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Abstract

We present a simple randomized algorithmic framework for connected facility location problems. The
basic idea is as follows: We run a black-box approximation algorithm for the unconnected facility loca-
tion problem, randomly sample the clients, and open the facilities serving sampled clients in the approx-
imate solution. Via a novel analytical tool, which we termcore detouring, we show that this approach
significantly improves over the previously best known approximation ratios for several NP-hard network
design problems. For example, we reduce the approximation ratio for the connected facility location
problem from 8.55 to 4.00, and for the single-sink rent-or-buy problem from 3.55 to 2.92. We show
that our connected facility location algorithms can be derandomized at the expense of a slightly worse
approximation ratio. The versatility of our framework is demonstrated by devising improved approxi-
mation algorithms also for other related problems.
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1 Introduction

We consider network design problems that combine facility location and connectivity problems. These
problems have a wide range of applications and have recentlyreceived considerable attention both in the
theoretical computer science literature (see, e.g., [9, 12, 17, 26]) and in the operations research literature
(see, e.g., [19, 23]).

As an example (see also [1, 26]), consider the problem of installing a telecommunication network in-
frastructure. The network consists of a central high-bandwidth corewith unlimited capacity on the links and
individual connections fromendnodesto nodes in the core. Among the potential core nodes, we need to
select a subset that we connect with each other, and then route the traffic from each endnode to a core node.
Each core node comes with an installation cost and we assume that the cost of installing the high-bandwidth
links in the core is larger than the (per unit) routing cost from the endnodes to the core.

We can model the scenario above as aconnected facility location problem(CFL). We are given an
undirected graphG = (V,E) with edge costsc : E → Q+, a set of facilitiesF ⊆V, a set of clientsD ⊆V,
and a parameterM ≥ 1. Every facility i ∈ F has an opening costf (i) ∈ Q+ and every clientj ∈ D has
a demandd( j) ∈ Q+. The goal is to determine a subsetF ⊆ F of the facilities to be opened, assign each
client j ∈ D to some open facilityσ( j) ∈ F and to build a Steiner treeT connecting the open facilities such
as to minimize the total cost

∑
i∈F

f (i) + M ∑
e∈T

c(e) + ∑
j∈D

d( j)ℓ( j,σ( j)), (1)

whereℓ(v,w) is the shortest path distance between verticesv,w ∈ V in G (with respect toc). We refer to
the first, second and last term in (1) as theopening cost, Steiner costand connection cost, respectively.
Subsequently, we assume that every clientj ∈ D has a unit demandd( j) = 1. This assumption is without
loss of generality as we may replacej by several copies of co-located unit-demand clients. The algorithms
presented in this paper can easily be adapted in order to run in polynomial time even if the original demands
are not polynomially bounded in the numbern of vertices; we refer the reader to [12] for additional details.

The special case whereF = V and all opening costs are zero is known as thesingle-sink rent-or-buy
problem(SROB). There are various natural extensions ofCFL that differ with respect to the underlying
facility location and core connectivity problem. For example, in theconnected k-facility location problem
(k-CFL) we can open at mostk facilities. We may alternatively consider the variant ofCFL where the open
facilities are connected by a traveling salesman tour. We call the latter problem thetour-connected facility
location problem(tour-CFL).

Our Results. We present an algorithmic framework to devise simple approximation algorithms for con-
nected facility location problems. Via a novel analytical tool, which we termcore detouring, we are able to
show that this framework yields approximation algorithms that significantly improve over the previous best
approximation ratios for the problems mentioned above. From a high level point of view, our framework
works as follows:

1. Compute an approximate solution for the (unconnected) facility location problem.

2. Randomly sample the clients and open the facilities serving sampled clients in the approximate solu-
tion.

3. Compute an approximate solution for the connectivity problem on the open facilities and assign clients
to the open facilities.

We remark that in Steps 1 and 3, we can use any approximation algorithm for the (unconnected) facility
location and core connectivity problem as a black box—this allows us to use the current best approximation
algorithms for the respective subproblems.
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Problem This paper Previous best

CFL 4.00∗ 8.55 Swamy and Kumar [25, 26]
4.23

SROB 2.92∗ 3.55∗ Gupta et al. [11, 12]
3.28 4 van Zuylen and Williamson [27]

k-CFL 6.85∗ 15.55∗ Swamy and Kumar [25, 26]
6.98

tour-CFL 4.12∗ 5.83∗ Ravi and Salman [22] (special case only)

Table 1:Improved approximation ratios obtained in this paper; expected approximation ratios are marked with a star.

Our framework yields a 4.00-approximation algorithm forCFL, which improves over the current best
primal-dual 8.55-approximation algorithm by Swamy and Kumar [25, 26]. In the special case ofSROB,
our algorithm provides a 2.92-approximation, hence improving on the current best 3.55-approximation al-
gorithm by Gupta et al. [10, 11]. We show that our algorithms for SROBandCFL can be derandomized
using the method of conditional expectations (see, e.g., [20]) and an idea that van Zuylen and Williamson
[27] used to derandomize theSROBalgorithm of Gupta et al. [10, 11]; thereby the approximation ratios
degrade only slightly. We eventually demonstrate the versatility of our framework by applying it to the
problemsk-CFL and tour-CFL, for which we improve the current best known approximation ratios. The
results presented in this paper are summarized in Table 1.

A key ingredient in our analysis is that we use a novelcore detouring schemeto bound the expected
connection cost of random sampling algorithms. The basic idea is to construct (ideally) a sub-optimal
connection scheme and to bound its cost in terms of the optimum cost. In this scheme, we reassign the
clients to open facilities by detouring their connection paths through the core in the optimum solution.
This construction is set up such that the reassignment is perfectly symmetric, which allows us to bound
the expected cost of the detoured paths. As a by-product of our analysis, we obtain a polynomial-time
approximation scheme (PTAS) for the above problems if|D|/M is a constant. This might be of independent
interest.

Previous and Related Work. The network design problems considered here are NP-hard [8]and APX-
complete [2, 4, 21], as they contain the Steiner tree problemor the metric traveling salesman problem as
a special case. Researchers have therefore concentrated onobtaining good approximation algorithms for
them.

CFL andSROBhave recently received considerable attention in the computer science literature. Gupta
et al. [9] obtain a 10.66-approximation algorithm forCFL, based on rounding an exponential size LP.
The current best algorithm forCFL is a primal-dual 8.55-approximation algorithm by Swamy and Ku-
mar [25, 26]. Better results are known forSROB. Gupta et al. [9] give a 9.01-approximation algorithm.
Swamy and Kumar [25, 26] describe a primal-dual 4.55-approximation algorithm for the same problem.
Gupta, Kumar, and Roughgarden [12] propose a simple random sampling algorithm which gives a 3.55-
approximation. Gupta, Srinivasan and Tardos [14] show thatthis algorithm can be derandomized to obtain a
4.2-approximation algorithm. In a recent work, van Zuylen andWilliamson [27] present a derandomization
of the random sampling algorithm that yields a 4-approximation.

Swamy and Kumar [25, 26] give a 15.55-approximation algorithm fork-CFL, which is also the current
best. Ravi and Salman [22] consider the special case oftour-CFL, whereF = V and all opening costs are
zero, and give a 5.83-approximation for it.

Most of the existing random sampling algorithms for connected facility location problems are analyzed
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by means ofstrict cost shares(see, e.g., [10, 12] and in particular the exposition in [11]), a concept originat-
ing from game-theoretic cost sharing. Basically, these cost shares are used to relate the expected connection
cost of the computed solution to the cost of the core in the optimum solution. This concept has been used
successfully to obtain simple and good approximation algorithms for network design problems, such as
SROB [11, 12] andMROB [3, 7, 10], the multi-commodity counterpart ofSROB. However, its use failed to
prove better bounds for more general connected facility location problems. In fact, in [12], Gupta et al. leave
open the question whether a randomized sampling approach can be used to improve the primal-dual approx-
imation algorithm of Swamy and Kumar [25, 26]. In this paper,we answer this question affirmatively.

Organization of Paper. In Section 2, we study core connection games, which form the basis of our core
detouring scheme. We present the polynomial-time approximation scheme for constantD/M in Section 3.
Our random facility sampling framework forCFL andSROB and its analysis are given in Section 4. The
extensions of this framework to other connected facility location problems are outlined in Section 5. Finally,
we give some conclusions in Section 6.

2 Core Connection Games

In this section, we study some random games that we callcore connection games. These games form the
basis of our core detouring scheme introduced in Section 4.

Consider the following setting. We are given a setN of core nodesthat are connected by an undirected
cycleC , which we call thecore. Every core nodei ∈ N has exactly oneclient node j∈ D assigned to it, i.e.,
|N | = |D|. We useµ( j) ∈ N to refer to the core node ofj ∈ D. Each client nodej ∈ D has two oppositely
directed edges( j, i) and(i, j) to its respective core nodei = µ( j); see Figure 1 in the Appendix. LetHin

be the set of all edges that are directed from client nodes to core nodes andHout the set of all oppositely
directed edges. DefineH = Hin ∪Hout. Let G = (V ,E) be the resulting graph andw : E → Q+ a non-
negative weight function on the edges ofG . We slightly abuse notation here by usingC ⊆ E to refer to the
set of undirected edges in the cycle. Byw(S) we denote the total weight of all edges inS ⊆ E .

We now consider the following randomcycle-core connection game: We mark one client node uniformly
at random, and every other client node independently with probability p∈ (0,1). Now, every client node
j ∈ D sends one unit of (unsplittable) flow to the closest marked client node (with respect to the distances
induced byw). We bound the cost of the total flow sent in this game in the following theorem.

Theorem 1. The cost X of the flow in the cycle-core connection game satisfiesE[X]≤ w(H )+w(C )/(2p).

Proof. We bound the cost of the following sub-optimal flow routing scheme: Every clientj ∈ D sends its
flow unit to a closest marked client, with respect to unit edgeweights (breaking ties uniformly at random);
see Figure 1. The symmetry properties of this routing schememake it easier to bound its expected cost.
Let f (e) be the flow on edgee∈ E and letY denote the total cost of this flow (with respect to the original
weights). Clearly,E[X]≤ E[Y].

By linearity of expectation, the cost of this flow is

E[Y] = ∑
e∈H

E[ f (e)] ·w(e)+ ∑
e∈C

E[ f (e)] ·w(e).

Note thatf (e) ≤ 1 holds deterministically for every edgee∈ Hin. By symmetry reasons,E[ f (e)] ≤ 1 for all
edgese∈ Hout.

It remains to bound the expected flow on the edges of the cycle.Again exploiting the symmetry of the
routing scheme, it is sufficient to consider an arbitrary edge e∈ C . Let Xj be the number of edges of the
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cycle crossed by the flow-path of a given client nodej. Clearly,

∑
e∈C

f (e) = ∑
j∈D

Xj .

By symmetry, we can conclude thatE[ f (e)] = E[Xj ]. Let us call a core nodei = µ( j) by-sampledif j is
sampled. We now observe thatXj > k if and only if i and the firstk nodes ofC to the left and right ofi are
not by-sampled. As a consequence

Pr(Xj > k) < (1− p)2k+1,

where the strict inequality is due to the fact that at least one core node is by-sampled by assumption. We
conclude that

E[ f (e)] = E[Xj ] = ∑
k≥0

Pr(Xj > k) ≤
1− p

1− (1− p)2 =
1− p

p(2− p)
≤

1
2p

.

The theorem follows.

We can modify the cycle-core connection game in a way which isbetter suited for our purposes. Suppose
the core is given by an (undirected) Steiner treeT on the core nodes inN instead of a cycle. The treeT
may contain some other non-core nodes. As before, every client node j ∈ D is assigned to exactly one core
nodeµ( j). Let µ−1(i) be the set of client nodes assigned to a core nodei ∈ N . However, a core nodei ∈ N
might now have more than one client node assigned to it, i.e.,we have|µ−1(i)| ≥ 1 for everyi ∈ N . The
rest of the construction remains the same as before. We definea tree-core connection gameanalogously to
the cycle-core connection game.

Corollary 1. The cost X of the flow in the tree-core connection game satisfies E[X] ≤ w(H )+w(T )/p.

Proof. We transform the Steiner treeT into a cycleC using the following standard arguments: We replace
every edge of the tree by two oppositely directed edges and compute a Eulerian tour on the resulting graph.
Starting from an arbitrary core node inN , we traverse this tour and shortcut all nodes that do not belong to
N or have been visited before. Let the resulting cycle on the core nodesN beC ′. By triangle inequality,
w(C ′) ≤ 2w(T ).

We now replace every core nodei in C ′ by a path of|µ−1(i)| copies ofi and assign every client nodej in
µ−1(i) to a unique random copy, i.e., compute a random matching between the client nodes and the copies.
The weights of the edges in this replacement path are set to zero. Denote the cycle obtained in this way by
C . We finally add the two oppositely directed edges between every client nodej and its unique copy inC .
Let Y be the cost of the flow in the cycle-core connection game. It isnot difficult to see thatX ≤ Y holds
deterministically. The claim now follows from Theorem 1 andthe fact thatw(C ) = w(C ′) ≤ 2w(T ).

3 Polynomial-time Approximation Schemes for Constant|D|/M

In this section, we present polynomial-time approximationschemes (PTAS) for the connected facility loca-
tion problems considered in this paper if|D|/M is upper bounded by a constant. These PTAS will help to
improve our analysis for the general case; but might also be of independent interest.

Recall thatℓ(v,w) denotes the shortest path distance between verticesv andw in the graphG = (V,E)
with respect toc. We also defineℓ(v,W) = minw∈W ℓ(v,w) for a given subsetW ⊆V. Let c(S) = ∑e∈Sc(e)
denote the total cost of all edges in a subsetS⊆ E.

Theorem 2. If |D|/M = O(1), there is a PTAS fork-CFL.
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Proof. Let OPT= (F∗,T∗,σ∗) be an optimal solution fork-CFL. We useZ∗, O∗, S∗ andC∗ to refer to
its total, opening, Steiner, and connection cost, respectively. If k is a constant, we can trivially compute
an optimum solution in polynomial time. Letm≥ 1 be an arbitrary integral constant and assumek ≥ 2m.
Consider the following algorithm:

1. For all possible choices ofF ⊆ F with |F | ≤ 2m do:

(a) Compute an optimal Steiner treeT overF.

(b) Assign every clientj ∈ D to its closest facilityσ( j) in F.

2. Output a minimum cost solution(F,T,σ) obtained.

In Step 1(a), we use, for example, the algorithm by Dreyfus and Wagner [6]. Note that the algorithm outputs
a feasible solution, since 2m≤ k, and runs in polynomial time.

It is sufficient to show that there is a proper choice ofF which satisfies the claim. Let us constructF
as follows: Initially, setF := {i∗}, wherei∗ is an arbitrary facility inF∗. Then, while there exists a facility
i ∈ F∗ with ℓ(i,F) > c(T∗)/m, addi to F. Note that this way, we ensure that the following two properties
hold for the final setF:

1. For any two facilitiesi, i′ ∈ F, ℓ(i, i′) > c(T∗)/m.

2. For every facilityi ∈ F∗, there is a facilityi′ in F such thatℓ(i, i′) ≤ c(T∗)/m.

We first show that|F| ≤ 2m. To see this, double the edges ofT∗, compute an Eulerian tourE∗ on the
resulting graph, and shortcut the vertices not inF. The cost of the resulting tour onF is at least|F| ·c(T∗)/m
due to Property 1. Moreover, the cost of the Eulerian tour isc(E∗)≤ 2c(T∗). Thus,|F | ·c(T∗)/m≤ 2c(T∗),
which implies that|F | ≤ 2m.

We next bound the costZ of the solutionAPX = (F,T,σ) for our particular choice ofF . Clearly,
c(T) ≤ c(T∗), sinceF ⊆ F∗ and we compute an optimum Steiner treeT overF. Therefore,

Z = ∑
i∈F

f (i)+Mc(T)+ ∑
j∈D

ℓ( j,σ( j)) ≤ ∑
i∈F∗

f (i)+Mc(T∗)+ ∑
j∈D

ℓ( j,σ∗( j))+ ∑
j∈D

ℓ(σ∗( j),F)

≤ O∗ +S∗+C∗ + |D| ·
c(T∗)

m
= Z∗+

|D|

M
·
Mc(T∗)

m
= Z∗+O(1) ·

S∗

m
≤

(

1+
O(1)

m

)

Z∗.

For the second inequality, we exploit the fact thatℓ(σ∗( j),F) ≤ c(T∗)/m by Property 2. Since we can
choosem arbitrarily large, the claim follows.

Corollary 2. If |D|/M = O(1), there is a PTAS forCFL.

Using essentially the same arguments as above, it is not hardto obtain a PTAS fortour-CFL under the
same assumptions. We state the following theorem without proof.

Theorem 3. If |D|/M = O(1), there is a PTAS fortour-CFL.

4 Connected Facility Location

Due to the results obtained in the previous section, we can assume thatM/|D| ≤ ε for a sufficiently small
constantε > 0. We also assume without loss of generality thatn≫ 1. For a given assignmentσ of clients to
facilities, we letσ−1(i) denote the set of clients assigned to facilityi.
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4.1 Random Facility Sampling

Let α ∈ (0,1] be a constant parameter which will be fixed later. Our algorithm randCFL for CFL works as
follows:

1. Compute aρfl-approximate solutionU = (FU,σU) for the (unconnected) facility location instance
induced by the input instance.

2. Choose a clientj∗ ∈ D uniformly at random, and mark it. Mark every other clientj independently
with probabilityα/M. Let D be the set of marked clients.

3. Open facilityi ∈ FU if there is at least one marked client inσ−1
U (i). Let F be the (non-empty) set of

open facilities.

4. Compute aρst-approximate Steiner tree onD. Augment this tree by adding the shortest path between
every j ∈ D and the corresponding open facilityσU( j) ∈ F. Extract a treeT spanningF from the
resulting multi-graph.

5. OutputAPX= (F,T,σ), whereσ assigns each clientj ∈ D to a closest open facility inF .

In Step 4 we might alternatively construct a Steiner tree directly on the open facilities inF; however, this
would lead to a worse approximation factor.

We use the following notation. An optimal solution is denoted by OPT= (F∗,T∗,σ∗). We useZ∗, O∗,
S∗ andC∗ to refer to its total, opening, Steiner, and connection cost, respectively. Similarly, we useZ, O,
S andC to refer to the respective costs ofAPX. We let OU andCU be the opening and connection cost,
respectively, of the approximate solutionU = (FU,σU) for the unconnected instance computed in Step 1.

Lemma 1. The opening cost ofAPX satisfies O≤ OU.

Proof. We open a subset of the facilities inFU, which costs at mostOU.

The following bound on the Steiner cost is inspired by [12]. We recall that we assumeM/|D| ≤ ε.

Lemma 2. The Steiner cost ofAPX satisfiesE[S] ≤ ρst(S∗ +(α+ ε)C∗)+ (α+ ε)CU.

Proof. We obtain a feasible Steiner tree on the marked clients inD by augmenting the optimal Steiner tree
T∗ by the shortest paths from each client inD to T∗. This Steiner tree has expected cost at most

∑
e∈T∗

c(e)+ ∑
j∈D

(

α
M

+
1
|D|

)

ℓ( j,F∗) =
1
M

S∗ +

(

α
M

+
1
|D|

)

C∗.

Thus the expected cost of theρst-approximate Steiner tree overD computed in Step 4 is at most

ρst

M
S∗ + ρst

(

α
M

+
1
|D|

)

C∗.

Additionally, the expected cost of adding the shortest paths from each clientj ∈D to the corresponding open
facility σU( j) ∈ FU is at most

∑
j∈D

(

α
M

+
1
|D|

)

ℓ( j,FU) =

(

α
M

+
1
|D|

)

CU.

Altogether we obtain

E[S] ≤ M

(

ρst

M
S∗ + ρst

(

α
M

+
1
|D|

)

C∗ +

(

α
M

+
1
|D|

)

CU

)

≤ ρst(S
∗ +(α+ ε)C∗)+ (α+ ε)CU.
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Core Detouring Scheme. We next introduce our newcore detouring schemeto bound the expected con-
nection cost ofAPX. Notice that, since the clients are assigned to their closest open facility inF, it suffices
to bound the total cost of connecting every clientj ∈ D to someopen facility inF. To this aim, we use the
tree-core connection game introduced in Section 2.

We let the tree-coreT in the game be the treeT∗ in the optimum solution and setw(e) = c(e) for every
edgee in the tree. The client nodes simply correspond to the clients in D. We define the mappingµ as
the assignmentσ∗ of OPT. For every client nodej ∈ D, the weight of the directed edge( j,µ( j)) ∈ Hin is
defined as the connection costℓ( j,σ∗( j)); the weight of the directed edge(µ( j), j) ∈ Hout is ℓ(σ∗( j), j)+
ℓ( j,σU( j)). The sampling probabilityp is set top = α/M.

The key-insight now is the following: Fix an outcome of the random sampling. For every flow-path
from a client nodej ∈ D to a marked clientj ′ ∈ D in G , there is a corresponding path betweenj and the
open facilityσU( j ′) in the original graph; moreover, the costs of these paths areequal. Thus, for every fixed
outcome of the random sampling, the connection costC is at most the costX of the flow in the tree-core
connection game. Since this holds true for every fixed outcome of the random sampling, it also holds true
unconditionally. We can thus bound the expected connectioncost by the expected cost ofX; for the latter,
we derived an upper bound in Section 2. The proof of the following lemma now follows easily.

Lemma 3. The connection cost ofAPX satisfiesE[C] ≤ 2C∗ +CU +S∗/α.

Proof. Note that the total weight of the tree-coreT is S∗/M. From the discussion above and Corollary 1 it
follows

E[C] ≤ E[X]≤ w(H )+
1
p
·w(T ) = 2 ∑

j∈D

ℓ( j,σ∗( j))+ ∑
j∈D

ℓ( j,σU ( j))+
M
α

·
S∗

M
= 2C∗ +CU +

S∗

α
.

Now we have all the ingredients to prove the main result of this paper. The following theorem relies on
the current best approximation factors for Steiner tree andfacility location, which areρst < 1.55 [24] and
ρfl < 1.52 [18], respectively.

Theorem 4. For a proper choice ofα, randCFL is an expected4.55-approximation algorithm forCFL.

Proof. By Lemmas 1, 2, and 3,

E[Z]≤ OU + ρst(S
∗ +(α+ ε)C∗)+ (α+ ε)CU +2C∗ +CU +S∗/α.

The optimum solution to the facility location problem induced by the input instance is a lower bound on
(C∗ +O∗). As a consequence,CU +OU ≤ ρfl (C∗ +O∗). We thus obtain

E[Z]≤ ρst(S
∗ +(α+ ε)C∗)+2C∗ +S∗/α+(1+ α+ ε)ρfl (C∗ +O∗)

≤ (C∗ +O∗)(ρst(α+ ε)+2+ ρfl(1+ α+ ε))+S∗(ρst+1/α).

Choosingε sufficiently small, and balancing the coefficients of(C∗ + O∗) andS∗, we obtain the claimed
approximation ratio forα = 0.334.

In the special case ofSROB, we can assume without loss of generality that the facility location approx-
imation algorithm used in Step 1 ofrandCFL opens all the facilities. As a consequence,randCFL opens a
facility at every marked client. By imposingOU = O∗ = CU = 0 in the analysis of Theorem 4, and choosing
α accordingly, we obtain the following corollary.

Corollary 3. For a proper choice ofα, randCFL is an expected3.05-approximation algorithm forSROB.
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4.2 Refinements

We can improve the approximation ratio ofrandCFL by combining the following techniques.

(a) Bifactor facility location. We obtain a better approximation ratio if we run a (proper) bifactor ap-
proximation algorithm on the induced facility location instance in Step 1. An algorithm for the facility
location problem is a(ρO,ρC)-approximation algorithm if, for every feasible solution with opening costO
and connection costC, the cost of the solution computed by the algorithm is at mostρOO+ρCC. Mahdian,
Ye, and Zhang [18] give a(1.11,1.78)-approximation algorithm. Moreover, they (essentially) show that
any (ρO,ρC)-approximation algorithm can be converted into a(ρO + lnδ,1+ (ρC − 1)/δ)-approximation
algorithm, for anyδ ≥ 1.

Note that an optimum solutionOPT for CFL induces a feasible solution for the underlying facility
location problem with opening costO∗ and connection costC∗. Exploiting this, we obtain

CU +OU ≤ (1.11+ lnδ)O∗ +(1+0.78/δ)C∗.

We can now optimize the parameterδ so as to balance the coefficients of the connection and opening costs;
while the parameterα is used to balance the Steiner and connection costs.

(b) Flow canceling. We can refine Corollary 1, and hence the bound on the connection cost given in
Lemma 3, by means of flow canceling. Consider a given edgee of T in the tree-core connection game,
and lete1 and e2 be the two edges ofC associated toe (because of shortcutting, it might bee1 = e2).
If the flows alonge1 ande2 in C are equally directed (ande1 6= e2), this means that we are sending two
oppositely directed flows alonge in T . In this case, it is possible to cancel the difference of the two flows
(independently for eache∈ T ) by redirecting the flow paths in a proper way. The somewhat technical proof
of the following lemma is given in the Appendix.

Theorem 5. For |D| ≫ 1/p, the cost X of the flow in the tree-core connection game satisfies E[X] ≤
w(H )+0.807w(T )/p.

In particular, since by assumption|D|/M ≫ 1 andα is a constant, this implies the following refined
bound on the connection cost:

E[C] ≤ 2C∗ +CU +0.807S∗/α.

Combining Techniques (a) and (b), we obtain the following theorem

Theorem 6. There is an expected4.00-approximation algorithm forCFL. In the special case ofSROB, the
expected approximation ratio can be reduced to2.92.

Proof. Let us adapt the proof of Theorem 4. Combining (a) and (b), we obtain

E[Z] ≤ OU + ρst(S
∗ +(α+ ε)C∗)+ (α+ ε)CU +2C∗ +CU +0.807S∗/α

≤ ρst(S
∗ +(α+ ε)C∗)+2C∗+0.807S∗/α+(1+ α+ ε)((1.11+ lnδ)O∗ +(1+0.78/δ)C∗)

= C∗(ρst(α+ ε)+2+(1+ α+ ε)(1+0.78/δ))+S∗(ρst+0.807/α)+O∗((1+ α+ ε)(1.11+ lnδ))

α=0.330, δ=6.657
< 4.00Z∗.

The analysis above can be adapted toSROBby imposingCU = OU = O∗ = 0. This yields

E[Z] ≤ ρst(S
∗ +(α+ ε)C∗)+2C∗ +0.807S∗/α

α=0.591
< 2.92Z∗.
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4.3 Derandomization

We can derandomize our algorithm forCFL using the method of conditional expectation (see, e.g., [20])
and an idea by van Zuylen and Williamson [27]. Consider any possible choice of a clientj1. Intuitively,
j1 is the client j∗ that we sample uniformly at random. Letj2, j3, . . . , j|D| be the remaining clients, in an
arbitrary order. Initially, we markj1. In iterationk, k≥ 2, we decide whether tomarkor unmarkclient jk.
Let Dk−1 be the subset of clients in{ j1, j2 . . . , jk−1} that we already marked. Ideally, we would like to mark
client jk if and only if

E[Z |Dk = Dk−1∪{ jk}] ≤ E[Z |Dk = Dk−1].

This would ensure, for a proper choice ofj1, that the cost of the final solution is at most 4.00Z∗.
It is not difficult to see that we can efficiently compute the expected opening cost and connection cost,

given Dk. The same holds for the expected augmentation cost in Step 4.The problem is that we do not
know how to compute the conditioned expected cost of the Steiner tree overD. However, as it is shown
by van Zuylen and Williamson [27], we can compute an estimateof this cost if we use a primal-dual 2-
approximation algorithm for the Steiner tree computation instead. In our analysis, we essentially only need
to replaceρst < 1.55 byρst = 2, which gives a slightly larger (but deterministic) approximation ratio.

Theorem 7. There is a deterministic4.23-approximation algorithm forCFL. In the special case ofSROB,
the approximation ratio can be reduced to3.28.

5 Extensions

Our approach is flexible enough to be adapted to several natural variants ofCFL. In this section we sketch
two such applications.

5.1 Connectedk-Facility Location

An algorithm fork-CFL is obtained by modifyingrandCFL in the following way:

• In Step 1, compute aρkfl-approximate solutionU = (FU,σU) for the (unconnected)k-facility location
instance induced by the input instance.

This algorithm can be refined using Technique (b). The following theorem relies on the current best approx-
imation ratio for thek-facility location problem, which isρkfl ≤ 4 [15, 16] (see also [28]).

Theorem 8. There is an expected6.85-approximation algorithm fork-CFL.

Proof. By adapting the proof of Theorem 6, we obtain

E[Z] ≤ ρst(S
∗ +(α+ ε)C∗)+2C∗+0.807S∗/α+(1+ α+ ε)ρkfl(C

∗ +O∗)

≤ (C∗ +O∗)(ρst(α+ ε)+2+ ρkfl(1+ α+ ε))+S∗(ρst+0.807/α)
α=0.1524

< 6.85Z∗.

Also in this case the algorithm can be derandomized by applying the technique by van Zuylen and
Williamson.

Corollary 4. There is a deterministic6.98-approximation algorithm fork-CFL.

9



5.2 Tour-Connected Facility Location

We obtain an algorithm fortour-CFL by adaptingrandCFL in the following way:

• In Step 4, compute aρtsp-approximate TSP-tour onD. Then augment the tour by addingtwoshortest
paths between every client inD and the corresponding open facility inF . Eventually, compute an
Euler tour on the resulting multi-graph and shortcut it to obtain a TSP-tourT of F.

The algorithm above can be improved by means of Technique (a). The following result relies on Christofides’
1.5-approximation algorithm for metric TSP [5].

Theorem 9. There is an expected4.12-approximation algorithm fortour-CFL.

Proof (sketch).We adapt the analysis of Section 4. Trivially,O≤ OU. Taking into account the duplication
of the shortest paths fromD to F, and using a similar duplication when bounding the cost of the optimum
TSP-tour overD, we obtain

E[S] ≤ ρtsp(S
∗ +2(α+ ε)C∗)+2(α+ ε)CU.

We can easily adapt Corollary 1 to this case, thus obtainingE[X] ≤ w(H )+w(T )/(2p). It follows that

E[C] ≤ 2C∗ +CU +S∗/(2α).

Altogether

E[Z]≤ OU + ρtsp(S
∗ +2(α+ ε)C∗)+2(α+ ε)CU +2C∗+CU +S∗/(2α)

≤ ρtsp(S
∗ +2(α+ ε)C∗)+2C∗ +S∗/(2α)+ (1+2(α+ ε))((1+0.78/δ)C∗ +(1.11+ lnδ)O∗)

= C∗(2ρtsp(α+ ε)+2+(1+2(α+ ε))(1+0.78/δ))+S∗(ρtsp+1/(2α))

+O∗((1+2(α+ ε))(1.11+ lnδ))
α=0.19084, δ=6.5004

≤ 4.12Z∗.

6 Conclusions

We described a simple algorithmic framework, based on random facility sampling, to solve connected facil-
ity location problems. By means of our novel core detouring scheme, we showed that this framework yields
much better approximation algorithms for the family of problems considered.

We leave open the question whether core detouring can also beused to obtain significantly better approx-
imation algorithms forMROB and the single-sink buy-at-bulk problem. The major difficulty here is that
the optimum solution does not exhibit a single central core.While a small improvement seems nonetheless
possible for the single-sink buy-at-bulk problem, the situation is less clear forMROB.

There is a strong relation between random sampling algorithms and the boosted sampling framework for
two-stage stochastic optimization with recourse by Gupta et al. [13]. It is a very interesting open question
whether our core detouring scheme also leads to improved approximation algorithms in that framework.
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C

j i = µ( j)

Figure 1: Core connection game instance. Marked client nodes are drawn in bold. The flow ofj in the
routing scheme is indicated by the bold path.

Appendix

Proof of Theorem 5.Our client sampling process is equivalent to

(1) Mark each client independently with probabilityp.

(2) Choose a clientj∗ (either marked or not) uniformly at random, and mark it.

Consider the following modified sampling process

(a) Run (1).

(b) If no client is marked in Step (a), run (2).

LetY denote the cost of the flow in the tree-connection game with respect to the modified sampling scheme.
By a simple coupling argument, it is easy to see thatE[X]≤ E[Y]. Intuitively, sampling less clients can only
make the cost of the flow larger (in expectation). Hence it is sufficient to boundE[Y].

Let Q denote the event that in Step (b) of the modified game we run (2). By elementary probability
theory,

E[Y] = Pr(Q)E[Y |Q]+Pr(Q̄)E[Y |Q̄].

Trivially, Pr(Q) = (1− p)|D|. Moreover,

E[Y |Q] ≤ w(H )+ |D|w(T )

We will next show that
E[Y |Q̄] ≤ w(H )+0.8067w(T )/p. (2)

From (2) we can conclude that

E[Y] ≤ w(H )+w(T )((1− p)|D||D|+0.8067/p)

≤ w(H )+w(T )(e−p|D||D|+0.8067/p)

≤ w(H )+0.807w(T )/p,

where we used the assumption|D| ≫ 1/p.
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It remains to prove (2). Subsequently, we assume that the event Q̄ holds. It is clear thatE[ f (e)] ≤ 1
holds for everye∈ H . Thus it is sufficient to show thatE[ f (e)] ≤ 0.8067/p for any givene∈ T . Let e1

ande2 be the two edges ofC associated toe. We assume by definition that the flowf (ei) alongei in C is
positive if it goes clockwise, and negative otherwise.

If e1 = e2, E[ f (e)] = E[| f (e1)|] ≤ 1/(2p) by essentially the standard analysis. Hence, let us assume
e1 6= e2. In that caseF := f (e) = | f (e1)− f (e2)| by flow canceling. The value ofE[F] is a (complicated)
function of p, of m= |D|, and of the distancek, 0≤ k≤ m/2−1, betweene1 ande2 in C .

We first need some notation. LetI , k = |I |, be the shortest path (in terms of number of hops) betweene1

ande2 alongC . Without loss of generality, we assumee1 is on the left side ofI . Let I ′ be the complement
of I ∪{e1,e2} with respect toC , andk′ := |I ′| = m−k−2.

Recall that each node ofC is by-sampled with probabilityp, but under the event̄Q that at least one
(random) node is by-sampled. We letq = 1− p, and distinguish three eventsA, B, andC, which partition
the probability space considered:

(A) No node selected inI , at least one node selected inI ′. The value ofF is deterministicallyk+ 1.
In fact, if h flow-paths alongI are directed to the left and the otherk+ 1− h to the right (eventA′), then
F1 =−h, F2 = k+1−h, and altogetherE[F |A′] = E[|(−h)−(k+1−h)|] = k+1. Otherwise (eventA′′), the
flow on e1 ande2 must go in the same direction, say from left to right, and it must be f (e2) = f (e1)+k+1
(e2 collects the same flow ase1, plus the flow alongI ). ThenE[F |A′′] = E[| f (e1)−( f (e1)+k+1)|] = k+1.

Since eventA happens with probabilityq
k+1(1−qk′+1)

1−qm , the overall contribution of this case to the total expected
flow is

FA = Pr(A)E[F |A] =
qk+1(1−qk′+1)

1−qm (k+1).

(B) No node selected inI ′, at least one node selected inI . By essentially the same argument as in case
(A), we get

FB = Pr(B)E[F |B] =
qk′+1(1−qk+1)

1−qm (k′ +1).

(C) At least one node selected in bothI and I ′. If we denote byLi (Ri) the distance betweenei and the
first by-sampled node to its left (right), thenE[ f (ei)] = (Li −Ri)/2. VariablesL1, R1, L2, andR2 can be
interpreted as random geometric variables of parameterp, under the constraint thatX = L2 + R1 ≤ k and
X′ = L1+R2 ≤ k′. Let us study the random variablesX andX′. Note thatE[F |C] = 1

2E[|X′−X|]. Moreover,
X andX′ are independent. It is not hard to show that

Pr(X = i) =

{

(i +1) p2qi

1−qk+1 if i ∈ [0,k−1];

(k+1) pqk

1−qk+1 if i = k.

Analogously

Pr(X′ = j) =







( j +1) p2qj

1−qk′+1 if j ∈ [0,k′−1];

(k′ +1) pqk′

1−qk′+1 if j = k′.

Note that, as expected,∑k
i=0 Pr(X = i) = ∑k′

j=0Pr(X′ = j) = 1. The contribution of this case to the overall
flow is

FC = Pr(C)E[F |C] =
(1−qk+1)(1−qk′+1)

2(1−qm)

k

∑
i=0

k′

∑
j=0

|i − j|Pr(X = i)Pr(X′ = j).
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Recall thatE[F] = Pr(A)E[F|A]+Pr(B)E[F|B]+Pr(C)E[F |C] = FA+FB+FC. After a simple, but very
long and tedious computation, we obtained

E[F ] =
−2(k+1)qm

1−qm +
2q(1+q+q2)+q2k+2(k2(1−q2)2 +k(1−q2)(3−q2)+ (2−2q(1+q)2))

p(1−qm)(1+q)3

≤
2q(1+q+q2)+q2k+2(k2(1−q2)2 +k(1−q2)(3−q2)+ (2−2q(1+q)2))

p(1− ε)(1+q)3 ,

whereε > 0 is an arbitrarily small constant. In the last inequality weused the assumptions thatα is a positive
constant andm= |D| ≫ 1/p. Consider function

R(q,k) :=
2q(1+q+q2)

(1+q)3 +
R′(q,k)
(1+q)3

where

R′(q,k) = q2k+2(k2(1−q2)2 +k(1−q2)(3−q2)+ (2−2q(1+q)2)).

It is sufficient to show thatR(q,k) ≤ 0.8066< 0.8067 for anyq andk. Fixing q, and maximizing ink,

max
0≤k≤k′

{R(q,k)} ≤
2q(1+q+q2)

(1+q)3 +
1

(1+q)3 max
0≤k≤k′

{R′(q,k)}

≤
2q(1+q+q2)

(1+q)3 +
1

(1+q)3 max
x≥0

{R′(q,x)}.

By an elementary analysis of functionR′(q,x), we found that it has a maximum (either feasible or not) for

x = x(q) :=
q2−3

2(1−q2)
−

1
2lnq

−

√

(1+8q+10q2 +8q3 +q4) ln2q+(1−q2)2

2(1−q2) lnq
.

Then, by the constraintx≥ 0, functionR′(q,x) is maximized forx= 0 if x(q) < 0, and forx= x(q) otherwise.
In other words,

max
x≥0

{R′(q,x)} = R′(q,max{0,x(q)}).

It follows that

max
0≤k≤k′

{R(q,k)} ≤
2q(1+q+q2)

(1+q)3 +
R′(q,max{1,x(q)})

(1+q)3 .

We found numerically that the right-hand side is upper bounded by 0.8066 for any feasible value ofq. This
concludes the proof of the theorem.
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