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Abstract: Exposure to elevated temperatures has detrimental effects on the properties of cementitious
composites, leading to irreversible changes, up to total failure. Various methods have been used to
suppress the deterioration of concrete under elevated temperature conditions. Recently, nanomaterials
have been introduced as admixtures, which decrease the thermal degradation of cement-based
composites after exposure to high temperatures. This paper presents a comprehensive review of
recent developments related to the effects of nanoparticles on the thermal resistance of cementitious
composites. The review provides an updated report on the effects of temperature on the properties
of cement-based composites, as well as a detailed analysis of the available literature regarding the
inclusion of nanomaterials and their effects on the thermal degradation of cementitious composites.
The data from the studies reviewed indicate that the inclusion of nanoparticles in composites protects
from strength loss, as well as contributing to a decrease in disruptive cracking, after thermal exposure.
From all the nanomaterials presented, nanosilica has been studied the most extensively. However,
there are other nanomaterials, such as carbon nanotubes, graphene oxide, nanoclays, nanoalumina
or nano-iron oxides, that can be used to produce heat-resistant cementitious composites. Based on
the data available, it can be concluded that the effects of nanomaterials have not been fully explored
and that further investigations are required, so as to successfully utilize them in the production of
heat-resistant cementitious composites.

Keywords: nanomaterials; review; cement-based composites; concrete; elevated temperature; fire
resistance; mechanical properties; microstructure

1. Introduction

Concrete is a well-understood material and for most application purposes has a satisfying
endurance to elevated temperatures. It has been used successfully in various engineering structures,
providing satisfactory dimensional stability to structures in cases of fire [1], although its properties
deteriorate when exposed to elevated temperatures. Alteration of the microstructure of cement-based
composites occurs from the very beginning of the heating process, with cement paste already exhibiting
some damage even after heating up to 105 °C (the standard temperature for the drying of materials) [2].
However, temperatures up to 200-300 °C can still be considered relatively harmless to the stability of
cementitious composites [3]. Nonetheless, exceeding certain temperatures, as well as certain exposure
times, can lead to irreversible changes in concrete, even leading to structural collapse. Resistance
of concrete to high temperatures is highly related to the thermal conductivity and specific heat that
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are influenced by many factors including the aggregate type, mixture composition, and moisture
content [1]. Concrete provides lasting protection to reinforcing steel (which is sensitive to high
temperature), however, due to its thermal conductivity non-linear temperature distribution in the
concrete element occurs [4]. As a result, thermal transients propagate progressively within the
concrete element, leading to significant thermal gradients and thus, causing undesirable damage to
the concrete [4].

Concrete is widely used as a material for high-rise buildings, tunnels, drilling platforms, as
well as nuclear facilities (having both satisfactory thermal and shielding properties) [5-8]. However,
recent accidents involving existing structures have revealed that there is still a strong need to continue
studies, in order to understand the effects of high temperature on cement-based materials, as well as
to find methods for improving their thermal resistance. However, understanding the performance
of concrete under elevated temperature conditions is a complex issue, due to its heterogeneous
nature (consisting of cement paste and aggregates); thus, response to stress is not only dependent
on the response of individual components, but also on the interaction between those components.
For this reason, deterioration in the mechanical and physical properties of concrete depends on
individual physicochemical changes in the cement paste and aggregates, as well as on (thermal)
incompatibility between the aggregate and surrounding cement paste [9]. Therefore, to provide
satisfactory thermal resistance for cement-based composites working under or exposed to elevated
temperature conditions, mix design, including proper proportions and constituents, is a key factor
when designing the material [9]. Nevertheless, the compatibility of the constituents should be provided
not only when unheated materials are tested, but also within a range of heating temperatures.

The choice of proper aggregate plays a crucial role in providing a satisfactory thermal resistance to
mortars and concretes, as aggregate makes up 60 to 80 vol. % of the concrete [2,9]. As such, aggregates
with low mass loss and a low thermal strain coefficient of expansion, along with negligible residual
strains, are clearly preferred in the production of fire-resistant concretes [2,10]. Moreover, the rough
angular surfaces of aggregates (which improve the physical cement paste-aggregate bond), as well as
the presence of reactive silica (which improves chemical bonds), are desirable features of aggregates [9].
In general, aggregates usually remain stable up to 500-600 °C, although some siliceous aggregates,
such as flint [9,11], are stable only up to 300-350 °C [2,12]. It has been reported that siliceous aggregates
(i.e., quartzite, granite), have worse thermal resistance than carbonatic aggregates (such as limestone or
dolomite) [3,5,11]. This is attributable to the higher thermal expansion of carbonatic aggregates, as well
as to the quartz crystal transition, which takes place at around 573 °C (low to high quartz), resulting in
volume expansion [11]. In the case of calcareous aggregates, a temperature range of 700 °C to 900 °C
seems to be disruptive, as a result of the decomposition of calcium carbonate; CaCO3 decomposes into
CaO (lime) and CO, (carbon dioxide) [2,5,13].

In distinction to the expansion process of aggregates, when heated, cement paste generally exhibits
shrinkage, due to the chemical and physical loss of water, when exposed to elevated temperatures,
although up to 200 °C, a slight expansion might occur. Hydrated cement paste is mainly composed
of calcium-silicate-hydrate (C-5-H) gel (the primary binding phase), calcium hydroxide (CH) and
calcium sulfoaluminates (ettringite and monosulphate), which consist of 50-60 vol. %, 20-25 vol. %
and 15-20 vol. % of solids, respectively [5].

The thermal resistance of cement paste is governed by many factors, in which the most important
are the water to cement (w/c) ratio, the C/S (calcium oxide/silicon dioxide ratio), as well as the
quantity of portlandite (CH). A paste containing a low C/S ratio and thus a low CH content is more
desirable for obtaining heat-resistant cement paste [3,9,13].

In general, the degradation process of cement paste occurs from the very beginning of the heating
process, although up to 300 °C the changes are considered to be relatively small and reversible, being
thus recoverable by the so-called “rehydration process”. At 80 °C, the decomposition of ettringite
begins, as well as the evaporation of physically bound water. Firstly, the capillary and free water not
influenced by the Van der Walls attraction forces, evaporate; afterward, the loss of physically and
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chemically combined water, associated with the C-S-H phase, occurs [3,13]. The C-S-H decomposition
process starts at the very beginning of the heating process, resulting in a reduction of its volume,
which turns to an increment in total porosity as well as a coarsening of the pore structure [2,13].
However, up to 300 °C, no dramatic changes in porosity are observed, but when the temperature
exceeds 300 °C, the porosity increases significantly [13]. Figure 1 presents the change in total porosity
(up to 800 °C) and the area percentage of each phase of heated Portland cement paste when heated
up to 1000 °C. A similar relation between temperature increment and the coarsening of the pore
structure can be observed in the case of concrete. Using the mercury intrusion porosimetry method
(MIP), Haridharan et al. [14] have analyzed the porosity of concretes, which were exposed to elevated
temperature and then cooled quickly or slowly. With a slow cooling process, porosity increased from
an initial 19.24 vol. % to 22.34 vol. %, 25.32 vol. %, and 32.54 vol. % after exposure to 200, 400 and
600 °C, respectively. Likewise, after quick cooling, the porosity increased to 22.17 vol. %, 32.87 vol. %,
and 44.54 vol. % after exposure to 200, 400 and 600 °C, respectively.
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Figure 1. The effect of temperature on the change of total porosity (a) and the area percentage of
each phase (b) of heated Portland cement paste after cooling. Reproduced with permission from [15].
Copyright Elsevier, 2013.

In addition to the alternation of the pore structure while heating, when the temperature exceeds
200 °C the first cracks in the cement matrix can be noticed; however, a significant increment in cracks
is observable only when the temperature exceeds 400 °C. Above a temperature of 400 °C, the number
of cracks increases drastically with temperature [3,5]. Moreover, when the temperature rises, thermal
incompatibilities between aggregate and cement paste arise, leading to propagation of micro-cracking
in the interfacial transition zone (ITZ) between the cement paste and the aggregate [3], resulting in
significant strength loss.

A turning point in the properties of cement-based composites occurs in the range of 400 °C to
550 °C. At these temperatures, decomposition of CH occurs [2,3,13]. This process is not itself critical
regarding the strength loss of concretes; however, as a result of a rapid lime rehydration process (when
samples are water cooled or exposed to humidity), portlandite is formed again, resulting in expansion,
which turns to severe cracking and strength loss in samples [3]. Therefore, cement blends produced
with lower C/S ratios possess lower CH contents, thus decreasing the severe cracking phenomenon [9].
As reported by Arioz [16], exposure to a temperature of 500 °C causes irreversible changes in concretes.
A further temperature increment leads to the second phase of C-S-H gel decomposition at 560 °C and
formation of 3-C,S at 600-800 °C, as well as the decomposition of poorly crystalized CaCO3 to CaO
and CO, [2,3,5,13]. A temperature of 600 °C seems to be critical for concrete, resulting in an extreme
increase in cracks observed on the surface of the concrete, as well as significant growth of porosity,
resulting in a dramatic strength loss in the concrete [5,9]. After exposure to 600 °C, concrete loses its
load-bearing capacity, and can thus be considered structurally useless. A graphical representation
of the change of phase composition in hydrated cement paste (w/c = 0.67), as a function of heating
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temperature, is presented in Figure 2. Table 1 summarizes the effects of temperature on the properties

of concrete.
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Figure 2. The effect of temperature on the change of phase composition of cement paste with w/c =0.67.

Reproduced with permission from [17]. Copyright Elsevier, 2009.

Table 1. The effects of temperature on physico-chemical, visual, and mechanical properties of

cement-based composites exposed to elevated temperatures. Based on: [1-3,5,9,10,13].

Temperature Range

Physico-Chemical Changes

Effect on Cracking

Effect on Strength

Ettringite dehydration (from 80 to 150 °C

No effect or slight strength

20-100 °C Evaporation of capillary and free water No cracking is observed improvement
Dehydration of calcium aluminosulphate
hydrates (120-140 °C)
Gypsum decomposition (150-170 °C) .
o L No effect or slight strength
100-200 °C Beginning of loss of Stabi]ity of No crackmg is observed improve%nent g
cement paste
Loss of C-S-H interlayer water
Break of some siliceous aggregates <300 °C no effect or slight
o (approx. 350 °C) First noticeable cracks . 8
200400 °C . strength improvement.
Dehydration of C-5-H phase are developed >300 °C strength loss by 15-40%
Decomposition of hydration products
Decomposition of Ca(OH); to CaO + H,O
o
(4507550A S Intensification of
400-600 °C Destruction of C-5-H gel cracking in aggregate, Strength loss by 40-60%
Quartz phase transformation (573 °C) cement paste and ITZ
from x-quartz to 3-quartz assisted with
increment of volume
Loss of load-bearing capacity
Second phase of C-S-H decomposition .
and formation of B-C,S at 600-800 °C Sec\r/aezleiscrsatcal;?f, IOI;Z
600-800 °C Decomposition of poorly crystalized c ollapsin:g of strugctural Strength loss by 80%
CaCOs integrity of concrete
Decarbonization of limestone aggregate
Breakdown of C-S—H phase. Loss of bond between Loss of compressive strength or
800-1000 °C Total loss of water of hydration- almost all of compressive strength

Ceramic binding

aggregate and paste

is lost

Various methods for improving the thermal resistance of cement-based composites exist: the use
of proper aggregates [11], the use of various fibers (especially polypropylene fibers—PP) [18,19],
the application of surface coatings [20], and the incorporation of supplementary cementitious materials
(SCMs) [3,5,21]. It has been reported that the inclusion of SCMs, such as fly ash (FA) or ground
granulated blast-furnace slag (GGFBS), can contribute to strength improvements at lower temperatures
(up to 400 °C), as well as to minimizing strength loss up to 600 °C, as compared to plain Portland
cement concrete. In addition, due to the pozzolanic activity of SCMs resulting in an extra amount of
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C-S-H produced, along with a reduced amount of CH, a reduction in the surface cracks of concretes is
observed. Thus, the total porosity and average pore volume become lower than that of plain cement
concrete [3,5]. Furthermore, the abovementioned SCMs contribute to a decrease in the risk of explosive
spalling. Silica fume (SF) is a type of SCM which leads to an increase in the risk of spalling. This
effect is attributable to the filler effect and the pozzolanic activity of SF, resulting in the production
of a cement matrix with low permeability. Hence, as a result of high vapor pressure during concrete
heating, the risk of thermally-induced explosive spalling increases [3,5,21,22].

In the last decade, the use of nanomaterials, as admixtures for improving the thermal resistance of
cementitious composites, has gathered the noticeable attention of researchers. The use of nanomaterials
has been widely promoted due to their superior reactivity, as compared to similar materials available at
the micro-scale [23-25]. Nanomaterials affect the properties of cementitious materials in two ways: by
their hydration seeding effect and their filling effect [23,26,27]. Due to their small size, nanomaterials
act as seeds during the precipitation process, accelerating the hydration process and enabling C-S-H
gel formation around the nanomaterials. In addition to their chemical effect, nanomaterials exhibit
a particular physical effect: the so-called nano-filling effect, which leads to densification of the pore
system [23]. As a result, the pore structure becomes more compact and homogenous, which translates
to a significant improvement in mechanical properties and durability. However, the incorporation
of nanomaterials might lead to noticeable consistency decrement [24] and undesirable compaction
(as a result of high surface area to volume ratio of nanoparticles) of cement matrix resulting in cement
matrix of low permeability, thus increasing susceptibility to cracking during thermal load (as in case of
SF-incorporated concrete) [28].

Even though there are numerous review papers related to the effects of nanoparticles on
cement-based composites in the ambient (unheated) state [23,24,29-33], there is a lack of review
papers summarizing the effects of nanomaterials on the performance of cementitious composites under
elevated temperature conditions. As such, this paper aims to summarize recent developments in this
field, as well as to address the possible directions which are necessary for developing heat-resistant
nanomodified cementitious composites.

2. The Effect of Nanosilica on the Thermal Resistance of Cement-Based Composites

Among all the nanomaterials used to modify the properties of cement-based composites,
nanosilica (NS) has most attracted researchers’ attention. This interest can be attributed to NS’s
superior reactivity, as compared to other SCMs. NS fills the spaces between the particles of C-S-H
gel, acting as a nano-filler and refining its microstructure. Also, due to its high pozzolanic activity,
nanosilica reacts with CH, producing more C-5-H, which results in a denser cement matrix and thus
improved strength and durability of cement-based composites [29]. The effect of nanosilica on the
mechanical properties and durability of cementitious composites has been comprehensively revised
by many authors [23,24,29-31,33,34].

Studies undertaken by various researchers have shown that nanosilica can be utilized in
cement-based composites working at elevated temperatures. The available studies related to the effects
of NS on the thermal resistance of cement-based composites are summarized in Table 2. The inclusion
of nanosilica in the mix improves the resistance of cementitious composites to elevated temperatures,
since such composites retain their high residual compressive strength and demonstrate reduced crack
length and width, as compared to plain samples. It has been reported that nanosilica improves the
chemical stability of C-S-H (due to a reduction of calcium leaching from C-S-H) and increases the
average silicate chain length of C-S5-H and the volume of high-density C-S-H. As a result, the thermal
degradation of the C-S5-H phase during heating can be hindered [35-37]. Moreover, in the lower
temperature range (up to approximately 300-400 °C), due to the high pozzolanic activity of NS,
nanoparticles promote the hydration of anhydrous cement grains during the internal autoclaving
process and as a result more C-S-H is produced. Subsequently, a higher strength increment is obtained
for samples containing NS than for plain cementitious composites. Also, due to the consumption
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of portlandite and the formation of additional C-5-H, nanosilica contributes to the filling of some
open pores, and therefore a reduction of surface cracks can be observed after thermal exposure [28,38].
Furthermore, Kumar et al. [39] have reported that the incorporation of NS decreases the thermal
conductivity of concretes and that heat transfer in NS-modified specimens is thus delayed. It means
that more time is required to reach the desired temperature at the core of specimens so that the rate of
thermal degradation of specimens is delayed, as compared to plain specimens.
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Table 2. Summary of available studies related to the effects of nanosilica (NS) on the thermal resistance of cement-based composites.

Size [nm] (Surface Area Heating Temperature

Amount [wt. %]

Type of Material

[m2/g)) [°C] Tested Mechanical Properties Ref.

15 1,4 200-400-650-850-950 Cement paste Compressive strength [40]

30 £+ 5 (195) 051,2,3 300-600-800 Cement paste Compressive strength [41]
30 nm (180-300) 5 100-200-300—400-500 Cement paste Compressive strength [42]
12-15 (n/a) 15,3 500-800 Cement paste and cement mortar Compressive strength [43]
n/a 2.5,5,75 400-700 Cement mortar Flexural strength, compressive strength [44]

n/a 25,575 400-700 Cement mortar Flexural strength, compressive strength [45]

n/a 1,2,3,4,5 200-400-600-800 Cement mortar Flexural strength, compressive strength [28]
30-70 (n/a) 3 200-400-600-800 Concrete Compressive strength, split-tensile strength [39]
45 (60) 15,3,45 400-600-800 Concrete Compressive strength, tensile strength [46]
16-20 (170-200) 5 200-500-800 Concrete Compressive strength [47]
5-8 (n/a) 1,2,3,4,5 100-200-400-600-800 Concrete Compressive strength [48]
n/a 1,2,3,4,5 200-400-600 Concrete Flexural strength, compressive strength [49]

30 (200 £ 10) 2 200-400-600-800 Concrete Uniaxial tensile strength [50]
30 (200 + 10) 2 200-400-600-800 Concrete Compressive strength, tensile splitting [51]

strength, flexural strength
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2.1. The Effect of Nanosilica on Mass Loss

Heikal et al. [40] have analyzed the mass loss (up to 950 °C) of ordinary Portland cement (OPC)
pastes containing 1 and 4 wt. % of NS and cement pastes containing 25, 50 and 65 wt. % of cement
replaced with blast-furnace slag (GGBS) and a fixed amount of NS—4 wt. %. It was found that in the
case of OPC pastes, mass loss was higher for samples without an NS admixture, as a result of the higher
CH amount in the cement paste. Incorporation of 1 wt. % or 4 wt. % of NS contributed to a decrement
in the amount of calcium hydroxide (CH) and calcium carbonate (CC™) in cement pastes, but the
lowest mass loss of OPC cement pastes was reported for the sample containing 1 wt. % of NS. When
GGBS and 4 wt. % of NS was introduced to the cement paste, a higher mass loss of GGBS-incorporated
specimens was reported, in the range of 200-400 °C, as compared to OPC pastes. This was attributed to
the activation of GGBS (as a result of self-autoclaving conditions), nano-filling, and the high pozzolanic
activity of NS. This phenomenon resulted in the production of an additional C-5-H phase from the
liberated CH. However, when the temperature exceeded 400 °C, the mass loss of GGBS-incorporated
cement pastes was generally lower than that of OPC pastes. Maheswaran et al. [43] have analyzed
the mass loss (based on thermogravimetric analysis) of cement pastes containing 20 wt. % of cement
replaced with lime sludge and an addition of nanosilica (1.5 wt. % and 3 wt. %) with a fixed w/b = 0.4.
After exposure to temperatures up to 400 °C, the mass loss of samples containing NS was slightly
higher than that of plain samples, while in the case of exposure to a temperature range of 400 °C to
600 °C, the mass loss of samples containing NS was lower, as a result of CH consumption by the NS.

In another study [28], the effects of NS admixture in amounts from 1-5 wt. %, on the mass
loss of cement mortars (w/c = 0.5) containing three different types of aggregates (quartz, magnetite
and barite), were evaluated. The samples were subjected to elevated temperatures of up to 800 °C.
No significant effect of the NS content or heating temperature on the mass loss of cement mortars was
observed, with the mass loss being highly related to the type of aggregate used. Bastami et al. [46]
have evaluated the effects of temperature (up to 800 °C) on the mass loss of two types of high-strength
concretes (HSCs), with w/b = 0.25, containing fixed amounts (30 kg/ mS or 60 kg/ m3) of SF or SF/NS.
In NS-modified concretes, SF was replaced with NS in amounts of 1.5, 3, and 4.5% by mass of cement
(1.41, 2.83 and 4.2 wt. % of binder mass, respectively). The results of these studies were inconclusive,
although at up to 400 °C the mass loss of was slightly lower or negligible for samples containing NS.
After exposure to 600 °C and 800 °C, in comparison with plain concrete, a slightly lower mass loss was
observed for concretes containing 30 kg/m? of SF/NS mixture, while in concrete specimens containing
60 kg/ m?3 of SF/NS mixture, the mass loss increased.

In a study presented by Shah et al. [47], the mass loss of three HSCs (w /b ranging from 0.25 to
0.3), containing 5 wt. % of NS, 10 wt. % of SF or a mixture of 5 wt. % NS and 5 wt. % SF, exposed to
200, 500 and 800 °C, was evaluated. After exposure to 200 °C, the mass loss values for all concretes
tested was relatively similar, varying from 2.47 to 3.17%. After exposure to 500 °C, samples containing
NS exhibited a higher mass loss than SF-modified specimens, although the highest mass loss was
reported for samples containing a mixture of SF and NS. After exposure to 800 °C, the lowest mass loss
was reported for NS-modified samples, while mass loss dramatically increased for samples containing
SF and a SF/NS mixture. Rathi and Modhera [48] have analysed the thermal resistance of HSCs with
cement replacements; from 10 up to 30 wt. % of FA (in increments of 5 wt. %) and with 1 to 5 wt. %
of NS (in 1 wt. % increments). For comparison, plain concretes without NS or FA were prepared.
The authors reported that in all the mixtures tested and under all testing temperatures (from 100 to
800 °C), the mass loss was found to be smallest for concretes containing 3 wt. % of NS. Kumar et al. [39]
have evaluated the properties of two HSCs containing 0 and 3 wt. % NS (w/c = 0.29), exposed to
200, 400, 600 and 800 °C. The authors reported that >200 °C, the mass loss of NS modified concrete
was decreased slightly, as a result of the lesser amount of free water available to evaporate from the
concrete (consumed as a result of the formation of a higher quantity of hydration products). As a result,
after exposure to 400 °C, the mass loss of NS-modified concretes increased slightly, because of the
dehydration of the higher amount of C-5-H, formed as a result of the presence of NS. Further exposure
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to 600 and 800 °C, resulted in a slightly lower mass loss of NS-modified concretes, as a result of delayed
thermal degradation, attributed to the decreased thermal conductivity of NS-modified concretes.

From the references cited above, it can be concluded that the effect of NS on the mass loss of
cement-based composites is still controversial and is highly dependent on mix compositions as well as
on the type of composite tested (e.g., paste, mortar or concrete). It is difficult to draw a clear conclusion
about the influence of the incorporation of nanosilica on mass loss or the stability of cement composites
when subjected to high temperatures. Consequently, this issue requires further investigation, to
determine a distinct trend regarding the performance of various dosages of NS on the stability of
different cement-based materials.

2.2. The Effect of Nanosilica on the Mechanical Properties of Cement-Based Composites

2.2.1. Flexural Strength

The effect of NS on the flexural strength of cement-based composites is still in dispute, as
flexural strength is highly sensitive to micro-cracking during heating [28]. In work undertaken
by Ibrahim et al. [45], the effect of NS (in the amounts of 0, 2.5, 5 and 7.5 wt. %) on the flexural strength
of cement mortars, containing OPC and PP fibers exposed to high temperatures, was determined.
Samples were cured for 3, 7, and 28 days and then exposed to 400 and 700 °C. In general, the authors
reported an improvement in flexural strength (after all curing periods) in unheated cement mortars,
when NS was present. After exposure to 400 °C, the flexural strength of all the cement mortars
decreased, as a result of thermally induced stress leading to increased cracking and pressure in gel
pores. However, samples containing 2.5 wt. % and 5 wt. % of NS (after 28 days of curing) exhibited
higher flexural strength retention than plain control samples. On the other hand, in the case of samples
containing 7.5 wt. % of NS, flexural strength was slightly lower than that of the control samples. After
exposure to 700 °C, all the samples lost almost all of their strength, and no significant effect of NS was
observed. In another study, carried out by the same authors [44], the effect of replacing FA with NS
(in the amounts of 0, 2.5, 5, and 7.5 wt. %), on the properties of high-volume fly ash cement mortars
(25, 35 and 45 wt. % of FA) exposed to high temperature, was evaluated. Samples were exposed
to 400 and 700 °C. Similarly to the abovementioned studies [45], positive effects of NS-modified
samples on mechanical properties (after 3,7 and 28 days of curing), in unheated states, were observed.
The study showed that the partial replacement of FA with NS contributes significantly to the retention
of flexural strength loss, after exposure to 400 °C. The best performance was exhibited by cement
mortar containing a mixture of 37.5 wt. % FA and 7.5 wt. % NS (total 45 wt. %). After exposure to
700 °C, these samples lost most of their flexural strength, with their strength values varying between
20-30% of the initial strength.

In distinction to the abovementioned works, other studies have reported rather negligible effects
of NS on flexural strength [28,49,51]. Yan et al. [51] have analyzed the effect of NS on the flexural
strength of steel-fiber reinforced concrete (SFRC), exposed to temperatures of up to 800 °C. They
reported an increment in the initial flexural strength of concrete containing NS, as well as a slightly
higher flexural strength after exposure to 200 °C, compared to plain SFRC. Beyond 200 °C, the effect of
NS seemed to be negligible. In another study [49], the effect of 200, 400, and 600 °C on the flexural
strength of two types of concretes with w/c = 0.25 (containing 350 and 450 kg/m? of cement), with
the addition of 15 wt. % of SF and 1-5 wt. % of NS, was examined. Adding NS improved the flexural
strength of unheated concrete specimens, although no significant changes (<10%) in residual flexural
strength, between specimens exposed to temperature, were reported. A negligible effect of NS addition
(1-5 wt. %), on the flexural strength of cement mortars containing different types of aggregates
(quartz, magnetite, and barite) exposed to temperatures up to 800 °C, has also been reported in a study
undertaken by Horszczaruk et al. [28]. A slight variation (decrement) in the flexural strength of cement
mortars containing barite aggregate and nanosilica was reported, although this effect was attributed to
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the properties of the barite aggregate, which has low thermal resistance and cracking potential under
thermal stress.

It is difficult to draw any clear conclusions, regarding the effects of NS on the flexural strength
of cementitious composites, from the works cited above. While some authors have reported flexural
strength improvements [44,45] in the presence of NS under elevated temperatures, others have reported
only negligible effects [28,49,51]. As such, further work is required.

2.2.2. Tensile Strength

Tensile and split-tensile strength have been analyzed in several works [39,46,50,51]. In the work
done by Bastami et al. [46], the effect of temperature (up to 800 °C) on the tensile strength of HSC
(w/b = 0.25), containing 30 kg/ m?3 of SF replaced with NS in the amounts of 0, 1.5, 3 and 4.5 wt. %
(by mass of cement), was determined. The best performance was observed for samples containing
4.5 wt. % of nanosilica. NS-modified samples exhibited higher tensile strength retention, as compared
to plain concrete samples: from 8.14 to 3.14%, 41.19 to 36.17%, and 70.06 to 66.35%, after exposure
to 400, 600 and 800 °C, respectively. In another work [39], the effects of various heating regimes
on the split-tensile strength of HSCs (w/c = 0.29), containing 0 and 3 wt. % of NS, were analyzed.
The samples were exposed to temperatures from 200 to 800 °C, with 0 min, 1 h and 2 h of constant
heating at the desired temperature. It was observed that the split-tensile strength of NS-modified
specimens increased up to temperatures of 400 °C (in all heating regimes), while plain concrete
exhibited split tensile strength improvement only up to 200 °C. Afterwards, the strength of the plain
concrete was lower than that of the unheated specimen. After exposure to 400 °C for 2 h, the split-tensile
strength of NS-modified HSC specimens was higher, by 13%, than that of the unheated specimens,
while the control HSC lost approximately 30% of its strength. The authors linked these findings with
the formation of a high-density volume fraction of C-S5-H (which was the result of increased C-S-H
silicate chain length), which thus improved the stability of C-S-H. After exposure to 600 °C and 800 °C,
split-tensile strength dropped significantly and the differences between the control and NS-modified
concrete decreased. After exposure to 800 °C, the differences between samples were <10%. In work
undertaken by Yan et al. [51], the effect of 2 wt. % of NS admixture on the split-tensile strength of SFRC,
after exposure to 200, 400, 600, and 800 °C, was analyzed (Figure 3). Up to 400 °C, an increment in
the split-tensile strength of concrete was observed, after which a loss of strength was reported. It was
observed that up to 600 °C, NS-modified SFRC specimens exhibited higher strengths than the control
SFRC specimen. The highest split-tensile strength values of concrete specimens were reported after
exposure to 400 °C, with the NS-modified SFRC and control SFRC exhibiting strengths of 5.0 MPa and
4.5 MPa, respectively. After exposure to 600 °C, NS-modified SFRC exhibited a strength similar to that
of the unheated sample, while the control SFRC had a lower strength than that of the corresponding
unheated sample. After 800 °C, the split-tensile strength of all the concretes was similar.

Steel-fibre reinforced
concrete (SFRC)

I Normal concrete
[
[ NS-modified SFRC

Split-tensile strength [MPa]
w

i |

20 200 400 600 800
Exposure temperature [°C]

Figure 3. Split-tensile strength of normal concrete, steel-fiber reinforced concrete (SFRC) and SFRC
modified with NS, as a function of temperature. Redrawn from [51].
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In a subsequent work [50], the effect of 2 wt. % NS admixture on the axial tensile strength of
SERC, after exposure to 200, 400, 600, and 800 °C, was analyzed. The authors reported significant
strength improvement in NS-modified SFRC specimens, in unheated states, as compared to a control
SERC. In all samples tested up to 400 °C, strength improvements were reported. However, after
thermal exposure, the strength ratio between the NS-modified SFRC and the control SFRC decreased.
Nevertheless, NS-modified specimens were superior to control SFRC specimens, up to a temperature
of 800 °C.

From the references cited above, it is safe to conclude that the inclusion of NS in cement-based
composites is beneficial for improving the tensile strength of composites working under elevated
temperature conditions. A significant improvement of tensile strength is observed when exposed to
temperatures up to 400 °C, while further increments of temperature result in a decrease in the ratio
between NS-modified and plain specimens. In general, it can be stated that NS reduces the tensile
strength loss resulting from exposure to high temperatures, with different grades of change, depending
on the temperature applied.

2.2.3. Compressive Strength of Cement Pastes

The effect of NS on the compressive strength of cement pastes exposed to elevated temperatures
has been reported in several works [40-42,52]. Heikal et al. [52] analyzed the effects of 1-6 wt. % of NS
as a cement replacement in OPC pastes and pastes with GGBS, with specimens heated up to 1000 °C.
Generally, it was observed that incorporation of NS in cement pastes helped to retain the strength of
cement pastes up to 1000 °C, although a much more beneficial effect of NS was observed in cement
pastes containing GGBS and 4 wt. % of NS. In another work [40], the effects of NS in the amounts
of 1 and 4 wt. % and GGBS from 0, 25, 50, and 65 wt. %, as a cement replacement, on the thermal
resistance of cement pastes with or without superplasticizer, exposed to temperatures up to 950 °C,
were analyzed. The study showed that the incorporation of superplasticizer, together with NS, has the
most beneficial effect in improving the thermal resistance of cement pastes. In the case of OPC paste,
1 wt. % of NS was established as the most beneficial amount for improving heat resistance up to 400 °C.
In the case of GGBS-modified pastes, a positive effect of NS was observed up to 650 °C. Lim et al. [42]
analyzed the effects of 5 wt. % of NS addition, on the thermal resistance of cement pastes exposed to
100-500 °C, with two different cooling regimes: cooling down to room temperature and prolonged
heat treatment at 50 °C for 3 days. The results were compared with plain OPC specimens: after cooling
down from all heating temperatures, NS-modified specimens exhibited higher compressive strength,
by 7 to 20%, as compared to control OPC specimens. The most noticeable difference in compressive
strength between samples was observed after exposure to temperatures of 400 °C and 500 °C, with the
values being 20% and 17%, respectively. When samples were cooled after prolonged heat treatment
regimes, a significant change in performance between NS-modified and plain OPC specimens was
observed, after exposure to 500 °C. The study showed that plain OPC samples broke down completely
and lost their strength, while samples containing NS retained almost 80% of their initial strength.
El-Gamal et al. [41] have evaluated the effects of 0.5-3 wt. % NS admixture on the properties of OPC
cement pastes, exposed to temperatures of 300, 600, and 800 °C (Figure 4). Two different cooling
regimes, gradually in air and water quenching, were evaluated. In the case of the first testing regime
(Figure 4a), all of the samples tested exhibited a slight strength increment after exposure to 300 °C,
although the samples containing 0.5, 1, 2, and 3 wt. % exhibited strength improvements by 8, 9, 14,
and 12% (relative to the strength of unheated samples), while the control OPC exhibited only a 3%
improvement in strength. After exposure to 600 °C, all the specimens tested, exhibited strength losses,
although samples containing 0.5, 1, 2, and 3 wt. % of NS retained 77, 75, 64, and 63% of their initial
strength (respectively); for the control sample only 51% of the initial strength was retained. After
exposure to 800 °C, all the samples tested exhibited only 31-35% of their initial strength, with no
significant differences between samples being observed. In the case of a rapid cooling regime through
water quenching (Figure 5b), the drop in strength was observed at all the testing temperatures, while
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at a temperature of 800 °C the samples lost their strength and broke down. Nevertheless, samples
containing NS retained a higher compressive strength after exposure to 300 °C and 600 °C, with the
authors concluding that the optimal NS addition value is 1 wt. %.
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Figure 4. Compressive strength of cement pastes containing NS, after heating and cooling: (a) gradually
in air, (b) suddenly in water. Reproduced with permission from [41]. Copyright Springer Nature, 2018.

2.2.4. Compressive Strength of Cement Mortar

The effects of NS on the thermal resistance of cement mortars has also been analyzed in several
studies [28,43—45]. In a study undertaken by Horszczaruk et al. [28], the effect of NS as an admixture
(from 1 to 5 wt. %) on the compressive strength of cement mortars containing either quartz, magnetite
or barite aggregate and exposed to temperatures up to 800 °C, was determined. The study showed
that there was an optimum amount of NS (3 wt. %), which was most beneficial for improving the
compressive strength of cement mortars containing quartz and magnetite aggregate. The beneficial
effect of NS was mainly noticeable up to a temperature of 400 °C. After this point, the effect of NS
on compressive strength was less significant or negligible. Examples of the effects of NS on the
compressive strength of cement mortars with quartz and magnetite aggregates have been plotted in
Figure 5. In the case of cement mortars containing barite aggregate, the inclusion of NS contributed
to increased cracking potential (as compared to pristine samples), with the compressive strength of
specimens after heating thus being lower. However, this phenomenon occurred due to the high water
absorption of the barite aggregate, which resulted in undesired compaction of the cement matrix.
As such, the effect of NS is dependent on the type of aggregate used.

90

- 1]
o
!
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20 +—=— Magnetite agg.

1 — Magnetite agg. + 3% NS

Residual compressive strength [MPa]

104 T T T T T
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Figure 5. Comparison of residual compressive strengths of cement mortars containing quartz and
magnetite aggregate, with and without NS. Reproduced with permission from [28]. Copyright
Elsevier, 2017.
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Ibrahim et al. [45] have analyzed the effects of temperature on the compressive strengths of OPC
mortars containing PP fibers and NS in the amounts of 0, 2.5, 5, and 7.5 wt. %. Their samples were
cured for 3, 7, and 28 days and then exposed to temperatures of 400 and 700 °C. The compressive
strengths of the cement mortars increased after exposure to 400 °C, but higher strength increments
were reported for specimens containing NS. Strength gains were much more noticeable in the early
stages of curing, as a result of accelerated pozzolanic reactions induced by heating in the presence
of NS, which led to the production of higher amounts of C-S-H phase than in plain mortar. After
exposure to 700 °C, a remarkable reduction in compressive strength was observed in all specimens,
with the effect of NS being negligible. In another study [44], the authors detected a synergistic effect of
FA and NS in the production of heat-resistant mortar. High-volume fly ash cement mortars (w/b = 0.4),
containing 25, 35, and 45 wt. % of cement replaced with FA and 2.5, 5, and 7.5 wt. % of NS, were
produced. The specimens were exposed to 400 and 700 °C, after 3, 7, and 28 days of curing. The authors
reported that after exposure to 400 °C, all their specimens exhibited an increase in compressive strength,
although improvements were more noticeable for specimens containing NS. After exposure to 700 °C,
the samples exhibited significant strength loss, but an optimal combination of FA and NS (37.5 wt. %
and 7.5 wt. %, respectively), enabled the production of mortar that exhibited compressive strength
comparable to that of the unheated specimen.

Results contrary to those presented above, have been reported by Maheswaran et al. [43]. In this
study, the compressive strengths of cement mortars (cured for 3, 7, and 28 days) and containing 20 wt. %
of cement replaced with lime sludge and NS (1.5 and 3 wt. %) or SF (3 and 6 wt. %), after exposure to
500 and 800 °C, were determined. Generally, after exposure to 500 °C (regardless of the time of curing),
specimens containing NS exhibited more strength loss than the control sample. The only exception
was mortar containing 1.5 wt. % of NS, cured for 3 days. In addition, samples containing NS showed
worse performance than those containing SF. After exposure to 800 °C, specimens containing NS
exhibited worse mechanical performance than the plain control sample. However, their performance
was better than that of SF-incorporated specimens, which exhibited spalling and lost their strength,
while NS-incorporated samples exhibited higher strength and were not damaged.

2.2.5. Compressive Strength of Concrete

The effect of NS on the compressive strength of concretes, after thermal exposure, have also been
analyzed in several studies [39,46-49,51]. Kumar et al. [39] analyzed the effect of thermal exposure
(from 200 to 800 °C) of HSCs (w/c = 0.29), containing 0 and 3 wt. % of NS, on compressive strength.
The samples were heated under three different regimes, with varying times of maintaining the desired
temperature (0 min, 1 h and 2 h). The authors observed that in NS-incorporated concretes, compressive
strength increased up to 400 °C (in all heating regimes), while plain concrete exhibited compressive
strength improvements only up to 200 °C. Beyond 200 °C, the strength of the reference concrete was
lower than that of the unheated specimen. It is worth noting, that the relative compressive strength of
NS-modified HSC, after exposure to 400 °C (with a 2 h heating regime), increased by 40%. This effect
was attributed to the improved stability of the C-S5-H phase and higher volume of high-density C-S-H.
Further thermal exposure (600 and 800 °C), led to a gradual strength decrement of the specimens,
with NS-modified samples exhibiting only slightly higher relative compressive strength than plain
HSC (with a difference less than 10%). Rathi and Modhera [48] analyzed the effects of HSCs with
cement replacements: from 10 wt. % to 30 wt. % of FA (increments of 5 wt. %), or from 1 to 5 wt. % of
NS (increment steps of 1 wt. %). For comparison, plain concretes without NS or FA were prepared.
The concrete samples were exposed to temperatures of up to 800 °C. The study showed that the
incorporation of NS in the amount of 3 wt. % was beneficial in improving the thermal resistance of
concretes, up to 800 °C. In the presence of NS, a compressive strength increment was observed, up
to 400 °C. Moreover, the best performance among all the concretes tested, was exhibited by concrete
based on a mixture of FA (20 wt. %) and 3 wt. % of NS. Yan et al. [51] have characterized the effects of
2 wt. % of NS admixture on the compressive strength of SFRC exposed to 200, 400, 600 and 800 °C.



Nanomaterials 2018, 8, 465 14 of 33

The results were compared with plain SFRC and normal concrete, showing that the presence of NS
remarkably increases the compressive strength of concrete (by 41%), up to 400 °C, as compared to
reference concrete (Figure 6). Beyond 400 °C, strength decreased and at 600 °C the compressive
strength was comparable to that of the unheated specimens. Furthermore, all the samples lost more
than half of their initial strength, after exposure to 800 °C.
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Figure 6. Compressive strength of normal concrete, SFRC and NS-modified SFRC, as a function of
temperature. Redrawn from [51].

Bastami et al. [46] characterized the effects of replacing SF with NS, in two types of HSCs
(w/b = 0.25), containing 30 kg/m3 and 60 kg/m3 of SF and exposed to temperatures of 400, 600,
and 800 °C. SF was replaced with NS in the amounts of 1.5, 3, and 4.5% by a mass of cement (1.41,
2.83, and 4.2 wt. % of binder mass, respectively). The study showed that in both types of concrete,
residual compressive strength increased with NS content. For example, the strength loss of plain
concrete (SF = 30 kg/ m3), after exposure to 400, 600, and 800 °C was 15.3%, 48.4%, and 73.3%, while
the corresponding HSC with 4.5 wt. % of NS lost its strength by 7.1%, 40.0%, and 67.9%, respectively.
Sherif [49] analyzed the thermal resistance of two types of concretes, with different cement amounts of
350 and 450 kg/m? (fixed w/c = 0.25) and an addition of SF by 15 wt. % and of NS by 1-5 wt. %. Their
samples were exposed to temperatures up to 600 °C. A slight compressive strength improvement was
observed after exposure to 200 °C; however, no differences between specimens were reported. After
exposure to 400 and 600 °C, the samples gradually lost their strength, however lower strength loss
was reported for concretes containing NS. Also, with an increment of NS content, the strength loss was
reduced. After exposure to 400 and 600 °C, both types of plain concrete (with cement contents of 350
and 450 kg/ m3) exhibited 78.0%, 40.4% and 70.0%, 36.2% of their initial strength, respectively, while
NS-incorporated concrete (5 wt. %) exhibited 86.0%, 49.0%, 77.0%, and 44.5% (respectively) of their
initial strength.

Contradictory results have been presented by Shah et al. [47]. In their study, three HSC mixes
(w/b 0.25-0.3) containing 5 wt. % of NS, 10 wt. % of SF or a mixture of 5 wt. % of NS and 5wt. %
of SF, were prepared. The specimens were exposed to temperatures of 200, 500, and 800 °C. At the
first heating temperature (200 °C), a beneficial effect of NS was observed, with concrete containing
5 wt. % of NS exhibiting the highest strength improvement (by 10%). However, after exposure to 500
and 800 °C, all the samples gradually lost their strength, with the highest strength loss being observed
for samples containing NS. After exposure to 800 °C, NS-modified samples lost 79% of their initial
strength, while specimens containing SF exhibited a strength loss of 49%. Incorporation of an NS/SF
mixture resulted in a 71% strength loss. The authors attributed this phenomenon to an excessive
build-up of vapor pressure, which led to extensive cracking in NS-incorporated samples. Moreover,
the authors reported a significant reduction of workability and problems with homogenous mixing,
when NS was present in the mix. This could have been the factor resulting in the negative impact of
NS present in the mix.
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Based on the above-mentioned research, it is safe to conclude that the incorporation of NS
has a significant impact on the improvement of compressive strength, after exposure to elevated
temperatures, regardless of the type of composite (i.e., paste, mortar or concrete). The inclusion of
NS has a beneficial effect on compressive strength retention, even up to a temperature of 800 °C.
However, in most of the works cited, NS-incorporated specimens exhibited a remarkable improvement
in compressive strength up to 400 °C, after which the beneficial effect diminished gradually.

2.3. Microcracking and Spalling

As mentioned in the introduction, incorporation of selected SCMs, such as SF, represents
a significant threat related to the risk of increased cracking and spalling. Spalling is more likely
in HSCs (with lower water to cement ratio). Due to the filler effect, pozzolanic activity, and ultra-fine
particle size, the incorporation of SF results in concrete compaction and the refinement of the pore
structure, thus resulting in a cement matrix with low permeability. Heating of the concrete results in
a build-up of internal pressure, leading to extensive cracking. However, assuming NS action based on
previous findings regarding SF might be misleading, due to the different reactivity of NS, as well as
the lower amount of NS incorporated (usually lower than 5 wt. %).

Generally, in cement-based composites with standard w/c ratios, it is assumed that NS has
a beneficial effect in decreasing the number of surface cracks in cement-based composites. Due to an
increase in the amount of high-density C-S-H phase and the higher thermal resistance of the C-5-H
phase in a lower temperature range (up to 300-400 °C), fewer cracks are observed in the cement matrix.
After exposure to a higher temperature range (above 400450 °C), the amount of surface cracks in
NS-modified cement-based composites has also been observed to be lower and that microcracks are
narrower and shorter. This effect is attributable to the fact that NS decreases the amount of CH in the
cement paste, because of its reaction with CH, resulting in the formation of an additional amount of
C-S-H. At a temperature of 400450 °C, decomposition of free Ca(OH); to CaO occurs. During cooling
and exposure to moisture, the dehydrated CH reforms rapidly, accompanied by a noticeable volume
increment, resulting in the further development of microcracks. However, due to a lower amount of
initial CH in NS-incorporated samples (before heating), fewer microcracks are observed after heating
in temperatures >400 °C [28].

Bastami et al. [46] have analyzed the effect of NS, (as a SF replacement, in the amounts of 1.5, 3
and 4.5 wt. %) on spalling, in two types of HSC (w/b = 0.25), containing fixed amounts of silica fume;
ie., 30kg/ m? and 60 kg/ m3. The concretes were exposed to 400, 600, and 800 °C, with the authors
reporting that the effect of NS on spalling was not easy to judge, but that a few general conclusions
could be drawn: up to 400 °C, no spalling was observed and mass loss for all mixtures containing NS
was lower than that of the reference sample. After exposure to 600 °C, spalling was observed for all the
samples tested. In the case of HSC with a fixed SF (or SF + NS) amount of up to 30 kg/m?, the presence
of NS decreased spalling. Samples containing NS exhibited a lower mass loss, as compared to plain
samples. However, the presence of NS in HSC with a fixed SF (or SF + NS) amount of up to 60 kg/m?,
resulted in significantly increased spalling. For instance, the reference mixture exhibited a mass loss of
9.3%, while samples containing 1.5, 3 and 4.5 wt. % of NS exhibited mass losses of 22.9, 16.4, and 11.0%,
respectively. After exposure to 800 °C, a similar trend in the spalling of the samples was observed.
The first type of concrete (with a lower SF/SF + NS content), exhibited lower spalling (lower mass loss),
while the concrete with 60 kg/m? of SCMs exhibited higher spalling (higher mass loss), when NS was
present in the mix. Shah et al. [47] have studied the spalling of three HSCs (w /b = 0.25-0.3), containing
5 wt. % of NS, 10 wt. % of SF or a mixture of 5 wt. % of NS and 5 wt. % SF, exposed to 200, 500,
and 800 °C. After exposure to 200 °C, no visible cracks on the surface of the specimens were observed,
with the first spalling and cracking being observed only after exposure to 500 °C. It was noted that
samples containing SF exhibited some fine surface cracks, while the samples containing NS exhibited
significant cracks. However, the highest cracking and spalling was observed in samples containing
a mixture of NS and SE. After exposure to 800 °C, the authors reported that less cracks were observed
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in specimens containing SF, while extensive cracking (with cracks going deep into the cross-section)
was observed for samples incorporated with NS. Spalling occurred in samples containing a mixture of
NS and SE. The authors attributed this phenomenon to the extra dense microstructure produced by the
incorporation of a combination of SF and NS.

Horszczaruk et al. [28] analyzed the effects of the presence of NS on cement mortars containing
various aggregates (quartz, magnetite and barite). Generally, a positive effect, in terms of a reduction
in crack width and length was observed, but in the case of the barite aggregate, undesirable spalling
and cracking occurred. This was attributed to the high water absorption of the barite aggregate
itself, resulting in the accumulation of water in the aggregate and an undesired compaction of the
cement matrix. When NS was incorporated in the mix, a dense microstructure was produced. Due to
the high thermal conductivity of the barite aggregate, a fast diffusion process of absorbed water
associated with the aggregate, occurred. When the specimens were heated, the denser microstructure
of NS-modified mixes resulted in more extensive cracking, in comparison to the plain specimens.
Maheswaran et al. [43], have analyzed the effects of ternary blended OPC, containing lime sludge and
SF or NS, exposed to 500 and 800 °C. No spalling in cement mortars was observed up to 500 °C, while
beyond 800 °C, spalling was observed in samples containing SF. On the other hand, the NS-modified
samples did not exhibit a spalling effect, as a result of the apparent pore-filling effect of NS and
enhanced particle packing in the mortar.

From the references cited above, it can be seen that most of studies have reported beneficial effects
of NS regarding crack reduction in cement-based composites, especially in the case of composites with
a higher w/c content. Compared to silica fume, the incorporation of NS reduces the risk of cracking
in cement-based materials with higher w/c ratios, after exposure to high temperatures. However,
the effect of NS on spalling in composites with denser matrices, such as H5Cs, is still controversial and
requires further investigation.

3. The Effect of Carbon-based Nanomaterials on the Thermal Resistance of Cement-Based
Composites

Along with NS, particular research interest has also arisen in regard to the incorporation of
carbon-based nanomaterials in cementitious composites: mainly carbon nanotubes (CNTs), carbon
nanofibers (CNF), graphene oxide (GO), and graphene nanoplatelets (GNPs) [30]. Due to their
reinforcing ability (high tensile strength and high toughness), the incorporation of CNTs and CNFs,
even in very small amounts (usually less than 0.5 wt. %), significantly improves mechanical
performance, fracture characteristics, and the durability of cementitious composites. CNTs create
bridges between nano- and micro-cracks in the binder, thus increasing tensile strength and limiting
further crack propagation [23,53,54]. In addition, due to their remarkable mechanical and electrical
properties, CNTs are ideal for manufacturing self-sensing cement-based composites; whereby the
cement-based composites act as sensors able to detect their own state of strain or stress, as reflected in
changes to their electrical properties [55,56]. GO has also been introduced as an excellent reinforcement
for cementitious composites, due to its easier method of production (as compared to CNTs) and
higher solubility in aqueous cement matrices. In addition, graphene oxide has a higher surface
area than carbon nanotubes, and its surface is covered with higher amounts of functional groups.
Therefore, GO sheets exhibit higher reactivity (compared to CNTs), and thus increase the nucleation
area for the C-S-H gel [30,57,58]. The greater number of functional groups dispersed all across the
surface area, make this material ideal for incorporation in cementitious composites, as cement matrix
“nano-reinforcers”.

Nevertheless, interest related to the influence of carbon-based nanomaterials on the performance
of cement-based composites, under various thermal conditions, is relatively limited [59-62]. However,
the available data shows very promising results regarding the incorporation of carbon-based
nanomaterials, to produce heat-resistant cementitious composites. The studies available, related
to the effects of carbon nanomaterials, are summarized in Table 3.
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Table 3. Summary of available studies related to the effect of various nanomaterials on thermal resistance of cement-based composites.

Size and Specific Surface Area Tested Mechanical Optimal

. o . ° .
Type of Nanomaterial (SSA) Amount [wt. %] Heating Temperature [°C] Type of Material Properties * Amount [wt. %] Ref.
10-40 nm (diameter), 5-10 pm g
MWCNT (length), 93.81 m?/g (SSA) 0.02,0.05,0.1,0.2 300 - 600-800 Cement paste F. 0.1 [59]
Carbon 85 nm CNS on 5-6 mm CF 055 200-400-600 Cement paste F. - [61]
nanosphere-carbon fiber
>50 nm (diameter), length 20 um,
Hydroxylated MWCNT <400 (aspect ratio), >40 m?/g (SSA) 0.1,0.2 200-400-600 Cement paste Fy, Fe 0.2 [63]
Graphene oxide n/a n/a 400-600-800 Concrete Fy, Fc - [62]
Graphene sulfonate 1-2 nm (diameter), enn. R
nanosheet 50-100 pm (length) 0.1 200-400-600-800-1000 Concrete F., Fst [60]
Nanoclay 1 nm (diameter),300-500 1,2 200-400-600 Cement mortar F;, Fy, Fe 2 [64]
(aspect ratio)
Nanoclay n/a 1,2,3 800 Cement mortar F. 0.5-1 [65]
Nanoclay 10 nm (diameter), >600 m2/ g (SSA) 0.1,0.3,0.5 400-440-580-800 Concrete Fe, Fst 0.3 [66]
Nanoclay <10 nm (diameter) 0.1,0.3,0.5 300-440-500-580-800-1000 Concrete F. 0.5 [67]
Nanometakaolin 100-50-10 nm, 48 m2/ g (SSA) 5,10, 15 250-450-600-800 Cement paste E. 15 [68]
Nanoalumina 40 + 5nm, 173 m?/ g (SSA) 05,1,2,3 300-600-800 Cement paste Fc 0.5 [41]
Nanoalumina 15 + 3 nm, 165 + 12 m?/ g (SSA) 1,2 250-450-600-800-1000 Cement mortar F. 1 [69]
Nanoalumina 13 nm, 85-115 m?/ g (SSA) 1,2,3 100-200-300-400-600-800-1000 Cement paste F. 1 [70]
Nano-iron oxide 10-20 nm, 50.5 m?/ g (SSA) 1,2 200-300-400-600-800-1000 Cement paste Fc 1 [71]
Nano-iron oxide 14.6 nm 1,2,3 105-250-450-600-800 Cement paste F. 1 [72]
Nanotitania 21 nm, 35-65 m?/g (SSA) 1,23 100-200-300-400-600-800-1000 Cement mortar F. 2 [73]

* Fe—compressive strength, F—flexural strength, Fi—tensile strength, Fs;—split-tensile strength.



Nanomaterials 2018, 8, 465 18 of 33

3.1. The Effect of Multi-Walled Carbon Nanotubes (MWCNT5)

Amin et al. [59] have analyzed the effects of MWCNTs, in the amounts of 0.02, 0.05, 0.1,
and 0.2 wt. %, on the thermal resistance of OPC pastes and cement pastes containing up to 30 wt. % clay
brick waste (Homra) cement replacement. The cement pastes (w/b = 0.3) were exposed to temperatures
of up to 800 °C (Figure 2). The results showed that an optimal amount of MWCNTs (established as
0.1 wt. %) in combination with clay brick waste resulted in a marked increase of residual compressive
strength, in cement pastes exposed to elevated temperatures, even up to 800 °C for certain paste
compositions (Figure 7b). However, in the case of OPC pastes, the beneficial effect of MWCNTs was
only visible up to 300 °C (Figure 7a). X-ray powder diffraction (XRD), differential scanning calorimetry
(DSC), and scanning electron microscope (SEM) analysis showed that MWCNTs do not affect the
rate of hydration reactions. The positive effect of MWCNTs can most likely be attributed to their
pore-filling effect, as well as to their bridging ability between hydrates and across cracks.
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Figure 7. The effect of carbon nanotubes (CNT) content on the relative residual compressive strength
of cement pastes containing 100 wt. % of ordinary Portland cement (OPC) (a) and 70 wt. % of OPC and
30 wt. % of Homra (b) after firing. Reproduced with permission from [59]. Copyright Elsevier, 2015.

Similar conclusions have been drawn by Zhang et al. [63]. In their work, the effect of 0.1 and
0.2 wt. % of hydroxylated MWCNTs on the microstructure and mechanical performance (flexural
strength and compressive strength) of cement pastes (w/c = 0.4), exposed to temperatures up to
600 °C, was determined. XRD results showed that the inclusion of MWCNTs does not affect the
hydration kinetics of cement at room temperature, while at elevated temperatures, MWCNTs hindered
further hydration. After exposure to 600 °C, no influence of the MWCNTs on the decomposition
of hydration products was observed. SEM analysis revealed that up to a temperature of 400 °C,
CNT exhibited a bridging effect for the pores and cracks in the cement matrix, while after exposure
to 600 °C, the MWCNTs were mostly spalled with the matrix on the walls of the pores and cracks.
The positive effects of the MWCNTs were reflected both in the flexural and the compressive strength of
cement pastes (Figure 8). Up to 200 °C, strength enhancement was attributable to the continued
existence of the bridging of CNT in the gaps and pores. However, the beneficial effects of the
MWCNTs on thermal resistance were most pronounced after exposure to 400 °C. It is worth noting that
MWCNT-incorporated samples, exhibited similar compressive strengths after exposure to 200 °C and
400 °C, while plain cement paste exhibited gradual strength loss after exposure to these temperatures
(Figure 8b). Therefore, it was carbon nanotubes that contributed to the prevention of the loss of
compressive strength, after exposure to 400 °C. The authors attributed this phenomena to the potential
ability of CNTs to work as channels for the release of autoclaving steam, thus preventing damage
from high-pressure steam. After exposure to 600 °C, the MWCNTs lost their bridging ability, and the
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samples exhibited a similar compressive strength. The optimal value of MWCNTs in the paste was
estimated at 0.2 wt. %.
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Figure 8. The effect of hydroxylated Multi-Walled Carbon Nanotubes (MWCNTs) on the flexural (a)
and compressive (b) strengths of cement pastes exposed to elevated temperatures. Reproduced with
permission from [63]. Copyright Elsevier, 2017.

Moreover, extensive SEM analysis (Figure 9) showed that up to a temperature of 400 °C,
the bridging phenomenon of CNT in the cement matrix can be observed, while at a temperature
of 600 °C carbon nanotubes are not discernible.

Figure 9. Scanning electron microscope (SEM) micrographs showing the bridging effect of MWCNTs
in a cement matrix before (20 °C) and after exposure to elevated temperatures of 200, 400, and 600 °C.
Reproduced with permission from [63]. Copyright Elsevier, 2017.
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3.2. The Effect of Carbon Nanospheres

Another approach for incorporating carbon-based materials to improve the thermal resistance of
cement-based composites, has been proposed by Han et al. [61]. In this study, the authors proposed
a novel multiscale reinforcement structure, built from the fast growth of carbon nanospheres (CNSs)
on the surface of carbon fibers (CFs). The fiber surface was covered with a uniform CNS layer, with
an average thickness of 85 nm. Afterwards, cement pastes (w/c = 0.33) containing 0.55 vol. % of
fiber were prepared and subjected to temperatures of 200, 400 and 600 °C. It was observed that as
the temperature increased, the size of the cracks in the cement pastes increased. Crack sizes were
smallest in the samples containing CNS-modified fibers. The study showed that, cement pastes
containing CNS-modified CFs, exhibited better resistance to the thermal degradation (up to 600 °C)
resulting from exposure to elevated temperatures, with superior relative residual strength. The authors
attributed the positive effect of CNS on the surface of CF, to two main phenomena: Firstly, to the
improved interlocking between CNS-modified CFs and the cement matrix, as compared to pristine
CFs; and secondly, to the improved thermal resistance of CFs, resulting from a thin CNS layer that
oxidizes first, thus forming microchannels which enable vapor tension in the capillaries to be more
easily alleviated and released.

3.3. The Effect of Graphene Oxide

Mohammed et al. [62] incorporated graphene oxide in normal strength concrete (w/c = 0.45) and
HSC (w/c =0.30), exposing them to temperatures up to 800 °C. In the case of normal strength concrete,
the compressive strength loss (Figure 10a) of GO-modified concretes was noticeably lower than that of
plain concrete, especially after exposure to 400 and 600 °C (Figure 10a). Plain, normal strength concrete
exhibited a gradual strength loss after exposure to 400, 600, and 800 °C, while GO-modified concrete
exhibited only a slight strength reduction. In the case of HSC, incorporation of GO in the mix was even
more efficient than in the case of normal strength concrete. It is known that HSCs are more prone to
spalling and degradation under elevated temperature conditions, but the authors reported that the
spalling resistance of GO-incorporated HSC increased, such that samples were not damaged, even
up to 800 °C and that strength loss was gradual. However, in the case of plain HSC, specimens were
destroyed above 400 °C. Similar trends were observed in the case of the tensile strength of concretes,
although in this case, the degree of strength degradation was higher (Figure 10b).
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Figure 10. Compressive strength (a) and tensile strength (b) test results of graphene oxide
(GO)-modified high strength concrete (GO-HSC), high strength concrete (HSC), GO-modified normal
strength concrete (GO-NSC) and normal strength concrete (NSC) after exposure to elevated temperature.
Redrawn from [62].
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The authors attributed the beneficial effect of GO on mechanical properties to its ability of
minimizing temperature increase in the specimen and thus limiting the effects of temperature exposure,
as well as reducing cracks in the concrete. The authors reported that the incorporation of GO
contributed to alternation in the porosity of the cement matrix. The number of large pores (from 0.4 pm
to 10 pm) shifted to a number of small pores (<0.3 pm), which contributed to an increment in the
amount of effective gel pores. As such, porous structures with nano- and micro-scale channels were
produced, enabling the release of vapor pressure, helping to prevent extensive spalling in samples,
which was reflected in the mechanical properties of the concretes as well as in the decreased amount of
cracks [62].

3.4. The Effect of Graphene Sulphonate Nanosheets

Chu et al. [60] analyzed the effect of graphene sulfonate nanosheets (GSNSs), in the amount
of 0.1 wt. %, on the properties of sacrificial concretes (w/b = 0.33) exposed to temperatures of up
to 1000 °C. Extensive SEM analysis and MIP tests showed, that the inclusion of GSNSs exhibited
reinforcing and toughening effects on the microstructures of the concretes tested, which was reflected
in a reduction of concrete porosity. The total porosity of concrete modified with GSNSs was reduced by
3.0-7.0% (depending on the heating temperature), as compared to plain concrete samples. Moreover,
the thermal gradient in the concrete modified with GSNSs decreased and as such, the thermal damage
rate dropped. The positive effect of GSNSs on microstructure translated in to an improvement in
split-tensile and compressive strength. The authors reported, that relative residual compressive
strength, as well as the splitting tensile strength of GSNS modified concretes, was higher than that of
plain concrete, at each tested temperature.

4. The Effect of Nanoclays and Calcinated Nanoclay on the Thermal Resistance of Cement-Based
Composites

Nanoclays (NCs) originate from naturally occurring clays. These clay particles are hydrous
silicates and can generally be described as fine-grained particles organized in sheet-like structures
stacked on top of each other [74]. Based on their chemical composition and morphology, NCs
have been classified into various groups, including montmorillonite, bentonite, kaolinite, hectorite,
and halloysite [31]. The incorporation of NCs has been gathering increasing attention in many fields
of engineering, which is attributable to their availability, environmental friendliness, and low cost,
as compared to other manufactured nanomaterials. The beneficial effects of NC admixtures on
the properties of cement-based composites has been widely reported. Due to their large surface
area to volume ratio, NC particles can facilitate chemical reactions. In the presence of silica and
aluminum, NC nanoparticles can exhibit a nucleation effect and high pozzolanic activity (as in case of
nanosilica), as well as a nano-filling effect, which leads to an increase in the overall performance of
concrete [24]. Previous studies have shown that the inclusion of NC contributes to the formation of
ill-crystalline CH and the formation of a C-S-H phase [75]. Chang et al. [76] have reported that the
incorporation of nano-montmorillonite results in higher CH consumption and higher production of
C-S-H. In addition, the study showed that NCs are non-combustible materials and as such, various
efforts to incorporate them as flame and fire protective admixtures in a vast range of materials,
including polymers, have been undertaken. [74]. Based on these observations, attempts to incorporate
NCs as cement admixtures for improving the thermal resistance of cement-based composites, has also
gathered researchers’ attention. Table 3 summarizes the studies related to the thermal resistance of
NC-modified cement-based composites.

Wang [67] have analyzed the effects of cement replacement, by 0.1, 0.3, and 0.5 wt. %, on the
thermal resistance of two types of concrete, with w/c = 0.4 and w/c = 0.5. In their study, compressive
strength and the thermal conductivity coefficient, under different temperature conditions (up to
1000 °C), were analyzed. It was shown that in both types of concrete, when 0.1 wt. % of NC was
incorporated in the concrete, compressive strength loss was higher than that of plain concrete, during
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heating (Figure 11). However, when the amount of NC was increased to 0.3 wt. % and 0.5 wt. %,
the highest compressive strength increase, during heating and relative to ordinary concrete, was
observed. In addition, the authors reported that the thermal conductivity coefficient of cement paste
with 0.1 wt. % NC dropped, while the replacement of cement with 0.3 wt. % and 0.5 wt. % NC,
increased the thermal conductivity coefficient of paste.
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Figure 11. Compressive strength of nanoclay-modified concrete with w/c = 0.4 (a) and w/c = 0.5 (b)
after thermal exposure. Reproduced with permission from [67]. Copyright Elsevier, 2017.

In a study undertaken by Irshidat et al. [64], the effect of hydrophilic montmorillonite, on the
thermal resistance of cement mortars (w/b = 0.55) containing a NC cement replacement rate in the
amount of 1 and 2 wt. %, exposed to 200, 400, and 600 °C, was examined. The authors determined the
effect of NC on flexural strength, tensile strength, and compressive strength and supported their study
with XRD, DSC and TGA analysis. The effect of NC on the compressive strength of cement mortars was
relatively limited and only a slight compressive strength improvement during heating was observed,
when 2 wt. % NC was incorporated in the mix. The effect of NC was much more pronounced regarding
flexural and tensile strength (Figure 12). After exposure to elevated temperatures, NC-incorporated
samples exhibited higher flexural strength under all heating temperatures (Figure 12a). After exposure
to 200 °C, samples containing NC exhibited only a slightly higher flexural strength than plain mortar,
however, when the temperature increased to 400 °C, a significant difference between the flexural
strength of unmodified and modified mortars was observed. Samples containing 1 and 2 wt. %
NC exhibited 88% and 138% higher flexural strength than plain cement mortar. Further exposure
to a temperature of 600 °C caused a dramatic strength loss in cement mortars, with the specimen
containing 2 wt. % of NC exhibiting the highest flexural strength value. The beneficial effect of NC
was also reflected in the tensile strength of mortars (Figure 12b).
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Figure 12. Flexural strength (a) and tensile strength (b) of cement mortars, containing NC, exposed to
elevated temperature. Reproduced with permission from [64]. Copyright Elsevier, 2018.
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After exposure to 200 °C, NC-modified samples exhibited a higher increment in tensile strength,
as compared to the plain mortar. After exposure to 400 °C, the strength of the specimens declined
and the difference between samples was reduced; however, the highest strength was represented by
samples containing 2 wt. % of NC. Exposure to 600 °C caused a total loss of strength in plain cement
mortar, while NC-incorporated samples still exhibited some strength. XRD analysis confirmed that
in the presence of 2 wt. % nanoclay, the consumption of CH reached its optimum value at 200 °C,
whereas the additional formation of a C-S-H phase in the presence of NC reached its optimum level at
400 °C. In addition, SEM analysis showed that the presence of NC decreased the density and width of
microcracks in the cement mortar, after heating, as compared to the plain mortar.

The beneficial effects of NC on the compressive, flexural and split-tensile strengths of concretes,
has also been reported by Ho et al. [66]. In their study, NC was added to concrete in 0.1, 0.3,
and 0.5 wt. %, with concrete specimens being exposed to temperatures of 400, 600, and 800 °C.
It was found that the exposure of concretes with NC, up to a temperature of 400 °C, barely affected
their compressive strength (loss by 1-2 MPa), while the control concrete lost 8.5 MPa of its initial
strength. Further exposure to elevated temperatures showed that NC-incorporated concrete exhibits
higher compressive strength than plain concrete and that the best performance is exhibited by concrete
containing 0.3 wt. % of NC. The tendency of the residual split-tensile strength of the concrete was
similar to that of compressive strength. Incorporation of NC successfully maintained the loss of
split-tensile strength after thermal exposure. Recently, Lee et al. [65] introduced the incorporation of NC
as an admixture, to produce high-strength nano-polymer modified fireproof cementitious composites
The authors produced fire resistant polymer-cement mortars (based on cement and ethylene-vinyl
acetate polymer powder), varying the amount of chamotte, silica fume, and nanoclay. NC was
incorporated into the initial mixes in the amounts of 1, 2, and 3 wt. %. The study showed that
amounts of NC > 1 wt. % negatively affected compressive strength of specimens in the unheated state.
To determine the thermal resistance of the cement mortars, their samples were exposed to 800 °C.
Afterwards, statistical analysis was conducted and the tests were repeated in order to optimize the
NC content in the polymer-cement mortar. The study showed that for cost and performance reasons,
the amount of NC required to improve the thermal resistance of cement mortar is in the range of
0.5-1 wt. %.

Morsy et al. [68] incorporated calcinated nanoclay, namely nano metakaolin (NMK), obtained
from nanokaolin calcinated at a temperature of 750 °C. They analyzed the effect of NMK cement
replacement in the amounts of 5, 10, and 15 wt. % of cement mortar. The pastes were exposed to
temperatures of up to 800 °C. The study showed that after exposure to 250 °C, the compressive strength
of all the tested samples increased, but that the highest strength increment was observed for samples
containing 10 and 15 wt. % of NMK (Figure 13a). According to the authors, this effect can be attributed
to the internal autoclaving effect and the pozzolanic reaction of amorphous aluminosilicate (present
in NMK) with CH, during cement hydration. It is resulting in the production of additional C-S-H,
with a low C/S ratio, with a calcium aluminate hydrate (C-A-H) phase being deposited in the pore
system. After further thermal exposure, the samples gradually lost their strength. However, the ones
containing a higher NMK content (10 wt. % and 15 wt. %) exhibited higher strength values than plain
and 5 wt. % samples, up to a temperature of 800 °C. A beneficial effect of the NMK was also reflected
in the flexural strength of cement mortar (Figure 13b). After exposure to 250 °C, samples containing
5,10, and 15 wt. % of NMK exhibited strength increments by 3.4, 13.9, and 27% respectively, while
plain control samples exhibited a slight strength loss. This was attributed to an increase in the amount
of hydration products in the cement paste (due to an autoclaving effect), as well as because of the
filler effect of NMK, which acted as a fiber in the cement matrix. Exposure to higher temperatures
caused a gradual loss of flexural strength in the samples, although samples with a higher NC content
(10 and 15 wt. %) underwent only a minimal decrease, up to a temperature of 450 °C. Exposure to
temperatures of 600 and 800 °C caused a sharp strength loss in specimens, with samples containing
NMK in the amounts of 10 and 15 wt. % exhibiting the highest resistance to elevated temperature.
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XRD and differential thermal analysis (DTA) confirmed the higher thermal stability of cement paste
containing 15 wt. % of NMK, while SEM analysis proved that the cement matrix was less damaged
(with narrower micro-cracks) after exposure to 800 °C, than the control mortar.
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Figure 13. Compressive strength (a) and flexural strength (b) of cement mortars containing various
amount of nano metakaolin (NMK), after thermal exposure. Reproduced with permission from [68].
Copyright Elsevier, 2012.

5. The Effect of Nanoalumina on the Thermal Resistance of Cement-Based Composites

Nanoalumina (NA), along with nanosilica, has gathered noticeable attention in the field of
modification of cement-based composites. Due to its pozzolanic activity and high surface area,
alumina particles can react with CH, forming additional hydration products such as C~A-S-H and
C-A-H gel. This phenomenon is reflected in a noticeable improvement in microstructure and the
mechanical characteristics of cementitious composites [41]. Accordingly, NA has been introduced as
an admixture for improving the thermal resistance of cementitious composites; the studies related to
this topic have been summarized in Table 3.

Heikal et al. [69] have analyzed the fire resistance of plain and superplasticized cement pastes
containing NA cement replacements in the amounts of 1 wt. % and 2 wt. %, and determined the
compressive strength, bulk density, total porosity and mass loss of samples exposed to temperatures
up to 1000 °C. The study showed that cement paste prepared with superplasticizer exhibited better
dispersion of NA and cement grains, thus resulting in a more efficient hydration process and a more
homogenous cement paste microstructure. The result was cement pastes with high bulk density
values as well as decreased porosities in all heating temperatures. Another positive effect of NA
on the hydration process was an increase in the compressive strength of cement pastes. Specimens
containing 1 wt. % NA showed the best performance among all the samples tested, under all heating
temperature. This result was attributed to the enhancement of the hydration of unhydrated cement
clinker (self-autoclaving effect) and an improvement in the pozzolanic reaction of NA with CH,
resulting in an additional strength giving C-A-S5-H phase.

El-Gamal et al. [41] have evaluated the effects of 0.5, 1, 2 and 3 wt. %, NA admixture on the
properties of OPC cement pastes, exposed to temperatures of 300, 600 and 800 °C. Two different
cooling regimes, gradually in air and water quenching, were evaluated (Figure 14). In the case of the
gradual air cooling regime (Figure 14a), all the samples tested exhibited a slight compressive strength
increment, after exposure to 300 °C. Samples containing 0.5 and 1 wt. % of NA exhibited the highest
strength improvement, by 15 and 18% respectively, from among all the samples tested. This effect
was attributed to a self-autoclaving effect, resulting in the production of an additional amount of
C-5-H phase, as well as a pozzolanic reaction leading to the production of an additional amount of
C-A-H and C-A-S-H. After exposure to 600 °C, all the specimens tested exhibited a strength loss,
although, samples containing NA lost only 15-21% of their initial strength, while the control samples
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lost around 50% of their initial strength. After exposure to 800 °C, all the samples tested exhibited
a dramatic loss (more than 60%) in their initial strength. However, the mixes containing 0.5 and 1%
of NA exhibited the lowest drops in strength; by 60 and 62%, respectively. In the case of the rapid
cooling regime by water quenching (Figure 14b), all the testing temperatures resulted in strength losses
below the initial (unheated) strength, while at a temperature of 800 °C, samples degraded after water
quenching and lost their strength completely. Nevertheless, samples containing NS retained higher
compressive strengths at 300 and 600 °C. The authors concluded that the optimal value for improving
the fire resistance of cement pastes, is that of an NS addition of 0.5 wt. %.
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Figure 14. Compressive strength values of cement pastes containing nanoalumina (NA), after heating
and cooling: gradually in air (a) and water quenching (b). Reproduced with permission from [41].
Copyright Springer Nature, 2017.

Farzadnia et al. [70] have evaluated the effects of elevated temperatures (up to 1000 °C) on
cement mortars (w/c = 0.5), containing 1, 2 and 3 wt. % cement replacement. They focused on
mass loss, permeability, compressive strength, elastic modulus, energy absorption, and brittleness.
The authors reported that an optimal amount of NA (1 wt. %) was beneficial in improving the residual
compressive strength of mortars, up to a temperature of 800 °C. The addition of 1 wt. % NA decreased
the permeability (Figure 15) of samples in the unheated state, as well as after exposure to 300 °C and
600 °C, as compared to plain cement mortar. Moreover, mortars containing the optimum amount of
NA (1 wt. %), exhibited a better effect on the relative modulus of elasticity, after exposure to elevated
temperature, as compared to other NA modified specimens, as well as plain cement mortar. As reported
by the authors, in comparison to control samples, incorporation of NA reduced the amount of CH,
contributing to an improvement in the transition zone and thus a denser and stronger ITZ. Compared
to C-S-H, the strength-contribution potential of CH is limited, because of its considerably lower
surface area, weak Van der Waals forces and its tendency to form an oriented structure. The presence
of a high amount of CH is associated with high porosity and bad durability, as it contains an extensive
network of capillary pores. Thus, because it has several detrimental effects on cement mortar regarding
mechanical properties and durability, reducing CH content by the incorporation of NA is considered
to be advantageous. SEM analysis confirms that, in samples containing NA (1 and 2 wt. %), exposure
to 400 °C resulted in fewer hairline cracks, as compared to plain cement mortar. Moreover, C-S-H
in the matrix was found to have maintained its phase boundary and a less coarsened pore structure
was observed.
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Figure 15. Permeability coefficients of cement mortars containing NA and control samples at 28, 300
and 600 °C. Reproduced with permission from [70]. Copyright Elsevier, 2013.

6. The Effect of Nano-Iron Oxides on the Thermal Resistance of Cement-Based Composites

It has already been demonstrated that Fe,O3 as well as Fe3O4 nanoparticles positively affect the
mechanical and microstructural properties of cementitious composites when incorporated [77-80].
Fe;O3 and Fe3O4 nanoparticles do not exhibit any noticeable chemical activity, and their positive effect
on mechanical properties and durability is mostly attributable to their nucleation effect, as well as to
the refinement of the microstructure by the nano-filling effect. The effect of nano-iron oxides on the
thermal properties of cement-based composites, has been summarized in Table 3.

Heikal [71] analyzed the effect of Fe,O3 nanoparticles, in the amounts of 1 and 2 wt. %, on the
thermal properties of cement pastes exposed to temperatures of up to 1000 °C. It was demonstrated
that the incorporation of a small amount of nanomaterial (1 wt. %) is beneficial for improving
the fire resistance of cement pastes modified with these nanoparticles. The incorporation of Fe,O3
nanoparticles decreased specimens’ loss in compressive strength and mass after heating. Moreover,
the study showed that the presence of nano-Fe,Os is beneficial in diminishing crack length in cement
pastes. Amer et al. [72] have studied the effects of temperatures up to 800 °C, on the performance
of cement pastes with 1, 2, and 3 wt. % of nano-iron oxide. Bulk density, total porosity, and the
compressive strength of cement pastes exposed to elevated temperatures were studied. The study
showed that the bulk density of nano-iron oxide incorporated cement pastes was higher than plain
cement pastes, at all firing temperatures. As reported by the authors, this effect was attributable
to the fact that iron oxide nanoparticles can act as foreign nucleation sites, accelerating C-S-H gel
formation and thus leading to a more compact and dense structure. Moreover, iron oxide nanoparticles
were found to exhibit a nano-filling effect, leading to a decrease in the total porosity of pastes, before
and after exposure to elevated temperatures (Figure 16a). The study showed that an admixture of
nano-iron oxide has a noticeable effect on strength values, after all heating temperatures, with the
optimal amount being found to be 1 wt. % (Figure 16b).
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Figure 16. Total porosity (a) and compressive strength (b) of cement pastes containing nano-iron oxide,
as a function of temperature. Redrawn from [72].

7. The Effect of Nanotitania on the Thermal Resistance of Cement-Based Composites

Titanium dioxide (NT) nanoparticles find their application mainly in the production of
photocatalytically active cement-based surfaces, due to their ability to decontaminate pollutants via
photocatalytic processes [81,82]. Their effect on the hydration, mechanical properties, and durability
of cement-based composites has also been extensively studied [24,83-86]. However, the incorporation
of NT as an admixture for improving the thermal resistance of cement-based composites has
not yet gathered significant attention (Table 3). However, an extensive study undertaken by
Farzadnia et al. [73], has demonstrated its potential application for the above-mentioned purposes.
They investigated the effect of NT as a cement replacement (in the amounts of 1, 2, 3 wt. %), on the
compressive strength, modulus of elasticity, energy absorption, and brittleness of cement mortars
(w/c =0.35), exposed to elevated temperatures of up to 1000 °C. It was found that an optimal amount
of NT (i.e., 2 wt. %) was beneficial in improving the residual compressive strength of mortars, up to
a temperature of 600 °C. Nevertheless, mortars containing 1 wt. % exhibited a better effect on the
relative modulus of elasticity, after exposure to elevated temperatures, than other NT-modified or plain
cement mortars. Moreover, a slight decrease in the permeability of mortars modified with 1 wt. % and
2 wt. % of NT (exposed to temperatures of up to 300 °C), was also reported. At the same time, after
exposure to 600 °C, all the samples containing NT exhibited increased permeability. SEM analysis
showed that after exposure to a temperature of 400 °C, a less coarse pore structure was present in
samples containing 1 and 2 wt. % of NT, as compared to plain cement mortar. However, after exposure
to 800 °C, samples containing NT exhibited a less dense and compacted microstructure than plain
cement mortar.

8. Discussion and Research Needs

This paper has presented a critical review of the existing research on the use of nanomaterials
as admixtures for improving the thermal resistance of cementitious composites. In summary, it is
clear that the use nanomaterials has an outstanding effect on the improvement of the resistance of
cementitious composites to elevated temperature. The nano-sized features of nanoparticles contribute
to modifications in the hydration of cement, the compaction degree of its structure, and improvement
in the mechanical and fracture properties of cementitious composites, thus improving their mechanical
performance and durability under elevated temperature conditions.

From all the nanomaterials examined, nanosilica has been the most extensively studied material
and seems to be the most advantageous in the production of heat-resistant cementitious composites.
Researchers have emphasized its beneficial influence on the hydration seeding effect, the nano-filling
effect, as well as its positive role in encouraging high pozzolanic activity, resulting in the retention of



Nanomaterials 2018, 8, 465 28 of 33

strength as well as a reduction in micro-cracking. However, carbon nanotubes also have impressive
mechanical properties and due to their tubular structure, exhibit bridging ability, thus restraining the
possibility of cracking in cement matrices, under thermal stress. Furthermore, other carbon-based
nanomaterials have also come up in recent research works; for instance, graphene oxide, though its
incorporation requires further investigation. Other nanomaterials, such as nanoclay, nanoalumina,
nano-iron oxides, and nanotitania can also be used in cement-based composites. However, only
a few studies have been carried out in regard to utilizing these nanomaterials for improving the
thermal resistance of composites. Therefore, more research is required on the potential effects of these
nanoparticles on the thermal resistance of cementitious composites.
The following research needs can be drawn from the review presented above:

1. There is a lack of comprehensive, comparable work analyzing the properties of nanomaterials,
with similar mix designs, heating and cooling regimes and testing procedures, which would
make it possible to establish which nanomaterials have the most beneficial performance, in terms
of improving the thermal resistance of cementitious composites. In addition, studies regarding
some nanomaterials are very limited, and hence some findings from different studies are often
mutually exclusive or not fully explored.

2. Most studies are related to performance in cement pastes or cement mortars, with only very few
studies available regarding the thermal resistance of normal strength and high-strength concretes.
In addition, the effects of nanomaterials on the cracking and spalling potential of cement-based
composites are still undetermined. It is crucial that this issue addressed while considering the
further incorporation of nanomaterials in cementitious composites with compacted and dense
matrixes, such as HSCs.

3. No studies regarding optimization of mix design, by combining nanomaterials with other
SCMs, enabling a simultaneous decrease in production costs as well as an improvement in
the performance of cementitious composites under elevated temperature conditions, are available.
In addition, no evaluation of a potential combination of various nanomaterials, or incorporation
of molecular hybrids (i.e., core-shell structures) has yet been presented.

4. Most of the available studies evaluate the performance of nanomaterials based on laboratory
results. Therefore, it is necessary to verify performance in real scale tests, to obtain practical
experience in the application of nano-materials, thus enabling their further application in industry.

5. Evaluation of the long-term post-fire performance and durability of nano-modified cement-based
composites is absent. Most of the studies available are related to the effects of nanoparticles
on mechanical properties (mainly compressive strength), while less work has been devoted
to studying other properties, such as permeability, water absorption or porosity, after
thermal exposure.

To extract the full benefits of the incorporation of nanomaterials, future research should address
the abovementioned issues.
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Abbreviations

C-S-H calcium-silicate-hydrates

CH calcium hydroxide (portlandite)
B-C,S [-dicalcium silicate

ITZ interfacial transition zone

OoPC ordinary Portland cement

HSC high strength concrete

SFRC steel-fibre reinforced concrete

SCM supplementary cementitious material
SF silica fume

GGBS ground granulated blast-furnace slag
FA fly ash

NS nanosilica

NA nanoalumina

NC nanoclay

NMK nanometakaolin

NT nanotitania

CNT carbon nanotube

MWCNT multi-walled carbon nanotube

CF carbon fiber

CNF carbon nanofiber

GO graphene oxide

GSNS graphene sulphonate nanosheet

MIP mercury intrusion porosimetry

XRD X-ray diffraction

DSC differential scanning calorimetry
SEM scanning electron microscopy
References

1. Kodur, V. Properties of Concrete at Elevated Temperatures. ISRN Civ. Eng. 2014, 2014, 468510. [CrossRef]

10.

11.

Hager, I. Behaviour of cement concrete at high temperature. Bull. Pol. Acad. Sci. Tech. Sci. 2013, 61, 145-154.
[CrossRef]

Ma, Q.; Guo, R.; Zhao, Z.; Lin, Z.; He, K. Mechanical properties of concrete at high temperature—A review.
Constr. Build. Mater. 2015, 93, 371-383. [CrossRef]

International Federation for Structural Concrete. Fire Design of Concrete Structures—Structural Behaviour and
Assessment; State-of-Art Report; FIB: Lausanne, Switzerland, 2008.

Mohammed Haneefa, K.; Santhanam, M.; Parida, FEC. Review of concrete performance at elevated
temperature and hot sodium exposure applications in nuclear industry. Nucl. Eng. Des. 2013, 258, 76-88.
[CrossRef]

Arel, HSS.; Aydin, E.; Kore, S.D. Ageing management and life extension of concrete in nuclear power plants.
Powder Technol. 2017, 321, 390-408. [CrossRef]

Radzi, N.A.M.; Hamid, R.; Mutalib, A.A. A Review of Methods, Issues and Challenges of Small-scale Fire
Testing of Tunnel Lining Concrete. J. Appl. Sci. 2016, 16, 293-301. [CrossRef]

Marushchak, U.; Sanytsky, M.; Olevych, Y.; Vatulia, G.; Plugin, A.; Darenskyi, O. Effects of elevated
temperatures on the properties of nanomodified rapid hardening concretes. MATEC Web Conf. 2017, 116,
01008. [CrossRef]

Khoury, G.A. Effect of fire on concrete and concrete structures. Prog. Struct. Eng. Mater. 2000, 2, 429—-447.
[CrossRef]

International Federation for Structural Concrete. Fire Design of Concrete Structures—Materials, Structures and
Modelling; FIB: Lausanne, Switzerland, 2007.

Xing, Z.; Beaucour, A.-L.; Hebert, R.; Noumowe, A.; Ledesert, B. Influence of the nature of aggregates on the
behaviour of concrete subjected to elevated temperature. Cement Concr. Res. 2011, 41, 392-402. [CrossRef]


http://dx.doi.org/10.1155/2014/468510
http://dx.doi.org/10.2478/bpasts-2013-0013
http://dx.doi.org/10.1016/j.conbuildmat.2015.05.131
http://dx.doi.org/10.1016/j.nucengdes.2013.01.018
http://dx.doi.org/10.1016/j.powtec.2017.08.053
http://dx.doi.org/10.3923/jas.2016.293.301
http://dx.doi.org/10.1051/matecconf/201711601008
http://dx.doi.org/10.1002/pse.51
http://dx.doi.org/10.1016/j.cemconres.2011.01.005

Nanomaterials 2018, 8, 465 30 of 33

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Tufail, M.; Shahzada, K.; Gencturk, B.; Wei, J. Effect of Elevated Temperature on Mechanical Properties of
Limestone, Quartzite and Granite Concrete. Int. J. Concr. Struct. Mater. 2017, 11, 17-28. [CrossRef]
Fernandes, B.; Gil, AM.; Bolina, FEL.; Tutikian, B.F. Microstructure of concrete subjected to elevated
temperatures: Physico-chemical changes and analysis techniques. Rev. IBRACON Estrut. Mater. 2017,
10, 838-863. [CrossRef]

Haridharan, M.K.; Natarajan, C.; Chen, S.-E. Evaluation of residual strength and durability aspect of concrete
cube exposed to elevated temperature. J. Sustain. Cem.-Based Mater. 2016, 6, 231-253. [CrossRef]

Zhang, Q.; Ye, G.; Koenders, E. Investigation of the structures of heated Portland cement paste using various
techniques. Const. Build. Mater. 2013, 38, 1040-1050. [CrossRef]

Arioz, O. Effects of elevated temperatures on properties of concrete. Fire Saf. ]. 2007, 42, 516-522. [CrossRef]
Lee, J; Xi, Y.; Willam, K.; Jung, Y. A multiscale model for modulus of elasticity of concrete at high
temperatures. Cem. Concr. Res. 2009, 39, 754-762. [CrossRef]

Ozawa, M.; Morimoto, H. Effects of various fibres on high-temperature spalling in high-performance
concrete. Constr. Build. Mater. 2014, 71, 83-92. [CrossRef]

Yermak, N.; Pliya, P.; Beaucour, A.-L.; Simon, A.; Noumowé, A. Influence of steel and/or polypropylene
fibres on the behaviour of concrete at high temperature: Spalling, transfer and mechanical properties.
Constr. Build. Mater. 2017, 132, 240-250. [CrossRef]

Yuan, G.; Li, Q. The use of surface coating in enhancing the mechanical properties and durability of concrete
exposed to elevated temperature. Constr. Build. Mater. 2015, 95, 375-383. [CrossRef]

Szoke, S.S. Resistance to fire and high temperatures. Significance of Tests and Properties of Concrete and
Concrete-Making Material; ASTM International: West Conshohocken, PA, USA, 2006; pp. 169, 274-287.
Hager, I; Mroz, K.; Tracz, T.; Hager, I.; Tracz, T. Concrete propensity to fire spalling: Testing and observations.
MATEC Web Conf. 2018, 163, 02004. [CrossRef]

Shah, S.P,; Hou, P.; Konsta-Gdoutos, M.S. Nano-modification of cementitious material: Toward a stronger
and durable concrete. |. Sustain. Cem.-Based Mater. 2015, 5, 1-22. [CrossRef]

Silvestre, J.; Silvestre, N.; de Brito, J. Review on concrete nanotechnology. Eur. J. Environ. Civ. Eng. 2015, 20,
455-485. [CrossRef]

Sikora, P.; Augustyniak, A.; Cendrowski, K.; Nawrotek, P.; Mijowska, E. Antimicrobial Activity of Al,O3,
CuO, Fe304, and ZnO Nanoparticles in Scope of Their Further Application in Cement-Based Building
Materials. Nanomaterials 2018, 8, 212. [CrossRef] [PubMed]

Marushchak, U.; Sanytsky, M.; Mazurak, T.; Olevych, Y. Research of nanomodified portland cement
compositions with high early age strength. East.-Eur. |. Enterp. Technol. 2016, 6, 50-57. [CrossRef]
Marushchak, U.; Sanytsky, M.; Korolko, S.; Shabatura, Y.; Sydor, N. Development of nanomodified rapid
hardening fiber-reinforced concretes for special-purpose facilities. East.-Eur. |. Enterp. Technol. 2018, 2, 34-41.
[CrossRef]

Horszczaruk, E.; Sikora, P.; Cendrowski, K.; Mijowska, E. The effect of elevated temperature on the properties
of cement mortars containing nanosilica and heavyweight aggregates. Constr. Build. Mater. 2017, 137, 420-431.
[CrossRef]

Aggarwal, P; Singh, R.P; Aggarwal, Y.; Hussain, R.R. Use of nano-silica in cement based materials—A
review. Cog. Eng. 2015, 2, 127. [CrossRef]

Bastos, G.; Patifio-Barbeito, F.; Patifio-Cambeiro, E.; Armesto, ]. Nano-Inclusions Applied in Cement-Matrix
Composites: A Review. Materials 2016, 9, 1015. [CrossRef] [PubMed]

Norhasri, M.M.; Hamidah, M.S.; Fadzil, A.M. Applications of using nano material in concrete: A review.
Constr. Build. Mater. 2017, 133, 91-97. [CrossRef]

Safiuddin, M.; Gonzalez, M.; Cao, J.; Tighe, S.L. State-of-the-art report on use of nano-materials in concrete.
Int. J. Pavement Eng. 2014, 15, 940-949. [CrossRef]

Singh, L.P,; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S. Beneficial role of nanosilica in
cement based materials—A review. Constr. Build. Mater. 2013, 47, 1069-1077. [CrossRef]

Sumesh, M.; Alengaram, U.].; Jumaat, M.Z.; Mo, K.H.; Alnahhal, M.E. Incorporation of nano-materials in
cement composite and geopolymer based paste and mortar—A review. Constr. Build. Mater. 2017, 148, 62-84.
[CrossRef]

Mondal, P; Shah, S.; Marks, L.; Gaitero, ]. Comparative Study of the Effects of Microsilica and Nanosilica in
Concrete. Transp. Res. Rec. J. Transp. Res. Board 2010, 2141, 6-9. [CrossRef]


http://dx.doi.org/10.1007/s40069-016-0175-2
http://dx.doi.org/10.1590/s1983-41952017000400004
http://dx.doi.org/10.1080/21650373.2016.1230898
http://dx.doi.org/10.1016/j.conbuildmat.2012.09.071
http://dx.doi.org/10.1016/j.firesaf.2007.01.003
http://dx.doi.org/10.1016/j.cemconres.2009.05.008
http://dx.doi.org/10.1016/j.conbuildmat.2014.07.068
http://dx.doi.org/10.1016/j.conbuildmat.2016.11.120
http://dx.doi.org/10.1016/j.conbuildmat.2015.07.120
http://dx.doi.org/10.1051/matecconf/201816302004
http://dx.doi.org/10.1080/21650373.2015.1086286
http://dx.doi.org/10.1080/19648189.2015.1042070
http://dx.doi.org/10.3390/nano8040212
http://www.ncbi.nlm.nih.gov/pubmed/29614721
http://dx.doi.org/10.15587/1729-4061.2016.84175
http://dx.doi.org/10.15587/1729-4061.2018.127001
http://dx.doi.org/10.1016/j.conbuildmat.2017.02.003
http://dx.doi.org/10.1080/23311916.2015.1078018
http://dx.doi.org/10.3390/ma9121015
http://www.ncbi.nlm.nih.gov/pubmed/28774135
http://dx.doi.org/10.1016/j.conbuildmat.2016.12.005
http://dx.doi.org/10.1080/10298436.2014.893327
http://dx.doi.org/10.1016/j.conbuildmat.2013.05.052
http://dx.doi.org/10.1016/j.conbuildmat.2017.04.206
http://dx.doi.org/10.3141/2141-02

Nanomaterials 2018, 8, 465 31 of 33

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Gaitero, J.J.; Campillo, I.; Guerrero, A. Reduction of the calcium leaching rate of cement paste by addition of
silica nanoparticles. Cem. Concr. Res. 2008, 38, 1112-1118. [CrossRef]

Jain, J.A.; Neithalath, N. Beneficial effects of small amounts of nano-silica on the chemical stability of cement
pastes exposed to neutral pH environments. In Proceedings of the ACI Fall 2009 Convention, New Orleans,
LA, USA, 8-12 November 2009; pp. 59-74.

Heikal, M.; El-Didamony, H.; Sokkary, T.M.; Ahmed, I.A. Behavior of composite cement pastes containing
microsilica and fly ash at elevated temperature. Constr. Build. Mater. 2013, 38, 1180-1190. [CrossRef]
Kumar, R.; Singh, S.; Singh, L.P. Studies on enhanced thermally stable high strength concrete incorporating
silica nanoparticles. Constr. Build. Mater. 2017, 153, 506-513. [CrossRef]

Heikal, M.; Al-Duaij, O.K,; Ibrahim, N.S. Microstructure of composite cements containing blast-furnace slag
and silica nano-particles subjected to elevated thermally treatment temperature. Constr. Build. Mater. 2015,
93, 1067-1077. [CrossRef]

El-Gamal, SM.A.; Abo-El-Enein, S.A.; El-Hosiny, FI.; Amin, M.S.; Ramadan, M. Thermal resistance,
microstructure and mechanical properties of type I Portland cement pastes containing low-cost nanoparticles.
J. Therm. Anal. Calorim. 2018, 131, 649-968. [CrossRef]

Lim, S.; Mondal, P. Effects of Nanosilica Addition on Increased Thermal Stability of Cement-Based Composite.
ACI Mater. ]. 2015, 112, 305-316. [CrossRef]

Maheswaran, S; Iyer, N.R.; Palani, G.S.; Pandi, R.A.; Dikar, D.D.; Kalaiselvam, S. Effect of high temperature
on the properties of ternary blended cement pastes and mortars. J. Therm. Anal. Calorim. 2015, 122, 775-786.
[CrossRef]

Ibrahim, R K.; Hamid, R.; Taha, M.R. Fire resistance of high-volume fly ash mortars with nanosilica addition.
Constr. Build. Mater. 2012, 36, 779-786. [CrossRef]

Ibrahim, R.K.; Hamid, R.; Taha, M.R. Strength and Microstructure of Mortar Containing Nanosilica at High
Temperature. ACI Mater. |. 2014, 111, 163-170. [CrossRef]

Bastami, M.; Baghbadrani, M.; Aslani, F. Performance of nano-Silica modified high strength concrete at
elevated temperatures. Constr. Build. Mater. 2014, 68, 402—408. [CrossRef]

Shah, A .H.; Sharma, U.K.; Roy, D.A.B.; Bhargava, P.; Pimienta, P.; Meftah, F. Spalling behaviour of nano SiO,
high strength concrete at elevated temperatures. MATEC Web Conf. 2013, 6, 01009. [CrossRef]

Rathi, V.R.; Modhera, C.D. Effect of colloidal nano silica (CNS) on properties of high strength concrete at
elevated temperature. Int. J. Civ. Eng. Technol. 2017, 8, 618-628.

Sherif, M.A. Effect of Elevated Temperature on Mechanical Properties of Nano Materials Concrete. Int. |.
Eng. Innov. Technol. 2017, 7, 1-9.

Yan, L.; Xing, Y.; Li, ].; Zhang, ]. Effect of nanosilica on the axial tensile strength of SFRC at high temperature.
Mag. Concr. Res. 2014, 66, 447-455. [CrossRef]

Yan, L.; Xing, Y.; Zhang, J.; Li, ]. High-temperature mechanical properties and microscopic analysis of
nano-silica steel fibre RC. Mag. Concr. Res. 2013, 65, 1472-1479. [CrossRef]

Heikal, M.; Ali, A.L; Ismail, M.N.; Ibrahim, S.A.N.S. Behavior of composite cement pastes containing silica
nano-particles at elevated temperature. Constr. Build. Mater. 2014, 70, 339-350. [CrossRef]

Yu, Z.; Lau, D. Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT)
reinforced concrete. Coupled Syst. Mech. 2017, 6, 335-349.

Li, W.; Ji, W,; Torabian Isfahani, F.; Wang, Y.; Li, G.; Liu, Y.; Xing, F. Nano-Silica Sol-Gel and Carbon Nanotube
Coupling Effect on the Performance of Cement-Based Materials. Nanomaterials 2017, 7, 185. [CrossRef]
[PubMed]

Han, B.; Zhang, L.; Ou, J. Smart and Multifunctional Concrete Toward Sustainable Infrastructures; Springer:
Singapore, 2017.

Galao, O.; Baeza, FJ.; Zornoza, E.; Garcés, P. Carbon Nanofiber Cement Sensors to Detect Strain and Damage
of Concrete Specimens Under Compression. Nanomaterials 2017, 7, 413. [CrossRef] [PubMed]

Lu, L.; Ouyang, D. Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene
Oxide Nanosheets. Nanomaterials 2017, 7, 187. [CrossRef] [PubMed]

Wang, L.; Zhang, S.; Zheng, D.; Yang, H.; Cui, H.; Tang, W.; Li, D. Effect of Graphene Oxide (GO) on the
Morphology and Microstructure of Cement Hydration Products. Nanomaterials 2017, 7, 429. [CrossRef]
[PubMed]


http://dx.doi.org/10.1016/j.cemconres.2008.03.021
http://dx.doi.org/10.1016/j.conbuildmat.2012.09.069
http://dx.doi.org/10.1016/j.conbuildmat.2017.07.057
http://dx.doi.org/10.1016/j.conbuildmat.2015.05.042
http://dx.doi.org/10.1007/s10973-017-6629-1
http://dx.doi.org/10.14359/51687177
http://dx.doi.org/10.1007/s10973-015-4817-4
http://dx.doi.org/10.1016/j.conbuildmat.2012.05.028
http://dx.doi.org/10.14359/51686497
http://dx.doi.org/10.1016/j.conbuildmat.2014.06.026
http://dx.doi.org/10.1051/matecconf/20130601009
http://dx.doi.org/10.1680/macr.13.00181
http://dx.doi.org/10.1680/macr.13.00143
http://dx.doi.org/10.1016/j.conbuildmat.2014.07.078
http://dx.doi.org/10.3390/nano7070185
http://www.ncbi.nlm.nih.gov/pubmed/28708097
http://dx.doi.org/10.3390/nano7120413
http://www.ncbi.nlm.nih.gov/pubmed/29186797
http://dx.doi.org/10.3390/nano7070187
http://www.ncbi.nlm.nih.gov/pubmed/28726750
http://dx.doi.org/10.3390/nano7120429
http://www.ncbi.nlm.nih.gov/pubmed/29206157

Nanomaterials 2018, 8, 465 32 of 33

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

Amin, M.S,; El-Gamal, SM.A.; Hashem, ES. Fire resistance and mechanical properties of carbon
nanotubes—Clay bricks wastes (Homra) composites cement. Constr. Build. Mater. 2015, 98, 237-249.
[CrossRef]

Chu, H.-Y,; Jiang, J.-Y,; Sun, W.; Zhang, M. Mechanical and thermal properties of graphene sulfonate
nanosheet reinforced sacrificial concrete at elevated temperatures. Constr. Build. Mater. 2017, 153, 682-694.
[CrossRef]

Han, T.; Wang, H.; Jin, X,; Yang, J.; Lei, Y.; Yang, F;; Yang, X.; Tao, Z.; Guo, Q.; Liu, L. Multiscale carbon
nanosphere—carbon fiber reinforcement for cement-based composites with enhanced high-temperature
resistance. J. Mater. Sci. 2015, 50, 2038-2048. [CrossRef]

Mohammed, A.; Sanjayan, J.G.; Nazari, A.; Al-Saadi, N.T.K. Effects of graphene oxide in enhancing the
performance of concrete exposed to high-temperature. Aust. J. Civ. Eng. 2017, 15, 61-71. [CrossRef]
Zhang, LW,; Kai, M.E; Liew, K.M. Evaluation of microstructure and mechanical performance of
CNT-reinforced cementitious composites at elevated temperatures. Compos. Part A Appl. Sci. Manuf.
2017, 95, 286-293. [CrossRef]

Irshidat, M.R.; Al-Saleh, M.H. Thermal performance and fire resistance of nanoclay modified cementitious
materials. Constr. Build. Mater. 2018, 159, 213-219. [CrossRef]

Lee, S.-J.; Kim, S.-H.; Won, J.-P. Strength and fire resistance of a high-strength nano-polymer modified
cementitious composite. Compos. Struct. 2017, 173, 96-105. [CrossRef]

Ho, C.M; Tsai, W.T. Effect of Elevated Temperature on the Strength and Ultrasonic Pulse Velocity of Glass
Fiber and Nano-Clay Concrete. AMR Adv. Mater. Res. 2010, 163-167, 1532-1539. [CrossRef]

Wang, W.-C. Compressive strength and thermal conductivity of concrete with nanoclay under Various
High-Temperatures. Constr. Build. Mater. 2017, 147, 305-311. [CrossRef]

Morsy, M.S.; Al-Salloum, Y.A.; Abbas, H.; Alsayed, S.H. Behavior of blended cement mortars containing
nano-metakaolin at elevated temperatures. Constr. Build. Mater. 2012, 35, 900-905. [CrossRef]

Heikal, M.; Ismail, M.N.; Ibrahim, N.S. Physico-mechanical, microstructure characteristics and fire resistance
of cement pastes containing Al,O3 nano-particles. Constr. Build. Mater. 2015, 91, 232-242. [CrossRef]
Farzadnia, N.; Abang Ali, A.A.; Demirboga, R. Characterization of high strength mortars with nano alumina
at elevated temperatures. Cem. Concr. Res. 2013, 54, 43-54. [CrossRef]

Heikal, M. Characteristics, textural properties and fire resistance of cement pastes containing Fe;O3
nano-particles. J. Therm. Anal. Calorim. 2016, 126, 1077-1087. [CrossRef]

Amer, A.A.; El-Sokkary, T.M.; Abdullah, N.I. Thermal durability of OPC pastes admixed with nano iron
oxide. HBRC J. 2015, 11, 299-305. [CrossRef]

Farzadnia, N.; Abang Ali, A.A.; Demirboga, R.; Anwar, M.P. Characterization of high strength mortars with
nano Titania at elevated temperatures. Constr. Build. Mater. 2013, 43, 469—479. [CrossRef]

Nanoclay Reinforced Polymer Composites: Nanocomposites and Bionanocomposites; Jawaid, M.; Qaiss, A.EK.;
Boubhfid, R. (Eds.) Springer: Singapore, 2016.

Morsy, M.S.; Alsayed, S.H.; Agel, M. Effect of Nano-clay on Mechanical Properties and Microstructure of
Ordinary Portland Cement Mortar. Int. J. Civ. Environ. Eng. 2010, 10, 21-25.

Chang, T.-P,; Shih, J.-Y,; Yang, K.-M.; Hsiao, T.-C. Material properties of Portland cement paste with
nano-montmorillonite. J. Mater. Sci. 2007, 42, 7478-7487. [CrossRef]

Amin, M.S,; El-Gamal, SM.A.; Hashem, ES. Effect of addition of nano-magnetite on the hydration
characteristics of hardened Portland cement and high slag cement pastes. J. Therm. Anal. Calorim. 2013, 112,
1253-1259. [CrossRef]

Nazari, A.; Riahi, S. Computer-aided design of the effects of Fe,O3 nanoparticles on split tensile strength
and water permeability of high strength concrete. Mater. Des. 2011, 32, 3966-3979. [CrossRef]

Shekari, A.H.; Razzaghi, M.S. Influence of Nano Particles on Durability and Mechanical Properties of High
Performance Concrete. Procedia Eng. 2011, 14, 3036-3041. [CrossRef]

Sikora, P.; Horszczaruk, E.; Cendrowski, K.; Mijowska, E. The Influence of Nano-Fe30,4 on the Microstructure
and Mechanical Properties of Cementitious Composites. Nanoscale Res. Lett. 2016, 11, 182. [CrossRef]
[PubMed]

Sikora, P.; Augustyniak, A.; Cendrowski, K.; Horszczaruk, E.; Rucinska, T.; Nawrotek, P.; Mijowska, E.
Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass
Aggregate and Nanomaterials. Materials 2016, 9, 701. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.conbuildmat.2015.08.074
http://dx.doi.org/10.1016/j.conbuildmat.2017.07.157
http://dx.doi.org/10.1007/s10853-014-8655-8
http://dx.doi.org/10.1080/14488353.2017.1372849
http://dx.doi.org/10.1016/j.compositesa.2017.02.001
http://dx.doi.org/10.1016/j.conbuildmat.2017.10.127
http://dx.doi.org/10.1016/j.compstruct.2017.04.012
http://dx.doi.org/10.4028/www.scientific.net/AMR.163-167.1532
http://dx.doi.org/10.1016/j.conbuildmat.2017.04.141
http://dx.doi.org/10.1016/j.conbuildmat.2012.04.099
http://dx.doi.org/10.1016/j.conbuildmat.2015.05.036
http://dx.doi.org/10.1016/j.cemconres.2013.08.003
http://dx.doi.org/10.1007/s10973-016-5715-0
http://dx.doi.org/10.1016/j.hbrcj.2014.04.002
http://dx.doi.org/10.1016/j.conbuildmat.2013.02.044
http://dx.doi.org/10.1007/s10853-006-1462-0
http://dx.doi.org/10.1007/s10973-012-2663-1
http://dx.doi.org/10.1016/j.matdes.2011.01.064
http://dx.doi.org/10.1016/j.proeng.2011.07.382
http://dx.doi.org/10.1186/s11671-016-1401-1
http://www.ncbi.nlm.nih.gov/pubmed/27067730
http://dx.doi.org/10.3390/ma9080701
http://www.ncbi.nlm.nih.gov/pubmed/28773823

Nanomaterials 2018, 8, 465 33 of 33

82.

83.

84.

85.

86.

Lucas, S.S. Influence of operating parameters and ion doping on the photocatalytic activity of mortars
containing titanium dioxide nanoparticles. Mater. Today Proc. 2017, 4, 11588-11593. [CrossRef]

Jalal, M.; Fathi, M.; Farzad, M. Effects of fly ash and TiO, nanoparticles on rheological, mechanical,
microstructural and thermal properties of high strength self compacting concrete. Mech. Mater. 2013,
61, 11-27. [CrossRef]

Ma, B,; Li, H.; Mei, J.; Li, X; Chen, E Effects of Nano-TiO, on the Toughness and Durability of Cement-Based
Material. Adv. Mater. Sci. Eng. 2015, 2015, 583106. [CrossRef]

Zhang, R.; Cheng, X.; Hou, P; Ye, Z. Influences of nano-TiO, on the properties of cement-based materials:
Hydration and drying shrinkage. Constr. Build. Mater. 2015, 81, 35—41. [CrossRef]

Pérez-Nicolds, M.; Navarro-Blasco, I.; Fernandez, ] M.; Alvarez, J.I. The Effect of TiO, Doped Photocatalytic
Nano-Additives on the Hydration and Microstructure of Portland and High Alumina Cements. Nanomaterials
2017, 7, 329. [CrossRef] [PubMed]

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.matpr.2017.09.070
http://dx.doi.org/10.1016/j.mechmat.2013.01.010
http://dx.doi.org/10.1155/2015/583106
http://dx.doi.org/10.1016/j.conbuildmat.2015.02.003
http://dx.doi.org/10.3390/nano7100329
http://www.ncbi.nlm.nih.gov/pubmed/29036917
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Effect of Nanosilica on the Thermal Resistance of Cement-Based Composites 
	The Effect of Nanosilica on Mass Loss 
	The Effect of Nanosilica on the Mechanical Properties of Cement-Based Composites 
	Flexural Strength 
	Tensile Strength 
	Compressive Strength of Cement Pastes 
	Compressive Strength of Cement Mortar 
	Compressive Strength of Concrete 

	Microcracking and Spalling 

	The Effect of Carbon-based Nanomaterials on the Thermal Resistance of Cement-Based Composites 
	The Effect of Multi-Walled Carbon Nanotubes (MWCNTs) 
	The Effect of Carbon Nanospheres 
	The Effect of Graphene Oxide 
	The Effect of Graphene Sulphonate Nanosheets 

	The Effect of Nanoclays and Calcinated Nanoclay on the Thermal Resistance of Cement-Based Composites 
	The Effect of Nanoalumina on the Thermal Resistance of Cement-Based Composites 
	The Effect of Nano-Iron Oxides on the Thermal Resistance of Cement-Based Composites 
	The Effect of Nanotitania on the Thermal Resistance of Cement-Based Composites 
	Discussion and Research Needs 
	References

