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Abstract

The demand for increasingly rich services with high-level abstractions drives the field of

cloud computing. In both research and industry, additional layers and components con-

tinuously increase the complexity of these modern platforms. In truth, the size of cloud

systems has long surpassed what human administrators are able to manage. Nonetheless,

users and customers expect high availability and reliability from both the applications

and the underlying platform, which is only possible through automation.

Today, most automated dependability techniques focus on increasing the availability

of distributed systems by preventing or masking component outages. However, both

software and hardware components often exhibit a behavior where the delivered service

degrades without becoming entirely unavailable. Such anomalies, also called gray failures

or degraded states, originate from software bugs or other unforeseen issues with the

system. Some application-specific systems attempt to handle certain types of anomalies

by applying a pre-defined set of rules. In general, however, administrators have to resolve

anomaly situations manually. In practice, there is no technique or system for detecting

and resolving anomaly situations in a generic way.

Accordingly, this thesis suggests an extension to traditional cloud infrastructures by pro-

viding self-healing functionalities. Our approach monitors live data streams collected

from all critical system components and analyzes the collected data for anomalous be-

havior. Once an anomaly is detected, the system further investigates the situation,

determines the root cause, and automatically implements a remediation plan to resolve

the problem. We analyze the requirements to build such a self-healing system and present

an abstract system architecture that fulfills the given requirements. The proposed self-

healing cloud provides administrators with a coherent set of configuration values that

determine the level to which remediation workflows are executed automatically. Fur-

ther, we design a data analysis engine that executes the necessary processing tasks while

co-existing with the cloud workload, and that, without disrupting it. Finally, we apply

the abstract architecture to the scenario of a public cloud platform and present a pro-

totypical implementation of the named concepts. We evaluate various properties of our

implementation in a practical experimental testbed and a qualitative analysis.
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Zusammenfassung

Die steigende Nachfrage nach Diensten mit immer höheren Abstraktionsebenen bestimmt

heutzutage das Gebiet des Cloud Computing. Sowohl in der Forschung, als auch in der

Industrie, führen zusätzliche Abstraktionsschichten und Komponenten zu wachsender

Komplexität moderner IT-Systeme. Längst hat die schiere Größe von Cloudsystemen die

Grenze des von Menschen Beherrschbaren überschritten. Nutzer und Kunden von Cloud-

plattformen erwarten dennoch ein hohes Maß an Zuverlässigkeit und Ausfallsicherheit,

sowohl von der Plattform, als auch von den darin ausgeführten Anwendungen. Dies lässt

sich nur mithilfe von Automatisierungslösungen erreichen.

Die meisten automatischen Lösungen für die Zuverlässigkeit von verteilten Systemen ba-

sieren darauf, Ausfälle von Teilkomponenten zu verhindern oder zu verschleiern. Dabei

wird übersehen, dass sowohl Hardware- als auch Software-Komponenten auch ein de-

gradiertes Verhalten aufweisen können, ohne komplett auszufallen. Solche Fälle, auch

Anomalien genannt, entstehen häufig aus Fehlern im Programmcode einer Applikation,

oder durch andere unvorhergesehene Umstände im System. Anwendungsspezifische Sys-

teme für Anomalieerkennung und -behebung behandeln bestimmte Typen von Anoma-

lien, basierend auf manuell festgelegten Regeln. Im Normalfall müssen Administratoren

solche Anomaliefälle aber manuell behandeln. Momentan gibt es kein System in prakti-

scher Benutzung, welches Anomalien erkennt und behebt, ohne dabei Annahmen über

die überwachte Anwendung zu treffen.

Daher schlägt diese Dissertation eine Erweiterung von traditionellen Cloudplattformen

vor, die solche Plattformen um selbstheilende Fähigkeiten erweitern. Unser Ansatz ba-

siert auf Echtzeitdatenströmen, die von allen kritischen Komponenten des systems erfasst

werden. Diese Datenströme werden kontinuierlich analysiert, um festzustellen, ob die je-

weilige Komponente sich normal verhält, oder eine Anomalie aufweist. Sobald eine An-

omalie erkannt wird, wird die Situation automatisch weiter untersucht, die Ursache der

Anomalie gefunden, und automatisch eine Gegenmaßnahme eingeleitet, um das Problem

zu beheben. In dieser Arbeit analysieren wir die Anforderungen, die ein solches System

erfüllen muss, und stellen eine abstrakte Systemarchitektur vor, die diese Anforderun-

gen erfüllt. Diese selbstheilende Cloudarchitektur bietet Administratoren verständliche

Konfigurationsparameter, die bestimmen, zu welchem Maß Reparaturaktionen automa-

tisch ausgeführt werden. Desweiteren definieren wir das Konzept von “In Situ Daten-

analyse”, die verwendet wird, um die Datenströme in der selbstheilenden Cloud effizient

auszuwerten, ohne die Plattform bei ihren eigentlichen Aufgaben zu behindern. In einer

prototypischen Umsetzung der abstrakten Konzepte zeigen wir, dass die selbstheilende

Cloudarchitektur im praktischen Anwendungsfall eines öffentlichen Clouddienstes an-

wendbar ist. In einer experimentellen Testumgebung messen wir diverse Eigenschaften

unserer Plattform, und erweitern diese Evaluierung durch eine qualitative Analyse.
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Chapter 1

Introduction

Contents

1.1 Problem Statement and Challenges . . . . . . . . . . . . . . . . 4

1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The number of layers and components in modern cloud computing systems keeps growing

due to the increasing demand for more elaborate services. Cloud service providers do

not limit their offerings to virtualized compute and storage resources in the form of

Virtual Machines (VMs), but also provide higher-level abstractions, such as Platform as

a Service (PaaS) or serverless computing. In addition to this deepening of the technology

stack, future cloud platforms will experience an increase in geographical distribution as

well as a diversification of the underlying hardware. Trends like edge computing drive this

development by promising end-users lower latencies, better response times, and location-

agnostic access to services by deploying service endpoints closer to the user’s location.

Overlooking the growing complexity of modern cloud platforms, customers rightfully

expect the services to be entirely reliable. However, the overwhelming scale of such

platforms has long exceeded the maintenance capabilities of human administrators. The

sheer number of components and subsystems found in modern data centers leads to an

unmanageable fault rate. Furthermore, the number of human administrators maintaining

cloud platforms cannot scale at the same pace as the systems’ complexity. Therefore,

the current industry standard is to rely on automated administration tools for deploying,

upgrading, and monitoring cloud infrastructures.

Today, automation tools mainly focus on achieving high availability – i.e., keeping the

services functioning and reachable. Since an unavailable service is one of the worst-

case scenarios, countermeasures for outages have been researched extensively. The main
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2 Chapter 1. Introduction

means of achieving high availability is through a form of redundancy, mostly by executing

multiple replicas of the same service. By having a varying number of replicas managed

automatically, this approach is also able to handle changes in the system’s load. In the

context of cloud computing, these concepts are known as elasticity and auto scaling. In

addition to the ability to scale up and down, high availability depends on the fast detec-

tion of failed components. Many techniques are readily available for this task, including

active and passive probing, heartbeats, and timeouts. However, high availability alone

is not sufficient to make a service truly reliable: Besides failing entirely, services often

exhibit other abnormal behaviors, which can lead to degraded service quality.

An anomaly is a deviation from normal system behavior. In the context of cloud com-

puting, anomalies cover a much wider range of scenarios than simple crashes, and are,

accordingly, difficult to detect and handle. In truth, an undesired behavior can degrade

the service quality or even break Service Level Agreements (SLAs), and that, without

making the service, or one of its components, entirely unavailable. Examples of anoma-

lies include software aging effects, such as memory leaks, that lead to crashes after a

certain time, and unexpected resource hogging, such as full CPU utilization. While high

availability techniques, such as redundancy or failover to spare components, can handle

crash faults, other anomalies lack proper handling mechanisms. Anomalies often precede

component outages, thus making them a good target for fault prediction. In other words,

early remediation of an anomaly can prevent a more severe fault or failure situation. Yet,

continuous manual monitoring of all critical components is not feasible.

Automatic mechanisms are necessary when striving to ensure the anomaly-free execution

of hundreds of services running on thousands of physical machines in multiple data cen-

ters. Traditional monitoring services observe various parts of the system and emit alarms

when specific metrics exceed manually defined thresholds. Such alarms can trigger au-

tomatic actions, like scaling out, or even help administrators to identify and localize the

anomaly in the system. However, state-of-the-art alarm-based monitoring systems have

three important drawbacks:

1. Every layer and component is monitored and analyzed individually.

2. Fixed thresholds require expert knowledge and must be continuously updated.

3. Alarms usually mean that service quality is already reduced, which makes this

approach reactive instead of proactive.

For large-scale data centers, this can lead to continuously large amounts of false alarms.

Therefore, even with such static anomaly detection systems, it is time-consuming and

often impossible for human administrators to understand and handle every anomaly man-

ually. Aggregating alarms can reduce the number of alarms that need to be handled by

human administrators, but does not solve the underlying problem. The manual handling
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of alarms also suffers from the problem that the reaction time in an anomaly situation

is much higher than with an automatic system.

This thesis presents an alternative way of managing cloud platforms, which mitigates

the above problems by introducing the concept of zero-touch operations. The term “zero-

touch” in conjunction with “operations” implies that once the system is running, hu-

man intervention is not necessary, except when implementing changes such as version

upgrades. We envision a self-sustained, self-healing, closed-loop system that includes

self-monitoring and data-driven situation analysis to detect and also resolve anomalies.

Similarly to a closed-loop control system, the zero-touch operations system acts au-

tonomously to retain the system’s normal operation, while continuous self-monitoring

evaluates the success of executed remediation workflows.

Our approach exploits advancements in the field of machine learning and acknowledges

the complex, multi-layer nature of modern cloud systems. The resulting zero-touch cloud

operations system is a holistic, data-driven platform capable of monitoring, analyzing,

and automatically repairing all layers and components of the technology stack. The

collection of data describing the behavior of the entire cloud stack – i.e., from the physical

nodes up to the running service processes – is the basis of the proposed system. Then,

data mining techniques process the collected data and uncover hidden dependencies that

would otherwise be missed by humans, but often indicate anomalous behavior. As a

result, false alarms are reduced by not relying solely on thresholds of individual metrics,

but instead by analyzing the correlations between various metrics on all system layers.

Said correlations have the potential to reveal even more anomalies hidden in the data.

A self-healing cloud system has different use case scenarios, which vary based on the

cloud service model and the relationship between the cloud provider and the user. In

private cloud scenarios, where the maintainer of the service layer also owns the underlying

infrastructure, a single instance of the zero-touch architecture manages all system layers.

Private clouds have the most significant potential to find hidden anomalies and efficiently

resolve them, since the system has complete ownership over the monitored infrastructure.

In contrast, public clouds present a slightly different situation, where the zero-touch

architecture manages only a part of the cloud and the application. The cloud’s customers

own the upper layers and, usually, the service agreements prohibit the cloud provider from

monitoring or accessing resources owned by the customers. The zero-touch architecture

can still implement self-healing capabilities on the lower layers and offer an optional

service with privacy-related restrictions.

An important aspect of a self-healing cloud platform is its level of automation. When the

platform detects an anomaly: Is it allowed to restart components autonomously, or should

it merely notify an administrator and provide helpful insights? Our approach provides a
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small, comprehensive set of configuration values that control the automatic execution of

remediation workflows. This gives administrators full control over the self-healing system

and allows them to gain trust in its autonomous decisions.

1.1 Problem Statement and Challenges

Problem Statement: Design a practical self-healing cloud architecture for commod-

ity hardware that is able to monitor itself and the black-box software running within.

Based on the monitoring data, the system automatically detects and analyzes abnormal

behavior of any of the monitored components, and selects appropriate countermeasures

to remediate anomaly situations. Furthermore, the system gives human administrators

comprehensive control over the level of automation.

In the above statement, the term practical refers to the applicability of the architecture

in commercial or “critical” cloud platforms and applications – i.e., platforms where a mal-

function has financial repercussions, or worse. The focus on commodity hardware limits

the scope of this thesis to cloud platforms built on inherently unreliable, inexpensive

hardware components, instead of specialized appliances. We reify the problem statement

by defining three main requirements for our self-healing cloud architecture:

1. Scalability: All parts of the self-healing system must be scalable to a large number

of monitored components. The system must also be capable of dealing with a

changing size and topology of the cloud platform.

2. Extensibility: A self-healing cloud platform has use cases in many practical and

academic fields. The design of such a platform must account for extensions, since

new algorithms and monitoring data sources are likely to be added in the future.

3. Unintrusiveness: The resources for the involved data analysis tasks are limited in

two ways. On the one hand, the results of the analysis must be available fast enough

to make timely decisions regarding how to resolve an anomaly situation. On the

other hand, the data analysis tasks of the self-healing system must not interfere with

the actual workload of the cloud system, and therefore need a well-defined limit for

the incurred resource overhead. Furthermore, the self-healing system must adhere

to the restrictions imposed by the relationship between the provider and the user

of the cloud, especially regarding sensitive user data and data security.

Fulfilling the problem statement and the three requirements holds challenges in different

areas:

Algorithmic challenges. The elastic nature of cloud computing platforms leads to

frequently changing workloads and a highly dynamic resource utilization. Even

bug free software can exhibit unpredictable behaviors that highly resemble anomaly
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situations. The algorithms applied for anomaly detection and situation analysis

must deal with varying load situations and high similarities between normal and

abnormal behaviors. Furthermore, not all possible anomaly situations are known

beforehand, and labeled training data is likely not available since injecting artificial

anomalies or faults in a productive system is often unacceptable. Lastly, in order

to react to faults proactively, all data analysis tasks must work on unbatched data

streams and produce results with very low latency. This allows a timely selection

and execution of remediation workflows.

Architectural challenges. Since cloud platforms are deployed in large data centers, a

self-healing cloud platform must monitor and analyze an accordingly large number

of nodes and other components. It is crucial to design the data analysis in a

scalable way to allow the extension of the underlying cloud. Both the monitoring

and the data analysis must be unintrusive, meaning that the resource consumption

of both must be limited in order not to disturb the main workload of the cloud. An

additional challenge in the public cloud scenario is that customer services must be

regarded as black boxes, which limits the options for monitoring and remediation

workflows.

1.2 Main Contributions

The first contribution of this thesis lies in the systematic analysis of the problem space of

a self-healing cloud platform, as well as an abstract architectural platform design. Our

design is abstract in the sense that it can be applied to various cloud infrastructures,

such as private or public clouds, and to cloud services on different levels of abstrac-

tion. We address the requirements of scalability and unintrusiveness when discussing

the monitoring of a cloud platform, the analysis of the collected data, and the selection

and automatic execution of remediation workflows in anomaly situations. Our system

design allows administrators to define configuration values that determine the automatic

execution of remediation workflows.

The second contribution is the design of a data analysis engine that meets the require-

ments of our self-healing cloud system. It is not feasible to use a dedicated cluster for

data analysis, since streaming the monitoring data over the network consumes bandwidth

and increases the data analysis latency. Therefore, we analyze the data directly at its

origin – i.e., on the physical machines that also execute the cloud workload. Our in situ

(Latin for in place) data analysis engine implements hard upper bounds for the resources

consumed by the algorithms, in order to avoid disturbing the main cloud workload.

As third contribution, this thesis describes an adaptation of our abstract self-healing

cloud design for the scenario of a public Infrastructure as a Service (IaaS) cloud. We
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present ZerOps, an implementation of our self-healing cloud architecture, that also in-

corporates the in situ data analysis. In an experimental testbed we measure various

runtime properties of ZerOps. Finally, we discuss how the platform design fulfills this

thesis’ problem statement and the defined requirements, while using the experimental

results to quantify this evaluation.

Parts of the contributions of this thesis and the algorithms used therein have been pub-

lished in the following publications:

Architecture

1. Anton Gulenko, Marcel Wallschläger, Florian Schmidt, Odej Kao,

and Feng Liu

“A System Architecture for Real-Time Anomaly Detection in Large-Scale

NFV Systems”

in: Procedia Computer Science. Vol. 94. Elsevier. 2016, pp. 491–496

2. Saeed Haddadi Makhsous, Anton Gulenko, Odej Kao, and Feng

Liu

“High Available Deployment of Cloud-based Virtualized Network Functions”

in: International Conference on High Performance Computing & Simulation

(HPCS). IEEE. 2016, pp. 468–475

Algorithms

1. Anton Gulenko, Marcel Wallschläger, Florian Schmidt, Odej Kao,

and Feng Liu

“Evaluating Machine Learning Algorithms for Anomaly Detection in Clouds”

in: International Conference on Big Data. Elsevier. 2016, pp. 2716–2721

2. Anton Gulenko, Florian Schmidt, Alexander Acker, Marcel

Wallschläger, Odej Kao, and Feng Liu

“Detecting Anomalous Behavior of Black-Box Services Modeled with

Distance-Based Online Clustering”

in: International Conference on Cloud Computing (CLOUD). IEEE. 2018,

pp. 912–915
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3. Florian Schmidt, Anton Gulenko, Marcel Wallschläger, Alexander

Acker, Vincent Hennig, Feng Liu, and Odej Kao

“IFTM-Unsupervised Anomaly Detection for Virtualized Network Function

Services”

in: International Conference on Web Services (ICWS). IEEE. 2018, pp. 187–

194

4. Alexander Acker, Florian Schmidt, Anton Gulenko, and Odej Kao

“Online Density Grid Pattern Analysis to Classify Anomalies in Cloud and

NFV Systems”

in: International Conference on Cloud Computing Technology and Science

(CloudCom). IEEE. 2018, pp. 290–295

5. Florian Schmidt, Florian Suri-Payer, Anton Gulenko, Marcel

Wallschläger, Alexander Acker, and Odej Kao

“Unsupervised Anomaly Event Detection for Cloud Monitoring Using Online

Arima”

in: International Conference on Cloud Computing Technology and Science

(CloudCom). IEEE. 2018, pp. 278–283

6. Florian Schmidt, Florian Suri-Payer, Anton Gulenko, Marcel

Wallschläger, Alexander Acker, and Odej Kao

“Unsupervised Anomaly Event Detection for VNF Service Monitoring Using

Multivariate Online Arima”

in: International Conference on Utility and Cloud Computing Companion

(UCC Companion). IEEE/ACM. 2018, pp. 71–76

Monitoring

1. Anton Gulenko, Marcel Wallschläger, and Odej Kao

“A Practical Implementation of In-Band Network Telemetry in Open

vSwitch”

in: International Conference on Cloud Networking (CloudNet). IEEE. 2018

2. Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao,

and Feng Liu

“Automated Anomaly Detection in Virtualized Services Using Deep Packet

Inspection”

in: Procedia Computer Science. Vol. 110. Elsevier. 2017, pp. 510–515
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3. Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Alexander

Acker, and Odej Kao

“Anomaly Detection for Black Box Services in Edge Clouds Using Packet Size

Distribution”

in: International Conference on Cloud Networking (CloudNet). IEEE. 2018

1.3 Thesis outline

The remainder of this thesis is organized as follows:

Chapter 2 “Background” provides the necessary background to discuss the

idea of a self-healing cloud platform. First, we provide a historical and tech-

nical overview of cloud computing and its service models. Then we discuss

the aspect of dependability in distributed systems, including definitions and

techniques for fault handling that are important for defining a proper fault

model. Finally, the field of Autonomic Computing provides a framework of

terminology that puts the self-healing cloud system in perspective to related

and extended visions.

Chapter 3 “Related Work” discusses a body of work related to self-healing

cloud and computer systems and their components. The literature contains

several concepts and specific platforms for autonomic computing and self-

healing systems. The recently established term IT Operations with Artificial

Intelligence (AIOps) is increasingly gaining attention in the industry but

is not yet extensively covered by academic publications. Further topics of

interest are monitoring techniques for data centers and cloud platforms, and

distributed analysis of data streams.

Chapter 4 “Zero-Touch Operations” presents the first contribution of this

thesis: the systematically designed, abstract architecture of a self-healing

cloud system. We begin by discussing different areas of application for such

a system and derive a fault model that clarifies how the self-healing function-

ality co-exists and interacts with other typical components of modern data

centers. We then discuss the components of the self-healing cloud on differ-

ent layers of abstraction, starting from a high-level overview and continuing

down to a detailed analysis.

Chapter 5 “In Situ Data Analysis” describes our second contribution: the

design of a data analysis engine that fulfills the requirements of the self-

healing cloud. Instead of relying on a dedicated data analysis infrastructure,
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our system processes data in situ – i.e., directly where the data is collected.

Chapter 6 “ZerOps: A Self-Healing Cloud Platform” applies the abstract

design from Chapter 4 to the scenario of an IaaS cloud. As part of the third

contribution of this thesis, we explain all relevant design and implementa-

tion decisions. Further, we evaluate multiple aspects of our design in an

experimental testbed and discuss the results and the overall platform design.

Chapter 7 “Conclusion” concludes this thesis by summarizing our approach

and our results, and by pointing out directions for future research and further

improvements.
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Contents

2.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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The motivation behind a self-healing healing cloud system is to increase the de-

pendability through automation. This chapter provides the reader with the nec-

essary background to understand our approach and the underlying concepts. We

cover the field and technology of cloud computing, which is the domain of our

approach. The taxonomies of dependability lay a common ground for discussions

of faults, errors, and other related terminology. Finally, the field of Autonomic

Computing defines the concept of self-healing.

2.1 Cloud Computing

The National Institute of Standards and Technology (NIST) defines cloud com-

puting as:

“A model for enabling ubiquitous, convenient, on-demand network ac-

cess to a shared pool of configurable computing resources (e.g., net-

works, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service

provider interaction.” [118]

11
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Although the term cloud has been first mentioned and properly defined in the

late 2000’s, the vision of utility computing originates in the sixties [12, 138]. The

computer utility vision was to make computing power available to the public in

an affordable way, similarly to electrical power or the telephone service [12]. How-

ever, utility computing remained a more or less theoretical concept for a long

period. Academical approaches attempted to realize this vision in the eras of

cluster computing and grid computing, but ultimately only the advance of public

cloud platforms managed to make computing resources available to customers as

a utility. It is interesting to note which circumstances lead to the success of the

cloud computing paradigm around 2007. According to an analysis performed by

Fox et al. [56], it was a combination of easier payments for internet-based services,

a decrease in prices for electricity and data center housing, and the need for new

types of applications such as mobile interactive applications and big data analytics.

Around the advent of cloud computing, many researchers and companies published

taxonomies and surveys as an effort to define and standardize this new technology

[56, 80, 118, 147, 184]. At the same time, both open source cloud management soft-

ware, and public cloud providers working with closed source software, started to

evolve rapidly. The most commonly used taxonomy is the differentiation of cloud

service categories, based on how the abstraction level of the service compares to

the underlying hardware. Figure 2.1 shows the main stack of cloud computing

abstractions and service models. IaaS denotes a service model where cloud in-

frastructure is made available to customers in a self-serviced and elastic manner.

Cloud infrastructure includes VMs as compute resources, cloud data storage, and

virtual networks with common network functions to control the access to provi-

sioned VMs. The network functions cover access control through concepts similar

to firewalls, and often some commonly used functions such as load balancers or IP

address management. The PaaS model allows customers to execute software on

an agreed-upon platform, while hiding underlying details such as where and how

the platform is deployed, how many machines it runs on, where the data is stored,

and other aspects such as the reliability mechanisms of the platform. This model

offers customers a richer set of functionalities and an easier application deployment

process, but in return provides less flexibility for configuring the infrastructure and

platform layers. Finally, Software as a Service (SaaS) forms the upper layer of the

cloud stack and describes a service model where customers do not deploy their

own application software, but instead use the application that is entirely managed

by the cloud provider. These applications must be accessible remotely and usually

have a web-based user interface. Since a large number of applications fulfill these

requirements, SaaS offerings are far more numerous than services on the lower
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cloud stack layers.

Cloud Applications

Social networks, Office suites, CRM,

Video processing 
SaaS

Cloud Platform

Programming languages, Frameworks
PaaS

Cloud Infrastructure

Compute Servers, Data Storage,

Firewall, Load BalancerIaaS

Web Browser

APIs, IDEs,

Versioning Systems

Service 

Class
Main Access Tool Service Content

APIs

Figure 2.1: The cloud computing stack and service models [174] (p.14)

In more recent years, services associated with cloud computing have evolved rapidly.

Public cloud providers keep incorporating new trends of the IT industry into their

service portfolio, which go far beyond the original IaaS model. Depending on the

point of view, higher-level services can be associated with either the PaaS or SaaS

layers. As-a-service offerings that host specific software solutions include Database

as a Service (DBaaS) [41, 73, 75] for managed and elastic database storage, or more

generally Backend as a Service [39, 94], which covers both storage and backend

processing for mobile applications. Other cloud services are more domain specific,

like Sensing as a Service for Internet of Things (IoT) applications and smart cities

[140, 160, 183], or Machine Learning as a Service [16, 34, 146] for specialized or

general purpose data analysis and knowledge extraction tasks.

These services are subject to clearly defined SLAs between the service providers

and their customers. Failing to uphold these SLAs has direct financial repercus-

sions. For example, as of January 2020, most Google Cloud Platform services

entitle the customer to a refund of 10% when the service availability drops below
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99.9% during one month1. An availability below 95% results in a 50% refund.

The Amazon Web Services (AWS) Elastic Compute Cloud (EC2) service provides

slightly “stronger” SLAs2: A 10% refund is promised for an availability below

99.99%, a 30% refund below 99%, and a full refund of 100% below 95% availabil-

ity. The exact definition of “availability” differs amongst cloud providers, but is

usually reduced to a binary decision of whether the service is reachable or not. In

reality, cloud services can exhibit reduced service quality such as higher response

latency or resource starvation. Such degraded service states are usually not covered

by modern SLAs.

2.2 Dependability in Distributed Systems

Like any distributed system, or any computer system in general, cloud systems

suffer from reduced dependability due to faults, errors, and failures. Laprie defines

the dependability of a computer system as “the quality of the delivered service such

that reliance can justifiably be placed on this service” [95]. A more quantifiable

definition states that dependability denotes a system’s ability to avoid service

failures that are more frequent and more severe than acceptable [14]. Following

the common taxonomy of Laprie on dependable systems [95], a fault is a system-

internal event that puts the system, or an individual component, into a latent

error state. Once the service provided by the system deviates from the specified

characteristics in any way, the error manifests itself in a system failure.

The dependability of a system can be measured as a number of attributes. The

availability denotes the percentage of the system’s execution time, during which

the service was delivered correctly. The reliability is the likelihood that the

system performs failure-free for a given time, or in other words the average duration

until the system fails. Safety is the absence of catastrophic consequences for the

users of the system and its environment, integrity is the absence of improper

transitions of internal system state, and maintainability is the ability to undergo

changes such as modifications and repairs.

A systems dependability can be increased through techniques that are generally

classified into four categories. Through fault prevention, a system is constructed

in a way that faults are less likely to occur. Fault prevention techniques can reduce

the number of faults, but never entirely eliminate their occurrence. Therefore,

fault tolerance techniques are applied to prevent client-visible system failures

even in the presence of faults. In practice, this is the predominant strategy to

1https://cloud.google.com/terms/sla/
2https://aws.amazon.com/compute/sla/

https://cloud.google.com/terms/sla/
https://aws.amazon.com/compute/sla/
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increase the availability of a system. Fault removal techniques deal with local-

ization and reduction of faults and error states, and finally fault forecasting tries

to estimate the current and upcoming number and type of faults.

Figure 2.2 summarizes the main concepts related to dependability in a taxonomy

tree. In the context of cloud computing, the term system is rather ambiguous:

Depending on the point of view, it can denote the infrastructure managed by

the cloud provider, or additionally include the service software deployed on the

cloud. In fact, following the taxonomy of dependability, a system is recursively

composed of other systems, until an atomic system prevents further destructuring.

However, in this thesis, when not noted otherwise, the term system will refer to

what is perceived by a human end-user, namely the entire cloud stack including

the application.

Dependability

and
Security

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Figure 2.2: The tree of concepts related to dependability [14]

2.2.1 Reactive Fault Handling
Out of the four dependability means, fault forecasting and fault prevention can

be classified as proactive, while fault removal and fault tolerance are applied after

the fault and are therefore reactive. Fault tolerance is mainly achieved by masking

faults through redundancy in space or time. Redundancy in space refers to the

replication of a resource, so that a service can be fulfilled even when one of the

replicas has experienced a failure. Redundancy in time means retrying a request,
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resubmitting a job, or another form of duplication of the same behavior. While

retrying or resubmitting is the simplest form of redundancy in time, there are

more elaborate solutions that raise the probability of success. A typical technique

in this category is checkpointing: After experiencing a failure, a component or

subsystem is reset to an earlier state (or checkpoint) that was known to be error-

free. Afterwards, the original service is re-requested, or the previous computation is

resumed from the checkpointed state. Another example for “smart” retrying is the

circuit breaker pattern [126]. When the requested service of another component

fails repeatedly, the component is internally marked as failed. The next time

the service is required, it is immediately assumed to have failed, and a graceful

alternative or error handling mechanism is executed instead. This avoids lingering

resources and resource leaks, for example of timed out TCP connections or waiting

threads. The circuit breaker pattern decouples system components from each other

and prevents cascading failures. In regular intervals the failed service is marked

to be requested again, to find out whether it has recovered in the meantime.

On a more generic level that requires no involvement of the application software,

the most common fault handling strategy is to reboot a machine or restart a service.

A reboot is the most trusted way of reclaiming resources and bringing a system

back to a well-known and functioning state. Rebooting is easily understood by

administrators and users [29], and often fixes even pseudo-nondeterministic faults

that are hard to reproduce and to handle through other means. The drawback is

that the rebooted resource is unavailable during the time of shutting down, booting

up, and initialization, before the service can resume normal operation. Cloud

computing offers possible mitigation strategies for this through rapid elasticity

and replication. Due to the stateless nature of cloud-native applications, it is

often feasible to simply deallocate a failed resource entirely and rapidly provision

a replacement.

2.2.2 Proactive Fault Handling

Proactive fault handling necessitates a criterion that indicates the probability for

an active fault in the future. This is opposed to the fault detection in reactive

fault handling, because detecting actual non-dormant faults is usually easier and

more precise than predicting them.

The most common proactive fault handling mechanism in the cloud world is auto-

scaling [103]. When certain predefined thresholds for the load of an application

component are exceeded, the number of replicas for the component is increased

or decreased, respectively. The chosen thresholds attempt to optimize the trade-
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off between costly overprovisioning and reduced service quality due to overload.

Therefore, the main fault that auto-scaling tries to prevent is overload, which

could otherwise impact the service quality or lead to a crash. A major challenge

and research topic around auto-scaling is the definition of the underlying resource

thresholds [48, 107].

Grottke et al. have proposed an extension to the classical terminology of faults,

errors, and failures [67, 150]. The term symptom is introduced as a cause of an

error state that has not yet turned into a failure, but is causing “out-of-norm

behavior of system parameters as a side effect” [150]. Since symptoms manifest in

system parameters and metrics, they enable proactive fault handling by monitoring

said parameters. Gabel et al. use the term latent fault referring to periods of

degraded performance that precedes failures [57]. They report that 20% of machine

failures are preceded by such degraded states. Throughout this thesis, we refer to

symptoms and latent faults as anomalies.

2.3 Autonomic Computing

Due to dropping costs and rising computational capacity, computer systems are

evolving to perform more and more tasks with steadily decreasing human inter-

action. Different aspects of this property of computer systems are referred to

by multiple phonetically similar terms: automatic (or automated), autonomous,

and autonomic. The following disambiguation shows the differences between these

terms and defines how we use these terms throughout this thesis.

An automated system performs a fixed set of tasks automatically – i.e., in

a deterministic fashion, following pre-defined rules and conditions. No additional

intelligence is applied when selecting and executing an action, beyond the heuristics

implemented by the designer of the automated system. The automated system

continues functioning in the same way, regardless of changes in the environment

or external influences. The automated task can be arbitrarily complex and range

from simple time-based alarms to the execution of software integration tests, or

more complex robotic actions in factories or power plants.

On the other end of the spectrum, a fully autonomous system performs a task

entirely without human interaction, while continuously adapting to changes in

the environment. This term is often used in the artificial intelligence community,

since some form of intelligence is necessary to adapt to previously unknown circum-

stances. Typically, an autonomous computer system maintains a machine learning

representation of its surroundings and of the goal to achieve, and uses this repre-
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sentation to derive the optimal action in each situation. For an autonomous actor,

the communication with its environment and other autonomous actors within it,

play an important role. Research in the field of autonomous systems often draws

inspirations from biology and the human brain, since living organisms in nature

are prime examples of autonomous systems [177]. Following this description, au-

tomated systems are a subset of autonomous systems.

The term autonomic originates from the autonomic nervous system, which is the

part of the nervous system that acts unconsciously and controls many bodily func-

tions such as the heart rate or the digestive system. In the early 2000s, IBM used

this biological term to postulate autonomic computing, which laid the common

ground for numerous research activities striving towards the common goal of an

entirely self-managed computer system [59, 81, 89]. Autonomous and autonomic

computing have large overlappings in their general visions but emphasize different

aspects. Autonomous systems, on the one hand, mainly interact with their envi-

ronment and other autonomous systems within it, to reach a common goal. An

autonomic system, on the other hand, puts more focus on being self-aware and

self-managed, understanding what components and subsystems it consists of, and

what states these parts are in. An autonomous system usually strives to achieve

some functional, domain-specific mission in an optimal way, and optimizes less

towards non-functional requirements such as resource consumption, or upholding

SLAs. This, however, is exactly the main goal of autonomic computing: Ensure

that the domain-specific part of the system operates within designated boundaries

of metrics such as request latency, service availability, or cost. Depending on the

advancement of an autonomic system, these tasks require elaborate algorithmic

models that are on par with the requirements of autonomous systems.

A natural illustrating example for an autonomous system is a person that has

been given a task. That person autonomously interacts with other people and the

environment to fulfill that task. In the meantime, the autonomic nervous system of

that person monitors its bodily functions and ensures that the person can fulfill the

task under the best conditions. To fulfill its own function, the autonomic nervous

system does not communicate with anything external and focuses on its internal

domain only, while the autonomous person handles the actual “domain-specific”

task. This example shows how autonomous and autonomic aspects of one system

complement each other.

In the IBM vision for autonomic computing, any regular component of a computer

system is enhanced by a so-called autonomic agent. While this agent handles the

aspects of autonomic computing, the component itself implements the domain-
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specific functionality. The autonomic agent performs four core activities: self-

configuration, self-healing, self-optimization, and self-protection. As previously

noted, all these activities are primarily focused on understanding and managing

its own internal structure, state, and the state of its subsystems. In order to

implement these activities, the autonomic agent consists of high-level building

blocks as depicted in Figure 2.3. Sensors deliver monitoring data that describes

aspects of the managed element. The monitoring data can be numerical or of

some other format, but must ultimately be machine readable. Next, the collected

data is analyzed, a plan of action is created, and finally executed. Since the

sensors continuously deliver their data, the consequences of the executed actions

can be observed, and saved for future iterations. This closed-loop system allows

to continuously learn how the managed element behaves in different situations,

which is symbolized by the central knowledge extraction part. Together, the steps

Monitor, Analyze, Plan, Execute, and Knowledge form the MAPE-K loop [82].

Figure 2.3: The MAPE-K loop of autonomic computing systems: Mon-

itor, Analyze, Plan, Execute & Knowledge [82]



20 Chapter 2. Background

Levels of Automation

When working with automation, it is important to have a clear understanding of

the type and degree of the automated tasks. The literature contains a multitude

of models and taxonomies to describe automation [137, 169]. The idea of modeling

the interaction between humans and automated computer systems dates back to

the seventies, when Sheridan et al. discussed the interaction between divers and

underwater support systems [161].

Ganek et al. list five evolutionary steps before a system can be called fully au-

tonomic. In basic systems, the IT staff has to manually process monitoring data

from multiple sources and act accordingly. A managed system provides a consoli-

dated view over all components and an overview over all available data. A system

with predictive capabilities autonomously recommends actions, which the IT staff

reviews and approves. Finally, an adaptive system automatically acts according to

predefined rules, and a fully autonomic system acts based on high-level business

policies. Another white paper by IBM [83] contains one of the earliest holistic ar-

chitectural concepts of an autonomic, self-managing computer system. The white

paper describes five degrees of automation (ranging from manual management

to business-aware closed-loop self-management) and five control scopes on which

self-management can be incorporated (ranging from the sub-component level up

to an entire business). No specific methodologies or algorithms are mentioned to

actually implement these goals.

Parasuraman et al. propose a more general taxonomy of automation [137]. The

authors identify four basic functions performed by an automated system: infor-

mation acquisition, information analysis, decision selection, and action implemen-

tation. Each automated system performs these functions to a certain degree on a

scale that ranges from low to high. For decision selection and action implemen-

tation, Parasuraman et al. suggest ten levels of automation that range from no

assistance at all, over the suggestion of action alternatives, up to full automation

without any human interaction.

Of all taxonomies suggested to date, none have been generally accepted as a default

framework for describing levels of automation. Therefore, we do not strictly follow

any suggested taxonomy in this thesis. Instead, our approach is based on the

following idea: In the context of a self-healing cloud system, the main distinction

is whether the system merely suggests repair actions to a human administrator, or

automatically implements them.
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In this thesis we develop the architecture of a self-healing cloud platform. Similar

to the vision of autonomic computing, our approach depends on the following basic

building blocks:

• collection of monitoring data,

• analysis of the collected data and extraction of knowledge, and

• acting upon the analysis results.

This chapter presents a state-of-the-art review of these individual building blocks,

as well as of the surrounding fields of research and of existing systems with related

capabilities.

3.1 Autonomic Computing Platforms

The methodology introduced in this thesis describes a cloud computing platform

that implements a large part of the autonomic computing activities for a cloud plat-

form. The focus lies on self-healing, but self-configuration and self-optimization

21
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are tackled as well. Self-protection is out of scope, as the protection against at-

tacks on a cloud platform falls in the domain of internet security, and is handled

by dedicated security systems. We consider a self-healing cloud platform as com-

plementary to security systems such as Intrusion Detection Systems (IDSs).

Different approaches attempt to practically implement parts of the autonomic

computing vision for distributed applications. Before the elasticity of cloud com-

puting, Ardagna et al. proposed a Quality of Service (QoS)-driven scheme for

selecting and chaining web services [11]. This approach relies on dynamic redis-

tribution of resources between web services, which can be seen as a limited form

of the rapid provisioning of cloud platforms, and works solely on the application

layer. Similarly, Kephart et al. propose the use of abstract utility functions to

express the global goal of a system, and leave it to the system to achieve that

goal with the appropriate means [90]. Utility functions provide great flexibility

and expressiveness and are generally preferred over simple “action policies”, where

specific conditions are explicitly mapped to actions that must be executed. How-

ever, utility functions depend on domain-specific knowledge and are therefore not

applicable to cloud computing platforms with multiple independent tenants and

black-box workloads. Maurer et al. discuss extending the MAPE-K autonomic

computing loop to cloud architectures [113]. Their approach models SLAs in form

of resources requested from the cloud provider, and uses monitoring to detect SLA

violations. Although Maurer et al. explicitly model the virtualization layer of a

cloud infrastructure, they do not consider monitoring on lower physical layers [113].

All noted approaches have in common that the execution phase of the MAPE-K

cycle is either missing or not practically applicable. Therefore, we do not con-

sider this class of related approaches as closed-loop systems that really implement

self-healing capabilities.

3.1.1 Self-Healing Systems

Self-healing is the activity of an autonomic system that is closest related to the

approach presented in this thesis. According to Rodosek et al., a self-healing

system “can make by itself all necessary recovery steps to restore its disturbed

behavior to a specified mode of operation” [148].

Many systems and domains exhibit self-healing capabilities [143]. Networks of

embedded systems use reconfiguration and rerouting to ensure continuous con-

nectivity between critical components [64]. Experimental support for low-level

self-healing has been introduced on the operating system level, e.g., the reincar-

nation server for automatic restarts of applications in Minix 3 [78], or predictive
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self-healing in Solaris 10 [158].

Reflective middleware [91, 117] allows a form of meta programming through self-

representation: An abstract model of the entire distributed system is available to

all interacting components. Self-representation is the basis to enable self-healing

capabilities in middleware systems, such as OpenCORBA [96] and OpenORB [20].

The distributed service middleware OSIRIS-SR [155, 165] implements a peer-to-

peer scheme for mutual monitoring and fault handling. The peer-to-peer approach

makes this system exceptionally scalable and resilient due to the lack of a central

management entity. OSIRIS-SR mainly considers crash faults and migrations as

recovery strategy, but other faults and recoveries could likely be integrated in the

general scheme. Numerous other middleware approaches follow a similar approach

of online adaptation and dynamic composition of services [30, 120, 167]. All named

systems and approaches are either domain-specific, or require explicit adoption

by the application, and hence are not generically applicable for arbitrary cloud

applications.

In the area of High Performance Computing (HPC) and cluster computing, the

project HA-OSCAR [102, 131] provides high-availability capabilities that can re-

cover from crash faults. The different parts of a cluster, namely network, compute

servers and clients, are monitored through a simple polling mechanism, and redun-

dant standby resources automatically take over for failed components until they

are repaired. Such a classical high-availability setup works solely with crash faults

and imposes additional cost through standby replicas. Due to these limitations,

we do not consider such a system as fully “self-healing”.

The research field of computer immunology shows similarities to self-healing sys-

tems [26, 54, 55, 163]. Computer immunology borrows ideas from natural biological

immune systems and follows the goal to autonomously protect a system from ex-

ternal harmful influences, such as infections and viruses. Translated to distributed

computer architectures, malicious external influences are cyber attacks. The main

similarity between the concept of a computer immune system and a self-healing

system are design principles such as distributability, multi-layered, autonomy, and

adaptability [163]. Since a self-healing system attempts to deal with anomaly sit-

uations of mostly non-malicious origin, we consider computer immunology as an

aspect of computer security and therefore complementary to the approach of this

thesis.

Software rejuvenation [112, 170] is the process of periodically reinitializing running

applications to counter the effects of software aging [60, 100]. Software aging has
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been reported as the effect of potential fault conditions that accumulate over time

and lead to performance degradation, transient faults, or both [170]. The most

prominent example of software aging is leakage of resources, such as memory. The

reinitialization process runs either in an open-loop architecture – i.e., in regular

time intervals and without regard to the actual system state, or in a closed-loop,

which implies application monitoring and a policy that defines the condition for

triggering a rejuvenation process. We regard software rejuvenation as the sim-

plest form of self-healing. The self-healing cloud approach presented in this thesis

supports a closed-loop form of software rejuvenation without manual definition of

resource thresholds as trigger conditions.

Breitgand et al. propose a system that performs both design-time and run-time self-

healing for functional problems, concurrency bugs, and performance SLA violations

[24]. The authors do not provide details on the problem resolution strategy, and

the run-time remediation is limited to performance-related problems.

The Rainbow framework [61] defines a reusable high-level architectural scheme to

add self-adaptation capabilities to a system. Rainbow continuously observes the

managed system and maintains a dynamic graph-based model of relevant system

components. Designers of the self-adaptation capabilities define invariants based

on the information available in the abstract system model, e.g., that the response

latency of a web server must be below a certain threshold. Violated invariants

trigger remediation strategies, that are expressed in an imperative-style program-

ming language. Rainbow consists of many components that also make up the

self-healing cloud architecture suggested in this thesis. The main difference is that

the designer of the self-adaptation capabilities must explicitly define all invariants

and their exact mappings to appropriate remediation strategies. This does not

address unforeseen anomalies and fault situations, which frequently occur in a

complex system, such as a cloud infrastructure.

Cheng et al. present an architectural approach that allows multiple autonomic self-

management agents to cooperate in the management of supervised components

[35]. The approach is based on a common interface to the supervised components,

which exports measurements, resource discovery, and allows executing actions.

The common interface is used by all autonomic agents, which allows consistent

and coordinated management decisions. The resulting benefit is that multiple au-

tonomic agents can be used in a modular way, resulting in a flexible and extensible

architecture. The drawback of this approach is that all autonomic agents must

use the provided interface, which has limited applicability in systems with legacy

support for aspects related to self-healing, like auto-scaling or automated crash
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fault handling.

Kaiser et al. present their KX system [87], which is designed to add autonomic

capabilities to legacy systems. In order to support arbitrary software components

and architectures, KX uses the abstract notion of probes and gauges. While probes

collect data from the supervised system, gauges analyze the incoming data and

publish their results for consumption by a centralized controller, which in turn ex-

ecutes actions through effectors. This basic architecture is inspired by the general

autonomic computing loop and has a high resemblance to the approach proposed

in this thesis. However, Kaiser et al. do not explicitly account for the deep tech-

nology stack in modern cloud infrastructures, and ignore dependencies between

system layers and components. Furthermore, the KX system works with events

instead of continuous data streams, which makes it less applicable to other types

of input data and limits the types of usable data analysis algorithms.

Ad-hoc multi-owner systems, such as grid infrastructures or collaborating agents,

allow a bottom-up approach to self-healing [154]. Instead of a centralized or hi-

erarchical organization, every entity is responsible for its own operation and self-

healing capabilities. This extended self-organization is more scalable and allows

for more diverse problem resolution strategies but can also produce unpredictable

and chaotic results. Furthermore, the bottom-up approach is less applicable to

systems with a deep technology stack and shared virtual resources, such as cloud

environments. The complex inter-dependencies between different system layers are

unknown to atomic components of the system. For example, a VM is by design

isolated from its hypervisor and neighboring VMs, and therefore cannot properly

contribute to the remediation of problems on the physical layer.

In the architectural pattern of Embryo-ware, each component of a system can

dynamically switch between different roles as needed, depending on the current

situation [122, 123]. In the example of a standard three-tier web architecture, a

VM image would contain all software components necessary to execute the load

balancer, web server, or database, and act as one of these roles as needed based

on the load situation in the different tiers. We consider such capabilities as less

relevant in a cloud environment, since the elasticity of clouds allows to simply

replace a resource instead of converting it to another type.

3.1.2 Design-Time Self-Healing

Most self-healing strategies try to remediate problems that occur during the exe-

cution of an application or a system. However, since rigorous testing and robust
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application design are one form of design-time fault removal, that process can be

extended to automatically repair certain parts of an application’s source code. In

this case, anomaly detection is the process of finding programming errors, and

the remediation is the process of replacing faulty code with a corrected version

of equal functionality. Usually, developers of an application would perform these

tasks manually, but when the entire process is automated, it can be seen as part

of the self-healing system. Shehory implements such a scheme to automatically

resolve concurrency and functional problems in source code [159]. However, this

approach is not applicable generically to applications running on cloud platforms,

and we see it as a complementary strategy for making applications more robust.

3.2 Dependability in Cloud Computing Systems

Due to the distributed and multi-layered nature of cloud systems, traditional de-

pendability assessments and models from literature [25, 162, 180] are not directly

applicable to cloud systems. Several dedicated dependability analyses for clouds

[15, 42, 72] have been conducted to fill this gap. Similarly, existing reviews of

data center network failures [63] have been extended with a special focus on cloud

computing data centers [142]. Literature shows that causes for failures of services

deployed on cloud infrastructures are very diverse, and the root causes include

broken hardware, network errors, and software bugs. In addition, a high per-

centage of failures is caused by human error, misconfiguration and faulty upgrade

routines. However, cloud platforms offer stronger fault handling mechanisms when

compared to grid or cluster computing, partially due to the rapid elasticity and

the possibility to migrate live VMs between physical machines [27]. Generally, in

large and critical infrastructures, most bugs cause software to behave in a way

that leaves reboot or restart as the only means of restoring the system [25]. This

includes fault scenarios such as crashes, deadlocks, spins, or leakage of memory.

Researchers and software designers have devised many approaches to increase the

dependability of applications. Fault tolerance on the software design level [145]

greatly increases the resilience to unforeseen fault scenarios but is very costly and

requires a lot of discipline from the developers. No system can assume perfect

bug-free software, therefore higher-level mechanisms are used to stabilize applica-

tions. Specialized replication schemes can protect an application against so-called

byzantine faults: arbitrary faulty behavior and communication [32]. The Recovery

Oriented Computing (ROC) scheme focuses on reducing the “mean time to repair”

of atomic infrastructure components, such as network switches, in order to greatly

increase the overall availability [139]. A proactive strategy for protecting against
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fail-stop faults consists of proactive overprovisioning triggered by low-level health-

alerts [132]. The dependability of data storage can be increased through replication

and a distributed integrity assessment scheme [22, 23, 166]. Similarly, the relia-

bility of distributed computational jobs can be calculated and maximized even in

the presence of propagating failures [33, 156]. The concept of recursive restarta-

bility [29] describes an application design that minimizes the impact of faults and

therefore increases reliability and dependability of the application.

The listed approaches have in common that they solve individual problems on

different system layers but fail to consider the full technology stack of a cloud

infrastructure as a whole. Additionally, most academic approaches consider crash

faults only, while ignoring other degraded states that impact the service quality.

The following section covers more holistic approaches to IT operations.

3.3 AIOps Systems

The emerging paradigm AIOps extends traditional IT operations by methods from

recent advancements in the field of machine learning. The main idea is to overcome

current limitations in automation and monitoring systems through data-driven

techniques. AIOps systems attempt to support the administrator by presenting

digested information and by replacing the selection of repair actions and their

trigger conditions with machine learning algorithms. The research and advisory

firm Gartner, Inc. has coined the term Algorithmic IT Operations in 2014, which

they later renamed to AIOps. The official definition is as follows:

“AIOps platforms utilize big data, modern machine learning and other

advanced analytics technologies to directly and indirectly enhance IT

operations (monitoring, automation and service desk) functions with

proactive, personal and dynamic insight. AIOps platforms enable the

concurrent use of multiple data sources, data collection methods, analyt-

ical (real-time and deep) technologies, and presentation technologies.”

[62]

Even before the elasticity of cloud computing platforms, web services implemented

concepts for automatic reconfigurations based on service quality and system load

[101]. In the context of the cloud, auto-scaling is a commodity and has been

addressed by numerous approaches [101, 103, 107, 108, 149]. The predominant

approach is to use expert-defined thresholds for system resource utilization to trig-

ger the addition or removal of new replicas. Some approaches use more advanced
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models to predict the service workload and use it to infer resource utilization [149].

Based on above definition for AIOps, machine-learning-driven auto-scaling can be

seen as a form of AIOps platform, albeit limited to a very specific part of overall

IT operations.

The research community has only recently started to adopt the term AIOps [9,

43, 97, 110, 124]. However, this particular branch of the IT industry has seen an

explosive growth, and new products, open source projects, and service provider

companies continue to emerge. Gartner predicts that the percentage of large com-

panies actively developing and deploying AIOps platforms will grow from currently

5% to around 40% by 2022 [9]. Numerous industrial products advertise AIOps ca-

pabilities.

As with any industrial solution, the products on today’s AIOps market do not pub-

lish details on the underlying methodologies such as used machine learning models

and data processing strategies. Furthermore, in this fast-moving industry, products

are continuously extended by new features and methods. Moogsoft1 offers solu-

tions for ingesting monitoring data, reducing the number of alerts, finding the root

cause of correlated incidents, and finally enabling collaboration for problem resolu-

tion through an integrated platform. The underlying algorithms include clustering

and Long-Short Term Memory [79] for anomaly detection and data reduction, and

temporal or topology-based correlation techniques for probable root cause anal-

ysis [127]. User feedback on incident refinement and resolution can optionally

be incorporated to increase the future precision of the algorithms. However, the

publicly available information does not mention automatic infrastructure-level in-

cident resolution. The focus of the Moogsoft platform is to reduce and refine the

data presented to system administrators, while relying on the administrators to

use the presented information to quickly resolve the situation.

Other AIOps products have slightly different feature sets and focus on different

aspects. FixStream2 features a powerful auto-discovery of infrastructure and ap-

plications, but offers less analytical capabilities. BigPanda supports configurable

levels of autonomy for first-level responses to technical incidents3. Other products

such as DataDog4 focus more on application monitoring and provide integrations

with large numbers of widely used services. The list of related companies and

products can be continued, but to the best of our knowledge none of the currently

1https://www.moogsoft.com/product/
2https://fixstream.com/platform-capabilities/
3https://www.bigpanda.io/our-product/lo-autonomous-layer/
4https://www.datadoghq.com/product/

https://www.moogsoft.com/product/
https://fixstream.com/platform-capabilities/
https://www.bigpanda.io/our-product/lo-autonomous-layer/
https://www.datadoghq.com/product/
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available solutions claims to fully close the operations cycle by autonomically re-

mediating unforeseen anomalies.

3.4 Cloud and Data Center Monitoring

Today’s market offers a wide range of tools for monitoring data centers and cloud

infrastructures. On a high level, there is a differentiation between general-purpose

monitoring tools, and tools or services that specialize on cloud infrastructures.

General-purpose monitoring tools usually consist of data collection agents and

centralized components for storage and visualization. Examples include Nagios

[17], Zabbix [136], Collectd5, and Ganglia [111]. These tools are usually open

source and support monitoring infrastructures and services on both private and

public infrastructures and clouds. Many tools offer some limited support for stor-

age, analysis and visualization of the collected data, but additional specialized

software is often used for these tasks. Most of these tools are not designed for im-

mediate, low-latency processing of the collected data. Therefore, the collected data

is recorded with high sampling rates of above one second and must be retrieved

asynchronously from a database for further analysis.

Monitoring tools specialized on cloud infrastructures are either offered directly by

public cloud providers, or integrate with specific Application Programming Inter-

faces (APIs) of public clouds or open source cloud operating systems. Examples

include CloudWatch from Amazon AWS [8], AzureWatch6, Monitis7, LogicMoni-

tor8, and PCMONS [44]. Since many of these tools are commercial and not open

source, they usually offer rich visualizations and dashboards, but varying data

analysis and alerting capabilities.

Surveys of the cloud monitoring field report that only a small number of mon-

itoring platforms and services are able to monitor service dependencies [52] or

autonomously act in case of anomalies and fault situations [3]. Along with deeper

statistical analysis of the data, these capabilities are required for a self-healing

cloud platform. Monitoring in cloud computing systems has special requirements

due to the multitude of system layers and stakeholders, and high elasticity and

dynamism of the overall system [38]. Data can be collected on the physical in-

frastructure layer, and on various levels of the virtualization and service software.

Furthermore, the service provider and the clients have different requirements and

5https://collectd.org/
6http://www.paraleap.com/azurewatch
7http://portal.monitis.com/
8http://www.logicmonitor.com/

https://collectd.org/
http://www.paraleap.com/azurewatch
http://portal.monitis.com/
http://www.logicmonitor.com/
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views on the data [125]. More specialized approaches in the field of cloud mon-

itoring target monitoring specifically for enforcing security properties [66], or to

associate monitoring data from multiple distributed data sources with a single

client request [85].

Newer research emphasizes the growing complexity of data centers and recom-

mends to integrate data from supporting systems, such as cooling, lighting, or

power supply, with higher-level data collected from the actual software compo-

nents into a full-stack data analysis [98, 99]. The domain of data center monitor-

ing generally covers deeper parts of the overall infrastructure than monitoring of

the software and services [129]. However, the state-of-the art for analyzing this

monitoring data is still based on predefined thresholds and alarms [5].

Aside from infrastructure-level and network-related metrics, data from the

application-level delivers important insights about the health of the running ser-

vice. Application-specific metrics include request latency, error rate, throughput,

or the latency of downstream requests. For comparability, some of these metrics

can be normalized by job size. Several approaches suggest using such application-

specific data for optimizing various aspects of cloud-based services, such as scale-

outs or the service quality [38, 144, 157]. However, relying on application-specific

metrics is not generic and is only applicable in a subset of real-world scenarios. A

more generic approach is to use resource utilization data from the guest operating

system to infer the state of hosted applications [49]. This approach still requires

an agent with elevated privileges running inside all guest VMs.

3.5 Data Analysis Platforms

A major part of our self-healing cloud architecture consists of analyzing monitor-

ing data obtained from the supervised system. This data analysis has certain re-

quirements that increase the responsibility and resilience of the entire self-healing

cloud platform, such as low-latency processing of data streams, scalability, and

low resource consumption. Many academic approaches and industrial products

are capable of analyzing data streams, but only few meet these requirements.

The research direction of Big Data focuses on analyzing data with volumes that are

not possible to process on a single machine [58, 115, 179, 187]. The characteristics

of Big Data are described by the “HACE” Theorem: Big Data starts with large-

volume, heterogeneous, autonomous sources with distributed and decentralized

control, and seeks to explore complex and evolving relationships among data [58].

Platforms for Big Data implement different programming models with varying fea-
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tures and levels of flexibility. Googles MapReduce platform [36, 46] implements

massively parallel execution of the well-established map-reduce model which al-

lows data transformation through a user-defined map() operation and subsequent

aggregation through a user-defined reduce() operation. This simple abstraction

allows users to express and implement a wide variety of algorithms, such as the

K-Means clustering algorithm [186]. Other widely used platforms support more

general data processing workflows on batches of data (e.g., Spark [181]), or both

batch and stream-wise processing (e.g., Stratosphere [6] or Asterix [18]). Such

platforms usually offer high abstraction levels for data processing. On the one

hand, these abstractions allow concise representation of the data analysis opera-

tions, and on the other hand they allow the platform to optimize the underlying

transportation and computation of the data. Other platforms are optimized for

graph mining algorithms [88]. All big data platforms have in common that they

assume complete ownership of the underlying compute resources. This assump-

tion enables many built-in optimizations, such as colocation of data and processing

operators, or optimized scheduling of the job processing graph.

Astrolabe [171] is a hierarchical system for storing and aggregating highly dis-

tributed data records. All participating nodes form a distributed tree structure,

where dynamic data records are stored in the leaves. Users of Astrolabe submit

an SQL-like query syntax to describe a desired aggregation of the data. The query

is propagated downwards through the tree, and the aggregation results are then

computed in parallel and returned to the user. The design of Astrolabe is based on

a randomized peer-to-peer protocol for robustness. The hierarchical and scalable

approach of Astrolabe is similar to the data analysis architecture proposed in this

thesis, but limited to aggregations, and not directly applicable to continuously

updated streams of data. Compared to big data platforms, however, Astrolabe

offers more potential for co-existence with other workloads.

Intanagonwiwat et al. have proposed directed diffusion, a communication paradigm

for scalable data aggregation, where the data and the processing workload is hi-

erarchically distributed [84]. While the main use case for directed diffusion is

communication within sensor networks, the underlying concepts are similar to As-

trolabe and generally applicable to any distributed system. The main difference

between directed diffusion and Astrolabe is that the former is specifically designed

to handle data streams, which could be emitted by a surveillance camera or other

sensors. The TAG (Tiny AGgregation Service) [105] system builds on similar con-

cepts as directed diffusion, but offers a simpler, declarative interface for describing

user queries.
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Amongst the proposed platforms for monitoring or managing computer systems,

only few include a data processing strategy specifically designed for this use case.

Moore et al. propose Splice, a knowledge plane for data centers that couples static

and dynamic metrics of various infrastructural elements with physical meta infor-

mation, such as location and energy consumption [128]. Splice relies on a relation

database for storage and query-based analysis of collected data. The data collec-

tion itself is designed for extensibility and scalability, but ultimately all data must

be transported and stored in a centralized storage system, which limits scalabil-

ity and data analysis latency. Dean et al. propose to use residual resources for

analyzing data that is collected on the hypervisors of a cloud data center. The

analysis is performed by VMs with special scheduling constraints to avoid over-

utilization of the hypervisor resources by the data analysis. These computational

VMs are live-migrated to other hardware when utilizing too many resources. This

approach of residual data analysis is similar to the in situ data analysis strategy

presented in this thesis, but suffers from very coarse-grained scheduling, because

each computational VM is responsible for all data gathered on one hypervisor.
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Distributed systems suffer from various causes for potential outages or reduced

service quality, including software aging, resource leaks, version mismatches, and

hardware problems. These problems are exacerbated in modern distributed sys-

tems, which are usually built on a deep technology stack and include multiple

layers of virtualization. System administrators, that are responsible for the de-

sign and maintenance of critical computer systems, carefully select and test the

components, their versions and compatibilities. However, performance anomalies,

overload situations, and failures of individual components can never be entirely

eliminated in the design phase of a computer system. The sheer number of inter-

acting entities causes unforeseen situations that need to be resolved to ensure a

high level of service quality.
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When a task, which is traditionally performed by a person or a team, exceeds

human capabilities, the natural solution is to implement automation. Automation

plays an important role in the field of network and system administration. Depend-

ing on the number and nature of automated tasks, the function of a system can

range from supporting humans to being fully self-organizing and self-maintaining.

Typical automation systems consist of binding trigger conditions derived from

monitoring data to certain actions. These conditions are static; examples include

predefined thresholds for resource usage, the results of a service-layer probe, or

network latency measurements. Actions that are bound to such trigger conditions

range from simple notifications, over auto-scaling, up to more complex workflows

that include migrations, version updates and reconfigurations. Such automation

tools suffer from the following limitations:

• Trigger conditions, including threshold values, must be chosen manually,

• automation is limited to a set of predefined actions that do not cover unfore-

seen situations, and

• automated actions usually recover from a situation, instead of preventing it

(reactive instead of proactive).

We propose the concept of zero-touch operations as an extended automation plat-

form that mitigates these limitations. The term zero-touch does not have a widely

accepted and well-defined meaning in the computer science community and IT

industry. Intuitively, it means that human interaction (or human “touch”) with

a system is not only reduced, but entirely eliminated. In practice, of course, a

computer system that operates without ever requiring any human interaction is

neither possible nor desired. Therefore, we consider techniques and approaches

under the umbrella zero-touch as efforts aiming to reduce human interaction with

a computer system. We define zero-touch operations as the capability of a com-

puter system to autonomously manage itself and continuously uphold predefined

operational goals, even in the presence of anomalies and faults.

The objective of the zero-touch operations system has large overlaps with self-

healing in autonomic computing. In order to continuously uphold operational

goals, any anomaly or fault must be detected and handled, which is a form of

self-healing. Therefore, we use the terms zero-touch operations and self-healing

interchangeably in this thesis. A successfully running zero-touch operations system

makes regular human interaction with the platform unnecessary. An administrator

merely defines the goals of the platform, which is usually to execute a given set

of services within given service quality constraints. Further interaction is only

necessary when these goals must be changed, or when the system fails to resolve
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a situation automatically.

The remainder of this chapter introduces our architectural concept that serves

as a blueprint for a practical self-healing cloud system and strives to fulfill the

“zero-touch” promise. In Section 4.1 we give an overview over the zero-touch

architecture, discuss how it can be applied on different layers of the cloud stack,

and define a fault model. Section 4.2 covers the architecture in more detail. Finally,

Section 4.3 describes the data analysis tasks and algorithms that play a central

role in the system design.

4.1 The Zero-Touch Operations Loop

Figure 4.1 visualizes the high-level control loop of our zero-touch operations sys-

tem.

Zero-Touch 
Operations Loop

Zero-Touch 
Operations Loop

Zero-Touch 
Operations Loop

Zero-Touch 
Operations Loop

Automation

Data Analysis

Open Data Ingestion Topology Discovery

Visualization

Figure 4.1: High-level view of the zero-touch operations control loop

Open Data Ingestion

The Open Data Ingestion component is the basis for

extracting knowledge about the supervised systems,

and for any automated reasoning and decision making.

Cloud platforms usually include a variety of monitoring

systems, out of which we prefer those, that produce low-latency and high-frequency

time series data. Other types of data can be leveraged as well, such as event or

logging data. As with any type of data analysis, the success of the later algorithms
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highly depends on how well the modeled data represents the observed system. The

more detailed the monitoring data, the more knowledge can be distilled from it.

Topology Discovery

Besides ingesting data, the zero-touch platform depends

on a dynamic and up-to-date view of all system com-

ponents and their dependencies. This task of Topology

Discovery captures all accessible system layers, and the

vertical and horizontal dependencies between the components. These dependencies

are initialized and continuously updated from a number of data sources. Managers

of virtualized resources are able to provide this kind of information. The cloud

operating system knows where it schedules its virtual machines, and what vir-

tual networks they are connected to. A management system for containers (such

as Kubernetes) has similar information, but on another layer of the technology

stack. We mine these information sources and combine them into one knowledge

repository.

Data Analysis

The Data Analysis component of the zero-touch control loop

consists of algorithms that ingest the collected data in real-

time and produce more high-level information about the

state of the monitored components. The high-level infor-

mation includes detected and predicted performance anomalies, localization of the

anomaly root cause, and the selection of an appropriate remediation workflow to

handle the anomaly situation. Cloud platforms and applications can exhibit very

dynamic and unpredictable behavior, which is exacerbated by the high dimension-

ality of the analyzed data streams. Therefore, we leverage advanced statistical

methods, and techniques from the field of machine learning, in order to represent

such data streams and extract the knowledge contained in them. To produce ac-

curate results, the algorithms continuously learn and improve their models of the

data. Machine learning algorithms that work in a supervised or semi-supervised

fashion obtain the ground truth from two sources:

1. The feedback loop through the streamed monitoring data (including domain-

specific service quality measurements), and

2. input of a human expert.

The monitoring data contains information about the success of a remediation work-

flow, which allows to draw conclusions about the performance of all data analysis

tasks. Algorithms for anomaly detection are expected to operate fully unsupervised

by building a baseline model of the observed data and signaling deviations from it.

Occasionally, a human expert might intervene and manually flag an anomaly that
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remained undetected, or, on the contrary, notify the system about an expected

anomaly situation in case of a software update, reorganization or migration of ser-

vices, or similar external conditions. The process of notifying the self-healing plat-

form about external conditions can also be automated. For example, a Continuous

Deployment (CD) server knows about planned version updates and can cooperate

with the zero-touch platform to avoid false anomaly alarms during update periods.

An important aspect of the Data Analysis component is that most of the process-

ing is done directly on the hardware resources where the data is collected. The

opposite approach, which relies on dedicated external compute resources for the

analysis, leads to overhead in terms of network traffic and impacts data analysis

latency. To achieve a scalable execution, yet extensive and precise results, the data

analysis runs in multiple stages that build atop one another. Lower analysis stages

cover individual components, while higher-level stages cover groups of components

and finally the entire system. Since lower stages forward intermediate data analy-

sis results to higher stages, the data granularity decreases progressively, while the

analysis context is enriched through additional components. The richer analysis

context allows to perform root cause analysis and to correlate alarms from multiple

components in case of anomalies that propagate through the system. Chapter 5

introduces the design of the in situ data analysis engine that meets these require-

ments.

Automation

Visualization

In the last component of Figure 4.1, Visualization & Au-

tomation, the self-healing functionality interacts with the

monitored system and human administrators. The selec-

tion and execution of automated remediation actions closes

the control loop that started with the monitoring of the

cloud platform. The algorithmic challenge of the Automa-

tion component is to learn the most effective remediation workflows when encoun-

tering anomaly situations over time. The execution of such workflows must be

strictly controlled in order to avoid further deterioration of the anomaly situation.

The workflow execution engine provides important feedback to the workflow se-

lection, including the execution time of the workflow and whether the workflow

was executed successfully. The remediation workflow selection uses the feedback

data to learn and improve the selection process. A User Interface (UI) compo-

nent gives visual insights about the decisions of all involved algorithms, and allows

administrators to insert their own expertise to improve the models.

The set of available remediation actions, and the flexibility of how they can be

combined, controls the level of automation of the self-healing system. Different



38 Chapter 4. Zero-Touch Operations

deployment strategies favor different levels of automation. The most conservative

configuration disables any intrusive remediation workflows and limits the platform

to the visualization of suggestions and data analysis results. This configuration

eliminates many benefits of self-healing. Intermediate levels of automation allow

the automatic execution of selected remediation workflows when the decision mak-

ing process reports a high confidence in the results. A high confidence value means

that there is a high probability to make the optimal decision in the current situ-

ation. Finally, the highest level of automation gives the system complete freedom

over the selection and execution of remediation workflows. The key aspect to a

practical zero-touch operations system is comprehensive control over the level of

automation.

4.1.1 Zero-Touch Across System Layers

The exact layout of the zero-touch architecture depends on the system layers it

manages. The more layers and components are integrated with the self-healing

system, the more data can be analyzed and the better the remediation workflows

can be selected and coordinated. In other words, a more holistic view of a system

enables a more complete closed-loop control. In this thesis, we assume that a

provider offers cloud services on different abstraction layers to its customers, who

execute their own software on top of the provided cloud stack. Figure 4.2 shows a

selection of cloud services typically offered by modern cloud providers. The higher

the level of the offered service, the more parts of the technology stack are managed

directly by the cloud provider.

In traditional IaaS platforms, customers usually configure virtualized compute

nodes, storage resources, and networks, and deploy their own applications on top

of these resources. This makes it challenging to collect performance metrics and

gain insights from the services owned by the customer. However, modern cloud

platforms offer more high-level abstractions that allow customers to describe their

application as a graph of replicated containers, which are scheduled and maintained

by the cloud provider. Going even further, serverless Lambda computing is a

paradigm that gives the cloud provider complete freedom over the execution of

the customer’s code. Here, customers submit their applications in the form of

numerous small source code or deployment artifacts. In such scenarios, the cloud

provider “owns” the entire system stack from the bottom to the very top and has

access to a big variety of monitoring information and remediation workflows.

We envision a service model where the customer has the option to book self-healing

capabilities for cloud services of any layer. The cloud service provider, on the other
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Figure 4.2: Layers of a cloud system and associated cloud services. Note:

OS virtualization (also called container virtualization) in the IaaS model

is commonly encountered both on the provider and on the customer side.

hand, benefits from the zero-touch operations system for all technology layers that

are not directly managed by the customer.

For the sake of simplicity, the remainder of this chapter refers to the customer-

owned part of the technology stack as the service layer, regardless of the actual

cloud service model. In the traditional IaaS model, the service layer equals the

entire operating system and software inside of virtual machines; in the PaaS model

it refers to software running on the provided platform; in the serverless computing

model, the service layer is limited to compact software modules managed entirely

by the cloud platform.

Technically, the zero-touch operations architecture is not limited to the scenario of

a cloud provider offering services to a customer. On the one hand, the zero-touch
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paradigm is also applicable to an entirely self-hosted and self-managed computer

infrastructure, from the hardware up to the service software. This scenario gives

the data analysis algorithms the most holistic view on the system and the most

freedom when composing remediation workflows. It is, however, increasingly rare

in practice, due to the success of the public cloud service model. On the other

hand, customers of cloud services can opt to deploy their own self-healing system

running entirely outside of the scope of the cloud provider. This confines the zero-

touch functionality to the customer-managed parts of the technology stack, while

the cloud provider is entrusted with managing the lower layers only.

One important property of cloud services is that the concern of providing the cloud

infrastructure, and the concern of maintaining the service layer software, are dis-

tinct and can be handled by unrelated parties. This assumption, however, does

not always hold in practice: The layers of a cloud architecture are highly interde-

pendent and some anomaly scenarios can be remediated or prevented by collecting

and analyzing monitoring data across all system layers. Due to these complexities,

a cross-layer self-healing system promises to be more effective. Examples for prob-

lems that span over multiple layers include misconfigured hypervisors that reduce

the performance of the service layer, or VMs that overutilize a virtual resource

and starve co-located VMs.

Although a self-healing system can integrate with different parts of the technology

stack, the basic principles of the architecture and operations remain the same.

While available data sources and possible remediation workflows change, the com-

ponents and interfaces binding the two together, can be reused.

4.1.2 Fault Model

In this section we categorize the types of faults that the zero-touch operations

system aims to handle. In other words, we define the fault model. Avizienis et al.

provide an extensive framework to categorize faults and failures [14]. We utilize

this classification framework to increase the comprehensiveness of our fault model.

The effect of a fault is a failure. Avizienis et al. define three big classes of failures,

which are service failures, development failures, and dependability failures. The

focus of the zero-touch system is the autonomic operation of a service, therefore we

do not handle development failures. Dependability failures are defined as causes

of service failures, therefore we consider service failures only.

Since the actual impact of a service failure is highly specific to the respective sys-

tem, the categorization of such failures is rather abstract. The main differentiation
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is the domain of a failure, which can be one of the following:

Content failure: The content of the information delivered by the service deviates

from its specification.

Timing failure: The response time or another timing aspect of the service devi-

ates from its specification.

Halt failure: The system’s activity can no longer be perceived by clients – i.e.,

the system becomes unreachable or unresponsive.

Erratic failure: The service does otherwise not comply to its specification, e.g.,

by sending information without being requested to do so.

Many application-specific mechanisms exist to detect and recover these failure do-

mains. Zero-touch functionality operates in a service-agnostic fashion and does not

aim to replace these failure handling mechanisms. Instead, the goal is to prevent

failure conditions by detecting changes in the internal behavior of an application,

before it results in an externally visible failure. We call such behavioral changes

anomalies. The main precondition to detect anomalies is that they manifest in

observable data. Therefore, an autonomic self-healing system cannot prevent fail-

ures that are not preceded by any observable behavioral changes whatsoever. In

case of timing or erratic failures, the failure condition can continue long enough to

allow data-driven detection and recovery. In case of halt failures, service-specific

mechanisms must subsequently recover the situation. Therefore, the zero-touch

operations system complements such traditional dependability measures, instead

of completely replacing them.

Besides a categorization of failures, Avizienis et al. define a classification framework

for faults. Figure 4.3 lists the eight elementary fault classes that allow to classify

the origin of a fault based on a number of criteria. The classes marked in red are

the ones that are explicitly out of scope of the zero-touch operations system. In

the remainder of this section we explain each decision, and how the excluded fault

classes should be handled in practice.

Regarding the Phase of creation or occurrence, the zero-touch operations platform

is mainly concerned with faults that occur during the operation of a system. How-

ever, the origin of such faults often lies in the development phase, such as with

software bugs that are introduced by developers and remain dormant until their

activation at run-time. Self-healing explicitly aims to remediate situations caused
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Faults

Phase of creation

or occurrence

Development faults

[occur during (a) system development, (b) maintenance during the use phase, 

and (c) generation of procedures to operate or to maintain the system]

Operational faults

[occur during service delivery of the use phase]

System boundaries

Internal faults

[originate inside the system boundary]

External faults

[originate outside the system boundary and propagate errors into

 the system by interaction or interference]

Phenomenological cause

Natural faults

[caused by natural phenomena without human participation]

Human-Made faults

[result from human actions]

Dimension

Hardware faults

[originate in, or affect, hardware]

Software faults

[affect software, i.e., programs or data]

Objective

Malicious faults

[introduced by a human with the malicious objective of causing harm to the system] 

Non-Malicious faults

[introduced without a malicious objective]

Intent

Deliberate faults

[result of a harmful decision]

Non-Deliberate faults

[introduced without awareness]

Capability

Accidental faults

[introduced inadvertently]

Incompetence faults

[result from lack of professional competence by the authorized human(s), 

or from inadequacy of the development organization

Persistence

Permanent faults

[presence is assumed to be continuous in time]

Transient faults

[presence is bounded in time]

Development faults

[occur during (a) system development, (b) maintenance during the use phase, 

and (c) generation of procedures to operate or to maintain the system]

External faults

[originate outside the system boundary and propagate errors into

 the system by interaction or interference]

Malicious faults

[introduced by a human with the malicious objective of causing harm to the system] 

Deliberate faults

[result of a harmful decision]

Natural faults

[caused by natural phenomena without human participation]

Hardware faults

[originate in, or affect, hardware]

Figure 4.3: Elementary fault classes defined by Avizienis et al. [14]

by software bugs, but possible countermeasures such as reboots, simple reconfigu-

rations, or version rollbacks, can never completely eradicate the bug: That must

be done by human developers. The platform plays a supportive role in that task

by pointing out bugs in versions of software components, where an anomaly situa-

tion keeps reappearing regularly. Avizienis et al. extend the class of Development

faults by including faults that originate from system maintenance (see “(b)” and

“(c)” in Figure 4.3). Such faults are hard to distinguish from regular operational

faults, and we therefore consider them as operational faults that are covered by
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self-healing.

External faults are out of scope for the zero-touch operations platform, since com-

munication with external systems is application-specific, and related error handling

must be built directly into the application software. Similarly, situations resolved

by a self-healing platform are directly or indirectly caused by humans. Natural

phenomena such as physical deterioration or natural disasters cannot be fully re-

solved without human intervention. The same mostly applies to hardware failures.

Techniques like masking the outage of a hard disk are out of scope, as described

above.

Malicious and deliberate faults lie in the domain of computer security and are

handled by systems like firewalls or IDSs. Just as with traditional techniques

for enhancing availability and reliability, we consider our zero-touch operations

platform to be complementary to security systems, instead of replacing them.

From the point of view of the zero-touch operations platform, there is no reason

to distinguish accidental from incompetence faults, since the impact of the fault

remains the same. Finally, both transient and permanent faults are handled,

because both fault classes can potentially manifest in the observable behavior of

the application.

This section described how a self-healing platform complements other techniques

for ensuring dependability and security. This multitude of management compo-

nents introduces complexities of its own, such as potentially contradicting recovery

routines or management decisions. Currently, this problem must be solved through

careful engineering, but in the future such complementary systems might merge

into one instance that manages all dependability, autonomicity, and security as-

pects of an application. Such a symbiosis would be one further step towards truly

autonomic computing.

4.2 Detailed Architecture

The zero-touch operations architecture is an extension to the classical cloud in-

frastructure. Typically, a human administrator is responsible for receiving alarms,

understanding and investigating them, and finally acting on them, when necessary.

The components of the zero-touch architecture mimic this workflow and make use

of machine learning techniques wherever it is necessary to learn from historic data

or human input. Figure 4.4 shows how the components of the zero-touch architec-

ture interact with the traditional cloud infrastructure.
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Figure 4.4: Interactions of zero-touch operations platform components

with the cloud infrastructure. The zero-touch components are placed on

the right side of the diagram in a different color than the cloud infras-

tructure on the left side.
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Virtual Resource 
Managers

The core of the cloud platform are the Virtual Resource Man-

agers. This umbrella term denotes all public and private cloud

technology providers and their respective services. The cloud

services span over all system layers, from simple virtual ma-

chines, up to domain-specific software solutions. Examples

for Virtual Resource Managers suitable for private clouds in-

clude OpenStack, Docker and Kubernetes, while public cloud

providers include Amazon AWS and the Google Cloud Plat-

form. Users of such cloud services typically rely on continuous

delivery systems such as Jenkins to automatically build, test and deploy their sys-

tems. An interaction with the continuous delivery system allows to automatically

roll back to previous versions of the user system in case of detected anomalies or

repeated failures.

Remediation 
Workflow Executor

An important component for the zero-touch architecture is the

Remediation Workflow Executor. Its responsibility is the reliable

execution of remediation and/or repair actions on the monitored

resources. Several systems, such as StackStorm1, are openly

available to fulfill this task. Depending on the underlying cloud

technology, different remediation workflows are available. For example, when work-

ing with a bare IaaS platform, the VMs can be restarted, scaled up or down, or

migrated to a different hypervisor or cloud region. Similar actions are available

when the user application is running in containers instead of VMs. Working with

higher-level services enables service-specific remediations, such as service restarts,

reconfigurations, or changes in the load-balancing strategy. An open execution

engine such as StackStorm allows users of the zero-touch operations platform to

implement user-specific remediation workflows. This increases the platform’s flex-

ibility.

External Monitoring 
Systems

StatsD

Open Data 
IngestionAlarms

Data 
Streams

Traces

The bottom left corner of Figure 4.4

symbolizes the main sources of informa-

tion used by the zero-touch components.

Many monitoring systems are available

and widely used in existing cloud infras-

tructures. The type and properties of the

data sources have a big impact on the per-

formance of the data analysis and remediation action selection. Real-time data

streams can be analyzed with low latency, in order to deliver fast, high-frequency

1https://docs.stackstorm.com/overview.html

https://docs.stackstorm.com/overview.html
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results. This allows to rapidly detect and remediate local anomalies that do not

require further offline processing and have a limited scope. To guarantee good anal-

ysis results, the data must actually contain a valid representation of the system

state. However, a richer data stream also leads to more overhead when transport-

ing and analyzing the data. Besides time series data, other types of data include

events and traces. Events, also called alarms, are produced by monitoring systems

and typically rely on fixed thresholds for metrics, which are predefined by human

administrators. A big problem in traditional data center monitoring systems is

the large number of alarms that are produced and must be handled by admin-

istrators. Trace data consists of application logs or high-frequency events that

constitute state transitions of the application, including the timing characteristics

of said transitions. The Open Data Ingestion converts all types of input data to a

common internal data format, which can be analyzed coherently.

Topology Discovery

The second source of information is a dependency model of the

application and infrastructure topology. In most cases, the in-

terconnections between different system components are so nu-

merous, that it is not possible to manually create and maintain

such a model. The automated topology discovery component lo-

cates and aggregates dependency information from multiple sources and represents

them in one consistent graph structure. The resulting graph structure allows to

query for neighbors, cliques or similarities between components, which are used by

different data analysis algorithms, but mainly for root cause determination. Sec-

tion 4.2.1 describes how dependency information can be obtained automatically,

and how it is represented in a graph structure.

In Situ
Data Analysis Engine

Data Analysis
Implementation

Machine 
Learning

Libs

The in situ data analysis engine orchestrates distributed

data analysis processes, which in turn consume the

available data to learn and to produce knowledge about

the state of the observed system. The in situ property

of the data analysis means that data is not transported

to a dedicated processing infrastructure, but is instead processed as close to its

origin, as possible. Other requirements of this data analysis engine include scala-

bility to support analysis of large numbers of data streams, extensibility to cope

with rapid advancements in the field of machine learning, and bounded resource

usage to minimize the impact on the actual cloud workload. Chapter 5 describes

the design of this data analysis engine, which is the second contribution of this

thesis.

The actual algorithms performing data preprocessing, anomaly detection, root
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cause analysis, and finally decision making, are subject of active research. Sec-

tion 4.3 proposes a portfolio of data analysis techniques that fulfill the require-

ments of the zero-touch architecture. Our basic approach is the following: An

efficient anomaly detection is performed per atomic system component, then a

more resource-intensive anomaly classification categorizes the situation, before a

multi-layered Root Cause Analysis (RCA) pinpoints the origin of a propagated

anomaly. Finally, all available remediation workflows are assessed based on col-

lected knowledge from workflow executions in the past.

The data analysis pipeline produces system state events that contain all informa-

tion needed to select a proper remediation workflow. This includes the following

information:

• The target component for a remediation workflow

• A confidence value that describes the aggregated probability of correct deci-

sions by all data analysis steps

• Assessment scores for each workflow that describe its quality in the given

situation

The latter two pieces of information allow the administrator to configure the sys-

tem’s level of automation as desired. Section 4.3.6 describes the detailed configu-

ration mechanism behind selecting and executing remediation workflows.

4.2.1 Modeling the System Topology

A good understanding of the monitored system is crucial for any self-healing ar-

chitecture. After detecting the anomalous state of one or multiple components,

it is important to analyze their dependencies, group correlated anomaly events,

and determine their probable root cause. This requires detailed information about

the connections and dependencies between the system components. Besides the

data analysis, the system topology is also used by other parts of the zero-touch

architecture. When optimizing the scheduling of data processing tasks, the data

analysis engine requires information about the network proximity between data

sources and potential data processing hosts. When planning and executing reme-

diation workflows, the execution engine requires knowledge about the dependencies

of hypervisors, virtual machines and services. For example, when the selected re-

mediation action is to restart a hypervisor node, all VMs and services running on

it are migrated to other nodes before executing the restart. Other workflows that

benefit from detailed topology information include reconfiguring a load balancer,

scaling a service up or down, and a coordinated rollback of the version of a software
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component.

The collection of topology and dependency information must be automated. De-

pending on what system layers are managed by the zero-touch architecture, the

number of components and dependencies can be very high, and the resulting de-

pendency graph very dynamic. Automated topology discovery agents run on rele-

vant parts of the infrastructure to detect updates and push them into a logically

centralized graph database. This database must be distributed, scalable, and ac-

cessible by all zero-touch components. Despite the automated run-time updates

to the topology database, the stored model cannot be assumed to always perfectly

represent the current system state. When a topology discovery agent detects a

change in the system topology, it must process the new information and store the

resulting update in the database, which causes a delay.

Due to the logically centralized nature of the topology database, the number of

updates that can be performed per time interval is limited, and only data with a

certain longevity is stored there. Metrics that change with high frequency, such

as the throughput or latency of a network connection between two services, are

covered by the real-time data streams produced by monitoring systems.

Figure 4.5 shows an excerpt of a topology graph covering hypervisor nodes, virtual

machines and containers running in the VMs. The graph is directed and the

nodes and relations are annotated with key-value properties that help data analysis

processes navigate through the graph. The shown example graph is stored and

visualized by Neo4j, a graph database that is used by the prototypical ZerOps

platform presented in Chapter 6. The visualized nodes represent hypervisors, VMs,

containers, as well as the dependencies between them, within an actual testbed

containing the prototype.

The basic system layers form a directed, acyclic graph, i.e. a tree, through re-

lations like “runs-on” or “is-divided-into”: A cloud site is divided into availability

zones, which contain several hypervisor nodes, which host a number of VMs, which

execute containers, and so on. These relations form the vertical dependencies.

Adding horizontal dependency information breaks the acyclic property of the graph.

Horizontal dependencies mainly represent network connectivity between hosts on

different layers. On the hypervisor layer, physical networks and virtual overlay

networks form a network topology that is reflected in the dependency graph. On

the VM layer, there are two types of connections. On the one hand, virtual tenant

networks form a topology similar to physical networks. This topology is usually

rather static and changes only when components are added or removed from the
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Figure 4.5: Excerpt of a topology graph. Brown: hypervisors, light

green: VMs, pink: containers. In the middle: virtual networks and

availability zones.

deployment. On the other hand, actual communication patterns between services

indicate how the services depend on each other. This part of the topology is

more dynamic and resembles a call graph between the different services and their

running instances.

The various parts of the dependency graph are based on information from different

sources:

Vertical dependencies between physical and virtual hosts, containers, and ser-

vice instances are obtained from virtual resource managers, such as cloud operating

systems. In order to evenly balance the workload and deliver a high-quality expe-
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rience to the users, the cloud operating system maintains a clear mapping between

hypervisor nodes, virtual machines, and higher-level services like PaaS offerings,

containers, virtualized network functions, and so on. This dynamically updated

mapping forms the base of the dependency graph. Any additional information

provided by the cloud operating system is annotated within the graph, in the form

of properties attached to nodes or relations. These properties include the allocated

resources for virtual machines, the VM state and age, as well as any available meta

information about the hypervisor nodes.

The physical network topology forms the horizontal dependencies between

hypervisor nodes. Inference of network topologies is an ongoing field of research

[74]. Existing topology inference tools for local networks are generally based on

standardized tools like traceroute [86, 116]. Modern Software Defined Network

(SDN) based networks are managed by a “network operating system” that contains

a complete view of the entire physical network. Similar to querying the cloud

operating system, this management entity delivers the most holistic view on the

network topology. In case of faults on the network layer, additional diagnostics

and topology inference tools are necessary.

The virtual network topology horizontally connects virtual machines. Users

of IaaS cloud platforms directly or indirectly manage their virtual tenant net-

works. When using high-level PaaS offerings, networks are usually automatically

configured by the cloud provider. In both cases, the cloud operating system al-

ways delivers an up-to-date view on the virtual network configuration. However,

while this information gives an idea about what VMs and application have the

possibility to exchange packets, it does not provide an accurate view on the actual

communication topology. More detailed horizontal dependencies can be obtained

by analyzing virtual firewall access rules. The best practice for firewall rule

configuration is to be as restrictive as possible: In the optimal case, only expected

traffic is actually allowed. Such firewall rules often include filters based on the

communication partner - e.g., by virtual subnet or port number. Analyzing such

well configured rules results in a more detailed service dependency graph without

having to access and parse actual network traffic. An example for a firewall ser-

vice that supports such an analysis are security groups in the OpenStack cloud

operating system.

The network call graph Network traffic analysis is one way to obtain actual

communication patterns between services. Deep Packet Inspection (DPI) is a

technique to extract detailed information from captured network packets. While

this technique can deliver a complete and continuously updated picture of the
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network communication patterns, it has several drawbacks and is rarely used in

productive systems. The main difficulty is the resource demand for analyzing high

bandwidth network streams. This problem can be mitigated by sampling from the

network, instead of analyzing all packets, but for complex virtualized networks

this delivers a rather incomplete picture. Another technique for obtaining the

actual network communication graph is to query the SDN switches that make up

the virtual network fabric. Physical and virtual switches can be instructed to

store high-level statistics about traffic on the network flows that they transport.

While not acceptable in all deployments, this approach provides the necessary

information with manageable overhead.

4.3 Data Analysis Pipeline

This section presents the design of our algorithm pipeline that solves the data

analysis tasks of the zero-touch architecture. For most parts of the algorithm

pipeline, we use techniques that were developed specifically for the zero-touch

operations platform. For other parts, we apply existing techniques to our use case.

Due to the fast advancements in the area of machine learning algorithms, new

techniques will likely be proposed in the near future, that might provide properties

better suited for the intended practical application. Therefore, an important design

goal behind the algorithm pipeline is to separate the individual parts by clean

interfaces and keep all parts interchangeable.

4.3.1 Overview

Figure 4.6 shows the individual data analysis steps of our approach. The design

goal behind this pipeline is to keep each step interchangeable. The data exchanged

between the steps is defined in an abstract way that allows using different specific

algorithms.
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Figure 4.6: The data analysis pipeline of the zero-touch operations sys-

tem
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Anomaly
Detection

st at

The anomaly detection step receives a stream of sam-

ples st ∈ R
n, where n is the number of metrics that

are delivered by the monitoring systems for a given

component. For each sample, the anomaly detection

computes a binary result in {0, 1} and a confidence value in [0, 1[. The statistical

confidence describes how likely it is that the computed result is correct. The out-

put of the anomaly detection is a tuple consisting of the analyzed component, the

input samples, the binary anomaly flag, and the confidence of the decision.

Anomaly
Classification

Knowledge 
Base

at

Base

asi

The anomaly classification receives the output of the

anomaly detection but remains dormant as long as no

anomaly is detected. Once an anomaly is reported, it an-

alyzes the current situation and tries to classify it based

on a database of historic observations. The output of this

classification is an anomaly class. The anomaly class rep-

resents a class of potentially recurring anomalies that lead

to similar behavior of the anomalous component. By it-

self, this class identifier has no meaning that humans can

interpret, but administrators can choose to associate a la-

bel with the identifier that clarifies its origin or impact. For example, a common

class of recurring anomalies are memory leaks, so an administrator could assign

this label to an anomaly class that exhibits slowly rising memory usage. However,

this label is for human-readability only and not evaluated algorithmically. Certain

labels with clear behavioral patterns (such as memory leaks) could be assigned or

suggested automatically, but we leave that out of the scope of our approach. If the

anomaly classification encounters an entirely new anomaly, or if it cannot clearly

classify the situation, it creates a new anomaly class identifier and reports a pre-

viously unknown situation. The anomaly classification also computes a statistical

confidence of its decision, similarly to the anomaly detection step. The resulting

confidence is the product of the anomaly detection and anomaly classification con-

fidence values, and therefore represents the probability of a correct data analysis

so far.

In addition to these results, the anomaly classification outputs an aggregated rep-

resentation of the state of the anomalous component. This aggregation includes a

distribution of the most recent data stream and other features that were extracted

from the data during the anomaly classification. At this point the in situ data

analysis is finished and the analysis results are potentially transported over the

network. The data aggregation avoids transporting a history of the entire data
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stream. At the same time, the data stream analysis is concluded as well, and the

remaining steps operate on the basis of events. In Figure 4.6, this is indicated by

asi and wfi, which have an i as index instead of a t: Events are identified by their

index, while elements of a data stream are identified by time. We call the events

emitted by the anomaly classification Anomaly Situation events, and they contain

all information available at this point: the affected component, the anomaly class,

the analysis confidence, and aggregated data describing the components behavior

right before the anomaly.

asi

RCA

Dependency 
Model

RCARCARCA

asi

asi

The next analysis step is the RCA, which receives

Anomaly Situation events. This step is outside of the

in situ execution, which means that it receives input

events from a number of associated components. The

view on multiple components allows to correlate situa-

tions in different components in order to decide where

the problem originates. In systems that are too large

for a single RCA instance, a hierarchical RCA provides

better scalability. To achieve this, the system must be divided into a logical hi-

erarchy of RCA domains. Data center sites, server racks, or availability regions

are good candidates for such groups of tightly coupled components. Continuing

up the system hierarchy, the VMs on a hypervisor can be grouped as well. The

output of the RCA are again Anomaly Situation events, except that RCA for-

wards these events only for the component(s) that it considers the origin of the

anomaly. This common interface also allows short-circuiting the RCA component

in simpler setups that assume that anomalies do not propagate and are handled

on every component individually. When the RCA computes a confidence value for

its decision, it multiplies that value with the received confidence value to maintain

an aggregated confidence for the entire data analysis pipeline.

Workflow
Assessment

Workflow
ExecutionsExecutions

asiwfi

The final part of the data analysis is the workflow as-

sessment. Based on the anomaly class, this step looks

up a list of remediation workflows that have been ex-

ecuted in the same situation before. Every workflow

exhibits a collection of key criteria that describe as-

pects like its success, execution time, or impact on

the service quality. Based on these values, the as-

sessment step computes a score for every available

workflow. The final output of the data analysis is a Workflow Execution Request,

which contains the target component, the confidence of the data analysis pipeline,
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and the computed scores for all workflows. Section 4.3.6 describes how the system

selects a workflow based on that information.

4.3.2 Anomaly Detection

Anomaly
Detection

st at

The anomaly detection step receives a live stream

of metric data and enriches it by a binary anomaly

detection flag and a statistical confidence. The main

requirement for this step is to function in an unsu-

pervised fashion and to have a low resource consumption. Most fitting algorithms

realize this by creating a normal behavior model based on the observed data and

without any labeled training data. The underlying assumption is that most of

the time, all components behave normally, and that statistically, anomalies occur

rarely. In case of an anomaly, the algorithm detects a deviation from the normal

behavior model. It is important to note, that load changes (both seasonal and

exceptional) should not be interpreted as anomalies. We identify multiple strate-

gies to avoid such false positives, which are described in the next section. After

detecting an anomaly, the model continues to adapt to the incoming data stream,

although it might stay in the anomaly state for a while. Eventually, the anomaly

will be remediated. If the remediation works as expected, the time the component

spends in anomaly state is short and has a low impact on the model, compared to

the normal behavior data that is constantly collected. The same applies when the

anomaly is transient and resolves itself after a short period of time.

Handling False Positives

When a component permanently changes its behavior, this change does not rep-

resent an anomaly, but a change of its normal behavior. Examples for such an

event include upgrades to a new software version, or permanent reconfiguration

of the application. From the point of view of the anomaly detection, such events

highly resemble anomalies, although they are expected, and the self-healing system

should not try to remediate the situation. Such false positives can also occur for

shorter time intervals, for example due to seasonal load variations or rare events

during the systems normal operation.

When there is no way to algorithmically tell the difference between an anomaly

and normal state change, the anomaly detection relies on external knowledge to

correct its false positive decisions. Many anomaly detection algorithms support

such external feedback, which allows them to learn from wrong decisions and

improve their false positive rate. The following sources of external knowledge are
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available to the anomaly detection:

Human administrator Asking for human input is the safest way to tell whether

the system is running normally or not. In conservative or critical setups,

where wrong decisions could lead to catastrophic results, this would be an

acceptable strategy, but it mostly strips the self-healing system of its auto-

nomic features. Section 4.3.6 describes our approach for deciding whether

to add a human into the loop, or to automatically execute a remediation

workflow.

Input from the Development Process Modern development processes use

CD servers to automate the task of testing, building and deploying appli-

cations. By listening for events, such as upgrades of individual services or

other maintenance activities, the anomaly detection determines when the be-

havior of a component is expected to deviate. After an upgrade event, the

algorithm will observe the changed components for a period of time to build

a stable model of its new normal behavior.

It is possible that the application consumes more resources after an upgrade,

due to an introduced bug. We consider this a development fault (see Section

4.1.2), and therefore not the responsibility of the anomaly detection. If the

buggy behavior of the application remains constant over a longer period of

time, we consider it the new “normal” behavior, until the developers of the

software resolve the problem.

System Load Metrics Variations in client-induced load are the main drivers for

changing resource consumption of a service. For different services, the usage

of different resources correlates in certain ways with the number of client re-

quests. For example, a computation-intensive HTTP-based service might lin-

early increase CPU utilization with the number of requests, while a database

server would generate disk access as well. The load level is represented as

a metric such as client-requests-per-minute; When the algorithm

detects an anomaly while the value of client-requests-per-minute

is higher than previously observed, it can deduce that it is simply observ-

ing a higher load than before, and avoid flagging an anomaly. This way,

the algorithm builds different normal behavior models for different values of

client-requests-per-minute.

It is important to note that this strategy assumes rather specialized services

that generate a consistent resource consumption pattern for different load

levels. Traditional monolithic applications perform a variety of tasks with
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different resource usage impacts, that are hard to represent as a single metric.

However, an application constantly working at a certain capacity will still

produce a consistent resource usage pattern over a sufficient time span. When

a single metric does not adequately represent the system load, multiple load

metrics are used for more precision. For example, the load of a database is

better represented by separate metrics for read and for write requests.

When no application-specific load metric is available, we use the incoming

network traffic as a fallback. Since requests to services are sent over the

network, the number of received packets or bytes is an approximation for the

number of client requests.

Subsequent Analysis Results When the anomaly detection emits an alert,

follow-up analyses are launched to provide further insight into the situa-

tion. These analyses can be more resource-intensive, since they are executed

less frequently than the anomaly detection. As such, they often produce a

more accurate classification of the current situation, including the possibility

that the situation is, in fact, not an anomaly. In case of such a result, the

appropriate feedback is propagated back to the anomaly detection in order

to refine the model that produced the false positive result.

IFTM-based Anomaly Detection

We have contributed to the development of Identity Function Threshold Model

(IFTM) – an anomaly detection algorithm designed specifically to fulfill the re-

quirements of the zero-touch operations platform [151]. Figure 4.7 visualizes the

IFTMs approach, a combination of IF (Identity Function) and TM (Threshold

Model).

In the context of IFTM, an identity function ξ : Rn → R
n attempts to reconstruct

each input sample st ∈ R
n based on a model that represents the history of the

data stream. Reconstruct means that the data point is first compressed into a

latent data space, and then decompressed back into the original representation.

The operations for compression and decompression share an underlying model

that represents the history of the observed data stream. By carefully selecting

the compression and decompression algorithms, and the training procedure of the

underlying model, the reconstruction can adapt to the data stream over time.

As long as the incoming data points resemble one another, the reconstruction

works well. Data points that deviate from the history of the stream result in a

reconstruction error : a distance between the input data point and the result of the
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Figure 4.7: The basic principle of IFTM-based anomaly detection

reconstruction. A high reconstruction error indicates a deviation from the normal

data points in the stream, and is therefore interpreted as an anomaly. In other

words, given a data point st ∈ R
n, the identity function computes a reconstruction

value s′
t
= ξ(st), where s′

t
∈ R

n. Based on s′
t
, a reconstruction error ∆ can be

computed using the Euclidean distance:

∆ = ||st − s′
t
||2 (4.1)

The identity function ξ adapts its internal model in order to minimize the recon-

struction error iteratively over time:

argmin||st − ξ(st)||
2 (4.2)

The second part of IFTM, the Threshold Model, decides what reconstruction er-

ror must be exceeded in order to report an anomaly. The threshold adapts to the

reconstruction error over time, depending on how well the identity function repre-

sents the data stream. The more the reconstruction error exceeds the threshold,

the higher the confidence of the anomaly detection.

Figure 4.8 shows an example of the principle behind IFTM-based anomaly detec-

tion. Four normalized input metrics form the input for the identity function and

the threshold model. The computed reconstruction error and the threshold can be

plotted to get a good visual understanding of the development of the data stream.

In the example, the reconstruction error exceeds the threshold for a period of time,

which is reported as an anomaly alert.
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Figure 4.8: Example visualization of an IFTM-based anomaly detection

The IFTM approach allows to select individual algorithms to implement the iden-

tity function and the threshold model. Schmidt et al. evaluate multiple possible

identity functions [151]. Autoencoders are neural networks that first compress the

input data into a smaller number of neurons, before decompressing it into the

original representation. This combination of a compression and a decompression

function makes them a natural candidate for the IFTM identity function. By

using Long-short term memory (LSTM) neurons [79], the network additionally

represents a notion of time that is capable of capturing trends and seasonalities

in the data. An alternative approach uses online clustering algorithms such as

BIRCH [185], which creates a memory-efficient summary of a continuous high-

dimensional data stream. Spherical clusters form around the observed data points

and separate normal from abnormal regions in the value range [68]. The identity

function then consists of mapping an incoming data point to the closest existing
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cluster. For further algorithmic details and evaluations we refer to [71, 151, 152,

153].

Since the IFTM approach to anomaly detection works entirely unsupervised, it

fulfills the main requirement to be used in the zero-touch architecture. Regarding

limited resource consumption, this approach generally offers high efficiency, but

also depends on the specific underlying identity function. The IFTM approach is

robust against changes of the processing frequency. This means that in high-load

situations, the algorithm can drop intermediate processing requests to reduce the

overall resource consumption in exchange for a better data analysis latency.

4.3.3 Anomaly Classification

Anomaly
Classification

Knowledge 
Base

at

Base

asi

The task of the anomaly classification is to observe an

anomalous component and determine, whether the cur-

rent anomaly has been previously observed. The goal is

to use this knowledge to select an appropriate remediation

workflow based on “experience”. This mirrors the behavior

of administrators in a similar situation: The first step is to

classify the situation (e.g., “The service is experiencing a

memory leak”), the second step is to choose an appropriate

countermeasure based on experience (“In the past, reboot-

ing the VM has helped to resolve this”). Since anomaly

classification does not continuously analyze data streams, it does not have the

same strict requirement of low computational overhead. A bounded processing

time is still beneficial for a timely remediation of anomalies.

We have contributed to the approach of density grid mapping, which we leverage

for the purpose of anomaly classification [4]. Density grid mapping consists of two

steps, as visualized by Figure 4.9.

Figure 4.9: Steps of the density grid mapping approach for anomaly

classification [4].
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First, we load a part of the time series data that describes the behavior of the

anomalous component directly before the anomaly. This data consists of samples

st ∈ R
n, where n denotes the number of collected metrics. The high-dimensional

value space R
n of that data is then partitioned into a defined number pn of grid

cells. Every resulting grid cell is assigned a weight, which equals the number of

input data points that lie within the bounds of that cell. The result is a density

grid that represents the behavior of the component at the respective point in time.

A series of density grids is called a grid pattern and summarizes the components

behavior right before the anomaly was observed. Figure 4.10 shows four exam-

ples for two-dimensional density grids with color-coded weights. The shown grids

were recorded while injecting different anomaly situations at the same observed

component.

(a) Scenario: CPU

overload

(b) Scenario: High

memory usage

(c) Scenario: CPU

overload, high me-

mory usage

(d) Scenario: Fast me-

mory leak

Figure 4.10: Examples for two-dimensional density grids based on the

usage of the CPU and main memory. The underlying resource usage

data was recorded during different anomaly scenarios [4].

The second step of the density grid pattern approach calculates a fuzzy similarity

value between the grid pattern of the current anomaly situation and all historically

recorded grid patterns for the anomalous component. The similarity calculation

is fuzzy since it is unlikely that two anomaly situations lead to the exact same

behavior. The fuzziness allows for small differences and behavioral deviations,

while still yielding larger similarity values for grid patterns that resemble each

other in their form and magnitude. The final output is a list of previously recorded

anomaly situations that resemble the current ongoing anomaly. The combination

of these recorded situations represents the anomaly class, while the confidence of

the algorithm is derived from the fuzzy similarity values. For further details and

evaluations of the density grid pattern approach, we refer to [4].
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4.3.4 Root Cause Analysis
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The purpose of the RCA component is to pinpoint the

origin of an anomaly, in case multiple components ex-

hibit anomalous behavior within a short time interval.

This task involves combining anomaly situation events

to correlated groups. In other words, both the input and

the output of the RCA are streams of anomaly situa-

tion events, but the output events are possibly filtered

or grouped. The RCA can hold off anomaly situation

events for a period of time in order to verify, whether another correlated event will

arrive in the near future. Since both the anomaly detection and the anomaly clas-

sification deliver results annotated with a level of confidence, the RCA component

can use that information to weigh the received information, or to partially ignore

it.

For reasons of scalability, the RCA works hierarchically: Each instance of the RCA

has a number of components in its scope, which it is responsible for analyzing.

In case a clear identification of the root cause is not possible, the request for

further analysis of the situation is forwarded to a higher level RCA instance that

is responsible for a larger number of components. The hierarchy of RCA instances

is constructed depending on the structure of the underlying cloud platform.

The most trivial implementation of RCA is one that simply forwards all incoming

anomaly events unchanged. This allows to use the remaining parts of the zero-

touch operations system under the assumption that anomalies do not propagate

between system components. As a result, it is possible, that more remediation

workflows will be executed than necessary to resolve each problem. We consider

such a “no-op” RCA as a valid choice for non-critical systems: The self-healing

functionality eventually brings the system back to a normal state, but the addi-

tional remediation workflows have a higher impact on the application software,

and possibly the service quality.

Nguyen et al. have proposed an approach for online RCA that relies on the times-

tamps of anomaly events and the dependencies between anomalous components

[133]. We leverage this approach as a simple RCA with low resource overhead.

Upon receiving an anomaly event, we wait for further events for a predefined

amount of time. The received events are then ordered by time and split into

groups, based on the proximity of the anomalous components on the dependency

topology graph. The resulting groups are not directly connected in the dependency
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graph, which makes it unlikely that the anomaly has propagated between them.

For every such group, the earliest anomaly event is reported as the root cause.

Although this approach considers both the anomaly timing and the system topol-

ogy, it fails to correctly identify the root cause when the symptom of a fault is

detected before its origin. More recent advancements in the field of RCA do not

rely solely on the order of anomaly events [40, 178]. Instead, these approaches

try to determine how the behaviors of the different components influence each

other. A high correlation (computed by correlation measures such as the Pearson

correlation coefficient [19]) between the resource usage metrics of two components

indicates an interdependence between the two components. Since this interdepen-

dence is based on actually observed data during the anomaly situation, it is more

reliable than the static information in the dependency graph. Anomalous com-

ponents, that have a high interdependence with many other components, have a

higher chance of being the root cause.

Unfortunately, such approaches are computationally expensive and require the

centralized collection of data from all involved components. As of the time of

writing, to the best of our knowledge, there has been no contribution that proposed

a truly scalable and practically applicable approach to solve this problem. We

expect further developments in this field.

4.3.5 Remediation Workflow Assessment

Workflow
Assessment

Workflow
ExecutionsExecutions

asiwfi

After the anomaly detection, anomaly classification,

and RCA, the final step is to assess each remediation

workflow in the current situation. We formulate this

task the following way: Given a set of alternative

remediation workflows, each annotated with a set of

criteria, assign a workflow score WS ∈ [0, 1[ to each

workflow.

The WS value represents the expected effectiveness of the workflow in the given

anomaly situation. A value of WS = 1 is not allowed because a probabilistic

assessment can never be entirely certain. The workflow with the highest WS value

is regarded as the optimal decision. An optimal decision cannot be made based

on a single criterion alone. For example, while the success rate of a remediation

workflow is important, other factors such as the execution time or the impact on

the service quality should be considered as well. We define the following criteria

that characterize each workflow in the context of an anomaly class:
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Remediation success rate. The share of total executions of this workflow that

lead to a resolved anomaly.

Execution success rate. The share of error-free executions of this workflow, re-

gardless of whether the anomaly was resolved.

Execution time. The average time from starting the remediation workflow until

its completion. It is possible that the anomaly is not yet remediated during

this time – i.e., the remediation workflow might take some more time to show

its effect.

Mean time to repair (MTTR). The average time from starting the remedia-

tion workflow until it resolves the anomaly. This value is undefined if the

anomaly is not actually resolved by the workflow.

Complexity. A static value that represents the complexity of the workflow. This

can be expressed in the number of individual steps that are needed for the

execution. A higher workflow complexity is generally associated with a higher

failure probability and longer execution time. While failure probability and

execution time are also measured individually, the complexity is a predefined

criterion that is available even prior to the first execution of each workflow.

It is therefore an important criterion early during the system bootstrapping.

Service quality impact. An average value that expresses how strongly the work-

flow disturbs the affected component. Even in the presence of anomalies, the

component possibly still delivers its service, and a remediation workflow such

as a restart might disrupt that. This criterion implies that the service quality

can be measured.

Number of executions. The number of times a remediation workflow has been

executed in the past. A higher number means a richer experience, and should

therefore be preferred when other criteria values are high.

Please note that some of these criteria favor small values (e.g., mean time to

repair), while other criteria favor large values (e.g., remediation success rate). This

difference in significance must be considered when implementing the assessment.

We leverage existing methods from the field of Multiple Criteria Decision Mak-

ing (MCDM) [173] to implement the computation of the WS value for each reme-

diation workflow. The following two sections introduce the weighted sum model

and the TOPSIS method for solving MCDM problems. We use one of these two
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methods, depending on the available amount of historical data. These two meth-

ods are rather straightforward to understand and implement, and require a clear

set of input parameters. More importantly, their simplicity makes them com-

putationally inexpensive, which is important for applying these methods in the

self-healing architecture. Since MCDM problems are an active field of research,

other approaches from the literature might provide similar results.

Weighted Sum Model

The weighted sum model [65, 77] is a straightforward way of solving an MCDM

problem. Given a number of alternatives and criteria, first all criterion values are

normalized based on their distribution. Criteria that favor a small value for the op-

timal solution, are inverted. Next, each criterion value is multiplied by a predefined

weight. These weights must be statically defined before executing the algorithm,

and denote the importance of the respective criterion for the overall result. In the

simplest case, the administrator can select a value of 1 for all weights, resulting

in an equal influence of all criteria of the final result. Since the primary target of

the decision is to select a successful remediation, the administrator might select

a higher weight for the two criteria remediation success rate and execution suc-

cess rate. However, there is no computationally inexpensive way to automatically

determine appropriate weights.

For each remediation workflow, we compute the WS value as follows. The first step

is to normalize the criteria values in the observed value range for each observed

criterion, resulting in a normalized criteria vector c ∈ [0, 1]n. The criteria values

that favor small values (such as execution time) are inverted by subtracting them

from 1. Given a vector of corresponding weights w ∈ [0, 1]n, WS is the weighted

average of the criteria vector:

WS =

∑

n

i=0
ci ∗ wi

∑

n

i=0
wi

(4.3)

When all weights are set to zero, WS is instead defined as 0. To allow a meaningful

normalization of criteria vectors, only workflows with a configurable minimum

number of executions are considered. For other workflows, WS is defined as 0.

Table 4.1 shows example remediation workflows and values for the respective deci-

sion criteria. The criteria values were obtained experimentally in a video streaming

service with an artificially injected anomaly that increased the network latency on

a specific hypervisor. In this example, the only remediation workflows that suc-



66 Chapter 4. Zero-Touch Operations

cessfully fixed the anomaly were migrating the VM to another hypervisor, and

scaling up the service. After collecting this data, the resulting ranks in this exam-

ple situation show that the migrate workflow would be executed.

Table 4.1: Example remediation workflows and decision criteria, col-

lected through experimentation. Weights were set to 1, except for the

success rate (weight 5).

Remediation

Action

Execution

time (s)
Complexity Impact

Execution

success

Remediation

success
Rank

reboot 47.18 3 79228.1 99.962 0 4

migrate 23.00 6 66416.8 99.991 1 1

resize 84.58 4 9242.9 98.123 0 5

scale up 154.25 5 113904.0 99.996 1 3

restart service 2.66 1 0.0 98.584 0 2

TOPSIS

The Technique for Preference by Similarity to the Ideal Solution (TOPSIS) [93,

134] is another method for solving MCDM problems. The input data is the same as

for the weighted sum approach, but it is not necessary to manually define weights

for the criteria. After normalizing the criteria, TOPSIS computes a theoretical

ideal alternative based on the value ranges of all input values. In the case of

selecting a remediation workflow, the ideal workflow would be the one with the

smallest execution time, highest remediation success rate, smallest impact on the

service quality, and so on. The real alternatives are then ranked based on their

Euclidean distances to the ideal solution, and the WS value is obtained from

normalizing these distances.

The advantage of this approach is that it requires no manual configuration. How-

ever, it does not work well when the number of historic observations is low. When

each workflow has only been executed a few times, or even never before, the ideal

workflow cannot yet be reliably derived. Therefore, we use the weighted sum

model with manually adjusted weights, until the zero-touch system has executed

each workflow a minimum number of times. The required number of executions

is an input parameter defined by the administrator. This way, administrators can

give preference to their manually defined weights, if so desired.
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4.3.6 Controlled Level of Automation

An important property of the zero-touch operations architecture is to allow com-

prehensive control over the level of automation. The main aspect to configure is:

Given an anomaly situation and all data analysis results, should a workflow be

executed automatically, or given to the administrator as a suggestion?

For this decision, we use the two key figures delivered by the data analysis pipelines:

the analysis confidence and the highest score assigned to a workflow. For both

values, the administrator can set a minimum value that must be exceeded in

order to automatically execute the workflow. Should any of the two values fall

beneath their respective threshold, the workflow will not be executed and instead

only displayed as a suggestion for the administrator, accompanied by all retrieved

information.

We call the minimum analysis confidence configured by the administrator MC ∈

[0, 1], and the minimum workflow score MS ∈ [0, 1]. These thresholds can be

configured individually for every remediation workflow, or uniformly for the entire

system. The range of values for MC and MS allows for three distinct cases, which

have different implications. These cases are analogous to levels of automation

described in Section 2.3.

MS = MC = 1 (Suggesting): Workflows with both thresholds set to 1 are never

executed automatically, since both WS and the analysis confidence are de-

fined within the range [0, 1[ and therefore can never reach 1. Since the decision

making algorithms are based on heuristics and probabilities, full certainty can

never be achieved. When the system concludes that such a workflow is the

best option for a given anomaly situation, it notifies the administrator and

provides all available information as a suggestion for how to proceed. The

administrator can then choose to execute the action, or to perform a manual

remediation. Should the administrator manually trigger a remediation ac-

tion through the zero-touch platform, the decision will be used for building

a knowledge base and improving future suggestions.

0 < MS < 1, 0 < MC < 1 (Assisted cold-start): Intermediate threshold values

allow to automatically execute workflows with a high confidence and score,

while only displaying suggestions in other cases. Setting these values closer

to 0 results in more automatically executed workflows and more autonomic

decisions of the system. High values are more conservative. This spectrum

allows administrators to start with a conservative system and increase the
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level of automation once they gain trust in the system’s autonomic decisions.

This way, we solve the problem of an empty knowledge base, when boot-

strapping the system, through human input: The administrator controls the

remediation process until it reaches a satisfactory level of decision accuracy.

MS = MC = 0 (Fully autonomic): This setting gives the system full freedom

over executing the remediation workflow in anomaly situations. With a suffi-

ciently filled knowledge database, this option will continue to select the most

appropriate remediation workflows without prior consultation with adminis-

trators. However, a freshly bootstrapped system will not have any experi-

ence to build upon, resulting in low workflow scores and confidence values.

In such situations, the only fallback strategy is to randomly execute reme-

diation workflows until an anomaly is resolved. Should such a workflow be

triggered, the result will be recorded and the experience will improve the

selection process during the next anomaly. Such a cold start mode of opera-

tion is applicable in few cases in practice, for example when the remediation

action has a low impact on the service quality, and it is generally acceptable

to execute it by mistake.
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An autonomic, self-healing cloud infrastructure depends on the analysis of moni-

toring data. Since the data needs to be analyzed online and with low latency, it

is not feasible to record it and transfer it for external offline processing. There-

fore, we reserve a part of the computational resources of the cloud infrastructure

to the task of data analysis. There are two ways to allocate these resources, as

visualized by Figure 5.1: on dedicated data analysis hosts, or partially on each

host. Dedicated data analysis means that a number of the physical hosts works

exclusively on the task of data processing. For example, if 10% of all resources are

available for analysis, one out of ten servers is removed from the cloud platform

and becomes part of a dedicated data processing infrastructure. In the opposite

approach, 10% of the resources of each hypervisor are reserved for data analysis.

We call this approach in situ data analysis (Latin for in place). Both dedicated

and in situ analysis have the same absolute overhead of compute resources, but

different implications on the system structure.

The dedicated data analysis approach has a number of drawbacks. It enforces

sending the input data over the network, whenever an analysis is needed. This

69
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Host 1 Host 9Host 2 Host 10

(a) Dedicated data analysis: entire host(s) re-

served for data processing

Host 1 Host 2 Host 9 Host 10

(b) Distributed resources, partially allocated

for in situ data analysis

Figure 5.1: Computational resources, allocated for dedicated and in situ

data analysis. The blue area is reserved for data analysis, the remaining

area for general cloud workload. Assumption: 10% of overall resources

are used for data analysis.

strains the network, limits the data collection frequency, and restricts the possible

volume of the analyzed data. Transporting the monitoring data over the network

increases the duration and fluctuation of each data processing task, depending on

the speed and load of the network. This aspect is exacerbated in edge computing

platforms, where different sites of the cloud are potentially far apart in terms of

the network topology. This way the network has a particularly large impact on

the transfer of analyzed data. Furthermore, a dedicated infrastructure for data

analysis implies an organizational overhead, due to the required administration,

and hinders an expansion of the cloud infrastructure. In contrast, by making use

of the resources of each hypervisor, the data analysis naturally scales with the

extent of the cloud.

Therefore, our approach to data analysis relies on each hypervisor’s own com-

pute resources. The main means for making the data analysis itself scalable is a

hierarchical execution model that is based on forwarding intermediate results to

higher-level analysis steps. This multi-level aggregation model spreads the overall

computational load as much as possible over all available resources. The aggrega-

tion levels can mirror existing aggregation tiers in the infrastructure, as visualized

in Figure 5.2. In a self-monitoring cloud infrastructure the lowest level is a single

physical or virtual host that monitors itself locally and continuously executes a low-

overhead anomaly detection algorithm. Aggregated results of this local anomaly
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detection are forwarded to a second-level analysis that runs on each hypervisor and

aggregates the results from all VMs running on it. The results can further be ag-

gregated on the level of physical server racks, data center availability zones, entire

cloud or edge sites, and finally the global scope. A well-chosen set of aggregation

levels can greatly reduce the bandwidth used by monitoring data, for example by

analyzing intermediate results of all VMs on their corresponding hypervisor, since

this data does not have to be transported over the physical network.

Data center

Availability Zone

Server Rack

Hypervisor

VM

Figure 5.2: Possible aggregation layers in a cloud data center

Fast advancements in the field of machine learning and anomaly detection con-

tinuously produce new algorithms suitable for analyzing the operation of cloud

resources. Therefore, a secondary design goal for the in situ analytics engine is

extensibility. The engine should allow for easy integration of new data sources

and types of data, as well as modular adjustments of the multi-level data analysis

process.

The remainder of this chapter describes the design of a data analytics engine that

meets the aforementioned design goals. Section 5.1 introduces the high-level com-

ponents of the engine and the interfaces between running data analysis processes

and their environment. Section 5.2 shows our modeling approach to describe and

automatically orchestrate a data analysis pipeline on a given cloud infrastructure.

In Section 5.3 we describe how the engine limits the resources occupied by data

analysis processes, while Section 5.4 defines our scheduling approach.

5.1 Interfaces of Data Analysis Processes

The main task of a data analysis engine is to execute the requested data analysis

processes. Therefore, we first describe the interfaces of such a process, and how
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the process interacts with its environment. Figure 5.3 shows this high-level view.
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Figure 5.3: Interfaces between data analysis processes and their environ-

ment

Orchestrator

The orchestrator component is the core component of the data

analysis engine. It is logically centralized, although a replicated

set of orchestrators with a voting mechanism is preferred in prac-

tice for reliability reasons. The main input for the orchestrator is a model of the

data analysis pipeline. The orchestrator uses this model to derive a list of required

data analysis processes and schedules them on the available execution hosts. There

can be an arbitrary number of running Data Analysis Processes, which interface

with common external storage and communication systems.

Hyper-
parameters

The hyperparameters input data is defined individually for every

process and contains values for the execution parameters of the used

data analysis algorithm. The designer of the data analysis pipeline

defines the values for the hyperparameters before the analysis process starts, and

these values are not expected to change at runtime. The explicit mention of the

hyperparameters is due to their importance for the performance of the used algo-

rithms. In many cases, an expert must tune the algorithms and their hyperparam-

eters to work well with a given domain. Some algorithms allow to automatically

tune their hyperparameters at run-time, in which case the list of input parame-

ters is reduced. AutoML is an emerging class of algorithms with such capabilities
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[53, 92, 135]. AutoML algorithms combine automatic hyperparameter tuning and

feature selection by applying optimization procedures on batches of labeled input

data. By repeating the optimization procedure in regular intervals, AutoML al-

gorithms are also able to analyze data streams. Optimization procedures for the

selection of hyperparameters and features include Bayesian optimization [53, 92]

and genetic programming [135].

Input
Data

Streams

Aside from configuration parameters, a data analysis receives

input data for processing. Since the objective is to detect and

remediate anomalies with a low latency, the input data mostly

consists of high-frequency data streams. In certain cases it is

useful to receive a certain amount of historic data before reading the actual live

data stream. Many algorithms can use historic data to better prepare for the ac-

tual operation, reduce warm-up phases, or improve accuracy through better data

normalization [37, 141]. A single data analysis step can also receive multiple input

streams. For example, it is often necessary to combine the data of multiple mon-

itoring systems to obtain a richer representation of a single component. Another

important use case for multiple input streams is higher-level data analysis, which

further processes the intermediate results of lower-level analysis. Examples for

such high-level data analysis include finding the root cause, when multiple anoma-

lies are detected at the same time, or analyzing all VMs on a single hypervisor,

which might discover anomalies that would otherwise remain hidden. Multi-level

data analysis will be further covered later on in this chapter.

Output
Data

Streams

After processing its input data, a data analysis step typically

produces an output data stream. A step without an output data

stream often has a miscellaneous task, such as storing the data

into a database, or sending out alert emails for certain events.

Another task that does not produce any output data, is selecting a remediation

action that will be executed as a reaction to a detected anomaly. The output of

such a “decision making” step consists of notifying an external component of the

selected remediation workflow. In general, however, most data analysis steps do

produce one or more data output streams, which can be consumed by one or more

other data analysis steps, or by data sinks outside of the data analysis engine.

Event Bus

Control
Events

Result
Events

Besides data streams, a second important communication

mechanism for data analysis steps are events. In contrast

to data streams, which are continuous and carry homoge-

neous data, event streams have no expected timing char-

acteristics and can carry arbitrary sequences of different classes of data. Events
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can be used both to communicate data analysis results, and to control the execu-

tion of data analysis steps. An anomaly classification step issues an event when

it successfully classifies an anomaly based on the received data stream. Likewise,

the administrator of a data analysis pipeline can order the anomaly detection step

to reset its model by sending it an according control event. To support this flex-

ible usage of events, our data analysis engine uses a publish-subscribe event bus

model based on labels and selectors. When publishing an event, the creator of the

event attaches a list of labels (key-value pairs) to it. A subscriber listens for cer-

tain events by defining a selector, which is a Boolean expression that is evaluated

against a set of labels. The selector determines, which events the subscriber is

interested in, and hence the subscriber will receive all events that match the given

selector. The labels and the selector can be chosen arbitrarily, which makes this

mechanism flexible enough for different use cases, including the ones mentioned

above.

Model
Repository

The model repository module in Figure 5.3 allows the data analysis

step to store or load machine learning models. Machine learning

algorithms work on an underlying model, which represents the al-

gorithm’s internal state. The exact data in a machine learning

model depends on the algorithm. To keep the algorithm implementation flexible,

the step can freely store and load models at any time. This allows to load and

store multiple models per analysis step, and to use stored models for various pur-

poses. The model repository is a globally accessible storage system, which makes

it a bottleneck in terms of scalability. Distributed read replicas can somewhat mit-

igate this problem, but consistent write access to the repository usually requires

expensive locking. The implementer of a data analysis step should therefore re-

strict the number of writes to the model repository, compared to the number of

local, non-persisted model updates.

System
Dependency
Model

The system dependency model contains the topology of the under-

lying cloud system. This is an important part of the zero-touch

operations architecture (see Section 4.2.1). Data analysis algo-

rithms can use the dependency model to obtain meta-information

about the data they analyze.

5.2 Modeling the Data Analytics Pipeline

Deep insights from the analysis of monitoring data emerge after a sequence of

interdependent analysis steps. To name an example, the first step when analyzing
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a data stream is usually to preprocess, normalize, and filter the data. In our

zero-touch operations system, this is followed by the local anomaly detection that

assesses the state of every component individually. Subsequently, a number of

higher-level analysis steps examine the dependencies between different groups of

interconnected components to get a richer context for the anomaly detection and

root cause analysis. In a cloud system, the groupings of interconnected components

are given by colocation of physical resources (like server racks), network paths, or

communication paths on the service layer. This sequence of analyses produces a

system view that is finally consumed by a decision making step, which tries to

recognize the current anomaly situation, and selects a remediation action that is

most likely to resolve the situation. Figure 5.4 visualizes a physical deployment of

the named example analysis steps in a small cloud system.
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Figure 5.4: Example deployment of a data analysis pipeline for a small

cloud system
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The trade-off between a lower-level and a higher-level data analysis is between

the level of detail in the data, and the number of correlated components. Local

anomaly detection analyzes detailed data about each component, while the final

decision making is based on aggregated (and less detailed) data. On the other

hand, the global decision making step has aggregated data about a large number

of correlated components, which results in a richer analysis context. Analyzing

detailed data from a big number of components would combine both benefits, but

does not scale indefinitely for large systems.

Defining data analysis pipelines requires a flexible, yet powerful execution model.

The main task of the analysis pipeline model is to express arbitrarily nested data

analysis pipelines, their interconnections, and input data streams. Our analysis

pipeline model consists of a decoupled definition of data sources and data analysis

steps. Figure 5.5 gives an abstract description of the proposed data model.

DataSource

DataAnalysisStepname: String
Unique ID of the data source

accessor: String
URL for accessing the data source

labels: Dictionary <String→String>
Properties of the data source

name: String
Unique ID of the analysis step

type: String
Data analysis type ("one-to-one" or 
"all-to-one")

instantiation_instructions: Object
Deployment information, exact data 
type depends on the underlying 
execution platform

selector: Boolean Expression
Evaluated against DataSource.labels

outputs: List <OutputDescriptor>
Output data streams produced by this
analysis step

type: String

references 
labels

OutputDescriptor

name: String
Name of the output stream

accessor_template: String
URL template of the output stream

labels: Dictionary <String→String>
Additional properties of the 
output stream

contains

Figure 5.5: Analysis pipeline data model with decoupled data sources

and analysis steps

The main property of a data source definition is a data stream accessor: the

URL where the data stream can be obtained. Aside from the accessor, a data
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source definition contains metadata in form of a key-value list of labels. These

labels contain machine-readable properties of the data stream that are used to

identify the stream and find all data analysis steps that are able to analyze it.

Useful data source labels include the monitoring system that collected the data,

the system layer of the monitored component (e.g., physical, virtual, application),

the component where the data originated, possible parent components, and the

data sampling frequency.

On the other hand, an analysis step definition contains all instructions necessary to

deploy an instance of the underlying algorithm. In practice this includes the name

of a container image or virtual machine image with all accompanying configura-

tions. Besides the execution instructions, the analysis step definition also contains

initial values for all relevant hyperparameters of the algorithm, which have to be

defined by a domain expert. Finally, the data source selector is a function that

receives a dictionary of strings and returns a Boolean result. The selector func-

tion is evaluated against the labels of each data source and the result determines

whether a data source is compatible with the respective analysis step. Compatible

pairs of data sources and analysis steps result in the deployment of an analysis

process. For example, assume the following data source selector in pseudo-code:

1 def select(labels: Dictionary<String, String>):

2 return labels["layer"] == "physical" &&

3 labels["nagios_version"] != ""

Listing 1: Example data source selector function

This selector matches all data sources with the label layer = physical that

also have the label nagios_version with a non-empty value. In other words,

this data analysis step analyses data about hypervisors provided by the Nagios

monitoring system.

The analysis pipeline model supports both low level analysis steps that operate on

a single data source, and higher-level analysis steps that consume multiple input

data streams. This is realized by two classes of analysis steps: one-to-one and

all-to-one steps. When a matching data source is found for a one-to-one step, the

analysis engine deploys a new process and instructs it to analyze the matched data

stream. An all-to-one step, on the other hand, has at most one running instance

at a time. That instance is instructed to analyze all data sources that are matched

by the data source selector of the step. This type of data analysis step realizes

high-level analysis algorithms, such as root-cause analysis.
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Once an analysis process is deployed, it starts processing input data and usually

produces one or more output data streams. These output streams are documented

in the analysis step description as a list of outputs. Each entry in this list will

be treated like a data source once an analysis process is running. In order to

differentiate these analysis results from external raw data, additional labels are

attached to the output data streams. In addition to these new labels, the output

data streams inherit the labels from the analyzed input data streams. In case of

multiple input data streams, only the labels that are shared by all input streams

are inherited.

Figure 5.6 shows an example of a hypervisor and a VM that each provide a data

source with monitoring data. The data analysis pipeline on the left consists of three

steps. First, an anomaly detection step analyzes the two data streams individually.

A second step processes the results of all anomaly detection steps running on

the hypervisor phys1. Finally, the global RCA step consumes all intermediate

results, which includes other hypervisors (not shown in this example). On the

right, Figure 5.6 shows the labels of all data sources and output data streams.

This example demonstrates how our modeling approach allows to create deep,

hierarchical pipelines of interdependent data analysis steps.

5.3 Enforcing Resource Limitations

Besides executing the analysis pipeline model, the in situ data analysis engine has

to minimize the disturbance of the main cloud workload. The main technique to

this end, is to enforce resource consumption limits on all data analysis processes.

The main configuration parameters for this limitation are upper bounds for the

share of resources allocated for data analysis processes. These bounds cover all

relevant system resources, including CPU utilization, allocated memory, hard disk

access, and network bandwidth. In order to make the configuration task easier for

administrators, they can configure these bounds by providing a single figure that

determines the global share of all resources reserved for data analysis (e.g., 10%).

Alternatively, administrators can express the resource bounds individually, either

in relative or in absolute terms.

The data analysis engine is responsible for enforcing the configured resource bounds.

The means for this depend on the underlying execution platform, but resource us-

age restrictions can be defined for bare operating system processes, containers,

and virtual machines. For example, the container virtualization engine Docker1

1https://www.docker.com/resources/what-container

https://www.docker.com/resources/what-container
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DataAnalysisStep

name: "anomaly detection"
type: "one-to-one"
selector:

labels["collector"] == "Nagios" &&
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name: "anomaly detection results"
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Figure 5.6: Example pipeline model and the resulting deployed analysis

processes
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uses the Linux kernel feature “cgroups” to define limits for the resource usage of

containers [119]. Other virtualization techniques like KVM, Xen, or virtualization

libraries like Libvirt [21], have similar features.

The techniques for limiting resource consumption do not allow online updates of

the enforced limits. Constrained processes must be restarted when these limits

are changed. To allow restarts, data analysis processes must be stateless from the

engine’s point of view. We achieve this by storing snapshots of the internal data

analysis model in the model repository in regular intervals. Upon being restarted, a

process checks the model repository and loads the latest model snapshot. Updating

the resource usage limits becomes necessary when too many analysis processes are

instantiated on one host, so that the already running processes must be “shrunk” in

order to fit all processes within the available resource bounds. In such a situation,

the share of resources for every analysis process is recomputed and all processes

are restarted. This can lead to a cascade of restarting processes when the number

of processes changes frequently. We mitigate this problem by using an exponential

growth policy when computing the share of resources given to each process. Instead

of splitting all resources between the running processes, we leave spare resources

for a number of additional processes to be started. When the spare room is filled

up, the share of resources given to each process is halved, resulting in twice as

many slots for running processes. The same procedure is applied when processes

are stopped: Once three quarters of the reserved resources are free, the number of

reserved slots is halved, resulting in a new situation where half of the resources are

allocated, while the other half is reserved for starting new processes. As a result,

all processes receive twice as many resources as before. Figure 5.7 demonstrates

this procedure, both when increasing and decreasing the number of reserved slots

for processes.

The dynamic allocation of resources can lead to a situation where the algorithm

does not have enough resources to perform the necessary computations in time.

To avoid an infinitely growing queue of input data, we use load shedding: We limit

the size of the input for each data analysis process. In case of overload situations,

samples in the queue are dropped to avoid running out of memory. In order to

resolve overload situations on individual hosts, the data analysis engine implements

an adaptive scheduling algorithm, as described in the following section.
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Figure 5.7: Exponential growth policy when starting and stopping data

analysis processes

5.4 Scheduling of Data Processing Steps

An important technique for minimizing the network overhead and data process-

ing time, is intelligent scheduling of data analysis processes. The optimization

objectives of in situ data analysis differ from scheduling objectives for dedicated

computational resources. Scheduling algorithms for dedicated resources (such as

big data frameworks [10, 109, 168]) try to optimize the performance and fairness,

while in situ data processing on shared resources needs to ensure low average re-

source usage to reserve sufficient resources for the main workload. We consider

other secondary scheduling concerns, such as energy efficiency, out of scope for

the in situ data analysis, as it only uses a small fraction of the overall compute

resources.

5.4.1 Static Scheduling

For our basic scheduling approach, we treat the network topology of the hypervi-

sors as a flat topology with equal distances between all nodes. Further, we assume

that each hypervisor can host an unlimited number of processes due to the adap-
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tive resource limitations described in Section 5.3. These assumptions result in a

straightforward scheduling algorithm, since we only have to differentiate two cases:

One-to-one processing steps are placed on the node that contains their data

source.

All-to-one processing steps are placed on the least occupied node from the

list of their data sources.

5.4.2 Adaptive Scheduling

To mitigate overload situations for individual analysis processes, we add an adap-

tive extension to the static scheduling algorithm. When an analysis process suffers

from an overload situation, it can be beneficial to dynamically move it to another

node, in order to distribute the load more evenly. After such a migration, the

input data stream must be forwarded from the data source to the new execution

host, which results in an increased data processing time. However, the evenly

distributed load, and the better resource availability on the migration target, po-

tentially outweigh this performance penalty. Therefore, we define the following

dynamic scheduling criterion: A data analysis process is migrated, when the mi-

gration would result in a lower data processing time, despite the added time for

transporting the samples over the network.

In order to test our migration criterion, we have to compare the current data

processing time of the processing step with the predicted processing time after the

migration. We predict this processing time using a formal processing time model.

Before defining the processing time model, we declare the following notation.

Let T (H1, H2) denote the time to transmit a sample over the network from host

H1 to host H2. For the sake of simplicity, we assume a constant network latency

and speed over time, and also that each sample has the same size.

Let the function send(H, H) denote the time to send a sample from all hosts in the

host set H = {H1, ..., Hn} to the host H. This time is zero when forwarding the

sample within the same host, and it is equal to the largest forwarding time, when

sending data from at least one remote host, since all samples are sent in parallel:

send(H, H) =

{

0 ifH = {H}

maxHi∈H
(T (Hi, H)) else

(5.1)

Let computeA(R) denote the time for the algorithm A to compute the results for

one sample, when it is executed on the resources R.
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Now we can define the data processing time of an algorithm A as the function

PA(H, H,R), which is the sum of sending all samples from the n data sources

H = {H1, ..., Hn} to host H, and the time to compute the result:

PA(H, H,R) = send(H, H) + computeA(R) (5.2)

If we can calculate PA for every combination of hosts, algorithms, and resources,

we can use it to test our migration criterion the following way:

1. Compute PA(H, H,R), where H is the current execution host and R the

currently available resources.

2. Compute PA(H, H∗, R∗) for every potential migration target H∗, setting R∗

to the resources that would be available on that host.

3. If one of the migration targets leads to a lower result than the current exe-

cution host, migrate the process there.

In order to calculate PA(H, H,R), we need to compute the sub terms send(H, H)

and computeA(R). Computing send(H, H) depends on the values T (Hi, H) for

all Hi ∈ H, which we obtain by observing the data stream characteristics during

runtime. Due to the assumption that the network latency and size of samples

remains constant, we do not model dynamic characteristics of the network. We

model the compute time computeA(R) with the following parametric function:

computeA(R) = a ∗ (R + b)−c + d (5.3)

This polynomial function with four parameters models a declining compute time

with rising resources. Figure 5.8 illustrates this parametric function, and how it

affects our migration criterion for a one-to-one step that runs on the same host as

its data source. Intuitively, the time to compute a result increases with decreasing

resources. With zero resources, the processing time is infinite. However, the

processing time also never falls below a threshold defined by the parameter d,

which is bounded by the algorithm’s complexity and by the underlying hardware.

The resources can be reduced without any implications, until computeA(R) starts

rising. At this point, we can continue reducing the resources, until computeA(R)

increases by more than the network transportation time to a remote host. Now, if

we have to reduce the resources even further, it is more beneficial to migrate the

analysis process to a remote host.

In order to compute the parametric function computeA(R), we have to find fitting

values for the parameters a, b, c, and d. These values are specific for a combination
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Figure 5.8: Predicting the processing latency after migrating the analysis

process

of an algorithm and an underlying execution platform. The procedure to obtain

the parameter values consists of a series of controlled experiments. First, the

algorithm is executed with the maximal available resources, while measuring the

average time it takes for it to process one sample. Then the resources are reduced

in regular steps, while continuing to take the processing time measurements. This

procedure produces a set of sample points for the computeA(R) function. In the

final step, we fit the parametric function computeA(R) to the collected points,

using the Levenberg-Marquardt algorithm for non-linear least squares optimization

[104, 130]. The result is a computeA(R) function with specific parameter values,

which predicts the processing time of the algorithm for arbitrary resources on the

underlying hardware.

To demonstrate the applicability of our approach, we have performed the pro-

cedure to obtain the parameters for computeA(R) for three different algorithms.

The evaluated algorithms are based on the Identity Function and Threshold Model

(IFTM) [151] principle, which we use for anomaly detection in the zero-touch op-

erations system (see Section 4.3.2). IFTM allows to select different underlying

models. The first evaluated model is based on a neural network with Long-short

term memory (LSTM) neurons [79]. The second model uses multivariate online

ARIMA [153], an approach for modeling and predicting periodic time series. The

third model is not based on neural networks, but instead uses a variation of the
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clustering algorithm BIRCH [185], optimized for evolving data streams. We per-

formed the experiments to obtain the necessary data on a physical machine with

a Quadcore Intel Xeon CPU (E3-1230 V2 3.30GHz), 8 virtual cores, and 16 GM

of RAM. In each experiment run, a data set consisting of 10.000 samples, with

28 metrics per sample, was processed by the respective algorithm, while measur-

ing the average processing time per sample. Starting with 8 virtual CPUs (which

results in no resource limitation at all), the number of CPUs allocated for the

process were reduced in steps of 0.3 after each experiment run, until reaching the

minimum assignable resources at 0.1 CPUs.
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(c) ARIMA, mean error: 12.6 ms/sample

Figure 5.9: Modeling the processing time of different classes of algorithms

with the parameterized computeA(R) function

Figure 5.9 shows the results of our experiments. The crosses show the exper-

imentally collected samples, while the lines show the resulting parameterized
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computeA(R) function. All algorithms show the expected behavior of rapidly in-

creasing processing time with dropping resources. For every algorithm, we com-

puted a mean error values, which is the mean absolute deviation of the fitted

computeA(R) from the actual measurements. The low mean error values, which

we obtained for the three algorithms, confirm that our parameterized model of

computeA(R) is well-suited to represent their behavior.

To summarize, we propose a dynamic scheduling approach that optimizes the

data analysis time of resource-constrained processes, while considering both the

network transportation of the input samples and the computation time itself. Our

scheduling criterion can predict overload situations that originate from resource

limitations, instead of handling such situations reactively. Our approach is based

on a data-driven model of the algorithm’s computation time, depending on the

allocated CPU resources. Using three example algorithms, we showed that our

computation time model is applicable to a wide range of algorithm classes.
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In order to evaluate our architectural concepts, we derive an implementation of

the zero-touch operations architecture, which is usable in a number of specific use

cases. This system – ZerOps – implements our architecture from Chapter 4, as

well as the in situ data analysis engine from Chapter 5.

We base ZerOps on a number of assumptions that drive the selection of system

components. First, we assume that the operator of the cloud infrastructure, includ-

87
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ing the hardware and the virtualization layer, installs and maintains the ZerOps

system as well. The service model of the cloud platform is IaaS, meaning the

clients (or tenants) manage and connect VMs, and install their application soft-

ware on VMs as well. Furthermore, from the cloud provider’s point of view, client

VMs are black boxes and cannot be accessed internally. Finally, every client VM

runs one instance of an application service and the services are considered state-

less. These assumptions support a number of use cases that differ in the size of the

cloud platform and in the relationship between the cloud provider and the owner

of the application.

The ZerOps platform allows us to perform both a qualitative and quantitative

evaluation of our conceptual architecture. For the qualitative evaluation, we refer

to the requirements and challenges that we identified in Chapter 1, and discuss, to

what degree the zero-touch operations architecture fulfills them. A series of exper-

imental measurements in a running instance of ZerOps provides further evidence

for the fulfillment of the requirements. Specifically, the quantitative evaluation

covers the following:

• The resource overhead introduced by the data collection and data analysis

processes, and

• the amount of network traffic that is saved by working with the in situ data

analysis engine.

All components of ZerOps are available as open source software1. We have imple-

mented the stream processing engine Bitflow, which provides data collection and

data analysis capabilities for ZerOps. Besides the core component Bitflow, ZerOps

also includes a number of tenant service scenarios and an anomaly injection ser-

vice for conducting controlled experiments. Therefore, ZerOps also functions as

an experimental platform for evaluating algorithmic solutions for different tasks

in the zero-touch operations architecture. ZerOps contributes to the research of

such algorithms by facilitating the collection of realistic data that is suitable for

training and evaluation purposes. Since this data is collected in a functional infras-

tructure, it is preferred over simulations or emulations of similar cloud platforms.

In experiments with the ZerOps platform, we have evaluated algorithms that were

specifically designed for the zero-touch operations use case. Furthermore, we have

tested the ZerOps platform on the infrastructure of a large vendor of telecom-

munications equipment. ZerOps was also adapted for multiple industrial research

projects in the domain of IoT and smart factory.

1We provide links to the publicly available repositories within this chapter.
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Section 6.1 defines the use cases that form the scope of ZerOps and drive its design

decisions. Section 6.2 gives an overview over the ZerOps platform and describes

the underlying cloud infrastructure. Section 6.3 documents the stream processing

framework Bitflow, which is at the core of the ZerOps platform. Finally, Section 6.4

presents how conduct evaluation experiments can be conducted with the ZerOps

platform, and discusses our evaluation results.

6.1 Use Cases

This section lists and describes a number of use cases that operate on the assump-

tions behind the ZerOps platform. The purpose of these use cases is to illustrate

that the system design of ZerOps applies to a variety of infrastructures and sce-

narios used in practice.

Use Case: Public Cloud Provider

The first use case for the ZerOps system is a public cloud provider that offers IaaS

capabilities to its clients. In this use case, the cloud provider maintains one or more

centralized data centers with virtualization servers. The physical machines that

run the cloud are commercially available off-the-shelf servers. The cloud provider

uses the self-healing capabilities of ZerOps to supervise the cloud infrastructure

and cloud services, and offers the client the optional service to put individual VMs

under supervision as well. Since the VMs are black boxes and contain private data

of the respective client, their behavior must be analyzed in a non-intrusive way,

without service-specific metrics, and without monitoring agents running within the

guest operating system. The first important data source for VMs is the virtualiza-

tion engine, which provides resource usage data. The communication behavior on

the virtual network provides additional black-box metrics that describe the VMs

behavior.

Because of the privacy constraints of tenant VMs, the set of possible remediation

workflows is limited in this use case. Application-specific workflows are not sup-

ported for the same reasons that service-specific data cannot be extracted from

the VMs. However, this scenario still allows for generic remediation actions on the

virtualization layer, such as restarting or migrating a virtual machine, or changing

the number of replicas of a service. For more critical applications or services, the

tenant can choose to receive notifications from the data analysis part of ZerOps,

in order to handle or post-process such alarms.
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Use Case: Telecommunication Service Provider

The networks of telecommunication service providers (or carriers) are amongst the

most reliable computer and communication systems. Telecommunication services

are critical services in the sense that they have very high requirements regarding

reliability, availability, security, and performance. The term carrier-grade avail-

ability, when applied to common systems in order to measure the percentage of

uptime, denotes an especially high level of availability. Over decades, service

providers have engineered an extensive range of sophisticated features into their

networks in order to guarantee an uptime of 99.9999%, which corresponds to a

downtime of as little as 32 seconds per year.

This high level of reliability is achieved through specialized appliances: combina-

tions of hardware and software that are designed and tested to fulfill very specific

tasks. The hardware-software co-design is the key to the reliability of appliances.

The software is entirely optimized for the underlying physical components and

does not share any resources with arbitrary tasks, as in general purpose operating

systems or hypervisors.

The obvious downside of appliances is their cost. Development cycles for co-

designed hardware and software are very long, as well as testing phases and ul-

timately the time-to-market for new services. On today’s fast-paced market, the

time to release a new product or service is critical for the commercial success of a

telecommunication service company.

As an effort to decrease the time-to-market and increase cost-efficiency, telecommu-

nication service providers have started to investigate cloud platforms as a potential

deployment strategy [13, 182]. The telecommunication sector of the IT industry is

one of the last to migrate their services to virtualized infrastructures, due to the

services’ critical nature. This movement is entitled Network Functions Virtualiza-

tion (NFV) [2, 51, 76, 121], and introduces a significant degree of flexibility and

chances for cost reduction. So-called Virtualized Network Functions (VNFs) are

services that were migrated from their traditional appliance-based implementation

to a cloud-based, virtualized environment. Typical VNFs operate on lower layers

of the network stack, redirect network streams (virtual routers [50, 172]), secure

them (virtual firewalls [47, 114]), virtualize them (virtual overlay networks), or co-

ordinate network flows between autonomous segments of the internet (virtual BGP

routers). Some VNFs operate on the application layer and provide communication

related services, such as the Virtualized IP-Multimedia Subsystem (vIMS), a suite

of protocols for dialing and establishing connections between communication peers



6.1. Use Cases 91

[31].

For ZerOps, the use case of a telecommunication service provider differs from the

use case of a public cloud mainly in the relationship between the maintainer of the

cloud infrastructure and the application developer. In order to guarantee a high

level of reliability, and to comply with privacy-related SLAs, the service provider

owns and maintains the cloud infrastructure. The virtualized network functions

deployed on this infrastructure are also developed, or at least used, by the same

company, but it is likely that different teams within the company handle the

aspects of cloud infrastructure and application development. Furthermore, this

scenario does not have the restriction of black box VMs from the cloud provider’s

point of view. This allows for an extended set of service-specific metrics and

remediation workflows executed directly within the anomalous VMs and services.

Use Case: Edge Computing

Technological advancements in the field of telecommunication services, such as the

future mobile network standard 5G [7], enable the development of a new class

of applications that benefit from geographical proximity to the user. Having the

server side of an application close to the client has multiple advantages:

• lower network latency between the client and the server,

• less network hops, hence a more predictable connection quality,

• less data transferred through the backbone network to the centralized data

center or cloud, and

• increased geographical scale-out of the application.

Many applications benefit from such an architecture. Virtual reality applications

require very low update latencies to be perceived as natural [164]. Critical appli-

cations such as self-driving cars, controllers in industry 4.0 factories, smart cities,

and wearable healthcare devices, all benefit from stable server communication and

quicker response times.

We envision cloud providers or Internet Service Providers (ISPs) offering special

computational resources at the edge of the network. Such edge clouds could be

located at broadband base stations or access networks of ISPs and consist of a

combination of commodity hardware and open source software. However, due

to the favorable positioning, resources in edge clouds are costly and limited in

their capacity. This enables the ISP to offer a new class of services for monitoring,

anomaly detection, and automated remediation. Of course, such services must still

comply with the service agreements between the ISPs and their customers. These
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Figure 6.1: Overview of an example edge computing infrastructure in the

context of smart cities. It shows several edge sites, a main data center,

the interconnectivity between them, as well as several use cases.

agreements prohibit the ISP from directly accessing their customers’ computing

resources and stored data, which means that the monitoring services must treat

the customer software as black boxes.

Effectively, this scenario resembles the IaaS use case for ZerOps, except that the

cloud infrastructure is geographically distributed and consists of more heteroge-

neous servers. The ZerOps platform supports this scenario due to the adoption

of our distributed, hierarchical in situ data processing engine. ZerOps treats edge

clouds with limited resources differently from cloud resources in the central cloud.

Furthermore, ZerOps is designed to limit monitoring data sent over the network.

6.2 Components of the ZerOps Platform

ZerOps combines multiple standalone open source software solutions into one co-

herent platform. Figure 6.2 shows the high-level components of the ZerOps plat-

form. The blue boxes represent components of ZerOps that we implemented specif-

ically for this purpose, while the light boxes represent the cloud platform and other

existing third-party software.

ZerOps uses the open source cloud operating system OpenStack. Tenants and

clients of the ZerOps platform use the default OpenStack dashboard and API

for managing their VMs and workloads. In fact, ZerOps makes no assumptions

about the underlying IaaS cloud platform, except for using the OpenStack-specific

HTTP-based API Therefore, other cloud systems can be integrated with ZerOps.
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Figure 6.2: ZerOps High-level Architecture

We implemented the stream processing framework Bitflow to provide the data col-

lection and stream data analysis capabilities of ZerOps. Bitflow follows the design

of the in situ data analysis from Chapter 5. The Bitflow Controller implements

distributed stream processing on top of the Kubernetes container orchestration

platform2. Therefore, ZerOps runs Kubernetes on the compute nodes of Open-

Stack, parallel to the cloud platform and its tenants. The Bitflow Data Collector

consists of an agent that runs on every hypervisor node and provides data streams

that describe the behavior of the hypervisor and the contained VMs.

2https://kubernetes.io/docs/home/

https://kubernetes.io/docs/home/
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On the service level, ZerOps features a number of benchmark workloads to generate

realistic resource usage patterns on the cloud. To facilitate experiments with

anomalies and failing services, we added an Anomaly Injector service to ZerOps

specializes on resource anomalies.

6.2.1 High-Availability Deployment of OpenStack

ZerOps relies on the open source cloud operating system OpenStack

to handle the management of tenant VMs and virtual networks.

OpenStack implements an IaaS cloud platform that can be used

both in a private cloud and in a public cloud scenario. This supports

all defined use cases for ZerOps.

A number of cooperating services provide the core functionality of OpenStack.

This functionality includes user and session management (implemented by a ser-

vice named Keystone), VM management (implemented by Nova), image storage

(implemented by Glance), block storage (implemented by Cinder), and web fron-

tend (called Horizon). In order to guarantee high availability of the entire cloud

platform, ZerOps replicates all of these services individually. ZerOps uses the

application-layer load balancer HAProxy3 to distribute requests between the Open-

Stack services. To eliminate the load balancer as a single point of failure, the load

balancer itself is replicated following an active-passive scheme. One load balancer

is active at each time, and the active load balancer occupies a virtual IP ad-

dress. This virtual IP address is used by clients of the cloud platform to access

all OpenStack services. In case of a load balancer failure, the virtual IP is reas-

signed to the standby load balancer instance using the keepalived4 service. The

keepalived daemon monitors the active load balancer and detects failures in a

very short time span, in order to ensure a fast failover and transfer the virtual IP.

As soon as the IP address is transferred, new client requests are routed to the now

active load balancer. Clients might have to resubmit a currently pending request,

which is unproblematic since the OpenStack API is stateless.

To further increase OpenStack’s reliability, all services use a Ceph5 installation

as a sophisticated distributed storage backend. Ceph runs on separate storage

hosts and replicates every stored data item to ensure no data is lost when a disk

or storage node fails. OpenStack stores all data related to the cloud platform

in a database backed by Ceph. Furthermore, when OpenStack boots VMs, it

3http://www.haproxy.org/#docs
4https://www.keepalived.org/manpage.html
5https://docs.ceph.com/docs/master/

http://www.haproxy.org/#docs
https://www.keepalived.org/manpage.html
https://docs.ceph.com/docs/master/
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provides them with a virtual network volume that is effectively stored in Ceph.

This feature decouples the execution host of the VM from the VM storage and

enables live migration of VMs between different hypervisors. Live migration is an

important feature for some remediation workflows.

Figure 6.3 visualizes ZerOps’ highly available, bare-metal OpenStack deployment

with the aforementioned features. We have evaluated the visualized deployment of

OpenStack and concluded a sufficiently low failover time of the chosen components

[106]. Furthermore, the impact of failures of cloud operating system components on

the actual service layer is very low. Even when the controller services of OpenStack

fail, the tenant VMs and virtual networks continue to operate normally.

Figure 6.3: Redundant OpenStack cloud platform in ZerOps

ZerOps implements all communication with OpenStack through an abstract cloud

communication layer. Therefore, other cloud systems can be integrated with Ze-

rOps with limited development effort.

6.2.2 Topology Discovery

Various parts of ZerOps depend on an up-to-date view of the moni-

tored cloud system’s topology. The cloud system consists of physical

nodes, VMs, as well as physical and virtual networks. ZerOps’ topol-

ogy discovery component collects this information and provides it in
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a central graph database for easy access by all other components. ZerOps uses the

graph database Neo4j to store topology information. Neo4j allows to store graph

nodes and edges, as well as arbitrary properties attached to them.

The topology discovery uses OpenStack as main source of information. The Open-

Stack API provides access to hypervisors, VMs, and virtual networks, VM images,

users, and more. ZerOps maps this data to a coherent graph representation. All

available information about the mapped entities is included in the Neo4j graph

model. Due to this dependency on the OpenStack API, the topology discovery

component is tightly coupled to OpenStack, unlike any other component in Ze-

rOps.

ZerOps splits the process of mapping the topology graph in two phases. First,

the entire OpenStack data model is loaded, and the Neo4j database is updated.

This process is rather expensive and puts a lot of stress on the cloud system due

to the many requests to the API. Therefore, this “full scan” of the topology is

performed once initially, and from then on in regular time intervals. To keep

the topology graph up to date with changes in the cloud system, ZerOps relies

on OpenStack’s event mechanism. ZerOps configures the OpenStack platform to

send events on its internal message queue, whenever the topology of the cloud

changes. By subscribing to the relevant message queue channel, ZerOps receives

all update events from OpenStack as push-notifications. These update events are

directly mapped to updates of the Neo4j graph model. This mechanism allows

to maintain an up-to-date topology graph of the cloud infrastructure, without

frequently parsing all information delivered by the OpenStack API. Full scans of

the topology are still repeated regularly to make sure the graph model remains

consistent with the real system.

6.3 Bitflow Stream Processing Framework

The Bitflow framework was specifically designed to provide the data collection and

data analysis for ZerOps. The source code for Bitflow is available online6, as well

as the documentation7. Bitflow implements a stream processing runtime, a data

transmission format, a domain-specific script language, a controller for distributed

processing, and a time series data collector.

6https://github.com/bitflow-stream
7https://bitflow.readthedocs.io/en/latest/

https://github.com/bitflow-stream
https://bitflow.readthedocs.io/en/latest/
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Figure 6.4: The components of the Bitflow Stream Processing Framework

6.3.1 Bitflow Controller

The Bitflow Controller implements the in situ data analysis engine fol-

lowing our design introduced in Chapter 5. The in situ design allows

ZerOps to execute Bitflow parallel to the OpenStack cloud platform.

Bitflow uses Kubernetes as the execution platform for data analysis containers.

Kubernetes is a distributed orchestration platform for containers and supports

many different abstractions for expressing, where and how containers are executed

and connected. The built-in capabilities of Kubernetes include the execution of

individual containers, automatic replication and scaling of identical container in-

stances, precise control over the target execution node, and hard resource usage

limitations for each container.

Bitflow extends the native capabilities of Kubernetes by making use of the Kuber-

netes operator pattern8. A Kubernetes operator is a component that continuously

and automatically manages Kubernetes resources. The most common use case

is to automatically create, schedule and configure containers based on some do-

main specific conditions. To support this, Kubernetes offers the feature of custom

resource definitions. It allows storing user-defined JSON data structures in Kuber-

netes’ native, distributed object store, where they can be accessed by the operator

process. The user-defined objects describe the desired state of managed Kuber-

netes resources in a declarative way. The operator then compares this description

to the actual runtime state of the system and performs the necessary actions to

approximate them. These actions usually involve the creation, deletion, or recon-

figuration of containers, but can also involve other resources like networks, DNS

8https://kubernetes.io/docs/concepts/extend-kubernetes/operator

https://kubernetes.io/docs/concepts/extend-kubernetes/operator
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entries, or load balancers.

The Bitflow Controller works with two custom resource types, which are based on

the data analysis pipeline model described in Section 5.2. A BitflowSource

describes the location and meta data of a data source, while a BitflowStep

defines how to instantiate a data analysis container and what data sources it must

be attached to. Listing 2 shows examples in YAML syntax for a data source

and an analysis step. In this example, the BitflowSource object has the

label layer: physical, which is matched by the ingest: section of the

BitflowStep object. The ZerOps operator will spawn a container based on the

spec.template section inside the BitflowStep definition.

1 apiVersion: bitflow/v1

2 kind: BitflowSource

3 metadata:

4 name: bitflow-collector-node01

5 labels:

6 collector: bitflow

7 component: node01

8 layer: physical

9 node: node01

10 spec:

11 url: tcp://192.168.0.30:9000

(1) BitflowSource

1 apiVersion: bitflow/v1

2 kind: BitflowStep

3 metadata:

4 name: anomaly-detection

5 spec:

6 ingest:

7 - key: layer

8 value: physical

9 outputs:

10 - name: results

11 url: "http://0.0.0.0:9000"

12 labels:

13 type: anomaly-detection

14 template:

15 metadata:

16 labels:

17 app: anomaly-detection

18 spec:

19 containers:

20 - name: anomaly-detection

21 image: anomaly-detection

22 imagePullPolicy: Always

23 ports:

24 - name: results

25 containerPort: 9000

26 command:

27 - "-input"

28 - "{BITFLOW_SOURCE_URL}"

29 - "-output-port"

30 - "9000"

(2) BitflowStep

Listing 2: Example definition in YAML syntax of a BitflowSource

and a BitflowStep
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Bitflow supports three types of processing steps with different semantics regarding

the amount and location of the resulting containers:

one-to-one steps: Bitflow instantiates one container for every matched data

source. Each container is placed as close as possible to its data source. In

most cases this means that the data source and the processing step run on

the same physical host, which minimizes the network overhead and the com-

munication path between the container and its data source.

all-to-one steps: Bitflow instantiates at most one container that is instructed to

analyze all matched data sources.

singleton steps: Bitflow starts the defined container, but does not connect it to

any data source. This type of step is useful to implement miscellaneous con-

tainers, such as databases or web servers. This way, all tasks and containers

in the ZerOps system can be defined and executed in the same format – not

only tasks strictly for data analysis.

When spawning a container, the Bitflow Controller provides it with all contex-

tual information that the container needs to perform its task. The information is

injected by two means: by setting environment variables and by replacing place-

holder tokens in the command section of the container template. Table 6.1 sum-

marizes the information that is provided this way. In the example of Listing 2, the

{BITFLOW_SOURCE_URL} token in the command list is replaced by the URL of

the data source, which makes sure that the data analysis process knows what data

stream to attach to.

BitflowStep objects offer great flexibility to the designer of the data anal-

ysis. By attaching BitflowSteps to the output data streams of other

BitflowSteps, Bitflow supports building deep and dynamic data analysis

pipelines. BitflowSources, on the other hand, are typically inserted into the

Kubernetes object store by an automatic process. The Bitflow Collector, for ex-

ample, creates a BitflowSource object whenever a new VM appears on the

monitored hypervisor.

The Bitflow Controller implements automatic resource limitation of data analysis

containers. For each physical node of the cloud platform, a configurable share of

the available resources is reserved for the analysis processes. When spawning

a container, the Bitflow Controller calculates the resources that the container

receives, and adds them to the container definition that it passes on to Kubernetes.

Kubernetes uses the “cgroups” feature of the Linux kernel [119] to implement the
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Table 6.1: Contextual information provided to data analysis containers

by the Bitflow Controller.

Field Name Description & Example

BITFLOW_SOURCE_URL The URL for connecting to the input data stream

Example: tcp://192.168.0.30:9000

BITFLOW_SOURCE_NAME The name of the BitflowSource object that

caused this container to spawn

Example: bitflow-collector-node01

BITFLOW_SOURCE_LABELS The labels of the data source that caused this

container to spawn

Example: node=node01, layer=physical

BITFLOW_STEP_NAME The name of the BitflowStep of this container

Example: anomaly-detection

BITFLOW_STEP_TYPE The type of the BitflowStep of this container

Example: one-to-one

resource limitations for the processes it controls. When computing the resources

assigned to each container, the Bitflow Controller uses an exponential growth

strategy, which minimizes the number of restarted containers when analyzed data

streams are added or removed.

6.3.2 Bitflow Stream Processing Runtime

The Bitflow Controller schedules and configures data analysis processes on dis-

tributed hosts, but it does not implement any actual stream processing capabil-

ities – this is the task of the Bitflow Stream Processing Runtime (short: Bitflow

Runtime). The Bitflow Runtime consists of three parts:

• a sample data type and a programming model to process samples in a graph

of processing steps,

• a binary marshalling format and efficient protocol for transmitting or per-

sisting samples,

• a domain-specific scripting language (Bitflowscript) that describes graphs of

processing steps.

One instance of the Bitflow Runtime runs as a single process on one execution

host, the Bitflow Controller starts many such processes to implement distributed
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stream processing. This section describes the programming model and marshalling

format of the Bitflow Runtime, while the following section defines the syntax and

semantic of Bitflowscript.

To increase the flexibility of the Bitflow Runtime, we have implemented

the programming model, network protocol, and Bitflowscript in three pro-

gramming languages: Go (go-bitflow9), Java (bitflow4j10), and Python

(python-bitflow11). These implementations of the Bitflow Runtime are com-

patible, since they support the same Bitflowscript syntax and the same network

protocol. samples can be seamlessly transported between data analysis processes

implemented in different languages. Depending on the nature of the required data

analysis, different languages offer different capabilities and libraries. The Go pro-

gramming language offers good performance and primitives for parallel program-

ming. Python and Java, on the other hand, provide sophisticated frameworks for

data analysis and machine learning, such as Tensorflow12.

The core data type of the Bitflow Runtime is a sample. A sample represents

one data point or measurement, while a sequence of samples represents a multi-

dimensional time series. Table 6.2 lists the data fields that are contained in a

Bitflow sample. The Bitflow Runtime processes streams of samples in a pipeline-

oriented programming model. A Bitflow pipeline can be composed of the following

elements: data sources, data sinks, processing steps, forks, and batch steps.

Bitflow data sources parse data from external sources into the internal sample

format. After a data source parses a sample, it passes it to the subsequent pipeline

element. Bitflow can read samples from files, TCP and HTTP connections, and

the process’ standard input stream. In addition, Bitflow supports the time series

data base InfluxDB13 and ElasticSearch14.

Data sinks in Bitflow mirror their data source counterparts – i.e., Bitflow can write

data to files, network connections, the standard output, and external data bases

such as InfluxDB. For transporting data over the network, or storing samples in

files, Bitflow defines a dense binary marshalling format. A Bitflow binary data

stream begins with a magic byte sequence, followed by the names of the fields

transported in the stream. These header fields are only re-transmitted when the

9https://github.com/bitflow-stream/go-bitflow
10https://github.com/bitflow-stream/bitflow4j
11https://github.com/bitflow-stream/python-bitflow
12https://www.tensorflow.org/overview
13https://docs.influxdata.com/influxdb/
14https://www.elastic.co/guide/index.html

https://github.com/bitflow-stream/go-bitflow
https://github.com/bitflow-stream/bitflow4j
https://github.com/bitflow-stream/python-bitflow
https://www.tensorflow.org/overview
https://docs.influxdata.com/influxdb/
https://www.elastic.co/guide/index.html


102 Chapter 6. ZerOps: A Self-Healing Cloud Platform

Table 6.2: The sample data type of the Bitflow Runtime.

Field Name Description Example

timestamp The time when the sample was

originally recorded or generated

2019-11-05 20:05:56.984

header A list of names of the data fields

contained in this sample

cpu, mem-percent,

net-io/packets

values The list of floating point values of

this sample

42.488, 58.166,

285751.408

tags A dictionary of string key-

value pairs that describe meta-

properties of this sample

node=node01,

layer=physical,

collector=bitflow

transported fields change. The actual samples are marshalled by encoding their

timestamp as a binary unsigned 64-bit integer, followed by their tags and by the

binary representation of the actual sample values. The detailed specification of

the marshalling format is available online15.

Regular processing steps in Bitflow receive a stream of samples, perform calcula-

tions or modifications, and forward resulting samples to the subsequent processing

step. Bitflow supports a number of useful steps for transforming streams of sam-

ples. Samples can be filtered based on tags and values of fields. Individual tags or

fields can be removed or modified. Samples can be sorted, shuffled, or otherwise

reordered. Many mathematical operations are supported as well, such as com-

putation of value distributions, normalization and smoothing of values, Principal

Component Analysis, Fast Fourier Transformation, and others. More specialized

data analysis algorithms can be added to the toolbox by implementing a simple

interface in one of the supported programming languages.

Bitflow’s pipeline model offers control flow and parallelization capabilities by defin-

ing forks. A fork splits a stream of samples into multiple parallel sub-pipelines.

Incoming samples are distributed into one or more sub-pipelines based on their tag

values. For example, the user can process data from different nodes individually

by defining a separate sub-pipeline for every value of the node tag of incoming

samples. Furthermore, Bitflow supports batch operations by buffering samples

and passing them to the processing step implementation collectively. A batch pro-

15https://bitflow.readthedocs.io/en/latest/data-format/

https://bitflow.readthedocs.io/en/latest/data-format/
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cessing step can be defined with a fixed size, constructed based on the timestamp

of samples, or simply built from all data in a finite data source.

Figure 6.5 shows how multiple Bitflow pipelines can be combined to form a complex

data analysis chain. Each instance of the Bitflow Runtime runs as an individual

process and can be started on the same machine as its predecessor, or remotely.

Monitoring data 
source

Host 1 Host 2

Data
normalization

Sliding window 
aggregation

Online clustering

Further 
processing

Bitflow process 1 Bitflow process 2

Local data forwarding

Dense binary data stream

Figure 6.5: A chain of Bitflow Runtime processes analyzing a data source.

6.3.3 Bitflowscript Language

The Bitflow framework defines a light-weight Domain-Specific Language (DSL) for

specifying data processing pipelines16, called Bitflowscript. Bitflowscript allows to

construct flexible and expressive pipelines of data analysis steps from a toolbox

of predefined components. Listing 3 shows a short example for the Bitflowscript

DSL used for anomaly detection.

Bitflowscript consists of data sources and data sinks in URL syntax, as well as

processing steps in a function-like syntax with parameters. These elements can

be combined by the chaining operator ->. Sub-pipelines in forks are surrounded

by curly braces and separated by semicolons. The Bitflowscript compiler parses

the script and instantiates every processing step as an actual object in the Bitflow

Runtime. Executing a Bitflowscript with unsupported processing steps leads to a

16https://bitflow.rtfd.io/projects/bitflow-antlr-grammars/en/latest/

bitflow-script

https://bitflow.rtfd.io/projects/bitflow-antlr-grammars/en/latest/bitflow-script
https://bitflow.rtfd.io/projects/bitflow-antlr-grammars/en/latest/bitflow-script
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1 listen://:9000

2 -> fork-tag(tag="component") {

3 * -> detect-anomalies-with-iftm(ensembler=50, opt=1500)

4 -> anomaly-smoothing(windowSize=20, minNumAnomalies=5)

5 }

6 -> write-to-influx-db(

7 databaseURL="http://storage.local:8086",

8 database="detected_anomalies")

9 -> tcp+csv://192.168.100.100

Listing 3: Example for the Bitflowscript DSL

well formatted error message, and a list of supported elements can be queried from

the containers both in human and machine readable formats. Bitflowscript allows

to express data analysis pipelines in a concise, declarative syntax, and facilitates

online updates and patches in running pipelines.

6.3.4 Bitflow Data Collector

The Bitflow data collector bitflow-collector17 is ZerOps’ main

source of monitoring data for physical and virtual machines. The data

collector operates in a similar fashion to related approaches for mon-

itoring generic processes and applications [49]: It runs as a single process on a

hypervisor machine and supports the collection of time series data from different

sources in a modular way. For easier deployment and portability, the tool is also

packaged as a Docker container.

The design goal of the bitflow-collector is to provide generic and not

application-specific data about hosts and services. This supports the goal of

ZerOps to monitor the infrastructure of an IaaS cloud provider, where mul-

tiple tenants share the resources and the provider does not have any access

to the workload deployed in the VMs. The frequency of sampling data with

bitflow-collector can be arbitrarily high and the data collection service

is designed to minimize resource overhead induced by the sampling routine itself.

The bitflow-collector provides all data in the Bitflow sample format, which

integrates seamlessly with the Bitflow Controller and the Bitflow Runtime.

The bitflow-collector agent uses the three data sources procfs, Libvirt,

and OVSDB. Table 6.3 gives an overview over all collected metrics.

17https://github.com/bitflow-stream/go-bitflow-collector

https://github.com/bitflow-stream/go-bitflow-collector
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Table 6.3: Metrics provided by the Bitflow data collector.

Resource Metrics Data source granularity

procfs Libvirt OVSDB

CPU cpu

cpu-jiffies

Host/process VM —

Load load/1

load/5

load/15

Host/process VM —

Memory mem/percent

mem/used

mem/free

Host/process VM —

Disk Access disk-io/byte

disk-io/write-byte

disk-io/read-byte

disk-io/ops

disk-io/write-ops

disk-io/read-ops

disk-io/time

disk-io/write-time

disk-io/read-time

Host/process VM —

Disk Space disk-space/percent

disk-space/used

disk-space/free

Host/process VM —

Network net-io/byte

net-io/rx-byte

net-io/tx-byte

net-io/packets

net-io/rx-packets

net-io/tx-packets

net-io/errors

net-io/dropped

Host/process VM Network link

Other num-procs

num-threads

Host/process — —
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The local /proc filesystem

The Linux kernel exposes information about running processes through the pseudo

file system procfs, typically mounted at /proc18. The procfs provides a va-

riety of static information, but also continuously updated values about resource

utilization. The bitflow-collector samples these utilization values in a con-

figurable interval to derive time series which can be analyzed for anomaly detection

purposes. The main metrics analyzed in ZerOps cover the utilization of CPU and

main memory, access to hard disks, and network activity. Additional metrics in-

clude counters of processes and threads, and detailed information about specific

network protocols. The main drawback of this data source is that it is provided by

the Linux kernel in a text format, which must be parsed at a certain performance

overhead. By default, bitflow-collector parses this data for the entire op-

erating system to ensure low resource overhead induced by the monitoring system.

At the cost of additional parsing operations, the same data can be obtained for

individual processes.

The Libvirt interface

The virtualization library Libvirt [21] provides unified access to virtual machines

running on a hypervisor host. Through a standardized network protocol19, Lib-

virt allows to obtain information and data about managed VMs. Besides static

meta information, this interface offers similar resource utilization data as procfs,

namely time series of the utilization of CPU, main memory, disk access and net-

work traffic. This data is available for every VM running on a hypervisor.

There are multiple benefits in obtaining this VM-specific data from Libvirt, instead

of querying the procfs filesystem within the VM. Firstly, the Libvirt interface is

independent of the used virtualization technology, and of the operating system in

the virtual machine. Secondly, no access to the internals of the monitored VMs is

required in order to obtain this data. Therefore, this approach works with a broad

range of use case scenarios, and is a good approximation of a productive public

cloud scenario, where the cloud service provider sees the customer VMs as black

boxes.

18https://www.kernel.org/doc/Documentation/filesystems/proc.txt
19https://libvirt.org/internals/rpc.html

https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://libvirt.org/internals/rpc.html


6.4. Experimental Evaluation 107

The OVSDB protocol

Besides resource usage of individual hosts, more detailed data about the network

connections between hosts and services is useful when looking for abnormal behav-

ior. Open vSwitch is a virtual switch that often implements the virtual network

layer in open source cloud infrastructures. The main feature of Open vSwitch in

this context is to establish network tunnels between physical hosts and to cre-

ate tenant-specific overlay networks for the VMs. Open vSwitch implements the

OVSDB protocol20, which provides access to the virtual interfaces and bridges on

a hypervisor. While the cloud stack controls the creation, deletion and configura-

tion of the virtual network elements, the bitflow-collector uses the OVSDB

protocol to query the network infrastructure and utilization of the virtual links.

In order to utilize the obtained information, the virtual links must be associated

with the VMs they belong to. The required associations are obtained from the

cloud operating system.

6.4 Experimental Evaluation

The goal of this experimental evaluation is to measure a number of runtime prop-

erties of the ZerOps system. In order to make these measurements more realistic,

we generate load on the underlying cloud system by simulating tenants. These ten-

ants execute different types of services on the cloud, which stresses the resources

of the hypervisors and feeds the data analysis tasks in the ZerOps system. We

complete the tenant simulation by generating load on the services using external

clients. Furthermore, we inject artificial anomalies during the experiment, in order

to trigger all parts of the ZerOps system, that go beyond anomaly detection.

6.4.1 Tenant Service Scenarios

To facilitate experimentation with the ZerOps platform, ZerOps includes two ten-

ant service scenarios that can be deployed on top of the OpenStack cloud platform.

The two scenarios were selected to maximize the diversity of the resulting resource

consumption. Both scenarios support arbitrary scale-out configurations, which

can be chosen depending on the number and size of the physical hosts. Different

service configurations lead to different load levels during an experiment.

Both service scenarios contain easy-to-use deployment artifacts. The necessary

cloud resources, such as virtual networks and VMs, are provisioned using Open-

20https://tools.ietf.org/html/rfc7047

https://tools.ietf.org/html/rfc7047
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Stack’s Heat project21. OpenStack Heat implements a domain-specific language

that allows to describe entire topologies of cloud resources. Using a single com-

mand, the Heat service rolls out the described topologies in a target OpenStack

cloud. After the VMs have booted, ZerOps deploys the actual tenant service using

Ansible playbooks22. Ansible is an orchestration tool that connects to the target

hosts via SSH and performs a series of commands based on a declarative descrip-

tion of the desired host state. ZerOps’ Ansible playbooks are idempotent and can

be executed whenever a service must be restarted, repaired, or redeployed.

The deployment artifacts for ZerOps’ tenant services are available on Github23.

Tenant Service: Video Streaming

The first service scenario consists of two types of applications: video streaming

servers and load balancers. Both services operate on the Real-Time Messaging

Protocol (RTMP)24. The video streaming servers use the Nginx web server25 and

its RTMP plugin26 to serve sample video content with different lengths and res-

olutions. Clients of the video streaming service do not connect to the backend

servers directly, but instead start streaming videos over one of the load balancers.

When a video is requested, the load balancer randomly selects one of the backend

servers, forwards the request, and redirects the video stream to the client. In this

scenario, the load balancers do not implement any additional functionality such as

caching or reliability mechanisms.

The two classes of servers in the video streaming scenario exhibit different resource

usage patterns. The backend service mainly generates outgoing network traffic,

and also some hard drive access to load the videos. The load balancers, on the

other hand, generate both incoming and outgoing network traffic, and use the disk

only for swapping.

The video streaming scenario includes a load generation client27. This load gen-

eration tool was specifically designed to facilitate experiments with RTMP and

HTTP based streaming services. The client is configured with a list of target

HTTP or RTMP URLs When the experiment is started, the client continuously

sends requests to the provided URLs in configurable order and time intervals. To

21https://docs.openstack.org/heat/latest/
22https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
23https://github.com/citlab/testbed-scenarios
24https://www.adobe.com/devnet/rtmp.html
25https://docs.nginx.com/
26https://github.com/arut/nginx-rtmp-module
27https://github.com/antongulenko/stream-statistics-client

https://docs.openstack.org/heat/latest/
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://github.com/citlab/testbed-scenarios
https://www.adobe.com/devnet/rtmp.html
https://docs.nginx.com/
https://github.com/arut/nginx-rtmp-module
https://github.com/antongulenko/stream-statistics-client
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make the experiments measurable, the client provides real-time statistics about the

generated data streams. These statistics include transferred bandwidth, open con-

nections and streams, as well as encountered errors and in case of video streams,

the number of transferred frames and pixels. This data can be used to calculate

service quality metrics that track how well the video servers are operating. For

increased flexibility, the load generation client offers an HTTP API that allows to

change its configuration during the experiment.

To make experiments as realistic as possible, the load generation clients are typi-

cally not executed on the same infrastructure as the services. Executing the clients

on external hosts ensures that the clients do not affect the servers’ operation, ex-

cept through their requests over the network. Figure 6.6 shows all components of

the video streaming scenario and their distribution on two separate infrastructures.

RTMP Load Balancers RTMP Video ServersLoad Generation Clients

Load Generation 
Infrastructure

Experimental 
Infrastructure

Figure 6.6: Parts of the video streaming tenant service and their sepa-

ration

Both servers and the load generation client are packaged in Docker containers.

The Ansible playbook for the video streaming scenario downloads and starts the

respective containers with correct configuration.

Tenant Service: IP Multimedia Subsystem

The IP Multimedia Subsystem (IMS) is a standardized collection of services and

protocols that enables various functionalities related to multimedia and IP tele-

phony [1, 28]. One of the core use cases for an IMS system is to establish a

communication session between two end users. Users can identify and contact

each other using identification tokens such as phone numbers or user names. The

IMS service is responsible for resolving these tokens to actual communication end-

points, such as IP addresses. When users roam and change their location, their

IMS client registers their updated endpoint with the IMS system.
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ZerOps includes IMS as the second service scenario, because the communication

pattern of IMS is quite different from the video streaming scenario. IMS is not

responsible for actually routing long-running connections, such as VOIP sessions

or video calls. Instead of long running streaming connections, IMS traffic consists

of short, bursty message cascades.

Project Clearwater28 is an open source implementation of the IMS specification.

Clearwater consists of over ten micro services that cooperate for delivering the IMS

core functionality. The services of Clearwater are designed to be "cloud-native"

– i.e., they are mostly stateless, resilient, and individually scalable. The inter-

nal communication of Clearwater consists mostly of UDP-based Session Initiation

Protocol (SIP) messages, with some exceptions using HTTP.

In order to generate actual load in the tenant services, ZerOps simulates clients

that continuously register with the system and establish IMS sessions. The IMS

load generation client software, Sipp, is available online29. Sipp performs various

sequences of IMS requests, including operations such as registration, calling an-

other user, answering a call, ending the session, and so on. By starting multiple

instances with different configurations, Sipp can emulate a variety of end user be-

haviors. Similarly to the video streaming scenario, ZerOps runs the Sipp clients

on dedicated physical hosts to minimize their impact on the actual cloud testbed.

6.4.2 Anomaly Injection

The anomaly injector component of ZerOps allows to perform controlled and re-

producible experiments with real cloud workloads. The software is available on

Github30. Since anomalies are highly irregular in fully functional software, the Ze-

rOps anomaly injector implements generic artificial resource anomalies that can be

injected and reverted in a controlled fashion. The implemented anomalies follow

two design goals:

1. anomalies are applicable to arbitrary injected services, and

2. anomalies can be reverted to bring the system back into a healthy state.

The ZerOps anomaly injector consists of two components, visualized in Figure 6.7.

Every host that is part of the experiment, executes an anomaly injection agent.

These agents implement an HTTP-based API that allows to remotely inject anoma-

lies, revert them, and query their current status. Anomaly injection agents can

28https://clearwater.readthedocs.io/en/stable/
29https://sourceforge.net/projects/sipp/
30https://github.com/citlab/distributed-anomaly-injection

https://clearwater.readthedocs.io/en/stable/
https://sourceforge.net/projects/sipp/
https://github.com/citlab/distributed-anomaly-injection
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Figure 6.7: The ZerOps anomaly injector: distributed anomaly agent

and central experiment controller

be started with a predefined time plan that defines when the agent has to inject

and revert anomalies. However, this is not the preferred way of running anomaly

injection experiments. In case an anomaly cannot be reverted due to a component

failure, the distributed agents would continue to inject anomalies and potentially

break the experiments, or render the testbed unusable. Therefore, the ZerOps

anomaly injector contains a centralized experiment controller. When an experi-

ment is started, the controller receives a plan for the anomalies to be injected. This

plan contains the timing, intensity, parameterization, and targets of all planned

anomalies. Every aspect of the plan can be randomized in order to increase the

diversity of the experiment. Whenever the experiment controller proceeds with

the plan, it checks the current status of the testbed by querying all anomaly in-

jection agents. If any agent is not reachable, or reports a problem, the experiment

is suspended, until the problem is resolved. The controller maintains a log of
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every event throughout the entire experiment, to make long-running experiments

comprehensible.

All anomalies implemented in the anomaly injection agent are idempotent. This

means an anomaly will not be injected multiple times, even if the agent or host

fail or are restarted. Most anomalies work by launching a process that consumes

system resources, but some anomalies change certain configurations of the oper-

ating system. When configured correctly, these “anomaly processes” disturb the

regular workload of the target host. ZerOps operates under the assumption, that

tenants of the cloud platform execute one service per VM. Therefore, the anomaly

injection processes appear to be part of the tenant service, when observing the

VM from the outside.

Table 6.4: Building blocks for resource consumption anomalies.

Consumption Patterns

Hogging Allocate a configured amount of the resource without releasing it

Leakage Allocate a configured amount of the resource in regular time intervals,

until reaching a maximum value

Fluctuation Same as leakage, but upon reaching the maximum value, start releasing

the resource, and restart after releasing everything

Resources

CPU Perform mathematical operations to produce the desired CPU load

RAM Allocate the defined amount of memory

Disk access Repeatedly perform read or write operations to a disk

Disk space Create a file of the desired size

Network Send arbitray network traffic from and to a remote host

PIDs Create the desired number of child processes

File pointers Open a number of files without releasing the file pointers

New anomaly implementations can be plugged into the anomaly injection agent

by providing a script that responds correctly to standardized command line pa-

rameters. However, the agent supports a number of useful anomalies out of the

box. Table 6.4 summarizes all anomalies that consume system resources in various
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ways. The upper part of the table shows the three supported resource consump-

tion patterns. These patterns can be combined with each of the system resources

shown below. These building blocks allow to generate a big spectrum of anoma-

lous behavior. For example, leakage of file pointers emulates a software bug where

file pointers are not released and eventually cause new file operations to fail. Hog-

ging of RAM triggers high swapping activity or causes out-of-memory errors in

other processes. Fluctuation of PIDs emulates a repeated fork bomb attack that

is intended to render the host unresponsive. More conservative anomalies, such as

memory leaks or CPU overutilization, are supported as well.

In addition to the resource consumption anomalies, the ZerOps anomaly injection

agent supports a number of specialized network configuration anomalies. Table 6.5

summarizes these anomalies. The implementation of these anomalies makes use of

the Traffic Control31 feature of the Linux kernel. Network configuration anomalies

allow to emulate anomalous behavior of network devices, such as overload on a

switch or a router, which leads to packets being dropped.

Table 6.5: Network configuration anomalies.

Latency Increase the processing time for packets on all external

network interfaces by a defined value

Bandwidth Artificially reduce the bandwidth on all external net-

work interfaces to a defined value

Packet loss Randomly drop a part of all incoming and outgoing

packets on all external interfaces

6.4.3 Testbed and Experimental Procedure

In this evaluation, a cluster of dedicated physical commodity servers functions as

physical infrastructure for the experimental ZerOps testbed. Table 6.6 summarizes

the core properties of our testbed. Both OpenStack and Kubernetes are installed

on the entire range of compute nodes, alongside all other ZerOps components. The

two tenant service scenarios video streaming and IMS are deployed in OpenStack

for load generation. A small number of external dedicated nodes are reserved for

the load generation clients for the two scenarios.

31https://lartc.org/

https://lartc.org/
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Table 6.6: Properties of the ZerOps experimental testbed.

Physical CPU frequency 3.30 GHz

Number of cores per node 8

Main memory per node 16 GB

Network links between nodes 1 Gbit/s

OpenStack/Kubernetes compute nodes 12

Ceph storage nodes 3

Load generation client nodes 4

Video streaming VMs 12

IMS VMs 33

Experimental Procedure

For a period of 72 hours, we record various types of data in the ZerOps testbed. To

avoid overly monotonous resource consumption, both classes of clients are config-

ured to vary the level of load in regular intervals. A central coordinator randomly

selects a new load level in intervals of ten minutes. For the video streaming service,

the clients vary the number of videos streamed in parallel. The IMS clients, on

the other hand, adjust the number of end users simulated at a time.

Table 6.7: Artificial anomalies injected during the experiment, with their

respective intensities.

Anomaly Video Streaming IMS Hypervisors

CPU hogging 90–100% 90–100% 90–100%

Disk hogging Full utilization Full utilization Full utilization

Network hogging Full utilization Full utilization Full utilization

Memory hogging 8000–1000 MB 400–500 MB 1500–2500 MB

Memory leak 90–240 MB/min 60–180 MB/min 90–240 MB/min

Reduced bandwidth 50–60 Kb/s 50–60 Kb/s 15–25 Mb/s

During the experiment, we use the ZerOps anomaly injection framework to create

disturbances in the cloud workload. Table 6.7 summarizes the anomalies injected

for the evaluation experiments, with their respective intensities. We manually

tuned each intensity to ensure that the anomalies affect the quality of the services,

without rendering them unresponsive, or even crashing them. The intensity of
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every anomaly injection is randomly selected within the defined range. Every

anomaly is injected for a duration of five minutes, followed by a cool down period

of ten minutes. The controller randomly selects a combination of an anomaly

and a target host, while making sure that no combination is repeated more than

once. After injecting every anomaly on every target host, the experiment controller

repeats the entire cycle.

Table 6.8 summarizes the main configuration parameters for the procedure of this

experiment.

Table 6.8: Configurations of the experimental evaluation procedure.

Total duration 72 hours

Client load change interval 10 minutes

Anomaly injection interval 15 minutes

Anomaly injection duration 10 minutes

Cooldown period between anomalies 5 minutes

With two types of measurements, we perform a numerical evaluation of the ZerOps

platform. The first measurement covers the resource consumption of all elements of

the ZerOps platform. The objective of this measurement is to show that the zero-

touch operations system induces a resource overhead that is low enough to be used

in practice. One of the requirements defined in Chapter 1 is “Unintrusiveness”: The

zero-touch operations platform must have a very low impact on the remaining cloud

platform and its tenant workload. ZerOps can only fulfill this requirement with

a low resource overhead. Therefore, the second type of measurements concerns

the in situ data analysis engine and evaluates the volume of network traffic that

the platform saves by analyzing the data streams directly at their origin. In

this regard, we measure how much data the ZerOps data collector produces per

monitored host.

6.4.4 Evaluation Results and Discussion

Requirement: Scalability

Scalability of the zero-touch operations platform means that its design naturally

adapts to arbitrary sizes of the monitored cloud platform, and to arbitrary numbers

of monitored hosts. This requirement mainly concerns the data analysis part

of ZerOps. Scalability cannot be achieved by having a single, centralized entity
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perform the data analysis for a potentially unbounded number of hosts. Instead,

ZerOps spreads all data analysis tasks over the entire cloud platform. We achieve

this by two means: in situ data analysis and hierarchical data analysis. All data

processing tasks that do not require the context of multiple monitored hosts, are

executed directly where the respective data stream originates. Wherever the data

of multiple hosts is required (e.g., for RCA), we rely on a divide-and-conquer

approach by splitting the analysis tasks in multiple layers, that each encompass a

limited number of monitored hosts.

Requirement: Extensibility

One of our core design goals for the ZerOps and the underlying zero-touch op-

erations architecture is to make it modular and extensible. Extensibility is first

addressed on the overall architectural level. All components, including the data

collection, the various data analysis tasks, and the selection and execution of reme-

diation workflows, are decoupled from each other through clearly defined interfaces.

This makes it possible to implement new data sources, design different data anal-

ysis pipelines, or define new remediation workflows, without rethinking the entire

system architecture.

Another modular and extensible part of our architecture is the data analysis

pipeline, as defined in Section 4.3. Every data analysis task is a standalone module

with clear input and output data formats. A number of specific algorithms can be

chosen to implement each part of the pipeline.

Requirement: Unintrusiveness

The third requirement, unintrusiveness, demands that ZerOps works as a seamless

extension of a traditional cloud platform, without disrupting its main operation.

ZerOps has multiple mechanisms to minimize a negative impact on the underlying

cloud platform. One important mechanism is the capability of the in situ data

analysis engine to limit the resources used by the data analysis processes. Ad-

ministrators define upper resource consumption limits that they deem acceptable.

However, some elements of the zero-touch operations architecture are not covered

by these hard limits. One such element is the data collector. In order to show, that

the consumed resources by the data collector and other parts of ZerOps are within

an acceptable range, we have monitored these resources during the experiments

described in the previous section.

Table 6.9 summarizes the average CPU utilization for different elements of ZerOps
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for the entire duration of the experiment. The first four lines show the resource

consumption for individual components of ZerOps: per process and summed up for

the entire testbed. The line entitled "Hypervisors" shows the overall CPU utiliza-

tion measured on the hypervisors, mainly representing the tenant workload. The

last three lines summarize the overall resource overhead of ZerOps, and compare

it to the entire cloud platform. The results show that ZerOps uses 16.69% of the

CPU of the cloud platform’s total utilization, and 10.69% of all available CPU

resources.

Table 6.9: Average CPU consumption of ZerOps and OpenStack.

Component type

Average

CPU consumption

per component

Number of

components

Total CPU

consumption

Data collector 1.78% ± 0.543% 12 21.36%

In situ analysis controller 1.61% ± 0.548% 1 1.61%

Data preprocessing 0.47% ± 0.167% 45 21.15%

Anomaly detection 1.47% ± 1.87% 45 84.15%

Hypervisor 64.05% ± 15.08% 12 768.60%

Hypervisor total resources 100% 12 1200%

ZerOps combined 128.27%

ZerOps relative to hypervisors 16.69%

ZerOps relative to total resources 10.69%

Table 6.10 shows the average memory consumption of the ZerOps components

and the underlying cloud infrastructure. The structure of the table follows that of

Table 6.9, but the values are given in MB and GB. The results show that ZerOps

utilizes roughly 2% of the overall memory resources and 3% of the memory utilized

by the cloud platform. These values indicate that ZerOps is less memory-intensive

than it is CPU intensive.

In Situ Data Analysis

One of the goals of the in situ data analysis engine is to reduce the network band-

width occupied by real-time monitoring data. This section presents measurements

in the ZerOps experimental testbed, that quantify these savings. First we calcu-

late how much of the real-time data streams we eliminate by analyzing the data

directly at the source, then we show the volume of these data streams.
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Table 6.10: Average memory consumption of ZerOps and OpenStack.

Component type

Average

memory consumption

per component

Number of

components

Total memory

consumption

Data collector 82.96 MB ± 16.70 MB 12 995.52 MB

In situ analysis controller 61.72 MB ± 0.02 MB 1 61.72 MB

Data preprocessing 53.92 MB ± 1.08 MB 45 2426.40 MB

Anomaly detection 67.59 MB ± 7.29 MB 45 811.08 MB

Hypervisor 9.5 GB ± 1.9 GB 12 113.5 GB

Hypervisor total resources 16.8 GB 12 201.6 GB

ZerOps combined 4294.72 MB

ZerOps relative to hypervisors 3.78%

ZerOps relative to total resources 2.13%

The ZerOps data collector records data with a frequency of two Hertz. Typical

monitoring systems that record resource utilization data for long-term storage

store the data at much lower frequencies. Such monitoring systems aggregate the

high-frequency data, which greatly reduces its size, but also sacrifices a lot of

information. Assuming a data storage frequency of 5 minutes, 600 high-frequency

samples are aggregated into one sample that is actually sent over the network.

This reduces the volume of the data stream by 99.83%.

Table 6.11 shows the measured respective data stream volumes produced by the

Bitflow Data Collector. The resulting numbers are rather small in the context

modern gigabit networks. The bandwidth savings produced by the in situ data

analysis engine become significant in bigger data centers and cloud platforms of

thousands of hypervisors and tens of thousands of virtual machines. Additional

data sources further increase the data volume, and with it the bandwidth saved by

in situ analysis. For small deployments, such as the ZerOps experimental testbed,

the in situ data analysis offers the benefit of a quicker data analysis results.

Table 6.11: Bandwidth occupied by real-time monitoring data.

Component type Data stream

Hypervisor 3.29 kB/s

VM 1.32 kB/s

Testbed total 98,88 kB/s
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Conclusion

This thesis presents an architectural and algorithmic approach to a self-healing

cloud platform. The first step is to identify what data sources can be used to mon-

itor the behavior of critical components, and how the topology of the system can

automatically be inferred. These data streams are then processed in a scalable and

efficient way by an in situ data analysis engine. The data analysis pipeline includes

steps for anomaly detection, anomaly classification, and the selection of remedia-

tion workflows. Finally, our system closes the loop by automatically executing the

optimal remediation workflow for each encountered anomaly situation.

The contributions of this thesis are threefold. First, we designed an autonomic,

self-healing extension to traditional cloud computing platforms. The resulting

zero-touch operations architecture is a blueprint for different cloud systems. Our

architecture covers all aspects, from component monitoring and topology inference,

to data analysis and automatic remediation. Second, we presented the design of

an in situ data analysis engine that fulfills the requirements of our zero-touch op-

erations architecture. Our engine focuses on flexibility and extensibility, while also

limiting the resources reserved for data analysis in order to not interfere with the

actual cloud workload. And finally, we applied our self-healing cloud architecture

to the use cases of a public IaaS cloud platform. We implemented an experimental

testbed based on our self-healing cloud platform ZerOps, and performed exper-

imental measurements for different parts of the platform. In a qualitative and

quantitative evaluation, we showed that ZerOps fulfills the requirements that we

initially defined for a self-healing cloud system.

The zero-touch operations architecture follows a data-driven approach, and as any

data-driven system, it has certain limitations. The most important precondition
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for detecting and analyzing anomalies in monitoring data is that the anomalous

behavior of the system actually manifests in observable metrics. If an anomaly

does not visibly manifest itself, or if the data analysis does not have access to

the according metrics, no detection and automatic remediation is possible. Fur-

thermore, it is inherently impossible to guarantee that a data-driven automation

system always makes the same decisions as a human would in the same situa-

tion. A small percentage of wrong decisions is to be expected, at least with the

currently available data analysis techniques. The managed application has to be

able to tolerate that. The overall success of the zero-touch operations architec-

ture is entirely dependent on the utilized data analysis techniques and available

remediation workflows.

Despite the holistic design of our architecture, we imagine several future research

directions to extend its autonomic self-healing capabilities. An interesting ex-

tension would be meta self-healing : enabling the autonomic system to recursively

monitor, analyze, and heal itself. A unification of the different autonomic managers

in today’s cloud systems would further increase their capabilities. This means, for

example, combining the self-healing platform with IDSs for self-protection. In or-

der to integrate with larger cloud infrastructures, the in situ data analysis engine

has to optimize its scheduling algorithm for complex network topologies. On the

algorithmic side, an interesting extension would be anomaly prediction for even

faster reaction times. The level of automation could be increased even beyond

the current level by implementing automatic composition of remediation work-

flows. Instead of selecting from a list of predefined alternatives, the system could

assemble the entire workflow from a large selection of fine-grained steps. This

could lead to remediation strategies that were previously unthought of by human

administrators.

Even without the named suggestions, our architecture is capable to autonomically

detect and resolve anomalies in a cloud infrastructure, and to continuously improve

its accuracy by building a knowledge base. We believe that autonomic, data-

driven closed-loop systems will further expand, and eventually become the default

approach for operating large computer infrastructures.
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