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General expressions are derived for the anisotropy of the viscosity and for the Leslie coefficients 
governing the flow alignment subject to the assumption that the equipotential surfaces for the 
interaction of oriented nonspherical molecules in the nematic or nematic discotic phase of a liquid 
crystal are related to a spherical interaction potential by an affine transformation. In particular, for 
uniaxial particles, the seven independent viscosity coefficients of a nematic are given in terms of the 
two viscosity coefficients of a reference fluid of spherical particles and the axes ratio of the nonsphe
rical molecules. The theory is compared with results from nonequilibrium molecular dynamics 
computer simulations and with experimental data.

Oriented nematic liquid crystals show a strong an
isotropy of the viscosity [1-5]. Theoretical explana
tions of this behavior typical for anisotropic fluids fall 
into three categories. Firstly, phenomenological con
siderations which yield the number of independent 
viscosity coefficients and (Onsager) relations between 
them [6-9]; secondly, semi-microscopic (mesoscopic) 
theories which aim at giving the dependence of the 
viscosity coefficients on the order parameter [10-13]; 
and thirdly, microscopic (kinetic) theories. In the 
latter case, special model assumptions have to be in
troduced to obtain specific results.

In this article a fluid of perfectly ordered particles is 
considered; the equipotential surfaces are assumed to 
be ellipsoids (of revolution). This model has previous
ly been used by Helfrich [14], Here, some general re
sults are presented which follow from an affine trans
formation linking both the interaction potential and 
the pair-correlation function of a fluid of nonspherical 
particles with those of spherical particles. Some conse
quences of the theory have already been tested in 
nonequilibrium molecular dynamics simulations and 
were compared with experiments [15]. Before the main 
points of this article are treated, the phenome
nological description of the anisotropic viscosity is 
presented in order to introduce the various viscosity 
coefficients (Section 1). The affine transformation 
model for perfectly oriented molecules is introduced
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and its consequences are exploited (both for prolate 
and oblate particles) in Section 2. In particular, the 
seven independent viscosity coefficients of a nematic 
are related to the shear viscosity and the bulk viscosity 
of a reference fluid composed of spherical particles. 
These relations involve the axes ratio Q of the non
spherical particles which are modelled as ellipsoids of 
revolution. In Sect. 3 a comparison with results in
ferred from nonequilibrium molecular dynamics sim
ulations and with experimental data is made.

1. Viscosity Coefficients

1.1. Phenomenological Ansatz for the Friction 
Pressure Tensor

The local momentum balance equation reads
Q

(e t>„) + vv (e vv v„) + vv = o, (1)

where q is the mass density. Cartesian components of 
the average flow velocity and the pressure tensor are 
denoted by v and PVß. The summation convention is 
used for Greek subscripts. The friction pressure tensor 
pVß is the difference between PVfl and its equilibrium 
value Pv;q:

With the help of the substantial derivative
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and with the continuity equation, (1) can be rewritten
as

d
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Q - v v + S/vP:?+Vvpvll = 0. (4)

The viscosity coefficients occur in the (linear) relation 
which links the friction pressure pVß with the gradient 
of the velocity Vv Like any second rank tensor, 
these quantities can be decomposed into their iso
tropic, antisymmetric and symmetric traceless parts;
e.g.

vv = |  VA vx ÖMV + £vM coa + yVfi (5)

with the vorticity

cox=  i  txaß \  vß (6)
and the deformation rate tensor

7vn = Vv vß = i  (Vv vß + V, vv) -  f  V, U; <5„v. (7)

The symbol 777 refers to the symmetric traceless part 
of a tensor; is the (totally antisymmetric) isotropic 
tensor of rank three. For an anisotropic fluid charac
terized by the director field n = n(t, r) and its co- 
rotational time derivative

(8)

the ansatz [5]

-  PVß = <*i "v "a »x 7ax + a2 "v + a3 K
+ «4 7v„ + a5 "v "a 7A„ + a6 7vA "a nß (9)
+ Ci »a "x Vax^v + C2 »V V a  + C3 VA ^  <5„v

is made, where the Leslie coefficients a l5..., a6 and the 
coefficients £1,2,3 have the dimension of a viscosity. 
The standard expression for the friction pressure ten
sor of a nematic corresponds to (9) without the terms 
involving the i = 1,2,3. Decomposition of the pres
sure tensor corresponding to (5) leads to [8,9,16]

K» = -  2rl ~  K17ß
- 2 f j2 nvNß — 2fjs nx nx yXx

(10)

Pi, = 7i K  K T + 72 (»v "a (11)
jP u  = - 1 \ \ v x- x n xnxyXx, (12)

where the antisymmetric part Tv* of any 2nd rank 
tensor TVfl is given by

Tvl  = \(T vß- T ^ ) .  (13)

1 = i [ a4 + i ( a5 + «6)1»

The viscosity coefficients occurring in (10-12) are 
related to those of (9) by

(13 a)

^  = i ( a 5 + a6), (14)

>?2 = i ( a2 + a3).
>73 = i a i .
y1 = a 3 - a 2, (15)

72 = a6 -  a5>

»Jv^C a + Ca. (16)
x = Ci + |( a i  + a5 + ae)-

Two Onsager symmetry relations exist between the 
9 viscosity coefficients considered so far:

2*72 = 72 (17)
or, equivalently,

a2 + a3 = a6 - a 5, (17a)

and [9,16]

C2 = x- (18)
Relation (17 a) is referred to as the Parodi equation [7]. 
For an isotropic fluid, all viscosity coefficients vanish 
except for the shear viscosity rj = j  a4 and the bulk 
viscosity tjv = C3.

1.2. Miesowicz Viscosities

In a shear flow experiment, linear combinations of 
the viscosity coefficients introduced so far are mea
sured. For the case of a plane Couette flow with the 
velocity in the x-direction and its gradient in the y- 
direction one has

\  v = yey ex, to — — \y  er,

Crystals 663

with the constant shear rate

y = dvjdy; (19)
ex.y,z are unjt vectors parallel to the x-, y- and 
z-coordinate axes.

The Miesowicz viscosities [1-5, 17] rjt, i=  1,2,3, 
are defined by

>7; 7 (20)

with the director n parallel to the x, y, z-axes, respec
tively. Experimentally this case is realized when the 
orienting external (magnetic) field is strong enough to
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overcome the flow induced orientation [1-5]. The di
rectly measurable Miesowicz coefficients are linked 
with the coefficients of (9-11) by

fi = \  (<*4 + «6 + a3) = 1 + H i  + + i  7l>
h  = \  («4 + «5 ~  a2) = V + H i  ~  fo + i  Vi,

= i  a4 = » / - H i -  (21)
A fourth coefficient is needed to characterize the shear 
viscosity. Following Helfrich [17], the quantity

fi2 = 4>/45-2(»/i 4-7/2) (22)

is used where is the viscosity for n parallel to 
+ ev, i.e. under 45° with respect to the flow direc

tion. Similar to (21), one has

1i2 = *i =2>b- (23)
Notice that the antisymmetric part of the pressure 
tensor only contributes to rj, and rj2 but not to r]3 and
V12"

1.3. Normal Pressure Effects

From the ansatz (9) or from (10) and (12) one infers 
the normal pressure differences

Pxx -  Pyy = y "x "v [>>2 + >7 1 2 y ~  «,)] , (24) 

Pzz -  i  iPxx + Pyy) = y nx "y föl + H i  2 (* ~ 3 nl)\
and

\P u  = - * y nxnyi (25)
where nx y , are the components of n with respect to 
the coordinate axes. The quantities (24, 25) vanish for 
the orientations "1,2,3" of the director n. The exis
tence of the "transverse" pressure pxx — pyy has been 
demonstrated experimentally [18], the other quanti
ties have not yet been measured.

1.4. Flow Alignment and Viscosity for a Free Flow

The antisymmetric part of the pressure tensor is 
associated with a torque density by

K = ~  Pvii = ~ £„v a Pix ■ (26)
For a stationary flow and without orienting external 
fields, and p\n vanish. For the plane Couette geome
try considered above, (26) and (11) imply that the 
director lies in the shear plane and encloses the angle 
<f>o (flow alignment angle) with the x-direction:

664

Subject to the condition |y2| > yl5 </>0 is given by

cos 2^0 = — y jy 2. (27)

In this case the viscosity of a freely flowing (flow 
aligned) nematic liquid crystal becomes

*ls = i  fai + 2̂ -  7i) + k V12 [i -  (7i/y2)2] 
= ri + l f j l - l y l + \ f j3 [ l - ( y 1/y2)2]. (28)

Measurements of y, and r]s for a large class of nematic 
liquid crystals were reported in [19]. The equation 
5 = 0, cf. (26), has also the solution n = e\ In this case 
the viscosity would by equal to t]3. This type of 
flow orientation, however, is instable, in general. Posi
tive entropy production implies yx > 0 and ^  > 0, 
i = 1,2,3; however y2,rj 12 and x may have either sign.

2. Affine Transformation Model for Perfectly 
Oriented Molecules

2.1. Definition of the Model

The pressure tensor of a fluid is a sum of "kinetic" 
and "potential" contributions:

= C  + (29)
the latter contribution is the dominating one for dense 
fluids. Microscopic expressions for these quantities 
are

V P ^  = Z m civc\l (30)
i

and
. . .8 <PiN)

Here i = 1,2,..., N labels the molecules with mass m 
contained in a volume V; rl and cl are the positions (of 
the center of mass) and peculiar velocities of the parti
cles. It is understood that there is no external force
included in F ,̂ i.e. one has ]T Fß = 0. The quantity <P(N)

i
is the N-particle potential which is given as a sum of 
binary interactions,

Z  Z  (32)
« * j

with rlj = rl — rj .
Now it is assumed that the nonspherical potential 

^a = ^a^) is obtained from a spherical interaction 
potential <i>(i*A) by an affine transformation:

n = cos <{)0 ex + sin <p0 ey. cPA(r) = cP(rA) (33)
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with r and rA linked by

rA rA = r A r (34)H H H ' 1H\' v V-7 v
or

rA = AH2rv. (35)

The transformation matrix AßV with positive eigen
values describes the mapping of a sphere rA rA 
= const on an ellipsoid. In (33), r stands for the differ
ence rlj — r' — r j between the position vectors of two 
particles. Since all molecules are assumed to be per
fectly oriented in the same direction, the same trans
formation (35) can be used for all coordinates. This 
means that the fluid of oriented nonspherical particles 
is affinely related to a fluid of spherical ones. It is 
convenient to use a volume conserving mapping 
where the eigenvalues At, i = 1,2,3, of AßV obey the 
relation

Al A2A3 = l .  (36)

Then the spherical equipotential surface of @(rA) en
closes the same volume as the corresponding elliptical 
potential surface of <£A(»"). Next, it is demonstrated 
that some general conclusions can be drawn from the 
assumptions made so far without introducing a specif
ic functional form (such as hard or soft spheres or 
Lennard-Jones interaction) for <P(rA). the explicit form 
of the transformation matrix AßV is presented later for 
the special case of ellipsoids of revolution.

In the following we restrict our attention to the 
(dominating) potential contribution to the pressure 
tensor.

2.2. Potential Contribution to the Pressure Tensor

Due to (35), the spatial derivative d/drß = \7ß is 
linked with V* in the affine space by

VA = 1/2 Vv. (37)

Thus one has
ppot, A - A 1/2 ppot A - 1/2 /->0\Vv — SlßX r Xx ^xv

for the relation between the potential contribution to 
the pressure tensor in real and in the affine space. In 
thermal equilibrium one has P ^ -A = P£ot öVß; (38) 
then implies = P£ot SVß, i.e. the pressure tensor of 
the fluid of non-isotropic particles is also isotropic in 
equilibrium.

The eq. (38) also applies to the potential contribu
tion to the friction pressure tensor p (cf. (2)) which is

assumed to be determined by the standard ansatz for 
an isotropic fluid in the affine space:

-  PIT A = A )VAv + Iv V,A t f  <5mv . (39)

Notice that S7A vA = V; vx and the symmetric traceless 
deformation rate tensor yAß is related to the velocity 
gradient in real space by
VA _  1 (A-1/2 A 1/2 , A- 1/2 Al/2\ y _  1 y s

(40)
Now use of (38) with (39, 40) leads to

- Pl°: = « r 'A (A-,1 v, Axv + Vvvß) -  IVA <5,v] 
+ 1$VxVxS„. (41)

This means that the potential contributions to the 
seven independent viscosity coefficients of (9-12) can 
be expressed in terms of the coefficients a£ot'A and r]A 
and the properties of the affine transformation matrix 
AßV which contains the information on the direction of 
the orientation of the molecules and on their "non- 
sphericity".

2.3. Ellipsoids of Revolution

For ellipsoids of revolution with their figure axis 
parallel to the unit vector u one has

Amv = [(1 -  ±A)2 (1 + |  A)] - 1/3 (ößV 4- A u^uv),
(42)

where A with — 3/2 < A < 3 is a nonsphericity param
eter. The factor in the bracket guarantees the property 
(36). The equation (34) with rA rA — const describes 
an ellipsoid with the semiaxes

a = [ ( l - f / l ) ( l  + f / l ) - 1]1/3rA

and
ö = c = [(l + | ^ l ) ( l - ^ ) - 1]1/6rA. (43)

Thus the axes ratio is

< 2 -f = [ ( l - | / l ) ( l  + f / l ) - 1]1/2, (44)
and one has

A = 3 ( l - Q 2)(l + 2Q2y 1. (45)

Prolate and oblate particles correspond to Q > 1, 
A < 0 and Q < 1, A > 0, respectively. For spherical 
particles, i.e. for Q = 1, A = 0, (42) reduces to 
AßX = ößV. In general, the transformation matrix can 
also be written as

Amv — Q2 3 [<5̂  + (Q~2 — 1) ußuv], (46)
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and its inverse is given by

a ; :  = q ~ 2'3 [ö„ + (Q2 - l ) u ßuy].

3.0 -,

(47)

Insertion of (46, 47) into (41), use of u = n (complete 
alignment) and comparison with the ansatz (9) now 
yields for the potential contributions to the viscosity 
coefficients:

ypot _ ,pot, A 4 '
= - \ ( Q - Q l)2 af*. (48)

tp20t

a r  = K<2
a r  = W

l ( i  -  q 2) « r ,
- 1 X 0', 
1) = .pot t2 '

a6°' = \ ( Q '2 ~  1) = a3 

>7v = >7v,
xpot = £pot = Q

(49)

(50)

With a£0,-A = 2//fs°l, where the subscript "iso" refers to 
the affine "isotropic" fluid, (48-50) are equivalent to 
(cf. (14,15))

>/pot = [i + Ü Q - Q '1)2] Co, 
f\T = -2(Q 
n T = -2(Q '2

Ö "1)2 Co-

p - =  -  i ( q
S 2) y 
Q -1)2

potiso '
„pot '/iso '

and
yi = ( e - ö -1)2 Co,
7 2 = (Q '2 - Q : „pot I ISO

(51)

(52)

Notice that the kinetic part of the pressure tensor is 
symmetric. Consequently, the coefficients y, and y2 -  
and by the Onsager symmetry relation (17) also fj2 -  
are completely determined by the potential contribu
tions listed above; the coefficients r\, rj, and fj3 possess 
kinetic contributions, in general. From (51, 52) follows

(53)

which appears to be analogous to (17) but is not as 
general as the Onsager symmetry relation. The poten
tial contributions to the Miesowicz viscosities, cf. 
(21-23), for the present model are

„pot _ „pot— n iso ■
nT = Q-2 „pot

and

riT = Q2 n f

-1)2 nT =

Fig. 1. The Miesowicz viscosity coefficients i=  1,2,3 
in units of the average viscosity y\ =  ̂(f/j + r]2 + ti3) as func
tions of the axes ratio Q for prolate (Q > 1) and oblate 
(Q < 1) particles. Notice that a logarithmic scale is used for Q.

- 3J

7i

(54)

(55)

Fig. 2. The Leslie coefficients y, and y2 in units of r\ as func
tions of the axis ratio Q. Notice that y2 < 0 for Q > 1 and 
y2 > 0 for Q < 1.

The ratios n T M f1 = Ö"4 and j  {y1- y 2)/rip2ot = 1 - Q  2 
agree with results derived by Helfrich [14] for Q > 1. 
In Fig. 1, the (reduced) Miesowicz viscosities rjt, 
i = l,2,3, in units of the average viscosity 
rj = + rj2 + ri3) are plotted as functions of the 
axes ratio Q. Notice that r]2 > rj3 > rj x for prolate par
ticles (Q > 1) and t/j > rj3 > rj2 for oblate particles 
(Q < 1). Similarly, in Fig. 2, yx and y2 (in units 
of fj) are displayed as functions of Q. Both y, and y2 
vanish for spherical particles (Q = 1). Notice that 
y2 < 0 for Q > 1 and y2 > 0 for Q < 1. The scaled 
coefficients are denoted by rj* and y*.

The flow alignment angle which follows from yx, y2 
given above is

= ! [7t + sign (Ay) arccos [(1 - Q 2)(\ + Q2)
(56)
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where y is the shear rate and A < 0 for prolate parti
cles. For this case, </>0 is shown in Figure 3. The poten
tial contribution to the viscosity for a free flow (no 
orienting external fields), cf. (28), is

rif* = 4(Q + Q -1) - 2 'lf*
= 4 M otr 1+ ( r i r r l + 2 ( r i r r T 1- (57)

Notice that 7/fot < The ratios rjs/fj and y \̂r\s as 
functions of Q are shown in Figs. 4 and 5, respectively.

2.4. Remarks on the Kinetic Contribution
to the Pressure Tensor and on the Validity of (39,41)

It seems tempting to use arguments similar to those 
which led to (39) in order to calculate the kinetic con
tribution to the friction pressure. From cß — A~v1'2 cA, 
where cA is the velocity in the affinely deformed space, 
one would obtain

cßcß = cA A~f cA, (58)

which would imply that -  in the affine space -  the 
velocity distribution function is already anisotropic in 
equilibrium. Thus well-known relations from isotro
pic fluids cannot be used for the kinetic contribution 
to the friction pressure tensor. Here, it is simply disre
garded because it is much smaller than the potential 
contribution. At the same time, it becomes evident 
that relation (39) is not as general as it seemed at first 
glance. The underlying assumption becomes more ap
parent if the N-particle average (31) is replaced by the 
integral over the pair-correlation function gA(r),

d<P*
K  = (59)

where n = N/V is the number density and <PA = 
<PA(r) = <i>(rA) is the binary interaction potential. 
Relations (39) and (41) are equivalent to the assump
tion that the pair-correlation function gA(r) of the 
oriented nonspherical particles (in analogy to (33)) is 
equal to the pair-correlation function g(r) of a fluid of 
spherical particles related to the original ones by the 
affine transformation (35). Such an interrelation has 
previously been conjectured for the equilibrium struc
ture of oriented nematic liquid crystals [20]; here it is 
extended to nonequilibrium properties.

Molecular dynamics simulations confirm that the 
consequences based on (39) and (41) are rather well 
obeyed [15,16]; see also the Section 3.
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So far, our considerations were restricted to the 
Newtonian viscosity. Assuming that (41) still applies 
in the non-Newtonian regime and observing the 
transformation behavior of the shear rate, we obtain 
the nonlinear generalizations of (54):

riT(y) = < (y ) ,
riT(y) = Q~2rjT (Q-'y),
r}T(y) = Q2riT (Qy). (60)

Thus in liquid crystals with strongly anisotropic mole
cules nonlinear effects like shear thinning can occur at 
relatively smaller velocity gradients if the director lies 
along the direction of the gradient (flow velocity) for 
prolate (oblate) particles. This is indeed observed in 
NEMD computer simulations [15,16]. For the coeffi
cients yx and y2 expressions analogous to (60) are

i(7i + y2) = ( ( r 2 -i)>?30t( ( r 1y),
i(7i - y 2) = (Q2 -  V iTiQ y)- (61)

668

2.5. Non-Newtonian Viscosity

3. Comparison of Analytical Calculation 
with Molecular-Dynamics Simulations 
and Experimental Data

3.1. Nonequilibrium Molecular-Dynamics 
Simulations for Ellipsoid Potentials and Comparison 
to Theoretical Relations

With a CDC Cyber 173 and a Cyber 845 at Erlangen 
as well as a Cray-1M and a Cray-XMP-24 at Berlin, 
we have performed NEMD simulations for a system 
of 128 particles interacting via a soft or a Lennard- 
Jones ellipsoid potential [15,16]:

^se(^) = rA- 12, (62)
^lje (rA) = 4 (r A 12 — rA 6). (63)

The particles are rigidly oriented in the direction of a 
coordinate axis or of the bisector between the 1- and 
2-axis. The system is subject to a plane couette flow 
(19). After computation of the kinetic and potential 
contributions to the pressure tensor PVß for different 
shear rates y, we determine the Newtonian shear vis
cosity by an extrapolation to y = 0:

»/,. = - lim i=  1,2,3,45. (64)
y-0

Table 1. NEMD results for the potential viscosity coeffi
cients of SE and LJE fluids at number density n and temper
ature T.

SE potential 
n =0.6 
T = 0.25

LJE potential 
n — 0.6 
T= 1.15

Q = 7/3 (prolate particles)

h  
h  
13
nn

y 2X

0.09 + 0.03 
2.8 +0.2 
0.52 + 0.10 

-1.8 +0.3 
1.9 +0.3 

-2.7 +0.3 
0.0 +0.3

0.15 + 0.04 
3.5 +0.3 
0.70 + 0.10
2.1 +0.4
2.2 +0.4 
3.5 +0.4 
0.0 +0.4

Q — 1 (spherical particles)

Visa 0.52 ±0.10 0.73 ± 0.10

Table 2. Comparison between our theoretical relations and 
the NEMD results from Table 1.

Theory NEMD

SE LJE

fa/tfi 5.44 5.8 + 0.4 4.7 + 0.5
nibh 5.44 5.4 + 0.4 5.0 + 0.5
ixihi -1.00 -0.9 + 0.4 -1.0 + 0.4
i 3/iiso 
X

1.00 1.0 + 0.2 1.0 + 0.2
0.00 0.0 + 0.3 0.0 + 0.4

For the used type of interaction, the rotational viscos
ity is exactly given by

7 i= d  - ö 2) > ? r + ( i - < r 2)>?r- (65)
The coefficients and y2 can also be inferred from the 
antisymmetric part \  {pyx — pxy) of the pressure 
tensor as computed in the NEMD simulation. If p0 
denotes the scalar friction pressure, we obtain the 
coefficient x from a run with 45°-orientation accord
ing to

x — 2 lim Poiy)/y ■ (66)
y-o

It should be noted that the 45°-alignment and one of 
the three others already yield all desired coefficients. 
This is due to the fact that under 45° two normal 
pressure differences occur, cf. (24), which are related to 
the shear viscosities. However, it seems useful to have 
some redundant information in order to check the 
consistency of our calculations. In Tables 1 and 2, we 
present our NEMD results (in standard reduced units)
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Table 3. Theoretical results (potential contributions) and 
LJE-NEMD data for 5 reduced viscosity coefficients are 
compared with the corresponding experimental values for 3 
substances.

It n\ 1* 1*12 7?
Theory (pot) 0.08 2.46 0.45 -1.64 1.64
LJE 0.15 2.33 0.52 -1.12 1.40

+ 0.07 + 0.3 + 0.1 + 0.4 + 0.2
EM (40 °C) 0.37 2.07 0.57 - 1.62
MBBA (30°C) 0.38 1.99 0.63 -0.28 1.55
N4 (50 °C) 0.32 2.14 0.54 -0.68 1.75
N4 ((33 + 1)°C) 0.34 2.00 0.66 -1.21 2.00

for prolate and spherical particles as well as a compar
ison to the theoretic values, respectively. The index 
"pot" is omitted in both tables.

Within the accuracy of computation and extrapo
lation, we ascertain a good agreement between theory 
and computer experiment.

3.2. Comparison to Experimental Data 
for Real Nematics

There exist precise measurements of the shear and 
rotational viscosities of different nematic liquid 
crystals by Kneppe, Schneider, and Sharma [2-4], In 
Table 3, our theoretical and numerical values for 5 
viscosity coefficients in units of the average shear vis
cosity rj = |  (rjl + rj2 + rj3) are compared with some of 
these experimental data. For rjr , rj2, rj3 and yx this 
comparison has already been made previously [15]. In 
the last line data inferred from tables and graphs in 
[21] for N4 are listed. The value of */12 for N4 at 50 °C 
has also been taken from [21]. The scaled viscosity 
coefficients rjjfj and yjrj are denoted by rj* and y*.

In this comparison between theory and the experi
mental data one should keep in mind that the theoret
ical values apply to a perfectly aligned fluid (Maier- 
Saupe order parameter S = 1) of particles with an axes 
ratio Q (where the special value Q — 7/3 was chosen) 
whereas the real fluids are only partially ordered 
(0.4 < S < 0.8) but they consist of molecules with a 
larger axis ratio Qm. For a more quantitative compar
ison, an expression for the effective axis ratio Q of the

perfectly aligned model fluid in terms of S and Qm of 
the real liquid crystal is still needed. For temperatures 
well within the nematic range Q — S Qm seems to be a 
likely guess. For rj2, rj3, and yl5 the comparison be
tween the theoretical and experimental values is quite 
satisfactory; for ^  and the magnitude of rj12 one 
observes larger discrepancies. The essential qualita
tive features, however such as rj2 > r\3 > y2 < 0, 
>712<0,for nematics are well described by the theore
tical model.

4. Concluding Remarks

In this article, it has been demonstrated how the 7 
independent viscosity coefficients of a nematic or ne
matic discotic liquid crystal can be expressed in terms 
of the shear viscosity and the bulk viscosity of a refer
ence fluid of spherical particles and the axes ratio Q of 
the ellipsoidal particles. Apart from the fixed orien
tation (perfect alignment) the crucial point is the use of 
a nonspherical interaction potential obtained from a 
spherical one by an affine transformation which cha
racterizes the anisotropy of the "shape" of a molecule. 
This, on the one hand, allows the derivation of rather 
general exact relations which are confirmed by non- 
equilibrium molecular dynamics simulations. On the 
other hand, in a comparison with real nematic liquid 
crystal one should bear in mind that dipole-dipole and 
quadrupole-quadrupole interactions were not taken 
into account in the present treatment. The fact that 
the magnitude of the theoretical value for the coeffi
cient r] 12 is too large when compared with experimen
tal data may be associated with this point. The com
parison of theoretical and experimental values for the 
Miesowicz viscosities ri1, rj2, rj3 and the Leslie coeffi
cients yl5 y2, however, indicates that the affine trans
formation model contains the essential features for the 
explanation of the anisotropy of the viscosity of ne
matic and nematic discotic liquid crystals.
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