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THREE CONCEPTS OF RELIABILITY

Apodictic certainty is the exceptional feature of mathematics among all sci-
ences. Applying mathematical results in practice this certainty is lost. The
theorems of applied mathematics are beyond doubt, but their application to
real-world phenomena are necessarily argued by weaker means than logical
deduction from axioms.

Strictly speaking arguments for the applicability of a certain mathemat-
ical theory to a certain real-world topic are never mathematical. But to
a certain extent mathematical refinement can make the task of those non-
mathematical arguments easier. The mathematical theory can incorporate
a concept of reliability. This means that one acknowledges in the construc-
tion of the mathematical model a certain type of inevitable defect of the
model compared to the modeled reality. This defect cannot be avoided, but
one can formulate relevant statements that are true despite the specific, ac-
knowledged defect. Thereby, the refined mathematical model instills a type
of (still not apodictic) reliability to the application. One derives reliable
statements from unreliable information.

In this work we consider three existing concepts for reliability from the
areas of linear and combinatorial optimization, and discrete mathematics.
For each of these concepts we achieve a significant enhancement.

A classical example is optimization under imperfect information. Here
the defect lies in the fact that the available data for the optimization model
is subject to uncertainty or changes. We do not know the exact data, but
we know a set of possible scenarios. A classical concept of reliability in this
setting is robust optimization. Robust optimization seeks to construct an
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optimal solution among those that are feasible in all likely scenarios. We
develop the concept of recoverable robustness, which constructs an optimal
solution among those that can be turned feasible in all likely scenarios by a
limited recovery (cf. Chapter 4). This enhancement constitutes an important
progress for both theory and practice.

For linear programming the notion of recoverable robustness enables to
optimize with respect to more accurately shaped sets of likely scenarios.
Here the basic idea is that in each scenario the total amount of data devi-
ating from their reference value is restricted. So far one could impose such
a restriction only to entries lying in the same inequality of the linear pro-
gram (horizontal integration). Recoverable robustness (cf. Section 4.3) can
consider restrictions to the deviation in the complete system (horizontal and
vertical integration) of inequalities.

Introducing recovery to robustness allows for vertical integration preserv-
ing the compactness of the model and the quality guarantee for the solution.
Further, vertical integration allows to consider non-trivial models for right-
hand side disturbances, which are an important feature for many practical
robust problems.

In practice classical robust optimization is not applicable to those real-
world problems in which recovery is an essential aspect of the problem. Here
recoverable robustness broadens the scope of applications for which robust
solutions can be found. Among these new applications is delay resistant
timetabling (cf. p. 104).

Finally, a polyhedral analysis of recoverable robustness for linear pro-
grams leads to a new perspective on linear programming under imperfect in-
formation (cf. Section 4.5). This perspective allows for a priori lower bounds
on the probability of recovery robust solutions to be feasible in larger sce-
nario set than those they are constructed for. These results are formulated
independent from a distribution, allowing for specific bounds in case specific
assumptions for the distribution are valid.

Recoverable robustness enhances a standard concept of reliability for the
classical problem of optimization under imperfect information. Thereby, it
enables robust solutions for large scope of real-world problems, and it opens
the door for a better mathematical understanding of optimization under
uncertainty.

A special concept of reliability with well established practical applications
is that of a feasibility test for real-time scheduling (cf. Chapter 3). This
is a striking example how mathematical progress can compensate for an
inevitable defect in modeling.

An instance of real-time scheduling consists of an extremely large but
highly structured set of jobs. The job sequence must be scheduled on a mul-



tiprocessor platform by a rule simple enough to be used in real-time. Typical
applications like advanced radar systems, engine controls or autopilots are
often safety critical. Therefore, the deadline of each job must be met. The
task of a feasibility test is to determine in advance, whether the capacity
of the platform and the scheduling policy suffice to meet all deadlines. For
safety and reliability reasons one seeks for a mathematical guarantee. But
there are two inherent defects. The first defect originates from the real-time
character which inhibits the use of complicated scheduling policies. A sec-
ond defect stems from the job sequence being too large (often even assumed
countably infinite) to be considered explicitly. Only a compact description
of the structure of the job sequence can be used for the feasibility test.

Moreover, in the case of sporadic real-time scheduling crucial data, namely,
the release dates of the jobs is not fully determined by the compact descrip-
tion. Therefore, a sporadic instance can unfold in infinitely many different
job sequences. The test should determine, whether each of these job se-
quences can be scheduled.

Since the nineties is has been conjectured that for a certain simple and
widely used policy an approximate feasibility test in the following sense is
possible: For any sporadic instance the test either recognizes it to be infeas-
ible or to be feasible on a platform with processors of higher speed. Clearly,
one seeks to keep the speed-up factor in such an approximate feasibility test
as low as possible. By extending the standard concept of the load of an
interval, we could eventually derive a such test. Moreover, this test has the
lowest possible speed-up factor.

The first concept we discussed achieves reliability of solutions despite
uncertain data. The second concept allows to assess the reliability of a real-
time system although the complete data of that system cannot explicitly be
part of the model. The third concept of reliability is the equilibrium of a
certain type of game, a so-called network creation game (cf. Chapter 2).

A network creation game is a high-level tool of analysis for networks one
cannot apprehend in full detail. Typical examples are social networks or the
network of links between web-pages. Though there is an inevitable defect
in exact knowledge about the network, one would like to gain some reliable,
structural insight, e.g., the diameter, the degree sequence, or the so-called
price of anarchy.

We analyze a network creation game in which several players establish a
network of links among them. On the one hand, each player benefits glob-
ally from the topology of the network which connects the player directly or
indirectly to each other player. On the other hand, each player has to pay
locally for the topology, i.e., the number of her direct links. A player myopi-
cally, selfishly and uncooperatively maximizes her payoff, i.e., the difference
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between her benefit and cost.

What can be said about networks that are in equilibrium, i.e., stable in
the sense that no single edge will be removed or added by the players? In
particular, can we compare an anarchic network established by the players
themselves to a network centrally designed in order to maximize the social
payoft, i.e., the sum of all players’ payoftf? Remarkably, for the specific benefit
we consider, one can rely on the players themselves to organize a network
with no less than half the social payoff of a centrally planned network, in
other words, the price of anarchy is 2.

So far the described type of network creation game could only be analyzed
when the benefit of a player from another player depends linearly on their
distance in the network. We are the first to analyze a network creation
game with a benefit depending exponentially on the distance. This adds
significantly to the games modeling power.

These three concepts of reliability all lie within the broader field of com-
binatorial and linear optimization, and discrete mathematics. Still, they
belong to fairly disconnected special areas of research. We have to use sig-
nificantly different mathematical tools to achieve each of the new results.
Therefore, we present the three topics independently in three self-contained
chapters, entitled by the broader area of the topic, Network Creation Games
(Chapter 2), Real-time Scheduling (Chapter 3), and Recoverable Robustness
(Chapter 4).



NETWORK CREATION GAMES

In this Chapter we study the following model: We are given a set of n vertices
who want to communicate with each other. To this end they can establish
links, i.e., edges among them. An edge causes a fixed cost ¢ to both of its
incident vertices. Yet, it can be used for communication by other vertices,
too: For vertices v and w that have not established a direct edge between
them, messages can be send via a common neighbor or any path connecting
v and w. The disadvantage of indirect communication is the lower reliability
of the transmission on a longer path. Each edge transmits the messages with
an independent probability of §. Thus, if v has shortest path distance to w
equal to k, then the messages among them will reach their destination with
probability equal to 6. For each vertex v the sum of the probabilities for
successful communication with each other vertex is the benefit the vertex v
gets from the network. This benefit minus the cost (¢ times the degree) is
the payoff for that vertex from the network.

The network is constructed step by step by the vertices themselves.
Therefore, the vertices are also called the players. In each step a pair of
vertices decides, whether it wants to establish/maintain its common edge or
not. The edge will be present immediately after the step, if and only if each
of them has a better payoff with the edge than without it. So edges can be
established or withdrawn.

Which networks are stable in the sense that no pair of vertices wants
to withdraw its present edge or establish its non-present edge? This is the
main question we answer in this chapter. In particular, we show which of the
stable networks has the highest sum of payoffs over all vertices, and which
is worst in this value. In fact, the ratio between the two is at most 2.
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2.1 A FUNDAMENTAL GRAPH PROCESS

The type of object sketched in the motivation is called a network creation
game, which is a special case of a graph process. A graph process is a
sequence of graphs (G;);en, defined by a creation rule, which determines how
Gy evolves from G; (usually including some randomized decisions). If this
creation rule can be formulated in terms of a game, we speak of a network
creation game. Such objects are tools for high-level analysis of real-world
networks.

Graph processes and network creation games help to understand the
structure of real-world networks. Though these tools often fall short of a
detailed modeling, their analysis elates by linking a simple and intuitive,
creative principle to typical features of huge real-world networks. In this
way, e.g., the preferential attachment model (cf. [16] for details) explains the
scale-free structure formed by the pages of the WWW and their links.

Several such models have been proposed mostly in an economic context.
We consider one which seems fundamental among these. The network cre-
ated is a simple, undirected graph G(V, F). It is created step by step. In
each step a pair of vertices {u, v} is chosen with no respect to whether their
common edge already exists or not. For the edge to exist at the end of the
step both vertices u and v have to benefit from it. In case at least one of
them disapproves, the edge will not be present at the end of the step. A
vertex benefits from an edge e, if the current graph with e gives that vertex
a higher payoff than the current graph without e. The costs are local, namely
every vertex pays a factor ¢ times its degree, but the vertex enjoys income
globally, namely from every other vertex exponentially declining with the dis-
tance to the other vertex. Whether to be at distance 2 or 3 is a much greater
difference than whether to be at distance 100 or 101. These intuitions are
not limited to economics. In the introductory motivation we consider the
network as a means to send information from any vertex to any other vertex
along paths. Unfortunately, each edge can have a probability of temporary
failure of (1 — §). Alternatively, at every edge used a (1 — d)-portion of the
information sent into the edge is lost. Hence, every vertex v will send its
deliveries to w via a shortest path and only a portion of 45!(*) of the total
amount sent from v to w and vice versa will reach its destination.

This creation rule can be understood as a game, where the vertices as
players create the edges myopicly, selfishly, and non-cooperatively, though
each edge requires both its end-vertices to agree. Obviously, it depends on
the order of steps which networks are created. One is interested in certain
equilibria or stable states, i.e., situations which every player would leave
unchanged, if it was her turn now. The notion of stability suitable to this
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model is called pairwise stability (cf. [36]), i.e., a graph is stable, if it will
stay unchanged, no matter which pair of vertices is chosen for the next step.
Alternatively, one can define a probability distribution according to which
the next pair of players is chosen. Then the game becomes a random graph
process, i.e., a sequence of random variables (G;);en, each one representing
a network. Again the same stable states and the possibility for the process
to cycle are of primary interest. For the graph process, we accept every
distribution that assigns a positive probability to every pair of vertices.

Besides the stable graphs, one is interested in graphs maximizing the
sum of the payoffs, i.e., the total throughput of information minus the total
edge cost. These graphs are called efficient graphs or system optima. The
smallest ratio between the total payoff of a stable graph and that of a system
optimum is called the price of anarchy of the graph process and is of high
interest in network creation games since its first mentioning by Koutsoupias
and Papadimitriou [39]. The classical notion of Nash-equilibrium (cf. [47])
is not adequate for bilateral games. Note that pairwise stability is a stricter
notion of equilibrium as a player is not allowed to overhaul her whole strategy
without the other players reacting to his steps (cf. also [27]).

Related Results The huge number of network creation games proposed
in the literature shows the great interest for these explanatory tools. See
Jackson [36] for a survey article. During the previous decade, also the inter-
est in Nash equilibria and the price of anarchy for network creation games
increased. The first to treat the price of anarchy were Koutsoupias and
Papadimitriou in their seminal paper [39]. A relevant but simple network
creation game is the unilateral game with linear payoff function as proposed
by Fabrikant et al. [31]. Their model is the same as ours except for two
features: For them an edge is used mutually, but only one of its end-vertices
pays for it. Second, the income from other vertices decreases linearly with
their distance. Recently, Albers et al. [8] give the best known upper bound
on the price of anarchy for this model. Moreover, they disprove a structural
conjecture for stable states made by Fabrikant et al. [31] when they show
that graphs with cycles can be stable.

Corbo and Parkes [27] analyzed a bilateral consent-driven variant of the
model by Fabrikant et al. and determined lower and upper bounds of the
price of anarchy. Among other improvements Demaine et al. [28] lifted the
lower bound to match the upper bound. Further, they compared these val-
ues with the unilateral model. As already stated by Corbo and Parkes, Nash
equilibria are not appropriate for bilateral games. They therefore introduced
the alleviated notion of pairwise Nash which is equivalent to pairwise stabil-

ity.
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The model we consider uses a more elaborate payoff function and the
bilateral approach for sharing the costs of the edge. It was proposed by
Jackson and Wolinsky [37] and interpreted as a graph process by Watts [58].
We state their results in Section 2.3. Though in comparison to those of [31]
and [8] as well as [27] their results may appear limited to peculiar cases and
immediate from the definition, the model of [37] and [58] is more convincing
for two reasons: They give a consistent interpretation of mutual relations.
And the income decreases exponentially with the distance.

Another model using bilateral cost sharing is given by Melendez-Jiminez [46].
Models using cost sharing principles are for example Bala and Goyal [15].
Anshelevich et al. [11] and [10] establish a near optimal solution for selfish
players and determine the price of anarchy in a model with fair costs.

Our Contribution It would be desirable to achieve the same level of
mathematical insight for the process of Jackson, Wolinsky [37] and Watts [58]
as provided for the process of Fabrikant et al. [31] by Albers et al. [8], namely
some structural knowledge of the stable states and bounds on the price of
anarchy. We [19] achieve even more. Our process depends on two parameters,
c and 0. First, we show that this process behaves equally whenever c is
in (0 — 6%, —&3). For these cases we show that the process has positive
probability to cycle.

Further, we provide for a thorough structural insight to stable states. On
the one hand, this is of interest in its own. On the other hand, it allows for
our main theorem: We give an explicit formula in ¢, 9, and the number of
vertices for the exact price of anarchy for all ¢ € (6 — 6%,5 — §°). We argue
by reducing the creation rule and payoff functions to local, graph theoretic
criteria. In particular, the price of anarchy can be reduced to the number of
edges in a maximum stable graph.

For ¢ > § — 6% we indicate how and to which extent our methods can be
carried over. Further, we point out how an analogon to our main result is
linked to extremal graph theory.

Overview of the Chapter In the next section we will collect some defi-
nitions and basic observations. The game we analyze behaves quite different
for different choices of ¢ and §. In Section 2.3 we achieve some overview
for this family of games. In the remainder we focus on one class of these
games and analyze its stable graphs in several steps. Finally, we state two
conjectures. At that time the reader will have an understanding, why we
leave these as conjectures.
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2.2 PRELIMINARIES

For a graph G as usual V(G) and E(G) denotes its vertex respectively its
edge set. For a pair of vertices e = {u, v}, we use G+ e and G — e, no matter
whether e € F(G) or not, to denote the graph G with or without the edge
e. The neighborhood of a vertex v will be denoted by N(v), its degree by
d(v) (= |N(v)|) and the distance between two vertices u and v by dist(u, v),
i.e., the minimum number of edges in a path connecting u and v. If no path
exists between u and v, we say dist(u,v) = co.

Formally we define a network creation game with exponential payoff to be
a triple of the cost coefficient, the income basis and the number of vertices,
(c,0,n) € R x (0,1) x N.

For every vertex v the income is a function of F(G) given by ZUEV\{U} dist(uv),
The cost of a vertex v is ¢ - d(v), and its payoff is its income minus its cost.

Definition 2.1. The total (or social) payoff is the sum of all vertices’ payolff,
1.€.,

Z Z (5dist(u,v) —ec- d(’U))

veV ueV\{v}
A graph maximizing the total payoff is called a system optimum.

The following terminology is helpful for the classification of the games.

Definition 2.2. A situation is a graph G together with a pair {u,v} of its
vertices.

Every situation (G, {u,v}) defines by

Z 5distG+e(x,w) . Z 5distc,e(m,w)

weV\{z} weV\{z}

a polynomial in § for each of the pair’s vertices (x = u,v) expressing the
change in income (not yet in payoff) for that vertex between G — e and
G + e, with e = {u,v}. In these terms the creation rule reads as follows:
When the (possible) edge e = {u,v} is evaluated given the graph G, the
decision will be positive, i.e., G + e will be the resulting graph, if both
polynomials at § are greater than ¢, and negative, i.e., G — e results, if at
least one is less than c¢. Associating these polynomials to a situation will help
to understand for which pairs of parameters § and ¢ the situation’s decision is
positive respectively negative. We do not consider cases where a polynomial
can equal ¢, i.e., a vertex is indifferent about an edge. It would be possible
to extend the model and results to these cases, but it would also be tedious.
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Figure 2.1: The polynomials for u (white vertex) in two situations on the same graph
with different v (grey vertex).

Observe that if an edge is inserted by the game, this can only increase the
total payoff. The deletion of an edge by the game can be locally advantageous
but decrease the total payoff.

Now we define the central objects of interest, the stable graphs of a game.

Definition 2.3. A graph G is called stable, if G together with any e =
{u,v} € E(G) is a situation with positive decision, and G together with any
e ={u,v} ¢ E(G) is a situation with negative decision.

With this notion of stability we can define the Price of Anarchy for a
games.

Definition 2.4. The price of anarchy is defined as the maximum ratio of
the total payoff of a system optimum over the total payoff of a graph G, over
all stable graphs G':

PoA(c,0,n) = max

Total Payoff of a System Optimum
G is stable for (c,0,n)

Total Payoff of G
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2.3 A CLASSIFICATION OF THE GAMES?

Expressed in our terminology, Jackson and Wolinsky [37] and Watts [58]
observe that for ¢ < § — 6% the complete graph is the only stable graph and
the unique system optimum, because, no matter what the graph looks like,
every further edge is beneficial. Trees have the least total cost among all
connected graphs. In a star all not directly connected pairs of vertices are
at distance 2. Therefore, if the cost factor ¢ is high enough to draw at least
some attention to the costs the star is optimal. Notably, this is the case for
¢ € (6—6% 6+ 2526%). Beyond that limit for the costs, even the star’s payoff
becomes negative and the empty graph is the system optimum. Notably, the
star is a stable graph for ¢ € (§ — 62,6). Beyond that the empty graph is a
stable state (though not the only one).

Of course the most interesting cases lie between the extremal games,
where either the complete or the empty graph are stable. Still, these inter-
esting cases are also more complicated. We will give some order for the set
of those games.

Our first lemma links stability and the choice of ¢ and § to a structural
property. The lemma gives a necessary condition for stability.

Lemma 2.5. If a graph G is a stable state of a game with ¢ < §—5**1 k € N,
then G has diameter less than or equal to k.

Proof. Assume to the contrary that there are two vertices v and v at distance
greater than k. The (non-existing) edge {u,v} would improve the income
for v from at least v, i.e., the increase in income is greater than or equal to
§ — 6%+ As the analogon holds for v, the edge would be inserted, which is
to say, the graph is unstable. O

Thresholds for ¢ of the type § — 6% seem to play an important role. We
will now show that for small k£ they allow for a strong classification of games,
notably, by the concept of identical games.

Definition 2.6. A set of games {(c,d,n)} is called identical, if and only if
for every situation the decision is the same for all games in the set.

Theorem 2.7. For fived n the set of games {(c,0,n) | ¢ € (6 — §%,5 — §%)}
15 identical.

Proof. Let G be the graph and e = {u, v} be the edge of an arbitrary situ-
ation. If distg_e(u,v) > 3, then the income in G + e is for u and for v at
least § — &2 higher than in G — e, because this is the minimal improvement in
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income from u for v and vice versa. As no distance gets longer by inserting
an edge this lower bounds the total increase in income. As ¢ < § — &% the
change in payoff is positive.

Assume now distg_.(u,v) = 2 and the decision to be in favor of e. The
gain of the edge for v from u (and vice versa) is § — 6% ,i.e., less than its cost.
Thus, for both u and v further vertices must be closer in G+ ¢ than in G —e.
For some x # v any shortest path from u to x in G + e must use the edge e,
i.e., is of the form: (u,v,...,x). This implies that at least for one neighbor
y of v all shortest path from u to y in G + e go via v (and are shorter than
those in G — e). We can conclude that the change in income for u from y is
at least 0% — 3, as distg_.(u,y) > 3. Therefore, the total change in income
for u is at least that from v plus that from 7, so at least § — . An analogon
holds for v. Thus, a situation that is positive for one game with ¢ < § — &3
is positive for all of those.

O

As all games on n vertices are identical under the restriction ¢ € (§ —
62, 6—06%), we also speak of the game. The argument of the theorem allows for
all games with ¢ € (§ — 2,5 — 6*) to reduce a decision to a graph theoretical
set of rules. An edge e = {u,v} will be kept or inserted, if and only if at
least one of the following conditions holds in the graph without e.

1. We have distg_.(u,v) > 2.

2. The end-vertex u has a neighbor = with distg_.(v,z) = 3, and the
end-vertex v has a neighbor y with distg_.(u,y) = 3.

The model of Jackson, Wolinsky and Watts is rather a family of different
models in their own right. The methods we used to analyze the case where
c € (6 — 0% — &%) to a certain extent can be carried over to other cases.

Every situation gives rise to two polynomials in § defined over the (0, 1)
interval and mapping to the positive reals determined by the change in in-
come of the two vertices in question. We can also interpret the set (0,1) x Rt
in which the graphs (here: graphs of functions) of those polynomials live as
the set of all games for a fixed number of vertices n, because they are defined
by a ¢ coordinate in (0, 1) and a ¢ coordinate in R*. In this picture a decision
is positive for exactly those games that are below the polynomials of both
vertices of the situation. This visualizes how the polynomials separate the
set of all games in those for which the corresponding decision is positive and
those for which it is negative. Restricting to ¢ € (§ — 62,5 — §®) we exploit
the nature of § — 62 and 6 — 6% as threshold functions. We call a function
f:(0,1) = R* a threshold function if for every polynomial p that stems



2.3 A CLASSIFICATION OF THE GAMES? 13

(a)6— (b)d—0 () & + & — (d) § — o
52 25%, § > 0.5
(€) 6— 0%  (f) 6402 —4° - (g) 6+ 02— 6% —
5%, 5> 0.61804 5%, 5 > 0.61804

Figure 2.2: Subnetworks that need to be considered in the proof of Theorem 2.8. The
caption determines the benefit of the dashed edge. The lower bounds on § given for some
graphs guarantee that ¢ < ¢ which makes the initial insertion of edges into an empty
graph possible.

from a situation we have
dxg € (0,1) : p(xo) < f(xg) = p(x) < f(x)Vx € (0,1)

and
dxg € (0,1) : p(xo) > f(xo) = p(x) > f(x)Va € (0,1).

One may carry on looking for threshold functions and redo our analyze for
these cases. The next theorem gives the next threshold function.

Theorem 2.8. For fized n all games with ¢ € (6 — 6%,8 — 6*) are identical.

Proof. We show that a situation is either positive for all games in the interval
or for none. Classify all situations by the distance a := dist(u,v) of the
considered pair {u,v}. For a > 4 the increase in income is automatically
bigger than § — §* > ¢, thus all decisions positive. For a = 3 the end-vertices
u and v must attract each other with vertices not located on a shortest path
between u and v to have a gain greater than ¢ > §—4&3. Therefore they at least
have an increase of 6 — &% 4624 63. This in turn always suffices. For a = 2 at
least two further vertices outside the shortest paths are required for a positive
decision. All positive situations for ¢ € (§ — 6%,6 — 6*) contain Figure 2.2(d)
or Figure 2.2(c) as subgraphs. The increase in income in Figure 2.2(d) is the
smallest one and bigger than c.

O

One may suppose that all polynomials stemming from situations are
threshold functions. Yet, there are situations yielding polynomials that in-
tersect each other in the open interval (0,1). Consider the two situations
depicted to the right in Figure 2.5. In both cases the black vertex has so
many neighbors that the opposite vertex of the dashed edge will endorse the
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insertion of the dashed edge. The polynomial for the black vertex in the left
situation minus that of the black vertex to the right gives: 6% —d¢° — (6% —47).
For some values of 6 € (0, 1) this is negative, and for some it is positive. In
other words, some games will insert the edge in the left situation but not
in the right situation, whereas other games will in both situations do the
contrary. This implies that for predicting the game’s behavior it is no longer
sufficient to specify one parameter by bounds of the other.

O
Figure 2.3: The insertion of the edge in question (dashed) strongly depends on the actual
choice of ¢ and §. Cf. Figure 2.5 for the corresponding polynomials.

Some Classes of Games If the cost ¢ is greater than 4, no edge can be
inserted into the empty graph. So we concentrate on ¢ € (0,1). Consider the
unit square (0, 1)?, on the one hand, as the set of all games we are interested
in, and on the other hand, as the space in which the graphs of the polynomials
of all situations on n vertices live (Figure 2.4). The polynomials slice the
square into areas of identical games. The two theorems of this section have
shown that some of these slices are large open sets invariant for all n.

The first set of identical games is formed by those games that fulfill
c < 6 — 62, ie., the games for which only the complete graph is stable, and
in any situation the decision for the edge is positive. We call this set Class
1.

Class 2 comprises the games satisfying § — % < ¢ < § — 6. This is the
class, which we call ‘the game’ and which we will extensively analyze in the
remainder.

We have seen in Theorem 2.8 that there is a Class 3 comprising the
games that satisfy § — 6% < ¢ < § — §%. In principal, one may endeavor the
same type of analysis as we do it here for Class 2. But, already the proof of
Theorem 2.8 shows that this promises to be involved. We will see that the
analysis of Class 2 is still non-trivial.

The example in Figure 2.5 shows that even the concept of classifying
games by the notion of identical games will become clumsy.
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0.2 04 0.6 0.8 10

Figure 2.4: The polynomials of the situations in Figure 2.3, and those separating the
classes 1, 2 and 3, and § — &°.

0.20 -

0.15-

0.10 -
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| | |
0.2 04 0.6 0.8 1.0

Figure 2.5: The polynomials of the situations in Figure 2.3 cross. Here we depict §% — §°
and 6* — 67, i.e., both polynomials minus their identical terms § + 362 — 264 — §° — §6.
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o N

Figure 2.6: Cycling sequence of graphs. The dotted edge line connects the pair in
question. The existence of other length 2 connections between the marked vertices decides
whether the dotted edge is in or out.

2.4 STABILITY

In this section we get a first understanding about the game’s stable graphs
and their costs. In particular, we will get a lower bound on the price of
anarchy. In Section 2.6 we will prove that this lower bound is the exact
value for the price of anarchy.

Cycling The price of anarchy is defined with reference to the stable graphs.
But there is an infinite series of pairs of vertices that never leads to a stable
graph. Apply the graph rules above to the sequence depicted in Figure 2.6
to check that it cycles. In the first two situations the dashed edge is inserted
because the two marked vertices are too far from each other. In the third
situation the dashed edge is removed, because the two marked vertices have
an alternative short connection.

Theorem 2.9. The game for parameters ¢ and § with ¢ € (6 — 62,6 — §3)
can cycle.

The Price of Anarchy In order to determine the price of anarchy, we
need to establish criteria for stable graphs for the considered games.

For the game Lemma 2.5 amounts to say that every stable graph must
have diameter exactly 2, as the complete graph obviously is not stable. Con-
sequently, the star is the only stable tree. Further, we can give a sufficient
condition for a graph to be stable.

Theorem 2.10. If a graph G has diameter 2 and contains no triangles, then
it is stable.
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Proof. For stability, on the one hand, we have to show that no edge in G will
be removed. The graph G contains no triangles. Hence the shortest path
between the end-vertices v and v of a currently present edge e in the graph
without that edge, G — e, has length greater than or equal to 3. Thus, by the
same argument as in Lemma 2.5, the edge is beneficial for both its endpoints
and therefore kept.

On the other hand, no further edge will be inserted as the diameter
suitable to the parameters is already reached: For any edge e = {u, v} not
present in G, calculating the payoff for one of its end-vertices v in G + e, is
the same as in G except that the other end-vertex v will change from distance
two to distance one. Consequently, the change in income by inserting e is
exactly 0 — 62 and therefore it is not beneficial to insert e.

O

By the above observations, we reduced the decisions of any situation to
graph theoretic considerations. In fact, we can do the same for the price of
anarchy, or equivalently, the total cost of a stable graph. For a stable graph
we know all distances to be less than or equal to 2. Consequently, we can
rewrite the total payoff of such a graph

YD e —due | = Y G-+ >

ueV \veV\{u} {u,v}ekE {5,vg€‘/)>< \2/,
ist(u,v)=

-t {(3) )

where m denotes the number of edges. As § — ¢ — §% < 0 by the choice
of the parameters, it directly follows that the payoff of a stable graph is the
bigger the less edges it has.

Lemma 2.11. Let G and G’ be stable graphs. The total payoff of G is greater
than that of G if and only if |E(G)| < |E(G")].

This together with the description of a stable graph in Theorem 2.10
provides for a lower bound on the price of anarchy. Recall that the star
is the unique system optimum. It is well known that the graph K|z ra;
maximizes the number of edges in a triangle free graph. For the lower bound
of the price of anarchy as the ratio of this graph to the star, we need the
stability of the graph Kz =1. But as the graph K|z =1 also has diameter
equal to 2, we get from Theorem 2.10 that the maximum bipartite graph
K\_%Jvf%1 is stable.
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Corollary 2.12. The price of anarchy of the game with n vertices is bounded
from below by
(n—1)((3—1)6°+6 —c¢)
("5 = 1)0% +6 — )

2p

(2.1)

where p = [5]|5] is the number of edges in Kn ny.

To show that Corollary 2.12 exactly states the price of anarchy for the
game, we need to show that K|z r2) maximizes the number of edges among
all stable graphs with n vertices. That would be easy if the converse of
Theorem 2.10 was true, i.e., all stable graphs had no triangles. This is
not the case as will be shown in the next part. There, we analyze the
occurrence of triangles in detail. By the end of that part we will show
(Theorem 2.18) that all stable graphs that contain at least one triangle have
less edges than K|z rny. Therefore, we can conclude our main result:

Theorem 2.13. For all games with n vertices and ¢ € (§ — 6%,0 — &%), the
mazimum price of anarchy equals (2.1) and is produced by the mazximum
bipartite graph K|z sy against the star Ky 1.

For ¢ \, (6 — 6%) the expression (2.1), i.e., the price of anarchy, tends
to 1 for every n and ¢ € (0, 1), whereas it converges to 2 for ¢ / (§ — 6°),
n / oo, and § \, 0.
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Figure 2.7: Stable graphs that contain a triangle.

2.5 TRIANGLES

We have seen situations where a triangle is closed in the course of the game.
There the game cycles and therefore does not reach a stable state. Nonethe-
less, there are stable graphs containing triangles. The three graphs depicted
left in Figure 2.7 are stable and contain a triangle. The black vertices in the
second graph form the leftmost graph. The white vertices in the second can
be added one by one, such that for every number of vertices strictly greater
than 6 stable graphs with at least one triangle are possible.

Here we deviate to show a structural result for stable graphs with triangles
that is of interest in itself, though not necessary for the proof of our main
result, Theorem 2.13.

Theorem 2.14. If G is a stable state of the game and the vertex set {a, b, c}
forms a triangle in G, then there exists at least one v € V(G) with distances
dist(a,v) = dist(b, v) = dist(c,v) = 2.

In order to show Theorem 2.14, we first need some lemmata.

Lemma 2.15. Let G be stable and contain a triangle {a,b,c}. Then for
every 1,5 € {a,b,c}, i # j there is a vertex in N (i) \ {a,b,c} that has no
edge to neither any vertex in N(j) nor j itself.

Proof. Assume the claim of the lemma is false. Then j can reach all neighbors
of 7 via one of its own neighbors or directly. Moreover, it can reach 7 itself in
two steps via the two other arcs of the triangle. That is as good as anything
i can offer to j. Hence j would drop the arc {7, j} contradicting the stability
of G. O

Note that the premises of the following Lemmata 2.16 and 2.17 are as-
sumptions to be falsified to prove Theorem 2.14. The proofs rest on the
fact that without a vertex at distance 2 to all triangle vertices, those behave
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totally jealous towards their other neighbors.

Lemma 2.16. Let G be stable, contain a triangle {a,b,c}, and have no
vertex v with dist(i,v) = 2, for all i € {a,b,c}. Then the neighborhoods of
the triangle vertices form a disjoint partition of V(G) \ {a, b, c}.

Proof. First, it holds that (e, N(i) = V(G) because there is no vertex
at distance 2 to the triangle and every stable graph has diameter less than
3. Assume vertex v to be in N(i) N N(j), j,i € {a,b,c},j #i,v ¢ {a,b,c}.
Remove the arc {i,v}. One figures out quickly that ¢ can still reach any
vertex including v within two steps because even in G there is no vertex at
distance 2 to all of the vertices a, b, c. Therefore, the assumption contradicts

the stability of G. U

Lemma 2.17. Let G be stable, contain a triangle {a,b,c}, and have no
vertex v with dist(i,v) = 2, for all i € {a,b,c}. Then the neighborhoods of
the triangle vertices are independent sets.

Proof. Assume v,w € N(i) \ {a,b,c} for some i € {a,b,c} with {v,w} €
E(G). When removing the edge {i,v}, considerations like in the previous
proof show that the triangle vertex i can still reach every vertex within 2
steps. Hence G was not stable. O

Proof of Theorem 2.14. Assume the claim of the theorem not to be true for
GG, containing a triangle and being stable. Let x be a vertex in N(a) as
guaranteed to exist by Lemma 2.15 that has neither a connection to b nor to
one of its neighbors, and y be a vertex in N(b) that has neither a connection
to ¢ nor to one of its neighbors. As G is stable, its diameter is 2. Hence, x and
y must have a common neighbor, as they cannot be adjacent by definition of
x. By definition of y, such a neighbor is neither ¢ nor one of ¢’s neighbors. By
Lemma 2.16 it is neither a nor b and by Lemma 2.17 it is neither a neighbor
of b nor of a. Thus, we have a contradiction. O

Using Theorem 2.14 and the insights of Lemmata 2.15-2.17 we get that
every stable graph that contains a triangle has at least 7 vertices. Further,
the number of triangles in a stable graph does not need to be small, as
the middle graph in Figure 2.7 shows, where the clique can consist of [%5]
vertices. One figures out quickly that such a graph features the biggest clique

in a stable graph of n vertices.
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2.6 STABILITY REVISITED

In order to determine the price of anarchy exactly, by Lemma 2.11 one has
to look for the stable graph with the maximum number of edges. Intuitively,
stable graphs with triangles should have more edges than triangle free stable
graphs. We show that all stable graphs with triangles have less edges than
some without triangles, namely the K|z rny.

Theorem 2.18. For a number n of vertices, the mazximum bipartite graph
K|z 2y has the mazimum number of edges among all stable graphs on n
vertices.

Proof. We need to show that K|z r21 has more edges than any stable graph
on n vertices containing at least one triangle.

For every graph GG we define a random variable based on the uniform
distribution over the vertices of G as follows: Pick a vertex uniformly at
random and sum up the degrees of its neighbors. Denote the expectation of
that random variable by

1
(G = @] Y d(u).

veV(G) ueN (v)

For short we write p := | %] - [%] for the number of edges in Kizjz). In
order to show the statement of the theorem we prove two claims.

Claim 1: Let G be a stable graph with n vertices. Then

(@) < O(Ki351):

Claim 2: Let GG be a graph with n vertices and p edges. Then

(K i) r51) < O(G).

These claims yield the statement of the theorem. Assume a stable graph
G on n vertices with more edges than the maximum bipartite graph Kz 2.
Arbitrarily remove edges from G until the resulting graph G’ has exactly
as many edges as K|z|r=7. Observe that removing an edge reduces the
value of ® by definition. Hence, ®(G") < ®(G). By the second claim
®(K |z 27) < ®(G'). This implies ®(K |z 2) < ®(G), which contradicts
the first claim. Hence there is no stable graph with more than p edges, which
proves the theorem.



22 NETWORK CREATION GAMES

It remains to prove Claims 1 and 2. In addition, we will prove an even
stronger version of the first claim, namely that every stable graph containing
at least one triangle has a strictly smaller value of ® than the complete
bipartite graph and consequently less edges.

Proof of Claim 1  For the maximum bipartite graph we have ®(K |z n1) =
1. Now, consider an arbitrary, stable graph GG. For a randomly chosen ver-
tex v € V(G) let N(v) be all neighboring vertices and b := |N(v)|. Partition
the edges incident to the vertices in N(v) into three sets: first the edges
incident to v, second those within N(v) and third the edges to other ver-
tices. The first and the last set together contain at most p edges, because of
the bipartiteness of the subgraph formed by these edges. Every edge in the
second set belongs to a triangle containing v. Denote the number of vertices
in N(v) that belong to at least one triangle with v by ¢. Then there are at
most ET_K edges in the second set. As ® counts the degrees of v’s neighbors,
each edge in the second set counts twice.

Assume a vertex u to be part of a triangle with v. Why will v be interested
in the edge {u,v}? There must be at least one vertex that v can reach within
two steps only via u, or dist(u,v) > 3 if the edge {u,v} was removed. The
latter is wrong, as u and v are in a triangle. Thus there exists a neighbor w #
v of u that is not connected to any vertex in (N(v) U {v}) \ {u}. In other
words, u has an exclusive attraction to v in the sense that no other vertex
in N(v)U{v} is connected to w. Therefore we have to subtract (b— 1) from
the number of possible edges in the third set for each of the vertices in N (v)
that participate in a triangle with v. Altogether, we get that the sum over
the degrees of neighbors of v is at most

> d(u) < p+ (P —0) = L(b—1),
)

ueN (v

if ¢ neighbors of v participate in triangles with v. As ¢ < b and the
preceeding inequality holds for all vertices v € V(G), we get

O(G) < p. (2.2)

This proves Claim 1 as stated above. Moreover, a graph containing a
triangle does not achieve equality in Inequality (2.2). To show this, observe
that in case of equality for each vertex the number ¢ must be in the set {0, b},
and if ¢ = b for a vertex v, then N(v) U {v} is a clique. In other words,
the neighborhood of a vertex v either contains no triangle with v or forms a
clique together with the vertex v. For at least one vertex v with d(v) > 1 the
latter must be true (otherwise G does not contain a triangle). A neighbor
u of such a vertex v is not interested in its edge to v because u has a direct
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edge to all of v’s neighbors and can reach v itself via another neighbor of v
(d(v) > 1) within two steps. To report accurately, a graph G can fulfill at
most two of the following three properties:

1. G is stable.
2. G achieves equality in Inequality (2.2).

3. G has a triangle.

Proof of Claim 2 Rewriting the counting function ®(G) with

oY dw = ) dw)+duv)= > d*(v)

veV(GQ) ueEN (v) {u,v}eE(G) veV(G)

gives

O(G) =

Z d*(v).

1
V(&) S

Next we show that among all multiset of n natural numbers s;,1 <7 <n
with >, s; = 2m the degree sequence d; of K|»| rny minimizes ), s?, which
yields the claim of the theorem.

To see this consider any multiset of n natural numbers s;, 1 <1 < n with
> ;8 = 2m. We show that the degree sequence d; of K 12,12 minimizes
>, s7 among all those multisets. Assume to the contrary that there is a
multiset s* distinct from d and minimizing the sum of squares. As it is
distinct from d there exists a pair s} and s} with s} — s7[ > 1. W.o.l.g. we
have s7 > s + 1 and can look at s', where s} = s} — 1, 57 = s7 + 1 and
si=siVi#k#7. Weget Y. s” <. s:% contradicting the minimality of
s*. O
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2.7 CONJECTURES

We have analyzed the extremal stable graphs of Class 2. What can be said
about the other games? Further, what happens if one plays the game at
random, i.e., picks in every step a pair of vertices uniformly at random?
Which graphs will usually result? What is their social payoff compared to
that of the star?

We have seen in Section 2.3 that in general we cannot hope for such a
clear situation as for Class 1 or 2. Nevertheless, general bounds for the price
of anarchy might be achievable along the lines of this work. We conjecture
the following;:

Conjecture 2.19. The price of anarchy is at most 2 for all games with
c<9.

Conjecture 2.20. For a < 1 there is a natural number n € N, such that
with probability 1 a stable graph reached by any random game on n vertices
has social payoff greater or equal to o times that of the star on n vertices.

The are a number of reasons for these conjectures. First, recall that the
social payoff of graph G with m edges in Class 2 is C(G) = m(0 — ¢) +
((5) —m) 6% Let S be the star, then C(S)/C(G) tends to 1 with n — oo
as soon as m is subquadratic in terms of n. Thus, if we can show, that with
probability 1 a stable outcome of the random game has only subquadrat-
ically many edges, we get Conjecture 2.20 for Class 2. (There are similar
expressions for the social payoff in other games, classifying the vertex pairs
by their distance.)

The first conjecture and the extension of the second to other games than
Class 2 rest on an idea to show that Class 2 produces the greatest price of
anarchy. When we concentrate on the number of edges, it is quite likely that
games in which edges are expensive have stable states with at most as many
edges as those games, in which edges are cheap.

This line of thought is supported by another rationale. Choose a game,
where the star is optimal. Every stable graph will have diameter less than k if
c < 0—6*"1. What can be said about graphs that have the maximum number
of edges among all those containing no cycle smaller than k—1, i.e., in graph
theoretic terms, which have girth k — 17 They are not necessarily stable,
but none of their present edges will currently be removed. The graph of our
main result K|z 12y is an extremal graph in the sense that it maximizes the
number of edges for girth 4. We conjecture that in general the graphs with
maximum number of edges for girth k—1 are a good approximation for those
maximizing the price of anarchy. Then the known upper bounds [9] for this
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long standing problem of extremal graph theory would imply that the price
of anarchy becomes 1, as conjectured. For simplicity account for the price of
anarchy as the greatest fraction between the number of edges in a stable and
in an optimal graph. If our conjecture holds that the maximum graph of girth
k — 1 approximates the price of anarchy for game with 6 — 6! < ¢ < § — 0%,
this means that this price of anarchy would drop from worst (O(n)) to best
(O(1)) as k growth. In other words, the users form an optimal network if the
costs are very low (¢ < § — 6%) and an almost optimal network if the costs
are very high. The worst outcome is then caused by costs ¢ € (§ — 6%, — %),
which is the case we have analyzed.

Difficulties Prima facie, these conjectures look like easy prey for a math-
ematician. For example the random game might be analyzable in the spirit
of other random graph results. But, note that the random game after an
initial phase, where it quite accurately resembles a standard random graph
with a certain edge probability, later turns into random process controlled by
heavily interdependent random variables. For example, in Class 2 an edge
can only be removed, if it is part of a triangle. The analysis of triangle free
random graphs (cf. [51] for a survey, and [30] for the path-breaking result)
is already significantly more difficult than that of standard random graphs.
There are many other obstacles for proving the conjectures. Still, we would
be surprised, if they were not true.






REAL-TIME SCHEDULING

In the eighties an automotive manufacturer advertised its latest model to
outclass the Gemini spaceships in on-board computational power. Today
this comparison would embarrass even an ordinary mobile phone. The Gem-
ini computing unit had a 20kB memory and could process 7,000 instructions
per second. Despite the increased availability of computational power, one
question remains topical: How much processing capacity is sufficient? How
much processing capacity is sufficient to control the maneuvers of a spaceship
or the fuel injection of an engine? Forty-three years after the on-board com-
puter failed during landing of Gemini 4, we are able to answer this question.

At first glance an answer is not hard to find. The system has to run
repeatedly a number of different types of calculations. The computational
work for a calculation of a certain type is known or can be upper bounded.
So one might sum up over all types how much computation is required on
average per second. This load should be less than the available computa-
tional power per second. Such an utilization argument is indeed a very good
answer to the question in special cases’. But in general, this is not suffi-
cient, as at some intervals the load will be higher than on average. Note that
the required calculations naturally have hard deadlines due to the physical
process they are supposed to control. Thus we are not free to postpone a
computation deliberately. To get a reliable upper bound for the required
processing capacity it is necessary to take a closer look at the sequence of
computation jobs and their scheduling.

One might be willing to design the space ship’s computational unit slightly

'Here we refer to so-called implicit deadline systems, cf. p. 36.

27
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or even substantially larger than needed to ensure that all calculations, which
are necessary for the crew’s save return, can be performed on time. Say, the
computational power is more than twice the utilization. That seems to be
enough to compensate for those subtle problems of scheduling. But how to
be sure? One might even be prepared to invest a hundred times more com-
putational power than needed. The point is, to be sure that one never needs
a hundred and one times more. Understood the right way the gut-feeling,
about double computational power sufficing, provably holds true. In this
chapter we will explain the details.

The pertinent research area is called real-time scheduling. A real-time
scheduling problem, as we investigate it, in principal constitutes a simple
machine scheduling problem. We are a given a set of jobs. Each job has a
processing time, a release date and a deadline. The jobs have to be scheduled
on a certain number of (in out case) identical machines. Each job can be
preempted. When the processing of the job is resumed one may choose to
migrate the job to another machine. Still, we must not process a job on
two machines at the same time. This seems to be an easy problem, and
indeed as stated so far, a feasible solution can be found by a linear program?
polynomial in the size of the input, i.e., the description of the jobs.

The size of the job’s description is exactly where the matter becomes
complicated. An instance of a periodic real-time scheduling problem con-
fronts the scheduler with an infinite (countable) set of jobs, but specifies this
set of jobs in a very compact, finite manner. Instead of describing each job
separately, the instance is presented by a finite set of so-called tasks. A task
emits infinitely many jobs of the same kind. All jobs of a task have the same
processing time. Their relative deadline, i.e., the time span in which the job
must be processed after its release, is also common to all jobs of one task.
The release dates of all jobs of a common task are encoded by two values,
an initial offset of the task and its period. When the offset time has elapsed
the task emits its first job. After every release of a job, the task emits the
next job period time units later. In this way, a countably infinite set of jobs
is specified through a finite set of tasks, each described by four values.

Scheduling a task system means to schedule the jobs the tasks release
with the additional requirement that at no point in time two jobs of the
same task are scheduled in parallel. (It will be obvious that our results and
methods can be applied even easier, in case this requirement is dropped.)

In fact, we will investigate a variant of the periodic real-time scheduling,

2The linear program formulation rests on a few preliminary insights. Notably, it is
sufficient to specify the amount of work done for each job between two of an a priori
known set of points in time. This set is comprised of the release dates and deadlines of
the jobs, thus has linear size in the size of the input.
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the sporadic real-time scheduling. For such problems we distinguish between
an instance and its realizations. The instance consists of tasks as in the pe-
riodic case, except that the tasks lack an initial offset and the period is often
called the minimal separation time. The period appears to be a separation
time also in the periodic case, stating exactly how much time has elapsed
between the release dates of two consequent jobs of the same task. From the
specification of a sporadic instance we only know for each of its realization
that the release times of any two jobs of the same task are separated by at
least the tasks minimal separation time. Therefore, a sporadic instance en-
codes infinitely, in theory even uncountably many realizations. For sporadic
instances we want a robust answer to the feasibility question. This means
that we want to be sure that the scheduling is possible in all realizations of
the sporadic instance.

Before we turn to the technical and exact presentation of the result, we
will a guided tour to the ideas that underly our approach. Before we turn to
this we take a glance at a typical example for this line of research and match
them with our terminology. For further motivating examples and a general
introduction we refer the interested reader to [24].

A modern engine features an elaborate control system for several of its
functional parameters, like ignition timing or fuel injection. This control
system consists of several tasks, each periodically or sporadically requiring a
certain computation time. It is a task system with hard deadlines. There is
no use for the correct injection parameter, if the injection is over. The goal
for scheduling here is not to optimize but to find a feasible schedule.

Each task might emit a job several times per second. In comparison
to the tiny time scale in which jobs repeat and must be finished, the total
lifespan of an engine seems infinite by non-mathematical standards. And the
mathematician will convince herself quickly that the lifespan is big enough
that considering an infinite time horizon does not change the problem. So
the decisive question when equipping the engine with a certain hardware
to run the task system is, whether the hardware will be sufficient to meet
all deadlines, or whether at some point in time it fails a deadline, which
causes a malfunction of the engine. Therefore, in real-time scheduling we are
looking for feasibility tests, i.e., for a procedure to test in advance, whether a
task system can feasibly be scheduled on a certain hardware. Evidently, the
application prohibits scheduling policies which themselves require extensive
computation during the operation of the system. Simple policies like the
earliest deadline first policy (EDF), least laxity first or even fixed priority
strategies that prioritize the jobs according to a fixed ranking of the tasks
are widespread in practice.
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3.1 A GuibED TOUR TO THE MAIN IDEAS

We want to convey a basic intuition for the difficulties in these questions,
and for the line of attack, which we will follow. This line leads to our
main result, the first tight constant approximate feasibility test for sporadic
multiprocessor real-time scheduling.

A Frustrating Insight The most important insight for this chapter stems
from a work on scheduling in general [50]. Imagine two companies with
workforces equal in size. Both companies over time receive the same sequence
of jobs, defined by release date, deadline, and processing requirement of each
job. The first company is lead by an extraordinarily gifted manager with
clairvoyant knowledge of the jobs that will occur, implementing a perfect
scheduling of the jobs to the workers. The other company is lead by an old-
school boss, who does not care about sophisticated scheduling. He makes
sure of only two things: First, nobody is idle, unless there is no work left
for him. Second, the boss pushes the employees to work twice as fast. The
frustrating result of Lemma 2.6 in [50] is that for any moment in time, the
second company will have at least as much work done as the first one.

A scheduling algorithm, which leaves no processor idle, whenever there
is an available, unfinished job currently not being processed, is called a busy
algorithm. The earliest deadline first (EDF) algorithm is a busy scheduling
algorithm. By the lemma we get: If a sequence can be scheduled on a
system at all, then it can be scheduled by EDF on a system with double
speed processors.

It is easy to find some necessary conditions, whether an instance can be
scheduled at all. But it is difficult to find a sufficient condition for scheduling
in general, and also for scheduling by EDF. The mathematical value of this
chapter lies in a sufficient and simple to check condition that EDF yields a
feasible schedule on an instance with a little less than double-speed proces-
sors, which is a necessary condition for feasible scheduling by any algorithm
on normal machines. So, for an instance the test either returns that it can-
not be scheduled with the given platform of processors, or that it can be
scheduled if each processor works almost twice as fast. The cited lemma
indicates that such a test is possible. Extending a standard concept for an-
alyzing real-time problems, namely the load of an interval, eventually yields
this test.

Load Arguments and the Concept of Forced Demands The load
of an interval A is a classical concept to achieve some understanding of
what an optimal schedule must processes in an interval A. Some lower
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bound on the amount of work done by an optimal schedule in an interval is
indispensable for our goal. The load of an interval is the ratio between its
length, which indirectly characterizes the processing capacity available in the
interval, and the demand in the interval. Classically, one counts as demand of
A the sum of processing requirement of those jobs that are released and due
within A. Ideally, one would like to count the amount of work any feasible
schedule must process in A3. For both definitions of demand, the load in
a feasible instance must be less or equal to the number of machines. For
the feasibility test we define a demand, the so-called forced forward demand,
which is stronger than the classical demand and close enough to the ideal
demand, but still easy to compute a priori.

The classical definition of demand, which only considers jobs lying com-
pletely inside the interval, is too weak. Intervals may be filled up to capacity
or beyond with jobs originating far earlier and being due far later. We are
interested in the amount of work that must be done in an interval A by any
algorithm. A job with release date shortly, say €, before A and deadline
shortly, say u, after A, necessarily causes a demand equal to its processing
requirement minus € 4+ p in A. Still, it is not counted in the classical load of
A.

We want to count a part of a jobs processing requirement as necessary
demand for an interval, even if the job is neither released nor in the interval.
This will give a tighter bound to the amount of work that must be done in an
interval A by any algorithm. It turned out that for our purposes it suffices
to consider jobs with deadline in A and release date possibly before A. We
count their processing requirement minus the distance of their release date
to A as part of the necessary demand of the interval, the so-called forced
forward demand.

Obviously, one can also define the backward forced demand or the to-
tal forced demand by the same idea. But the forward forced demand was
sufficient for the feasibility test. Moreover, we give a fully polynomial approx-
imation scheme for the maximal ratio between the forced forward demand
and the interval length (i.e., indirectly the processing capacity of the pro-
cessor platform) over all intervals in all realizations of a sporadic real-time
scheduling instance.

Extra Speed or More Machines There is a valid objection against the
old boss pushing his workers to double speed. Apart from the trade unions
influence in the illustrative example it is a major point of criticism to this
line of thought that higher speed processors are an uninteresting compar-
ison. One has to use the processors which are currently available. When

3A similar point of view was recently adopted in [12].
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constructing the processor platform for a hard real-time system it is little
help to know, what would be possible, if the processors were faster.

Imagine we want to design a processor platform for a task system with
the help of our test. Our test contains three criteria: one comparing the
load (using forced forward demand) with the number of machines and two
obvious necessary conditions, namely, that the processing time of each job
is less than its relative deadline and less than its minimum separation time.
We apply the test in the sense that we pretend to have processors with half
the speed of the available ones. If the test ensures that EDF is feasible for
double speed, than our actual platform will work for sure. If the test fails,
we know that we cannot schedule it at all with slower processors. In case the
failure is due to a violation of the load criterion, we can enlarge the number
of processors on the platform until the criterion is fulfilled. But if a single job
has processing time longer than its relative deadline or its minimal separation
time, there is prima facie no way to change the platform design such that the
system is feasible, unless one could upgrade to faster processors. As we run
the test for half speed processors, the processing time of every job doubles.
This means that jobs with a processing time of half their relative deadline
(or minimum separation time) on the actual processors already cause the
test to report infeasibility.

Vice versa, scheduling on double speed processors an instance deemed
feasible for normal processors, means to assume processing times (on the
fast machines) of at most half the relative deadlines and minimum separa-
tion times. This leaves enough slack for an EDF-schedule being feasible.
Nevertheless, this is not completely trivial to show.

A comparison to a processor platform with more processors instead of
higher speed processors would be more satisfying. In practice one may use
more processors but one cannot use the processors of tomorrow. Actually,
our result allows for a trade-off between extra speed and extra processors.
Still, this trade-off is not a one-to-one exchange. For our test one must always
assume some positive amount of extra speed.

Indeed extra speed is infinitely more powerful than extra machines: Con-
sider a sequence of k jobs with relative deadline 2¢,1 <4 < k, and processing
time equal to the relative deadlines. If the jobs arrive such that all of them
are present for at least one point in time, then k single speed machines are
necessary. Yet, the instance can always be scheduled on one double speed
machine by EDF.

The Least Possible Speed-up The solution to a real-time scheduling
problem is a pair of a simple scheduling policy and a (approximate) feasi-
bility test that recognizes which instances can be scheduled by the chosen



3.1 A GUIDED TOUR TO THE MAIN IDEAS 33

policy and which are infeasible under that policy. Thereby, the solution
makes a double error in comparison to an optimal clairvoyant scheduling.
The first error occurs, because the simple scheduling policy cannot schedule
all instances that are feasible under optimal scheduling. The second error
occurs, because the feasibility test cannot identify exactly those instances
that can be scheduled by the simple policy.

The result of [50] can be interpreted as an upper bound to the first
error: Measure the first error by the speed-up factor ¢ such that the simple
scheduling policy EDF can schedule on o-speed machines every instance that
can be scheduled on single-speed machines by an optimal policy. The result
of [50] shows that this o for EDF is not greater than 2 — 1/m. In fact, they
also show that the o for EDF cannot be less than this. In other words, the
bound for the first error is tight.

This lower bound to the first error of EDF can be derived in the following
way. For a platform of m machines consider a job sequence of one job with
processing requirement equal to 1 and a large number of sufficiently small
jobs with total processing requirement equal to m — 1. The release of all
jobs is zero and the deadline equal to 1 except for the large jobs that has
a slightly later deadline. EDF will finish all small jobs before it starts the
large one. Given a platform with o-speed machines the large job start no
earlier than at time (m — 1)/(om). It is easy to see that o must be at least
2 — 1/m for the large job to finish in time.

The extra speed required by the test we devise is 2 — 1/m + €. Actually,
we give a criterion for feasibility on (2 — 1/m)-speed machines. A further
infinitesimal extra speed is necessary, because we evaluate that criterion by
an FPTAS.

Some first error is unavoidable, because real-time scheduling requires sim-
ple policies. For EDF the first error is 2 — 1/m. Our test only adds an
infinitesimal second error.
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3.2 RELATED WORK

We study the problem of scheduling recurring processes, or tasks, on a mul-
tiprocessor platform. An instance of the problem is given by a finite set I of
tasks, which need to be executed by the system; each task generates a possi-
bly infinite sequence of jobs. In the following we denote by n the cardinality
of I.

In the periodic version of the problem, a task 7, 7 € I, is characterized
by a quadruple of positive numbers: an offset o, that represents the time
instant when the first job generated by the task is released, a processing
time c,, a relative deadline D, and a period T,. Each occurrence of task
T is represented by a job: the k-th occurrence of task 7 is released at time
o+ (k—1)T;, requires at most ¢, units of processor time and must complete
its execution before time o, + (k — 1), + D.. Note that a task defines an
infinite sequence of jobs, but a given set of tasks generates exactly one job
sequence.

In the sporadic case, each task is characterized by a triple (¢,, D,,T})
where ¢, D, have the same meaning as in the periodic case, while T}, denotes
the minimum time interval between successive occurrences of the task. Note
that in a sporadic task system the time instant when the next invocation
of a task will be released after the minimal separation time has elapsed
is unknown. Therefore, a given set of tasks can generate infinitely many
sequences of jobs.

The correctness of a hard-real-time system requires that all jobs complete
by their deadlines. A periodic (sporadic) task system is feasible if there is
a feasible schedule for any possible sequence of jobs that is consistent with
the period, deadline, and worst-case execution time constraints of the task
system, and it is schedulable by a given algorithm if the algorithm finds a
feasible schedule for every such sequence of jobs. In the sequel we focus on
preemptive scheduling algorithms that are allowed to interrupt the execution
of a job and resume it later.

Given a scheduling algorithm A, a schedulability test for A is an algorithm
that takes as input a description of a task system and answers whether the
system is schedulable by A or not. A schedulability test is exact if it correctly
identifies all schedulable and unschedulable task systems and it is sufficient
if it correctly identifies all unschedulable task systems, but may give a wrong
answer for schedulable task systems. A sufficient schedulability test that can
verify whether a given job set is schedulable is a natural requirement for a
scheduling algorithm that must be used in hard-deadline real-time applica-
tions. In fact, from a practical point of view, there is no difference between

a task system that is not schedulable and one that cannot be proven to be
schedulable.
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In the case of a single machine, the problem has been widely studied and
effective scheduling algorithms are well understood [18, 45]. In this paper we
study scheduling algorithms for sporadic task systems on parallel machines.
The problem is not only interesting from a theoretical point of view but
is also relevant in practice. In fact, real-time multiprocessor systems are
becoming common: there are single-chip architectures, characterized by a
small number of processors and large-scale signal-processing systems with
many processing units.

There is an extensive literature on real-time scheduling. We limit the
following discussion to the results that are more relevant to our work.

Single Machine Scheduling In the case of a single machine it is known
[18, 29, 45] that the earliest deadline first scheduling algorithm (EDF'), which
at each instant in time schedules the available job with the smallest dead-
line (with ties broken arbitrarily), is an optimal scheduling algorithm for
scheduling a periodic (or sporadic) task system in the following sense: if it
is possible to preemptively schedule a given collection of independent jobs
such that all the jobs meet their deadlines, then the schedule generated by
EDF for this collection of jobs will meet all deadlines as well.

Despite this positive result, we remark that the feasibility test for periodic
task systems, although solvable in exponential time, is strongly co-NP-hard
even in special cases [18, 41].

Approximate feasibility tests have been proposed that allow the design
of efficient feasibility tests (e.g. running in polynomial time) while introduc-
ing a small error in the decision process that is controlled by an accuracy
parameter. Such approaches have been developed for EDF scheduling and
for other scheduling algorithms.

Two different paradigms can be used to define approximate feasibility
tests: pessimistic and optimistic. If a pessimistic feasibility test returns
“feasible”; then the task set is guaranteed to be feasible. If the test returns
“infeasible”, the task set is guaranteed to be infeasible on a slower processor,
of computing capacity (1—¢), where € denotes the approximation guaranteed.

If an optimistic test returns “feasible”, then the task set is guaranteed to
be feasible on a (1 + €)-speed processor. If the test returns “infeasible”; the
task set is guaranteed to be infeasible on a unit-speed processor [26].

Fully polynomial-time approximation schemes (FPTAS) are known for
a single processor; in fact for any € > 0 there exists a feasibility test that
returns an e-approximation; the running time of the algorithm is polynomial
in the number of tasks and in 1 /e (see for example [6, 7, 26, 32] and references
therein).

Finally we observe that, in the case of one processor, the sporadic feasi-
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bility problem is known to reduce to a special case of the periodic problem,
where all tasks have offset 0 (i.e. each task releases its first job at time zero).

Multiple Machine Scheduling We first observe that in the multiproces-
sor case the previous analogy between sporadic and periodic problems is not
true.

Regarding the analysis of EDF, it is known [50] that any feasible task
system on m machines of unit capacity is EDF-schedulable on m machines
of speed 2 — 1/m. This result holds for EDF and every other so-called busy
policy. In a busy policy no machine is idle unless all currently available
jobs are being processed. Subsequent work has analyzed the advantage of
trading speed for machines [40], while further work on conditions for the
schedulability of EDF has been done by Baker [13].

Note that the result of [50] does not imply an efficient test for deciding
when EDF (possibly with extra speed) can schedule a sporadic task system.
Thus, the main open problem in order to apply the result of Phillips et al.
[50] is the lack of a feasibility test.

The problem has attracted a lot of attention in recent years (see e.g. [14]
and references therein for a thorough presentation). A number of special
cases have also been studied; for example, when for each task the deadline is
equal to the period (implicit-deadline task systems), it has been shown that

Cr Cr
Z— <m and max— <1
TT Tel 1,

Tel
gives a necessary and sufficient test for feasibility of the system.
However, not much was known regarding the feasibility of an arbitrary-
deadline task system. A sufficient test in this case is given by

T <moand max—— 0 <1
2 min(D,, T,) — M R (D, T S
Tel
but this test is far from approximating a necessary condition, i.e., it does not
provide a good approximate feasibility test in general (it is not hard to see
that there exist feasible task systems for which ) __, ¢/ min(D.,T;) can be
Q(mlogm)).

To the best of our knowledge, no better bound is known. We refer the
reader to the survey [14] for feasibility tests that are known for other special
cases.

Our Contribution We [23] give the first constant-approximate feasibility
test for sporadic multiprocessor real-time scheduling.
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Namely, we give a test that, given a sporadic multiprocessor instance
I, decides whether it can be scheduled by EDF on m speed-(2 — 1/m + ¢)
machines, or shows that the instance violates at least one of three basic
conditions, which are necessary for schedulability on m speed-1-machines.
In fact we give a slightly stronger result, allowing to trade some extra speed
for extra machines. Note that in general extra machines are less powerful
than extra speed.

Two of the basic conditions are trivial. The third condition provides
a lower bound on the processing requirement of an interval. We call it the
forward forced demand. This concept is strong enough to approximately cap-
ture the feasibility of scheduling a sporadic task system on a multiprocessor
platform; however it is simple enough to be approximated in polynomial time
up to an arbitrarily small e > 0: in Section 3.5 we give an algorithm that
checks the third condition in time polynomial in the input size of I and 1/e,
for any desired error bound e > 0.

In the meantime, independently a different test with a worse speed-up
factor of 2.618 has been proposed [17].
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3.3 THE MODEL

An instance [ is a finite set of tasks. Each task 7 € [ is a triple of positive
numbers, namely, a processing time c,, a relative deadline D, and a period
or minimal separation time 7. Every job j belongs to a task 7;, and has
a release date r; > 0. We write ¢; := ¢; , and D; := D, , and T = Tj_,
and we call d; := r; + D; the (absolute) deadline of j. We assume D,, ¢,
T, € N.

A (sporadic) job sequence R of an instance [ is an arbitrary, countable
set of jobs, all belonging to tasks in I, with the following property: Any pair
of distinct jobs j and k belonging to the same task 7 satisfies |[r; —ry| > T’

Formally a feasible schedule for a job sequence R on m machines is a
set of measurable functions S; : R™ — {0,...,m}, one function for each
J € R satistying the following conditions. (Interpret S;(t) as the index of
the machine on which job j is scheduled at time ¢, unless S;(¢) = 0, which
means that job j is not scheduled at time t.)

e Everything is scheduled: Vj € R:c; =3 " \Sj_l(p)|.

e Deadlines and release dates are respected: Vj € R : |, S;'(p) €
(75 dy].

e Each machine processes at most one job at a time: Vp € {1,...,m} :

Vi#geR: S (p)nS; (p) =0.

e Jobs of the same task are not scheduled in parallel:
ViggeR: 17, =T,= USfl(p) N US;l(p):@.
p=1 p=1

No job is processed by two machines at the same time:
Vi€ RVp#qe{l,...,m}: S (p) NS (q) =0

Preemption and migration of jobs are explicitly allowed.
Given a real number z we denote by zT its positive part, that is at =
max (x,0).
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3.4 A FEASIBILITY TEST

Definition 3.1. Consider a job j with release date r;, absolute deadline d;,
and processing time c; satisfying d; > r; + ¢; (i.e., for its task we have
D, > c.;). For a non-empty interval A = [t,t") with d; € A, we call

FG.A) = (g = (t=ry)")"
the forward forced demand of j in A.

Note that, for a job j and an interval A such that both deadline and
release date lie in the interval (that is, r;,d; € A), the forward forced demand
equals the processing time of the job (f(j,A) = ¢;). If ¢, < T; for all tasks
7, then each pair of an interval A and a task 7 can have at most one job
J- with release date outside the interval (r; ¢ A) that has positive forward
forced demand (f(j,, A) > 0) in the interval.

Definition 3.2. For a job sequence R of an instance I the necessary demand
NDgr(A) of a non-empty interval A is the sum of the forward forced demands
of all jobs with absolute deadline in A. We use NDg(A,7) to denote the
part of the necessary demand originating only from jobs of task 7. We write
ND(A) and ND(A, 7) when the sequence R is clear from the context.

Observe that any algorithm working on any number of speed-1 machines
must schedule in an interval at least the necessary demand of that interval.
We use the notation EDF(;;,4,,0) to denote the scheduling algorithm EDF
executed on (m + p) speed-o machines, where ties can be broken arbitrarily.

Definition 3.3. Consider an instance I and a job sequence R. For a point
in time t, a task T, and a scheduling algorithm A, an interval A = [t';t)
is called T-A-busy before t, if executing the algorithm A on the sequence R
yields for every point in A a positive remaining processing time for at least
one of the jobs of task T.

Observe that the maximal 7-A-busy interval before ¢ is unique, well de-
fined, and starts with the release date of some job of 7, unless it is empty.
Moreover, all demand from 7-jobs released before some maximal 7-A-busy
interval A is processed by A strictly before A.

Theorem 3.4. Let o > 1. Consider an instance I which satisfies ¢, <
T, and ¢, < D, for all tasks 7. If there is some job sequence R which
cannot be scheduled by EDF (., ), then there is an interval A such that
NDr(A)/IA] > (m+ p)(oc — 1) + 1.
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Before giving the formal, slightly involved proof we convey the main in-
tuitions. Knowing that EDF (4, ) fails, we will inductively construct an
interval with high load. The interval will be composed of several subinter-
vals. To each subinterval we associate a task such that the subinterval is
EDF-busy for that task. Whenever EDF does not process a job of that task
in the subinterval, it must have all machines busy. In order to conclude that
the load of the whole interval is large, we must establish two things: First,
that the fraction of a subinterval, in which its associated task is processed, is
small, i.e.; in a large part of the subinterval all machines must be busy. Sec-
ond, everything processed in those busy subintervals is part of the necessary
demand of the whole interval.

Proof. From now on we assume that R is a job sequence which cannot
be scheduled by EDF(,,1, ), and that Zy is the first point in time when
EDF (14 4,0) fails a deadline.

We define inductively a finite sequence of pairs, comprised of a time ¢;
and a job j;, for 1 < i < z. For convenience define A; := [t;,ty) and
A; = [ti,t;i-1). Also the following notation for the work that EDF (i 41,0
does for a job j in a certain measurable subset S of R* will be helpful:
EDF 44,00 (J, ). To shorten we use m' := (m + p)(o — 1) + 1.

For each pair (t;, j;) we define two subsets of the interval A;, namely X
and Y;. The first subset X; is the set of points in time between t; and ¢;_;
when a job of task 7, is processed. Due to the way EDF (.4, ) schedules,
X, is a finite union of intervals. The other subset is its complement in the
interval: Y; := A; \ X;. Further, we set z; := | X;| and y; := |Yj].

Next, we define two values for each i. They will be interpreted later as
certain parts of the work that EDF(,,, ,) does or has to do. Let FAIL be
the work that EDF,,,, - failed to complete before ¢, for jobs of task 7;, (so
FAIL > 0). We define W = (m + p)oy; + ox; and W; = Zizl Ws + FAIL.

We will show the following properties for our sequence of intervals:
1. to>t1>...>t,.

2. During each Y; all machines are busy.

3. All jobs EDF(;, 1, schedules during ¥; have a deadline in A;.
4. Wi > m/|Al.

5. ND(A,) > W..

Property 2 implies that (m + p)oy; = >, ; EDF(n4,.0)(7,Y;) for some
set J of jobs.
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Basis of the Induction As job j; we pick one of the jobs EDF 4,
failed to finish at tg, though they were due. Among these jobs, the job j; is
one of those jobs j with largest maximal 7;-EDF(,,,, »)-busy interval before
to. We let Ay (= A;) be the maximal 7;,-EDF(,, 4, ,)-busy interval before
to. This also defines ¢; as the lower endpoint of this interval. Clearly, t; < tg
since relative deadlines cannot have zero length.

We have to verify property 2, 3 and 4 for (¢, j;). If at a certain time ¢ in
the 7;,-EDF (5,4 ,0)-busy interval A} 1o job of 75, is processed by EDF (4 p,0),
then at that time all machines must be busy with jobs that have deadlines
not later than ¢y,. This gives the first two properties. For property 4 we use
that EDF(,,,4,,0) failed at ¢ for ji:

W, = W, + FAIL
> (m4 p)oys +oxy = (m+ p)o (|A] — 1) + ox;y.

So we get

oxr
>(m+u)a—(m+u—1)ﬁ.

Wi

1Ay

In Ay the EDF(;;,4,,0) schedule devotes z; units of time on jobs of task 7;,
processing with speed-o. Since the interval A; is maximally 7;,-EDF (.1, »)-
busy before ty and 7; is not completed within ¢y, we know that all those jobs
must be released in the interval, and have their deadline in the interval.

The busy interval A, Adstarts with the release date of some job of task

7j,. Therefore the number of 7; -jobs with release date and deadline in A; is
{‘A1|*Dj1 +T5,

7 J, and we can bound:
J

(oA < Cjy ) |A1|—Dj1‘|“,-rjl gmax<i,i> <1.
JANTERN VAN T; i 1)

To verify the middle inequality one should distinguish the cases (D
T;,) and (D;, > T},) using |A4| > D;, for the former.

Combining the two bounds we get property 4:

jlS

1%
—>(m+p)oc—1)+1=m
| A

The Inductive Step Assume that the sequence of pairs up to i — 1 sat-
isfies the properties. We choose the job j; as one having the following two
properties:

1. The release date of j; is strictly before t;_;.
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i—1

EDF(er;L,o) (]27 U }/S> > f(]za Ai—l)-

s=1

If no such job can be found, we set z := ¢—1 and return the interval A;
as one justifying the claim of the theorem. We will show later why this holds
true. So assume such a j; exists. Take A; as the maximal T5,~EDF (1400~
busy interval before ¢;_;, and accordingly set t; as its lower endpoint.

Let us show the properties. As the release date of j; is strictly before
t;_1, also t; < t;_1, and we have property 1. The next two properties again
follow from the fact that A, is 7;,~EDF (14 ,0)-busy. Here, take into account
for property 3 that j; has a deadline in A;_; by induction.

To prove property 4 it suffices to show /VIZ >m }Ki}, because we have
strict inequality in W;_; > m’ |A,;_1| by induction. By definition

Wi ox;
3, (m—+p)o—(m+p 1)}Zi}.

We want to establish ox; < ‘ZZ‘ Having this, property 4 follows as
above.

For this part we simplify notation by setting 7 :=7;,, T':= T, , ¢ := ¢,
and D := DTji. We distinguish the cases ‘KZ‘ > T and ‘Zz‘ <T.

Case 1: ’ZZ} > T We can bound oz; by the amount of work released by
7 during the maximal 7-EDF (.4, »)-busy interval A;:

ox; < {@J -c+ EDF ( Z)
i T (m+p,0) \Jis Ri) -

W.lo.g. }KZ’ is not an integer multiple of T". Otherwise, the last released
job could not contribute to the work done in X;. But then, a slightly smaller
value replacing ‘ZZ‘ would also give a valid bound on what is processed
during A;.

Recall that f(j;, Ai—1) == (¢j, — (tio1 — rji)Jr)Jr. By choice of j; we know
that more than its forced forward demand is done by EDF ., ») in A;_;.
Therefore

_ _ A,
EDF (o) (Jis ) < €= f(i, Aicr) < (s —1r3) < |A| =T - W—T}J :

Note that the middle inequality is also true for f(j;, A;—1) = 0. To verify
the last inequality, assume first that j; is the last job of task 7 released in A,.
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Then between the release of j; and the end of A; at most ‘Zl‘ -T. {%J

units of time may pass.

Now, say j; is not the last job of task 7 released in A,;. Remember that j;
is not finished by EDF(,,, 4, ») within A,. Therefore all jobs of 7 released later
are not processed within A; at all, because EDF implies FIFO for the jobs
of a common task. If there is such a job released but not started in A;, we
can subtract its entire processing time from the upper bound on ox;. This
means to subtract at least as much as when we subtract EDF,, 4, ») ( Jis Zi).
Thus, we have

ox; <

T T

MJ S A e <A

To finish the case (}ZZ’ > T) plug everything together:

oxi _ {@J e+ A - “ATJJ T » (T - ¢) {ATJ

R 5 =

As T > ¢ we have ox; < ‘ZZ‘

Case 2: ’Zz} < T Assume ’KZ} < T. Then only one job of task 7 can be
released during ‘Zi

, namely 7;. The choice of j; gives

1—1

¢ = 02 +EDF rp 0y (Ji, Aic1) > 02 +EDF (1 o) (jz', U YL) > oxi+ [ (Ji Aiz1).

s=1

As the release date of j; is in A; we can use t;,_; — T, < ’Zl} (indeed we
have equality here) to conclude that

c>ox; + f(jz,Alfl) =0x; +C— (tifl — Tji) > or; +c— ‘Zz

)

which shows 0 > a:ci—}zi’ for the case f(j;, Ai—1) > 0. Yet, if f(j;, Ai_1) =
0 we immediately have ‘ZZ‘ >c > o,

So we again obtain ox; < ‘Zi , yielding property 4.

The Breaking Condition. In each step from ¢ — 1 to ¢ the interval is
strictly extended backwards to the release date of at least one job which is
released before ty. As there are finitely many tasks, and all have positive
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minimum separation time 7', there are finitely many such jobs, and we can
make only finitely many steps. So at some point the breaking condition,
namely that there is no job j; with the two required properties, must hold.
If this holds we claim property 5 to be true, i.e., ND(A,) > W,. In the
value W, we count oz; for each X;, because the whole 7-demand processed
in a 7-EDF(;,1,,,)-busy interval is part of the necessary demand of that
interval. Also, the demand EDF(,,,;, ) failed to process before ¢, is part of
the necessary demand of A,. For each Y; part we count (m + p)oy;, which
is by property 2 exactly what is processed in those times by EDF (4, ). By
property 3 all jobs processed in some Y; have their deadline in the interval
A; and therefore also in A,. Finally, there is no job among those processed
in some section Y; with release date before ¢,, which has been counted in
the term (m + p)oy; with more than its forced forward demand in A;. The
forced forward demand in the greater interval A, can only be greater, and
thus we count for no job more in W, than in ND(A,).
O

We required ¢, < T, and ¢, < D,. Both are easy to test in linear time.
In fact, the later condition is necessary for scheduling any job sequence on
any number of machines with speed 1. The first condition is necessary for
scheduling all job sequences on any number of speed-1 machines.

Now, consider o > 2 — % We get m' = (m+p)(c—1)+1 > m. Then,
if an instance [ allows for a job sequence R with an interval A generating
a necessary demand NDg(A) > m|A| as in the theorem, then clearly it
cannot be scheduled by any algorithm on m speed-1 machines. So, all three
conditions of the theorem, ¢, < T}, ¢; < D,, and NDi(A) < m|A|, are
necessary for scheduling on m speed-1 machines. By the theorem they are
sufficient for scheduling on (m + u) speed-o machines. Therefore, all that
is missing for an approximate feasibility test is a procedure testing whether
an instance I can have a job sequence R with an interval A generating a
necessary demand NDg(A) > m|A|. For this we will provide an FPTAS in
the remainder. As this procedure determines the maximal load only up to an

€, we will have to choose o slightly bigger than 2 — % in our final theorem.
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3.5 AN FPTAS ror LoAD ESTIMATION

The following observation facilitates the test:

Lemma 3.5. Assume c, <T, and c¢; < D, for all tasks T of an instance I.
Then, over all intervals A = [t,t+{) of a fized length ¢ and all job sequences
R of I, the mazimal necessary demand from a certain task T is

T,—D
NDg« (A", 7) = ¢,k + [¢; + £ — D, — kT,]", where k = VJr%iTJ :

Proof. Rewrite c,k+ ¢, +{— D, —kT,|* =c;k+[c, — (T, — ({ — D, — (k—
1)T;))]". Make t* 4 ¢ the deadline of some job j from 7 and ¢t* > T.. Further
choose R* such that all jobs of task 7 released in [t — T,,t + {) precede
their follower at the minimum distance 7T.. Then the necessary demand
NDg«(A* 1) is as claimed.

To see that this is maximal, assume any interval A with |A| = ¢ and any
job sequence R of I with higher necessary demand than the one in the above
construction. As ¢; < T, at most k4 1 jobs can contribute to NDg(A, 7).
Compressing the distances between all contributing jobs cannot diminish the
forced forward demand in the interval for any of those jobs. Now push the
compressed sequence of contributing jobs towards the right until the deadline
of the last job coincides with the right boundary of A. This will not diminish
the forced forward demand of any contributing job. Thus, we arrive at a job
sequence and an interval as in the above construction which generate at least
as much forced forward demand as the pair (R, A) with which we started.
This contradicts that NDg(A, 7) > ¢,k + [¢, + ¢ — D, — kT, ]*.

O

The construction of the lemma also shows that the maximal forced for-
ward demand can be achieved for each task independently. As a consequence
we only have to find the optimal length of an interval. Then we know how
much forced forward demand a maximal pair of interval and job sequence
has. We define for any instance [ satisfying for all 7: ¢, < T, and ¢, < D,

w:=wr: RT - R {— w(l) :=w;(l) = Zch +[e; +€— D, — kT,]*

Tel

Lemma 3.5 states that w;(¢) is the maximum forced forward demand of any
job sequence of I in any interval of length ¢.

The following algorithm finds a length ¢ which approximates the maxi-
mum of # by a factor of € in time polynomial in the input size of I and 1/e.
In fact, we devise a function ¢ which pointwise approximates the load, i.e.,
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VeRT:(1— e)# < ¢(l) < # There is a polynomial size subset of R,
a priori determinable, in which the function ¢ must achieve its maximum.
So, the approximation algorithm is straightforward.

Algorithm 1: Load Estimation(/, ¢)
For each 7 € I, compute:

threshold(7) := D, + T} /e,
points(7) := {¢ € (0, threshold(7)] : ¢ = ¢ - T, + D, for some g € N},
points’(1) := {¢ € (0, threshold(7)] : ¢ = ¢ - T, + D, — ¢, for some g € N}.

Compute POINTS := U,¢; (points(7) U points’(7) U {threshold(7)}) .

w(l n -
Olltpllt A = max maXycpOINTS #, Eq—:l % .

Lemma 3.6. For any instance I Algorithm 1 outputs a A such that (1 —
)N <A < A" where \* = supy p m%w, and has running time polynomaial
inmn and 1/e.

Proof. We know that A\* = sup, # We show that for all ¢ > 0 the function

O w}(@ + Y (1 - %) ;—:

7:threshold(7)>¢ 7:threshold(7)<¢

approximates the load w(¢)/¢ in the following sense:

1-9"9 <o <0

Secondly, we will show that we can find the maximum of ¢ by only con-
sidering points in POINTS. The number of points in POINTS is obviously
polynomial in the input, and so is the evaluation of ¢ for each point. This

completes the proof.
Recall that

T.—D T.—D *
wr(l) =c; V—i_%iTJ + {CTJrf—DT— V—i_TiTJ -TT} .

Therefore w,(¢)T, > ¢,({ — D,) and
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which summed over all tasks 7 yields the upper bound on ¢.
Concerning the lower bound, for ¢ > threshold(7) we have ¢ > D, + %
- Using again w ()T > c-(I — D;) gi O

As the dlfference between the necessary demand of one task 7 and the
approximate demand (¢ — D,) - 7 can at most be the execution time of the
task, ¢,, we can substitute

w () = (=Ds) -
w, (L)

and by rewriting we get

(—D, ¢, w,(0)
7 T > (1—¢) 7
Again, summing over all tasks gives the claimed lower bound on ¢.
To finish, observe that between two consecutive points ¢, /5 € POINTSU
{0} we can write

(b(g):Cl/g—i-CQ—'—g(g), VEE wla€2)7
with

o= Y wm)- Y CTTDT

:threshold(7)>0; rithreshold(T)<f;

CQ = Z ;—T

7:threshold(7)</1 T

0=/ > (e +l=Dr =T — e+ 6 — D — T F)

7:threshold(7)>¢1

where k; := K“LTT#D* )

By definition of POINTS, the function £ can be written as C'/¢ 4+ C’ for
some constants C, C’; this implies that the same is true for the function ¢
inside each interval [(1, f5). Thus, a maximum of ¢ is always attained at an
extreme point of such an interval. Also, beyond the maximum of POINTS,
the function ¢ equals ) __; ( %) - 7=. Therefore, the overall maximum
of ¢ is attained at one of the points in POINTS or equals and the

algorithm is correct.

EIT’

0

Theorem 3.7. There exists a feasibility test that, given a task system I,

i € N and € > 0, decides whether I can be scheduled by EDF on (m + )

speed-(1 + (erﬁ(H) — miﬂ) machines, or I cannot be scheduled at all on m

speed-1 machines. The running time is polynomial in n, m and 1/e.
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Proof. With the help of Algorithm 1 we can verify in polynomial time the
following conditions:

(C1) For all tasks 7 € I : ¢, < min(D,,T}).

(C2) There is A <m, where (1 —€)A" <A < A" and A" = supp o ND|Z(\A).

Both are necessary for scheduling I on m speed-1 machines.
Condition (C2) implies that there is no job sequence R and interval A

such NDg(A) > 7 |A[. Choosing o > (1 + CEm e miu) gives (m +
w(oc—1)+1> a5 and the claim follows from Theorem 3.4. O

Corollary 3.8. There exists a feasibility test that, given a task system I and
€ > 0, decides whether I can be scheduled by EDF on m speed-(2 —1/m + ¢)
machines, or I cannot be scheduled at all on m speed-1 machines. Its running
time is polynomial in n, m and 1/e.



RECOVERABLE ROBUSTNESS

The pivotal idea of this chapter is well represented by the object depicted
in Figure 4.1. This type of object is used in the airline industry. The one
shown in the picture was attached at the airport of Sao Paulo to a suitcase
of a passenger flying to Munich via Paris Charles de Gaulle. The scheduled
time for transit at Charles de Gaulle airport was two hours. Before the
time of boarding in Sao Paulo it became apparent that the aircraft would
start late. Taking into account the time buffer for the flight time across the
Atlantic, the resulting new transfer time of the passenger in Paris could be
estimated to seventy-five minutes. This amount of time is not sufficient for
a transfer at Charles de Gaulle. Transferring the luggage onto the plane to
Munich already takes longer. The connection was highly likely to be lost.
Therefore, the ground staff handling the luggage at Sao Paulo attached that
flag to the suitcase. Upon arrival in Paris it triggered a priorized handling of
the suitcase, accelerating its way through the airport such that the transfer
became possible again. A simple piece of paper provided for the recovery of
the passenger’s original flight connection.

To honor the truth: it did not work. The passenger was deferred on a
plane to Munich two hours later. Still, the case displays an idea both natural
and successful for coping with uncertainty in practice of operations research.
The ingredients of this idea are the following.

In the planning phase a schedule is constructed in pursuit of some ob-
jective. In the example, it lies in the passenger’s interest to have a short
connection in order to minimize his total travel time. This is mirrored in the
transfer times of the connections offered to the passenger.

But the planning must also take into account that the given data is subject

49
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Figure 4.1: Simple means of recovery.

to uncertainty. Delays are not unusual in public transportation systems.
Therefore, a plan already incorporates a certain buffer time. In this case,
the delay upon arrival in Paris was smaller than that at departure in Sao
Paulo, due to buffer time for the flight across the Atlantic. Plans are not to
be constructed exceedingly tight.

Despite the buffering, in some scenarios the plan cannot be operated in
a straight forward way. These are not necessarily situations of exceptional
disruptions, like a total failure of the aircraft, or bankruptcy of the carrier,
or natural catastrophes. Even ordinary disruptions may exhaust and even
exceed the buffers. Despite the plans not being tight they cannot be con-
structed so loose that they suit for all likely scenarios. Otherwise, the system
looses too much of its performance. Plans must be recovered.

The conditions for recovering a plan differ substantially from the original
planning situation. As an advantage for the recovery the exact data, at
least of the past events, is known. But the downside of this information
is large: Constructing the original flight plan, the carrier uses an elaborate
system of optimization and other planning procedures, which can be time
consuming and require significant computational resources. Such resources
are usually not at the disposal of the planner during recovery. Moreover, a
flight connection like the one from Sao Paulo to Munich is planned as part
of a huge system. In the event of recovery only a small part of that system
can be adjusted. For example, the schedule of the ground crews at Charles
de Gaulle is planned after the legs have been planned. But, when the leg
from Sao Paulo is delayed, the freedom for re-planning the ground crews is
very limited. The recovery must be local and accomplished by simple means
of computation and implementation. Such a simple implementation of a
recovery is the piece of paper shown in Figure 4.1.
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In short we face the following situation in practice:
e Planning consists of an optimization problem.

e Crucial data is notoriously subject to limited changes during opera-
tions.

e During operations the solutions are recovered by simple and limited
means.

This structure can be observed in several examples from practice. In
many of these examples the means of recovery are currently designed in an
unsystematic way. Is it possible to construct the plan and the strategy for
recovery jointly, as a symbiotic pair? Thereby, the constructed plan shall
be specifically helpful for the envisioned recovery. And the chosen recovery
strategy shall rely on resources that can be provided for free or at low cost
in the planning phase. Can such an integrated approach of planning and
recovery lead to a more reliable, or a more efficiently operating system? Are
problems of this type practically tractable for reasonably sized real-world
instances? What is the right model for this type of integrated optimization?

To summarize our goal: Can we find a cheapest plan that is recoverable
by restricted means in all likely scenario? We will provide an affirmative
answer to this question by means of mathematical optimization. To this
end, we introduce the notion of recoverable robustness.

The above motivation starts from an informal and not systematically op-
timized practice, and asks for a concept that allows to enhance this practice
by means of optimization. This direction is complemented by considera-
tions starting from an existing mathematical concept for optimization under
imperfect information, namely, robust optimization. Applying this classical
concept to construct delay resistant railway timetables a central weakness of
the standard notion of robustness becomes apparent. The solutions found by
the classical concept, which we call strict robustness, turn out to be necessar-
ily over-conservative. We will outline briefly the concept of strict robustness
and the weakness which stimulated the development of recoverable robust-
ness. (A detailed and technical account of this matter is deferred to a point
when the formal definitions are given.) In this way we motivate the new
notion both from a purely practical observation and the evolution of existing
mathematical concepts.

Overview of the Chapter This chapter is organized in five sections.
In the first section we define recoverable robustness in its full scope. In
Section 4.2 we consider recoverable robustness for railway timetabling and
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platforming (a subsequent step to timetabling). This section aims at some
understanding of the virtues and limits of the new notion in practice. In
the remainder we concentrate on recoverable robustness in the context of
linear programming. First, we take a detailed look on some related work
(Section 4.3) that is particularly inspiring for the our line of thought. The
last two sections contain most of the mathematical content of this chapter.
In Section 4.4 we show how to achieve recoverable robustness for recovery
by linear programming and right-hand side uncertainty. This includes in
particular the robust network buffering problem. The final Section 4.5 takes
a polyhedral perspective to recoverable robustness by linear programs. This
yields the basis for analyzing the so-called coincidental covering of scenarios
by recovery robust solutions, and a polynomial approach to solve recovery
robust problems for matrices with vertically and horizontally limited distur-
bances.
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4.1 THE NOTION OF RECOVERABLE ROBUSTNESS

The general goal of optimization under imperfect information is to find best
solutions although full and reliable data is not available. This way the goal is
not formulated precisely. Consider an every day example for a decision under
imperfect information: Shall one take an umbrella when leaving the house?
There are two scenarios. Either it will rain, or it will not rain. How shall
we assess, whether it is better to take the umbrella or not? It may be clear,
in case we know for sure, which of the scenarios is going to take place. But
without this information the rationales for deciding the umbrella question
can differ significantly. This is not due to the complicated mathematical
structure of the umbrella question, but due to the unclarity of what ‘best
solution’ means in a situation of imperfect information. Not surprisingly,
there are many concepts for optimization under imperfect information. One
might adopt a worst case or an average case approach, or try to optimize
an expected value or some risk measure. The question, which approach the
real-world decision shall be based on, cannot be answered mathematically.
Still, a thorough, mathematical understanding of what the different concepts
offer is a prerequisite for any responsible, non-mathematical decision on the
matter.

There is no silver bullet for optimization under imperfect information.
Therefore, it is important to understand our new concept as an evolution of
other concepts, driven by their short comings for particular applications. The
new concept, which we present in this chapter, is a heir of a well established
tradition, and we will point out repeatedly its relation to other concepts
for optimization under imperfect information. Recoverable robustness is a
generalization of the classical concept of robust optimization. Robust op-
timization is an alternative to stochastic programming, mostly to 2-stage
stochastic programming.

Note that the term ‘robust’ is not used consistently in the literature.
The notion of recoverable robustness is situated in the tradition of robust
optimization originating from Soyster [54]. This field of research can be seen
as a special branch of stochastic programming. There is a special issue [4] of
the mathematical optimizations journal for the field of robust optimization.

The full notion of recoverable robustness, which we will present, has a
very broad scope. One specialization of it extends the concepts of classical ro-
bust optimization and overcomes its inherent problem of over-conservatism.

Robustness and 2-Stage Programming The fundamental idea of ro-
bustness is to construct a solution that is feasible in all (likely) scenarios.
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In contrast, a 2-stage stochastic program features a scenario independent
first stage decision, and for each scenario a second stage decision, which is
taken after the full, precise data is known. Together the first and the second
stage decision must form a feasible solution in the scenario. The second stage
decision usually comes at a higher cost. For example, in case of unexpected
heavy rain one can buy an umbrella on the fly. This is more expensive, than
carrying the old one. Still, if rain is unlikely, it may be an overall good
strategy not to take the umbrella in the first place, and to rely on buying in
case of exceptional rain. The 2-stage stochastic program optimizes a mixed
objective, summing the deterministic first stage cost and the expected value
of the second stage cost. Sometimes the expectation is replaced by a more
sophisticated stochastic function including some risk measure. In all cases
the scenario set is assumed to be endowed with a probability distribution.

An alternative model optimizes under the restriction that a certain part
of the constraints of the optimization problem, usually a linear program,
is fulfilled with a given (high) probability. This is called chance constraint
programming. In general, 2-stage stochastic programming is a special case
of multi-stage stochastic programming. Here the data is revealed in several
steps, after each of which further decisions are taken. The area of stochastic
programming is a vast field of research, to which we can by no means do jus-
tice in this work. The interested reader is deferred to an extensive literature
of textbooks [2, 1, 3] and the excellent web-site of the community [56].

For 2-stage stochastic programs it is generally required that distributions
are given in some form and that they can be handled in the solution proce-
dure. Against this background the virtues of the robust approach become
visible:

e Robust solutions require no knowledge about distributions.

e Robust models are usually easier to solve, because the solver need not
handle distributions, nor look explicitly at each scenario to assess the
objective.

e Facing uncertain data robust solutions have a guarantee of quality that
is not subject to uncertainty.

The last point is particularly important. In some applications expected
values are simply not the right goal. Nobody wants to use an airplane that
flies save on average. In general, the expected value is more suitable, if one
is interested in the average performance of a solution in several realizations.

While high tractability enables the use of robust methods for large scale
instances, and the specific guarantee connected to a robust solution makes
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them the model of choice for many applications, the downside of robust
solutions is also apparent. It is a bit like sweat shirts in the eighties: One-
size-fits-all yields a rather conservative outfit in the end. In the umbrella
example, robust optimizers would always have to carry the umbrella, unless
sunshine is sure. Therefore, restricting the scenario set to likely scenarios is
very important for robust optimization. We will discuss this in detail in 4.3.2.
Smart truncations of the scenario set help to avoid over-conservatism.

Still, there are applications for which those truncations lack any effect.
Among these applications is delay resistant railway timetabling. The dis-
turbances affect the driving and stopping times of the trains. Imagine a
timetable that is feasible for all elements of a (truncated) scenario set. No
matter how the set is truncated, the robust timetable must for each driving
or stopping activity respect the maximal duration over all scenarios. This
one-fits-all plan will be unacceptably conservative. Railway timetables must
be constructed such that they are recovered slightly in case of disturbances.
This is a kind of second stage decision. Not taking the possibility of recovery
into account yields over-conservative, i.e., exceedingly expensive solutions.
We will present a way to plan with respect to this second stage decision
without taking an explicit look at the huge number of scenarios that arise
in these applications. This way we will find solutions with acceptable costs,
without sacrificing the virtues of robust optimization: The compact models
and the deterministic guarantee of feasibility under uncertain data.

Again, the different approaches to optimization under imperfect informa-
tion are suitable for different situations. While a stochastic program is well
suited for few but significantly different scenarios, a simple robust model can
be adequate for example if the data is subject to small errors of measure-
ment. For the case of delay resistant timetabling stochastic programming
is in conflict with the size of typical instances, and the standard robust ap-
proach is necessarily over-conservative. Therefore, it requires a new approach
to optimization under imperfect information.

4.1.1 Basic Definitions

We are looking for solutions to an optimization problem which in a limited set
of scenarios can be made feasible, or recovered, by a limited effort. Therefore,
we need to define

e the original optimization problem (Step O),
e the imperfection of information, that is the scenarios (Step S), and

e the limited recovery possibilities (Step R).
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For Step O and Step S a large toolbox for modeling can be borrowed from
classical approaches to optimization respectively optimization with imperfect
information. Step R is a little less obvious, and we choose to formalize it via
a class A of admissible recovery algorithms.

A solution z for the optimization problem defined in Step O is
recovery-robust

e against the imperfection of information (Step S) and
e for the recovery possibilities (Step R),

if in all situations that may occur according to Step S, we can recover
from x a feasible solution by means of one of the algorithms given in

Step R.

Computations in recovery-robust optimization naturally decompose into
a planning phase and a recovery phase. In the planning phase,

e we compute a solution x which may become infeasible in the realized
scenario,

e and we choose A € A, i.e., one of the admissible recovery algorithms.

Such a pair (z, A) hedges for data uncertainty in the sense that in the recov-
ery phase

e algorithm A is used to turn z into a feasible solution in the realized
scenario.

The output (z, A) of the planning phase is more than a solution, it is
a precaution. It does not only state that recovery is possible for z, but

explicitly specifies how this recovery can be found, namely by the algorithm
A.

The formal definition of recoverable robustness [43] we give next is very
broad. The theorems in this chapter will only apply to strong specializations
of that concept.

We prepare some terminology. Let F denote the original optimization
problem. An instance O = (P, f) of F consists of a set P of feasible solutions,
and an objective function f: P — R which is to be minimized.

By R = Rs we denote a model of imperfect information for F in the
sense that for every instance O we specify a set S = Sp € Rx of possible
scenarios. Let P, denote the set of feasible solutions in scenario s € S.
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We denote by A a class of algorithms called admissible recovery algo-
rithms. A recovery algorithm A € A solves the recovery problem, which is
a feasibility problem. Its input is x € P and s € S. In case of a feasible
recovery, A(z,s) € Ps.

Definition 4.1. The triple (F,R,A) is called a recovery robust optimiza-
tion problem, abbreviated RROP. A pair (x,A) € P x A consisting of a
planning solution x and an admissible algorithm A is called a precaution.

A precaution is recovery robust, iff for every scenario s € S the recovery
algorithm A finds a feasible solution to the recovery problem, i.e., for all
s € S we have A(x,s) € P;.

An optimal precaution is a recovery robust precaution (x,A) for which
f(z) is minimal.

Thus, we can quite compactly write an RROP instance as

inf
(J:,AI)IElPX.A f<x)

st. VseS:Ax,s) € Py

The objective function value of an RROP is infinity, if no recovery is pos-
sible for some scenario with the algorithms given in the class A of admissible
recovery algorithms.

It is a distinguished feature of this notion that the planning solution is
explicitly accompanied by the recovery algorithm. In some specializations the
choice of the algorithm is self-understood. For example, for linear recovery
robust programs, to which we will devote our main attention, the algorithm
is some solver of a linear program or a simpler algorithm that solves the
specific type of linear program that arises as the recovery problem of the
specific RROP. Then we will simply speak of the planning solution z, tacitly
combining it with the obvious algorithm to form a precaution.

4.1.2  Restricting the Recovery Algorithms

The class of admissible recovery algorithms serves as a very broad wildcard
for different modeling intentions. Here we summarize some important types
of restrictions that can be expressed by means of that class.

The definition of the algorithm class A also determines the computa-
tional balance between the planning and the recovery phase. For all prac-
tical purposes, one must impose sensible limits on the recovery algorithms
(otherwise, the entire original optimization problem could be solved in the
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recovery phase, when the realized scenario is known). In very bold term,
these limits fall into two categories:

e limits on the actions of recovery;

e limits on the computational power to find those actions of recovery.

We mention two important subclasses of the first category:

Strict Robustness We can forbid recovery entirely by letting A consist
of the single recovery algorithm A with A(z,s) = x for all s € S. This is
called strict robustness. Note that by strict robustness the classical notion of
robust programming is contained in the definition of recoverable robustness.

Recovery Close to Planning An important type of restrictions for the
class of admissible recovery algorithms is that the recovery solution A(z, s)
must not deviate too far from the original solution z according to some
measure of distance defined for the specific problem. For some distance
measures one can define subsets P, C P, depending on the scenario s and
the original solution x, such that the restriction to the recovery algorithm
that A(x,s) will not deviate too far from x, can be expressed equivalently
by requiring A(x,s) € Ps,. As an example, think of a railway timetable
that must be recovered, such that the difference between the actual and the
planned arrival times is not too big, i.e., that the delay is limited.

4.1.8  Passing Information to the Recovery

If (as it ought to be) the recovery algorithms in A are allowed substan-
tially less computational power than the precaution algorithms in B, we
may want to pass some additional information z € Z (for some set Z)
about the instance to the recovery algorithm. That is, we may compute
an extended precaution B(P, f,S) = (x, A, z), and in the recovery phase we
require A(zx, s, z) € Ps.

As a simple example, consider a class of admissible recovery algorithms
A that is restricted to computational effort linear in the size of a certain
finite set of weights, which is part of the input of the RROP instance. Then
it might be helpful to pass an ordered list of those weights on to the recov-
ery algorithm, because the recovery algorithm will not have the means to
calculate the ordered list itself, but could make use of it.

In Section 4.2 we present another example, namely rule based delay man-
agement policies, which shows that it is a perfectly natural idea to preprocess
some values depending on the instance, with which the recovery algorithm
becomes a very simple procedure.
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4.1.4  Limited Recovery Cost

The recovery algorithm A solves a feasibility problem, and we did not con-
sider any cost incurred by the recovery so far. There are at least two ways to
do so in the framework of recoverable robustness. Let d(y*) be some (possibly
vector valued) function measuring the cost of recovery y* := A(x, s).

e Fixed Limit: Impose a fixed limit A to d(y®) for all scenarios s.

e Planned Limit: Let A be a (vector of) variable(s) and part of the
planning solution. Require A > d(y®) for every scenario s, and let
A € A influence the objective function by some function g : A — R.

In the second setting, the planned limit A to the cost of recovery is a vari-
able chosen in the planning phase and then passed to the recovery algorithm
A. Tt is the task of A to respect the constraint A > d(y), and it is the task of
the planning phase to choose (x, A, \), such that A will find a recovery for z
with cost less or equal to A\. Therefore, and to be consistent with previous
notation we formulate the cost bound slightly different. Let P! denote the
set of feasible recoveries for scenario s. Then we define P by:

Az, 8,\) € Py = d(A(z,8)) < AN A(x,s) € Pl

We obtain the following recovery robust optimization problem with re-
covery cost:

i A
(ac,A,)\grélFr’lexA f(:L‘) + g( )

st. VseS: Az, s, \) € Py

Including the possibility to pass some extra information y € ¥ to A we
obtain:

min f(@) +9(N)

(z,A,2,\)EPXAXZ XA

st. VseS: Alx,s,z,\) € Ps

These recovery cost aware variants allow for computing an optimal trade-
off between higher flexibility for recovery by a looser upper bound on the re-
covery cost, against higher cost in the planning phase. This is conceptually
close to two-stage stochastic programming, however, we do not calculate an
expectation of the second stage cost, but adjust a common upper bound on
the recovery cost. This type of problem still has a purely deterministic ob-
jective. The linear recovery robust programs discussed later are an example
of this type of RROP.



60 RECOVERABLE ROBUSTNESS

4.2 EXAMPLES OF RROPS
4.2.1 Sporadic Real-time Scheduling

The problem we consider in Chapter 3 fits into the framework of recoverable
robustness. Given the specification of a sporadic real-time task system, the
goal is to design a platform x of (identical) processors (specifying their speed
and number) together with a scheduling algorithm A. This pair (z, A) is a
precaution. The scheduling algorithm must respect strong computational
restrictions. It must be an element of a prescribed family of admissible
recovery algorithms. Finally, for every scenario, i.e., for every job sequence
respecting the minimal separation time, the recovery algorithm must produce
a feasible schedule on the chosen processor platform z. The platform shall
be cheap, or small, or energy-efficient, i.e., we are given a cost function ¢(x),
which we want to minimize. This forms an RROP.

4.2.2 Recovery Robust Timetabling

Punctual trains are probably the first thing a layman will expect from robust-
ness in railways. Reliable technology and well trained staff highly contribute
to increased punctuality. Nevertheless, also modern railway systems feature
small disturbances in every-day operations.

A typical example for a disturbance is a prolongated stop at a station
because of a jammed door. A disturbance is a seminal event in the sense
that the disturbance may cause several delays in the system but is not it-
self caused by other delays. Informing passengers about the reason for a
delay affecting them, railway service providers sometimes do not distinguish
between disturbances, i.e., seminal events, and delays that are themselves
consequences of some initial disturbance. We will use the term disturbance
exclusively for initial changes of planning data. A delay is any difference
between the planned point in time for an event and the time the event actu-
ally takes place. We also speak of negative delay, when an event takes place
earlier than planned.

A good timetable is furnished with buffers to absorb small disturbances,
such that they do not affect the planned arrival times at all, or that they
cause only few delays in the whole system. Those buffer times come at the
expense of longer, planned travel times. Hence they must not be introduced
excessively. Delay resistant timetabling is about increasing the planned travel
times as little as possible, while guaranteeing the consequences of small dis-
turbances to be limited.

We will now show how delay resistant timetabling can be formulated as a
recovery robust optimization problem. We actually show that a robust ver-
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sion of timetabling is only reasonable, if it is understood as a recovery robust
optimization problem. Moreover, we show how recoverable robustness inte-
grates timetabling and the so-called delay management. Delay management
is the term coined for the set of operational decisions reacting to concrete
disturbances, i.e., the recovery actions. Its integration with timetabling is
an important step forward for delay resistant timetabling, which can be for-
malized by the notion of recoverable robustness.

Step O The original problem is the deterministic timetabling problem. It
exists in many versions that differ in the level of modeling detail, the objective
function, or whether periodic or aperiodic plans are desired. The virtues of
recovery robust timetables can already be shown for a simple version.

A Simple Timetabling Problem The input for our version of timetabling
is a directed graph G = (V, E) together with a non-negative function ¢t : £ —
R on the arc set. The nodes of the graph V' = Var U Vpp model arrival
events (Var) and departure events (Vpp) of trains at stations. The arc set
can be partitioned into three sets representing driving of trains from one sta-
tion to the next, Epg, stopping of a train at a station, Fgr, and transfers of
passengers from one train to another at the same station, Erp. For driving
arcs e = (i,j) € Epr we have i € Vpp and j € Vg, for the two other types
e = (i,7) € Esr U Erp the contrary holds: i € Var and j € Vpp. The func-
tion t(e) expresses the minimum time required for the action corresponding
to e = (i, 7), in other words the minimum time between event ¢ and event j.
For example, for a driving arc e the value of the function ¢(e) expresses the
technical driving time between the two stations.

A feasible timetable is a non-negative vector 7™ € RLY‘ such that t(e) <
m; —m; for all e = (i,j) € E. W.l.o.g. we can assume that G is acyclic.

For the objective function we are given a non-negative weight function
w: E — Ry, where w, = w(e) states how many passengers travel along arc
e, i.e., are in the train during the execution of that action, or change trains
according to that transfer arc. An optimal timetable is a feasible timetable
that minimizes the total planned (or nominal) travel time of the passengers:

Z we(m; — ;).
e=(i,j)€E

Thus the original problem is a linear program:
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>0

Step S We assume uncertainty in the time needed for driving and stopping.
Those actions typically produce small disturbances. For a scenario s we are
given a function ¢* : E — R, with the properties t°(e) > t(e) for all e € F,
and t*(e) = t(e) for all e € Erp. As we only want to consider scenarios with
small disturbances, we restrict to those scenarios where t°(e) —t(e) < A, for
some small, scenario independent constant A.. Note that by scaling the rows
in the linear program we can set w.l.o.g. A, = A for all e € E. Additionally,
we require that not too many disturbances occur at the same time, i.e., in
every scenario for all but k arcs e € E we have t°(e) = t(e).

Of course, there are situations in practice where larger disturbances oc-
cur. But it is not reasonable to prepare for such catastrophic events in the
published timetable.

Strict Robustness The above restrictions to the scenario set can be very
strong, in particular, if we choose k = 1. But even for such a strongly limited
scenario set strict robustness leads to unacceptably conservative timetables.
Namely, the strict robust problem can be formulated as the following linear
program:

min Z we(m; — ;)

e=(i,j)€E

st. m—m>tle)+A Ve=(i,j)e £

T™>0

In other words, even if we assume that in every scenario at most one
arc takes A time units longer, we have to construct a timetable as if all
(driving and stopping) arcs were A time units longer. This phenomenon
yields solutions so conservative that classical robust programming is ruled
out for timetabling. Indeed, delay resistant timetabling has so far been
addressed by stochastic programming [57, 44] only. These approaches suffer
from strong limitations to the size of solvable problems.

The real world expectation towards delay resistant timetables includes
that the timetable can be adjusted slightly during its operation. But a strict
robust program looks for timetables that can be operated unchanged despite
disturbances. This makes the plans too conservative even for very restricted
scenario sets. Robust timetabling is naturally recovery robust timetabling as
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we defined it. Naturally, a railway timetable has to be robust against small
disturbances and for limited recovery.

Step R The recovery of a timetable is called delay management. The two
central means of delay management are delaying events and canceling trans-
fers. Delaying an event means to propagate the delay through the network.
Canceling a transfer means to inhibit this propagation at the expense of some
passengers loosing their connection.

Pure delay propagation seems not deserve the name recovery at all. But
recall that if delay propagation is not captured in the model, as in the strict
robust model, the solutions become necessarily over-conservative. Delay is a
recovery, and though it is a basic, it is a very important.

Actually, delay management has several other possibilities for recovery.
For example, one may cancel train trips, re-route the trains, or re-route the
passengers by advising them to use an alternative connection, or hope that
they will figure such a possibility themselves. Moreover, delay management
has to pay respect to several other aspects of the transportation system. For
example, the shifts of the on-board crews are affected by delays. These in
turn may be subject to subtile regulations by law or contracts and general
terms of employment.

We initially adopt a quite simple perspective to delay management grad-
ually increasing the complexity of the model. First we concentrate on delay,
later on delay and broken transfers, and finally we add re-routing of passen-
gers. The latter will be used in model that is shown to be PSPACE-hard.

Simple Recovery Robust Timetabling First, we describe a model where
the recovery can only delay the events but cannot cancel transfers. This
seems not a recovery in the ordinary understanding of the word. It is simply
the propagation of delay. But this simple recovery already rids us from the
conservatism trap of strict robustness.

In the recovery phase, when the scenario s and its actual driving and
stopping times t° are known, we construct a disposition timetable 7 € R'X‘
fulfilling the following feasibility condition:

e The disposition timetable 7° of scenario s must be feasible for t°, i.e.,
Ve = (i,j) € B 7 —m >t(e).

These inequalities define the set (actually, the polytope) Py of feasible
recoveries in scenario s.

If this was the complete set of restrictions to the recovery, every timetable
would be recoverable. We set up limits to the recovery algorithms:
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TTC The disposition timetable is bounded by the original timetable in a
very strict manner: Trains must not depart earlier than scheduled, i.e.,

Ve € Epp : 7°(e) > 7(e).
This is what we call the timetabling condition.

L1 We want the sum of the delays of all arrival events to be limited.
Therefore assume we are also given a weight function ¢ : Vag — Ry
that states how many passengers reach their final destination by the
arrival event i. We fix a limit Ay > 0 and require:

> i) (m8 ) < A

1€EVAR

L2 One may additionally want to limit the delay for each arrival separately,
ensuring that no passenger will experience an extreme delay exceeding
some fixed \y > 0, i.e.:

Vi€ Var i —m < Ao

In our model a recovery algorithm A € A must respect all three limits.
The bounds A; and Ay can be fixed a priori, or made part of the objective
function. In this way upper bounds on the recovery cost can be incorporated
into the optimization process. For a timetabling problem (G,t,w) and a
function ¢ : Vag — R, and constants ¢;,g2 > 0 and an integer k we can
describe the first timetabling RROP by the following linear program:

min Z We(mj — ) + g1 - A1+ g2+ Ao

e=(i,j)€E
st. m—m>tle) Ve=(i,j)ekl (4.1)
T —m >t(e) VseSVe=(i,j) €L (4.2)
7Tl-s > T Vs € S, Vi € Vpp (43)
d Uiy (m—m) <\ VseS (4.4)

1€EVAR

7Tl-s — T S )\2 Vs € S, Vi € VAR (45)

Aoy, 0w >0

The set of scenarios S in this description is defined via the set of all
functions t* : F — R, which fulfill the following four conditions from Step
S:

t°(e) > t(e) VeeFE
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t’(e) <tle)+ A Veec E
t°(e) =t(e) Ve € Erp
{ee E:t°(e) # i)} <k

In our terminology Inequality (4.1) defines P, Inequality (4.2) defines
P, Inequalities (4.3) to (4.5) express limits to the action of the algorithm,
namely, that the recovery may not deviate to much from the original solution.
In detail (4.3) models the TTC, (4.4) ensures condition L1 and (4.5) condition
L2.

Here and in the remainder of the example we use mathematical programs
to express concisely the problems under consideration. These programs are
not necessarily the right approach to solve the problems.

Breaking Connections In practice delay management allows for a sec-
ond kind of recovery. It is possible to cancel transfers in order to stop the
propagation of delay through the network. We now include the possibility
to cancel transfers into the recovery of our model.

Again we restrict to a simple version for explanatory purposes. A transfer
arc e can be removed from the graph G at a fixed cost g3 > 0 multiplied
with the weight w,. With a sufficiently large constant M we obtain a mixed
integer linear program representing this model:

min Z We(mj — ) +g1- A+ g2 Ao+ g3 A3

e=(i,j)€E
st. m—m>tle) Ve=(i,j)ekl (4.6)
T —m >t(e) Vse€ S Ve=(i,j) € EprUEsr  (4.7)
m —m + Mx; > t°(e) Vs €S Ve=(i,j) € Erp (4.8)
7Tl-s > T Vs € S, Vi € Vpp (49)
Uy (m—m)< N VseS (4.10)
1EVAR
71';9 — T S )\2 Vs c S,Vl € VAR (411)
d wat<l; VseS (4.12)
ecEryr

A23p, ™, >0
z* € {0, 1}1Frrl

In our terminology Inequality 4.6 defines P. Inequalities 4.7 and 4.8
define P; for every s. Again Inequalities 4.9 to 4.11 express limits to the
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actions that can be taken by the recovery algorithms. These are limits to
the deviation of the recovered solution 7* from the original solution .

4.2.8  Computationally Limited Recovery Algorithms

So far we imposed limits on the actions of the recovery algorithms. But
delay management is a real-time task. Decisions must be taken in very short
time. Thus it makes sense to impose further restrictions on the computa-
tional power of the recovery algorithm. Note that in general such restrictions
cannot be expressed by a mathematical program as above. We now give two
examples for computationally restricted classes of recovery algorithms.

The Online Character of Delay Management In fact the above model
has a fundamental weakness. It assumes that the recovered solution, i.e., the
disposition timetable 7 = A(m, s) can be chosen after s is known completely.
This is of course not the case for real-world delay management: The distur-
bances evolve over time, and delay management must take decisions before
the whole scenario is known. This means that the algorithms in .4 must be
non-anticipative.

To give a formal definition of non-anticipative algorithms, let 7 5 a(e) be
the point in time when the travel or stopping time ¢°(e) becomes known,
in case delay management is done by algorithm A for a timetable 7. Note
that the time 7, 5 4(e) may indeed depend on the timetable 7, the scenario s,
and on the delay management A. Further let 7°' and 7% be two disposition
timetables computed by the same recovery algorithm A for the same solution
7 and scenarios s, and so. We define E ; 4, = {e € E|7;54(e) < 7} to be
the set of all arc times ¢°(e) known at time 7. A recovery algorithm A is
non-anticipative if

V1o €E{T € Ry|Ersyar = Ersyar N7 (e) =t2(e)Ve € Er s ar}

we have
™ (e) < 19 = 7 (e) = 7°%(e)

and, vice versa,
2 (e) < 19 = m2(e) = 7 (e).

In prose, being non-anticipative means to handle scenarios alike, up to
the time when they show a first difference. Note that as formalized here
the notion will not suit randomized algorithms. It is conceivable how this
could be extended. We will not discuss randomized algorithms (although
they might be helpful for delay management). It is a natural, computational
restriction for delay management to be non-anticipative.
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PSPACE-hardness of Delay Management The multistage structure
of some delay management models, namely that uncertain events and dis-
patching decisions alternate, makes these problems extraordinarily hard. We
present a model that is still quite restricted but already PSPACE-hard.

The complexity class PSPACE contains those decision problems, which
can be decided with the use of memory space limited by a polynomial in the
input size. The class NP is contained in PSPACE, because in polynomial
time only polynomial space can be used. It is widely assumed that NP is a
proper subset of PSPACE. Given this, one cannot decide in polynomial time
that a given solution to a PSPACE-hard problem is feasible, because else the
solution would be a certificate and therefore the problem in NP. (Note that
the complexity terminology is formulated for decision problems. Feasibility
in this context means that the delay management solution is feasible in the
usual sense and in addition has cost less or equal to some constant.) The
difficulty to assess the quality of a solution means for delay management
that we cannot expect to be able in all cases to compare the quality of two
competing strategies.

We now define a delay management problem and sketch a reduction prov-
ing it to be PSPACE-hard. We will prove [20] that the following simple ver-
sion of the online railway delay management problem is already PSPACE-
hard, i.e., at least as hard (by polynomial time reduction) as any problem in
PSPACE.

For the reduction we use the following PSPACE-complete problem:

Definition 4.2. Deciding whether a logical expression of the following type
18 true

HZL'l\V/fEQ R Elxn_an : /\ \/ Zij
(]

where z;; are literals in the variables {x1,...,z,} and their negations, is
called the Quantified Boolean Formula (QBF) problem.

We will reduce QBF to a simple version of the online delay management
problem.

The Basic Online Delay Management Problem. An instance of the
basic online delay management (BODM) problem

(G, T,C,7,S,D)

is a six-tuple comprising an infrastructure graph G, a set of trains 7', a
directed graph C' with a vertex set V(C') of relevant events and an arc set
A(C) representing precedence constraints among those events, a timetable
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7 : V(C) — Rso, a set S containing functions 7 : A(C') — Rs (which we
call scenarios) for the minimal time distances of two events connected by a
precedence constraint, and finally some mathematical object D expressing a
cost model for the delay management.

The interpretation of the infrastructure graph may be adapted to the
specific problem. Usually, a station is represented by a vertex and tracks are
represented by edges. In a different interpretation a station can be modelled
in more detail an therefore consist of several vertices and edges.

The vertex set of C is the set of relevant events. Each relevant event is
characterized by a triple (¢,a,b), where t € T is a train and a,b € V(G) U
E(G) are either vertices or edges of the infrastructure graph. The triple
(t,a,b) represents the event that train ¢ changes from infrastructure vertex
(edge) a to infrastructure edge (vertex) b. The timetable entry 7((¢,a,b))
states the time for which this event is scheduled.

Disposition Timetable The goal is to give a non-anticipative strategy
that constructs a feasible disposition timetable in every scenario. A dispo-
sition timetable is a vector 7’ : V/(C) — Rsq that respects the timetabling
condition 7’ > . It is feasible in a scenario 7, if for all precedence constraints
a=(i,j) € A(C) we have 7(j) — 7(i) > 7(a).

As the strategy is required to be non-anticipative, the data 7((x,y)) is
revealed only after the time when 7’(z) took place.

Cost Model Different ways to define the cost model D are possible. We
will use the following: The cost model contains a set of origin-destination
pairs with a certain weight, i.e., we know how many passengers want to
travel from a certain starting station to a certain final destination. Their
paths through the infrastructure network GG are fixed. They may follow that
path on different trains, but the sequence of stations they pass is fixed. In
each scenario the total delay of the passengers in #’ compared to m, plus a
certain fixed cost for those passengers, who will not reach their destination
at all, defines the cost.

An alternative way to define the cost, specifies a certain cost for each
transfer that is broken and for each arrival which is delayed in 7«’. The two
models are not tantamount, but can be translated into each other in many
cases. For the reduction we will use the model described above. But we will
sometimes refer to the cost as the cost of breaking a transfer or delaying a
train, because these terms are more convenient, and in the specific case can
be translated into the original cost model.

The decision problem, which we show to be PSPACE-hard, is the follow-
ing question:
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Definition 4.3. Given a BODM instance and a budget B the BODM deci-
sion problem consists in the following question: Is there a non-anticipative
strateqy for constructing a disposition timetable, that achieves a cost value
lower than the budget B in every realization of T € S.

Theorem 4.4. The BODM decision problem is PSPACE-hard.

Reduction of QBF to the BODM Decision Problem For a given
Boolean formula in conjunctive normal form, A;\/ j Zij, with literals in the
set of variables {z1,...,z,} and their negations we construct an instance
of the BODM decision problem. For this BODM instance exists a strategy
that achieves a cost lower than the budget B, if and only if the quantified
Boolean formula,
dv Vs ... dr,—1 Vo, : /\ \/ Zij,
i

is true. Thus, the BODM decision problem is PSPACE-hard.
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Figure 4.2: Using the Gadgets.

In our construction we use fized and non-fized trains. A train is fixed in
the sense that delaying this train would automatically exceed the budget by
yielding a cost My > B. Nevertheless, we use fixed trains that are a priori
fixed to be late. Such a late fixed train has an initial delay prior to the
decisions of the strategy, but may neither be delayed any further, nor has a
buffer time to compensate the delay. We introduce the late, fixed trains to
explain transfers that are a priori broken, i.e., lead from an arrival (of a late,
fixed train) to an earlier departure. The cost for the initial delays of those
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trains is constant for all further unfolding of the scenario and all disposition
timetables. Therefore, we can neglect them.

The non-fixed trains fall into two different groups. Each train of the first
group, the wvariable-trains, corresponds to a variable x; of the Boolean for-
mula. If such a train is delayed, we will interpret the corresponding variable
x; as being false, and true if the train is on time. The trains of the second
group are called modeling-trains, as they serve some technical purpose in the
reduction. They can also be delayed or run on time while the strategy is
carried out. But the reduction will be constructed such that their delay is
entirely dependent on the delay of the variable-trains.

For modeling reasons we want that for every non-fixed train the decision
about running delayed or on time must be taken at the start of the train’s
ride and kept until the final destination. We enforce this by an incoming
transfer from a late, fixed train at the beginning of the ride and an outgoing
transfer to an on time, fixed train at the end. The non-fixed train cannot
meet both transfers. Thus it always incurs the cost for breaking one of these
transfers, M;. Let m be the number of non-fixed trains, then the total budget
Mym + C < B < My(m + 1) + C is set such that none of these trains may
break both transfers. (The constant C'is the constant cost of all gadgets, as
explained below.)

With these ingredients (on time fixed trains, late fixed trains, variable-
trains, modeling-trains, and the rule that any of the later two types of trains
must be scheduled either late in the whole disposition timetable or on time
in the whole disposition timetable) we will below device a gadget for a log-
ical NON-operator and a gadget for a logical, multiple AND-operator. The
NON-gadget will yield that a certain modeling train is delayed if and only if
a certain other train is on time. The AND-gadget has an out-train that is on
time, if and only if all trains of a certain set are on time. Before we describe
the mechanism of these gadgets, we will first show how they are used to
reduce the QBF, 321V, ... 3z, 1V, : A, \/j z;j. Actually, we use an alter-
native way to write the Boolean formula namely, A;V/; zi; = A, ~(A; =zij)-

The time horizon of the constructed BODM instance is split into five
phases (cf. Figure4.2).

1. In the first phase all decision whether a variable-train is delayed or not
are taken one after the other. The incoming transfer from the fixed
train determines the order by which these decisions must be taken.
Recall, because of the transfers to the fixed trains these decision cannot

be changed later. This way we reflect the consecutive mechanism in
the QBF.

For those variable-trains that correspond to an all-quantified x; the
decision, whether they run late or on time, shall be taken by the ad-
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versary. The scenario set S is restricted such that the adversary may
produce exactly one of the two following situations: Delay the train ¢
before the incoming transfer from a late, fixed train at the beginning
of the ride of train i, or (exclusive or) delay train i immediately before
the outgoing transfer to a punctual, fixed train at the end of the ride of
train 7. Note that the dispatcher cannot intentionally delay a train of
an all-quantified variable as the adversary would then have the choice
to delay it twice, which would exceed the cost limit.

2. Then each variable-train runs through a NON-gadget, producing its
negated train that is late if and only if the variable-train was on time.

3. The variable-trains and their negations pass through the AND-gadgets
for each of the re-written clauses. A re-written clause i, /\ ; T'%ij, 1s mod-
eled by an AND-gadget with in-trains corresponding to the variable-
trains or negated variable-trains z;;.

4. Each out-train of those AND-gadgets is negated.

5. Finally all of those negations enter the central AND-gadget. The out-
train a of this gadget has a tight transfer to a fixed train. If that
out-train is late, it yields a cost of M.

We will make sure that every AND- and NON-gadget yields a fixed cost
in all scenarios. Thus, we can choose B and M, such that the total cost is
below B, if the train a is on time, and the cost exceeds B, if a is late. In
this way the BODM instance is feasible with cost limit B, if and only if the
quantified Boolean formula is true. This completes the reduction.

The NON-Gadget The initial state of a NON-gadget is depicted in Fig-
ure 4.3. There is a fixed train (drawn as a bold line) and two non-fixed trains.
The lower of the non-fixed trains, the in-train is always late for its transfer
to the other non-fixed train. We draw a rhombus to symbolize some fixed
delay that should explain this fact. The upper train can wait for the lower
train and thus keep the connection (Figure 4.5). But, if the lower train is
additionally delayed before the rhombus, the upper train would have to wait
so long that is has to break a transfer to a fixed train. The cost for breaking
this transfer is My, i.e., would immediately exceed the budget. Thus, the
strategy will break the transfer from the in-train to the out-train, and the
latter will leave the gadget on time (Figure 4.4). A delayed in-train yields
an on time out-train, and vice versa.

Still the gadget would not work, because we cannot guarantee that the
transfer is not broken, if the in-train is on time, or the out-train is delayed
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Figure 4.3: The Initial Situation.
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Figure 4.4: Delayed yields On Time.

although it breaks the transfer from a late in-train. To exclude these cases, we
have to make sure that a NON-gadget yields a fixed cost in both dispositions
we desire (in-train on time & out-train late and vice versa), and exceeds this
cost in any other disposition. To this end, let ¢, be the cost of delaying
the out-train, ¢, the cost of breaking the transfer from the in-train, and
Cp — Cy = €4 a positive number. We introduce an a priori broken transfer
from a late, fixed train to the in-train, which to break costs c,. This transfer
is broken, if and only if the in-train is on time. In other words, the desired
dispositions are the only two dispositions by which the gadget has cost less
or equal to ¢;—and those yield cost equal to c¢,.

Note we use NON-gadgets that output the out-train and the in-train and
we use NON-gadgets that only output the out-train.

The AND-Gadget The AND-gadget is fairly simple: All in-trains have
to be on time for the out-train to be on time. Therefore, all in-trains have
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Figure 4.5: On Time yields Delayed.

a tight connection of breaking cost M, to the out-train. Again, we have
to make sure that the out-train is not scheduled late although all in-trains
are on time. To this end, all in-trains run along the same track for some
distance. There are some passengers that want to travel this distance, but
come from a late, fixed train. Only if at least one of the in-trains is late,
these passengers will reach their destination. The cost ¢; of not serving these
passengers equals the cost of delaying the out-train. Thus, the gadget has at
least cost ¢, and will exceed this cost, in case the out-train is late though
all in-trains are punctual.

Rule Based Delay Management The previous observation is quite dis-
couraging. How shall one design a recovery robust timetable, if the recovery
itself is already PSPACE-hard? We now dicuss a special restriction to the
delay management that is motivated by the real-world railway application
and turns each decision whether to wait or not to wait into a constant time
solvable question. The model keeps the multistage character, but the re-
sulting recovery robust timetabling problem is solvable by a mixed integer
program.

Delay management decisions must be taken very quickly. Moreover, as
delay management is a very sensitive topic for passengers’ satisfaction the
transparency of delay management decisions can be very valuable. A pas-
senger might be more willing to accept a decision that is based on explicit
rules about how long, e.g., a local train waits for a high-speed train than
to accept the outcome of some in-transparent heuristic or optimization pro-
cedure. For these two reasons, computational limits for real-time decisions
and transparency for the passenger, one may want to restrict the class A of
admissible recovery algorithms to rule based delay management. The idea is
that trains will wait at most a fixed time for the trains connecting to them,
depending on the type of involved trains. For example, a local train might
wait 10 minutes for a high-speed train, but vice versa the waiting time could



74 RECOVERABLE ROBUSTNESS

be zero. Fixing these maximal waiting times determines the delay manage-
ment (within the assumed modeling precision). But, which waiting times are
best? Does the asymmetry in the example make sense? We want to optimize
the waiting rules, i.e., the delay management together with the timetable.

Assume we distinguish between m types of trains in the system, i.e., we
have a mapping p : V' — {1,...,m} of the events onto the train types. A
rule based delay management policy A is specified by a matrix M = M4 €
RT™™. Its y-th entry in the z-th row my, is the maximum time a departure
event of train type y will be postponed in order to ensure transfer from a
type x train. Formally, a rule based delay management policy schedules a
departure event j at the earliest time 7} satisfying

2w (i) V() € Esr
75 > min{7} +¢°(2,7), 7 + muouy b V(0 J) € Erp

S
7Tj27rj.

Arrival events are scheduled as early as possible respecting TTC and the
driving times in scenario s:

m; = max({m;} U{m} +¢°(,j)|(i,j) € Epr}) Vj € Var

Actually, the maximum is taken over two elements, as only one driving
arc (i, 7) leads to each arrival event j.

Moreover, for a transfer arc (¢, j) € Erp the canceling variable x; ;) is set
to 1 if and only if the result of the above rule gives 77 + (7, j) > 3.

It is easy to see that such a recovery algorithm gives a feasible recovery
for every (even non-restricted) scenario s and every solution 7 € P. If we
restrict A to the class of rule based delay management policies, the RROP
consists in finding a m x m matrix M and a schedule 7 that minimizes an
objective function like those in the models we presented earlier:

min Z We(Tj — ) + g1 M+ g2- A2+ g3 A3
MmA2.9) e=(i,j)€E
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st. m —m > t(e) Ve=(i,j) € E (4.13)
Vs € S, VJ e Vpp: (414)

w5 max({7; +t°(4,7) |(4,7) € Esr}

U max{min{m; +2°(2, ), m; + mu@u( (i, J) € Err}
U {m})
Vs e S,Vj € Var : (4.15)
7 = max({r;}
U A{m +1°(4,7)I(7, ) € Epr}
T = + Max; > t(e) Vs € S,Ve = (i,j) € Err (4.16)
Sl (m - m) < M Vse S (4.17)
IEVAR
71';9 — T S )\2 Vs € S, Vi e VAR (418)
Z Wexy < A3 Vs e S (4.19)

ecETr
A2y, 7, ™ >0
x® €40, 1}|ETF‘

The timetabling condition is ensured automatically by the rule based
delay management described in Equations (4.14) and (4.15).

Rule based delay management algorithms are non-anticipative. The for-
mulation we give even enforces the following behavior: The departure 7; of a
train A will be delayed for transferring passengers from train B (with arrival
;) for the maximal waiting time Myu(iu(), even if before time m; + m,3),()
it becomes known that train B will arrive too late for its passengers to reach
train A at time 7; + m(;),(;). As formulated, a train will wait the due time,
even if the awaited train is hopelessly delayed. In practice, delay managers
might handle such a situation a little less short minded.

Rule based delay management is a good example for the idea of integrat-
ing robust planning and simple recovery. Consider the following example of
two local trains, A and B, and one high-speed train C. Passengers transfer
from A to B, and from B to C. Assume local trains wait 7 minutes for each
other, but high-speed trains wait at most 2 minutes for local trains. Then
train A being late could force train B to loose its important connection to
the high-speed train C. Indeed, this could happen, if the timetable and the
waiting times are not attuned. In the planning, we might not be willing to
increase the time a high-speed train waits, but instead plan a sufficient buffer
for the transfer from B to C. This example demonstrates how waiting times
and buffer times in the timetable are intertwined and should be planned
together.
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4.2.4 Is Recovery Helpful?

So far we gave examples of applications where recovery is key. But there are
situations in which recovery is useless. We will now give an example of an
application, namely platforming, where prima facie recovery is helpful. But
a closer look shows that the line between helpful and useless recovery is very
thin for platforming.

Railway planning and optimization proceeds in several subsequent steps.
It is a system ranging from network planning to crew assignment and fare
systems. Obviously, this cannot be planned in a single step. One classically
disconnected step following immediately the timetabling is called platform-
ing. A platforming problem considers a single train station. The trains have
more or less fixed arrival and departure times at the station, calculated in
the timetabling phase. The task of platforming is to assign the trains to the
tracks of the station.

Simple Aperiodic Platforming As minimum requirement in platform-
ing each platform is assigned to only one train at a time. Formally, we are
given a finite set of intervals T; = [a;, d;] C R of the time axis and an integer
k. Interval T; corresponds to the time train 7 is planned to stop at the sta-
tion, and k is the number of available tracks at the station. A conflict free
platforming on k platforms corresponds to a feasible coloring of the interval
graph G7 arising from the set of intervals 7 := {T;}; with k colors.

An interval graph is a perfect graph, i.e., the chromatic number equals
that of the maximal clique. A maximal clique in an interval graph can
be found efficiently by scanning along the time axis every point where an
interval starts. Thus, the problem can be solved efficiently. We consider the
optimization variant where k is to be minimized.

Let us now construct a recovery robust variant of this simple platforming
problem: Trains may be delayed or arrive earlier, i.e., the each interval T} in
a scenario can be translated by a real number 7 to T; + 7 = [a; + 7, d; + 7).
We limit these disturbances in the absolute value: |7| < A.

A strictly robust solution has to assign tracks to the trains, respectively
colors to the intervals, such that for any combination of translations of inter-
vals no two intervals of the same color contain a common point in time. This
problem is equivalent to solving the original problem for a graph, which we
call the strict robust graph G, T* = {[a;— A, d;+ A] : [a;,d;] € T} instead
of G'7. This robustification is likely to increase the minimal k substantially.

Replacing strict robustness by recoverable robustness, allows for the fol-

lowing recovery: The platforming can assign to each train a list of up to r
different tracks in the planning phase. In a scenario the train will be send
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to the first, currently free track on its list. In practice, one might want to
choose r = 2 and add as a further limit for the recovery phase that the
two assigned tracks of a train must be at same platform. This ensures that
passengers can react to a change of track with a minimal effort.

Can we achieve a smaller £ by allowing this kind of recovery? Disregard
for a moment the additional requirement of neighboring tracks, i.e., tracks
of the same platform. If a recovery without this limitation is of no use, then
the further limited recovery also will not help.

Formally, we have the following problem: given the set of interval graphs
that can arise as scenarios from 7 with disturbances limited by A. Assign
to each index 7 a list of r colors, such that in every scenario, we can color the
interval graph using for each interval only colors from the list of its index.

At first sight, this relaxes the problem of finding the coloring in the
scenario. It will turn out that in fact it makes no difference.

Is there an instance of this problem for which the total number of different
colors used in the lists is strictly less than the minimal coloring of G7a?
Unfortunately, the answer is in the negative: Assume the chromatic number
of Gza is k. Then there is a point in time ¢ where k of the intervals in 72
coincide. But, then there is also a scenario in which k& many trains are in
the station at time ¢. Thus, also the recovery robust solution must use k
different tracks.

In this example the concept of recoverable robustness seems useless. At
least the limited recovery used here appears to be unsuitable. But a slight
change in the setting can change the picture dramatically.

Simple Periodic Platforming Many transportation systems run a pe-
riodic timetable. This means that the different trains of a line arrive (or
depart) at a certain station at same time modulo a certain period. For ex-
ample, a high-speed train leaves every hour at seven minutes past the hour
from station A towards station B. Or, consider a line A of a subway system
that runs with a period of ten minutes, i.e., if a train of line A departs from
a certain station at 11:32h, then the next train of that line will leave the
station at 11:42h, another one at 11:52h and so on. Of course, this periodic-
ity should also be reflected in the platforming. The passenger should always
find the trains of the same line at the same track.

This can be presented again as a coloring problem on a special graph
class, namely, circular-arc graphs. Formally, a circular-arc graph can be
defined via a set of intervals 7, each representing a line, and the period time
P. Two intervals T}, T5 C R collide, i.e., are connected by an edge, if

day e T,z GTQ,pEZZl’l :l’g—l—pP
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Figure 4.6: The colored arcs represent the periodic stopping times of three lines. The
intervals of possible aberration for a small A are shown by the dashed lines.

Figure 4.2.4 gives an example with three lines that for any A > 0 cannot
be platformed strictly robust with less than three tracks, but in the recovery
robust setting with » = 2 can be platformed with k£ = 2 for any A < P/6.
The regular stopping times of the three lines fill the entire period P. With
only small aberrations from the plan each pair of lines can collide. The
dashed lines represent the intervals of the strict robust graph. But, deviation
below P/6 guarantee that for each point in time only two lines are at the
station. The ratio between the minimal number of tracks in strict robust
solution and the minimal number in a recovery robust solution is 3/2.

In some situations a limited recovery will not allow to reduce the costs of
a robust solution. The examples of simple platforming and simple periodic
platforming show that the line between situations where recovery helps and
where it does not help can be thin.
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4.3 INSPIRATION FROM THE TRADITION OF ROBUST PROGRAMMING

In the next section we present basic results on RROPs, for which the recov-
ery problem is a linear program. In particular, we consider this setting for
the case where also the original problem F is a linear program. We con-
centrate on the latter case in the presentation, although some of the results
hold independently of the type of the original problem. In this section we
motivate and illustrate this approach by a comparison to the tradition of
robust optimization.

The most similar concept to recoverable robustness is that of adjustable
robust counterparts [5]. The adjustable robust counterpart also allows for
certain variables of the linear program to be set, after the scenario data is
revealed. In [5] the resulting problem is shown to be solvable in polynomial
time, if the adjustable variables are linear functions of the random data.
Confining recoverable robustness to linear programming, the notions are close
enough that one could read the remainder of this chapter as an substantial
extension to the analysis of adjustable robust counterparts. But, this is a
discussion about names.

4.8.1 Linear Programming Recovery

Consider a linear program (mincx, s.t. A% > b°) with m rows and n
variables. We seek solutions to this problem that can be recovered by limited
means in a certain limited set of disturbance scenarios. The situation in a
disturbance scenario s is described by a set of linear inequalities, notably,
by a matrix A° and a right-hand side b*. We slightly abuse notation when
we say that the scenario set S contains a scenario (A®,b°), which, strictly
speaking, is the image of scenario s under the random variable (A,b). We
will discuss later more precisely the scenario sets considered in this analysis.
For the linear programming case the limited possibility to recover is defined
via a recovery matrix A, a recovery cost d, and a recovery budget D. A
vector x is recovery robust, if for all (A®,b°) in the scenario set S exists y
such that A%z + Ay > b, and d'y < D. Further, we require that z is feasible
for the original problem without recovery, i.e., A% > b°. The problem then
reads:
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inf 'z
s.t. Az >80
V(A b) € Sy e R":
Az + Ay >b
dy <D

When S is a closed set in the vector space R*"*™) we know that either
the infimum is attained, or the problem is unbounded. This case consti-
tutes the principal object of our considerations, the Linear Recovery Robust
Program:

Definition 4.5. Let A° be an m x n-matriz called the nominal matrix, b°
be an m-dimensional vector called the nominal right-hand side, ¢ be an n-
dimensional vector called the nominal cost vector, A be an m x h-matriz
called the recovery matrix, d be an n-dimensional vector called the recovery
cost vector, and D be a non-negative number called the recovery budget.
Further let S be a closed set of pairs of m X n-matrices and m-dimensional
vectors, called the scenario set. Then the following optimization problem is
called a Linear Recovery Robust Program (LRP) over S:

min ¢z
X

s.t. Al > 10
V(A b) € STy e R :
Az + Ay >b
dy <D

We refer to the A as the planning matriz although it is a quantified
variable. The planning matrix describes how the planning = influences the
feasibility in the scenario. The vectors y € R® with d'y < D are called the
admissible recovery vectors. Note that we do not call S a scenario space,
because primarily there is no probability distribution attached to it.

We are unnecessarily restrictive, when requiring the same number of rows
for A° as for A and A. If this is not the case, nothing in what follows is
affected, except may be readability.

If a solution x can be recovered by an admissible recovery y in a certain
scenario s, we say T COvers S.

To any LRP we can associate a linear program, which we call the scenario
expansion of the LRP:
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min dz
1’7(ys)565

s.t. Az > B0
Asz+ Ay > b Vse S
dy®s < D Vse S

Note that in this formulation the set S is comprised of the scenarios s,
whereas in the original formulation it contains pairs of the form (A®,b°). This
ambiguity of S is convenient and should cause no confusion to the reader.

The scenario expansion is a first possibility to solve the LRP. But, usually,
the scenario set is too big to yield a solvable scenario expansion. The scenario
sets which we will consider are not even finite.

We will frequently use an intuitive reformulation of an LRP that can
be interpreted as a game of a planning player setting x, a scenario player
choosing (A, b), and a recovery player deciding on the variable y. The players
act one after the other:

infdx st. A% >0°AD>< sup {inf d'y st. Az + Ay > b} (4.20)
z (Ab)es U Y

with constant vectors ¢ € R", ° € R™ and d € R", constant matrices
A% € R™" and A € R™" and variables z € R", A € R™", b € R™ and
y € R™.

Again, when it is clear that either the extrema exist or the problem is
unbounded we use the following notation:

mincz s.t. A%z > AD > { max {min dy s.t. Az + Ay > b}} (4.21)
T (Ab)es Y

Observe that an LRP, its scenario expansion and its 3-player formulation
have the same feasible set of planning solutions x. Whereas, the set of
recovery vectors y that may occur as a response to some scenario (A°,b%) in
the 3-player formulation, is only a subset of the set of feasible second stage
solutions y° in the scenario expansion. The 3-player formulation restricts the
later set to those responses ¥y, which are minimal in d'y. But this does not
affect the feasible set for z.

The formalism of Problem (4.21) can also be used to express that x and
y are required to be non-negative. But it is a lot more well arranged, if we
state such conditions separately:
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mincdz s.t. A%z > AD > { max {min dy s.t. Ar + Ay > b}} (4.22)
x (Ap)eS | y>0

and

mincdz s.t. A%z >0 AD > { max {min dyst. Ax + fly > b}} (4.23)
z>0 (Ap)es | y=0

The purely deterministic condition A%z > b°, which we call nominal feasi-
bility condition, could also be expressed implicitly by means of .S and A. But,
this would severely obstruct readability. In some applications the nominal
feasibility plays an important role. For example, a delay resistant timetable
shall be feasible for the nominal data, i.e., it must be possible to operate
the published timetable unchanged at least under standard conditions. Else,
trains could be scheduled in the published timetable x to depart earlier from
a station than they arrive there. However, in this rather technical section
the nominal feasibility plays a minor role.

Let us mention some extensions of the model. The original problem may
as well be an integer or mixed integer linear program,

min  dxst. A2 > AD > { max {mind’y s.t. Az + Ay > b}}
+=(2,%),T€Z (Ab)es y
(4.24)

or some other optimization problem over a set of feasible solutions P and
an objective function ¢ : R” — R, in case the disturbances are confined to
the right-hand side:

inf ¢(f) s.t. D > {sup {infd’y st f+ Ay > b}} (4.25)
feb bes L ¥

with a fixed planning matrix A.

Using the concept of planned limits to the recovery cost (cf. p. 59), the
budget D can also play the role of a variable:

min dx + D s.t. A% > b9 A
D>0,z

D > {maX(A,b)es {miny d'y st. Az + Ay > b}} (4.26)

In case of right-hand side disturbances only, we can again formulate:
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inf ¢(f)+Dst. D> {sup {infd’y st. f+ Ay > b}} (4.27)

fepr,D>0 besS Yy

In the sequel we explain some lines of thought that stem from the tra-
dition of robust optimization and strongly influence the way we shaped and
analyze the notion of recoverable robustness. Therefore we take a moderately
extensive view in particular on the classical work of Bertsimas and Sim [22].

4.83.2  Truncated Scenario Sets and the Art of Robust Programming

Modern robust optimization, even before the introduction of recoverable ro-
bustness, takes a stand in the trade-off between computational tractability
and modeling precision for optimization under imperfect information. Strict
robustness refrains from considering second stage or recovery actions. This
makes calculations easy, but runs the risk of being over-conservative.

Robust solutions would always be over-conservative, if they were con-
structed with respect to extreme scenarios, too. Modeling a stochastic pro-
gram one can leave scenarios with extreme disturbances in the model, as long
as they can somehow be recovered. The costs for recovery, the second stage
costs in an extreme scenario may be high, but their probability is so small
that they hardly influence the stochastic solution. In contrast for robust
optimization one must not consider extreme scenarios, unless one is ready to
take extremely conservative solutions. Therefore, the art of robust optimiza-
tion is to find truncations to the scenario set that fulfill the following three
goals:

1. (Tractability) Truncate such that the scenario set yields a tractable,
robust optimization model.

2. (Inexpensiveness) Truncate such that the scenario set allows reason-
ably cheap robust solutions.

3a. (Covering) Given a probability measure, truncate such that the cut
away part has small probability.

The combination of the three goals, namely an easy model that yields
reasonably cheap solutions which cover most scenarios, is not a trivial result.
Assume, we would like to incorporate into the optimization procedure the
following goal: Find the cheapest solution x such that Az > b holds for a
set of scenarios (A,b) with probability at least 0.9. This poses a so-called
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chance constrained program. In general such programs have non-convex
solution spaces. They are not likely to be tractable. Therefore, a priori
finding a smart truncation of the scenario space constitutes an interesting
alternative to optimizing over a chance constraint.

One of the pathbreaking ideas in the seminal paper by Bertsimas and
Sim ([22]) was to propose the following double truncation of the scenario set
for a linear program.

e (Interval-bound) First, they assume each entry a® of the planning
matrix to vary only within a certain interval centered at the nominal
value a’. (They assume the right-hand side to be fixed.) Formally:
a® € [a® —a®, a® + a°].

e (I'-bound) Second, they introduce for each row i separately a param-
eter I'; which bounds the number of entries in that row that differ from
the nominal value, i.e., Vi : [{af; # a;}| < T

The combination of I'- and interval-bound yields a truncation of the sce-
nario set, which meets the three goals proposed above. The truncation by
[';, for a linear program, is easily seen to be equivalent to the following: For
each row 7, the total normalized deviation from the nominal values is less or
equal to Ty, ie., 37 ]af; — aj;|/a;; < Ti. This comes in handy to solve the
robust problem as a linear program of almost the same size as the original
problem. Thus, their truncations meet the first requirement, and the stan-
dard model of Bertsimas and Sim can be formulated as follows (we change
to maximization problems to be consistent with [22]):

max ¢’z
ii—al.
s.t. VA € {(aU)(Z]) e R™m . ‘aij — a%| < dij N E]’ M < Fz} .

Az <b (4.28)

Consider this problem as a game of two players, setting subsequently
x and A. The first player wants to maximize 'z, but must ensure the
inequalities. The second player wants to violate at least one inequality.
Equivalently, we can formulate with an objective function for the second
player and a third player:

min 'z s.t. 0> {max {mi(r)l lyll1 s.t. Az + Ay > b}}

T (A)es | y=>
with an arbitrary recovery matrix A, and S = {(ai)ajy € R™™ : ay; —
a| < ay A2, lai; — ajl/ai; < Ti}. The Bertsimas-Sim model (4.28) is a
special case of Problem (4.22).
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For the second truncation goal, the authors mention explicitly that the
parameters I'; should be trimmed to trade conservatism for robustness and
vice versa. The I'-bound is a concept to control conservatism. Still, there
are examples, like robust timetabling, in which changing the parameters I';
is of no help to avoid over-conservatism. These are notably those examples
that motivated, what we call a vertical integration accomplished by recov-
erable robustness. We will discuss vertical integration in a separate section.
For the time being, observe that the truncation considers the disturbances
horizontally (row-wise) integrated: The disturbances of the different entries
in the i-th row must all together not exceed the I';-bound.

For the third goal, Bertsimas and Sim argue that the truncation by the
parameters I'; yield solutions, which are feasible with high probability for
a quite general class of probability measures on the non-truncated scenario
space. Both from the point of view of application and from a stochastic
analysis one can support the claim that the solutions robust for this trunca-
tion have a high probability to be feasible in the non-truncated space. Note
that in the absence of exact knowledge about the distribution of the random
data, non-mathematical arguments resting on experience and educated esti-
mation shall not be a priori dismissed. We will start by those practice-based
arguments and turn to the mathematical analyis in detail later. One can
distinguish three arguments here.

Non-mathematical Arguments for the Truncation Firstly, the use
of the parameters I'; suits a gut-feeling. The feeling says that not all, and
not even many of the data entries are going to change. Most things work as
they are supposed to, and only a few fail. For many applications, this makes
sense to practitioners. For example, most train rides operate as planned, and
only a few cause the trouble to the system. In this way we argue from the
application, but tacitly imply a stochastic claim, namely, that situations in
which at least one of the two truncations is violated are rare. We will see
that this claim can be underpinned mathematically for the second kind of
truncation (the I" bound).

Secondly, the analysis of Bertsimas and Sim shows that a slightly differ-
ent gut-feeling also has a mathematical support: If we protect against the
scenarios in the truncated set, we have a good chance to be feasible as well in
other scenarios. This means, even if in modeling we choose the parameters
I'; so small that the I'-bound is not highly likely to be fulfilled, the robust
solutions found for that I'-bound are highly likely to be feasible for scenarios
outside the I'-bound. We will study the mathematical arguments for this in
depth in Subsection 4.3.4.

Finally, a third argument that intrinsically cannot be derived from a
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mathematical analysis of the model, appeals from the point of view of sev-
eral applications. The rationale of truncating the scenario set is that we
do not want to design our solution with respect to those extreme scenar-
ios in which either the total deviation from the nominal data, or the local
deviation from at least one entry in the nominal data, is beyond a certain
threshold. To assess, whether this modeling is justified in light of the ap-
plication, more factors play a role than only the probability distribution.
Even if extreme scenarios occur relatively frequent, say in one out of twenty
cases, one might still not be willing to plan the business as usual with respect
to those cases. One possible reason is that in extreme scenarios resources
and operating possibilities are activated, which are completely uncommon
to the used optimization model. In particular, when customer satisfaction
is at stake, very high disturbances are accepted by a majority of the cus-
tomers as a valid excuse for changes and inconvenience in operation. The
customers expect the planning to be able to cope perfectly with a limited
number of small disturbances. But they show sympathy for the manage-
ment of a major disturbance causing inconvenience also to them. Though
this last argument cannot be justified mathematically, because it explicitly
relies on non-modeled features, it seems to us that it constitutes a lot of the
attractiveness of such truncations to practitioners.

Stochastic Arguments for the Truncation Unlike the third argument,
the first two practical arguments are supported by a stochastic analysis.
Bertsimas and Sim show the following. Let the entries of the matrix be a
set of random variables, each distributed independently and symmetrically
around the mean value, af;. Let z fulfill the robust constraint of the i-th row
for some I';. Then the probability that x will not fulfill the constraint in a
randomly chosen scenario (not necessarily limited by I';) decreases exponen-
tially with increasing I';, and for fixed I'; with increasing n.

Several upper bounds are known on the probability for a sum of inde-
pendent random variables to deviate from its expected value. These bounds
decrease exponentially with the increase of the bound to the deviation, and
also hold for weaker stochastic conditions than those required in this model.
Consider in particular the inequality of Hoeffding [35]. From these we get
immediately that the probability for the sum of normalized deviations to
exceed I'; decreases exponentially with increasing I';. Bertsimas and Sim
use the Markov bound to derive a similar result, too. But, despite the ex-
ponential decay, the bound only gives satisfactory results if T'? is relatively
big, in comparison to n. But the I'; should be small to prevent conservatism
in the solution. Therefore, they derive a stronger bound, specific for linear
programs, that rests on an estimation for what we call coincidental covering.
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Coincidental covering is an effect typical for robust solutions. A solution
that is robust for a certain scenario set, necessarily also covers a certain
mass of other scenarios outside this scenario set. The classical stochastic
bounds say: choosing relatively small I'; means to fix a (in terms of the
probability measure) large set of scenarios for which every solution must be
feasible. The stronger Bertsimas-Sim bound allows to choose an absolutely
(with respect to n) small I';, thus to protect intentionally against a small
part of the probability mass. But, the bound shows a priori that solutions
protected against those few scenarios coincidentally also cover most other
scenarios. The set of scenarios for which feasibility is required is small, but
the set of scenarios which are coincidentally covered is large.

The effect of coincidental covering suggests to reformulate the third trun-
cation goal:

3b. (Coincidental Covering) Given a probability space over the scenario
set, truncate such that every solution feasible for the truncated scenario
set has high probability to be feasible for the whole space.

This phenomenon is a main issue in our analysis of recoverable robustness.
Therefore, we recall the corresponding result of Bertsimas and Sim in detail
in Subsection 4.3.4.

Before we turn to this one should also remark that the interval-bound,
namely, that no matrix entry takes a value outside a certain interval, is a
much more audacious claim than the I'-bound. Even if the probability for
each entry to stay in its interval is high—this means that one has chosen large
intervals, which will cause conservative results—the probability for all entries
to do so, is quite low for large matrices. This is true, because a Bernoulli
process of large length (here m - n) even with high probability for success,
has a considerable probability to have at least one failure. Bertsimas and
Sim give no bound for the case that entries have positive (although small)
probability to take values outside their interval. For our considerations,
we will also assume that each random entry stays inside a certain interval.
Though in principal, the structure of our analysis for coincidental covering
by recovery robust solutions also allows to understand coincidental covering
of scenarios, which violate the interval-bound.

To summarize, the truncation of the scenario set is a crucial step in con-
structing a powerful robust model. The guidelines are the three truncation
goals: easy model, cheap solution, and a high probability for the solution to
be feasible in general. Considerable mathematical effort has been invested
in pursuit of the first and the last goal. Recoverable robustness is designed
for so far not systematically addressed, second goal. It creates flexibility
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that allows for less conservative solutions. Of course, the new concept is
more complex, which at first sight causes problems for tractability and a
priori stochastic analysis. Nevertheless, we can present positive results both
on tractability and on stochastic bounds for recoverable robustness in the
remainder. Understanding the Bertsimas-Sim bound in a polyhedral per-
spective prepares the ground for the rationale of our results on coincidental
covering.

4.3.8 Horizontally and Vertically Integrated Protection

(Classical robust optimization, 2-stage stochastic programming, and recov-
erable robustness for linear programs all construct solutions for a set of
constraint system, the scenario set. They differ in the way the first stage
solution pays respect to the different constraints that can occur in the sce-
nario. Let us compare four models: A 2-stage stochastic linear program
with fixed recourse (4.29), a robust linear program (4.30) in the Soyster
model [54], a robust linear program (4.31) in the Bertsimas-Sim model [22],
and an LRP (4.32).

mincdz+ Y o p(s) - dy’ (4.29)
s.t. Vs e S: Ax+ Ay® > b°
max 'z (4.30)
st. Az + Ay <b
—y<zT =y
max ¢ (4.31)
arv—a(.).
s.t. VA with |aij - a%| S CNLZ']‘ A Zj % S Fz :
Az <b
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min ¢’z (4.32)
s.t. APz > B0
V(A b) € STy e R":
Az + Ay >b
dy <D

For the Soyster model (4.30) we use A = (a;;)(i;) as the matrix with entry
a;; equal to the half length of the interval in which a;; can vary. Note that
—y < x <y implies y > 0.

The objective of the stochastic program considers each scenario’s cost
with its probability. Intuitively, the solver may choose a solution that is not
suitable for some unlikely scenarios, in the sense that the solution will have
high costs in these scenarios. The Soyster model in contrast constructs a
solution that suits even the worst value for each entry of the matrix.

As reaction to this conservatism the Bertsimas-Sim model mimics the
behavior of a stochastic program by the a priori decision to neglect those
scenarios that have more than I" entries in one row differing from their nom-
inal value. Instead of looking at each entry separately, the Bertsimas-Sim
model considers all entries of a row together. They adopt a horizontally
integrated perspective.

It is a perfectly natural idea to extend this integration to the vertical
direction. The Soyster model assumes that it is unlikely for a single en-
try of the uncertain matrix to take a value outside a fixed interval. The
Bertsimas-Sim model adds that it is unlikely for the disturbances in one row
to simultaneously be all very high. By the same token, it is unlikely that the
total disturbance in the whole system is beyond a certain threshold.

The problem about this natural extension for the concept of the I'-bound
is that any robust program which cannot model recovery actions, also can-
not use any vertically integrated bound. Assume we bound the number of
disturbances in a row by k and the total number of disturbances by k. Then
a robust model without recovery for all £ > k has the same set of feasible
solutions as the same model with & = mk, where m is the number of rows.

In the last model (4.32), the LRP, we can impose such a vertically inte-
grated bound to (A,b) (or b if only right-hand side disturbances occur) and
because of the recovery vector y, the solution can benefit from this bound
by being less conservative. Note that for right-hand side disturbances the
vertical integration is the only useful integration.
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4.3.4  The Bertsimas-Sim Bound

In this subsection we will prove a slightly simplified version of Theorem 2
in [22]. The original proof is technical and found in the appendix of [22]. We
give a proof of the simplified version that is very elusive for what follows and
rests on similar ideas as the original.

One simplification is to assume I'; to be integral. This is merely to sim-
plify notation. The second simplification concerns the assumptions on the
distributions. In fact, we restrict ourselves to the worst of the distributions
allowed in the original theorem. Thus, any proof that the simplified theorem
considers the worst distribution, would make the simplified theorem equiv-
alent to the original. Formally, the original theorem provides for this proof.
It is not in our interest to re-prove the bound but to drag its roots to the
light.

Return to Problem (4.28). Assume we are given a feasible solution x to
this robust optimization problem. The Bertsimas-Sim bound states that the
feasibility of the solution will prevail with a considerable probability, when
the adversary’s choice is replaced by any random variable A, which is fully
symmetrically distributed over @), ;[af; — a;, a; + a;;]. What is meant by
fully symmetric, is explained in the following definition.

Definition 4.6. For each 1 < i < q let Z; = (i, Fi, i), 4 C R, be a
probability space such that for every measurable set S € F; we have —S :=

{z|qy € S:x=—y} e F, and
pi(zi € 5) = pi(z € —5)

holds. Define Z = )., Z; as the product space and denote an element of {2
by z = (z1,...2,). We say such a vector z is fully symmetrically distributed
over Q7_, .

Note that for a fully symmetrically distributed vector z we have inde-
pendence of the coordinates, i.e., u(z € @, 5;) = [, u(z : z € 5;), for any
set of S; € F;.

A solution to Problem (4.28) is protected against the I'-limited worst-
case. We want to prove that this solution is likely to stay feasible without the
I'-bound, if the disturbance will oscillate equally likely in both the negative
and the positive direction. In short, we strengthened the role of the scenario
player by removing the I'-bound, but weakened it by replacing a malign
adversary by a tame distribution. We refer to the I'; restricted adversary as
the worst-case adversary, and to the fully symmetrically distributed, non-I;
restricted random variable as the random adversary.
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For our explanatory purpose maximal generality of the result is less im-
portant than insight into the structure of the matter. Therefore we make
two simplifying assumptions:

e Let I['; be integral.

o Let A be fully symmetrically distributed over @, {aj; — @i, a; + @i}

As to the first assumption: We will see that a worst-case scenario can be
constructed by picking I'; entries in each row, on which the scenario deviates
maximally either to the negative or the positive direction. In case, I'; is not
integer, the worst-case adversary can pick |I';] maximally deviating entries
and spend the fractional rest on one further entry. Essentially, the results
stay the same. But, keeping track of this fractional rest causes the whole
presentation to be a bit clumsy. For this reason we choose to present the
weaker claim, i.e., require I'; € N.

It can be proven that the second assumption does not affect the generality
of the result, but rather represents a worst case for coincidental covering
among all fully symmetrical distributions. Yet, to the best of our knowledge,
there is no insightful proof for this. Though the proof is technical, the result
itself is very intuitive: We seek a bound for the deviation in the matrix
product Az. It is not surprising that the deviation is greatest, if the fully
symmetric distribution for A has maximal variance, i.e., for each matrix
entry the probability mass is centered at the boundary of the interval.

Granted these two simplifications we can sketch a rather short and clear
arranged proof of the bound that rests mostly on the same ideas as the one
in the appendix of [22]. We only need one small, technical argument, which
we prove in Lemma 4.8.

For convenience we argue by the relative deviation d;; := (a;; — ay;)/a;
instead of a;; in the remainder. Note that the second simplification yields
the discrete, uniform distribution on the vertices of an n x m-dimensional
hypercube for the random variable (d;;) ;).

Theorem 4.7 (Simplified Bertsimas-Sim Bound). Let x be a feasible solution
to Problem (4.28) with I'; € N for each row-index i. Further, let (0;;)(;) be
distributed uniformly over the vertices of the n X m-dimensional hypercube.
Then we have:

m

~ 1 « n
Pr [(ag; + 0ijti)pr > b) < 1= [ 1= | 0o > (g)

_Ij+n
t=—5—
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Sketch of proof:

1. Focus on a Single Row. The worst-case adversary is restricted by
> ;0i; < T for each row 7 independently. And by independence of
distribution the random adversary has probability to choose a certain
row vector d;, independent from the entries in other rows. Thus, it
suffices to show for each row ¢ that

- 1 « n
Pr Z(a%—l—%alj)x]’ >bi] S|z Z <€>

J s
As we argue for a single row, we will drop the row index in the remain-
der. Note that, e.g., the variable b is a scalar now.

2. Adversary’s choice. For a fixed solution z consider the following
scenario. Let I, [/| = I', be an index set with a;|z;| > as|z,|, for all
jeland (¢ 1. Let 6; =sign(z;) for all j € I and zero else. This is a
possible strategy for the worst-case adversary, which maximizes d,a;x;,
because it respects the I'-bound. Intuitively, the set I contains those
entries where the adversary can cause greatest damage.

Thus, if any scenario, then this will make x violate: Zj d;a;x; < b—
Zj a?xj. We call it the test scenario 6 for . The name is justified,
because it is a I'-bounded scenario, and if an x is feasible in its test
scenario, then it is feasible in all I'-bounded scenarios.

3. The Test Vector. Substitute ¢; := a;z; and ¢' := ¢”. Then calculat-
ing the random adversary’s probability to make a robust solution fail,
boils down to the following question: For an n-dimensional vector t,
how many of the 2" vectors § € {—1,1}" fulfill

t's > t'ot.

By Lemma 4.8 we know that this number is greatest for the vector
th=(1,1,...,1).

4. Counting Vertices. It remains to count the number of vectors § €
{—1,1}" with §t! > 5t""t! = T'. These are exactly those § € {—1,1}"
which have more than I' more positive than negative entries. Let p
denote the positive and ¢ the negative entries of such a vector 6. Then
p—q=p—n-+p>Tgivesp> (I'"+n)/2, and we get for the number
of such vectors in {—1,1}™
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which yields the result.

Apart from the simplifications the simplified Bertsimas-Sim bound seems
not to be the same as the theorem found in [22]. And it seems that the
simplified theorem we give here, does not show the asymptotic behavior
promised earlier. But this is only true at first glance. Bertsimas and Sim
do not state an explicit bound on the probability for the whole system of
inequalities to be fulfilled. They state the bound for a single row. For a single
row, the probability bound to be infeasible decreases rapidly. For a single row
our theorem is a simplification of that in [22]. For a single row the T-bound
yields reliable solutions. But for the whole system, as shown in our theorem,
the bound behaves badly with increasing number of rows m. Again this
must be the case, because strict robustness treats each row separate. Even
a small, independent probability for each single inequality to be violated,
yields a considerable probability for a system of many inequalities to contain
one which is violated. The Bertsimas-Sim bound is not a bound on the
probability for feasibility of an inequality system but for feasibility in one
inequality.

Sparse Matrices and Few Rows The above consideration motivate
again to complement the horizontal integration by the I'-bound with at ver-
tical integration also from the perspective of coincidental covering, as we will
do in the remainder. Still, the Bertsimas-Sim model is a successful model for
special types of problems. We want to distinguish in more detail problems
for which the model is suitable from those for which it is not.

When a coefficient a;; in a linear program equals zero, it is often only
an artefact of modeling. There is no relation in the modeled reality that
corresponds to that coefficient. It rather means that the j-th variable has
no influence to the i-th constraint at all. For example, the i-th constraint
may express that the total amount of alcohol measured in gram contained in
a diet must not be larger than some threshold. And the j-th variable may
model the amount of meat measured in gram assigned by the diet. The exact
amount of alcohol contained in one gram of wine is subject to uncertainty,
but the amount of alcohol in one gram of meat is by all reasonable means
equal to zero. Zero coefficients do not express input data subject to changes,
but a fixed structure of the model.

This can still be captured in the approach of [22]. We can fix a;; = 0 for
those entries. Still, this gives a problem, if the matrix is sparse. Setting the
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interval length equal to zero for almost all entries in a row, deprecates the
[-bound. If there are for example only two entries subject to changes, than
any I' > 2 is superfluous. In this case the model will not be less conservative
than the Soyster model.

A typical example for sparse matrices are problems with incidence- or
adjacency matrices of a graph as part of the linear model. These matrices
have entries in {0,1} or {—1,0,1}. Usually not only the zero entries but
all entries of the rows modeling the graph are assumed to be invariant for
all scenarios. In this case we must distinguish two types of models. For
one of these the Bertsimas-Sim approach and the bound are particularly
well suited. Among the well suited models are flow models in which the
uncertainty is only in the cost function. As a typical example, consider a
shortest path problem with uncertain arc-length [21]. Uncertainty in a linear
cost function ¢ is modeled by an extra variable C' and an extra row dx < C
(for a minimization problem). In this case the new row is the only one
affected by uncertain data. By the above consideration, of course, a single
uncertain row with a lot of uncertain coefficients is the perfect situation for
the Bertsimas-Sim bound.

Quite the opposite is true, if the uncertainty is completely in the right-
hand side. Prima facie, right-hand side uncertainty seems the easier situa-
tion. But by the techniques developed in classical robust optimization, one
can do no better than replacing the right-hand side of each inequality by the
largest (for minimization problems the smallest) value that can occur in any
scenario. This will yield very conservative solutions. Note that the robust
timetabling problem is exactly of that kind.

Still, the basic idea of Bertsimas and Sim to limit the number or the total
amount of disturbances in each scenario is convincing in this context, too:
Usually, only a few right-hand side entries will change. But, this point of
view to the scenario is necessarily a vertical integration: One has to consider
the disturbances in all rows simultaneously. This cannot be accomplished
by the classical approach. The at first sight simpler case of right-hand side
uncertainty requires the concept of recovery robustness.

We now prove the lemma reducing the test vector to the all-one vector.
The first half of the proof is similar to the proof of Proposition 2 in [22].
The claim of the lemma is not surprising: if person A choose the I' largest
entries, and person B chooses some entries at random, then person B will
have best chances to get a bigger sum than B, if the entries are all equal.

Lemma 4.8. Let § be an n-dimensional random variable, uniformly dis-
tributed over {—1,1}", and t be some n-dimensional vector, with I, |I| =T,
an index set of mazimal entries in |t|, i.e., |t;| > |te| for all j € I and ¢ ¢ I.
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Further, define 0% = sign(t;) for all j € I and zero else. Then
Pr[t's > /6" < Pr[||6]|: > T

Proof. We first scale the vector by the value of the I'-largest entry, and set
all of the I' largest equal to 1. In the second step, we lift the entries smaller
than 1 up, starting from the smallest.

Lifting the smallest entry will make the scalar product of the random
vector in some cases smaller than the threshold and in some cases larger.
We show that the later is more likely.

Let I¢ := [n] \ I be the complement of I in [n], and denote by ¢, :=
minjel tj .

We have Pr[t's > #'0'] = Pr[37; ., [t;10; > >2;c; [t]] by symmetry of
distribution.

Pro[ > (410> Il = Pr|D Il > ) [I(1—0))

j€ln] jel Ljele jel |

Pr Z |tj|5j > |t*| Z(l - 5])

Ljere jel

Ljele jel jel

= Pr Z :Z=5J+Zdj >F]

Ljere jel

IA

Let Tt be the set of all vectors ¢ € RZ, where the I' maximal entries
are all equal to 1. We have shown that the maximal value for Pr[t'd > #/6']
over all t € R" is attained by some t € Tr. Proposition 2 in [22] gives a
similar statement. Now, we show that among all ¢ € Tt the all-one vector
maximizes Pr[t'd > t'6']. Note that for all ¢t € Ty we have /6" =T.

Let t € Tr. We will successively lift the smallest entry ¢; to 1 until we
end up with the all-one vector. Formally, for any ¢t € Tt with smallest entry
t; we set t; =t; for all j # ¢ and ¢; = 1. We partition the scenario space for
all entries except the smallest, the i-th entry:

Pl = Pr théj c <—OO,F - tz]
Lj#i

j#i

L j#i

s and P4 = Pr [théj € <F+ 1,00)] .
J#i
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What is the probability that #d > T but ¢6 < I'? The answer is P
times the probability for §; < 0, i.e., 9; = —1. Likewise, the probability that
t'0 > T but /6 < T equals P - Pr[d; = 1]. As §; is distributed symmetrically
it remains to show that P; < P,.

Take a vector d such that 3., ¢;0; € (I'+¢;,I' + 1] holds. For at least
one ¢ ¢ I we have §, = 1. Define ¢* to equal § except for 6 = —d,. Then,
as t; < t; <1 we get for §° : Z#i tjéf € (I' — t;,T' — t;]. Therfore, we have
P, > P3, which yields the lemma.

0

Summary The core of the Bertsimas-Sim bound is a geometric insight.
On the one hand, we look at the 1-ball in the infinity-norm, i.e., the n-
dimensional hypercube B.1) = {z € R" : ||z]|l« < 1} and on the other
hand, we consider the intersection of B(s,1) with the I'-ball in the 1-norm,
Bary = {z € R" : |z} < I'}. For a fixed vector ¢ € R™ that has a
scalar product less than some constant C' with each vector in By 1 N B r),
we analyzed the maximal number of vertices of the cube, respectively the
mass of vectors in By ;, which also have scalar product with ¢ less than
C'. Assuming a fully symmetric distribution on the hypercube (respectively
its vertices) allows to express this analysis in a compact way, namely as an
upper bound on the probability of a particular event.

Of course, this particular event is an important event, namely the event
that a robust solution is infeasible. And, of course, the distribution is more
than a tool to express some analysis in a compact way. The distribution turns
the analysis into an interesting and useful result, because fully symmetric
distributions are a reasonable assumption in some applications. Yet, the
approach of [22] has been criticized exactly because of these assumptions on
the distribution. In many applications assuming symmetrically distributed
data is not justified. Nevertheless, the criticism seems unfair. By a closer
look at the proof for the bound, in particular, at the geometric core of this
argument, it becomes conceivable that similar results can also be proven for
non-symmetric distributions. So, it rather seems a dilemma of presentation:
Assuming properties of the distribution yields relevant results, but makes
the analysis seemingly less general than it actually is.

One can avoid this dilemma by working with the assumption that one
has no knowledge about the distribution. One special way to do so, is to
assume a black-box distribution, i.e., that the distribution is only given by a
sample of scenarios, drawn with respect to that distribution. We will discuss
this setting briefly in the sequel.

We take a different approach: In a concrete application one may have
substantial knowledge about the distribution, and this knowledge shall be
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exploited. So, the general tool provided in advance must hold for different
types of distributions, and must contain an interface to plug in the concrete
type of distribution. Together, the general result and the specific knowl-
edge about the distribution give the full result. Therefore, in Section 4.5
we will concentrate on the geometric insight to coincidental covering by re-
covery robust solutions. Given a concrete probability measure, those results
can be used as lemmata for lower bounds on the probabilistic mass that is
coincidentally covered.

Results for the black-box model are useful, if the distribution is not known
in the application. Our results are useful, if the distribution is known in the
application, although it is not known to the author of this text.

4.3.5  Black-box Distributions

One way to avoid the presentation dilemma is to assume a so-called black-box
distribution (cf. [53] for a recent, exemplary result). In a black-box distri-
bution model, one assumes to have no knowledge of the distribution, except
for the possibility to draw some samples. Figuratively, the distribution is
inside a black-box. We can only learn about it by observing it for some
time. For a 2-stage stochastic linear program the so-called Sample Average
Approzimation (SAA) method [48, 38| is in a certain sense the best one can
do. In particular, the part of [53] solving a 2-stage stochastic linear program
can be replaced by the simpler SAA method [49].

The SAA method is strikingly simple:

e Optimal Solution: Given sufficient computational power, full knowl-
edge of the distribution, and assuming a discrete scenario set, the op-
timal solution of a 2-stage stochastic linear program can be found by
solving a huge linear program, namely the scenario expansion. The
constraint matrix of this program has a block structure, one block for
each scenario. Each block models the situation in one scenario. Thus,
one part of the variables is fixed for all scenario blocks, i.e., the first
stage decision. Each second stage variable belongs to a scenario, only
occurs in that scenario’s block, and is weighted in the objective function
by that scenarios probability.

e SAA-Solution: We neither have full knowledge of the distribution,
nor the computational power needed for solving the scenario expan-
sion. We can only sample a number of scenarios. As this is all we
know about the distribution, let us treat these samples, as if they were
the whole distribution: Construct the scenario expansion for the sam-
pled scenarios, and weigh the second stage cost of a scenario by the
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frequency with which it occurs in the sampling. In short, the SAA
method substitutes the whole, unknown scenario space by the small,
and known sample set.

Quality of SA A: For rather mild assumptions on the 2-stage stochas-
tic program one can show [38] the following: For a fixed approximation
factor «v the probability that the result of the SAA method is not an a-
approximation for the full scenario expansion, decreases exponentially
with increasing number of samples. The most general conditions given
for this type of result are quite technical. An important corollary states
that the claim holds, if the objective value is a Lipschitz-continuous
function of the solution. In [48] it is also noted that the approximation
factor will in general not decrease rapidly with increasing sample size.

Idea of Proof: The actual proof is rather technical. Still, the idea
is straight forward. For a first stage solution = consider the scenario
set partitioned in the following way. Construct the partition such that
scenarios in the same set cause almost equal cost for x—by a precision
depending on « and the Lipschitz-coefficient. The cost caused for x in
the first stage is equal for all scenarios. Thus, the partition groups those
scenarios together, for which the second stage cost of an optimal second
stage decision for z is alike. This partition will not contain very small
sets due to the Lipschitz-condition. Hence, the sets of the partition
will be adequately represented in a sufficiently large sample with high
probability. Therefore, the SAA method will price the solution z almost
in the same way as the full scenario expansion will price it.

Artefacts: In the spirit of the above argument, let o and the Lipschitz-
coefficient cause a partition of the scenario set into M sets. What hap-
pens if the sample size is smaller than M? Then the SAA method will
produce solutions that still fit perfectly well to the sampled scenarios,
but might be completely inappropriate for those parts of the scenario
space not represented in the sample set. The solution then becomes an
artefact of the sample set, and not necessarily a good solution to the
real problem.

The SAA method is tailored for black-box distributions. But, if the

sample-size is too small, it cannot provide for a good solution. The infor-
mation contained in a small sample set is simply not sufficient for finding a
good solution. One may argue that this is not the fault of the SAA method,
which makes best use of the available data. Still, the question is, whether in
practice one really faces a black-box situation.
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For delay-resistant timetabling, one can describe fairly precise distribu-
tions for the disturbances on each arc. These are the marginal distributions
of the distribution for the whole railway system. There are dependent dis-
turbances, e.g., those due to bad weather conditions. Other types of distur-
bances are modeled well by an independent random variable for each arc.
While the first type of scenarios can be modeled by a small scenario set
representing the few different weather conditions, thus yielding a model that
can be solved by the scenario expansion, the independent type of disturbance
give extremely large scenario sets even for problems with no more than 20
arcs.

In this case we face a huge scenario space for which we know the distri-
bution completely, but implicitly by independent marginal distributions. We
argue that in this situation it is not wise to ignore the structural knowledge
about the distribution and to restrict to a sampling approach. The sample
size will easily be too small and the available information wasted. We rather
seek a model that is able to exploit the given, rich, structural knowledge.

4.3.6  The Scenario Sets

Motivated by the discussion in the tradition of robust optimization we choose
the following types of scenario sets. We define them with respect to a refer-
ence scenario (A*, b*). Usually this is equal to the nominal system of inequal-
ities (A%, b%). We first give the scenarios set for right-hand side uncertainty:

S& ={becR™: |b —b| <A}

SA1 = {beRmzzwi—bﬂ gAl}

By scaling the rows we can assume w.l.o.g. that all disturbances have
the same bound A; = A, unless some entry of A is equal to zero. So we

define:
Ghee = {beR™:|b; —b| <As}.
Let &k : AA—; and define

Sk = 581 N §h=,

In delay resistant timetabling we face right-hand side disturbances. More-
over, we should assume them to be hostile in the sense that the data deviates
from the reference scenario only in direction which tightens the restriction,
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i.e., in negative direction for an inequality of the form ¢’z < b and in pos-
itive direction for a’x > b. This hostility only plays a role, when it comes
to prove lower bounds for the mass of the coincidentally covered scenar-
ios. Recall from the above analysis that the non-hostility is essential for
the Bertsimas-Sim bound. We will prove lower bounds for the hostile case,
which are automatically also lower bounds to the non-hostile case. Still, the
non-hostile case is not convincing, at least for right-hand side disturbances.
It is not a convincing argument for an optimization method to stress that
the mathematically found solution stays feasible, even when things turn out
better than expected.

For disturbances in the matrix we follow the idea of vertical integration.
So our scenario sets are of the form:

st i={A= A~ Aerm: de )

with

S = S’E’k = {(dzj)(m e R™": Zdi’j < ]%, Z&i’j < k,O < di,j < Aoo}
J .3
By the same rationale as above we can assume hostile disturbances also

for the case of uncertain data in the planning matrix.
In some parts we will set A, = 1 for the sake of simpler presentation.

In order to avoid confusion we will restate the definition and notation of
the scenario sets whenever they are used.
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4.4 LINEAR RECOVERY ROBUST PROGRAMS

This section and the next section combine the broad notion of recoverable
robustness and the inspiration from the tradition of robust programming. In
this section we mainly show how LRPs can be solved for certain scenario
sets. This leads us to a special case, namely robust network buffering, which
entails the robust timetabling problem. Towards the end of this section we
turn to a variant of LRPs, where the planning problem is an integer linear
program.

4.4.1 Solving Right-hand Side LRPs

In this part we show that some scenario sets for the right-hand side data
of an LRP yield problems that can be solved by a relatively small linear
program.

Consider again the 3-player formulation of an LRP (4.21). Let P := {z €
R™ : A% > b} be the polytope of nominally feasible solutions. If we fix the
strategies of the first two players, i.e., the variables z and (A, b), we get the
recovery problem of the LRP: min d'y subject to Ay > b — Ax. The dual of
the latter is max;>o(b— Ax)'( s.t. A'¢ < d. The recovery problem is a linear
program. Thus, we have strong duality, and replacing this linear program
by its dual in expression (4.21) will not change the problem for the players
optimizing = respectively (A, b).

mincdz s.t. D > { max {max(b—Ax)'Q s.t. A'¢ < d}} &

z€P (Ap)es | ¢=0
mincdz s.t. D > { max (b— Az)'¢st. A'¢ < d} (4.33)
zeP (Avb)ES,CZO

Consider the maximization problem in formulation (4.33) for a fixed z,
thus find max4 p)es,c>0(b — Az)'( subject to A'¢ < d. Assume for a moment
|b — Az||; < A. In this case, for each fixed vector ¢ the maximum will be
attained, if we can set sign((;)(b — Az); = A for i with |(;| = |||/« and 0
otherwise. In other words, under the previous assumptions (b— Ax)’( attains
its maximum when (b — Az) = Ae; for some suitable ¢ € [m]. Therefore, if
we have ||b — Az||; < A, we can reformulate problem (4.33):

mincdx s.t. Vi € [m]: D > {maX(Aei)lg st A'¢ < d} &
xzeP ¢>0

mindz s.t. Vi € [m]: D > {min d'yst. Ay > Ael} (4.34)

zeP Y
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The at first sight awkward condition [|b — Az||; < A is naturally met
if only the right-hand side data changes, and is limited in the set S! =
{(A%%) « ||b* = b%||; < A, A* = A}}. For an LRP over S* formulation (4.34)
is equivalent to a linear program of size O(m(n + n - m)):

/

min cx
zeP
st. Vi€ [m]:

Az + Ay’ > b+ Ae;
dy'—D>0

Next, consider the scenario set S* for arbitrary k& > 1. By the same
token, the maximization over ¢ in formulation (4.33) for fixed x and (A, b)
can be achieved, by setting the maximal | k] entries of the vector (b — Ax)
equal to 1 and the [k]-th entry equal to k — |k|. For example, when k is
integer, we can replace the scenario set S* by those (:1) scenarios, where
exactly k entries of b deviate maximally from b*, and the other entries equal
their reference value b;. So, we have:

Theorem 4.9. An LRP over S* can be solved by a linear program of size
polynomial in n, n, m, and (:L)

Corollary 4.10. An LRP over S' can be solved by a linear program of size
polynomial in n, n, and m.

Corollary 4.11. For fized k an LRP over S* can be solved by a linear pro-
gram of size polynomial in n, n, and m.

Of course, in practice this approach will only work, when k is very small.

The above reasoning can give a fruitful hint to approach RROPs in gen-
eral. First, try to find a small subset of the scenario set, which contains the
worst-case scenarios, and then optimize over this set instead of the whole sce-
nario set. In the above setting we can achieve this very easily, because the
recovery problem fulfills strong duality. If the recovery problem is an integer
program this approach fails in general. Still, one can try to find a small set
of potential worst case scenarios, to replace the original scenario set. Unlike
the recovery problem, the planning problem may well be an integer or mixed
integer program, as we show in the following.
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For the manipulations of the formulations the linearity of P, Ax > b or cis
immaterial. So we can extend the above reasoning to non-linear optimization
problems. Let ¢ : R"™ — R be a real function, P’ a set of feasible solutions and
{g: : R™ — R}icpm be a family of real functions, and assume that extrema in
the resulting RROP are either attained, or the problem is unbounded. For
the scenario set S! of right-hand side disturbances we have with the above
notation

minge pr ()
st. D> {maxbesl {miny d'y st. g(x)+ Ay > b}}
=
mingepr ¢(x)
s.t. Vi € [m] - g(z) + Ay’ > b* + Ae;
D—dy >0

because the recovery problem is still a linear program, and we can thus
argue by strong duality as in the previous case. In particular, we are inter-
ested in the case of an integer linear program (min 'z, Ax > b,z € 7") with
right-hand side uncertainty. We get as its recovery robust version over S!.

min,ezn ¢'x

s.t. A%z >1°
D> {maxbesl {miny dy s.t. A%z + Ay > b}}
=
mingcy c'x
s.t. A% >80
Vi € [m] : A*x 4+ Ay’ > b* + Ae;
D—dy" >0

Let A* = AY and b* = b°. Defining f := A*x — b* we can rewrite the
previous program as

min,, pyezn+m & (z, f)

Az —f=1b (4.35)
s.t. Vie[m]: f+ Ay > Ae;
dyt—D >0

f>0
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With a suitable cost vector ¢. Note that the original integer linear pro-
gram corresponds with the scenario part of the program only via the slack
variable f. In other words, for solving the recovery robust version the solving
procedures for the original, deterministic, integer linear optimization prob-
lem can be left untouched. We only have to flange a set of linear inequalities
to it. The f variables function as means of communication between the orig-
inal integer problem, where they correspond to the slack in each row, and the
linear part, in which their effect on robustness is evaluated. In the next part
we will consider this communication situation for an even more specialized
type of recovery.

4.4.2  Robust Network Buffering

Let us use Corollary 4.10 for the Simple Robust Timetabling problem with
right-hand side uncertainty limited in S*. Set g = 0 to drop the limit to the
maximal delay at a node. By the corollary the Simple Robust Timetabling
problem over S! reads as follows. Let y, be the indicator function of a, i.e.,
Xo(z) =1 if @ = z, and zero else.

min Ze:(i,j)GE w(e)(m; — m)

. f
s.t. w,—mi+ fe=1tle), Ve=(i,j)€E (4.36)
Vse E
fety; —yi > A xe(s), Ye=(i,j)€FE
D—dy >0
fy? =20

Periodic Timetabling Many railway service providers operate periodic
schedules. This means that equivalent events, e.g., the departure of the
trains of a line at a station take place in a regular manner. More precisely,
we do not plan the single events as in the aperiodic case, but we plan periodic
events. For these we schedule a periodic time, which is understood modulo
the period of the system. (There may also be differnt periods in the same
system, but we restrict our consideration here to the case of a single, global
period.) Assume we assign 5 to the variable corresponding to the periodic
event that trains of line A depart from station S towards station S’. Let
the period T' of the system be one hour. Then for every hour five minutes
past the hour a train of line A will depart from station S towards station S’.
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This leads to the Periodic Event Scheduling Problem (PESP)!, which can be
formulated as a mixed integer program of the following form. Let G(A, V)
be a directed graph and three functions w,u,l : A — R on the arc set. Then
the following problem is called a PESP.

min >, scaqwle)(m; —m+ kT)

keZ!Al

st.  ule) >m—m+kT >1(e), Ve=(i,j)e€A

This type of problem has a broad modeling power. For a comprehensive
study on periodic timetabling we refer the interested reader to [42].

To construct an RROP from an original problem which is a PESP we
have to make a choice whether we interpret the disturbances as periodic
disturbances like a construction site that will slow down the traffic at a
certain point for the whole day, or as aperiodic events like a jammed door at
a stopping event. For periodic disturbances we get the following program.

keg\lj\l}w,f Ze:(i,j)eA w(e) (ﬂ'j — 7+ k.T)

s.t. 7, — m + fe+ kI = l(e), Ve = (i,7) € A
T — 7+ fo + kT = u(e), Ve =(i,j) € A
Vse A,2€{0,1}:
Jety;—ui 2 A-xe(i) B, Ve=(ij)eA
Fotyi—u> A xi) (1-9), Ve=(i,j) €A
D—dy >0
y> >0

Note that the right-hand sides are still constants, though they look like
a quadratic term.

Again, the deterministic PESP instance can be flanged with a polynomial
size linear program to ensure robustness. This structure can be helpful for
solving such a problem, as the specialized solving techniques for the original
integer program can be integrated.

As an example for this approach confer [25], where a specialized technique
for an advanced platforming problem was combined with robust network
buffering to get a recovery robust platforming.

!The Periodic Event Scheduling Problem was introduced in [52]. For details confer
also [42].
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General Network Buffering The general situation is the following: We
are given an optimization problem on a network. The solution to that
problem will be operated under disturbances. The disturbances propagate
through the network in a way depending on the solution of the optimiza-
tion problem. The solution of the original optimization problem z translates
into a buffer vector f on the arcs of the network. Changing perspective,
the original problem with its variables x is a cost oracle: If we fix a certain
buffering f, the optimization will construct the cheapest x vector to ensure
the buffering f. Let us summarize the general scheme.
Given an optimization problem P with the following features:

e A directed graph G.

e An unknown, limited, nonnegative vector of disturbances on the arcs,
or on the nodes, or both.

e The disturbances cause costs on the arcs, or on the nodes, or both,
which propagate through the network.

e A vector of absorbing potential on the arcs, the nodes, or both can be
attributed to each solution of P.

If we further restrict the disturbance vector to lie in S*, we get the follow-
ing by the above considerations: The recovery robust version of P, in which
the propagated cost must be kept below a fixed budget D, can be formulated
as the original problem P plus a linear program quadratic in the size of G.

The Scenario Set S' With S! as scenario set the fractional network
buffering problem can be solved efficiently by a particularly simple LP-based
approach. But, the scenario set S! is not is not a convincing choice with
respect to many applications. By S! we only impose a limit to the total
amount of disturbance. And the analysis shows that for every solution the
worst case is a scenario in which the complete disturbance is concentrated
at a single arc. From a practical point of view, one would rather like to use
a set where the individual disturbance is smaller, but several of them can
occur.

Remember that S* is defined by two bounds, A; for the 1-norm, and A
for the infinity-norm. Their ratio is k. For fixed Ay, what is the difference
between the worst case scenarios with Ay, = 1 and those with A, = 27
Assume the network to be very large. Say there is an arc where a single
disturbance of size 2 can cause a total delay of Dy. Now, place two subsequent
disturbances of size 1, one at that arc and the other on one of its immediate
successors or predecessors. This will cause a total delay that is only slightly
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smaller than Dy, if the area affected by the second chosen arc is almost the
same, as that affected by the first arc. So, in some network topologies the
effect of two small disturbances is almost the same as that of one with twice
the size.

Therefore, it makes sense to use the scenario set S! and the resulting,
simple models with a larger Ay. Instead of protecting against k small distur-
bances of size 1, we protect against one disturbance of size k.

Note that as a by-product we get a better probability that our interval
bound A, is satisfied, because A, = A; in S*.

A larger A is prima facie more conservative. Indeed, for strict robustness
every increase of A; will affect heavily the objective value. But, when the
above reasoning about several small disturbances causing almost the same
delay as one large disturbance holds true, then recoverable robust will not
produce unacceptably conservative solutions, if A; is increased.

The question is, for which scenarios outside S! a solution, which is con-
structed for S', is still recoverable. This is the central question of the last
section of this chapter. We will show that one can give an a priori answer to
this question. This provides an orientation to trim the choice of A; and k
when constructing the model, in order to keep a balance between the size of
the linear program to solve, and the nominal objective of the robust solution.

4.4.3 Integer Robust Network Buffering

The above scheme motivates to consider problems of the following type.

Definition 4.12 (RABP). Given a directed graph G, a budget D and a
vector ¢ € RIFGI . The linear program

ming ¢ f
s.t. VsEE:fs+yj—nyA'Xe(5), Ve=(i,j) € E

D—dy >0
Ly >0

is called the Robust Arc Buffering Problem (RABP).

In a similar way we can define a problem of buffering the vertices of the
graph:

Definition 4.13 (RVBP). Given a directed graph G, a budget D and a vector
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c € RV The linear program

ming ¢ f
st.Vse€E:fi+y;—y; >A x(s), Ve=(i,j) €L
D—dy*>0
[y =0

is called the Robust Vertex Buffering Problem (RVBP).

The dual of the RABP has a structure close to that of a min-cost flow
problem. We next look at the integer versions of RVBP and RABP, i.e., the
above problems with the additional restriction that f must be an integer.
It turns out that these problems even for A' = 1 and ¢ = (1,1,...1) are
NP-hard, as difficult to approximate as vertex cover, and have an arbitrarily
large integrality gap.

We also want to introduce the budgeted version of RVBP and RABP. By
this we mean that we exchange the role of D and ¢'f. Instead of fixing the
maximal delay for all scenarios, we minimize the maximal delay for a fixed
buffer budget, i.e., we require B > ¢/ f.

Theorem 4.14. The Budgeted Integer RVBP with unit buffer cost and unit
disturbance on an acyclic graph is NP-complete in the strong sense and can-
not be approximated with a better approrimation ratio than the Minimal Ver-
tex Cover Problem.

Proof. We show the following: Given an oracle providing a buffering with at
most « times the cost of an optimal buffering for any instance of the buffering
problem, then we can approximate an optimal solution for any instance of
Minimal Vertex Cover by a factor of a in polynomial time by a single call of
the oracle.

Let G(V, E) be an instance of vertex cover. We construct a buffering
instance by the following steps.

1. Choose an arbitrary bijection o : V' — [|V]]. Orient every edge e =
{v,w} € F to get an arc a = (v, w) such that o(v) < o(w). Obviously,
this gives a directed acyclic graph G1(V, A).

2. Duplicate arcs in A(G1) in order to achieve equal out-degree for all ver-
tices. Denote the common out-degree of the resulting directed acyclic
graph G5 by d. In case d = 1, double all edges. Note that the vertex
cover problem on the underlying undirected graph of G5 is the same
as for G.
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3. Add a dummy vertex v with o(v) = 0 and connect it to all vertices with
in-degree 0 applying the same rule for the orientation. The resulting
directed acyclic graph G3 still has the same out-degree.

4. Look for a minimal integer vertex buffering such that the delay is less
or equal to d + 1.

Any vertex cover for GG defines a vertex buffering for G3 in the obvious
way. This is a feasible buffering, i.e., it allows for delay of at most k + 1:
All arcs—those corresponding to an edge in F(G) and their copies or those
originating at the dummy vertex—Ilead to one of the original vertices, i.e.,
those in V(G). But these are either in the cover, hence, buffered, or all of
their d outgoing edges end in buffered vertices. Therefore, the total delay
caused by a single disturbance on such an arc is at most d + 1.

For the opposite direction, assume a vertex buffering, where two vertices
a,b (with o(a) < o(b)) connected in G are not buffered. Then a disturbance
on any incoming arc to a will cause at least a delay of 2d. Thus any feasible
vertex buffering of G3 defines a vertex cover on G.

We have shown that all subsets of V(G) are either a vertex cover for
G and a vertex buffering for G5 or none of both. As no minimal vertex
buffering for G3 buffers the dummy vertex, we know that minimal bufferings
and minimal covers have the same vertex sets. This yields the claim.

The construction uses only a polynomial number of parallel arcs. So the
RVBP problem is NP-hard in the strong sense.

Obviously, the integer RVBP is in NP. O

We described the reduction for vertex buffering. For arc buffering we can
easily transform the construction. Replace every vertex v in G3 by a path
of length 1, in which the arc (a,b) is called the vertex-arc of v. From this
construct a graph G4 by connecting all in-coming arcs of v with a and all
out-going arc of v with b. A buffer on a vertex-arc in G4 corresponds to the
vertex being part of the cover in G. Now, the rationale for the reduction
via (G3 carries over to (G4, once we can show that it is possible in polynomial
time to transform any minimal buffering of G4 into a buffering only using
vertex-arcs.

To this end, we have to slightly modify step 2 (yielding G5). Construct
GY, such that every edge in G has at least two corresponding parallel arcs
in GY. Assume a feasible buffering, which buffers a non-vertex-arc e in GY.
There is at least one arc ¢’ parallel to e. In case ¢’ is also buffered, push
one buffer to the vertex-arc preceding e and €', and the other buffer to the
vertex-arc to which they lead. In case €’ is not buffered, push the buffer from
e to the preceeding vertex-arc. If a vertex-arc, to which we push a buffer,
is already buffered, we can remove the pushed buffer completely. It is easy
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Figure 4.7: Networks with k 4 ¢ arcs producing unbounded integrality gaps.

to check that the resulting buffering is still feasible, at least as cheap as the
original, and that it buffers only vertex-arcs. This way we get as a corollary:

Corollary 4.15. The Budgeted Integer RABP with unit buffer cost and unit
disturbance on an acyclic graph is NP-complete in the strong sense and can-
not be approximated with a better approrimation ratio than the Minimal Ver-
tex Cover Problem.

Next, we analyze the integrality gap of robust network buffering problems.

Integrality Gap We show that the Integer RABP and the Budgeted In-
teger RABP; i.e., the problem of finding an arc buffering that minimizes B
for fixed D or vice versa, have an unbounded integrality gap. We will denote
the integer bufferings by ¢ : E(G) — N and the fractional bufferings by
[ E(G) — Rso.

Budgeted Integer RABP: Consider the graph depicted in Figure 4.4.3
with k£ incoming arcs and ¢ outgoing arcs to the central vertex. Let k < [.
Choose a value 0 < v < 1 and fix D = [af] + 1.

Setting f(e) = 1 — « for each e of the k incoming arcs and zero else, is a
feasible fractional buffering with cost > f = k(1 — a).

For k < [(1 — a)f] an optimal buffering g(e) is equal to 1 on the k
incoming arcs e and zero else. For & > [(1 — «)¢] an optimal solution
will buffer [(1 — a)¢] of the outgoing arcs and no incoming arc. The costs
of the optimal integer bufferings are in both cases equal to the number of
buffered arcs. So for the ratio we either have > g/>" f > l/k or equal to
So/Sf=1/(1-a).

Integer RABP: Consider the same type of graph with B = k& — 1 fixed,
and again k < (. Then a fractional buffering can spend (k — 1)/k of the
buffer budget for each of the k in-coming arcs. Therefore, the maximal total
delay of an optimal fractional buffering f is D(f) = (I + 1)/k. The integer
buffering cannot buffer all in-coming arcs. Therefore, it is best to spend the
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whole budget on the out-going arcs, yielding a total delay for the integer
buffering g of D(g) =1 — k + 2. The resulting ratio is:

In Figure 4.8 we show a sequence of optimal, budgeted, integral arc buffer-
ings for a unit disturbance and unit weights with increasing budget B for

the buffers.
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Figure 4.8: Optimal, budgeted, integral arc bufferings of a grid.
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4.5 A POLYHEDRAL PERSPECTIVE

The most important result of this section is the perspective in which we look
at LRPs. We consider the polyhedral situation in the row space. More pre-
cisely, we look at the relations between the image of the admissible recovery
vectors on the one side, and the polytope containing all possible vectors that
may occur as slack vector in a scenario. This perspective is far more impor-
tant than the particular, preliminary results, which we obtain for it here. It
is even more important than recoverable robustness itself. This perspective
is a new way to understand optimization under imperfect knowledge for one
of the most successful objects in applied mathematics, the linear program.

4.5.1 Introductory Examples

In this part we discuss three simple examples of LRPs with right-hand side
disturbances. This discussion is meant to provide the geometric intuition
behind the theorems on coincidental covering of LRPs in Subsection 4.5.3.

The Examples Two of the three LRPs arise from the simple robust timetabling
problem on two simple graphs: The first graph is comprised of n connected
components, each containing only a single arc. The second graph is a path
with n arcs. The planning variable z; represents the buffer time between
the (i — 1)-th event and the i-th event on the path. In the first graph z; is
the buffer time on the i-th of the n isolated arcs. Thus, nominal feasibility
simply means x > 0. The resulting problems both have the following form:

min ¢z
s.t. x>0
Vbe S dy>0:
Az + Ay >b
dy <D

For both problems we have n = n = m all dimensions equal and both
planning matrices equal to the identity, A' = A% := I. We set both
planning and recovery costs equal to the all-one vector ¢! = ¢ = d' =
d*>:=(1,1,...,1), and also the recovery budget for both problems equal to
1 =: D! = D2, The difference is only in the recovery matrices A and A2
We suppress the variables for delay (recovery) at vertices without incoming
edges, as they can always be chosen equal to zero. Thus, for the first problem
we have A! ;=T the identity, and for the second problem on the path we get
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the following;:

100 0
i ~11 0
0 -1l

Finally, define S* := {b(> 0) : [|b||; < k,||b]|c < 1} and for simplicity let
n:=2 and k = 1. In each worst case scenario, at most one arc is disturbed.

Because we assume hostile disturbances, we require b > 0.

What do recovery robust solutions look like? Where to put buffer times?
In Problem 1 no buffer is needed. No matter which of the two arcs is dis-
turbed, the total delay—i.e., recovery cost—will be 1, which is the recovery
budget. In Problem 2 we have to distinguish whether the first or the second
arc is affected. A disturbance on the second arc causes a total delay less or
equal to 1 even without buffering. A disturbance on the first arc causes a
delay of 2 without buffering. Thus, one must buffer in problem 2. Buffering
either the first arc or the second with a unit buffer, would give a feasible solu-
tion. In fact, buffering the first arc with half a time unit is already sufficient
for a feasible recovery.

What kind of coincidental covering can we expect in the second exam-
ple? On a path early disturbances are more dangerous than late ones. A
disturbance at one of the arcs in front can cause delay that propagates onto
the many subsequent arcs. Whereas a disturbance on the last arc, can only
affect that single arc. Thus, on a path we have to protect against influential
disturbances. This might cause an over-protection in case less influential
disturbances occur. So we expect coincidental covering. Indeed for Problem
2 we will a coincidental covering for every recovery robust solution, whereas
for Problem 1 some solutions show no coincidental covering.

The problems both feature the non-negativity condition to the recovery
vector y > 0. A negative recovery would mean that an event takes place
earlier than planned in the schedule. This is forbidden by the timetabling
condition. Also in many other conditions negative recovery is not allowed.
We will see that the non-negativity condition for recovery causes a substantial
structural difference to the standard case.

Finally, we add a third problem which again only differs in the recovery
matrix: A® = (a?; := [a2}]); jermxa. The recovery matrix of Problem 3
contains the absolute values of the matrix entries of Problem 2.

A Change in Perspective The feasibility condition is given by the in-
equality Az + Ay > b. Re-write this as follows:

Ay >b— Az
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Figure 4.9: A simple example (Problem 2) in polyhedral perspective

In each row, on the right-hand side, we have the disturbance b minus the slack
of that row in the planning problem 0 — Az. On the left, we find the image of
the recovery vectors. Recovery means to find an admissible recovery vector
that has an image, which is in each row greater or equal to the disturbance
minus the slack. This motivates Figure 4.9, which we explain in detail now.

Three vector spaces are at stake: the n-dimension solution space of z,
the n-dimensional recovery space of y, and the m-dimensional row space—in
which we denote vectors by z variables.

On the left of Figure 4.9 the vector space of the recovery variables y is de-
picted. The recovery cost d together with the budget D defines a hyperplane
(the dotted line), below which those recovery vectors lie that respect the
budget. The blue shaded area are the recoveries which also fulfill y > 0, thus
these are the admissible recoveries. On the right of Figure 4.9 we depict fly
for these admissible recovery vectors y in blue. We have for the non-trivial
vertices of that simplex:

(D e

Let us drop the index indicating the problem for a while as we concentrate
on Problem 2.

Domination Rewriting the feasibility condition for the nominal solution

x as above )
Ay >b— Ax

allows the following interpretation of the right-hand part of 4.9. Consider the
green point, which is z := —A-(1,0)’, the negative of the image of a solution
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Figure 4.10: The negatives of the images of recovery robust solutions

we have seen to be recovery robust. The green diamond, is the set of points
with distance to this solution less or equal to k£ (= 1) in the 1-norm (and 1
in the infinity norm). For each point u in the green diamond exists a point
w in the blue area which is greater or equal to u in every coordinate. We
say the blue area dominates the green diamond. Denote the green diamond
by U, then domination of the set U by the blue area means:

VzeU:3y>0,dy<D:Ay> -

By the definition of U := {z =b — Az : ||b]|; <k, ||b]|cc < 1} this is another
way of saying that = (1,0) is recovery robust.

The bold blue line shows A - {d'y = D} which we call the recovery plane.
The blue area dominates a set U if and only if the recovery plane dominates

U.

The recovery plane also dominates the two red diamonds, which corre-
spond to the solutions x = (0,1) and = (0.5,0). The upper red solution
cannot be moved further in positive z; direction, without some points being
beyond the bold blue line. In other words, reducing the buffer on the first
arc would leave scenarios for which the recovery exceeds the budget.

Non-negative Recovery Can we move the upper red compound further
in positive 2z direction when shifting in negative z; at the same time? If we
move the solution as described, there is still a recovery vector y with recovery
cost below D in every scenario. But some of the entries of that recovery
vector need to be negative. If the problem requires y > 0 those would not
be admissible recoveries, and thus the solution not recovery robust.

Note the structural difference between problems with non-negative re-
covery and the standard case. Considering the recovery space, in the non-
negative case only the vectors in the blue area are admissible recoveries. In
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Figure 4.11: The row spaces of Problem 1 and 3

the general case the complete half space below the recovery plane is admis-
sible.

Figure 4.10 shows the situation in the row space of Problem 2 with non-
negative recovery. The negatives of the images of recovery robust solutions
all lie in the green shaded area.

Vertices for Free In the proof of the Bertsimas-Sim bound the robust
solution was constructed for a certain subset of the hypercube [—1,1]", but
turned out to cover for free a number of vertices of the hypercube outside that
subset. The green and red diamonds in our pictures also lie in the hypercube
of all scenarios respecting the interval bound. Are there any covered vertices
of the hypercube outside the diamonds?

Of course, the lower vertices of the hypercube are covered. But, this is
trivial, as it means that for example a driving activity took less time than
technically assumed. It is not a very distinguished feature of a solution to
remain feasible if things work better than expected.

The Bertsimas-Sim argument rests on an equivalent role for negative and
positive disturbances. For right-hand side disturbance this equivalence is
not given. Nevertheless, for certain problems we can identify vertices of the
hypercube [0, 1] which are covered coincidentally. Recall that these vertices
are of particular importance, as they carry the whole probabilistic mass in
worst-case distributions.

To this end compare Problem 1 and Problem 2. Both problems have
the same recovery robust solutions, and a common, unique, optimal solution
(depicted as a red vertex in Figure 4.11). Still, those problems behave quite
different for scenarios outside S!. Consider, the scenario spaces for higher
k up to an m-dimensional hypercube S, 8% ... 8™ 1 8" = C := {||b]|oc <
1,0 > 0}. In our example S? is already the hypercube C.
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Figure 4.12: Coincidentally dominated scenarios in Problems 1, 2 and 3

Every recovery robust solution of Problem 3 over S is also recoverable in
all scenarios in C' (cf. Figure 4.11). In contrast, the unique optimal recovery
robust solution for Problem 1 with S! is not recoverable in any non-negative
scenario of C'\ S'. Every solution to Problem 3 coincidentally covers 0-1-
vectors, i.e., vertices of the hypercube [0,1]™ outside the scenario set S*.
Whereas, Problem 1 seems to be sharp in the sense that the solution may
not cover any other scenario than those it has been constructed for.

Further Coincidental Covering For Problem 3 we could find covered
0-1-vectors outside S*. Problem 1 behaves sharp. The sharpness seems to
depend on the angle between the recovery plane and the dominating surface
of S*. Problem 2 also has a non-vanishing angle between these two objects.
But, there are solution to Problem 2 that do not cover any 0-1-vector outside
S1. Still, the interpretation of Figure 4.9 suggests that also for Problem 2
every solution that is recoverable in all scenarios of S! is also recoverable in
some non-negative scenarios of C'\ S'.

In the middle of Figure 4.12 we show the row space of Problem 2. For
the red solution it depicts as a red shaded area a set of scenarios outside S*,
which is coincidentally covered. The same area in the environment of the
green solution is also coincidentally covered. It seems to be an invariant set
of scenarios for all recovery robust solutions.

To summarize Figure 4.12 shows three types of situation:
e In Problem 1 (left) no coincidental covering might happen.
e In Problem 2 (middle) coincidental covering is guaranteed.

e For Problem 3 (right) the coincidental covering necessarily also affects
0-1-vectors outside S*.

Strict Robustness Consider the situation for strict robustness. As we
require y > 0 and have d > 0 we can enforce strict robustness by setting
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D = 0. Thus, there is only one admissible recovery, namely, the zero vector
y = 0. Its image A0 is a point, notably, the zero vector in the row space.

A solution z is recovery robust over S* if and only if b — Az is dominated
by 0 for all b € S*. The subset dominated by the origin is an orthant, namely

{x e R":2; <OVI <i<m}.

From the geometric intuition it seems clear that this for any k£ > 0 requires
the whole hypercube S™ to be covered as well. Indeed, this intuition will be
justified by the more general Theorem 4.22.

This is a different way to formulate an observation we pointed out earlier:
If one requires strict robustness against a certain disturbance in one unknown
row, one has to protect against this disturbance in all rows. Strict robustness
has no sight for vertically integrated limits to the scenario set.

Summary Requiring recoverable robustness against S* enforces recover-
able robustness for scenarios outside S*, too. This effect becomes apparent in
considering the relative position of the recovery plane and the negative of the
solution’s slack vector surrounded by the scenario set. The key phenomenon
is the domination of the latter by the recovery plane. The coincidental cov-
ering is controlled by the shape of the scenario set S* and the image of the
admissible recoveries under the recovery matrix A. The original optimization
problem plays a minor role in this perspective.

The dominated area of this image is substantially different, if recovery
must be non-negative. For the standard case, the dominated area seems to
be a half space. In the non-negative case, it is a more complex structure. It
will turn out to be the Minkowski-sum of a polytope and a cone.

Finally, we could observe a difference between the standard cases like
Problem 1 and 2, and those situations in which 0-1-vectors outside the sce-
nario set S* were coincidentally covered, like Problem 3 (or strict robustness).

These observations may depend heavily on peculiarities of R? and the
chosen examples. In the next section we will give a general theorem for each
of the observed phenomena.

In terms of the timetabling application coincidental covering reads as
follows: The guarantee that we will not exceed a total delay of D in any
scenario, which has at most k disturbances of size at most A, enforces a
timetable that will also cope with some scenarios of higher total disturbance.
For example, early delays—i.e., delays at edges with many successors—cause
more problems than late delays. A sufficient buffering against limited early
delays is also sufficient against higher, or more delays in the later parts of the
network. Quantifying the shaded region in Figure 4.12 means to quantify a
priori this property of a network buffering. The effect clearly depends on the
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networks topology: A path has early and late arcs, whereas in Problem 1 all
arcs are similar. Correspondingly, Problem 2 shows coincidental covering,
whereas for Problem 1 there are solution without coincidental covering. To
analyze this property of the network it suffices to analyze the image of the
admissible recoveries under the recovery matrix A.

4.5.2  Preliminaries

We want to distill some of what we have observed in the example into proven
theory.

Due to the type of limits for the disturbances, the choice of the basis for
the vector spaces is not arbitrary, but prescribed by the modeled application.
Therefore, we consider all vector spaces with their fixed basis. We denote
the i-th basis vector by ¢', e} = 1,¢’ = 0 for all j # i. By [in] we denote the
set . vectors v' € R™ (0 <4 < 7) with the i-th component equal to v} = in
and zero else. These together with the origin are the edges of the simplex
{0 <y e R":dy < D}. As a slightly unusual notation we use AS for a
matrix A and a subset S of a suitable vector space, to express the image
of the set S under the linear mapping represented by the matrix A for the
canonical basis. Note that for vectors a,b we mean by a < b that for every

1 the entry b; is strictly larger than the entry a;.
We start by some preliminary observations on dominance.

Definition 4.16. Let U, L C R"™ be subsets of a vector space over the reals.
We say U dominates L, write L < U, if

VieLFueU:u—1>0.
From the definition we get immediately the following observation.
Observation 4.17. The dominance relation is reflexive and transitive.

Still, it is not a partial order as it fails antisymmetry even in dimension 1:
{0,1} < {1} A{1} < {0, 1}. Restricting dominance to sets with one element
antisymmetry is fulfilled. Thus the set of singletons forms a lattice. In fact
for singletons the <-relation equals the <-relation. In dimension greater than
1 there are incomparable pairs of both sets and singletons. For singletons we

use a < b for {a} < {b}.

Observation 4.18. Dominance is invariant under translation, i.e., for all
ac€R" and U, L CR" we have U < L U+a <L+ a.
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The following observation is helpful when dealing with the typical sce-
nario sets S* := S¥(b*) := {b*+2: 0 < z; < 1A Y. z; < k}. (In fact the obser-
vation remains true, if we define S*(b*) == {b*+2: =1 < 2z, < 1A Y. 2z < k}.)

Observation 4.19. For each k > 1 we have S* < Sk :i{b* +2:0< <
1 A Dz =k}, ie., the set S* has a dominating facet S*.

Invariance under translation allows us to consider S*(0) instead of S*(b*)—

Az, and by transitivity we can confine our domination considerations to S*.

Definition 4.20. For a vector z define U, as the set of all vectors u, such
that z < u, and L, as the set of all vectors {, such that { < z, i.e.:

Uz:{dE]RVzdzzzz}
and
For a set D the dominated set is defined by

Lp ::ULd

deD

and the dominating set by
UD = U Ud.

deD

Note that U, N L, = {z}. For a convex set D the dominated set Lp is
the Minkowski sum D + O~, with O~ = R”, the orthant of vectors with all
entries non-positive, and Up = D + O, with O = RY, the positive orthant.
As the Minkowski-sum of convex sets is convex we can make a very important
observation:

Observation 4.21. The set dominated by a convex set is convex.

4.5.8  Standard Linear Recovery Robust Programs

Recall the definition of the principal object of our considerations, the Linear
Recovery Robust Program:

Definition 4.5 Let Ay be an m x n-matrix called the nominal matrix,
by be an m-dimensional vector called the nominal right-hand side, ¢ be an
n-dimensional vector called the nominal cost vector, A be an m X n-matrix
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called the recovery matriz, d be an n-dimensional vector called the recov-
ery cost vector, and D be a non-negative number called the recovery budget.
Further let S be a closed set of pairs of m x n-matrices and m-dimensional
vectors containing (Ay, by), called the scenario set. Then the following op-
timization problem is called a Linear Recovery Robust Program (LRP) over

S:

min 'z
s.t. Az > B0
V(A,b) € STy e R™:
Az + Ay >b
dy <D

We use R:= A{y € R* : d'y < D} and R := span(fl[d%]). We call R the
recovery plane. Note that span(fl[d%]) = A{y e R" . d'y = D}.
For an m-dimensional LRP define

T={c1<i<m:(r*—rHe =0vr',r? € R}

as the subset of basis vectors in the row space orthogonal to R. Further, set
7 :=|T|. With this notation we give the following theorem.

Theorem 4.22. Let x* be a recovery robust solution to an m-dimensional
LRP over S* with k > 1. Then for any k < { < m, the solution z* coinci-

dentally covers at least
min(7,l) (T) < _ T)
Z l l—1
i=l—k

0-1-vectors with exactly | positive entries.

Proof. For any vector v we say an index ¢ or its entry v; in a vector v € R™
is represented in T, if e € T.

We show for every 0-1-vector with exactly [ positive entries that it is
dominated by a vector in R, if at least [ — k of these entries are represented
in T'. Then we count these vectors.

Say 2% is such a vector with £ entries equal to 1. There is a vector z¥ € S*
such that 2* — 2 is a 0-1-vector in the span of T. As x* is recovery robust,
and by k > 1 each basis vector ¢’ is in the scenario set S*, we have:

Elflyk:rkER:zk<rk
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EIij:TjeR:ej—<rj

¢y and y* := A\y*. Finally, set § := y* — 7. Note d'yj = 0

Define A : Ty
and thereby (flgj)’ej = 0 as €’ is orthogonal to R. This gives ¢/ < A(yj+gj) =
Ay*.

Further, there is a A* > 0 such that \*y* = y* — y*. As zF > 0 also its
dominator ¥ > 0, and thereby ArF > 0. We can conclude:

e < Ayt + Nk =

As r* dominates ¥ and e/ it also dominates their sum.

The argument holds for every positive entry of 2 —2* and fixed r*. Hence,
r* dominates 2¢, too.

To count the number of different 0-1-vectors with exactly [ positive entries
and at least [ —k entries represented in 7', divide the set of all basis vectors in
those 7 represented in T" and the m—7 others. To construct one of the desired
vectors unequivocally we fix the number of positive entries represented in 7T
by the counting parameter . Thus, we choose ¢ in 7 and ¢ —¢ in m — 7. This
gives the counting formula. O

The proof works as well for the case, when the recovery is restricted to
be non-negative, i.e., when y > 0 is required for every scenario.

Corollary 4.23. Let x* be a recovery robust solution to an m-dimensional
LRP over S* with k > 1, and additional requirement y > 0. Then for any
k < ¢ < m, the solution x* covers at least

min(7,l)
> ()0)
A ? l—i
i=l—k
0-1-vectors with exactly | positive entries.

A special case of the non-negative recovery is treated in the next corollary.
It contains the case of strict robustness.

Corollary 4.24 (Strict Robustness). Let x* be a recovery robust solution
to an m-dimensional LRP over S* with k > 1, and additional requirement
y >0 and D =0. Then x* covers the hypercube S™.

Note that the preceeding lemma models strict robustness if d > 0.

The above theorems motivate to restrict our considerations to LRPs,
which fulfill certain further conditions. The first condition avoids the pecu-
liarity that cheaper recovery vectors are strictly more useful in recovery. The
second one is similar to that of complete recourse in stochastic programming.
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Definition 4.25. Let (Ay, by, c, A, d, D) define an LRP over some closed set
S.

e The LRP is said to have cost-aware recovery if the recovery plane R
s a minimal dominating subset of R.

e The LRP is said to have complete recovery, if the dim(R) = m.

e An LRP with complete and cost-aware recovery is called a Standard
Linear Recovery Robust Program (SLRP).

We have seen in the motivating example, even if no 0-1-vector outside S*
is covered coincidentally, a large set of other scenarios outside S* is covered
coincidentally. Assume we are given a o-algebra and a probability measure
p for the set of all scenarios in S*. Then for an SLRP we can calculate a
lower bound for the probability mass of the scenarios between S* and the
recovery plane.

Algorithm 2: VOL(v, k, u)

Compute the maximal edge e of S* for the outer normal vector v to R
as objective function.

Compute a translation of R by a vector 7, such that R + 7 contains e.
Compute Vi, the measure with respect to p of the intersection

S™ N Hg,, of the hypercube with the half-space below R + 7.
Compute V5, the measure of S* with respect to p.

Return V; — V5.

Theorem 4.26. Let (Ag, by, ¢, A, d, D) define an SLRP over S*, and z* be
a recovery robust solution to it. Let v be the outer normal vector of R and p
some probability measure for the space of right-hand side disturbances b with
a suitable o-algebra. Then the output VOL(v, k, 1) of Algorithm 2 gives a
lower bound on the probability under pu that x* is recovery robust.

Proof. Any vector in the area measured by the algorithm has smaller distance
to the recovery plane, than the vertex of S¥ which is maximal with respect
to v. As that maximal vertex is covered by recoverable robustness of z*, the
maximal vertex has at most distance 0 from the recovery plane. Therefore,
all vectors in the area measured by the algorithm have non-positive distance
to the recovery plane, i.e., they are covered by R. U
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4.5.4  Jealous Linear Recovery Robust Problems

The examples motivate to distinguish between SLRPs where the recovery
variables can be negative, and those where they are a priori required to be
non-negative. We will call the later jealous, because figuratively a row jeal-
ously keeps its slack, whereas negative recovery allows to transfer planned
slack from one row to another. Jealous SLRPs play an important role in prac-
tice. The robust timetabling problem is jealous, because of the timetabling
condition: No train is allowed to run ahead of schedule, i.e., produce a neg-
ative recovery.

Definition 4.27. Let (Ag, by, c, A, d, D) define an SLRP over a closed sce-
nario set S. Then the following optimization problem is called a Jealous
Linear Recovery Robust Program (JLRP) over S:

min ¢’z
s.t. APz > B0
V(A,b) € S0 <y e R™:
Az + Ay >b
dy <D

At first sight, jealousy seems enforcable for an SLRP without explicitly
requiring y > 0, by the choice of the planning and the recovery matrix and
the scenario set. At second sight, a subtle difference remains. To impose
y > 0 indirectly, one has to enlarge the dimension of the row space. This
would affect the completeness of recovery. Analyzing coincidental covering of
JLRPs is a little less trivial than for SLRPs. In an SLRP the recoverable area
in the row space is the half space below the recovery plane R. For JLRPs
the role of R is played by the recovery polytope R = A{y >0:dy=D}.

In order to analyze coincidental covering by JLRPs we make some basic
observations:

e The recovery polytope R is a subset of the recovery plane R by defi-
nition. The area covered by R is the Minkowski-sum of that polytope
with O~ = RZ; and therefore a convex set.

e The position of R or R in the row space is fixed, and the negative of the
slack of a recovery robust solution must be in its domination area for all
scenarios. It is more convenient to think in the sequel of b* — Az = 0 as
fixed and the recovery polytope as moving. Obviously, all that matters
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for dominance is the relative position of the recovery polytope and
b* — Az surrounded by the disturbance set S*. The question is the
following: If S* + (b* — Az) lie in the area dominated by R, what else
must be in that area?

e Assuming b* — Ax fixed to the origin the following definition makes
sense. Consider the family of all hyperplanes parallel to the recovery
plane. Define R, as the lowest of those hyperplanes, which still domi-
nates S*. (This is the one used in Algorithm 2.) The recovery polytope
lies in one of those hyperplanes. As R dominates S* the hyperplane
containing R also dominates S*. Therefore, the recovery polytope lies
in a hyperplane above Rj.

e For each vector s € S* there is a vector d, € R with s < d,. Consider
the line segment ¢ := [s, d,]. All vectors in ¢ dominate s. The covered
vector s is below or in Ry, but ds € R and therefore above or in Rj.
Thereby, ¢ must intersect Ry. This intersection is a dominating point
d° € R, for s in the lowest dominating hyperplane.

e Next, we ask for the set of vectors in Ry, which are candidates for
d?, i.e., which could dominate s. Recall that O = RZ, denotes the
positive orthant. For each basis vector e; we have 1/e; 72 0, because of
cost-aware recovery. Therefore, Ry N (O + s) is an m — 1 dimensional
simplex. We can find its m vertices by calculating by calculating the
intersection point {s + Xe; : A > 0} N Ry. Denote this finite set of
vertices by C* = (%, and their convex hull by C' := C; := conv C*.
Indeed, the simplex C' is the set of all dominating points for s in R,.
Thus, d? must lie in C.

e As the set of dominated vectors is convex, we know that conv(d?, S*)
is dominated for every s € S¥. We do not know which vector in C is
d?. But, it is sure that for any s € S* all vectors in (... conv(c, S*)
are dominated by R. So we know that

U ﬂ conv(c, S*)

SeSk ceCly

is dominated by R in all feasible solutions. The following lemma allows
to calculate (... conv(c, S*) by finitely many intersections:

Lemma 4.28. For C* and P* two finite sets in R":
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nconv(c,P*): n conv(c, P¥).

ceC* cEconv C*

Proof. Define C' := conv(C*) and P := conv(P*). One inclusion is trivial.
We have to show for any ¢ € C' and any x, which is in conv(¢;, P) for all
¢; € C* that z can be expressed as a convex combination of P* and c¢. Fix
an z such that

Ve, € C*3dp; € PO < p; < 1:x=pici + (1 — p)ps.

and an arbitrary ¢ € C, i.e., there are non-negative coefficients ~; such
that:

c= g ~v;¢; and g v = 1.
i:c; €C* i:c, €C*

Define &; := %, E=D iecon &, and & == % This means that ) .. 0. & =
1. Therefore, we can write:

r = Z &ilpici + (1 — 1) pi]

1:c;€C*

— Z é%ci—ir Z &(1 — pi)p;

i:c;eC* i:c;eC*
1

= =c+t Z &i(1— pa)pi
- i:c, €C*

To see that x € conv(e, {p; }ic;ec+) it suffices to show that the coefficients
in the last expression sum up to 1.

(1] —
+
ks
—

|

=

é+ Z (1 — i) =

i:c, €C* i:c, €C*

I
(1] —
7
—_

+
Tl
—
|
S
~_

irc, €eC*

1 Vi
1D OE = 3E)
- irc; €C* i iic, €C*

1 -
= =(1+=2-1)=
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Let S* be the vertices of S*, i.e., the 0-1-vectors with exactly k positive
entries. Give indices to the elements of this finite set from 1 to |S*| =r.

Using again that the set dominated by the convex set R is itself convex
we can apply Lemma 4.28 to conclude further that

conv conv(c, S¥) | = conv | S*, conv Cy
U [ convie, s M

seSk ceCy CoG{Cz{cl,02,...,cr}:ci€C;‘i}

is dominated.
Thus, we arrive at the following theorem describing for any JLRP a set
of scenarios that is coincidentally covered by every recovery robust solution.

Theorem 4.29. Let (Ao,bo,c,A,d,D) define a JLRP over S*. Then any
recovery robust solution covers the following subset of scenarios coinciden-
tally:

conv | S, ﬂ conv Cy | \ S*

COE{C:{CI7027---=CT}5CiEC;i}

4.5.5  Disturbances in the Planning Matrix

In this part we discuss recoverable robustness for disturbances in the entries
of the planning matrix A. The results of Bertsimas and Sim [22] accomplish
the vertical integration for this setting in two respects: Firstly, they show
that the (strict) robust counterpart to a linear program is still solvable in
polynomial time. Secondly, they give a stochastic bound on the probability
that a solution of their model will be feasible for scenarios that violate the
I bound—in our terminology, scenarios outside S*.

For the recovery robust setting we can achieve the same result with re-
spect to complexity: our model stays tractable. The recovery robust ap-
proach is a lot more flexible in the way by which it achieves robustness.
This in turn causes problems in deriving a stochastic bound. To be sure,
the stochastic bound of Bertsimas and Sim applies in the recoverable robust
setting, too. But, as in the right-hand side case, we are interested in hostile
disturbances. We will explain why in this case an a priori bound on coinci-
dental covering cannot be achieved by techniques similar to those proposed
above. The recovery robust solutions can adopt themselves so perfectly to
the given scenario set and the recovery matrix that they rather spare first
stage costs than create coincidental covering. These solutions possess less
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secondary virtues (coincidental covering), because they better fulfill their
primary assignment, namely, to minimize the objective function while cov-
ering the scenarios in S.

For a system of inequalities and disturbances only in the right-hand side
it is a priori clear for each inequality, whether a positive or a negative dis-
turbance is harmful. Assuming w.l.o.g. the form Az > b for a minimiza-
tion problem, the hostile problem is confined to positive disturbances, i.e.,
b* = b* + 2® with 0 < z° < A,.. In case the planning solution x < 0 must be
non-negative, also disturbances in the planning matrix A have a single hostile
direction. Every positive disturbance works in favor of feasibility. Therefore,
a stochastic claim about reliability resting on assumptions for lower bounds
on the probability of positive disturbances is at least not surprising. The
fact that the computed solution is still feasible, in case things turn out bet-
ter than expected, will not impress a practitioner. So we request x > 0 and
assume all disturbances in the planning matrix to be hostile, i.e., negative.

In case x is not required to be non-negative by the application, we use a
substitution as in the Soyster model (cf. Problem 4.30).

To combine horizontal and vertical integration of the protection we limit
the disturbances row-wise by k and in total by k. For convenience we split
the planning matrix A = A* — A into the matrix A* of the reference scenario
minus the disturbance matriz A, for which we require every entry to lie
between 0 and A, = 1. This means, we define the set of all likely scenarios
Sk:k via the set of disturbance matrices

g = {A e R™": ZCLZ']' < /;;,Zaij < k,O < Q5 < Aoo}
J ]
Assume k and k integer and Ao = 1. The fractional cases can be handled
in a similar way. But we confine this presentation to the integral case for
clarity.
All together, the central object of this section are SLRPs of the following
form:

min ¢’z
s.t. Al > B0
VAe {A*— A Ae S}y
Az + Ay >b
z >0

with
S={AeR™:> ay <k a;<k0<a;<1}

J v
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The Adversary’s Choice In case of right-hand side disturbances, which
we consider in the previous parts, the adversary can influence directly the
situation in the row space. A disturbance of size ¢ in the i-th component
of the right-hand side causes directly a change of ¢ in the direction of the
i-th basis vector. In case the adversary influences the disturbance matrix,
its power is indirect. A change in a;; influences in the direction of the i-basis
vector to an extend that depends on the value of the j-th component z; of
the planning solution. Therefore, it makes sense for disturbed matrices to
distinguish between the disturbance and the aberration, i.e., the change in the
row space caused by the disturbance. The image of a planning solution under
the reference scenario’s matrix A* is the origin of an aberration polytope?
containing all vectors in the row space to which the adversary can defer
the original image of the solution. These are the objects that receive our
attention in the sequel.

In particular we are interested in those vectors of the aberration polytope,
that correspond to worst case scenarios. These are surprisingly easy to find.
For a fixed solution x the adversary aims to choose a matrix A € S such that

Vy: Ay >b— Az + Az = d'y > D.

In other words, the adversary maximizes (Az)'v over all matrices in S,
where v is the outer normal vector of R. We can describe these maximal
solutions quite well. The key observation is that for a fixed tuple of row
sums (a;); of the disturbance matrix A = (a;;);; the maximal scalar product
of Az and v can be calculated in a straight forward way.

Observation 4.30. Let a; := ) a;; be the sum of the i-th row of the distur-
bance matriz.

1. For fixed x and fixed values a;, 1 < i < m, a disturbance matriz mazi-
mizing (Az)'v can be constructed in the following way: In the i-th row
set the coefficients for the |a;| largest entries of x equal to 1, and that
of the (la;] + 1)-th largest entry of x equal to a; — |a;], and the rest
zero.

2. Let the sums a; again be variables within the limits Zogigm a; < k and

0 < a; < k. The products Az of the disturbance matrices resulting from
the above construction, and the fixed solution x lie in a polytope spanned
by those products, which stem from tuples (a;); € N™ of integral row

5um53 .

2At this point it may not be obvious that the set of possible aberrations is actually a
polytope for St ;. But this will become clear soon.
3At this point we exploit the integrality of & and k. For fractional values one would
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(c) k=6,k=4 (d) k=T7,k=4

Figure 4.13: Aberration polytopes for solutions with maximal entries (8,4,2,1) (red
vertices), (5.25,4.25,3.25,2.25) (green), and (3.75,3.75,3.75,3.75) (solid) for 4 < k < 7.

3. Enumerate all m-tuples (a;); € N™ of integers with 0 < a; < k and
> a; = k. This gives all row sums, which characterize the disturbance
matrices of a possible worst case scenario. The corresponding aberra-
tions form finite superset for the vertices of the aberration polytope.
Note that this enumeration is independent of the solution x.

An example will make this observation more transparent. Use Z; to de-
note the i-th greatest entry of a solution z. Let k = 4 and z; = 8,7, =
4,73 = 2, and T4y = 1. By, the above observations we need not consider ;

have to keep track of the fractional rest, which is possible, but distracts the attention from
the important insights.
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(e) k=12,k =4

Figure 4.14: Aberration polytopes for solutions with maximal entries (8,4,2,1) (red
vertices), (5.25,4.25,3.25,2.25) (green), and (3.75,3.75,3.75,3.75) (solid) for 7 < k < 12.
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=4,k = =4,k =
\VAVAVAV// @
(d) k=5k=4 (&) k=5k=4 —5 k=4
(g) k=6k=4 (b) k =6,k =4 —6, k=4
(G) k=T k=4 (k) k=7,k=4 Yk=Tk=4
Figure 4.15: Aberration polytopes for solutions with maximal entries

(3.75,3.75,3.75,3.75) (left), (5.25,4.25,3.25,2.25) (middle), and (8,4,2,1) (right)
for 4 < k < 7. For the balanced solution (left) we also depict the degenerated vertices.

for any index ¢ > k. As we want to visualize the aberration polytope, we
choose m = 3. Accordingly, k will range from 12 (= mk) down to 4 (= k),
as below that threshold the effect of k vanishes.

Figure 4.15* and Figure 4.16 show in the left column the aberration poly-

4For an animated comparison go to [55]. The images are created with the help of
POLYMAKE [33].



134 RECOVERABLE ROBUSTNESS

A

(a) k=8,k=4 =8 k=4 =8, k=41
(d) k=9k=4 (e) k=9k=4 (f) k=9,k=4

(g) k=10,k=4 (h) k=10,k=4 (i) k =10,k =4

(m) k=12,k=4 ) k=12,k=4 ) k=12k=4

Figure 4.16: Aberration polytopes for solutions with maximal entries
(3.75,3.75,3.75,3.75) (left), (5.25,4.25,3.25,2.25) (middle), and (8,4,2,1) (right)
for 7 < k < 12. For the balanced solution (left) we also depict the generated vertices.
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topes of this planning solution for different k. The origin in the background
of the pictures corresponds to the point b— A*x in the row space. A solution
x is recovery robust if the whole polytope lies below the recovery hyperplane
R. The vertices of such a polytope correspond to the extremal choices of a;
as described in the above observation.

In the middle and right row of Figure 4.15 and Figure 4.16 we show
the aberration polytope for the same values of £ but two other planning
solutions. In Figure 4.13 and Figure 4.14 the aberration polytopes of different
planning solutions for the same k are drawn together. In each subfigure,
the lowest polytope (with green vertices) corresponds to a vector z with
maximal four entries equal to 3.75. Because all maximal four entries are
equal, the combinatorics of these polytopes are simpler: Some of the vertices
are degenerated. The middle polytope (with blue vertices) corresponds to
a solution x with the following maximal entries: T; = 5.25, 29 = 4.25, 73 =
3.25, and x4 = 2.25. Here the combinatorics are equal to those of the first
solution, but the aberration polytopes contain those of the second planning
solution and are contained in those of the first. Note that all solutions x
have equal sum of the four greatest entries.

The planning solution influences heavily the shape of the aberration poly-
tope. Two observations are apparent from the pictures:

e A more balanced solution causes less freedom for the adversary to
deviate.

e The shape of the aberration depends on the relative values of the k
maximal entries of x. Figuratively, the aberration can change from flat
to ballooned, while the sum of the maximal values remains invariant.
Therefore, an a priori, polyhedral analysis of the coincidental covering
of scenarios as in the previous section seems impossible.

Strict Robustness Figure 4.13 and Figure 4.14 also illustrate an advan-
tage of recoverable robustness in comparison to strict robustness. The strict
robust approach cannot make use of the fact that there is a vertical limit k
for the disturbance matrices A. In the perspective of strict robustness we al-
ways have k = mk. The three solutions for which we draw the figures create
significantly different aberration polytopes—except for k = 12, where the
three polytopes coincide. But this is the only case that strict robustness can
consider. The strict robust approach cannot distinguish between the robust
qualities of the fully balanced solution (drawn solid) and the other solutions.
Figuratively, a strict robust solver only sees three identical hypercubes as
aberration polytopes of the three solutions. In contrast, in the perspective
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of the recovery robust solver the solutions cause three different, nested poly-
topes. This visualizes nicely the edge in information recoverable robustness
has above the strict approach.

Tractability The important question is, whether one can handle this extra
information efficiently. Is there a polynomial time algorithm to solve SLRPs
with disturbed planning matrix limited in S**? The answer is affirmative,
and we will provide for it in the sequel.

As a first and direct approach we can enumerate the possible vertices of
the aberration polytope. This approach will be polynomial in m (and in n
and 7) but exponential in k& (and k). To establish this, we have to count
the number of possible vertices of the aberration polytopes for given k, k,
and m. Remember that we characterized a set of candidates for the vertices
independent of the planning solution .

In a second step, we show that the linear program resulting from this
enumeration can efficiently be separated. Thus, there is an algorithm for
SLRPs over S®* (k part of the input) with polynomial running time by the
ellipsoid method. For practical purposes the given separation can be used
for an approach by delayed constraint generation.

Lemma 4.31. The aberration polytope of an SLRP with m-dimensional row
space over S** has at most

o(m, k) =1+ g—l% (k i 1) (TZ) € O(m")

vertices.
Proof. There are

m

(k+m—1) € O(m")

m-tuples of integers with sum equal to k. Now, we only have to throw out
those tuples that have at least one integer greater than k. For convenience

set k+ 1 = r. Consider the
k—r4+m-—1
m

m-tuples of integers with sum equal to k& — r. Changing one of the m, say
aj, to a; +r, guarantees that the resulting tuple will have at least one entry
larger than r — 1(= k). We have m choices for this change. So, we can

subtract
(k —r+m-— 1)
m
m
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except that this way we subtract twice those tuples that have at least two
entries greater than r — 1. So, using an inclusion-exclusion argument we

arrive at the formula
T kE+m—40r—1\/m
—1)* .
> e (TRITT)()

The last vertex is the origin. O

Separation In the scenario expansion of the SLRP we can now restrict the
infinite scenario set S®* to the finite set of (¢(m, k) — 1)-many potentially
maximizing m-tuples of row sums (a;);. Denote this set of m-tuples by
® := ®(m, k). We can replace for each m-tuple (a;); the expression Az
by (>°,., Z¢);. By the above lemma this yields a linear program of size
in O (¢(m, k)m(n + n))—called the Aggregated Expansion of an SLRP over
Skk—with the same set of feasible solutions as the SLRP (and, of course, an
identical objective).

MiN (g 7)>0C T
Al > b0
R(z,z)>r
V(a;)i € ®:

(o))

with the constant H is the distance of the recovery plane from the original
right-hand side b in direction of the recovery plane’s outer normal vector v.
Further, the matrix R together with the vector r define a system of linear
constraints which in a maximization framework yield a value of z; equal to
that of i-th largest entry of x.

For this linear program we can easily show the following lemma.

Lemma 4.32. The Aggregated Expansion of an SLRP over S** can be sep-
arated in polynomial time.

Proof. We show that, given the outer normal vector v of the recovery plane
and the maximal entries Z of a solution x, a greedy algorithm can find the
maximal vertex z!"** of the aberration polytope with v as objective function.
If some scenario cannot be recovered for solution x, then its vector in the

aberration polytope, and therefore also 2" must lie above the recovery
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plane. Hence, the algorithm either returns a scenario, i.e., a polynomial set
of inequalities, containing a violated inequality, or proves that x is recovery
robust.

We are given an k-dimensional vector Z and an m-dimensional vector v,
which is orthogonal to the recovery plane. We construct the k-m many pairs
(Z;, vj) of their entries. To such a pair we assign a weight equal to z; - v;.
To construct a maximal vertex, we choose k of these pairs with maximal
sum of weights. A chosen pair (Z;, v;) corresponds to the adversary changing
maximally the coefficient of the i-th biggest entry in the j-th row of the
planning matrix. As there are only k& many pairs with the same v;, we have
that in each row at most k entries can be changed. The resulting maximal
set of pairs represents a potential vertex of the aberration polytope of z,
which is either below and the closest to the recovery plane among all edges
of the aberration polytope, or beyond the recovery plane.

Obviously, this problem is a matroid maximization, and can be solved by
a greedy algorithm.

O

One can construct a different matroid problem, using Observation 4.30
and thereby avoid to generate all k£ - m many pairs.
By the equivalence of separation and optimization [34] we get:

Theorem 4.33. An SLRP over the scenario set S¥* can be solved in poly-
nomial time.

Back to Stochastic Programming We have seen that we can solve an
SLRP with disturbed planning matrix. To this end we showed that programs
of the following form can be separated efficiently:

min ¢z
s.t. Ax > b

F(k,fc,AD)x > V(k,k,A,D)
x>0

where ' ¢ 4 py and .1 4 p) define a set of linear inequalities which
ensure a feasible solution x to be recoverable by the recovery matrix A with
cost at most D in all scenarios of S*F.

Assume the management of a railway service provider sets up the follow-
ing requirement. In case of few disturbances the total delay shall be very
small, in case of several disturbances it may be a bit larger, and in case of
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enormously many disturbances in the system, the delay must still stay below
a given, though large bound. This way the management can describe its
risk aversion without reference to a distribution. We can incorporate such a
requirement into our approach.

Let k and A be fixed and write ['(,py and v, py for short. Assume we are
given a multi-criteria planning objective in the form of pairs of a maximal
total disturbance k£ and an acceptable corresponding recovery budget Dy
for every 1 < k < k. and some large, upper bound k... By the same
separation algorithm as above we can solve the following program:

min ¢z

s.t. Axr > b

P(kmaX7kaaX)x Z ’Y(kmaxl)kmax)
x>0

We have to call the separation oracle k™**-many times separately for

each robustness criterion, I'; p,y» > v¢,p,)- The resulting solution will for
each level of disturbance fulfill a different guarantee to stay below a certain
recovery cost.

To proceed one step further, think of the vector (D;); as a vector of

variables instead of constants and introduce constant vectors (D;); and (C;);
with same dimension as (D;);. Then

minc'z + C'D (4.37)
s.t.

allows to trade maximal recovery cost for different scenario sets. Note
that Problem (4.37) is similar to a scenario aggregation of a 2-stage stochastic
program: For a given probability measure u set Cj, := u(S*)—p(S*~1). Then
the objective of Problem (4.37) resembles an expected value.

To make the comparison more explicit: Assume the complete scenario
space S is finite. Create a singleton as scenario set {s'} for each element
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of S and set the corresponding cost C; to the probability of that scenario.
Then the objective C'D is the expected value of the second stage cost of a
2-stage stochastic program.

Still, for non-singletons as scenario sets the interpretation of C' as a vector
of probabilities contains a subtle difficulty: By our above analysis we have
seen that solutions will cover in general more scenarios than required within
a certain recovery budget. This means, we will count recovery cost D, for
all scenarios with total disturbance equal to k, although some of them can
be recovered at a lower cost, e.g., by D,_q. This is the imprecision we were
aiming to quantify in the polyhedral perspective. But we have seen that this
analysis is not likely to succeed for the case of disturbed planning matrices.

As an advantage the above program still produces a solution that fulfills
a guarantee, even several guarantees, in contrast to a stochastic objective
function. Imposing D < D we guarantee for each k a certain maximal recov-
ery cost Dj. This can be achieved without any knowledge about underlying
distributions. The quality guarantees can be more valuable to a practitioner
than a risk measure.

In this multi-criteria approach recoverable robustness can be used to com-
bine the virtues of stochastic programming and robust optimization.

4.5.6  Overview of the results

The following diagram summarizes the central results in comparison to the
classical models by Soyster and by Bertsimas and Sim.
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Tractability All models are solvable by polynomial size linear programs.
The recoverable robust program with right-hand side disturbance is partic-
ularly compact for the scenario set S*. This scenario set can also be used
for practical situations in which a higher number of smaller disturbances is
likely.

Right-hand Side Disturbances The two classical models are usually
presented for matrix disturbances only. Still, right-hand side disturbances
can be introduced to the model in a simple way. Replace for a program of
the form Az > b each entry of b by the maximal value, which it may attain
in any likely scenario. Of course, this is a conservative approach and for
reasons of simplicity usually not mentioned. Recoverable robustness is the
only non-trivial robust approach to right-hand side disturbances.

Integrated Protection Introducing recovery to robust models is an end
in itself and yields an approach in between strict robustness and 2-stage
stochastic programming. By this approach the concept of integrated pro-
tection in classical robustness can be enhanced significantly. Integrated pro-
tection means that the solution need not be protect against each data entry
being separately disturbed, but against scenarios for which only a limited
amount of total disturbance occurs. So far one could only construct an
integrated protection against the disturbances within each row separately.
Introducing recovery to robust programs opens the door for integrating the
disturbances of all matrix entries. For right-hand side disturbances this ver-
tical integration is the only fruitful integration. (There is only one right-hand
side entry in each row, thus horizontal integration is vain.) Without vertical
integration right-hand side models are over-conservative. Without recovery
no vertical integration is possible.

Coincidental Covering Bertsimas and Sim were the first to give a priori
lower bounds for the probability of robust solutions being feasible in larger
scenario sets than those they are constructed for. This links robust optimiza-
tion to chance constraints. Their bounds strongly rest on the non-hostility
of the disturbances. These bounds are powerful only if all disturbances occur
in a small, fixed set of rows.

We give a different type of analysis for this phenomenon of coincidental
covering which holds for the whole system of inequalities and which even
holds for hostile disturbances. In fact, this is the first analysis of coincidental
covering for right-hand side disturbances.

The analysis shows that for matrix disturbances a recovery robust solu-
tion can adapt much more accurately to the given scenario set than a strict
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robust solution. Therefore, the recovery robust solution may (intentionally)
avoid coincidental covering in order to enhance the objective value.

Suitable Problems Consider the following classical problem for linear
programming. A plant can run n different production processes. The amount
of time for which a certain process runs is expressed in the decision variable
x;. The inventory of the plant holds a certain quantity b, (1 < i < m)
for each of the m raw materials used in the processes. The amount of raw
material 7 used in one time unit of process j is given by the matrix entry a;
of the matrix A. In case a;; is negative, the j-th process produces |a;;| units
of material 7 in each time unit as. Further we are given some n-dimensional
vector ¢, where ¢; expresses the income we gain from running process ¢ for
one unit of time. In case we want to maximize our income, we should solve
the problem max,>( ¢’z subject to Az <.

Next, we become aware that the data in A is slightly wrong. Each actual
a;; lies in a small interval around the given value a;;. We can still solve
the above optimization problem and wait for a natural adjustment: If some
raw material is depleted before a process using it has complete its assigned
time, then the process has to stop earlier. The resulting production may
yield significantly less income than a production plan x constructed by the
Soyster model. If almost no matrix entry will have the planned value, the
Soyster model is a good and simple approach.

If only one the materials has changes in its corresponding matrix entries
and the sum of these changes is bounded, then we can apply the Bertsimas-
Sim model to the row of that material in order to get a better income than
by the Soyster model.

If we can assume that each of the production processes will be planned
for a time which is clearly larger than the adjustments in any scenario, then
a negative recovery is always admissible. Assume further the recovery will
cause extra costs (e.g., in manpower) if the total time that the processes
run exceeds the work time that was planned. Impose an upper bound to
the use of extra manpower. This problem can be formulated as an SLRP
with disturbed planning matrix. The result gives a higher income than the
previous models. Moreover, this model allows for vertical integration of the
scenario set, which again can increase the income. Finally, the recoverable
robust approach can also handle a different kind of uncertainty, which might
be even more important than the one considered so far in this example: The
actually stored amount of material ¢ in the inventory may differ from the
planning data b;. This can also be modeled as an SLRP.
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