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Abstract

We present a simple randomized algorithmic framework femazted facility location problems. The
basic idea is as follows: We run a black-box approximatiggoathm for the unconnected facility loca-
tion problem, randomly sample the clients, and open théitiasiserving sampled clients in the approx-
imate solution. Via a novel analytical tool, which we tecare detouringwe show that this approach
significantly improves over the previously best known apgpration ratios for several NP-hard network
design problems. For example, we reduce the approximaditim for the connected facility location
problem from 855 to 400, and for the single-sink rent-or-buy problem fromd3to 292. We show
that our connected facility location algorithms can be ddoanized at the expense of a slightly worse
approximation ratio. The versatility of our framework isndenstrated by devising improved approxi-
mation algorithms also for other related problems.

*Institut fur Mathematik, Universitat Paderborn, GermaBmail: eisen@math.uni-paderborn.de.

TDipartimento di Informatica, Universita di Roma “La Sam@’, Via Salaria 113, 00198 Roma, ltaly. Email:
grandoni@di.uniromal.it. On leave at TU Berlin.

FInstitut fur Mathematik, Universitat Paderborn, GermpaBmail: rothvoss@math.uni-paderborn.de.

8Technische Universitat Berlin, Institut fur Mathemati®trale des 17. Juni 136, 10623 Berlin, Germany. Email:
schaefer@math.tu-berlin.de.



1 Introduction

We consider network design problems that combine facibigation and connectivity problems. These
problems have a wide range of applications and have recestBived considerable attention both in the
theoretical computer science literature (see, e.g., [911226]) and in the operations research literature
(see, e.g., [19, 23)).

As an example (see also [1, 26]), consider the problem odliimgy a telecommunication network in-
frastructure. The network consists of a central high-badtiwcorewith unlimited capacity on the links and
individual connections fronendnodego nodes in the core. Among the potential core nodes, we reed t
select a subset that we connect with each other, and themtreaitraffic from each endnode to a core node.
Each core node comes with an installation cost and we asshanthe cost of installing the high-bandwidth
links in the core is larger than the (per unit) routing costrirthe endnodes to the core.

We can model the scenario above asomnected facility location probleffCFL). We are given an
undirected grapl® = (V,E) with edge costg : E — QT, a set of facilities¥ CV, a set of client®) CV,
and a parametdvl > 1. Every facilityi € & has an opening codt(i) € Q" and every client € D has
a demandl(j) € Q. The goal is to determine a subgetC ¥ of the facilities to be opened, assign each
client j € D to some open facility(j) € F and to build a Steiner trek connecting the open facilities such
as to minimize the total cost

> 10 +M 3 cle) + 3 d(i)di,oli), (1)

e ec €D
where/(v,w) is the shortest path distance between verticesc V in G (with respect tcc). We refer to
the first, second and last term in (1) as thgening costSteiner costand connection costrespectively.
Subsequently, we assume that every clipat? has a unit demand(j) = 1. This assumption is without
loss of generality as we may replagby several copies of co-located unit-demand clients. Therdthms
presented in this paper can easily be adapted in order topolynomial time even if the original demands
are not polynomially bounded in the numbeof vertices; we refer the reader to [12] for additional dstai

The special case wherg =V and all opening costs are zero is known asgimgle-sink rent-or-buy
problem(SROB). There are various natural extensionsQfL that differ with respect to the underlying
facility location and core connectivity problem. For exdeypn theconnected k-facility location problem
(k-CFL) we can open at mogtfacilities. We may alternatively consider the variant@fL where the open
facilities are connected by a traveling salesman tour. Wetlealatter problem theéour-connected facility
location problem(tour-CFL).

Our Results. We present an algorithmic framework to devise simple apgpration algorithms for con-
nected facility location problems. Via a novel analytiaablt which we terncore detouringwe are able to
show that this framework yields approximation algorithimattsignificantly improve over the previous best
approximation ratios for the problems mentioned above mFachigh level point of view, our framework
works as follows:

1. Compute an approximate solution for the (unconnectetiljtfelocation problem.

2. Randomly sample the clients and open the facilities sgrsampled clients in the approximate solu-
tion.

3. Compute an approximate solution for the connectivityofm on the open facilities and assign clients
to the open facilities.

We remark that in Steps 1 and 3, we can use any approximatimmithim for the (unconnected) facility
location and core connectivity problem as a black box—th@a us to use the current best approximation
algorithms for the respective subproblems.



Problem  This paper Previous best

CFL 4.00 8.55 Swamy and Kumar [25, 26]
4.23
SROB 292 3.55" Guptaetal. [11, 12]
3.28 4 van Zuylen and Williamson [27]
k-CFL 6.85° 15.55° Swamy and Kumar [25, 26]
6.98
tour-CFL 4.12 5.83* Ravi and Salman [22] (special case only)

Table 1:Improved approximation ratios obtained in this paper; etg@dapproximation ratios are marked with a star.

Our framework yields a H0-approximation algorithm fo€FL, which improves over the current best
primal-dual 855-approximation algorithm by Swamy and Kumar [25, 26]. He special case SSRORB
our algorithm provides a.22-approximation, hence improving on the current beSb-&approximation al-
gorithm by Gupta et al. [10, 11]. We show that our algorithms $ROBand CFL can be derandomized
using the method of conditional expectations (see, e.g]) Ehd an idea that van Zuylen and Williamson
[27] used to derandomize tHeROBalgorithm of Gupta et al. [10, 11]; thereby the approximatratios
degrade only slightly. We eventually demonstrate the wiitgeof our framework by applying it to the
problemsk-CFL and tour-CFL, for which we improve the current best known approximatiatios. The
results presented in this paper are summarized in Table 1.

A key ingredient in our analysis is that we use a na@le detouring schemi® bound the expected
connection cost of random sampling algorithms. The basa id to construct (ideally) a sub-optimal
connection scheme and to bound its cost in terms of the optirmast. In this scheme, we reassign the
clients to open facilities by detouring their connectiorthgathrough the core in the optimum solution.
This construction is set up such that the reassignment feqilgr symmetric, which allows us to bound
the expected cost of the detoured paths. As a by-product o&ialysis, we obtain a polynomial-time
approximation scheme (PTAS) for the above problem®|fM is a constant. This might be of independent
interest.

Previous and Related Work. The network design problems considered here are NP-ha@h[BAPX-
complete [2, 4, 21], as they contain the Steiner tree proldethe metric traveling salesman problem as
a special case. Researchers have therefore concentramatanmng good approximation algorithms for
them.

CFL and SROBhave recently received considerable attention in the coenggience literature. Gupta
et al. [9] obtain a 1®6-approximation algorithm foCFL, based on rounding an exponential size LP.
The current best algorithm fo€FL is a primal-dual &5-approximation algorithm by Swamy and Ku-
mar [25, 26]. Better results are known f8ROB Gupta et al. [9] give a 91l-approximation algorithm.
Swamy and Kumar [25, 26] describe a primal-duéd54approximation algorithm for the same problem.
Gupta, Kumar, and Roughgarden [12] propose a simple randonplsg algorithm which gives a.85-
approximation. Gupta, Srinivasan and Tardos [14] showtttigialgorithm can be derandomized to obtain a
4.2-approximation algorithm. In a recent work, van Zuylen &vitiamson [27] present a derandomization
of the random sampling algorithm that yields a 4-approxiomat

Swamy and Kumar [25, 26] give a Bs-approximation algorithm fak-CFL, which is also the current
best. Ravi and Salman [22] consider the special caseuwrfCFL, where =V and all opening costs are
zero, and give a.B3-approximation for it.

Most of the existing random sampling algorithms for conaddtcility location problems are analyzed



by means ostrict cost sharegsee, e.g., [10, 12] and in particular the exposition in ],ldJconcept originat-

ing from game-theoretic cost sharing. Basically, thes¢ slugres are used to relate the expected connection
cost of the computed solution to the cost of the core in theraph solution. This concept has been used
successfully to obtain simple and good approximation @lgms for network design problems, such as
SROBJ11, 12] andMROB [3, 7, 10], the multi-commodity counterpart SROB However, its use failed to
prove better bounds for more general connected facilitgtion problems. In fact, in [12], Gupta et al. leave
open the question whether a randomized sampling approadhecased to improve the primal-dual approx-
imation algorithm of Swamy and Kumar [25, 26]. In this papeg, answer this question affirmatively.

Organization of Paper. In Section 2, we study core connection games, which form #séskof our core
detouring scheme. We present the polynomial-time appratan scheme for constam?/M in Section 3.
Our random facility sampling framework f@FL and SROB and its analysis are given in Section 4. The
extensions of this framework to other connected facilitalion problems are outlined in Section 5. Finally,
we give some conclusions in Section 6.

2 Core Connection Games

In this section, we study some random games that wecoadl connection games hese games form the
basis of our core detouring scheme introduced in Section 4.

Consider the following setting. We are given a 8¢f core nodeghat are connected by an undirected
cycle C, which we call thecore Every core nodéee A has exactly onelient node je D assigned to it, i.e.,
|A| = |D|. We useu(j) € N to refer to the core node gfe . Each client node € D has two oppositely
directed edgesj,i) and (i, j) to its respective core node= l(j); see Figure 1 in the Appendix. L&,
be the set of all edges that are directed from client nodesr® @odes and,; the set of all oppositely
directed edges. Defin® = #, U Ho,r. Let G = (V,E) be the resulting graph and: £ — Q™ a non-
negative weight function on the edges®f We slightly abuse notation here by usiggC ‘ to refer to the
set of undirected edges in the cycle. B{S) we denote the total weight of all edgesdrc .

We now consider the following randoaycle-core connection gamé/e mark one client node uniformly
at random, and every other client node independently witkvgility p € (0,1). Now, every client node
j € D sends one unit of (unsplittable) flow to the closest markahthode (with respect to the distances
induced byw). We bound the cost of the total flow sent in this game in thiedahg theorem.

Theorem 1. The cost X of the flow in the cycle-core connection game s&tisK| < w(H) +w(C)/(2p).

Proof. We bound the cost of the following sub-optimal flow routindpeme: Every clienfj € D sends its
flow unit to a closest marked client, with respect to unit edgeghts (breaking ties uniformly at random);
see Figure 1. The symmetry properties of this routing scherake it easier to bound its expected cost.
Let f(e) be the flow on edge € £ and letY denote the total cost of this flow (with respect to the origina
weights). ClearlyE[X] < E[Y].

By linearity of expectation, the cost of this flow is

ecH ecC

Note thatf (e) < 1 holds deterministically for every edge= #,. By symmetry reasong|f (e)] < 1 for all
edgese € Hoyt.

It remains to bound the expected flow on the edges of the cygain exploiting the symmetry of the
routing scheme, it is sufficient to consider an arbitraryeeelg C. Let X; be the number of edges of the



cycle crossed by the flow-path of a given client ngd€learly,

Z f(E) = Z Xj.
ecC €D

By symmetry, we can conclude th&ff(e)] = E[X|]. Let us call a core node= p(j) by-sampledf j is
sampled. We now observe thet > k if and only ifi and the firsk nodes ofC to the left and right of are
not by-sampled. As a consequence

Pr(Xj > k) < (1- p) 2+,

where the strict inequality is due to the fact that at leagt core node is by-sampled by assumption. We
conclude that

_EIX] — . i-p _ 1-p _ 1
E[f(e)] =E[Xj] = kgopr(xj >k) < 1-(A-p2_ p2-p) < o

The theorem follows. O

We can modify the cycle-core connection game in a way whibleiter suited for our purposes. Suppose
the core is given by an (undirected) Steiner tie®n the core nodes if\| instead of a cycle. The tre&
may contain some other non-core nodes. As before, event claej € D is assigned to exactly one core
nodep(j). Letp (i) be the set of client nodes assigned to a core nedd/. However, a core nodec A
might now have more than one client node assigned to it vie have|u=1(i)| > 1 for everyi € A'. The
rest of the construction remains the same as before. We defiee-core connection ganaalogously to
the cycle-core connection game.

Corollary 1. The cost X of the flow in the tree-core connection game satiSfi < w(#H ) +w(7T)/p.

Proof. We transform the Steiner treéE into a cycleC using the following standard arguments: We replace
every edge of the tree by two oppositely directed edges amgote a Eulerian tour on the resulting graph.
Starting from an arbitrary core node 4, we traverse this tour and shortcut all nodes that do nonigetio

AL or have been visited before. Let the resulting cycle on thie codes\’ be ’. By triangle inequality,
w(C) <2w(7).

We now replace every core notli ¢’ by a path ofiu=(i)| copies ofi and assign every client nogen
u~1(i) to a unique random copy, i.e., compute a random matchingeaetithe client nodes and the copies.
The weights of the edges in this replacement path are setd@o Benote the cycle obtained in this way by
C. We finally add the two oppositely directed edges betweeryaslent nodej and its unique copy .
LetY be the cost of the flow in the cycle-core connection game. ribtsdifficult to see thaX <Y holds
deterministically. The claim now follows from Theorem 1 hée fact thaw(C) = w(C') < 2w(‘7T). O

3 Polynomial-time Approximation Schemes for Constant?D|/M

In this section, we present polynomial-time approximaschemes (PTAS) for the connected facility loca-
tion problems considered in this papef49| /M is upper bounded by a constant. These PTAS will help to
improve our analysis for the general case; but might alsdf bedependent interest.

Recall that/(v,w) denotes the shortest path distance between vertieesiw in the graphG = (V,E)
with respect tac. We also defing(v,W) = minyew £(v,w) for a given subsétV C V. Letc(S) = Se-sc(€)
denote the total cost of all edges in a SUli3etE.

Theorem 2. If |D|/M = O(1), there is a PTAS fok-CFL.



Proof. Let OPT= (F*,T*,0%) be an optimal solution fok-CFL. We useZ*, O*, S* andC* to refer to
its total, opening, Steiner, and connection cost, resgyti If k is a constant, we can trivially compute
an optimum solution in polynomial time. Lebt > 1 be an arbitrary integral constant and asskme2m.
Consider the following algorithm:

1. For all possible choices & C F with |F| < 2mdo:

(a) Compute an optimal Steiner tréeoverF.
(b) Assign every clienf € D to its closest facilityo(j) in F.

2. Output a minimum cost solutigffr, T, o) obtained.

In Step 1(a), we use, for example, the algorithm by Dreyfuk\&agner [6]. Note that the algorithm outputs
a feasible solution, sincen2< k, and runs in polynomial time.

It is sufficient to show that there is a proper choicda-ofvhich satisfies the claim. Let us constriet
as follows: Initially, setr := {i*}, wherei* is an arbitrary facility inF*. Then, while there exists a facility
i € F*with ¢(i,F) > ¢(T*)/m, addi to F. Note that this way, we ensure that the following two propert
hold for the final seF:

1. For any two facilities,i’ € F, £(i,i") > c(T*)/m.
2. For every facilityi € F*, there is a facilityi’ in F such that/(i,i") < c(T*)/m.

We first show thatF| < 2m. To see this, double the edgesTof, compute an Eulerian tol* on the
resulting graph, and shortcut the vertices ndt ifThe cost of the resulting tour dhis at leastF|-c(T*)/m
due to Property 1. Moreover, the cost of the Eulerian toafls’) < 2¢(T*). Thus,|F|-c(T*)/m<2¢(T*),
which implies thatF| < 2m.

We next bound the cost of the solutionAPX = (F,T,0) for our particular choice of. Clearly,
c(T) <c¢(T*), sinceF C F* and we compute an optimum Steiner tleeverF. Therefore,

2=y {0+ M)+ 3 (1,0() < 3 10)+MT)+ 5 (1,0°() + 3 40" (D)F)

€D icF* jeD jeD
T D| Mc(T* s o1
m M m m m

For the second inequality, we exploit the fact tlias*(j),F) < c(T*)/m by Property 2. Since we can
choosem arbitrarily large, the claim follows. O

Corollary 2. If |D|/M =0O(1), there is a PTAS fo€FL.

Using essentially the same arguments as above, it is nottbarotain a PTAS fotour-CFL under the
same assumptions. We state the following theorem withagfpr

Theorem 3. If | D|/M = O(1), there is a PTAS fotour-CFL

4 Connected Facility Location

Due to the results obtained in the previous section, we caumaes thaM /|D| < € for a sufficiently small
constant > 0. We also assume without loss of generality thgt 1. For a given assignmeatof clients to
facilities, we leto~1(i) denote the set of clients assigned to facility



4.1 Random Facility Sampling

Leta € (0,1] be a constant parameter which will be fixed later. Our algoritandCFL for CFL works as
follows:

1. Compute gpg-approximate solutiorU = (Fy,oy) for the (unconnected) facility location instance
induced by the input instance.

2. Choose a client* € D uniformly at random, and mark it. Mark every other clignihdependently
with probabilitya /M. Let D be the set of marked clients.

3. Open facilityi € Fy if there is at least one marked clientdx@l(i). Let F be the (non-empty) set of
open facilities.

4. Compute gg-approximate Steiner tree @ Augment this tree by adding the shortest path between
every j € D and the corresponding open facility,(j) € F. Extract a tre€l spanningF from the
resulting multi-graph.

5. OutputAPX = (F, T,0), whereg assigns each clierjte D to a closest open facility if.

In Step 4 we might alternatively construct a Steiner treeaty on the open facilities i ; however, this
would lead to a worse approximation factor.

We use the following notation. An optimal solution is derblyy OPT= (F*,T*,0*). We usezZ*, O,
S andC* to refer to its total, opening, Steiner, and connection,aesipectively. Similarly, we usg, O,
SandC to refer to the respective costs APX. We letOy andCy be the opening and connection cost,
respectively, of the approximate solutiéh= (Fy,oy) for the unconnected instance computed in Step 1.

Lemma 1. The opening cost cAPX satisfies G< Oy.

Proof. We open a subset of the facilities kg, which costs at mosDy. O
The following bound on the Steiner cost is inspired by [12E kfcall that we assunid /| D| < .

Lemma 2. The Steiner cost AAPX satisfieE[F < psi(S*+ (o +€)C*) + (a +€)Cyu.

Proof. We obtain a feasible Steiner tree on the marked clienB lry augmenting the optimal Steiner tree
T* by the shortest paths from each clienirio T*. This Steiner tree has expected cost at most

2. ﬂé< 1oy (0F) =S+ () S

Thus the expected cost of the-approximate Steiner tree ovBrcomputed in Step 4 is at most

pSt a 1 *
9+%< |@0C

Additionally, the expected cost of adding the shortestpathm each clienf € D to the corresponding open
facility oy(j) € Fy is at most

a 1 cx 1
0(j,Fu < >Cu
jé< 2y (R = (5
Altogether we obtain

E[S <M (pStS“erst(a |é|>c*+ (%Jr%) Cu> < pst(S' + (a+€)C*) + (a +£)Cu.



Core Detouring Scheme. We next introduce our newore detouring schemi® bound the expected con-
nection cost ofAPX. Notice that, since the clients are assigned to their ctageen facility inF, it suffices
to bound the total cost of connecting every cli¢mt 2 to someopen facility inF. To this aim, we use the
tree-core connection game introduced in Section 2.

We let the tree-cord in the game be the trég* in the optimum solution and set(e) = c(e) for every
edgee in the tree. The client nodes simply correspond to the diémtD. We define the mapping as
the assignment* of OPT. For every client node € D, the weight of the directed edd¢,(j)) € #, is
defined as the connection cd$f§,c*(j)); the weight of the directed edd@(j), j) € Hout is £(c*(}), ) +
2(j,ou(j)). The sampling probability is set top = o /M.

The key-insight now is the following: Fix an outcome of th@dam sampling. For every flow-path
from a client nodej € D to a marked clien§’ € D in G, there is a corresponding path betwgeand the
open facilityoy(j’) in the original graph; moreover, the costs of these pathegual. Thus, for every fixed
outcome of the random sampling, the connection €ost at most the cosX of the flow in the tree-core
connection game. Since this holds true for every fixed ougofrthe random sampling, it also holds true
unconditionally. We can thus bound the expected connectish by the expected cost &f, for the latter,
we derived an upper bound in Section 2. The proof of the falgdemma now follows easily.

Lemma 3. The connection cost &fPX satisfiesE[C] < 2C* +Cy+ S'/a.
Proof. Note that the total weight of the tree-coféis S*/M. From the discussion above and Corollary 1 it
follows

S

M
.2 — 2
. +Cu+

2|9

EIC] < EIX] <w(sH) + = W(T) =2 3 £(1,0°(1)+ 3 (i.ou(D)+
jeD jeD

O

Now we have all the ingredients to prove the main result &f fi@per. The following theorem relies on
the current best approximation factors for Steiner treefaatty location, which areps; < 1.55 [24] and
pr < 1.52 [18], respectively.

Theorem 4. For a proper choice ofl, randCFL is an expected.55-approximation algorithm folCFL.

Proof. By Lemmas 1, 2, and 3,
E[Z] < Ou+psi(S' + (0 +€)C") + (a+€)Cy+2C" +Cy+S'/a.

The optimum solution to the facility location problem in@wakcby the input instance is a lower bound on
(C*+0%). As a consequenc€y + Oy < py (C* 4+ O*). We thus obtain

E[Z] <psi(S +(a+€)C")+2C"+S'/a+ (1+a+¢€)pn (C" +07)
(

<
< (C'+O")(pst(0 +€) + 2+ pa(l+a+€)) + S'(pst+ 1/0).

Choosinge sufficiently small, and balancing the coefficients(6f + O*) and S, we obtain the claimed
approximation ratio foo = 0.334. O

In the special case @RORB we can assume without loss of generality that the facitibation approx-
imation algorithm used in Step 1 eAndCFL opens all the facilities. As a consequeneendCFL opens a
facility at every marked client. By imposingy = O* = Cy = 0 in the analysis of Theorem 4, and choosing
a accordingly, we obtain the following corollary.

Corollary 3. For a proper choice ofl, randCFL is an expecte®.05-approximation algorithm folSROR



4.2 Refinements

We can improve the approximation ratioxfndCFL by combining the following techniques.

(a) Bifactor facility location. We obtain a better approximation ratio if we run a (propefadior ap-
proximation algorithm on the induced facility location tasce in Step 1. An algorithm for the facility
location problem is &po, pc)-approximation algorithm if, for every feasible solutioritiivopening cosO
and connection co€t, the cost of the solution computed by the algorithm is at me€d + pcC. Mahdian,
Ye, and Zhang [18] give &1.11,1.78)-approximation algorithm. Moreover, they (essentiallgpw that
any (po, Pc)-approximation algorithm can be converted intdpg + Ind, 1+ (pc — 1)/8)-approximation
algorithm, for anyd > 1.

Note that an optimum solutio®PT for CFL induces a feasible solution for the underlying facility
location problem with opening co§* and connection co&t*. Exploiting this, we obtain

Cu+0u < (1.11+In3)0* + (14 0.78/8)C*.

We can now optimize the parameteso as to balance the coefficients of the connection and opeoists;
while the parametem is used to balance the Steiner and connection costs.

(b) Flow canceling. We can refine Corollary 1, and hence the bound on the connectist given in
Lemma 3, by means of flow canceling. Consider a given exdge7 in the tree-core connection game,
and lete; and e, be the two edges of associated t@ (because of shortcutting, it might e = &).

If the flows alonge; ande; in C are equally directed (ane} # &), this means that we are sending two
oppositely directed flows alongin 7. In this case, it is possible to cancel the difference of e ftows
(independently for eache T) by redirecting the flow paths in a proper way. The somewtdrtieal proof
of the following lemma is given in the Appendix.

Theorem 5. For |D| > 1/p, the cost X of the flow in the tree-core connection gamefigsig[X] <
wW(#H ) +0.807w(‘T)/p.

In particular, since by assumptidd|/M > 1 anda is a constant, this implies the following refined
bound on the connection cost:

E[C] <2C*+Cy+0.807S /a.
Combining Techniques (a) and (b), we obtain the followingpilem

Theorem 6. There is an expectetiO0-approximation algorithm folCFL. In the special case $RORB the
expected approximation ratio can be reduce@@.

Proof. Let us adapt the proof of Theorem 4. Combining (a) and (b), btaio

E[Z] <Ou+psi(S + (a+€)C*) + (a+¢€)Cy+2C*+Cy+0.807S" /a
< pst(S"+ (a+¢€)C*) +2C" +0.807S /a+ (1+a+¢€)((1.114+1Ind)O" + (1+0.78/5)C")

=C*(pst(0 +€) +2+ (140 +€)(1+0.78/8)) + S'(pst+ 0.807/a) + O ((1+ 0 + €)(1.11+InJ))

a=0.330, =6.657
< 4.00Z*.

The analysis above can be adapte&ROB by imposingCy = Oy = O* = 0. This yields

=0.59
E[Z] < ps(S + (0 +£)C*) +2C" + 0.807S /o " & 2.927"



4.3 Derandomization

We can derandomize our algorithm f@FL using the method of conditional expectation (see, e.g]) [20
and an idea by van Zuylen and Williamson [27]. Consider arssjide choice of a clienj;. Intuitively,
j1 is the clientj that we sample uniformly at random. Lgt js,..., jp be the remaining clients, in an
arbitrary order. Initially, we mark;. In iterationk, k > 2, we decide whether tmark or unmarkclient jy.
Let Dy_1 be the subset of clients i1, j2..., jk—1} that we already marked. Ideally, we would like to mark
client ji if and only if

E[Z|Dk = Dk-1U{jk}] < E[Z|Dx = Dk_1].

This would ensure, for a proper choice jaf that the cost of the final solution is at mosd@dz*.

It is not difficult to see that we can efficiently compute th@ested opening cost and connection cost,
given Dx. The same holds for the expected augmentation cost in Stdéd.problem is that we do not
know how to compute the conditioned expected cost of thenStdéree oveilD. However, as it is shown
by van Zuylen and Williamson [27], we can compute an estinohtdis cost if we use a primal-dual 2-
approximation algorithm for the Steiner tree computatimstéad. In our analysis, we essentially only need
to replaceps; < 1.55 by pst = 2, which gives a slightly larger (but deterministic) apgration ratio.

Theorem 7. There is a deterministid.23-approximation algorithm foICFL. In the special case SROB
the approximation ratio can be reduced3@8.

5 Extensions

Our approach is flexible enough to be adapted to severalatataniants ofCFL. In this section we sketch
two such applications.

5.1 Connectedk-Facility Location

An algorithm fork-CFL is obtained by modifyingandCFL in the following way:

e In Step 1, compute pyr-approximate solutiot = (Fy,oy) for the (unconnectedd-facility location
instance induced by the input instance.

This algorithm can be refined using Technique (b). The falhgwheorem relies on the current best approx-
imation ratio for thek-facility location problem, which ipy; < 4 [15, 16] (see also [28]).

Theorem 8. There is an expectesl85-approximation algorithm fok-CFL.

Proof. By adapting the proof of Theorem 6, we obtain

E[Z] <psi(S + (a+€)C*)+2C* 4+ 0.807S /a + (1+ a + €)pxa(C* + O")
=0.1524
<(C"+0O)(pst(a +€) + 24 pra(1l+a +¢€)) + S (pst+0.807/a) 6852,
O

Also in this case the algorithm can be derandomized by apgplitie technique by van Zuylen and
Williamson.

Corollary 4. There is a deterministi6.98-approximation algorithm fok-CFL.



5.2 Tour-Connected Facility Location

We obtain an algorithm fotour-CFL by adaptingrandCFL in the following way:

e In Step 4, compute psp-approximate TSP-tour od. Then augment the tour by addingo shortest
paths between every client D and the corresponding open facility in  Eventually, compute an
Euler tour on the resulting multi-graph and shortcut it téeifba TSP-toull of F.

The algorithm above can be improved by means of Techniquéd ke following result relies on Christofides’
1.5-approximation algorithm for metric TSP [5].

Theorem 9. There is an expectefl 12-approximation algorithm fotour-CFL

Proof (sketch).We adapt the analysis of Section 4. Trivialy,< Oy. Taking into account the duplication
of the shortest paths from to F, and using a similar duplication when bounding the cost efaptimum
T SRtour overD, we obtain

E[S < pisp(S +2(a+€)C") +2(a +€)Cy.
We can easily adapt Corollary 1 to this case, thus obtai&ixg < w(#)+w(7Z)/(2p). It follows that
E[C]<2C"+Cy+S'/(2a).
Altogether

E[Z] < Ou+ pisp(S' +2(a+£)C") +2(a+£)Cu+2C" +Cy+ S /(20)
< Pisp(S'+2(0 +€)C*) +2C* +S7/(20) + (1 + 2(a +€))((1+0.78/8)C* + (1.11+In3)O")
= C* (2prspla+8) + 2+ (L4 2(0+))(1+0.78/8)) + S (pusp + 1/ (2a))

O(:0.1908i 5:6450044

*

+0((142(a+€))(L11+1In3))

6 Conclusions

We described a simple algorithmic framework, based on nani@eility sampling, to solve connected facil-
ity location problems. By means of our novel core detouricigesne, we showed that this framework yields
much better approximation algorithms for the family of deshs considered.

We leave open the question whether core detouring can alsedakto obtain significantly better approx-
imation algorithms folMROB and the single-sink buy-at-bulk problem. The major diffiguiere is that
the optimum solution does not exhibit a single central civhile a small improvement seems nonetheless
possible for the single-sink buy-at-bulk problem, theatiton is less clear foMROB.

There is a strong relation between random sampling algostand the boosted sampling framework for
two-stage stochastic optimization with recourse by Gupt.g13]. It is a very interesting open question
whether our core detouring scheme also leads to improvex@ppation algorithms in that framework.
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Figure 1. Core connection game instance. Marked client :agde drawn in bold. The flow of in the
routing scheme is indicated by the bold path.

Appendix
Proof of Theorem 50ur client sampling process is equivalent to

(1) Mark each client independently with probabiliy
(2) Choose a clienj* (either marked or not) uniformly at random, and mark it.

Consider the following modified sampling process

(@) Run (1).

(b) If no client is marked in Step (a), run (2).
LetY denote the cost of the flow in the tree-connection game wi#peaet to the modified sampling scheme.
By a simple coupling argument, it is easy to see Hjat] < E[Y]. Intuitively, sampling less clients can only
make the cost of the flow larger (in expectation). Hence itfficent to bounde|[Y].

Let Q denote the event that in Step (b) of the modified game we rungg)elementary probability
theory,

E[Y] = P(Q)E[Y |Q]+PrQE[Y[Q].
Trivially, Pr(Q) = (1— p)!?!. Moreover,

E[Y[Q] <w(#H) + [D|w(T)

We will next show that

E[Y|Q] < w(#H)+0.8067W(T)/p. 2)
From (2) we can conclude that
(H)+w(T) (1— p)?!|D| +0.8067/p)

Wi
wW(H) +w(T) (e P?!|D| +0.8067/p)
wW(H )+ 0.807w(T)/p,

E[Y]

IN

<
<

where we used the assumptigh| > 1/p.
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It remains to prove (2). Subsequently, we assume that thet €v@olds. It is clear thaE[f(e)] <1
holds for everye € #. Thus it is sufficient to show tha&|[f(e)] < 0.8067/p for any givenec 7. Lete;
ande, be the two edges af associated te. We assume by definition that the floifg ) alongeg in C is
positive if it goes clockwise, and negative otherwise.

If eg = e, E[f(e)] = E]|f(e1)]] < 1/(2p) by essentially the standard analysis. Hence, let us assume
e # . In that casd= := f(e) = |f(e;) — f(e)| by flow canceling. The value @&[F] is a (complicated)
function ofp, of m= i

We first need some notation. Lietk = |I |, be the shortest path (in terms of number of hops) betvegen
ande, along C. Without loss of generality, we assuragis on the left side of. Letl’ be the complement
of l U{ey, e} with respect ta’, andk’ := |I'| = m—k—2.

Recall that each node @f is by-sampled with probabilityp, but under the ever(ﬁ that at least one
(random) node is by-sampled. We tp= 1 — p, and distinguish three evends B, andC, which partition
the probability space considered:

(A) No node selected inl, at least one node selected iH. The value ofF is deterministicallyk + 1.
In fact, if h flow-paths alond are directed to the left and the otHe#- 1 — h to the right (event’), then
F1=—h, F, =k+1—h, and altogetheE[F | A'] = E[|(—h) — (k+1—h)|] = k+ 1. Otherwise (everd”), the
flow on e; ande, must go in the same direction, say from left to right, and isthef (e;) = f(e;) +k+1
(e collects the same flow as, plus the flow alond). ThenE[F |A"] = E[|f(e1) — (f(e1) + k+1)|] =k+ 1.

k K
Since evenf happens with probabilit%, the overall contribution of this case to the total expected

flow is )
qk+1(1 o qk +l)
m

Fa=PrAE[F |A] = ———

(K+1).

(B) No node selected ifl’, at least one node selected in By essentially the same argument as in case
(A), we get
qk'+1(1_ qurl)

Fg = Pr(B)E[F |B] = —qm (K +1).

(C) At least one node selected in both and I’.  If we denote byL; (R)) the distance betwees and the
first by-sampled node to its left (right), thét{f(g)] = (Li — R)/2. VariablesLi, Ry, Lz, andR; can be
interpreted as random geometric variables of paramgtender the constraint that = L, + R; < k and
X' =L1+ R, <K. Letus study the random variabl¥sandX'. Note thatE[F |C] = 3E[|X’ — X|]. Moreover,
X andX’ are independent. It is not hard to show that

. 24 .
PrX =i) = (i+1)gm ificlok-1;
(k+1) 2% ifi=k
Analogously |
. (J+1)% if j e [0,k —1;
(k/ + l) Cfl;:rl if j= K.

Note that, as eXpeCte(Z'LOPr(X =)= Z j:o Pr(X" = j) = 1. The contribution of this case to the overall
flow is

(1 qk+1 1— qk'+1 k K

Fc = PHC)E[F [C] = 20— g Z;Z,“_”Pr Pr(X’ = j).
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Recall thatE[F] = Pr(A)E[F|A] + Pr(B)E[F|B] + Pr(C)E[F|C] = Fa+ Fs + Fc. After a simple, but very
long and tedious computation, we obtained

g = —2k+Dd", 200+ a+ )+ (L - ) k(1) (3 ) +(2- 29(1 4 9)%))
1-qm P(L—gM)(1+0)°

2 29(1+9+ ) + (K102 + k(1 - ) (3—?) + (2— 29(1+0)?)

- P(1-¢)(1+a)° ’

wheree > 0 is an arbitrarily small constant. In the last inequalitywsed the assumptions tlats a positive
constant anan= |D| > 1/p. Consider function

20(1+9+9%) , R(q,k)

ROW="17g% "@Trap

where
R(a,k) = g*"2(kK*(1— ¢?)? + k(1 - 0*)(3— ¢?) + (2— 20(1+0)?)).

It is sufficient to show thaR(qg, k) < 0.8066< 0.8067 for anyg andk. Fixing g, and maximizing irk,

2q(1 2

FegReN) = M g g )
2

- 2q((11++ Qq)+3 qQ°) n T TE%X{R’(q,X)}.

By an elementary analysis of functidt(q,x), we found that it has a maximum (either feasible or not) for

-3 1 \/(1+8q+10qz+8q3+q4)Inzq+(1—qZ)2
X=X@) = 2(1—®) 2inq 2(1—?)Inq '

Then, by the constraint> 0, functionR/ (g, x) is maximized fox= 0 if x(q) < 0, and forx = x(q) otherwise.
In other words,

max{R(a,x)} = R(g,max{0,x(a)}).

It follows that

max {R(q,k)} < 29(1+q9+09?)  R(g,max{1,x(q)})

0<k<K (1+q)3 (1+0q)3
We found numerically that the right-hand side is upper bealoly 08066 for any feasible value of This
concludes the proof of the theorem. O
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