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ABSTRACT

Traditional representations of sound fields based on spherical har-
monics expansions do not include the sound source distance infor-
mation. As multipole expansions can accurately encode the dis-
tance of a sound source, they can be used for accurate sound field
reproduction. The binaural reproduction of multipole encodings,
though, requires head-related transfer functions (HRTFs) with dis-
tance information. However, the inclusion of distance informa-
tion on available data sets of HRTFs, using acoustic propagators,
requires demanding regularization techniques. We alternatively
propose a method to embed distance information in the spher-
ical harmonics encodings of compact microphone array record-
ings. We call this method the Distance Editing Binaural Ambison-
ics (DEBA). DEBA is applied to the synthesis of binaural signals
of arbitrary distances using only far-field HRTFs. We evaluated
DEBA by synthesizing HRTFs for nearby sources from various
samplings of far-field ones. Comparisons with numerically calcu-
lated HRTFs yielded mean spectral distortion values below 6 dB,
and mean normalized spherical correlation values above 0.97.

1. INTRODUCTION

The primary cues for distance perception are the intensity and the
direct-to-reverberant energy ratio [1]. Recent studies suggest that
listeners are also able to use binaural cues to determine the range of
lateral sound sources for distances within 1 m [2,3, 14,15} 16]. Binau-
ral cues can hence be used to determine directions and distances of
nearby sound sources. However, it is difficult to include distance
information on available far field HRTFs. The simplest approxi-
mation uses a head-sized sphere to model distance variations [7].
Better approximations require to solve an acoustic propagation
problem using demanding regularization techniques [8} (9} [10].
We alternatively propose a method to edit distance informa-
tion in the spherical harmonics encodings of distant sources. Our
method is intended to make sounds appear closer or farther than
their original distance during its binaural rendering (see Figure[T).
At the recording stage, we assume sound fields captured by a com-
pact spherical microphone array. At the reproduction stage, we
rely on the use of a surrounding distribution of virtual secondary
monopole sources rendered with far field HRTFs. A discrete dis-
tribution of this kind of virtual sources rendered with HRTFs can
be understood as an array of virtual loudspeakers [[11]. Hence, we
refer to this reproduction scheme as the virtual loudspeaker ap-
proach. To match the sound field at the central area in the virtual
loudspeaker positions to the field in the microphone positions, we
perform spherical re-samplings based on spherical harmonics and
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Figure 1: Overview of the binaural synthesis method.
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Figure 2: Geometry used for the binaural synthesis method.

distance manipulations based on Hankel functions. Binaural sig-
nals are finally rendered using the distance-edited encodings.

A top view of the assumed geometry is shown in Figure[2J] A
point in space r = (r, 0, ¢) = (r, Q) is specified by its distance r,
its inclination 6 € [0°,180°], and its azimuth ¢ € [0°,360°]. The
listener’s ears lie on an inclination # = 90°. The front direction lie
on an azimuth ¢ = 0°.

Section 2 overviews sound field analysis and binaural synthe-
sis techniques. Section 3 overviews the synthesis of HRTFs for
arbitrary positions from continuously available far field HRTFs.
Section 4 describes the continuous formulation of our proposal.
Section 5 evaluates our proposal in a practical scenario, where mi-
crophones and virtual loudspeakers are placed on spherical sam-
plings. Conclusions are presented in Section 6.

2. BINAURAL AMBISONICS

2.1. Binaural rendering from spherical harmonics encodings

The Schmidt semi-normalized spherical harmonics, of order n and
degree m, are denoted by Y (0, ¢) = Ynm (). They form an
orthonormal basis for the set of square-integrable functions on the
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unit sphere S?. The sound pressure f(£2) on the unit sphere is a
function in this set. It can be expanded as [12]:

f(Q) = Z Z SrmYnm (€2),

ey
n=0m=—n
where the coefficients f, define its spherical spectrum [12]:
Frm = / FQ)Y i ()deY. @
Q/es?

Egs. () and (2) are respectively called the spherical harmonic
reconstruction (SHR) and decomposition (SHD). A captured sound
pressure field can thus be encoded with the SHD and decoded
with the SHR. This defines the traditional High Order Ambisonics
(HOA) format, a scalable way to render sound fields by decoupling
the directions of the recording (') and reproduction (2) setups.

Binaural reproduction of sound fields encoded by Eq. (2) is
also possible. Encodings are decoded for a surrounding array of
V virtual secondary sources using Eq. (T). The secondary source
driving signals D, derived in this way are then rendered with
HRTFs H, for the corresponding directions. Binaural signals B
consist on superposing the resulting signals from all directions §2,,:

Vv
B = Z DyHyo,

(3)
v=1
where D, is decoded from existing encodings fy as follows:
Dv = Z Z fannm(Q'u); (4)
n=0m=—n

and the normalization factor «, is applied to the virtual loudspeak-
ers, so that they cover almost equal areas.

2.2. Distance manipulation of multipole encodings

The multipole expansion extends Eq. (I) to include distance infor-
mation. The pressure g(r) = g(r, 6, ¢) on a sphere of radius r can
be expanded by [12]:

00 =3 3 Gunha(br) Yo (),

n=0m=—n

(&)

where h,, is the spherical Hankel function, and the coefficients
gnm can also be derived from the pressure g(r’) on a sphere of
different radius 7/, as follows [12]]:

L / o) Yo ()Y
Q’es?

" hu(krt)

Eqgs. () and (§) are the basis for the treatment of distances
in sound field analysis. They have been applied to recording and
reproduction technologies like Near Field Compensated High Or-
der Ambisonics (NFC-HOA) [13)]. These equations relates the
pressure on a recording sphere of radius r’ and the pressure on
a reproduction sphere of radius r. Binaural rendering with virtual
loudspeakers can also be done in a similar way to Section 2.1.
However, spherical harmonics encodings cannot be easily con-
verted into the NFC-HOA format, since this requires determining
the reference distance r’ established during recording. Further-
more, NFC-HOA systems seek accurate reproduction, while some
recordings may be enhanced by making sounds appear closer or
farther than their original distance.

(6)

Gnm
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3. USING HRTFS FOR CONTINUOUS DISTRIBUTIONS
OF FAR SOURCES

In this section, the ideal case where HRTFs are continuously avail-
able for distant sound sources at a fixed radius is introduced. In this
continuous case, the binaural synthesis of nearby sound sources is
formulated as an acoustic propagation problem. We do not con-
sider reverberant fields. Hence, we use the term far field to refer to
spherical sound fields for which HRTFs hardly depend on distance,
that is, to sound sources beyond 1 m distance from the listener’s
head [2} 13,1415 16].

The Helmholtz’ principle of reciprocity allows to formulate
the measurement of HRTFs as an acoustic radiation problem [14].
Two original sound sources are assumed to be located at the lis-
tener’s ears, and a measurement sphere of radius b is centered on
the listener. Here, all the sources of scattering from the head and
torso of the listener, together with the original sound source, all of
them constitute the source field. When torso is not considered, the
head’s radius r, is defined as the smallest sphere’s radius contain-
ing the head, hence containing the source field too.

Given an initial set of HRTFs denoted by H (b, k), measured
on the sphere b = (b,Q) enclosing the head for a source field
of wave number k, the HRTFs denoted by H (r, k) on any other
sphere r = (r > 75, Q) containing the source field are completely
defined by the simple source formulation [12]:

H(r k) = - G(r,b,k)H(b, k)dQ,
€

@)

where G(r, b, k) are the Green functions of wave number & char-
acterizing the sound transmission in free space, from all monopole
sources located at b to each desired position r.

Multipole expansions of the Green function in Eq. (7) has been
used to synthesize HRTFs for arbitrary positions from the initial
set of HRTFs at a single radius [8] |9, [10]. Accurate synthesis is
obtained following this approach. However, the source positions
of the initial set need to be distributed almost uniformly on the
sphere, for the radiation problem is formulated on the spherical
harmonics domain. Otherwise, the multipole expansions requires
regularization techniques according to particular geometries, for
which an appropriate selection of the regularization parameter can
become a demanding task.

4. DISTANCE EMBEDDING FOR HIGH ORDER
AMBISONICS WITH BINAURAL RENDERING

In this section, our alternative proposal to embed distance infor-
mation on recordings of distant sound sources is described.

4.1. Using far field recordings by a rigid continuous sphere

An alternative approach to the multipole expansion of the Green
functions assumes a surrounding and continuous distribution of
monopole secondary sources. The surrounding secondary sources
are placed at the same radius b > 1 m as the initial set of far
field HRTFs and binaurally rendered with them. This reproduc-
tion scheme is called the virtual secondary source approach [11].
The requirement of expanding the Green functions G(r, b, k) is
thus relaxed, and the signals D(r, b, k) to drive the virtual sec-
ondary sources are computed instead. The driving signals are typ-
ically derived so as to match the sound pressure field due to sound
sources in the far field, on a radius » > 1 m, using sound field
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analysis techniques [[15/16]. However, sound field techniques typ-
ically decompose the sound field into plane waves, thus neglecting
the distance-related effects, which may be important for a binaural
rendering with high levels of realism. Our proposal follow the vir-
tual secondary source approach considering the distance effects.
In fact, we will derive the driving signals from far field recordings,
but assuming point-like sources instead of plane waves. Therefore,
in our proposal, the distance information can be further edited.
We next derive the signals to drive the continuous distribution
of virtual secondary sources from a captured sound pressure field.
By D(r, b, k) we denote the driving signal of a virtual secondary
source placed at b, associated to a sound field generated by a sound
source of wave number k placed at r. In particular, we assume
that the sound sources are on the same radius where the virtual
secondary sources are continuously distributed (r = b > 1 m).

4.1.1. Spherical spectra of recordings and driving signals

On the recording side, we consider an ideal scenario where the
pressure field is captured by a continuous, rigid and spherical sens-
ing surface of radius a. In other words, the far field recordings,
which we denote by M (a, k), are available at an infinite number
of points a = (a < b, ). We characterize the recorded signals
using the model of the acoustic scattering from the rigid sphere
due to a point-like sound source. The total pressure on the surface
of the rigid sphere reads [17]]

S(a,b, k) = ! Z hl,((l]:Z)) (2v + 1) P, (cos Oab), (8)

" ka2 £~ 1,

where ©,p, is the angle between the measurement point a and the
source position b, P, is the Legendre function, h, is the spherical
Hankel function and h., its derivative. In addition, we consider
the recording spherical spectrum coefficients Sy, (a, k), of order
n and degree m, which reads [[12]:

Snm(a, k) =

Q/

S(a, b, k)Y, (Q)dQ'. 9)

On the virtual reproduction side, though, we assume driving
signals whose spherical spectrum coefficients Dy, (b, k) vanish
for orders greater than N. Expansions of the driving signals in
terms of spherical harmonics, evaluated in the secondary source
directions (2, are therefore defined by [12]

D(b,k):i i D (b, k) Yo (2).

n=0m=—n

10)

The spherical harmonics encodings are independent of the de-
composing directions. Hence, the spherical spectra of the record-
ing and virtual reproduction signals can be related by means of
propagating filters from the radius a to the radius b.

4.1.2. Filters on the spherical spectrum

By F, we denote the distance propagation filters. To derive Fi,,
we replace Dy, (b, k) in Eq. by the product of F,, with the
spherical spectrum Sy (a, k) of Eq. @]) We then proceed to use
the orthonormality property of spherical harmonics, and their ad-
dition theorem to decompose the Legendre polynomials into a sum
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of spherical harmonics products [[12]. Assuming infinite recording
points, it can be shown that the driving signals become

N Fohn(kb)

D(rb. k) = 2 oahr (ha)
n=0 n

(2n + 1)Po(cos Orp), (11)

where O, is the angle between the source position r and the vir-
tual secondary source position b.

The filters F;, in Eq. are chosen in such a way that they
compensate for the distance effects. These filters therefore read

2 h;(ka)
hn(kb)’

F,(a,b,k) = —ka (12)

whose factors compensate for the scattering effects introduced by
the rigid sphere of radius a, and propagate the recordings on the
radius a to the radius b where the secondary sources are. These
filters are typically used to capture sound fields with rigid spherical
microphone arrays [[12} [18].

4.1.3. Distance-embedding filters

In addition, the theory of acoustic holography [12]] allows to com-
pute the near field compensation filters Z:E:i; to estimate the pres-
sure field at a new distance r. The driving signals for an arbitrary

distance r can therefore be synthesized by applying the filters

Fy(a,r k)= —— (13)

to the spherical spectrum of the far field recordings.

The filters proposed in Eq. (I3) do not depend anymore on
the distance b of the original sound source, as long as the original
source is placed beyond 1 m distance from the center of the lis-
tener’s head. According to the acoustic radiation problem in Sec-
tion 3.1, the minimum desired distance r that can be synthesized is
the radius 7, of the smallest sphere containing the listener’s head.

Application of Eq. to sound fields recorded by compact
microphone arrays and encoded with spherical harmonics enables
the binaural rendering of sound sources at any distance r > rp,.
We call this method the Distance-Editing Binaural Ambisonics
(DEBA) hereafter.

5. APPLICATION OF DEBA

We proceed now to formulate and evaluate DEBA in a practical
scenario, where microphones and virtual secondary sound sources
are placed in almost regular samplings of the sphere.

5.1. Using spherical microphone arrays

In practice, a finite number @ of microphones is used on the record-
ing side. The microphones are assumed to be placed at discrete
points a, = (a, €,) on the spherical surface. We denote each mi-
crophone signal by M (a4, k), which arises from the discretiza-
tion of M(a, k). We replace D, in Eq. by the product
of F,, with a quadrature over q of the recording spherical spec-
trum [, M(a, k)Y, ()dY. We proceed to use the addition
theorem of spherical harmonics [12] to deal with relative direc-
tions. The signals to drive the continuous distribution of secondary
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sources, necessary to binaurally render nearby sound sources from
the compact microphone array recordings, now read

D(r,b, k) =

Q
S Pa(cos O)M(ag )y,

q=1

Z(Zn + 1)Fn(a,r k)
n=0

where r is the desired distance, and ©, is the angle between the
microphone at a, and the virtual secondary source at b. In partic-
ular, we considered almost constant integration quadratures [3.

5.2. Using actual data sets of HRTFs

Measured sets of HRTFs are generally available for only some sur-
rounding source positions at a fixed radius on the far field. Their
spatial resolution is generally lower that the minimum audible an-
gle of human auditory perception [19} 20]. To implement DEBA
with such HRTF data set, an integral over the surface of the unit
sphere similar to Eq. need to be approximated by a weighted
sum of a finite number of initial far field HRTFs. We refer to this
kind of discrete distributions of secondary sources as virtual loud-
speaker arrays. We therefore assume a finite number V' of virtual
loudspeakers placed at discrete points b, = (b, €2,,) on the far field.
We denote by B(r, k) the binaural signals for a desired position r.
Hence, the binaural signals are synthesized as follows:

B(r,k) = > _ D(r, by, k)H(by, k)aw,

v=1

15)

where ., is the normalized quadrature weight that approximates
the differential d? at each sampled point b,,. In particular, we will
use quadrature weights that are proportional to the area of each
sampled point’s neighborhood. We define the neighborhood of a
sample as all points on the sphere that are closer to it than to other
samples.

The driving signal D(r, b, k) in Eq. arises from the dis-
cretization of Eq. (T4). The driving signal for a virtual loudspeaker
at b, intended to render binaurally nearby sources from the micro-
phone array recordings finally reads

D(r,b,, k) =
> _(@n+ D) Fu(a,r,k) Y Pa(cos Oqu) M (ag, k)By,
n=0 q=1

where F, (a,, k) is the distance-embedding filter of Eq. (13), and
O4., now represents the angle between the microphone position a,
and the virtual loudspeaker position b,.

The filters F}, in Eq. (T3) show high gains at low frequencies
and high orders n, specially when using a rigid sphere of small
radius a. In order to avoid low frequency distortion, spatial modes
and frequencies are typically related. Hence, the reconstruction
order N was chosen according to the wave number k and the scat-
terer size a as proposed in [20]:

. eka
N = min([ =], V@ — 1)), (17)
where e is the base of the natural logarithm and the number of
microphones () imposes the upper limit to the order.
Virtual loudspeakers should be placed on regular samplings of
the sphere to avoid spatial aliasing. Regular spherical samplings,
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Figure 3: Spherical grids to distribute the virtual loudspeakers.

though, are only possible for the platonic solids. Among existing
almost-regular samplings of the sphere, we have chosen the con-
structions based on the octahedron and the icosahedron. Icosahe-
dral grids are constructed by subdividing the icosahedron’s edges.
They provide almost constant quadrature weights. In contrast, oc-
tahedral grids are constructed so to have octahedral rotation and
inversion symmetry. They provide exact quadratures for numerical
integration on the sphere [21] and, therefore, are suitable for com-
putations with spherical harmonics. Figure E| shows examples of
icosahedral and octahedral grids, where dots indicate the positions
of virtual loudspeakers and the lines enclose their neighborhoods.

5.3. Conditions for the evaluation of the numerical accuracy

We need to know the effect of the number of virtual loudspeakers
on the synthesis accuracy. For this purpose, microphone signals
denoted by M (a4, k) were characterized with Eq. (8)) and the algo-
rithm provided in [22]]. The microphone signals correspond to 360
far field sound sources equiangularly distributed on the horizontal
plane at a radius b = 1.5 m. Initial sets of far field HRTFs denoted
by H(by, k) were computed numerically for a dummy head using
the Boundary Element Method (BEM) [23]]. The sound sources
used to compute the far field HRTFs were arranged on icosahe-
dral and octahedral grids, at a radius b = 1.5 m. Transfer functions
for the whole binaural synthesis process, denoted by B(r, k), were
therefore characterized by using Eqs. (T3] and (T6), for several fre-
quencies and desired positions in the horizontal plane. A reference
set of near-field HRTFs, denoted by H.f(r, k), was also numer-
ically computed using BEM. The resulting transfer functions for
the whole binaural synthesis process were finally compared with
the reference near-field HRTFs.

For each desired distance r, accuracy along azimuth 6 was
calculated by means of the spectral distortion (SD), defined by the
logarithmic spectral distance between H (0, f) and B(0, f) [24]:

2\ 2
)) (18)

Also for each desired distance r, accuracy along frequency f was
calculated by the normalized spherical correlation (SC) between
H(O, f)and B(0, f) [10]:

Href(97 fl)

B0, f:)

SD(9)

(35

i=1

<20 log,,

J . .
Zj:l Href(ejff)B(ghf) = (19)

SC(f) = -
(S 12,00.0)" (S B20,.0)°
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Figure 4: Reference and synthesized HRTFs for distant (top) and nearby (bottom) sources on the horizontal plane (inclination of 90°).
Reference HRTF's were numerically computed for a dummy head (left). We assumed 252 microphones and, hence, a spherical harmonics
decomposition of order N = 14. Synthesis was performed with 1002 virtual loudspeakers on an icosahedral grid (middle) and 590 virtual
loudspeakers on a octahedral grid (right), in both cases at a 1.5 m distance. These numbers of virtual loudspeakers correspond to the best

accuracies (see Figure 5).

We assumed microphones placed on a spherical scatterer of
a = 8.5 cm radius, which we consider is the size of an average
human head. According to [20], binaural synthesis in the en-
tire audible frequency range, from 20 Hz to 20 kHz, would re-
quire an order N = 43, and therefore, a recording array of at least
Q = (43+1)? = 1936 microphones. However, the practical num-
ber of microphones in existing compact arrays imposes a limited
spatial bandwidth. At this stage, our evaluations were particularly
focused on the recording setup available at the Research Institute
of Electrical Communication in Tohoku University [23]]. We there-
fore assumed ) = 252 microphones distributed in an icosahedral
grid over the scatterer of a = 8.5 cm radius. This allowed for
spherical harmonic expansions up to an order N = 14, and hence,
accurate synthesis was only expected up to a spatial aliasing fre-
quency of around 6.7 kHz.

5.4. Accuracy evaluation by computer simulations

Figure ] shows some examples of HRTFs synthesized for the left
ear and sound sources on the far (top panels) and near (bottom
panels) regions. A visual comparison with the reference HRTFs
on the right panels shows that the synthesis for sound sources
placed on the same side of the ear (azimuth from 0°to 180°) can
be performed with good accuracy up to around 8 kHz. Never-
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theless, clearly decreasing accuracies appear for sound sources
placed on the opposite side of the ear (azimuth from 180°to 360°).
We noticed that the low-order spherical harmonics expansion does
not yield a good approximation for the HRTFs. This was spe-
cially noticed for sound sources on the contralateral side of the ear,
where signals of rapid variations along frequency and azimuths are
caused by the head shadowing. In addition, discontinuity lines at
some frequencies were due to the order limitation set by Eq. (T7).
Discontinuities are more prominent on the contralateral side and
for desired distances near the head. On the other hand, slight de-
creasing accuracies appeared for distant and nearby sound sources
of frequencies below 1.5 kHz. These particular observations sug-
gested to focus the spectral distortion evaluations along azimuth
on the contralateral side, and the spherical correlation evaluations
along frequencies below 1.5 kHz.

Figure [5| shows the results of the numerical accuracy evalua-
tion of the binaural synthesis performed with virtual loudspeak-
ers on icosahedral (left panels) and octahedral (right panels) grids.
The top panels show the mean values of the spectral distortion for
sound sources on the opposite side of the left ear, along azimuths
from 180°to 360°and frequencies below 8 kHz. The bottom pan-
els show the mean values of the spherical correlation along all az-
imuths and frequencies below 1.5 kHz. Spectral distortions for
contralateral sound sources yielded monotonically decreasing ac-
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Figure 5: Mean values of the spectral distortions on the contralateral side (top) and spherical correlations below 1.5 kHz (bottom) between
the reference and synthesized HRTFs. Virtual loudspeakers (V. L.) were arranged on icosahedral (left) and octahedral (right) grids.

curacies with decreasing desired distance. Regarding the number
of virtual loudspeakers, the best accuracies were obtained using
1002 points in icosahedral grids and 590 points in octahedral grids,
for which common minimums clearly appeared at all distances.
On the other hand, spherical correlations for low frequency sound
sources showed that accuracy is not affected by the number of vir-
tual loudspeaker, but decreases monotonically with the desired dis-
tance. In general, evaluation using the spectral distortion yielded
mean values below 6 dB, and using the spherical correlation, mean
values above 0.97.

Our simulations were based on the addition theorem of spheri-
cal harmonics and, therefore, we did not consider the effects of ma-
trix inversion based on regularization techniques, which are com-
monly applied in existing implementations of sound field encoding
and decoding techniques [13]. In addition, typical sets of HRTFs
are measured for non-uniform distributions of sound sources, mak-
ing it necessary to use regularization techniques to match the vir-
tual loudspeaker signals to sound field recordings. Although at this
stage our evaluations were focused on the number of uniformly
distributed loudspeakers, an extended study would require to add
regularization techniques.

6. CONCLUSIONS

We proposed DEBA (Distance Editing Binaural Ambisonics), a
method to synthesize the binaural signals at arbitrary sound source
positions. We synthesized the binaural signals from the recordings
made with microphones placed on the surface of a rigid sphere.
For this purpose, we considered a surrounding array of virtual
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loudspeakers driven with head-related transfer functions. DEBA
can accurately synthesize binaural signals due to sound sources
placed on the horizontal plane. Accurate synthesis is possible up
to the spatial aliasing limit imposed by the use of a finite number
of microphones.

For evaluation, we relied on spherical harmonics encodings
derived from the computer simulation of a compact, spherical mi-
crophone array. Transducers for both, recording and reproduc-
tion arrays were positioned in almost regular samplings of the
sphere. Transfer functions for the whole process were charac-
terized and compared with a set of near-field HRTFs computed
numerically for a dummy head. Comparisons using the spectral
distortion yielded mean values below 6 dB, and using the spheri-
cal correlation, mean values above 0.97. The accuracy cannot be
improved by increasing the number of loudspeakers beyond the
spatial aliasing limit imposed by the number of microphones. For
lateral sources below 1 kHz, the accuracy decreased monotonically
as the synthesized sound sources approaches the listener’s head.
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