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Abstract. The Cargo Express service of Swiss Federal Railways (SBB Cargo) offers fast overnight
transportation of goods between selected train stations inSwitzerland and is operated as a hub-and-
spoke system with two hubs. We present three different models for planning the operation of this service
as a whole. All models capture the underlying optimization problem with a high level of detail: Traffic
routing, train routing, make-up, scheduling, and locomotive assignment are all addressed. At the same
time we respect hard constraints like tight service time windows and train capacities, and we avoid hub
overloading. We describe our approaches for obtaining provably good quality solutions. Our algorithmic
techniques involve branch-and-cut, branch-and-price as well as problem specific exact and heuristic
acceleration methods. We conclude our study with computational results on realistic data.
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1 Introduction

The planning of freight train operations comprises variousdifficult intertwined decisions on the strategic
(long-term), tactical (mid-term), and operational (short-term) level. Fig. 1 depicts the tactical level and the
operational level according to the survey article by Cordeau, Toth, and Vigo [13]. Considerable research has
been devoted both to each single aspect of this process and towards integrating as many of these planning
steps as possible. In general, the particular freight trainsystem at hand determines how difficult and how
important each single aspect is. For example, there are significant differences between the American and
the European systems and even within a given country different systems with different focus are operated.

The Cargo Express service of Swiss Federal Railways (SBB Cargo) [42] considered in this paper serves
as an example of a freight system: Cargo Express offers fast overnight transportation of goods between se-
lected train stations in Switzerland and is operated as a hub-and-spoke system (as airlines do) with two hubs.

⋆ This work was partially supported by the Future and EmergingTechnologies Unit of EC (IST priority - 6th FP),
under contract no. FP6-021235-2 (project ARRIVAL).

⋆⋆ Partially supported by a Marie Curie scholarship while visiting TU Berlin.
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In parallel, SBB Cargo offers a “classical” freight train system, Cargo Rail, with looser time constraints and
a larger service network.

We briefly describe the Cargo Express service. Its prominentfeatures are the focus on fast transport,
guaranteed pickup and delivery times for customers, a denserailroad network spanning a comparatively
small area. While the blocking mode, in which cars are grouped and routed as a singleblock through the
network (and thus not reclassified at intermediate classification yards), is popular in the U.S., SBB Cargo
Express operates in non-blocking mode, as many European companies do. In fact, cars are reclassified in
two central hump yards, the hubs. Each train can be composed by a limited number of cars. Finally, hub
overloading must be avoided by limiting the number of cars inthe yard at the same time.

These features give a distinguishing flavor to the planning steps and set the Cargo Express service
off from most of the systems that have been considered in the literature and the results that have been
obtained for these [3, 13, 15]. A classical paper is by Crainic, Ferland, and Rousseau [14], who study the
interactions between blocking, routing, and makeup for a Canadian freight system. Ahuja, Jha, and Liu [2]
give a particularly detailed model for the blocking problemarising in the U.S. Campetella et al. [8] consider
an Italian freight service of size comparable to SBB Cargo Express, for which they do traffic routing,
and planning of service frequency and empty cars, ignoring train load limits and yard capacities. None
of these models is intended to produce a detailed schedule. Therefore, such models are inappropriate for
planning the SBB Cargo Express service. Kwon et al. [29] describe how an existing solution consisting of
blocking, routing and make-up plans and a target schedule can be adapted to meet the train load constraints.
Gorman [23] extends a model of Keaton [28] to incorporate time constraints on a coarse time scale. He
addresses the blocking, traffic routing, makeup and scheduling problem for a given set of candidate routes.
He proposes a tabu search approach which he tests on a U.S. instance. On this instance he finds cost savings
with respect to a solution used in practice. However, the method produces operating plans that can violate
constraints on the load of the trains and on time windows. In contrast, in the SBB Cargo Express setting
both time windows and load constraints are hard, and the timewindows are tighter.

In this paper, we present three different ways to exactly model the SBB Cargo Express service, all of
which capture the optimization problem at hand with a high level of detail. Our models span the whole
tactical planning process: Traffic routing, train routing,make-up, scheduling, and the basic engine (locomo-
tive) assignment are all addressed. On the other hand we do not model the operational level, i.e., our models
do not capture empty cars movements, the precise shunting operations in the classification yards, minimum
buffer times between arriving trains at the yard, or the fitting of trains into the timetable. As we model an
overnight service, the latter aspect is not as crucial as forother freight systems.

In the first approach, we provide a compact integer linear programming (ILP) formulation of the prob-
lem, and apply a state-of-the-art general purpose solver toit. In the second approach we hierarchically
decompose the problem as suggested by Fig. 1 and provide separate models for distributing the classifica-
tion work, for the combination of routing, makeup, locomotive assignment, and finally for scheduling in our
setting. We develop a branch-and-cut approach for its hardest subproblem. Our third approach is to formu-
late the entire planning problem as a side-constrained set partitioning problem, and solve it using column
generation. The integration of the above planning steps leads to a complex master problem. To the best of
our knowledge, this model is the first to integrate all planning steps of the tactical level. Although we tai-
lored the solution approach to our specific problem, the model itself is applicable with minor modifications
to any non-blocking freight system of larger scale.

Our solution methods span different algorithmic techniques generally used for ILPs. Moreover, the three
approaches have an increasing level of modeling detail, andrequire algorithmic techniques of increasing
complexity. We carry out a comparison of the three methods inorder to identify the best trade-off between
modeling detail, computational tractability, and implementation effort.

All experiments are performed on data derived from a typicalday of operation of the SBB Cargo Express
service, provided by SBB Cargo.

The paper is organized as follows. First, we give a detailed problem description. Then, we introduce our
three models, and next describe the corresponding solutionmethods. Finally, we report on computational
experiments, comparing the running time of the algorithms and the quality of the solutions found.
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Problem DescriptionThe SBB Cargo Express system is designed for customers who regularly need overnight
transportation of freight by train: a typical customer orders a regular transport of shipments from an origin
to a destination station. The customer announces her fixed daily demand for the lifetime of the schedule
in advance and negotiates an earliest departure time and a latest delivery time for the shipments with SBB
Cargo. Once a year SBB Cargo designs a new operating plan and aschedule that accommodates all customer
demands.

The transport itself works as follows. In the evening, the customers deposit their cars at the departure
stations before the earliest departure times. During the night, a fleet of trains collects all deposited cars. In
general, each train of the fleet collects several shipments at different stations. The cars of the same shipment
are always transported together, different shipments at the same station may be transported by different
trains. In addition to the shunting time needed at the hubs, asubstantial amount of time is spent in brake
testing at each stop which involves pickup or delivery.

The SBB Cargo Express network is operated as a hub-and-spokesystem: the fleet transports all the
goods to central classification yards in Däniken and Zürich-Mülligen where inbound trains are reclassified
to form outbound trains. Outbound trains either go directlyto the other hub nearby without en route pickup
or delivery, or they deliver their cars at the respective delievery stations. Finally, direct trains between origin
and destination stations are also possible.

The service is operated such as to guarantee the negotiated earliest pickup and latest delivery times.
Since trains are composed by few cars, each engine of the fleetoperates in the same way: That is, the

planners consider the fleet to be homogeneous. Each engine ofthe fleet can perform only one of the tasks
described above in one night, i.e., either going to and from ahub once including potentially a few rides
between the nearby hubs, or transporting a shipment directly to its destination. An important constraint of
this system is the yard capacity: Only a limited number of cars can stay in each hub concurrently and, most
of all, hub overloading affects reclassification time.

The main costs of an operating plan consist in operating the engines, that is employing the drivers and
servicing the equipment. In addition to this fixed cost component, there is a cost per kilometer. The overall
goal is to minimize the total fixed and variable cost of an operating plan.

A schedule is determined and operated with minor daily changes for a whole year. Currently, the plan-
ners do not use any decision support system: they construct the schedule by hand and slightly adapt it in a
trial period after its implementation. If demands change over a year or new customers want to be served, the
SBB Cargo team generally succeeds in adapting (again by hand) the existing schedule to the new situation.

2 Models

Capturing all the characteristics of the SBB Cargo Express system in a single model is a challenging task.
In this section we first lay the ground for a precise mathematical description of the problem by introducing
the necessary common notation. Then we present a suite of three models for our application. The first one,
Model 0, is an ILP formulation for the problem, neglecting hub overloading issues and forcing exactly
one reclassification step for each shipment. In Model 1 we decompose the problem into three consecutive
planning steps which we treat separately. Model 2 is a set partitioning integer linear program that exploits
all the optimization degrees of freedom by considering all the decision levels at once.

2.1 Common Notation

We are given a(railroad) networkN = (V, E, ℓ). The node setV represents stations, hubs, and junctions,
the edge setE represents the tracks connecting those;ℓ : E → R+ is a length functionon the edges. In
our models we consider the problem in which an arbitrary number of nodes of the network represent hubs,
and we denote the set of hubs byH ⊆ V . In the following we give a list of parameters and features that we
consider.

– The setS of shipmentscontains an element for each transportation request. Each shipments ∈ S has
the following properties:
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• orig(s): theorigin station,
• dest(s): thedestination station,
• depart(s): theearliest possible pickup timeat station orig(s),
• arrive(s): the latest possible delivery timeat station dest(s),
• vol(s): the number of cars (volume) composings.

– Themaximum train loadLmax bounds the total number of cars that any engine can pull.
– Theshunting time at a hubT h

shunt is the additional shunting time an outbound train has to waitbefore
departing from hubh ∈ H after its last shipment has arrived. This time is assumed to be independent of
the number and volume of the shipments. Similarly, an engineneedsT h

shunt time units to be decoupled
from an inbound train and coupled to an outbound train.

– Thecouple time at the stationsT v
couple is the additional time incurred by picking up or delivering any

set of shipments at a stationv ∈ V . It is independent of the number and volume of the shipments.
– Thehub capacitycaph specifies, for each hubh ∈ H , the maximum number of cars that can concur-

rently stay ath without overloading the hub.
– Theengine costCenginerepresents the operating cost of one engine (fixed cost).
– Theaverage speed̄v is used to calculate the traveling times of trains on the tracks.
– Thekilometer cost̄c represents the travel cost of an engine per kilometer (variable cost).

The fundamental part of a solution is arouteof a train through the network. By route we mean a graph
theoretic walk, which can in particular contain repeated edges and nodes, and a set of shipments served
at the visited nodes. We distinguish between pickup and delivery routes, respectively bringing shipments
from the stations to the hubs or from the hubs to the stations,and hub-connecting routes, which move cars
between two hubs. Givenv ∈ V , we abuse notation slightly and writev ∈ r to indicate that router visits
nodev; similarly, givens ∈ S we writes ∈ r to indicate that shipments is served by router. The lengthlr
of a router is the sum of the lengths of the (possibly repeated) edges used in r, and the costcr of the route
is computed as̄c · lr. The volume vol(r) of a router is the sum of volumes of the shipments served byr.
We callr volume-admissibleif it satisfies the load constraint:

∑

s∈r vol(s) = vol(r) ≤ Lmax.
A complete solution to our problem consists first of sets of pickup routesRx, delivery routesRy, and

hub-connecting routesRh. Second, it specifies arrival and departure times arrive(r, v), depart(r, v) at each
nodev ∈ r for these routes. We call a route together with such timing information ascheduled route.
If a scheduled route respects all time windows and the coupletime T v

couple we call it time-consistent. A
scheduled pickup routerx to hubh is compatiblewith a scheduled delivery routery from h if eitherrx and
ry have no common shipment:∄s ∈ S : s ∈ rx ∧ s ∈ ry or they refer to the same hub and respect the
precedence including shunting time at the hub: depart(ry , h) ≥ arrive(rx, h) + T h

shunt. The same notion of
compatibility analogously applies to connections involving hub-connecting routes. Formally, our railroad
problem is defined as follows:

Definition 1 (Multi Hub and Spoke Optimization Problem (MHSO P)). Given a railroad networkN =
(V, E, ℓ), a set of hubsH ⊆ V , a set of shipmentsS and the parametersLmax, T h

shunt, T
v
couple, caph, Cengine, v̄

andc̄ as defined above, find a feasible solution of minimum cost. A feasible solution consists of the sizek of
the necessary engine fleet and a set of pairwise compatible, scheduled, time-consistent, volume admissible
routes, such that all shipments are transported from their respective origin to their respective destination,
the hub capacity limits are respected, and the routes can be driven byk engines. The cost of a solution is
given by the sum of costs of the selected routes plus the cost of operatingk identical engines.

MHSOP is strongly NP-hard as it contains problems like the traveling salesman, bin-packing, and di-
verse scheduling problems [21]. This justifies computationally expensive approaches like mixed integer
programming.

2.2 Model 0: Edge-Based Classical Vehicle Routing Model

ILP formulations have proven to be a powerful and versatile tool for modeling the whole host of NP-hard
problems. In addition, as long as standard solvers can be applied, they represent an attractive choice from
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an implementation cost point of view. Therefore, we first evaluated the potential of such approaches.Toth
and Vigo discuss various formulations for simpler but related vehicle routing problems (VRP), like the
capacitated VRP and the VRP with time windows [43]. In the following, we adapt and extend one classical
formulation therein to model MHSOP.

Let K̄ be an upper bound on the number of engines used in an optimal solution. Clearly,K̄ ≤ |S|. We
build a three-index vehicle flow formulation [43] for MHSOP,which usesO(|E| · K̄) integer variablesuet,
each counting the number of times tracke ∈ E is traversed by a train with enginet, andO(|S| · K̄ · |H |)
binary variablesvh

st, each taking value1 if shipments is served over hubh by a train with enginet.
Moreover, in order to handle time windows, we introduceO(K̄ · |V |) non-negative variableswtv, each
representing the arrival time of enginet at stationv. These sets of variables allow the formulation with a
polynomial number of constraints.

However, the use of multiple hubs introduces several complicating issues. First, pickup and delivery
routes require different sets of variables; the hub-connecting routes have to be modeled, needingO(|S| · K̄ ·
|H |2) binary variableshs,t,start(t),end(t). Furthermore, delivery routes and pickup routes must be compatible
which makes furtherO(K̄ · |S| · |H |) binary variables necessary to model the dependency betweenin- and
outbound trains. Direct connections further complicate the model. Finally, in this formulation we do not
model hub overloading issues. The complete model is available in [9]

The resulting formulation is “compact” in the sense that it involves only a polynomial number of vari-
ables and constraints. The approach proved to be very usefulto obtain feedback from our partners quickly,
gain solid understanding of the problem and to evaluate the optimization potential. However, the approach
is completely impractical already on very modestly sized instances, as we will see in Section 4.1.

2.3 Model 1: Hierarchical Decomposition: Cluster-First, Route-Second, Schedule-Third

A natural approach is to follow the planning process depicted in Fig. 1 and translate it to the particular
problem at hand. For SBB Cargo Express, this means: First,partition the shipments and the engines among
the hubs, secondroute trains separately for the hubs, thirdschedulethe routes. In this section, we give
one model for each step. As with most such hierarchical approaches it is important to robustly design the
objectives and constraints of the models for the early stepssuch that they anticipate feasibility problems
that might occur in later steps.

Partition The partitioning is performed with three objectives: keep the average travel time of each shipment
short, reclassify shipments from or to the same station in the same hub, and balance the classification work
among the hubs (as in the classical blocking problem).

Since too much traffic at a hub may yield infeasible scheduling problems, we treat load balancing as
a hard constraint. Then, we trade off the two remaining objectives by computing a kilometer equivalent
cost for connecting each station to a hub. The resulting problem is a variation of a facility location problem
having a load balancing constraint.

Routing The partitioning step creates|H | single-hub subproblems which we route separately, i.e., wedo
not plan dedicated hub-connecting routes. As solely the routing and not the schedule is decided in this step,
one cannot fully foresee the compatibility of generated routes and the feasibility for the size of the engine
fleet. Still, it is necessary to take these aspects into account. To this end, we a priori fix the number of
engines to a valueK to guarantee that the same number of engines enter and leave the hub. Second, we
impose a maximum distance constraint on both pickup and delivery routes to avoid that long routes are
constructed. The reason for this is that too long routes cannot be scheduled in a compatible way.

An advantage of this approach is that the routing now furtherdecomposes into routing of pickup and
of delivery trains. The two routing problems are symmetric;hence we only give a definition of the pickup
problem.

Definition 2 (Pickup Train Routing Problem with fixed train fle et (TRP)). Given a networkN =
(V, E, ℓ), a specified hub nodeh ∈ H ⊆ V , a set of shipmentsSh, a maximum train loadLmax, a maximum
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trip distanceDmax, the average speed̄v, the couple timeT v
couple, and the fleet sizeK. A feasible solution

to the TRP problem consists of a set ofK volume admissibleroutesRx each ending inh such that the
following properties hold:

1. For each shipments ∈ Sh, there is a router ∈ Rx servings: ∀s ∈ Sh ∃r ∈ Rx : s ∈ r.
2. No route is longer thanDmax. Thelengthof a pickup router ∈ Rx is defined as the length of the route

plus the following term accounting for the coupling time:|{v ∈ r | ∃s ∈ r : orig(s) = v}| · T v
couple· v̄.

The cost of a solution is the sum of the lengths of the routes. The TRP asks for a solution of minimum cost.

In Section 3.1 we discuss a branch and cut approach for this TRP.

Scheduling A complete schedule for given solutionsRx for the pickup TRP andRy for the delivery TRP
specifies the departure and arrival times of each route at each station. However, it is not necessary to specify
a schedule in such detail: The arrival time and departure time windows are one-sided, in the sense that there
is a priori no latest pickup time or an earliest delivery timefor the shipments. For this reason, it is never
convenient for a train to slow down on the tracks or to wait outside a station until it is possible to enter it.
Therefore, we can completely specify a schedule by giving the arrival and departure times of the routes at
the hub and assume w.l.o.g. that the trains travel in the fastest possible way according tōv andT s

couple.
The objective of the scheduling step is to minimize the maximum hub load:

Definition 3 (Train Shunting and Scheduling Problem (TSSP)). Let the solutionsRx and Ry to the
corresponding pickup and delivery TRPs for a setS of shipments via a hubh be given. A feasible solution
to TSSP defines an arrival time arrive(rx, h) for eachrx ∈ Rx and a departure time depart(ry , h) for each
ry ∈ Ry such that:

1. the (inferred) arrival and departure times of each route at the stations are time consistent, i.e., they
respect the time windows of the shipments.

2. All routes are compatible w.r.t. the chosen arrival and departure times at the hub.
3. There are always enough outbound engines available:

∣

∣{rx ∈ Rx | arrive(rx) ≤ t}
∣

∣ ≥
∣

∣{ry ∈ Ry | depart(ry) ≤ t + T h
shunt}

∣

∣ ∀t ∈ R+. (1)

The cost of a solution equals the maximum number of cars that are in the hub at the same time:

max
t∈R+







∑

rx:arrive(rx)≤t

vol(rx)−
∑

ry:depart(ry)≤t

vol(ry)







(2)

An optimal solution to TSSP is one for which this cost is minimum.

We remark that the number of relevant constraints in (1) is finite and that the maximum in (2) can be
computed over a finite set ofrelevantpoints in time, for example the arrival and departure times of the
trains at the hub plus the times derived by adding or subtracting the shunting time.

In this model we treat the capacity limit as asoftconstraint by declaring it as the objective. In fact, as
sketched in Section 1 it can be argued that the capacity of a classification yard is not determined by a single
number of cars which if exceeded renders the yard inoperable, but rather by a range where it increasingly
gets more and more difficult to fulfill the requested classification.

Model 1 has some limitations: First, as in all such approaches, optimization potential is lost in the
hierarchical planning process. Second, on instances with tight time windows and capacity constraints, the
separation between routing and scheduling may lead to feasibility issues in the scheduling step, because the
routing is oblivious to the compatibility and time-consistency problems its routing decisions may create. A
further restriction of Model 1 is that it neither considers hub-connecting nor direct trains. These limitations
are discussed in some more detail in Sections 4.2 and 4.4.
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2.4 Model 2: Path Based Set Partitioning Model

When tight time windows are imposed, it may be impossible to ensure an even load at the hubs using Model
1. In order to overcome this problem and exploit the additional optimization potential of direct connections
and hub connections, we present a model that describes the MHSOP as a whole.

A scheduled route is the fundamental notion in our problem, and it is only natural to base a model on
this. A variable in this path-based approach represents a time consistent, load admissible, scheduled route,
of which there are exponentially many. We select compatiblepairs in such a way that a usage limit on each
hub is respected. The resulting ILP for MHSOP is given in Fig.2. In order to deal with a finite number of
constraints and variables in the first place, we consider a set T = {0, . . . , τ −1} of τ points in time, and we
define as time slots each interval between subsequent points. We assume trains to always arrive or leave the
hubs at the ends of a time slot. This is a common and mild restriction, as we do not have full control over
the precise times anyway.

In this model, start(r) and end(r) denote the start and end node of a scheduled router. Each binary
variablext

r indicates whether the scheduled pickup router, arriving at hub end(r) during time slott, is
selected or not; similarly, the binary variableyt

r indicates whether the scheduled delivery router, leaving
hub start(r) during time slott is selected or not. Moreover, each binary variableha:t

r indicates whether the
hub-connecting scheduled router, departing from hub start(r) and arriving at the destination hub end(r) at
time a:t is selected or not. We may refer to one and the same variable also by its departure time d:t from its
origin hub. Following the policy of SBB Cargo we do not consider pickups or deliveries on hub-connecting
routes. Finally, for each shipments ∈ S we introduce a binary variableds modeling the possibility of
transportings with a dedicated engine directly from its origin to its destination. Such a direct path is not
associated to any time since it is always possible to delivera shipment on the direct path respecting the time
windows.

Abusing notation slightly, we denote the set of all scheduled routes byR, irrespective of their type;
furthermore, all summations in Figure 2 are meant to be over feasible routes separately for the summands.
That is, a sum of type

∑

r∈R,t∈T xt
r +ha:t

r is to be read as the sum of all variables corresponding to feasible
pickup routes with arbitrary arrival time at any hub plus thesum of all variables corresponding to feasible
hub-connecting routes with arbitrary arrival time at any hub. All sums of this type in the constraints should
be seen as a shorthand notation for two separate sums. For later use for the corresponding dual variables,
we refer to the constraints using the Greek letters indicated at the left of the model.

Constraints labeled̂π andπ̌ are set partitioning constraints stating that each shipment has to be picked
up and delivered, respectively.

Theφ-constraints are global flow conservation constraints for the shipments at the hubs. Together with
theσ-constraints they ensure the time consistent inflow-outflowof shipments at hubs.

The σ̂-constraints enforce that a shipment that arrives after time t has a corresponding outbound train
after timet + T h

shunt. Theσ̌-constraints represent the symmetric statement for outbound trains.

Theβ-constraints play a similar role for the engines as theσ-constraints do for the shipments, except
that we allow engines to end their duty at the hub. Together, theσ andβ constraints enforce the compatibility
of the chosen scheduled routes.

Theχ-constraints limit the usage for each hubh ∈ H to caph cars in each time slot. We remark that
introducing these constraints provides an a-priori guarantee to avoid hub overloading. With this model the
decision maker can evaluate different scenarios allowing for different levels of maximum hub load.

Out of the three types of constraintsσ̌, σ̂, andφ, every pair of types implies the third type. Therefore,
we chose to discard constraintsσ̌. This implication was expected, sinceσ̂ andσ̌ constraints are nothing else
than a variation of the classicalgeneralized flow conservation constraints for networks with intermediate
storagefor flows over time problems, see for example [24].

We charge the engine cost to the pickup route; together with the β constraints this allows to use an
engine for pickup operations only.
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min
∑

r∈R,t∈T

c̃rx
t
r + c̃ry

t
r + c̃rh

d:t
r +

∑

s∈S

c̃sds

(π̂s) ds +
∑

t∈T,r∈R:s∈r

xt
r =1 ∀s ∈ S

(π̌s) ds +
∑

t∈T,r∈R:s∈r

yt
r =1 ∀s ∈ S

(φsh)
∑

t∈T,end(r)=h,s∈r

xt
r + ha:t

r

−
∑

t∈T,start(r)=h,s∈r

yt
r + hd:t

r =0 ∀s ∈ S, h ∈ H

(σ̂hst)
∑

r:s∈r,end(r)=h
t1≥t

xt1
r + ha:t1

r

−
∑

r:s∈r,start(r)=h

t2≥t+T h

shunt

yt2
r + hd:t2

r ≤0 ∀t ∈ T, h ∈ H, s ∈ S

[

(σ̌hst)
∑

r:s∈r,start(r)=h
t1≤t

yt1
r + hd:t1

r

−
∑

r:s∈r,end(r)=h

t2≤t−T h

shunt

xt2
r + ha:t2

r ≤0 ∀t ∈ T, h ∈ H, s ∈ S

]

(χth)
∑

t1≤t
end(r)=h

vol(r)xt1
r + vol(r)ha:t1

r

−
∑

t2≤t
start(r)=h

vol(r) yt2
r + vol(r)hd:t2

r ≤caph ∀t ∈ T, h ∈ H

(βht)
∑

r∈R,end(r)=h
t′≤t

xt′

r + ha:t′
r

−
∑

r∈R,start(r)=h

t′≤t+T h

shunt

yt′

r + hd:t′
r ≥0 ∀t ∈ T, h ∈ H

xt
r, y

t
r, h

·:t
r , ds ∈ {0, 1} ∀r ∈ R, t ∈ T, s ∈ S

Fig. 2. ILP Model 2; see comment in the text for interpreting the summations.

Finally, we remark that shipments with a hub as an origin or destination need a special treatment.
Although this aspect has a minor impact on the model, it introduces particular subtleties in the solution
methods, which we do not address here.

The advantages of this formulation are that it considers both shipment and engine flows in one model,
and that the flow conservation carries over to the fractionalvariables: this means that all fractionally valued
routes in a solution have compatible counterparts, which simplifies the extraction of integral solutions.
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Furthermore, using this decomposition, we can efficiently solve the issue of time consistency and volume
admissibility in independent subproblems, as described inSection 3.2.

3 Solution Methods

In this section we investigate the various algorithmic challenges inherent in the three models: What are
the (sub-)problems that arise, how do we address them both algorithmically and implementation-wise, and
what further techniques do we use to achieve a good performance. Since Model 0 is meant to be optimized
using a (commercial) standard solver, we focus on Model 1 andModel 2.

3.1 Model 1: A Branch-and-Cut Approach

The result of the decomposition approach in Model 1 is that the MHSOP is reduced to a partitioning prob-
lem, two independent TRPs, and a TSSP for each hub. We consider the problems in this order.

Partitioning. The partitioning problem of Section 2.3 can be formulated asfollows.
We introduce binary variablesθsh, indicating whether shipments is served by hubh, and binary vari-

ablespvh anddvh, indicating whether hubh is connected to stationv by a pickup or delivery route, respec-
tively.

Let Cconnect
vh be the cost of connecting hubh to stationv, and qsh the cost of the cheapest trip for

transporting the shipments over hubh.
The problem of partitioning the set of shipments, such that no hub serves more than a fractionf of the

total volume, can be formulated as follows.

min
∑

v∈V,h∈H

Cconnect
vh · (pvh + dvh) +

∑

s∈S,h∈H

qsh · θsh

s.t.
∑

h∈H

θsh ≥ 1 ∀s ∈ S (3a)

θsh ≤ pvh ∀h ∈ H, ∀s ∈ S, v ∈ V : orig(s) = v; (3b)

θsh ≤ dvh ∀h ∈ H, ∀s ∈ S, v ∈ V : dest(s) = v; (3c)
∑

s∈S

(vol(s) · θsh) ≤ f ·
∑

s∈S

vol(s) ∀h ∈ H (3d)

Constraints (3a) enforce that all shipments are routed via ahub. Constraints (3b) and (3c) enforce con-
sistency of hub assignments and routes: If a shipments is routed via hubh, the origin and the destination
station must be connected toh. Constraint (3d) enforces the volume balance for each hub. Here, we choose
Cconnect

vh as the combination of a fixed offset for connecting a hub to a station, plus the connection costs in
terms of distance from the hub.

This problem is NP-complete, as it contains problems like three-partition and facility location [4, 21].
However, this formulation can be effectively optimized by ageneral purpose solver (see Section 4).

Routing Our solution approach to the TRP consists of a transformation to the following well-known
Distance constrained Capacitated Vehicle Routing Problem, which allows us to use existing reliable soft-
ware [40].
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Definition 4 (Distance constrained Capacitated Vehicle Routing Problem (DCVRP)). Given a com-
plete networkNDCVRP = (V, E, c, ℓ), wherec is a cost function on edges andℓ is a length function on
edges, a specified hub nodeĥ ∈ V , demandsdi, i ∈ V on the nodes, a maximum loadLDCVRP

max , and a
maximum distanceDDCVRP

max .

Find K elementary circuits starting in̂h with minimum total cost, such that each customer node is
visited by exactly one circuit, the sum of the demands on eachcircuit does not exceed the loadLDCVRP

max , and
that no circuit exceeds the lengthDDCVRP

max .

In the following, we give a transformationΨ of TRP into DCVRP, such that an optimal solution of
any TRP instanceITRP can be derived from an optimal solution of the correspondingtransformed DCVRP
instanceΨ(ITRP).

An optimal solution to the routing problem consists of two parts, the pickup routes and the delivery
routes. For simplicity, we again describe the transformation for the pickup case only.

Roughly speaking, the task of the transformation is to do thefollowing: Translate a problem defined on
a sparse graph for which the solution consists of a set of circuits covering the network to a problem on the
complete graph for which the solution consists of a set of paths covering the network. Note that the common
transformationc{i,j} ←− c{i,j}−c{ĥ,i}−c{ĥ,j} by Clarke and Wright savings [12] only works in the other
direction, in the sense that it transforms a problem with circuits into a problem with paths. Moreover, we
have to correctly translate the length and load constraints.

The transformationΨ applies the following types of modifications to instanceITRP to achieve the above
goals:

1. Add all missing edges toNTRP. The length of such a new edgee = (u, v) is set to the length of the
shortestu, v path inNTRP.

2. Increase the length of each edge of the network byT s
couple· v̄.

3. Partly merge shipments with identical origin that will definitely be transported by the same train.
4. Replace each station withj shipments,j > 1, by aj-clique with edges of cost and length zero. Identify

each shipment of such a node with one of the nodes of the new clique by assigning the shipment’s
volume to the demand of the clique-node.

5. Add K nodes with demandM ′ to the graph. The nodes are connected to the hub by edges of weight
−M , and to the rest of the network by the full bipartite graph with zero-weight edges.

Step 1 to 4 aim at making the network complete, have the coupletime included in the distances, and
have one shipment for each node. The idea behind theK extra nodes introduced in Step 5 is to force all
circuits to start or end with such a node followed by a “free jump” to the starting node of the corresponding
TRP path. Therefore, each of theK vehicles must visit exactly one of these nodes. This is achieved by
setting the weight of the hub-extra node edges to−M, M ≫ 0, their demand toM ′ >

∑

s∈S vol(s),
LDCVRP

max = M ′ + Lmax, andDDCVRP
max = Dmax −M .

The correctness of transformationΨ is established in the following lemma, whose proof can be found
in [22].

Lemma 1. Let a TRP instanceITRP be given. LetσDCVRP be an optimal solution to the DCVRP instance
Ψ(ITRP) of costc. Then, an optimal TRP solution for the pickup has costc+K ·M and can be reconstructed
fromσDCVRP in linear time. The same statement holds for an optimal solution for the delivery TRP.

Given an optimal solution of an alike created instance of DCVRP, an optimal solution of the TRP is
constructed by considering the paths restricted to the nodes of the original network.

The construction can be slimmed down a bit: first, it is sufficient that the set ofK nodes introduced can
induce a matching on any subsetQ ⊂ V of sizeK. Second, for the original graph nodes, all edges can be
removed, for which picking up both shipments of the incidentnodes causes a violation of the load or length
constraints.
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Solving the DCVRP. The above construction allows us to focus on solution approaches for DCVRP.
Many exact algorithms for the DCVRP were proposed in the 1980s [11, 30, 31]. There are several soft-

ware packages for the general vehicle routing problem, commercial as well as free ones, see [6, 25, 38] for
a survey. A reliable and successful open source package for the VRP is the branch and cut code by Ralphs
et al. [40]. We base our implementation on this package, and thus describe the “two index formulation” of
the DCVRP on complete undirected graphs [44], which we use toextend the VRP package.

DCVRP: min
∑

e∈E

cexe

s.t.
∑

e={i,j}∈E

xe = 2 ∀i ∈ V \ {ĥ} (4a)

∑

e={ĥ,j}∈E

xe = 2K (4b)

∑

e={i,j}∈E,i∈Q,j /∈Q

xe ≥ 2r(Q) ∀Q ⊂ V \ {ĥ}, Q 6= ∅ (4c)

xe ∈ {0, 1} ∀e ∈ E (4d)

Binary variablesxe indicate whether a given edgee ∈ E is chosen. Equations (4a) and (4b) enforce the
correct degree at the nodes and at the hub, respectively.

Constraints (4c), thecapacity cut constraints, play a similar role for the VRP as the subtour elimination
constraints do for the TSP [32]. The left hand side, evaluated at a solution vector, gives the number of edges
in that solution that cross the graph theoretic cut[Q, V \ Q]. Note that every vehicle serving customers
in Q contributes with two edges to the size of the cut. The right hand side should therefore represent the
minimum number of necessary crossings of vehicles due to theconnectivity requirement, capacity reasons,
and the distance constraints. The valuer(Q) can be understood as the maximum of two values:d(Q), which
accounts for the maximum distance constraints; andλ(Q), which accounts for the capacity constraints (and
also for the connectivity constraints).

There are several valid but not equivalent choices for a definition of d(Q) andλ(Q). In fact, there is a
whole hierarchy of possible values forλ(Q) that lead to different families of valid inequalities—the most

common beingλ(Q) =
⌈P

v∈Q
dv

Lmax

⌉

. This gives therounded capacity inequalities, see [36] for a more

detailed discussion. The valued(Q) is the minimum valuek ∈ N such that the objective valuevk
TSP of a

k-TSP problem onQ divided byDDCVRP
max and rounded up equalsk, see [44]:

d(Q) = min

{

k ∈ N
∣

∣

∣ k ≥

⌈

k-TSP(Q)

DDCVRP
max

⌉}

. (5)

Separation Heuristics The separation problem for rounded capacity inequalities and inequalities of Type (4c)
is NP-complete. For this reason, we focus on effectiveseparation heuristicsthat try to find violated in-
equalities of Type (4c) without guaranteeing of finding one if it exists. As the cutting plane generation is
embedded into a branch and bound framework, this might yieldweaker bounds, but does not compromise
the correctness of the algorithm.

Since the capacity constraints are effectively handled by the existing software package we use, we focus
on the distance constraints. We devised the following separation heuristics.Given a solution, we consider
the support graph induced by all nonzero edge variables. Then, we remove the hub node and consider each
connected componentQi separately.

Since we are only interested in instances of DCVRP arising from our transformationΨ , we tuned our
cuts to handle these specific instances, thus discarding thenodes introduced in Step 5 and the involved edges
of size−M in the length computation. Nevertheless, the cuts can be applied to the general DCVRP. For the
first set of cuts, we compute the length of each component by weighing the length of each edge by the value
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Fig. 3. An in-out graph together with a linear arrangement of cutwidth 15. All non-labeled edges have unit
weight.

of its associated variablexe. If the resulting length exceeds what can be traveled by the vehicles serving the
component, we know that at least an additional vehicle is needed for the component, and we can enforce
this with an inequality of type (4c). We introduce these cutsfor three different cases: fractional components,
integral components (and thus circuits violating the length bound), and all subpaths resulting from integral
components that violate the length bound. As the solutions arise in a branch-and-cut setting, some of the
branching decisions might not be optimal. Therefore, thesecuts have local validity only in the branching
tree. To overcome this problem, we introduce globally validcuts as follows. We consider the graph induced
by the nodes of an integral componentQi and compute lower bounds for the distance of the tour needed to
serve these nodes. If the lower bound exceeds the distance which can be served by the number of vehicles
serving the component, we can introduce a valid cut. We use two easy methods to compute lower bounds for
the tours: the relaxation of TSP to 1-trees, and its classical relaxation to the assignment problem, see [32].

The transformationΨ , and the extension of the existing software to handle distance constraints allowed
us to effectively handle the TRP problem. The results are presented in the experimental Section 4.

Solving the TSSP ProblemThe TSSP has an interesting connection toMinimum Cut Linear Arrangement
Problems. To see the connection we consider an easier variant of TSSP in which we drop Condition 3, set
T h

shunt= 0, and only ask for the sequence of in- and outbound trains at the hub that minimizes the necessary
hub capacity. The resulting sequencing task can be depictedby the bipartitein-out graphGio = (U ∪V, E)
in Figure 3. The inbound trains (inRx) correspond to nodes of the top partition, the outbound trains (inRy)
to nodes of the bottom partition. Each edgee = (rx

i , ry
j ) has avolumevol(e) corresponding to the number

of cars that trainry
j receives from trainrx

i . We callGio a uniformly directed bipartite graph, because all
edges are directed fromU to V .

The problem is equivalent to finding alinear arrangementof the graphG, i.e., an embedding of the
graph onto the horizontal line, such that all edges are directed from left to right. For such an arrangement,
the maximal number of edges crossing any vertical line is the(cut-) width, and it corresponds to the maximal
number of cars residing in the shunting-yard. The width of a graphG is given by the minimal width of a
linear arrangement ofG.

Without the directions and the restriction to bipartite graphs, this problem is known as the minimum
cut linear arrangement, a well studied NP-complete problem[21, problem GT44] that was shown to remain
NP-hard for graphs of degree 3 [34], and even planar graphs ofdegree 3 [35]. In [22] the authors extend
these results in the following way:

Theorem 1. It is NP-hard to decide if a uniformly directed bipartite planar graph of out-degree 3 and
in-degree 2 admits a linear arrangement of widthℓ.

In spite of this result we can solve the instances of the TSSP problem that arise in our setting by a simple
ILP formulation, because these are not too large. For this formulation, we discretize the time horizon intoτ
points in timeT = {0, . . . , τ − 1} and make use of the previously defined in-out graphGio. We introduce
binary variablesat

r anddt
r′ that model arrival (and departure) of the trainsr ∈ Rx (r′ ∈ Ry, respectively)

at timest ∈ T . Here, we assume that the shunting timeT H
shunt is given in time slots. We refer toE as the

edge set of the in-out graphGio.
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min C

s.t. at
r ≤ at+1

r ∀r ∈ Rx, t ∈ T (6a)

dt
r ≤ dt+1

r ∀r ∈ Ry, t ∈ T (6b)

at
r ≥ d

t+T H
shunt

r′ ∀t ∈ {0, . . . , τ − T H
shunt− 1},

∀(r, r′) ∈ E (6c)

dt
r′ = 0 ∀r′ ∈ Ry,

∀t ∈ {0, . . . , T H
shunt− 1} (6d)

∑

e∈E
e=(r,r′)

vol(e)(at
r − dt

r′) ≤ C ∀t ∈ T (6e)

ati
r = 0 ∀r ∈ Rx :arriveH(r)>ti (6f)

dti

r′ = 1 ∀r′ ∈ Ry :dep(r′)<ti (6g)
∑

r∈Rx

at
r ≥

∑

r∈Ry

d
t+T H

shunt
r ∀t ∈ {0, . . . , τ − T H

shunt− 1}, (6h)

a0
r = 0, aτ−1

r = 1 ∀r ∈ Rx

d0
r′ = 0, dτ−1

r′ = 1 ∀r′ ∈ Ry (6i)

all a·, d· ∈ {0, 1} (6j)

Equations (6a), (6b) and (6i) impose that, for every edgee, the variablesa·
e andd·e form a monotone

sequence starting with 0 and ending with 1.
The arrivals and departures of trains are scheduled at the 0-1 transition of the respective variables,

i.e, for a pickup routerx ∈ Rx we set arriveH(rx) = t′ if at′+1
rx − at′

rx = 1, and symmetrically for
a delivery routes. Constraints (6c) and (6d) enforce that anoutbound train can only depart if all its cars
have arrived and thatT H

shunt time units are available for shunting those cars. Constraints (6e) represent the
capacity constraint over all time slots, which is the objective value. Constraints (6f) and (6g) introduce
time constraints for the earliest arrival/latest departure of trains, i.e., from the time windows we infer a
constraint of type arriveH(r) > t′ on the arrival (departure) times at the hub and express this in the form
of Constraints (6f) and (6g). Constraints (6h) enforce thata train can only depart from the hub if there is an
engine available.

Our experiments show that for the TSSP instances that arise from the solutions to the TRPs on the SBB
Cargo Express instance, we can calculate a schedule that minimizes the maximum hub load and respects
the time windows in at most a few minutes.

3.2 Model 2: A Column Generation Based Approach

Since Model 2 involves an exponential number of variables, we adopt column generation techniques [19]:
we start with arestrictedproblem, containing only the direct shipment variablesds, then solve its linear
relaxation (the so called restricted master problem, RMP),obtaining a vector of (optimal) dual variables.
We use this dual information to identify new variables of negative reduced cost. If any such variables are
found, they are included in the RMP and the whole process is iterated. Otherwise, the value of the linear
relaxation of the RMP is a valid lower bound. Note that including all direct shipment variables has the
advantage of making the RMP feasible from the beginning. In contrast to the decomposition based Model
1, the linear relaxation of Model 2 delivers a lower bound on the value of an optimal solution. Furthermore,
good integer solutions can be found by combining a subset of the dynamically generated columns which
satisfy the constraints of Model 2.
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Since an optimal solution in which each shipment is served byone route always exists, we can safely
relax the set partitioning constraints to set covering constraints. Then, the corresponding dual variables are
restricted in sign, which leads to an easier cost structure in the generation of columns. Furthermore, it is
also easier to obtain feasible RMPs.

The Pricing Problems The problem of finding columns of (most) negative reduced costs is called the
pricing problem. For the sake of clarity, we denote the dual variable corresponding to each constraint by
adding indices to the Greek letter indicating the constraint itself. Since the pricing problems involving
pickup and delivery routes are completely symmetric, we discuss the pickup pricing only.

Here, the reduced cost of a (column encoding a) pickup router to hubh′ scheduled at timet′ is

Cengine+
∑

e∈r

l(e) · c̄−
∑

s∈r

(π̂s + φsh′)−
∑

s∈r,t≤t′

σ̂h′st − vol(r)
∑

t≥t′

χth′ −
∑

t≥t′

βh′t (7)

whereπ̂s, βht ≥ 0, χth, σ̂hst ≤ 0 andφsh ∈ R represent the dual variables associated to the constraints
of Model 2. This reduced cost has three components: a cost

∑

e∈r l(e) · c̄, which depends only on the arcs
used in the route, a prize

∑

s∈r

rc(s) :=
∑

s∈r



π̂s + φsh′ + vol(s) ·
∑

t≥t′

χth′ +
∑

t≤t′

σ̂h′st



 ,

which depends only on the shipments picked up, and a constantcontributionCengine−
∑

t≥t′ βh′t, which
depends only on the destination hub and arrival time slot.

Definition 5 (Pickup Pricing Problem). Given a networkN , a hubh′ ∈ H , an arrival timet′, parameters
Lmax, Tcouple, v̄, c̄, a set of shipmentsS, and aprizerc(s) for each shipments ∈ S, find a time consistent,
volume admissible, scheduled route inN of minimum reduced cost.

This problem is a variation of the well-known NP-hard resource constrained shortest path problem with time
windows (RCSPP) [20]. We devised a particular dynamic programming shortest path algorithm, similar to
those presented in [7, 20] for solving the pickup pricing problem. Each labell represents a partial route,
and encodes a5-valuedstate(µ(l), Π(l), τ(l), ν(l), σ(l)), whereµ(l) ≥ 0 is the cost of the partial route,
Π(l) ≥ 0 the collected prize,τ(l) ≥ 0 the elapsed time,ν(l) ≥ 0 the used volume andσ(l) the set of
visited nodes in which pickup operations occur. Each label refers to a particular node of the network. As it
is not surprising for a railroad problem, our routes cannot be alwayselementary, that is, without node and
edge repetitions. However, we only construct routes which we call “shipment elementary,” which means
that no shipment is picked up twice. Forcing the routes to be shipment elementary is enought to preserve
the quality of the the lower bound we obtain from the RMP.

Initialization. Let S1(v) andS2(v) be two subsets of pickup shipments at nodev; thenS1(v) dominates
S2(v) if

∑

s∈S1(v)

rc(s) ≥
∑

s∈S2(v)

rc(s) ∧
∑

s∈S1(v)

vol(s) ≤
∑

s∈S2(v)

vol(s)

and all the shipments inS1(v) have no later pickup time with respect to each shipment inS2(v). This is
not a restriction in our case, since all the shipments in the same station share the same earliest pickup time.
That is, picking up all shipments inS1(v) instead of all shipments inS2(v) requires no more resource
consumption and gives no smaller prize. We begin by enumerating all non-dominatedsubsets of shipments
for each pickup station in the network. Furthermore, we create a setL of |N | labels corresponding to the
initial state(0, 0, 0, 0, ∅), one for each node of the network.
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Extension procedure.Let L be the set of labels created so far, andl∗ ∈ argminl∈L{µ(l)−Π(l)}. In each
round the labell∗ is pushedto every neighboring node. Letl∗ refer to nodei∗, let j be one of its adjacent
nodes and lete be the arc connecting them: a set of labels is created and added to L. This set contains a
label for each non-empty non-dominated subset of shipmentsSk(j) at nodej, encoding a state



µ(l) + l(e) · c̄, Π(l) +
∑

s∈Sk(j)

rc(s), τ(l) + l(e) · v̄ + Tshunt, ν(l) +
∑

s∈Sk(j)

vol(s), σ(l) ∪ {j}





and one additional label encoding a state(µ(l) + l(e) · c̄, Π(l), τ(l) + l(e) · v̄, ν(l), σ(l)) corresponding to
no pickup operation. Each label withν(l) > Lmax or τ(l) > t′ is discarded. Labell∗ is finally removed
from L and stored in a separate listL̄.

Label Pruning. As in [7], we delete any labell at nodei with τ(l) + t̄ih′ > t′. Furthermore, letl be the
value of the incumbent RCSPP solution. Following [33], during the creation of each labell we compute an
upper boundΠ̄ on the best prize that can still be collected by filling the remaining volume; this requires
solving a fractional knapsack problem [37]. If the valueµ(l) −Π(l) − Π̄ is still higher thanl, labell can
be discarded, since it cannot yield improvements on the incumbent solution.

Dominance rule. In our algorithm, a labell1 dominatesa labell2, if they refer to the same node of the
network, andµ(l1) ≤ µ(l2) andµ(l1) − Π(l1) ≤ µ(ls) − Π(l2) andτ(l1) ≤ τ(l2), andν(l1) ≤ ν(l2).
Moreover, in an optimal MHSOP solution no route performs pickup operations more than once at the
same station, although a particular setting of the prizes rc(s) may yield the generation of routes containing
cycles. As mentioned above, forbidding such cycles (i.e., restricting the search toelementaryroutes) leads to
substantially better lower bounds. Unfortunately, this comes at the price of making the RCSPP computation
much harder; in fact, we must enforceσ(l1) ⊆ σ(l2) as a further condition for labell1 to dominate labell2.
We stress that our technique requires elementariness only on a small subset of the nodes of the network: this
makes the problem tractable from a computational point of view. Following [5], the setσ(l) of each label is
represented as a vector of binary resources, one for each pickup station of the network; each of them is set
as consumed as soon as pickup operations are performed at thecorresponding station. Finally, as done in
[27], we tighten the dominance rule by including in the setσ(l) all stations that cannot be reached anymore
due to resource limitations.

Termination. Let L̄(h′) be the subset of labels in̄L refereing to nodeh′. When no new label is created, a
labell∗ ∈ argminl∈L̄(h′){µ(l)−Π(l)} encodes an optimal solution to the pricing problem.

Dominance of time slots.We also check the following simple dominance rule for entiretime slots. Let hub
h′ be fixed. Ift2 > t1 and for alls ∈ S we have that

∑

t1≤t<t2
βh′t = 0 and

∑

t≤t2
σ̂h′st ≥

∑

t≤t1
σ̂h′st,

that is
∑

t1<t≤t2
σ̂h′st = 0, an optimal solution fort2 cannot be worse than an optimal solution fort1.

Therefore, we may discard time-slott1 in the search for the most negative reduced cost column.

Pricing of the hub-connection routes.Since no pickup or delivery operations occur in hub-connections,
these routes always follow the shortest path between the hubs. The pricing problem simplifies to a knap-
sack problem, which we solve using the MINKNAP algorithm [37], adapted to handle fractional prizes as
described in [10]. Furthermore, the time-slot reduction procedures described above can be readily adapted
to hub-connection pricing.

Finally, we remark that since the direct shipment variablesare included in the initial RMP we do not
need to consider them during pricing.

Acceleration TechniquesThe literature on column generation abounds with acceleration techniques [18].
We briefly discuss some of our methods.
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Pre-Processing Strategies. We condensed the original SBB Cargo Express network to a smaller network
without loosing optimality guarantees. The details of suchreductions are discussed in Section 4.

Heuristic Pricing. As most of the time is spent in pricing we devised heuristic speedup techniques. At
each pricing step, we stop the pricing algorithm as soon as a fixed number of negative reduced cost
columns has been found. Moreover, we limit the number of generated labels, as commonly done in
routing problems [45]. We reduce the number of demands by aggregating shipments during pickup and
delivery pricing. The heuristics are discarded if no negative cost label is found.

Perturbation. For the calculation of each RMP we perturb theright hand side of theσ-constraints by small
random values. Consistent with the literature [17] this yields a significant speed-up of the LP-solving
steps.

Columns Management. In order to keep the RMP small, we subject the columns to aging. If a column
keeps being nonbasic for a given number of pricing iterations it is removed from the RMP and added
to a column pool. Before pricing, we scan this pool: if any previously generated column is found with
a negative reduced cost, we insert it in the RMP and we skip pricing.

Stabilization. A common problem in column generation is that the dual variables tend to oscillate and to
assume extreme values. Using an interior point method to solve the RMP is a possible remedy, but
we encountered severe numerical problems when using the barrier algorithm in CPLEX. Instead, we
adapted the interior point stabilization approach described in [41] to our problem, obtaining better con-
vergence. However, balanced dual values required to solve harder pricing problems and this technique
did not pay off with respect to the overall performance.

Primal Heuristics As solving only the linear relaxation of Model 2 to optimality takes a long time, we
experimented with heuristics based on thedive-and-fixparadigm [46]. We augmented the standard rounding
procedure by performing column generation steps and including problem specific rules, obtaining adive-
and-generateheuristic. Given a fractional solution for the RMP, the heuristic iterates the following steps
until an integral solution has been found.

1. Round up the columnc with the highest fractional value, given that it is consistent with the columns
rounded up so far in the RMP constraints.

2. Round down all columns in the RMP that are not time-consistent withc.
3. Solve the remaining RMP using the dual simplex algorithm.
4. If the solution is integral stop.
5. Otherwise, remove the shipments included inc from the pickup, delivery or hub-connection pricing

problem, according to the type of the route encoded byc.
6. Perform a fixed number of pricing iterations to include newcolumns into the RMP, and go back to

Step 1.

Note that by rounding up and down fractional valued columns,it can happen that the RMP may become
infeasible. If this is the case, we apply a technique called Farkas Pricing, which tries to restore the feasibility
of the RMP by considering optimal dual rays of the (unbounded) dual problem. We detail this technique in
the Appendix A.1. To the best of our knowledge, such technique has not been applied in column generation
so far.

Since the number of pricing steps is limited, dive-and-generate may still fail in finding a feasible so-
lution. Therefore, after each rounding step we execute a fast local improvement procedure which tries to
complete the current partial solution by further rounding.To this aim, the procedure first greedily rounds
up more columns, maintaining the time consistency between arrival and departure times of the shipments at
the hubs. Uncovered shipments are transported by direct paths. Inconsistencies of shipments arriving at one
hub and leaving from another hub, as well as inconsistencieson the engines serving each hub are solved
by using hub connecting routes. Hub capacity problems are addressed by shifting the routes in time as far
as possible. If capacity problems remain, the heuristic introduces direct paths to lower the necessary hub
capacity.

We remark that our dive-and-generate approach can be applied without problem-specific knowledge to
any ILP solved by column generation techniques. Such heuristic is unconventional if compared to other
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heuristics in column generation settings that rely more on the compact formulation or metaheuristics that
are initialized and guided by the column generation process, see [16]. Indeed, we try to exploit first the
skill of the pricing algorithm in generating high quality routes, second the involved structure of the RMP to
combine the routes respecting time consistency and hub-capacity, third the problem-specific structure for
local improvement.

4 Experiments

In this section we report on the experimental results with the three models. All computations were carried
out on a standard Linux PC with a 3 GHz processor and 4GB memory. CPLEX 9 was used as ILP solver
for Model 0 and as LP solver for Model 1 and Model 2.

We start by describing the SBB Cargo Express instance.
The planners of SBB Cargo Express service provided us with real data, i.e., the actual railroad network,

their timetable and the demand matrix of a specific month. Therailroad network for the SBB Cargo Express
service has 651 nodes and 1488 edges, and they currently operate with two hubs, located in Däniken and
Zürich Müllingen. In a preprocessing phase, we first calculate the all-pairs shortest paths among the nodes
with shipments and the hubs. Edges that do not occur on any such shortest path can be safely ignored. In
the resulting graph we contract degree-two nodes if they areneither a hub nor an origin nor a destination of
any shipment. The preprocessing condensed the network to 121 nodes and 332 edges.

In Figures 4 and 5 we show respectively the original network and a detail of it, together with the con-
densed network that we extracted. Dark nodes represent stations with shipments in the SBB Cargo Express
service, and stations without shipments that were retainedin the condensed network. The two bigger square
nodes correspond to hubs. The light colored nodes and edges are stations and connections that are not
retained in the condensed network.

Since the given demand matrix only comprises a month total, we divided the supply in a daily average,
and rounded fractional numbers. This resulted in a 200 shipments instance. Since the actual time windows
were not available, we defined the earliest pickup and latestdelivery times by relaxing the pickup and
delivery times on the currently implemented plan by one hour.

In order to simulate the real setting, we fixed the parametersto the following realistic values: The
maximum train load is 25 cars, the average train speed is set to v̄ = 60km/h. As a coupling time at stations
we choseT v

couple = 27min. The length of each time slot is set to15min. The shunting time at the hubs is
set toT h

shunt = 27min, equal at both hubs. We considered an hub to be overloaded if more than caph = 80
cars are in the yard during the same time slot. Finally, we setCengine= 1000 andc̄ = 1. The three orders of
magnitude difference in cost makes the minimization of distance a secondary objective over minimization
of engines.

Taking into account only the number of shipments, the SBB instance is about the size of the largest
optimally solved (much simpler) VRP instances; yet, tryingto solve the entire tactical planning process
turns it into a very challenging problem.

4.1 Model 0

We implemented Model 0 using the OPL Modeling language [26],and solved it using CPLEX. On a toy
instance with 11 nodes, 23 edges and 11 shipments we did not get any feasible solution in 7 hours. However
a feasible (not optimal) solution for the first 5 and the last 6shipments separately can be found in about 20
minutes. In fact, this suggests a decomposition approach, and it was a motivation to develop and implement
more involved approaches like Models 1 and 2.

4.2 Model 1

We implemented the branch-and-cut approach for TRP using SYMPHONY 5, a framework by Ralphs et
al. [39]. We used CPLEX as LP solver for SYMPHONY, and LEDA 4.5for computing the minimum
spanning trees and the assignment problems needed for the cuts.
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Fig. 4. The original railroad network together with
the condensed network that we extracted.
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Fig. 5.An enlarged detail of the complete network of
Figure 4.

The computation flow through the three steps of Model 1 is summarized in Table 1. The table is built
by 5 blocks, one for each step in the solution procedure, as indicated in the heading row.

In the first block we report the number of cars composing shipments managed by the same hub after
the partitioning step. For the partitioning we enforced a balance constraint of 55%, i.e., at most 55% of all
shipments can be assigned to one hub. The resulting split ledto four instances for TRP, pickup and delivery
for Däniken and Zürich Müllingen.

In the second block we indicate, for each hub and for both the pickup and delivery phases, the number
of nodes (N) shipments (S) and engines (E) in the corresponding DCVRP instance. TheDDCVRP

max values in
the DCVRP subproblems (column ‘Dmax’) were chosen by taking the maximum distance from each hub
to a shipment assigned to it, and increasing it by the equivalent of time needed for shunting twice. The
rationale behind this choice is to allow serving two shipments with the engine serving the farthest one. The
shipments for the instances were obtained by aggregating, in cooperation with the SBB Cargo planners,
some of the demands with the same origin for the pickup problem and with the same destination for the
delivery problem.

In the third block we report the results obtained by solving the TRPs in terms of overall distance traveled
by the fleet (column ‘dist.’), CPU time needed to obtain such solution (column ‘comp. time’), gap between
the best known upper and lower bounds if optimality was not proved (column ‘gap’). The engine fleet
size of each instance was incremented sequentially until the number of infeasibilities with respect to the
time windows did not decrease anymore. The solution processfor all instances took about 10 days in
total. Since we observed dramatically higher computation times for instances with fewer engines (and more
infeasibilities), the best approach is to decrement the fleet size from an initially large value and stop when
the number of infeasibilities increases.

The few remaining infeasibilities were solved by a very simple fixing heuristic similar to the one pre-
sented in Section 3.2 for Model 2. In the fourth block of the table we indicate the overall traveled distance,
the number of used engines and the overall cost on the whole solution. This approach resulted in using an
engine fleet of11 engines for the shipments assigned to Zürich Mülligen (ZMUE), and24 for the shipments
assigned to Däniken (DK), and a fleet of35 engines in total.

The resulting TSSP instance takes the time windows and the routes determined by TRP as an input. As
reported in the fifth block of the table, in the timetable which minimizes the maximum hub load, at most
80 cars are in ZMUE and 106 cars are in DK at the same time. This causes a slight overload in DK. The
solution was found in less than a minute.
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To sum up we were able to produce a solution that is close to theoperational constraints. This comes
at the cost of a large computation time; it is also difficult toestimate losses in objective value by the three-
phase decomposition.

Table 1.Computation flow through all phases of Model 1.

Partition TRP Instances TRP results totals after fixing TSSP

hub cars mode Dmax N S E dist. comp. time gap dist. E cost max load

DK 253 pickup 378km 26 25 21 1660km <1min 0% 7686km 35 42686 106
delivery 296km 31 30 21 2590km 90min 0%

ZMUE 208 pickup 276km 15 13 9 936km <1min 0% 80
delivery 319km 17 14 9 1628km 15h 5.9%

4.3 Model 2

We implemented our column generation algorithm for Model 2 using the SCIP library by Achterberg [1],
with CPLEX as LP solver. It is the first time SCIP is used to implement a CG algorithm.

Results First, the full instance, on which we apply Model 2, is considerably larger than the aggregated
instances for the TRP, as it considers 200 shipments and the preprocessed network. With our current im-
plementation we reach the tailing-off phase in the root nodeof the branch-and-price tree after a calculation
time of around four days. At this time the value of the relaxation is 29217.

The best integral solution found with the dive-and-fix heuristic of Section 3.2 has a cost of 35276. This
solution was achieved with 8 intermediate pricing steps after each variable fix. Similar results can be found
with more steps, but experimental results showed that it is ineffective to price more than 12 times. The best
solution was found after 85 hours of computation. However, very similar quality results can be found within
12 hours. The best solution uses 27 engines, two of which are direct connections. 12 engines travel to and
from Däniken, 13 to and from Zürich–Mülligen. Furthermore,there are 8 hub-connecting trains in each
direction. The total traveled distance is of 8276km.

The local improvement is mainly useful when the dive-and-fixheuristic fails, or for obtaining good
solutions in the early computation phases.

4.4 Comparison of results

The advantage of Model 2 over Model 1 is twofold. First, although the approach worked fine for the hub
ZMUE, we could not avoid some overload of the slightly biggerhub DK.

In spite of the shorter overall distance, Model 1 thus requires substantially more engines than Model
2. For the SBB Cargo Express instance, this results in a loss of 7410 (or 20%) with respect to the best
solution obtained by Model 2. Second, the need to iterate theTRP and TSSP solution process with an
increasing number of engines and handling the infeasibilities leads to a enormous computation time. Thus,
the integrated approach of Model 2 performs significantly better on the given large real-world instance.

5 Conclusion and Future Work

Our computational experience confirms that capturing all the modeling details of multi hub-and-spoke sys-
tems, while still providing reliable solution methods is a challenging task.

Yet, on the other hand, we also demonstrated that this task isby far not hopeless.
Model 1 shows both the appealing and limiting features of distributing tactical decisions to separate

levels, as is commonly done in practice. In fact, the solution methods of Model 1 rely on consolidated
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and effective algorithmic techniques and robust existing software packages. The optimal solution at each
decision level can be found with an affordable computational effort. However, a tough parameter tuning has
to be carried out to make the algorithms of the earlier decision levels produce feasible instances for the later
decision levels.

On the other hand, with Model 2 we are able to consider all interacting tactical decisions as a whole,
and provide a solution algorithm that consistently produces feasible solutions of provably good quality.

A direct comparison between our solutions and the currentlyimplemented plan is not possible at this
stage, as our experiments were carried out on average valuedinstances; moreover, we decided to ignore
some of the seemingly secondary aspects in our models: We do not consider the problem of engine driver
assignment. We do not consider the problem of switchbacks and furcations. It is rather straight-forward
however to incorporate the handling of switchbacks and furcations in the pricing, since these only cause a
route to take longer to be carried out.

Our column generation algorithm exploits and extends very recent optimization techniques: One is-
sue we did not discuss is the question of branching rules. A natural branching rule in our setting is the
assignment of shipments to hubs, based on the fractional assignment of the solution at hand, which we
implemented. However, we only did few experiments on small instances with different branching rules, and
focused on heuristically obtaining integral solutions already in the root node for the whole instance.

A near-optimal solution of a practical problem of this scaleand complexity was entirely out of scope
some years ago. Even though we focused on a single instance ofa particular problem, we think that research
like ours will contribute to algorithmic and modeling improvements, leading to state-of-the-art solvers
which are capable of solving a problem like ours “out of the box.”
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A Appendix

A.1 Model 2 - Farkas Pricing

Consider a restricted linear programming master problem ingeneral form that is infeasible.

min cx (RMP)

b ≤ Ax ≤ d

e ≤ x ≤ f

As in the proof of the Farkas’ Lemma we can set the objective function to 0 and consider the dual linear
program

maxubb− udd + ree− rff

ubA− udA + re − rf = 0

ub, ud, re, rf ≥ 0 .

This linear program is feasible, which is certified by(ub, ud, re, rf ) = 0 and must therefore be unbounded,
as the primal problem is infeasible. From the complementaryslackness conditions it is clear that out of the
two bounds associated with each constraint and each variable only one can be nonzero if these are different.
If they are the same, still only one needs to be nonzero. Therefore, we can setu = ub−ud andr = re− rf .
Then we have the following set of (in)equalities that certifies the primal infeasibility.

ubb − udd + ree− rff > 0

uA + r = 0 .

As we have only a restricted linear programming master problem this does not imply that the underlying
problem is infeasible. The aim of Farkas pricing is to add further variables such that the resulting RMP is
feasible again. An addition of a variable corresponds to theaddition of a further column toA. In our case we
have all the nonbasic variables at their lower bounde = 0 < f . Therefore, it follows from complementary
slackness thatrf = 0 andre ≥ 0, so thatr ≥ 0. Suppose we find a new variable corresponding to a column
ai such that−uai < 0. Then for the infeasibility certificate above to carry on we need thatri = −uai < 0
which is a contradiction tori ≥ 0 and thus destroys this infeasibility certificate. This doesnot imply that the
new RMP is feasible. Still, it is clear from the finiteness of the number of variables that this procedure must
find a primal feasible solution in a finite number of steps if the primal is indeed feasible. To get a columnai

with −uai < 0 we call the same pricing algorithm as before except that we set the objective function to 0.
The resulting reduced costs0 − uai are exactly what is needed here. The SCIP library is designedin such
a way that it automatically switches to Farkas pricing if a RMP becomes infeasible.


