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1. INTRODUCTION

In the past years, LP-based approximation techniques have evolved impressively. These
methods have been successfully applied to a variety of combinatorial optimization prob-
lems, including scheduling problems. Most efforts have concentrated on deterministic
models, and quite often results on their stochastic counterparts involve very specialized
techniques. With this work we intend to show that, to a certain extent, polyhedral methods
also carry over to the algorithm design and analysis of stochastic scheduling problems.

The model.Let J = {1, . . . ,n} be a set of jobs which have to be non-preemptively sched-
uled onm identical parallel machines so as to minimize the total weighted completion time.
That is, each job has a nonnegative weightwj and one wants to minimize∑ j∈J wj Cj , where
Cj denotes the completion time of jobj. Any machine can process at most one job at a
time, and every job has to be processed on one of them machines. We consider scenarios
where jobs may, or may not have individual release datesr j ≥ 0. The crucial assumption is
that processing times of jobs are not known in advance, but are instead given by a random
variableppp = (ppp1, . . . ,pppn). Here,pppj denotes the random variable for the processing time of
job j. (All random variables are typeset in bold face.) Throughout the paper job durations
are supposed to be stochastically independent, and £rst as well as second moments are
£nite. It is usually assumed that these distributions are known from the outset, but for our
approach it suf£ces that the expected processing times (and an upper bound on their coef-
£cients of variation) are given. Using the well known classi£cation scheme for scheduling
problems introduced by Graham, Lawler, Lenstra, and Rinnooy Kan [1979], the problem
under consideration may be written as P| pppj ∼ stoch, r j | E[∑wj CCCj ].

Due to the lack of beforehand information on processing times, the jobs have to be
allocated to machines “on-line”. This dynamic allocation of jobs to machines is the task
of a scheduling policy. It speci£es which job(s) should be started at any given timet.
The decisions of such a policy may only depend on the “past up to timet”, which is
given by the sets of jobs already £nished or being performed att, their start times, and
the conditional distribution of remaining processing times of jobs. In other words, it is
required that a policy does not anticipate future information. Within the framework of
stochastic dynamic optimization this is known as thenon-anticipativecharacter of policies.
For a detailed account of the theoretical foundations of the stochastic model considered in
this paper, particularly the characterization of policies, we refer the reader to [Möhring
et al. 1984, 1985]. Of special importance for our work is the class ofpriority policies,
which implement a given priority order on the set of jobs; they will be formally de£ned in
Section 4.

A given policyΠ eventually results in a feasible schedule for any vector of “a posteriori”
realized processing times. Hence, it associates with every vectorp of possible processing
times a vectorSΠ(p) of feasible start times:

IRn
+ 3 (p1, . . . , pn) = p

Π7−→ SΠ(p) = (SΠ
1 (p), . . . ,SΠ

n (p)) ∈ IRn
+.

Simple examples show that in general one cannot expect to £nd a non-anticipative schedul-
ing policy that minimizes the objective point-wise for any realization of processing times.
Therefore, one aims to minimize the objective in expectation. IfE[CCCΠ

j ] denotes the ex-
pected completion time of jobj when scheduling according to policyΠ, one can formulate
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the problem as

minimize{∑
j∈J

wjE[CCCΠ
j ] | Π policy}.

Furthermore, we let

ZOPT := inf{ ∑
j∈J

wjE[CCCΠ
j ] | Π policy }

denote the corresponding optimum value. It follows from [Möhring et al. 1984, Section 4]
that in the present setting there exists anoptimum policywith expected performanceZOPT.
Note that an optimum policy is not necessarily work conserving. It may involve deliberate
idling of machines, even in the absence of job release dates.

The model considered in this paper is somewhat related to certain on-line scenarios,
which recently have received quite some attention. These scenarios are also based on the
assumption that the scheduler does not have access to the whole instance at once, but rather
learns the input piece by piece over time and has to make decisions based on partial knowl-
edge only. When carried to an extreme, there is both a lack of knowledge on jobs arriving
in the future and the running time of every job is unknown until it completes. In contrast
to the stochastic model introduced above, on-line algorithms are usually analyzed with re-
spect to optimum off-line solutions. We refer to [Sgall 1998] for an overview of recent
achievements in this direction. Note that stochastic scheduling is also more moderate than
on-line scheduling in the sense that one supposes that the number of jobs to be sched-
uled as well as (at least) their expected job processing times are known in advance. Our
approach also differs from the probabilistic analysis of parallel machine scheduling prob-
lems as considered, e.g., by Spaccamela, Rhee, Stougie, and van de Geer [1992] or Chan,
Muriel, and Simchi-Levi [1998], where it is assumed that the whole instance, including
processing times of jobs, is known in advance.

Related work.Stochastic machine scheduling problems have been considered, among
others, by Glazebrook [1979], Weiss and Pinedo [1980], Bruno, Downey, and Frederick-
son [1981], M̈ohring, Radermacher, and Weiss [1984, 1985], Weber, Varaiya, and Walrand
[1986], Kämpke [1987], and Weiss [1990, 1992]. For a survey and more bibliographic ref-
erences we refer to Section 16 of the survey by Lawler, Lenstra, Rinnooy Kan, and Shmoys
[1993]. Except for the mentioned work of M̈ohring, Radermacher, and Weiss [1984, 1985]
and Weiss [1990, 1992], research mainly concentrated on identifying conditions that guar-
antee optimality of simple priority policies such as SEPT, LEPT (shortest/longest expected
processing times £rst), or WSEPT (schedule jobs with highest ratio of weight to expected
processing time £rst). Already for the deterministic case without release dates, the prob-
lem under consideration is NP-hard, even for £xedm≥ 2 [Bruno et al. 1974], and the
WSPT rule (weighted shortest processing time £rst) is known to achieve a worst-case per-
formance ratio of12(

√
2+1) [Kawaguchi and Kyan 1986]. For the special case of a single

machine, WSPT is known to be optimal [Smith 1956], and this result easily generalizes
to stochastic processing times [Rothkopf 1966]. However, results for parallel machines
are more complex. For unit weights, the SEPT rule is optimal whenever job processing
times are exponentially distributed [Weiss and Pinedo 1980] or, more generally, whenever
the processing time distributions of the jobs are stochastically comparable in pairs [Weber
et al. 1986], but it fails to be optimal in general. For arbitrary weights, the WSEPT rule
is optimal whenever processing times are exponentially distributed and additionally the
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job weights are compliant with the ratios of weight to expected processing time [Kämpke
1987]. In the general case, Weiss [1990, 1992] has analyzed the optimality gap of WSEPT,
and he proved that WSEPT is asymptotically optimal under mild assumptions on the in-
put parameters of the problem. To the best of our knowledge, no results were previously
known for problems where jobs are released over time. Our work also relates to recent de-
velopments in the optimal control of stochastic systems [Bertsimas and Niño-Mora 1996;
Glazebrook and Niño-Mora 1997; Dacre et al. 1999], and we will discuss similarities and
differences in Section 4.4.

Results.Our approach to stochastic machine scheduling is LP-based, and motivated by
the success of polyhedral approaches to deterministic scheduling problems. The driving
idea is to exploit a polynomially solvable LP-relaxation of the performance space of the
problem in order to get both a lower bound on the performance of an optimum policy as
well as some guidance to design a corresponding LP-based priority policy with provably
good performance. Most relevant for our work in this respect is the paper by Hall, Schulz,
Shmoys, and Wein [1997], where several approximation algorithms are derived on the
basis of LP-relaxations in completion time variables. For related and previous work in
deterministic scheduling, we refer to the bibliographic references therein. We extend this
methodology to the stochastic setting, and obtain constant performance guarantees for both
the models with and without job release dates. For the model with release dates, we derive
an LP-based priority policy with a performance guarantee of 3− 1

m+max{1, m−1
m ∆}, where

∆ is an upper bound on the squared coef£cients of variation of the occurring probability
distributions. The underlying polyhedral relaxations of the performance space generalize
previous relaxations that have been used in the deterministic setting. Based on [Queyranne
1993], we further show that all employed LP-relaxations can be solved in polynomial time
by purely combinatorial algorithms.

Apart from priority policies which are guided by optimum LP-solutions, we also analyze
the performance of the WSEPT rule for the model without non-trivial job release dates,
and we derive a worst-case performance guarantee of 1+ (∆+1)(m−1)

2m . Examples show
that the performance ratio of12(

√
2+ 1) of the WSPT rule in deterministic scheduling

does not generalize to the stochastic setting. Furthermore, the LP-based analysis yields
in fact an additive bound for the performance of WSEPT which implies its asymptotic
optimality, thus complementing previous results by Weiss [1990]. The LP lower bound also
generalizes a previous lower bound on the cost of any deterministic schedule by Eastman,
Even, and Isaacs [1964]. One thus obtains a lower bound on the expected cost of any
scheduling policy in terms of the optimum cost for a corresponding problem with only one
fast single machine.

Organization of the paper.Section 2 introduces the basic concept of LP-based priority
policies in stochastic scheduling, while in Section 3 a new class of valid inequalities for the
performance space in stochastic parallel machine scheduling is presented. In Section 4.1,
this polyhedral relaxation is used to prove a constant performance guarantee for an LP-
based priority policy within the model where jobs may have non-trivial release dates. The
analysis of the performance of WSEPT for the model without release dates is presented in
Section 4.2. We conclude with some remarks in Section 5. The appendix provides purely
combinatorial algorithms to solve the LP-relaxations used in Section 4.
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2. LP-BASED APPROXIMATION IN STOCHASTIC SCHEDULING

A policy is called anα-approximationif its expected performance is within a factor ofα of
the optimum expected value, and if it can be determined and executed in polynomial time
with respect to the input size of the problem. To cope with the input size of a stochastic
scheduling problem, which includes non-discrete data in general, we assume that the input
is speci£ed by the number of jobs, the number of machines, and the encoding lengths of
weightswj , release datesr j , expected processing timesE[pppj ], and, as the sole stochastic
information, an upper bound on the coef£cients of variation of all processing time distri-
butionspppj , j = 1, . . . ,n. The coef£cient of variation of a given random variableX is the

ratio
√

Var[X]/E[X]. Thus, it is particularly suf£cient if all second momentsE[ppp2
j ] are

given. This notion of input size is motivated by the fact that from a practitioner’s point of
view the expected processing times of jobs together with the assumption of some typical
distribution “around them” is realistic and usually suf£ces to describe a stochastic schedul-
ing problem. Note, however, that the performance guarantees we derive actually hold with
respect to optimal policies that make use of thecompleteknowledge of the distributions of
processing times.

In most cases optimal policies and the corresponding optimum valueZOPT are unknown.
Hence, in order to prove performance guarantees for simple priority policies we use lower
bounds on the optimum valueZOPT. The problem we consider can be written as

minimize{∑
j∈J

wj Cj | C∈ C },

whereC := { (E[CCCΠ
1 ], . . . ,E[CCCΠ

n ]) | Π policy }⊆ IRn
+ denotes theperformance space. Since

one cannot hope to completely characterize the performance space in general, we approx-
imateC by a polyhedronP which is de£ned by valid inequalities forC . ThusC ⊆ P . We
then solve the LP relaxation

minimize{ ∑
j∈J

wj Cj | C∈ P},

and denote byCLP = (CLP
1 , . . . ,CLP

n ) some optimal solution to this relaxation. If the LP
captures suf£cient structure of the original problem, the ordering of jobs according to non-
decreasing values ofCLP

j is a promising candidate for a priority policy (see Section 4 for a
formal de£nition). IfΠ denotes such a policy, clearly

∑
j∈J

wjC
LP
j ≤ ZOPT ≤ ∑

j∈J
wjE[CCCΠ

j ],

and the goal is to prove∑ j∈J wjE[CCCΠ
j ] ≤ α ∑ j∈J wjCLP

j , for someα ≥ 1. This leads to a
performance guarantee ofα for the priority policyΠ and also to a (dual) guarantee for the
quality of the LP lower bound:

∑
j∈J

wjE[CCCΠ
j ] ≤ α ZOPT and ∑

j∈J
wjC

LP
j ≥ 1

α
ZOPT.
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3. VALID INEQUALITIES FOR STOCHASTIC PARALLEL MACHINE SCHEDUL-
ING

In deterministic scheduling, Schulz [1996, Lemma 7] proved that for any feasible schedule
onm machines the following inequalities are valid:

∑
j∈A

pj Cj ≥ 1
2m

(
∑
j∈A

pj

)2

+
1
2 ∑

j∈A

p2
j for all A⊆ J. (1)

Here,pj andCj denote the deterministic processing and completion times of jobs, respec-
tively. The following class of valid inequalities extends (1) to stochastic parallel machine
scheduling. They are crucial for all our subsequent results.

∑
j∈A

E[pppj ]E[CCCΠ
j ] ≥ 1

2m

(
∑
j∈A

E[pppj ]
)2

+
1
2 ∑

j∈A

(E[pppj ])
2

− m−1
2m ∑

j∈A

Var[pppj ] for all A⊆ J.

(2)

THEOREM 3.1. Let Π be any policy for stochastic parallel machine scheduling. Then
inequalities(2) are valid for the corresponding vector of expected completion times E[CCCΠ].

PROOF. Consider any policyΠ and any £xed realizationp of processing times. Let
Sj := SΠ

j (p) denote the start time of jobj subject to policyΠ and p. Since(S1, . . . ,Sn)
de£nes a feasible (deterministic) schedule for the given job durations(p1, . . . , pn), we may
rewrite (1) to obtain

∑
j∈A

pj Sj ≥ 1
2m

(
∑

i, j∈A, i 6= j

pi pj

)
− m−1

2m ∑
j∈A

p2
j , (3)

for anyA ⊆ J. Now recall the connection between the distributions for processing, start,
and completion times. Due to the non-anticipative character of policies and since process-
ing times are independent, the random variables for the processing timepppj and the start
time SSSΠ

j of any job j are stochastically independent. This yields in particularE[pppj SSS
Π
j ] =

E[pppj ]E[SSSΠ
j ] for all j ∈ J and all policiesΠ. Furthermore, recalling that Var[pppj ] = E[ppp2

j ] −
E[pppj ]2 and taking expectations in (3) yields:

∑
j∈A

E[pppj ]E[SSSΠ
j ] ≥ 1

2m

(
∑

i, j∈A, i 6= j

E[pppi pppj ]
)
− m−1

2m ∑
j∈A

E[ppp2
j ]

=
1

2m

(
∑

i, j∈A, i 6= j

E[pppi ]E[pppj ]
)
− m−1

2m ∑
j∈A

E[ppp2
j ]

=
1

2m

(
∑
j∈A

E[pppj ]
)2

− 1
2 ∑

j∈A

E[pppj ]
2

− m−1
2m ∑

j∈A

Var[pppj ] for all A⊆ J.

Now, E[CCCΠ
j ] = E[SSSΠ

j ]+E[pppj ] concludes the proof.

Weiss [1999] has communicated to us that an alternate proof of the validity of inequal-
ities (2) can be obtained on the basis of [Weiss 1990], where an exact formula for the
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left-hand side of (2) is derived for non-idling (i.e., work conserving) policies.
With an additional assumption on the second moments of all processing time distribu-

tions, one can rewrite (2) more conveniently. Therefore, assume that the squared coef£-
cients of variation of all processing timespppj are bounded by some constant∆, that is,

Var[pppj ]/(E[pppj ])
2 ≤ ∆ for all jobs j ∈ J. (4)

Then, the following inequalities are valid for the performance spaceC :

∑
j∈A

E[pppj ]E[CCCΠ
j ] ≥ 1

2m

((
∑
j∈A

E[pppj ]
)2 + ∑

j∈A

E[pppj ]
2
)

− (m−1)(∆−1)
2m

(
∑
j∈A

E[pppj ]
2
)

for all A⊆ J.

(5)

COROLLARY 3.1. Let Π be any policy for stochastic parallel machine scheduling. If
Var[pppj ]/(E[pppj ])2 ≤ ∆ for all processing time distributions pppj , then inequalities(5) are
valid for the corresponding vector of expected completion times E[CCCΠ].

Note that an upper bound on the coef£cients of variation of thepppj is a quite natural as-
sumption for scheduling problems. For instance, if job processing times follow NBUE
distributions (i.e., the expected remaining processing time of a job in process never ex-
ceeds its total expected processing time), it follows from [Hall and Wellner 1981] that
Var[pppj ]/(E[pppj ])2 ≤ 1.

4. CONSTANT PERFORMANCE GUARANTEES FOR (LP-BASED) PRIORITY
POLICIES IN STOCHASTIC MACHINE SCHEDULING

In this section, we derive constant worst-case performance guarantees for LP-based priority
policies in stochastic machine scheduling.

Let us £rst give a formal de£nition of priority policies. A jobj is calledavailableat time
t if r j ≤ t, and if all its predecessors have already been completed by timet (in the case that
precedence constraints are also given). A policy is called apriority policy or priority rule
or list scheduling policyif at any timet a maximal number of available jobs is scheduled
according to a given priority order on the set of jobs. More precisely, we are given a linear
order onJ, and when a machine is or becomes idle at timet, the available job with highest
priority is started att. Widely used priority policies are, e.g., LEPT and SEPT as well as
WSEPT.

In the presence of release dates or precedence constraints, a priority policy may schedule
jobs with low priority prior to jobs with higher priority. If this is not desired, we addition-
ally enforce that jobs with low priority are scheduled only if all jobs with higher priority
have already been started. In this case, we call a jobj available at timet if r j ≤ t and
all its predecessors with respect to the given priority order have already been started. The
corresponding priority policy is then calledjob-based. Note that this may yield idling of
machines although there are jobs waiting that in principle could have been started.

4.1 Parallel machine scheduling with release dates

We now consider the problem P| pppj ∼ stoch, r j | E[∑wj CCCj ]. The £rst ingredient in our
development of a near-optimal policy is an upper bound on the expected completion times
whenever the jobs are scheduled according to a (job-based) priority policy. The following



8 · R. H. Möhring, A. S. Schulz, and M. Uetz

lemma is a generalization of a corresponding bound for the deterministic case [Phillips
et al. 1998; Hall et al. 1997]. For the deterministic case without release dates, a similar
bound already appears in [Eastman et al. 1964].

LEMMA 4.1. LetΠ be a job-based priority policy which schedules the jobs in the order
1 < · · · < n . Then,

E[CCCΠ
j ] ≤ max

k=1,..., j
rk +

1
m

( j−1

∑
k=1

E[pppk]
)

+ E[pppj ] for all j ∈ J. (6)

PROOF. Consider any jobj, and a corresponding policyΠ j that starts the £rst job at time
maxk=1,..., j rk and proceeds in the same order asΠ. Then jobs 1, . . . , j −1 are scheduled
without any inserted idle time in the order 1< 2 < · · · < j −1, and j starts as soon as a
machine becomes available. Now letp be any realization of processing times. PolicyΠ j

does not involve idle times between time maxk=1,..., j rk and the start of jobj. Thus job

j starts not later than maxk=1,..., j rk + 1
m ∑ j−1

k=1 pk under policyΠ j , since at maxk=1,..., j rk

the £rst job is started, and1m ∑ j−1
k=1 pk is the average load per machine with respect to jobs

1, . . . , j −1. Thus we haveCj ≤maxk=1,..., j rk+ 1
m(∑ j−1

k=1 pk)+ pj whereCj =CΠ j

j (p) is the
completion time ofj subject toΠ j andp. Now, if the jobs are scheduled according toΠ,
job j is scheduled at least as early as under policyΠ j , and this holds for any realization of
processing times. Thus (6) even holds point-wise forΠ, and taking expectations completes
the proof.

Note that in the above proof we crucially need to consider job-based priority policies in-
stead of ordinary priority policies if release dates are present. In the absence of release
dates, clearly maxk=1,..., j rk = 0, and the claim also holds for ordinary priority policies.

The second ingredient establishes the critical linkage between the LP solution and the
value obtained from an LP-based priority policy; it is again a generalization of a corre-
sponding result in deterministic scheduling [Hall et al. 1997; Schulz 1996].

LEMMA 4.2. Let m≥ 1 and C∈ IRn be any point which satis£es Cj ≥ E[pppj ] for all
j ∈ J as well as inequalities(5) for some∆ ≥ 0. Assume without loss of generality that
C1 ≤ ·· · ≤Cn, then

1
m

j

∑
k=1

E[pppk] ≤
(

1 + max{1,
m−1

m
∆}

)
Cj for all j = 1, . . . ,n.

PROOF. Consider any set{1, . . . , j}, j ∈ J. Then, due to inequalities (5) and due to the
fact thatCj ≥ ·· · ≥C1,

Cj

j

∑
k=1

E[pppk] ≥
j

∑
k=1

E[pppk]Ck ≥ 1
2m

( j

∑
k=1

E[pppk]
)2 +

m−∆(m−1)
2m

j

∑
k=1

E[pppk]
2.

We divide by∑ j
k=1E[pppk] to obtain

Cj ≥ 1
2m

j

∑
k=1

E[pppk] +
m−∆(m−1)

2m
· ∑ j

k=1E[pppk]2

∑ j
k=1E[pppk]

.
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Now consider the case∆≤ m
m−1. Then the last term is nonnegative, and thus1

m ∑ j
k=1E[pppk] ≤

2Cj . For the case∆ ≥ m
m−1 the last term is nonpositive. But since

Cj ≥ max
k=1,..., j

E[pppk] ≥
∑ j

k=1E[pppk]2

∑ j
k=1E[pppk]

,

we obtainCj ≥ 1
2m ∑ j

k=1E[pppk] + m−∆(m−1)
2m Cj . The claim follows.

We are now ready to analyze the following LP-based approximation algorithm for stochas-
tic parallel machine scheduling with release dates. Suppose that the squared coef£cient of
variation of processing times is bounded from above by some∆ ≥ 0. Then inequalities
(5) are valid for any scheduling policyΠ. Moreover, every vector of expected completion
times corresponding toΠ additionally ful£lls

E[CCCΠ
j ] ≥ r j + E[pppj ] for all j ∈ J. (7)

We thus consider the linear programming relaxation

min{ ∑
j∈J

wj Cj | (5) and(7) }, (8)

and letCLP denote an optimum solution to (8). De£neΠ to be a job-based priority policy
according to the order given by nondecreasing values ofCLP

j .

THEOREM 4.1. Let Var[pppj ]/(E[pppj ])2 ≤ ∆ for all jobs j and some∆ ≥ 0, and letΠ be
the job-based priority policy corresponding to an optimal solution to the linear program-
ming relaxation(8). ThenΠ is a (3− 1

m +max{1, m−1
m ∆})–approximation.

In Appendix B we show that linear program (8) can be solved in O(n2) time by purely
combinatorial methods. This implies that the corresponding priority order can be computed
ef£ciently.

PROOF. First assume without loss of generality thatCLP
1 ≤ CLP

2 ≤ ·· · ≤ CLP
n . We ap-

ply Lemma 4.1 toΠ, and observe that maxk=1,..., j rk ≤ CLP
j for all j = 1, . . . ,n. This

holds, since from inequalities (7) we getCLP
k ≥ rk, and becauseCLP

j ≥CLP
j−1 ≥ ·· · ≥CLP

1 .
Moreover,E[pppj ] ≤CLP

j , thus Lemma 4.1 yields

E[CCCΠ
j ] ≤

(
2− 1

m

)
CLP

j +
1
m

( j

∑
k=1

E[pppk]
)

for all jobs j ∈ J. SinceCLP ful£lls the conditions of Lemma 4.2, we now obtain

E[CCCΠ
j ] ≤

(
3− 1

m
+ max{1,

m−1
m

∆}
)

CLP
j

for all jobs j ∈ J. The fact that linear program (8) is a relaxation of the scheduling problem
concludes the proof.

Theorem 4.1 particularly yields a worst-case performance guarantee of(4− 1
m) whenever

Var[pppj ]/(E[pppj ])2 ≤ m/(m−1) for the given processing time distributions. This bound is
already known for deterministic scheduling [Hall et al. 1997].



10 · R. H. Möhring, A. S. Schulz, and M. Uetz

4.2 Parallel machine scheduling without release dates

We now consider the problem P| pppj ∼ stoch| E[∑wj CCCj ]. Using the framework of the
preceding section, one easily obtains an LP-based priority policy which has a performance
guarantee of 2− 1

m +max{1, m−1
m ∆}. However, for this case we can improve the result by

considering the WSEPT rule and a different LP-relaxation which allows us to explicitly
exploit the structure of an optimum LP solution within the analysis. Recall that WSEPT
works as follows: When a machine becomes available, schedule the job(s) with highest
ratiowj/E[pppj ] among the jobs not yet started.

THEOREM 4.2. Let Var[pppj ]/(E[pppj ])2 ≤ ∆ for all jobs j and some∆ ≥ 0. Then the

WSEPT priority policy is a(1+ (∆+1)(m−1)
2m )–approximation.

PROOF. First assume without loss of generality thatw1/E[ppp1] ≥ w2/E[ppp2] ≥ ·· · ≥
wn/E[pppn]. Now consider the linear programming relaxation

min{ ∑
j∈J

wj Cj | (5) }, (9)

and letCLP denote an optimum solution with optimum valueZLP. Since inequalities (5) de-
£ne a supermodular polyhedron, the solution to the LP-relaxation (9) is given by Edmonds’
greedy algorithm for supermodular polyhedra (see Appendix A for details). Hence,

CLP
j =

1
m

j

∑
k=1

E[pppk] −
(∆−1)(m−1)

2m
E[pppj ] for j = 1, . . . ,n.

We now apply Lemma 4.1 to the WSEPT priority policy to obtain

E[CCCWSEPT
j ] ≤ 1

m

j

∑
k=1

E[pppk] + (1− 1
m

)E[pppj ]

= CLP
j +

(∆+1)(m−1)
2m

E[pppj ].

Since linear program (9) is a relaxation for the scheduling problem, and since∑ j∈J wj E[pppj ]
is a lower bound on the optimum valueZOPT, we get

ZWSEPT = ∑
j∈J

wj E[CCCWSEPT
j ] ≤ ∑

j∈J
wj C

LP
j +

(∆+1)(m−1)
2m ∑

j∈J
wj E[pj ]

≤ ZLP +
(∆+1)(m−1)

2m
ZOPT

≤
(

1 +
(∆+1)(m−1)

2m

)
ZOPT.

It is clear from the proof of Theorem 4.2 that apart from the above worst-case ratio an
additive performance guarantee for WSEPT can be derived as well.

COROLLARY 4.1. Let Var[pppj ]/(E[pppj ])2 ≤ ∆ for all jobs j and some∆ ≥ 0, then

ZWSEPT − ZOPT ≤ (∆+1)(m−1)
2m ∑

j∈J
wj E[pj ] .
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Moreover, with some additional conditions on weights and expected processing times of
the jobs, we obtain asymptotic optimality for the performance of the WSEPT rule.

COROLLARY 4.2. If Var[pppj ]/(E[pppj ])2 ≤ ∆ for all jobs j and some0 ≤ ∆ < ∞, and if
there exists someε > 0 such thatε ≤ wj ≤ 1/ε and ε ≤ E[pj ] ≤ 1/ε for all j, and if

m/n
n→∞−−→ 0, then

(ZWSEPT−ZOPT)/ZOPT n→∞−−→ 0.

PROOF. First suppose without loss of generality thatw1/E[ppp1] ≥ w2/E[ppp2] ≥ ·· · ≥
wn/E[pppn]. Now let ZOPT

n := ∑ j∈J wj E[pj ], andZOPT
1 := ∑n

j=1wj ∑ j
k=1E[pk]. Note that

ZOPT
1 is the optimum value for a single machine problem, since the optimum policy on a

single machine is WSEPT [Rothkopf 1966], andZOPT
n is the optimum value onn machines.

Corollary 4.1 together withZOPT ≥ ZLP now yields

(ZWSEPT−ZOPT)/ZOPT ≤ (∆+1)(m−1)
2m

· ZOPT
n

ZLP .

But ZLP = 1
mZOPT

1 − (∆−1)(m−1)
2m ZOPT

n , thus the asymptotic behavior depends on the ra-
tio mZOPT

n /ZOPT
1 . Under the condition that weights and expected processing times are

bounded, this ratio is of orderm/n.

Similar considerations show that, subject to the same conditions, the LP-relaxation (9) is
also asymptotically tight.

Corollary 4.1 complements a previous result by Weiss [1990, 1992], who showed that

ZWSEPT − ZOPT ≤ m−1
2

· max
j=1,...,n

wj

E[pppj ]
·Ω .

Here,Ω is an upper bound on the second moment of the remaining processing time of any
uncompleted job at any given point in time. With assumptions on the input parameters of
the problem which assure that the right-hand side remains bounded, Weiss [1990] has thus
proved asymptotic optimality of WSEPT for a wide class of processing time distributions.
In fact, since one can construct examples which show that neither of the two above additive
bounds dominates the other, Corollary 4.1 complements Weiss’ analysis of the quality of
the WSEPT rule in stochastic machine scheduling.

Theorem 4.2 also implies a performance guarantee of3
2 − 1

2m for the WSPT rule in deter-
ministic scheduling. This result can alternatively be derived using the bounds by Eastman,
Even, and Isaacs [1964]. They have proved that the cost of any schedule in determinis-
tic scheduling is bounded from below asZOPT

m ≥ 1
m ZOPT

1 + m−1
2m ∑n

j=1wj pj , whereZOPT
m

denotes the optimum value onm parallel machines andZOPT
1 is the optimum value for

the same jobs on a single machine (which is induced by WSPT [Smith 1956]). More-
over, they have derived a matching upper bound for WSPT, namelyZOPT

m ≤ ZWSPT≤
1
m ZOPT

1 + m−1
m ∑n

j=1wj pj , which yields that WSPT has a worst-case performance guar-

antee of3
2 − 1

2m. However, their lower bound as well as the corresponding performance
guarantee does not hold in the stochastic setting, as will become clear in Example 4.1 be-
low. In fact, Kawaguchi and Kyan [1986] showed that the worst-case performance ratio of
WSPT in the deterministic setting is exactly1

2(
√

2+1). Again, their techniques do not ap-
ply if processing times are stochastic, and Example 4.1 reveals that their worst-case bound
does not hold in this case either.
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EXAMPLE 4.1. Consider a set of four jobs J= {1, . . . ,4} which have to be scheduled
on m= 2 machines. All jobs have weight1, i.e., the objective is the total expected comple-
tion time∑4

j=1E[CCCj ]. Let0 < ε < 1. Jobs1 and2 have processing timeε with probability
1− ε and processing time1/ε with probabilityε, independent of each other. Then the ex-
pected processing time of these jobs is1+ ε− ε2, which we choose to be the deterministic
processing time of jobs3 and4.

Since all jobs have the same expected processing time, the expected total completion
time on a single machine is ZOPT

1 = 10 for ε → 0 for any priority policy. For the parallel
(two) machine case, elementary calculations show that the optimum policy is to schedule
according to the priority list1< 2< 3< 4 if ε is small enough, and we obtain an expected
total completion time of ZOPT

m = 4 for ε → 0. Thus, in sharp contrast to the deterministic
model and the above mentioned bound by Eastman, Even, and Isaacs [1964], we obtain
1
mZOPT

1 > ZOPT
m for this example.

Moreover, since all jobs have identical expected processing times, any priority policy is
SEPT (or WSEPT) in this example. Scheduling according to the priority list3< 4< 1< 2,
yields an expected total completion time of6 for ε → 0. This shows that SEPT (or WSEPT)
may differ from the optimum value by a factor arbitrarily close to3

2, and the deterministic
worst case bounds32 − 1

2m and, a fortiori, 1
2(
√

2+1) for WSPT do not hold in the stochastic
setting.

However, the proof of Theorem 4.2 yields the following generalization of the lower bound
by Eastman, Even, and Isaacs [1964] to stochastic machine scheduling.

COROLLARY 4.3. If Var[pppj ]/(E[pppj ])2 ≤ ∆ for all processing times pppj , then

ZOPT
m ≥ 1

m
ZOPT

1 − (∆−1)(m−1)
2m

n

∑
j=1

wj E[pppj ] , (10)

where ZOPT
m denotes the optimum value for a parallel machine problem on m machines,

and ZOPT
1 is the optimum value of the same instance on a single machine.

PROOF. Again, let without loss of generalityw1/E[ppp1] ≥ w2/E[ppp2] ≥ ·· · ≥ wn/E[pppn].
SinceZOPT

1 = ∑n
j=1wj ∑ j

k=1E[pk], the right-hand side of (10) is precisely the value of an
optimal solution to the LP-relaxation (9), and this a lower bound onZOPT

m .

This particularly shows that for∆ ≤ 1 the optimum value for a single machine problem
with anm-fold faster machine is a relaxation for the corresponding problem onm parallel
machines. Moreover, Example 4.1 not only reveals that the condition∆ ≤ 1 is necessary
for the validity of the fast single-machine relaxation, but it also shows that — in contrast
to the deterministic case — a negative term in the right-hand side of inequalities (2) is
necessary as well.

4.3 The single machine case

In the single machine case, the proof of optimality for WSEPT dates back to 1966. It was
presented by Rothkopf [1966], and the corresponding result in deterministic scheduling
is due to Smith [1956]. Moreover, Queyranne [1993] has shown that in the deterministic
case inequalities (1), form= 1, provide a complete description of the convex hull of the
performance space. Bertsimas and Niño-Mora [1996] extended this result to stochastic
processing times. We note that form= 1 both the optimality of WSEPT and the complete
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polyhedral description of the performance space by inequalities (2) also follow from the
analysis of the previous section.

We conclude this section with a remark on the approximability of more general stochas-
tic single machine problems which also involve arbitrary precedence relations. Since for
m= 1 inequalities (2) exactly correspond to the analogue in deterministic scheduling, we
may use the same LP relaxations and arguments as in [Hall et al. 1997] to obtain the same
performance guarantees for stochastic single machine problems. More precisely, the nat-
ural generalization of the techniques presented in [Hall et al. 1997; Schulz 1996] yields a
priority policy which is a 2-approximation for 1| pppj ∼ stoch, prec| E[∑wj CCCj ] and a job-
based priority policy which is a 3-approximation for 1| pppj ∼ stoch, r j , prec| E[∑wj CCCj ].
These results hold for arbitrary, independent processing time distributions.

4.4 LP-based priority policies and the achievable region approach to stochastic
systems

The LP-based approach presented in this paper is closely related to recent developments in
the optimal control of stochastic systems via characterizing or approximating “achievable
regions”. For instance, Bertsimas and Niño-Mora [1996] show that previous results on the
optimality of Gittins indexing rules can alternatively be derived by a polyhedral character-
ization of corresponding performance spaces as (extended) polymatroids. Subsequently,
Glazebrook and Niño-Mora [1997] have proved approximate optimality of Klimov’s index
rule in multiclass queueing networks with parallel servers. Their work is based onapprox-
imate conservation lawsfor the performance of Klimov’s index rule (which corresponds
to the WSEPT rule for the model we consider here). Since from the bounds (10) and (6)
one can obtain an approximate conservation law for the performance of WSEPT, Theo-
rem 4.2 (respectively Corollary 4.1) of the present paper can also be derived within their
framework.

There is, however, an interesting difference between the techniques employed in their
work and those of the present paper. For the case with non-trivial release dates (Sec-
tion 4.1), we explicitly make use of an optimumprimal solution of LP-relaxation (8) in
order to obtain a priority policy with provably good performance. (Note that in this case
the performance of WSEPT can be arbitrarily bad.) While the achievable region approach
as proposed in [Glazebrook and Niño-Mora 1997] and [Dacre et al. 1999, Section 3] is
also based on the concept of LP-relaxations, thedual of the corresponding LP-relaxation
is solved in order to derive Klimov’s index rule and to analyze its performance for the case
of parallel servers. Primal and dual solutions, however, can in fact lead to substantially
different priority policies.

5. CONCLUDING REMARKS

With this work we extend the concept of LP-based approximation algorithms from deter-
ministic scheduling to a more general stochastic setting. Several previous deterministic
results, including LP-relaxations for parallel machine scheduling and corresponding LP-
based performance guarantees occur as special cases. For the model without release dates,
our work complements previous work on the performance of the WSEPT rule, and extends
a previous lower bound on the value of optimum schedules to the stochastic setting.

More generally, LP relaxations of scheduling problems are shown to be a quite powerful
tool for producing not only good lower bounds, but also high-quality priority policies. It is
one of the outcomes of our studies that successful combinatorial methods from determinis-
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tic machine scheduling also bear on algorithm design and analysis for stochastic machine
scheduling problems. Moreover, another advantage of using LP relaxations is that one not
only obtains “a priori” worst-case bounds, but also “a posteriori” guarantees (by compar-
ing the actual objective value and the LP bound) depending on the particular instance. This
aspect adds to the practical appeal of this approach.

Altogether, the presented results underline the potential of the polyhedral approach to
scheduling problems – in both the deterministic and the stochastic setting, and we hope that
this methodology may also lead to progress in other stochastic systems besides scheduling.

APPENDIX

The appendix £rst provides the necessary details on supermodular polyhedra and Ed-
monds’ greedy algorithm. We then show that LP relaxation (8) can be solved in polynomial
time. This already follows from the supermodularity of the right-hand side of inequalities
(5) via the ellipsoid method [Grötschel et al. 1988]. However, we give a purely combina-
torial algorithm with running time O(n2). Notice that this algorithm is of interest in the
deterministic case as well, since it turns some approximation algorithms presented in [Hall
et al. 1997] (which so far relied on the ellipsoid method) into combinatorial algorithms.

A. SUPERMODULAR POLYHEDRA AND THE GREEDY ALGORITHM

A set functionf : 2J −→ IR is called supermodular, if

f (A∩B)+ f (A∪B) ≥ f (A)+ f (B) for all A,B⊆ J.

For a supermodular set functionf with f ( /0) = 0, the polyhedron

P ( f ) := {x∈ IRn | x(A) ≥ f (A) for all A⊆ J}
is called asupermodular polyhedron. Here, as usualx(A) := ∑ j∈Axj for x∈ IRn. If we let
a∈ IRn be strictly positive andf : 2J −→ IR be supermodular withf ( /0) = 0, then

Pa( f ) := {x∈ IRn | ∑
j∈A

ajxj ≥ f (A) for all A⊆ J} (11)

is alinear transformationof a supermodular polyhedron which we also call a supermodular
polyhedron, for convenience. If we letwj ≥ 0 for j ∈ J, it is well known that linear
optimization problems

min{∑
j∈J

wj xj | x∈ Pa( f )} (12)

are solved by Edmonds’ greedy algorithm [Edmonds 1970]. An optimal solution for (12)
is then given by

x∗j =
(

f ({1, . . . , j})− f ({1, . . . , j −1}))/aj for j = 1, . . . ,n,

where we assumed thatw1/a1 ≥w2/a2 ≥ ·· ·≥wn/an, and we also used thatf ({1, . . . ,0})=
f ( /0) = 0. Consequently, linear program (9) can in fact be solved in time O(nlogn). We
refer to the monograph of Fujishige [1991] for more details on supermodular polyhedra
and their extensions.
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B. ANALYSIS OF LINEAR PROGRAM (8)

To see that linear program (8) also £ts into the framework of supermodular polyhedra we
need some preliminaries. We write linear program (8) as:

min{∑
j∈J

wj xj | ∑
j∈A

E[pppj ]xj ≥ f (A) ∀ A⊆ J and xj ≥ ` j ∀ j ∈ J}, (13)

where f (A) = 1
2m(∑ j∈AE[pppj ])2 + m−∆(m−1)

2m ∑ j∈AE[pppj ]2 is the right-hand side of (5), and
` j ≥ 0 are some nonnegative lower bounds onxj , j ∈ J. For instance, in linear program (8)
we havè j = r j +E[pppj ].

Observe £rst thatf is supermodular. According to the notation from de£nition (11),
let PE[ppp]( f ) denote the polyhedron de£ned by inequalities∑ j∈AE[pppj ]xj ≥ f (A), A ⊆ J.
Then, following Fujishige [1991, Section II.3.1], the polyhedron given by (13) is called
thereductionof PE[ppp]( f ) by the vector(`1, . . . , `n). De£ne the auxiliary set function

f̂ (A) := max
B⊆A

{ f (B)+ ∑
j∈A−B

E[pppj ]` j} for all A⊆ J . (14)

LEMMA B.1. The set function̂f : 2J −→ IR is supermodular. Furthermore, the reduc-
tion of PE[ppp]( f ) by vector` is exactly given byPE[ppp]( f̂ ) and is therefore again a super-
modular polyhedron.

For a proof, we refer to [Fujishige 1991, Theorem 3.3].
Thus, we may apply Edmonds’ greedy algorithm to solve linear program (13). That is,

if we assume without loss of generality thatw1/E[ppp1] ≥ w2/E[ppp2] ≥ ·· · ≥ wn/E[pppn], an
optimal solution to (13) is given by

x∗k =
(

f̂ ({1, . . . ,k})− f̂ ({1, . . . ,k−1}))/E[pppk] for k = 1, . . . ,n

where f̂ ({1, . . . ,0}) = f̂ ( /0) = 0. Consequently, the only remaining task is the computation
of the valuesf̂ ({1}), f̂ ({1,2}), . . . , f̂ (J). To this end, note that

f̂ (A) = ∑
j∈A

E[pppj ]` j + max
B⊆A

{ f (B)− ∑
j∈B

E[pppj ]` j

︸ ︷︷ ︸
=: ĝ(B)

}, A⊆ J.

Hence, the evaluation of̂f (A) for someA ⊆ J results in a maximization problem of the
set function ˆg over the ground setA. Sinceĝ is again supermodular, its maximum can
be determined in polynomial time with the help of the ellipsoid method [Grötschel et al.
1988]. However, in the remainder of this section we show how to compute the maximum
in time O(nlogn) by exploiting the special structure of ˆg. The ideas below are adapted
from [Queyranne 1993, Section 5].

LEMMA B.2. Let A∗ be a set maximizinĝg(B), B⊆A, and let without loss of generality
A∗ be⊆-minimal. Then:

k∈ A∗ ⇐⇒ 1
m ∑

j∈A∗
E[pppj ] >

(∆−1)(m−1)
2m

E[pppk]+ `k.

PROOF. Let k ∈ A∗, thenĝ(A∗) > ĝ(A∗ \ {k}) due to the de£nition ofA∗. Elementary
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calculations yield:

E[pppk]
( 1

m ∑
j∈A∗

E[pppj ] − (∆−1)(m−1)
2m

E[pppk] − `k

)
= ĝ(A∗) − ĝ(A∗ \ {k}) > 0,

and sinceE[pppk] > 0, the £rst claim follows.

For the reverse direction, let1m ∑ j∈A∗ E[pppj ] > (∆−1)(m−1)
2m E[pppk]+ `k and supposek 6∈ A∗.

But since

ĝ(A∗ ∪{k})− ĝ(A∗)

= E[pppk]
( 1

m ∑
j∈A∗

E[pppj ] −
(∆−1)(m−1)

2m
E[pppk]− `k +

1
m

E[pppk]
)

> 0,

we have ˆg(A∗ ∪{k}) > ĝ(A∗), a contradiction to the de£nition ofA∗.

Therefore we obtain the following result:

COROLLARY B.1. Let A∗ be a set maximizinĝg(B), for B⊆A. If i ∈A∗ for some i∈A,

we have j∈ A∗ for every j∈ A with (∆−1)(m−1)
2m E[pppj ]+ ` j ≤ (∆−1)(m−1)

2m E[pppi ]+ `i .

Thus, in order to maximize ˆg over some ground setA, we just sort the jobsj ∈ A in nonde-
creasing order of(∆−1)(m−1)

2m E[pppj ]+ ` j . Assume this order is given by 1,2, . . . , |A|, thenA∗
must be one of the nested sets/0, {1}, {1,2}, . . . , A. Consequently, the maximization prob-
lem for ĝ can be solved in O(nlogn) time. In fact, forA = J this algorithm is an O(nlogn)
time separation algorithm for the polyhedronPE[ppp]( f ) and a given point̀ ∈ IRn, since the
calculation of maxB⊆J ĝ(B) exactly corresponds to the problem of £nding the most violated
inequality from∑ j∈BE[pppj ]` j ≥ f (B), B⊆ J.

Now recall that in order to solve linear program (13) we have to calculate a sequence of
values f̂ ({1}), f̂ ({1,2}), . . . , f̂ (J). By virtue of Corollary B.1, it is not hard to see that
this can be done in O(n2) total time, and thus we get the following result.

THEOREM B.1. Linear program(8) can be solved in O(n2) time.
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