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Abstract

The aim of the algorithms developed in this thesis is the real-time detection of moving and

new static objects of arbitrary visual appearance in unconstrained surveillance environments

monitored with static cameras. This is achieved based on the results provided by background

subtraction. For this task, Gaussian Mixture Models (GMMs) are used. A thorough review

of state-of-the-art formulations for the use of GMMs in the task of background subtraction

reveals some further development opportunities, which are tackled in a novel GMM-based

approach incorporating a variance controlling scheme. The proposed approach permits

an easier parametrization of the models to different environments and converges to more

accurate models of the scene.

The detection of moving objects is achieved by using the results of background subtraction.

For the detection of new static objects, two background models learning at different rates are

used. This allows for a multi-class pixel classification, which follows the temporality of the

changes detected by means of background subtraction.

In a first approach, the results provided by the subtraction of both background models are

used as input of a Finite-State Machine (FSM), which is used to reason on pixel classification

based on the history of the pixel. This allows for the detection of new static objects over long

periods of time and for a correct classification of the uncovered background regions upon

their removal.

In a further developed approach, the results provided by multi-class pixel classification are

analyzed at the region level in order to distinguish between new and removed static objects.

This allows for the detection of static objects without previous knowledge of the observed

scene. Furthermore, it is shown that the results provided by region analysis can be used

to improve the quality of the background models, therefore, considerably improving the

detection results.

The results provided by the developed algorithms are proved in a novel summarization appli-

cation which combines multiple analysis cues in order to provide summaries that better align

with the content of the analyzed video sequences.
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Kurzfassung

Das Ziel der in dieser Arbeit entwickelten Algorithmen ist die Echtzeiterkennung von neu-

en statischen und sich bewegenden Objekten beliebigen Aussehens in uneingeschränkten

Überwachungsumgebungen, die mit statischen Kameras ausgestattet sind. Die Grundlage der

Verfahren sind die Ergebnisse der Hintergrundsubtraktion. Für diese Aufgabe werden Gaus-

sian Mixture Models (GMMs) verwendet. Eine gründliche Überprüfung der State-of-the-Art

Formulierungen für den Einsatz von GMM bezüglich der Aufgabe der Hintergrundsubtraktion

zeigt Möglichkeiten zur Weiterentwicklung, die zu einem neuen auf einer Varianzsteuerung

basierten GMM-Ansatz führen. Der vorgeschlagene Algorithmus ermöglicht eine einfachere

Parametrisierung der Modelle für unterschiedliche Umgebungen und konvergiert zu genaue-

ren Modellen der beobachteten Szene.

Die Detektion von sich bewegenden Objekten wird durch Verwendung der Ergebnisse der Hin-

tergrundsubtraktion erzielt. Für die Erkennung von neuen statischen Objekten werden zwei

Hintergrundmodelle, die sich mit unterschiedlichen Geschwindigkeiten an die Szene anpas-

sen, verwendet. Dies ermöglicht eine mehrklassige Pixelklassifikation, welche den zeitlichen

Bezug der durch Hintergrundsubtraktion erzielte Ergebnisse berücksichtigt.

In einem ersten Ansatz werden die Ergebnisse der Subtraktion beider Hintergrundmodelle als

Eingabe einer Finite State Machine (FSM) verwendet, die eine Pixelklassifizierung auf Grund-

lage der Pixelhistorie erzeugt. Dies ermöglicht die Erkennung von neuen statischen Objekten

über lange Zeiträume und eine korrekte Klassifizierung der aufgedeckten Hintergrundbereiche

bei der Entfernung dieser Objekte.

In einem weiterentwickelten Ansatz werden die Ergebnisse der mehrklassigen Pixelklassifikati-

on in Regionen gruppiert und weiter analysiert, um zwischen neuen und entfernten statischen

Objekten zu unterscheiden. Dies ermöglicht die Erkennung von statischen Objekten ohne

Vorkenntniss der beobachteten Szene. Weiterhin wird gezeigt, dass die Ergebnisse der Region-

analyse verwendet werden können, um die Qualität der Hintergrundmodelle und somit auch

der Detektionsergebnisse erheblich zu verbessern.

Die Ergebnisse der entwickelten Algorithmen werden anhand eines neuartigen Verfahrens zur

Zusammenfassung von Videoinhalten demonstriert. Die neu entwickelte Methode fusioniert

die Ergebnisse mehrerer Videoanalysealgorithmen, um Zusammenfassungen zu erstellen, die

sich besser an dem Inhalt der analysierten Videosequenzen ausrichten.
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Resumen

El objetivo de los algoritmos desarrollados en esta tesis es la detección en tiempo real de

objetos en movimiento y de nuevos objetos estáticos de apariencia visual arbitraria en en-

tornos no controlados de video vigilancia monitoreados con cámaras estáticas. Para ello se

han utilizado como base los resultados proporcionados por sustracción de fondo. Para la

sustracción de fondo se han utilizado modelos de mezcla de Gaussianas (GMMs por las siglas

en inglés). Un examen exhaustivo del estado del arte con respecto al uso de GMMs en la

tarea de sustracción de fondo revela algunas deficiencias de las actuales formulaciones, las

cuales han sido abordadas en un nuevo GMM que incorpora un esquema para el control de

la varianza. El sistema propuesto permite una parametrización más sencilla del modelo en

diferentes entornos y converge a modelos más exactos de la escena observada.

La detección de objetos en movimiento se consigue mediante el uso de los resultados de la

sustracción de fondo. Para la detección de nuevos objetos estáticos, se utilizan dos modelos

de fondo que se adaptan a la escena a un ritmo diferente. De este modo, se puede realizar una

clasificación de los pixels atendiendo a multiples clases que se corresponden con la relación

temporal de los cambios detectados.

En un primer sistema, los resultados proporcionados por la sustracción de los dos modelos

de fondo se utilizan como entrada de una máquina de estados finitos (FSM por las siglas en

inglés), que sirve para razonar sobre la clasificación de cada píxel en función de su historia.

Esto permite la detección de nuevos objetos estáticos durante largos períodos de tiempo y la

correcta clasificación de las regiones de fondo descubiertas cuando estos son retirados.

En un sistema más desarrollado, los resultados proporcionados por la clasificación de pixel

multi-clase se analizan a nivel de región con el fin de distinguir entre objetos estáticos nuevos

y retirados. Esto permite la detección de nuevos objetos estáticos sin conocimiento previo de

la escena observada. Además, se demuestra que los resultados proporcionados por el análisis

de región se pueden utilizar para mejorar la calidad de los modelos de fondo, por lo tanto,

mejorando considerablemente los resultados de la detección.

Los resultados proporcionados por los algoritmos desarrollados se presentan en un nuevo

sistema de creación automática de sinopsis de secuencias de video que combina múltiples

colas de análisis con el fin de proporcionar resúmenes que reflejan mejor el contenido de las

secuencias de vídeo analizadas.
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Introduction

Computer vision, image processing and pattern recognition are vast fields of research con-

cerning the automatic analysis of images and image sequences, with a broad spectrum of

applications such as remote sensing, medical diagnosis, human-computer interaction or

video compression, to mention only a few of them. Profiting from the advances in those fields,

automated video-based surveillance has arisen as an own research topic which has gained a

lot of attention in the recent years, due to the increasing threats to the security in public places

such as railway stations or airports. The aim is to assist human operators in monitoring Closed

Circuit Television (CCTV) camera networks, by alerting them on deviation from the normal

behavior observed in the area under surveillance. This provides the main benefit, that an

operator may monitor a larger amount of cameras by concentrating his attention to the critical

points in space and time, while the system assumes the tedious task of monitoring areas where

non-interesting events are happening. Furthermore, the knowledge acquired by means of

automatic video analysis techniques can be used in order to assist video operators and legal

authorities in the retrieval of evidence proofs from recorded video data, to administer large

area video networks in tasks such as panning and zooming in and out of Pan-Tilt-Zoom (PTZ)

cameras, and even for less technical issues as helping to protect the privacy of individuals in

public places.

Video surveillance systems have experienced a rapid development in the last decades, es-

pecially after the attacks on the 11th of September 2001 in New York, 11th of March 2004 in

Madrid and 7th and 21st of July 2005 in London, leading them to become a part of our daily life.

But the use of video surveillance systems is not restricted to safety and security applications.

Nowadays, video surveillance systems are also being deployed at department stores in order

to provide advertising assessment and quality of service, on highways for traffic monitoring
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purposes, and even on houses for elderly people to assist them in a non-invasive manner. This

success has been supported by the decaying prices in the sensor industry, which is able to

provide higher quality cameras of ever smaller sizes at low prices. Moreover, the introduction

of wireless networks has connoted a drastic reduction in the deployment costs. With the

transition to IP camera networks, large camera networks can be both local and remotely

controlled.

The rapid growth of video surveillance systems results in an increasing number of video feeds

which should be monitored and stored in a control room. This results in a continuously

growing workload for CCTV operators, who are overwhelmed by the huge sets of cameras. To

alleviate this problem, automatic video analysis techniques aim at understanding actions and

human behaviors in video sequences in order to alert CCTV operators upon the occurrence of

threatening situations. This scenario corresponds to the proactive side of crime prevention.

Besides that, video surveillance systems can also be used for crime investigation and offenders

prosecution. Video indexing and summarization can be used in order to effectively accomplish

this last task. Furthermore, automated video surveillance systems have given raise to the

paradigm of bringing intelligence to the edge of the network. This allows for the design of

distributed surveillance networks, which require a lower bandwidth for the transmission of

the captured information.

Nevertheless, as video surveillance systems have become ubiquitous, some aspects of the

deployed systems have been questioned. One of the aspects is the effectiveness regarding

crime prevention [Sasse, 2010]. Another is the need of protecting the privacy and security of

personal information, which has gained increasing attention in the recent years. The Telegraph

claimed that an individual will appear on average on 300 CCTV cameras during a day [Gray,

2008].

All of these aspects together have attracted the attention of both the academy and the industry,

and is expected to continue growing in the next years. A recent report of Homeland Security

Research Corporation [HSRC, 2013] estimates the revenue of the global Intelligent Video

Surveillance (IVS) & Video Analytics (VA) industry as $13.5 billion in 2012, and predicts a rapid

growth until 2020, where it is expected to reach $39 billion.

The technical conception and deployment of automated video-based surveillance systems

involve a number of key issues to be addressed. The lowest level of the system design concerns

hardware issues, including video acquisition (cameras), storage devices and networks. At

this level, decisions are taken like network topology and communication protocols. Upon

this level, the information gathered by the cameras is analyzed by means of image and video

processing techniques, so as to extract useful information out of the video sequences. This

is the level providing the semantic capabilities of the system. Finally, at the top level, the

extracted information is presented to the user and eventually stored in a database for further

usage. At this level, considerations on the ergonomics of the system as a whole and human-
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computer interaction should be taken into account. Obviously, decisions made at the different

levels of design might affect the decisions to be made at the other levels; even more in the

case of bringing intelligence to the network. The main focus of this thesis is set on the video

processing and understanding chain.

1.1 Automated Video-Based Surveillance Systems

Automated video-based surveillance systems, in this thesis referred to as surveillance systems

for brevity (otherwise explicitly indicated), rely on the automatic detection of events of interest

by means of several analysis techniques mainly stemming from the fields of computer vision,

image processing and pattern recognition. Detecting events of interest is an application

dependent task and can be approached in very different manners. Nevertheless, there is a

common number of steps that a general surveillance system usually goes through, namely, ob-

ject detection, object association, commonly referred to as tracking, and scene understanding,

often accomplished by the less ambitious task of event detection. In order to successfully ac-

complish these tasks, the cameras have to be calibrated with respect to an extrinsic Cartesian

reference space, therefore allowing for a measurement of the size and position of the detected

objects. These main building blocks of an automated video-based surveillance system are

depicted in Figure 1.1 and briefly introduced in the following subsections.

… 

Object 

Detection 

Object 

Association 

Event 

Understanding 

Figure 1.1: General video-based surveillance system.
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1.1.1 Camera Calibration

Camera calibration is the process of estimating the parameters required for projecting the

three dimensional world coordinates into the two dimensional image coordinates. To that aim

it is necessary to determine internal camera geometric and optical characteristics (the intrinsic

parameters) and the position and orientation of the camera in relation to the observed scene

(extrinsic parameters). This set of parameters is needed for obtaining measurements concern-

ing the position and size of the detected objects in the observed scene, which is an essential

information in order to classify objects and associate them between consecutive video frames

and between several camera views in multi-camera setups. Furthermore, the position of

the detected objects can also be a decision factor in some surveillance applications as, e.g.,

perimeter protection. In static camera setups, camera calibration can be performed once

at the system deployment. A seminal method for the calibration of cameras was presented

in [Tsai, 1987], where a two-stage technique aiming at efficiently and accurately compute the

set of transformation parameters is introduced. However, this method was envisioned in order

to provide high accuracy camera calibration and requires an elaborated setup, including a

calibration pattern and accurate 3D coordinates of the calibration points. A more flexible

calibration technique, which only requires a calibration pattern printed in a planar surface

and a sequence of (at least two) frames where the pattern is depicted from different orien-

tations (either the camera or the pattern can be moved, whereas the motion does not need

to be known), was presented in [Zhang, 1998]. In the case of needing a camera calibration

without the possibility of using a known calibration object, alternative approaches based

on the computation of vanishing points for orthogonal directions can be employed [Caprile

and Torre, 1990]. Some exemplary approaches proposed for the surveillance domain can

be found in [Krahnstoever and Mendonça, 2006], where the position of the head and feet

of the detected moving people are used for the computation of these vanishing points, and

in [Liebowitz et al., 1999], where the parallelism and orthogonality in architectural scenes are

used for the computation of camera calibration from a single image (the scaling factor can be

estimated by using any object in the scene whose dimension is known). In systems involving

moving cameras, on-line self-calibration techniques [Maybank and Faugeras, 1992], which

exploit point correspondences along the camera path for the computation of the camera

intrinsic parameters, have to be employed. A survey on camera self-calibration techniques

can be found in [Hemayed, 2003]. It should be pointed out, that there is not a calibration

technique which better fits for all application scenarios. Nevertheless, generally speaking it

can be said that calibration techniques using calibration patterns provide a higher accuracy

than self-calibration techniques. Accordingly, a higher accuracy can be achieved by using 3D

instead of 2D calibration patterns [Zhang, 2004].
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1.1.2 Object Detection and Classification

Generic object recognition, also known as category-level object recognition, is considered

to be one of the most challenging visual tasks in computer vision [Szeliski, 2010]. Given any

instance of a particular general class as, e.g., ’person’, ’car’ or ’bicycle’, the task is to correctly

localize and classify it by means of visual features. An exhaustive search over all object models

and image locations can be too time-consuming for many computer vision applications.

In order to reduce the complexity of the problem, surveillance systems usually divide the

problem into two steps: first, the objects of interest are detected and, second, the detected

objects are classified. Objects of interest are usually defined as those objects introducing some

kind of change in the observed scene and are generally associated to moving objects.

In this context, object detection can be approached by means of three different techniques:

temporal differencing, background subtraction, and optical flow. These three techniques

provide a low-level pixel classification. In order to build objects, pixels are then clustered

attending to this classification and their spatial configuration. Temporal differencing is based

on computing the difference of consecutive video frames at every pixel position and classifying

as changed pixels those which absolute difference exceeds a given threshold. Temporal

differencing is highly adaptive to dynamic environments and low demanding in computational

terms, but it fails to extract the whole set of pixels corresponding to the objects in motion. Early

works based on temporal differencing can be found in [Jain and Nagel, 1979] and references

therein. Background subtraction is the most commonly used approach in setups with static

cameras. It consist in using a model of the scene background in order to detect foreground

objects by differencing incoming frames with the model. Background subtraction is mostly

fast and has low computational demands. However, it can be sensitive to sudden illumination

changes and small camera motions as, e.g., vibrations. A good introduction to background

subtraction, including the main issues that a background subtraction approach has to deal

with, can be found in [Toyama et al., 1999] and later on in this thesis (see Chapter 2). An

overview of state-of-the-art approaches and their respective performance can be consulted on-

line in the CDnet dataset website1 [Goyette et al., 2012]. Optical flow is an estimation used to

determine corresponding points between two images. Optical flow based methods can be used

to detect independently moving objects even in the presence of camera motion. Nevertheless,

even in their most efficient implementations, they are highly demanding in computational

terms. Furthermore, depending on the smoothness constraint, the corresponding points in

the considered frames might not be allowed to be more than a few pixels away, therefore, being

constrained the speed of movement of objects and camera. A good introduction to the topic

of optical flow computation can be found in [Barron et al., 1994; Beauchemin and Barron,

1995]. An overview of state-of-the-art approaches and their respective performance can be

1www.changedetection.net
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consulted on-line in the Middlebury dataset website2 [Baker et al., 2011], and in the website of

the more recently created KITTI dataset in3 [Geiger et al., 2012].

Figure 1.2: Temporal differencing. From left to right: first image of a pair containing one

moving person, second image of the same image pair, and difference mask.

Figure 1.3: Background subtraction example for two frames of the sequence ’office’ from

the CDnet dataset. From left to right: frame number 001835, background of the scene, and

ground-truth foreground mask (source, www.changedetection.net).

Figures 1.2 to 1.4 provide some exemplary results for the above presented moving object

detection approaches. Figure 1.2 depicts two consecutive frames of a scene in a laboratory

where one person is moving and the difference mask, which has been obtained by thresholding

the absolute value of the difference between the frames. Figure 1.3 depicts a scene in an office

where a person enters and consults a book. Frame number 500, which depicts the empty

office, has been taken as an exemplary depiction of the background. The foreground mask

has been taken from the manually generated ground-truth provided with the CDnet dataset.

Figure 1.4 shows two consecutive frames of the synthetically generated ’Grove3’ sequence

from the Middlebury dataset and the color coded ground-truth motion map. These pictures

have been obtained from the dataset’s website [Baker et al., 2011].

2http://vision.middlebury.edu/flow
3www.cvlibs.net/datasets/kitti
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Figure 1.4: Optical flow example for two frames of the sequence ’Grove3’ from the Middle-

bury dataset. From left to right: frame number 9, frame number 10, ground-truth flow

(source, http://vision.middlebury.edu/flow/).

Object classification is a very hard problem to solve due to the high amount of objects which

appear in different poses and occluding each others in the natural world. Furthermore,

the large intra-class variability associated to the often small inter-class differences, makes

this problem even more difficult to handle. However, if the searched object is known, the

problem can be broken down to a single class recognition problem. In that case, special

purpose detectors can be trained by means of machine-learning techniques such as neural

networks [Rowley et al., 1998], support vector machines [Papageorgiou et al., 1998] or adaptive

boosting [Viola et al., 2003]. These learning methods compute a hyper-surface that is used

to separate the trained object classes from each other in a high dimensional features space.

These detectors can then be used to exhaustively search a given image, or to classify previously

detected objects as belonging to the trained class or not. Two of the most widely used detectors

in the video surveillance domain are the face detector in [Viola and Jones, 2004] and the

Histogram of Oriented Gradients (HOG) for the detection of humans, first introduced in [Dalal

and Triggs, 2005]. In [Viola and Jones, 2004], the concept of boosting, which consists of a

series of increasingly discriminating simple classifiers, is introduced to the computer vision

community. In [Dalal and Triggs, 2005], a set of overlapping histograms of oriented gradients

descriptors fed into a Support Vector Machine (SVM) are used to robustly detect humans.

If training a special purpose detector is not feasible because of the application scenario

constraints (real-time, computational availability, etc.) or because the search class includes

too many different possible appearances, more generic approaches can be taken into account

for the object classification task. For instance, in [Lipton et al., 1998], shape information of

the detected objects and temporal consistency are used to classify all moving objects into

either humans, vehicles or clutter. The shape features used are the size of the object and

the so called dispersedness, which is defined as the relation between the perimeter of the

detected objects and the object’s area size (the dispersedness of humans is usually higher

than that of cars since humans have more complex shapes). Shape features (dispersedness
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and size) are used to distinguish between persons or cars on a frame basis. The temporal

consistency is used to classify objects upon a given statistical certainty on their class, which

is evaluated by computing a classification histogram for each motion region. Other simple

frequently used shape features include, e.g., the aspect ratio of the objects bounding boxes,

the eccentricity (which is computed as the ratio between the length of the major axis and

the length of the minor axis) and the major axis orientation. A thorough review of shape

representation techniques is provided in [Zhang and Lu, 2004]. Shape features are in general

sensitive to the presence of occlusions. Therefore, some other features based on color, texture

and even motion are also used for the object classification task. For example, in [Cutler

and Davis, 1998] a technique is described to detect and analyze periodic motion; moving

objects can then be discriminated based on this analysis (humans exhibit a periodic motion

by walking, while cars not).

If training special purpose detectors is possible but the assumption that the objects of interest

are in motion cannot be met, an exhaustive search of the objects of interest can be done. The

main drawback of the exhaustive search is the high computational effort and, consequently,

time required. To alleviate this problem, some techniques have been developed to accelerate

either the localization task by using local features [Chum and Zisserman, 2007; Leibe et al.,

2008], or the classification by using tree-based data structures in the case of multi-class

problems [Bosch et al., 2007], or both steps concurrently [Yeh et al., 2009]. A recent survey

covering most of the topics involved in the tasks of object detection and classification can be

found in [Zhang et al., 2013].

1.1.3 Object Tracking

Object tracking is the task of establishing correspondences between the detected objects

across the frames of a video sequence. In order to accomplish this task, a model for the objects

and the motion they exhibit is used. Typical object models are points, primitive geometric

shapes, as, e.g., ellipses and rectangles, silhouettes, articulated shape models and skeletons.

Depending on the selected object model used, the motion model can be delimited. For

example, if an object is represented by a point, then, only a translational model can be used,

whereas in the case of more elaborated object models as, e.g., silhouettes, parametric and non-

parametric motion models can be used. Depending on the application domain, assumptions

are made in order to constrain the tracking problem. In the surveillance domain, point-based

tracking models are a popular choice to solve the tracking problem. Thereby, Kalman [Broida

and Chellappa, 1986] and Particle Filters [Tanizaki, 1987] are commonly state estimation

methods used for computing the cost of a given object association. An excellent introduction

into the tracking topic and important related issues including the use of appropriate image

features, selection of motion models, and detection of objects, can be found in [Yilmaz et al.,

2006].
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1.1.4 Scene Understanding

The ultimate aim of the video surveillance analysis chain is the interpretation of the observed

scene. Based on the knowledge acquired at this step, alarms can be triggered in order to assist

human operators in CCTV control rooms, indexes and summaries can be generated in order

to provide non-linear access to video contents in forensic investigations, the field of view of

the cameras in a network can be automatically changed in order to better follow the situations

of interest, etc. This output is usually done in form of events. The semantic interpretation of a

video sequence can be done by means of either learned or imposed knowledge. Some of the

video surveillance applications of interest, such as the detection of persons at certain locations

in perimeter protection applications, require of imposed knowledge, while other applications,

such as the detection of abnormal traffic flows, can be learned on-line. Imposed knowledge can

be provided in form of areas of interest, which can be used to raise events upon the appearance

of certain type of objects inside them, or more elaborated representations such as a Finite

State Machine (FSM), which can be used to define simple behavior templates [Cupillard et al.,

2002], or a Bayesian Network (BN) [Park and Aggarwal, 2003]. Learned knowledge is usually

acquired by training a system with reference sequences representing typical behaviors. To

that aim, dynamic graphical models, such as Hidden Markov Models (HMM) and Coupled

Hidden Markov Models (CHMM) [Oliver et al., 2000], which allow for a more sophisticated

analysis of data with spatio-temporal variability, have been extensively used. Self-organizing

neural networks [Johnson and Hogg, 1996] can be used in unsupervised learning scenarios,

where the object motions are unrestricted.

1.1.5 Overall System Design Considerations

Up to now, the building blocks of an automated video surveillance scenario have been de-

scribed in a bottom-up approach, where each of the components takes the results of its

previous analysis module as input and provides its output for further processing. This ap-

proach has the main advantage of providing a high isolation of problems. Nevertheless, low

level analysis building blocks do not take advantage of the knowledge acquired at higher

analysis levels. Therefore, more involved systems usually include some kind of feedback in

order to profit from high-level knowledge, what corresponds to a top-down design. Moreover,

Human Computer Interaction (HCI) can also be considered in order to better fit the results of

an automated surveillance system to a given application scenario.

Further considerations which need to be taken into account by the design of an automated

surveillance system concern the application domain and hardware configuration. Depending

on that, different requirements, constraints and capabilities have to be attended; for instance,

a forensic application must not provide real-time ability while a pro-active surveillance system

must unavoidably attend it.
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In this thesis, the considered building blocks are first analyzed separately, providing a deep

analysis of the considered problems. Later, feedback is introduced in a top-down fashion,

showing that carefully coupling the analysis done at different levels of abstraction can be

used in order to considerable improve the results both at the overall system and at the layer

level. Thereby, a deep understanding of the considered problems in isolation is of crucial

importance in order to fully exploit the possibilities offered by the introduction of feedback.

By the design of the developed algorithms, a special attention has been paid to the lightness

in terms of hardware and computational demands, since real-time is one of the requisites

that the application domain in mind imposed. Furthermore, a very important aspect which

has been considered is the ability to gracefully incorporate the knowledge provided by the

users of the system. The incorporation of user interaction is a topic which had been largely

ignored in the development of surveillance systems. Nevertheless, it has gained attention in

the recent years, as it is easy to observe by the appearance of research directions including the

human-in-the-loop factor and by the proliferation of workshops dedicated to the topic as, e.g.,

’Person-Oriented Vision’ and ’User-Centred Computer Vision’.

1.2 Thesis Overview

1.2.1 Thesis Objectives and Contributions

The main focus of this thesis is the real-time detection of objects in unrestricted environments

monitored with static video cameras. The objects of interest are moving as well as new static

objects. The video analytics system is not provided with any previous knowledge neither of

the observed scene nor of the visual appearance of the objects to be detected. The main appli-

cation in mind of the developed algorithms is the detection of abandoned objects in public

spaces, which has gained an important attention in the security domain, since abandoned

objects might be often considered as a threat to the public security. The final system has to

provide on-line alerts to human operators. Furthermore, the detected moving objects should

be provided to higher-level analysis tools in order to recognize further actions and behaviors

of interest typical of surveillance systems for public spaces.

Given the problem statement, background subtraction is the most robust low-level analysis

cue. Other analysis cues relying on motion information are not adequate for the considered

task since abandoned objects remain static. Furthermore, since the appearance of the objects

is unknown, it is not possible to detect them by means of models. Therefore, the low-level

analysis cue used for object detection within the work presented here is background subtrac-

tion, which provides information of the image positions where a change with respect to the

background model has been observed. The combination of the results provided by two on-line

generated statistical background models, which attend to different temporal configurations, is

exploited in order to perform a multi-class pixel classification, which distinguishes between
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several kind of changes as e.g. moving or static foreground. A first system is presented which,

based on this classification, raises alarms upon the detection of new static foreground regions.

In a further developed approach, static foreground detections are classified by means of region

analysis as either removed or new static objects. This classification is then used by means

of feedback in order to manage the update process of the background models. As shown in

this thesis, the resulting system is not only able to efficiently detect new and removed static

objects, but, also, to improve the performance of background subtraction.

The main contributions of the work presented are as follows:

• An enhanced Gaussian Mixture Model (GMM) for video surveillance applications, which

incorporates recent proposals for the improvement of the system performance and

system convergence, and a novel heuristic for:

– better initializing the parameters of new created modes, and

– avoiding the emergence of over-dominating modes.

The resulting overall system improves the performance of state-of-the-art background

subtraction approaches, and in particular of GMM-based approaches, in terms of seg-

mentation accuracy and is more appropriate for systems which need to incorporate

feedback information into the background model of the scene.

• A finite state machine (FSM) for multi-class pixel classification, which classifies pixels at-

tending to different stages as background, moving, stationary or uncovered background,

and further stages. The FSM is used for hypothesizing on pixel classification based on

the results obtained from the subtraction of two background models and on the history

of the pixel, which is implicitly recorded by the FSM.

• A system for the detection of new static objects in crowded environments based on a

complementary background model, a FSM and region analysis. The proposed system

does not need previous knowledge of the scene background, is robust to the main

problems affecting the detection of new static objects like occlusions and ghosts, and

improves the results obtained by background subtraction.

• A novel indexing and summarization approach which combines the results provided by

several video analysis cues. The proposed system computes a speed associated to each

of the connected analysis cues depending on their provided results. Based on these

associations, a final adaptive speed based on the extracted video content is computed

for the summary video.

These contributions have resulted in seven scientific publications, one international and two

US patent applications. A detailed publication list is provided in Section 1.3.
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1.2.2 Thesis Structure

The next chapters of this thesis are organized as follows:

Chapter 2 provides a comprehensive review of background subtraction, which is one of

the main pillars of the work presented here. After briefly introducing the main goals and

challenges of a general background subtraction system, a series of representative methods is

presented. These methods have been selected so as to provide an overview of the whole range

of techniques which have been used in the surveillance domain for the task of background

subtraction and the goals addressed by each of them. Therefore, the presented approaches

refer to the seminal papers where the presented techniques were first introduced and provide

pointers to further developments. At the end of the chapter, current trends in the background

subtraction literature are presented and the conclusions of the presented analysis are drawn.

In Chapter 3 the proposed improved Gaussian Mixture Model (GMM) is presented. The

chapter first presents the Expectation Maximization (EM) algorithm, which is a fundamental

machine-learning tool used for the estimation of the parameters of the most common GMM

approaches for the task of background subtraction. Out of the properties of the EM algorithm

and the several GMM approaches of the surveillance literature, the main deficiencies of the

state-of-the-art GMM approaches are identified and addressed by the proposed method.

Experimental results proof the achieved improvement.

Chapter 4 tackles the problem of the detection of new static objects. After providing a brief

review of state-of-the-art approaches, a dual background based system is proposed. The

results provided by background subtraction are used as input of a novel FSM, which is used

to reason on pixel classification. The main advantage of this system with respect to a plain

dual background based system is that the proposed system is able to detect new static objects

over long periods of time without sacrificing the adaptability of the background models and

to correctly classify the uncovered background regions upon their removal. The proposed

system is evaluated by using several datasets.

Based on the observations made by the design and evaluation of the system in Chapter 4, in

Chapter 5 an improved system is proposed which incorporates a region classification step

after the multi-class pixel classification and a feedback loop used to build complementary

background models based on the information gathered at the region level. The proposed

system presents the main advantage of being able to detect new static objects without previous

knowledge of the scene background; furthermore, the feedback loop allows for a significant

improvement at the pixel classification level. Therefore, experimental results are presented for

both tasks, new static objects detection and foreground segmentation.

The main two tasks accomplished by the systems proposed in this thesis, background sub-

traction and static object detection, are brought together in an exemplary automated video
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surveillance application, video indexing and summarization, in Chapter 6. The chapter pro-

vides a thorough review of summarization techniques and state-of-the-art approaches. The

pros and cons of the presented approaches motivate the proposal of a novel indexing and

summarization system, which is then experimentally evaluated. Therefore, beyond providing

a mere exemplary application, this chapter constitutes on its own a contribution in the field of

automated video-based surveillance.

Chapter 7 concludes this thesis, highlight the main findings done during the elaboration of

the presented work and summarizes the main achievements.

An overview of the datasets and performance metrics used to evaluate the proposed algorithms

is provided in the Appendix.

1.3 List of Publications

Several methods and results presented in this thesis have been published in the scientific

publications listed below, which are sorted in chronological order and properly cited in the

corresponding chapters. Furthermore, three patent applications have been submitted to

protect the intellectual property of the systems described in Chapter 4 and Chapter 5.

Conference Publications:

Heras Evangelio, R., Senst, T., and Sikora, T. (2011a). Detection of static objects for the task of

video surveillance. In Proceedings of the IEEE Workshop on Applications of Computer Vision

(WACV), pages 534–540, Kona, HI, USA.

Heras Evangelio, R., Pätzold, M., and Sikora, T. (2011b). A system for automatic and interactive

detection of static objects. In Proceedings of the IEEE Workshop on Person-Oriented Vision

(POV), pages 27–32, Kona, HI, USA.

Heras Evangelio, R. and Sikora, T. (2011c). Complementary background models for the

detection of static and moving objects in crowded environments. In Proceedings of the 8th

IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS),

pages 71–76, Klagenfurt, Austria.

Heras Evangelio, R., Pätzold, M., and Sikora, T. (2012). Splitting gaussians in mixture models.

In Proceedings of the 9th IEEE International Conference on Advanced Video and Signal-Based

Surveillance (AVSS), pages 300–305, Beijing, China.

Heras Evangelio, R., Senst, T., Keller, I., and Sikora, T. (2013a). Video indexing and summariza-

tion as a tool for privacy protection. In Proceedings of the IEEE International Conference on

Digital Signal Processing (DSP), Santorini, Greece.
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Heras Evangelio, R., Keller, I., and Sikora, T. (2013b). Multiple cue indexing and summarization

of surveillance video. In Proceedings of the 10th IEEE International Conference on Advanced

Video and Signal-Based Surveillance (AVSS), Kraków, Poland.

Journal Publications:

Heras Evangelio, R. and Sikora, T. (2011d). Static object detection based on a dual back-

ground model and a finite-state machine. EURASIP Journal on Image and Video Processing,

2011:858502.

Heras Evangelio, R. Pätzold, M., Keller, I, and Sikora, T. (2014). Adaptively splitted GMM with

feedback improvement for the task of background subtraction. Accepted for publication in

IEEE Transactions on Information Forensics & Security.

Patent Applications:

Heras Evangelio, R., Sikora, T., and Keller, I. (2013c). Method and device for video surveillance.

US Patent Application, Number US 2013/0027549 A1

Heras Evangelio, R., Sikora, T., and Keller, I. (2013d). Method and device for video surveillance.

US Patent Application, Number US 2013/0027550 A1

Heras Evangelio, R., Sikora, T., and Keller, I. (2013e). Method and device for video surveillance.

International Patent Application, Number WO 2013/017184 A1

During the development of the work presented here I had the privilege of working together

with Michael Päzold and Tobias Senst, who involved me in their interesting research topics

and brought their useful insights into mines. Out of these collaborations, further interesting

results, which are not part of this thesis, were obtained and published in the proceedings

of international conferences. A list of the resulting publications in chronological order is

provided below.

Senst, T., Heras Evangelio, R., Eiselein, V., Pätzold, M., and Sikora, T. (2010). TOWARDS

DETECTING PEOPLE CARRYING OBJECTS: A Periodicity Dependency Pattern Approach. In

Proceedings of the International Conference on Computer Vision Theory and Applications

(VISAPP), Angers, France.

Pätzold, M., Heras Evangelio, R., and Sikora, T. (2010a). Counting people in crowded en-

vironments by fusion of shape and motion information. In Proceedings of the 7th IEEE

International Conference on Advanced Video and Signal Based Surveillance (AVSS), PETS

Workshop, pages 157–164, Boston, USA.
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2

Background Subtraction

State of the Art

2.1 Introduction

The detection of change is a low-level vision task used as a first step in many computer vision

applications such as video surveillance, low-rate video coding, human-computer interaction,

augmented reality or medical diagnosis to mention only a few of them. Given an image

sequence, the goal is to identify for each frame the set of pixels that are significantly different

from the previous frames. Depending on the application, the requirements and constraints of

the detection algorithm are different. Likewise, the definition of what is significantly different,

may depend on the application domain.

In the video surveillance domain, change detection has been frequently used in order to

segment foreground objects from the background. Foreground objects are the objects of

interest in an automated surveillance system. The segmented foreground objects are then

associated between frames in order to perform a scene analysis and detect events of interest.

As background is understood what is normally observed in the scene. Therefore, it is assumed

that the background can be well described by means of a statistical model, the background

model. Nevertheless, there are some background characteristics as moving foliage or sudden

illumination changes, which might make difficult the task of background modelling and

maintenance. A comprehensive study of the main challenges and some principles that might

be used to tackle them can be found in [Toyama et al., 1999]. The segmentation of foreground

objects by means of detecting the changes with reference to a background model is commonly

known as background subtraction. Figure 2.1 depicts a basic schema of a general background
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subtraction system. The main challenges a background subtraction algorithm has to deal with

are [Toyama et al., 1999; Brutzer et al., 2011]:

• Gradual illumination changes, which are mainly experienced in outdoor environments

along the different times of the day and affect the appearance of the objects in the

observed scene.

• Sudden illumination changes, which are mainly experienced in indoor environments

by the switching on and off of artificial light sources, and in outdoor environments by

unstable weather conditions when clouds suddenly hide the sun.

• Shadows, which are mainly casted by moving objects and complicate the accurate

segmentation of objects (static objects belonging to the background also cast shadows;

nevertheless, these are not that problematic for the background subtraction process

since they are always casted at the same position -or at slow moving positions in outdoor

scenarios depending of the sun position- and can be more easily accommodated in the

background model).

• Dynamic background, which are those parts of the background exhibiting different ap-

pearances because of containing some kind of moving objects as waving trees, rippling

water, escalators and so on, which are not of further interest for a scene interpretation.

• Camouflage, produced by objects whose appearance is difficult to differentiate from the

appearance of the background.

• Bootstrapping, which is required because of the general unfeasibility of training a

background model with a completely empty scene.

Actually, in [Toyama et al., 1999] the authors also pointed out some challenges which they

claimed that a background maintenance system should be able to handle:

• Moved objects, which refers to the detections corresponding to background objects that

have been moved.

• Sleeping person, which refers to foreground objects appearing in the scene and remain-

ing motionless after a while.

• Walking person , which refers to objects that have been learned as part of the background

and at some point in time start moving and leave the scene.

Nevertheless, these three challenges have not been considered in this thesis as inherent to the

background subtraction problem, since these problems should be considered in accordance

to the application in mind. In fact, the point in time from which, e.g., a person falling asleep is
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Input Frame 

Backgroundmodel 

Figure 2.1: General background subtraction system.

not interesting anymore should be defined by a given application and, therefore, should not

be considered as a general background maintenance problem. It is, moreover, remarkable

that these three problems can be also considered as three singularities a good bootstrapping

strategy should handle. Finally, the foreground aperture problem, also mentioned in [Toyama

et al., 1999], which consists in the unfeasibility of detecting interior object pixels because of

color homogeneity, has neither been considered in this work as a general change detection

problem, as mostly concerns frame differencing based approaches.

2.1.1 Taxonomy

The number of background subtraction approaches which have been proposed in the literature

is large, and so are the different taxonomies which can be used to classify them. Attending to

the spatial level considered, background subtraction approaches can be divided into three

classes:

• Pixel-level algorithms only use features gathered at each single pixel position. These

methods are very fast, but they do not use any kind of inter-pixel relationships. There

have been many proposals in the literature for these kind of methods; among them, Run-

ning Gaussian Averages [Wren et al., 1997], Median Filtering [McFarlane and Schofield,

1995] and Gaussian Mixture Models [Stauffer and Grimson, 1999], have been of special

relevance and have originated a vast number of derived systems.

• Block-level based approaches divide an image into blocks and compute block related

features to describe the background. Block-level approaches are usually more robust

against noise than pixel-level approaches, on the other hand they provide courser detec-
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tions of the foreground objects and are computationally expensive. Some example of

these kind of approaches are the Normalized Vector Distance based approach in [Mat-

suyama et al., 2000] and the Local Binary Pattern texture based approach in [Heikkilä

et al., 2004].

• Region-level based algorithms divide an image into a set of regions which are then

classified as background or foreground. There is a very limited number of purely region-

level based algorithms since finding meaningful regions in an image by means of spatial

consistency criteria can be computationally expensive. Therefore, region-level based

approaches are usually combined with another kind of approach which is used to

determine the regions followed by the region classification itself. Nevertheless, there are

some examples of purely region-level based algorithms as the one presented in [Huang

et al., 2004], which is based on the Partial Directed Hausdorff distance, and the more

recently proposed in [Yu et al., 2007], where the authors propose to model foreground

and background objects by means of Spatial-Color Gaussian Mixture Models.

It should be noticed that the differentiation between block-level and region-level is not sharp.

In fact, a block can be considered to be a region. Therefore, some authors refer to region-level

analysis when considering an analysis performed involving several pixels even if the unique

criterion to put them together is the spatial connectivity. In the present work, the term block-

level has been used to refer to groups of pixels which have been made up by following only a

spatial connectivity criterion (usually a circle or a square around a given pixel position), while

the term region-level is kept for referring to more general groups of pixels which have been

formed using additional connectivity criteria as color, belongingness to the foreground, etc.

Therefore, regions are considered to represent a higher level of semantic than blocks.

Obviously, not all of the algorithms proposed in the literature can be unambiguously classified

as belonging to one of the three classes mentioned above. As a matter of fact, there is a large

number of methods which can be considered to be hybrid because of using an underlying

pixel based background supported by some kind of block- or region-level analysis. A very early

example of such methods can be found in [Elgammal et al., 2000], where detected foreground

pixels are checked against the background model of the pixels in their vicinity (block-level

analysis) and the probability of displacement of the detected foreground connected compo-

nents is computed (region-level analysis); both probabilities are then taken into account for

the final pixel classification.

Attending to the update process of the model, background subtraction approaches can be

divided into recursive and non-recursive. Such a taxonomy can be found in [Baltieri et al.,

2010; Parks and Fels, 2008]. Recursive approaches update the background model as new ob-

servations arrive, therefore consuming low resources in terms of computational and memory

requirements. Examples of this kind of approaches can be found in [Wren et al., 1997; Stauffer

and Grimson, 1999]. On the other hand, non-recursive approaches keep a buffer of the last
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incoming video frames to estimate the background. Therefore, non-recursive approaches have

higher memory requirements. Nevertheless, since they have a copy of the most recent video

frames, they can cope with some challenges as outlier rejection and fast convergence which

cannot be easily handled with recursive techniques. Examples of this kind of approaches can

be found in [Cutler and Davis, 1998; Elgammal et al., 2000].

Additional taxonomies (unimodal versus multimodal, parametric versus non-parametric

approaches, etc.) can be found in the extensive background subtraction literature. Some

interesting background subtraction surveys can be found in [Cheung and Kamath, 2004;

Piccardi, 2004; Karaman et al., 2005; Parks and Fels, 2008; Benezeth et al., 2010; Brutzer et al.,

2011], which are commented in Section 2.4 of this chapter.

2.1.2 Chapter Overview

The following section provides a brief review of some relevant background subtraction ap-

proaches. The selection of the presented approaches has been made so as to set a basis of

understanding of the underlying techniques employed for the task of background subtrac-

tion while providing an overview of the wide field of background subtraction. The focus has

been put on the original formulation of the respective techniques. Therefore, the provided

references date back to these first formulations.

Section 2.3 provides an overview of background subtraction approaches for environments

monitored with PTZ cameras. Whereas this topic has not been on the focus of attention of

the work presented here, the extrapolation to PTZ cameras is a question that rapidly arises

when approaching the background subtraction topic. Therefore, briefly depicting the general

problem and providing some pointers to the relevant literature was unavoidable in this chapter.

Section 2.4 provides an overview of the current state-of-the-art of background subtraction,

thereby paying special attention to the trends followed in the surveillance domain and the

needs identified, which motivate the work presented here.

2.2 Relevant Approaches

2.2.1 Running Average Model

The most basic approach for modelling the background of a video sequence is to average the

value X t observed at time t at every pixel position (x, y) in the consecutive video frames (this

notation will be followed in the rest of this thesis). This average can be approximated by using

the following recursive computation:

Bt+1(x, y) = Bt (x, y)+α(X t −Bt (x, y)), (2.1)
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where Bt is the resulting background image and α is a learning rate that controls how fast the

background model is adapted to the changes in the scene.

The background image, Bt , can be used to compute a difference image D t , which contains

the value of the difference between each pixel in the incoming images It (x, y) and their

corresponding values in Bt . The foreground mask Ft is generated according to the following

decision rule:

Ft (x, y) =







1 if |D t (x, y)| > τ,

0 otherwise,
(2.2)

where τ is the selected thresholding value. The value of τ should be chosen dynamically so

as to adapt to changing viewing conditions, which might affect the noise introduced by the

camera. An overview of the general approaches that can be adopted in order to compute a

proper value for τ is provided in [Rosin, 2002], where a representative approach for each of

the identified categories is evaluated. As an extension to the global thresholding procedure

formulated in Equation 2.2, there are several procedures that can improve the detection of

foreground, such as, e.g., local thresholding or hysteresis thresholding.

An early approach using this kind of background model is presented in [Kilger, 1992], where a

selective updating strategy is used in order to allow for a fast adaptation of the background

model while being able to maintain moving objects in the foreground. The used background

updating equation is as follows:

Bt+1(x, y) = Bt (x, y)+ (α1(1−Ft (x, y))+α2Ft (x, y))(X t −Bt (x, y)). (2.3)

2.2.2 Median Model

An alternative to using the average value of the pixels in a video sequence to model the

background of the scene is to use the median value of the last N frames. The main advantage

of this approach is that the background image is not degraded by the appearance of foreground

moving objects, provided that the background is visible during a number of frames higher

than N /2. On the other hand, its computation requires a buffer to keep the last N frames.

A method to iteratively approximate the median value, therefore, avoiding the need of a

frame buffer, is presented in [McFarlane and Schofield, 1995]. For each incoming frame, the

background image is updated as follows:

Bt+1(x, y) =







Bt (x, y)+1 if It (x, y) > Bt (x, y),

Bt (x, y)−1 if It (x, y) < Bt (x, y).
(2.4)
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Figure 2.2: Hierarchical median approach.

Other alternative methods to the computation of the median value, which aim at providing

more robust background models in the case of video sequences with frequently passing

by foreground objects have been presented in [Cucchiara et al., 2003; Karaman, 2010]. By

increasing the robustness it is possible to reduce the size of the buffer, and thus compute

the background image faster. In [Cucchiara et al., 2003], the background model is computed

by taking the median over a set of the last N−1
n

sub-sampled input frames It , where n is the

sub-sampling rate, and the background past values with an adequate weight. In [Karaman,

2010] the input frames are divided into L groups of alternated N−1
L

frames. Out of these groups

median values are computed which are then used to compute the overall median. Figure 2.2

depicts graphically this procedure. The advantage of sub-sampling the input values (or,

alternatively, using alternated input frames) for the computation of the median value is that

the probability of consecutively considering the appearance of the same moving foreground

object in the computation of the background image is reduced. Furthermore, the hierarchical

scheme allows for computing the median of only one of the sub-buffers at a time, therefore

allowing for a faster computation of the overall median value.

Foreground objects are detected by computing the difference between the incoming video

frames It and the background image Bt , and thresholding the difference image D t as discussed

in Section 2.2.1.

2.2.3 Running Gaussian Average Model

In order to compute a statistical driven threshold value for the computation of the foreground

masks, the variances of the pixel intensities observed at every pixel position can be estimated.
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The mean value accounts for the expected value of background pixels. The variance accounts

for the noise introduced by the camera, which might vary according to the reflection properties

and the illumination conditions at different background positions. Therefore, the set of

foreground pixels can be computed on a fully statistical basis. Such a background model has

been used e.g. in [Wren et al., 1997].

2.2.4 Gaussian Mixture Model

The background models presented up to now, use a single description for the appearance of

the background. In order to describe more complex distributions, Gaussian Mixture Models

(GMMs) can be used. The basic idea of this approach is to classify each pixel by using a model

of the appearance of the pixel which consists of the combination of different classes. Figure 2.3

shows an example of the empirical distribution of the intensity values produced by a source

consisting of three Gaussian modes with different prior, mean and variance values, and its

corresponding GMM. The dominant mode could correspond to the background model of an

observed scene, the second could be interpreted as projected shadows, and the third one to

the foreground objects passing by.

Figure 2.3: Gaussian Mixture Model. Left: empirical distribution of intensity values. Right:

corresponding three-components Gaussian Mixture Model.

GMMs have the advantage of coping with multi-modal background appearances, as e.g.

waving trees, and are able to adapt to the observed scene in real-time with low memory

requirements. The original formulation of the GMM for the task of background subtraction

was provided in [Friedman and Russell, 1997], where a mixture of three Gaussian distributions

was used to model at a pixel level the appearance of the road, shadows and vehicles in a traffic
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monitoring application. This system was generalized in [Stauffer and Grimson, 1999], and

further developed in [Hayman and Eklundh, 2003] in order to cope with moving cameras.

A thorough explanation of the GMM is provided in Chapter 3.

2.2.5 Non-parametric Model - Kernel Density Estimation

In order to cope with high-frequency variations and arbitrary distributions, non-parametric

background models can be used. The probability of observing a given pixel value X t at time t

using the kernel estimator K can be non-parametrically estimated based on the pixel sample

X = {X1, X2 . . . XN } as follows:

p(X t ) =
N
∑

i=1
αi K (X t −Xi ), (2.5)

where αi are weighting coefficients (usually chosen to be uniform, αi = 1
N

).

The probability in Equation 2.5 can be efficiently computed by taking a Normal function

N (0,Σ) as kernel estimator, assuming independence between the different color channels, and

using pre-calculated lookup tables for the kernel function given the intensity value difference

(X t −Xi ) and the bandwidth.

The use of non-parametric background models was first proposed in [Elgammal et al., 2000]

and [Elgammal et al., 2002]. In order to alleviate the high memory requirements imposed by

the need of storing the whole sample set of frames considered for the density estimation, an

estimation technique based on mean-shift mode finding is introduced in [Han et al., 2004].

An approach using the balloon variable-size kernel approach, which avoids the estimation of

the kernel size parameter, is proposed in [Zivkovic and van der Heijden, 2006].

However, Kernel Density Estimation (KDE) methods have a high computational cost. Moreover,

in [Zivkovic and van der Heijden, 2006] it is shown that GMM seems to be a better model for

simple scenes while providing a more compact representation which is suitable for further

processing steps as e.g. shadow detection.

2.2.6 Codebook Model

As an alternative to statistical models, codebook models have also been proposed for the

representation of background. Basically, the appearance of the background is described by

means of codewords. The set of codewords describing a pixel constitute its codebook. Each

codeword consists of a color vector v = (R,G ,B) and some auxiliary parameters. Observed

values at each pixel position are compared against the corresponding codebook in order to

classify them as either background or foreground.
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Although the authors claim in the original formulation [Kim et al., 2004] that codebooks can

capture structural background motion over a long period of time under limited memory

without making parametric assumptions, the advantages of the system are not clear. For

an equal number of descriptions per pixel, codebooks need a higher amount of memory

than GMMs. Furthermore, the color and brightness distortion rules used for assigning an

observation to an existing codeword must be empirically thresholded, therefore, requiring a

parameterization.

The original system is extended in [Kim et al., 2005] by adding a layered approach in order to

allow for distinguishing between several temporal characteristics of the objects detected in

the scene.

2.2.7 Eigenbackground Model

In order to compensate for illumination changes at a frame level by means of considering

spatial correlations, eigenspace models can be used. An eigenspace model is computed by

taking a set of N frames and computing both the mean background image and its covariance

matrix. The covariance matrix is diagonalized by means of eigenvalue decomposition. In order

to reduce the dimensionality of the space, in Principal Component Analysis (PCA) only the

M eigenvectors corresponding to the largest eigenvalues are preserved. These eigenvectors

are stored in a matrix ΦMb of size M × p, where p is the number of pixels in a frame. For

each input frame It , the mean normalized image vector is projected into the eigenspace and

back-projected into the image space by using the eigenvector matrix ΦMb and its transpose,

respectively. Since the eigenspace provides a robust model of the background but not of

the moving objects, the back-projected input image Bt should not contain moving objects.

Therefore, by computing and thresholding the Euclidean distance between the input image It

and the back-projected image Bt , moving objects can be detected.

A first approach based on eigenspace models is presented in [Oliver et al., 2000]. In [Han

and Jain, 2007] this approach is extended in order to allow the process of multi-channel data,

the automatic computation of the threshold value, and the adaptation to dynamic scenes by

means of Incremental Principal Component Analysis (IPCA). In [Li et al., 2008] the use of an

incremental rank tensor-based subspace learning algorithm is proposed in order to better

capture the intrinsic spatio-temporal characteristics of a scene.

Subspace modeling is very attractive in real-time computer applications due to its low com-

putational cost at classification time. However, the method requires the allocation of all the

training images. Furthermore, the complexity of the original method is considerably increased

with the extensions needed for background update, which is a primary requirement in visual

surveillance applications.
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2.2.8 Texture-based Model

In order to robustly cope with varying illumination conditions, the use of textures has been

proposed in [Heikkilä et al., 2004] on a block-wise processing approach and extended to the

pixel level in [Heikkilä and Pietikäinen, 2006]. Instead of using color or intensity features,

these methods use discriminative texture measures to capture background statistics. These

features are computed by using a Local Binary Pattern (LBP). To that aim, the difference of the

intensity value of the pixels in the considered neighborhood with the intensity value of the

pixel in the center is thresholded, and the result is considered as a binary number (the LBP

code). This computation can be easily done as:

LBP =
P
∑

p=1
s(Xi −Xc )2p , (2.6)

where Xc is the intensity of the center pixel, Xp the intensity value of the considered P neigh-

boring pixels, and the s(x) function is defined as:

s(x) =







1 x ≥ 0,

0 x < 0.
(2.7)

Figure 2.4 depicts graphically the computation of the LBP code for a pixel by using a neighbor-

hood of 3×3 pixels. The generalized LBP operator [Heikkilä et al., 2004] uses a set of P equally

spaced neighboring pixels on a circle of radius R as depicted in Figure 2.5.

Figure 2.4: LBP code computation.

For each considered image position a number K of weighted LBP histograms is computed and

consecutively updated following a similar updating process to the one proposed in [Stauffer

and Grimson, 1999] for the case of GMM. Background subtraction is performed by computing

the distance of the LBP histograms of incoming video frames with the K LBP histograms

describing the corresponding image positions.

In order to also consider dynamic textures, the use of a Volume Local Binary Pattern (VLBP)

operator is proposed in [Zhao and Pietikainen, 2007], which consists of concatenated LBP
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Figure 2.5: Neighboring pixels set for several values of P and R graphically depicted as

in [Heikkilä et al., 2004].

histograms from three orthogonal planes. In [Zhang et al., 2008] the use of a Spatio-Temporal

Local Binary Pattern (STLBP) operator, consisting in a weighted sum of two consecutive LBP

histograms, is proposed to alleviate the computational cost imposed by VLBP.

LBP histograms provide a robust manner to cope with illumination changes in dynamic scenes

provided that the textures in the observed scene are distinguishable enough. Nevertheless,

they do not provide a principled manner to evaluate the distance of new observations to the

background models.

2.3 Background Subtraction with Pan Tilt Zoom Cameras

As presented until now, background subtraction approaches consist in modelling the empty

scene observed by the camera so as to detect foreground objects by differencing. As the

background model might have a different appearance at different image positions, the gen-

erated background models might not be valid anymore when the camera moves. Therefore,

background subtraction approaches need to incorporate mechanisms in order to detect if the

camera is moving and to find the correspondence of the current image plane with respect to

the background model, if they have to deal with moving PTZ cameras.

Most of the approaches proposed in the literature to tackle this problem are based on the

generation of a mosaic (or panorama) background model representing the different positions

which can be captured by the camera (see Section 2.3.1). Nevertheless, there have also been

some systems reported in the literature which transform the existing background model into

the current image plane so as to use the parts of the background model which are still visible

after a camera movement and generate a new model for these parts of the image which were

not visible before (see Section 2.3.2).
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Independently of the technique used, there are a number of issues which need to be addressed

by both systems:

• Image registration, which refers to the process of geometrically aligning two or more

images of the same scene taken from different viewpoints. The image registration

process can be divided into two fundamental steps: feature detection and matching,

and image transformation, which are explained below. The image registration problem

can be modeled as a system of n linear equations with p unknowns, where n is the

number of considered feature points and p is the number of parameters of the selected

motion model. Two excellent surveys on image registration techniques can be found in

[Brown, 1992] and [Zitová and Flusser, 2003]. Figure 2.6 depicts the process of image

registration.

– Feature detection and matching, is the process of detecting a set of salient features

in both the reference and the current image, and establishing the correspondence.

The kind of features employed depend on the application and the kind of sensors

used. In the ideal case, the features should be spread over the whole image, easily

detectable and not sensitive to the expected image degradation. In the case of

absence of enough distinctive features, as in medical images, area-based methods

are employed for the feature detection and matching process. Nevertheless, typical

video surveillance scenarios offer a rich amount of details and, therefore, feature-

based methods, which are less demanding in computational terms, are usually

preferred. Examples for such methods are SIFT [Lowe, 1999], SURF [Bay et al.,

2008] and FAST [Rosten and Drummond, 2006]. An extensive survey on local

invariant feature detectors can be found in [Tuytelaars and Mikolajczyk, 2008].

– Image transformation, is the process of putting the different images into a common

reference coordinate system by means of a transformation model. The type of the

transformation model should correspond to the assumed geometric deformation

and provide the required registration accuracy. The projective transformation

model is the one better describing the transformation between frames captured

by a PTZ camera at different camera positions. Nevertheless, it is also the most

expensive in terms of computational cost. Therefore, some approaches reported

in the literature have also used more simple transformation models as the pure

translational, or the affine transform. Good introductions to image formation and

geometric transformations can be found in [Hartley and Zisserman, 2004] and

[Szeliski, 2010, Chapter 2].

• Image interpolation, which is the process used in order to compute image values in

non-integer coordinate positions. Examples of image interpolation techniques are the

nearest neighbor, the bilinear and the bicubic functions. Higher-order methods achieve

a better performance in terms of accuracy. Nevertheless, Zitová and Flusser observe
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Figure 2.6: Image registration. Two frames of a video sequence recorded with a PTZ-

camera while panning to the right. Top left: First frame. Top right: Two hundred frames

later. Bottom: Image registration.

in [Zitová and Flusser, 2003] that the bilinear interpolation method achieves probably

the best trade-off between accuracy and computational complexity and argue that it is,

therefore, the most commonly used approach.

• Background model generation and update, which is explained in the following sections

2.3.1 and 2.3.2.

2.3.1 Background Mosaics

A mosaic is an assembled image generated by properly aligning a high number of frames

and warping them into a common reference coordinate system. The mosaic contains the

background model of the scene along the whole camera range of movement, which can

be achieved either off-line by scanning the scene at every possible camera position at the
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Figure 2.7: On-line generated mosaic background of a video sequence recorded with a

PTZ-camera while panning.

initialization of the system as e.g. in [Bhat et al., 2000] and in the multi-resolution approach

presented in [Sinha and Pollefeys, 2006], or on-line by generating the mosaic as new positions

are being discovered, as e.g. in [Brown and Lowe, 2003] and [Bevilacqua et al., 2005]. The main

advantage of having a mosaic is the availability of a background model whenever the camera

moves to a position where the background has already been initialized.

Common issues regarding mosaic backgrounds are light and color mis-alignments, which arise

because of several reasons involving the capturing hardware (changes in the aperture and/or

exposure time) and the captured environment (changes in illumination conditions and/or

time of day). This problem is closely related to the update of the background model. Mostly,

the portions of the mosaic being visible at each camera position [Xue et al., 2011] are updated

in a similar fashion as in static camera setups. Nevertheless, there are also some approaches

in the literature, as e.g. [Azzari and Bevilacqua, 2006], which introduce an additional tonal

alignment step in order to avoid color differences introduced by the hardware. Another

issue that should be handled in scenarios with mosaic backgrounds is the accumulation of

registration errors propagated by frame-to-frame registration when the camera moves (leading

to the problem known as ’looping path’ when the camera returns to a previous position). Even

if this problem can be solved by global registration approaches, the availability of the whole

set of frames is not feasible in real-time environments.

Mosaic representations have also been employed for many other applications [Irani et al.,

1995], among them in the high-compression video coding domain [Krutz et al., 2011]. Fig-

ure 2.7 depicts an exemplary on-line generated mosaic.
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Figure 2.8: Background model transformation. Top: consecutive frames of a video se-

quence. Bottom: background model corresponding to the frames on the top. As the camera

pans to the right, a part of the background has to be initialized with the new observations.

2.3.2 Background Transformation

Background transformation-based models basically operate the same as background models

for static cameras incorporating a method for camera motion detection and image registration.

Each time the position of the camera changes, the existing background model is projected

into the new field of view of the camera, so as to use the portion of background existing in the

overlapping section between the former and the current field of view. Examples for this kind of

background subtraction approaches have been presented in [Kang et al., 2003] and [Robinault

et al., 2009]. Although basic approaches use nearest neighbor interpolation methods in order

to warp the previous background into the current position, more elaborated methods as the

one presented in [Hayman and Eklundh, 2003] handle uncertainties produced by sub-pixel

motions and motion blur by means of modelling mixed pixels. Figure 2.8 depicts the described

transformation process.

2.4 Current Trends and Conclusions

Due to its low computational load, background subtraction is probably the most common first

step in order to detect objects of interest in surveillance applications, especially in the case of

using static cameras, and has generated an extensive literature. In the previous sections the
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main techniques used to accomplish this task have been presented. These techniques have

also been employed in many other deriving approaches which aim at better tackling some

of the challenges posed to the background subtraction approach. This section provides an

overview of the main trends observed in the background subtraction literature.

Obviously, depending on the application domain, including the characteristics of the observed

scenes and computational constraints, the most suitable approach may vary. A study of

various background subtraction algorithms in the context of urban traffic surveillance systems

is presented in [Cheung and Kamath, 2004]. Special attention is paid to the trade-off between

the obtained results and the computational complexity. The good compromise achieved by

simple techniques such as adaptive median filtering for the considered domain is highlighted.

In [Piccardi, 2004], a more general selection of different methods covering a wide range of un-

derlying mathematical approaches is presented. A categorization of the presented approaches

attending to their speed, memory requirements and segmentation results is provided, aiming

at facilitating the design/selection of a background subtraction approach depending on spe-

cific system requirements and capabilities. It is highlighted the acceptable accuracy provided

by simple methods such as the running Gaussian average and the median filter, the high

model accuracy of Gaussian mixture models and the sequential kernel approximation at the

cost of higher memory and computation requirements, and the challenge posed by practical

implementations to methods addressing spatial correlations.

2.4.1 Background Model Initialization

The first task to be solved by a background subtraction system is the initialization of the model,

often referred to as bootstrapping. In controlled environments this is frequently achieved by

imposing a training period during which the empty scene is visible. Nevertheless, this strategy

is not applicable to general surveillance scenarios. Therefore, the background model needs to

be initialized in the presence of moving objects. Even if the use of simple approaches such as a

pixel-wise computation of the mean [Koller et al., 1994] or the median [Cutler and Davis, 1998]

value may suffice for some applications, there is also a large number of scenarios, specially

those involving crowds, where a more elaborated approach to background initialization is

necessary. To that aim, usually some kind of spatial information is used. One of the earliest

approaches based on this principle is presented in [Gutchess et al., 2001], where the use of

optical flow information is proposed. The main idea is that using the optical flow in the vicinity

of a pixel is possible to hypothesize if a background pixel is being occluded by a moving object

(if the direction of the optical flow is towards that pixel) or if an occluded background pixel is

being uncovered (if the optical flow is directed away from that pixel). The method proposed

in [Farin et al., 2003] consist in computing the sum of absolute differences of co-located image

blocks of the input frames in order to classify them as moving, static foreground or static

background; the background image is computed by using a temporal median filter to combine
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static background blocks. In [Colombari et al., 2006] a method is proposed which consists

in dividing each input frame in patches that are clustered along the time-line in order to

select a small number of background candidates, which are then incrementally deemed to be

background or not by choosing at each step the best continuation of the current background

according to visual grouping principles, therefore considering the spatial correlations that exist

within small regions of the background image. A more recent approach which also considers

the correlation of neighboring background blocks is presented in [Reddy et al., 2011], where

the combined frequency response of a candidate block and its neighborhood is the selection

criterion of the blocks considered as background.

A common assumption of the above mentioned methods is that the background scene is

visible at some point in time during a training period used to initialize the background model.

Later on in this thesis, a system is proposed which relocates the background initialization task

to the appropriate point in space and time, i.e. upon the appearance of new static regions.

2.4.2 Illumination Changes and Shadows

While gradual illumination changes are correctly handled by most of the state-of-the-art

adaptive approaches, sudden illumination changes and shadows casted by moving objects

are still a challenge for most of them. In the case of global illumination changes, texture and,

more generally, local based approaches show an improvement over pixel based approaches

provided that the textures in the observed scene are distinguishable enough. For the case of

casted shadows, all background subtraction approaches show deficiencies which are usually

amended in a post-processing step.

Sudden global illumination changes, are usually handled in an spatial context. For instance,

the system proposed in [Toyama et al., 1999] retains a representative set of scene background

models attending to different lighting conditions (a minimal set would correspond to lights

on and off) and chooses the model that produces the fewest number of foreground pixels.

Obviously, such an approach requires a previous knowledge of the empty scene under dif-

ferent illumination conditions. Based on the observation that illumination changes can be

better handled considering spatial information, the system proposed in [Cristani et al., 2002]

combines the results provided by a GMM with spatial information provided by an off-line

spatial segmentation of the background in a Bayesian framework. A more general approach

which also exploits spatial relationships is presented in [Suau et al., 2009], where the observed

scene is corrected by means of a multi-resolution illumination correction approach in order

to bring the processed video frames to a reference luminance level. An alternative approach

is presented in [Pilet et al., 2008], where the background model is defined by a statistical

model of the illumination effects, instead of the pixel intensities. Furthermore, the likelihood

of pixel classification also fuses texture correlation clues by exploiting texture histograms

trained off-line. Although impressive results are presented, it is assumed that the background
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is static and can be trained beforehand, which is a requirement that can be easily fulfilled in

the scenario for which the approach is designed for, augmented reality, but not in a common

video surveillance scenario.

Regarding the detection of casted shadows, most of the proposed approaches consider other

color spaces than RGB which cope better with small illumination changes like HSV , Y CbCr

or the r g s information used in [Elgammal et al., 2002], where r and g are the red and green

normalized chromaticity components, which are computed as r = R
R+G+B

and g = G
R+G+B

,

respectively, and s is a lightness measure computed as s = R +G +B . These color spaces are

more insensitive to small changes in illumination; nevertheless, they have the inconvenient

of requiring a color transformation for each pixel in the image. Therefore, some approaches

produce a first classification in the RGB color space and transform only the pixels belonging

to the foreground to a different color space in order to check for shadows.

A survey on shadow detection approaches is presented in [Prati et al., 2003], where the different

contributions reported in the literature are classified in four classes: statistical parametric,

statistical non-parametric, deterministic model-based and deterministic non-model-based.

Out of the evaluated approaches, the results provided by those presented in [Horprasert et al.,

1999] and [Cucchiara et al., 2002] are highlighted. The approach in [Horprasert et al., 1999]

classifies pixels as foreground, background, shadowed background or highlighted background,

depending on the chromaticity and brightness distortion measured by projecting the observed

value into a line going through the origin of the RGB space and the expected value for every

pixel position. The approach in [Cucchiara et al., 2002] classifies pixels as foreground or

background depending on the distance in the HSV color space of the observed to the ex-

pected values for every pixel position, thereby exploiting the different effect that illumination

conditions have on the hue, saturation and value channels.

2.4.3 Post-processing and Spatial Consistency

One of the problems faced by background subtraction techniques is the noise introduced by

the camera (and, eventually, by video coding techniques) in the video sequences. As shown in

Section 2.2, this problem is usually tackled by means of choosing an appropriate thresholding

approach or by statistical means. Regardless of the adopted approach, there is always a part

of the noise which cannot be effectively handled by background subtraction and is usually

removed in a post-processing step by imposing a spatial consistency criterion.

A comparison between seven state-of-the-art algorithms with and without the application

of post-processing techniques is presented in [Parks and Fels, 2008]. The post-processing

chain consists in a set of common techniques comprising morphological operators for noise

removal, blob thresholding by means of area size, saliency and measured optical flow, and

object-level feedback. Furthermore, the article is accompanied by a software library of the
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tested algorithms 1. While the results provided by noise reduction by means of morphological

operators are evidently better, the results provided by the rest of the post-processing steps are

not always beneficial, especially in the case of the saliency and optical flow tests, which can

even significantly decrease the performance a given algorithm if not properly parameterized.

A similar study is presented in [Benezeth et al., 2010], where the influence of three differ-

ent spatial consistency criteria is evaluated. The evaluated criteria are a median filter of

the classification of the pixels situated in a window of 5×5 size around the center pixel, a

close(open(F,W )), where F is the foreground mask provided by the background subtraction

algorithm and W is the size of the morphological operator (set to 5×5), and a Markovian

prior. Since adding a Markovian prior leads to a Maximum a Posteriori formulation of the

foreground classification, an optimization scheme is needed to that aim. In this study, the iter-

ated conditional modes optimizer is used. The results presented show a strong increase of the

performance of the evaluated algorithms with any of the tested post-processing steps. There-

fore, the Markovian prior is considered a weaker solution because of its considerably higher

computational load. Spatial coherency of the pixel labels has been proposed in e.g. [Migdal

and Grimson, 2005; Yin and Collins, 2007].

2.4.4 Hybrid Approaches

A further method to improve the quality of the foreground masks provided by background

subtraction is the use of hybrid systems where the detections provided by several systems

based on different detection principles are fused. Examples of such systems can be found e.g.

in [Jabri et al., 2000; Javed et al., 2002; Shen, 2004; Haque et al., 2008]. In [Jabri et al., 2000],

two background models are used, a color model and an edge model. The color background

model consists in a running average Gaussian obtained along the video sequence. The edge

model is generated by applying the Sobel edge operator to each color channel and updating

the resulting horizontal and vertical difference images along the sequence as in the case of the

color model. Background subtraction is performed by combining the detections provided by

the subtraction of each of the scene models. The system in [Javed et al., 2002] also combines

color and gradients cues, plus multiple levels of analysis, pixel, region and frame, in order to

better cope with illumination changes. Sudden illumination changes are detected at the frame

level as in [Toyama et al., 1999]. In [Shen, 2004], the masks provided by means of background

subtraction and temporal differencing are combined in order to more robustly cope with

illumination changes because of the lower illumination sensitivity of the temporal differencing

approach. In [Haque et al., 2008], the detections provided by a GMM are checked against

spatial coherence, therefore combining color with spatial information.

1http://dparks.wikidot.com/background-subtraction
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A study of several basic and hybrid approaches is presented in [Karaman et al., 2005], where

a quality assessment is provided based on a set of videos comprising outdoor and indoor

sequences selected to cover a wide range of the challenges posed to the task of background

subtraction. The results are objectively evaluated by means of manually annotated ground

truth for the selected video sequences. Color (in comparison to other features as luminance or

edges) is shown to be the most robust cue for foreground segmentation. Furthermore, it is

observed that the best results are achieved by optimally combining complementary feature

cues. As future lines of research, it is highlighted the importance of using more sophisticated

background models, whereas it should be noticed that the underlying background models of

the whole set of analyzed approaches are unimodal, and the consideration of the segmentation

problem as a multi-class classification problem (instead of only considering two classes).

2.4.5 Qualitative Evaluation

In order to decide what kind of background subtraction approach is more appropriate for a

given scenario, several considerations have to be taken into account. The most obvious one is

the processing time, which should provide real-time capabilities for an on-line surveillance

system but can be relaxed in an off-line application as video coding or a medical analysis.

Once the required processing time and memory needs have been guaranteed, the quality of

the provided foreground masks has to be evaluated.

The qualitative evaluation of background subtraction approaches is a cumbersome task

because of the need of ground truth data. Therefore, some evaluations only use a few labeled

frames as [Toyama et al., 1999], where a manually annotated ground truth for only one frame

of each video sequence is considered, or a small set of sequences [Karaman et al., 2005],

where the evaluation is based on five sequences. Alternatively, the subjective evaluation of

human experts [ITU-T, 1996], ground truth free evaluation approaches [Erdem et al., 2001;

Chalidabhongse et al., 2003; SanMiguel and Martínez, 2010], or automatically generated

ground truth data [Grossmann et al., 2005], can be used. A survey on the performance measure

of background subtraction approaches is presented in [Elhabian et al., 2008]. A compendium

of the of the performance measures most commonly used for the evaluation of background

subtraction approaches is provided in Appendix B, Performance Metrics.

Still, a pixel-wise evaluation based on ground truth data seems to be the most reliable method

and the one providing the most accurate insights into the merits and weaknesses of the evalu-

ated methods, which is of crucial importance for the further development. The generation and

provision of ground truth data has also seen a valuable progress in the recent years [Tiburzi

et al., 2008; Brutzer et al., 2011; Goyette et al., 2012]. The dataset proposed in [Tiburzi et al.,

2008] provides a set of video sequences with ground truth data based on foreground objects

which were recorded in a chroma studio and segmented with chroma-key techniques. These

objects were later inserted in the background sequences. The problem of this approach, is that
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shadows and background to foreground occlusions are not well represented in the dataset. In

order to provide an accurate ground truth of shadows, the dataset proposed in [Brutzer et al.,

2011] provides a set of artificial video data generated by using high quality 3D-models and

ray-tracing techniques. Nevertheless, it is commonly acknowledged that synthetic data does

not faithfully represent the full range of real data [Elhabian et al., 2008]. The recently proposed

CDnet dataset in [Goyette et al., 2012], which was proposed for the IEEE Workshop on Change

Detection, held in conjunction with the IEEE Conference on Computer Vision and Pattern

Recognition 2012, provides a set of 31 video sequences divided in six categories (Baseline,

Dynamic Background, Camera Jitter, Shadows, Intermittent Object Motion, and Thermal),

which cover a wide range of the challenges faced by background subtraction approaches.

The existence of an annotated ground-truth foreground, background, and shadow region

boundaries allows for an objective assessment of change detection algorithms. Furthermore,

the dataset is accompanied by a website where the evaluated approaches are ranked attending

to a set of seven pixel-based performance measures. This ranking is continuously updated

with the results provided by the users of the dataset, therefore, allowing for a rapid comparison

and ranking of new methods with the state-of-the-art algorithms. Due to the wide range of

scenarios covered and to the good comparability offered with state-of-the-art algorithms, this

dataset is extensively used in this thesis to present the results of the proposed algorithms in

a compact form. For the task of detecting new static objects, additional specialized datasets

are also used. A thorough description of the datasets used in this thesis and some pointers to

other relevant datasets is provided in Appendix A, Description of Datasets.

Due to the good compromise regarding the quality of the segmentation results, the processing

time and the memory requirements, GMM has been chosen as the basis method for the

developed algorithms in this thesis. A thorough study of the different algorithms which have

been proposed for the use of GMM for the task of background subtraction, their merits and

deficiencies is provided in Chapter 3. Based on this study, an improved GMM is proposed.
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Improved Gaussian Mixture Models

3.1 Introduction

Per-pixel adaptive Gaussian Mixture Models (GMMs) have become a popular choice for the

detection of intruding objects by means of background subtraction in surveillance scenarios

observed by static cameras, because of their ability to achieve many of the requirements of

a surveillance system, e.g. adaptability and multimodality, in real-time with low memory

requirements. In a nutshell, the basic approach consists of modelling the history of each pixel

by using a mixture of K Gaussian distributions which are updated by means of an EM-like

algorithm and using these models in order to classify new pixel values as either background or

foreground, depending on the existence or not of a Gaussian mode which supports them with

sufficient evidence.

Gaussian Mixture Models present the advantage of being able to adapt to changes in the

scene, and to accommodate multi-modal background appearances in order to represent

repetitive motion of scene elements. Moreover, by using multiple descriptions for each pixel,

the model can be continuously updated in order to fit new observations without affecting

to the existing background model. Furthermore, the fact of using Gaussian distributions to

model the background at each pixel position, allows for the computation of an automatic

thresholding value for the classification of the observed pixels values.

Nevertheless, as a result of the updating algorithm used for the estimation of the parameters

of the underlying distribution, state-of-the-art GMM-based approaches often suffer from the

problem of converging to poor solutions related to singularities and local maxima. This chapter

presents a system which improves the state-of-the-art GMM-based approaches by means
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of incorporating a novel variance controlling scheme, which aims to adaptively compute an

appropriate value for the initialization of the variance parameter of new modes and to control

the variance of existing modes so as to avoid a degeneration of the model. The proposed

method achieves better background models and is low demanding in terms of processing

time and memory requirements, therefore making it especially appealing in the surveillance

domain.

After briefly reviewing the EM algorithm and the different variants that have been derived of it,

which set the basis of state-of-the-art GMM approaches for the task of background subtraction,

in Section 3.2, Section 3.3 provides an overview of some relevant state-of-the-art GMM based

approaches. Thereby, their merits and weaknesses are analyzed. Section 3.4 presents the pro-

posed model, which analogously to the Split and Merge EM algorithm, splits over-dominating

modes. Therefore, an appropriate splitting operation and the corresponding criterion for

the selection of candidate modes for the case of a non-stationary underlying distribution are

derived. The selection criterion is based on a novel adaptive variance controlling value, which

is also used in order to properly initialize new created modes. In Section 3.5 experimental

results are provided, showing that the presented algorithm achieves better segmentation

results than its predecessors. Section 3.6 concludes this chapter.

The content of this chapter has been partially published in ’Splitting Gaussians in Mixture

Models’, in the Proceedings of the 9th IEEE International Conference on Advanced Video and

Signal-Based Surveillance, 2012 [Heras Evangelio et al., 2012].

3.2 The Expectation Maximization Algorithm

The Expectation Maximization (EM) [Dempster et al., 1977] algorithm is a general approach

used to iteratively compute the maximum likelihood estimate of the parameters of an underly-

ing distribution from a given dataset when the data is incomplete (or has missing values). By

incomplete data is understood the observed data y ∈Y , which is used to indirectly observe

the complete data x ∈X , assuming that there is a mapping x → y(x). The EM algorithm aims

at finding a parameter set φ which maximizes g (y |φ) given an observed y , by making use of

the associated family f (x|φ).

The EM algorithm can be used both when the observed data has indeed missing values, and

when the likelihood function to be maximized is analytically intractable but can be simplified

by assuming the existence of missing data, which is commonly the case in pattern recognition

applications.

The algorithm consists of two steps, which are repeated iteratively: the expectation and the

maximization step. In the expectation step (E-step), the expected value of the log-likelihood
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function of the complete data x is computed using the observed data and current estimates of

the parameters:

Q(φ|φt ) = E [log f (x|φ)|y,φt ]. (3.1)

In the maximization step (M-step), the expectation computed in the first step is maximized

with respect to the estimated parameters:

φt+1 = argmin
φ

Q(φ|φt ). (3.2)

These two steps are repeated iteratively until convergence, which is guaranteed to a local

maximum.

The set of updating equations assuming an underlying distribution described by a mixture of

K Gaussian distributions of the form

p(x|φ) =
K
∑

k=1
ωk pk (x|φk ) (3.3)

is derived in [Bilmes, 1998] by means of the the observed incomplete data set Y = {yi }N
i=1 for

each Gaussian k ∈ K as:

ωk,t+1 =
1

N

N
∑

i=1
p(k|yi ,φ), (3.4)

µk,t+1 =
∑N

i=1 yi p(k|yi ,φ)
∑N

i=1 p(k|yi ,φ)
, (3.5)

σk,t+1 =
∑N

i=1(yi −µk,t+1)(yi −µk,t+1)T p(k|yi ,φ)
∑N

i=1 p(k|yi ,φ)
, (3.6)

where equations 3.4 to 3.6 perform the expectation and the maximization step simultaneously.

The main problems when using the EM algorithm in order to model multi-variate data by

means of finite mixtures are the selection of the number of components to be used and the

initialization parameters of the components. Too many components will over-fit the data,

while too few components will not be flexible enough to properly describe the underlying

distribution. Some references tackling the problem of model order selection can be found in

[Figueiredo and Jain, 2002; Zivkovic and van der Heijden, 2004], which basically propose to

start with a large number of components and introduce a prior in order to lead the algorithm
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converging to more compact models. Further references on this topic can be found in these

two publications. The parameter initialization problem can lead the algorithm to converge

to local maxima. Local maxima arise when there are too many components in one part of

the feature space and too few in another, since moving components from overpopulated to

underpopulated regions is not possible without passing through positions with a lower likeli-

hood. Obviously, this will never happen with the EM algorithm, since the model parameters

are changed at each iteration step so as to increase the log likelihood function. Furthermore,

in the case of using the Gaussian distribution as a basis function, the parameter initialization

problem can derive in the algorithm converging to singularities, which are produced when the

mean value of one of the components in the mixture model is equal to one of the data points,

going therefore the log likelihood function to infinity. Thus, the maximization of the log likeli-

hood function is not a well posed problem in the case of Gaussian mixtures. There is a huge

number of publications attempting to heuristically alleviate the problem posed by local max-

ima and singularities. A recently simple yet effective method to overcome these problems was

proposed in [Ueda et al., 2000], where an algorithm is presented which simultaneously merges

two Gaussians in overpopulated regions and splits a Gaussian in underpopulated regions. To

that aim, a criterion aiming at selecting the split and merge candidates is developed.

One of the premises of the EM algorithm is breaking down a difficult problem (the max-

imization of the likelihood function) into two simpler problems (the expectation and the

maximization steps). In the case that one of these two problems remains intractable, a

partial implementation can be provided, leading to the Generalized Expectation Maximiza-

tion (GEM) algorithm. In [Neal and Hinton, 1998] a view of the EM algorithm in terms of a

Kullback-Liebler divergence problem is presented, which justifies such incremental versions

(incremental, sparse and winner-takes-all versions).

In the case of large data sets, numerical procedures as the EM algorithm can become very

expensive. For these cases, stochastic approximation procedures can be considered. In

[Titterington, 1984], several of such methods are developed and the link of one of such methods

to the EM algorithm is made.

3.3 Gaussian Mixture Models for the Task of Background Subtrac-

tion

Most state-of-the-art GMMs follow the formulation presented in [Stauffer and Grimson, 1999],

thereby modelling the history of each pixel by a mixture of K Gaussian distributions. The

probability of observing a given pixel value X t at time t is estimated as:

P (X t ) =
K
∑

k=1
ωkN

(

X t ,µk ,Σk

)

, (3.7)
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where ωk are the weights respectively associated to each of the modes k ∈ {1 . . .K } describing a

pixel, and N
(

X t ,µk ,Σk

)

is a normal density of mean µk and covariance matrix Σk , which is

usually assumed to be the diagonal matrix σ2
k

I , therefore, assuming that the red, green, and

blue pixel values are independent and have the same variance, making thus the inversion

of Σk easier. The mixing weights are non-negative and add up to one. The components are

sorted according to their relevance and the background model is approximated by the first B

components such that:

B = argmin
k

(

B
∑

k=1
ωk > T

)

, (3.8)

where B ≤ K , T is a predefined threshold indicating the minimum portion of the data that

should be assumed to be background, and the sorting criterion is given by the value sk =ωk /σk

in descending order. That means, modes with a high weight and a small variance tend to

the top of the list of the modes corresponding to a given pixel and, thus, to be part of the

background model. The model is adapted by means of an on-line EM algorithm, used to

approximate the maximum likelihood of the parameters describing the underlying non-

stationary distribution in a recursive manner. The parameters of the estimated modes are

updated by adopting a ’winner-takes-all’ strategy. This means, that only the parameters of

the distribution corresponding to the selected matching mode are updated at a time. The

matching mode is selected by computing the distance of the observed pixel value X t to the

modes of the model in a descendant order and assuming the first mode m which distance is

lower than τ times its standard deviation to be the best match, where τ is usually set to a value

within 2.5 and 3 [Stauffer and Grimson, 1999; Zivkovic, 2004]. If none of the available modes

matches the current pixel value X t , a new mode is created with X t as its mean, a default value

for the variance and a low prior weight. If none of the modes in the model is free, this new

created mode replaces the one with the lowest sk .

For every new frame, the GMM corresponding to each pixel is updated as follows:

ωk,t = (1−α)ωk,t−1 +αMk,t , (3.9)

where k = 1. . .K , α is a constant learning rate, and Mk,t is a binary function with value 1 for

the matched mode and 0 otherwise. The recursive computation of Equation 3.4 would require

to use a variable αt = 1/(t +1). By using a constant α= 1/T , being T a pre-defined integration

interval, the system introduces a forgetting factor which allows the system to better adapt

to the recently observed samples. Furthermore, the µm and σm parameters of the matching

distribution m are updated as:

µm,t =
(

1−ρm,t
)

µm,t−1 +ρm,t X t , (3.10)
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σ2
m,t =

(

1−ρm,t
)

σ2
m,t−1 +ρm,tδ

T
m,tδm,t , (3.11)

where m ∈ {1 . . .K } is the matched mode, δm,t =
(

X t −µm,t
)

and ρm,t is a learning rate calcu-

lated as follows:

ρm,t =αN
(

X t |µm ,σm

)

. (3.12)

Due to the good compromise between segmentation results, processing time and memory

requirements, GMM have been extensively used in the surveillance domain. Nevertheless,

there are still some improvement possibilities in the formulation of [Stauffer and Grimson,

1999]. Some of them have been addressed in numerous publications. The most relevant

improvements in the surveillance domain are summarized in the following. The notation of

the respective papers has been slightly modified so as to use a uniform one and thus allow

for an easy comparison among the different approaches. Furthermore, the variable t is used

to refer to discrete points in time associated to the consecutive frames of the analyzed video

sequence and is, therefore, meant to be a member of the set of natural numbers excluding

zero (N+).

The initialization of the background model is improved in [Kaewtrakulpong and Bowden,

2001] by introducing a learning phase of length L, where the model is updated following

expected sufficient statistics update equations, followed by a steady phase where the model is

updated following the L-recent window of [Stauffer and Grimson, 1999]. During the learning

phase, the weights ωk,t are updated as follows:

ωk,t =
(

1−
1

t

)

ωk,t−1 +
1

t
Mk,t , (3.13)

and the µm and σm parameters of the matching distribution m are updated as in equa-

tions 3.10 and 3.11 by using a learning rate calculated as:

ρm,t =
1

∑t
i=1 Mm,t

. (3.14)

During the steady phase, the weightsωk,t are updated as following Equation 3.9 with a constant

learning rate α= 1
L

and the µm and σm parameters of the matching distribution m are updated

as in equations 3.10 and 3.11 by using a learning rate calculated as:

ρm,t =
α

ωk,t
. (3.15)
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Figure 3.1: Chromaticity and brightness distortion of a given color Ii with respect to a

reference color Ei in the three dimensional RGB color space.

In this way, the model can be more robustly initialized even in the presence of moving objects,

which led to "long" duration ghosts in the model of [Stauffer and Grimson, 1999] 1. Further-

more, modes with a lower evidence ωk,t are updated more rapidly. Moreover, [Kaewtrakulpong

and Bowden, 2001] introduced the use of a shadow detection algorithm, which is applied

to non-background pixels. To that aim, the color model of [Horprasert et al., 1999] is used.

Thereby, the brightness and the chromaticity components of a given color are analyzed sepa-

rately. Figure 3.1 depicts graphically the classification process. The line passing through the

origin of the RGB space and the expected color (Ei ) is the expected chromaticity line. The

brightness distortion αi and the chromaticity distortion C Di of a given color Ii with respect to

a reference color Ei is computed as:

αi = argmin
α

(Ii −αEi )2, (3.16)

C Di = ‖Ii −αi Ei‖ . (3.17)

Non-background pixels are considered as shadowed pixels if λ<αi < 1, being λ the brightness

threshold, and C Di is within the tolerated chromaticity distortion (< τσ). By first classify-

ing pixels in the RGB space and then only checking non-background pixels for shadows,

computational resources needed for the color model transformation are saved.

1The updating equations for the µm and σm parameters in [Kaewtrakulpong and Bowden, 2001] has been
corrected here, since those in the original paper were erroneous.
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In [Lee, 2005] the use of an adaptive learning rate calculated for each Gaussian at every

frame is proposed. Thus, parameter learning of each Gaussian follows a 1/t schedule for

the first observations and gradually approaches the basic recursive filter as in [Stauffer and

Grimson, 1999]. Therefore, the convergence rate of new created Gaussians is improved without

compromising the model stability. This is achieved by using a variable ηm,t to count the

number of assignments to a given matched Gaussian m and computing the learning rate of

the matched mode as:

ρm,t =
1−α

ηm,t
+α. (3.18)

The counter ηm,t is incremented by one when a Gaussian is updated and reset to one when

a Gaussian is reassigned. Therefore, the learning rate applied to each Gaussian is the same

throughout all stages of the system.

In [Zivkovic, 2004] the model is provided with the capability of adaptively choosing the number

of components needed for each pixel. To that aim, prior knowledge for the multinomial

distribution defined by the weights ωk,t , with k = 1. . .K , corresponding to each GMM is

introduced by using the Dirichlet prior with negative coefficients. This means that a given

class k is only accepted if there is enough evidence from the data for its existence. This can be

efficiently implemented by changing the updating equation of the weight corresponding to

the GMM of each pixel, Equation 3.9, as follows:

ωk,t = (1−α)ωk,t−1 +αMk,t −αcT , (3.19)

where cT is the introduced prior knowledge. After each update, the weights ωk,t , with k =
1. . .K , corresponding to each GMM are normalized so that they add up to one. Modes with

negative weights are eliminated. In this manner, the number of components of the mixture

used for each pixel can be constantly adapted, gaining thus in computational speed at those

pixels that can be modeled with a lower number of components. Furthermore, similarly to

[Kaewtrakulpong and Bowden, 2001], the mean and variance values of the matched modes

are updated by using a learning rate ρm,t = α
ωk,t

.

Further directions of enhancement have been presented in a very extensive literature. Some

examples of different research directions can be found in [Cristani et al., 2002; Zang and

Klette, 2004; Migdal and Grimson, 2005; Appiah and Hunter, 2005; Gorur and Amrutur, 2011;

Robinault et al., 2009].

In [Cristani et al., 2002] the problem posed by sudden illumination changes is tackled by using

spatial information based on an off-line generated spatial segmentation of the background.

Although the formulated approach has a deep technical sound, the fact of relaying on an

off-line generated spatial segmentation of the background prevents the applicability of the
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system in a general scenario. In [Zang and Klette, 2004] the use of temporal frame differences

and some morphological operations are proposed in order to impose a spatial pixel labeling

consistency. Nevertheless, it is not specified how the temporal difference frames should be

thresholded, being this a very sensitive factor for the overall system performance. A more

robust form of imposing a spatial consistency in pixel classification is presented in [Migdal

and Grimson, 2005], where the use of Markov random fields of binary segmentation variates

is proposed. However, the use of Markov random fields for pixel classification imposes long

computational times.

An implementation of a simplified version of the algorithm proposed in [Stauffer and Grimson,

1999] on a Field Programmable Gate Array (FPGA) is presented in [Appiah and Hunter, 2005].

In [Gorur and Amrutur, 2011], a windowed weight update scheme, which is also suitable for a

hardware implementation, is proposed to reduce execution time of the original algorithm.

A method for using GMMs with pan-tilt-zoom cameras is proposed in [Robinault et al., 2009].

A comprehensive study of the extensive literature derivate of the system proposed in [Stauffer

and Grimson, 1999] can be found in [Bouwmans et al., 2008], where the method is exhaustively

analyzed from the perspectives of the problems it has to afford and the mathematical and

algorithmical solutions that have been proposed to tackle them in over 150 papers.

The approach presented in the following section aims at improving the quality of the generated

models, and therefore the detection results, at the pixel level. Later on in this thesis, in

Chapter 5 it is shown how the achieved results can be further improved by incorporating

region-based information into the model.

3.4 Splitting Gaussians in Mixture Models

The methods reviewed above use on-line variations of the EM algorithm adapted to the case

of estimating the parameters of non-stationary underlying distributions. The underlying

distributions are considered to be non-stationary, since the background of the observed video

sequence might evolve along time due to changes in the illumination or the geometry of the

scene. However, the EM algorithm is sensitive to initialization when fitting finite mixtures

due to its greedy nature. That means, that depending on the initialization parameters, it

might converge to different solutions. This issue is even more exacerbated in the on-line

approximations used for the task of background subtraction due to two reasons. The first

one is the winner-takes-all updating strategy, which assigns each observed sample to a single

Gaussian of the mixture model. The second one is the matching criterion used, which takes

the first matching distribution as the matched one. As a consequence, the computed GMMs

can provide poor representations of the scene background in some situations.
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This problem has been already observed in several publications. Nevertheless, the analysis

of the problem that they offer is not complete. In [Porikli and Tuzel, 2005] it is claimed that

the on-line EM usually converges to the most significant modes, therefore preventing from

properly modelling multi-modal distributions. Furthermore, it is claimed that the estimated

variance is always much smaller than the actual variance. Obviously, this work is restricted to

the algorithm presented in [Stauffer and Grimson, 1999], whose sorting strategy of the modes

favors lower variances (the sorting criterion attends to sk =ωk /σk ) and updates the matching

modes proportionally to the likelihood of the sample. In opposite to that, in [Bouttefroy et al.,

2010] it is claimed that the methods presented in [Stauffer and Grimson, 1999] and [Lee, 2005]

can degenerate in what they call ’saturated’ pixels, which are pixels with a GMM dominated

by a mode with a too large variance, so that the same mode is able to accommodate values

which should be modeled by different modes. Nevertheless, the updating equations proposed

in [Bouttefroy et al., 2010] flawed.

A careful analysis of the methods presented in [Stauffer and Grimson, 1999; Kaewtrakulpong

and Bowden, 2001; Lee, 2005; Zivkovic, 2004], reveals that both observations might hold in

practical systems. In fact, a too low value for the initialization of the variance of new created

modes may lead the model to over-fit some boundary of the feature space, while a too large

value may lead the model to under-fit the underlying distribution. Furthermore, depending

on the specific updating strategy, the model can converge to different solutions. Using the

sorting criterion and matching mode parameters update in [Stauffer and Grimson, 1999] and

Equation 3.10 to 3.12 the system might tend to under-estimate the variance of the modes, while

using those proposed in [Zivkovic, 2004] the main mode might stretch and thus over-dominate

weaker distributions.

In order to tackle these problems, the method presented in this section incorporates a strategy

to adaptively choose an appropriate value for the initialization of new created modes. Fur-

thermore, following the same guiding principle as in [Ueda et al., 2000], this value is used

in order to define a splitting operation and the corresponding selection criterion to avoid

over-dominating modes.

3.4.1 Background Initialization

The GMM for each pixel is initialized at system start. To that aim, the observed value at each

pixel is used as its mean value and a guess for the initialization of the variance parameter is

made, therefore initializing each GMM with an unique mode, which describes the background

of the scene at this point in time. The variance term of each mode accounts for the variation

of the values corresponding to the given distribution. These variations are introduced by the

camera noise, the kind of surface and the kind of object (moving objects usually exhibit a

higher variance than static ones). Correctly initializing this parameter is of crucial importance

since it has a significant implication on the behavior of the model. A too low value may
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lead the system to generate several modes to model a unique on-time distribution, therefore

over-fitting some boundary of the feature space. Conversely, a too large value may lead the

model to accommodate samples from different distributions into a unique mode, therefore

under-fitting an underlying multi-modal distribution.

For the estimation of the variance parameter, the deviation of each pixel value from the first

to the second frame is used (X t=1, X t=2). Thereby, it is assumed that most of the pixels in

consecutive frames, respectively, belong to the same distribution. Furthermore, it is assumed

that most of the pixels belong to the background and can, therefore, be described by Gaussian

distributions N
(

µ,Σ
)

with similar covariance matrices σ2
b

I . If both assumptions hold, then

the distribution of the deviations is also Gaussian N
(

0,2σ2
b

I
)

. Therefore, the median of

the absolute deviations med can be used to estimate the standard deviation of the former

distributions as:

σ̂b =
med

0.68
p

2
. (3.20)

A similar method was used in [Elgammal et al., 2002] in order to estimate the bandwidth of

the kernel for each pixel independently. In the estimation presented here, the computation

has been extrapolated to the frame level by assuming that most of the pixels belong to the

background. While this certainly is not always the case, the only consequence of including

some foreground pixels in this computation would be an over-estimation of the variance

corresponding to background pixels. The higher the number of moving objects in the scene,

the higher the over-estimation. In practice, this does not affect much further detection results

since, after this first estimation, the variance of each pixel is individually updated to match

the underlying distribution. As it is shown in Section 3.5, Evaluation, the described method

converges to appropriate values even if this first estimation drifts because of violation of the

assumptions above. Nevertheless, if this value can be better estimated, the convergence of the

system to an appropriated model can be sped up. In Section 3.4.6 a method to improve the

initialization of the background model is presented.

3.4.2 Background Maintenance

For every new frame, the observed pixel value X t at each pixel position is used in order to

iteratively adapt its corresponding GMM to the described on-time distribution. Depending

on the sorting strategy and the update equations, the reviewed methods converge to slightly

different results.

The method in [Zivkovic, 2004] has the obvious advantage of adaptively selecting the number

of components used for each pixel, turning in lower processing times at pixel positions where a

lower number of modes is needed. Nevertheless, its matching mode updating strategy is based
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on a learning rate which is computed as ρm,t = α/ωm,t , with m ∈ {1 . . .K }. Such a learning

rate can be considered to be consistent with the updating equations derived in [Bilmes, 1998]

for the case of fitting finite mixtures (Equation 3.4 to 3.6) with a ’winner-takes-all’ updating

strategy adapted to the recursive computation of the maximum likelihood in the case of an

underlying non-stationary distribution. Nevertheless, by computing the learning rate in that

manner, estimates of modes with low weights become very sensitive to noise and can even

derive in singularities.

The method in [Lee, 2005] uses an adaptive learning rate calculated for each Gaussian which

depends on the age of the Gaussian (instead of depending on the whole GMM). Such an

updating rate is not only beneficial at system initialization, where the re-normalization of

the weights would affect the learning rate applied to the first created modes, but also in

extrinsically managed GMMs as will be introduced in Chapter 5, which make use of conditional

updates and mode-substitutions. Nevertheless,the method presented in [Lee, 2005] does not

have any means for selecting the number of needed Gaussians per pixel.

Therefore, the method presented in this section uses the same sorting strategy and weight

updating (Equation 3.19) as in [Zivkovic, 2004]. Furthermore, the learning rate for the update of

the Gaussian parameters of the matched mode is computed so as to follow sufficient statistics

for the first observations and to gradually approach the basic recursive filter as first introduced

in [Lee, 2005], i.e.:

ρm,t =
1−α

ηm,t
+α, (3.21)

where ηm,t is a variable used to count the number of observations assigned to each mode.

ηm,t is set to 1 when a mode is created and consecutively incremented when the parameters

of the mode are updated. Therefore, the parameters of recently created modes are updated

approximately as based on sufficient statistics (ρm,t ≈ 1/ηm,t ) while older modes forget older

samples in an exponentially decaying manner (ρm,t ≈α). The mean and the variance of the

matching modes are updated as in Equation 3.10 and 3.11, respectively. After updating the

parameters of each matching mode, the mode is checked for application of the splitting rule

as defined in Section 3.4.4 if necessary.

If the current pixel value X t does not fit in any of the available modes, a new mode is created.

New modes represent observations that were not contained in the model. Therefore, they

are created with a low prior weight, a mean equal to the value X t of the observation and

an initialization value for the variance σi ,t , which is adaptively computed so as to fit to the

dynamic of the scene as explained in the following section.
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3.4.3 Dynamic Variance Control

At system initialization, σi ,t is set equal to σ̂b . In order to update the value of σi ,t , the behavior

of the system is observed from two different perspectives. On one hand, the absolute deviation

of the observations belonging to background pixels D
abs
b

:= {|δp,m,t | : p ∈Pb}, being Pb the

set of pixels belonging to the background, with respect to σi ,t is computed. Following the

arguments leading to Equation 3.20, σi ,t should have a similar value to the median of D
abs
b

.

But, since the deviations in D
abs
b

are affected by the value of σi ,t at the initialization time

of the individual modes, this similarity is conditioned on past values of σi ,t . Therefore, on

the other hand the absolute deviation of the observations belonging to foreground pixels

D
abs
f

:= {|δp,m,t | : p ∈P f }, being P f the set of pixels belonging to the foreground, with respect

to σi ,t , is considered, which shows the current behavior of the system. In order to evaluate the

behavior of the system from these two different perspectives, two indicators, ν and σ̂ f , are

needed.

The first indicator, ν, is a counter of the number of positions between the median of the

absolute deviation of the background pixels Pb with respect to their corresponding matching

modes m at time t , σp,m,t , and the median of {σi ,t ,Dabs
b

}. This value can be easily computed

by setting ν = 0 for every new frame and comparing for every updated background pixel

p ∈Pb the variance of the matched mode σp,m,t with σi ,t . Attending to these comparisons, ν

is updated as:

ν=







ν+1, if σp,m,t >σi ,t ,

ν−1, if σp,m,t <σi ,t .
(3.22)

The second indicator, σ̂ f , is an approximation of the median absolute deviation of foreground

modes P f . To obtain this value, for every new frame σ̂ f is set equal to σi ,t and, for every

foreground mode, the variance of the mode σm is compared with σ̂ f . Depending on the result

of this comparison, σ̂ f is updated as:

σ̂ f =







σ̂ f +0.1, if σm > σ̂ f ,

σ̂ f −0.1, if σm < σ̂ f .
(3.23)

Equation 3.23 is a recursive approximation on the median of a series of values similar to the

one proposed in [McFarlane and Schofield, 1995].

After processing a whole frame, ν and σ̂ f are evaluated and σi ,t is updated accordingly.

A negative value of ν means that the median of the deviation of the background modes

is lower than the initialization variance σi ,t . Therefore, it is hypothesized that σi ,t is too

high. Conversely, a positive value means that the median of the deviation of the updated
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modes is higher than σi ,t . In this case, it is hypothesized that σi ,t is too low. In order to

verify this hypothesis, the value σ̂ f is used. If the median of the deviation of the foreground

modes σ̂ f is lower than σi ,t it can be corroborated that σi ,t is too high, otherwise it can be

corroborated that it is too low. By imposing the condition that both indicators ν and σ̂ f agree,

σi ,t is dynamically controlled so as to make it converging to the median of the deviation of

the observations corresponding to background modes without being conditioned by their

respective initialization settings.

If σi ,t is too high (ν< 0 and σ̂ f <σi ,t ), its value is updated as:

σi ,t+1 =σi ,t +
(

σi ,t

σ̂ f
−1

)

ν

N
, (3.24)

where N is the total number of pixels in a frame. That means, we decrease the value of σi ,t

according to σ̂ f and ν.

If σi ,t is too low (ν> 0 and σ̂ f >σi ,t ), its value is updated as:

σi ,t+1 =σi ,t +
(

σ̂ f

σi ,t
−1

)

ν

N

c

u
, (3.25)

where c is the number of created modes and u the number of updates. That means, the value

of σi ,t is updated according to σ̂ f and ν. The factor c/u in (3.25) penalizes higher values of

σi ,t , i.e., as the number of foreground modes decreases and the number of background modes

increases, σi ,t grows slower.

This process is repeated for every new frame. The value σi ,t is also used to set a selection

criterion for the splitting rule as explained in the next section.

3.4.4 Splitting Over-Dominating Modes

The presented algorithm uses an on-line variation of the EM algorithm to fit a GMM to a

non-stationary distribution and, the same as the EM algorithm, might suffer from the problem

of getting caught in some boundary of the feature space. For the case of fitting a GMM to

a stationary distribution, the Split and Merge Expectation Maximization (SMEM) algorithm

[Ueda et al., 2000] was introduced in order to escape from local maxima. The intuition behind

is that the Gaussian modes can be better distributed over the feature space by simultaneously

splitting a Gaussian in an under-populated region while merging two Gaussians in an over-

populated region. The split and merge operations are followed by a partial EM procedure and

the full EM procedure and repeatedly performed until convergence.

The splitting rule proposed here finds its roots in the SMEM algorithm. Nevertheless, there

are two important differences that hinder a straightforward transfer of the SMEM algorithm to
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the background subtraction domain. First, the underlying distribution is non-stationary. And

second, the number of modes used is limited, but not fixed. Moreover, the ’winner-takes-all’

updating strategy and the matching mode selection scheme favor the update of dominating

modes. Therefore, it can be considered that the merging operation is implicitly done in the

variant of the EM used for background subtraction. Thus, only an appropriate splitting rule is

needed.

To select candidate modes for the splitting operation the value σi ,t as calculated in the former

section is used to set a variance controlling value σc as σc = cσi ,t , with c ≥ 2. Updated modes

m with σm >σc are selected for splitting into the m′ and the m′′ Gaussians. By setting c > 2

it is accounted for a certain variation of the variance of background pixels. For c →∞ the

behavior of the system is the same as state-of-the-art GMMs with an adaptive setting of the

initialization variance. Selected Gaussians m are splitted as follows:

ωm′,t =ωm,t , ωm′′,t =α,

µm′,t =µm,t , µm′′ = X t ,

σm′,t = sσm,t , σm′′,t =σi ,t ,

(3.26)

where s ≤ 1 is a factor used to reduce the variance of the mode being splitted.

That means, m′ is used to represent the background and m′′ to represent the foreground.

Furthermore, it is assumed that the observed value X t at the moment of splitting Gaussian m

corresponds to a foreground pixel and that the mean value µm,t can still be considered as a

good description of the background. Since the initial parameter values given to m′ are often

poor, its counter ηm′,t is set to a small value.

Figure 3.2 depicts graphically the process of splitting an over-dominating Gaussian mode. It

can be appreciated that the resulting modes cover a lower volume of the feature space which

accommodates a large range of values in the left and upper axis and a small range of values in

the right axis.

The splitting operation introduces a bias towards small values of σi ,t . In order compensate

this bias, a lower bound on the variance of existing modes is also set, in order to not allow

variance values lower than
σi ,t

c
. The factor c is therefore considered as a spanning factor of the

variance values over the initialization value σi ,t of the variance of new created modes.

3.4.5 Lighting Change Detection

After the classification of pixels as background or foreground, similarly to [Kaewtrakulpong and

Bowden, 2001] foreground pixels are checked for illumination changes (shadow and highlight).

In [Kaewtrakulpong and Bowden, 2001], the color model proposed in [Horprasert et al., 1999]

is used, which basically consists of a so called expected chromaticity line passing through the
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Figure 3.2: Graphic depiction of the splitting operation.

origin of the RGB color space and the expected background color. Foreground pixels are then

compared against the current background components at their corresponding positions. RGB

values falling into a cylinder with radius σb , where b is a considered background mode, along

the expected chromaticity line and with a brightness distortion l <λ< 1, being 0 < l < 1, are

considered to be originated by shadows.

The color model used by the method presented in this section is the same, but, instead of

building a cylinder along the expected chromaticity line, a cone is considered with its top

vertex placed in the origin of the RGB space and a σb radius at the section with center in

µb , where b is a considered background mode. RGB values falling into the cone and with a

brightness distortion l <λ< u, being 0 < l < 1 and u > 1, are considered to be originated by

illumination changes. This method has two obvious advantages over the one proposed in

[Kaewtrakulpong and Bowden, 2001]: first, by allowing a brightness distortion higher than 1, it

is possible not only to detect shadow, but also highlight, and, second, by using a cone instead

of a cylinder along the chromaticity line, darker colors (shadows) are forced to have a lower

variance, therefore avoiding dramatic chromatic changes (as it can happen with the cylinder

model). Figure 3.3 depicts graphically both methods.
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Figure 3.3: Lighting models comparison. Left: The cone model (proposal). Right: The

cylinder model as in [Horprasert et al., 1999].

3.4.6 Improving Background Initialization

The method presented in this section has the advantage of adaptively choosing suitable values

σi ,t for the initialization of the variance in new created modes. Nevertheless, as described in

Section 3.4.1 and 3.4.2, the first value σb used to iteratively compute σi ,t is only based on the

two first frames of the video sequence. Although in [Heras Evangelio et al., 2012] it is shown

that the system converges to appropriate σi ,t values even in the case of a wrong initialization,

which could be the fact in case of sudden camera movements or transmission problems in

camera networks, it seems obvious that robustly estimating σb might be of importance for

obtaining good segmentation results from the very beginning of the sequence. In this section,

a method is presented for better estimating σb .

Based on the same assumptions and methodology as in Section 3.4.1, σb is set using the

two first frames of the video sequence. Analogously, σb,t is computed for every following

consecutive two frames and checked for agreement with σb . σb,t is used to update σb until

convergence. Two variance initialization values σb and σb,t are considered to be in agreement,

if their absolute difference σdiff is smaller than the minimum of them, min(σb ,σb,t ). In this

case, σb is updated to:

σb = 0.5σb +0.5σb,t , (3.27)

until convergence of σb . σb is considered to have converged to a proper value when:

σdi f f < ln
(σb

2

)

, (3.28)
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where ln is the natural logarithm function. With this, a fast growing convergence criterion is

set for low values of σb while the criterion for high σb values is set almost constant.

In the case of no agreement between σb and σb,t , it is assumed that the smaller of them is

the right one. Therefore, σb is set to min(σb ,σb,t )+3, where an offset of 3 has been added so

as to avoid getting stuck at small values, which could have been produced by transmission

problems in camera networks.

This process is repeated until convergence of σb or until the first half of a training period,

which is scheduled in a similar fashion as the one described in [Kaewtrakulpong and Bowden,

2001], is finalized.

3.5 Evaluation

To assess the proposed system, in the next referred to as SGMM for brevity, the proposed

technique for the estimation of σi ,t is first validated. Afterwards, the overall computational

load has been measured. Finally, the segmentation results have been quantitatively evaluated

and ranked against several state-of-the-art background subtraction methods.

3.5.1 Datasets

For the validation of the proposed technique for the estimation of σi ,t , three video sequences

exhibiting three different behaviors concerning the amount of foreground activity and lighting

conditions have been used. The aim of these tests is to proof that the parameter σi ,t is able

to follow the characteristics of the scene. The first sequence, Lobby, contains 70000 frames

(≈ 2 h.) recorded in the lobby of a crowded public building, which has both natural and

artificial light. As it is getting darker outside, it is easy to appreciate how the camera noise

raises. The second sequence, Winter, contains 65000 frames (≈ 1 h. 50 min.) recorded in a

sparsely crowded yard in winter. At the beginning of the scene it is snowing and, therefore,

measurements are very noisy; at the end of the scene it stops snowing and, therefore, the

noise shrinks. The third sequence, Underground, is a public sequence taken from the i-LIDS

dataset supplied to AVSS 2007, containing 5223 frames (≈ 3 min.). It contains a scene in an

underground; the field of view is short and therefore the moving objects large. The noise is

nearly constant during the whole scene.

To qualitatively evaluate the background subtraction results, the CDnet dataset [Goyette et al.,

2012] has been used.

A thorough description of the datasets is provided in Appendix A, Description of Datasets.
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3.5.2 Variance Controlling Scheme Validation

In order to evaluate the estimated σi ,t values, a ground-truth value σGT has been computed

by taking the absolute deviation for consecutive values (X t , X t+1) of each pixel for each pair

of consecutive frames and estimated the standard deviation of the modes representing the

background and using Equation (3.20). In sparsely crowded environments, e. g. Winter,

σGT approaches the variance of most of the pixels belonging to the background. In crowded

environments, e.g. Lobby, σGT has a slightly higher value than most of the pixels belonging to

the background. Therefore, the searched value σi ,t should be slightly higher or similar to σGT ,

depending on the kind of scene.

Figure 3.4 shows the results obtained for the three above mentioned sequences. The blue line,

σi ,t , shows the behavior of the algorithm as described in this chapter. The proposed system is

able to correctly follow the dynamic of the scene and finds values near to σGT . The dashed

cyan, σo,t , and green, σu,t , lines, show that the algorithm also converges to suitable values

even in the hypothetic case of a wrong initialization (this case was forced, since the algorithm

started well for the three sequences).

Figure 3.4: Behavior of the proposed variance controlling scheme for the test video se-

quences Lobby, Winter and Underground.
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3.5.3 Computational Load

Table 3.1 shows the processing time for the above mentioned sequences (each frame contain-

ing 720∗576 RGB pixels) in a 3GHz PC without software optimization. For comparison, the

processing time needed by the system in [Zivkovic, 2004], in the next AGMM, has also been

measured. AGMM is able to automatically select the number of needed components per pixel

in order to adapt to the observed scene, but does not have any means to initialize and control

the variance parameter of the Gaussian modes.

Sequence SGMM AGMM

Lobby 43,96 37,52

Winter 34,15 33,65

Underground 34,84 35,45

Table 3.1: Processing time in ms. of the three compared GMM systems.

The processing times of both systems are very similar for sparsely crowded scenarios. In fact,

the SGMM method converges to similar background models as AGMM in sequences of sparsely

crowded scenarios, where over-dominating modes rarely appear. In crowded scenarios SGMM

needs more processing time than AGMM. This is not a surprise, since AGMM often converges

to models where over-dominating modes cover a wide range of the possible pixel values.

Over-dominating modes usually occupy the first position of the modes list. Therefore, for

most of the pixels matching an over-dominating mode, only one Gaussian distribution needs

to be checked, turning into a lower computing demand. Particularly, in the case of the Lobby

sequence, many of the GMMs obtained by the AGMM converged to unimodal mixtures,

therefore not being able to properly segment foreground objects. Contrarily, the proposed

system was able to correctly select and split over-dominating modes and thus provided useful

segmentation results. To summarize, in comparison to the reference system, the method

presented in this chapter achieved similar segmentation results at similar processing times

in sparsely crowded environments, while achieving significantly better results in crowded

scenarios at the price of a slightly higher processing time.

3.5.4 Qualitative Evaluation

The SGMM algorithm has been tested through the whole CDnet dataset and ranked against the

algorithms provided as benchmark at the time of the workshop proposal: SOBS [Maddalena

and Petrosino, 2008], ViBe [Barnich and Van Droogenbroeck, 2011], KDE [Elgammal et al.,

2000], the seminal GMM formulation in [Stauffer and Grimson, 1999] (in the table referred

to as GMM), a GMM with a two phases kind of learning and shadow detection as proposed

in [Kaewtrakulpong and Bowden, 2001] (in the table, TPGMM-SD), a GMM with automatic
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selection of number of components per pixel as proposed in [Zivkovic, 2004] (in the table,

AGMM), Mahalanobis distance [Benezeth et al., 2010] (in the table, MD) and Euclidean dis-

tance [Benezeth et al., 2010](in the table, ED). For the computation of the performance metrics

used for ranking, the provided toolkit was used. The results of the benchmark methods were

taken from the website of the workshop.

The parameters chosen for the SGMM allow for a straightforward comparison of the provided

results with those GMM-based approaches already evaluated with the CDnet dataset. There-

fore, the learning factor α has been set to 0.001, as for the rest of already evaluated GMM-based

approaches, and a maximum number of five Gaussians per pixel has been used. Furthermore,

the sigma spanning factor c has been set to 3, and the brightness distortion l <λ< u has been

configured with l = 0.85 and u = 1.10 (a lower brightness distortion for highlight detection

compensates the higher variance that is allowed to highlighted pixels). A 5x5 median filter has

been applied in a post-processing step, as the organizing committee had done with the results

provided by the methods proposed for the benchmark.

The sigma spanning factor c controls the splitting operation. A value of c = 2 means that

an equal variance is expected for all the background modes. Therefore, those modes which

variance is bigger than twice the estimated value for background modes, σi ,t , should be

described by two different modes. In practice, a slightly bigger value than two is recommended

in order to accommodate for a certain uncertainty in the estimation of σi ,t . Furthermore, by

setting c > 2, a higher range of variance values for the background modes is allowed. This

might be required in scenes depicting different kinds of background as, e.g., watter surfaces

and still background areas. In the conducted experiments, values ranging from two to four

provided a similar performance. For values larger than four the performance decays, because

the splitting rule is rarely applied and some over-dominating modes appear. Obviously, setting

this parameter is much less critical than setting the initialization of the variance parameter

in the original GMM formulation. In fact, as c →∞, the proposed SGMM tends to behave as

a standard GMM without splitting rule, but still with the advantage of adaptively setting the

initialization value of the variance for new modes. For the shake of compactness, only the

results selected for publication on the ’changedetection’ website are presented here.

Table 3.2 shows the average results along the dataset, the ranking considering the average

results, and the average ranking across the six different categories by the date of the evaluation

of the proposed method (11.05.2012). The overall results provide an average of the seven used

performance metrics (Recall (Re), Specificity (Sp), False Positive Rate (FPR), False Negative

Rate (FNR), Percentage of Wrong Classifications (PWC), F-measure and Precision) over the

six categories. The average performance metrics of the evaluated methods are obtained

by averaging the computed value for each of the corresponding metrics at each of the six

categories. The average ranking corresponds to the average over the ranking obtained by

each of the evaluated methods attending to each of the averaged metrics, therefore providing
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Table 3.2: Overall segmentation results and ranking of SGMM (11.05.2012).

Method
Average ranking
across categories

Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-Measure

Average
Precision

SGMM 3,00 2,86 0.7074 0.9910 0.0090 0.0191 2.5299 0.7009 0.7813

SOBS 3,00 3,00 0.7854 0.9805 0.0195 0.0097 2.7049 0.7039 0.7040

TPGMM-SD 4,17 4,86 0.5075 0.9946 0.0054 0.0294 3.1296 0.5871 0.8182

KDE 4,17 5,29 0.7371 0.9749 0.0251 0.0147 3.5974 0.6607 0.6749

ViBe 4,33 5,00 0.6758 0.9825 0.0175 0.0182 3.2035 0.6599 0.7301

GMM 5.50 4.57 0.7070 0.9864 0.0136 0.0206 3.0962 0.6561 0.6987

AGMM 6,17 5,57 0.6942 0.9846 0.0154 0.0194 3.1498 0.6542 0.7045

MD 7,00 6,71 0.7584 0.9576 0.0424 0.0112 4.8771 0.6143 0.5904

ED 7,67 7,14 0.7020 0.9683 0.0317 0.0173 4.4509 0.6016 0.6110

an indicator of the performance of a giving method under a broad range of application

scenarios. The average ranking across categories corresponds to the average of the ranking

obtained by each of the methods at each individual category, giving therefore an indication

of the performance of a method at each of the individual categories. A detailed description

of the performance measures used and the ranking procedure is provided in Appendix B,

Performance Metrics. The SGMM method outperformed not only the GMM methods already

evaluated as benchmark, but also every other of the benchmark methods. The detailed results

obtained for the individual categories have been provided to the organizers of the workshop

and have been already made publicly available2.

Two of the evaluated GMM-based methods (GMM and AGMM) use a maximum number of

three Gaussians, while the other two (TPGMM-SD and SGMM) use five. It can be observed that

the behavior of state-of-the-art GMM-based approaches is severely affected by the increase

of the maximal number of Gaussians, leading to a trade-off between the recall and precision

of the provided foreground masks. This is reflected by the unbalanced recall and precision

values achieved by the TPGMM-SD approach, which provides the lowest recall and F-measure

values of the whole set of evaluated approaches. On the contrary, the proposed method

(SGMM) is able to achieve a balanced precision-recall behavior, which results in one of the

highest F-measure values and the lowest percentage of wrong classification of the whole set of

evaluated methods. This is a consequence of the variance controlling scheme introduced by

the proposed system, which allows for the creation and maintenance of background modes

with an adequate variance value of the observed scene.

2http://www.changedetection.net
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Table 3.3: Segmentation results and ranking of SGMM for the ’Baseline’ category

(11.05.2012).

Method
Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-Measure

Average
Precision

SOBS 1.7143 0.9193 0.9980 0.0020 0.0807 0.4332 0.9251 0.9313

KDE 2.8571 0.8969 0.9977 0.0023 0.1031 0.5499 0.9092 0.9223

ViBe 4 0.8204 0.9980 0.0020 0.1796 0.8869 0.8700 0.9288

MD 4.2857 0.8872 0.9963 0.0037 0.1128 0.7290 0.8954 0.9071

ED 5.4286 0.8385 0.9955 0.0045 0.1615 1.0260 0.8720 0.9114

TPGMM-SD 5.5714 0.5863 0.9987 0.0013 0.4137 1.9381 0.7119 0.9532

SGMM 6.2857 0.8680 0.9949 0.0051 0.1320 1.2436 0.8594 0.8584

AGMM 6.7143 0.8085 0.9972 0.0028 0.1915 1.3298 0.8382 0.8993

GMM 8.1429 0.8180 0.9948 0.0052 0.1820 1.5325 0.8245 0.8461

Tables 3.3 to 3.8 show the results provided by the proposed method for the individual categories

of the CDnet dataset, respectively. In comparison with the other three GMM-based methods

evaluated (GMM, TPGMM-SD, AGMM), the proposed method provides the best results in

four of the six evaluated categories (Camera Jitter, Intermittent Object Motion, Shadow and

Thermal) and the second best results in the other two (Baseline and Dynamic Background), in

which the proposed method is outperformed by TPGMM-SD.

The better results of the TPGMM-SD method in the Baseline category are actually due to

the unbalanced solution provided by the method, which yields to a kind of switch-ranking

(alternating from the top to the bottom of the table) of the method according to the several

performance measures. Therefore, these results are not relevant and will not be further

discussed here.

The better performance of the TPGMM-SD method in the Dynamic Background category

is due to a slightly too high value for the initialization of the variance parameter σi ,t of the

proposed method for t = 1. Nevertheless, it has been observed that σi ,t decreases along the

sequence, therefore increasing the performance of the proposed method.

The categories where the proposed method exhibits the greatest advantage with respect to

the other GMM-based methods are Shadow and Thermal, where the optimal value for the

initialization of the variance parameter in new modes is more different with respect to the rest

of the sequences.
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Table 3.4: Segmentation results and ranking of SGMM for the ’Camera Jitter’ category

(11.05.2012).

Method
Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-Measure

Average
Precision

SOBS 2.1429 0.8007 0.9787 0.0213 0.1993 2.7479 0.7086 0.6399

SGMM 3 0.7088 0.9869 0.0131 0.2912 2.3761 0.7251 0.7752

TPGMM-SD 4.2857 0.5074 0.9888 0.0112 0.4926 3.0233 0.5761 0.6897

ViBe 4.4286 0.7112 0.9694 0.0306 0.2888 4.0150 0.5995 0.5289

GMM 4.5714 0.7334 0.9666 0.0334 0.2666 4.2269 0.5969 0.5126

KDE 5.4286 0.7375 0.9562 0.0438 0.2625 5.1349 0.5720 0.4862

AGMM 6.7143 0.6900 0.9665 0.0335 0.3100 4.4057 0.5670 0.4872

MD 7 0.7356 0.9431 0.0569 0.2644 6.4390 0.4960 0.3813

ED 7.4286 0.7115 0.9456 0.0544 0.2885 6.2957 0.4874 0.3753

Table 3.5: Segmentation results and ranking of SGMM for the ’Dynamic Background’

category (11.05.2012).

Method
Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-Measure

Average
Precision

TPGMM-SD 3.2857 0.6303 0.9983 0.0017 0.3697 0.5405 0.6697 0.7700

SGMM 3.5714 0.7715 0.9933 0.0067 0.2285 0.9132 0.6380 0.6665

AGMM 3.5714 0.8019 0.9903 0.0097 0.1981 1.1725 0.6328 0.6213

GMM 3.7143 0.8344 0.9896 0.0104 0.1656 1.2083 0.6330 0.5989

SOBS 4.1429 0.8798 0.9843 0.0157 0.1202 1.6367 0.6439 0.5856

KDE 5.8571 0.8012 0.9856 0.0144 0.1988 1.6393 0.5961 0.5732

ViBe 6.1429 0.7222 0.9896 0.0104 0.2778 1.2796 0.5652 0.5346

MD 7 0.8132 0.9698 0.0302 0.1868 3.1407 0.5261 0.4517

ED 7.7143 0.7757 0.9714 0.0286 0.2243 3.0095 0.5081 0.4487
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Table 3.6: Segmentation results and ranking of SGMM for the ’Intermittent Object Motion’

category (11.05.2012).

Method
Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-Measure

Average
Precision

SGMM 3.4286 0.5013 0.9853 0.0147 0.4987 4.9180 0.5397 0.6993

GMM 3.5714 0.5142 0.9835 0.0165 0.4858 5.1955 0.5207 0.6688

AGMM 3.8571 0.5467 0.9712 0.0288 0.4533 5.4986 0.5325 0.6458

SOBS 4 0.7057 0.9507 0.0493 0.2943 6.1324 0.5628 0.5531

TPGMM-SD 5 0.3476 0.9892 0.0108 0.6524 5.9854 0.3903 0.6953

ViBe 5.2857 0.5122 0.9527 0.0473 0.4878 7.7432 0.5074 0.6515

ED 5.8571 0.5919 0.9336 0.0664 0.4081 8.9975 0.4892 0.4995

MD 6.2857 0.7165 0.8886 0.1114 0.2835 11.5341 0.4968 0.4535

KDE 7.7143 0.5035 0.9309 0.0691 0.4965 10.0695 0.4088 0.4609

Table 3.7: Segmentation results and ranking of SGMM for the ’Shadow’ category

(11.05.2012).

Method
Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-Measure

Average
Precision

SGMM 2.5714 0.8580 0.9889 0.0111 0.1420 1.7965 0.7944 0.7617

KDE 2.7143 0.8541 0.9885 0.0115 0.1459 1.6844 0.8030 0.7660

ViBe 3.1429 0.7838 0.9919 0.0081 0.2162 1.6497 0.8035 0.8342

TPGMM-SD 4.8571 0.6326 0.9936 0.0064 0.3674 2.2966 0.7179 0.8577

SOBS 5.2857 0.8355 0.9836 0.0164 0.1645 2.3318 0.7717 0.7219

GMM 5.5714 0.7960 0.9871 0.0129 0.2040 2.1951 0.7370 0.7156

AGMM 5.8571 0.7774 0.9878 0.0122 0.2226 2.1908 0.7322 0.7232

ED 6.8571 0.8006 0.9783 0.0217 0.1994 2.8949 0.6786 0.6112

MD 8.1429 0.7845 0.9708 0.0292 0.2155 3.7896 0.6348 0.5685
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Table 3.8: Segmentation results and ranking of SGMM for the ’Thermal’ category

(11.05.2012).

Method
Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-Measure

Average
Precision

KDE 2.5714 0.6725 0.9955 0.0045 0.3275 1.6795 0.7423 0.8974

SOBS 3.5714 0.5888 0.9956 0.0044 0.4112 2.0983 0.6834 0.8754

ViBe 4 0.5435 0.9962 0.0038 0.4565 3.1271 0.6647 0.9363

SGMM 4.8571 0.5363 0.9970 0.0030 0.4637 3.9394 0.6481 0.9263

MD 5.1429 0.6270 0.9906 0.0094 0.3730 2.3462 0.7065 0.8617

TPGMM-SD 5.5714 0.3395 0.9993 7.4348e-004 0.6605 4.8419 0.4767 0.9709

GMM 5.7143 0.5691 0.9946 0.0054 0.4309 4.2642 0.6621 0.8652

AGMM 6.4286 0.5542 0.9942 0.0058 0.4458 4.3002 0.6548 0.8706

ED 7.1429 0.5111 0.9907 0.0093 0.4889 3.8516 0.6313 0.8877

3.6 Conclusions

In this chapter a novel method for the detection of foreground pixels by means of background

subtraction has been presented. The method is based in a per-pixel Gaussian Mixture Model,

which is updated by means of an on-line variation of the Expectation Maximization algorithm

for the case of fitting an underlying non-stationary multi-modal distribution.

The presented method incorporates some of the proposed improvements presented individ-

ually in recent publications [Kaewtrakulpong and Bowden, 2001; Zivkovic, 2004; Lee, 2005]

to the original formulation in [Stauffer and Grimson, 1999]. Furthermore, a variance control

heuristic has been presented, which is based on a dynamic estimation of a proper value for the

initialization of new modes and a splitting operation of over-dominating modes. This allows

for an unrestrained applicability of the method to a wide range of environments without the

need of parameter tweaking (the learning rate should be set according to the video frame

rate, not to the specific environment). Furthermore, the proposed system scales better than

state-of-the-art GMM-based approaches when using a higher number of Gaussians, leading

to more accurate models of the scene background.

A thorough quantitative evaluation of the segmentation results has been provided, showing a

general improvement over state-of-the-art GMM-based background subtraction approaches,

which is reflected in an increase of the recall and precision measures of the provided fore-

ground masks.
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Dual Background Models

4.1 Introduction

A statistical background model as defined in Chapter 3 provides a description of the static

scene. In order to adapt to changes in the observed scene, statistical background models are

regularly updated. Nevertheless, in their standard formulation, GMMs do not provide any

means to differentiate between the several kinds of changes (illumination, introduction or

removal of static objects, etc.), which can be introduced in the static scene. Therefore, the

adaptation is handled in a unique manner regardless of the nature of the change, namely

incorporating all changes into the background model at a pace regulated by the learning

rate. This imposes a limitation in the achievable results that usually leads to the choice of a

compromise value for the learning rate which allows to correctly follow illumination changes

while maintaining in the foreground slow moving and new static objects as long as possible.

In this chapter, a system is presented which handles the problem posed by new static objects

by using two background models learning at different rates and a Finite State Machine (FSM).

New and removed static objects are incorporated into the background models at different

points in time, depending on their respective learning rate. The FSM is used to reason on pixel

classification attending to the results provided by the background models and to the history of

the pixel.

The main purpose of the proposed system is the detection of new static objects, which is a

relevant topic in many security applications. This topic is introduced in Section 4.2, which

provides a brief overview of the main techniques employed in state-of-the-art approaches and

motivates the proposed system. Section 4.3 expounds how dual background models can be
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used in order to detect new static objects. The limitations inherent to dual background models

are addressed by the FSM introduced in Section 4.4. The results of the proposed system are

presented in Section 4.5. Section 4.6 concludes this chapter.

The content of this chapter has been partially published in ’Detection of Static Objects for

the Task of Video Surveillance’, in the Proceedings of the IEEE Workshop on Applications of

Computer Vision (WACV), 2011 [Heras Evangelio et al., 2011], and in ’Static Object Detection

Based on a Dual Background Model and a Finite-State Machine’, in the EURASIP Journal on

Image and Video Processing, 2011 [Heras Evangelio and Sikora, 2011b].

4.2 Static Objects Detection

Detecting static objects in video sequences has several applications in surveillance systems

such as the detection of illegally parked vehicles in traffic monitoring or the detection of

abandoned objects in public safety systems and has attracted the attention of a vast research

in the field of video surveillance.

Most of the proposed techniques aiming to detect static objects are based on the detection of

change, which is usually achieved by means of background subtraction, and an additional

approach used to handle the fact that static objects get incorporated into the background

model of the scene when the model is updated. Commonly, this additional approach relies

on tracking information [Guler et al., 2007; Venetianer et al., 2007; Singh et al., 2009; Bayona

et al., 2009]. Nevertheless, these methods can find difficulties in real-life scenes involving

crowds due to the large amounts of occlusions and to the shadows casted by moving objects,

which turn the object initialization and tracking into a hard problem to solve. Many of the

applications where the detection of abandoned objects can be of interest, like safety in public

environments (airports, railway stations, etc.), impose the requirement of coping with crowds.

In order to address the limitations exhibited by tracking-based approaches, the use of dual

foregrounds is proposed in [Porikli et al., 2008]. The system is based on two background

models with different learning rates, a short-term and a long-term background model, which,

consequently, incorporate new observations into the background at different speeds. Groups

of pixels classified as background by the short-term but not by the long-term background

model are then classified as static objects.

A drawback of this system is that temporarily static objects may also become absorbed by

the long-term background model after a given time, which depends on its learning rate. This

leads the system to not detect those static objects anymore, since both background models

detect them as part of the background. Moreover, these absorbed static objects give raise to

new detections when they are removed from the scene, therefore originating false positives.

Furthermore, in the case that the time defined for raising new static object alarms is longer

66



4.3. Dual Background Models

than the time needed for incorporating new distributions into the long-term background

model, a plain dual background based system will fail. To tackle this situation, a lower learning

rate can be set for the long-term background model; nevertheless, this has the disadvantage,

that the adaptation capability of the background model will be weaken, therefore, affecting to

the background subtraction results.

To solve these problems, the system presented in this chapter uses the results obtained from a

dual background subtraction to classify the pixels according to a finite-state machine. The

finite-state machine is used to explain the results provided by background subtraction based

on the sequence of states that a given pixel is gone through in the steps before. Thus, the

system is able to differentiate between background and absorbed static objects. Furthermore,

by adequately designing the states and transitions of the finite-state machine, the system can

be used either in a full-automatic or in an interactive manner, making it extremely suitable for

real-life surveillance applications.

4.3 Dual Background Models

Dual background models can be used to describe a given scene attending to different time

courses, therefore providing different pixel classifications, which can be exploited either

to improve the quality of the provided foreground masks or to classify pixels according to

different temporal scales.

In [Elgammal et al., 2000], dual background models are exploited to provide foreground masks

exhibiting a sensitive detection and low false positive rates. The short-term background

model is used in order to quickly adapt to illumination changes in the scene. The long-term

background model is used to provide a more stable representation of the scene background.

The generated foreground masks result from the intersection of the masks provided by the

short-term and the long-term background models, therefore eliminating false positives of

the long-term foreground mask. These resulting foreground masks are also used in order to

selectively update the short-term background model. Therefore, stationary or slowly moving

objects are incorporated in both background models as soon as they become relevant enough

in the set of samples used to generate the long-term background model.

In [Porikli et al., 2008], dual background models are used to detect new static objects. The

short-term and long-term foreground masks are used in order to postulate hypotheses on

pixel classification as shown in Table 4.1, where FL(X t ) and FS(X t ) denote the value of the

long-term and short-term foreground mask at pixel X t , respectively (this notation is used in

the rest of this chapter). The limitation of this approach is imposed by the learning rate of the

long-term background (see Section 4.2).
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Table 4.1: Hypotheses on pixel classification based on the long-term and short-term fore-

ground masks as in [Porikli et al., 2008].

FL(X t ) FS(X t ) Hypothesis

1 1 Moving object

1 0 Candidate abandoned object

0 1 Uncovered background

0 0 Scene background

In the system presented in this chapter, two improved GMM as described in Chapter 3 initial-

ized with identical parameters except for the learning rate, a short-term background model BS

and a long-term background model BL , are used as the underlying background subtraction

approach. Actually, any multi-modal background model (see [Zivkovic and van der Heijden,

2006] and [Porikli and Tuzel, 2005], for example) that does not update the modes of the distri-

butions corresponding to the background when a foreground object hides them, can be used.

The foreground masks provided by background subtraction are used as input for the FSM

introduced in the following section. Thereby, it is assumed that a reasonably good model of

the empty scene can be achieved in a training period at system start (this requirement should

also be imposed to the system in [Porikli et al., 2008] in order to reduce the number of false

alarms at system start).

4.4 Multi-class Pixel Classification

In order to illustrate the limitation imposed by the learning rate of the long-term background

for the detection of static objects by means of dual background models (see Section 4.2), a

pixel X t classified as background at time t is considered. Furthermore, it is assumed that this

same pixel X t+1 at the next time step t +1 is occluded by a foreground object. Therefore, the

value of both foreground masks FS(X t+1) and FL(X t+1) at t +1 will be 1. If the foreground

object stays static, it will be learned by the short-term background model at first (assume at

t +α, FS(X t+α) = 0 and FL(X t+α) = 1) and afterwards by the long-term background (assume at

t +β FS(X t+β) = 0 and FL(X t+β) = 0). This process can be graphically described as shown in

Figure 4.1.

By further observing the behavior of the background model of this pixel in time, it is possible

to transfer the meaning of obtaining a given result from a dual background subtraction after

a given history into multi-class pixel classification hypotheses and establish which further

hypotheses can be postulated at the subsequent time steps. This knowledge can be used to

define a FSM [Gibson, 1999], which can be used to hypothesize on pixel classification.
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(FL,FS ) = (0,0) (FL, FS) = (1,1)

(FL, FS) = (1,1) (FL, FS) = (1,0) (FL, FS) = (0,0)

t+1 < T < t+α

T = t+1

T = t

T = t+α

t+ α < T < t+β

T = t+β

T > t+β

(FL, FS) = (0,0)(FL, FS) = (1,0)

BG MP PAP AP

Figure 4.1: Graphical description of the states a pixel goes through when being incorpo-

rated into the background model. BG indicates a pixel that belongs to the background

model, MP a pixel that belongs to a moving object, PAP a partially absorbed pixel and AP

an absorbed pixel.

In the following subsection (4.4.1) the proposed FSM is introduced. Subsection 4.4.2 presents

how this FSM can be further enhanced in terms of robustness and efficiency. Subsection 4.4.3

outlines how the multi-class pixel classification provided by the FSM can be used by higher

layers in a computer vision system. By the introduction of the proposed FSM, Subsection 4.4.1,

it is shown that some states require additional information in order to determine what is the

next state for a given input. This is the case of some states in which it is necessary to know

if any of the background models gives a description of the empty scene and, in affirmative

case, which of them. Therefore, a copy of the last background value observed at every pixel

position is kept. This value is used e.g. to distinguish when an absorbed static object (in

the following, a long-term static object) is being removed or when it is being occluded by

another object. In this sense, the FSM presented in the following can be considered as an

Extended Finite State Machine (EFSM), which is a FSM extended with input and output

parameters, context variables, operations and predicates defined over context variables and

input parameters [Petrenko et al., 1999]. An EFSM can be viewed as a compressed notation

of a FSM, since it is possible to unfold it into a pure FSM, assuming that all the domains are

finite [Petrenko et al., 1999], which is the case in the state-machine presented here. In fact,

context variables are used in a very limited number of transitions. Therefore, for clarity in

the presentation, the proposed state-machine is first introduced as a plain FSM and special

remarks are issued where the EFSM features are exploited.

4.4.1 A finite-state machine for hypothesizing on the pixel classification

A finite-state machine describes the dynamic behavior of a discrete system as a set of input

symbols, a set of possible states, transitions between those states, which are originated by the

inputs, a set of output symbols and sometimes actions that must be performed when entering,

leaving or staying in a given state. A given state is determined by past states and inputs of the

system. Thus, a FSM can be considered to record information about the past of the system it

describes. Therefore, by defining a state machine whose states are the hypotheses on the pixels
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and whose inputs are the values obtained from dual background subtraction, information

about the pixel history can be recorded, and, thus, hypothesize on the classification of a pixel

given a new dual background subtraction result, depending on the state where it was before.

A FSM can be defined as a 5-tuple (I ,Q, Z ,δ,ω) [Booth, 1967], where:

• I is the input alphabet (a finite set of input symbols).

• Q is a finite set of states.

• Z is the output alphabet (a finite set of output symbols).

• δ is the next-state function, a mapping of I ×Q into Q.

• ω is the output function, a mapping of I ×Q onto Z .

The proposed FSM is defined as follows:

• I is the set of possible combinations of the results obtained from background subtraction.

By defining the pair (FL ,FS), the input alphabet reduces to I ≡ {(0,0), (0,1), (1,0), (1,1)}.

• Q is the set of states a pixel can go through as described below.

• Z is either a set of numbers indicating the hypotheses on the pixel classification Z ≡
{0,1, . . . |Q|−1}, with |Q| being the cardinality of Q, or a Boolean output Z ≡ {0,1} with

the value 0 for pixels not belonging to a static object and 1 for pixels belonging to a

static object. Choosing the output alphabet depends on whether the hypotheses of the

machine are to be further interpreted or not.

• δ is a next-state function as depicted in Figure 4.2.

• ω is the output function. This can be either a multivalued function with output values z ∈
{0,1, . . . |Q|−1} corresponding to the state of a pixel at a given time, or a Boolean function

with output 0 for pixels not belonging to a static object and 1 for pixels belonging to a

static object.

Additionally, a copy of the last background value observed at every pixel position is kept.

In the following, the states of the state machine, their hypothetical meaning, the condition

that must be met to enter them or to stay in them and a brief description of their meaning are

listed:

• 0 (BG), background, (FL ,FS) = (0,0).

The pixel belongs to the scene background.
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Figure 4.2: Next-state function of the proposed FSM.

• 1 (MP), moving pixel, (FL ,FS) = (1,1).

The pixel belongs to a moving object. This state can be reached as well by pixels belong-

ing to the background scene being affected by spurious noise not characterized by the

background model.

• 2 (PAP) partially absorbed pixel, (FL ,FS) = (1,0).

The pixel belongs to an object that has already been absorbed by BS but not by BL . In

the following, these objects are called short-term static objects.

• 3 (UBG), uncovered background, (FL ,FS) = (0,1).

The pixel belongs to a background region that was occluded by a short-term static

object.

• 4 (AP), absorbed pixel, (FL ,FS) = (0,0).

The pixel belongs to an object that has already been absorbed by BS and BL , i.e., a

long-term static objects.

• 5 (NI), new indetermination, (FL ,FS) = (1,1).

The pixel cannot be classified as background neither by BS nor by BL . It is not possible

to ascertain if the pixel corresponds to a moving object occluding a long-term static

object or if a long-term static object has been removed. The pixel is not classified as

moving or static at this moment. If the pixel belongs to a moving object occluding a
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long-term static object, the state machine will jump back to AP when the moving object

moves out. If not, a new appearance will be learned by BS and the state machine will

jump to AI, where a decision will be taken.

• 6 (AI), absorbed indetermination, (FL ,FS) = (1,0).

The pixel is classified as background by BS but not by BL . Given the history of the pixel

it is not possible to ascertain if any of the background models gives a description of the

actual scene background. To solve this uncertainty, the current pixel value is compared

to the last known background value at this pixel position. A discussion follows below on

how to obtain and update the last known background value.

• 7 (ULKBG), uncovered last known background, (FL ,FS) = (1,0).

The pixel is classified as background by BS but not by BL and identified as belonging to

the scene background.

• 8 (OULKBG), occluded uncovered last known background, (FL ,FS) = (0,1).

The pixel is classified as background by BL but not by BS , and BS is known to contain a

representation of the scene background. This state can be reached when a long-term

static object has been removed, the actual scene background has been learned again

by BS and an object whose appearance is very similar to the removed long-term static

object occludes the background.

• 9 (PAPAP), partially absorbed pixel over absorbed pixel, (FL ,FS) = (1,0).

The pixel is classified as background by BS but not by BL and could not be identified as

belonging to the scene background. Therefore, it is classified as a pixel belonging to a

short-term static object occluding a long-term static object.

• 10 (UAP), uncovered absorbed pixel, (FL ,FS) = (0,1).

The pixel is classified as background by BL but not by BS , and BL could not be interpreted

to contain a representation of the actual scene background. This state can be reached

when a short-term static object was occluding a long-term static object and the short-

term static object gets removed.

In order to determine the transitions from state 6 additional information is needed. This is

due to the fact that it is not possible to ascertain if any of the background models gives a

good description of the empty scene. To illustrate this, two different cases are considered:

a long-term static object being removed, and a long-term static object being occluded by a

short-term static object. In both cases, when the long-term static object is visible BS and

BL classify it as background (state 4, (FL ,FS) = (0,0)). Afterwards, when the long-term static

object is removed or occluded, a new color is observed. The new color persists at this pixel

position and it gets first learned by BS (state 6, (FL ,FS) = (1,0)), causing an uncertainty, since

it is not possible to distinguish if the new color corresponds to the scene background or to a

short-term static object occluding the long-term static object. To solve this uncertainty, the
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current pixel value is compared with the last known background value at this pixel position.

In this state the FSM is actually behaving as an EFSM and the copy of the last background

value observed at this position is a context variable. This is the unique state where the FSM

explicitly makes use of extended features.

The last known background value is initialized for each pixel after the initialization phase of

the background models, which is performed by updating the background models so as to

follow sufficient statistics (see equations 3.13 and 3.14, Chapter 3). This value is subsequently

updated for every pixel position when a transition from BG (state 1) is triggered as follows:







i f (FL ,FS) = (0,1), bLK (X ) = BL(X ),

other wi se, bLK (X ) = BS(X ),
(4.1)

where bLK denotes the last-known background value.

The output function of the FSM can have two forms:

• A Boolean function with output 0 for non-static pixels and 1 for static pixels. In this

case, it has to be decided which subset O of Z designates a static pixel. There are

many possibilities, depending on the desired responsiveness of the system. The lower

and higher levels of responsiveness are achieved by O ≡ {4} and O ≡ {2,4,5,6,8,9,10},

respectively.

• A multivalued function with output values q ∈ {0,1, . . . |Q|} corresponding to the state

where the pixel is at a given time.

A Boolean function mapping a subset of Z can be used in order to classify groups of pixels

belonging to the considered classes as static objects, while the results obtained by using a

multivalued function can be used to feed up a higher analysis layer which groups pixels by

means of their corresponding classes and builds objects.

4.4.2 Robustness and efficiency issues

The FSM introduced in Subsection 4.4.1 provides a reliable tool to hypothesize on the meaning

of the results obtained from a dual background subtraction. However, there are some state-

input sequences where an additional computation must be done in order to decide on the

next state. This is the case of the state AI (6). A state-input sequence entering the state AI

is AP-(1,1) → NI-(1,0) → AI, which corresponds to a pixel of a long-term static object being

removed or getting occluded by a short-term static object. In this situations, it is necessary to

disambiguate the results obtained from background subtraction.
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Figure 4.3: Enhancements for the proposed FSM. Five additional states and six additional

conditions on transitions to enhance the robustness and the efficiency of the FSM shown in

Figure 4.2.

There are three more state-input sequences entering the state AI, where this extra computation

can be eventually avoided. These are MP-(0,1) → OULKBG-(1,1) → AI, UBG-(1,1) → AI and

PAP-(1,1) → AI. In fact, these sequences enter the state AI because they can derive in a state-

input where a disambiguation is necessary, given the pixel history. Therefore, defining known

sequences which start at the first state-input pair of the three sequences mentioned above,

reaching AI can be avoided for these known sequences. In order to do that, five more states

need to be added to the FSM:

• 11 (OULKBGII), occluded uncovered last known background ii, (FL ,FS) = (0,1).

• 12 (UBGII), uncovered background ii, (FL ,FS) = (1,0).

• 13 (MPII), moving pixel ii, (FL ,FS) = (1,1).

• 14 (PAPII), partially absorbed pixel ii, (FL ,FS) = (1,0).

• 15 (MPIII), moving pixel iii, (FL ,FS) = (1,1).

These states are specializations of the states they inherit their name from and have the sense

of avoiding to enter the state AI in these situations where the meaning of the state-input
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Figure 4.4: Multi-class pixel classification. From left to right: Frame number 2637 of the

i-LIDS (AVSS 2007) AB-Easy sequence, detail of pixel classification using the FSM depicted

in Figure 4.2, and using specialized states (Figure 4.3). Pixels are colored attending to their

classification.

sequence is non-ambiguous. Therefore, theses sequences are called known sequences. Their

meaning can be inferred out of the transitions shown in Figure 4.3 and of the state that they

specialize. In this fashion some additional specialized states can be defined.

Figure 4.3 also shows six additional conditions on six transitions marked as an orange

point on the respective transition arrows. The reason for these conditions is that the tuple

(FL(X t ),FS(X t )) at time step t does not really make sense if being in the state where the transi-

tions are conditioned. Thus, it is considered as noise and the classification state remains equal.

If the tuple (FL(X t+1),FS(X t+1)) in the next time step t +1 is equal to (FL(X t ),FS(X t )), then,

the conditioned transition is done. In practice, these additional conditions are implemented

as replica states with identical transitions as the state being replicated except for the transition

being conditioned, which is only done in the corresponding replica state. These replica states

are not depicted in the next-state function graph for clarity.

Introducing this additional states enhances the robustness of the state machine, since there

are less input sequences deriving in state AI. Thus, there are less pixels that have to be checked

with an eventually old version of the scene background (the last known background value

is updated when leaving the state BG). Furthermore, because of avoiding this additional

computation, a gain in efficiency is achieved. Replica states also contribute to enhance the

performance of the system, since they filter out noisy inputs.

Figure 4.4 provides an example of the proposed multi-class pixel classification. Pixels classified

other than BG have been colored according to the colors assigned to the states in figures 4.2

and 4.3.
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4.4.3 Grouping pixels into regions

The state of each pixel at a given time t provides a rich information that can be further

processed to refine the hypotheses. Pixels can be spatially associated depending on their

states and their connectivity. In order to detect new static objects, pixels in the states 4 and 5

and those that have been in the states 2 or 9 for more than a given time threshold T can be

considered as potentially belonging to the same object. Therefore, pixels fulfilling one of those

criteria are taken into account to build groups of pixels by means of a connected components

algorithm. Groups of pixels bigger than a fixed size are then classified as static objects.

In order to find the connected components, the algorithm proposed in [Chang et al., 2004],

which provides linear time performance with respect to the size of the image, is used. This

is achieved by using a contour tracing technique to detect the external contour and possible

internal contours of each blob, and using the labels assigned to the external contours to

identify and label the interior area of each blob. Therefore, the labeling of interior blob areas

can be done in a single pass, while contour points are revisited a maximum number of four

times, which is the maximal number of contours a pixel can lie on. Since the number of times

a pixel can be visited is limited to four times and the processing of each pixel takes a constant

amount of time, the complexity of the algorithm is linear.

The algorithm proposed in [Chang et al., 2004] has the advantage of providing one of the

lowest processing time among the state-of-the-art connected components labeling techniques,

specially in the case of images with a small number of labels, as is the expected case in the

domain of video surveillance applications. Furthermore, as no re-labeling is needed, it does

not impose additional memory requirements. A good review on state-of-the-art connected

components labeling techniques can be found in [Grana et al., 2009].

4.4.4 Embedding user knowledge

As shown in Figure 4.2, the condition for the FSM to stay at the state AP at a given pixel X t is

that (FL(X t ),FS(X t )) = (0,0), which is the same condition as the one to stay at BG. That means,

if a piece of the scene background was wrongly classified as static object, an operator could

interactively correct this mistake with no need for the system to correct any of the background

models, since those are updated regularly in a blind fashion. This could happen, for example,

if a static object has occluded the background a long time and the lighting conditions have

changed during this period. In that case, the uncovered scene background might not be

similar to the last known background when the object is removed, therefore giving raise to

the detection of a new static object. Since the conditions for staying at AP and BG are the

same, such a situation can be easily corrected, with no need for modifying the background

models, by incorporating user interaction. This is a huge advantage of the proposed system

in comparison to other systems based on selectively updating the background model, since

76



4.5. Evaluation

deadlock situations caused by wrong update decisions are avoided. In the proposed system,

the background model remains as a pure statistical information.

The same applies for static objects that an operator can consider non-interesting, which is a

common issue in public spaces, where waste containers and other static objects are moved in

the scene but do not represent a dangerous situation. Static object detection approaches based

on selective updating of the background model do not offer a principled way of incorporating

such items into the background model. Since the background models of the proposed system

are updated in a blind fashion, these objects do get incorporated into the background models.

Only the state of the FSM has to be changed. This kind of interaction can be defined as well

with other layers in a complex computer vision system.

4.5 Evaluation

This section presents some experimental results. The proposed system is compared with a

dual background based system that does not use a FSM (pixels are classified by using the

hypotheses shown in Table 4.1 and an evidence value in a similar way as proposed in [Porikli

et al., 2008]), which is used as reference system. To abbreviate, those systems are called

DBG-FSM and DBG-T, respectively.

4.5.1 Datasets

The results have been obtained by using three public datasets: i-LIDS, PETS2006 and CAVIAR.

The sequences AB-Easy, AB-Medium and AB-Hard from the i-LIDS dataset show a scene in an

underground station. In PETS2006, there are several scenes from different camera views of a

public railway station; scene S1-T1-C-3 has been used. CAVIAR covers many different actions

of interest in a typical surveillance applications (people fighting, people/groups meeting,

walking together and splitting up, or people leaving bags behind...), taken from a high camera

view; from this dataset the scene LeftBag has been used. A thorough description of the datasets

used throughout this work is provided in Appendix A, Description of Datasets.

The scenes from i-LIDS are the most relevant for the studied problem, since they show one

of the challenges tackled by the proposed system, namely static objects remaining for a long

time in the scene and then being removed. However, the scenes AB-Medium and AB-Hard

present the handicap that the static scene cannot be learned before the static objects come

into the scene, which is a requirement for both systems (DBG-T and DBG-FSM); therefore, 10

frames showing the empty scene were added at the beginning of each sequence, respectively,

in order to train the background models. In PETS2006 static objects are not removed and thus,

even if the static objects have to be detected, they do not pose the problem of detecting when

a static object has been removed. In the CAVIAR scene LeftBag, static objects are removed
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that early, that every background model can be tuned to not absorb them without risking

the responsiveness of the background model. Thus, these two last sets of scenes cannot

be considered as very challenging for the task of static objects detection. Nevertheless, the

three datasets have been considered for the experimental evaluation, since they are the most

commonly used in the computer vision community for the presentation of systems for the

detection of static objects.

4.5.2 System Configuration

The underlying background models used in both systems are Gaussian mixture models. The

background models have been set up with identical parameters except for the learning rate in

each dual background model configuration. The learning rate of the short-term model BS is

10 times higher than the learning rate of the long-term model BL . A relatively large value for

αL has been consciously chosen in order to force BL to learn the static objects in the scene

and thus being able to prove the correct operation of the proposed system both when static

objects are learned by BL and when they get removed from the scene. It is important thus to

remark, that the goal of the experiments presented here is to evidence what problems double

background based systems face on the detection of long-term static objects and how the

proposed approach solves them. Therefore, objects are classified as static very fast. In practice,

αL can be drastically reduced. The rest of the parameters are as follows:

• σi ni t = 11,

• σthr es = 3, and

• B = 0.05, which means, that only the first component of the background model is

considered as background,

where σi ni t is the initialization value for the variance of a new distribution and σthr es is the

threshold value for a pixel to be considered to match a given distribution. These are the most

commonly used values in papers reporting the use of Gaussian mixture models for the task of

background subtraction.

The masks obtained from background subtraction have been used without any kind of post-

processing as input for the FSM. The background models learn for a period of 10 frames and,

assuming that at this time the short-term background already has a model of the empty scene,

the state machine starts classifying pixels.

The FSM has been implemented as a look-up table and is thus very low demanding in terms of

computation time. Only at state AI extra computations are needed. At this step a voting system

is used in order to decide the next state for a given input, by comparing the pixel against

the last value seen for background at this pixel and imposing the condition of obtaining a
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Table 4.2: Detection results of the DBG-T and DBG-FSM systems.

True detections False detections Missed detections Lost detections

Scene DBG-T DBG-FSM DBG-T DBG-FSM DBG-T DBG-FSM DBG-T DBG-FSM

AB-Easy 1 1 0 0 0 0 1 0

AB-Medium 1 1 5 5 0 0 1 0

AB-Hard 1 1 6 6 0 0 1 0

cam3 1 1 0 0 0 0 1 0

LeftBag 1 1 0 0 0 0 0 0

candidate state at least five times. For this comparison, a context variable is needed; namely,

the last known background model. The result of this comparison has not been defined as an

input of the state machine, since it is only needed for pixels being in the state AI. Therefore,

the computational effort of computing a third foreground mask based on this background

model is saved.

Static object detection has been made by taking the pixels whose FSM is in the states AP and

NI, or in the states PAP and PAPAP for a time longer than 800 frames and building connected

components. To build connected components the CvBlobsLib1 library, which implements the

algorithm in [Chang et al., 2004], has been used. Groups of pixels bigger than 200 pixels are

classified as static objects. Time and size thresholds were changed for the LeftBag sequence

according to the geometry and challenge of the scene. While in the PETS and iLIDS sequences

a backpack can be bounded with a 45x45 pixels box, a backpack of the approximately same

size takes a box of only 20x20 pixels in the CAVIAR sequence. Moreover, the LeftBag sequence

of CAVIAR poses the challenge of detecting static objects being in the scene for 385 frames,

what would make no sense in a subway station (iLIDS sequences), since almost each waiting

person would trigger an alarm.

4.5.3 Results

Table 4.2 presents the results obtained with the proposed system (DBG-FSM) and with DBG-T.

True detections indicate that an abandoned object was detected. False detections indicate

that an abandoned object was detected where, in fact, there was not an abandoned object (this

includes, for example, the case of a person remaining static during a period of time longer than

the time established for the detection of static objects). Missed detections indicate that an

abandoned object was not detected. Lost detections indicate correctly detected static objects

that were not detected anymore after a given time because of being absorbed by the long-term

background model.

1http://sourceforge.net/projects/cvblobslib/
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The proposed system successfully detects all static objects. Some false detections are reported

for the AB-Medium and AB-Hard sequences. These detections correspond to persons staying

static for a long time; therefore, they are rated as false detections. These detections could be

ignored by incorporating an object classifier in order to discard people staying static for a long

time. It should be remarked, that the learning rate for BL has been set larger than needed

in order to prove the correct operation of the FSM, which is also partially the cause of static

objects being detected that fast. Furthermore, it can be observed (last two columns in Table

4.2) that the detected static objects are well maintained by the proposed system, while they

get lost by by the DBG-T system when they are absorbed by the long-term background model.

Figures (4.5) to (4.7) show some examples obtained for the i-LIDS sequences. Pixels are colored

according to the colors of the states shown in Figure 4.2. Pixels belonging to moving objects are

painted in green, pixels belonging to short-term static objects in yellow, and so on. The second

frame of each sequence shows how time can be used to mark short-term static objects as static.

The third frames show how long-term static objects (in red) are still being detected (these

objects are lost by a DBG-T system if not additionally using some kind of selective updating

scheme for the long-term background model). In the AB-Medium and AB-Hard sequences it is

also shown the robustness of the proposed system against occlusions in crowded scenes. The

fourth frames show the starting of the disambiguation process when long-term static objects

get removed. The fifth frames show how the static object detection stops when the scene

background is again identified as such. In Figure 4.7, it can also be observed that some of the

false detections could have been avoided by using some kind of region analysis, as is the case of

the persons sitting at the bank, where considering the classification of the pixels surrounding

the bounding boxes it can be asserted that the region is not isolated and, therefore, can not

correspond to an abandoned object.

4.5.4 Computational Load

The processing time needed varies slightly depending on the scene complexity and on the

configuration of the underlying background model. A very complex background scene requires

more components and thus more computation time. Moreover, when long-term static objects

are absorbed by the long-term background and afterwards are removed, an indetermination

state has to be solved. Beyond that, the more static objects there are, the more the blobs

generation costs. To provide an idea of the computational times, Table 4.3 reports the average

frame processing time in milliseconds and in frames per second for the i-LIDS sequences

AB-Easy, AB-Medium, AB-Hard and an average over the PETS2006 dataset, running in an

Intel Core2 Extreme CPU X9650 at 3.00GHz without threading. Since each pixel is considered

individually for the task of background subtraction and multi-class pixel classification, these

tasks could be easily implemented in a parallel architecture, gaining considerably in speed.

For the analysis of the i-LIDS sequences a region of interest, which comprises the platform and
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Figure 4.5: Pixel classification in five frames of the scene AB-Easy. Frame number from left

to right and top to bottom: 1967, 3041, 4321, 4922 and 5098.
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Figure 4.6: Pixel classification in five frames of the scene AB-Medium. Frame number from

left to right and top to bottom: 951, 3007, 3900, 4546 and 4715.
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Figure 4.7: Pixel classification in five frames of the scene AB-Hard. Frame number from

left to right and top to bottom: 251, 2335, 3478, 4793 and 4920.
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Table 4.3: Processing time needed for the update of a dual background model (DBG), for

the DBG-T system and for the proposed system (DBG-FSM) in milliseconds (ms) and frames

per second (fps).

DBG DBG-T DBG-FSM

Scene ms fps ms fps ms fps

AB-Easy 59.30 16.86 62.18 16.08 63.27 15.80

AB-Medium 67.62 14.79 70.57 14.17 72.28 13.84

AB-Hard 68.30 14.64 71.23 14.04 71.87 13.91

PETS2006 60.77 16.46 63.41 15.77 64.58 15.48

escalators, has been defined. That means, 339.028 pixels out of 414.720 have been analyzed.

The frames of the PETS2006 dataset have been analyzed without using any region of interest

(414.720 pixels per frame). The processing times are provided for the update of a double

background system (DBG), for the DBG-T system and for the proposed system (DBG-FSM).

4.5.5 Evaluation of the Results

It is apparent that the proposed method outperforms the DBG-T system in terms of detection

accuracy while having similar processing demands. Table 4.3 shows that the computational

time needed for the update of the state machine is very low compared to the time needed for

the update of the background model. The processing time of the proposed system is always

lower when using a state machine with the enhancements proposed in Section 4.4.2, but

the most important advantage of using specialized states is the avoidance of states which

require solving an indetermination, as shown in Figure 4.4. This clearly improves the quality

of the classification results. The times reported show that the system can run in real-time in

surveillance scenarios.

A final observation made on the experimental results is that the responsiveness of the long-

term background model decreases in crowded environments. This is due to the fact that

people tend to dress in similar colors. Therefore, statistically based background subtraction

approaches tend to incorporate these colors into the background model. This problem is even

worsen when persons or objects remain static for a while at certain positions and then move.

As a result, new persons or objects placed at these positions are detected faster as part of the

background. Since the proposed system uses two background models which attend to two

different temporal configurations and is able to detect the point in time at which static objects

are removed, the detection results could be improved by properly managing the background

models upon the transitions between states.
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4.6 Conclusions

In this chapter, a robust system for the detection of new static objects in crowded scenes

has been presented. The proposed system is based on dual background models, which are

used to compute short-term and long-term foreground masks, and a FSM that performs

multi-class pixel classification based on the results provided by background subtraction and

the history of the pixels. The state machine can be implemented as a look-up table with

negligible computational cost, it can be easily extended to accept more inputs and can also

be coupled with subsequent processing layers in order to extract semantic information out

of video sequences. The system has been successfully validated with several public datasets,

thereby showing a clear advantage with regard to the detection of long-term static objects.

The objects of interest of the proposed system are static objects which have been introduced

in the scene along the considered video sequence and which do not belong to the empty

scene. Therefore, the actual appearance of the empty scene must be known when the state

machine starts working, which is not a trivial demand to be attended. This issue is managed

by the proposed system by setting a background training phase before the start of the multi-

class pixel classification process, and, furthermore, by allowing for the incorporation of user

knowledge in a principled manner as shown in Section 4.4.4. This knowledge can also be

automatically generated by a higher level of analysis.

As described in Section 4.4.3, static objects are detected by grouping pixels which belong to

a certain set of classes (states of the FSM). Based on the observation that the inner pixels of

slightly moving objects are learned by BL and BS faster than the outer pixels (especially by

uniform colored objects), it can be differentiated between static objects and slightly moving

objects by considering also the classification of neighboring pixels. Figure (4.8) shows a

detected static object which could be discarded by following this criterion.

Figure 4.8: Crop of frame nr. 4158 (i-LIDS AB-Hard).
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Furthermore, it has been observed that the information provided by the FSM and the exis-

tence of two background models which attend to different temporal configurations, could be

exploited in order to improve the achieved results.

These issues are tackled by the system described in the following chapter by means of region

analysis and the use of complementary background models. Furthermore, it is shown that

the knowledge acquired by means of region analysis is not only beneficial for the detection of

static objects but also for the improvements of the results provided by background subtraction.
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Complementary Background Models

5.1 Introduction

The detection of change and the detection of new static objects have been studied as isolated

problems in previous chapters of this thesis. Specifically, the previous chapter has introduced

the main issues associated with the detection of static objects in crowded environments and

how these can be addressed by means of dual background models. Moreover, it has been

shown how the results provided by a dual background subtraction can be interpreted by a

finite state machine in order to handle the problems posed by long-term static objects.

A drawback of dual background based systems is that they require a perfect knowledge of the

empty scene in advance. While some efforts aiming to provide a model of the empty scene

have been reported in the literature [Gutchess et al., 2001; Farin et al., 2003; Colombari et al.,

2006; Reddy et al., 2011] (see Chapter 2, Section 2.4), a common constraint of those systems is

that the empty scene must be visible at least for a short time during the initialization period,

which is a very challenging demand, especially in public areas, where the background might

not be visible for long periods of time.

In this chapter, a system for the detection of static objects is presented which circumvents

the initialization problem by first detecting new stationary regions by means of a pixel-wise

analysis, and then classifying those stationary regions as new or removed objects (empty scene

background) at the region level. Therefore, the background initialization problem is relocated

to the right place at the right time. Furthermore, by defining some simple operations on the

models corresponding to the pixels affected by the introduction and removal of static objects,
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both the foreground segmentation results as well as the static object detection results are

considerably improved.

An overview of the proposed system is provided in Section 5.2. Section 5.3 provides a detailed

description of the system building blocks. Experimental results are provided in Section 5.4.

Section 5.5 concludes this chapter.

The content of this chapter has been partially published in ’Complementary background mod-

els for the detection of static and moving objects in crowded environments’, in the Proceedings

of the 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance,

2011 [Heras Evangelio and Sikora, 2011a].

5.2 System Overview

The proposed system analyzes each frame of a video sequence at two levels:

• At the pixel level two complementary background models are used; a fast learning

background model devoted to accurately detect motion, and a more conservative model

aiming to reconstruct the empty scene. Pixels are classified according to the results

obtained by the subtraction of both background models.

• At the region level new static regions are classified as static or removed objects.

The background models are updated in a complementary fashion. While the short-term

background model is updated in a blind fashion, incorporating every new observations of

the scene, the long-term background model only accepts new stationary descriptions when

these are classified as part of the empty scene by means of region analysis. To that aim, region

level classification results are fed-back to the first level (background management). Thus, the

model of the empty scene is implicitly initialized without the restriction of an initialization

period. Furthermore, by using the information gathered at the region level and exploiting

the existence of two complementary background descriptions, the background model of the

empty scene is rapidly reestablished upon the removal of static or slowly moving objects.

Figure 5.1 depicts this system.

The proposed system is able to detect new and removed static objects without previous

knowledge of the empty scene and solves some problems that GMM-based approaches,

and more generally statistical background models, meet in crowded environments. A first

problem derives from the assumption that the scene background is mostly visible, which is

not always the case, especially in rush hours, making it difficult to find a good representation

of the background. Moreover, people often remain static, getting therefore included in the

background model and consequently degrading the model for further detections. Finally,

people often dress in similar colors, what might lead to confusing them with the background.
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Figure 5.1: Complementary background models based system.

Incorporating feedback from higher-level analysis might help to alleviate these problems. One

of the few frameworks aiming to incorporate high-level feedback into the update process of

the background model is presented in [Harville, 2002], where the author proposes to tailor

the segmentation results to the specific needs of the applications using it. Therefore, high-

level modules provide feedback in form of a mask, indicating which detections should be

ignored in the future and which detections should be maintained. The feedback of the several

modules is added-up and the components of the model are accordingly boosted or restrained.

Although the benefits of this feedback might be obvious when only one high-level module

uses the results of background subtraction, the effectiveness of this approach is drastically

reduced when the interests of several modules collide. Furthermore, the results obtained by

background subtraction might be difficult to interpret by higher-level analysis modules, since

they depend on the number and kind of applications providing high-level feedback.

The proposed system also uses high-level feedback but, instead of tailoring the segmentation

results to any specific application, it is used to obtain a reliable description of the empty scene.

5.3 System Building Blocks

5.3.1 Background Modeling

The underlying background model consists of two GMMs each of them defined as in Chapter 3,

a short-term model devoted to accurately segment motion and a long-term model where

the empty scene is reconstructed. Both models have the same configuration parameters

except for the learning rate. The short-term model BS is fast in adapting to scene changes like

illumination and the incorporation and removal of static objects. The long-term model BL has

a lower learning rate and is therefore less reactive than BS to scene changes. When a pixel is

detected as foreground by BL but not by BS at time t , it means that a new stable description of

the scene has been found. Thus, a new mode has been raised to the background part of BS .
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At this time, BS is propagated into BL , the new mode from BL is dropped and BL stops from

learning. Therefore, BL keeps a copy of the background scene as known by time t −1, and BS

further learns the new description. This process is called BS to BL by dropping.

When a mode is dropped, its weight is divided up on the modes in the background part of the

model, therefore avoiding that modes corresponding to the foreground part of the model are

upgraded to the background part. That means:

ωk =ωk +
ω j

B −1
, ∀k = 1...B , k 6= j , (5.1)

where j ≤ B is the mode to be dropped and B > 1 is the number of modes being part of the

background in BL after propagating BS into BL . After dropping the mode, B = B −1 in BL . In

other words, two complementary models of the static scene are generated (BS and BL). These

models are further analyzed at the region level in order to evaluate which of them is more

likely to describe the empty scene.

When a pixel is detected as foreground by BS but not by BL , it means that the scene background

has been uncovered. Therefore, BL is propagated into BS in order to reestablish the background

model as soon as possible (BL to BS), thus improving segmentation results.

This process is controlled at the pixel level by a FSM, which classifies pixels and triggers the

above mentioned operations for background maintenance. The proposed FSM is described

in the following section. New static foreground pixels are then grouped into regions and

classified at the region level as shown in Section 5.3.4.

5.3.2 Pixel Classification and Background Control

Since BL and BS may contain different descriptions of the static scene, the foreground detec-

tion obtained by the subtraction of both models might be different as well. Specifically, at

the pixel level, BS is able to continuously incorporate new descriptions of the static scene,

while BL not. This fact is exploited for detecting pixels describing a new appearance of the

static scene (new static foreground pixels). In order to do this classification and to control the

corresponding actions on the background model, a FSM is used. The use of a FSM for pixel

classification based on the results of a dual background subtraction and on the pixel history

has been introduced in Chapter 4. The novelty of the approach presented here is that, the

FSM is not only used in order to provide a multi-class pixel classification, but also to actively

control the behavior of the background model.

Following the notation in Chapter 4 the FSM is defined as a 5-tuple (I ,Q, Z ,δ,ω), where:

• I are the possible combinations of the results obtained from background subtraction.

By defining the pair (FL ,FS), the input alphabet reduces to I ≡ {(0,0), (0,1), (1,0), (1,1)}.
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Figure 5.2: Transition function of the proposed FSM.

• Q is the set of states a pixel can go through, namely BG -background-, MO -moving-, ST

-new static- and UBG -uncovered background-.

• Z is the set of numbers indicating the classification of a pixel Z ≡ {0,1, . . . |Q|−1}, with

|Q| being the cardinality of Q.

• δ is the next-state function as depicted in Figure 5.2.

• ω is the output function, which is a multivalued function with output values z ∈
{0,1, . . . |Q|−1}, corresponding to the state of a pixel at a given time.

5.3.3 Region Analysis Triggering

Pixels classified as static foreground (ST) are grouped into static foreground regions by means

of a connected components labeling algorithm [Chang et al., 2004] (see Chapter 4, Sec-

tion 4.4.3). These regions can correspond to new static objects or to removed objects which

uncover a region of background which was not visible until this point in time. According to BS

they are static, but, according to BL they are not part of the background as it has been known

until this point in time; that means, they are still part of the foreground.

The foreground mask obtained by subtraction of BL provides the foreground of the overall

system. Therefore, the learning rate αL should be set high enough in order to make BL

able to correctly follow gradual illumination changes. The learning rate αS of the short-

term background model BS is set higher than αL and, thus, slowly moving and temporarily
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static objects are absorbed faster by BS . In order to avoid unnecessarily analyzing regions

corresponding to slowly moving objects, only those pixels which have been classified as static

longer than a given time TS are considered as part of a static foreground region. This time is

computed based on αS and αL as follows:

TS =
(log(T )/ log(1−αL))− (log(T )/ log(1−αS))

2
(5.2)

That means, half of the time remaining from the inclusion of a new mode in the background

part of BS until the time it should get included in the background part of BL is allocated

for pixel classification validation. The rest of the time TC = TS is reserved for the region

classification process.

The analysis of a static foreground region starts when the region has been well-formed. A

region is considered to be well-formed when it fulfills the following two conditions: (i) stillness,

that means that its position and size remain equal for a predefined period of time, and

(ii) isolation, that means that the pixels bordering its bounding box belong to the background.

Therefore, a list of the static foreground regions found in the recent frames is maintained,

where, for each region, information regarding its bounding box (position and size), the first

time it was seen, the last time it was seen and its classification status (new static object,

removed static object, or a soft classification score) is kept. For each new frame, it is checked

for associations between the detected static foreground regions and those in the list based on

the position and size of their respective bounding boxes. Detected regions which do not have

a match in the list are inserted in a new list element. Detected regions matching an element of

the list are used to update its related information. Furthermore, the fulfillment of the stillness

and isolation criteria is checked. Static foreground regions intersecting with each other will

mostly do not fulfill the isolation criterion. In order to avoid indefinetily waiting for isolation

at those regions, regions fulfilling the stillness condition for a period of time longer than the

half of the time allocated for region classification (TC ) are deemed to be well-formed.

The process of associating the detected static foreground regions to those in the list is closely

related to the standard tracking problem. Nevertheless, there are some important differences:

• Since the considered regions are not expected to move around in the scene (or at least

not to much), there is no need to assume neither a motion model nor a calibration of

the scene.

• Although the regions of interest might appear or disappear from the observed scene,

there are not entry or exit points; therefore, some of the heuristics applied in commonly

used tracking approaches cannot be applied here; the list elements corresponding to

regions which have not been observed during a period of time longer than Tmax frames

are deleted.
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• Merging and splitting operations are allowed, but there is no disambiguation necessity

upon the splitting of regions, since no tracking or behavior recognition are performed

based on the associations.

The region association algorithm used is an extension of the point correspondence paradigm

which uses the bounding box delimiting the considered regions as a further constraint. The

criterion used to establish correspondences is the minimum cost, being the cost function

Dl i st (Ri ,L j ) between two regions defined as per Equation 5.3. Similar approaches are used

in [Javed and Shah, 2002] and in [Johnsen and Tews, 2009].

Dl i st (Ri ,L j ) =







Area(Ri )+Area(L j )−Area(Ri∩L j )
Area(Ri∩L j ) i f Area(Ri ∩L j ) > 0

∞ i f Area(Ri ∩L j ) = 0
(5.3)

where Ri is a given detected region i , L j is a region j in the list, and Ri ∩L j is the intersecting

region between Ri and L j . That means, that an infinity cost is assigned if the regions are not

intersecting. If the regions are intersecting, the cost is 1 for completely overlapping regions,

and grows inversely proportional to the portion of region overlap.

For every frame, a distance matrix containing the distance of every detected region to every

element in the list is computed. The rows of this matrix correspond to the elements in the

list and the columns to the detected regions. Additionally, a decision matrix of the same

dimensions is built with all elements set to zero. For every row, the cell corresponding to the

lowest value of the distance matrix is incremented by one. The same is done for every column.

Therefore, each cell of the decision matrix has a value between zero and two.

Elements of the decision matrix equal to two are directly associated and the rest of the dis-

tances in the distance matrix corresponding to the same column and row are set to infinity.

This process is iteratively repeated until none of the elements in the decision matrix is equal

to two. Elements of the list for which a matched could not be found are maintained in the list

until the time difference between the current frame Tc f and the last time they were detected

Tl f is bigger than a certain threshold Tmax , assuming that they have been removed. Detected

regions for which a match in the list has not be found, are inserted in the list.

It must be emphasized that the described association process is exclusively employed in order

to collect temporal information about the detected static foreground regions, but not to build

tracks out of which derive any kind of behaviors. Therefore, the described process is robust

even in crowded environments, where occlusions make difficult the task of building reliable

tracks due to the need of disambiguating the tracked regions upon merging and splitting

operations. Furthermore, since the expected number of static foreground regions is low, the

computational demands of the described algorithm can be neglected.
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5.3.4 Static Foreground Regions Classification

Static foreground regions are classified as soon as possible so as to reactively update the

background models at those regions classified as uncovered background. Static object alarms

are triggered after a time TA , depending on specific application requirements. Since the

number of the frame at which each static foreground region has been seen for the first time is

kept, triggering alarms does not depend on the time at which the region is classified (provided

that TC ≤ TA). Well-formed static foreground regions (see Section 5.3.3) are analyzed based on

shape information when no moving objects are passing through (this can be easily checked by

counting the number of pixel detections provided by BS), therefore, avoiding clutter in the

classification process. This process is defined as follows:

• Find the edges corresponding to the selected region in the input frame. In the following,

the resulting image is referred to as I e
R

. Analogously, the edges corresponding to the

selected region in BL and in the mask of the static region are referred to as B e
L,R and M e

R
,

respectively.

• If there are edges in B e
L,R but not in I e

R
, assume that a static object has been removed. In

the opposite case, assume that a new static object has been placed. If both, B e
L,R and I e

R
,

contain edges, continue the analysis.

• Compute the chamfer distance of M e
R

to B e
L,R , Dcham f er (M e

R
,B e

L,R ), and to I e
R

,

Dcham f er (M e
R

, I e
R

). This is achieved by:

– Computing the distance transform of I e
R

and B e
L,R . In the proposed system, the

Chamfer 3-4 distance [Borgefors, 1986] is used 1.

– Summing up the pixel values of the respective distance transform image which lie

in the same position as the edges in M e
R

.

• If the edges of the region mask M e
R

can be unambiguously matched either to BL or to

the input frame IR , classify as removed object or new static object, respectively. That

means,







i f Tcham f er ·Dcham f er (M e
R

,B e
L,R ) < Dcham f er (M e

R
, I e

R
) R is a removed object

i f Tcham f er ·Dcham f er (M e
R

, I e
R

) < Dcham f er (M e
R

,B e
L,R ) R is a new object

(5.4)

where Tcham f er is an empirically set value which regulates how much near M e
R

has to be

to any of the considered reference regions, B e
L,R and I e

R
in order to consider it a match.

1Using the Euclidean distance is usually not necessary, as the edge points are influenced by noise, being,
therefore, a waste of effort to compute exact distances from inexact edges [Borgefors, 1988].
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• If an unambiguous classification is not possible, a soft classification score is accumu-

lated. The soft classification score is computed as the rate of the distance to the less

acceptable match over the distance to the more acceptable match and indicates how

much near is the region to the more acceptable match. This score is accumulated until

a classification can be done.

• If a region has still not been classified in the time TC allocated for region classification,

it is incorporated in the background part of BL , therefore, avoiding to keep in the

foreground regions which cannot be reliably classified.

The described distance measures Dcham f er (M e
R

, I e
R

) and Dcham f er (M e
R

,B e
L,R ) correspond to

the Chamfer distance and provide a value of dis-similarity between two images. The lower the

value is, the better the match.

Chamfer matching has been extensively used in the computer vision literature. As the number

of templates and the size of the reference image grow, an exhaustive search might result in an

elevated computational cost. Nevertheless, in the described procedure, the defined distance

measures are computed one time, respectively, for each classification trial. Therefore, the

described classification procedure can be implemented very efficiently.

I e
R

, B e
L,R and M e

R
are computed by using the Canny edge detector [Canny, 1986], which is a

generally well accepted robust edge detector optimal with respect to the detection (the ability

to detect as many existing edges in the image as possible), the localization (the detected edges

should be as close as possible to the existing edge in the image) and minimal response (the

existing edges in the image should only be detected once). This is achieved in four main

processing steps: noise reduction (implemented with a Gaussian filter), gradient magnitude

and angle computation, non-maxima suppression and hysteresis thresholding.

The Canny detector has been selected for its robustness. Since its introduction, there have

been several proposals to improve its performance in different directions, which have not

been explored here for being out of the scope of the main topic of this thesis. For instance,

in [Deriche, 1987] an approach based on a highly efficient recursive algorithm aiming to

save the computational effort imposed by the Canny detector is presented. Furthermore,

an additional surround suppression step aiming to eliminate texture edges is presented

in [Grigorescu et al., 2004]. Further edge detection algorithms can be found in [Ziou and

Tabbone, 1998; Basu, 2002]. While the presence of textures is not a big issue for the presented

approach, since the static foreground mask is mostly expected to fit better to the region

containing the object, a computational save would certainly be of advantage, provided that

the quality of the detection results does not degrade.

Figure 5.3 shows examples of regions classified as new static object and removed object by

following the described classification process.
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(a) Region classified as new static object. Sequence AVSS 2007 AB Medium, frame nr.

1605. Top row, from left to right are input frame, pixel classification mask and BL at

the analyzed region. Bottom row are the corresponding edges. The edges of the pixel

classification mask can be matched to the edges in the input frame.

(b) Region classified as removed object. Sequence AVSS 2007 AB Medium, frame nr.

2245. Top row, from left to right are input frame, pixel classification mask and BL at

the analyzed region. Bottom row are the corresponding edges. The edges of the pixel

classification mask can be matched to the edges of the corresponding region in BL .

Figure 5.3: Region classification.
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Figure 5.4: Feedback Triggered Background Update. BL at frames nr. 2245 and 2246 of the

sequence AVSS 2007 AB Medium. Four persons are sitting on the bench since the first frame

of the sequence. The bench is left visible at frame 2084, arising therefore a static region. At

frame 2245 the detected static region is classified as removed object and high level feedback

triggers an update of BL , thus propagating BS into BL .

5.3.5 Feedback Triggered Background Update

Using the feedback provided by the described static foreground regions analysis, the proposed

system prevents from including new static foreground objects in the background part of BL ,

while remaining flexible to incorporate parts of the background which had been occluded

along the whole sequence, not being constrained to an initialization period. Furthermore,

since the most recent copy of the scene background is kept in BL upon the appearance of

new static objects, BL can be used to rapidly heal BS upon their removal, therefore, improving

segmentation results.

The incorporation of uncovered regions of the empty scene is accomplished by feeding back

the position and size of the corresponding bounding box to the pixel level. BS is propagated

into BL for those pixels classified as new static foreground (state ST). Figure 5.4 shows an

example of an uncovered background region initialized by this means.

5.4 Evaluation

The proposed system has been evaluated regarding its ability to detect and correctly classify

new and removed static objects, and regarding the quality of the provided foreground masks.

The results of this evaluation are presented in this section.

5.4.1 Datasets

The static object detection evaluation has been conducted by using the same set of sequences

as in Chapter 4 (AB sequences of the i-LIDS dataset, the S1-T1-C-3 sequence of the PETS2006
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Table 5.1: Detection results of the DBG-T (DT), DBG-FSM (DF), and CBG-FSM (CF) systems.

A manually generated perfect knowledge of the empty scene was needed for DBG-T and

DBG-FSM. CBG-FSM was able to automatically generate this knowledge ’on the fly’.

True Detections False Detections Missed Detections Lost Detections

Scene DT DF CF DT DF CF DT DF CF DT DF CF

AB-Easy 1 1 1 0 0 0 0 0 0 1 0 0

AB-Medium 1 1 1 5 5 4 0 0 0 1 0 0

AB-Hard 1 1 1 6 6 2 0 0 0 1 0 0

cam3 1 1 1 0 0 0 0 0 0 1 0 0

LeftBag 1 1 1 0 0 0 0 0 0 0 0 0

dataset, and the LeftBag sequence of the CAVIAR dataset). These sequences have been briefly

described in Section 4.5, Evaluation, of Chapter 4. A thorough description of the datasets used

throughout this work is provided in Appendix A, Description of Datasets.

For the evaluation of the quality of the provided foreground masks the CDnet dataset has

been used. The dataset has been briefly described in Section 3.5, Evaluation, of Chapter 3. A

thorough description of this dataset is provided in Appendix A, Description of Datasets.

5.4.2 Static Object Detection Evaluation

In order to evaluate the detection of new and removed static objects, the system presented

in Chapter 4 (DGB-FSM) and a dual background based system similar to the one proposed

in [Porikli et al., 2008] (DGB-T) have been taken as reference systems. The system proposed in

this chapter is referred to as CBG-FSM.

The reference systems and the proposed system have been compared by using GMMs with

identical configuration as underlying background models. The same configuration parameters

as in Section 4.5 of Chapter 4 have been taken, i.e. αS = 0.004 for the short-term background

model and αL = 0.0004 for the long-term background model. The DGB-T and DGB-FSM

systems need a perfect knowledge of the empty scene. Therefore, a model of the empty scene

has been manually generated for the AB sequences of the i-LIDS dataset. The PETS2006 and

CAVIAR sequences start with an empty frame; therefore, the first frame, respectively, has been

taken as model of the empty scene.

Table 5.1 shows the results obtained with the compared systems. True detections (TD) are

detected abandoned objects. False detections (FD) are objects detected as static, which do

not correspond to abandoned objects (a person, for example). Missed detections (MD) are

not detected abandoned objects. Lost detections (LD) indicate detected abandoned objects

that are not detected anymore after a given time because of being absorbed by the long-term

background model.
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One of the major advantages of the proposed system is that it does not need any previous

knowledge of the empty scene. In fact, the CBG-FSM system outperforms the DBG-T and

DBG-FSM systems even if the DBG-X systems have been started with a perfect initialization

of the background model (CBG-FSM was initialized without previous knowledge). Moreover,

since object classification is done at the region level when the new static regions are stable,

CBG-FSM is able to filter out many objects which are nearly static, i.e. persons waiting at a

fixed position which only slightly move some parts of their body like arms or legs. Therefore,

false detections are reduced. Furthermore, since every detected static foreground region is

analyzed at the region level, CBG-FSM is more resilient than DBG-T and DBG-FSM to potential

previous failures of the system.

Figures 5.5 to 5.7 depict some pixel classification examples for the sequences AB-Easy, AB-

Medium and AB-Hard of the i-LIDS dataset.

Figure 5.5 shows (on the left) that the CBG-FSM and DBG-FSM systems are able to hold the

detection of the suitcase, while the DBG-T loses it. After the suitcase has been removed, a

person walks through the place where the suitcase had been staying for a long time. Thanks to

the rapid healing of background areas upon removal of static foreground objects, the CBG-

FSM is the unique system able to correctly segment this person. This is depicted in the frames

on the right.

Figure 5.6 shows (on the left) that the CBG-FSM is able to correctly integrate on the background

the area where persons were sitting at the beginning of the sequence. On the right, it is shown,

that the CBG-FSM and DBG-FSM systems are able to hold the detection of the abandoned

bag, while the DBG-T loses it. Furthermore, the person approaching the bench is better

segmented by the CBG-FSM. This is due to the fact that this area is frequently occluded by

people passing by. While the DBG-T and DBG-FSM systems slowly integrate in the background

models frequently observed colors, therefore missing some foreground detections, the CBG-

FSM system prevents the incorporation of these colors into the background model, therefore

achieving more accurate segmentation results.

This fact is also depicted in Figure 5.7, where the person entering the scene (frames on the left)

and the persons sitting on the bench (frames on the right) are more accurately segmented by

the CBG-FSM.

5.4.3 Computational Load

In terms of computational demands, DBG-T and DBG-FSM exhibit a very similar behavior,

requiring an average processing time of near 68 ms per frame (≈ 14.7 frames per second) for

the AB sequences of the i-LIDS dataset in an Intel Core2 CPU at 3.00GHz without threading,

while the CBG-FSM system needed an average processing time of near 86 ms per frame (≈ 11.6

frames per second). It is important though to remark, that the processing time measured for
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Figure 5.5: Pixel classification in two frames of the scene AB-Easy. From left to right:

frames number 4783 and 5441. From top to bottom: original frame, CBG-FSM, DBG-FSM,

and DBG-T.
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Figure 5.6: Pixel classification in two frames of the scene AB-Medium. From left to right:

frames number 2394 and 4164. From top to bottom: original frame, CBG-FSM, DBG-FSM,

and DBG-T.
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Figure 5.7: Pixel classification in two frames of the scene AB-Hard. From left to right:

frames number 1087 and 4698. From top to bottom: original frame, CBG-FSM, DBG-FSM,

and DBG-T.
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DBG-T and DBG-FSM does not account for any event association by the detection of objects

while this task is implicitly accomplished by the CBG-FSM in form of a list. Therefore, an

application based on the CBG-FSM system would be able to raise only one alarm for each

static object, while an application based on the DBG-T or DBG-FSM system would need to

associate the objects detected along the frames in order to raise alarms. In fact, the time

needed by the CBG-FSM system only for pixel classification and background update is slightly

slower than the time needed by DBG-T and DBG-FSM. This is mainly due to the simplification

of the background models achieved when temporarily static objects are removed.

5.4.4 Background Subtraction Qualitative Evaluation

For the evaluation of the quality of the provided foreground masks, the proposed system

has been implemented with an underlying SGMM model, as introduced in Chapter 3. The

resulting system is referred to as SGMM-SOD in the following, since this is the name that was

used to commit the obtained results to the site hosting the ’changedetection’ challenge.

The long-term SGMM has been configured by using the same parameter set used for the

evaluation of the SGMM method in Section 3.5, Evaluation, of Chapter 3, i.e., a maximum

number of five Gaussians per pixel was used, αL = 0.005, a sigma spanning factor c = 3, and a

brightness distortion l <λ< u, with l = 0.85 and u = 1.10.

The short-term SGMM has been identically configured as the long-term SGMM except for the

learning rate αS , which has been set 10 times higher than αL , i.e., αS = 0.05.

A 5x5 median filter has been applied in a post-processing step, as the organizing committee

had done with the results provided by the methods proposed for the benchmark.

Overall, the SGMM-SOD system needs three parameters more than the original GMM formu-

lation, one for controlling the span of sigma, one for the learning rate relation between the

long-term and the short-term background models, and two for the lighting detection, minus

the one needed for the initialization of the variance parameter, which is automatically set by

the SGMM system.

The meaning of the sigma spanning factor c has been discussed in Section 3.5, Evaluation, of

Chapter 3.

The learning rate relation between the long term and the short term background model affects

the time available for region classification. Therefore, it should be set high enough so that

static foreground regions classification can be reliably classified, while low enough so that the

short term background model does not absorb slowly moving objects. Nevertheless, since the

long term background model sets the upper bound for region classification, the segmentation
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Table 5.2: Segmentation results and ranking of SGMM-SOD (06.06.2013). Top 10 change

detection algorithms as ranked by the CDnet benchmark. The proposed algorithm is

SGMM-SOD.

Method
Average ranking
across categories

Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-Measure

Average
Precision

Spectral-360 3.83 3.86 0.7770 0.9920 0.0080 0.2230 1.8516 0.7770 0.8461

SGMM-SOD 4.00 4.29 0.7697 0.9938 0.0062 0.2303 1.4960 0.7661 0.8339

PBAS 4.67 5.43 0.7840 0.9898 0.0102 0.2160 1.7693 0.7532 0.8160

DPGMM 6.00 5.57 0.8275 0.9855 0.0145 0.1725 2.1159 0.7763 0.7928

PSP-MRF 7.50 8.71 0.8037 0.9830 0.0170 0.1963 2.3937 0.7372 0.7512

ChebProb-SOD 9.50 9.57 0.7133 0.9888 0.0112 0.2867 2.3856 0.7001 0.7856

SC-SOBS 9.67 9.43 0.8017 0.9831 0.0169 0.1983 2.4081 0.7283 0.7315

CDPS 10.17 9.14 0.7769 0.9848 0.0152 0.2231 2.2747 0.7281 0.7610

SGMM 11.17 9.43 0.7073 0.9910 0.0090 0.2927 2.5311 0.7008 0.7812

KNN 11.50 11.14 0.6707 0.9907 0.0093 0.3293 2.7954 0.6785 0.7882

Table 5.3: Segmentation results and ranking of the top three change detection algorithms

in the CDnet benchmark by using a 9x9 median post-filtering (06.06.2013).

Method
Average ranking
across categories

Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-Measure

Average
Precision

SGMM-SOD 3.33 2.86 0.7972 0.9931 0.0069 0.2028 1.4094 0.7812 0.8390

Spectral-360 3.67 4.29 0.7770 0.9920 0.0080 0.2230 1.8516 0.7770 0.8461

PBAS 4.50 5.71 0.7840 0.9898 0.0102 0.2160 1.7693 0.7532 0.8160

performance of the system is not much affected by this parameter. A value of 10 has provided

good results, given the learning rate of the long term background model.

Table 5.2 shows the overall performance achieved by the top 10 algorithms. By the time of

writing this thesis, the proposed method is being ranked in the second position. It must be

noted that the results of the two methods (PBAS [Hofmann et al., 2012], Spectral-360 [Sedky

et al., 2008]) sharing the top three with the proposed approach were post-processed with a 9x9

median filter, while the results of the SGMM-SOD method with a 5x5 median filter. Although

the SGMM-SOD method outperforms these two methods if applying a 9x9 median filter, being,

therefore ranked in the first position (see Table 5.3), the results obtained with a 5x5 median

post-filtering have been published, so as to allow for a straightforward comparison with the

GMM approaches which had already been evaluated within the benchmark. Furthermore, a

5x5 median post-filtering is much lighter in terms of computational load.
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Table 5.4: Segmentation results and ranking of SGMM and SGMM-SOD across the six

categories in the CDnet dataset (06.06.2013).

Category Method
Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-Measure

Average
Precision

Baseline
SGMM-SOD 8.00 0.9334 0.9974 0.0026 0.0666 0.5494 0.9212 0.9113

SGMM 16.71 0.8680 0.9949 0.0051 0.1320 1.2436 0.8594 0.8584

Dynamic
Background

SGMM-SOD 9.71 0.7786 0.9966 0.0034 0.2214 0.6041 0.6883 0.7044

SGMM 13.71 0.7715 0.9933 0.0067 0.2285 0.9132 0.6380 0.6665

Camera Jitter
SGMM 8.00 0.7088 0.9869 0.0131 0.2912 2.3761 0.7251 0.7752

SGMM-SOD 8.86 0.6113 0.9907 0.0093 0.3887 2.3608 0.6724 0.8040

Intermittent
Object Motion

SGMM-SOD 3.00 0.7363 0.9909 0.0091 0.2637 2.5238 0.7151 0.8141

SGMM 10.86 0.5013 0.9853 0.0147 0.4987 4.9180 0.5397 0.6993

Shadow
SGMM-SOD 4.71 0.9191 0.9902 0.0098 0.0809 1.2534 0.8646 0.8226

SGMM 10.00 0.8580 0.9889 0.0111 0.1420 1.7965 0.7944 0.7617

Thermal
SGMM-SOD 7.00 0.6396 0.9971 0.0029 0.3604 1.6846 0.7353 0.9471

SGMM 13.29 0.5363 0.9970 0.0030 0.4637 3.9394 0.6481 0.9263

Including the one presented in this chapter, there have been seven GMM approaches eval-

uated with the CDnet dataset until the date of writing this work, the original formulation

in [Stauffer and Grimson, 1999] (GMM | Stauffer & Grimson), the GMM with a preliminary

learning phase [Kaewtrakulpong and Bowden, 2001] (GMM | KaewTraKulPong), the GMM

with adaptive selection of the number of components [Zivkovic, 2004] (GMM | Zivkovic), a

block-based GMM [Riahi et al., 2012] (GMM | RECTGAUSS-Tex), a Dirichlet process GMM

followed by probabilistic regularization [Haines and Xiang, 2012] (DPGMM), the SGMM ap-

proach presented in Chapter 3, and the approach presented in this chapter (SGMM-SOD).

Among them, the one presented in this chapter provides the best performance both in the

average ranking and in the average ranking across categories, followed by the DPGMM ap-

proach, whereby the DPGMM approach needs considerably more processing time although

the sequences had been processed based on a OpenCL version running on a GeForce GTX

580 while the processing time of the SGMM-SOD method has been measured based on a

non-threaded version. The next best performing GMM-based method is the one we presented

in Chapter 3. Table 5.4 shows a comparison of the performance of the method presented in

this chapter (SGMM-SOD) with the method in Chapter 3. The categories where the approach

presented in this chapter has a more obvious advantage are those involving new and removed

static objects, which are mostly correctly classified and accordingly preserved from being

integrated in the background model or removed from it, respectively. These categories are
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Figure 5.8: Foreground segmentation results for two frames of the ’tramstop’ sequence.

From top to bottom: frames number 653 and 1530. From left to right: original frame,

foreground mask of SGMM and foreground mask of SGMM-SOD.

Baseline, Intermittent Object Motion, Shadow and Thermal. Therefore, both the Precision and

the Recall of the segmentation results increase. The results for the Camera Jitter sequences

are slightly worse for the SGMM-SOD approach (≈ 5% attending to the average F-Measure),

due to the fact that some static foreground regions appearing when the camera changes its

position after a vibration are wrongly detected as static objects by the region analysis layer

and, therefore, prevented from being integrated in the background model while the SGMM

approach better adapts to these changes.

Figures 5.8 and 5.9 depict two exemplary segmentation sequences which illustrate the im-

provement in the segmentation results achieved by means of region analysis feedback. Figure

5.8 shows two frames corresponding to the ’tramstop’ sequence on the left column and the

corresponding foreground masks obtained by the SGMM and by the SGMM-SOD methods on

the middle and the right columns, respectively. The ’tramstop’ sequence starts with a tram

standing at a tramstop. Towards frame number 1000, the tram starts moving and leaves the

tramstop, while a person leaves a big box on the sidewalk. Figure 5.8 shows that SGMM incor-

porate these two stationary changes into the background model towards frame number 1500

while SGMM-SOD is able to differentiate between the removed static object (the tram) and the

new static object (the box) and correspondingly integrates them or not into the background

model.

Figure 5.9 shows three frames corresponding to the ’copyMachine’ sequence on the left column

and the corresponding foreground masks obtained by the SGMM and by the SGMM-SOD

methods on the middle and the right columns, respectively. The ’copyMachine’ shows the
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Figure 5.9: Foreground segmentation results for three frames of the ’copyMachine’ sequence.

From top to bottom: frames number 147, 824 and 2686. From left to right: original frame,

foreground mask of SGMM and foreground mask of SGMM-SOD.

activities of different persons in a room with two machines. At the beginning of the sequence

there is no person present in the room. Towards frame number 150 two persons are entering

the room. One of them is staying operating at the machine until approximately frame number

1000, while the second person is waiting. As the middle row of Figure 5.9 shows, SGMM

integrates the persons into the background model, while SGMM-SOD is able to hold them in

the foreground. As a consequence, persons wearing similar colors operating afterwards at the

machine are not properly detected by SGMM, while SGMM-SOD is able to correctly segment

them. An example of this is provided in the lower row of Figure 5.9.

5.5 Conclusions

In this chapter, a robust system for the detection of new and removed static objects in crowded

scenes has been presented. The proposed approach is based on a complementary background

subtraction system consisting of two GMM-based models learning at different rates and with

different updating mechanisms. While the short-term background model adapts rapidly to

all the changes in the scene, the long-term background model only incorporates changes
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into the model if they belong to the background. The results provided by the complemen-

tary background subtraction are used as input of a FSM, which performs a multi-class pixel

classification. Pixels classified as static foreground are then grouped into regions, which are

classified at the region level as new or removed static objects. New objects are prevented from

being incorporated into the long-term background model, while the regions of the empty

scene being uncovered upon the removal of static objects not. Furthermore, by propagating

the model of the empty scene into the short-term background model upon the removal of

temporarily new static objects, foreground segmentation results are considerably improved.

The proposed system has been thoroughly evaluated, both from the static object detection

perspective and from the foreground segmentation perspective, showing considerable im-

provements in both tasks.

The focus in this chapter has been set on coupling region analysis with a pixel-based back-

ground subtraction approach, not on the individual analysis tasks. Thereby, it has been shown

that analysis tasks performed at different levels of abstraction can profit from each other by

adequately designing the interaction between layers. The most intricate decision in this design

process has been the use of a selective updating mechanism for the long-term background,

which leads to holding in the foreground portions of uncovered background until they can

be classified. In practice, it has been observed that such regions are usually reliably classified

within a low number of frames, therefore, not significantly influencing the foreground seg-

mentation results in a negative manner. Moreover, this circumstantial excess in foreground

detections during the classification of uncovered background regions is clearly outbalanced

by the rapid healing of the background upon the removal of long-standing new static objects.

In overall, the presented system is able to outperform state-of-the-art approaches for the

detection of static objects. Thereby, neither a previous knowledge of the empty scene nor

tracking information are needed. Furthermore, the foreground segmentation results provided

by the system are ranked among the bests within the most recent state-of-the-art background

subtraction approaches by considering the broad range of application scenarios contained in

the recently proposed CDnet dataset.
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6

Application Scenario: Video Indexing

and Summarization

The rapid growth of video surveillance systems results in an increasing number of video

feeds which should be watched and stored in a control room. This turns in a continuously

growing workload for CCTV operators, who are overwhelmed by the huge sets of cameras.

In a proactive crime prevention scenario, automatic video analysis techniques, aiming at

understanding actions and human behaviors in video sequences, can be used in order to alert

CCTV operators upon the occurrence of threatening situations. Besides that, video surveillance

systems can also be used for crime investigation and offenders prosecution. Video indexing

and summarization can be used in order to effectively accomplish this last tasks. Figure 6.1

depicts the role of automatic video analysis techniques in the described scenarios. The task

of video indexing and summarization is used in this chapter as an exemplary application

scenario of the video analysis tools presented in the previous chapters.

Video summarization is a process which aims at providing the viewer with an overview of the

content of a video. For that purpose, it is necessary to find the relevant information contained

in the video to be summarized (video indexing), and to develop a proper representation

method which allows the user to rapidly grasp the extracted information and to navigate

through it. Furthermore, as the user is directly driven to the critical points in time, the privacy

of the people recorded at irrelevant passages of the video sequences is preserved.

Depending on the type of video content being analyzed, the techniques used for video sum-

marization may differ. Basically, it can be distinguished between low-level features, object, or

event based approaches. Event based approaches provide the highest semantic level. Never-
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. 

Figure 6.1: Automated video surveillance scenario. Extracted content by means of video

analysis is used for alerting control room operators in proactive crime prevention (top) and

for video summarization for crime investigations (bottom).

theless, the summaries provided based on this kind of information are very sensitive to the

quality of the performed analysis. On the absence of event detections, either because the

searched events do not happen in the considered video data or because of failure of the event

detection algorithm, there is no basis for building up a summary. Furthermore, it is often the

case that there is little information on a given event, which needs to be investigated. This

requires the inspection of large hours of video data. In these cases, low-level features based

approaches may be useful in driving the user to the potential points of interest.

One of the common issues, which is easy to observe in the state-of-the-art summarization

approaches is that the information of interest is extracted by means of a unique level of

analysis, i.e., either low-level feature extraction or mid-level object detection or high-level

event detection. Therefore, the quality of the generated summaries is limited by the kind of

the analysis tool used. In this chapter, a novel system that allows the combination of multiple

cues of different kinds of analysis is presented. In this manner, the achievable quality of the

information extracted out of the analyzed video sequences can be improved and the system is

able to generate summaries that better align with the content of the original video. This system

is demonstrated with the information provided by background subtraction as the low-level

features extractor and the alarms produced by a static object detector as an example of event

based features.

The rest of this chapter is structured as follows: Section 6.1 presents the main techniques

for both indexing and representation, and reviews some representative approaches of the

respective techniques. The properties of the presented systems and the requirements imposed

by the selected application scenario motivate the proposed system, which is presented in
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Section 6.2. In Section 6.3 experimental results are provided. Section 6.4 summarizes and

concludes this chapter.

The content of this chapter has been partially published in ’Video Indexing and Summarization

as a Tool for Privacy Protection’, in the Proceedings of the IEEE International Conference on

Digital Signal Processing, 2013 [Heras Evangelio et al., 2013b], and in ’Multiple Cue Indexing

and Summarization of Surveillance Video’, in the Proceedings of the 10th IEEE International

Conference on Advanced Video and Signal-Based Surveillance, 2013 [Heras Evangelio et al.,

2013a]

6.1 Problem Statement and State-of-the-art

Video content has several features, ranging from the colors captured at the individual pixels,

over the objects depicted at the successive video frames, to the motion described by the

camera capturing the sequence. Moreover, the content of the video sequences is very broad as

well, ranging from movies, over news programs, to surveillance videos.

In [Xiong et al., 2005], the authors make a distinction between scripted and unscripted video

content. With scripted content is meant content which is structured as a series of semantic

units as in the case of movies or news. On the contrary, unscripted content refers to this

type of content which does not follow a predefined structure as in the case of surveillance

or sport videos. Depending on the type of content, the techniques employed to extract

the semantic information are different; while identifying the changes of scene might be

sufficient in order to summarize a news program, this method would not be enough for

summarizing a movie and even would fail to summarize a surveillance video sequence. In

the case of scripted video content, segmenting the content can be considered a common step

towards summarization. Equivalently, the extraction of highlights or relevant information

can be considered the common approach for the case of unscripted content. The process of

extracting the relevant information is denoted as indexing. Obviously, an index can point both

to a space-time as well as to a space-lapse-of-time position within the indexed video data.

Once the relevant information has been extracted, the next step towards summarization is

to structure and represent the extracted information so as to facilitate the access of the user

to the content in a comfortable and efficient manner. Depending on the type of content

and the application in mind, different kinds of information representation may be more

appropriate than others. Regarding the access to the information, the authors in [Xiong et al.,

2005] make the distinction between accessing the data with the intention of getting an idea of

the information contained in it, browsing, or with the intention of looking for specific topics,

retrieving. To clarify this difference, they use the analogy of consulting in a book the Table-of-

Contents for browsing and the keywords-based Index for retrieving. While the content to be

analyzed in the surveillance context can be considered to be of unscripted type as a whole, the
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access to the content is required both in a browsing as well as on a retrieving fashion. Browsing

is required in order to scrutinize unsupervised recorded video data in a preventive manner.

Retrieving is required for carrying out criminal investigations.

After briefly presenting the most common techniques for indexing an representing surveillance

video information, this section provides a review of some representative state-of-the-art

summarization approaches.

6.1.1 Video Indexing and Summarization Techniques

The work presented here is focused on the analysis and representation of surveillance video

content. Therefore, it presents techniques employed in order to extract information out of

unstructured video content and to represent it to a user who is potentially carrying out a

criminal investigation or needs to rapidly obtain an overview of a certain period of time with a

preventive intention.

It can be distinguished between three different levels of analysis for the extraction of the

relevant information:

• Feature based approaches compute some kind of scoring value based on low-level

features as, e.g., number of foreground pixels or frame difference energy, in order to

index those frames (or groups of frames) which are supposed to contain the higher

amount of information.

• Object based approaches look for application-dependent objects of interest as, e.g.,

persons or cars, and index the frames containing this information.

• Event based approaches look for specific events as, e.g., pedestrians crossing the street

from left to right or mugging situations, in order to set pointers with a high semantic

level.

Event based approaches offer the highest semantic level at the cost of a higher sensitivity

to the underlying analysis technique. Therefore, event based approaches are usually more

application specific. The more specific the extracted semantic, the more specific the appli-

cation domain. On the other hand, feature based approaches tend to be more application

independent but, in the simplest case, they can only differentiate between segments of activity

and segments of inactivity. However, they are a useful tool in order to segment long video

sequences.

Regarding the representation, three different levels of abstraction can be observed:

• Key frame based representation relies on the selection of specially relevant frames to

depict the content of the whole sequence.
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• Frame-true time compressed video techniques provide shortened or accelerated ver-

sions of the most relevant segments of the whole sequence by selecting a set of frames

from the original sequence. Representative for this type of techniques are video editing

[Smith and Kanade, 1995], fast forwarding, and adaptive fast forwarding [Petrovic et al.,

2005]. Video editing techniques consist in gluing together the parts of a video sequence

containing the most relevant information. Fast forward approaches depict only 1 frame

out of every group of N frames, therefore, providing an accelerated version of the original

video sequence. A more elaborated version of this last approach is adaptive fast forward-

ing, consisting in increasing the reproduction speed in less interesting parts of the video

while slowing down in the parts of interest. Although the mentioned representation

techniques were originally formulated for the multimedia domain, they can be applied

as well in the surveillance domain. Figure 6.2 depicts an exemplary frame selection

schedule for these three techniques.

• Frame-free time compressed video techniques aim at shortening video sequences by

eliminating periods of inactivity and, furthermore, by displacing space segments in time

so as to present more information at every frame. That means, that some objects may be

displaced in space and time and, therefore, represented in other frames than those where

they appeared in the original sequence. In this case, the relative timing between activities

may change. Examples for this kind of techniques are dynamic video synopsis [Rav-

Acha et al., 2006], which condenses video sequences by simultaneously showing several

actions even if they occurred at different times, and video condensation by ribbon

carving [Li et al., 2009], where the temporal warping is explicitly controlled so as to

permit avoiding a reversal display order of the activities. Figure 6.3 depicts an exemplary

top view of the space-time trajectories found in a sequence and their corresponding

space-time assignment by dynamic video synopsis and video condensation by ribbon

carving.

Key frame based representation techniques allow for the most condensed form of information

representation, but contextual information is lost. Therefore, key frames are often used to

provide non-linear access to the segments of video that they represent. Generally, the higher

the abstraction, the higher the loss of information. Table 6.1 provides an overview of the

capabilities that the three considered representation techniques allow considering the overall

usability of the system. Four evaluation criteria have been considered. ’Information Com-

pactness’ refers to the number of frames needed to depict the content of the whole video

sequence. ’Context Representation’ is the capability of the system to depict the context sur-

rounding the represented video content. ’Information Access Flexibility’ is the flexibility that

the system provides to the user in order to access specific pieces of the whole video sequences.

’Indexation Failure Resilience’ refers to the capability of the representation system to provide

informative summaries in the case that the quality of the generated indexes decreases.
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….. ….. ….. ….. ….. ….. ….. 
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(a) Video Editing.

….. ….. ….. ….. ….. ….. ….. 

N N N 

(b) Fast Forwarding.

….. ….. ….. ….. ….. ….. ….. 

N N N 

(c) Adaptive Fast Forwarding.

Figure 6.2: Frame selection schedule in frame-true video representation. Grey and white

are the frames with and without relevant content, respectively.
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(a) Top view of space-time object trajectories.
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x 

(b) Dynamic Video Synopsis.

t 

x 

(c) Video Condensation by Ribbon Carving.

Figure 6.3: Frame-free video representation techniques.
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Table 6.1: Comparison of three levels of abstraction for the representation of information

extracted from surveillance video sequences.

Information Context Information Access Indexation Failure
Compactness Representation Flexibility Resilience

Key Frames High Low High Low

True-Frame
Medium High Medium Medium

Time Compression

Frame-Free
High

Medium
Low Low

Time Compression (might be confusing)

Depending on the level of the performed video analysis and on the application domain, some

representation techniques are more appropriate than others. For instance, while low-level

features can be successfully used to detect segments of activity of which a set of key frames

can be selected for representation, these same features could not be employed for a frame-free

time compressed video representation. On the other hand, while a compact representation as

the one provided by frame-free representations can be of interest in order to provide a fast

overview of the set of objects observed at a given location, such a representation would not be

advisable for a crime investigation, where the context and objects interrelations are of crucial

importance.

6.1.2 State-of-the-Art Summarization Approaches

A quite straightforward summarization approach can be found in [Damnjanovic et al., 2008],

where the energy of the difference between consecutive frames in a video sequence is used for

indexing. Thereby, it is assumed that events of interest are associated with a higher energy.

Furthermore, the authors propose to use a normalized cut clustering criterion on the similarity

matrix between the frames selected by the energy criterion to select frames for a key frame

video representation and to build clusters of frames for a video editing based representation.

An approach based on the detection of a set of objects of interest is presented in [Cullen

et al., 2012]. In this particular case, boats, cars and people, are taken as input for a video

condensation algorithm able to remove inactive space-time regions by means of ribbon

carving as proposed in [Li et al., 2009].

In [Li et al., 2007], an event based adaptive fast forwarding summarization approach is pre-

sented. Frames depicting the defined event of interest, which are triggered by the detection

of motion with a certain speed and direction in predefined regions of interest, are played at

normal speed and the rest of the frames are played accelerated.

A different approach which also provides adaptive fast forwarding has also been presented

in [Höferlin et al., 2011]. In this paper, the authors propose to adapt the speed of the video
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data to the temporal information contained in them. To that aim, they compute the temporal

information between consecutive video frames by means of the divergence between the

distribution of the absolute frame difference and the distribution of the estimated noise. As

the authors observe in their paper, information based adaptive video fast-forward is not

capable of pointing out relevant events on its own. Furthermore, the proposed information

measure is sensitive to the absolute frame distance. Therefore, the benefit of the approach is

marginal in crowded scenes.

An example of a frame-free video representation approach is presented in [Rav-Acha et al.,

2006], where the authors formulate the video synopsis task as an energy minimization problem.

They present two approaches. The first one uses a 3D Markov random field, where each node

corresponds to a pixel in the 3D volume of the generated synopsis. The second, consists of

first detecting moving objects and then performing the minimization on the detected objects.

This second approach has the advantage of being much faster. An improvement for the video

synopsis approach is presented in [Pritch et al., 2009], where the authors propose to cluster

activities, and to display together only similar activities.

Another frame-free video representation approach which explicitly controls the temporal

warping is presented in [Li et al., 2009]. To that aim, they introduce the concept of a ribbon in

the space-time video volume, which allows by means of a flex-parameter to find a trade-off

between the condensation ratio and the anachronism of the displayed events.

In [Ji et al., 2010] an approach based on the depiction of the detected moving objects along

with their trajectories is presented. Video sequences are first segmented based on the differ-

ence in the number of foreground pixels detected in equally time-separated frames (a time

difference of 10 frames is taken), therefore providing indexes corresponding to the entrance

and exit of objects in the scene. The last frame of each segment is taken for video representa-

tion. The computed object trajectories are depicted in this frame. Furthermore, the authors

propose to synthesize key frames of a video summary in order to provide even more compact

representations of a video sequence. The problem of this approach is that it does not scale

good, since in crowded scenarios it is difficult to set the limits of the segments. Moreover, the

more the detected moving objects in the scene, the less visible are the depicted trajectories.

An object-based video summarization approach for multi-camera networks is presented

in [Porikli, 2004]. Its aim is to change the camera-oriented videos paradigm into an object-

oriented structure so as to allow to respond to semantic queries such as the places where a

given object was recorded during a certain period of time. Video representation is provided in

form of key frames, which are selected by minimizing the Semi-Hausdorff distance between

the selected set of frames and the set of frames contained in the generated object-specific

sequences.
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In [Babaguchi et al., 2002], a system is proposed to summarize video captured by an omnidi-

rectional surveillance camera by means of event based spatio-temporal indexing. The system

displays the contents by using a timeline and a spatial map. Furthermore, video summariza-

tion can be provided in form of videos depicting the perspective or panoramic projections of

the captured video at the times when events of interest were detected. The rest of the video

material is cut-off. The reproduction speed of the generated videos can be controlled by the

user.

An interesting approach from a theoretical point of view which aims at finding the optimal

summary by formulating the problem as a rate-distortion optimization problem is presented

in [Li et al., 2005]. The rate can be either the temporal or the bit rate, and the distortion is

assumed to be introduced by missing frames and should be measured by an appropriate

distortion metric. Nevertheless, as the authors show in the experimental evaluation, this

summarization system would not be practicable in reality, since the computational load grows

very fast. A formal computational complexity analysis is not provided, but the authors report

3 and 23 seconds to summarize 100 and 200 frame sequences, respectively.

6.1.3 Main Findings

It seems obvious that incorporating a tool for efficiently summarizing and providing access to

the relevant information is of crucial importance for modern computer-aided surveillance

systems, which continuously incorporate an increasing number of cameras. Furthermore,

they bring the additional advantage of protecting the privacy of persons, as operators can be

more directly pointed to the time spots of interest, therefore being able to skip the rest of the

video data. In this sense, the more elaborated the semantic queries that the system is able to

process, the higher the privacy protection.

In the ideal case, the user should be able to formulate queries based on events of interest. This

means, that the system should be able to extract event information. Nevertheless, a problem

of event based indexing and summarization systems is that the detection of the events of

interest is mostly defined as a binary problem. This results in the lack of a basis for building

up a summary in the case of the absence of event detections, whether because the considered

events do not happen in the considered video data or because of failure of the algorithm.

Feature based approaches are more robust to the absence of specific events, but are only able

to index points in time where relevant events might happen. Therefore, such approaches

are more appropriate either for very restricted scenarios, where the detection of some video

features provides a high certainty of the existence of an event, or for very generic scenarios,

where the extraction of events is not feasible.

Object based approaches are appropriate for scenarios where the definition and identification

of an object of interest is possible (as e.g. cars). Moreover, an approach aiming to provide
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an object-oriented structure as the one presented in [Porikli, 2004], could be considered

to have strong links to the privacy protection of individuals, as it provides the possibility

of generating video summaries based on objects (as e.g. suspicious persons). In a more

developed version, the identity of non-suspicious persons appearing in video segments where

the followed person has been recorded could be hidden. Nevertheless, despite the huge

challenge posed by multi-camera tracking, the question is how to choose the individuals of

interest, since the generated queues are associated to individuals, but not to their actions.

Furthermore, as the number of detected objects grows, the number of generated summary

videos increases, deriving in the worst case scenario in a higher volume of video data as before

the summarization process. Therefore, at the current level of development, this system can

only be considered of theoretical interest.

There is a lack on experimentation on fusing several queues of content extraction. Especially

promising is the combination of information of different nature as, e.g., low-level features

with event detections. Collaborative approaches have been already proposed [Dumont et al.,

2008]. Nevertheless, these are more oriented to entertainment applications and the content

extraction techniques employed there are not applicable in the surveillance domain.

The suitability of a given video representation form depends on the application context.

Generally speaking, frame-true approaches are more appropriate in scenarios where the

relations between objects can be of relevance (as e.g. in security scenarios), whereas frame-

free approaches may suit better the requirements of applications where the observation of

specific objects is the center of interest, but interactions between the observed objects are not

expected.

Regarding the protection of privacy, a very interesting study on the influence of the representa-

tion speed for the tasks of object identification and video recognition was presented in [Ding

and Marchionini, 1997]. Among their results, the authors observed that an increased display

speed has an earlier effect on the object identification than on the video comprehension task,

i.e., the speed limit for successfully carrying out the task of object identification is lower than

that for video comprehension. This can be explained by the fact that object identification and

video comprehension correspond to different cognitive processes. While object identification

requires focused attention, video comprehension implies global attention. This result could be

considered as a motivation for using acceleration techniques for video summarization systems

aware of privacy protection. Finally, having properly indexed the video content, different

access rights can be provided to different kinds of users in order to further protect the privacy

of the individuals being depicted in the recorded video material.
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6.2 Multiple Cue Video Indexing and Summarization

One of the common issues, which is easy to observe in the state-of-the-art summarization

approaches is that the information of interest is extracted by means of a unique level of

analysis, i.e., either low-level feature extraction or mid-level object detection/classification

or high-level event detection. Therefore, the quality of the generated summaries is limited

by the kind of the analysis tool used. In this section, a system is presented that combines the

results obtained by multiple cues of different levels of analysis. Thus, the overall quality of the

information extracted out of the analyzed video sequences is improved and the system is able

to generate summaries that better align with the content of the original video.

The proposed system provides indexes and summaries for security video investigations.

Thereby, it is important to preserve the context surrounding the objects and events of in-

terest in the generated summaries. Furthermore, the system should be easy to operate by a

non-expert user and provide a flexible and rapid access to the gathered information. To that

aim, both non-linear access to the segments of the input videos containing events of interest,

and accelerated versions of the original videos, whose speed is adapted to their content, is

provided. Video segments containing few relevant information are displayed at a high speed,

while those with important content at a lower. The speed of the generated videos is computed

by combining multiple video analysis cues. Figure 6.4 provides an overview of the proposed

system. The input video is analyzed by several kinds of analysis tools which, respectively,

generate an index and compute an associated speed according to their detections. The speed

vt of the generated summary at time t is computed as the minimum of the set of speeds

Vt = {vc,t }C
c=1, where C is the number of cues used. t refers to discrete points in time associated

to the consecutive frames of the analyzed video sequence and is, therefore, meant to be a

member of the set of natural numbers excluding zero (N+). The generated indexes can be

used both for providing non-linear access to the set of events detected, and for generating

additional summaries according to different combinations of analyses and their respective

computed associated speed.

In the following, the input video is assumed to have been recorded by fixed cameras. Fur-

thermore, the proposed system is demonstrated by combining two video analysis cues: one

provided by a dynamic foreground analyzer and the other by a new static objects detector. The

dynamic foreground analyzer computes an associated speed v f ,t based on low-level features

extracted by means of background subtraction. The events triggered by the new static objects

detector are used in order to compute an associated speed vs,t on an event basis. Therefore,

the system combines two different levels of video analysis. Furthermore, the maximum speed

of the generated summary is limited by vmax . The speed of the generated video is computed

as:

vt = mi n{v f ,t , vs,t , vmax }. (6.1)
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Figure 6.4: Overview of the proposed summarization system.

6.2.1 Low-level Features Analysis

The dynamic foreground analyzer takes for every frame the foreground mask corresponding

to the input frame and computes an associated speed v f ,t based on the absolute difference of

the portion of foreground pixels Fdi f f ,t between consecutive frames.

This cue is used in order to rapidly direct the user to those parts of the video where the

dynamics of the scene change. Thereby, it is assumed that dynamics changes are more

relevant from a summarization point of view than the amount of foreground pixels itself. This

can be intuitively illustrated by using the example of a crowded commercial street, where

there is a large amount of moving objects, which, nevertheless, do not reveal any relevant

information for a summarization system. On the contrary, the entrance of a single moving

object into an empty scene can be considered as relevant. Figure 6.5 depicts graphically the

analysis of the foreground masks obtained for a sequence reproducing this last example. In

the analyzed sequence, a person enters an empty room at frame number 900, remains staying

in the foreground for a while and then leaves the room again at frame number 4200. It is easy

to see that the profile obtained by considering the difference of the portion of foreground

(bottom) can be used to efficiently bring the user to the events of entering and leaving the

room, while conveniently accelerating the rest of the sequence.
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Figure 6.5: Analysis of the foreground masks for an exemplary sequence. Top: Foreground

portion. Bottom: Difference of foreground portion.

The foreground masks are obtained by means of background subtraction. To that aim, the

Gaussian mixture model developed in Chapter 3, has been used. For every frame, the amount

of foreground pixels normalized to the size of the frame F̄t is computed. The difference of this

value F̄di f f ,t = F̄t − F̄t−1 is followed along the whole sequence. After processing each frame, a

scaled version of F̄di f f ,t is added to the score value D t , which triggers a frame marker when

D t > 1. D t is computed as:

D t =αD t−1 +βF̄di f f ,t , (6.2)

where α≤ 1 is a retaining factor and β is a weighting factor controlling the influence of the

foreground difference into the speed of the summary. Upon the triggering of the frame marker,

the value of D t set to zero.

v f ,t can then be easily computed as:

v f ,t = (t − td )vi , (6.3)

where t is the current point in time, td is the previous point in time in which a frame marker

was triggered by the dynamic foreground analyzer and vi is the speed of the input video.
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In this way, the associated speed to the dynamic foreground analyzer gently adapts to the

changes in the dynamic of the scene, associating high acceleration values to the segments of

the sequence where the amount of foreground remains stable, while decreasing the accelera-

tion for segments with high differences. By using the score value D t the noise contained in the

foreground masks is indeed filtered.

For every time t , the value of F̄di f f ,t is logged into a file which can be used in order to generate

alternative summaries of the analyzed video as shown later.

6.2.2 High-level Events

The second cue of the proposed system computes an associated speed vs,t based on the events

triggered by a new static objects detector. To that aim, the system proposed in Chapter 5 has

been used.

The detection of new static objects is a very important cue in safety and security applications

as it advices for the presence of objects which might imperil the security of people in public

spaces. Furthermore, by analyzing large archives of security video data, it could be observed

that most of the events of interest were preceded by the occurrence of a new static object as,

e.g., a car parked by the subjects committing an offense. Therefore, the speed associated to

the static objects detector vs,t is set to a low value for a given number of frames N upon the

detection of new static objects, and set to a high value otherwise.

vs,t =







as,l vi , for te ≤ t < te +N , ∀e ∈ {1 . . .E },

as,h vi , otherwise,
(6.4)

where {as,l , as,h} ∈N+ are the low and high acceleration factors, respectively, te is the time of

detection of the event e, and E is the total number of events detected.

The speed associated to the static objects detector vs,t on the event of removal of the detected

new static objects is also computed as per Equation 6.4.

Furthermore, the events raised by the occurrence of new static objects are logged into a file

containing the number of frame of the detection and the bounding box associated to the

object. This log-file can be used in order to provide non-linear access to the segments of the

video where the new static objects appear and to generate alternative summaries.
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6.2.3 Further Analysis Cues

Further analysis cues can be easily added to the proposed system by properly defining the

associated speed of the video output depending on the performed analysis and feeding this

value into the output speed computation as in Eq. 6.1. For practical reasons (see Section 6.2.4),

the speed associated to each of the analysis cues must result from the multiplication of the

input video speed with a natural number other than zero.

6.2.4 Summary Generation

The information gathered by the proposed system is provided to the user by means of two

kinds of representation: a list of the detected events, which provides non-linear access to the

segments of the video containing events of interest, and adaptively accelerated versions of the

input videos.

The list of the events of interest (index) is generated by fusing the log-files generated by the

individual analysis cues. This list can be visualized in text or in image form, by using the frame

at which the event was first detected. Furthermore, the user can filter events by type or time of

occurrence.

The accelerated versions of the input video are generated by using the speeds associated

to each of the analysis cues. For each time t , the current output speed is computed as in

Eq. 6.1. This speed is a multiple number of the input video speed, with an acceleration factor

at = vmax /vi , being at ∈N+. The summary video generator keeps a register of the point in

time corresponding to the last frame recorded tl . If the difference between time corresponding

to the current input frame t and tl is bigger or equal than at , the current frame is recorded

into the summary video. If not, it is skipped. Figure 6.6 depicts graphically the described

procedure.

Although the indexation and the summary video generation have been described separately,

these processes can be run together. In fact, the described system has been implemented for

on-line generation of indexes and video summaries immediately afterwards of the video anal-

ysis process with negligible processing time for the indexing and summary video generation

tasks.

Furthermore, by decoupling the tasks of indexing from the summary video generation, custom

summaries can be easily generated in order to better fit individual user preferences.

6.3 Experimental Results

The proposed system has been tested using an extensive set of surveillance sequences com-

prising both public and private datasets. From the i-Lids dataset for AVSS 2007, the abandoned
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Figure 6.6: Summary video generation.

baggage scenario has been used, which consists of three video sequences recorded in a sub-

way station where a piece of baggage is abandoned. Furthermore, several subways arrive

and depart from the station, occasionally producing increased flows of passengers on the

platform. From the CDnet dataset [Goyette et al., 2012], the sequences ’library’, ’office’ and

’tramstop’ have been used. The two first sequences depict scenes in which a person enters an

empty room, remains for a while, and then leaves the room. The sequence ’tramstop’ depicts

a more intricate situation involving the departure of a tram from a stop position and the

abandonment of a box on a sidewalk. Table 6.2 summarizes the most important events of the

described sequences and the approximated frame number of their occurrence. The private

sequences depict hours of surveillance video recorded in outdoor environments. The scenes

show most of the time people walking and cars driving through. The most relevant events

are cars parking in an out and a very reduced set of events as mugging and a housebreak. A

thorough description of the datasets used throughout this work is provided in Appendix A,

Description of Datasets.

The system has been configured with the same parameters for all test sequences. The back-

ground subtraction system and the static objects detection have been configured with default

parameters. The dynamic foreground analyzer has been configured with a retaining factor

α equal to one and a weighting factor β equal to 25. That means, the difference score D t is

used as a pure accumulator. For the cue associated to the new static objects detector the low

acceleration factor as,l has been set to one and the high acceleration factor as,h to 32. The
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Sequence
Frame Event

Nr. Description

AB-
Easy

2600 a piece of baggage is abandoned
4600 abandoned baggage removal

AB-
Medium

2250 a piece of baggage is abandoned
4290 abandoned baggage removal

AB-
Hard

2300 a piece of baggage is abandoned
4450 abandoned baggage removal

library
900 a person enters an empty room

4200 the person leaves the room

office
600 a person enters an empty office

2000 the person leaves the office

tramstop
1000 tram starts moving
1270 tram leaves scene
1400 an object is abandoned

Table 6.2: Main events of the summarized sequences.

overall system maximum speed, vmax , has also been set to 32. This speed was chosen em-

pirically aiming at achieving a good compromise between the compactness of the generated

summaries and the comfort of the users visualizing them. However, these parameters can be

easily adapted in order to fit the preferences of a particular user.

Figure 6.7 depicts the analysis results for the summarization of the sequences corresponding

to the public datasets. The blue vertical lines correspond to the frames of the input video that

were recorded in the summary video. Therefore, segments of time with a high density of blue

lines correspond to low accelerated parts of the summary video, while segments with a low

density correspond to high accelerated ones. For the sake of depiction clarity, only the frames

triggered by the foreground analyzer and by the new static objects detector were depicted, but

not those by vmax . The green vertical lines correspond to the detected events. The red curve

represents the portion of foreground pixels that were detected for each input frame. It can be

observed that non-complex scenes, which are indeed very usual in the security domain, as the

’library’ and the ’office’ sequences can be very accurately segmented by means of low-level

features. In fact, the deceleration of the generated summary at the events of a person entering

the room was possible based on the information provided by this analysis cue. On the other

hand, more involved sequences as the i-Lids sequences and the CDnet ’tramstop’ needed the

information provided by the new static objects detector cue in order to decelerate the video

at the segments containing the events of interest. Furthermore, it can also be observed that

sequences with a higher level of semantic information show higher differences in the amount

of foreground and are, therefore, summarized with a higher number of frames. In overall,

it can be said that the combination of several analysis cues increases the alignment of the

generated video summaries with the content of the original video.
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Figure 6.7: Analysis results for the summarization of six video sequences. From top to

bottom: iLids AVSS2007 AB-Easy, iLids AB-Medium, iLids AB-Hard, CDnet library, CDnet

office and CDnet tramstop. Blue: frames to be added to the video summary. Green: detected

events. Red: percentage of pixels classified as foreground.
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Sequence
Compression Rate

standard no vmax only events

AB-Easy 23.4170 43.8824 96.7037
AB-Medium 14.9251 18.4758 29

AB-Hard 15.2840 19.3092 32.0190
library 21.6770 46.6571 90.7222
office 17.6638 28.8592 37.9444

tramstop 15.0896 18.4913 114.2500
priv-01 17.5185 26.7819 37.7566
priv-02 14.1031 17.9504 25.2680
priv-03 19.0496 26.4841 67.4032
priv-04 11.6267 14.4018 17.7608

Table 6.3: Compression rate of the generated summary videos for the test sequences by

using three different configurations.

A very useful functionality of the proposed system is that, due to the explicit decoupling of

the indexing and summarization tasks, customized summary videos can be easily generated

and displayed. In fact, based on the logs generated by the individual video analysis tools,

the reproduction speed of the analyzed videos can be computed on-line. Furthermore, the

user can preview the amount of time needed for watching a summary generated by a given

configuration. In this way, the more appropriate configuration can be chosen, depending

on the length of the video and the time availability of the video operator. Table 6.3 shows

the compression rates, computed as the number of frames in the generated summary video

divided by the number of frames in the input video, achieved for the whole set of sequences by

using different summarization configurations. The configurations used are ’standard’, which

is the one explained in this chapter, ’no vmax ’, which corresponds to the speed computed

by both analysis cues without using an upper limit, and ’only events’, which corresponds to

the summary video generated by using only the events cue. Sequences with a higher visual

semantic content as, e.g., ’tramstop’ achieve lower compression rates than sequences with

lower content as, e.g., ’library’.

The proposed system has been preliminarily subjectively evaluated in the context of the

MOSAIC project. In the evaluation session, several video analysis and data mining tools

were demonstrated to a group of experts compound of three Intelligence Analysts, one CCTV

Operator, and three higher ranking Police Officers (Chief Inspector, Detective Chief Inspector

and Detective Chief Superintendent). An exemplary working scenario involving the whole set

of analysis tools demonstrated was presented. The users were asked to evaluate each individual

demonstrator through the completion of a User Evaluation Document, comprising their

comments depending on how they felt about the performance of each of the demonstrated

128



6.4. Conclusions

tools and an individual rate in a scale ranging from 1 (poor performance) to 5 (excellent

performance). The final rate for each tool was computed by averaging the scores provided

by each user. In overall, a total amount of 12 analysis tools were demonstrated (4 network

analysis + 8 video analysis tools). The evaluated video analysis tools were:

• Detection of loitering and unusual presence of persons at predefined locations

• Detection of unusual activities

• Detection of mugging

• Detection of illegally parked cars

• Detection of persons carrying with large objects

• Detection of suspicious left-behind items

• Tracking

• Video indexing and summarization

For the demonstration of the proposed video summarization system, the summaries of three

long CCTV sequences depicting the activity in three different outdoor locations (longer than

one hour each) were generated by using the above mentioned configuration parameters, that

means, using the foreground difference and static object detection input cues and an overall

maximum speed of 32x. Some of the seven experts had already seen the original sequences

and some not. In this way, it was possible to assess if the system is able to drive the user to the

real points of interest in the recorded video material and if a user which have not seen a given

sequence before is able to grasp the meaning of it by watching the summary. The proposed

summarization tool was rated with the highest satisfaction score (3.86) among the whole set

of tools presented. Moreover, the users commented that they were efficiently directed to the

points of interest in the summarized video sequences and that such a tool would greatly assist

for the review of items/offenses. In future subjective evaluation sessions, further aspects of

the system including the maximum speed of the generated summaries and user interaction in

the aim of generating user tailored summaries will be investigated.

6.4 Conclusions

This chapter has presented an exemplary application of the analysis techniques presented in

previous chapters in the domain of video surveillance for safety and security: video indexing

and summarization. To that aim, a thorough survey on existing video indexing and sum-

marization techniques has been carried on. Thereby, the strengths and weaknesses that the

presented techniques show for different surveillance scenarios have been identified. Out of
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this study, a novel indexing and summarization system has been proposed. Therefore, beyond

providing a mere exemplary application, this chapter constitutes on its own a contribution in

the field of automated video-based surveillance.

The proposed system indexes the input video sequences attending to their content and

generates video summaries which consist in adaptively accelerated versions of the input

sequences. Passages with not relevant semantic content are played faster than those with

relevant content. To that aim, the proposed system combines the results provided by multiple

cues of different levels of video analysis. Therefore, the system accounts with a richer and more

diverse amount of information, which is used to generate indexes and video summaries that

better align with the content of the original video. While low-level video analysis provides the

means for a coarse segmentation of the video sequences, high-level video analysis allows for

an application dependent highlighting of events of interest. The proposed system is flexible

and provides the capability of using an arbitrary number of analysis cues in a principled

manner.

While state-of-the-art approaches usually consider the information extraction and summary

generation as a closed unit, the approach developed in this chapter makes an explicit separa-

tion of the indexing and the visualization/summarization tasks. This provides the system with

the ability of generating on-line customized summaries adapted to the user requirements,

which is a huge advantage in safety and security scenarios, where the access to the recorded

video data must provide both browsing and retrieving capabilities.

The system has been evaluated by using two analysis cues: a low-level analysis of the dynamics

of foreground and the high-level events generated by a static object detector. The tests have

been driven by using an extensive set of surveillance sequences, showing compression ratios

ranging from 11 to 114, depending on the video content and on the configuration of the

system.
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Summary and Conclusions

This thesis has dealt with the detection of objects of arbitrary visual appearance in surveillance

video data. In particular, the objects of interest were of two different natures: moving objects,

which pass by through the observed scene, and static objects, which are added or removed

from the scene. Moving objects should be provided to higher-level analysis layers for action

and behavior recognition. Static objects should provide on-line alerts to human operators in

real-time.

The absence of appearance models (and the unfeasibility to build them) and the immobility of

the static objects has led to the use of background subtraction as the low-level processing tool.

A thorough review of state-of-the-art background subtraction methods has been provided,

thereby highlighting the main problems faced by this technique and how these problems have

been approached in the extensive literature.

Due to the real-time and hardware savings requirements, Gaussian Mixture Models (GMM)

have been chosen as the underlying background model. A deep analysis of the GMMs applied

to the visual surveillance domain pointed out two main improvement opportunities: avoiding

the convergence of the model to singularities or local maxima, and autonomously finding a

configuration which allows to better adapt to the characteristics of the observed scene. The

convergence problem arises from the use of variants of the EM algorithm, which is the standard

method used to fit finite mixture models to unknown distributions by means of the observed

data. Since the EM algorithm is a greedy method, choosing good initialization parameters is

of capital importance in order to converge to meaningful models. Although the convergence

problem is known and some approaches have been proposed to avoid it, these approaches

have been focused in the case of fitting finite mixture models to stationary distributions and,
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therefore, cannot be applied to the video processing case, where the underlying distribution is

non-stationary.

In this thesis, a method has been proposed which tackles the above mentioned problems

by means of incorporating a novel variance controlling scheme, which aims to adaptively

compute an appropriate value for the initialization of the variance parameter by the creation

of new modes, and to control the variance of existing modes in order to avoid the degeneration

of the model. After guessing a proper value for the initialization of the variance controlling

value at system start, two model observers are used in order to update it so as to adapt

to changes in the characteristics of the observed scene. The proposed method is light in

computational terms and results in GMMs which provide more accurate segmentation results

than state-of-the-art GMM-based approaches. The proposed method has been thoroughly

evaluated in terms of convergence, processing time and segmentation results, showing a

notable improvement over the state-of-the-art. The main advantages of the method have

been observed by the evaluation of the results provided by the analysis of sequences with

different characteristics (illumination, noise...), where the sensitivity of the EM algorithm

to the initialization parameters is made evident, and in crowded environments, where the

emergence of over-dominating modes is common in state-of-the-art approaches.

While the detection of moving objects can be successfully approached by means of background

subtraction, stationary objects pose an additional problem which derives from the need of

adaptation of the background model to the changes in the scene. In this thesis, this problem

has been tackled by using two background models learning at different rates, which allow for

the detection of new stationary foreground regions as those which have been incorporated

into the short-term but not into the long-term background model.

In a first approach, the results provided by a dual background subtraction are used as input

of a Finite State Machine (FSM), which is used to provide a multi-class pixel classification

based on the history of the pixel. Compared to a plain dual background subtraction based

system, the proposed approach has the advantage of not being dependent on the learning

rate of the long-term background model in order to correctly classify pixels. This results in

the ability of detecting new static objects even if they have been already absorbed by both

background models and, furthermore, correctly classify the uncovered background areas upon

their removal. Moreover, since the ability of the system to detect new static objects is not

anymore dependent on the learning rate of the long-term background model, this can be

freely adjusted so as to optimally adapt to the changes in the observed video sequence. It

has been shown that a FSM is an efficient method for reasoning on the results provided by

background subtraction. Furthermore, it has been observed that the knowledge gained by

means of reasoning could be used to improve the segmentation results and to overcome the

limitation imposed by the need of a perfect knowledge of the empty scene in dual background

based systems.
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Based on this observation, a further developed system has been proposed, which consists of

two background models learning at different rates, a FSM for multi-class pixel classification, a

region analysis layer to classify new static regions, and a feedback loop to integrate the results

of region classification into the background model. The background models are updated in

a complementary fashion. While the short-term background model rapidly adapts to every

change in the observed scene, the long-term background model is updated in a selective

fashion, so as to only incorporate into the background model changes which correspond to

the empty scene. The results provided by the subtraction of these complementary background

models are used as input of a FSM, which classifies pixels attending to four categories: back-

ground, moving, static foreground and uncovered background. Static foreground pixels are

prevented from being integrated into the long-term background model and classified at the

region level as new or removed static objects. These classification results are fed-back to the

pixel level in order to incorporate the uncovered background regions into the background

while holding new static objects in the foreground. The system is able to correctly detect

new static objects without previous knowledge of the empty scene, and to rapidly recover the

background model of the empty scene upon the removal of long-term static objects, therefore,

improving segmentation results. The performance of this system has been evaluated regarding

its ability to detect new static objects, and regarding the quality of the provided foreground

masks, showing considerable improvements in both tasks. Currently, the proposed system is

ranked among the best performing systems in the publicly available benchmark CDnet.

Finally, an exemplary application scenario has been defined which combines the informa-

tion gathered at different levels of analysis in order to generate indexes and summaries of

surveillance video sequences. This application has been used to demonstrate the results

provided by the developed algorithms in a practical scenario. The combination of several

analysis cues allows for the collection of a richer and more diverse amount of information

about the analyzed video sequences. Therefore, the system is able to generate indexes and

video summaries that better align with the content of the original video. Low-level video

analysis provides the means for a coarse segmentation of the video sequences. High-level

video analysis allows for an application dependent highlighting of events of interest. Further

analysis cues can be added to the system in a principled manner.

In this thesis it has been shown that properly combining the knowledge gained at different

levels of analysis can bring substantial benefits. In a bottom-up scheme, it has been shown that

the combination of different levels of analysis can provide a system with a diversity which can

be exploited in order to better understand the observed sequences. In a top-down approach,

an architecture has been defined which divides the low-level modelling of the observed scene

into two complementary parts. This has allowed for building a purely statistical model and a

high-level driven model of the scene. Furthermore, by defining the high-level driven model

by means of low-level semantics instead of application dependent requirements, the results

provided by this analysis layer can be used by a wide range of high-level analysis layers. Finally,
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the fact of accounting with two complementary models allows for a graceful recovering of

eventual feedback errors.

It has to be remarked, that most of the efforts in the work presented here have been devoted to

the low-level part of the system. Although the provided results at the region classification level

are of high quality, further investigations on the classification of static foreground regions,

and, specifically, the triggering of region classification, could further improve the provided

results. In this line, more elaborated strategies could be defined for handling overlapping

foreground regions, which, at the moment, are individually classified and, consequently,

managed with respect to their integration in the high-level driven background model. Finally,

the incorporation of heterogeneous region analysis tools of low computational cost could be

considered in order to more reliably classify the static foreground regions.

Despite the attention which has been paid to the computational and hardware requirements

of the developed algorithms, and obviating that the whole set of proposed algorithms are able

to process typical surveillance video data in real-time, a minimal hardware and computational

configuration has not been provided. Investigations in this direction could include the use of

alternated updating schedules or the use of more restrictive management of layers. Finding

such a minimal configuration would help in assessing the interest of porting the developed

algorithms to the cameras in a distributed surveillance network with the goal of bringing the

intelligence to the edge of the network.
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Description of Datasets

A fundamental step in the development of algorithms is the evaluation of the obtained results.

In the ideal case, this is done by using publicly available datasets in order to allow for the

comparison of the results with those provided by other research groups.

An evaluation dataset should provide the possibility of evaluating the challenges posed to

the studied algorithms in the relevant application scenarios. Furthermore, the existence of

a common ground-truth is of crucial importance for the comparability of the results. The

ground-truth consist in an annotation of the answer expected from the evaluated algorithms

for a given input.

This chapter provides a detailed description of the datasets used in this thesis for the evaluation

of the proposed algorithms. Furthermore, it provides pointers to further relevant datasets.

A.1 CDnet

The ChangeDetection.net (CDnet) video dataset was proposed for comparing the detection

results of change detection algorithms in the IEEE Workshop on Change Detection, held

in conjunction with the IEEE International Conference on Computer Vision (CVPR), 2012.

The dataset consists of 31 surveillance videos divided into six categories covering most of

the challenges regarding background subtraction for the task of video surveillance. The

dataset is provided with a set of human-annotated multi-class pixel classification ground-truth

consisting of foreground, background, shadow and shadow region boundary. Furthermore, a

toolkit to compute the performance metrics used is provided, so as to enable a quantitative

comparison of foreground segmentation algorithms.
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The dataset is publicly available at www.changedetection.net, where a ranking of the evaluated

methods is provided. This ranking is being continuously updated with the results provided

by the authors which use the dataset to evaluate additional methods. Currently, a total of 32

methods (among them 27 competing in the whole set of categories) are ranked. In this section,

a brief description of the six video categories and the videos contained in them is provided. A

description of the evaluation methodology followed to rank the compared change detection

approaches is provided in Section B.1.

Baseline

Four videos (two indoor plus two outdoor) representing a mixture of mild challenges typical of

the next 4 categories. Figure A.1 shows an example frame of each video and the corresponding

provided ground-truth.

Dynamic Background

Six videos in outdoor environments with strong background motion (two videos depict boats

on rippling water, two videos show cars passing near to a fountain, and the other two depict

pedestrians, cars and trucks passing by in scenes with trees in the background moving because

of the wind). Figure A.2 shows an example frame of each video and the corresponding provided

ground-truth.

Camera Jitter

Four videos (one indoor and three outdoor) captured by vibrating cameras. Figure A.3 shows

an example frame of each video and the corresponding provided ground-truth.

Intermittent Object Motion

Six sequences (five outdoor and one indoor) depicting scenarios related to new and removed

static objects which pose a special challenge to background bootstrapping, maintenance and

healing. Figure A.3 shows an example frame of each video and the corresponding provided

ground-truth.

Shadow

Four sequences (two indoor and four outdoor) with shadows casted by moving objects and

elements of the background as trees and buildings. Figure A.5 shows an example frame of

each video and the corresponding provided ground-truth.

Thermal

Five videos (three outdoor and two indoor) captured by far-infrared cameras containing typical

thermal artifacts as heat stamps, heat reflection on doors and windows and camouflage effects,
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when a moving object has a similar temperature as its surrounding regions. Figure A.6 shows

an example frame of each video and the corresponding provided ground-truth.

Figure A.1: CDnet Baseline. From top to bottom: sample frame of the four video sequences

and corresponding ground-truth. From left to right: ’highway’, ’office’, ’pedestrians’ and

’PETS2006’. (Source, www.changedetection.net).

Figure A.2: CDnet Camera Jitter. From top to bottom: sample frame of the four video

sequences and corresponding ground-truth. From left to right: ’badminton’, ’boulevard’,

’sidewalk’ and ’traffic’. (Source, www.changedetection.net).
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Figure A.3: CDnet Dynamic Background. First row from left to right: sample frame of the

video sequences ’boats’, ’canoe’ and ’overpass’. Second row: ground-truth corresponding to

the frames in the first row. Third row from left to right: sample frame of the video sequences

’fall’, ’fountain01’ and ’fountain02’. Fourth row: ground-truth corresponding to the frames

in the third row. (Source, www.changedetection.net).
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Figure A.4: CDnet Intermittent Object Motion. First row from left to right: sample frame

of the video sequences ’abandonedBox’, ’parking’ and ’sofa’. Second row: ground-truth

corresponding to the frames in the first row. Third row from left to right: sample frame of the

video sequences ’streetLight’, ’tramstop’ and ’winterDriveway’. Fourth row: ground-truth

corresponding to the frames in the third row. (Source, www.changedetection.net).
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Figure A.5: CDnet Shadow. First row from left to right: sample frame of the video sequences

’backdoor’, ’bungalows’ and ’busStation’. Second row: ground-truth corresponding to the

frames in the first row. Third row from left to right: sample frame of the video sequences

’copyMachine’, ’cubicle’ and ’peopleInShade’. Fourth row: ground-truth corresponding to

the frames in the third row. (Source, www.changedetection.net).
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Figure A.6: CDnet Dynamic Background. First row from left to right: sample frame of

the video sequences ’corridor’, ’dinningRoom’ and ’lakeSide’. Second row: ground-truth

corresponding to the frames in the first row. Third row from left to right: sample frame of

the video sequences ’library’ and ’park’. Fourth row: ground-truth corresponding to the

frames in the third row. (Source, www.changedetection.net).
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A.2 AVSS2007

This dataset is a subset of the i-LIDS dataset for event detection in CCTV footage. It was pro-

vided for the IEEE International Conference on Advanced Video and Signal based Surveillance

(AVSS) 2007 and can be publicly accessed on-line at http://www.eecs.qmul.ac.uk/~andrea/

avss2007_d.html. The events of interest are abandoned baggage (Task 1) and parked vehicle

(Task 2).

Task 1 consists of three sequences of increasing complexity depicting an underground station

where some baggages are left unattended. Figure A.7 shows an example frame of each video

sequence.

Figure A.7: AVSS 2007. From left to right: sample frame of the video sequences ’AVSS

AB Easy’, ’AVSS AB Medium’ and ’AVSS AB Hard’. (Source, http://www.eecs.qmul.ac.uk/

~andrea/avss2007_d.html).

A.3 PETS2006

This dataset consists of several multi-sensor sequences containing left-luggage scenarios with

increasing complexity. It was provided publicly for the PETS 2006 workshop, in Conjunction

with IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2006 and can be

publicly accessed on-line at http://www.cvg.rdg.ac.uk/PETS2006/data.html.

The whole dataset consists of seven sequences recorded from four different camera posi-

tions. Figure A.8 shows an example frame of each camera position. For the evaluation of the

algorithms presented in this thesis, the camera 3 of sequence 1 has been used.

A.4 Caviar

This dataset consists of a set of video clips recorded for the evaluation of action recognition

algorithms, including people walking alone, meeting with others, window shopping, entering

and exiting shops, fighting and leaving a luggage abandoned in a public place.
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Figure A.8: PETS 2006. From left to right: sample frame of the video sequence 1 taken from

camera 1 to 4. (Source, http://www.cvg.rdg.ac.uk/PETS2006/data.html).

The first set of the video sequences were filmed for the EC funded CAVIAR project with a wide

angle camera lens in the entrance lobby of the INRIA Labs at Grenoble, France. The second

set was also recorded using a wide angle lens in the hallway of a shopping center in Lisbon,

and provides the sequences recorded from two different camera positions.

This dataset can be publicly accessed at http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.

Figure A.9 shows an example frame of the sequence used in this thesis for the evaluation of

the proposed algorithms.

Figure A.9: CAVIAR. Frame with calibration points for the sequences from INRIA (1st Set).

(Source, http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/).

A.5 Private

One of the problems encountered during the elaboration of the work presented here is the

absence of long sequences, which are of crucial importance for the evaluation of the conver-

gence of algorithms and for their evaluation in a long-term basis. In order to overcome this

problem, private sequences were recorded at the courtyard in front of the EN-building of the
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Technical University of Berlin. Figure A.10 shows three example frames of the TUB sequence

Winter. At the beginning of the scene it is snowing and, therefore, measurements are very

noisy; in the middle of the sequence it stops snowing and, therefore, the noise shrinks; at the

ends of the sequence it gets darker.

Figure A.10: Private. Winter sequence. From left to right: Beginning, middle and end of

the sequence.

Further private datasets, as e.g. the dataset containing the Lobby sequence, have been used

for testing and presenting the results of the algorithms presented in this thesis. These datasets

have been provided by the users of the projects for which the algorithms have been developed

and cannot be made public because of the corresponding usage agreements.

A.6 Further Datasets

Apart from the datasets used in this thesis, there are a large number of datasets publicly

available in the Internet. Some of them, related to the main topics handled in this thesis

(foreground detection and static object detection), are listed in the following:

• Wallflower: The well-known Wallflower dataset consists of seven image sequences

representing different problematic scenarios for background maintenance as identified

in [Toyama et al., 1999]. For each sequence, only one hand-segmented image is provided

as ground-truth. This dataset is publicly available at http://research.microsoft.com/

en-us/um/people/jckrumm/wallflower/testimages.htm

• SABS (Stuttgart Artificial Background Subtraction): The SABS dataset is an artificial

dataset consisting of video sequences for nine different challenges of background

subtraction in the context of video surveillance, and the corresponding "perfectly"

labeled ground-truth. It allows for a pixel-wise evaluation of background subtrac-

tion approaches. The dataset and a matlab script for the evaluation of the fore-

ground masks can be downloaded from http://www.vis.uni-stuttgart.de/en/research/

information-visualisation-and-visual-analytics/visual-analytics-of-video-data/sabs.
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A.6. Further Datasets

html. Although the authors claim that the video sequences are realistic because of the

use of ray-tracing techniques with global illumination, the quality of the footage is far

from the video queues analyzed in typical surveillance scenarios. More information on

this dataset and the evaluation methodology can be found in [Brutzer et al., 2011].

• cVSG (Chroma Video Segmentation Ground Truth): In the same aim of allowing for

an evaluation based on an accurate ground-truth, the cVSG provides a set of sequences

composed of background and foreground objects which have been separately recorded

and extracted by means of chroma techniques. As the authors of the dataset acknowl-

edge in the website, although foreground and background were combined trying to

obtain realistic sequences, realism was not always achieved. The dataset can be accessed

for research purposes at http://www-vpu.eps.uam.es/DS/CVSG/. Further information

is provided in [Tiburzi et al., 2008].

• PETS2007: Similarly to PETS2006, the PETS2007 dataset provides eight multi-camera

sequences depicting three scenarios with increasing complexity: loitering, attended

luggage removal (theft) and unattended luggage. Nevertheless, this dataset has not

found a high echo in the surveillance community, maybe because of the high complexity

of the sequences, which include high dense crowds, poor conditions for background

learning and extreme lighting conditions.

• Shadow Detection: The Shadow Detection dataset, provided at the Autonomous Agents

for On-Scene Networked Incident Management (ATON) project website http://cvrr.ucsd.

edu/aton/shadow/index.html, consists of a set of five sequences with the associated

ground-truth for one of them (the Intelligent Room sequence). It is aimed at evaluating

shadow detection algorithms.

• ASODds (Abandoned and Stolen Object Discrimination dataset): This dataset consists

of a set of sequences extracted from public datasets aiming to provide a representative

test-set for the evaluation of systems devoted to the detection of new and removed

static objects, along with the manual annotation of the events of interest. The dataset

is provided for research purposes at http://www-vpu.eps.uam.es/DS/ASODds/index.

html.

Further datasets for the evaluation of background subtraction approaches can be found

at https://sites.google.com/site/backgroundsubtraction/test-sequences. Further pointers to

general computer vision datasets are provided in http://www.cvpapers.com/datasets.html

and http://homepages.inf.ed.ac.uk/cgi/rbf/CVONLINE/entries.pl?TAG363.
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B

Performance Metrics

Performance metrics are the basis for the evaluation and comparison of the ability of several

algorithms to perform a certain task. Performance metrics should provide a fair and robust

comparison of the evaluated algorithms.

The number of metrics proposed in the literature for the evaluation of background subtraction

is large. In this section, the measures used in the CDnet dataset, which has been extensively

used for the evaluation of the results provided by the algorithms presented in this thesis, are

explained. Furthermore, it is explained how methods are ranked based on these measures.

Further pointers to the literature on the topic of performance evaluation are provided at the

end of this section.

The first step in quantitatively measuring the performance of a given algorithm is to compare

the results provided by the evaluated method with the established ground-truth for each frame.

This leads to the following measures:

True positives (TP): The number of detections which correspond to a detection in the ground-

truth.

True negatives (TN): The number of non-detections which correspond to a non-detection in

the ground-truth.

False positives (FP): The number of detections which correspond to a non-detection in the

ground-truth.

False negatives (FN): The number of non-detections which correspond to a detection in the

ground-truth (missed detections).

149



Appendix B. Performance Metrics

Out of these simple measures, more elaborated metrics are derived as follows:

Recall (Re), also called the true positive rate or sensitivity, measures the percentage of the

positive class which is classified al such,

Re =
T P

T P +F N
(B.1)

Specificity (Sp), also called the true negative rate, measures the percentage of the negative

class which is classified al such,

Sp =
T N

T N +F P
(B.2)

False Positive Rate (F PR), also called false alarm rate, measures the percentage of wrong

positive classifications among the whole set of negative examples (F PR = 1−Sp),

F PR =
F P

F P +T N
(B.3)

False Negative Rate (F N R), also called missed detection rate, measures the percentage of

wrong negative classifications among the whole set of positive examples (F PR = 1−Sp),

F N R =
F N

T P +F N
(B.4)

Percentage of Wrong Classifications (PW C ), measures the percentage of wrong classifica-

tions,

PW C = 100
F N +F P

T P +F N +F P +T N
(B.5)

Precision (Pr ), measures the percentage of positive classifications which indeed belong to

the positive class,

Pr =
T P

T P +F P
(B.6)

F-Measure (F 1), frequently used as a single measure of performance, is the harmonic mean

of precision and recall:

F 1 =
1

α · 1
Re

+ (1−α) · 1
Pr

(B.7)
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B.1. Performance Evaluation and Ranking

where α is a parameter which should be selected according to the application scenario de-

pending on the relative importance of precision and recall. If a high recall is required, α should

be set low. On the contrary, if a high precision is required, α should be set high. In the case of

giving equal importance to the precision and recall values, as is the case in the CDnet dataset,

α= 0.5 and, therefore:

F 1 = 2
Pr ·Re

Pr +Re
(B.8)

B.1 Performance Evaluation and Ranking

The ultimate aim of computing performance metrics is the evaluation and comparison of the

considered algorithms. In the case of the CDnet challenge, this is made by means of a ranking,

which is produced as explained in this section. The measures listed above (Re, Sp, F PR , F N R ,

PW C , Pr and F 1) are computed for each video and averaged over each category. For example,

the average recall Rei ,c of a method i in a given category c is computed as:

Rei ,c =
1

|Nc |

|Nc |
∑

v=1
Rev,c (B.9)

where |Nc | is the number of videos in the considered category c.

The overall metrics are computed by averaging over the metrics computed for each individual

category. For example, the average overall recall Rei of method i is computed as:

Rei =
1

6

6
∑

c=1
Rei ,c (B.10)

Ranking is done at the category level and across categories. The rank RMi ,c of a method i in a

given category c is computed as:

RMi ,c =
1

7

7
∑

m=1
r anki (m,c) (B.11)

where r anki (m,c) is the rank of method i for metric m in category c.

The average overall ranking across categories RCi of a method i is computed by taking the

average of its category rankings across all 6 categories:

RCi =
1

6

6
∑

c=1
RMi ,c (B.12)

151



Appendix B. Performance Metrics

B.2 Remarks

The evaluation of the results provided by the performance measures is usually application

dependent. A common way to parameterize an algorithm for a given application is the use of

graphical representations of the measured performance as e.g. the ROC curves or, in the case

of absence of true negatives, as is the case of object detection algorithms, F-Measure based

approches as the one presented in [Lazarevic-McManus et al., 2006].

Further performance metrics as well as performance evaluation methodologies for the as-

sessment of object detection approaches based on background subtraction can be found

in [Elhabian et al., 2008]. A thorough review of performance measures used in the computer

vision can be found in [Goldmann, 2009].
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