (Lutz
et al., 2009). Integration of automated semantics in SDI's would furthermore
improve the discovery, retrieval and usability of this kind of information. On
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the regional and local level the use of semantic reference systems can help to
ful�ll international reporting obligations by integrating or transforming data
into the data models required by international institutions.

6.1.2 Semantic systems to support up-scaling processes in

hierarchical remote sensing-based classi�cation frameworks

Research Question: How can semantic systems support spatial up-scaling
processes in hierarchical remote sensing-based classi�cation frameworks to

generate interoperable outcomes?

The question of comparability of designated areas split up in two main
principles. On the one hand there is the subjectivity of the delineation
of individual habitat areas which exist in all manual mapping procedures
(Cherrill and McClean, 1999). On the other hand there is the problem of
agreement between habitat classes and local or regional nomenclatures in
regard to their content (Vanden Borre et al., 2011). While chapter II focuses
on the semantics of the content and their comparability, chapter III uses an
up-scaling approach to generate reproducible, objective delineation based on
remote sensing classi�cation results. Additionally, Chapter V concentrates on
the question how to generate an objective delineation of certain habitat types
in regard to MMU and the observed surrounding area, which is in this case
the KS of the utilised kernel.

The methodology proposed in chapter III uses a spatial reclassi�cation
approach which is based on an ontology utilising its ability to compare
data in regard to its content. To realise this task the matchmaking method,
described in Chapter II, was taken into account and connected to a spatial
up-scaling algorithm. This has been realised on the basis of remote sensing
classi�cation results in di�erent study areas. The results of chapter III show
that data of di�erent origins, using di�erent nomenclatures can be used
and understood by algorithms for automated geo-processing using an OWL
ontology as communication interface. The algorithm matches new input data
to the one it expects and applies the method based on this information.
The results demonstrate that the generated products are not of lesser quality
because of the application of the automated matching. In fact the �alien� data
(in this case it has been the data from Döberitzer Heide) produced slightly
better results than the one of the original data source. The results of this
study clearly indicate that a combination of semantic systems and spatial
analysis is a further step toward harmonisation of data production and the
respective results.

There are three major obstacles which can hamper the implementation of
this semantic approach. First, there are ecological di�erences in the certain
bio-geographical regions which forces adoptions of aggregation rules to the
conditions of the particular area. This can be exclusively realised with the
help of expert-knowledge. Since the classes and rules are formalised in the
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ontology such a manual check and adaption is possible and can be easily
implemented. Second, the methodology is, until now, only tested for certain
heathland and grassland classes (Inland dunes with open Corynephorus and
Agrostis (2330), European dry heaths or Dry sand heaths with Calluna and
Genista (2310/4030)). These classes were chosen because of their spatial
variability and heterogeneity regarding the distribution of the individual
components. A feasibility test for other Natura 2000 classes has not been
realised yet, therefore transferability to other classes can not be ensured.
Third, due to its dependence on several inputs, the uncertainties of the
methodology are rather high. The quality of the aggregation is always
connected to the quality of the remote sensing classi�cation outputs. However,
the manual delineation of habitats faces similar uncertainties and therefore
produces comparable results to the automated approach (see chapter 5).

6.1.3 Combination of ontologies and machine learning algorithms

for classi�cation

Research Question: What possibilities are there to combine machine
learning algorithms with ontologies to utilise the bene�ts of semantic data

storage?

Freely available images from satellite systems like Sentinel, Landsat and
MODIS in combination with new possibilities of processing big amounts
of data in cloud-based processing frameworks are currently opening the
door to spatial analysis of higher temporal and spatial dimension. In times
of massively increasing volumes of remote sensing data future challenges
of remote sensing research will shift away from being able to cope with
limited data availability to being able to �nd the right data regarding
the corresponding use case. In order to support image retrieval of remote
sensing images and comparability of the results of remote sensing analysis
it is crucial to link the low-level features of the images to the knowledge
provided by experts executing the respective analysis. This barrier of linking
semantic information with numerical values is known as the �semantic gap�
and represents a recent research focus in the �eld of image analysis (Forestier
et al., 2012; Arvor et al., 2013) and image retrieval (Liu et al., 2007). The term
�semantic gap� is de�ned by lack of coincidence between the information that
one can extract from the visual data and the interpretation that the same
data have for a user in a given situation (Smeulders et al., 2000).
Narrowing the semantic gap is a highly admired objective in remote sensing
image analysis (Belgiu et al., 2014; di Sciascio et al., 2013; Andrés et al.,
2013; Argyridis and Argialas, 2015), automated image annotation (Zhang
et al., 2012) and retrieval (Liu et al., 2007). Whereas in the �eld of image
retrieval the combination of ontologies and supervised learning is quite
common (Smeulders et al., 2000), in remote sensing image analysis ontologies
are primarily used to formalise expert knowledge and utilise ontological
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inference for classi�cation purposes (Lampoltshammer and Wiegand, 2015;
Belgiu et al., 2014; Argyridis and Argialas, 2015).

Even though a number of indicators for habitat evaluation were developed
recently (Nagendra et al., 2013; Skidmore et al., 2015), classi�cation
procedures and rule-sets are in most cases not formalized to be computer
readable and therefore su�er from equal transferablity and reproducibility
problems as manual habitat mapping (Arvor et al., 2013; Nieland et al.,
2015a,a). Furthermore, there is no standardised set of indicators using RS for
trans-national habitat evaluation (Lucas et al., 2015; Vanden Borre et al.,
2011). Therefore a formalised, computer-readable ontology can help to and
allow scientists to see how the classi�cation was performed and be aware of
possible incompatibilities before combining data (Janowicz, 2012). Hence,
technical solutions to increase interoperability by thematically harmonising
environmental data and systematise data collection methods from remote
sensing inputs in an automated work�ow are needed.

Following the request of Janowicz (2012) to include machine learning,
statistics and data mining in ontology development, chapter IV proposes a
methodology for automated annotation of remote sensing images based on a
decision tree classi�er. This ensures extensive transferability, knowledge and
work�ow management and logical consistency together with the ability to
use self-learning algorithms to analyse huge amounts of data. The results
show that automated semantic annotation of remote sensing imagery can
be achieved by using decision trees to generate formalised knowledge bases
including numerical features as ontological primitives. Using this advantage
in combination with an inference engine as actual classi�cation tool preserves
the advantages of ontological reasoning, like subsumption, logical consistency,
reproducibility and interpretability of the generated data without losing the
power of supervised learning classi�cation algorithms. The outcomes show
similar classi�cation accuracy as other widely-used supervised classi�cation
techniques, such as the extra tree classi�er which represents a highly
randomised ensemble method similar to random forest.

Bridging the semantic gap in satellite image interpretation is a big step
towards an interoperable GI infrastructures in which image retrieval, image
classi�cation and the comparability of the generated products can be realised
by utilising semantic systems. The formalisation of expert information is
an important step towards sustainable knowledge management and allows
comprehensive re-use of the developed achievements. Main drawback in the
use of ontologies for knowledge management lies in the complex and di�cult
development process of such semantic knowledge bases (Forestier et al., 2013).
This involves a huge joint e�ort of domain experts and semantic engineers
which is currently only partly realised in institutional activities (see section
1.1).
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6.1.4 Scale as parameter for habitat mapping

Research Question: How important is scale as a parameter for the
interoperable mapping of nature conservation areas?

The concept of scale is the focus of numerous studies on the analysis of
spatial information and remote sensing for nature conservation (Levin, 1992;
Jelinski and Wu, 1996). Scale ranges from �nding the right pixel size for
the respective application (Hengl, 2006) to the evaluation of scale-e�ects for
plant sampling (Stohlgren et al., 1997) or spatial thresholds and up-scaling
procedures (Hay et al., 1997). Also GEOBIA focuses on scale issues as the
segmentation is strongly a�ected by the respective target scale (Dragut et al.,
2010; Blaschke, 2010). One of the main challenges in OBIA is �nding the right
scale parameters as a basis for the segmentation process (Dragut et al., 2010;
Hay et al., 1997, 2005; Kim et al., 2008), which represents a typical example
of the MAUP (Openshaw, 1984; Hay et al., 2003).

In the �eld of Natura 2000 monitoring scale is an essential factor since
it in�uences the evaluation of designated areas (Stohlgren et al., 1997)
and the absence of scale as a mapping parameter can lead to tremendous
heterogeneity in the generated spatial data sets (Corbane et al., 2015). Since
remote sensing maps land cover components and biophysical indicators,
habitats have to be aggregated by combining these components to form
habitat classes. Based on the MAUP (Openshaw, 1984), these spatial
aggregation processes lead to unequally distributed classes if there is no
consistent, automated procedure in place to correct for this. Manual �eld
mapping performed by surveying ecologists is also a�ected by this problem.
The subjective assumptions of �eld experts when delineating a heterogeneous
habitat object can heavily a�ect the evaluation status of designated areas.
As a matter of fact this evaluation status is basis for the assignment
of new conservation areas and the allocation of EU funds for protection.
Therefore, site managers prefer to negatively evaluate their habitat areas.
From a local perspective, this is a feasible procedure which tries to achieve
the best support for the respective site, but lacks in consistency when
comparing di�erent regions. From the EU perspective this is problematic
because there are only limited funds for nature conservation which should
be allocated where they are most urgently needed and incompatibility of the
data leads to potential misuse of the designated funding. To strengthen data
interoperability and comparability on an international level it is necessary
to minimise the in�uence caused by the MAUP by applying consistent
aggregation procedures. Therefore it is crucial to identify the optimal
scale parameter for the mapping of Natura 2000 habitats and develop
automated aggregation procedures based on objective measurements (like
remote sensing).

Chapter V compares an automated habitat aggregation approach to a
manual approach and furthermore tries to evaluate the underlying principles
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of their structure. That involves on the one hand the composition of the
habitat areas in respect to land cover categories and other biophysical
parameters and on the other hand the minimum size of the regarded areas.
The results of this analysis show that kernel reclassi�cation algorithms can
successfully be utilised to aggregate remote sensing classi�cation results
to Natura 2000 habitat classes which can be a a big advantage for the
reproducibility and comparability of mapping results on an international
level. Furthermore it illustrates that each habitat type has its optimum
mapping scale but for the quality of the aggregation results the size of the
regarded surrounding is it is a more important mapping parameter.

6.2 Future Research

In this thesis di�erent aspects of interoperability of geo-data for biodiversity
monitoring have been highlighted. This led to several research questions
and challenges that could not be handled within the scope of this thesis.
The most crucial points are enhancement of the developed methodologies
and their transfer to other use-cases, the design and management of
common vocabularies tailored to the speci�c needs of automatised or partly
automatised biodiversity monitoring and the further developments towards
better retrieval of multi-source satellite images using semantic searches.

6.2.1 Enhancement of the developed methodologies and their

transfer to other use-cases

In times of coalescing spatial data infrastructures in Europe, semantic
transformation of existing and newly derived geo-data into data models of
other regions or thematic resolutions is a necessary step to achieve data
comparability. The developments of chapter 2 have shown promising results
for transformation of Earth Observation (EO)-based classi�cation products
in the �eld of Natura 2000 heathland areas. The approach has demonstrated
to be feasible for the comparison of the data and can now be transferred to
other use-cases. This can be either to ful�ll the requirements of over-regional
reporting obligations (like Natura 2000 or Corine Land Cover (CLC)) or to
compare data, derived in di�erent regions or nomenclatures directly. From a
methodological perspective the applied hierarchical matchmaking approach
should be compared to an approach based on the semantic similarity.

Up-scaling of geo-information is crucial in many tasks dealing with
spatial phenomena. Chapter 3 and 5 propose a pixel-based aggregation
approach for Natura 2000 heathland habitats which is based on SPARK.
With this approach it was possible to aggregate EO classi�cation results
to spatially heterogeneous Natura 2000 habitats. Since there are other
heterogeneous habitat types (e.g. orchards, mixed forests etc.), this approach
should be applied for other use-cases to show its potential for an operational
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implementation. Furthermore, the algorithm is rather generic and can be
applied and tested on di�erent thematic aggregation problems.

The bene�ts of ontology-based classi�cation could be demonstrated in
4. Since the utilised DT algorithm only partly achieved the classi�cation
accuracy of the benchmark classi�er (ET) the classi�cation procedure should
be extended to ensemble methods in the future to generate more robust
classi�cation products with higher quality.

6.2.2 Design and management of common vocabularies

Spatial data recorded by di�erent sensors (e.g. sensor networks, Citizen
Science (CS) or remote sensing images) leads to a rapidly increasing amount
of datasets with numerous, autonomous and independent sources. To handle
these complex and heterogeneous data structures semantic systems and
conceptual modeling are the most promising solutions for overarching data
management (Embley and Liddle, 2013; Gil and Song, 2015). Since recent
research showed the importance of emerging EO systems (Lausch et al., 2016)
and existing geo-data (see chapter 5) for biodiversity monitoring, the border
to so-called �big data� analysis in this research �eld is already transcended
and the amount of available data will continue to increase exponentially in
the next years.

The key for enhanced data exchange, reuse and retrieval is the
development of standard metadata in the form of shared vocabularies. For
the HabDir, the EEA has taken the �rst step by providing rdf triples
for the GEneral Multilingual Environmental Thesaurus (GEMET) and
EUNIS. Existing vocabularies such as the Common Thesaurus Framework for
Nature Conservation (Martino and Albertoni, 2011) and Umwelt Thesaurus
(UMTHES) should be extended to remote sensing needs to respond to the
change of data acquisition methods in biodiversity monitoring and allow for
comparisons with past data. Habitat areas would thus be characterised by
deriveable indicators instead of using species or plant communities which are
used in conventional approaches. Currently, there is no existing vocabulary
for remote sensing observations or subsequent derivable indicators. Chapter
2 suggests one solution for a shared vocabulary of Natura 2000 heathland
and grassland habitats. This proposal has to be discussed with and re�ned
by other researcher and experts to come to a common understanding of
which ecological indicators are necessary to properly describe habitats. To
harmonise remote sensing analyses a special working group which deals
with data comparability and collaboration could be a big bene�t. One
�rst step for this task could be the exposure of the increasingly accepted
EAGLE data model as Linked Open Data (LOD). The EAGLE data model
already includes a systematic object-oriented characterisation of landuse and
landcover components, which are suitable to describe basic and even more
complex landscape features. To use EAGLE components as base features
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for remote sensing analyses would be a big step towards interoperability of
remote sensing products.

In order to keep track with the ongoing expansion of EO data, there is
no alternative to linking data to corresponding meta-information to provide
possibilities of enhanced information retrieval and analysis.

6.2.3 Image and information retrieval

The increasing availability of EO data suitable for the monitoring of nature
conservation areas raises new challenges regarding the retrieval of appropriate
images for classi�cation (Arvor et al., 2013). With soaring amounts of
available EO data from international institutions (like Landsat, Sentinel,
etc.) but also emergent private companies (like PlanetLabs, Digital Globe
etc.), the challenge of remote sensing experts will change from having to
cope with the limited amount of data to �nding the appropriate data out of
a nearly unmanageable quantity of collected images. The conventional way
of �nding the right image in a satellite archive is only based on very limited
meta-data information and requires a lot of time and manual work. Therefore,
one can assume that, in the future, a high percentage of high quality satellite
images will not be used because it is too time consuming and expensive to
�nd suitable data. This makes automated semantic annotation of images or
even single pixel essential. Having a set of meta-data automatically linked
to all incoming satellite images would certainly increase the discovery of the
right image for the particular classi�cation problem. This includes spatial and
temporal information as well as basic land cover components or even more
complex ecological indicators stored in a semantic knowledge base. Therefore
it would be a great bene�t to enable semantic searches for satellite imagery by
using either OWL inference, RDF path traversal or graph database systems.
This facilitates the inclusion of spatial, temporal and thematic operators
to the image retrieval process by taking into account contextual, semantic
information. Therefore, a much broader range in queries would be possible,
reaching from simple temporal requests to combined searched of images which
include for example a certain spatial extent in a particular time period with
a minimum percentage of a certain land cover type.
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