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In this paper, a novel parameter determination technique is developed for mate-
rial models in continuummechanics aimed at describing metamaterials. Owing
to their peculiar mechanical properties and behaviors, such as extreme elasticity
or high strength-to-weight ratio, metamaterials are of interest to be simulated by
reduced-order modeling by means of the generalized mechanics. Such models
incorporate constitutive parameters to be determined; we develop an automa-
tized optimization process specifically for obtaining metamaterials parameters.
The process aims at minimizing a mechanically meaningful error function mea-
suring the deviation of the continuum from a detailed description by using the
Trust Region Reflective optimization method. The parameter identification pro-
cedure is tested for an exemplary extension experiment of a metamaterial, prov-
ing to be robust and reliable.
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1 INTRODUCTION

The design and construction of structures with peculiar mechanical properties are of paramount interest. The design
and topology optimization of structures possessing high toughness such as composite materials [1–4] has been widely
studied. Metamaterials are the family of materials that are architectured with tailored material properties by using an
optimized topology with an inner substructure. Pantographic lattice, as a macro-scale example of metamaterials, is a
structure consisting of two groups of parallel equispaced beams (fibers) which are connected to each other by cylindrical
pivots at their intersections. The two groups of fibers are orthogonal in the initial frame [5] (see Figure 1). These days,
samples of this structure are produced by virtue of 3D printing technology [6].
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F IGURE 1 A CADmodel of a pantographic structure created
in SALOME

For describing the pantographic structures, it is possible to employ the Cauchy continuum theory. For a short history
of the mechanics theory, see [7]. In this paper, “micro-scale” does not correspond to any specific length-scale but rather
it means that at one (or more) smaller length-scale(s) than “macro-scale” (at which the phenomena are perceived by the
naked eye), the material is comprised of complex substructures.
In the Cauchy continuum theory, the immediate neighborhood of a particle is described by the first derivative in space.

This neighborhood is an infinitesimally small spherical region. In numerical mechanics, the radius of this region should
be set to a value smaller than the length-scale of the structure. This makes the analysis of the pantographic lattice compu-
tationally costly since it has a micro-scale underlying structure, i.e., the pantographic structure has a micro-scale length-
scale. An efficient solution method is using generalized continuummechanics [8], i.e., including second or higher gradi-
ents of displacement in the model, and thus, having additional material parameters than the classical theories [9, 10]. In
this approach, we do not need to consider the detailed geometry of the structure. Instead, a homogenized model is devel-
oped [11]. In this way, the length-scale will become relatively large. The effect of the microstructure is captured through
the new coefficients added to the model [12, 13]. In the end, we have a reduced-order homogenized model that is solved
fast, numerically as in [14].
Theories considering the higher gradients of the displacement are applied, for example, to elasticity [15–18], to inelastic

models [19], to plasticity [20–23], to anisotropic elasticity [24], to thermo-elasto-plasticity [25], for dissipative systems
[26], to wave propagation analysis [27], to gradient-enhanced homogenization [28, 29], using asymptotic analysis [30], to
micromorphic continuum [31], to the Kirchhoff plates [32, 33], to the Timoshenko beam [34], and to bone remodeling [35].
Many reduced-order continuum models for describing the pantographic structures have been presented in the litera-

ture, such as those assuming inextensible fibers [36–40] or using discrete [41–45], semi-discrete [46–48], and continuum
models [49–53], and the meso- to macro-scale homogenizationmodels [42, 54, 55], see [56, 57] for a review. The bending of
pantographic structures has been investigated numerically and experimentally in [58, 59]. Through a homogenization pro-
cedure [60], the behavior of the structure is estimated by the reduced-ordermodel [61, 62]. The existence and uniqueness of
weak solutions for linear pantographic structures is presented in [63, 64]. The wave dispersion in nonlinear pantographic
beams has been studied [65]. The dynamical behavior of a pantographic sheet is investigated experimentally in [66, 67].
In [68], the compression of polyamide pantographic fabrics is studied. A so-called bi-pantographic fabric is investigated
in [69]. A discrete model is used for the homogenization of the large in-plane elastic deformation of the bi-pantographic
structure, and the results are validated experimentally. For homogenization of pantographinc structures possessing flex-
oelectric and piezoelectric properties see [70, 71].
In [72], a predictive macro model is presented for characterizing large displacements and large deformations in pla-

nar pantographic structures assuming extensible beams. This continuum model is based on a meso-scale to macro-scale
homogenization technique for formulating a fully nonlinear beam model that is developed based on a discrete system
of extensional and rotational springs and masses. The considered energy expression depends on second-gradient dis-
placement terms. In an improved model [73], the pantographic structure is described in a two-dimensional formulation
embedded in three-dimensional space. The model takes account of large out-of-plane motions. There are second space
derivatives of the displacement in the deformation energy formulation for considering the in-plane and out-of-plane bend-
ing and twisting of fibers. In [74], a numerical identification is performed to fit the parameters of the macro model of
planar pantographic structures, where the total stored strain energy and two angles in the structure are considered. It is
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F IGURE 2 Left: micro-scale model with the detailed information of the substructure leading to a high computational cost. Right: macro-
scale model, i.e., metamaterial representing the same mechanical response of the micro-scale one by using the generalized mechanics leading
to a reduced-order modeling with a low computational cost

shown that the reduced-order method is able to model the structure accurately with a significantly lower computational
cost. In [75], through an inverse analysis, the material parameters in the elastic energy description of the aforementioned
improved model are determined. The in-plane and out-of-plane stiffnesses are determined by simulating bias extension
and shear tests and employing the Levenberg–Marquardt optimization algorithm. In [76], the numerical identification of
the constitutive parameters of the aforementioned predictive macro model is carried out through genetic algorithm [77]
andNondominated SortingGeneticAlgorithm II (NSGA-II) [78] optimizationmethods. Considering the above-mentioned
literature, developing an automatized optimization process for identifying the constitutive parameters of metamaterials
is the main objective of the underlying work.
In this research, we aim at implementing the conventional elasticity theory on a pantographic structure, and solve

it numerically by following the computational methods by means of the finite element method (FEM) as in [79]. Then a
macro-scale homogenizedmodel is employed formodeling the structure at a reduced computational cost. The parameters
of the macro-scale model are identified through an automatized optimization process, and the reliability of the model
is assessed.
The paper is organized in the followingway: in Section 2, we briefly explain themicro-scale nonlinear elastostaticmodel

in continuummechanics and a second-gradient macro-scale model. In Section 3, we identify the parameters of themacro-
scale model through an optimization problem. To this aim, a fully automatized optimization problem is developed and
implemented in the Python language. In Section 4, the micro-scale and macro-scale models of a pantographic structure
are implemented for obtaining the deformation in the structure. In Section 5, we present the results of the simulation of a
tensile test on the pantographic structure obtained frommicro- andmacro-scalemodels. Also, the results of the parameter
determination process are given. In Section 6, the conclusions and perspectives are discussed.

2 CONTINUUMMECHANICSMODELS

In this section, the micro-scale nonlinear elastostatic model in continuummechanics and a second-gradient macro-scale
model are briefly explained. Consider the micro-scale model with the substructure and its corresponding homogenized
model as demonstrated in Figure 2.

2.1 Micro-scale model

In the Lagrangean frame, we assume that a continuum body initially occupying 0 ⊂ 𝑹3 deforms to the current frame
occupying  ⊂ 𝑹3, expressed in Cartesian coordinates. The position of the particles at the initial time, 𝑡0, is identified by
𝑿 and they move to 𝒙 at the current time, 𝑡, by undergoing the displacement 𝒖(𝑿, 𝑡). Therefore, we have

𝑥𝑖 = 𝑋𝑖 + 𝑢𝑖. (1)

By defining the deformation gradient as 𝐹𝑖𝑗 =
𝜕𝑥𝑖

𝜕𝑋𝑗

, the Green–Lagrange strain tensor is defined as

𝐸𝑖𝑗 =
1

2
(𝐹𝑘𝑖𝐹𝑘𝑗 − 𝛿𝑖𝑗)

=
1

2
(𝑢𝑘,𝑖𝑢𝑘,𝑗 + 𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),

(2)
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where we use the Einstein summation convention over repeated indices, comma denotes a partial derivative with
respect to 𝑿 in the Lagrangean frame and 𝛿𝑖𝑗 is the Kronecker delta, which denotes an identity matrix. As the
strain measure is nonlinear, the model is valid for large deformations such that it is capable of capturing geometrical
nonlinearities.
The density of stored energy,𝑊m, is defined as a function of the Green–Lagrange strain tensor and the Lamé parameters

of the material, 𝜆, 𝜇, as

𝑊m(𝑬) =
𝜆

2
𝐸2
𝑘𝑘

+ 𝜇𝐸𝑖𝑗𝐸𝑖𝑗. (3)

Here, for obtaining the governing equations of the structure, we exploit the formulation based on action principles [80].
An action like energy is used as

 = ∫0

(
1

2
𝜌0𝑢̇𝑖𝑢̇𝑖 − 𝑊m + 𝜌0𝑓𝑖𝑢𝑖

)
d𝑉 + ∫

𝜕𝑁
0

𝑡𝑖𝑢𝑖 d𝐴, (4)

where the primitive variable is the displacement 𝑢𝑖 . In Equation (4), the first term accounts for the kinetic energy where
𝜌0 and 𝑢̇𝑖 are the mass density at the initial frame and the time derivative of displacement, respectively. The third term,
𝜌0𝑓𝑖𝑢𝑖 , is the potential energy density (per volume) and𝑓𝑖 is the specific (permass) gravitational force. The second integral
is for the work done on the surfaces where 𝑡𝑖 is the traction vector applied on the Neumann boundary 𝜕𝑁

0
.

In quasi-static conditions, the continuum body deforms slowly such that the inertial terms are negligible. If the defor-
mation caused by the mass of the body compared to the deformation due to applied force is negligible, the force term can
also be ignored. According to the principle of least action, for arbitrary values of the test function 𝛿𝑢, the variation of the
action like the functional in Equation (4) vanishes, as follows:

𝛿 = 0 ∀ 𝛿𝑢. (5)

Employing the variational formulation leads to the weak form of the micro-scale model as below:

−∫0

𝜕𝑊m
𝜕𝑢𝑖,𝑗

𝛿𝑢𝑖,𝑗 d𝑉 + ∫
𝜕𝑁

0

𝑡𝑖𝛿𝑢𝑖 d𝐴 = 0, (6)

where we apply the chain rule for computation of the first term as

𝜕𝑊m
𝜕𝑢𝑖,𝑗

=
𝜕𝑊m
𝜕𝐸𝑘𝑙

𝜕𝐸𝑘𝑙

𝜕𝑢𝑖,𝑗
. (7)

By solving the weak form of Equation (6) numerically, the displacement 𝑢𝑖 is obtained for the whole body.

2.2 Macro-scale model

For characterizing the behavior of planar pantographic structures, the reduced-order model of [72] is employed here. In
this model, a homogenization from meso-scale to macro-scale is carried out. In the formulation of this homogenized
model, the stretching and bending stiffnesses of the fibers, as well as the shear stiffness of the cylindrical connecting
pivots, are considered. The model is briefly explained in the following.
The placement 𝝌 maps a material point from 𝑿 in the initial frame to 𝒙 in the current frame through the displacement

𝒖. In the map 𝝌 ∶ Ω → 𝑹2, Ω is chosen as a rectangular plane region. A Cartesian orthogonal coordinate system, with
the unit base vectors of (𝑫𝟏, 𝑫𝟐), is assumed to be aligned in the direction of the two families of fibers (see Figure 1).

𝒙 =

(
𝑥1

𝑥2

)
= 𝝌(𝑋1, 𝑋2) = (𝑋1 + 𝑢1(𝑿))𝑫𝟏 + (𝑋2 + 𝑢2(𝑿))𝑫𝟐 (8)
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The deformation gradient is ∇𝝌 and the vectors 𝒆𝟏 and 𝒆𝟐 show the orientation of the fibers after deformation (in the
current frame),

∇𝝌 =

⎡⎢⎢⎢⎢⎣
𝜕𝑥1
𝜕𝑋1

𝜕𝑥1
𝜕𝑋2

𝜕𝑥2
𝜕𝑋1

𝜕𝑥2
𝜕𝑋2

⎤⎥⎥⎥⎥⎦
, (9)

𝒆𝟏 =
(∇𝝌)𝑫𝟏||(∇𝝌)𝑫𝟏||

and 𝒆𝟐 =
(∇𝝌)𝑫𝟐||(∇𝝌)𝑫𝟐||

, (10)

where || ⋅ ||means the 𝐿2 norm. In this model, the “stretch of fibers” and the “fiber geodesic curvature” are defined by 𝜺
and 𝜿, respectively,

𝜺 =

(
𝜀1
𝜀2

)
=

( ||(∇𝝌)𝑫𝟏|| − 1||(∇𝝌)𝑫𝟐|| − 1

)
, (11)

𝜿 =

(
𝜅1
𝜅2

)
=

( ||𝒄𝟏 − (𝒄𝟏 ⋅ 𝒆𝟏) 𝒆𝟏||||𝒄𝟐 − (𝒄𝟐 ⋅ 𝒆𝟐) 𝒆𝟐||
)
, (12)

where,

𝒄𝟏 =

⎛⎜⎜⎜⎜⎝
𝜕2𝝌1

𝜕𝑋2
1

𝜕2𝝌2

𝜕𝑋2
1

⎞⎟⎟⎟⎟⎠||(∇𝝌)𝑫𝟏||
and 𝒄𝟐 =

⎛⎜⎜⎜⎜⎝
𝜕2𝝌1

𝜕𝑋2
2

𝜕2𝝌2

𝜕𝑋2
2

⎞⎟⎟⎟⎟⎠||(∇𝝌)𝑫𝟐||
⋅ (13)

The vectors 𝒄𝟏 and 𝒄𝟐 contain second-gradient terms of displacement, which are incorporated in the stored energy defi-
nition by means of the generalized continuum. This second-order theory is a subset of the strain gradient theory, since 𝜿
contains the second-gradient of 𝝌 which is the gradient of the strain 𝜺. The shear distortion, 𝛾, is the change of the angle
between two specific fibers from two families of initially orthogonal fibers, defined as

𝛾 = arcsin(𝒆𝟏 ⋅ 𝒆𝟐). (14)

The strain energy density of the macro-scale model,𝑊M, is defined as

𝑊M(𝜺, 𝜿, 𝛾) =
1

2
𝐾e(𝜀

2
1
+ 𝜀2

2
) +

1

2
𝐾g(𝜅

2
1
+ 𝜅2

2
) +

1

2
𝐾s𝛾

2. (15)

The strain energy density consists of the energy terms of elongation and geodesic bending of the fibers and the torsion of
the connecting pivots. The 𝐾e, 𝐾g, 𝐾s are the stretching, geodesic bending, and the shear stiffnesses, respectively, which
are positive and constant constitutive parameters of the macro-scale model. The geodesic bending is the bending that
occurs in a fixed plane and it has strain-gradient effects in the continuum theory [81].
Here, analogous to the previous section, we utilize the action principles by utilizing the energy density of the macro-

scale model in Eq. (15). Based on the principle of least action in Eq. (5), the weak form for macro-scale model is obtained
as

−∫0

𝜕𝑊M(𝜺, 𝜿, 𝛾)

𝜕𝑢𝑖,𝑗
𝛿𝑢𝑖,𝑗 d𝑉 + ∫

𝜕𝑁
0

𝑡𝑖𝛿𝑢𝑖 d𝐴 = 0, (16)
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F IGURE 3 The flowchart of the numerical identification process

where

𝜕𝑊M(𝜺, 𝜿, 𝛾)

𝜕𝑢𝑖,𝑗
=

𝜕𝑊M
𝜕𝜀𝑘

𝜕𝜀𝑘
𝜕𝑢𝑖,𝑗

+
𝜕𝑊M
𝜕𝜅𝑘

𝜕𝜅𝑘
𝜕𝑢𝑖,𝑗

+
𝜕𝑊M
𝜕𝛾

𝜕𝛾

𝜕𝑢𝑖,𝑗
. (17)

3 OPTIMIZATION

The goal of the optimization problem is to identify the parameters of the macro-scale model by fitting its results with the
micro-scale model. In the following, the details of the numerical identification process and the optimization algorithm
are discussed.

3.1 Numerical identification

The identification of the parameters of the macro-scale model (𝐾e, 𝐾g, and 𝐾s in Equation (15)) is done numerically
through an optimization problem. The optimization procedure minimizes an error measure yet to be defined. The least
restrictive hypothesis is that the micro-scale and macro-scale models have the same deformation energy. However, we
emphasize that the displacements in both scales are different, as well as the local deformation energy density, although
the total deformation energy is the same, applied by the same work done on boundaries. In a well-posed problem, the
boundaries are given such that we expect that the same energy over the boundaries is transferred to themacro-scalemodel
as well as to the micro-scale model. By the total deformation (or stored) energy, we mean the deformation energy stored
in the whole structure. We use the energy difference between the micro- and macro-scale models as the error measure
for optimization; any other additional measure like matching boundaries or the same curvature could be introduced by
Lagrange multipliers [82].

3.2 Optimization algorithm

We automatize an optimization problem for determining metamaerials parameters, and implement it in the Python
language. We have made use of the optimization submodule of the Scipy package [83]. A flowchart of the optimiza-
tion process and the numerical identification is shown in Figure 3. In this process, at first, the micro-scale energy,
bounds of the parameters, and the convergence tolerances are set as input parameters. Then, for the first iteration of
the optimization, we need an initial guess of the parameters for calculating the macro-scale energy. In every iteration,
the parameters are updated, until at least one of the convergence criteria stops the iteration, and the solution is the
output.
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TABLE 1 Geometrical parameters used for constructing the geometry as suggested in [46], the formula for the initial guess of the
parameters as suggested in [75], and the parameters determined the optimization problem

Geometrical Parameters (mm)
𝑳 𝒍 𝒉𝒃 𝒘𝒃 𝒑𝒃 𝒉𝒑 𝒅𝒑

210 70 1.6 1 12.15 3 1
Constitutive Parameters
Parameter Initial Guess Final Results

𝐾e (N/m) 𝐾0
e =

𝐸𝑤𝑏ℎ𝑏

𝑝𝑏

= 2.107 × 105 1.406 × 105

𝐾g (Nm) 𝐾0
g =

𝐸𝐼𝑧

𝑝𝑏

= 1.756 × 10−2 2.699 × 10−2

𝐾s (N/m) 𝐾0
s =

𝐺𝜋𝑑4𝑝

32ℎ𝑝𝑝
2
𝑏

= 1.364 × 102 2.138 × 102

The optimization problem is to minimize the sum of squared value of the error that is the difference between the
energies at micro- and macro-scale models at every step of loading. The mechanical problem is as follows: Consider a
rectangular plate as the macro-scale model representing the pantographic structure at the micro-scale under uni-axial
tensile testing. One side is clamped, and the other end is loaded in 𝑛 equal quasi time steps up to the maximum load-
ing. The stored energy of the structure is calculated after every time step of loading. The objective (error) function is
defined as

𝐸𝑟𝑟(𝑊M) =

𝑛∑
𝑖=1

(𝑊𝑖
m −𝑊𝑖

M)
2, (18)

where 𝑛 is the number of steps. Then, the following optimization problem gives the best parameters (𝐾e, 𝐾g, 𝐾s) being the
unknowns for the minimization problem,

(𝐾e, 𝐾g, 𝐾s) = argmin
𝐾e,𝐾g,𝐾s

𝐸𝑟𝑟(𝑊M). (19)

The initial guess for the parameters (𝐾e, 𝐾g, 𝐾s) are calculated as a function of the geometry and material of the panto-
graphic structure, as suggested in [75]. The formulas for the initial guess of the parameters are presented in Table 1, where
𝐼𝑧 is the area moment of inertia with regard to 𝑧-axis, and 𝐺 is the shear modulus of the material at the micro-scale. The
unknowns are normalized by the values of the initial guess before being set in the optimization code. Therefore, the solu-
tion obtained from the optimization will be a factor of the initial guess values, and the parameters are multiplied by the
initial guess values before being used in the macro-scale model. The unknown sensitivity of parameters to the error mea-
sure is normalized by dividing each parameter to their corresponding initial guess. Hence, the optimization procedure
alters them with the same accuracy set by the convergence tolerances.
The employed optimization algorithm, responsible for updating the parameters and distinguishing the path toward the

optimum point, is the Trust Region Reflective (TRR) algorithm. The TRR algorithm is an improved version of typical trust
region algorithms. Trust region methods are well-known as powerful approaches for solving unconstrained nonlinear
minimization problems with strong convergence properties. The idea of a trust region method for minimizing a function
is as follows. It approximates the objective function, 𝑓(𝑥), with a quadratic function, 𝑞(𝑥), which simplifies the objective
function in a neighborhood,𝑁, around the current point, 𝑥. The 𝑞(𝑥) is usually formed by the first two terms of the Taylor
expansion of 𝑓(𝑥) around 𝑥. Then, a sub-problem is defined as computing a trial step 𝑠 and minimizing 𝑞(𝑠) within 𝑁.
After every step, if the cost (objective) function at the point 𝑥 + 𝑠 has decreased, the current point is updated to 𝑥 + 𝑠, and
it is called a successful step. Otherwise, the current point is not changed, but the radius of the region𝑁 is reduced for the
next step [84].
In TRR, the trust region idea is generalized fromunconstrained to bound-constrained nonlinearminimization problem.

Using a novel reflection technique, in TRR, the convergence is accelerated, and it features high computational efficiency
and robustness. The TRR is based on the interior reflective Newton algorithm, as proposed in [85]. The interior reflective
method does the iterationswithin a confined interior of the feasible region, which is defined by the upper and lower bound
constraints of the variables [86].
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F IGURE 4 The geometrical dimensions depicted on the pantographic structure

After every iteration of the optimization, the numerical solution of macro-scale model is repeated, and the convergence
of the optimization problem is assessed through three criteria. For this purpose, I) the reduction (change) of the cost
function, II) the norm of the step 𝑠, and III) the infinity norm of the scaled gradient of the objective function are calculated
and checked by the criteria using the convergence tolerances. The scaled gradient is calculated by accounting for the
presence of the parameter bounds. As soon as any of the above-mentioned criteria is satisfied, the optimization loop
terminates, and the best constitutive parameters for the macro-scale model are obtained as the output of the problem.

4 GEOMETRY ANDMODELING

In this section, a pantographic structure is considered, and the micro-scale and macro-scale models, i.e., the weak forms
in Equation (6) and Equation (16), respectively, are implemented for obtaining the deformation in the structure. First,
the geometrical and material properties of the structure are presented; then, the details of implementation of the models
are discussed.

4.1 Geometry

The geometry of the pantographic structure considered here is from [46], where the structure was manufactured and
inspected through experimental tests. The material of the structure is Polyamide PA 2200, a polymer modeled as an
isotropic, linear elastic material with Young’s modulus 𝐸 = 1600MPa and Poisson’s ratio 𝜈 = 0.3. The geometrical dimen-
sions of the structure are presented in Figure 4 and Table 1.

4.2 Modeling and boundary conditions

For building the micro-scale CADmodel of the structure as depicted in Figure 1, the open-source SALOME platform [87]
is used. The model is meshed with tetrahedral continuum elements using NETGEN algorithm [88], as shown in Figure 5.
There are 76449 nodes, meaning around 230k degrees of freedom, in this mesh. For the macro-scale implementation, a
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F IGURE 5 The mesh of the pantographic structure

F IGURE 6 Simulation of a tensile test of the pantographic structure bymicro-scalemodeling (17.6 % normal strain, displacement is shown
without scaling in ParaView)

two-dimensional (2D) rectangle is created and meshed with triangular elements with around 1300 degrees of freedom.
We remark that the computational cost increases exponentially regarding the degrees of freedom.
For a uniaxial tensile test, left and right ends are given by the Dirichlet boundary conditions. For both the 3D and the

2D models, the left side of the structure is clamped, and the right side is moved for 37 mm, applied in eight quasi time
steps so that we will obtain the solution at every step of displacement.

4.3 Numerical implementation

Themicro- andmacro-scale continuummodels discussed in Section 2 are implemented on the respective CADmodels. For
solving theweak forms of the twomodels numerically and applying the boundary conditions, themodels are implemented
into the finite-element code in the FEniCS platform [89], which is an open-source computing platform for automated
solution of partial differential equations. TheNewton–Raphsonmethod is utilized for linearizing the nonlinear differential
equations. For the convergence study of the macro-scale model, see the appendix.

5 RESULTS AND DISCUSSION

The results of the simulation of a tensile test on the pantographic structure obtained frommicro- and macro-scale model-
ings are presented. The visualizations are done in ParaView [90]. By solving the weak form of the micro-scale model, the
deformation of the structure, as the primitive variable of the problem, is obtained. Figure 6 shows the displacement in the
pantographic structure for a displacement of 37 mm (17.6% normal strain) in the tensile test.
The same boundary conditions for the tensile test are applied on the homogenized model of the macro-scale model.

Through the optimization process, the parameters,𝐾e, 𝐾g, 𝐾s in Eq. (15) are determined and compiled in Table 1. By setting
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F IGURE 7 Energy density in the tensile test simulated by the macro-scale homogenized model with the used mesh (17.6 % normal strain,
displacement is presented without scaling, in ParaView)

F IGURE 8 Comparison of the deformations by micro- andmacro-scale modelings (micro-scale model: in black lines, macro-scale model:
in color)

these parameters in the macro-scale model, the deformation and energy density shown in Figure 7 are obtained. In order
to compare the consistency of the models, the deformations calculated by the micro- and macro-scale models are plotted
on each other in Figure 8.
As shown in Figure 8, the two approaches show very good consistency, and deformation along the boundary is adequate.

The values of total stored energy are plotted and compared in Figure 9. As the loading is applied in eight time steps, the
energy is calculated at each step. The graph denotes that the optimization algorithm has minimized the error between the
energies of macro- and micro-scale models.

F IGURE 9 The values of total stored energy from the
macro- and micro-scale models



SHEKARCHIZADEH et al. 11 of 15

TABLE 2 Sensitivity analysis

Displacement (mm)
Parameter 4.6 9.2 13.9 18.5 23.1 27.7 32.4 37.0
𝐾e∕𝐾

0
e 1.011 1.021 1.029 1.042 1.065 1.100 1.094 1.097

𝐾g∕𝐾
0
g 1.026 1.035 1.037 1.036 1.032 1.025 1.018 1.032

𝐾s∕𝐾
0
s 1.550 1.573 1.572 1.568 1.555 1.519 1.440 1.543

F IGURE 10 Energy calculated by using the parameters
from the sensitivity study

In order to check the sensitivity of the model, the constitutive parameters are determined after every loading step, as
shown in Table 2. The values in Table 2 are given as a factor of the initial guess values. By setting each set of the parameters
of Table 2 in the macro-scale model, the energy is calculated and compared in Figure 10. The consistency of the plots in
Figure 10 shows the robustness and reliability of the macro-scale model.
The results demonstrate that a reduced-order homogenized model simulates the behavior of a metamaterial with a

complex structure which has a detailed substructure, and produces comparable results. The computational cost of the
reduced-order model is significantly lower than the detailed three-dimensional model.

6 CONCLUSION

In this paper, a 3D micro-scale continuum model is implemented on a pantographic structure, and it is solved numeri-
cally in the FEniCS platform. On the other hand, a macro-scale homogenized model is employed for modeling the same
structure, and the constitutive parameters of this model are identified by developing an automatized process by means
of FEM computations and an optimization problem. In this optimization problem, the total stored energies obtained
from the two models are compared, and the error is minimized. The optimization algorithm utilized here is the Trust
Region Reflective method. The results show that the proposed procedure for parameter determination is robust and
proves to be consistent with the micro-scale model. Being the error function defined only in terms of kinematic quan-
tities, the application of this method to experimental model identifications based on full-field kinematic measurements is
foreseen.
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APPENDIX
The convergence of the macro-scale model is discussed here. Monotonous convergence is achieved as expected from the
finite element method. The mesh size is checked by using ℎ-convergence. As in Figure A.1, the ℎ-convergence shows a
linear relation in the log-log scale. The ℎ-convergence results are compiled in Table A.1 with a posteriori error analysis.

F IGURE A . 1 Mesh convergence of the macro-scale
model: Energy versus the number of nodes in log-log scale

TABLE A . 1 Convergence results

Number of nodes
783 1097 1469 1899 2379 2909 3497 4143

Energy (J) 0.3666 0.3655 0.3647 0.3641 0.3637 0.3633 0.3630 0.3628
Error (%) 0.29 0.21 0.16 0.13 0.10 0.08 0.07
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