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Zusammenfassung

In der vorliegenden Arbeit werden effiziente Implementierungen von Modell-
reduktionsverfahren fiir lineare, zeitinvariante Kontrollsysteme entwickelt. Mo-
dellreduktion spielt eine wichtige Rolle in der Simulation, Kontrolle und Opti-
mierung von komplexen, dynamischen Systemen, wie sie bei der Modellierung
vieler physikalischer Prozesse und bei der Ortsdiskretisierung parabolischer Dif-
ferentialgleichungen auftreten. Wird die Finite-Elemente-Methode (FEM) zur
Ortsdiskretisierung einer partiellen Differentialgleichung benutzt, besteht das
resultierende System gewdohnlicher Differentialgleichungen typischerweise aus
vielen Gleichungen, die dazugehorigen Matrizen sind schwachbesetzt. Wird al-
lerdings die Randelementmethode (BEM) angewendet, sind die entstehenden
Systeme grofl und vollbesetzt. Diese Problemklasse kann in einem sogenannten
,quasi-dilnnbesetzten“ Matrixformat, den hierarchischen (H) Matrizen, appro-
ximiert werden [89]. Um die Problemgrofie von linearen, zeitinvarianten Syste-
men zu reduzieren, wird sehr hiufig das Verfahren des balancierten Abschnei-
dens eingesetzt. Bei dieser Methode fiihrt ein systemtheoretischer Hintergrund
zu giinstigen Kigenschaften im reduzierten System, so bleibt die Stabilitéit des
Systems erhalten, und es existiert eine globale, berechenbare Fehlerschranke.
Ein wesentlicher Nachteil der Methode ist der grofie Rechenaufwand, verursacht
durch das Losen zweier Lyapunovgleichungen bei kontinuierlichen Systemen und
zweier Steingleichungen bei diskreten Systemen. In den letzten Jahren wurden
viele effiziente Verfahren zur Losung dieser Matrixgleichungen entwickelt. Die
meisten sind besonders fiir schwachbesetzte Matrizen geeignet und berechnen
Niedrigrangfaktoren der Losungen. Allerdings ist der Rechenaufwand der Me-
thoden kubisch, wenn sie auf grofle, vollbesetzte Systeme angewandt werden,
und der Speicherbedarf wichst quadratisch.

In dieser Arbeit wird der Rechenaufwand und der Speicherbedarf der Algo-
rithmen zur Lésung von Matrixgleichungen fiir grofle, quasi-diinnbesetzte Syste-
me reduziert. Fiir diese, in vielen Anwendungen auftretende Problemklasse, wer-
den effiziente Algorithmen zur Losung von Sylvester-, Lyapunov- und algebrai-
schen Bernoulligleichungen auf Basis der Matrix-Signumfunktionsmethode, zur
Losung von Steingleichungen mit der quadrierten Smith-Iteration, entwickelt.
Durch das Ersetzen der Matrixinversion, der Addition und der Multiplikation
durch approximative Arithmetik fiir hierarchische Matrizen erhalten wir Al-
gorithmen mit linear-polylogarithmischer Komplexitéit. Die Verfahren sind so-
mit auf Systeme grofler Ordnung anwendbar, in denen die Koeffizientenmatrix
vollbesetzt sein darf, solange sie als H-Matrix approximiert werden kann. Al-
le Methoden berechnen approximative Niedrigrangfaktoren der Losungen der
Matrixgleichungen.

Aufbauend auf den entwickelten Methoden zur Losung grofler Matrixglei-
chungen werden effiziente Implementierungen verschiedener Modellreduktions-
verfahren vorgeschlagen. Neben dem approximativen balancierten Abschnei-
den, welches gute Approximationseigenschaften fiir grofle Frequenzen besitzt,
wird die singuldre Stérungsapproximationsmethode (SPA) modifiziert, die den
stationdren Zustand des Systems gut approximiert. Ein modifizierter Cross-
Gramian Ansatz berechnet auf Basis der Losung einer Sylvestergleichung redu-



zierte Systeme fiir symmetrische Systeme und fiir Systeme mit skalarem Ein-
und Ausgang. Der Fehler ist vergleichbar klein zum approximativen balancier-
ten Abschneiden. Weiterhin wird ein Ansatz zur Modellreduktion von insta-
bilen Systemen behandelt, der auf einem Loser fiir algebraische Bernoulliglei-
chungen und dem Loser fiir Lyapunovgleichungen basiert. Die Methoden wer-
den erfolgreich auf Systeme resultierend aus FEM- und BEM-Diskretisierungen
von zwei- und dreidimensionalen partiellen Differentialgleichungen der Grofien-
ordnung O(10°) angewendet. Beachtenswert hierbei ist, dass die Anwendung des
balancierten Abschneidens auf vollbesetzte Systeme dieser Groflenordnung nur
durch den Gebrauch des speziellen quasi-diinnbesetzten Matrixformates und der
dazugehorigen approximativen Arithmetik moéglich wird. Theoretisch und an-
hand der numerischen Beispiele wird die Beschrinktheit des durch die H-Matrix
Approximation eingefithrten Fehlers zwischen Originalsystem und dem System
reduzierter Ordnung gezeigt. Alle Methoden reduzieren die Dimension des Sy-
stems betréachtlich und halten dabei eine kleine Fehlertoleranz ein. Eine stark
reduzierte Problemgrofie kann vorteilhaft in linear-quadratischen Optimalsteue-
rungsproblemen mit Ungleichheitsnebenbedingungen an die Steuerung ausge-
nutzt werden. Die iiblicherweise sehr grofle Dimension des analogen diskreten
quadratischen Problems wird durch Reduktion der Dimension der zugrundelie-
genden PDE signifikant reduziert. Dadurch kann Standardsoftware zur Losung
des Optimalsteuerungsproblems eingesetzt werden.



Abstract

In the present work, the efficient implementation of model order reduction meth-
ods for linear, time-invariant control systems is investigated. Model reduction
is common in simulation, control and optimization of complex dynamical sys-
tems arising in modeling of physical processes and in the spatial discretization
of parabolic partial differential equations (PDEs) in three or more dimensions.
If the finite element method (FEM) is used for the spatial discretization of
PDESs, then the resulting system matrices are typically large and sparse; if the
boundary element method (BEM) is applied, then the matrices are fully pop-
ulated but often allow for a data-sparse representation. A suitable data-sparse
matrix format for this problem class is provided by the hierarchical (H) matrix
format [89]. In systems theory and control of ordinary or partial differential
equations, balanced truncation and related methods are very popular in model
order reduction since they have some desirable properties: they preserve the
stability of the system and provide a global computable error bound. The
major drawback of balanced truncation is the high computational complexity
caused by the solution of two Lyapunov equations for continuous-time systems
and of two Stein equations for discrete-time systems. Several approaches to the
solution of large-scale matrix equations were derived in the last two decades.
Some of them are suitable for large-scale, sparse systems and especially adapted
for the purpose of model order reduction as they exploit the typical low-rank
property of the solution by computing approximate low-rank solution factors.
However, these methods are of cubic complexity when applied to dense prob-
lems.

In this work, the complexity and the storage requirements of several solvers
for matrix equations are reduced for the practically relevant class of data-
sparse systems. For the numerical solution of Sylvester, Lyapunov and algebraic
Bernoulli equations the sign function method is employed; for Stein equations
the squared Smith iteration is considered. Replacing the usual matrix inversion,
addition and multiplication by formatted arithmetic for hierarchical matrices,
implementations with linear-polylogarithmic complexity and memory require-
ments are obtained. Efficient implementations of balancing-related model re-
duction methods based on these data-sparse solvers are developed. Besides
an approximate balanced truncation method, an implementation of singular
perturbation approximation is described and a method based on approximate
low-rank factors of the cross-Gramian is proposed. Moreover, an approach for
model order reduction of unstable systems based on the data-sparse solution
of algebraic Bernoulli equations and of Lyapunov equations is derived. The
methods are successfully applied on systems of order O(10) coming from FEM
and BEM discretizations of two- and three-dimensional parabolic PDEs also
including varying diffusion coefficients or convective terms. Note that the ap-
plication of balanced truncation on dense systems of this size is only feasible if
the data-sparse format and the corresponding formatted arithmetic is invoked.
It is shown, both theoretically and in the numerical experiments, that the error
between the original and the reduced-order system introduced by using the H-
matrix format is bounded. All methods significantly reduce the dimension of the



systems, while satisfying a very small error tolerance. A very small dimension
can be exploited in linear-quadratic optimal control problems where inequality
constraints for the control are given. The typically very large dimension of the
corresponding discrete quadratic programming problem is significantly reduced
if the underlying PDE dimension is reduced by the approximate balanced trun-
cation method. Thus, standard optimization software can be applied for the
solution of the optimal control problem.
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Chapter 1

Introduction

In this thesis, efficient implementations for model order reduction of certain
large-scale, linear, time-invariant (LTT) systems of the form

#(t) = Ax(t)+ Bu(t),
y(t) = Cux(t)+ Du(t)

are investigated. The vector z(t) € R™ is referred to as the state of the system,
u(t) is the vector-valued input, y(¢) the vector-valued output, at any given time
t. Alternatively, LTI systems discrete in time are considered. The dimension n
of the state vector denotes the complexity or order of the system. An LTI system
is called a large-scale system if it consists of at least hundreds of thousands of
equations, i.e. n = O(10%).

Large and data-sparse systems

Linear, large-scale systems arise in modeling of (complex) physical processes,
such as the heat equation and linear convection-diffusion equations, with high
accuracy. An additional source for high complexity is the spatial discretization
of parabolic partial differential equations (PDESs) in three or more dimensions.
This leads to a system of ordinary differential equations (ODEs) where the
number of equations depends on the quality of the discretization. If the fi-
nite element method (FEM) is used for the spatial discretization, then n is
typically large and the system matrix A € R™ "™ is sparse; if the boundary
element method (BEM) is applied, then A is fully populated but often allows
for a data-sparse representation [89, 147, 148]. In 1998, Hackbusch [89] has in-
troduced the hierarchical (H) matrix format taylored for a data-sparse matrix
representation. This format is shown to be sufficiently accurate for the class of
matrices mentioned above and is thus suitable for the representation of many
practically relevant systems. Exploiting the special structure of the hierarchical
matrices in computational methods yields decreased time and memory require-
ments. Furthermore, Grasedyck et al. [79] proved that solutions of algebraic
Riccati equations can be approximated by H-matrices. This motivates the use
of the hierarchical matrix format and the corresponding approximate arithmetic
in the forthcoming control objectives.



2 CHAPTER 1. INTRODUCTION

modeling discretization model order reduction

physical process PDEs ODEs — = ODEs:

simulation

control

Model order reduction
Model order reduction becomes of more fundamental importance for large-scale
systems, as the computational complexity of most tasks in control including
linear-quadratic optimization grows at least cubically with the order of the
system. Additionally to excessive execution times, memory requirements grow
quadratically and put a hard constraint on the order of the system. To make
control tasks feasible for large-scale systems it is therefore necessary to reduce
the dimension of the underlying system significantly. Another motivation arises
in modern (LQG-, Ha-, Hoo-) feedback control where the controller has at least
the dimension of the underlying discretized parabolic control system. Therefore,
real-time control is only possible for systems with reduced number of states
resulting in controllers of lower complexity.

Model order reduction is concerned with replacing a large-scale system of
order n by a system with reduced state space dimension r < n,

&>

(t) = Ai(t)+ Bul(t),
g(t) = Ci(t) + Du(t).

A number of methods have been proposed for model order reduction of LTI
systems and can roughly be divided into two groups. The first class of meth-
ods is based on Krylov subspaces, which can equivalently be seen as moment
matching methods. These methods are computationally stable and efficient
but suffer from the disadvantage that no global error bound for the difference
between original and reduced-order system exists in general. Furthermore, the
preservation of important system properties such as stability and passivity is
not guaranteed in most implementations. The second class is based on the Han-
kel singular values of the LTI system. Balanced truncation (BT) [127] is the
most prominent method within this class. In this work, we focus on model order
reduction by BT (and related methods) since the corresponding reduced-order
system has several desirable properties:

1. The stability of the original system is preserved.

2. The approximation error can be made arbitrarily small and a global, com-
putable error bound exists.

Since model order reduction has to be applied to the original large-scale system,
an efficient implementation of BT is required. The lack of computational effi-
ciency has been regarded as the major disadvantage of BT because it requires
the solution of two large-scale Lyapunov equations in the continuous-time case
and of two Stein equations for discrete-time systems. (A variant of the classi-
cal BT method, the cross-Gramian approach, is based on the solution of one



Sylvester equation.) During the last two decades several approaches to the so-
lution of large-scale matrix equations were derived. Some of the approaches are
especially adapted for the purpose of model order reduction as they exploit the
typical low-rank property of the solution by computing approximate low-rank
solution factors. To name but a few of the more popular approaches, there
are the Cholesky Factor ADI method [117, 119, 135], the cyclic low-rank Smith
method [86, 135], the sign function iteration [23, 25, 31, 38|, and projection-type
methods [100, 102, 104, 146, 150]. Most of the methods are shown to be appli-
cable to medium-to-large-scale systems, O(10%) — O(10%), when the sparsity of
the system matrix is exploited. Benner et al. [6, 31] derived parallel distributed
solvers based on the sign function method and the Smith iteration which can
solve even large dense problems with up to O(10%) states on computers with
distributed memory architecture. However, all of these methods are of cubic
complexity when applied to dense problems.

Contributions of this thesis

In the present work we overcome the mentioned growth of complexity for the
practically relevant class of large-scale, data-sparse systems of order about
O(10%). In classical literature on model order reduction typically only systems
of order at most a few hundreds are considered, often with the aim of admitting
rather expensive algorithms (such as LMI-based optimization techniques) for
systems of moderate size. We break the “curse of dimensionality” in the first
stage of BT and related methods by taking additional information into account
which is provided by the underlying system and exploited by the hierarchical
matrix format. We develop data-sparse solvers for different types of large-scale
matrix equations as

e Lyapunov equations,

generalized Lyapunov equations,

Stein equations,

Sylvester equations,

algebraic Bernoulli equations.

The algorithms compute approximate low-rank solution factors to high accuracy
and within low execution time. Using these solvers as basic building blocks,
efficient implementations of the following methods for model order reduction
are derived:

e balanced truncation for continuous- and discrete-time systems (based on
the data-sparse solvers for Lyapunov and Stein equations, respectively),

e singular perturbation approximation (SPA) to obtain zero steady-state
error (based on the data-sparse solvers for Lyapunov and Stein equations),

e a cross-Gramian approach for single-input, single-output systems and for
symmetric systems (based on the data-sparse solver for Sylvester equa-
tions),
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e balancing-related model order reduction for unstable systems (based on
the data-sparse solvers for algebraic Bernoulli and for Lyapunov equa-
tions).

These algorithms are applied to systems coming from FEM and BEM discretiza-
tions of two- and three-dimensional parabolic PDEs also including varying dif-
fusion coefficients and convective terms. It is shown, both theoretically and in
the numerical simulations, that the error between the original and the reduced-
order system introduced by using the H-matrix format is bounded. Finally, an
approach for solving an optimal control problem with inequality constraints for
the control is presented. The underlying parabolic PDE is discretized in space
and in time. After reducing the large state space dimension of the discrete-time
LTI system by the approximate BT method, standard optimization algorithm
can be applied to solve the optimization problem.

The thesis is structured as follows.

Chapter 2 provides the system theoretical background of model order
reduction by BT with some special attention given to norms. We also
recall some basic information about the hierarchical matrix format and
the corresponding formatted arithmetic.

In Chapter 3 we review the original matrix sign function and the squared
Smith iteration for the solution of Lyapunov equations in continuous and
discrete time, respectively. Some important topics are discussed in more
detail such as scaling strategies, employing rank-revealing QR factoriza-
tions and the complexity of each iteration scheme.

In Chapter 4 we modify the algorithms from Chapter 3 using data-sparse
approximations and the formatted H-matrix arithmetic. The original cu-
bic complexity of the iterative schemes is reduced to linear-polylogarithmic
complexity. Error bounds for the forward errors in the perturbed iterates
are derived. The efficiency and accuracy of the developed algorithms is
illustrated by several examples and compared to solvers in usual dense
arithmetic.

In Chapter 5 we develop efficient implementations of balancing-related
methods for model order reduction. Besides an approximate BT method,
an implementation of SPA is described and a method based on approxi-
mate low-rank factors of the cross-Gramian is proposed. Some accuracy
results are presented and several numerical simulations demonstrate the
performance of the new methods.

As further applications for the derived methods we discuss an approach for
model order reduction of unstable systems and a two-dimensional optimal
control problem with inequality control constraints in Chapter 6.

Chapter 7 offers some conclusions and briefly discusses possibilities for
improvements and future research.



Chapter 2

Basics

In this chapter we collect some important concepts of system and control the-
ory which will be needed later for model reduction by balanced truncation and
related methods. We introduce basic facts about linear, finite-dimensional sys-
tems mainly following [2, 98] thereby concentrating on continuous-time systems.
The main differences to the discrete-time case are pointed out at the end of the
chapter.

2.1 Linear Continuous-Time Systems

We consider a finite-dimensional, linear, time-invariant system on [0,00) in
standard state space form. This is in the continuous-time case a differential
equation, the input-to-state equation (or short state equation) (2.1a), combined
with an algebraic equation, the output equation (2.1b),

x(t) = Ax(t) + Bu(t), z(0) = o, (2.1a)
y(t) = Cx(t) + Du(t), (2.1b)

with constant matrices A € R™*" (the state matriz), B € R"*™ C € RP*",
D € RP*™ and zp € R". We denote the system (2.1) by (A, B,C, D). The
vector u(t) € R™ contains the input variables, y(t) € RP the system output,
and z(t) € R" is the vector of state variables. If the input and output space are
one-dimensional the system is called single-input, single-output (SISO) system.
For larger dimensions m > 1,p > 1 we refer to (2.1) being a multi-input,
multi-output (MIMO) system.

Definition 2.1.1 (Order of ¥(A, B,C, D)) The dimensionn of the matriz A
in (2.1) is called the order (or complezity) of the corresponding system.

We will further investigate linear, time-invariant systems of the following form,

&
8.
=
~—

I

Ax(t) + Bu(t), x(0) = xo, (2.2a)
y(t) = Cx(t) + Du(t), (2.2b)



6 CHAPTER 2. BASICS

for t > 0, where A, E € R"™*" B e R™™ (C € RP*" D € RP*™ and zy € R"”,
see [57]. Linear dynamical systems, where the input-to-state equation is written
with a leading matrix F, are called descriptor systems or generalized state space
systems. For E being nonsingular (2.2a) can be transformed into (2.1a) by
multiplication by E~! from the left. We also derive algorithms which can be
applied directly to systems of the form (2.2). In the following, we assume that A
as well as F are nonsingular, the pencil \E' — A is regular, i.e., det(AE — A) # 0
for some A € C. Furthermore, A\F — A is called a stable matrix pencil if it
is regular and all finite eigenvalues of Al — A are in the open left half plane,
ie. {A € Cldet(AE — A) = 0} € C™. In the following we recall system
theoretical concepts for systems in standard form (2.1). For more information
about descriptor systems we refer to [57, 110, 158].

It is immediate, that for a given input u(-) € L210c([0,00) — R™) and an
initial state g € R™ at time 0, the unique solution z(-) of (2.1a) is given by

t
o(t; zo,u()) := x(t) = etag + / AT Bu(r)dr  for all t > 0.
0
Definition 2.1.2 (Realization) X(A, B,C, D) is called a realization of
G: £2,loc([07 OO) - Rm) - £2,loc([07 OO) - Rp)
u(:) = y(),

if there exists an initial value xo € R™ such that for allu(-) € L2 0c([0,00) — R™):
Gu(-) = Cetwg + /CeA('_T)Bu(T)dT + Du(+). (2.3)
0

Infinitely many realizations of ¥.(A, B, C, D) are obtained by a change of coor-
dinates & = Tz, with det(T") # 0. The system (2.1) is transformed to

z(t) = TAT 1 &(t) + T Bu(t), Tz(0) = Zo,
y(t) = CT'Z(t) + Dul(t).
Using the notations
A=TAT™', B=TB, C=CT™', D=D, (2.5)
it follows that

Gu(-) = Ce'ig + / e’ Bu(r)dr + Duf).
0

Definition 2.1.3 (Minimal realization) A realization (A, B,C, D) of or-
der n of G is called minimal if n is the smallest possible dimension under all
possible realizations. This minimal number of states is called the McMillan
degree of the realization.

For the notions of stability and controllability, we can restrict ourselves to the
state equation of the system. This will be expressed using the short notation
Y(A, B).
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2.1.1 Stability

Definition 2.1.4 (Hurwitz stability) A matrizc A € R™*" is called Hurwitz
(stable) if all eigenvalues of A are in the open left half of the complex plane,
i.e., Re(\) <0 for all A € A(A).

In the following we call a system (A, B) stable if A is Hurwitz.

Example 2.1.5 As an introductory example we consider the heat flow in a
thin rod of length 1. The temperature x(t,£) at time ¢ € (0,00) and place
€ € (0,1) is given by the instationary heat equation

9x 9%x(t, )

S8 = —o o fe= (0,1). (2.6)

We take influence on the temperature distribution by heating or cooling at one
endpoint with a heat source u(-):

x(t,1) = u(t), for t > 0.

At the endpoint 0 we fix the temperature by a homogeneous Dirichlet boundary
condition
x(t,0) =0, t>0,

and at time t = 0 we specify an initial temperature distribution

X(07€) = XO(é)v §eq.

For the space discretization the interval €2 is partitioned into n + 1 pieces of
length h = 1/(n+1). We want to compute the temperature at the n inner grid
points

& =Jgh, 7=1,...,n

By use of piecewise linear FEM ansatz functions with h > 0

H%, §i-1 <& <,
pi(6) = 8= g <E< g,
0, otherwise,

for j =1,...,n, and a Galerkin approach with ansatz
n
x(t, &) = > z;i(t)p;(£),
j=1

we obtain, by substituting into (2.6), a system of n linear first-order ordinary
differential equations

n

n o1 v 1
> ), wOnied T =3 [ A4 €m0, fri=tm

Jj=1

-~

€ij _&i]’
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The initial value is given by

1
z;(0) = / x0(§)p;(§)dE, forj=1,...,n. (2.7)
0
Rewriting the system in matrix form yields the approximate state equation in
generalized state space form
Ei(t) = —Ax(t) + Bu(t) (2.8)

with mass matrix £ € R"™"_ stiffness matrix A € R"" and vector B € R”
given for exact integration of the integrals above by

(41 0 2 -1 0
N 1 4 1 ) -1 2 -1 )
E:— . A:— . . A:—
1 4 1 -1 2 -1
|0 1 4 | 0 -1 2 | i

The eigenvalues A; of the symmetric, positive definite matrices A and F are
given by
g_h , i 2 . .
A= 5(2 +cos(jmh)), A; = E(l —cos(jmh)), j=1,...,n.
Both matrices have the same set of eigenvectors

vy = (VehsinGjmh)) . j=1...m.

see, e.g., [141, Lemma 9.11]. For the transformed system obtained by left
multiplication with the inverse of F

i(t) = —E~YAx(t) + E"*Bu(t) (2.9)
A B

we conclude that the eigenvalues are given by

2\
)\f:—)\—JE, forj=1,...,n,

with all eigenvalues having negative real part:

12,
72 < A7 <O0.
Thus, the matrix A is Hurwitz. O
A weaker concept than stability is the following.

Definition 2.1.6 (Stabilizability of X(A, B)) The system 3(A, B) is stabi-
lizable if there exists an input function u(-) € Lg 0c([0,00) — R™) such that the
corresponding solution of (2.1a) satisfies lim;_,o0 ¢(t;0,u(-)) = 0.

In the following, we restrict our attention to stable systems. This is justified
since a large class of practically relevant systems, e.g. arising from the dis-
cretization of parabolic partial differential equations like the heat equation or
linear convection-diffusion equations, typically possesses this property.
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2.1.2 Controllability and Observability

The controllability property for a dynamical system means that for a given state
x1 there exists a control u(-) which steers the system from any initial state
to the desired state x1 in time ¢5.

Definition 2.1.7 (Controllability) A system (A, B) is controllable if for
any initial and any final state, £(0) = zg € R™ and x1 € R™, respectively, there
exist a time t1 > 0 and an input u(-) € L3 15([0,t1) — R™) such that

o(tr; o, u(-)) = x(ty) = 1.
We consider some characterizations of controllability.

Theorem 2.1.8 [2, Section 4.2.1] The following statements are equivalent for
a system (2.1a):

1. ¥(A, B) is controllable.

2. The finite controllability Gramian P at time t > 0, defined as

t
P(t) = /eATBBTeATTdT, (2.10)
0

is positive definite for somet > 0.
3. The controllability matriz (Kalman matriz)
C.(A,B)=[B AB A’B ... A" 'B] (2.11)

has full row rank:
rank (Cn (A, B)) = n.

4. The matriz [N — A, B] has full row rank for all A in C.
Example 2.1.9 [Example 2.1.5 ctd.] The controllability property of our ex-
ample X(A, B) in (2.9) will be checked by use of Condition 4 in Theorem 2.1.8.
Since controllability of (2.9) is equivalent to controllability of the general-
ized equation (2.8) we examine the rank of the matrix [AE + A, B] instead
of rank ([A\I — A, B]). Thus, if we can show that
rank ([/\E + A, B]) =n, for all A € C (2.12)

the system (A, @) as well as the system X(FE, —A, B) is controllable. From
the definition of B it follows that (2.12) is equivalent to

rank ([)\E + A];,) =n—1, with \E+ A, e R"""  forall A€ C.
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Setting A = % we obtain

6 0 0
rank([)\E—i-A]’)—rank = 00 =n-—1
0 6 0
andfor)\:—hi2
0 3 0
R hl3 0 3
/ _ _ — —
rank([)\E—i—A]n,)—rank 5 n—1.
0 3 0 3

For A & {%, —7%} we can easily see that for 2 € C"~! with
x'\E+ Al =0

or in more detail

it follows that x = 0. This completes the proof. O

We turn now to the dual concept of observability. Observability is concerned
with the question how to reconstruct a state z(tp) from observations y(-) over
[to, t1]. Without loss of generality assume that to = 0.

Definition 2.1.10 (Observability) A system 3(A, B,C, D) is said to be ob-
servable if for any t1 > 0 the initial state (0) can be determined from the input
u(+) and from y(-) in [0, t1].

Remark 2.1.11 The output equation (2.1b) for an initial state x(0) and an
input signal u(-) is given by

y(t) = Co(t; 2(0),0) + Co(t; 0,u(-)) + Du(t), t=0.

Since in this equation the latter two terms are known for a given input wu(-)
and ¢t > 0, the observability problem reduces to determining z(0) from y(-) =
Co(+;2(0),0) (assuming u(-) = 0) over [0, ¢1]. O
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Since controllability and observability are dual concepts, it turns out that the
observability characterizations are dual to the controllability characterizations
in Theorem 2.1.8.

Theorem 2.1.12 [2, Section 4.2.2] The following statements are equivalent for
a system (2.1):

1. (A, B,C, D) is observable.

2. The finite observability Gramian Q at time t > 0, defined as follows
¢
Q(t) := / AT CeMNdr, (2.13)
0

is positive definite for somet > 0.

3. The observability matriz

C
CA

On(A,C) = | CA? (2.14)

L CAnil -
has full column rank:
rank (O, (4, C)) = n.
A —A
4. The matrix c has full column rank for all A € C.

Remark 2.1.13 A weaker concept than observability is detectability. The con-
cept of detectability is dual to stabilizability. Thus, X(A,C) is detectable if
B(AT,CT) is stabilizable. O

For stable systems, the Gramians (2.10) and (2.13) are also defined for ¢t = oco.

Definition 2.1.14 (Infinite Gramians) For (A, B,C, D) being stable, the
infinite Gramians P and Q are defined as

P = /eATBBTeATTdT, Q:= /eATTCTCeATdT. (2.15)
0 0

Proposition 2.1.15 [2, Proposition 4.27] The Gramians P and Q are given
for stable systems (2.1) by the unique, positive semi-definite solutions of the
following (continuous-time) Lyapunov equations

AP +PAT + BBT =0, ATo+0A+CTC =0,

respectively.
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For systems which are controllable and observable, the Gramians P and Q are
known to be positive definite. Systems with this property are shown to be
minimal.

Proposition 2.1.16 [154, Theorem 27] A realization (A, B,C, D) is mini-
mal, if and only if, it is controllable and observable.

The Gramians P and Q are not input-output invariants as they transform con-
tragrediently under a change of state space coordinates. This can be shown by
the following computations. We apply a nonsingular state space transformation
T to (2.1). The Gramians P and Q of the transformed systems are given by
the solution of the following transformed Lyapunov equations:

0=TAT 'P+PT TATTT +TBBTTT = AT 'PT T +7'PT"T AT + BBT,
0=T"TATTTQ+ QT AT +T7TCTCT™ = ATTT QT + T QT A+ C*C.
By the uniqueness of the Gramians we conclude
P=TPT", Q=T""Q17"
The product of the two Gramians undergoes a similarity transformation:
PO =TPQT "

Thus, the eigenvalues of PQ are input-output invariants. The positive square
roots of the eigenvalues of PQ,

O'i:\/)\i(PQ), iZl,...,’l’L,

are called the Hankel singular values (HSVs) of the system (2.1).

Questions concerning the amount of energy which is needed for the control
and the observation of an LTI system can be answered by help of the Gramians.
In the following, the energy of a signal is interpreted as its Lo-norm.

Proposition 2.1.17 [2, Proposition 4.12] The minimum La-energy required to
steer a controllable system (A, B) from 0 to x1 in [0,t1] is given by the Lo-
energy of the input function

u(ty=BTeA D¢, e R te(0,h], (2.16)

i.e. by the square root of
t1
lullZ, = / A= BRT A (=g dt = TP (ty)€ = 2 P(t) " o,
0

where x1 = ¢(t1;0,u(-)) = P(t1)§. Furthermore, since from (2.10) it follows
that P(t1) > P(t2) forty > to, the square of the minimal energy for the transfer
from 0 to x1 is given for t1 — oo by
[e.e]
Jull2, = [ u)Tu(t) dt = TP s
0
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or by reversing the time interval to (—o0,0], setting x(0) = xq, by

0
ul|%, = /u(t)Tu(t) dt = zl P~ lag.

— 00

For an observable system, the energy of the output y(-) at time ¢; generated
from the initial input z(0) = z¢ assuming u(-) = 0 can be expressed by
t1
HyH%2 = /xgeATtCTCeAtxo dt = :C(j;Q(tl):co.
0

Then, the square of the (largest) output energy resulting from initial state xq
and u(-) = 0 is given for an infinite observation interval by

o

Iyl = / y(O)Ty(t) dt = 2F Q.
0

The main energy F for the transfer from past inputs to future outputs can be
derived by combining these expressions:

E = sup Hy”%g _ ngxO _ TE‘)FPWQPV%O o)
Ao lullz, g P~ w0 T
u Lo

with Ty = 771/2x0.

2.1.3 Transfer Functions

Throughout this section we assume that the LTI system (2.1) is stable and
xz(0) = xg = 0. Hence G in (2.3) maps Lo-functions to Lo-functions and we
introduce

G: L£2([0,00) = R™) — Ls([0,00) — RP) (2.18)

u() — Gu()=y()= /C’eA('T)Bu(T)dT + Du(-)
0

as the input-output operator of a stable LTI system with zero initial value. The
Laplace transform is used for the analysis of linear time-invariant systems. It
can be interpreted as a transformation from the time domain to the frequency
domain.

Definition 2.1.18 (Laplace transform) For f(-) € Ly 0c([0,00) — R™) and
seC

F(s) = (£0)(s) = [ Fit)e™
0

is called the Laplace transform of f(-), if it exists.
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Let o € R be fixed. Consider
Ea([0,00) = R™) := {f € L110c([0,00) — R™) ‘ / Hf(t)ng_"‘tdt < oo}
0
and
Co :={s € C|Re(s) > a}.

It is shown, e.g. in [98, page 742], that the Laplace transform F'(-) of f(-) €
Ea([0,00) — R™) is analytic and bounded on C,, i.e.

L: Ey([0,00) = R™) — Hy(Cqp — C™)
fG) = (L)
is well defined. Since the Cauchy-Schwarz inequality gives
L2([0,00) — R™) C E4([0,00) — R™) for all @ > 0,

it follows that

L: L5([0,00) = R™) - Heo(CT — C™).
As in [98, Theorem A.3.47] one can show that

(2m) V2L 0 £5([0,00) — R™) — Hy(CH — C™) (2.19)

is a bounded operator and an isometry.
Applying the Laplace transform to a system with u(-) € £,([0,00) — R™)
for some « > 0 yields a system representation in the frequency domain

sX(s) = AX(s)+ BU(s),
Y(s) = CX(s)+ DU(s), forallseC,.
A connection between input and output variables in the frequency domain is

obtained via the so called transfer function or transfer function matriz (TFM)
associated with the system X(A, B, C, D):

G(s)=C(sI — A)"'B+ D, seCt. (2.20)

G() is a matrix over the field of rational functions and defines the multiplication
operator

G HQ((C+ - C") — HQ((C+ — CP)
U() — Y()=GHU(),
and hence
(Ly)(s) =Y(s) = (C(sI — A)"'B+ D) U(s) = G(s)(Lu)(s), forallseC*.

The relationship between the norm of Gj; in the frequency domain and the
norm of G in time domain is given by the isometry property of the (normalized)
Laplace transform (2.19) in the following commuting diagram:

L£2([0,00) — R™) %5 £5([0,00) — RP)
(2m)~12L | | (2m)~\ 2L .

Gp
==

Ho(CH — C™) Ho(CH — CP)
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It follows
1Gul| £4([0,00)—RP IGU | 3a(ct—cr
[Glop = sup o B = sup - S TR < Gy,
u€Lo Hu”ﬁg([o,oo)—ﬁRm) UeHso H HH2((C+—>Cm)
llull £, #0 1U]| 7470

It is well known, as for example stated and proved in [98, Theorem 2.3.28] that
the 2-induced operator norm of G equals the Hs,-norm

1Gllop = 1G1l1o (c+ —cpxm)-

As a consequence we have, for all u € £2([0,00) — R™), the useful estimates

191l £2(10,00)=R™) < NG ll3oe (ct—crxmy el £2(0,00)—RP) (2.21)
and
1Y ][4t —cry < NGl @t —crxm) 1U 1o (et —cm)- (2.22)

We will revisit these bounds in Chapter 5 for the important question in model
order reduction of how “close” the original and the reduced-order systems are.
Note that the H,,-norm is endowed with the 2-induced norm:

|G+ (c+—coxmy = sup [|[G(s)[l2 = sup omax(G(s)).
seCt seCt

The stability of A yields that G(-) is analytic on C* and bounded, i.e.,

G(-) € Hoo(CT — CP*™),
Since G(-) is continuous on CT, the maximum modulus theorem yields that the
supremum is attained on the imaginary axis, i.e.,

||GHHOO((C+—><CPX’”) = Sgﬁ Omax(G(Jw))-

The TFM G is invariant under coordinate changes in state space. To see this
we introduce new coordinates ¥ = Tz, with det(7") # 0, and obtain a new
realization (A, B, C, D) for the system (2.1) using the notations in (2.5). It is
seen that the associated TFM G equals G

G(s) = C(I—A)'B+D=0CT'T(sI - A)'T'TB+ D
C(sI — A)7'B+ D =G(s).
Let us examine the input-output behavior of an LTI system in the time
domain for an exponential input and a sinusoidal and describe it via the TFM.

The output of (2.1) for an exponential input u(t) = e, s € C\ A(4), t <0,
can be expressed by the TFM G as follows:

y(t) = Cu(t) + Du(t) = Ch(t;zo, ™) + De*

= e xo—l—/ At=T) BesTdr | + Dest

= C (eAtxo + et (sI — A) " (elI=A I)B) + De®
= Cett (zo — (sI — A)7'B) + G(s)e*



16 CHAPTER 2. BASICS

For A being Hurwitz, the system response to the input u(t) = sin(wt), w € R,
is
y(t) = 0(t) + |G(yw)|sin(wt + arg G(yw)), t >0,

where 6(¢) — 0 for ¢ — oco. Hence
t — |G(w)|sin(wt + arg G(yw)), t >0,

is called the “steady state response” and |G(jw)| is the gain, arg G(jw) the
phase of the system [98, Proposition 2.3.22.].

For w € R the complex-valued function w — G(jw) is called the frequency
response. The frequency response can be graphically represented by two curves,
the gain curve (w +— |G(yw)|) and the phase curve (w +— arg G(yw)). An output
of both curves is called a Bode plot if logarithmic scales are used for the fre-
quency [130, Chapter 6]. From this plot important properties of an LTI system,
as for instance gain and phase margin, DC gain, bandwidth and stability, can
be analyzed over a wide range of frequencies. We discuss the results of the
model reduction methods in Chapter 5 by help of the Bode magnitude plot.

Example 2.1.19 [Example 2.1.5 ctd.] As output for Example 2.1.5 we mea-
sure the temperature at the center of the rod. We obtain the output equation

x(t,1/2) = y(t) = Cx(t), t>0,

with CT € R*, C = e(Tn_H)/2 for n being odd. In Figure 2.1 the frequency
response of the LTI system (2.8) with additional output as described above is
plotted in a Bode diagram using the function bode from the MATLAB Control
System Toolbox. Here, the gain |G(jw)| is plotted in decibel, 201log( (|G (jw)]),

and the phase in degrees. O

2.2 Linear Discrete-Time Systems

In this section we consider LTT systems which are discrete in time

Tp+1 = Axy + Buy, zo = ¥, (2.23a)
Yk = Cxp + Duy, (2.23b)

with initial condition 2z° € R™ and k& € N. The dimensions of the matrices
involved are equal to those in the continuous-time setting (2.1), A € R"*" B ¢
R»>*m e RP*™, D € RP*™, and therefore, the order of the system is n. We
shortly point out the main differences to the continuous-time case. The time
dependency of an element of the sequence u(-) : N — R™ will be denoted in the
following by uy or by u(k) for better readability depending on the situation. For
the space of sequences u(-) : N — R™ we also use the notation u(-) € (R™)N,
The solution of the state equation (2.23a) at time k& € N under influence of the
input u(-) € (R™)N and with initial condition 2° at time 0 is given by

k—1
d(k; 2%, u() = AF2® 4+~ AT Bugy).
j=0
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Bode Diagram
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Figure 2.1: Bode diagram for Example 2.1.19.

The corresponding input-output operator of (2.23) with time domain N is de-
fined by

G: @) — @)

—1
Gu(-) =CAz" + Z CAC=YI) Bu(j) + Du(-).
5=0

Analogously to the continuous-time case we define the stability of the system.

Definition 2.2.1 (Schur Stability) The matriz A is called Schur stable or
convergent if all eigenvalues of A are in the interior of the unit disk D, i.e.,
IA| <1 for all X € A(A).

In the following, a discrete-time system (A, B) is called stable if A is Schur
stable.

Example 2.2.2 [Example 2.1.5 ctd.] We consider the state equation (2.8) of
Example 2.1.5. The time interval [0, co) is discretized with constant step size
Ts > 0. The computed solution at the kth time-step ¢, = kT is denoted by
x = z(tg) for k € N. The backward Euler method computes x4 by

ake1 = (B+ T A) ' Eay + To(E + T,A) ' Buy,
yp = Cuoxp, forkeN

with 2(0) = 2° given as in (2.7). That is, we obtain a full discretization of the
control problem in Example 2.1.5 using an approximate derivative

. LTp+1 — Tk
S
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The eigenvalues of (E + Tsfl)_lE are given by the eigenvalues of E and A as
follows:

N \E
N(E+TAE), = —L—.
’ TONE LT

Thus, f01i arbitrary Ts > 0 (and h > 0 in the definition of F and A) the matrix
(E + TsA)7'E is Schur stable. O

In the following we introduce the concept of reachability which is stronger
than controllability. Note that for continuous-time systems these concepts co-
incide.

Definition 2.2.3 (Reachability) For a system (2.23) a state x' € R" is
called reachable from the zero state if there exist an input u(-) : N — R™
and a time k1 < oo such that

o (kr; 0,u()) = w(ky) = 2.
The finite Gramian at time &k € N\ 0 is defined by
k—1 ' _
P(k):=Y_ A/BBT(ATY,
§=0
for the reachability concept and for the observability by

Q(k) =) ATy cTcA.

MI

<
Il
o

With these definitions the equivalences in Theorem 2.1.8 and Theorem 2.1.12
also hold for the discrete-time case.

Definition 2.2.4 (Infinite Gramians) For stable, discrete-time systems (2.23)
the infinite Gramians are defined as follows:

Pi=> ABBT(ATY, Q=) (ATYCTCe?. (2.24)
j=0 j=0
Proposition 2.2.5 The infinite Gramians P and Q of a stable system (2.23)
satisfy the following discrete-time Lyapunov equations
APAT + BBT =P,  ATQA+CTC=0Q.

These matriz equations are also called Stein equations.

The input of minimum /o-energy (2.16) for the controllable system (2.23a)
changes in discrete time to

u(k) = BTATYM=Re ke (0,ki], k1 > n,

for some £ € R™ such that 21 = ¢(k1;0,u(-)) = P(k1)E.

The discrete analogon to the Laplace transform is the z-transform. In the
following we use the notation D™ = {z € C||z| > 1} for the complement of the
closed unit disc.
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Definition 2.2.6 (z-transform) For a sequence uw : N — R™ and z € C the
z-transform is defined by the formal power series in z~!

i(z) = (Zu)(2) ==Y _ul(k)z"".

k=0

Let v > 0 be fixed. Consider

Sy(N—R™):= {’LLZN—”Rm

E]mmw*<a},

k=0

then u(-) € Sy(N — R™) yields that & = Zu is absolutely convergent for all
z € C with |z| > v. For every u(-) € S,(N — R™) the z-transform a(-) is
continuous for all |z| > « and analytic on

D, i={z€C| |2 > 7}
98, page 737, thus
Z: S(N=R™ — hoo(Dy —C™)
u(-) = (Zu)(-)

is well defined. If u(-) € lo(N — R™) it follows by the Cauchy-Schwarz inequal-
ity that u(-) € S;(N — R™) for all v > 1, and thus

Z: l5(N — R™) — hoo(DT — C™).

Furthermore,

(2m)Y2Z . £y(N - R™) — ho(DT — C™)

is a linear isometry, see [98, Theorem A.3.43].
The TFM is obtained by applying the z-transform to the stable system
(2.23) with zg = 2° = 0 and u() € S,(N — R™) for some v > 0, yielding

G(z)=C(21 —A)'B+D, zeDF.
We introduce the multiplication operator
Gy i ho(DT —C™) — hy(DT — CP)
a() = gt) =aGe)al),
such that
(Zy)(z) =9(z) = (C(z] ~A)7'B+ D) i(z) = G(2)(2u)(z), forall z€ DT,

For stable LTI system (2.23) with 29 = 2° = 0 we further consider the input-
output operator G, defined by

G: 6r(N—=R™) — /l(N—RP)
1

u(:) — Gu() =y(-) =Y CA "I Bu(j) + Du(-).

=0
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Note that isometry of the z-transform yields that the following diagram com-
mutes:
LIN=R™) 5 (N RP)

(2m)~ 12z | | (2m)~12z .
ha(DF — C™) S (D — CP)

The equivalence of the operator norms in time and in frequency domain follows

op — - ~ - op*
P e lulleymormy achy Nl no (0t —cm) P
u0 al|p, #0

By the equivalence of the 2-induced operator norm of G and the he,-norm [98,
Theorem 2.3.28]
1Gllop = |G lhoo (D+—Crxm),

we have estimates in time and in frequency domain for all u € ¢5(N — R™),

1Yl norm) < G lhee D+ —crxm) U]l ey (v—Rr)

and
190l no (0t —cr) < NG llhoo 0+ —crxmy @l o (0t —cmy-
The TFM is analytic on DT and bounded, i.e.,

G(-) € heo(DT — CP*™).
Since G(-) is continuous on D¥ it attains its maximum at the boundary

|Glpoe (Dt —Cpxm)y = SUP Omax(G(2)) = max amaX(G(eJ9)).
2eD+ oe|—m,m]

2.3 H-Matrix Arithmetic Introduction

The hierarchical (H)-matrix format is a data-sparse representation for a special
class of matrices which often arise in applications. Matrices that belong to this
class result, for instance, from the discretization of partial differential or integral
equations. Exploiting the special structure of these matrices in computational
methods yields decreased time and memory requirements. The H-matrix format
was introduced by Hackbusch in 1998 [89]; further detailed descriptions can be
found, e.g. in [46, 75, 77, 91].

We first introduce some basic definitions for the construction of such H-
matrices then we describe the corresponding approximate arithmetic, mainly
following [77]. Thereby we will point out the facts needed throughout the
subsequent chapters.

The basic idea of the H-matrix format is to partition a given matrix M €
R™ ™ recursively into submatrices M), that admit data-sparse low-rank ap-
proximations in the following form

M, . ~AB", AeR™ BeR¥F (2.25)
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where k denotes the rank of the submatrix. The factors are assumed to be
rectangular with & much smaller than r and s. To determine such a par-
titioning, we first consider the hierarchical splitting of a finite index set Z,
where Z = {1,...,n} corresponds to a finite element or boundary element basis
(¢i)iez. For simplicity, we identify the vertices of the hierarchical tree with the
corresponding subset of Z. This is well defined if each vertex is either a leaf or
has more than one son.

Definition 2.3.1 (H-Tree T7) For a finite index set T we denote by T1 =
(V,E) a tree with vertices in V' and edges in E. The set of sons for a vertex
v eV is defined as

S) :={w e V|(v,w) € E},

the descendants of v by
S*(v) :={w € V|w D v}.
T7 is called an H-tree of the index set I if the following conditions are satisfied:
1. The index set T 1is the root of Tz, and v CZ, v # (), for allv e V.
2. FEither a vertex is a leaf
S(w) =0, (set of leaves: L(Tr) :={v € V|S(v) = 0})

or it is the disjoint union of its sons

v UwES(v)w'

A simple exemplary H-tree is shown in Figure 2.2(b). For simplifying the
notation we identify the set of vertices V' with 77, omitting the set of edges.
The vertices v € V are also called clusters.

Remark 2.3.2 (Construction of 77) We shortly describe the construction
of a geometrically balanced H-tree T by bisection. Starting with the index set
7 = 7 we identify the associated domain in R? by the union of the supports
of the corresponding ansatz functions:

Qg0 = | Jsupp(pi), where  supp(e:) := {z : @i(z) # 0}
€L

Then, the index set Z(© is divided into two sets Ifl), Iél) such that the cor-
responding domains QI(1> and Qz.(l) have approximately equal size diameters

using the Euclidean norlm. The domain {27 is thereby divided according to
the space direction with maximal diameter. The splitting will be stopped as
soon as the cardinality of the clusters is one. For n being a power of two, the
depth of T7, that is the length of the longest path, is given by p = logy(n).
The computation of diameters of clusters (and of distances between them) will
also be needed for the H-matrix representation to identify matrix blocks which
allow for a low-rank approximation. In practice we avoid the computation of
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{1,2,3,4,5,6,7,8}

/N

{1,2,3,4} {5,6,7,8}

Y1 P2 ¥8 A A

{1,2} {3,4} {5,6} {7,8}

0 Lo{1p {283y {45y {67} {8}

(a) Underlying ansatz space. (b) H-tree T7.

Figure 2.2: Construction of a binary H-tree 17.

these quantities for the domain €2, of a cluster v using instead a surrounding
cuboid which is supposed to be minimal and axis parallel @, D €,. Using these
so-called bounding boxes, the computation simplifies to
diam(v) := max ||x — , dist(v,w) :=  min T — .
(0)i= max flo—ylo, dist(v,w) = _min o=yl
For index sets corresponding to regular grids it is also efficient to use a car-

dinality balanced splitting where the number of indices for all vertices on the

same hierarchical level is approximately balanced.
O

Example 2.3.3 We consider a finite element ansatz space (¢;)icz as intro-
duced in Example 2.1.5 with n = 8 and Z = {1,...,8}, see Figure 2.2(a).
For an efficient use of the hierarchical matrix format considering both, com-
putational complexity and storage requirements, the space of ansatz functions
should be locally separated. The maximal number of functions with relatively
close support is given by

max #1{j € Z| dist(supp(p;), supp(p;)) < Csep  diam(supp(p;))}.  (2.26)

For this example, setting Cgsep, = 3, a small constant ny,i, = 3 bounds the num-
ber of close supports independently of n. The H-tree T7 in Figure 2.2(b) is
constructed by bisection. In this example both splitting strategies (geometri-
cally or cardinality balanced clustering) result in the same H-tree. O

For the representation of a square matrix we introduce a hierarchical tree based
on a product index set Z x 7.

Definition 2.3.4 (Block H-Tree T7yx7) Let I be a finite set and Tt the cor-
responding H-tree. An H-tree Trx7 is called block (cluster) H-tree if for all
v € Try1 there exist r,s € Tr such that v = r x s. The vertices v € Ty are
called block clusters.
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Remark 2.3.5 If rectangular matrices from RZ*J are approximated in H-
matrix format the block tree is constructed from 77 and 7). Since throughout
this work only square matrices are approximated as H-matrices we will not
consider this case. O

The set of indices is recursively subdivided as follows.
Remark 2.3.6 (Construction of T7,.7) We start with the product index set
root(Trx7) =7 X Z,

and define the set of successors according to the set of sons in T7 and some
technical considerations. The product index set is hierarchically partitioned
into 7 X s blocks, where we stop the block splitting as soon as the correspond-
ing submatrix M admits a low-rank approximation. The suitable blocks
are determined by a problem dependent admissibility condition. For problems
based on a variational formulation of elliptic differential operators, the corre-
sponding Green’s function G(x,y) has an algebraic singularity at = y. Then,
a standard condition is given by the following definition.

Definition 2.3.7 (Admissibility condition) A product index set r x s is
called admissible if the corresponding domains

T = Usupp(soi), o= U supp(¢;)

i€r j€s
fulfill the admissibility condition:
min{diam(7), diam(o)} < 2n dist(r, o). (2.27)
The real-valued parameter nn > 0 is typically chosen between 1/2 and 5.

To limit the number of leaves in 77«7 as many as possible (preferably large)
off-diagonal blocks should fulfill (2.27). With the assumption that the underly-
ing space of ansatz functions is locally separated, i.e., there exists a moderate
constant nyi, which bounds (2.26), an effective use of the data-sparse H-matrix
format induced by T7«7 is guaranteed. In practice, the partitioning of a block
r X s will be stopped as soon as a given minimum block size is reached for r or
for s instead of splitting the clusters up to leaf size one. This minimum block
size is chosen as large as the bound for the number of close supports nmi, since
we cannot expect to obtain admissible blocks of smaller dimension. With these
notions we can define the set of successors of a vertex r x s € Try7:

0, if r x s fulfils (2.27),
S(rxs):=<10, if min{#r, #s} < nmin,
{r' x d|r" e S(r),s" € S(s)}, otherwise.
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Remark 2.3.8 (Depth of T7.7) It is shown in [77, Lemma 4.5] that under
moderate assumptions on the underlying ansatz space the depth p of the block
H-tree Trw7 is bounded by O(logy(n)). This will be assumed in the follow-
ing. (I

Definition 2.3.9 (H-Matrix) Based on the constants nyin and k (both given
in N), we define the set of H-matrices for a block H-tree Trx7 by

H(Tryz, k) := {M c RT*T

Vr x s € L(Trxz) :rank (M, ) <k }

or #T S Nmin OT #S S Nmin

We denote by My, the hierarchical approximation of a matrix M. In the fol-
lowing we omit the notation # for the cardinality of an index set whenever the
meaning is clear. The set of admissible leaves (satisfying (2.27)) is denoted by
LT (Trx7). The submatrices M, ., corresponding to leaves r x s € LT (Trx7) are
stored in factorized form as Rk-matrices (matrices of rank at most k) by (2.25).
The product of two rectangular matrices has storage requirements of

SRk(M‘rXs’ k) = k(?” + S)
entries (instead of rs). Thus, if
k < min{r, s}, (2.28)

the storage requirements of the submatrix in Rk-matrix format are reduced.
The remaining inadmissible blocks with less than n,,i, rows or columns corre-
sponding to leaves (which are summarized in the set £~ (Tzx7)) are stored as
usual full matrices with an amount of memory bounded by

Stat(M),.,.,) < Nnin max{r, s}.

By the choice of a minimum block size nyi, we avoid the storage of very small
submatrices in Rk-matrix format.

Example 2.3.10 [Example 2.3.3 ctd.] We consider the construction of an
‘H-matrix based on a block H-tree 17«7 where the basic partitioning of Z is
described in Example 2.3.3. Setting = 1.0, the largest blocks which fulfill the
admissibility condition (2.27), as illustrated in Figure 2.3, are {1,2} x {7, 8} and
{7,8} x {1,2} as depicted in green (light grey) in Figure 2.4 (c). These blocks
have diameter 3h and their distance is of the same size. By a choice of ny;, =1
we split the H-tree up to depth 3 where some further blocks fulfill (2.27). The
remaining red (dark grey) blocks belong to L~ (Tzxz), see Figure 2.4 (c).

O

‘H-matrices can be stored with an almost linear amount of memory. The storage
requirement for a matrix in the set H (77«7, k) depends on the depth p and on
the sparsity of the H-tree T747 measured by the constant Cgp.
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dist(7, o)

Figure 2.3: Admissibility condition in Example 2.3.10.
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Figure 2.4: Construction of an H-matrix in Example 2.3.10.

Definition 2.3.11 (Sparsity constant Cg,) The sparsity constant Cgp, is de-
fined for a block H-tree Tr71 as follows:

Cyp := max {max #{s e Tr|lr x s € Trur}, max#{r € Tr|r x s € szz} )
TGTZ SGTI

Under certain assumptions on the construction of Tr.7 it is shown in [77,
Lemma 4.5] that Cgp is independent of the number of indices. We assume
the latter in the following.

Remark 2.3.12 (H-matrix storage) Suppose the cardinality of the index
set Z equals n. From the definition of Cg, we derive a bound for the number of

leaves in T7«7:
#L(Trx1) <2Cepn.

With a minimum block size npmi, the required amount of real numbers for a
matrix in H(T7x7, k) is bounded by

Sn(Trxz, k) = Y SuTra)+ Y Sr(Toxz k)

TXSELf(TIXz) TXSE,C+(TZXI)

< Z Nmin max{r, s} + Z E(r+ s)

TXSEL:*(TIXj:) TXSEL:JF(TIXz)

< Z max{nmin, k}r + Z max{Nmin, k}$

TXSE[:(TIXI) TXSE[:(TIXI)
< 2Cgyn(p+ 1) max{nmin, k}.

See [77, Lemma 2.4] for more details. For simplicity we will assume from now
on that npin, < k. Then, the bound for the storage requirements simplifies to

Sn(Trxz, k) <2 Cep n(p+ 1)k = O(nlogy(n)k)

compared to n? for the original (full) matrix. O
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Algorithm 1 7;_,: Truncated SVD for Rk-matrices.

INPUT: R=ABT AcR™F BeR>*F Lk <k
OUTPUT: T;_,(R) = R=ABT, Ac R™* [ e R*F
1: Compute thin QR decompositions:

A = QaRa, QaeR™F Ry eRMK
B = QBRB, QB S RSXk, Rp € Rka.

2: Compute an SVD
RARL =UxVT.

3. Compute the matrix R = ABT of rank k by two matrix multiplications:

U

AU(
B

— @ L1
— QBV(,1:

The approximate arithmetic is a means to close the set of H-matrices
M € H(Trxz,k) under addition, multiplication and inversion. These opera-
tions in formatted arithmetic are performed blockwise with exact addition or
multiplication followed by truncating the resulting block back to rank k using
a best Frobenius norm approximation. The corresponding truncation operator
onto H(Tzxz, k) is denoted by T3 1.

Definition 2.3.13 (H-matrix truncation) ForH-matrices M € H(Tzrx1,k),
the truncation operator

TH,fm—k : H(TIXI, k‘) — H(TIXIa k,’), M +— M,

is defined blockwise for all leaves of Tr«1 by

‘rxs :

Y {%Hk(MWS)a if r X s admissible,

M, otherwise.
I'r>< s?

The truncation operator 7; _, maps an Rk-matrix to a best Frobenius (or spec-
tral) norm approximation of rank k by use of a truncated singular value decom-
position (SVD). Note that for k < k the operator T;_ . is the identity.

In practice, the truncation is performed as described in Algorithm 1. We
use the colon notation to designate submatrices. Adding the flops of the com-
putational steps in Algorithm 1 as given in [74, Section 1.2.4, 5.2.9, 5.4.5], the
complexity of truncating R = ABT of rank k to rank k& by a truncated SVD is
given by

Nt

- (s k)= 6k2(r + s) + 23k3.
For the complexity of the H-matrix truncation a bound is given in [77, Lemma
2.9]:

N1, . < 6kSy(Trxz, k) + 23K°#L(Try7).

H,k—k —
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By help of the truncation operator it is now possible to introduce the approx-
imate arithmetic. For two matrices A, B € H(Tr«1, k) and a vector v € R™ we
obtain approximate arithmetic operations, which all have linear-polylogarithmic
complexity. More details and proofs concerning the complexity estimates in this
section can be found in [77]. We consider the complexity in dependency on k.
The estimates are also valid for adaptively chosen ranks where k is taken as
maximum over all blockwise ranks. The adaptive choice of ranks is described
at the end of this section.

Definition 2.3.14 (Matrix-vector multiplication) The matriz-vector prod-
uct for a matriz A € H(Trxz,k) and a vector v € R? is defined blockwise for
all leaves r x s € L(T7x1) by Algorithm 2.

Algorithm 2 H-matrix-vector multiplication.
1 w:=0,
2: for all » x s € E(TIxI) do
3w = wpr + (A, v,),
4: end for

The matrix-vector multiplication is of the same complexity as storing an H-
matrix,

Niw(Trxz, k) < 283(Trx1, k) = O(nlogy(n)k),
see [77, Lemma 2.5].

Definition 2.3.15 (H-matrix addition) The formatted sum of two matrices
A, B € H(Tzxz,k) (denoted by &) is defined by exact addition (with A+ B €
H(Tzx1,2k)) followed by a truncation back into the set of H-matrices of rank
at most k:

A® B := TH,I«—Qk(A + B)
The formatted sum takes roughly

Nrgn(Trxz, k) 24kSy(Trx1, k) + 184k3# L (T 1)
24k(2 Cop nk(p + 1)) + 1843 #L(Tr 1)

O(nlogy(n)k?),

<
<

see [77, Remark 2.14]. Analogously the formatted subtraction (&) is defined.
Complexity estimates for the formatted matrix product and the approximate
inverse are much more involved. Computing the approximate product of two
matrices is more complex using the H-matrix technique since the structure of
the underlying H-tree may change drastically for the (exact) matrix product.
This may happen even if we consider a multiplication of two matrices which
belong to the same set A, B € H(Trx7,k). In the following we will point out
the main properties of the formatted operations, thereby assuming a simple
structure of the H-matrix set under consideration. First of all we assume that
the block H-tree Tr«7 is idempotent (that is, the product tree 1" - T satisfies
T-T =T) or at least almost idempotent. In the latter case the distance between
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T -T and T is measured by an idempotency constant C;q. We assume that Cig
is independent of the number of indices. This can be shown for geometrically
balanced cluster trees, see [77, Lemma 4.5]. For more details about product
trees see [77, Section 2.1.6].

Definition 2.3.16 (H-matrix multiplication) Let Tr.7 be a block H-tree
with sparsity constant Cs, and depth p. For two matrices A, B € H(Trx1,k)
the formatted (best) multiplication (®pest) is defined by the exact multiplication
followed by truncation

A Opest B = TH,I«—IE(A B)

The computational complexity consists of two parts, the cost for the calculation

of the exact matrix product, H(T7x7, k) - H(T7x7, k) — H(T1x 7, K),
N’H~H(TI><1'7 k:) < 4Csp3(p + 1)2]{727%

and the cost for truncating large blocks of rank k back to rank k and convert
smaller leaves to full matrix format. This sums up to an overall complexity for
the formatted multiplication [77, Theorem 2.24]:

NH@bestH(TIXI7 k‘) < 4301d305p3k3(p + 1)3 max{n, #L(TIXI)}-

In practice, a truncation back to rank k is applied in each intermediate (and
rank increasing) step of the matrix product. The resulting operation is called
fast multiplication (®) and has a reduced complexity of

NH@H (szz, k) < 56Csp2 max{Csp, Cid}kQ (p + 1)2
+184 Cyp Cig K (p + 1) #L(Trx 1)
= O(nlogi(n)k?).

The fast multiplication is not guaranteed to compute best approximations to
the exact matrix product since theoretically singular values can be canceled in
the intermediate steps.

It is shown in [20, 22] that inverses of finite element discretizations of
second-order elliptic partial differential operators with bounded coefficients can
be approximated by H-matrices with blockwise low rank. We compute ap-
proximations to the inverses via approximate LU decompositions as introduced
in [51, 120] and described in the following remark.

Remark 2.3.17 (H-LU-decomposition) A matrix A € R"*" with non-zero
minors is decomposed in exact arithmetic as

A=LU,

where L is a lower-triangular and U is an upper-triangular matrix. It is shown
in [21, Theorem 3.4] that L and U can be approximated by H-matrices Ly and
Uy with

A= LnUpn| <,
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if each Schur complement S in A can be approximated blockwise by an H-matrix
S with accuracy e,

HS‘TXS — §|TXSH <e, foreachr xsée LT (Trx7).

It is proven that matrices stemming from finite element discretizations of
elliptic partial differential operators with measurable coefficients possess this
property. For simplicity we consider the block LU-decomposition of A:

A An
Ag1 Ag

L1 0
Lor Lo

Ui U2
0 Ux

~
~

Using ‘H-matrix arithmetic the decomposition is recursively defined by the fol-
lowing four steps:

1. Compute the H-LU-decomposition: Ay; = L11U11;
2. Solve the triangular system Ao = L11U;2 for Uys;
3. Solve the triangular system As; = LojUyy for Log;
4. Compute the H-LU-decomposition: Ass © Loy ® Uys = LogUss.

The triangular solves in 2 and 3 are recursively defined via block forward and
backward substitutions based on formatted arithmetic. The recursive defini-
tions of the H-LU-decompositions in step 1 and 4 lead to the computation of
standard LU-decompositions on the coarsest level, that is in the inadmissible
blocks on the diagonal. The storage requirements for the two factors Ly and
Uy are of the same size as those for the matrix Ay:

SH*LU(TIX:Z—) k) = SH(TIX.Tu k:) = O(n logz(n)k).

The complexity of the H-LU-decomposition can be estimated by the complex-
ities of the above mentioned computational steps. It is shown in [80, Corollary
4] that the computational work breaks down to the complexity of the format-
ted matrix multiplication and is therefore bounded if the block tree T7.7 is
constructed by geometric bisection by

N1 (Trxz, k) < Nogorn(Trxz, k) = O(nlogy(n)k?).

If additionally the cardinality of the clusters is balanced, it is moreover shown
that

1
Ny—rv(Trxz, k) = §NH®H(TI><L k).
O

The H-LU-decomposition is used to compute an approximate inverse A;{l of A
as described in Algorithm 3. The computational complexity for the triangular
solves can be bounded by half the complexity of the formatted matrix product.
Therefore, the cost for computing the approximate inverse is bounded by the
cost for computing the product of two H-matrices and thus is in the size of
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Algorithm 3 Calculate approximate inverse A;il.

1: Decompose Ay by H- LU-decomposition:
(L1, Un] — LUp(An).
2: Compute Y by H-based forward substitution
LY = (In)n.
3: Compute X by H-based backward substitution
Uy X =Y.

: - 1.
4: Define the approximate inverse A3~ := X.

Ny—ru(Trxz, k). Note that the approximate inversion A;{l can also be com-
puted by using the Frobenius formula (obtained by block Gaussian elimination
on A under the assumption that all principal submatrices of A are nonsingular)
with formatted addition and multiplication. This approach has larger storage
requirements since it takes roughly three times the workspace occupied by the
original matrix.

Adaptive Arithmetic. Instead of fixing the rank for each block we prespec-
ify the relative accuracy in each matrix block M, by a parameter ¢ € (0, 1).
The corresponding rank will be determined adaptively

k(e, M, ) := min{k € NJop41 < €01}, (2.29)

assuming that the singular values o;, i = 1,...,min{r, s} of M| are in de-
scending order. Then, the storage requirements for a matrix in H(T7x7,€) can
be bounded as for matrices in H(Tzxz, k) if k is taken as maximum over all
blockwise ranks. In discretized control problems for PDEs as in the investigated
examples, defined on Q C R it is observed that k ~ log?~1(1/e) is sufficient to
obtain a relative approximation error of O(e). It is proven in [44, Theorem 8]
that the blockwise ranks k ~ log?*1(1/€) are adequate. Earlier results can be
found in [22]. Therefore, the storage requirements for a matrix in H(Trxz,€)
are bounded by

SH(Trxz,€) <2Cspn(p+1) logdJrl (1/e) = O(nlogy(n) logd+1(1/e)),

assuming that the relation k = O(log?**(1/¢)) holds.

The truncation operator 77; in the definition of the approximate arithmetic
has to be adapted such that the approximate matrix operations are exact up to
€ in each matrix block. This is done by replacing the truncation operator 7;_,
in Definition 2.3.13 by 7.. The operator 7. maps a Rk-matrix R to a matrix
of rank k(e, R) which is determined by (2.29). The truncation to rank k(e) is
performed in the same way as described in Algorithm 1 for the operator 7;_ .
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Figure 2.5: Uniform grid.

The error between R and the truncated matrix 7¢(R) is bounded by

|7e(R) — R||2 <
IRl

Using the truncation operator 73 in the formatted arithmetic defines the so-
called adaptive arithmetic.

At the end of this section we illustrate the use of the hierarchical matrix
format for a typical application.

Example 2.3.18 We consider a stable symmetric matrix
A:=—-LYAL7T, (2.30)

where L is a Cholesky factor of the symmetric, positive definite mass matrix
E and A is the stiffness matrix, resulting from a FEM discretization of the

two—dimensignal heat equation in the unit square 2 = [0,1]?. The matrices
E e R™" A € R"™™ are given by the entries

Aij = [oVei(&) - V(€ de, forij=1,...,n.

We use a uniform triangulation of the domain as depicted in Figure 2.5 with
n inner grid points. The uniform grid is known to be a bad triangulation with
respect to complexity of the formatted arithmetic [77]. It will be used in the
following because of its simplicity and the results can be regarded as worst
case performances. With a given minimum block size npi, := 256, using the
standard admissibility condition (2.27) with n := 1.0, and the geometrically
balanced clustering, we approximate A as H-matrix with different values for
the blockwise accuracy e. For the approximation of mass and stiffness matrices
and also of their inverses it is advised to use a special H-matrix structure
where all off-diagonal blocks are approximated as Rk-matrices. For the problem
size n = 4096 and € = 10~%, the H-matrix with a blockwise SVD of all Rk-
submatrices and the blockwise ranks is shown in Figure 2.6. The singular values
of each admissible block are depicted in logarithmic scale from 107'° to 10°.
The inadmissible blocks at the diagonal are displayed in red (dark grey).

For different problem sizes, the maximum rank & over all admissible blocks,
the resulting values for the constants Cs, and Ciq, and the storage requirements
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Figure 2.6: Blockwise SVD of Ay with n = 4096, ¢ = 10~

n €| depth | Cop | Cia | k| S (MB) %

1024 | 1.e-04 30 4] 117 2.64 2¢-05
1024 | 1.e-06 30 4] 118 2.69 8e-08
1024 | 1.e-08 30 4] 1]21 2.76 3e-10
1024 | 1.e-16 30 4] 1]31 2.96 2e-15
4096 | 1.e-04 50 16 5120 17.53 2e-05
4096 | 1.e-06 50 16 5]27] 19.86 8e-08
4096 | 1.e-08 50 16 5[32] 21.99 4e-10
4096 | 1.e-16 50 16| 547 27.68 2¢-15
16,384 | 1.e-04 71 30 1722 109.79 2e-05
16,384 | 1.e-06 71 30 17[28] 130.52 8e-08
16,384 | 1.e-08 71 30 17[32] 151.15 4e-10
16,384 | 1.e-16 71 30 17[53 ] 204.95 4e-15
| 65,536 | 1.e-04 | 9] 30| 17]22] 538.36 | -
262,144 | 1.e-04 | 11 ] 30| 17[22] 2372.79 | - |

Table 2.1: Some accuracy and complexity results for Ay in Example 2.3.18.

for A3y denoted by S in megabyte (MB) are summarized in Table 2.1. Further-
more, the relative errors between Ay and A for n up to 16,384 are given.

Note that for the full matrices the storage requirements increase from 8 MB
for n = 1024, over 2048 MB for n = 16,384, up to 512 gigabyte (GB) storing
A € R™"™ with n = 262,144. The storage requirements for Ay are reduced
significantly compared to the amount needed for the full matrix A € R»*"™. O



Chapter 3

Linear Matrix Equations

This chapter is concerned with the numerical solution of linear matrix equations.
For given matrices A € R™", B € R™*™ W € R™™ we seek a solution
X € R™™ of a Sylvester equation,

AX+XB+W =0, (3.1)
its symmetric variant, a Lyapunov equation,
AX +XAT+w =0, wW=wT, (3.2)
and of a Stein equation, also called discrete Lyapunov equation,
AXAT - X +W =0. (3.3)

Over the last 40 years, numerous numerical methods have been introduced
to solve these linear matrix equations. They can be divided into direct and
iterative methods. Direct approaches first transform the coefficient matrices
A and B to obtain a system with a structure that admits a simple solution.
The dense Bartels-Stewart algorithm, developed in 1972 [14] for Sylvester and
Lyapunov equations, first reduces the matrices A, B to real Schur form by the
QR algorithm. For Sylvester equations, a more efficient method independently
derived in [61] and [73] shows that it is sufficient to reduce A to Hessenberg form.
The resulting linear systems are solved by a backsubstitution process. For the
discrete Stein equation (3.3), direct methods can be found for instance in [13, 73,
149]. The direct approaches can be generalized to so that they solve generalized
matrix equations, see e.g. [70]. The algorithms are implemented in the MATLAB
Control System Toolbox as functions lyap and dlyap and in the SLICOT
Basic Control Toolbox [27]. All these methods are backward stable and have
cubic complexity. The storage requirements are of order O(n?). Hence they
are not appropriate for large-scale computations. However, using the recent
MATLAB distribution R2007a [125], larger Lyapunov equations with order up to
n = O(10°) can be solved with direct methods provided that sufficient memory
is available.

Apart from direct methods, there are several iterative methods, for ex-
ample the Smith method [152], the alternating direction implicit (ADI) itera-
tion method [123, 166], and the Smith(l) method [134, 135]. These methods

33
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are particularly suitable for large-scale sparse matrix equations but compute
the solution in dense form with a quadratic amount of storage. There are
many approaches to solve large-scale Sylvester and Lyapunov equations using
Krylov subspace methods [99, 101], but in general they are inferior to ADI and
Smith-type methods, see [134]. Furthermore, several multigrid methods are
proposed [78, 132, 145].

In the context of model reduction, those methods are favorable which take
a special structure of the matrix equation into account. That is, the “right-
hand side term” is given in factorized form, see for instance a special Sylvester
equation (for the computation of the cross-Gramian of an LTI system),

AX + XA+ FG =0, (3.4)

a (standard) Lyapunov equation,
AX + XAT + BBT =, (3.5)

a generalized Lyapunov equation,
AXET + EXAT + BBT =, (3.6)

and a Stein equation,
AXAT — X + BBT =, (3.7)

where X € R™", F, GT, B € R™™ and A € R™" is stable. For generalized
equations it is assumed that £ € R™*™ is nonsingular and that the matrix
pencil AE — A is regular and stable. All these matrix equations are related
to LTI systems where typically the constant terms FG and BBT are of low
rank m < n. In most cases it is often observed that under these assumptions
the solution of a matrix equation has low rank or at least low numerical rank,
with fast eigenvalue decay rate, see, e.g., [136, 4, 157, 76]. Then, the memory
requirements can be considerably reduced by computing the solution in factor-
ized form. For the symmetric Lyapunov or Stein equation the solution X is
symmetric positive semi-definite, such that it can be factorized into X = YY7T.
The factor Y can be given as

— Cholesky factor of X, i.e., Y € R™™"™ is a square lower triangular matrix,
or as

— a full-rank factor of X, i.e., Y € R™*rank(X) jg g rectangular matrix.

Furthermore, in many applications as, for instance, in the SR method for bal-
anced truncation [115, 161], see also Section 5.1, only the Cholesky factors are
required instead of the solution X. An important advantage of this approach
is that the condition number of the Cholesky factor is the square root of the
condition number of X. Therefore, we expect higher accuracy in subsequent
computations due to better conditioning of Y.

The direct computation of Cholesky factors of X for the solution of Lya-
punov (3.5) and Stein equations (3.7) via the Bartels-Stewart approach is sug-
gested by Hammarling in [92, 93], see also [164], and revised by Kressner in
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[109]. Tt is implemented in the SLICOT-based MATLAB functions lyapchol
and dlyapchol. Penzl in [133] extended the method to generalized Lyapunov
equations (3.6). Since these techniques still require O(n?) flops and O(n?)
memory, they are only practicable for problems of relatively small size.

There are many iterative methods which exploit the low-rank property par-
ticularly for the solution of large-scale, sparse Lyapunov equations, see, e.g.,
methods based on a low-rank ADI or Smith iterations as the Cholesky factor
ADI algorithm [117, 119, 135], cyclic low-rank Smith methods [86, 135] and
parallelizations of the low-rank ADI iteration [5], and projection-type methods
[100, 101, 102, 146, 104]. The latter class is known for computing solutions of
lower accuracy or, by performing much more iteration steps, solutions of rela-
tively large numerical ranks [135]. A special case in this class, proposed in [150],
appears to be quite competitive to ADI and Smith methods. Most of these
methods are particularly adapted and efficient for the solution of large-scale
sparse problems. However, all iterative methods are still of cubic complexity
when applied to dense problems.

Here, we will focus on the sign function method, introduced first in 1971 by
Roberts [144]. Roberts and also Beavers and Denman [19] used the matrix sign
function for solving algebraic Riccati, Sylvester, and Lyapunov equations. A
related iterative scheme in discrete-time is the squared Smith iteration. These
methods have certain attractive properties as they can be parallelized easily
and usually show fast convergence [26, 35]. Throughout this work they are the
methods of choice since they are well adapted for the purpose of model reduction
and allow for the use of approximate arithmetic which results in very efficient
data-sparse solvers for large-scale matrix equations as described in Chapter 4.
In the sign function iteration the special structure of the “right-hand side” can
be exploited for the direct computation of Cholesky factors [114]. In 1999 Ben-
ner and E.S. Quintana-Ort{ extended the idea to stable generalized Lyapunov
equations [31]. Furthermore, using column compression in each iteration step,
it is shown that the algorithm converges to an (approximate) full-rank factor
of a low-rank approximation to the solution X. The number of columns of the
so-called approzrimate low-rank factor are limited by the numerical rank of X
such that the storage requirements for the solution are reduced. An efficient
algorithm for the solution of coupled Lyapunov equations, as required in model
reduction methods with system-theoretic background, is presented in [25]. The
technique is also applicable for the numerical solution of large-scale Sylvester
equations with factorized “right-hand side” (3.4) [23, 38]. The squared Smith
method can be modified to compute an approximate low-rank factor of the
solution X from the Stein equation (3.7) directly [35].

In this chapter we review some properties of the sign function iteration
and of the squared Smith iteration for the different types of matrix equations.
The modified approaches for computing approximate low-rank solution fac-
tors for Sylvester equations (3.4) (in general form), (standard) Lyapunov equa-
tions (3.5), generalized Lyapunov equations (3.6) and Stein equations (3.7) are
described in the corresponding sections.
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3.1 Sylvester Equations

This section is concerned with the numerical solution of linear matrix equations
of the following form:
AX + XB+W =0, (3.8)

with A € R™"™ B € R™™ W € R™™ and a matrix X of n x m unknowns.
Matrix equations of this type are called Sylvester equations.

The Sylvester equation is an important tool in numerical linear algebra,
e.g. for model reduction using the cross-Gramian approach, in observer design,
where a state observer is constructed from the solution of a Sylvester equation
and for the purpose of matrix block diagonalization, i.e.,

I —-X
0 I
with X solving the Sylvester equation A11 X — X Ags + A9 = 0.

We get an equivalent representation of (3.8) by using the Kronecker product
and the vec-operator

An o A

0 A

I X
0 I

(In@A+BY'oL,)X =-W. (3.9)
This vectorized representation immediately leads to solvability conditions. Since
AMIn®@A+BT @) ={\+puli=1,2,....n, j=1,2,...,m},

with A; € A(A) and p; € A(B), the system matrix in (3.9) is nonsingular, if and
only if, the spectra of A and —B are disjoint. This, in turn, is equivalent to the
existence and uniqueness of the solution X of (3.8) [113]. Furthermore, if all
eigenvalues of A and B have negative real part, we obtain an explicit solution
formula [111]:

o0
X:/ AW eBtar,
0

Sylvester equations which have this property are called stable Sylvester equa-
tions. In the following, we generally assume stability of the Sylvester equation
under consideration.

For the numerical solution of Sylvester equations we first consider the direct
methods as they are implemented in the MATLAB Control System Toolbox and
in the SLICOT Basic Control Toolbox. The Bartels-Stewart algorithm [14] re-
duces the coefficient matrices A and B to real Schur form by the QR algorithm.
The solution matrix X is then computed via a backsubstitution process involv-
ing the solution of recursively constructed triangular systems of equations. In
the Hessenberg-Schur method [61, 73], A is transformed to upper Hessenberg
form, B to real upper Schur form, and the solution of the transformed system
is computed by backsubstitution. The overall complexity assuming that the
Schur decomposition of a n x n matrix requires 2513 flops [74, Section 7.5.6] is
given by

Nas(n,m) = 25n3 + 25m> + 5mn(m + n)
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operations for the Bartels-Stewart algorithm [74, Section 7.6.3]. The Hessenberg-
Schur method reduces the complexity for transforming A to upper Hessenberg
form to %n3 flops [74, Section 7.4.3]. Note that it is possible to improve the per-
formance solving the triangular systems by recursive blocked algorithms [105].
The Bartels-Stewart method requires at least 2n? 4+ 2m? 4+ nm storage whereas
the demand is slightly increased by Hessenberg-Schur given by 3n? 4 2m? +nm.

Instead of direct methods we consider iterative schemes for the solution of
matrix equations. We will focus on the sign function method which was origi-
nally developed by Roberts in 1971 [144] to solve algebraic Riccati equations.
We first describe some basic properties of the matrix sign function, then their
impact on the numerical solution of matrix equations.

3.1.1 The Sign Function Iteration

Consider a square matrix Z € R™*" with no eigenvalues on the imaginary axis.
By the real variant of the Jordan canonical form there exists a nonsingular
matrix S € R™ " such that

JF 0
_ qg1 l
Z =5 [ 0 J, ] S, (3.10)
where the upper block corresponds to the eigenvalues of Z with positive real

part and J_, contains the Jordan blocks belonging to the other eigenvalues,
ie, A(JS)cCr A(J, ,) CC .

Definition 3.1.1 (Matrix sign function [19]) The matrix sign function for
Z € R with A(Z) NgR =0 is defined as

' | L 0
sign(Z) == S 0 S
—in—t

with S given by (3.10).

The matrix sign function for square matrices was introduced by Roberts [144]
in 1971. He defined it via a contour integral, for other equivalent definitions
see [107]. The matrix sign function has many applications in systems theory
and matrix computations as it is used to compute eigenvalues and invariant
subspaces and can be applied to the solution of Riccati and continuous linear
matrix equations. We review some basic properties of the matrix sign function
which will be used throughout this section.

Lemma 3.1.2 The matriz sign function for a matriz Z € R™ ™ with
A(Z) N gJR = 0 has the following properties:

a) (sign(2))? = I,
b) sign (T_IZT) =T sign(Z) T, for all nonsingular T € R"*",

c) sign(Z) = —1I, if Z is Hurwitz,



38 CHAPTER 3. LINEAR MATRIX EQUATIONS

(d) Py := (I, + sign(Z))/2 is the spectral projector onto the eigenspace cor-
responding to A (Z) N CT,

(e) P_ := (I, — sign(Z))/2 is the spectral projector onto the eigenspace cor-
responding to A (Z) N C~.

It follows from Lemma 3.1.2 a) that we may calculate the sign of a matrix Z
by applying a Newton iteration to the solution of Z2 — I,, = 0:

ZO — Z7
1 ~ .
Zij1 5(Zj»Jijl), j=0,1,2,....

The iteration is well defined that means Z;; is invertible if Z; is invertible,
since A (Z;) N JR = 0 yields A(Z; + Zj_l) N JR = (). The so-called sign
function iteration converges globally and locally quadratically in a neighborhood
of sign (Z) [107],

lim Z; = sign(2),

J—00
and is well behaved in finite-precision arithmetic [53]. There are many other
iterative schemes proposed for the solution of the matrix sign function, for an
overview see [107], but this one seems to provide the most robust and fastest
implementation and is suitable for parallel computation [38].

The matrix sign function can be sensitive to perturbations if the departure
of Z from normality is high or if the stable and unstable eigenvalues are not well
separated [74, Section 7.2.4]. This result can be found in a detailed perturbation
analysis in [53]. Since the matrix sign function is undefined for matrices with
purely imaginary eigenvalues, the convergence as well as the accuracy of the
Newton iteration may be significantly disturbed for matrices with eigenvalues
close to the imaginary axis. In most of the control applications considered
in the present work, the arising matrices are normal and the eigenvalues are
further than EPS'/? apart from the imaginary axis. Then, the sign function
avoids the problem of separating possibly clustered eigenvalues which might
cause problems or ill-conditioning when using the Bartels-Stewart algorithm.
A discussion in [8, 9] suggests that if we want to compute the sign function of
a matrix Z up to an accuracy of EPS'/2, the condition number of Z should be
smaller than EPS™1/2.

Despite the quadratic convergence rate, slow convergence is observed if the
norm of the inverse ||Z;1|| is small compared to ||Z;||. Then the iterates Z; 4
and Z; are approximately equal. This is typically the case during initial itera-
tion steps and it is therefore advised to scale the iterates to accelerate the initial
convergence. Note that it is also possible to improve the numerical stability by
scaling the Newton iteration. For a typical convergence history of an unscaled
iteration see the solid line (“¢”) in Figure 3.1.

Remark 3.1.3 (Scaling strategies) There are several scaling strategies pro-
posed for the matrix sign function, see, e.g., in [8, 106]. Since sign(Z) =
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sign (¢Z) for any parameter ¢ > 0, we can incorporate scaling in the sign func-
tion iteration as follows:

1 1,
Zjvr = 5(cjZj + C_ij ) (3.11)

with properly chosen scaling factors ¢; > 0 . The speed of convergence is
determined by the convergence of the eigenvalues of Z to £1. An optimal choice
for the scaling parameter is presented in [106, Theo. 3.6]. This parameter is
very hard to implement since all eigenvalues of the Z-iterates have to be known.
Therefore, we restrict our attention to suboptimal techniques which yield nearly
optimal performance and allow for an efficient implementation.

Two common choices for scaling parameters are the spectral scaling given

by
C§spcct.) _ /P(Zjl)/P(Zj),

and the determinantal scaling suggested by Byers [52] defined by

(det.) 1

S T Taet(zy)

The spectral scaling is asymptotically optimal but might cause slower conver-
gence for problems with eigenvalues close to the imaginary axis [106, Theo.
3.7], whereas the determinantal scaling performs also well for these critical
eigenvalues but is not asymptotically optimal. Determinantal scaling factors
can simply be derived from triangular factors of Z; as already computed during
the inversion of Z;.

Motivated by the optimal choice of scaling parameters for a Newton iteration
to compute the polar decomposition of a matrix Z, which is given by

12 2
! 1Zjll2

(opt:) (3.12)

also a good acceleration of the initial convergence for the matrix sign iteration
is observed [106], approximating the spectral norm in (3.12) by use of the power
method. We will denote this scaling parameter in the following by ¢(°P*) even
though it is not optimal in the context of the matrix sign function. Note that
cort) and ¢Bpect) coincide for normal matrices. It is possible to avoid the
demanding computation of the spectral norm by using the Frobenius norm

Frob. _
™ = 127 e /12

or the geometric mean of the 1-norm and the maximum norm

[N PERVA R YR | Po

as proposed by Higham [96]. The resulting technique is called approzimate
norm scaling with scaling parameter given by

) = N2 25 oo /12511012 oo
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Convergence of the sign function method with different scaling strategies

10° ‘ ‘ ‘ ‘ ‘ ‘ ; ; ;
E
®.
g
0 . .
10 —<O— without scaling
_«~ — * — % in each step
—c — © — ¢% % in first step
+ * - ¢F1% i each step|
< O ¢ in first step
= —%— ¢ in each step
107 4 | =0 ¢ infirst step
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8
iteration number |

Figure 3.1: Convergence history for sign(A) with n = 1024.

The optimal norm scaling and related choices are used to balance the spectral
norms of the summands in (3.11) such that HZ]-_IHQ and || Zj||2 are not “too”
different. This has a beneficial effect on the numerical stability of the sign
function iteration.

The influence of scaling on the speed of convergence, especially during the
initial steps of the Newton iteration, is shown for some of the scaling strategies in
Figure 3.1. Here, the number j of the iterations is plotted against the computed
values ||A; + I,,||2 for the stopping criterion:

IA; + I||2 < 10n VEPS.

The scaled sign function iteration (3.11) is applied to a stable symmetric matrix
A € R™ ™ which stems from a FEM discretization of the two-dimensional heat
equation as introduced in (2.30) for the Example 2.3.18. It is observed that
we obtain fastest convergence if ¢(°P%) is applied in each iteration step. The
performance is also examined if A; is scaled only in the first step of the sign
function iteration. In this case a few more iteration steps are necessary to reach
the stopping criterion for each choice of scaling parameter. Using the Frobenius
norm once instead of the spectral norm, results in some additional iterations
whereas applying this scaling in each step performs comparably well to the
“optimal” norm scaling used in the first step only. The determinantal scaling
performs worse but is clearly better than using no scaling at all. O

We can use a special decoupling property of X in conjunction with the matrix
sign function applied to a special matrix Z, to compute the solution X of a
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Sylvester equation (3.8) with A and B being Hurwitz. To see this consider
the following block upper triangular matrix Z defined by the coefficients of the
matrix equation (3.8)

A W
|0 -B
and a similarity transformation
I, X
T = , (3.13)
0 In

where in the upper right block X denotes the solution of (3.8). Then Z is block
diagonalized by T':

I, x1'TA4 w I, X A AX + XB+W
T-'zT1 = _
0 I, 0 -B 0 I, 0 _B
A 0
o -B |’

Corollary 3.1.4 Consider a matric Z € R™™ with A(Z) N JR = O which is
block diagonalized by a similarity transformation T as given in (3.13). The
matriz sign function gives an expression for the solution X of the Sylvester

equation (3.8) using Lemma 3.1.2 b) and c),
A 0 X I, 0] _, [-I. 2x
T =T T = .
0 Iy 0 In

-B
By applying the sign function iteration to Z, an iterative scheme for computing
the solution of the Sylvester equation (3.8) is obtained:

sign(Z) = T sign (

Z(] — Z,
1 _
Zjy1 §(Zj +Z; 1)
1 —1 1 -1 -1
2(A A7) oW+ 45 W55 } . j=0,1,2,....
0 —3(Bj+B;")
The solution X of (3.8) can simply be found in the upper right block of the
limit,

sign (Z) = Jli)r(r)lo Zj = 0 I,
as described in [144]. In this paper it was also observed that the iteration can
be decoupled into three parts. Setting Ay «— A, By «— B and Wy «— W, the

Newton iteration can be rewritten as

)

1 _
1 _
Bjy1 §(Bj+Bj Y, (3.14)

1 N _ ‘
Wi 5(Wj+Aj1Wij1), j=0,1,2,...
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for computing the solution
1

X = lim W;
J—00
of the Sylvester equation. Since the matrices A and B are supposed to be
stable, we can apply Lemma 3.1.2 c¢) to obtain a simple stopping criterion.
From lim;_, Aj = —I,, and lim;_., B; = —1I,;,, we decide to stop the iteration
if the A;- and Bj-iterates are close to the identity:

max{|[A; + In|, [|Bj + Im||} < tol, (3.15)

with a user-defined tolerance tol. By an appropriate choice of norm and toler-
ance and by performing two additional iteration steps as proposed in [30], the
required accuracy is reached in general owing to the quadratic convergence of
the Newton iteration. Often it is proposed to choose the tolerance as the ma-
chine precision times a problem dependent constant. In our algorithms derived
in the next chapter it will be preferable to set the tolerance to the size of the
introduced approximation errors in order to avoid stagnation.

Complexity. Implementations of the sign function iteration typically require
workspace for the matrices A, B and W and additional space of the same
size. This adds to an amount of 2(n? + m? + nm) real numbers for the sign
function iteration. The computational complexity of the iteration scheme is
basically determined by the inversion of the n x n and m x m matrices in the
upper two lines of (3.14) which adds to 2n3 and 2m3 flops, respectively. We
assume that the factors from LU factorizations used for computing Aj_1 and
Bj_1 are available. Then, during the Wj-iteration we only have to solve two
linear systems via triangular systems. That additionally requires 2nm(n + m)
flops for computing the solution of the Sylvester equation. Taking all flops
together results in an overall complexity of

Nsign(n,m) = 2n° + 2m® + 2nm(n + m)

for one iteration step of (3.14). Taking instead of the traditional matrix inver-
sion by Gaussian elimination a Gauss-Jordan elimination results in the same
number of flops. Note that numerical experiments demonstrate that often about
10 iterations are needed for convergence [38].

Next, we consider a modification of the iteration scheme, which results in
reduced computational complexity.

3.1.2 Factorized Solution of Sylvester Equations

In this section we consider a special variant of the iteration scheme (3.14) to
compute the solution X of

AX + XB+FG =0, (3.16)

with A € R™*" B € R™*™ gtable and F' € R™P, G € RP*™  in factorized
formas X =Y Z.
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Figure 3.2: Singular values of X in (3.16) with problem sizes n = 250 and
m = 230.

This method is of special interest in large-scale computations if the solution
X has low rank, rank(X) < n,m, or at least low numerical rank. In the first
case we obtain full-rank factors Y € R™¥rank(X) = 7 ¢ Rrank(X)xm of X = The
latter case is of particular relevance; in many large-scale applications it can be
observed that the eigenvalues of X decay rapidly. In [76] it is shown that the
singular values of X decay exponentially if the “right-hand side” F'G of (3.8)
is of low rank and the spectra of A and —B are separated by a line. There
are several other papers which present eigenvalue decay bounds for Sylvester
equations of a certain structure, e.g., [4, 136, 157].

In Figure 3.2, the singular values of the solution of a Sylvester equation with
A as in Example 2.3.18 and matrices F' and G taken from the control problem
introduced in Section 4.1.2 are depicted in decreasing order. It is seen that the
singular values indeed decay rapidly; most of them are even smaller than the
machine precision. Based on this observation, we modify the iteration scheme,
as proposed in [23], see also [38, 15], as follows.

We introduce n(M) as the numerical rank of a matrix M determined by a
threshold 7, only writing n, whenever the meaning is clear. Exploiting the low-
rank property of X, we compute factors Y and Z of a low-rank approximation
to the solution X with Y € R"*" Z € R"*™_In the following we will refer to
these solution factors by the short denomination approzimate low-rank factors.
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We rewrite the Newton iteration (3.14) with Ay «— A, By «— B, Fy «— F,
Gy «— G-

1 _

Aj+1«_.§(Aj+-Aﬁ1), (3.17a)
1 _

EG+1<—-§(EG-%I%<U, (3.17b)
1 _

Fy = 5 | Fi, A7UF (3.17c)
1 G; .

Gj+1 — E |: G]’.B]-il :| ) J= 07 1727 ) (317d)

J

and get Y = % lim; o Fj and Z = % lim; . G as the factors of the solution
X =YZin (3.16). This scheme is less expensive during the first steps if we
assume that p < n,m. Since F} € R™2' P and Gj € R PX™  we have reduced
storage requirements of 2/ pn + 2/ pm for j < log, % in the jth iteration
step compared to a memory amount of nm for storing W; in (3.14). The number
of flops for the iteration parts (3.17¢) and (3.17d) is changed from 2nm/(n+m)
in the Wj-iteration to 227 p(n® +m?2). Therefore the iteration scheme (3.17) is
less expensive as long as j is sufficiently small. In the course of the iteration, this
advantage gets lost as the number of columns of the F-iterates and the number
of rows of the G-iterates is doubled in each step. As mentioned before, we
expect that the solution has a low numerical rank; it can therefore be expected
that the iterates are also of low numerical rank if the scheme converges quickly.
To exploit this property and to avoid the exponential growth of the columns
and rows, we apply a rank-revealing QR factorization (RRQR) [54] to FJT+1 and
Gj+1 in each iteration step as proposed in [23]. We shortly review the definition
and main properties of the RRQR factorization. For a given matrix M € R"*™
we assume without loss of generality that n > m. We define the numerical
rank n, of M by a given threshold 7 and by use of the ordered singular values
o1 > 09> -+ >0y > 0 as follows:

On,+1<01-T < 0p, .
Definition 3.1.5 Let M € R™™™ have a QR factorization of the form

Ri1 Ry

M =QRII = Q
Ras

I, (3.18)

where 11 is a permutation matriz, Q € R™"™ is an orthogonal matriz and R €
R™ ™ is upper triangular. An RRQR factorization of M is defined by (3.18)
if the numerical rank ny of M gives the order of Ri1 € R"™*" and if for the
submatrices Ry11, Rao the following properties are satisfied:

condy (Ri1) := ||Rutll2 [| Ry |2 S o1 /0,

and
| Ra2ll2 = Omaz(R22) = op,+1.
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Then the condition number of Rj; is bounded by 1/7,
COIldQ (Rll) < 1/7’7

and we can compress the rows of M by only considering entries in the upper part
of the matrix R, that is the well conditioned part of M, neglecting the submatrix
Rys of small norm. For the F-iterates the number of columns is compressed
using a rank-revealing LQ decomposition (RRLQ) factorization (see, e.g., [74,
Chapter 5]). The factorization of a matrix into a lower triangular matrix and
an orthogonal matrix is equivalent to an RRQR factorization applied to its
transpose. In our iteration scheme an RRQR factorization of G;11 and an
RRLQ factorization of Fj1 can be incorporated as follows:

17 _ 7 G
' - j
1 - B -
= 5|5 Alej_URHG
1r 1 [ R R
= Z|F, A7'F; | U G
2L 77 711 0 R
NpLV )
1 L1 O Ri1 Ry
2 La1 Loo | 0 Ra

where IIp and Ilg are permutation matrices, U and V are orthogonal. For
simplicity, the numerical rank of Gi; is now denoted by r nr(Gjt1)
and t := n.(Fjq1) is the numerical rank of Fj i, both with respect to the
same threshold 7. From the definition of the RRQR factorization it follows
that Ry € R™" and L;; € R For t > r we obtain approximate iterates
Fj+1 € R™™" and é]’+1 € R™™ by truncating the matrices L and R as

Gy = % [Ri1, Ri2]1lg,
- L 3.20
Fipn = %HF [ Li } Vi1, (3.20)

where Vi1 € RY™" denotes the upper left block of the orthogonal matrix V to
adapt the matrix dimensions of the two factors.

Remark 3.1.6 For ¢t < r the factor Fj+1 is rank deficient using the above
mentioned truncations. This can be corrected by multiplying Gj;1 from the
left by Vi1 € RY™" changing the truncation (3.20) to

Gt

Fj

1
V2
1
V2

Vi [Ra

e |

Ly
Loy

1, Ri2 g,

|

That is, the inner dimension of the product F j+1éj+1 is reduced to the numer-

ical rank t of Fjﬂ.

O
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The iterates F ji+1 and C~¥j+1 have a reduced number of columns and rows, respec-
tively, ngin{r, t} instead of 2771 p, and we obtain approximate solution factors
Y and Z by
! 7= lma

— 2 = — lim G,.

V2 oo’ V2 i=oo
Remark 3.1.7 The “optimal” norm scaling is adapted for the use in (3.17) by
choosing
1
1 1 2

A5 2l1B; |2

c - )
’ VIIAjll[Bjll2

thereby ignoring the contributions of the unavailable parts F;G; in (3.12). Nu-
merical experiments in [38] demonstrate the superiority of this choice compared
to computations based on determinantal scaling. The iterates are scaled as fol-
lows:

(opt.) __

Aj = ¢jAj, Bj— ¢ By, Fj — /o), Gj — /&G
O

Complexity. The modified approach has several advantages. The storage
requirements for X are reduced from nm in (3.14) to at most nn,(X)+mn,(X)
since the numerical ranks of the solution factors are bounded by n,(X). The
expected low numerical rank of X reduces the overall workspace of the iteration
to about

SMod.Sign(na va) =2 (n2 + m2 + 2(n + m)nT(X))

real numbers. Furthermore, we have reduced computational costs of
Ntod.sign(n,m, X) = o3+ 2m3 + 2(n2 + m2)nT(X)
flops for one iteration step in (3.17).

Remark 3.1.8 So far, we have neglected the complexity of the RRQR fac-
torization. We use a block QR factorization with pivot windows followed by
a variant of an algorithm suggested by Chandrasekaran and Ipsen [55]. The
block algorithm is proposed in [41] and it is shown that the performance is
faster than for the standard LAPACK routine DGEQPF for computing QR fac-
torizations with column pivoting. The complexity of the computational steps
involved to compute low-rank factors éj, 1:"] by standard RRQR implementa-
tions is described in the following. We denote the number of rows of G; and
of columns of F; by p;. The aim is to use the RRQR factorizations to keep
this number small. The factorization of G; € RPi*™ with r = rank(G;) by the
pivoted Householder QR algorithm requires 4 p;mr — 272 (pj +m) + 4§ flops
[74, Algorithm 5.4.1]. The explicit computation of the orthogonal factor U is
avoided, it is applied “on the fly” to F; which requires 2nr(2p; — r) flops [74,
Section 5.1.6]. For F; € R"*Pi, assuming ¢t = rank(F}), the pivoted LQ factor-
ization of I;U is computed by additional 4 p;nt — 2t2 (pj+n)+ 4§ flops. Since
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the next iterate F' (for ¢ < ) is obtained by a multiplication with the subma-
trix Vi1 € R™", the orthogonal matrix V is computed explicitly. This takes
3 . . .
2t2pj — 2% flops, see [74, Algorithm 5.1.2]. The last step is the computation of
the matrix-matrix product which requires further 2ntr flops. [l

3.2 Lyapunov Equations

Reducing the dimension of a large-scale LTI system by balanced truncation
requires the solution of two large-scale Lyapunov equations. First, we consider
Lyapunov equations of a general form, given by

AX + XAT + W =0, (3.21)

with A € R™™ symmetric W € R™"™ and unknown X € R™*™. This is the
symmetric variant of the Sylvester equation (3.8) with B = A”T. We will assume
that the spectrum of A is contained in the open left half complex plane C~. This
type of Lyapunov equations is also called stable Lyapunov equation [92, 95] and
admits a unique symmetric solution X. A standard direct method for solving
Lyapunov equations is the Bartels-Stewart method [14] as already mentioned in
Section 3.1 for the solution of Sylvester equations. The method can be modified
to take advantage of the symmetry in (3.21) resulting in a reduced complexity
of
Nps(n) = 32n°

and reduced storage requirements of size 3n? under the assumption that A is
overwritten with its Schur form and W with the solution.

3.2.1 The Sign Function Iteration

Numerical methods for Lyapunov equations can be based on the sign function
method introduced in Section 3.1 for the solution of Sylvester equations. In
order to solve the Lyapunov equation (3.21), we apply this iteration to

A W

; 3.22
0 —AT (3:22)

and obtain the following iteration scheme
Zy +— 4,
1 _
Zinn — (Zj+Z; D)

%@+g5ﬁm+g%mf)

K . j=0,1,2,....
0 —5(4; +A7HT

The solution X of (3.21) is given by dividing the upper right block in

sign(Z) = lim Z; =

-1, 2X
0 I,
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by 2. To accelerate the initial convergence, some of the iterates can be scaled,
1 1,
Zjy1 5(03'23' + C_ij )

where ¢; > 0 are suitably chosen parameters as described in Section 3.1.1 for
the more general Sylvester equations.
The stopping criterion (3.15) for the Sylvester equation from Section 3.1.1
simplifies to
|A; + I, < tol. (3.23)

With two additional iteration steps and an appropriate choice of norm and
relaxed tolerance, we usual get a high accuracy in the size of machine precision
due to the quadratic convergence, see [30] for details.

Complexity. Storage requirements and number of flops are equal to the cor-
responding parts in (3.14). Note that due to the special form of the Lyapunov
equation the Bj-iteration is redundant. We get an overall complexity of

Nsign(n) = 6n3

for the sign function iteration to solve the symmetric problem (3.21).

3.2.2 Factorized Solution of Lyapunov Equations

We restrict our attention to the Lyapunov equation for computing the control-
lability Gramian X of a LTI system as introduced in Chapter 2,

AX + XAT + BBT =0, (3.24)

with stable A € R™*™ and B € R™"™, m < n. The stability of A together with
the positive semi-definiteness of the “right-hand side term” BB” imply that
the Lyapunov equation (3.24) has a unique, symmetric nonnegative definite
solution X [113]. Hence, it can be factorized as X = YYT. Possibilities for ¥’
are the Cholesky factor of X, i.e., Y € R™*"™ is a square lower triangular matrix,
and a full-rank factor of X, i.e., Y € Rnxrank(X) ig 5 rectangular matrix. The
latter option is of particular interest for large-scale computations if X has low
rank, rank (X) < n, as (3.24) represents a linear system of equations with
n(n + 1)/2 unknowns (exploiting symmetry). In such a situation, the memory
requirements for storing X can be considerably reduced by working with Y
instead of X. Interpreting the rank of X as numerical rank, it is often the
case that this numerical rank is very low even though theoretically, X may be
nonsingular. In that case, using a spectral (or singular value) decomposition of
X, it is easy to see that Y can be approximated by a “tall” matrix Y € R0
so that o
X - VV T _
[Re P E—

with the tolerance threshold 7 determining the numerical rank n, of X with
ny < n. As for Sylvester equations, it can often be observed that in many
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large-scale applications the eigenvalues of X decay rapidly, so that a low-rank
approximation in the form described above exists; see [4, 76, 136].

To obtain the factorized solution, we initialize the iteration by Ag «— A,
By <« B and partition (3.23) into two parts,

1 B

Ajig 5(Aj + A7), (3.25a)
1 71 .

Bjo1 = [Bj, A Bj} L i=0,1,2,.... (3.25b)

We directly iterate on the factors and obtain by ¥ = \/Li lim; . B; a factor of
the solution
X=vY? =1 lim B;B].
J—00

As in Section 3.1.2, it can be observed that the size of the matrix Bj;q in
(3.25b) is doubled in each iteration step. Therefore, it is proposed in [30] to
apply an RRLQ to Bj;1 in order to limit the exponentially growing number of
columns:

Lii 0
Bj =TLQ =T

Lop Lo

Here II is a permutation matrix, () is orthogonal, and the numerical rank is
denoted by r := n,(Bjt1). Then, L1y is a 7 X r matrix, while Loy is of small
norm,

[Lazll2 < 7[| Bjt1l|2,

so that it can be neglected. Only the entries in the left r columns of L have to
be stored,

- L1y

By, =11 2

o1 [ o ] , (3.26)

for obtaining an approximate solution ¥ = %limj_,oo Bj. The symmetric
structure of the Lyapunov equation provides first insights in how to choose the
parameter 7 for the sign function iteration. For simplicity we assume that the
LQ factorization can be computed without pivoting, i.e. II = I,,. By a simple
calculation

1 Ly 0 Lf, L
X - §Bj+1BjT+1 = X- QQ" T
- LuLf, LuiL3;
Lon LT, LoiLl, + LaoLE,
1 - - 0 0
= X-=-B; B, -
D) JH+12541 0 L22L%“2

and under the assumption

1
SI1Billz ~ X ]l2,
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which is justified since %lim]goo BjB]:-F = X, we obtain the following estimate

for the approximation errors of Bj_HBjTJrl and Bj_HBjTH:

IX = 3Bj1Blilla 11X = 3Bj11B]
[1X 1|2 N 1X1]2

2

This shows that if we choose the numerical rank threshold 7 of order
T ~ VEPS,

then the relative error introduced by row compression in (3.26) is of order EPS
and therefore negligible. This motivates the choice of 7 in the next chapter,
where we introduce further approximation errors using the hierarchical matrix
format.

Remark 3.2.1 We introduce scaling to attain the domain of quadratic conver-
gence faster. In the partitioned iteration scheme (3.25) scaling is incorporated
in the following way:

1 I
Ajyr §(chj+C—jAj1),

1 B L A71B
B = 5| VaB 54 |,

where ¢; is an appropriate scaling parameter. A choice of ¢; is discussed in [96,
75]. We will use a problem adapted variant of the norm scaling as suggested in
[38], see also Remark 3.1.7,

-1
oty _ (147"l

(opt.) _
C )
! [1451l2

which is supposed to be superior to other parameter choices as already observed
for the solution of Sylvester equations. O

Complexity. Comparable to the computation of low-rank factors of a Sylvester
equation as described in Section 3.1.2, computing a low-rank solution factor Y
of a Lyapunov equation reduces the storage requirements for the solution from
n(n 4 1)/2 for X to nn,(X) for Y. The complete storage demand for the
modified sign function iteration is about 2n? 4 4nn.(X) real numbers.

We observe a reduced computational complexity for the Bj-iteration of
about 2n?r flops versus 4n3 flops for the W-iteration in Section 3.2.1. We
sum up all flops and obtain

Nitod.sign(n, X) = 2n° + 2n*n,(X)
as the overall complexity of the iteration scheme (3.25).

Remark 3.2.2 For B; € R with r = rank(B;) and m; denoting the (com-
pressed) number of columns of the jth iterate, the complexity of computing an
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RRQR is 4mjnr — 2r%(m; +n) + 4§ flops. In contrast to the rank-revealing
steps (3.19) in the nonsymmetric sign function iteration (3.17) for Sylvester
equations, in the RRQR factorization Bji; = IIL () for the computation of
Bj+1BjT+1, the orthogonal matrix @) does not have to be stored, see (3.26).
Therefore, the complexity of computing column compressions for the solution
of Lyapunov equations is reduced compared to the complexity of the compres-
sion steps for the solution of Sylvester equations as described in Remark 3.1.8.
O

3.2.3 Factorized Solution of Generalized Lyapunov Equations

In this section, we consider generalized Lyapunov equations of the form
AXET + ExXAT + BBT =, (3.27)

where A, F € R™" and B € R™™. Such matrix equations are associated
with linear, time-invariant systems in generalized state space form (2.2). Note
that (3.27) reduces to a standard Lyapunov equation if F = I,,. Generalized
Lyapunov equations with F # [, play an important role in various fields related
to descriptor systems [57], such as minimal realization or balanced truncation
model reduction [159]. In the following, we assume that E is nonsingular and
that A — AE is a stable matrix pencil. Under these assumptions, the general-
ized Lyapunov equation (3.27) has a unique symmetric, positive semi-definite
solution X. Gardiner and Laub [69] proposed an extension of the sign function
iteration for the solution of generalized algebraic Riccati equations. From this
approach a generalization of the iteration scheme for the numerical solution
of (3.27) can simply be derived. Instead of the single matrix Z in (3.22), the
matrix pencil
T
Z—)\Y—[é ?iT}—)\[g‘ EOT] (3.28)
is considered. Theoretically, the solution of (3.27) can be obtained from the
(1,2) block of sign(Y~1Z). Applying the standard sign function iteration di-
rectly to Y1 Z, however, has the disadvantage that the possibly ill-conditioned
matrix F has to be inverted for starting the iteration. The approach in [69]
avoids this drawback using the so-called generalized Newton iteration
Zy —

Y

(Zj+YZ'Y), j=0,1,2,....

o= N

Z]’+1 —

It can be easily seen that if Zj denotes the jth iterate of the standard sign
function iteration applied to Y ~!'Z, then Z;j = Y Z;. This implies that the
iteration converges under the given assumptions to

lim Z; =Y -sign(Y™'2).

J—0o0
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In [30] it is shown that this scheme significantly simplifies when applied to a
matrix pencil of the form (3.28):
ZO — Z7
1 _
Zit1 < i(Zj +YZ7Y)

$(Aj+ EAT'E) L(B;BI + EA;'B;BT A TET)
0 —5(AT+ ETATTET)

The solution X of (3.27) can then be obtained by noting that

lim Z; = (3.29)

J—o0

—E 2EXET
0 ET '

Just as in the previous sections for Sylvester and standard Lyapunov equations,
we are interested in computing a factor Y of the solution X, X = YY7 | instead
of the solution itself. Therefore, we consider the iteration in factorized form as
introduced in [30] for E # I,, with Ay «— A, By «— B:
Ajyg %(Aj + EA;'E), (3.30a)
1
V2

We obtain Y = <= E~1lim;_,, B; as a solution factor of (3.27):

Bjy1 — [ Bj, EA;'B; ], j=0,12.... (3.30b)

V2
1
X =YY" =_-F " lim (B;BN)E~T.
2 Jj—00 J
It can be seen from (3.29) that limj .., A; = —F, so we suggest as natural
stopping criterion:
[4; + E|| < tol - [ E]. (3.31)

As proposed in [30], in general we reach the desired accuracy by a suitable choice
of tol, performing two further iteration steps once the criterion is satisfied. For
computing approximate low-rank factors of the solution X we compress the
columns of B, using an RRLQ factorization as described in Section 3.2.2 for
the standard case.

Remark 3.2.3 In order to accelerate convergence, the iterates A; and B; will
be replaced by c;Aj, |/cjB; leading to the following scheme with scaling:

1 1 1
Aj+1 «— §(CjAj+C_jEAj E),

1 _
B — 5| VB JsBAB |.

A proposed choice of scaling parameter in [69] is a generalization of the deter-
minantal scaling

C(det.) _ |det(E)|1/"

’ | det(A;)|M/"
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Convergence of the sign function method with different scaling strategies
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Figure 3.3: Convergence history for sign(A) with n = 1024.

In our numerical experiments in Section 4.3.2 we will use the following choice:

C(‘op‘c.) _ ||EA;1EH2
! Voo 114l

This is inspired by the motivation for the scaling in the standard case, the
numerical results confirm its ability to accelerate the convergence. For a typical
convergence history of the scaled sign function iteration see Figure 3.3. Here
E' is the mass, A the stiffness matrix from the FEM discretization of the two-
dimensional heat equation as in Example 2.3.18 with n = 1024. As tolerance
for the stopping criterion (3.31) we set

tol = 10n VEPS.

It is observed that the best performance is achieved by applying the “optimal”
norm scaling in each iteration step. O

Complexity. The complexity for one iteration step of the modified iteration
scheme (3.30) is given by

NMod.Sign (n, X) = 6n3 + 4n2nT (X)
flops and we need about
SMOd.Sign(”v X) = 3n2 + 4nnT(X)

real number storage for the iteration scheme neglecting the costs of computing
RRLQ factorizations.
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3.3 Stein Equations

We will now consider the discrete-time variant of the Lyapunov equation, the
so called Stein equation, skipping the more general form, the discrete Sylvester
equation. These linear matrix equations are fundamental in linear control the-
ory of discrete-time, linear, time-invariant systems. For instance, reducing the
order of a large-scale discrete-time system by balanced truncation requires the
solution of two Stein equations similar to the solution of two Lyapunov equa-
tions in the continuous-time case. We consider Stein equations of the form

AXAT - X +W =0 (3.32)

with A € R™™ W € R™" W = W7 and the unknown matrix X € R™ ",
Similar to (3.9) we can reformulate the equation such that (3.32) has a unique
symmetric solution, if and only if,

)\i)\j#l, i,zl,...,n,jzl,...,n.
Then, the system matrix of the linear equation
(A9 A—-1,)X = —W,

is nonsingular, and existence and uniqueness of X guaranteed. For p(4) < 1
this condition is fulfilled and we call (3.32) stable. Schur stability of A will be
assumed in the following. For stable Stein equations, X is positive semi-definite
as can be shown from the Lyapunov stability theory, e.g., in [113], or from the
explicit solution formula

X = iAjW(AT)j, (3.33)
=0

as this power series converges when p(A) < 1. For the numerical solution of
Stein equations we have to note that even if we exploit the symmetry of X
we have to solve a system with n(n + 1)/2 unknowns. There are several direct
methods for the numerical solution of Stein equations based on transforming the
matrix A to quasi-upper triangular form using the QR algorithm, see [13, 73,
149]. These methods are restricted to problems of moderate size because of their
computational complexity and memory requirements. In [35], iterative solvers
are proposed which are easy to parallelize and are well suited for problems of
larger sizes. We will review some of the results with focus on the squared Smith
iteration which will be adapted for the purpose of model reduction.

3.3.1 The Squared Smith Iteration

As a simple example for an iterative scheme suitable for the numerical solution
of Stein equations we consider the fixed point iteration initialized by Xg «— W:

Xj — AXGAT+ W, j=0,1,2....
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The iteration converges linearly to X if p(A) < 1. A quadratically convergent
version of this fixed point iteration scheme recommended in [152] is the squared
Smith iteration. Setting Ag «— A, Xog < W, the iteration can be written as

Xjp1 — A;X;AT + X, (3.34a)
Ajp — A2, j=0,1,2.... (3.34b)

Remark 3.3.1 The squared Smith iteration converges globally quadratically
for Stein equations with Schur stable matrix A. It is derived in [152] that for
p(A) < 1 there exist real constants M > 0 and 0 < r < 1 with

1X — Xl < M||W]l2 (1 — )12,

Nevertheless, for safely avoiding overflow caused by increasing || 4;]|2, one should
ensure that [|A||r < 1, see [35] for details. O

It follows that the solution of (3.32) is given by

X = lim X;

J—00

whereas for the other part of the iteration we have lim; . A; = 0, caused
by the Schur stability of the matrix A. This convergence provides a simple
stopping criterion for the squared Smith iteration

1451 < tol, (3.35)

with a suitably chosen bound tol > 0. The computational complexity of this
iteration scheme comes from the multiplication of n x n matrices. Exploiting
the symmetry of the Xj-iterates, the complexity is reduced to

Namitn(n) = 3n°
rather than 4n? flops for general matrix products.

Remark 3.3.2 It is also possible to transform the Stein equation (3.32) into
a Lyapunov equation using a Cayley transformation ¢(-) applied to the matrix
A in (3.32),

c(A) = (A—L)" YA+ 1I,).

The resulting Lyapunov equation
AX + XAT + W =0 (3.36)
is given by the matrices

A = C(A)7
W = 204-L)"'WA-1,)T.

Therefore, we can also solve the Stein equation (3.32) using the sign function
iteration for the solution of (3.36) as described in Section 3.2.1. O
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3.3.2 Factorized Solution of Stein Equations

We consider a Stein equation with the constant term given in factorized form.
These equations appear in a wide range of applications, for instance the con-
trollability Gramian of a linear discrete-time system is given as the unique,
symmetric solution of the following Stein equation

AXAT - X + BBT =, (3.37)

with Schur stable A € R, B € R™" and unknown matrix X € R™*",
As for the previous types of matrix equations, we are interested in computing
Cholesky or full-rank factors of the solution, i.e., X = YY7T. Note that for
stable systems the solution X is positive semi-definite and hence can always
be factorized in this form. If rank (X) < n the storage requirements can be
reduced by computing a full-rank factor ¥ e R 7a0k(X)  From the explicit
solution formula (3.33) at least a small numerical rank of X can be expected due
to the fast convergence of the power iteration for Schur stable A [74, Section 7.3].
To obtain low-rank approximations to the full-rank solution factors, we consider
the following problem adapted variant as proposed in [35] with By <« B,
Ay — A,

Bjt1 < | Bj, A;B; ], (3.38a)
Aji1 — A, j=0,1,2.... (3.38Db)

The matrix Y = lim; . B; is a factor of the solution

X =YY" = lim B;B].
J—00
Since the size of the matrix B in (3.38a) is doubled in each iteration step we
apply an RRLQ factorization to Bj;1. We have seen this computational step
already for the computation of approximate low-rank factors of Sylvester and
Lyapunov equations. In each iteration step we compute

L 0

11 ] 0
Loy Lo
with a permutation matrix II and an orthogonal matrix ). The matrix L is
lower triangular. By a given threshold 7 we determine the numerical rank of
the Bj-iterates and denote them by 7 := n,(Bj4+1). The matrix block L1 is of
size r X r and Leos is of small norm. We compress the number of columns by

storing only the entries in the left part of L. The solution factor can be written
as Y = lim;_,, B; by use of the new iterate

Bj1 =TLQ =TI

~ L
Bj_;,_l :H|: 1 :|

Loy

Remark 3.3.3 (Stopping criterion) Using an RRLQ factorization in each
iteration step provides another way (besides (3.35)) to stop the iteration. Since
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the singular values of the B-iterates are computed for the numerical rank deci-
sion we suggest to stop the iteration if the change in the largest singular values
o1 stagnates. That is, if the relative error is bounded

l01(B)) — 01(Bj+1)|

< tol.
o1(By)

This heuristic criterion ensures a convergence of at least the largest singular
value of the solution factor. For a suitable choice of the tolerance we refer to
the numerical experiments in Section 4.4.2. (I

Complexity. If we count the flops needed in each iteration step of (3.38) we
observe a reduced amount of

NMod.Smith(nv X) = n3 =+ n2nT (X)

flops for computing Bj+1 compared to 3n3 flops in (3.34) for computing X;1.
We exclude the costs of the RRQR factorization. The storage requirements for
the solution are reduced from n(n + 1)/2 for symmetric X to n.(X) x n for
storing S as low-rank factor.
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Chapter 4

Solvers Based on Data-Sparse
Approximation

In the previous chapter we have seen several iteration schemes for the numerical
solution of linear matrix equations. All these methods have been modified for
computing the solution in factorized form resulting in reduced storage require-
ments and lower computational complexity. But as can be seen from the com-
plexity estimates of each modified iteration throughout Chapter 3, the amount
of storage still grows quadratically with the order of possibly large coefficient
matrices. Furthermore, the inversion and multiplication of the large-scale iter-
ates involves a cubically growing demand of flops.

In [79], the sign function method for solving the more general algebraic Ric-
cati equation (ARE) is combined with a data-sparse matrix representation and
a corresponding approximate arithmetic. The method computes the solution
of an ARE in H-matrix format with linear-polylogarithmic complexity and is
therefore suitable for large-scale problems. It can be adapted rather directly to
the solution of Sylvester or Lyapunov equations.

We need solutions of matrix equations as a first step in model order reduc-
tion methods for large-scale LTI systems. From these solutions, either a SVD
or a spectral decomposition is required for the computation of the projection
matrices. Since these factorizations are not available in the H-matrix format,
we compute approximate (dense) low-rank factorizations of the solutions of the
matrix equations. To make the methods applicable to large-scale problems, we
propose new H-matrix arithmetic based iteration schemes in partitioned form.
We integrate the data-sparse hierarchical matrix format in the expensive parts
of all modified methods. With the corresponding formatted arithmetic we ob-
tain solvers of linear-polylogarithmic complexity for a large class of practically
relevant matrices which are particularly efficient in model reduction. Previous
work on solvers based on the hierarchical matrix arithmetic is published in [15]
for the factorized solution of Sylvester equations and in [16, 17] for the factor-
ized solution of Lyapunov equations. Some of the results are reviewed in the
corresponding sections. In this chapter we rewrite all modified iteration schemes
from Chapter 3 with data-sparse approximations. We examine the performance
of the new solvers both theoretically and by presenting meaningful numerical
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experiments, thereby demonstrating the usefulness of the solvers for large-scale
computation.

4.1 ‘H-Matrix Arithmetic Based Sign Function Iter-
ation for Sylvester Equations

We consider the sign function iteration as presented in Section 3.1.2 for the
solution of the Sylvester equation

AX+XB+ FG=0.

To make the method feasible for large-scale computations we employ the data-
sparse H-matrix format and the corresponding formatted arithmetic. Grasedyck
shows in [76] that in many practical applications the solution of a Sylvester equa-
tion can be approximated in H-matrix format. Furthermore, in [78] a multigrid
algorithm is used for solving Sylvester equations with solutions in data-sparse
format and [79] computes H-matrix solutions of an ARE based on the sign
function iteration with formatted arithmetic. Our approach is different: we
compute the solutions in dense low-rank format since this format is suitable
for model order reduction. Instead of X € R™ ™ we compute approximate
low-rank solution factors Y € R™"=(X) and Z € R*(X)xm_ Therefore, the
storage requirements as well as the computational complexity are reduced in
part (3.17c) and (3.17d) of the modified iteration scheme compared to the orig-
inal sign function iteration (3.14). But the amount of storage is still quadratic
and the complexity cubic in the size of the intermediate matrices A; and B; in
the iteration parts (3.17a) and (3.17b). Moreover, even if the system matrices
A and B are sparse, resulting, e.g., from finite element discretization of ellip-
tic partial differential operators, a large amount of memory is required during
the Newton iteration caused by fill-in during the matrix inversion. Note that
also the factors L and U from the LU-decomposition of a sparse matrix are
usually fully populated. To avoid this effect, the large-scale iterates A; and B;
are approximated in the data-sparse H-matrix format and the corresponding
approximate arithmetic is used to reduce the computational cost in the corre-
sponding parts of the iteration scheme. Details concerning the H-matrix format
and arithmetic can be found in Chapter 2.

We stress that a necessary condition for integrating H-matrix techniques
into the iteration scheme is the representability of the iterates as H-matrices.
In many applications as boundary element discretization of non-local integral
operators and for finite element discretization of elliptic partial differential op-
erators, the resulting matrices allow for a data-sparse representation [89, 91].
In [20, 22] it is proven that for elliptic partial differential operators with L°°-
coefficients and for inverses of FEM matrices, blockwise low-rank approxima-
tions exist. Furthermore, control problems based on elliptic operators can be
treated by hierarchical matrix approximations [79].

We assume that the square system matrices A € R™™™ and B €
can be approximated in the set of H-matrices H(T7x7,€) where € denotes the

Rme
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blockwise accuracy of the adaptive arithmetic (see end of Section 2.3). That is,
the iteration can be started with

Ao = An, Bo= By,

where for some ¢ > 0 the approximation errors are bounded [75, Chapter 7] as

A—A < clogy(n)e max A ,
| Hll2 < ga(n) rxsELH(Trrr) I \MS||2
B—-B < clogy(m)e max B .
| Hll2 < ga(m) rxseLt (Trvr) | \TXS||2

We replace the usual addition and inversion in (3.17a) and (3.17b) by formatted
arithmetic as introduced in Section 2.3. For the approximate matrix inversion,
H-LU factorizations of the matrices A; and B; are computed With H-based
forward /backward substitution the approximate inverses A H,j and By, 1
obtained, see Algorithm 3, and the intermediates A; and B; are computed in
the set of H-matrices,

1 _
Ajpr — g(Aj@AH,Ij)»

1 _
Bjj1 §(Bj@BH71j).

Using the adaptive H-matrix arithmetic with accuracy e (instead of a given
fixed rank k) in each matrix block, ensures that errors caused by the formatted
inversion and addition are bounded by the adaptive rank choice. These block-
wise ranks should not increase “too much” during the sign function iteration so
that an efficient implementation is guaranteed.

The matrices F}; and G, which yield the solution factors at the end of
the iteration, are stored in the usual dense “full” format. Incorporating the
formatted inverses into the iteration scheme changes (3.17¢) and (3.17d) to

1 1
Fi1 NG [ Ey, Ay Fj ]7

1 G,
Gjt1 — —= [ )1 ] :
’ V2 [ Gj By
In these iteration parts, the product of H- and “full” matrices is computed by
a formatted matrix-vector product. To limit the increasing number of columns
and rows of the two solution factors, an RRQR (resp. RRLQ) factorization is
used as described in Section 3.1.2.

We summarize in Algorithm 4 all computational steps for computing ap-
proximate low-rank factors for the solution of (3.16).
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Algorithm 4 Calculate low-rank factors Y, Z of X for AX + XB + FG = 0.

INPUT: A e R™" B e R™™ F cR"P G € RP™ tol, e, 7
OUTPUT: Approximate low-rank factors Y and Z of the solution X.
1. Ag — (A)n, Bo < (B)n
2: Fy — F, Gy +— G
3: 7=0
4: while max{||A; + I,,||2, || Bj + Im||2} > tol do

5:
6:
T
8:
9:

10:

11:

12:

13:

14:

15:
16:
17:
18:
19:
20:

Compute the approximate inverse Aﬁlj by Algorithm 3.
Ajn = 5(4; ® A3))

Fio — 2 { Fj, AyLF; }

Compute the approximate inverse Bﬁlj by Algorithm 3.
Bjy1 < 2(B; @ Bﬁ}j)

G
. 1 J
AL V2 [ Gij_{,lj ]
Compute an RRQR factorization
Ri1 Rio

Ig
0 Roao

Giq1=U

with ||R22H2 < T||Gj+1”2 and Ry € R™",
Compress rows of Gj1 to size r:

Gjs1 < [Ri1, Ri2|1g.

Compute an RRLQ factorization

Li; O
F;pU=11 Vv
A v [ Loy Lo ]
with ||L22||2 < 7'||Fj+1”2 and L1 € R*E,

Compress columns of F;1U to size t:
Ly,
Fi 11 .
Jj+1 P [ Loy ]

if £ <r then
Multiply G;+1 from the left by Vi € R™": G — Vi1Gjya.
else
Multiply Fj11 by Vi1 € R™"™: Fjiq — FjqVis.
end if
J=J+1

21: e~nd while .
22: Y — LF, Z — LG,

V2 V2
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Remark 4.1.1 (Stopping criterion) For stopping the iteration we use the
criterion (3.15) from Section 3.1.1:

Since A and B are assumed to be stable, the corresponding iterates tend to —1.
The stopping criterion is meaningful even in case of formatted arithmetic since
the identity is contained in the class of H-matrices. Note that an approximate
spectral norm can be computed without much effort since it is observed that in
many applications only 5 power iteration steps are needed to compute the norm
up to a relative error of 10 percent, see [75, Remark 4.33]. In our examples we
compute the approximate spectral norm with 10 power iteration steps. (Il

Remark 4.1.2 (Scaling) Scaling is introduced to accelerate the initial con-
vergence. In our experiments we use the adapted variant of the “optimal” norm
scaling as described in Remark 3.1.7,

1
2

-1 -1
o) _ VI 2 l1B7 s

! VIIA;1211B;ll2

In the partitioned iteration scheme of Algorithm 4 scaling is incorporated in
the following way:

1 1
Aj+1 — é(chj ® C_jAH’lj)’
1 1
Bjy1 «— 5(¢B; @ C_jBH,lj),
1 | L A=l p
Fiy1 ﬁ [ VASESD NG ) }7
1 ,/CjGj
G‘ 1 < —— 1 —1 .
. V2 [ 75 Ci B,

Due to error amplification during the sign function iteration with formatted
arithmetic, it is proposed in [75] to scale only in the first iteration step.

As an illustration, the H-matrix based sign function iteration is applied to
a stable, symmetric H-matrix Ay of size n = 4096 with blockwise accuracy
e = 107* as computed by (2.30) in Example 2.3.18. We compare different
scaling strategies, which are applied either in all or only in the first iteration
step until the stopping criterion with tol = 10 n v EPS is satisfied. In Figure 4.1
we observe fastest convergence for the “optimal” norm scaling, followed by the
Frobenius norm scaling. The determinantal scaling performs worse, but also
reduces the number of steps to reach the stopping criterion compared to the
unscaled algorithm. For all choices, the number of iterations compares favorably
if scaling is applied in each step instead of the first step only. Nevertheless,
the computational time increases significantly if we use scaling for more than
one iteration step. This is caused by an enlargement of the blockwise ranks
throughout the sign iteration. The maximum rank using the “optimal” norm
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Figure 4.1: Convergence history for sign(A) with n = 4096.

scaling in each step increases up to 172 whereas it is bounded by 58 if the
scaling is applied only in the first step. This can partially be explained by the
condition (2.29) for the blockwise rank decision, where the rank k is determined
as minimal integer which satisfies the relative criterion

Okt1 S €01

with singular values o1 > g9 > --- > 0. Scaling steers the singular values of
Ay close to 1 such that the truncation operator 77 (using (2.29)) determines
larger blockwise ranks for off-diagonal blocks which are not close to 0. These off-
diagonal blocks converge to zero in the course of the iteration with remaining
error depending on e. Since the singular values are nearly equal, this error
is approximated as Rk-matrix with relatively large rank. To avoid this, an
absolute criterion as

Ok41 < €abs

should be used in the adaptive arithmetic for problems with off-diagonal blocks
converging to zero. It is announced that the next release of the HLib includes
this feature. We illustrate the observation for a smaller problem size of n =
1024 in Table 4.1. We observe an increase of the blockwise ranks as depicted
in the green (light grey) during the sign function iteration for the different
strategies: without scaling, with “optimal” norm scaling applied either in the
first or in all steps. The iteration scheme with scaling in each step reaches
the stopping criterion after 5 steps but in larger computational time than the
scheme, where scaling is applied once (with 8 steps for convergence). This is
explained by the larger blockwise ranks which increase the complexity of the
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A1 A2 Ag Aconv. CPU [SQC.]

no scaling 18 it. 23.37

13.83

17.11

Table 4.1: Convergence of H-matrix based sign function for n = 1024.

formatted arithmetic. The singular values of the corresponding iterates A; are
depicted in Figure 4.2 for ¢ = 1,2,3 and after convergence. To summarize,
scaling once is advantageous compared to no scaling for this example since it
increases the speed of convergence significantly. Therefore, we use the “optimal”
norm scaling for the first iteration step in the numerical experiments throughout
this section.

O

Complexity. To apply the algorithm in the large-scale setting we are in-
terested in a reduced computational complexity as well as in a low storage
requirement. We reduce the necessary amount of real numbers approximating
A e R™™ and B € R™*™ in the set of hierarchical matrices My ((T7xr). As
described in Remark 2.3.12 we obtain a bound for the storage requirements of
Ay and By where the cardinality of the set I is given by n or m, respectively.
If k£ is the maximum rank determined by the blockwise accuracy ¢, the number
of stored real numbers for the matrix Ay is bounded by

SH(T[X[,]C,TL) < QCsp n(p+ 1)]{7 (4.1)

instead of n?. The storage requirements of By are bounded analogously. How
large the requirement for a typical application actually is, is demonstrated in
Table 2.1 in Section 2.3.
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Singular values of Al

Singular values of A2

* without scaling
© ¢ in first step
o ¢ in each step
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Singular values of Ai

; ;
* =18 without scaling
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© =5 ¢ in each step
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index j

Figure 4.2: Singular values of Ay corresponding to the Figures in 4.1.

With the same assumptions as used in the complexity estimates of Sec-
tion 2.3, the required workspace for the data-sparse sign function iteration is

reduced to about

S’H*S’ign(Tlea I{?,TL, m7X) S 2 (CSp k [n(p + 1) + m(p + 1)]

+2(n +m)n-(X))

(4.2)

= O((nlogy(n) + mlogy(m))k + (n + m)n (X))

real numbers. That is, instead of a quadratic demand as needed for the dense
sign function iteration in Section 3.1.2, the workspace is reduced to a linear-
logarithmic dependency on n and m.

For an estimate of the complexity of Algorithm 4, we consider the parts of
the iteration scheme with a reduced number of flops using formatted arithmetic
compared to the standard dense arithmetic in (3.17). As seen in Remark 2.3.17,
the complexity of computing approximate inverses in line 5 (and 8, replacing n
by m) of Algorithm 4 is bounded by

Ny—rv(Trxr, k,n) = O(nlogs(n)k?).
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For the product of the H-matrix A;{lj and the dense matrix F; € R" " in
line 7, we estimate the number of flops by 7 times the cost of the formatted
matrix-vector product

Nu.r(Trxr, k,n,r) < 4rCopn(p + 1)k = O(rnlogy(n)k).

The bound for computing G in line 10 is of the same size with n replaced
by m. That is, instead of a cubic complexity, one iteration step in the H-
matrix based sign function iteration can be computed in linear-polylogarithmic
complexity

Nr—sign(Trixr1, k,n,m) = O (n log3(n)k* + mlog%(m)kQ) .

For the numerical experiments in this chapter the number of iteration steps
is proportional to logy(n) (resp. logy(m)) (see [79, Lemma 3.5] for a general
statement). Then, the overall complexity for solving Sylvester equations has a
logarithmic dependency of power 3 on n and m.

Remark 4.1.3 Another well known iterative method for the solution of large-
scale Lyapunov equations is the low-rank ADI iteration. This method is par-
ticularly adapted for sparse problems; when applied to dense systems it is of
cubic complexity and therefore of limited use, e.g. for problems as they arise
by the finite element discretization of boundary integral equations. Note that
the ADI iteration can also be reformulated in formatted arithmetic. Then, in
each ADI step an H-LU or H-Cholesky factorization followed by H-forward
and backward substitution has to be computed. The complexity of one itera-
tion step is therefore comparable to the number of flops in one iteration step of
the sign function iteration. But note that due to the linear or at most super-
linear convergence rate ADI would in general require a lot more steps than the
quadratically convergent sign function method. O

For Algorithm 4 only A; and B; have an impact on the convergence and so the
convergence results for the sign function iteration from [75, 79] are valid. If we
have convergence in A;/B;, further iterations will not improve the iterates F
and Gj. Therefore we mainly analyze the forward error of the F}’s in the next
section.

4.1.1 Error Bounds

We first recall a well known inequality and a subsequent bound which will be
used for some results in this section.

Lemma 4.1.4 If | M||2 < 1 for some square matriz M € R™™", then

1
(1 = M) Mg < -
1 — [ M|z

Proof: See [74, Lemma 2.3.3]. O
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Corollary 4.1.5 If M € R™" is nonsingular and its perturbation M € R"*™
satisfies . .
17— MM ™2 = (M — M)M 2 < 1,

then a bound for the norm of the inverse of the perturbation is given by

1

1M 2 < (I - 0
1= [|M = M{[2f| M~H2

(4.4)

Proof: We obtain by simple calculation

M=t = MY — (M- MM
Invoking inequality (4.3) yields a bound for the inverse [ — (M — M)M~']~"
and thus (4.4). O

In this section we derive bounds for the forward error in the perturbed it-
erates A; and F; computed by Algorithm 4, denoted by flj and 15’] throughout
this section. The errors in the B- and G-iterates are bounded analogously. All
perturbations under consideration stem from using the adaptive arithmetic. In
the analysis, we neglect errors introduced by the RRQR/RRLQ factorizations.
The derived bounds then suggest a choice of the threshold 7 for the numerical
rank decision in the RRQR/RRLQ factorization, so that the original bounds
also hold approximately for the complete algorithm. To simplify the analy-
sis, the proposed scaling is not taken into account. We consider the following
notation and general assumption in analogy with [75, 79].

Notation 4.1.6 Let jyq, denote the mazimal number of iteration steps. For
the perturbed iterates A; arising in Algorithm 4 we write for the mazimum
‘H-matriz inversion error

d0:= ma ATl — AT
j:O,...,i'(mazH i i 2

and for the maximum H-matriz addition error

pi= _max [[(A; 0 A)) — (A + 4

Notation 4.1.7 For the distance between the exact and the perturbed iterates
we define

n = [|An — A2,
T]j = HAJ — AjHQ, f07" allj = 1, . ,jmam.

Assumption 4.1.8 We assume that
nja<l, forallj=0,...,Jmauw
where

o= max Ao
]:07--~7Jmaz
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For the perturbed A-iterates we obtain the following bound which is similar to
the bound derived in ([79, Theorem 5.1], [75, Theorem 8.8]) but presented in a
slightly modified form.

Proposition 4.1.9 With Assumption 4.1.8, the forward error of the perturbed
iterates in line 6 of Algorithm 4 satisfies for all j =0, ..., jmaz

2

~ 1 e’
1= ||Aj — A <=(p+6+mn+—~ : 4.5
Ni+1 = [|4j4+1 j+illz < 9 (P 1j 1 ﬂja) (4.5)

Proof: By simple calculations, where Assumption 4.1.8 is used in the last
inequality, we obtain the following bounds for the forward error in A;:

1A = Ajialle
1 - _ _
= SIA e A, - (4 + 47l
1+ _ - < _
= 514 @ AR — (A + A + (A + Al — (45 + A7)
1 ~ < _
< S{p A+ A - 4+ A7
1 ~ < < r _
< St IA - A4+ Al - A7 A7 - A7
1 i—1 -1
< §{P+5+77j+||f4j _Aj ||2}
1 1T— T —
= S{p+o+n+IA A - A)AT o
1 i1
< §{p+5+nj+a77jllAj ||2}
(44) 1 77‘042
< = ; z :
B 2{p+5+m+1_w}

O

With this proposition it is now possible to derive a bound for the forward error
between the exact and the perturbed solution factors.

Theorem 4.1.10 If Assumption 4.1.8 holds, then the forward error for com-
puting the approximate solution factors I is bounded, for all j = 0,..., jmaz

by

HFj+1 — Fjiti]2

2 2
101 ~ 101

< <1+a+5+m7) |1Ej — Fjllz + (5+ 4
L —mnja L =mnja

) IF5. (46)
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Proof: Using Notation 4.1.6 and 4.1.7 and the definition of o, we get the
following bounds:

1Fje1 — Fjaale
IF5 = Ejlla + |14 Fy — A7 Fjl2

IN

< |IEj = Fylla + | A3 F) — A7V Ejlla + | A7 Fy — A Fj
< | — Fjll2 + 6|1 Fyllz + | A7 Fy — AT Ej

AT E - ATTF 2
< | = Fill2a+ 6l Fjll2 + 1 A7 (A5 — Aj) A7l |1 Ejlla

+[1F5 = Fjll2ll A7 Iz
< (14 a)||Fj = Fjlla+ 0| Ejll2 + [|1A; M2 nj || Fjlla-

If we now use the inequality (4.4) we further obtain

IFjer = Firall
~ ~ _ ”7@ ~
< A+ IF = Byl + 3Bl + 147 o 22— 5y,
T4
2
~ na ~
< Qralfy - Fl+ (0+ 25 1A
~ nja2 ~
< Qralf - Blat (04 52 )(F - Bl + Bl
from which (4.6) follows. O

The analysis shows that we expect an increase of the errors in the Fj’s in
each step proportional to ¢ and 7;. Here 7; is again proportional to J and
p. Therefore it is sufficient to choose the threshold in the RRQR factorization
of the same order as 0 and p. These bounds for the H-matrix inversion and
addition error can be controlled by the adaptive rank choice mentioned at the
end of Section 2.3.

The a posteriori error bound (4.6) can be rewritten in a more compact way
as follows.

Corollary 4.1.11 With Assumption 4.1.8 and with

e’

0; =06+ ,
/ 1 —nja

we get the following bound for the forward error, for all j =0, ..., jmaz,

J J
|Fjer — Frall <Y ( IIa +a+9i>> v (4.7)
=0

= i=0+1
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Proof: We prove (4.7) by induction on j. Fp is stored in full matrix format,
so we get for the initial step:

|Fy — Fil |A'F — AP,

(6 + A7 = A7) Fl2

2
Nox
< (6 Flla.
< G I

Assuming that (4.7) holds for j,
j=1 /g1
IFy = Fylla <> ( IT a+a +9i)> 00l Fel2,
=0 \i=(+1

and using error bound (4.6), we obtain

1Ej = Fiaalle < (14 a+6;) [1Ej — Fyll2 + ;]| 2

j—1 7 j-1
< (I+a+6)) < II (1+a+9¢)> Ocl| Fell2 + ;]| Fj|2

{=0 \i=(+1

j-1 J
- ( IJ+a+ 01‘)) Ocl| Fell2 + 6; 1|1 F5 |2

(=0 \i=(+1

J
( I] a+a+ eg) 00l Fo)2-

1={+1

|
M~

14

Il
o

Remark 4.1.12 If Assumption 4.1.8 is strengthened to
A€ (0,1) V5 =0,...,0max @ jae<1—=A,

then a straightforward calculation yields that the bound in Proposition 4.1.9
becomes
1 1—A 1—A
77j+1§—<p+5+ 5 +a > (4.8)

2 A

If o, p, 6 < 1 then 7,11 is approximately bounded by %% which is advanta-
geously compared to (4.8). However, in practical circumstances it seems to be
unlikely that a < 1. ([l

4.1.2 Numerical Results

At the beginning of this section we introduce some general settings which will
be needed in most of the numerical simulations of this work.
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(a) Control domain. (b) Observation domain.

Figure 4.3: Domain description for the two-dimensional heat equation.

Example 4.1.13 (Main control problem) In our experiments we consider
a control problem for the two-dimensional heat equation in a unit square 2 =
[0, 1]? as described in [79]:

Z(O = Ax(hO+bOuD, €9 te(0,0),

Qu?
He) = {(1) ‘-

otherwise,
with homogeneous Dirichlet boundary conditions:
x(t,£) =0, €£€09, te(0,00).

The subdomain €2, C 2 describes the control domain where we have influence
on the system by imposing a heat source u(-). The domain is supposed to
be small compared to €2, see Figure 4.3(a). In the weak form of the partial
differential equation we use a classical Galerkin approach with bilinear finite
element ansatz functions ¢; on a regular triangulation with n = (N —1)? inner
grid points and mesh size h = 1/N. The resulting approximate temperature
distribution is given by

x(£,8) &~ > &(t)p;(¢)
j=1

with n unknowns #;, j = 1,...,n. The unknowns are restrictions of the tem-
perature x(¢,&) to the inner grid points &, := (ih, kh):
2i(t) = x(t,&x), withj=i+(k—1)(N—1), ik=1,...,N—1.

We obtain a system of n linear first-order ordinary differential equations which
can be written in matrix form as
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The matrices F € R™ ", A € R are given as in Example 2.3.18, F eR"is
defined by the entries

Elz/gb(ém(f)da fori=1,..n.

The mass matrix E is symmetric and positive (semi-)definite. With a Cholesky
decomposition of E = LLT, we obtain a symmetric, stable system matrix A =
— L YAL"T if we multiply the state equation by L~! from the left and define
x := LT#, and a transformed state equation

#(t) = Ax(t) + Fu(t), t>0, (4.9)

with F := L™'F. We measure the temperature in Q,, see Figure 4.3(b), by
setting the entries of the vector G € R™ corresponding to the grid points

ik € Qy to 1:
5 T
G= 3 e -1
Ein€Qy

This results in an additional output equation
y(t) = Gx(t), t>0 (4.10)

with G := GL~T. Thus, we have an LTI system with a single input and a single
output. The system is stable because all eigenvalues of A have negative real
part. O

Remark 4.1.14 (H-matrix approximation) For the H-matrix approxima-
tion we employ HLib 1.2 [47] which is developed at the Max-Planck-Institute
in Leipzig. We use a special H-matrix structure which is shown to be useful for
applications based on finite element discretizations of elliptic partial differential
operators as for the inversion or the LU-decomposition of the FEM stiffness ma-
trix. In this matrix structure all off-diagonal blocks are stored as Rk-matrices
with a blockwise accuracy determined by the parameter e. In the inadmissi-
ble leaves along the diagonal, the maximal blocksize is given by npyi, = 256
throughout all experiments. The parameter in the admissibility condition is
chosen as n = 1.0. To show the usefulness of the data-sparse H-matrix ap-
proach, we consider problem sizes with n > 1000, otherwise use the standard
dense matrix format. O

To limit the additional errors introduced using the formatted arithmetic (see
Proposition 4.1.9 and Theorem 4.1.10), it is advised to stop the iteration as
soon as possible but not before reaching the domain of quadratic convergence.
It is seen that using the stopping criterion (3.15) with a fixed threshold tol =
10~* and performing two additional iteration steps, the prespecified accuracy
is fulfilled in all experiments.

As a measure of accuracy we consider the relative residual

|AX + XB + FG|
IANIX T+ I BINXI + 1FG

R(X) =
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which could be considered as the backward error for an approximate solution
of the Sylvester equation (up to an amplification factor described in [97, Chap-
ter 15]). With the approximate solution factors ¥ and Z and by use of the
Frobenius norm we compute the residual by help of two QR factorizations,

-~ - o~ -~ - ~ T
|IAYZ +YZB+ FG|p = ||[AY, Y,F} [ZT, BTZT, GT] I
= |RiR3llp,

to save storage and computational complexity as proposed in [135, (4.7)] (and
implemented in LYAPACK [137]). The two QR factorizations

QIRI - [Ai/, }7, F} y QQRQ = ZT, BTZT, GT

are intended to be calculated as “economy-size” factorizations. To compute
the residual for large problem sizes, we replace the matrix A by its H-matrix
approximant. Numerical tests for smaller problem sizes indicate no significant
difference between this “approximate” residual and R(X). For smaller problems

the relative error
|Xs — XlIF

[ Xl

is computed with the reference solution X, in “full” format and with standard
arithmetic.

Remark 4.1.15 All the simulations calculated in this work are performed on
an SGI Altix 3700 (32 Itanium II processors, 1300 MHz, 64 GB shared memory,
only one processor is used). The algorithms are coded in ANSI C and compiled
with the Intel C compiler. We make use of the LAPACK and BLAS libraries
from the Intel Math Kernel Library for performing standard dense matrix oper-
ations and include the routine DGEQPF of the RRQR library [40] for computing
the RRQR factorization. O

Example 4.1.16 In this example we apply the H-matrix based solver to a spe-
cial variant of Sylvester equation motivated for the purpose of model reduction
(see the cross-Gramian approach in Section 5.3 for details),

AX + XA+ FG=0. (4.11)

The matrices A € R™ " and F, GT € R" are given by the stable LTI system
(4.9) and (4.10). Note that the iteration scheme summarized in Algorithm 4
simplifies since the B-iteration is redundant. This results in a reduced number
of flops and a smaller amount of storage demand. The computational time
as well as the overall storage requirements are significantly smaller than in the
following Examples 4.1.17 and 4.1.18. We vary the problem size from n = 1024
ton = 262,144 and choose 7 = 10~* for the numerical rank decision in
the RRQR factorization and € = 10* as approximation error in the adaptive
rank choice of the H-matrix arithmetic. With our algorithm we compute the
approximate solution factors Y € R™*"*(X) and Z € R (X)*X7 of the so-called
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Storage Requirements
10 g T
— - — standard arithmetic

* - adaptive arithmetic (¢ = 1.e-04)
10°H ¢ nlog’(n) ]

Max storage (MB)

10° L I I

10 10
Problem size n

Figure 4.4: Maximal storage requirements in logarithmic scale for Algorithm 4
in H-matrix arithmetic and in standard arithmetic compared to an O(n log3(n))
reference line in Example 4.1.16.

cross-Gramian solution X € R™*". We compare the solution from the H-
matrix arithmetic based sign function iteration with the solution computed by
the original iteration scheme as stated in Section 3.1.2. In the latter scheme
all matrices are stored in the usual “full” format and the matrix operations are
performed in standard arithmetic. Due to the large memory requirements (see
Figure 4.4) these solutions are only computed up to a problem size of n = 4096,
larger results are extrapolated in the two figures or omitted in Table 4.2. The
results of this computation are depicted in columns with column heading “full”.

In Figures 4.4 and 4.5 it is seen that the storage requirement as well as the
computational time for the algorithm in H-matrix arithmetic exhibits almost
linear growth. The ranks of the factors of the cross-Gramian and their accuracy
are plotted in Table 4.2. The relative residual is computed up to a problem size
of n = 65, 536 due to storage requirements and seems to be bounded from above
for increasing problem size. The proposed algorithm computes approximate
low-rank factors Y, ZT e R"*"(X) which have a very small number of columns,
respectively of rows, by a very high accuracy. This demonstrates the efficiency
of the developed solver. It should be noted that the largest Sylvester equations
solved, one with n = 262, 144, is equivalent to a linear system of equations with
about 68 billion unknowns. For this problem size we get Y, ZT e R"*18 and
therefore need 72 MB memory to store the solution instead of 512 GB for the
explicit solution X. O

Example 4.1.17 Algorithm 4 is tested in this example with matrices A, B, F,
G arising in a semi-discretization of the same control problem in Example 4.1.13.
For the space discretization we consider linear finite element ansatz spaces of
different sizes n and m which results in different matrix dimensions of the
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Storage Requirements

— - — standard arithmetic
* - adaptive arithmetic (¢ = 1.e-04)
cn Iogz(n)

Max storage (MB)
5

.
10*
Problem size n

Figure 4.5: CPU time in logarithmic scale for Algorithm 4 in H-matrix arith-
metic and in standard arithmetic compared to an O(nlog3(n)) reference line in
FExample 4.1.16.

n || # iter. | n,(X) time[sec] rel. residual rel. error

H | full H | full H full
1024 11 | 12| 12 19 40 || 9.7e-08 | 9.8e-10 2.1e-05
4096 12 || 13 | 13 230 | 2434 || 7.2e-08 | 7.0e-10 6.9e-05
16,384 13 || 15 - 2155 - || 2.6e-08 - -
65,536 14 || 15 - | 15,919 - || 1.5e-08 - -
262,144 15 ] 18 - || 131,738 - - - -

Table 4.2: Accuracy and rank n,(X) of the computed solution factors for dif-
ferent problem sizes and € = 1074, 7 = 10~ in Example 4.1.16.

square matrices A € R™” B € R™™ and of F € R*, G € R™. For a
fixed size n = 4096 we vary the number of grid points m from 1024 to 65, 536.
We take the same fixed choice of parameter values, e = 107%, 7 = 1074, as in
Example 4.1.16.

Again, we observe in Table 4.3 high accuracy in the solution factors com-
puted with the algorithm in H-matrix arithmetic by very low numerical ranks
n.(X). The relative residual as well as the relative error are observed to remain
bounded from above for increasing problem size. The execution time for the
algorithm in H-matrix arithmetic is considerably lower than the time needed
by the algorithm in standard dense format. (I

Example 4.1.18 Now we fix the problem size for the system described in
Example 4.1.17 by n = m = 4096 and test various parameter combinations of
€ and T.
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m || #it. || n(X) time[sec] rel. residual rel. error
H | full H full H full
1024 13|13 ] 13 273 2475 || 1.2e-07 | 2.2e-09 7.2e-05
4096 12 || 13| 13 459 4462 || 7.2e-08 | 7.0e-10 6.9e-05
16,384 14 || 14| 14 2947 | 195,070 || 4.5e-08 | 8.9e-10 1.5e-04
65,536 15 || 13 - || 53,915 - || 4.4e-08 - -

Table 4.3: Accuracy and rank n,(X) of the computed solution factors for dif-
ferent problem sizes in m and n = 4096, ¢ = 10~%, 7 = 10~ in Example 4.1.17.

€ T n.(X) time[sec] rel. residual rel. error
H | full H | full H full
l.e-04 | 1.e-04 || 13 | 13 459 | 4462 || 7.2e-08 | 7.0e-10 6.9e-05
1.e-06 | 1.e-04 || 13 | 13 917 | 4462 || 8.0e-10 | 7.0e-10 2.8e-07
1.e-08 | 1.e-04 || 13 | 13 || 1807 | 4483 || 7.0e-10 | 7.0e-10 2.6e-09

1.e-04 [ 1.e-06 || 24 | 21| 450 | 4502 || 7.2¢-08 | 1.0e-13 || 6.9e-05
1.e-06 | 1.e-06 || 21 | 21 | 919 | 4468 || 3.9¢-10 | 1.0e-13 ||  2.8-07
1.e-08 | 1.e-06 || 21 | 21 || 1809 | 4468 | 4.0e-12 | 1.0e-13 ||  2.6-09
1.e-16 | 1.e-06 || 21 | 21 || 8919 | 4464 || 1.0e-13 | 1.0e-13 ||  1.4e-14
1.e-04 [ 1.e-08 [ 55 | 20| 457 | 4491 || 7.2¢-08 | 4.4e-17 || 6.9¢-05
1.e-06 | 1.e-08 || 30 | 29 || 899 | 4492 || 3.9¢-10 | 4.4e-17 ||  2.8e-07
1.e-08 | 1.e-08 || 20 | 29 || 1810 | 4493 || 4.0e-12 | 4.4e-17 ||  2.6e-09
1.e-16 | 1.e-08 || 20 | 29 || 8947 | 4493 || 2.5e-17 | 4.4e-17 ||  1.3e-14

[ Le-16 [ 1.e-16 || 64 | 70 [| 8948 | 4518 || 2.1e-17 | 3.5e-17 || 1.2e-14

Table 4.4: Accuracy and rank n,(X) of the computed solution factors for dif-
ferent parameter variations and n = m = 4096 in Example 4.1.18.
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In all evaluations, 12 iteration steps are needed to reach the stopping cri-
terion. The results of the parameter variation in Table 4.4 show the expected
behavior, we have increasing accuracy as € gets smaller. A choice of e = 10716
results in large computational time and large storage requirements for the A-
iterates since the local ranks in the matrix blocks have to be very large to fulfill
the accuracy condition from the adaptive rank determination. Therefore the
usefulness of the H-matrix approach gets lost. The storage requirements might
even get larger than in “full” format if the criterion (2.28) for the local ranks in
the Rk-submatrices is not satisfied. It is consequently recommended to choose
the parameter ¢ of moderate size. The dimension n,(X) of the solution fac-
tors increases with 7 getting smaller which has impact on the accuracy for the
results in standard arithmetic. We observe that a decrease of 7 does not consid-
erably improve the accuracy in the H-matrix computation. The error analysis
in Theorem 4.1.10 suggests that no accuracy improvements can be expected by
choosing the parameter 7 smaller than e¢. This can be seen in Table 4.4, the
relative residual of the H-matrix solution as well as the relative errors are not
improved by setting 7 smaller or equal to €. It is even seen that for all com-
putations with € > 7 the numerical rank cannot be predicted correctly which
can be explained by the additional errors introduced by larger ¢ in the adaptive
arithmetic. In this example it is also observed that for e = 10™® an increase of
7 up to 107% has no influence on the accuracy. A choice of 7 = 10™% slightly
increases the relative residual from 4.0 x 107!2 to 7.0 x 1070 whereas the rel-
ative error is not affected. This observation fits to a criterion presented in [29,
page 21] and to the motivation given in Section 3.2.1 for Lyapunov equations,
which suggest to choose the RRQR threshold 7 of the same order as the square
root of the desired accuracy. Since in subsequent computational steps for model
order reduction the complexity is mainly determined by n.(X), it is advised to
choose 7 as large as possible to keep the attainable accuracy with respect to e,
thus 7 ~ /e.

O

4.2 ‘H-Matrix Arithmetic Based Sign Function Iter-
ation for Lyapunov Equations

We consider the sign function iteration in the partitioned form (3.25) to compute
a low-rank factor Y € R™*™(X) of the solution X € R™ ™ of the Lyapunov
equation

AX + XAT + BBT =0.

Since the iteration scheme is one part of the sign function iteration for Sylvester
equations we can adapt the data-sparse solver from Section 4.1. We will shortly
review the modified scheme with H-matrix format and arithmetic. Earlier re-
sults concerning H-based Lyapunov solvers are published in [16, 17].

As in Section 4.1 it is assumed that the matrix A € R"*™ can be approxi-
mated by a data-sparse H-matrix to initialize the iteration by

Ay = Ay
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In the costly part of the iteration the hierarchical matrix arithmetic is incorpo-
rated to reduce memory requirements and computational costs:

1 -
Aj =545 A7)

The formatted inverse is computed by Algorithm 3 using an H-LU decomposi-
tion of A;. This approach has lower storage requirements than computing A;iylj
by a formatted H-matrix inversion. Results of data-sparse Lyapunov solvers
with both variants of inversion are published in [17].

The other part of the iteration is stored in the usual “full” format using the
formatted matrix-vector product to perform A;iij,

Bjy1 — Bj, A;i’lij .

5
V2
This part converges to Y = % lim; o Bj, which is an approximate low-rank

factor of X. The increasing number of columns of Bj;i1 again is limited by
applying the RRLQ factorization.

Remark 4.2.1 (Stopping criterion) We use the stopping criterion (3.23)

for the iteration scheme. With lim; .., A; = —I,,, using formatted arithmetic,
we reach the stopping criterion since the identity is contained in the class of
‘H-matrices. O

Remark 4.2.2 Scaling is used as noted in Remark 3.2.1. Due to error ampli-
fication during the sign function iteration with formatted arithmetic, scaling is
used only in the first iteration step. O

Complexity. The amount of required workspace is reduced compared to the
data-sparse solver for Sylvester equations in (4.2),

Sr—sign(T1x1,k,n, X) < O(nlogy(n)k + nn (X)),

assuming that the same assumptions on the underlying hierarchical structure
are valid.
The computational complexity of Algorithm 5 can be bounded to about

Nr—sign(Trx1, k,n) = O (nlogj(n)k?)

flops for one iteration step. That is, the data-sparse solver for Lyapunov equa-
tions has almost linear storage requirements and a linear-polylogarithmic com-
plexity.

4.2.1 FError Bounds

Using the formatted arithmetic introduces further errors besides the usual
rounding errors. The influence of these errors in Algorithm 5 on the accu-
racy of the computed solution factor can be analyzed similar to Section 4.1.1.
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Algorithm 5 Calculate low-rank factor Y of X for AX + XAT + BBT = 0.

INPUT: A€ RV, BeR"™™, tol, e, 7
OUTPUT: Approximate low-rank factor Y of the solution X.

1: Ag «— (A)H
2: By« B
3:7=0
4: while ||A; + I,,|| > tol do
5:  Compute the approximate inverse A;{Ij by Algorithm 3.
6 Ajrr — 5(4; @A)
7. Bji % |: Bj, A;_Llij }
8:  Compute an RRLQ factorization

Biy =TILQ =TI L0

’ Loy Lo

with HL22H2 < THB]'_H”Q and L11 c R,
9:  Compress columns of Bj to size r:

Bj+1<—H{LH]-

Loy

10 j=45+1
11: e~nd while
12: Y «— %Bﬂ_l

For the forward error in the A-iterates, the result (4.5) from Proposition 4.1.9
derived for Sylvester equations is valid. Furthermore, the distance between B;
and the perturbed B; can be bounded as in (4.6) in Theorem 4.1.10. Exploiting
the symmetry of the solution of a Lyapunov equation we obtain a bound for
the relative forward error in the B-iteration.

Corollary 4.2.3 With the Notation 4.1.6, 4.1.7 and Assumption 4.1.8 from
Section 4.1.1 and with

2
0 =0+ o —,
1 —nja
we obtain a bound for the relative error for all j =0,..., jmaz’
|Bjr1 = Bisille _<~, T
J J <> 0, [ 0 +a+6). (4.12)
1Bj+ll2 (=0 i=l+1

Proof: To show that (4.12) holds, use the boundedness of the iterates

HBJ'*lHQ < ”BJ||2 <20, for aHj =0,..., Jmax;
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where o is the largest eigenvalue of the computed solution 2.X = lim; ., B; B;TF
[74, Corollary 8.6.3]. Then we can derive a bound for the relative error in Bj:

j i
IBjs1 = Byl < | Y 0 [T (1 +a+6) | IBjsal2.

(=0 i=t+1
O
Remark 4.2.4 Once again, if the Assumption 4.1.8 is strengthened to
A€ (0,1) V5 =0,...,0max @ Mja<1—A
and setting
1—A
0:=9 —_—
+a N
the relative error (4.12) in Corollary 4.2.3 can be bounded by
1Bj+1 = Bisall2 _ pLta+6)y -1
[Bjtllz — a+0 '
O

4.2.2 Numerical Results

As in Example 4.1.13, we consider a control problem for the two-dimensional
heat equation where we include a diffusion coefficient a:

X (1,6) = Viale) - Vx(1,€)) + bEu(r). (1.13)

In this setting, a is a material-specific quantity depending on the heat conduc-
tivity, the density and the heat capacity. We will set the diffusion coefficient
constant in most of the experiments except for Example 4.2.6 where we vary
a over the domain 2. In Example 4.2.7 we include a constant convective term
in (4.13) and examine the influence of convection on the algorithm by choosing
different constant diffusion coefficients a € (0, 1]. After discretization by linear
finite elements we denote the resulting state space form of order n by

&(t) = Az(t) + Bu(t).

For the H-matrix approximation we use the setting as described in Re-
mark 4.1.14. We test various parameter combinations of € for the blockwise
accuracy and 7 as threshold for the numerical rank decision in the RRQR fac-
torization. The error analysis in Corollary 4.2.3 suggests 7 ~ € to obtain

Iy =¥,
Ve ~°

but we also test other parameter combinations in order to support this analysis
by numerical evidence. Recall that the analysis in Section 3.2.2 suggests to
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Storage Requirements
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* - adaptive arithmetic (¢ = 1.e-04)
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Figure 4.6: Maximum storage requirements in logarithmic scale for Algorithm 5
in H-matrix arithmetic and standard arithmetic compared to an O(nlogi(n))
reference line in Example 4.2.5.

choose 7 in the size of the square root of the approximation error, i.e. 7 ~ /€
to compute X up to a relative accuracy of e

|X V¥
1XT2

For the stopping criterion we choose tol = 10™% and perform two additional
iteration steps thereby exploiting the quadratic convergence rate of the sign
function iteration.

The relative residual

1AYYT 4+ YYTAT + BBT|
2 AHIYY T + ||1B|1?

is computed by help of two “economy-size” QR factorizations, using the Frobe-
nius norm, as introduced for the Sylvester equation in Section 4.1.2.

Example 4.2.5 First we consider a constant diffusion coefficient: a(-) = 1.0.
In Figures 4.6 and 4.7 the storage requirements and the computing time of
the new solver with H-matrix arithmetic with a fixed choice of ¢ = 10~* and
7 = 10~* is compared with the sign function method in standard arithmetic.
As in Example 4.1.16 we have extrapolated the results of the standard arith-
metic computation for sizes larger than n = 4096 due to the large memory
requirements.

It is observed that the storage requirements as well as the computing time
for the algorithms in H-matrix arithmetic exhibit an almost linear complexity.
The number of flops as well as the required storage can further be reduced for
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Figure 4.7: CPU time in logarithmic scale for Algorithm 5 in H-matrix arith-
metic and in standard arithmetic compared to an O(nlog3(n)) reference line in
FExample 4.2.5.
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Figure 4.8: Singular values of A for n = 1024 and € = 10~

this example if the symmetry of the A-iterates is exploited by only storing the
upper triangular parts of the iterates. Note that this available structure is not
further exploited throughout this work.

Table 4.5 reports the accuracy of the solutions with a problem size n vary-
ing from 1024 to 262,144. The relative residual seems to be bounded from
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€ T #1it. || n(X) time [sec] rel. residual rel. error
H | full H | ful H | full

n = 1024
Le-04 | 1e-04 12| 12 18 1 39 [[1.3e-07 [ 6.2e-10 || 3.1e-05
1.e-06 | 1.e-04 11|12 | 12 31| 39 | 1.2¢-09 | 6.2e-10 ||  2.5¢-07
1.e-08 | 1.e-04 11|12 | 12 51 | 39 | 6.2¢-10 | 6.2e-10 ||  1.2e-09
Le-04 | 1.e-06 120} 19 19 [ 39 [[1.3e-07 | 1.3e-13 || 3.1e-05
1.e-06 | 1.e-06 11 (119 | 19 31| 39 | 1.0e-09 | 1.3e-13 ||  2.5¢-07
1.e-08 | 1.e-06 11 19| 19 51| 39 | 7.6e-12 | 1.3e-13 ||  1.2¢-09
Le-04 | 1.e-08 11431 26 19 [ 39 [ 1.3e-07 | 4.4e-17 || 3.1e-05
1.e-06 | 1.c-08 11 |26 | 26 31| 39 | 1.0e-09 | 4.4e-17 ||  2.5e-07
1.e-08 | 1.e-08 11 || 26 | 26 51| 39 | 7.6e-12 | 44e-17 || 1.2¢-09
n = 4096
Le-04 | 1e-04 1213 13 234 [ 2436 || 7.7¢-08 | 6.2e-10 ||  1.4e-04
1e-06 | 1.e-04 12 |13 | 13 464 | 2432 || 7.2e-10 | 6.2¢-10 ||  3.0e-07
1.e-08 | 1.e-04 12 || 13| 13 910 | 2430 || 6.2e-10 | 6.2¢-10 ||  4.2¢-09
Le-04 | 1.e-06 12126 21 235 | 2432 || 7.7¢-08 | 4.3¢-14 || 1.4e-04
1e-06 | 1.e-06 12 21| 21 465 | 2433 || 3.6e-10 | 4.3e-14 || 3.0e-07
1.e-08 | 1.e-06 12 21| 21 911 | 2433 || 4.0e-12 | 4.3e-14 || 4.2¢-09
Le-04 | 1.e-08 12 [ 56 [ 29 238 | 2438 || 7.7¢-08 | 3.9¢-17 || 1.4e-04
1.e-06 | 1.e-08 12 130 | 29 466 | 2441 || 3.6e-10 | 3.9e-17 || 3.0e-07
1.e-08 | 1.e-08 12 |29 | 29 912 | 2438 || 4.0e-12 | 3.9e-17 || 4.2¢-09
n = 16,384
Le04[1e04 ] 13[16 [ - 2158 ] -] 2.3e-08 ] -1 -
n = 65,536
le-04 [1e-04 ]| 14 16] -] 15781 -] 1.1e-08 | - -
n = 262,144
Le04 [1e-04 ] 15 18] - 131,192 ] - 4.0e-09 | -1 -

Table 4.5: Accuracy and rank n,(X) of the computed solution factors from
Algorithm 5 for different problem sizes and parameter combinations in Exam-
ple 4.2.5.

above for increasing problem size. For the parameter variation we observe a
similar behavior as in Example 4.1.18 for the solution of Sylvester equations
and as expected from the error analysis in Section 4.2.1 and from the analysis
in Section 3.2.2. O

Example 4.2.6 In Table 4.6 we report results for Algorithm 5 applied to a
modification of the original heat equation example. We vary the diffusion coef-
ficient a in (4.13) over the domain as illustrated in Figure 4.9 and similarly as
in [79]:
107 56 [_1’1] X [_%7 %]7
a(f) - 10_47 56 [_%7%] X ([_17_%)U(%71D7
1.0, otherwise.

In these experiments we fix n = 4096 and vary the parameter € and 7 as in
Example 4.2.5. Since the sign function iteration where scaling is applied only
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Figure 4.9: Varying diffusion coefficient a in (4.13).

in the first step needs 18 iteration steps to reach the stopping criterion, we use
scaling also for the second iteration step. In Figure 4.8 it is seen that the first
100 singular values of A with varying diffusion decrease significantly faster than
the singular values of A in Example 4.2.5. To steer the singular values closer to
1, and thus obtain faster convergence, it is advised to scale twice. The resulting
iteration needs 13 iteration steps for convergence and a reduced computational
time, even though the blockwise ranks of the iterates are increased compared to
using scaling only in the first iteration step, see the discussion in Remark 4.1.2.
Note that it would be possible to employ an heuristic criterion for the number
of scaled iteration steps based on the condition number of A.

In Table 4.6 we observe larger ranks n,(X) of the computed solution factors
compared to the ranks of the results for a(-) = 1.0 in Table 4.5. This is ex-
plained by the smoother decay of the eigenvalues of X for varying diffusion, see
Figure 4.10. The relative residuals are nearly of the same size for the standard
dense implementation and slightly larger for the data-sparse computation com-
pared to the corresponding results in Example 4.2.5. We observe larger relative
errors compared to the corresponding rows in Table 4.5. These larger errors
are due to the increasing ill-condition of the Lyapunov equation. An estimate
for the 2-norm condition number of the Lyapunov operator yields 6.1 - 107 as
compared to 5.3 - 103 for the Lyapunov equation corresponding to a(-) = 1.0.
For details on the condition number of Lyapunov equations see [97, Chapter 15].
The computational time in all H-matrix based calculations is decreased com-
pared to the time in Table 4.5 for constant diffusion, caused by smaller values
for the maximum blockwise rank in the adaptive arithmetic. These lower ranks
are due to the fast decay of the singular values of A. Note that the computa-
tional time needed for each iteration step in the standard dense implementation
is of comparable size for both examples.
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€ T n.(X) time[sec] rel. residual rel. error
H | full H | full H full
l.e-04 | 1.e-04 || 24 | 25 | 193 | 2612 || 3.6e-07 | 2.5e-10 || 8.16e-03
1.e-06 | 1.e-04 || 25 | 25| 379 | 2608 || 2.1e-09 | 2.5e-10 || 2.53e-05
1.e-08 | 1.e-04 || 25 | 25 | 691 | 2616 || 2.5e-10 | 2.5e-10 || 2.30e-07
l.e-04 | 1.e-06 || 41 | 38 || 195 | 2630 || 3.6e-07 | 3.7e-14 || 8.16e-03
1.e-06 | 1.e-06 || 39 | 38 | 380 | 2618 || 2.0e-09 | 3.7e-14 | 2.53e-05
1.e-08 | 1.e-06 || 39 | 38 | 692 | 2632 || 1.4e-11 | 3.7e-14 || 2.30e-07
l.e-04 | 1.e-08 || 87 | 54 || 218 | 2625 || 3.6e-07 | 9.2e-17 || 8.16e-03
1.e-06 | 1.e-08 || 54 | 54 || 382 | 2625 || 2.0e-09 | 9.2e-17 | 2.53e-05
1.e-08 | 1.e-08 || 54 | 54 || 694 | 2642 || 1.4e-11 | 9.2e-17 || 2.30e-07

Table 4.6: Accuracy and rank n,(X) of the computed solution factors from
Algorithm 5 for n = 4096 and varying diffusion coefficient in Example 4.2.6.

10°

T T T T
- eigenvalues of X in Example 4.2.5
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Figure 4.10: Largest 100 eigenvalues of X for n = 4096 and 7 = 1076,
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Figure 4.11: Eigenvalues of A for n = 4096 with convection.

O

Example 4.2.7 Next we add constant convection to the heat equation (4.13).
Thus, we apply Algorithm 5 to a system with nonsymmetric stiffness matrix A
resulting from the convection-diffusion equation

g—?(t,{) = a Ax(t,€) + ¢ Vx(t,&) + b(§)u(t), €€, te(0,00),
with a constant diffusion coefficient a € (0, 1] and a fixed choice of the convection
vector ¢ = (0,1)7. We choose different values for a to analyze the influence of
the convective term. For a fixed problem size n = 4096 we depict the critical
part of the spectrum of A for the diffusion coefficients a = 1072, a = 1074
and @ = 107 in Figure 4.11. The eigenvalue closest to the imaginary axis
is A & 2. x 1072 for the diffusion coefficient a = 10™%. As already discussed
in Section 3.1.1, the Newton iteration suffers from numerical problems if the
distance of the closest eigenvalue is smaller than the square of e. Nevertheless,
we observe that the Newton iteration converges even using a relatively large
value of € = 10~ for the adaptive arithmetic.

Note that the partitioning of the underlying H-tree as well as the admissibil-
ity condition are not particularly adapted for the case of dominant convection.
For modifications to reduce the approximation error between the original matrix
and its H-matrix approximant for problems with convection see [49]. Never-
theless, it is shown in [51] that the H-LU-factorization works well also in the
convection-dominant case without any modification on the index clustering. All
calculations for a > 107° fulfill the stopping criterion after 12 iteration steps;
for a = 1075 two steps less are needed. Since the rank is chosen adaptively, the
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€ T n.(X) time[sec] rel. residual rel. error
M| fall | H [ full M| ful

a=0.01
l.e-04 | 1.e-04 || 13 | 13 228 | 2434 || 7.6e-08 | 6.2e-10 1.35e-04
1.e-06 | 1.e-04 || 13 | 13 454 | 2433 || 7.2e-10 | 6.2e-10 2.98e-07
1l.e-08 | 1.e-04 | 13 | 13 882 | 2429 || 6.2e-10 | 6.2e-10 4.39e-09
l.e-04 | 1.e-06 || 26 | 21 229 | 2432 || 7.6e-08 | 4.3e-14 1.35e-04
1.e-06 | 1.e-06 || 21 | 21 455 | 2432 || 3.6e-10 | 4.3e-14 2.98e-07
1.e-08 | 1.e-06 || 21 | 21 882 | 2432 || 4.1e-12 | 4.3e-14 4.24e-09
l.e-04 | 1.e-08 || 59 | 29 232 | 2436 || 7.6e-08 | 4.3e-17 1.35e-04
1.e-06 | 1.e-08 || 30 | 29 455 | 2437 || 3.6e-10 | 4.3e-17 2.98e-07
1.e-08 | 1.e-08 || 29 | 29 883 | 2440 || 4.1e-12 | 4.3e-17 4.24e-09
a=10"*
l.e-04 | 1.e-04 || 14 14 230 | 2433 || 7.3e-08 | 1.2e-10 1.29e-04
l.e-06 | 1.e-04 || 14 | 14 455 | 2425 || 3.9e-10 | 1.2e-10 2.83e-07
1.e-08 | 1.e-04 || 14 | 14 884 | 2430 || 1.2e-10 | 1.2e-10 3.89e-09
1l.e-04 | 1.e-06 || 26 21 232 | 2433 || 7.1e-08 | 3.0e-14 1.28e-04
1l.e-06 | 1.e-06 || 21 | 21 457 | 2429 || 3.7e-10 | 3.0e-14 2.83e-07
1.e-08 | 1.e-06 || 21 | 21 885 | 2435 || 3.6e-12 | 3.0e-14 3.77e-09
l.e-04 | 1.e-08 || 62 | 29 235 | 2437 || 7.1e-08 | 3.5e-17 1.28e-04
1.e-06 | 1.e-08 || 31 | 29 457 | 2420 || 3.7e-10 | 3.5e-17 2.83e-07
1.e-08 | 1.e-08 || 29 | 29 885 | 2433 || 3.6e-12 | 3.5e-17 3.77e-09
a=10"°
l.e-04 | 1.e-04 || 21 | 21 736 | 2062 || 4.5e-08 | 4.7e-11 1.42e-05
1.e-06 | 1.e-04 || 21 21 || 1497 | 2059 || 4.6e-10 | 4.7e-11 1.12e-07
1.e-08 | 1.e-04 || 21 21 || 2086 | 2058 || 4.7e-11 | 4.7e-11 7.40e-10
l.e-04 | 1.e-06 || 29 | 28 738 | 2054 || 4.5e-08 | 5.7e-15 1.42e-05
1.e-06 | 1.e-06 || 28 | 28 || 1503 | 2061 || 4.6e-10 | 5.7e-15 1.12e-07
1.e-08 | 1.e-06 || 28 | 28 || 2083 | 2054 || 3.5e-12 | 5.7e-15 7.29e-10
l.e-04 | 1.e-08 || 46 | 33 741 | 2055 || 4.5e-08 | 1.8e-17 1.42e-05
1.e-06 | 1.e-08 || 33 | 33 || 1505 | 2052 || 4.6e-10 | 1.8e-17 1.12e-07
1.e-08 | 1.e-08 || 33 | 33 || 2087 | 2065 || 3.5e-12 | 1.8e-17 || 7.29¢-10

Table 4.7: Accuracy and rank n,(X) of the computed solution factors from
Algorithm 5 for n = 4096 with convective term and different values of the
diffusion coefficient a in Example 4.2.7.

accuracy results in Table 4.7 are nearly the same for all diffusion coefficients and
compare well with the results in Table 4.5 for problems without convection. For
a — 0 we observe an increase in the ranks in the H-matrix approximation due
to the declined convergence of the H-matrix approximant towards the original
matrix in convection-dominant problems [49]. This results in larger computa-
tional time for the data-sparse solver. The numerical ranks of the computed
solutions X are comparable small to the ranks in Example 4.2.5 without con-
vection. This can be explained by the steep decay of the eigenvalues of X, the
largest 100 real eigenvalues are depicted in Figure 4.10 (for a = 1076).
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O

Example 4.2.8 In this example we consider a boundary element discretization
of the Laplace equation in @ C R3?. Using the Ritz-Galerkin method with n
piecewise constant ansatz functions {¢1, ..., @, } we obtain the following entries
of the stiffness matrix

11
Ai'—/ ; /—7 (z) dTzdl*
A A P P

for i,5 = 1,...,n, see [88] for details. To construct a dynamical system we
introduce an artifical time dependence. By use of the stiffness matrix A, taking
B € R™! as in Example 4.1.13, we obtain a state equation in standard form
with stable matrix A. We choose () as a three-dimensional sphere and com-
pute the entries in the low-rank blocks of the H-matrix using adaptive cross
approximation [45] with a blockwise accuracy of 10~7. From the resulting H-
matrix, a coarser approximation with relative error of 1076 is computed. The
Lyapunov equation for the solution of the controllability Gramian is solved by
the data-sparse Algorithm 5 using a fixed parameter choice of e = 7 = 1074

In Table 4.8 we observe a good accuracy for the computed low-rank solution
factors. The computing time is larger compared to similar problem sizes of the
sparse problems, but note that for n = 32,768 a system of about 1 billion un-
knowns results. The solution of a problem of this size, involving dense matrices,
is only possible by use of a data-sparse solver with formatted arithmetic. The
maximum storage requirements throughout the sign function iteration are also
reduced significantly, see Figure 4.12. Furthermore, computing low-rank factors
Y € R"¥12 reduces the amount of storage for the solution from 8 GB to 3 MB
for n = 32, 768.

n #it. || n(X) time [sec] rel. residual rel. error
H | full H| full H|  full
2048 11 || 10 | 10 228 282 || 9.4e-07 | 9.4e-07 2.1e-06
8192 11 11| 11 1769 | 17,071 || 4.6e-07 | 4.6e-07 2.6e-06
32768 | 12| 12| - 15,306 || 7.7e-07 - -

Table 4.8: Accuracy and rank n,(X) of the computed solution factors from
Algorithm 5 in Example 4.2.8.

O

4.3 Extension to Generalized Lyapunov Equations

In this section, we show how the derived results can be extended to generalized
Lyapunov equations of the form (3.27),

AXET + EXAT + BBT =0,

where A, E € R™*™ and B € R™*"™. To initialize the iteration, the matrices E
and A are approximated in the H-matrix format. Since we cannot say anything
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Storage Requirements

— - — standard arithmetic
* - adaptive arithmetic (¢ = 1.e-04)
cn Iogz(n)

Max storage (MB)
5

.
10*
Problem size n

Figure 4.12: Maximum storage requirements in logarithmic scale for Exam-
ple 4.2.8 in ‘H-matrix arithmetic and in standard arithmetic compared to an
O(nlog3(n)) reference line.

about the growth of the blockwise ranks during the iteration we avoid the
computation and storage of EAJ-_1 and Aj_lE in (3.30a) computing an H-LU-
factorization of A; instead. The matrix product EAj_lE in (3.30a) is computed
by

(L3, Un] < LU (4;),
followed by an ‘H-forward and H-backward substitution for the solution of L;{lE
and EUﬁl,

LW = E,
VUy = E.

By formatted multiplication we obtain
EAJ'E~VoW.

Remark 4.3.1 If F is symmetric and positive definite and A is symmetric and
negative definite then all iterates A; are also symmetric and negative definite
in exact arithmetic. In this case we replace the H-LU-decomposition by the
Cholesky decomposition of —A; in approximate arithmetic, see [120] for details.
Note that the Cholesky decomposition is performed with half of the complexity.
O

The update of the Bj-iterates is performed by the following two steps (replac-
ing (3.30b) in the standard dense implementation),

LyB; « Bj,

1 _
Bjt1 E[Bj’ VB; ],
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where a formatted triangular solver is used to compute Bj.

Remark 4.3.2 (Stopping criterion) Since lim; .o, A; = —E and E is con-
tained in the set of H-matrices, we use

[4; + Ell2 < tol - | E]l
as stopping criterion for the iteration as proposed in Section 3.2.3. O

We obtain )
S
A
as a factor of the approximate solution X ~ Y'Y of (3.27). The inversion of

F in this solution formula is performed by a formatted LU-decomposition, see
Definition 2.3.17.

Y =

Remark 4.3.3 (Scaling) As motivated in Section 3.2.3, the statements in the
inner loop of Algorithm 6 are replaced by

1 1
A §(CAO S5, EV@W),

L { NG %VBO],

B —
' V2

in the first iteration step, using

N (7
4,1

in order to accelerate convergence. O

The hierarchical matrix format and the approximate arithmetic is introduced
in the iteration scheme as summarized in Algorithm 6.

Complexity. The storage requirements for the data-sparse generalized New-
ton iteration are in the size of the data-sparse standard Lyapunov solver plus
the storage for the H-matrix £. This sums up to an amount of

Sr—sign(Trx1,k,n, X) < 2(2Cqp kn(logy(n) + 1) 4+ 2nn. (X))

real numbers needed throughout Algorithm 6. The computational complexity is
determined by the complexity of computing the formatted matrix multiplication
and is therefore bounded by

Nr—sign(Tix1, k,n) = O (nlogs(n)k?) .

That is, the data-sparse solver for generalized Lyapunov equations has al-
most linear storage requirements and a demand of flops which grows linear-
polylogarithmically in n.
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Algorithm 6 Calculate low-rank factor Y of X for AXET+EX AT +BBT = 0.
INPUT: A e R™"™ BeR"™™ EeR"™™" tol, €, 7
OUTPUT: Approximate low-rank factor Y of the solution X.
LAy — (A, B — (E)y
2: By« B
3: =0
4: while ||A; + E|| > tol - | E|| do
Compute H-LU-factorization: [L,U] < LUp/(A;).
Solve LW = E by H-forward substitution.
Solve VU = E by H-backward substitution.
Ajp1 = 3(40VOW)
Solve LBj = B; by forward substitution.
10: Bj+1 — % [ Bj, VB]' ]
11:  Compute an RRLQ factorization

Bj1 =TLQ =TI

L1 O
Q
Lo1  Loo

with ||L22||2 < T||Bj+1||2 and L1 € R™*".

12:  Compress columns of B to size r:
L
BJ+1<—H|:L21 :| .

13: j=j4+1
14: end while

15: Y %E&IBJ'JF:L

4.3.1 Error Bounds

We examine the influence of the introduced errors using the formatted opera-
tors in the sign function iteration on the accuracy of the computed solutions.
As in the previous sections we ignore errors introduced by using an RRLQ
factorization, also the scaling is not taken into account.

Notation 4.3.4 Let jpqe denote the mazimal number of iteration steps. For
the perturbed iterates A; arising in Algorithm 6 we write for the mazimum
H-matriz inversion error (with E = Ey)

5 = EALME - EAT'E
]:(?’la:;{rmw H ~ ~Hf o f ||27
! R — —
5 o J:gfla;.);maz HEAH,] B EAJ ”2,

and for the mazximum H-matriz addition error

pim pax (A& BALE) = (A + BA D)o
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Notation 4.3.5 For the distance between the exact and the perturbed matrices
we define

€ = ||E—EH2,
n = [|An — A2,
T]j = HAJ — AjHQ, f07" allj = 1, Ce ,jmam.

Assumption 4.3.6 We assume with

o= max |47,
7=0,....0max

that

nja<l, forallj=0,...,5maz

For the perturbed iterates we obtain in Lemma 4.3.7 a bound similar to the
bound (4.5) in Proposition 4.1.9 for the standard iteration with an additional
factor || E||3. The proof is similar and therefore neglected.

Lemma 4.3.7 With Assumption 4.3.6, the forward error of the perturbed iter-
ates in line 8 of Algorithm 6 satisfies, for all j =1,..., jmaz,
I15).

Theorem 4.3.8 If Assumption 4.3.6 holds, then the forward error for com-
puting the approximate solution factors Bj is bounded for all j = 1,..., jmaz

by

;o

. 1
ni+1 = [[Aj1 — Ajpll2 < 5 (p+5+ﬁj +1

HBjH — Bjtill2
< 2 (14 allBla+ 8 + epa+ 151, 13, - Bl
(6% ErpQy ; — ;

I
# (04 epat X2 ) 1B} (419

- nja
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Proof: Using Notation 4.3.4 and 4.3.5 and the definition of «, we obtain

1Bjx1  —  Bjnl:
< % (1B, ~ Bl + | B4z, By - BA; Byl»}
< {18~ Bla+ 815l + 154 By — BA7 B,
+|EA; B ~ EAJ-_lBj||2}
< 5 {18 = Bl + 8By o+ 1l A7 4y = )45 o B e
| BAT By — BAT B2 + | EAT' By — EAT'Byl2 |
< {18y = Bylla+ 815, o + myo| Bl 45 a1 e
+al| B = Ella||Bjll2 + o Ell21|B; - Bjlz }
a8 - B+ 0 e+ BB
< 5 { s alBB; - B+ @+ cpa+ 20
(1B = Billa + 1 Bsll2) } -
From this, (4.14) follows immediately. O

4.3.2 Numerical Results

The matrices A, E € R™"™ and B € R™*™ stem from a space discretization
of the heat equation by linear finite elements as introduced in Example 4.1.13.
They belong to a system in generalized state space form

Ei(t) = Az(t) + Bu(t). (4.15)

The stiffness matrix A is computed with constant diffusion coefficient a(-) = 1.0.
To stop the iteration, a choice of tol = 10~ in the stopping criterion is shown
to be useful.

The parameters ¢ and 7 are chosen as in Section 4.2.2.

We observe larger resource requirements than for the algorithm in Sec-
tion 4.2.2. This is caused by larger local ranks in the H-matrix approxima-
tion of the A-iterates (and also of the derived matrices) during the iteration
process. Therefore we have to restrict the problem sizes to n = 65,536 for
Algorithm 6. The values for the computation in standard arithmetic are ex-
trapolated for problem sizes larger than 4096. Since the complexity estimates
for the formatted arithmetic are dependent on the rank distribution in the H-
matrix subblocks, see Secion 2.3, the line of the data-sparse solver in Figure 4.13
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Storage Requirements

10" = T

— - — standard arithmetic -
* - adaptive arithmetic (¢ = 1.e-04) -

cn Iogz(n) -

Max storage (MB)

ol 4 I

10*
Problem size n

Figure 4.13: Maximum storage requirements in logarithmic scale for Algo-
rithm 6 in H-matrix arithmetic and in standard arithmetic compared to an
O(nlog3(n)) reference line.
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Figure 4.14: CPU time in logarithmic scale for Algorithm 6 in H-matrix arith-
metic and in standard arithmetic compared to an O(nlogs(n)) reference line.

and in Figure 4.14 is steeper than the linear-logarithmic reference line. In Ta-
ble 4.9 the rank of the approximate solution factors and the accuracy of the
algorithm is depicted. The results are similar to the results of Algorithm 5.
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€ T # it n.(X) time [sec] rel. residual rel. error
H | full H | full H |  full

n =1024
1.e-04 [ 1.e-04 7] 12] 12 16 | 37 || 1.3e-08 [ 1.6e-09 || 2.0e-05
1.e-06 | 1.e-04 7112 12 25 | 37 || 1.7¢-09 | 1.6e-09 ||  7.9e-08
1.e-08 | 1.e-04 7 12] 12 39 | 37| 1.7¢-09 | 1.6e-09 || 2.1e-08
1.e-04 | 1.e-06 7] 21] 18 16 | 37 || 1.3e-08 | 1.6e-09 || 2.0e-05
1.e-06 | 1.e-06 71 18] 18 25 | 37| 1.6e-09 | 1.6e-09 ||  8.0e-08
1.e-08 | 1.e-06 7] 18] 18 39 | 37| 1.6e-09 | 1.6e-09 || 1.3e-08
Le-04 | 1.e-08 7155 ] 25 16 | 37 || 1.3e-08 | 1.6e-09 || 2.0e-05
1.e-06 | 1.e-08 7126 25 25 | 38| 1.6e-09 | 1.6e-09 ||  8.0e-08
1.e-08 | 1.e-08 7125 ] 25 39 | 38| 1.6e-09 | 1.6e-09 || 9.5e-09
n = 4096
1.e-04 [ 1.e-04 8] 14] 14 237 | 2333 || 3.4e-09 | 4.9¢-11 || 3.7¢-05
Le-06 | 1.e-04 8| 14| 14 530 | 2379 || 5.3e-11 | 4.9e-11 1.3e-07
1.e-08 | 1.e-04 8| 14| 14| 1105 | 2358 || 4.9¢-11 | 4.9¢-11 1.2¢-09
Le-04 | 1.e-06 81 26| 21 238 | 2354 || 3.4e-09 | 4.8¢-11 || 3.7¢-05
1.e-06 | 1.e-06 81 21| 21 530 | 2324 || 5.2e-11 | 4.8¢-11 1.3e-07
1.e-08 | 1.e-06 81 21| 21| 1108 | 2337 || 4.8e-11 | 4.8e-11 1.1e-09
1.e-04 | 1.e-08 81 75 ] 29 241 | 2338 || 3.4¢-09 | 4.8¢-11 || 3.7¢-05
1.e-06 | 1.e-08 81 32| 29 531 | 2326 || 5.2e-11 | 4.8¢-11 1.3e-07
1.e-08 | 1.e-08 8129 ] 29| 1106 | 2328 || 4.8e-11 | 4.8e-11 1.1e-09
n = 16,384
Le-04 [1e-04]] 9] 15] -] 2654 [ - 7.6e-10 | - -
n = 65,536
le04 [1e04 || 10[ 16| -]27619] - | 3.0e-10 | - | -

Table 4.9: Accuracy and rank n,(X) of the computed solution factors from
Algorithm 6 for different problem sizes and parameter combinations.

4.4 H-Matrix Arithmetic Based Smith Iteration

In the discrete-time setting it is again the large-scale matrix A € R™*™ which is
approximated in H-matrix format. In the iteration scheme of the squared Smith
iteration (3.38) we replace the usual matrix product in (3.38b) by a formatted
multiplication

Aj+1 — Aj ® Aj.

The intermediates for the solution factor are stored in usual dense format and
are updated via the formatted matrix-vector product,

Bjy1 < [ Bj, A;Bj].

The number of rows is again limited by applying an RRLQ factorization in each
iteration step on Bj1.

Remark 4.4.1 (Stopping criterion) In preliminary numerical experiments
it has been observed that the convergence of the A;’s towards zero (as used in
the criterion (3.35)) does not predict very well the distance between B; and Y.
Therefore, we use the stopping criterion proposed in Remark 3.3.3. We interpret
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the largest singular value of B; as converged if the relative change is bounded
by the threshold for the numerical rank decision in the RRLQ factorization:

01(B;) — 01(Bj+1)|
o1(Bj)

< T.

The numerical experiments support the use of this choice. O

All computational steps of the data-sparse solver are summarized in Algo-
rithm 7.

Algorithm 7 Calculate low-rank factor Y of X for AXAT — X + BBT = 0.

INPUT: A€ R™"™ BeR"™™ €1
OUTPUT: Approximate low-rank factor S of the solution X.

1: Ag «— (A)H
2: By« B
3: =0
4: while |o1(Bj) — 01(Bj4+1)|/01(B;) > 7 do
5: Bj+1 «— [ Bj, Aij ]
6:  Compute an RRLQ factorization
Biyy =TILQ =TI a0
’ Loy Lo

with ||L22||2 < 7'||Bj+1||2 and L1 € R™*".
7. Compress columns of B; 1 to size r:

‘ L1y
BJ+1<—H|:L21 :| .

®

Aj+1 — Aj ® Aj
J=J+1

10: end while

11: Y/ — Bj+1

©

Complexity. With the usual technical assumptions on the underlying H-tree,
the required workspace for the data-sparse Smith iteration is given by the sum
of the workspace for the H-matrix (and iterates) A; and the solution factor B;.
With the bound for A as stated in (4.1) the amount on storage is bounded by

SH—smith(T1x1,k,n, X) < 2(Csp kn(logy(n) + 1) + 2nn,(X)).

The complexity of each iteration in (3.38a) is bounded by the complexity of the
formatted multiplication and is thus of linear-polylogarithmic dependency on
n:

Nr—smith (Trx1, k,n) = O(n logg (n)kz)
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4.4.1 Error Bounds

Notation 4.4.2 The mazimum error for the formatted multiplication is de-
noted by
pi= max |[|A; O Aj — AjAjla.
J=0,....Jmaz
Notation 4.4.3 For the distance between the exact and the perturbed matrices
we define

N = ||A’)—{ _AH27
ny = ||A] B Aj”?a Jorall 7 =0,..., Jmaz-

Theorem 4.4.4 The forward error for computing the approzimate solution fac-
tors Bj by Algorithm 7 is bounded for all j =1,. .., jmaz by

IN

)IBj = Bjll2 + | Bjl2

(14 [|4;]]2
J J
< ; ( IT a+11Aie ) 1e || Bell2- (4.16)

|Bj41 — Bjtll2

For the relative errors we have

1Bj1 — Bjsilla _ & ! =
<> e [T 0+ 1146l12)-

1Bj-+12 (=0 i=(+1
Proof: Using Notation 4.4.2 and 4.4.3, we obtain

IBjx1 — Bjlz

IB; — Bjll2+ || A; B; — A;Bj]l2

1B = Bjlla + 14112 Bj — Bjll2 + 1 4; — Ajll2 Bjlla
(1+ 1 4;]12)1Bj = Bjll2 + ;| Bjll2-

ININ TN

The second inequality of the statement (4.16) is now immediate. For the bound
of the relative error, the same arguments as in the proof of Corollary 4.2.3 hold.
O

4.4.2 Numerical Results

We consider a time discretization of the instationary heat equation (4.13)
(a(-) = 1.0) with time step size T = 10~%. Using the FEM space discretization
as introduced in Example 4.1.13 and a backward Euler scheme for the time
discretization, we obtain a discrete, time-invariant system

(E +T,A) &j41 = By + TsBuy, keN.
| —

A
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We use the formatted H-LU decomposition to invert the matrix A and obtain
a discrete-time system in standard form,

a1 = (E+ TA) ' Eay + Ts(E + TA) ! Bug, keN.
N———
A B

In our example, the resulting state matrix A € R™*" is stable and B € R".
The results of the data-sparse solver using different values for the blockwise
accuracy e is compared with a standard dense implementation. Due to limited
workspace, the squared Smith iteration using the dense matrix format can only
be applied to problems up to size n = 4096. To compare the accuracy of these
calculations, the relative residual

|IAXAT — X + BBT||
AR+ X + (1]

R(X) =
is computed by the Frobenius norm and two “economy-size” QR factorizations

-~ -~ ~ ~ -~ T
|AYYTAT —¥¥T + BBT|p = || AY, —Y,B} [AY, Y,B} e
= |RiRS||F.

For the numerical rank decision we vary the parameter 7 from 10~% to 1078,
The influence of 7 on the accuracy as well as on the computational complexity
is seen in Table 4.10. Again it is observed that the accuracy of the solution
computed by formatted arithmetic is mainly determined by the parameter e.
A decrease of 7 results in larger ranks for the solution without improving the
accuracy of the solution of the data-sparse approach. The relative residual of
the standard dense solver gets smaller for decreasing 7. Note that 7 is also used
in the stopping criterion. It is seen that the complexity is significantly smaller
for the data-sparse solver than for the standard squared Smith iteration.
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€ T #it. | n(X) time[sec] rel. residual rel. error

H | full H | full H | full

n = 1024
Le04 | Lle04] 11[11] 11 3] 7| 7.8¢-09 | 85e-11| 1.3e-05
1e-06 | 1.e-04 || 11| 11| 11 6| 7| 1.6e-10| 8.5e-11 | 4.3e-07
Le-08 | 1e04| 11 11| 11 7| 11| 85e-11 | 8.5e11 || 1.1e-09
Le-04 | 1e-06 | 111 19] 17 3] 7| 7.8¢-09| Lle13| 1.3e-05
Le-06 | 1.e-06 || 11|17 | 17 6| 8| 1.4e10| 1lel13| 4.3e-07
Le-08 | 1.e-06 || 11| 17| 17 11| 8| 75e13| 1.le-13 || 1.1e-09
Le-04 | 1e-08| 12 40| 23 3] 9| 7.8¢:09 | 27e-17 [ 1.3e-05
1e-06 | 1.e-08 || 12 25| 23 6| 9| 14e10| 27e-17 | 4.3e-07
Le-08 | 1.e-08 | 12 23| 23 11| 9| 74e13| 2.7e-17 |  1.1e-09
n = 4096
Le-04 [ 1e04] 11]12] 12 69 | 431 || 1.5e-08 | 3.1le-11 [  2.6e-05
Le-06 | Le-04 || 11| 12| 12 141 | 432 || 1.2¢-10 | 3.11e-11 || 3.3e-07
1e-08 | 1e-04 || 11 ] 12| 12 259 | 432 || 3.11e-11 | 3.11e-11 | 1.13e-09
Le-04 | 1e-06| 11] 20| 18 69 | 437 || 1.46e-08 | 7.6e-14 || 2.6e-05
Le-06 | 1.e-06 || 11| 18| 18 141 | 430 || 1.2e-10 | 7.6e-14 || 3.3e-07
1.e-08 | 1.e-06 || 11| 18| 18 260 | 436 || 1.3e-12 | 7.6e-14 | 1.1e-09
Le-04 | Le-08| 121 46| 23 74 | 478 || 1.5e-08 | 1.3e-17 || 2.6e-05
Le-06 | 1.e-08 || 12| 24| 23 146 | 470 | 1.2e-10 | 1.3e-17 || 3.3e-07
1.e-08 | 1.e-08 | 12 23| 23 270 | 466 || 1.3e-12 | 1.3e-17 | 1.1e-09
n = 16,384
le04[1e04] 10[12[ -] 637] -] 1.7e-08 | - -
n = 65,536
le-04 [1e-04 ] 11 11| - 4924 -] 1.7¢-08 | - -
n = 262,144
le-04 [ 1e04 || 1111 -35539[ -] 1.3e-08 | - -

Table 4.10: Accuracy and rank n,(X) of the computed solution factors of Al-
gorithm 7 for different problem sizes and parameter combinations.




Chapter 5

Model Reduction for
Data-Sparse Systems

With the ever-developing technologies in various engineering applications (mi-
croelectronics, micro-electro-mechanical systems (MEMS), electromagnetism,
fluid dynamics, control design, etc.), more and more mathematical systems with
very large dimensions have to be simulated and solved. Traditional numerical
simulation methods are powerless in solving systems of very large dimensions
due to limited computer memory and CPU consumption. Model order reduc-
tion has been proved to be very promising to enhance the efficiency of tradi-
tional numerical simulation methods. It is also very important in control and
optimization problems for partial differential equations. There, the associated
large-scale systems have to be solved very often. To solve these problems in
reasonable time it is absolutely necessary to reduce the dimension of the under-
lying system. Furthermore, in modern (LQG-, Hz-, Hoo-) feedback control, the
order of the controller is typically comparable with the dimension of the un-
derlying parabolic control system. Thus, for practical use, low order controllers
should be constructed from reduced-order systems. For these problems the sys-
tem matrices are typically large-scale (often n > O(10°)) and sparse as they
stem from the spatial discretization of some partial differential operator. On the
other hand, boundary element discretizations of integral equations lead to large-
scale dense matrices that often have a data-sparse representation [89, 147, 148|.
Usually, the number of inputs and outputs in practical applications is small
compared to the number of states, so that it is reasonable to assume m,p < n
from now on.

Model reduction aims at eliminating some of the state variables of the orig-
inal large-scale system. Considering again the LTI system (2.1), the task in
model reduction is to find another LTI system

Z(t) = Az (t) + Bu(t), #(0) = o, (5.1a)

N

g(t) = Ca(t) + Du(t), (5.1b)

with reduced state space dimension r < nand A € R"™", B € R"™*™ (' e RP*",
D € RP*™ and initial value &g € R". The LTI system of order r is denoted by

101
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E(fl, B,C, 15) in the following. In the discrete-time setting we are looking for
a reduced-order system

The1 = Aik + Buk, To = ‘%0’ (5.2&)

Y = éik + Duk, (5.2b)

of the same reduced complexity r. The dimensions of the matrices are equal to
those in the continuous-time setting.

Projection-based model order reduction techniques for LTI systems can be
divided roughly into two main classes:

1. Methods based on Krylov subspaces;
2. SVD-based methods.

Both classes are based on state space projection in the following sense. We
consider a change of basis in state space @ = Tz, T € R"™ ™ nonsingular.
Partitioning 7" and = as

T:[Tl}, T = [T, *], x:[j] with T, T, € R™", & € R",

*

T, T; € R™" is an oblique projector onto the r dimensional subspace spanned by
the columns of 7). along the kernel of 7;. Note that 7; and 7). are biorthogonal,
that is,

T = 1I,.

The other part of the transformed state & denoted by * is neglected, the state is
approximated by Z = Tjz. A reduced-order system is constructed by a Petrov-
Galerkin projection

T)(T,&(t) — AT,& — Bu(t)) = 0,
resulting in the following matrices in (5.1) and in (5.2)
A:=TAT,, B:=T,B, C :=CT,. (5.3)

The first important class of model order reduction methods for linear sys-
tems is based on Krylov subspaces, basically implemented as moment matching
methods. These methods are very efficient in many engineering applications,
originally they were derived for the use in circuit simulation. The main idea is
to approximate the rational TFM G(-) by a rational function of lower degree.
To do this, G(+) is expanded into a series around one or more expansion points
of the complex plane or at infinity. The approximate transfer function C’() is
computed such that it matches some of the coefficients of the expansion series.
For systems in state space form (2.1), the problem reduces to the task of com-
puting orthonormal bases for the Krylov subspaces C,(A, B) and O,(A,C) of
order 1 < r < n (see the definitions in (2.11) and (2.14), respectively). It is
well known that this can be done in a numerically efficient way by the iterative
Arnoldi or Lanczos methods. After r steps of iteration the methods produce
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either one transformation matrix with r orthonormal columns for a Galerkin
projection, or the biorthogonal transformation matrices TlT, T, € R™™" for ap-
plying a Petrov-Galerkin method to (2.1). In these iterative algorithms only
matrix-vector multiplications are used which are simple to implement and the
complexity of the resulting methods is only O(n?r) for dense, O(nr?) for sparse
systems. To overcome the numerical ill-conditioning of the early approaches
as the asymptotic waveform evaluation [140], some recent research leads to nu-
merically more robust methods as Padé via Lanczos [62] (see also [63, 67]).
For matching the transfer function over a large frequency range, rational inter-
polation methods including multiple interpolation points as the dual rational
Arnoldi and the rational Lanczos method were proposed [81]. In general, these
methods do not preserve important properties of the original system as sta-
bility and passivity. For some reduced systems this can be avoided applying
post-processing techniques [10, 11]. Using restarting techniques as described
in [82] or the implicitly restarted dual Arnoldi method [103], a subsystem is
retained as reduced-order model which has purely stable eigenvalues. Earlier
results concerning error bounds for Krylov subspace based methods [12] yield
only local bounds for the transfer function. Such bounds can only be used to
estimate the accuracy of the transfer function in a certain frequency range, it
cannot give a global estimation in the whole frequency domain. In a new work
of Gugercin, Antoulas and Beattie [84] it is shown that for stable systems the
Ho-error is minimized for SISO systems if the expansion points are chosen as
mirror images of the reduced-order system poles. The numerical results in this
paper also indicate small Ho-errors but there is no theoretical analysis for the
existence of an Hyo-error bound. For survey papers on model reduction based
on Krylov subspaces see [7, 66].

In systems theory and control of ordinary or partial differential equations,
balanced truncation [127, 129] and related methods are the methods of choice
since they have some desirable properties: they preserve the stability of the
system [139] and provide a global computable error bound [60, 72] which allows
an adaptive choice of the reduced order r. The basic approach relies on bal-
ancing the two system Gramians of (2.1) or of (2.23), respectively. A variant
of the classical balanced truncation method, called cross-Gramian approach, is
based on the solution of one Sylvester equation. Thus, the major part of the
computational complexity of these methods stems from the solution of these
large-scale matrix equations. As described in Chapter 3, over the last few years
the computational efficiency of solvers for linear matrix equations was consider-
ably improved by computing low-rank approximations to the system Gramians.
Most of the methods are shown to be applicable to medium-to-large-scale sys-
tems (with n in the range from O(103) to O(10%)) if the system matrix A is
sparse. As some of the iterative methods allow for parallel computing, larger
sparse problems with up to O(10%) states can be solved on computers with dis-
tributed memory architecture [6, 31]. The use of efficient solvers for large-scale
Lyapunov equations improves the implementations of balanced truncation, e.g.
[29, 32, 36, 37, 85, 143, 163|, and of balancing-related model reduction meth-
ods as optimal Hankel norm approximation [72], frequency weighted balanced
truncation [60, 71, 83] and balanced stochastic truncation [34]. For a survey
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on balanced truncation model reduction see [83]. For generalized state space
systems, where the matrix F might be singular, there exists generalizations
of balanced truncation, see for instance [6, 30, 121, 126, 138, 159, 160]. If a
good approximation of the steady-state is required singular perturbation ap-
proximation is proposed [33, 122, 165]. SPA computes a reduced-order system
with good matching of the TFM at low frequencies (which corresponds to small
steady-state errors) on the basis of a minimal and balanced realization of the
original system. Model reduction based on the cross-Gramian was considered
in several works [1, 3, 68, 156]. In [1] the reduced-order system is computed
from the eigenspaces associated with large eigenvalues of the n x n Gramian.
This is computationally very demanding and thus fails for the problems consid-
ered in this work. The approaches in [3, 68, 156] belong to the class of Krylov
projection methods as they iteratively compute low-rank approximations to the
cross-Gramian by an implicitly restarted Arnoldi method. An approximately
balanced reduced-order system is obtained by a partial eigenvalue decomposi-
tion of this Gramian. The resulting algorithm is quite expensive and technically
very involved if applied to MIMO systems.

All SVD-based methods do not exploit the structural information of the
underlying problem as the description of a physical system by a set of ODEs or
PDEs. Furthermore, all the methods above fail for the application to large-scale,
dense LTT systems. We overcome these limitations for the practically relevant
class of large-scale, dense systems which are assumed to have a data-sparse
representation. We incorporate the data-sparse solvers for matrix equations
derived in the last chapter in the algorithms for model order reduction. This
is done in Section 5.1 for the usual balanced truncation implementation, in
Section 5.2 for the singular perturbation approximation and in Section 5.3 for
a cross-Gramian approach. Note that preliminary results are published in [18].

5.1 Model Reduction by Balanced Truncation

The first time that the concept of balancing was proposed in the literature was
in 1976 by Mullis and Roberts [129]. Some years later Moore [127] recognized
and persued the important system theoretic background of the method. The
main principle of balanced truncation and of balancing-related model reduction
is finding a particular state space basis in which we can easily determine the
states, which will be truncated. These states should have small impact on the
system behavior concerning both, reachability and observability. Such a system
representation, where states which are difficult to observe are also difficult to
reach and vice-versa, is obtained by a balancing transformation. The required
state space transformation, x — Tz, T € R™*"™ nonsingular, leads to a balanced
realization of the original system

(A,B,C,D) — (TAT ", TB,CT~ !, D),
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where the reachability Gramian P and the observability Gramian O are equal
and diagonal:

01
P:Q: '.' 5 012"'20n>0.

On

For minimal systems there always exist balancing transformations and by the
positive definiteness of P and Q, all eigenvalues of PQ are strictly positive
numbers. The square roots of these eigenvalues are known to be the HSVs of
the system (2.1):

A(PQ) = {0o?,...,02}.

Note that balanced truncation is also applicable to non-minimal, stable systems.
There, the Gramians are positive semi-definite and some of the HSVs are of zero
magnitude, see [161]. To simplify the theory, we restrict to minimal systems in
the following. The HSVs provide a systematic way to identify the states which
are least involved in the energy transfer from past inputs to future outputs. For
a system in balanced coordinates the energy interpretation in (2.17) can simply
be computed by

= T =

Tpl/20pl/2 1 n
p= P IPT00 LS o )
3 o lwoll* <=

Thus, the states which have a small impact on the energy transfer are deter-
mined as those which correspond to small HSVs. If the states corresponding to
the n —r smallest HSVs were truncated from a balanced realization, a reduced-
order model (5.1) of size r is obtained. An a priori computable global error
bound for the Ho-norm error between the TFM G(-) of the original system
and the TFM associated to (5.1)

exists [60, 72]:

IG = Gliptae (ct—cremy <2 ) 05 (5.4)
j=r+1

Using the estimates (2.21) and (2.22), the worst output error is bounded in
time domain

Y = 9l £([0,00)—RP) < 2 Z o | llullza(o,00)—rm) (5.5)

and in frequency domain

IY = Yinaer—cny <2 D 05 | 1Ulhacr—cmy- (5.6)
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Thus, the error bound (5.4) provides a nice way to adapt the selection of the
reduced order corresponding to a prespecified error tolerance:

min r€N|220j§tol . (5.7)
Jj=r+1

In addition, the reduced-order system remains stable [139] and balanced with
HSVs o7 to o, of the original system.

There are several approaches for computing the balancing transformation
matrix 1" as well as the truncation matrices 1; and T, for model order reduc-
tion following (5.3). A numerically robust and efficient method is the square
root method (SR method) which is used in the next section. The SR method
of balanced truncation is based on the Cholesky factors S, R € R™ " of the
Gramians P = SST and Q@ = RR”. It can also be applied to non-minimal
systems where we have rank (S) < n and/or rank (R) < n, see [115, 161].

A similarity relation between the product of the Cholesky factors and the
square root of the Gramian product, (PQ)Y? ~ STR, suggests to compute an
SVD of SR,

STR=UxVT, U VeRY™ % =dag(oy,...,on), (5.8)

to obtain a balancing transformation. To see that the matrix

T =x"12yTRT (5.9)
transforms the system into balanced coordinates, note that the inverse of T is
given by

77! = SUsT?
as

12y TRTsus—12 = =12y TysuTus—1/2 = 1,,
and thus
TPTT = X 12yTRTSST Ry ».~1/2
12y TysuTusvTye-1/2 = 3,
T7-Tor-' = 2 12UTSTRRTSUR-1/2

= y12pTysvlvsulTus-12 = 3.

It is also observed [115, 161] that not the complete transformation matrix 7' €
R™ ™ needs to be computed. To show this, the SVD is partitioned as follows:

¥ oHvlT

STR:[Ul, U2][ 0 %, VzT

} , with ¥, = diag(o1,...,0,). (5.10)

We assume that the singular values {o1,...,0,}, which equal the HSVs of
the system, are in descending order. If there is a significant gap between o,
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and 0,41, 0y > 0,41, the splitting in (5.10) seems natural. The balancing
transformation (5.9) is computed corresponding to (5.10) by

=2
=, v

BT, T '=s[us[Y? thxy Y.

Applying only the parts
T, =5 *VIRT e R, T, = SUS[ Y2 e R (5.11)

of the balancing transformation 7', the system is transformed into balanced
coordinates and, simultaneously, the states corresponding to small HSVs are
truncated. Note that T;7T, = I, and T,1; defines an oblique projection. The
resulting reduced-order system

(A,B,C,D) = (T\AT,, T;B, CT,, D)

is stable and of order r and, additionally, the worst output error is bounded in
time (5.5) and in frequency domain (5.6).

An efficient implementation of this method is proposed in [32] where the
solution factors are computed as full-rank factors:

= Rnxrank('P) Re Rnxrank(Q)_

This is of particular interest in large-scale computation if the Gramians have low
rank at least numerically: n,(P), n-(Q) < n. Then it is sufficient to compute
an economy-size SVD in (5.8) with ¥ = diag(o1,...,0,,(0)), U € R7 (P)xn-(Q)
and V € R (2x7+(Q) for the case of n,(P) > n,(Q). The case n,(P) < n,(Q)
can be treated analogously. An additional benefit of this ansatz is that all
computational costs are of reduced complexity during the computation of the
reduced-order system as soon as the matrix equations

AP +PAT + BBT =0, ATQ+QA+CTC=0 (5.12)

are solved. We list the complexity of the computational steps at the end of
Section 5.1.1. Balanced truncation methods for discrete-time LTT systems (2.23)
are performed analogously to the continuous-time case. The only difference is
the computation of the two Gramians which are in the discrete-time setting the
solutions of two Stein equations

APAT —P+BBT =0, ATQA-9Q+cCcTCc=o. (5.13)
Note that in the discrete-time case the reduced-order models are in general not
balanced [131, Section 1.9].

5.1.1 Approximate Balanced Truncation

To make balanced truncation applicable to a wider class of large-scale problems,
we use the H-matrix based Lyapunov solver as described in Algorithm 5 in the
SR method for balanced truncation. Thus, the computational cost in the most
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demanding part of balanced truncation is reduced to linear-logarithmic com-
plexity as derived in the last chapter. Solving both Lyapunov equations (5.12)
simultaneously reduces the computational complexity as well as the storage
further since both iteration schemes contain the same A-iterates. For discrete-
time systems the original solver for the Stein equations (5.13) is replaced by
the H-matrix based Smith iteration as described in Algorithm 7. Again it is
advised to couple the computation of both equations since one A-iteration is
redundant. The data-sparse solvers compute approximate full-rank factors of
the Gramians:

P~S5T. O~RRY,  with§e R (P ReRrm (9

Since computing an SVD is not available in formatted arithmetic, the solution
factors S and R are computed in dense format. In the following, the minimum
of n,(P) and n,(Q) is denoted by 7. Note that using S and R in (5.10) reduces
the computable part of the original BT error bound (5.4) to

n
5:=2 > oy (5.14)
Jj=r+1
since only the first n HSVs are computed in an economy-size SVD. Thus, the
estimate (5.4) is under-estimated if n < n. Usually, n equals the numerical
rank of ST R and can thus be considered as a “numerical McMillan degree”.

Moreover, an error analysis in [85, 86] suggests that the error in the com-
puted bound ¢, introduced by using approximate low-rank factors, is also af-
fected by the square of the condition number of T, where A = TAT ! is a
spectral decomposition of A. Hence, for ill-conditioned 7', the computed error
bound may under-estimate the model reduction error significantly.

As discussed in Chapter 4, we can take influence on the accuracy of the
computed low-rank factors S and R by the choice of the two parameters 7
and € in the data-sparse solvers. As already noted, it is sufficient to choose
7 < /€ to obtain a relative error in the approximate Gramians in the size of
€. But for the purpose of balanced truncation, we need 7 ~ € as the accuracy
of the reduced-order model is affected by the accuracy of the solution factors
themselves: we may assume that Algorithms 5 and 7 yield S and R, so that
S = [ S’, Es ] and R = [ R, ER ], where HES”Q S T”S”Q, HERH2 S THRHQ
Then sr s aT

STR = [ 5 &5 Pr }
EsR EGER
Hence, the relative error introduced by using the “small” SVD, i.e., that of STR,
rather than the full SVD, i.e., that of ST R, is proportional to 7. Therefore,
a choice of 7 = /e would lead to an error of size \/e in the computed Hankel
singular values as well as in the projection matrices 1j, T, and thus in the
reduced-order model.

Remark 5.1.1 (Stability) In general, using low-rank approximations to the
system Gramians it can not be assured that model reduction by balanced trun-
cation still preserves the stability of the original system [85, Section 2.6]. How-
ever, in practice, we have never encountered this phenomenon and in many
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Algorithm 8 Approximate Balanced Truncation for LTI systems (2.1), (2.23)

INPUT: Ay € R™*™ B e R"™™ C e RP*"™ D e RP*™, tol, T, e.
OUTPUT: A€ R"™" B e R™™ (C € RP*" D e RP*™: reduced order r, error
bound J.

1: Compute low-rank factors S € R™"(P) R ¢ R (Q) of the system
Gramians using Algorithm 5 for continuous-time systems, Algorithm 7 in
the discrete-time case.

2: Compute SVD of STR (7 := min{n,(P), n,(Q)})
vt
Vi

with ¥y = diag(o1,...,0,), 3o = diag(o,41,...,04), 0 > op11. Adaptive

1 0

STR=1[Uy, Uy]
0 X

n
choice of r by tol: § =2 > o < tol.
Jj=r+1

S B - _1
3: Compute truncation matrices: 7; = ¥, ? IR, T, =St X2
4: Compute BT reduced-order model:

A

A=TAyT,, B=T,B,C =CT,, D=D.

other papers where approximate Gramians were used for model order reduc-
tion, see for instance [86, 118, 135], instability is never observed. Moreover, for
really large-scale problems a detailed knowledge about the spectrum is rarely
available in advance. But, if the order of the system is significantly reduced by
approximate balanced truncation it is simple to compute the eigenvalues of A
and thus checking stability. For the case that unstable eigenvalues exist it is
possible to split the unstable part of the reduced-order system by computing
one RRQR decomposition of I, — Sign(fl) and solving one Sylvester equation to
block-diagonalize A, see for instance [29, Algorithm 2]. O

Complexity. As derived in Section 4.2, using the formatted arithmetic in
Algorithm 5 (respectively in Algorithm 7) reduces the computational com-
plexity in the first stage of Algorithm 8 from O(n3) to O(nlogs(n)k?). The
iterations need O(nlogy(n)k + n(n(P) + n-(Q))) storage. Computing the
SVD of STR requires 2n,(P)n,(Q)n flops for the matrix-matrix multiplica-
tion and 14n,(P)n.(Q)? + 8n.(Q)? flops, assuming n.(P) > n,(Q), for the
Golub-Reinsch SVD [74, Section 5.4.5]. The workspace requirements for this
step are n.(P)? + n,(Q)? real numbers. The truncation matrices 7; and T,
are obtained by computing matrix products of parts of the SVD. This can be
done by 2rn(n,(P)+n-(Q)) flops. Additional workspace of size 2rn is needed.
The reduced-order system (5.1) (respectively (5.2)) is derived by applying a
Petrov-Galerkin projection to the original system (A, B,C, D). Note, that
the projection is applied to A3y and thus, the costs for computing T3 Ay T, are
reduced to O(rnlogy(n)k). B and C are computed in 2rnm -+ 2pnr operations.
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To summarize, if the numerical ranks n,(P), n,(Q) of the Gramians are
small compared to n, none of the steps besides solving the matrix equations
contributes significantly to the cost of Algorithm 8.

5.1.2 Error bounds for Approximate Balanced Truncation

Besides the balanced truncation error bound (5.4) we introduce further errors
using the H-matrix format and the corresponding approximate arithmetic. Er-
rors resulting from using the formatted arithmetic during the calculation can be
controlled by choosing the parameter for the adaptive rank choice accordingly.
As balanced truncation is actually applied to

G (s) == C(sI — Ay)"'B+ D,

we analyze the influence of the H-matrix error introduced by the approximation
of A in H-matrix format in the following. We ignore the influence of rounding
errors as they are expected to be negligible compared to the other error sources.
For simplifying the notation, we denote the Hoo-norm of the TFM by || - ||,
instead of || - [y (c+ — cpxm) throughout this section. We can split the
approximation error into two parts using the triangle inequality

IG = Gllrtee < NG = Grllrtee + G — Gl (5.15)

where the second part can essentially be estimated by the balanced truncation
error bound (5.4). In the following, we derive some bounds for the first term
which accounts for the H-matrix approximation error. We note that the follow-
ing results are related to the perturbation theory for transfer functions derived
in [153] and can partially be obtained as special cases of error bounds given
there.

First, we note the identity

C(ywl —A)'B—C(yjwl — Ay) ™' B = C[(jwl — A) " (A — Ay) (ywl — Ay) Y B.
Hence, the error between GG and G can be expressed as

G — GrllHo = sup |C [(gwI — A)"H(A — Ay) (gl — Ap) '] Bllo.
we

Thus

1G = GrliHw < IC2lBll2]]A = Axll2 sup (I = A) 2 sup 1] = Ar) ™o
we we

(5.16)
The latter two terms in the estimate are the reciprocals of the complex stability
radii [98, Theorem 5.3.36] of A and Ay, respectively. Several algorithms have
been proposed for computing the complex stability radius, see references in [98,
Section 5.3.9]. As in our application Ay comes from the H-matrix approxi-
mation of some elliptic operator, we provide some specific bounds for matrices
obtained in these situations.
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Theorem 5.1.2 Let the distance between A and its H-matrix approzimant be
defined by
1= || Ay — Allz.

Let A and Ay be stable and assume that both matrices are diagonalizable so
that . .
T YAT = diag(\1, ..., \n), T HAx)T = diag(A1, ..., \n).

Furthermore, assume that

condz (T)n < min [Re(A;(A))]. (5.17)

i=1,...,n
Then the Hso-norm of the corresponding error system G — Gy is bounded by

1
min [ReOu(AES -

i=1,...,n
(5.18)

|G = Grillre < Cll ]| Bll2 conds (T) conds (7)

Proof: Using the notation
D :=diag(A1, ..., \n), D :=diag(A1,..., ),
setting

p= min [Re(A(A))], A= min [Re(Ai(An))];

i=1,...,n =1,....,n

and invoking (5.16) yields, by simple calculations, the following bounds:

1G = Grllne.
< nllCllal| Bl conds () conds (T') sup | (o — D)™
we

sup [|(jwl — D)~z
weR

—
*
~

~\ 1
n ||C||2]| Bl|2 conds (T') condy (T) Py

() ~ 1

< 0lCllllBllz conds (T) conds (7 e 7]
(sexsk) N 1 1

< 9lClL2] B2 conds (T) cond, (T) <F + EO(")> .

The identity (x) follows from the observation that the maximum of 1/|jw — A|
over the imaginary axis is taken for the eigenvalue closest to the imaginary axis,
that is the eigenvalue with minimal absolute value of the real part. The esti-
mate in (k) is a consequence of the Bauer-Fike theorem, see, e.g., [74, Theorem
7.2.2]. Due to (5.17) we can apply the geometric series to obtain (). O

For unitarily diagonalizable A as obtained, e.g., from a finite-differences
discretization of a self-adjoint elliptic operator, the error bound (5.18) simplifies.
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Corollary 5.1.3 With the same assumptions as in Theorem 5.1.2, and assum-
ing additionally that A and Ay are unitarily diagonalizable by

U AU = diag(\1, ..., \y), UPARU = diag(\i,..., M),

we obtain the error bound

1
G-G <||C|2||B O(n).
16 G < OBl O
O
Thus, for a symmetric, negative-definite A with spectrum
A <...< A <0 (5.19)

and symmetric, negative-definite approximation Ay we get the error bound
1
IG = Grliree < 35 11C1I2]I Bll20 (). (5.20)
1

Remark 5.1.4 As described in our Example 4.1.13, using the Cholesky factor
of the mass matrix in a finite element discretization of a self-adjoint spatial dif-
ferential operator, the transformed system has a symmetric, negative-definite
state matrix A. For these systems the assumptions of Corollary 5.1.3 are ful-
filled.

O

We can now state our main result of this section which combines the errors due
to the H-matrix approximation and balanced truncation.

Theorem 5.1.5 With G as TFM associated to the reduced-order system (5.1)
obtained by applying balanced truncation to Gy and the assumptions of Theo-
rem 5.1.2, we obtain for the whole approrimation error (5.15)

) - 1
IG = Gl < C Blaconds (7) conds (T) s

i=1,...,n

5O0(n)

n

'+2 }E: Oj

j=r+1

The bound simplifies for the practically relevant case of symmetric, negative
definite matrices A and Ay with ordered real eigenvalues \; € A(A) as in (5.19)
to
1 n
|G = Gllnee < 3ICILIBIOM) +2( > o
1 j=r+1
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All error bounds derived in this section are of merely qualitative nature and
suggest to choose the tolerance for the H-matrix approximation small enough
to compensate for possible error amplification due to eigenvalues close to the
imaginary axis. Moreover, if the error bound (5.4) is used to adapt the reduced
order to a desired accuracy tolerance, then the tolerance should be chosen
according to the estimated size of the first part of the error such that both
error parts are balanced.

In the next section, we will show how the approximation errors actually
behave in numerical computations.

5.1.3 Numerical Results

Before we test the developed algorithm, we consider how to measure the ac-
curacy of the resulting reduced-order system in practice. Note that for large-
scale, dense problems we can only compute the second part in (5.15), i.e.,
|G — G|, of the error between original and reduced-order system. This is
caused by the quadratic memory requirements for the solution of a linear sys-
tem of equations with the original dense matrix (ywI — A) in order to compute
G(yw) which becomes unfeasible for large-scale systems. For sparse systems
of large dimensions we can also compute the H-matrix approximation error
|G — G'i|| 1., and the error between the original and the reduced-order system
|G — G|#... Recall from Section 2.1.3 that the Hoo-norm of an error system,
e.g. of G— G , is given by the supremum of the 2-induced norm on the imaginary
axis, i.e.,

||G - GHHOO((C'*‘H(CP“”) = Slelg JmaX(G(]w) - é(]w))

This norm can be approximated by computing omax(G(jw) — G(jw)) at some
points in a range of interest, wx € (0,wmax]. Note that for SISO systems
the computation simplifies to |G(jwy) — G(jwr)|. If the errors were plotted
against the frequency, using logarithmic scales for both axes it is the usual

Bode magnitude plot, see Example 2.1.19.

Remark 5.1.6 (Computing Frequency Response Errors in H-Matrix
Arithmetic)

For computing a bound for the latter part |Gy — G|l3 of the error es-
timate (5.15) we have to note that the H-matrix format is defined only for
real-valued matrices. So we have to compute the frequency response of the
complex transfer function Gy separately for the real and for the imaginary
part. We will treat the continuous-time case in more detail. We evaluate Gy
at a fixed frequency wy. For the complex-valued matrix in the definition of the
transfer function we consider a splitting into real part Xgr. and imaginary part
Xim:

Gr(gwi) = C (qwiI — Ay) "' B+ D = C(Xge + 3 X)) + D.

Since B is real-valued we obtain a system of equations for the unknowns Xge
and X[m
—ApXre — WX = B,
wpXre — AxXm = 0,
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and by some simple calculations the following solution formulas:

XRe = _(A'?—[ + wi[)‘lAHB,

Xim = —wi(43, + wi)'B.
The norm of the error system can now be approximated using formatted arith-
metics:

~

1GH(wr) = GOwi)llz = Omax(Grlgwr) — Gwr))
= Omax(C(XRe + 3 X1m) — Cwl — A)7'B)
Omax(C' [—(Ay © Ay ® wil)y! AnB—
Jwi(Ap © Ay ® wil); ' B] — C(ywl — A)7'B).

For discrete-time systems the absolute error is computed as the maximum sin-
gular value of the error system Go(2) — G(2) for z = e/**Ts and sampling time
Ts:

G 47%) = G(HT) 3 = O G 24T7) = T,

at some fixed frequencies wy, € (0,wn]| where wy = 7/T5 is the so-called Nyquist
frequency, see, e.g. [130]. To simplify the expression we restrict to the frequency
response of Gy using w := wyTs:

G (e™)|l2 = Omax (C |:(COSQ)I © Ay @ sin w(coswl © ijl)?:(l);[1
—7 (coswl © AH);{1 sinw(coswl © Ay

. 11
®sin?w (coswl © AH)Hl)H } B) .
Note that in order to obtain accurate results for these norm approximations we
set the accuracy in the adaptive arithmetic to 1076 in all calculations described
in this remark. This is very time demanding and therefore, the error systems
are evaluated only at 20 to 30 frequencies in the following examples. O

As exemplary systems for model order reduction of continuous-time systems
we consider the examples from Section 4.2.2. We apply the H-matrix based BT
method (Algorithm 8) to systems X(Ay, B, C) of order n = 16, 384 in all exam-
ples based on the control problem for the two-dimensional heat equation 4.1.13.
The reduced order r is determined by the threshold tol for the approximation
quality. With the computable part of the error estimate ¢ (defined in (5.14)), r
is chosen as minimal integer such that 0 < tol. In all examples, the frequency
response errors between Gy and G are approximated by use of the formatted H-
matrix arithmetic as described in Remark 5.1.6. The pointwise absolute values
of the error systems are computed at 20 fixed frequencies wy, from 1074, ..., 106
in logarithmic scale in most of the examples. If not otherwise stated, we choose
a fixed parameter choice of 7 = € = 1075 in Algorithm 5 for the solution of the
coupled Lyapunov equations in the first stage of the approximate BT method.
This choice is motivated by the numerical results in Section 4.2.2 and by the
discussion in Section 5.1.1 which suggests a choice of 7 ~ € to bound errors as
introduced by the use of approximate Gramians.



5.1. MODEL REDUCTION BY BALANCED TRUNCATION 115

First, we apply Algorithm 8 to the LTI system resulting from the two-
dimensional heat equation with a(-) = 1.0 in Example 4.2.5. We conclude from
Table 4.5 that by 7 = € = 1079, the relative errors between the exact and the
computed Gramians (P := S5T, Q := RRT) are approximately

1P ~Plr 12— 9llr
IPlle 127

The reduced order is determined by 7 = 4 for the threshold tol = 10~%. That
is, the HSVs decay very rapidly, the approximate error bound is § = 4.3 x 107°.
The frequency response errors between Gy and G are shown in Figure 5.1. We
observe a typical good approximation of the BT method for larger frequencies
as

~ 1077,

lim (G(w) — G(w)) =D —D =0.

w—00

We also depict the errors between the original (full) and the reduced-order sys-
tem G — G to demonstrate the reliability of our approach. Note that there
is no visible difference between the two error plots and both curves satisfy
the approximate error bound 4. Thus, other error sources using approximate
balanced truncation seem to be negligible. In the lower plot we add the dif-
ference in the frequency response of the unreduced systems (A, B,C') and
Y (A, B,C). Thus, all errors in the estimate (5.15) are plotted. It is seen that
both parts |G — Gz, and ||Gy — G|l on the right-hand side of the error
estimate (5.15) are nearly balanced. If we choose a larger value of 10~ for the
accuracy € of the adaptive arithmetic, the approximation error |G —Gx||n., in-
creases, see the middle plot in Figure 5.2. It follows that for smaller frequencies
the difference between original and reduced-order system is slightly larger than
the computed error estimate but still smaller than the desired tolerance of 10~%
(see upper plot in Figure 5.2). Note that an increase of € reduces the required
storage as well as the computational time (from 4508 seconds for e = 1076 to
2151 seconds for € = 107%) of the approximate BT method.

In the lower plot in Figure 5.2 we additionally depict errors from a reduced-
order system of size 7 = 7 obtained by a choice of tol = 107, It is observed
that the error bound estimate § = 1.5 x 1077 is satisfied by |Gy — G| x.. as
well as by ||G — Gxl|n.. -
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2d heat equation, n = 16,384, e =t1=1.e-6,tol =l.e-4 - r=4
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Figure 5.1: Frequency response errors for the two-dimensional heat equation
using approximate BT as described in Algorithm 8.
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Figure 5.2: Frequency response errors for the two-dimensional heat equation
using approximate BT as described in Algorithm 8.
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Next, BT is applied to reduce the dimension of the heat equation with
varying diffusion as introduced in Example 4.2.6. Setting tol = 10~* a very
small reduced order of r = 3 is determined. The frequency response errors are
plotted in Figure 5.3 and again, we observe good matching at high frequencies
for the reduced-order model. The results fulfill the approximate BT error bound
6 = 8.6 x 107°, the difference between |G — Go||3.. and |Gy — G5 is again
negligible. Thus, using approximate Gramians does not contribute much to the
errors between original and reduced-order system.

2d heat equation with varying a, n = 16,384, e =1=1.e-6, tol = 1.e-4 - r=3
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Figure 5.3: Frequency response errors for the two-dimensional heat equation
with varying diffusion using approximate BT as described in Algorithm 8.
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Convection—diffusion equation, n = 16,384, e =1=1.e-6,tol=1.e-4 . r=9
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Figure 5.4: Frequency response errors for the convection-diffusion equation us-
ing approximate BT as described in Algorithm 8 with e = 7 = 1075,

We apply the approximate BT method to the convection-diffusion equation
studied in Example 4.2.7. For the constant diffusion coefficient a(-) = 1074, the
convective term is dominant and the eigenvalues of A are close to the imaginary
axis, i.e. i_n{linn IRe(\;(A))| =~ 2. x 1073, Furthermore, the condition number of
T is much larger than 1, an estimate for n = 4096 yields: conds (T) &~ 4.5 x 103.
For tol = 10™* a reduced-order system of size r = 9 and the error estimate
§ = 2.67 x 10~° are computed. We observe in Figure 5.4 that the error between
the reduced-order system and ¥( Ay, B, C) satisfies the error estimate. The dif-
ference between the original system X(A, B, C) and X(Ay, B, C) is larger than
§ for frequencies smaller than 1072, see the lower plot in Figure 5.4. Note that
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the condition number of T" as well as the reciprocal of the square of the critical
eigenvalue (that one closest to the imaginary axis) amplify the error between G
and Gy in (5.18), see Theorem 5.1.2. The error system G — G is influenced by
this error, see (5.15). By a choice of € = 1078, the error |G — G|, decreases
and the error between original and reduced-order system satisfies the computed
error estimate § = 3.29 x 1079, see both plots in Figure 5.5.
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Figure 5.5: Frequency response errors for the convection-diffusion equation us-
ing approximate BT as described in Algorithm 8 with e = 7 = 1075.
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As next example, we consider a large-scale, dense problem from a bound-
ary element discretization of the Laplacian on a three-dimensional sphere as
introduced in Example 4.2.8, additionally setting C7 = B to obtain an output
equation. We choose a problem size of n = 32,768 and depict the frequency
response errors |Gy — G|, for the approximate BT method in a frequency
range 1076, ..., 10% in Figure 5.6. Note that we are not able to compute the
errors between the original and the reduced-order system for this example. For
tol = 10~* we determine the order r = 10 and the approximate error bound
§ = 4.82x107°. We observe a good approximation quality of the reduced-order
system. We would like to emphasize that in this example, we have computed
a very small reduced-order model for a fairly large LTI system. In particular,
here A is a dense 32, 768 x 32, 768 matrix. This becomes only possible using the
data-sparse solver in the approximate BT method. Also note that if the same
problem were discretized by FEM with the same accuracy, a system of order
n ~ 6,000,000 would result! It should be stressed that the storage requirements
for the original (dense) system X(A, B, C) are 8192.5 MB instead of 377.5 MB
to store 3X(Ay, B, C) and 0.937 KB memory to store the system E(/Al, B, C’)
of order 10.

BEM example, n=32,768, 1=¢=1.e-6,tol =1l.e-4 - r=10
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Figure 5.6: Frequency response errors for the BEM example using approximate
BT as described in Algorithm 8.

The approximate BT for discrete-time systems, involving the solution of
two Stein equations by Algorithm 7 as first computational step, is tested by
the exemplary LTI system in Section 4.4.2. The output is described by an
observation in a small subdomain as in Example 4.1.13. We set the order of the
system to n = 16, 384, choose the threshold tol = 10~* for the error estimate
and use a fixed parameter setting of 7 = ¢ = 107%. We compute the absolute
errors at 30 frequencies wy in logarithmic scale with wy € [0, wy]. The absolute
errors of the transfer functions for the original full system and the reduced-
order model are shown in Figure 5.7. The reduced-order system of order r = 4
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B 2d heat equation (discrete-time), n = 16,384, e =t1=1.e-6,tol=1l.e-4 - r=4
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Figure 5.7: Frequency response errors for the discrete-time example using ap-
proximate BT as described in Algorithm 8.

matches both systems ¥(A, B, C') and X(Ay, B, C) very well and satisfies the
computed estimate 6 = 8.39 x 107°.

5.2 Model Reduction with Singular Perturbation Ap-
proximation

A reduced-order model with perfect matching of the transfer function G at
w = 0 is required in many applications. In state space this corresponds to a
zero steady-state error. Zero steady-state errors can be obtained by a singular
perturbation approzimation to the original system [122, 165], also called balanced
residualization. It is assumed that the realization of the system (2.1) is minimal
(otherwise balanced truncation is used to reduce the order to the McMillan
degree of the system) and balanced. Then, in the continuous-time setting, the
following partitioned representation is considered

] = L ] [ag ][5 ]
vi) = [C1 G ] [ 28 ] + Dul(t),

where A11 € R™*", By € R™™ (C; € RP*" and r is the desired reduced order.
The dynamics of the faster state variables z9 are neglected by setting &2(t) = 0
and assuming Ao to be nonsingular, and a reduced-order model is obtained as
in (5.1) with

Ay — A1p A5,y Ao, B = By — A1245,) Bs,

’ 5.21
= (1 — 02A521A21, D = D-— CQA;;BQ. ( )

Qb
I.
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The balanced truncation error bound (5.4) holds as well and the SPA reduced-
order model additionally satisifies G(0) = G(0) and provides a good approxi-
mation at low frequencies.

For discrete-time systems, the formulas

A~

A = A+ Ap(I — Ap) "Ay, B = By+ Ap(I — Ax) By,

~ N

5.22
Cc = Cl + CQ(I — A22)71A21, D = D+ CQ(I — Agg)ilBQ, ( )

yield an SPA, where ‘Ehe resultipg reduced-order system is stable and balanced
and its TFM fulfills G(e?V) = G(1) = G(1) = G(e’?) [131, Section 1.9].

5.2.1 Approximate Singular Perturbation Approximation

In Algorithm 9 the H-matrix based SPA method is presented. For the com-
putation of a balanced and minimal realization of (2.1) (and of (2.23), in
discrete-time) we use the approximate BT method described in Algorithm 8.
The McMillan degree is derived by use of the approximate HSVs {o1,...,04}
with 7 = min{n,(P), n-(Q)} which are computed by the economy-size SVD
of STR in (5.10). Using a threshold 7, the approximate McMillan degree 7 is
determined by
Opt1 < 01T < 0p.

The system of “minimal” order 7 is derived by applying the projection matri-
ces (5.11) as described in (5.3). Using (5.7), the reduced order r of the system
is determined by the HSVs {o1,...,04} of the minimal realization. The SPA
reduced-order model is computed by (5.21) for continuous-time systems and
(5.22) for discrete-time systems.

5.2.2 Numerical Results

We use the same examples and parameter settings as in Section 5.1.3. For de-
termining the numerical McMillan degree of the LTI system in the approximate
SPA method we use a threshold of size 104 in all our simulations. Note that
by step 1 and 2 in Algorithm 9, the computed HSVs and therefore also the
reduced order and the approximate error bound are the same as in the corre-
sponding examples in Section 5.1.3 using the approximate BT method. The
frequency response errors between the approximated and the reduced-order
systems |Gy — G||x.. as well as between the original systems ©(A, B, C) and
Z(A,B,C’, D) are depicted in Figures 5.8, 5.9, 5.10 and 5.11. We observe the
typical good approximation at low frequencies for the SPA reduced-order mod-
els. In all examples based on the heat equation, the visible differences between
|G — G||ln.., and |Gy — G2, for smaller frequencies are caused by the accu-
racy of € = 1070 in the adaptive arithmetic and only show up if the errors are
smaller than 107%. For the non-symmetric convection-diffusion example, the
error between original and reduced-order system (computed with ¢ = 1078) is
slightly larger for frequencies smaller than 1072, As analyzed in Section 5.1.2 a
large condition number of T" and eigenvalues close to the imaginary axis influ-
ence the error between (A, B, C) and X(Ax, B,C). This causes larger errors
between ¥(A, B,C) and Z(A, B, é’) in Figure 5.10.
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Algorithm 9 Approximate SPA for LTI systems (2.1) and (2.23)

INPUT: Ay € R™" B € R™™, (O € RPX™ D € RPX™: tol, 7, e
OUTPUT: AeR™" B e R™ (C e RP*" D e RP*™: reduced order r, error
bound J.

1: Compute low-rank factors S € R™"(P) R ¢ R (Q) of the system
Gramians using Algorithm 5 for continuous-time systems, Algorithm 7 in
the discrete-time case.

2. Compute SVD of STR (7 := min{n,(P), n-(Q)})

STR=UxvVT",

with ¥ = diag(o1,...,05) and HSVs in decreasing order.
Determine numerical McMillan degree n by threshold 7.

3: Compute balanced and minimal realization by (5.3) using projection ma-
trices (5.11).

4: Partition matrices according to reduced order r (A1 € R™"), r is deter-

mined by tol: § =2 > o; < tol,

j=r+1
A App By
A= , B= ,C=|C1 Cy |.
[Am A22] [32} [ G ]

5: Compute SPA reduced-order model A, B, C, D with formulas (5.21) for
continuous-time and with (5.22) for discrete-time systems.

2d heat equation, n = 16,384, e=t1=1.e-6,tol=1.e-4 - r=4
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Figure 5.8: Frequency response errors for the two-dimensional heat equation
using approximate SPA as described in Algorithm 9.
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s 2d heat equation with varying a, n = 16,384, e =t1=1.e-6,tol=1.e-4 - r=3
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Figure 5.9: Frequency response errors for the two-dimensional heat equation
with varying diffusion using approximate SPA as described in Algorithm 9.
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Figure 5.10: Frequency response errors for the convection-diffusion equation
using approximate SPA as described in Algorithm 9.

5.3 Cross-Gramian Model Reduction

In 1983 a new system Gramian was defined for stable SISO systems,
o0
X = / et BC el (5.23)
0

which contains information on the controllability of the system as well as on
the observability [64]. Therefore, the Gramian X € R™*"™ is called the cross-
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. 2d heat equation (discrete-time), n = 16,384, e =t1=1.e-6,tol=1l.e-4 - r=4
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Figure 5.11: Frequency response errors for for discrete-time example using ap-
proximate SPA as described in Algorithm 9.

Gramian of the system. The definition was extended to symmetric MIMO
systems [65, 116]. Note that a realization 3(A, B, C, D) is called symmetric if
the corresponding transfer function G(-) is symmetric. This is trivially the case
for systems with A = AT, B = CT. In [65, 116] properties of the cross-Gramian
were derived which underline the usefulness of X’ for the purpose of model order
reduction. The most important result is stated in the following theorem.

Theorem 5.3.1 [64, 65, 116] For SISO and for symmetric MIMO systems, the
cross-Gramian satisfies

X?=PQ

That is, we have an equivalence relation to balanced truncation for these sys-
tems. Instead of computing the controllability and the observability Gramian
it is sufficient to compute the cross-Gramian X'. As the cross-Gramian is equiv-
alently given by the solution of the Sylvester equation

AX + XA+ BC =0, (5.24)

we have to solve one Sylvester equation instead of two Lyapunov equations as for
balanced truncation model reduction. A further motivation for this approach is
given in [156] by the following consistency argument. In balanced truncation the
basis sets T; and T, for projection are computed by (5.11) from approximations
to the exact controllability and observability Gramians. Since both Gramians
are approximated separately it can not be ensured that the same basis sets
would have been computed by the full system Gramians. In other words, there
might be a gap between the approximation errors of P and Q@ which influences
the computed reduced-order system in some way. This problem does not occur
if we compute projection matrices from an approximation to the cross-Gramian.
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The HSVs are given by the magnitude of the eigenvalues of X,
o; = |Ni(X)], fori=1,...,n,
and under state space transformation, the eigenvalues are invariant
X =T7'XT.
If X is diagonalizable and T is a balancing transformation then
X =diag(A1, -+, An),  with [A| > > |\

The reduced-order system is simply given by the first r states of the balanced re-
alization. In general, if the system dynamics are projected onto the eigenspaces
associated with the largest eigenvalues of X, the reduced-order model has the
same properties as in balanced truncation model reduction, i.e. the stability is
preserved and a computable global error bound exists.

We shortly review the computational steps in the work of Aldhaheri [1]
since the paper initiated the approach considered here. In [1], the left and
right eigenspaces of X corresponding to the eigenvalues of largest magnitude
are computed as follows. To compute the dominant right eigenspaces of the
cross-Gramian, X is transformed into an ordered real Schur form,

UlT] S11 Sz
X[ U, Uy ]= : 5.25
[UQT [0 U2 ] [ 0 Su (5:29)

where the r eigenvalues with largest magnitude are ordered at the diagonal of
the upper triangular block S1; € R™*" and A(S11)NA(S22) = 0. The columns in
U1 span the unique right invariant subspace associated with A(S11). We define

=[]

Wa

such that the left invariant subspace associated with A(S71) is spanned by the
rows of Wj. The Schur form in (5.25) is block diagonalized by computing the
solution X € R"*("=") of the Sylvester equation

S11X — XS99 + S12 =0,

I, -X St Sz

0 Infr 0 522
Then, W can simply be derived by Wy = U{ — XUJ". The reduced-order system
is obtained without computing balancing transformations, applying the trans-
formation matrices 7} = Wy, T, = Uy as in (5.3) to the system (2.1). Note

that the computational complexity restricts the applicability of the method to
smaller problem sizes.

such that

I, X
0 Infr

0 S

S11 o]
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5.3.1 Approximate Cross-Gramian Approach

We propose another algorithm for computing projection matrices which is also
suitable in the large-scale setting. As discussed in Section 3.1.2 it is often
observed that the singular values of X have an exponential decay. This gave
the motivation for computing the cross-Gramian in factored form X ~ Y Z
with Y € R (X) - 7 ¢ R (X)Xn exploiting the expected low numerical rank
of X: n,(X) < n. We compute the projection matrices 7; and 7). as the left
and right dominant invariant subspaces of X by a left and right eigenvalue
decomposition of Y Z. We propose a numerical efficient and accurate algorithm
for the computation of these subspaces. First, a basis for the right invariant
subspace of Y Z corresponding to the r largest eigenvalues is computed,

(YZ2)V, = Vily,

where A; = diag(A1,---,A;) and the eigenvalues are in descending order (by
magnitude). The remaining n — r eigenvalues of Y Z are smaller in magnitude.
The columns of V, € R™ " span the dominant right eigenspaces of YZ. In
practice, we compute an eigenvalue decomposition of the “small” matrix prod-
uct ZY e R (X)xn-(X) - The eigenvalue decomposition will be done without
explicitly computing the product of the two factors Z and Y using a product
QR algorithm as described next.

1. Compute an economy-size QR decomposition of ¥ with column pivoting:
}N/ — QIRIHT7 Qi € }Rnxn-r(é\f')7 Ry € }Rn-r(./\’)><n7—(/'\f')7

where Q1 has orthonormal columns, R; is upper triangular and II is a
permutation.

2. Multiply and permute

ZQl c ]RTLT(X)XTLT(X)’
RlHT e RnT(X)Xn.,-(X).

«—
«—

=N

3. Compute product Hessenberg form of ZY
HyHy «— UL ZUUT Y UL,

where H; is upper Hessenberg and Hs upper triangular [108, Section
4.2.3].

4. Compute product Schur decomposition
518y — Wi H\WoW] HoWy,

where Sj is in real Schur form and S is upper triangular [108, Section
4.2.1]. The eigenvalues are ordered by descending magnitude.

5. The invariant subspace of ZY is spanned by the columns of U3 Wy:
ZY UyWy = Uy Wy S1Ss.
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Algorithm 10 Approximate Cross-Gramian approach for LTT systems (2.1)
INPUT: Ay € R™", B € R™™, ' € RP*", D € RP*™, tol, T, e.

OUTPUT: A € R"™*", B e R"™*™ C e RPXT, D e RP*™: reduced order r, error
bound 9.

1: Compute low-rank factors Y € R™ (X)) 7 ¢ R (X)X of the cross-
Gramian X by Algorithm 4.

2: Compute right eigenspace U, Wy of ZY by (product) QR algorithm with
eigenvalues in decreasing (by magnitude) order [A1]| > --- > [\, (x)|. Adap-
n-(X)
tive choice of r by tol: § =2 ) || < tol.
j=r+1

3. Compute right dominant invariant subspace V, of Y Z:
Ve =Y (UWi(:,1:7)).
4: Compute left dominant invariant subspace W; of YZ by (product) QR

algorithm applied to yTzT,

5: Compute QR decompositions V. = Q. R,., W; = Q;R; and projection ma-
trices T, = Q,, 1} = (Q%pQT)_lQ}F.

6: Compute reduced-order model:

~

A =T AyT,, B=T,B,C =CT,, D = D.

The size of the reduced-order system is determined by the ordered eigen-
values of ZY and by a given error tolerance using the criterion (5.7). Then,
the dominant right invariant subspace of the approximate cross-Gramian YZ
corresponding to the r largest (in magnitude) eigenvalues can be derived by
the first 7 columns of U; W1, setting V; := Y (U1 W1 (:,1 : 7)) € R™ ", The left

dominant invariant subspace W; € R™*" of Y Z
Wl (YZ) = mW]

is computed analogously via a product QR algorithm applied to YTZT. The
projection matrices for model order reduction are obtained similar as in the
balancing-free SR method [165] by an orthogonalization of V,. and W;. For this
purpose we compute two economy-size QR decompositions

Vi =QrR, and W, =QR;, Q,, Q € R™",

setting T = Q,, T) = (QFQ,)™*Q! and obtain a reduced-order system by
projection (5.3). All steps of the cross-Gramian approach are summarized in
Algorithm 10.

Remark 5.3.2 (MIMO systems) The cross-Gramian can also be computed
for non-symmetric, square (i.e. m = p) systems, including some information
about the controllability and the observability of the system. Model reduc-
tion can be applied in the same way, but without theoretical background and
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therefore without any guaranty for the quality of the reduced-order system. In
[156] it is proposed to embed a general MIMO system into a symmetric one of
the same order but with more inputs and outputs. The order of the resulting
symmetric, square system is reduced by a cross-Gramian approach. (I

5.3.2 Numerical Results

Besides the data-sparse solver for Sylvester equations in Algorithm 4, all com-
putational steps of the cross-Gramian (CG) approach (Algorithm 10) are com-
puted in dense arithmetic. For the product QR algorithm, we employ the
routine MBO3VD from the SLICOT Library [27, 151] to compute the prod-
uct Hessenberg form of a product of matrices without evaluating any part of
the product. The matrix product is transformed further to product real Schur
canonical form by the HAPACK [94, 108] routine DHGPQR and reordered by
DTGSRT such that the magnitudes of the eigenvalues appear in decreasing order.

First, the approximate cross-Gramian (CG) approach is applied to the SISO
systems from the previous chapter. We compare the frequency response errors
|Gy — G ||l#., obtained by the cross-Gramian approach with those of the ap-
proximate BT method, see the upper plots in Figures 5.12, 5.13 and 5.14. For
the error tolerance 104, the reduced order computed by Algorithm 10 is equal
to the reduced order obtained by the approximate BT method. In all plots we
observe that both curves (for the BT errors and the errors obtained by using
the cross-Gramian approach) and the corresponding error bounds ¢ nearly co-
incide. In the lower plots of the Figures 5.12, 5.13 and 5.14, we also depict the
errors between the original and the reduced-order systems obtained by the new
method. The errors |G — G| x., and |Gy — G|j3.. are nearly the same. Thus,
using the H-matrix format in the computations does not contribute much to
the errors between original and reduced-order system.

Next we apply Algorithm 10 to a symmetric MIMO system as obtained
by the spatial discretization of the heat equation with n = 16,384 grid points
and m = 8, setting C = BT. The reduced order for tol = 10~% is r = 11.
In Figure 5.15 the errors plots for several of the 64 input/output channels of
the system are depicted. All graphs satisfy the computed error estimate of
§=8.1x107".

Finally, we examine the accuracy of all computed reduced-order systems by
the magnitudes for the frequency responses. We compare the magnitudes for the
frequency responses of the original system, of ¥(Ay, B, C) and of the reduced-
order systems obtained by BT, SPA and by the cross-Gramian approach for the
examples based on the heat equation and the convection-diffusion equation. In
Figures 5.16 and 5.17 it is observed that the graphs of the reduced-order systems
produced by approximate BT and by the CG approach are not distinguishable.
The reduced-order systems obtained by SPA yield bigger errors for high fre-
quencies. Visible deviations of all reduced-order systems from the unreduced
systems X(A, B,C) and X(Ay, B,C) only occur when the magnitudes for the
frequency responses are very low.
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2d heat equation, n = 16,384, e=1=1.e-6,tol=1.e-4 - r=4

10 T T T T
107'E 4
17 Pl = e el e e e | o e = —.——o-v-*
4
N
S \
o 10°F \ E
2 .
c
2 S,
D 100 N i
9] N
< 3
5 N
5 ™~
-7
= 10 B
ro) \
T N,
\
\,
\,
10°Y .\\,
Y
10’9 L L L
10 107 10° 10° 10" 10°
Frequency w
73 2d heat equation, n = 16,384, e =t1=1.e-6,tol=1.e-4 - r=4
10 T T T T
107 B

Frequency response errors

Figure 5.12: Frequency response errors for the

10°F

-9

0 [G(jw) — G(jw)]

10
10

-4

-2

10

10

o

Frequency w

10

2

two-dimensional heat equation

using the cross-Gramian approach as described in Algorithm 10.



132 CHAPTER 5. MODEL REDUCTION FOR DATA-SPARSE SYSTEMS

2d heat equation with varying a, n = 16,384, e =1=1.e-6,tol=1.e-4 - r=3
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Figure 5.13: Frequency response errors for the two-dimensional heat equation
with varying diffusion using the cross-Gramian approach as described in Algo-
rithm 10.
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Convection—diffusion equation, n = 16,384, e =1=1.e-8,tol=1.e-4 - r=9
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Figure 5.14: Frequency response errors for the convection-diffusion equation
using the cross-Gramian approach as described in Algorithm 10.



134 CHAPTER 5. MODEL REDUCTION FOR DATA-SPARSE SYSTEMS

Figure 5.15: Frequency response errors for the two-dimensional heat equation
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using the cross-Gramian approach as described in Algorithm 10.

Magnitudes

2d heat equation, n = 16,384, e=1=1.e-6,tol=1.e-4 - r=4

|| ——1G(jw)]
- e 1Ga )]
| @ BT |G(jw)|
1071 - 0 -CG: |G(jw)| 7
‘‘‘‘‘ SPA: |G(jw)|
10’20 T | | |
10 107 10° 10° 10° 10°
Frequency w

Figure 5.16: Frequency responses of the two-dimensional heat equation for BT,
the CG approach and SPA.
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Chapter 6

Further Applications

In this chapter we consider two further applications where the data-sparse sign-
function solvers can be used to reduce the complexity and storage requirements
of the algorithms. Both applications are closely related to model reduction
for large-scale systems. In Section 6.1 we consider a modification of the usual
balanced truncation method for large-scale, continuous-time systems where in
contrast to the methods in Chapter 5 the matrix A is allowed to have unstable
eigenvalues. In Section 6.2 an approach for solving an optimal control prob-
lem with inequality constraints for the control is presented. Model reduction
of the underlying discrete-time LTI system makes the application of standard
optimization software for the solution of a quadratic programming problem
possible.

6.1 Model Reduction for Unstable Systems

As opposed to the previous sections, we now allow for unstable systems (2.1)
satisfying
AA)NCT £0, A(A)NIR=0. (6.1)

Under these assumptions, the time domain representation of the Gramians (2.15)
is not defined. However, there is an equivalent definition of the Gramians in
frequency domain and this carries over to unstable systems satisfying (6.1) [155,
167):

P = 2i (wl, — A)"'BBT (—jwl, — AT)dw, (6.2)
T
Q = % / (—gwl, — AT)TICTO(wl, — A)~ Hdw. (6.3)

The following result, stated in [167], describes the numerical solution of the
Gramians in frequency domain by the solution of matrix equations.

Theorem 6.1.1 [167, Theorem 2| Suppose (A, B) is stabilizable, (A, C) is de-
tectable, A(A)NJR =0 and let X and Y denote the unique stabilizing solutions

137
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(ie. A(A—BBTX)c C~, A(A-YCTC) C C7) of the two algebraic Bernoulli
equations

ATX + XA - XBBTX = o, (6.4)
AY +YAT —vcTcoy = o, (6.5)

respectively. Then, the Gramians P and Q in (6.2), (6.3) are given by the
solutions of two Lyapunov equations

(A-BBTX)P + PA-BBTX)' + BBT = o,
0.

(A-YCTC)TQ + QA-YCTC) + CTC = (6.6)

It is shown in [167] that a balanced realization and a reduced-order system based
on these Gramians can be computed in the same way as for stable systems by the
usual balanced truncation method. Additionally, the balanced truncation error
bound (5.4) holds for the L -norm of the error between original and truncated
system [167, Theorem 4]. In the following we investigate the numerical solution
of ABEs, exemplarily for computing the stabilizing solution X of (6.4). Very
useful for an efficient implementation is the following observation.

Theorem 6.1.2 [24] If (A, B) is stabilizable, (6.1) and X is the unique stabi-
lizing solution of (6.4), then

rank (X) = ¢,
where £ is the number of eigenvalues of A in CT.

It is well known that a solution X of an ABE (which is a homogeneous ARE) can
be derived from the invariant subspace of the associated Hamiltonian matrix Z
as

A BBT I, I,
o [ ][ B Jum,
—_——
=Z

see for instance [112]. Thus, if (A, B) is stabilizable and (6.1) holds, the unique
stabilizing solution X of (6.4) can be computed by the Z-invariant subspace
corresponding to the stable eigenvalues, i.e.

A(A—BBTX)c (A(Z)nC).

Using spectral projection, the kernel of the projector onto the anti-stable Z-
invariant subspace Py := (I2, +sign (Z))/2 (see Lemma 3.1.2 d)) describes the
stable Z-invariant subspace. Thus, the stabilizing solution X can be derived
from the linear least-squares problem

1 . I, |
5(_72” + sign (2)) [ X ] =0. (6.7)
To summarize, for computing the stabilizing solution X of (6.4), the matrix
sign function of the associated Hamiltonian Z has to be computed followed by
solving (6.7).
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6.1.1 The Data-Sparse Approach

In order to apply model order reduction to large-scale systems satisfying (6.1),
the hierarchical matrix format is incorporated in the computations as described
in the following. The sign function of the Hamiltonian

A BBT
0 -—-AT

is computed analogously as in Chapter 4 for the numerical solution of Lyapunov
equations. By the block structure of Z, the iteration splits into two parts and
again, we approximate the expensive part for the A-iterates in the hierarchical
matrix format. The only difference to the sign function solver in Section 4.2 is
the stopping criterion which has to be modified to

| Aj41 — Ajll2 < tol|[Ajy1l2.

It is observed that in usual applications which stem from the semi-discretization
of some elliptic partial differential operator the B-iterates and thus the solution
X have a small (numerical) rank. Note that by simple transformations of (6.4)
we can derive properties of the solution X of the Bernoulli equation (6.4) from
the stable Lyapunov equation

(A— BBTX)"X + X(A—- BBTX)A+ XBBTX =0, (6.8)

where X denotes the stabilizing solution of (6.4). Since (6.8) is equivalent to
(6.4), X is the unique solution of (6.8). The constant term in the Lyapunov
equation is of low rank and thus the solution X is expected to be of low rank
too, at least numerically. Therefore, the expected low numerical rank of the
Bernoulli solution is revealed by row compression using an RRLQ factorization.
When the sign function iteration is converged, using the notations
Ay = lim Aj, By = lim Bj,
j—o0 j—oo

for the limits of the sign function iteration and s for the numerical rank of
By, € R4, we obtain

Ay BsoBL

sign (Z) = 0 AT

Including this expression for the sign of Z in (6.7), the linear least-squares
problem (6.7) is equivalently given by

BooBEL, [ L+ Ax
e [x=

A b
It admits a unique solution if rank(A) = n. Since rank(l,, — AL) = n — ¢, we

assume that rank(B., BL) > £. To proceed the computations in low complexity
we solve the problem using the normal equations

ATAX = AT,
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thereby exploiting that B, is of low rank and A, is stored as H-matrix. The
matrices involved are computed in the following way:

TI T T B B T
ATA = BuBLBWBL 4 (I — Ax) (I — As)
H—matriz low rank H—matriz  H—matriz
AT7 _ T T
AT = Bu [BL + BL AL
low rank low rank

where the notation “low rank” indicates that the matrix is stored as product
of two rectangular matrices. Using the H-Cholesky-decomposition of AT A and
‘H-based forward and backward substitutions, we compute the stabilizing so-
lution X of (6.4) as low rank matrix, i.e., X = X3XJ, X7, Xo € R™*, see
Algorithm 11.

Algorithm 11 Calculate low-rank factors X, Xo € R™** of stabilizing solution
X =X, XI for ATX + XA—- XBBTX =0.
INPUT: A e R™*" B € R"™™ tol, e, T
OUTPUT: Approximate low-rank factors X, Xo € R™*¢ of the solution X.
Ag — (A)n
BO — B
J=0
while [|4;41 — Ajll2 < tol[|A;41]]2 do
Compute the approximate inverse A;ilj by Algorithm 3.
Ajr = 5(4;®© A)
Bji1+ 5 [ Bj, Ay;B; }
8. Compute an RRLQ factorization

Bj1 =TLQ =TI

L1 O
Q
Lo1 Lo

with ||L22||2 < 7'||Bj+1||2 and L1 € R5%5,
9:  Compress columns of Bji to size s:
Ly,
B; IT :
j+1 [ Loy ]

10 j=j+1

11: end while

12: (/ITA)H — BJB]TBJB]T —+ (In &) A]) ® (In ) Aj)T

13: Compute H-Cholesky-decomposition of (ATA)H: Ly L% — (ZITA)H.
14: Compute Y by H-based forward substitution: LyY = B;.

15: Compute X1 by H-based backward substitution: L%Xl =Y.

16: Xo «— B]T + B]TA]
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To reduce the dimension of an unstable LTI system with (6.1) we apply
Algorithm 11 for the solution of the Bernoulli equations (6.4) and (6.5). Thus,
we obtain low-rank solution factors of X and Y

X=xx1 v=wyvl

Following Theorem 6.1.1, the system Gramians P and Q are obtained by solving
the two Lyapunov equations (6.6) where the two large-scale matrices (A —
BBTX) and (A — YCT(C) are approximated as H-matrices. This can be done
in an efficient way since A is approximated as H-matrix, B has only a small
number of columns and C' a small number of rows. Furthermore, the matrices
X and Y are computed in low-rank factored form by the proposed data-sparse
solver for ABEs. Thus, the matrices are computed as the sums of H-matrices
and an Rk-matrices

Ay — B(XoXIB)T, Ay — (YicTo,
which can be approximated in the set of H-matrices.

Remark 6.1.3 Note that it is also possible to compute the solution of an
ABE directly in H-matrix format. Since an ABE is a homogeneous ARE, the
methods proposed in [79] for solving algebraic matrix Riccati equations can be
used. O

In contrast to the usual BT implementations for stable systems, the Lyapunov
equations (6.6) have to be solved separately since they do not have the same
coefficient matrix. Once the approximate Gramians P and Q in (6.2) and (6.3),
repectively, are computed, we proceed with computing the projection matrices
as in the approximate BT method in Algorithm 8, see Section 5.1.1.

6.1.2 Numerical Results

In this section we examine the accuracy and complexity of Algorithm 11 for the
numerical solution of Bernoulli equations. Using this solver as first computa-
tional step in a model order reduction approach for unstable systems with (6.1)
as described in Section 6.1.1, we examine the errors between the original system
and the computed reduced-order one.

As exemplary system we consider the following reaction-diffusion equation

g—?(t,{) = Ax(t,&) + ex(t, &) + b(&)u(t), £eQ, te(0,00),

which is discretized in space by finite elements as introduced in Example 4.1.13,
leading to the LTT system

i(t) = (A + cl,) z(t) + Bu(t). (6.9)
—_———
=A
For the problem sizes n = 4096 and n = 16, 384, we choose the parameter ¢ such

that one eigenvalue of the coefficient matrix A has positive real part: A = 0.25.
We compute the relative residual

|ATX + XA — XBBTX ||y
2(|1 Al plIX(lF) + I XN ZIBBT|
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of the ABE (6.4) obtained by applying the data-sparse solver 11 to the unstable
system. We vary the parameters 7 and € and depict the numerical rank of B,
the computational time and the accuracy in Table 6.1. We observe a similar
dependency of the relative residuals on € as in Table 4.5 where the solutions
of the data-sparse Lyapunov solver applied on the pure diffusion problem are
shown. The method needs more iteration steps to fulfill the stopping criterion
and, consequently, the numerical ranks are increased compared to those of the
stable problem in Section 4.2.2. Nevertheless, accurate solutions of large-scale
ABEs are computed in acceptable time.

‘ n ‘ € ‘ T H # it. ‘ N+ (Boo) ‘ time [sec] ‘ rel. residual ‘
4096 | 1.e-04 | 1.e-04 26 36 261 7.1e-06
1.e-06 | 1.e-04 22 14 391 1.8e-07

1.e-08 | 1.e-04 19 14 635 3.8e-08

1.e-06 | 1.e-06 22 31 395 1.8e-07

1.e-08 | 1.e-06 19 21 636 3.7e-08

1.e-08 | 1.e-08 19 39 639 3.7e-08

16,384 | 1.0-04 | 1L.e-04 || 27 34 2376 2.30-05
1.e-06 | L.e-04 | 26 15 4235 5.2¢-07

1.e-08 | 1.e-04 22 14 7136 6.1e-09

1.e-06 | 1.e-06 26 42 4273 5.2e-07

1.e-08 | 1.e-06 22 23 7150 6.0e-09

1.e-08 | 1.e-08 22 42 7183 5.9e-09

Table 6.1: Accuracy and rank n.(Bs) of the computed ABE solution for dif-
ferent problem sizes and parameter combinations.

Based on the solver for ABEs we reduce the dimension of the original un-
stable system (6.9) of order n = 4096. We compute a reduced-order system
of order r = 6 for the reaction-diffusion equation using the fixed parameter
choice of € = 7 = 1070, The eigenvalues of A and of A closest to the imaginary
axis are depicted in Figure 6.1. It is observed that the unstable eigenvalue of
the original system is preserved in the reduced-order system. In Figure 6.2 it is
shown that the frequency response errors |Gy — G|z, satisfy the error estimate
§=2.36 x 107°.

6.2 Linear Quadratic Optimal Control

In the following we describe one possible application for model order reduction
of discrete-time systems. The problem results from the full discretization of
a control problem which includes inequality constraints for the control of the
underlying PDE. The discrete optimal control problem is converted into a non-
linear programming problem of very large dimension. In order to apply standard
optimization software like quadprog from the MATLAB Optimization Toolbox,
we can reduce the space dimension of the discretized parabolic problem using
the approximate BT method from Section 5.1.1.
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Figure 6.1: BEigenvalues of A and A of the unstable LTI system (6.9).
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Figure 6.2: Frequency response errors for the unstable LTT system (6.9).

6.2.1 Model Reduction for Linear Parabolic Optimal Control
Problems

In this section we introduce an approach for the numerical solution of linear-
quadratic optimal control problems with inequality control constraints. For the
theoretical background of the optimal control problem we refer to [162, Section
3.5]. For the existence and uniqueness of the solution for a discrete optimal
control problem, rewritten as nonlinear programming problem, see [59].
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Figure 6.3: Domain description for the two-dimensional heat equation.

We investigate the numerical solution of the following continuous optimal
control problem for heat transfer in the domain € = [0, 1]? shown in Figure 6.3:

T T
. _1 R N A
min J(y,u) = 5 O/ Q/ (3(t,6) — ya(€))ded + 5 O/ F/ (t,%dgdt, (6.10)

subject to
9x (&) — Ax(t,€) =0, £ecQ, te(0,7),
x(0,¢) =x0(§), £eQ,
& (t,¢) = a(x(t,€) —u(t,€)), €T, te(0,T), (6.11)
&x(t,9) =0, EeT\T, te(0,7),
y(t, ) =x(t,€)q, £eQ,, te(0,7).

In this setting, A > 0 is a regularization parameter for the optimal control
problem, x( is the initial temperature, 7" > 0 a fixed control horizon, o € R
describes the heat transfer and u(-) is the control applied on one part of the
boundary, see Figure 6.3. The control objective is to control the temperature
x(-) to a prescribed temperature distribution yq(-) in €, using the tracking
type functional (6.10). For the control u(-) the following (pointwise) inequality
constraints are imposed:

ua(t, &) <u(t, &) <wup(t,§), €Tl te(0,T).

We follow the computational strategy of “Discretize Then Optimize” [39], the
continuous problem is transformed into a discrete quadratic control problem by
discretizing (6.10) and (6.11) in space and time. For the space discretization we
use a uniform triangulation of the spatial domain € with n grid points and n
linear ansatz functions @1, ..., @,, similar as in Example 4.1.13. A subset of p
grid points is located in the subdomain 2,, the corresponding ansatz functions
are noted by ¢1,...,¢,. The boundary I'. is discretized with m points, using
the ansatz space 1, ...,¥,. We approximate the states and the controls by

x(6,8) = Y xi(t)pi(6), ¥yt~ yi(t)ei(€), ult&) =Y ui(t)w;(9).
j=1 j=1 J=1
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The FEM stiffness matrix A € R™*™ and the mass matrix £ € R™*"™ arising
in the space discretization of (6.11) are computed as described in (2.31). The
entries of the matrices B € R"*™ and C' € R"*? are given as in Example 4.1.13.
Additionally, the mass matrices F, € RP*P and E, € R™*™ are computed on
Qo and I, respectively, using the corresponding ansatz spaces. With

z1(t) yi(t) Yo, uy (t)
Tn(t) Yp(t) Yp U (t)
the semi-discretization leads to the following intermediate control problem:

minJ(z, u) :=

N | —
2o | >

T
/ T CTE,Ca(t) — 208 EsCa(t) + yb Eoye) dt +
0

T
/ u(t TEcu dt,
0

(6.12)

subject to
Ei(t) = Ax(t)+ Bu(t), z(0)= o,
y(t) = Cul(t),

and a set of constraints
uq(t) < u(t) <wup(t) forte (0,7).

We use a simple quadrature rule for the time discretization of the cost functional
J and ¢ time steps of equidistant size Ty. The solution z and the control u at
the ith time step are denoted by z; := x(iT}), u; := u(iTs), respectively, for
i =0,...,£. Using the backward Euler scheme for the time discretization of the
LTI system as in Section 4.4.2, we obtain the following discrete control problem:

~
~

-1 -1

- 1 A
min J(xo, ..., 2p_1) = 5 (meSCTEOka — 2y£TSEOC'a:k) + 5 (ugEcuk)
k=1 k=1
(6.13)
subject to
Tp+1 = Awg+ Bug,  x0= 2",
6.14
Y = kaa ( )
and

ua7k§uk§ub’k, for0<k<?-—1.

By a slight abuse of notation, we denote the matrices in the discrete-time LTI
system (6.14) as those in the continuous-time setting although they are com-
puted in a different way, see Section 4.4.2. We want to solve this finite dimen-
sional problem with existing control software. For this purpose, the discrete
problem (6.13) to (6.14) is converted into a quadratic programming problem.
Based on the vector of unknowns

T

(T T T \T o pintim
z2:i=(Tg,. .., Tp_q, Up,---,Uup_q) ER ,
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the problem (6.13) to (6.14) is equivalent to

1
min §ZTHZ + T2, a<z<p, (6.15)

Rz=c

with a constraint matrix

1 O ... ... 0 0 ... ... 0
-A 1 -B

R = 0 AT U 0 B e R@nX(ZnJer)
o ... 0 -AT1|0 ... 0 —-BDO

and a matrix for the quadratic terms in the objective

T.CTE,C

o T C’Tff‘ocv (In—4-Lm) x (In+Lm)
H = NTLE, €R

MNGE,

and vectors for the initial conditions, for the linear part of the objective and
for the control constraints

Y& T E,C 0 0
20 : : :
0 T
_ _ yQTsEoC o 0 - 0
c= 9 - y 0= 9 -
! 0 Uq, 0 p Up, 0
0 .
0 Ug, (—1 Up, 0—1

The matrices R and H are sparse and very high dimensional. Since this very
large dimension limits the applicability of optimization software we reduce the
probably large state space dimension n of the discrete system (6.14) before the
problem is rewritten into a quadratic programming problem.

We apply the approximate BT method to the discrete-time LTI system (6.14)
and compute a system of reduced order r. Using this reduced-order system
E(fl, B, C’) in the subsequent transcription of the discrete problem into the
quadratic programming problem reduces the dimensions of the unknown vector
z from R M to R +6m  Since all blocks in the large matrices R and H are
of reduced size as well, we obtain a constraint matrix of reduced dimension,
R e Rfr<Wr+tm) "and a much smaller matrix H € RUr+em)x(tr+m) ¢orrespond-
ing to the quadratic terms in (6.13).

6.2.2 Numerical Results

For the continuous optimal control problem (6.10), (6.11), the following con-
stants are set: for the heat transfer @« = 8.0, as regularization parameter
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A = 10~* and for the control constraints Ugp = 0, up g = 50 for 0 < k < £. We
choose the initial temperature zo(-) = 0 on 2 and yq as plotted in Figure 6.4(a).
We discretize the parabolic system (6.11) in space by a uniform triangulation
with 16,900 grid points. 130 grid points are located on the boundary I'. and
12 points in the subdomain €,. The time interval [0, 1] is discretized with
constant step size Ts = 0.1. We use the backward Euler method for the time
discretization of the continuous-time LTI system (6.12) and obtain a discrete-
time system (6.14) with n = 16,900, m = 130 and p = 12.

Without model order reduction, the problem dimensions in (6.15) would be
the following:

169,000x 170,300 170,300x 170,300
ReR , HeR .

We apply the approximate BT method to (6.14) using a tolerance of 107°
and compute a reduced-order system of order r = 8 by an error estimate of
§ = 9.48 x 1077. Based on the reduced-order system, the discrete control
problem (6.13) is formulated as a quadratic programming problem (6.15). Note
that the dimensions of the matrices involved are reduced significantly using the
reduced-order system with state space dimension r» = 8 instead of n = 16,900

? 80x1380  f 1380% 1380
ReR , HeR .

We use the quadprog solver from MOSEK ApS [128] which can handle sparse
matrices in contrast to quadprog from the MATLAB Optimization Toolbox. The
solution is computed very quickly, the elapsed time is about 0.095 seconds. The
computed optimal control is shown in Figure 6.4(b). It is observed that the con-
trol constraints are active at the beginning of the control process. The differ-
ences between the controlled state y (¢, £) and yo () in Q, at ¢ = 0.1, 0.2,--- , 0.9
are plotted in Figure 6.4(c). In Figure 6.5, the snapshots of the optimal solution
x(t,€) at t =0.1, 0.2,---, 0.9 are depicted.
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Figure 6.4: Settings and results of the optimal control problem in Section 6.2.2.



6.2. LINEAR QUADRATIC OPTIMAL CONTROL 149

Figure 6.5: Snapshots of the optimal solution x(t,§).
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Chapter 7

Conclusions and Future Work

In this work several iterative methods for the solution of large-scale matrix
equations are proposed which are particularly adapted for the use in model or-
der reduction as they compute the solutions in factorized format. The solvers
exploit the structure of the underlying control problem by using H-matrix ap-
proximations and are thus applicable to systems of large order when the coef-
ficient matrices may be fully populated but allow for a data-sparse representa-
tion. The memory requirements of the H-matrix based solvers are reduced from
O(n?) to linear-logarithmic size; the original cubic complexity of the iterative
schemes is reduced to linear-polylogarithmic complexity. The performance (in
terms of efficiency and accuracy) obtained by using the data-sparse solvers has
been investigated in comparison with standard dense implementations of the
iterative methods. It is observed by several numerical examples evolving from
FEM/BEM discretizations of elliptic partial differential operators, that less
memory is required, the computations are significantly faster and comparable
accurate, when the developed methods are employed.

The solvers are used as basic building blocks for implementations of model
reduction methods based on balanced truncation. Besides an approximate BT
method, an implementation of SPA is described and a new method based on ap-
proximate low-rank factors of the cross-Gramian is proposed. We also derived
an approach for model order reduction of unstable systems. All methods are of
linear-polylogarithmic complexity and are thus suitable for reducing the dimen-
sions of large-scale systems. The methods are successfully applied on systems
of order n = O(10°) coming from FEM and BEM discretizations of two- and
three-dimensional parabolic PDEs also including varying diffusion coefficients
or convective terms. Note that the application of balanced truncation model
reduction to dense systems of this size becomes only possible by use of the
data-sparse format and the corresponding formatted arithmetic. It is shown,
both theoretically and in the numerical experiments, that the error between
the original and the reduced-order system introduced by using the H-matrix
format and the approximate arithmetic is bounded. All methods significantly
reduce the dimension of the systems, thereby still satisfying a very small error
tolerance. Thus, reduced-order models of high quality are computed by com-
putationally efficient implementations of BT and related methods. We demon-

151
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strate how these reduced-order systems can be used in optimal control problems
where inequality constraints for the control are given. Since the dimension of
the resulting quadratic programming problem is significantly reduced, standard
optimization software can be applied.

The application of the derived methods on further practically relevant prob-
lems should be investigated in the future. Moreover, further savings in com-
putational time and memory requirements are expected when the following
suggestions are considered.

1. All methods proposed in this work will benefit from further developments
in the HLib [47].

We expect a further decrease of the computational time and of the storage
requirement in the iterative solvers if an alternative absolute criterion to
the relative one (2.29) for the blockwise rank decision in the adaptive
arithmetic would be provided, see Remark 4.1.2. This is announced for
the next release of the HLib. Additional savings of memory and time
are expected from an adaption of the blockwise accuracy e during the
iteration. For nearly converged A-iterates the formatted arithmetic can
be performed with less accuracy resulting in smaller blockwise ranks.

There are also several new data-sparse techniques available which are
based on the hierarchical matrix format. Using a second hierarchy of
nested bases besides the hierarchical block cluster tree (see Definition 2.3.4)
defines the H?-matrices, see [42, 43, 48, 90| for details. This data-sparse
format is suitable for discrete elliptic problems and for dense matrices
arising from boundary element discretization of integral equations. Em-
ploying the technique to an n x n matrix will lead to memory requirements
of O(nk) (instead of O(nlogy(n)k) for H-matrices) and to almost linear
complexity in the corresponding arithmetic. Another efficient data-sparse
construction for inverses of finite element stiffness matrices is proposed
in [50]. These multilevel hierarchical matrices provide an efficient approx-
imation of the inverses even for highly convection-dominated problems
via an interpolation-based approach.

Moreover, all iterative methods for the solution of matrix equations de-
scribed in this work are composed of matrix computations which allow for
parallel implementation. For parallel results of sign function and Smith
iterations see, e.g., [31, 32, 35]. Once this feature is provided by the HLib,
very large problems can be solved in significantly lower time on computers
with distributed memory architecture. Approaches of improved efficiency
based on special domain decomposition techniques are published in [80]
and result in parallelizable H-LU factorizations. Note that a parallel im-
plementation of the hierarchical format and arithmetic is already available
in the commercial release of the HLib, the H-LibP™ [87]. This library is
developed by the Max-Planck-Institute MIS in Leipzig and by Fraunhofer
SCAI and is primarily designed for commercial and industrial applica-
tions.
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2. The proposed methods for model order reduction are based on the hierar-
chical approximation of the system matrix A. Many practical applications
lead to large-scale systems with this property and among them those prob-
lems would benefit most from the developed solvers where the resulting
system is fully populated. Note that simulation and control of such sys-
tems is only possible in reasonable time if the dimension is significantly
reduced by some order reduction approach. Till now, it was not possible
to reduce the size of a large-scale, dense system by methods with system-
theoretical background. In Section 5.1.3, the approximate BT method
was successfully applied to a dense system of high order which stems
from the BEM discretization of the Laplacian. The following (dense)
problems could further be investigated in the future. Many physical laws,
e.g. Maxwell’s equation, can be described by LTI systems. For instance in
chip design, a three-dimensional resistor-inductor-capacitor (RLC) inter-
connect is modeled by a spatial discretization of Maxwell’s equation [124].
The resulting system is large-scale (n ~ O(10°)) and dense but allows for
a data-sparse representation. Since the involved matrices are complex-
valued which is not included in the HLib, an application of the proposed
methods is a future task. Note that complex matrices are already incor-
porated in the library H-LibP™. Other possible applications are boundary
value problems discretized by wavelet techniques or combinations of finite
element and boundary elements [148]. BEMs for parabolic problems are
described in [56, 142].

3. The results in Section 6.2 indicate further possible application of the de-
rived model order reduction methods in the area of nonlinear constrained
optimal control. In a recent work [58], balanced truncation is used to
reduce the dimension of the semi-discretized adjoint equation in optimal
control problems governed by nonlinear PDEs. This provides an efficient
evaluation of the adjoint equation in a descent method for the solution of
the semi-discretized optimal control problem. Using sequential program-
ming (SQP) methods for the solution of nonlinear constrained optimal
control problems requires the solution of a linear quadratic programming
problem in each iteration step. Applying model order reduction in the
innermost loops would reduce memory requirement and computational
time. The integration of the approximate BT method in optimal control
problems offers many starting points for future research.
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