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Abstract. The Cargo Express service of Swiss Federal Railways (SBBd}affers fast overnight
transportation of goods between selected train statior®wiiizerland and is operated as a hub-and-
spoke system with two hubs. We present three different nsddeplanning the operation of this service
as a whole. All models capture the underlying optimizatioobem with a high level of detail: Traffic
routing, train routing, make-up, scheduling, and locoretssignment are all addressed. At the same
time we respect hard constraints like tight service timedeims and train capacities, and we avoid hub
overloading. We describe our approaches for obtainingaiigvngood quality solutions. Our algorithmic
techniques involve branch-and-cut, branch-and-price els ag problem specific exact and heuristic
acceleration methods. We conclude our study with compmutatiresults on realistic data.

Revision: Friday 215* September, 2007 at 23:44

1 Introduction

The planning of freight train operations comprises varidiffcult intertwined decisions on the strategic
(long-term), tactical (mid-term), and operational (shierim) level. Fig. 1 depicts the tactical level and the
operational level according to the survey article by Couj@ath, and Vigo [13]. Considerable research has
been devoted both to each single aspect of this process wadd®integrating as many of these planning
steps as possible. In general, the particular freight sgstem at hand determines how difficult and how
important each single aspect is. For example, there ardisamt differences between the American and
the European systems and even within a given country diffesgstems with different focus are operated.
The Cargo Express service of Swiss Federal Railways (SBBd)§2] considered in this paper serves
as an example of a freight system: Cargo Express offers ¥@shight transportation of goods between se-
lected train stations in Switzerland and is operated as smabspoke system (as airlines do) with two hubs.

* This work was partially supported by the Future and Emerdiaghnologies Unit of EC (IST priority - 6th FP),
under contract no. FP6-021235-2 (project ARRIVAL).
** Partially supported by a Marie Curie scholarship whiletingj TU Berlin.
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In parallel, SBB Cargo offers a “classical” freight trairsggm, Cargo Rail, with looser time constraints and
a larger service network.

We briefly describe the Cargo Express service. Its promifeattires are the focus on fast transport,
guaranteed pickup and delivery times for customers, a dexisead network spanning a comparatively
small area. While the blocking mode, in which cars are grdugre routed as a singldock through the
network (and thus not reclassified at intermediate classific yards), is popular in the U.S., SBB Cargo
Express operates in non-blocking mode, as many Europeaparoes do. In fact, cars are reclassified in
two central hump yards, the hubs. Each train can be compagsadiimited number of cars. Finally, hub
overloading must be avoided by limiting the number of carthayard at the same time.

These features give a distinguishing flavor to the planniegssand set the Cargo Express service
off from most of the systems that have been considered initdi@ture and the results that have been
obtained for these [3, 13, 15]. A classical paper is by CcaiRerland, and Rousseau [14], who study the
interactions between blocking, routing, and makeup for msd&n freight system. Ahuja, Jha, and Liu [2]
give a particularly detailed model for the blocking problarising in the U.S. Campetella et al. [8] consider
an ltalian freight service of size comparable to SBB Cargpress, for which they do traffic routing,
and planning of service frequency and empty cars, ignoriaig toad limits and yard capacities. None
of these models is intended to produce a detailed schedu&efore, such models are inappropriate for
planning the SBB Cargo Express service. Kwon et al. [29] desdhow an existing solution consisting of
blocking, routing and make-up plans and a target schedunlbeadapted to meet the train load constraints.
Gorman [23] extends a model of Keaton [28] to incorporateetonnstraints on a coarse time scale. He
addresses the blocking, traffic routing, makeup and scivegiptoblem for a given set of candidate routes.
He proposes a tabu search approach which he tests on a WaBci@sOn this instance he finds cost savings
with respect to a solution used in practice. However, théenowproduces operating plans that can violate
constraints on the load of the trains and on time windows oimrast, in the SBB Cargo Express setting
both time windows and load constraints are hard, and thewiméows are tighter.

In this paper, we present three different ways to exactlyehtte SBB Cargo Express service, all of
which capture the optimization problem at hand with a higlelef detail. Our models span the whole
tactical planning process: Traffic routing, train routinggke-up, scheduling, and the basic engine (locomo-
tive) assignment are all addressed. On the other hand wetdoattz| the operational level, i.e., our models
do not capture empty cars movements, the precise shuntargtigns in the classification yards, minimum
buffer times between arriving trains at the yard, or theniittof trains into the timetable. As we model an
overnight service, the latter aspect is not as crucial astfwar freight systems.

In the first approach, we provide a compact integer lineagganmmming (ILP) formulation of the prob-
lem, and apply a state-of-the-art general purpose solvér tn the second approach we hierarchically
decompose the problem as suggested by Fig. 1 and provideatepaodels for distributing the classifica-
tion work, for the combination of routing, makeup, locometassignment, and finally for scheduling in our
setting. We develop a branch-and-cut approach for its lsasidbproblem. Our third approach is to formu-
late the entire planning problem as a side-constrainedasétipning problem, and solve it using column
generation. The integration of the above planning stegisléma complex master problem. To the best of
our knowledge, this model is the first to integrate all plagnsteps of the tactical level. Although we tai-
lored the solution approach to our specific problem, the ritekdf is applicable with minor modifications
to any non-blocking freight system of larger scale.

Our solution methods span different algorithmic technggenerally used for ILPs. Moreover, the three
approaches have an increasing level of modeling detail requaire algorithmic techniques of increasing
complexity. We carry out a comparison of the three methodsdier to identify the best trade-off between
modeling detail, computational tractability, and implertegion effort.

All experiments are performed on data derived from a typdeglof operation of the SBB Cargo Express
service, provided by SBB Cargo.
The paper is organized as follows. First, we give a detaitetllpm description. Then, we introduce our

three models, and next describe the corresponding solatethods. Finally, we report on computational
experiments, comparing the running time of the algorithntsthe quality of the solutions found.



Problem DescriptionThe SBB Cargo Express system is designed for customers whtaré/ need overnight
transportation of freight by train: a typical customer asde regular transport of shipments from an origin
to a destination station. The customer announces her fixdéddtmand for the lifetime of the schedule
in advance and negotiates an earliest departure time anelsa deelivery time for the shipments with SBB
Cargo. Once a year SBB Cargo designs a new operating plansheédule that accommodates all customer
demands.

The transport itself works as follows. In the evening, thetomers deposit their cars at the departure
stations before the earliest departure times. During thketna fleet of trains collects all deposited cars. In
general, each train of the fleet collects several shipmeutifferent stations. The cars of the same shipment
are always transported together, different shipmentseaséime station may be transported by different
trains. In addition to the shunting time needed at the hulssibstantial amount of time is spent in brake
testing at each stop which involves pickup or delivery.

The SBB Cargo Express network is operated as a hub-and-sysiem: the fleet transports all the
goods to central classification yards in Daniken and Zihitiiligen where inbound trains are reclassified
to form outbound trains. Outbound trains either go diretdlthe other hub nearby without en route pickup
or delivery, or they deliver their cars at the respectivéadelry stations. Finally, direct trains between origin
and destination stations are also possible.

The service is operated such as to guarantee the negotéatesdepickup and latest delivery times.

Since trains are composed by few cars, each engine of theoffeetites in the same way: That is, the
planners consider the fleet to be homogeneous. Each engiine fiéet can perform only one of the tasks
described above in one night, i.e., either going to and fromula once including potentially a few rides
between the nearby hubs, or transporting a shipment dirtecits destination. An important constraint of
this system is the yard capacity: Only a limited number o§ @@n stay in each hub concurrently and, most
of all, hub overloading affects reclassification time.

The main costs of an operating plan consist in operatingiigines, that is employing the drivers and
servicing the equipment. In addition to this fixed cost cormgad, there is a cost per kilometer. The overall
goal is to minimize the total fixed and variable cost of an afieg plan.

A schedule is determined and operated with minor daily ckarigr a whole year. Currently, the plan-
ners do not use any decision support system: they consheistchedule by hand and slightly adaptitin a
trial period after its implementation. If demands changer@year or new customers want to be served, the
SBB Cargo team generally succeeds in adapting (again by) flaméxisting schedule to the new situation.

2 Models

Capturing all the characteristics of the SBB Cargo Exprgstes in a single model is a challenging task.
In this section we first lay the ground for a precise matherahtiescription of the problem by introducing
the necessary common notation. Then we present a suiteeaf thodels for our application. The first one,
Model 0, is an ILP formulation for the problem, neglectingohaverloading issues and forcing exactly
one reclassification step for each shipment. In Model 1 wemnpose the problem into three consecutive
planning steps which we treat separately. Model 2 is a sétipaing integer linear program that exploits
all the optimization degrees of freedom by consideringhadldecision levels at once.

2.1 Common Notation

We are given drailroad) network N = (V, E, ¢). The node se¥ represents stations, hubs, and junctions,
the edge sel’ represents the tracks connecting thase;EZ — RT is alength functionon the edges. In
our models we consider the problem in which an arbitrary remalb nodes of the network represent hubs,
and we denote the set of hubs ByC V. In the following we give a list of parameters and features the
consider.

— The setS of shipmentgontains an element for each transportation request. Bagiments € S has
the following properties:



orig(s): theorigin station

dests): thedestination station

departs): theearliest possible pickup time station origs),

arrive(s): thelatest possible delivery timeg station degs),

vol(s): the number of cars (volume) composing

— Themaximum train load. ., bounds the total number of cars that any engine can pull.

— Theshunting time at a hul},,.is the additional shunting time an outbound train has to efore
departing from hulh € H after its last shipment has arrived. This time is assumed independent of
the number and volume of the shipments. Similarly, an engéeaisT2 . time units to be decoupled
from an inbound train and coupled to an outbound train.

— Thecouple time at the statioriky, . is the additional time incurred by picking up or deliveringya
set of shipments at a statienc V. It is independent of the number and volume of the shipments.

— Thehub capacitycap, specifies, for each hub € H, the maximum number of cars that can concur-
rently stay ath without overloading the hub.

— Theengine costenginerepresents the operating cost of one engine (fixed cost).

— Theaverage speed is used to calculate the traveling times of trains on thekBac

— Thekilometer cost represents the travel cost of an engine per kilometer (viri@ost).

The fundamental part of a solution is@ute of a train through the network. By route we mean a graph
theoretic walk, which can in particular contain repeatedesdand nodes, and a set of shipments served
at the visited nodes. We distinguish between pickup andelgliroutes, respectively bringing shipments
from the stations to the hubs or from the hubs to the stat@md hub-connecting routes, which move cars
between two hubs. Givem € V', we abuse notation slightly and writee r to indicate that route visits
nodev; similarly, givens € S we write s € r to indicate that shipmentis served by route. The length,.
of a router is the sum of the lengths of the (possibly repeated) edgekinge and the cost,. of the route
is computed as - [,.. The volume valr) of a router is the sum of volumes of the shipments served-by
We callr volume-admissiblé it satisfies the load constrain}. . vol(s) = vol(r) < Liax.

A complete solution to our problem consists first of sets okpp routesk”, delivery routesk?, and
hub-connecting routeB”. Second, it specifies arrival and departure times aprivg, departr, v) at each
nodev € r for these routes. We call a route together with such timirigrination ascheduled route
If a scheduled route respects all time windows and the cotiple 7t . We call it time-consistentA
scheduled pickup route’ to hubh is compatiblewith a scheduled delivery routé from 4 if either»* and
7Y have no common shipments € S : s € 7* A s € ¥ or they refer to the same hub and respect the
precedence including shunting time at the hub: déparb) > arrive(r®, h) + T% . The same notion of
compatibility analogously applies to connections invatyhub-connecting routes. Formally, our railroad
problem is defined as follows:

Definition 1 (Multi Hub and Spoke Optimization Problem (MHSO P)). Given a railroad networkV =
(V,E, (), asetofhubgl C V, asetof shipment$and the parameterd ax, Tohune Touple CaB,: Cengine U
andc as defined above, find a feasible solution of minimum cosagide solution consists of the sizef

the necessary engine fleet and a set of pairwise compatiledsiled, time-consistent, volume admissible
routes, such that all shipments are transported from thespective origin to their respective destination,
the hub capacity limits are respected, and the routes canriverdby .t engines. The cost of a solution is
given by the sum of costs of the selected routes plus the foogemtingk identical engines.

MHSOP is strongly NP-hard as it contains problems like thgdling salesman, bin-packing, and di-
verse scheduling problems [21]. This justifies computailynexpensive approaches like mixed integer
programming.

2.2 Model 0: Edge-Based Classical Vehicle Routing Model

ILP formulations have proven to be a powerful and versatit# for modeling the whole host of NP-hard
problems. In addition, as long as standard solvers can Heedpfhey represent an attractive choice from



an implementation cost point of view. Therefore, we firstleated the potential of such approaches.Toth
and Vigo discuss various formulations for simpler but mdavehicle routing problems (VRP), like the
capacitated VRP and the VRP with time windows [43]. In théofelng, we adapt and extend one classical
formulation therein to model MHSOP.

Let K be an upper bound on the number of engines used in an optitnéibso Clearly, K < |S|. We
build a three-index vehicle flow formulation [43] for MHSORhich use(|E| - K) integer variables..;,
each counting the number of times track FE is traversed by a train with engiteandO(|S| - K - |H|)
binary variablesy”,, each taking valud if shipments is served over hulh by a train with engine.
Moreover, in order to handle time windows, we introdu2€k - [V |) non-negative variables,,, each
representing the arrival time of enginat stationv. These sets of variables allow the formulation with a
polynomial number of constraints.

However, the use of multiple hubs introduces several carapiig issues. First, pickup and delivery
routes require different sets of variables; the hub-cotingcoutes have to be modeled, needings| - K -
| |?) binary variablesi ; star(1).endr)- FUrthermore, delivery routes and pickup routes must bepedivle
which makes furthe©(K - |S| - |H|) binary variables necessary to model the dependency beiweand
outbound trains. Direct connections further complicate iodel. Finally, in this formulation we do not
model hub overloading issues. The complete model is availalj9]

The resulting formulation is “compact” in the sense thahvtilves only a polynomial number of vari-
ables and constraints. The approach proved to be very usafbtain feedback from our partners quickly,
gain solid understanding of the problem and to evaluate phienization potential. However, the approach
is completely impractical already on very modestly sizestances, as we will see in Section 4.1.

2.3 Model 1: Hierarchical Decomposition: Cluster-First, Route-Second, Schedule-Third

A natural approach is to follow the planning process deplidteFig. 1 and translate it to the particular
problem at hand. For SBB Cargo Express, this means: pastifion the shipments and the engines among
the hubs, secontbute trains separately for the hubs, thisdhedulethe routes. In this section, we give
one model for each step. As with most such hierarchical amres it is important to robustly design the
objectives and constraints of the models for the early steph that they anticipate feasibility problems
that might occur in later steps.

Partition The partitioning is performed with three objectives: kdepaverage travel time of each shipment
short, reclassify shipments from or to the same stationgrstime hub, and balance the classification work
among the hubs (as in the classical blocking problem).

Since too much traffic at a hub may yield infeasible schedutiroblems, we treat load balancing as
a hard constraint. Then, we trade off the two remaining dbjes by computing a kilometer equivalent
cost for connecting each station to a hub. The resultinglprolis a variation of a facility location problem
having a load balancing constraint.

Routing The partitioning step create# | single-hub subproblems which we route separately, i.edaove
not plan dedicated hub-connecting routes. As solely thénmgand not the schedule is decided in this step,
one cannot fully foresee the compatibility of generatedeswand the feasibility for the size of the engine
fleet. Still, it is necessary to take these aspects into adtcdo this end, we a priori fix the number of
engines to a valu& to guarantee that the same number of engines enter and feavrib. Second, we
impose a maximum distance constraint on both pickup andetgliroutes to avoid that long routes are
constructed. The reason for this is that too long routesaammscheduled in a compatible way.

An advantage of this approach is that the routing now furttemomposes into routing of pickup and
of delivery trains. The two routing problems are symmethnience we only give a definition of the pickup
problem.

Definition 2 (Pickup Train Routing Problem with fixed train fle et (TRP)). Given a networkN =
(V,E, ), aspecified hub nodec H C V, aset of shipmentS,,, a maximum train load.,,,.,, @ maximum



trip distanceDy,ax, the average speed the couple timé¢,, . and the fleet sizé&’. A feasible solution
to the TRP problem consists of a set/fvolume admissibleoutesR* each ending im: such that the

following properties hold:

1. For each shipment € S;,, there is aroute: € R” servings: Vs € S;, Ir € R* : s € .
2. No route is longer thab,,.x. Thelengthof a pickup route- € R” is defined as the length of the route
plus the following term accounting for the coupling tinfgn € 7 | 3s € r : orig(s) = v}| - Tegypre” V-

The cost of a solution is the sum of the lengths of the routes TRP asks for a solution of minimum cost.

In Section 3.1 we discuss a branch and cut approach for this TR

Scheduling A complete schedule for given solutio®s’ for the pickup TRP and?? for the delivery TRP
specifies the departure and arrival times of each route atstation. However, it is not necessary to specify
a schedule in such detail: The arrival time and departure tundows are one-sided, in the sense that there
is a priori no latest pickup time or an earliest delivery tifoethe shipments. For this reason, it is never
convenient for a train to slow down on the tracks or to waitsalé a station until it is possible to enter it.
Therefore, we can completely specify a schedule by giviegattival and departure times of the routes at
the hub and assume w.l.0.g. that the trains travel in thesapbssible way according toand 7, e
The objective of the scheduling step is to minimize the maximhub load:

Definition 3 (Train Shunting and Scheduling Problem (TSSP)) Let the solutionsk* and RY to the
corresponding pickup and delivery TRPs for a Saif shipments via a hub be given. A feasible solution
to TSSP defines an arrival time arri€, 1) for eachr” € R” and a departure time depdrt’, h) for each
r¥ € RY such that:

1. the (inferred) arrival and departure times of each routetlse stations are time consistent, i.e., they
respect the time windows of the shipments.

2. All routes are compatible w.r.t. the chosen arrival angaeture times at the hub.

3. There are always enough outbound engines available:

|{r* € R” | arrive(r®) < t}| > |{r¥ € RV | depar{r?) <t + Th | Vt € Ry (1)

The cost of a solution equals the maximum number of cars teahdhe hub at the same time:

max Z vol(r®) — Z vol(r?) 2

teR4 .
re:arrive(r®) <t r¥:depar(rv)<t
An optimal solution to TSSP is one for which this cost is mimm

We remark that the number of relevant constraints in (1) igefiand that the maximum in (2) can be
computed over a finite set eélevantpoints in time, for example the arrival and departure timethe
trains at the hub plus the times derived by adding or sulitiguthe shunting time.

In this model we treat the capacity limit asaftconstraint by declaring it as the objective. In fact, as
sketched in Section 1 it can be argued that the capacity efssification yard is not determined by a single
number of cars which if exceeded renders the yard inoperabteather by a range where it increasingly
gets more and more difficult to fulfill the requested clasatfan.

Model 1 has some limitations: First, as in all such approacbptimization potential is lost in the
hierarchical planning process. Second, on instances igitl time windows and capacity constraints, the
separation between routing and scheduling may lead tddiéigsissues in the scheduling step, because the
routing is oblivious to the compatibility and time-consisty problems its routing decisions may create. A
further restriction of Model 1 is that it neither considetgbhconnecting nor direct trains. These limitations
are discussed in some more detail in Sections 4.2 and 4.4.



2.4 Model 2: Path Based Set Partitioning Model

When tight time windows are imposed, it may be impossiblesuee an even load at the hubs using Model
1. In order to overcome this problem and exploit the add#@l@ptimization potential of direct connections
and hub connections, we present a model that describes tf8&WHhs a whole.

A scheduled route is the fundamental notion in our problem,itis only natural to base a model on
this. A variable in this path-based approach represente@dbnsistent, load admissible, scheduled route,
of which there are exponentially many. We select compagibles in such a way that a usage limit on each
hub is respected. The resulting ILP for MHSOP is given in Bign order to deal with a finite number of
constraints and variables in the first place, we considet & se{0,...,7 — 1} of 7 points in time, and we
define as time slots each interval between subsequent pdiatassume trains to always arrive or leave the
hubs at the ends of a time slot. This is a common and mild c#istni, as we do not have full control over
the precise times anyway.

In this model, sta(t-) and endr) denote the start and end node of a scheduled raufach binary
variablez’ indicates whether the scheduled pickup routarriving at hub eng) during time slott, is
selected or not; similarly, the binary variahjg indicates whether the scheduled delivery roytéeaving
hub startr) during time slot is selected or not. Moreover, each binary varigifié indicates whether the
hub-connecting scheduled routedeparting from hub stgrt) and arriving at the destination hub énpat
time at is selected or not. We may refer to one and the same variaddéglits departure time dfrom its
origin hub. Following the policy of SBB Cargo we do not coreigickups or deliveries on hub-connecting
routes. Finally, for each shipmerte S we introduce a binary variablé; modeling the possibility of
transportings with a dedicated engine directly from its origin to its deation. Such a direct path is not
associated to any time since it is always possible to dediatripment on the direct path respecting the time
windows.

Abusing notation slightly, we denote the set of all scheduleutes byR, irrespective of their type;
furthermore, all summations in Figure 2 are meant to be @asible routes separately for the summands.
Thatis, a sum of typ§:7,€R_¢€T xL +h%tis to be read as the sum of all variables corresponding tibieas
pickup routes with arbitrary arrival time at any hub plus slwen of all variables corresponding to feasible
hub-connecting routes with arbitrary arrival time at anfphiill sums of this type in the constraints should
be seen as a shorthand notation for two separate sums. Eousa for the corresponding dual variables,
we refer to the constraints using the Greek letters inditatehe left of the model.

Constraints labele@ and are set partitioning constraints stating that each shipimasto be picked
up and delivered, respectively.

The ¢-constraints are global flow conservation constraintstiershipments at the hubs. Together with
theo-constraints they ensure the time consistent inflow-outidshipments at hubs.

The &-constraints enforce that a shipment that arrives afteg tilmas a corresponding outbound train
after timet + T2, Thes-constraints represent the symmetric statement for outtbtrains.

The g-constraints play a similar role for the engines asdh&onstraints do for the shipments, except
that we allow engines to end their duty at the hub. Togethes; find3 constraints enforce the compatibility
of the chosen scheduled routes.

The x-constraints limit the usage for each htbe H to cap, cars in each time slot. We remark that
introducing these constraints provides an a-priori guaeto avoid hub overloading. With this model the
decision maker can evaluate different scenarios allonanglifferent levels of maximum hub load.

Out of the three types of constraintsa, and¢, every pair of types implies the third type. Therefore,
we chose to discard constraidtsThis implication was expected, sinéends constraints are nothing else
than a variation of the classicgéneralized flow conservation constraints for networké witermediate
storagefor flows over time problems, see for example [24].

We charge the engine cost to the pickup route; together WwihBtconstraints this allows to use an
engine for pickup operations only.
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Fig. 2. ILP Model 2; see comment in the text for interpreting the swatiams.

Finally, we remark that shipments with a hub as an origin atidation need a special treatment.
Although this aspect has a minor impact on the model, it thicees particular subtleties in the solution
methods, which we do not address here.

The advantages of this formulation are that it considerk Bbipment and engine flows in one model,
and that the flow conservation carries over to the fractivaghbles: this means that all fractionally valued
routes in a solution have compatible counterparts, whiofpkifies the extraction of integral solutions.



Furthermore, using this decomposition, we can efficierdlyesthe issue of time consistency and volume
admissibility in independent subproblems, as describ&gittion 3.2.

3 Solution Methods

In this section we investigate the various algorithmic Erajes inherent in the three models: What are
the (sub-)problems that arise, how do we address them bgahitalmically and implementation-wise, and
what further techniques do we use to achieve a good perfaren&ince Model 0 is meant to be optimized
using a (commercial) standard solver, we focus on Model IModel 2.

3.1 Model 1: A Branch-and-Cut Approach

The result of the decomposition approach in Model 1 is thatMiHSOP is reduced to a partitioning prob-
lem, two independent TRPs, and a TSSP for each hub. We comtiselproblems in this order.

Partitioning. The partitioning problem of Section 2.3 can be formulatetbews.

We introduce binary variablds,,, indicating whether shipmentis served by hulk, and binary vari-
ablesp,;, andd,,, indicating whether hub is connected to statiomby a pickup or delivery route, respec-
tively.

Let C9™ecthe the cost of connecting hubto stationwv, and g, the cost of the cheapest trip for

transporting the shipmenrtover hubh.
The problem of partitioning the set of shipments, such tlodtub serves more than a fractigrof the
total volume, can be formulated as follows.

min Z CopMe% (pon + dun) + Z Qsh - Osh

veV,heH seS,heH

st Y O > 1 Vse S (3a)
heH
Osn < Don Vh € H,Vs € S,v € V : orig(s) = v; (3b)
Osn < dyn Vh € H,Vs € S,v € V : dests) = v; (30)
Z (vol(s) - Osp) < f- Zvol(s) Vhe H (3d)
seS seS

Constraints (3a) enforce that all shipments are routed hiaba Constraints (3b) and (3c) enforce con-
sistency of hub assignments and routes: If a shipméntouted via hulh, the origin and the destination
station must be connectedhoConstraint (3d) enforces the volume balance for each hale ive choose
Ceomectas the combination of a fixed offset for connecting a hub ta#icst, plus the connection costs in
terms of distance from the hub.

This problem is NP-complete, as it contains problems likedkpartition and facility location [4, 21].
However, this formulation can be effectively optimized bgemeral purpose solver (see Section 4).

Routing Our solution approach to the TRP consists of a transformatiothe following well-known
Distance constrained Capacitated Vehicle Routing Propblemich allows us to use existing reliable soft-
ware [40].
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Definition 4 (Distance constrained Capacitated Vehicle Raing Problem (DCVRP)). Given a com-
plete networkNVPCVRP — (V E. ¢, /), wherec is a cost function on edges arfds a length function on
edges, a specified hub nodec V, demandsi;,i € V on the nodes, a maximum lodd®SVRP, and a
maximum distanc®PSVRP

Find K elementary circuits starting i with minimum total cost, such that each customer node is
visited by exactly one circuit, the sum of the demands on eiamhit does not exceed the loddP$VRP, and

that no circuit exceeds the lengfpPCVRP.

nax

In the following, we give a transformatiof of TRP into DCVRP, such that an optimal solution of
any TRP instancérrp can be derived from an optimal solution of the corresponttiaigsformed DCVRP
instancel (Itrp).

An optimal solution to the routing problem consists of twatpathe pickup routes and the delivery
routes. For simplicity, we again describe the transforamettdr the pickup case only.

Roughly speaking, the task of the transformation is to dddhewing: Translate a problem defined on
a sparse graph for which the solution consists of a set ofiitércovering the network to a problem on the
complete graph for which the solution consists of a set dipabvering the network. Note that the common
transformatiore; ;) «— cg; ) — iy~ Clhy by Clarke and Wright savings [12] only works in the other
direction, in the sense that it transforms a problem witbuits into a problem with paths. Moreover, we
have to correctly translate the length and load constraints

The transformatio& applies the following types of modifications to instarggp to achieve the above
goals:

1. Add all missing edges t& "RP. The length of such a new edge= (u,v) is set to the length of the
shortestu, v path in N TRP,

2. Increase the length of each edge of the network 3y, .- v.

3. Partly merge shipments with identical origin that wilfidéely be transported by the same train.

4. Replace each station wijlshipmentsj > 1, by aj-clique with edges of cost and length zero. Identify
each shipment of such a node with one of the nodes of the neweclyy assigning the shipment’s
volume to the demand of the clique-node.

5. Add K nodes with demand/’ to the graph. The nodes are connected to the hub by edgesdgtitwei
— M, and to the rest of the network by the full bipartite graphwvgero-weight edges.

Step 1 to 4 aim at making the network complete, have the cdimp&included in the distances, and
have one shipment for each node. The idea behindsttextra nodes introduced in Step 5 is to force all
circuits to start or end with such a node followed by a “fremti to the starting node of the corresponding
TRP path. Therefore, each of th€ vehicles must visit exactly one of these nodes. This is aekidy
setting the weight of the hub-extra node edges-t/, M > 0, their demand ta\/" > > _ ¢ vol(s),
LPCVRP _ npr g andDPSYRP — Dy,

The correctness of transformatignis established in the following lemma, whose proof can beafbu
in [22].

Lemma 1. Let a TRP instancégp be given. Lebpcyrp be an optimal solution to the DCVRP instance
W (Itrp) Of coste. Then, an optimal TRP solution for the pickup has easfs - M and can be reconstructed
from opcvrpin linear time. The same statement holds for an optimal &oiuor the delivery TRP.

Given an optimal solution of an alike created instance of RRBVVan optimal solution of the TRP is
constructed by considering the paths restricted to thesofitne original network.

The construction can be slimmed down a bit: first, it is sugfitithat the set ok nodes introduced can
induce a matching on any subggtc V' of size K. Second, for the original graph nodes, all edges can be
removed, for which picking up both shipments of the inciderdes causes a violation of the load or length
constraints.
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Solving the DCVRP. The above construction allows us to focus on solution apresfor DCVRP.

Many exact algorithms for the DCVRP were proposed in the $980, 30, 31]. There are several soft-
ware packages for the general vehicle routing problem, cervial as well as free ones, see [6, 25, 38] for
a survey. A reliable and successful open source packageddfRP is the branch and cut code by Ralphs
et al. [40]. We base our implementation on this package, lansl describe the “two index formulation” of
the DCVRP on complete undirected graphs [44], which we usxtend the VRP package.

DCVRP: min Zcegce

ecE
st > @ =2 Vie V\ {h} (4a)
e={i,j}€F
>z = 2K (4b)
e:{iL,j}EE
Yo w2 2(@Q VQCV\{hLQ#0 (4c)
e={i,j}EE,i€Q.i¢Q
ze € {0,1} Vee E (4d)

Binary variablesr. indicate whether a given edgec E is chosen. Equations (4a) and (4b) enforce the
correct degree at the nodes and at the hub, respectively.

Constraints (4c), theapacity cut constraintplay a similar role for the VRP as the subtour elimination
constraints do for the TSP [32]. The left hand side, evatliate solution vector, gives the number of edges
in that solution that cross the graph theoretic @@tV \ Q]. Note that every vehicle serving customers
in @ contributes with two edges to the size of the cut. The righichside should therefore represent the
minimum number of necessary crossings of vehicles due todheectivity requirement, capacity reasons,
and the distance constraints. The vat(@) can be understood as the maximum of two valdé®), which
accounts for the maximum distance constraints; ¥{dg), which accounts for the capacity constraints (and
also for the connectivity constraints).

There are several valid but not equivalent choices for a itiefinof d(Q) and\(Q). In fact, there is a
whole hierarchy of possible values fa(Q) that lead to different families of valid inequalities—thest

common being\(Q) = P“Lii‘?xdw This gives therounded capacity inequalitiesee [36] for a more

detailed discussion. The valugQ) is the minimum valué: € N such that the objective valuég, of a
k-TSP problem orf divided by DPSVRP and rounded up equals see [44]:

d(Q)_min{keN’kz{%fggW}. )

max

Separation Heuristics The separation problem for rounded capacity inequalities@equalities of Type (4c¢)
is NP-complete. For this reason, we focus on effectigparation heuristicshat try to find violated in-
equalities of Type (4c) without guaranteeing of finding ohi éxists. As the cutting plane generation is
embedded into a branch and bound framework, this might ywelaker bounds, but does not compromise
the correctness of the algorithm.

Since the capacity constraints are effectively handledhbyekisting software package we use, we focus
on the distance constraints. We devised the following sgjmer heuristics.Given a solution, we consider
the support graph induced by all nonzero edge variables), Mae remove the hub node and consider each
connected componety; separately.

Since we are only interested in instances of DCVRP arisiognfour transformatiow, we tuned our
cuts to handle these specific instances, thus discardingthes introduced in Step 5 and the involved edges
of size— M in the length computation. Nevertheless, the cuts can bigegp the general DCVRP. For the
first set of cuts, we compute the length of each component liyhiveg the length of each edge by the value



Fig. 3. An in-out graph together with a linear arrangement of cutivitb. All non-labeled edges have unit
weight.

of its associated variable. . If the resulting length exceeds what can be traveled by ¢hécles serving the
component, we know that at least an additional vehicle isleédor the component, and we can enforce
this with an inequality of type (4c). We introduce these ¢atghree different cases: fractional components,
integral components (and thus circuits violating the larigdund), and all subpaths resulting from integral
components that violate the length bound. As the solutioise & a branch-and-cut setting, some of the
branching decisions might not be optimal. Therefore, ttoegs have local validity only in the branching
tree. To overcome this problem, we introduce globally valits as follows. We consider the graph induced
by the nodes of an integral componéhtand compute lower bounds for the distance of the tour needed t
serve these nodes. If the lower bound exceeds the distarich wdn be served by the number of vehicles
serving the component, we can introduce a valid cut. We useasy methods to compute lower bounds for
the tours: the relaxation of TSP to 1-trees, and its clabsitaxation to the assignment problem, see [32].

The transformatiow, and the extension of the existing software to handle digt@onstraints allowed
us to effectively handle the TRP problem. The results arsgmied in the experimental Section 4.

Solving the TSSP ProblemThe TSSP has an interesting connectioMinimum Cut Linear Arrangement
Problems To see the connection we consider an easier variant of Tis&Rich we drop Condition 3, set
Th = 0, and only ask for the sequence of in- and outbound trainsdtub that minimizes the necessary
hub capacity. The resulting sequencing task can be degigtdte bipartiten-out graphGi, = (UUV, E)

in Figure 3. The inbound trains (iR*) correspond to nodes of the top partition, the outbound$réin RY)

to nodes of the bottom partition. Each edge: (7, r;.’) has avolumevol(e) corresponding to the number
of cars that train¥ receives from train?. We call G;, a uniformly directed bipartite graphbecause all
edges are directed frobi to V.

The problem is equivalent to findinglmear arrangemenbf the graphG, i.e., an embedding of the
graph onto the horizontal line, such that all edges are @ideftom left to right. For such an arrangement,
the maximal number of edges crossing any vertical line ig¢he) width and it corresponds to the maximal
number of cars residing in the shunting-yard. The width ofapG is given by the minimal width of a
linear arrangement af.

Without the directions and the restriction to bipartitegrs, this problem is known as the minimum
cut linear arrangement, a well studied NP-complete proffgdmproblem GT44] that was shown to remain
NP-hard for graphs of degree 3 [34], and even planar grapdsgfee 3 [35]. In [22] the authors extend
these results in the following way:

Theorem 1. It is NP-hard to decide if a uniformly directed bipartite plar graph of out-degree 3 and
in-degree 2 admits a linear arrangement of width

In spite of this result we can solve the instances of the TS8Blgm that arise in our setting by a simple
ILP formulation, because these are not too large. For thimditation, we discretize the time horizon into
points in timeT = {0,...,7 — 1} and make use of the previously defined in-out gr&fah We introduce
binary variables:. andd’, that model arrival (and departure) of the trains R* (' € RY, respectively)
attimest € T. Here, we assume that the shunting tifi{,,.is given in time slots. We refer t& as the
edge set of the in-out grah,.
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min C

st al < o'ttt Vre R*,teT (6a)
dt < ditt VreRY,teT (6b)
at > b T vt e {0,...,7 —TH —1},

V(r,r"y e E (6¢c)

dt, =0 Vi’ € RY,

Vt e {O shunt 1} (6d)
> vol(e)(al —dl) < C VteT (6€)
ecE
(r.r’)

ali =0 Vr € R”:arrivey (r) > t; (6)
d =1 vr' € RY:dep(r’) <t; (69)
A > S dRe e {0, 7 — Th— 1), (6h)
reR® reRY

a=0, al t=1 Vr € RY

=0, d,;'=1 vr' € RY (6i)
alla.,d. € {0,1} (6))

Equations (6a), (6b) and (6i) impose that, for every edgie variables:, andd, form a monotone
sequence starting with 0 and ending with 1.

The arrivals and departures of trains are scheduled at thér@asition of the respective variables,
i.e, for a pickup route* € R* we set arrivey(r®) = t if afﬁl — al. = 1, and symmetrically for
a delivery routes. Constraints (6¢) and (6d) enforce thatwthound train can only depart if all its cars
have arrived and thatZ! time units are available for shunting those cars. Congtsd6e) represent the
capacity constraint over all time slots, which is the ohjecvalue. Constraints (6f) and (6g) introduce
time constraints for the earliest arrival/latest departof trains, i.e., from the time windows we infer a
constraint of type arrivg(r) > t’ on the arrival (departure) times at the hub and expressritse form
of Constraints (6f) and (6g). Constraints (6h) enforce #ahin can only depart from the hub if there is an
engine available.

Our experiments show that for the TSSP instances that adsethe solutions to the TRPs on the SBB
Cargo Express instance, we can calculate a schedule thaemhizés the maximum hub load and respects
the time windows in at most a few minutes.

3.2 Model 2: A Column Generation Based Approach

Since Model 2 involves an exponential number of variablesadopt column generation techniques [19]:
we start with arestricted problem, containing only the direct shipment variahlgsthen solve its linear
relaxation (the so called restricted master problem, RMBYaining a vector of (optimal) dual variables.
We use this dual information to identify new variables of atage reduced cost. If any such variables are
found, they are included in the RMP and the whole proceseiati#d. Otherwise, the value of the linear
relaxation of the RMP is a valid lower bound. Note that indhgdall direct shipment variables has the
advantage of making the RMP feasible from the beginningolmtrast to the decomposition based Model
1, the linear relaxation of Model 2 delivers a lower boundtmtalue of an optimal solution. Furthermore,
good integer solutions can be found by combining a subsdtetlynamically generated columns which
satisfy the constraints of Model 2.
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Since an optimal solution in which each shipment is servedrig/route always exists, we can safely
relax the set partitioning constraints to set covering traimgs. Then, the corresponding dual variables are
restricted in sign, which leads to an easier cost structuthé generation of columns. Furthermore, it is
also easier to obtain feasible RMPs.

The Pricing Problems The problem of finding columns of (most) negative reducedscscalled the
pricing problem. For the sake of clarity, we denote the daaiable corresponding to each constraint by
adding indices to the Greek letter indicating the constragelf. Since the pricing problems involving
pickup and delivery routes are completely symmetric, wewdis the pickup pricing only.

Here, the reduced cost of a (column encoding a) pickup rotdaéhubh’ scheduled at timé€ is

Cengine+ Z l(e) - C— Z(ﬁ's + (bsh’) - Z Ohst — VOI(T) Z Xth' — Z ﬁh’t (7)

ecr ser sert<t’ t>t t>t!

wherew, B > 0, xun, 0nst < 0 @ando, € R represent the dual variables associated to the constraints
of Model 2. This reduced cost has three components: a)cost. I(e) - ¢, which depends only on the arcs
used in the route, a prize

Z rc(s) := Z s + Psns + VOI(S) - Z Xth' + Z Onse |

sEr sEr t>t! t<t’

which depends only on the shipments picked up, and a corstatibutionCengine — >, Bn¢, Which
depends only on the destination hub and arrival time slot. B

Definition 5 (Pickup Pricing Problem). Given a networkV, a hubh’ € H, an arrival timet’, parameters
Lmax, Teouple 7, ¢, a set of shipmentS, and aprizerc(s) for each shipment € S, find a time consistent,
volume admissible, scheduled routeNnof minimum reduced cost.

This problem is a variation of the well-known NP-hard res@uoonstrained shortest path problem with time
windows (RCSPP) [20]. We devised a particular dynamic pgogning shortest path algorithm, similar to
those presented in [7, 20] for solving the pickup pricinglpeon. Each label represents a partial route,
and encodes &-valuedstate(u (1), I1(1), (1), v(1), (1)), whereu(l) > 0 is the cost of the partial route,
I1(1) > 0 the collected prizer(l) > 0 the elapsed timey(I) > 0 the used volume andl(!) the set of
visited nodes in which pickup operations occur. Each lagkrs to a particular node of the network. As it
is not surprising for a railroad problem, our routes canmoalvayselementarythat is, without node and
edge repetitions. However, we only construct routes whiehcall “shipment elementary,” which means
that no shipment is picked up twice. Forcing the routes tohjensent elementary is enought to preserve
the quality of the the lower bound we obtain from the RMP.

Initialization. Let S;(v) andSz(v) be two subsets of pickup shipments at nedéhen.S; (v) dominates

Sa(v) if
Z rc(s) > Z re(s) A Z vol(s) < Z vol(s)

s€S51(v) s€852(v) s€S1(v) s€8S2(v)

and all the shipments iff; (v) have no later pickup time with respect to each shipmertifv). This is

not a restriction in our case, since all the shipments in éimeesstation share the same earliest pickup time.
That is, picking up all shipments ifi; (v) instead of all shipments i§5(v) requires no more resource
consumption and gives no smaller prize. We begin by enuimgrall non-dominategubsets of shipments
for each pickup station in the network. Furthermore, we tereasetZ of | V| labels corresponding to the
initial state(0, 0,0, 0, (), one for each node of the network.
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Extension procedure Let L be the set of labels created so far, dhd argmin_; {x(1) — II(1)}. In each
round the label* is pushedo every neighboring node. Lét refer to node*, let j be one of its adjacent
nodes and let be the arc connecting them: a set of labels is created andladde This set contains a
label for each non-empty non-dominated subset of shipntérts at nodej, encoding a state

p) +1e)-e I+ Y re(s), 7(0) +1e) - o+ Tonum v(D)+ > vol(s), oll)U {5}

s€Sk(J) sESK(J)

and one additional label encoding a stgi€l) + I(e) - ¢, I1(1), 7(1) + I(e) - U, v(1), (1)) corresponding to
no pickup operation. Each label with{l) > Lmaxor 7(I) > ¢’ is discarded. Labél* is finally removed
from L and stored in a separate list

Label Pruning. As in [7], we delete any labdlat nodei with 7(I) + t;,» > ¢'. Furthermore, let be the
value of the incumbent RCSPP solution. Following [33], dgrihe creation of each labkele compute an
upper boundT on the best prize that can still be collected by filling the agrng volume; this requires
solving a fractional knapsack problem [37]. If the vaju@) — I1(1) — I1 is still higher tharl, labell can
be discarded, since it cannot yield improvements on thenibant solution.

Dominance rule.In our algorithm, a label; dominatesa labeli,, if they refer to the same node of the
network, andu(ly) < p(le) andu(ly) — I (lh) < p(ls) — H(l2) and7(l1) < 7(l3), andr(ly) < v(ls).
Moreover, in an optimal MHSOP solution no route performskpjc operations more than once at the
same station, although a particular setting of the prizés roay yield the generation of routes containing
cycles As mentioned above, forbidding such cycles (i.e., rettigahe search telementaryoutes) leads to
substantially better lower bounds. Unfortunately, thises at the price of making the RCSPP computation
much harder; in fact, we must enfore€;) C o(l2) as a further condition for labé] to dominate label,.

We stress that our technique requires elementariness nrdymall subset of the nodes of the network: this
makes the problem tractable from a computational point@fvFollowing [5], the setr (1) of each label is
represented as a vector of binary resources, one for eachppstation of the network; each of them is set
as consumed as soon as pickup operations are performedairtesponding station. Finally, as done in
[27], we tighten the dominance rule by including in thes@} all stations that cannot be reached anymore
due to resource limitations.

Termination. Let L(h') be the subset of labels ih refereing to nodé’. When no new label is created, a
labell* € argming ., {1(l) — I1(1)} encodes an optimal solution to the pricing problem.

Dominance of time slotsWe also check the following simple dominance rule for erttiree slots. Let hub
h' be fixed. Ifty > t; and for alls € S we have thaﬁ:tlgtd2 Bre =0 and2t§t2 Ohrst > Ztgtl Oh sty
that is Zt1<t§t2 o st = 0, an optimal solution fot, cannot be worse than an optimal solution for
Therefore, we may discard time-sigtin the search for the most negative reduced cost column.

Pricing of the hub-connection routesSince no pickup or delivery operations occur in hub-corinaest
these routes always follow the shortest path between ths. Atite pricing problem simplifies to a knap-
sack problem, which we solve using the MINKNAP algorithm]3dapted to handle fractional prizes as
described in [10]. Furthermore, the time-slot reductioocedures described above can be readily adapted
to hub-connection pricing.

Finally, we remark that since the direct shipment variaklesincluded in the initial RMP we do not
need to consider them during pricing.

Acceleration Techniques The literature on column generation abounds with accéteréechniques [18].
We briefly discuss some of our methods.
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Pre-Processing Strategies. We condensed the original SBgo@Express network to a smaller network
without loosing optimality guarantees. The details of steztuctions are discussed in Section 4.

Heuristic Pricing. As most of the time is spent in pricing wevided heuristic speedup techniques. At
each pricing step, we stop the pricing algorithm as soon ased fiumber of negative reduced cost
columns has been found. Moreover, we limit the number of gaed labels, as commonly done in
routing problems [45]. We reduce the number of demands byeggding shipments during pickup and
delivery pricing. The heuristics are discarded if no negatiost label is found.

Perturbation. For the calculation of each RMP we perturbitite hand side of the-constraints by small
random values. Consistent with the literature [17] thiddsea significant speed-up of the LP-solving
steps.

Columns Management. In order to keep the RMP small, we sutfjeccolumns to aging. If a column
keeps being nonbasic for a given number of pricing iteratibis removed from the RMP and added
to a column pool. Before pricing, we scan this pool: if anypoeasly generated column is found with
a negative reduced cost, we insert it in the RMP and we skginyi

Stabilization. A common problem in column generation i¢ tha dual variables tend to oscillate and to
assume extreme values. Using an interior point method teegble RMP is a possible remedy, but
we encountered severe numerical problems when using thietbalgorithm in CPLEX. Instead, we
adapted the interior point stabilization approach desctib [41] to our problem, obtaining better con-
vergence. However, balanced dual values required to salngeh pricing problems and this technique
did not pay off with respect to the overall performance.

Primal Heuristics As solving only the linear relaxation of Model 2 to optimglibkes a long time, we
experimented with heuristics based ondiee-and-fixparadigm [46]. We augmented the standard rounding
procedure by performing column generation steps and imajuplroblem specific rules, obtainingdive-
and-generatédneuristic. Given a fractional solution for the RMP, the hstir iterates the following steps
until an integral solution has been found.

1. Round up the columawith the highest fractional value, given that it is consisteith the columns
rounded up so far in the RMP constraints.

. Round down all columns in the RMP that are not time-coaststithc.

. Solve the remaining RMP using the dual simplex algorithm.

. If the solution is integral stop.

. Otherwise, remove the shipments included iinom the pickup, delivery or hub-connection pricing
problem, according to the type of the route encoded.by

. Perform a fixed number of pricing iterations to include r@umns into the RMP, and go back to
Step 1.

abrhwnN

»

Note that by rounding up and down fractional valued coluritrtsin happen that the RMP may become
infeasible. If this is the case, we apply a technique calkt&s Pricing, which tries to restore the feasibility
of the RMP by considering optimal dual rays of the (unboundeedl problem. We detail this technique in
the Appendix A.1. To the best of our knowledge, such techmltas not been applied in column generation
so far.

Since the number of pricing steps is limited, dive-and-gatgemay still fail in finding a feasible so-
lution. Therefore, after each rounding step we executetddaal improvement procedure which tries to
complete the current partial solution by further roundifng this aim, the procedure first greedily rounds
up more columns, maintaining the time consistency betwe#raband departure times of the shipments at
the hubs. Uncovered shipments are transported by dirdts gatonsistencies of shipments arriving at one
hub and leaving from another hub, as well as inconsistermigbe engines serving each hub are solved
by using hub connecting routes. Hub capacity problems ageeaded by shifting the routes in time as far
as possible. If capacity problems remain, the heuristiothices direct paths to lower the necessary hub
capacity.

We remark that our dive-and-generate approach can be dpplieout problem-specific knowledge to
any ILP solved by column generation techniques. Such heurssunconventional if compared to other
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heuristics in column generation settings that rely morehencompact formulation or metaheuristics that
are initialized and guided by the column generation process [16]. Indeed, we try to exploit first the
skill of the pricing algorithm in generating high qualityutes, second the involved structure of the RMP to
combine the routes respecting time consistency and huaedgpthird the problem-specific structure for
local improvement.

4 Experiments

In this section we report on the experimental results withttiree models. All computations were carried
out on a standard Linux PC with a 3 GHz processor and 4GB mer@étlyEX 9 was used as ILP solver
for Model 0 and as LP solver for Model 1 and Model 2.

We start by describing the SBB Cargo Express instance.

The planners of SBB Cargo Express service provided us wélhdiaa, i.e., the actual railroad network,
their timetable and the demand matrix of a specific month.ratad network for the SBB Cargo Express
service has 651 nodes and 1488 edges, and they currentlgtepdgth two hubs, located in Daniken and
Zurich Mullingen. In a preprocessing phase, we first cateutae all-pairs shortest paths among the nodes
with shipments and the hubs. Edges that do not occur on atyshartest path can be safely ignored. In
the resulting graph we contract degree-two nodes if theyeiteer a hub nor an origin nor a destination of
any shipment. The preprocessing condensed the networkltoddes and 332 edges.

In Figures 4 and 5 we show respectively the original netwaid a detail of it, together with the con-
densed network that we extracted. Dark nodes represeioinstatith shipments in the SBB Cargo Express
service, and stations without shipments that were retamtte condensed network. The two bigger square
nodes correspond to hubs. The light colored nodes and edgestadions and connections that are not
retained in the condensed network.

Since the given demand matrix only comprises a month to&klwided the supply in a daily average,
and rounded fractional numbers. This resulted in a 200 shiipsinstance. Since the actual time windows
were not available, we defined the earliest pickup and latektery times by relaxing the pickup and
delivery times on the currently implemented plan by one hour

In order to simulate the real setting, we fixed the paramdtetke following realistic values: The
maximum train load is 25 cars, the average train speed ie sett60km /h. As a coupling time at stations

we chosel e = 27min. The length of each time slot is set19min. The shunting time at the hubs is

set toT}r .= 27min, equal at both hubs. We considered an hub to be overloadeaté than cap = 80
cars are in the yard during the same time slot. Finally, w&€'sgjine= 1000 andc = 1. The three orders of
magnitude difference in cost makes the minimization ofatise a secondary objective over minimization
of engines.

Taking into account only the number of shipments, the SBBam=e is about the size of the largest
optimally solved (much simpler) VRP instances; yet, trytogsolve the entire tactical planning process

turns it into a very challenging problem.

4.1 Model 0

We implemented Model 0 using the OPL Modeling language [26§ solved it using CPLEX. On a toy
instance with 11 nodes, 23 edges and 11 shipments we did natgéasible solution in 7 hours. However
a feasible (not optimal) solution for the first 5 and the lashipments separately can be found in about 20
minutes. In fact, this suggests a decomposition approachit was a motivation to develop and implement
more involved approaches like Models 1 and 2.

4.2 Model 1

We implemented the branch-and-cut approach for TRP usingPYONY 5, a framework by Ralphs et
al. [39]. We used CPLEX as LP solver for SYMPHONY, and LEDA 4db computing the minimum
spanning trees and the assignment problems needed fortthe cu
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Fig. 4. The original railroad network together with )
the condensed network that we extracted. Fig. 5.An enlarged detail of the complete network of
Figure 4.

The computation flow through the three steps of Model 1 is sarirad in Table 1. The table is built
by 5 blocks, one for each step in the solution procedure,disated in the heading row.

In the first block we report the number of cars composing skiptsimanaged by the same hub after
the partitioning step. For the partitioning we enforced kibee constraint of 55%, i.e., at most 55% of alll
shipments can be assigned to one hub. The resulting spti fiedir instances for TRP, pickup and delivery
for Daniken and Zirich Mullingen.

In the second block we indicate, for each hub and for both itlkeup and delivery phases, the number
of nodes (N) shipments (S) and engines (E) in the correspgmdCVRP instance. Th®PCVRP values in
the DCVRP subproblems (columiy,...") were chosen by taking the maximum distance from each hub
to a shipment assigned to it, and increasing it by the eqemtalf time needed for shunting twice. The
rationale behind this choice is to allow serving two shipitsemnth the engine serving the farthest one. The
shipments for the instances were obtained by aggregatingpaperation with the SBB Cargo planners,
some of the demands with the same origin for the pickup protdad with the same destination for the
delivery problem.

In the third block we report the results obtained by solvilg TRPs in terms of overall distance traveled
by the fleet (column ‘dist.”), CPU time needed to obtain sumtson (column ‘comp. time’), gap between
the best known upper and lower bounds if optimality was noved (column ‘gap’). The engine fleet
size of each instance was incremented sequentially umtihnthmber of infeasibilities with respect to the
time windows did not decrease anymore. The solution prof@sall instances took about 10 days in
total. Since we observed dramatically higher computatior$ for instances with fewer engines (and more
infeasibilities), the best approach is to decrement thé $ige from an initially large value and stop when
the number of infeasibilities increases.

The few remaining infeasibilities were solved by a very denfixing heuristic similar to the one pre-
sented in Section 3.2 for Model 2. In the fourth block of theléave indicate the overall traveled distance,
the number of used engines and the overall cost on the whhlgso This approach resulted in using an
engine fleet ofl 1 engines for the shipments assigned to Zirich Milligen (ZN&ad24 for the shipments
assigned to Daniken (DK), and a fleet33f engines in total.

The resulting TSSP instance takes the time windows and titesaletermined by TRP as an input. As
reported in the fifth block of the table, in the timetable whininimizes the maximum hub load, at most
80 cars are in ZMUE and 106 cars are in DK at the same time. Ehises a slight overload in DK. The
solution was found in less than a minute.
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To sum up we were able to produce a solution that is close topkeational constraints. This comes
at the cost of a large computation time; it is also difficulegtimate losses in objective value by the three-
phase decomposition.

Table 1.Computation flow through all phases of Model 1.

| Partition | TRP Instances | TRP results | totals after fixing TSSP |
| hub [car§ mode | Dmax [N|S|E] dist. [comp. tim¢ gap| dist. [E] cost |max load
DK [253| pickup [378&m|(26|25/|21{166km| <1min | 0% |7686&km 35/4268 106
delivery|296km|31/30{21|259kkm 90min | 0%
ZMUE|208| pickup |27&km 15(13 9 | 93&km| <1min | 0% 80
delivery|31%m|(17|14{ 9 |162&m  15h |5.9%

4.3 Model 2

We implemented our column generation algorithm for Modekihg the SCIP library by Achterberg [1],
with CPLEX as LP solver. It is the first time SCIP is used to iepent a CG algorithm.

Results First, the full instance, on which we apply Model 2, is comsably larger than the aggregated
instances for the TRP, as it considers 200 shipments andrépegzessed network. With our current im-
plementation we reach the tailing-off phase in the root rmfdae branch-and-price tree after a calculation
time of around four days. At this time the value of the relaats 29217.

The best integral solution found with the dive-and-fix hsticiof Section 3.2 has a cost of 35276. This
solution was achieved with 8 intermediate pricing stepsragach variable fix. Similar results can be found
with more steps, but experimental results showed thatiitgfective to price more than 12 times. The best
solution was found after 85 hours of computation. Howevenry similar quality results can be found within
12 hours. The best solution uses 27 engines, two of whichiegetatonnections. 12 engines travel to and
from Daniken, 13 to and from Zurich—-Mulligen. Furthermotiggre are 8 hub-connecting trains in each
direction. The total traveled distance is of 8R76

The local improvement is mainly useful when the dive-andhfearistic fails, or for obtaining good
solutions in the early computation phases.

4.4 Comparison of results

The advantage of Model 2 over Model 1 is twofold. First, althb the approach worked fine for the hub
ZMUE, we could not avoid some overload of the slightly bigheb DK.

In spite of the shorter overall distance, Model 1 thus rezgigsubstantially more engines than Model
2. For the SBB Cargo Express instance, this results in a 163410 (or 20%) with respect to the best
solution obtained by Model 2. Second, the need to iterateTtRE and TSSP solution process with an
increasing number of engines and handling the infeaséslieads to a enormous computation time. Thus,
the integrated approach of Model 2 performs significantlydven the given large real-world instance.

5 Conclusion and Future Work

Our computational experience confirms that capturing allitfodeling details of multi hub-and-spoke sys-
tems, while still providing reliable solution methods iskattenging task.

Yet, on the other hand, we also demonstrated that this tdaskfesr not hopeless.

Model 1 shows both the appealing and limiting features offithisting tactical decisions to separate
levels, as is commonly done in practice. In fact, the sotutitzethods of Model 1 rely on consolidated
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and effective algorithmic techniques and robust existioftwgare packages. The optimal solution at each
decision level can be found with an affordable computatieffart. However, a tough parameter tuning has
to be carried out to make the algorithms of the earlier dexitvels produce feasible instances for the later
decision levels.

On the other hand, with Model 2 we are able to consider alraating tactical decisions as a whole,
and provide a solution algorithm that consistently produeasible solutions of provably good quality.

A direct comparison between our solutions and the curremtptemented plan is not possible at this
stage, as our experiments were carried out on average vistsohces; moreover, we decided to ignore
some of the seemingly secondary aspects in our models: Wetdmnsider the problem of engine driver
assignment. We do not consider the problem of switchbaclsfacations. It is rather straight-forward
however to incorporate the handling of switchbacks anddfiwas in the pricing, since these only cause a
route to take longer to be carried out.

Our column generation algorithm exploits and extends vepent optimization techniques: One is-
sue we did not discuss is the question of branching rules. tAralbranching rule in our setting is the
assignment of shipments to hubs, based on the fractioniginasent of the solution at hand, which we
implemented. However, we only did few experiments on smaliances with different branching rules, and
focused on heuristically obtaining integral solution®alty in the root node for the whole instance.

A near-optimal solution of a practical problem of this scaifel complexity was entirely out of scope
some years ago. Even though we focused on a single instaageaoficular problem, we think that research
like ours will contribute to algorithmic and modeling impements, leading to state-of-the-art solvers
which are capable of solving a problem like ours “out of th&.bo
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A Appendix

A.1 Model 2 - Farkas Pricing

Consider a restricted linear programming master problegemreral form that is infeasible.

min cx (RMP)
b<Ax <d
e<z<f

As in the proof of the Farkas’ Lemma we can set the objectivetion to 0 and consider the dual linear
program

max upb — ugd +ree — ¢ f
WA —ugA+re—rp=0

Ub,Ud,Te,Tf 2 O .

This linear program is feasible, which is certified tay, uq, 7., 7 ;) = 0 and must therefore be unbounded,
as the primal problem is infeasible. From the complemerdkagkness conditions it is clear that out of the
two bounds associated with each constraint and each vaabj one can be nonzero if these are different.
If they are the same, still only one needs to be nonzero. Ttrerave can set = u, —ug andr = r, —ry.
Then we have the following set of (in)equalities that cezsifihe primal infeasibility.

upb —ugd +ree —rpf >0
uA+r=0.

As we have only a restricted linear programming master prokthis does not imply that the underlying
problem is infeasible. The aim of Farkas pricing is to addHfer variables such that the resulting RMP is
feasible again. An addition of a variable corresponds t@ttdtion of a further column tal. In our case we
have all the nonbasic variables at their lower board 0 < f. Therefore, it follows from complementary
slackness that; = 0 andr. > 0, so that- > 0. Suppose we find a new variable corresponding to a column
a; such that-ua; < 0. Then for the infeasibility certificate above to carry on veed that; = —ua; < 0
which is a contradiction to; > 0 and thus destroys this infeasibility certificate. This doeesmply that the
new RMP is feasible. Still, it is clear from the finitenessted humber of variables that this procedure must
find a primal feasible solution in a finite number of steps & fhimal is indeed feasible. To get a column
with —ua; < 0 we call the same pricing algorithm as before except that wehseobjective function to 0.
The resulting reduced codis- ua; are exactly what is needed here. The SCIP library is designsach

a way that it automatically switches to Farkas pricing if a Rbecomes infeasible.



