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Abstract
Global climate change and air pollution in urban areas are leading to the introduction of
agreements, regulations, and laws worldwide to reduce emissions. The best known is the
2015 Paris Climate Agreement, with its goal of limiting worldwide global warming to below
2°C. One important driver of emission reduction is the decarbonization of the transport
sector. In Europe, road transport accounted for 72% of total CO2-equivalent emissions from
the transport sector in 2019, with passenger cars accounting for 60.7% of road transport
emissions. Germany shows similar numbers: in 2019, passenger cars accounted for 61% of
CO2-equivalent emissions from road transport. As a result, passenger cars with internal
combustion engines have to be replaced by passenger cars with decarbonized drive systems.
In this context, a clear trend toward battery electric vehicles (BEVs) can be observed.
However, the growing number of BEVs and the resulting increase in demand for electrical
energy can lead to bottlenecks in energy generation and power supply. A reinforced electric
grid infrastructure may be necessary in many cases for increased power demand. In order to
enable electric grid operators to identify congestions in the grid, accurate models are needed
to predict the charging energy demand resulting from the electrification of private combustion
engine vehicles. Such models require high spatial resolution to assess energy demand peaks
even for small areas and high time resolution to identify peak loads throughout the course of
the day.
Especially in urban areas, spatial variance in charging demand can be expected, as areas
with completely different types of uses are located close to each other. For example, it is
possible that one district consists of single-family homes, while an industrial area is located
in the directly adjacent district. Due to the different activities performed in these areas, the
demand for charging energy differs significantly.

Existing approaches for determining the BEV charging demand in urban regions have
significant limitations. Some methods only determine the temporal distribution of BEV
charging energy demand, while other methods only determine the spatial distribution.
Methods that determine both usually determine the spatial distribution of BEV charging
demand with limited accuracy and have very limited applicability to other regions. To
overcome these limitations, this cumulative dissertation develops a method that allows
forecasting the spatial and temporal distribution of charging energy and power demand
resulting from the electrification of private internal combustion engine vehicles (ICEVs) in
an urban area. This method consists of three main parts:
Firstly, the urban area is divided into districts and the current conventional vehicle fleet in
the districts is replaced by electric reference vehicles. For each vehicle, a mobility profile
is created, consisting of a sequence of activities and trips between activities. However, the
generated mobility profiles have one major limitation. Due to insufficient data, the geographic
location where the vehicle is parked while the BEV user is performing an activity is unknown.
Therefore, charging demand can only be determined by assuming that BEVs are exclusively
charged at, or near the residences of BEV owners.



To overcome this limitation, the locations of activities need to be determined. An important
input variable in this determination is the car-access attractiveness of the districts which is
developed in the second part of the method. The car-access attractiveness is a measure of
how attractive districts are to drive to by car for a particular activity.
Thirdly, the unknown geographical locations of the activities are determined. For this
purpose, a route assignment approach is developed that assigns a destination district to each
vehicle trip. By determining the destinations of BEV trips, a complete mobility profile is
available for each BEV. This allows determining the spatial and temporal distribution of
BEV charging demand in the urban area by applying charging scenarios. The application of
the methodology is demonstrated for the urban area of Berlin, Germany. Full electrification
of Berlin’s private transport is assumed and the spatial and temporal distribution of BEV
charging demand is determined for four charging scenarios.

The results show that between 5468 MWh and 6093 MWh of charging energy is required on
an average working day in Berlin, depending on the charging scenario. At least 61.8% of this
energy is charged at the residences.
Charging energy demand at residences ranges from 0 kWh per day in uninhabited districts
to 40.7 MWh per day in districts with high population and motorization levels.
The temporal distribution of the charging power demand in Berlin is highly dependent on
the charging scenario as well. The peak power demand ranges from 328 MW to 412 MW.

Based on the complete mobility profiles of BEVs and the charging demand of BEVs determined
for Berlin, further research is conducted. In this second part of the dissertation, (i) the load
shifting potential through controlled charging of BEVs is investigated, (ii) the Vehicle to
grid (V2G) potential of BEVs is studied, and (iii) the future charging station demand in
Berlin is determined. The results show that it is possible to reduce peak power demand by
up to 31.7% through load shifting compared to uncontrolled charging. By applying V2G,
the entire electricity demand of households and BEVs in Berlin can be covered by renewable
energies.

The developed model is an important building block for the estimation of the energy demand
due to the massive electrification of conventional vehicles expected in the next years. Possible
further developments include transferring the developed model to other vehicle types (e.g.
commercial vehicles) and extending it to larger areas (e.g. Germany).
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Kurzfassung
Der globale Klimawandel und die Luftverschmutzung in städtischen Gebieten führen dazu,
dass weltweit Abkommen, Verordnungen und Gesetze zur Reduzierung von Emissionen
verabschiedet werden. Das Bekannteste ist das Pariser Klimaabkommen von 2015 mit dem
Ziel, die weltweite Erderwärmung auf unter 2°C zu begrenzen. Ein wichtiger Hebel für die
Emissionsreduzierung ist die Dekarbonisierung des Verkehrssektors. In Europa entfielen
im Jahr 2019 72% der gesamten CO2-äquivalenten Emissionen des Verkehrssektors auf den
Straßenverkehr, wobei 60,7% der Emissionen des Straßenverkehrs durch Personenkraftwagen
verursacht wurden. In Deutschland sind die Zahlen ähnlich: 2019 entfielen 61% der CO2-
äquivalenten Emissionen des Straßenverkehrs auf Personenkraftwagen. Das bedeutet, dass
Personenkraftwagen mit Verbrennungsmotoren durch Personenkraftwagen mit nachhaltigeren
Antrieben ersetzt werden müssen. Hierbei ist ein deutlicher Trend hin zu batterieelektrischen
Fahrzeugen (BEVs) zu beobachten.
Die wachsende Zahl von BEVs und die damit verbundene steigende Nachfrage nach elektrischer
Energie kann jedoch zu Engpässen bei der Energieerzeugung und Stromversorgung führen.
Ein Ausbau der Stromnetzinfrastruktur kann in vielen Fällen notwendig sein, um den erhöhten
Strombedarf zu decken. Damit die Betreiber von Stromnetzen Engpässe im Netz erkennen
können, sind genaue Modelle zur Vorhersage des Ladeenergiebedarfs erforderlich. Solche
Modelle erfordern eine hohe räumliche Auflösung, um Energiebedarfsspitzen auch für kleine
Gebiete zu ermitteln und eine hohe zeitliche Auflösung um Spitzenlasten im Tagesverlauf zu
identifizieren.
Vor allem in städtischen Gebieten sind räumliche Unterschiede im Bedarf nach Ladeenergie
zu erwarten, da Gebiete mit völlig unterschiedlichen Nutzungsarten nahe beieinander liegen.
So ist es möglich, dass ein Stadtteil aus Einfamilienhäusern besteht, während sich im
direkt angrenzenden Stadtteil ein Industriegebiet befindet. Aufgrund der unterschiedlichen
Aktivitäten, die in diesen Gebieten ausgeübt werden, ist der der Bedarf an Ladeenergie sehr
unterschiedlich.

Bestehende Ansätze zur Ermittlung des BEV-Ladeenergiebedarfs in städtischen Regionen
weisen erhebliche Einschränkungen auf. Einige Methoden bestimmen lediglich die zeitliche
Verteilung des Ladeenergiebedarfs, während andere Methoden nur die räumliche Verteilung
bestimmen. Methoden, die beides ermitteln, ermitteln die räumliche Verteilung des Ladebe-
darfs in der Regel nur mit begrenzter Genauigkeit und sind nur sehr eingeschränkt auf andere
Regionen übertragbar. Um diese Einschränkungen zu überwinden, wird in dieser kumulativen
Dissertation eine Methode entwickelt, die es ermöglicht, die räumliche und zeitliche Verteilung
des Ladebedarfs zu prognostizieren, die sich aus der Elektrifizierung von privaten Fahrzeugen
mit Verbrennungsmotor in einem städtischen Gebiet ergibt. Diese Methode besteht aus drei
Hauptteilen: Im ersten Teil wird das Stadtgebiet in Bezirke unterteilt und die aktuellen
konventionellen Fahrzeuge in den Bezirken durch elektrische Referenzfahrzeuge ersetzt. Für
jedes Fahrzeug wird ein Mobilitätsprofil erstellt, das aus einer Abfolge von Aktivitäten und
Fahrten zwischen den Aktivitäten besteht.



Die erstellten Mobilitätsprofile weisen jedoch eine wesentliche Einschränkung auf. Aufgrund
unzureichender Daten ist der Ort, an dem das Fahrzeug geparkt ist, während der BEV-Nutzer
eine Aktivität ausführt, unbekannt. Der Ladebedarf kann daher im ersten Schritt lediglich
unter der Annahme bestimmt werden, dass die BEVs ausschließlich an den Wohnorten ihrer
Besitzer geladen werden.
Um diese Einschränkung zu überwinden, müssen die Orte der Aktivitäten bestimmt werden.
Eine wichtige Eingangsgröße für diese Bestimmung ist die Pkw-Zugangsattraktivität der
Bezirke, die im zweiten Teil der Methode entwickelt wird. Diese ist ein Maß dafür, wie
attraktiv ein Bezirk ist, um für eine bestimmte Tätigkeit dorthin zu fahren.
Im dritten Teil der Methode werden die Orte der Aktivitäten bestimmt. Hierfür wird ein
Routenzuweisungsverfahren entwickelt, das jeder Fahrzeugfahrt einen Zielbezirk zuweist.
Die Kenntnis über die Zielorte der Fahrten ermöglicht die Bestimmung der räumlichen und
zeitlichen Verteilung des BEV-Ladebedarfs durch Anwendung von Ladeszenarien.
Die Methodik wird für Berlin, Deutschland, angewandt. Es wird eine vollständige Elektri-
fizierung des Berliner Individualverkehrs simuliert und die räumliche und zeitliche Verteilung
des Ladebedarfs für vier Ladeszenarien ermittelt.

Die Ergebnisse zeigen, dass an einem durchschnittlichen Werktag in Berlin, je nach Ladesze-
nario, zwischen 5468 MWh und 6093 MWh an Ladeenergie benötigt werden. Mindestens
61,8% dieser Energie wird an den Wohnorten geladen.
Der Ladeenergiebedarf an Wohnorten reicht von 0 kWh pro Tag in unbewohnten Bezirken bis
zu 40,7 MWh pro Tag in Bezirken mit hoher Bevölkerungszahl und hohem Motorisierungsgrad.
Auch die zeitliche Verteilung des Ladeenergiebedarfs in Berlin ist stark vom Ladeszenario
abhängig. Der Spitzenleistungsbedarf reicht von 328 MW bis 412 MW.

Basierend auf den vollständigen Mobilitätsprofilen der BEVs und dem für Berlin ermittelten
Ladebedarf der BEVs werden weitere Untersuchungen durchgeführt. In diesem zweiten Teil
der Dissertation wird (i) das Lastverschiebungspotenzial durch gesteuertes Laden von BEVs
untersucht, (ii) das Vehicle-to-Grid (V2G) Potenzial von BEVs untersucht und (iii) der
zukünftige Ladestationsbedarf in Berlin ermittelt. Die Ergebnisse zeigen, dass es möglich ist,
den Spitzenstrombedarf durch Lastverschiebung im Vergleich zu ungesteuertem Laden um
bis zu 31,7% zu reduzieren. Durch den Einsatz von V2G kann der gesamte Strombedarf von
Haushalten und BEVs in Berlin durch erneuerbare Energien gedeckt werden.

Das entwickelte Modell ist ein wichtiger Beitrag zur Abschätzung des Energiebedarfs, der
durch die in den nächsten Jahren zu erwartende massive Elektrifizierung konventioneller
Fahrzeuge entsteht. Mögliche Weiterentwicklungen sind die Übertragung des entwickelten
Modells auf andere Fahrzeugtypen (z.B. Nutzfahrzeuge) und die Ausweitung auf größere
Gebiete (z.B. Deutschland).
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1 Introduction
This chapter motivates this dissertation, defines its objective, and shows its structure.

1.1 Motivation

To reduce the adverse effects of global climate change, reduce air pollution, and limit global
temperature increase, emissions of greenhouse gases and air pollutants must be reduced and
avoided in all sectors. The signing parties of the 2015 Paris Climate Agreement have therefore
committed themselves to reduce their greenhouse gas emissions to such an extent that the
human-induced temperature increase is limited to below 2°C [1]. The European Union
has agreed on the European Green Deal, which includes net-zero greenhouse gas emissions
by 2050 and a zero-pollutant target [2]. To achieve these targets, Germany developed
and implemented the Climate Protection Plan 2050 [3], the Federal Climate Protection
Act [4] and the National Clean Air Program [5]. This has resulted in a 40% reduction in
greenhouse gas emissions since 1990, as shown in Figure 1.1. The most significant progress
has been made in the energy sector, through the reform of European emissions trading,
the expansion of renewable energies (RE), and the shutdown of coal-fired power plants [6].
However, the transport sector is stagnating at 1990 levels and is responsible for about 20%
of total greenhouse gas emissions in 2020. This is mostly due to the increased traffic volume
worldwide which compensates for the technical improvements to the vehicles.
Emissions of air pollutants have also declined since 1990. However in 2020, the transportation
sector was still responsible for a significant share of the emission generation, especially for
nitrogen oxides (∼36%), carbon monoxide (∼32%), and particulate matter (PM 2.5: ∼20%,
PM 10: ∼14%) [7].

Figure 1.1: Development of greenhouse gas emissions in Germany since 1990 [8].

To reduce greenhouse gas and air pollutant emissions in the transport sector, various
measures are being taken, such as traffic avoidance, efficiency improvements, the use of more
environmentally friendly means of transport, and the electrification of vehicles [3].
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In particular, the electrification of private motorized transport is seen as central to achieve
the reduction targets in the transport sector. In Europe, road transport accounted for 72%
of total CO2-equivalent emissions from the transport sector in 2019, with passenger cars
accounting for 60.7% of road transport emissions [9]. Germany shows similar numbers: in
2019, passenger cars accounted for 61% of CO2-equivalent emissions from road transport
[10]. The European Union has therefore agreed on an emission limit of 95 g CO2/km for
passenger cars registered by 2021 [11].
As a result, passenger cars with internal combustion engines have to be replaced by passenger
cars with decarbonized drive systems. In this context, there is a clear trend towards battery-
electric passenger cars instead of fuel-cell-powered passenger cars. In the following, passenger
cars with internal combustion engines are referred to as ICEVs, battery electric passenger
cars are referred to as battery electric vehicles (BEVs). Fuel-cell-powered passenger cars are
referred to as fuel cell electric vehicles (FCEVs).

The development of annual BEV registrations in Germany from 2010 to 2021 is shown in
Figure 1.2. While 11,410 BEVs were registered in 2016, 355,961 BEVs were registered in
2021, corresponding to an increase of over 3000% in the last 5 years. The trend towards
increasing sales of BEVs can be observed worldwide [12].
For FCEVs a similar trend cannot be observed. In Germany, for example, only 464 FCEVs
were registered in 2021 [13]. The low registration numbers of FCEVs are mainly due to the
high acquisition costs, the lack of infrastructure and the lack of a stable, long-term policy
framework [14]. Therefore, only BEVs are considered in this dissertation. However, if the
barriers described can be overcome, a significant increase in FCEV numbers can be expected
in the future [15].
At this point, it should be noted that 41.1% of electricity in Germany was generated from
renewable sources in 2021 (45.2% in 2020) [16]. Worldwide, 28.1% of electricity was generated
from renewable sources in 2021 [17] (27% in 2020 [18]). Therefore, BEVs do not currently
operate with a net zero carbon footprint. BEVs will achieve their full greenhouse gas
abatement effect when the charged electricity originates entirely from renewable sources.

Figure 1.2: Number of annual BEV registrations in Germany from 2010 to 2021 [19].
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The rapid growth in BEV numbers and the resulting increase in demand for electrical energy
and power can lead to bottlenecks in energy generation and power supply. A reinforced
electric grid infrastructure may be necessary in many cases for increased power demand
[20]–[23]. Various studies have shown that the demand for electrical energy and power for
charging BEVs varies depending on the time of day (due to different activities) and the
type of day (weekday or weekend day) [20]–[22]. In addition, spatial variance in energy
demand can be expected. An industrial area, for example, has a different charging energy
demand compared to a residential area [24], [25]. As a result, the electric network needs to
be reinforced to different extents depending on the specific requirements of the considered
area. To support such targeted grid expansion, precise models are required to identify the
distribution of the energy demand and evaluate potential power system overload due to ICEV
electrification. Such models require high spatial resolution to assess energy demand peaks
even for small regions and areas and high time resolution to identify peak loads throughout
the course of the day.

1.2 Objective and Structure of this Dissertation
Especially in urban areas, spatial variance in charging demand can be expected, as areas with
completely different types of uses are located close to each other. For example, it is possible
that a district consists mainly of single-family houses, while the directly adjacent districts
contain an industrial area or commercial areas. However, as shown in the literature review
in Chapter 2, existing approaches for determining the spatial and temporal distribution of
BEV charging energy demand in urban regions have significant limitations. Therefore, the
objective of this dissertation is to overcome these limitations and develop a method that
allows for determining the spatial and temporal distribution of charging energy and power
demand resulting from the electrification of private internal combustion engine passenger
cars in urban areas. The method is demonstrated using the urban area of Berlin, Germany
as example. Due to the limited available data for commercially used vehicles (such as e.g.
cabs and rental cars), in this dissertation, the determination of charging energy demand is
restricted to private cars. In Berlin, the share of private cars in the total car population in
2020 was 86.3%, in Germany 89.0% [26].

This cumulative dissertation consists of 4 published papers and one additional topic. A
summary of these 5 topics can be found in Chapter 3.
The topics can be divided into two main parts. In the first part (Chapter 4), the development
of the model for determining the spatial and temporal distribution of BEV charging energy
demand is discussed. In the second part (Chapter 5), it is shown how the results can be
used for determining Vehicle to grid (V2G) potential, and estimating charging infrastructure
demand. In Chapter 6, the developed method and the results are discussed and placed in
the context of existing research. The dissertation concludes with a summary and outlook in
Chapter 7.
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1.3 List of Publications
This cumulative dissertation contains the accepted manuscripts of the following publications:

• Publication I – [27] – F. Straub, S. Streppel, D. Göhlich: “Methodology for Estimating
the Spatial and Temporal Power Demand of Private Electric Vehicles for an Entire
Urban Region Using Open Data”. Energies, 2021

• Publication II – [28] – F. Straub, O. Maier, D. Göhlich: “Car-Access Attractiveness of
Urban Districts Regarding Shopping and Working Trips for Usage in E-Mobility Traffic
Simulations”. Sustainability, 2021

• Publication III – [29] – F. Straub, O. Maier, D. Göhlich, Y. Zou: “Forecasting the Spatial
and Temporal Charging Demand of Fully Electrified Urban Private Car Transportation
based on Large-Scale Traffic Simulation”. Green Energy and Intelligent Transportation,
2023

• Publication IV – [30] – F. Straub, O. Maier, D. Göhlich, K. Strunz: “Sector Coupling
through Vehicle to Grid: A Case Study for Electric Vehicles and Households in Berlin,
Germany”. World Electric Vehicle Journal, 2023



2 State of the Art and Research Needs
This cumulative dissertation consists of thematically self-contained published papers. Each
publication individually discusses the fundamentals and state of the art necessary for un-
derstanding the publication. Therefore, this chapter only covers necessary fundamentals,
which are not included in the publications. These fundamentals include a discussion of
available charging interfaces for BEVs and battery charging protocols (Section 2.1), as well as
transport models to predict travel behavior and determine travel demand in the area under
consideration (Section 2.2).
The second part of this chapter evaluates related scientific work on determining the spatial
and temporal distribution of BEV charging energy demand (Section 2.3). From the limita-
tions of this state of the art, the research objectives of the dissertation are derived (Section
2.4).

2.1 Electric Vehicle Charging
The electrical energy E that can be absorbed by the BEV’s battery during charging can be
determined according to Equation 2.1:

E = η

∫︂ t1

t0

P (t)dt (2.1)

where P is the charging power provided at the charging station, t is the time and η the
efficiency of the system between charging station and BEV battery. Usually, charging losses
of about 10% occur [31]–[33]. However, experimental measurements have shown that charging
losses can reach up to 20% for individual vehicles [34].

The time-dependent charging power and thus the charging time is limited by two main
factors. The first factor is the charging interface at the charging station, which only allows a
certain maximum charging power. Common charging interfaces for BEVs are discussed in
Section 2.1.1.
The second factor is the vehicle itself. This vehicle dependence is discussed in Section 2.1.2.

2.1.1 Charging Interfaces

The most common conductive charging interfaces for battery electric vehicles are shown
in Table 2.1. The available charging power varies from 2.3 kW for the household socket
up to 400 kW for CHAdeMO chargers. The latest developments allow up to 900 kW. In
principle, it is possible to use inductive charging systems or battery swapping stations instead
of the conductive systems listed. However, although there is much research on inductive
systems [35]–[42] and battery swapping stations [43]–[48], these systems have not been able
to establish themselves on a large scale yet.
The predominant charging plugs in Europe and Germany are the Type 2 plug for alternating
current (AC) charging and the CCS Combo 2 plug (Combined Charging System with the
Type 2 plug), which enables both AC and direct current (DC) charging [49].
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Table 2.1: Common charging interfaces for battery electric vehicles [50]–[56].

Type
Electric
current

Region
Max. charging

power (kW)

Schuko plug AC Europe 3.68/2.3a

Type 1 plug AC North America and Japan 9.2
Type 2 plug AC Europe and China 43/22b

CCS Combo 1 AC/DC North America 350 (DC)
CCS Combo 2 AC/DC Europe 350 (DC)
CHAdeMO DC Europe and Asia 200/50b

CHAdeMO 2.0 DC Asia 400
CHAdeMO 3.0, ChaoJic DC Asia 900

Tesla Supercharger DC Worldwide 250
GB/T DC China 237.5

aSchuko plugs are not designed for continuous operation at maximum power. Continuous output is
usually 2.3 kW.

bUsual max. charging power at charging stations
cChaoJi standard is still under development

2.1.2 Battery Charging Protocols and Charging Curves

In addition to the charging interface, the maximum charging power that can be used by
a BEV depends on its battery management system [57]. The battery management system
specifies the charging protocol with which the vehicle is charged. The charging protocol is
the control of electric current and voltage when charging the battery. The protocols aim to
fully charge the battery within its operating limits while keeping battery aging to a minimum
[58].
In the electromobility sector, the lithium-ion battery has become the standard in recent
years due to its high volumetric and gravimetric energy density [59]. An overview of the
most common lithium-ion battery types for battery electric vehicles can be found in [60].
For charging lithium-ion batteries there are a variety of charging protocols, such as the
constant-current constant-voltage (CCCV) protocol, the multi-stage constant-current (MSCC)
protocol, and the pulse charging protocol. Among these, the CCCV charging protocol is
currently the most widely used protocol due to its simplicity and its easy implementation
[58], [61].
The CCCV charging cycle is shown in Figure 2.1 and consists of a constant-current (CC)
and a constant-voltage (CV) phase. In the constant-current phase, the charging current is
kept constant until the increasing cell voltage reaches a defined maximum threshold. In this
phase, the charging power is nearly constant. The battery state of charge (SOC)1 increases
almost linearly with time, as can be seen in Figure 2.1. Once the voltage has reached its
threshold value i.e. the point of transition (PT), the voltage of the cell is kept constant.

1The SOC indicates the available capacity of a battery relative to its nominal capacity. SOC values are
expressed as a percentage, with 0% SOC corresponding to an empty battery and 100% SOC corresponding
to a full battery.
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The charging current is exponentially reduced to a predefined minimum threshold value.
In this constant-voltage phase, the available charging power is also progressively reduced
[62]–[64].
In contrast to the CCCV process, the MSCC process has several constant-current phases.
The charging current of phase n+1 is lower than the charging current of phase n [63].

Time

CC-phase CV-phasePT

Voltage
Electric current
State of Charge (SOC)

Figure 2.1: CCCV charge cycle according to [62], [64].

In addition to the discussed representation as a correlation between SOC and time, the
charging behavior of BEVs is often given in the literature as a correlation between charging
power (y-axis) and SOC (x-axis). The resulting curves are referred to as charging curves.
In Figure 2.2, the charging curves of nine BEVs are shown, which were determined by
experimental measurements [65]. It can be seen that most vehicles use the CCCV charging
protocol. The KIA e-Niro and the Hyundai Kona are charged using the MSCC charging
protocol.
Furthermore, it can be seen that the transition point (after which the cell voltage is kept
constant) varies greatly from vehicle to vehicle. However, there is a tendency for higher
maximal charging powers to be associated with charging transition points at lower SOC
values. The reason for this is the increased internal resistance of the battery at higher
charging powers due to thermal effects [59].

0% 20% 40% 60% 80% 100%
State of Charge

0
25
50
75

100
125
150
175

Ch
ar

gi
ng

 P
ow

er
 (k

W
) Audi e-tron 55 

Tesla Model S
Mercedes EQC
KIA e-Niro 64kWh
Hyundai Kona 64kWh
BMW i3 42kWh
Nissan Leaf 62kWh
VW e-Golf 36kWh
VW e-UP!

Figure 2.2: Charging curves of BEVs [65].
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2.2 Transport Models
Transport models are used to predict travel patterns and travel demand in a study area. The
standard model used is the four-step transport model which is described in Section 2.2.1.
To overcome the limitations of four-step models, activity-based models were developed which
are described in Section 2.2.2.

2.2.1 Four-Step Transport Model

The general form of the four-step transport model is schematically depicted in Figure 2.3.
The basis of the model is the division of the considered area into traffic cells, which are
connected by traffic lines. Traffic cells and lines together form the network system. This is
used together with a database containing data for all traffic zones regarding the population,
the degree of motorization, as well as data on employment, sales areas, educational and
recreational facilities.
This data is then used in the “Trip generation” step to determine the total number of trips
generated and attracted by each traffic zone. Based on the trip generation, the distribution
of trips to destination traffic zones is unknown.
Therefore, in the “Trip distribution” step, trip origins and destinations are linked, which
means that the traffic flow between the traffic cells is determined. The gravity model is
often used for this purpose. It is based on the assumption that a traffic cell behaves like
a gravitational point, i.e. the more mass a cell has (e.g. number of employees or sales
area), the higher its gravitational pull. As the distance between two cells increases, the cell’s
gravitational pull decreases.
Then, in the “Mode choice” step, the mode of transportation for each trip is determined.
Usually, this is based on the “modal share” of the considered area, which indicates the share
of a type of transportation in the total traffic volume.
Finally, the “Route assignment” step determines which route the generated traffic chooses to
get from the origin to the destination. Typically, a distinction is made between a private and
a public transportation network [66], [67].

Network system Database

(1) Trip generation

(2) Trip distribution

(3) Mode choice

(4) Route assignment

Figure 2.3: Four-step transport model according to [66].
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2.2.2 Activity-Based Transport Model

The main limitation of the four-step transport model is that the trips generated are considered
independent variables and therefore the trips cannot be linked to individual persons. Thus,
only the aggregate travel behavior of all persons in the area under consideration can be
modeled, but not the travel behavior of individual persons. In contrast, activity-based
models operate at a disaggregated person level and are based on the concept that travel
demand results from the activity patterns of the persons in the considered area. The activity
pattern of a person depends on the individual characteristics of the person (e.g. the place
of residence, income, age, household, and other social characteristics). In contrast to the
zone-based description in traditional transportation models, activity-based models typically
identify full-day travel schedules for each person in the considered area. The travel schedules
which are also referred to as mobility profiles2 describe the relationship between activities,
trips, mode of transportation, and the location where the activities are performed [66], [68].
Travel schedules are typically derived from travel surveys which are obtained by interviewing
households in the considered area about their activities and trips on reference days.
In Figure 2.4 an example of a mobility profile of a person is depicted. The person goes
shopping in the morning and uses the bicycle to do so. The person then returns home and
drives to work from there. The person arrives back home at 17:15.

Home Shopping
1.5 km

Bike
Home

1.5 km

Bike
Work

18 km

Car
Home

18 km

Car
07:20 07:30 07:50 08:00 8:45 09:10 16:50 17:15

20 min 45 min 7 h 40 min

Figure 2.4: Example of a mobility profile.

2.3 Related Scientific Publications

This chapter reviews related scientific publications on determining the spatial and temporal
distribution of BEV charging energy demand and summarizes their methodological approach.
From the limitations of this state of the art, the research objectives of the dissertation are
derived in Section 2.4.

The authors of [24] develop a method for estimating the spatial and temporal distribution
of BEV charging demand in urban areas. First, they divide the area into several different
functional areas (e.g residential, working, shopping entertainment areas). However, the
methodology for dividing the city into these areas is not discussed.
After the division, the BEVs are distributed to the functional areas in the city (hereinafter
referred to as the “home” area). The methodology used for this distribution is also not
discussed. Then, each vehicle is assigned a mobility profile that contains information on the
distances traveled, activities, and parking times of the BEVs. The database is a travel survey.
Subsequently, the destination functional area of the first trip is determined. The basis of
this determination is the known “home” area and the travel distance of the first trip. From
all destinations that can be reached from the “home” area with the given travel distance,
one is randomly selected. This destination area is then the origin area of the second trip.
The destination area of the second trip is again randomly selected from all areas that can

2In the following, the terms full-day travel schedules and mobility profiles are used interchangeably.
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be reached with the given travel distance of the second trip. The destination areas of the
remaining trips are determined analogously to the first and second trip. Knowledge of the
geographic location of activities then allows (along with mobility profiles) the determination
of the spatial and temporal distribution of BEV charging demand.
However, the spatial distribution determined has limited accuracy due to the random selection
of destinations. Each functional area differs from the others (e.g., number of employees or
number of available parking spaces) and therefore has a different probability of attracting
trips which is not considered.

The authors of [69] develop a methodology to determine the temporal distribution of BEV
charging energy demand for urban areas and demonstrate their approach for the city of
Auckland, New Zealand. In their method, the current fleet of vehicles with combustion engines
(e.g., cars, trucks, buses, commercial vehicles) is first replaced by electric reference vehicles.
Then, the daily distance of each vehicle is determined based on probability distributions. A
distribution is available for each vehicle class individually and is derived from a travel survey.
By multiplying the daily distance by the average consumption of the individual vehicles, their
daily energy demand is calculated. Finally, the start time of charging is determined for each
vehicle from the travel survey. Using the charging demand and the start time of charging, the
charging time is obtained. This allows for determining the temporal distribution of charging
power demand. Since the geographic locations where the vehicles charge are not determined,
the methodology cannot be used to determine the spatial distribution of charging energy
demand.

In [25], the authors develop a method to determine the spatial distribution of BEV charging
demand and identify the most suitable locations for public and semi-public charging stations.
The method is demonstrated for 8 counties in Bavaria, Germany. In order to obtain the
spatial distribution of charging demand they first determine the points of interest (POIs)
and their geographic locations in the considered area using OpenStreetMap (OSM) geodata
analysis. The POIs are divided into 4 POI classes where different activities can be performed.
These are “living”, “working”, “shopping”, and “recreation”. For each POI class, the total
annual charging energy demand is then determined by multiplying the annual mileage of the
vehicles by their average consumption. The total demand per POI class is then distributed
evenly among all POIs in the class. As a result, the charging demand at each POI is known,
and thus the spatial distribution of charging demand.
Due to the even distribution, the energy demand is high at locations with many POIs and
low at locations with few POIs. It is neglected that different POIs attract different numbers
of people, e.g., because of their different size or their different accessibility. Therefore the
determined spatial distribution is limited.
Since only the annual energy demand is determined, the temporal distribution of the charging
demand cannot be determined with the method.

In [70], the authors address the question of what charging infrastructure is required for a
fully electrified private transport. They demonstrate their method for the city of Rome, Italy.
A dataset representing 6% of traffic flow in Rome is used as the base dataset. The data is
collected by the authors using GPS modules in cars. For the trips made by vehicles with
internal combustion engines, it is assumed that electric vehicles are used. The energy demand
per trip is determined by the acceleration profile of the individual trip and a look-up matrix
that links the vehicle’s acceleration and current speed with energy demand. To determine
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the spatial distribution of charging demand it is assumed that the energy demand of each
trip is fully recharged at the trip’s destination. Since no activities are assigned to the trips
and the single trips are not linked to each other, the method does not allow to determine the
temporal distribution of power demand.

The authors of [71] develop a model to determine the spatial distribution of BEV charging
demand in urban areas. The method is demonstrated for the city of Porto, Portugal. In the
first step, they divide the urban area into several cells and determine for each of them the
number of BEVs located in it. The basis of this determination is the number of residents in
the cells and their BEV adoption rate. For each vehicle, a daily energy demand of 4.2 kWh
is assumed. Assuming that this energy demand is charged exclusively at the residences, the
spatial distribution of charging demand is determined. Since only the daily energy demand of
the BEVs is determined, the method does not allow to determine the temporal distribution
of charging power demand.

In [72] the authors simulate the spatial and temporal distribution of charging energy demand
for an artificial city consisting of a city center, suburban areas, and connecting highways. All
simulated persons and their vehicles undertake a round trip, which starts in a suburban area
and then goes to a randomly selected location within the city center and back. Different
activities in the city center are not considered. The arrival and departure times of the
vehicles in the city center are drawn from probability distributions, which are derived from a
publicly available travel survey. At each stop, the persons decide whether to charge their car,
depending on the current SOC. Using the charging demand of the vehicles at the different
locations and the start time of charging, the charging times are obtained, which allows for
determining the spatial and temporal distribution of charging demand.
However, due to the assumption that all vehicles undertake two trips per day and travel to a
random location in the city, both the spatial and temporal distribution of charging demand
have limited accuracy. The study does not discuss how to transfer the approach to a real
city. Therefore, the presented methodology can only be used for the specific artificial city.

For 11 districts in the city of Reykjavík, Iceland, the authors of [73] determine the spatial and
temporal distribution of BEV energy demand considering 4 BEV market ramp-up scenarios
to 2050. In order to determine the energy demand per district, the daily distances of the
vehicles and the arrival times of the vehicles at the places of residence are first extracted
from an extensive travel survey which is not publicly available. Based on the population
in the districts and assuming that a reference BEV with 60 kWh battery capacity and an
average energy consumption of 0.2 kWh/km is used for all trips, the energy demand for each
district is determined. For the charging demand computation, it is assumed that all vehicles
are charged at home at the end of the day, as this charging scenario is considered to have the
greatest impact on the power grid. Since only arrival times at residences and the geographic
locations of the residences are determined, the method can only determine the spatial and
temporal distribution of charging demand, assuming that charging occurs exclusively at the
residences. This does not reflect reality. Therefore the results are limited.

In a study commissioned by the Berlin government [74], the authors determine the demand
for private, semi-public, and public charging infrastructure in Berlin, Germany. For their
investigations, they divide the city of Berlin into 448 sub-districts and consider 7 charging
use-cases (e.g. charging at the places of residence, at work or at customer parking spaces,
public charging). Mobility profiles are generated for 5 different user groups (residents,
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commuters, day visitors, overnight visitors, and commercial traffic), providing information on
the distances traveled, activities, and parking times of individuals, but not on the locations
of the activities. Using the information from the mobility profiles as well as assumptions
about the average consumption of the BEVs, the temporal distribution of the charging power
demand can be determined. Since the geographic locations where activities are performed
are not known, the spatial distribution of charging energy demand can not be directly
determined. To determine the spatial distribution, the total charging energy demand per day
for each charging use case is calculated first. The total demand is then distributed among
the 448 districts using distribution keys. These distribution keys are based on oversimplified
assumptions. For the charging use case “work charging”, for example, it is assumed that the
more employees in the district, the higher the charging demand (for further information see
Section 6.1.2). However, there are other relevant factors that determine how many trips a
district attracts. For example, the number of available parking spots. If there are no parking
possibilities in a district, employees cannot come by car but have to choose other means
of transport. Since such factors are not considered, the calculated spatial distribution of
charging demand has limited accuracy.

In [75], the authors develop a method to estimate the number of public charging stations in
an urban area needed for future BEV drivers to maintain their current ICEV driving patterns.
The approach is demonstrated for Beijing, China. To determine this demand, a mobility
profile is first created for each vehicle, including information on activities (home and other),
trip distances, parking times, and geographic locations of activities. The data basis for this
determination is a detailed travel survey which is not publicly available. Since the data set is
based on conventional vehicles, a reference BEV with an average consumption of 0.15 kWh/km
is used to replace the combustion engine vehicles. Using the BEV consumption as well as
the BEVs’ arrival and departure times and the travel distances from the mobility profiles,
the temporal distribution of charging demand can be determined. Since the geographic
locations where activities are performed are known, the spatial distribution of charging
demand can be determined. However, since only one reference vehicle is used, the determined
spatial distribution is limited. In general, larger and heavier vehicles tend to have a higher
energy consumption compared to smaller and lighter vehicles. If vehicle size is not taken
into account, the charging demand is underestimated in districts with a high number of large
vehicles and overestimated in districts with many small vehicles.

For the Seattle metropolitan area, the USA, the authors of [76] also investigate how to electrify
the current ICEV travel patterns of the population. The current driving behavior of the
population is derived from extensive GPS measurements taken in conventional vehicles. The
measurements were carried out by the authors themselves. For each vehicle in the considered
area, this data is used to create a mobility profile that includes information about activities
(home and other), trip distances, parking times, and geographic locations of activities. The
conventional vehicles are then replaced by a reference BEV with an average consumption of
0.186 kWh/km and a range of 161 km (100 miles). Using the BEV consumption and the
mobility profiles, the temporal and spatial distribution of charging demand can be determined.
Since only one reference vehicle is used, the determined spatial distribution is limited. The
reasons for this have been discussed in the previous paragraph (see study [75]).
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The authors of [77] develop a methodology to determine the spatial and temporal charging
power demand on the country level in high resolution. They demonstrated their approach for
the Flemish region of Belgium. The basis of the determination is the number of vehicles in
each district in the considered region, which are then replaced by electric reference vehicles
of three different vehicle-size classes. For each vehicle, a mobility profile is generated, which
includes information on activities (home, work, and other), trip distances, parking times, and
geographic locations of activities. The mobility profiles are determined from a very detailed
travel survey that the authors conducted themselves and which is not publicly available.
Based on the average consumption of the reference BEVs and the arrival and departure
times and travel distances of the BEVs, the temporal distribution of charging demand is
determined. Since the geographical locations where the activities are performed are known,
the spatial distribution of charging demand in the districts can be determined. However,
this spatial distribution has limited accuracy because it is assumed that the shares of the
three vehicle size classes are the same in all districts. In general, larger and heavier vehicles
tend to have a higher energy consumption compared to smaller and lighter vehicles. Thus, if
the individual distribution of vehicle size classes in the districts is not taken into account,
the charging demand is underestimated in districts with a high number of large vehicles and
overestimated in districts with many small vehicles.

The authors of [78] determine the spatial and temporal BEV charging demand in urban areas.
Their approach is demonstrated for Singapore. They first determine the number of current
internal combustion engine cars in each district, based on several unspecified statistics. These
are subsequently replaced by electric reference vehicles. The number of different reference
vehicles is not specified. For each vehicle, a mobility profile is generated, which includes
information on activities, trip distances, parking times, and geographic locations of activities.
The mobility profiles are determined from a very detailed travel survey that was provided to
the authors by the Singapore authorities and is not publicly available. These mobility profiles
and a vehicle dynamics model are used to determine the temporal and spatial distribution of
BEV charging demand in Singapore and its districts. Analogous to the method developed
in [77], it is assumed that the shares of vehicle size classes are the same in all districts.
Therefore, the spatial distribution of charging demand has limited accuracy, as previously
justified.

A summary of the discussed studies is shown in Table 2.2.
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2.4 Evaluation of Existing Literature and Identification of Research
Needs

The following section analyzes the limitations of the methods used in the literature to estimate
BEV charging demand. The research objectives of the dissertation are then derived from the
limitations of these methods.

In order to identify possible congestions in the electric grid resulting from the electrification of
private ICEVs in urban regions, both the spatial and temporal distribution of BEV charging
demand must be determined. Charging demand data with high temporal resolution enables
the identification of critical peak loads generated by BEVs during the course of the day, while
high spatial resolution allows such peak loads to be located for small neighborhoods and
districts, enabling grid planners to target grid expansion and reinforcement.
However, the methods described in [24], [69] can only be used to determine the temporal
distribution of BEV charging energy demand, while the methods developed in [25], [70], [71]
only allow determining the spatial distribution.

The determination of charging demand resulting from the electrification of private ICEVs
is the prediction of a future scenario. This future spatial and temporal distribution of
charging demand is directly dependent on the future charging behavior of BEV users, which
is unknown. Therefore, a methodology for estimating the spatial and temporal distribution
of BEV charging demand must allow for the investigation of different charging scenarios. In
order to achieve high accuracy and variability, it should be possible to simulate not only the
charging behavior of the entire fleet but also the dependency between the charging events
of an individual vehicle (e.g. if the vehicle has already been charged a certain amount at
work, it will not be recharged afterward when shopping). For this purpose, it is necessary to
track the status of all BEVs in the considered area as a function of time. The status of a
BEV includes the activity of the BEV user and the geographic location where the activity is
performed as well as the SOC of the BEV.
In addition to the influence of the charging scenario on the spatio-temporal distribution of
charging demand, status tracking also enables the study of the influence of different charging
scenarios on the number and location of charging stations required to meet the charging
demand as well as the type of charging infrastructure needed (e.g. charging stations at
workplaces, at shopping locations or at public spaces).
Tracking of the vehicles additionally allows for investigation of how an electrified private
transport can be used as intermediate electricity storage for renewable energies thus con-
tributing to the efficient use of renewable energies and the integration of renewable energies
into the electricity mix3. The methods developed by [72], [73] do not allow full tracking
of BEV status because they do not capture the activities of BEV users. Since the method
developed by [74] does not capture the geographic locations where activities are performed,
full status tracking is also not possible.

Tracking the status of BEVs is possible by using activity-based transport models that create
individual full-day travel schedules for each BEV in the considered area (see Section 2.2.2).
An activity-based approach for the determination of the spatial and temporal distribution

3Vehicles can be charged whenever renewable energy generation exceeds power demand. If the power
demand exceeds renewable power generation, the energy from the vehicle’s batteries can be fed back
into the electric grid. This strategy of feeding electricity back into the electric grid is called Vehicle to
grid (V2G).
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of charging energy demand is used by [75]–[78]. Common to all of these studies is that
insufficient assumptions were made for the spatial distribution of vehicle size classes in the
considered area. As explained in Section 2.3, this leads to the fact that the computed spatial
distribution of the BEV charging demand has limited accuracy.
Another major limitation of studies [75]–[78] is, that they rely on detailed travel surveys to
determine the traffic flow in the considered area. Such surveys are typically unavailable or
difficult to obtain for most locations in the world, which severely limits the transferability of
the methods.

From the analysis of the limitations of the existing studies, the research objectives of this
dissertation emerge. A method needs to be developed which allows for the determination of
the BEV charging demand resulting from the electrification of private internal combustion
engine vehicles in urban areas. The method should satisfy the following requirements:

• The BEV charging demand needs to be determined with high spatial and temporal
resolution, thus enabling the determination of the additional spatio-temporal grid load
in the considered area.

• For each vehicle in the considered area, its SOC, the activity of the BEV user, and
the geographic location of the activity need to be tracked as a function of time. This
enables to study:

– the effect of different charging scenarios on the spatial and temporal distribution
of BEV charging demand.

– the effect of different charging scenarios on the charging station demand.

– the contribution of the electrified private transport to the efficient use of renewable
energies and the integration of renewable energies into the electricity mix.

• The method should be transferable to other urban areas.



3 Summary and Overall Context of the Publications
This cumulative dissertation consists of two main parts. In the first part, the method is devel-
oped which allows forecasting the spatial and temporal distribution of BEV charging energy
demand in an urban area resulting from the electrification of private internal combustion
engine passenger cars. This first part consists of three published papers:

• Publication I [27]

• Publication II [28]

• Publication III [29]

In the second part of the dissertation, further research is conducted based on the results from
part one. This second part consists of one published paper and one additional unpublished
topic:

• Publication IV [30]

• Unpublished topic “Charging infrastructure demand in Berlin”

In Section 3.1, the three topics of the first part are briefly summarized. In Section 3.2, the
topics of the second part are summarized.
Figure 3.1 shows an overview graphic that schematically illustrates how these five topics are
connected.

Publication I: Full-day travel schedules.
Locations of activities are unknown.

Publication II: Car-access
attractiveness of districts

Vehicle routing

Full-day travel schedules.
Locations of activities are known.

Charging scenario

Spatial-temporal distribution
of charging demand

Publication III

Publication IV: Vehicle to grid
potential of fully electrified passenger cars

Unpublished topic:
Charging infrastructure demand

Figure 3.1: Schematic overview of this cumulative dissertation.
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3.1 Estimating the Spatial and Temporal Distribution of BEV Charging
Demand in Urban Areas - Method and Implementation

In the first part, the method is developed which allows forecasting the spatial and temporal
distribution of BEV charging energy demand in an urban area resulting from the electrification
of private internal combustion engine passenger cars. The method is demonstrated for the
urban area of Berlin and its 448 sub-districts, assuming full electrification of Berlin’s private
transport. The development of the method is described in Chapter 4.

3.1.1 Publication I

In the publication “Methodology for Estimating the Spatial and Temporal Power Demand
of Private Electric Vehicles for an Entire Urban Region Using Open Data” [27] Berlin is
divided into 448 districts and then, assuming full electrification, the conventional private
passenger vehicles in the districts are replaced by electric reference vehicles. By using an
activity-based approach full day travel schedules are generated for each private car. Since
the underlying dataset is limited, the schedules generated do not include information about
the geographic location where a vehicle is parked while the BEV user is performing an
activity. Accordingly, the spatial and temporal distribution of charging demand can only be
determined by assuming that charging occurs exclusively at the residences of BEV owners.
The original publication can be found in Section 4.1.

3.1.2 Publication II

To overcome this limitation, the geographic location where the vehicle is parked while
the BEV user is performing an activity needs to be determined. An important input
variable in this determination is the car-access attractiveness of the districts. The car-access
attractiveness is a measure of how attractive districts are to drive to by car for a particular
activity. A high attractiveness indicates that a location is highly likely to be accessed by car,
while a low attractiveness means that the location is more likely to be accessed by another
mode of transportation. The method to determine the car-access attractiveness of locations
is developed in the publication “Car-Access Attractiveness of Urban Districts Regarding
Shopping and Working Trips for Usage in E-Mobility Traffic Simulations” [28].
The original publication can be found in Section 4.2.

3.1.3 Publication III

In the publication “Forecasting the Spatial and Temporal Charging Demand of Fully Electri-
fied Urban Private Car Transportation based on Large-Scale Traffic Simulation” [29], the
unknown geographical locations of the activities are determined. For this purpose, a route
assignment approach is developed that assigns a destination district to each vehicle trip
based on a destination choice model. In addition to the car-access attractiveness determined
in the second part of the method, the distance and travel speed between districts, as well
as the availability of parking spots in the districts are considered for destination choice.
By determining the destinations of BEV trips, a complete travel schedule is available for
each BEV. This allows determining the spatial and temporal distribution of BEV charging
demand in the urban area by applying charging scenarios.
The original publication can be found in Section 4.3.
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3.2 Further Research
In the second part of this dissertation, further research is conducted based on the results of
the first part. This second part can be found in Chapter 5.

3.2.1 Publication IV

The publication “Sector Coupling through Vehicle to Grid: A Case Study for Electric Vehicles
and Households in Berlin, Germany” [30] examines the Vehicle to grid (V2G) potential of
fully electrified passenger cars in Berlin. The method developed for this purpose allows to
determine for each Berlin sub-district, the percentage of residential and BEV energy demand
that can be met by renewables if V2G is deployed, and answer the question of whether a full
renewable supply is possible. In addition, the increase in peak load in the districts and the
increase in battery load due to V2G are determined.
The original publication can be found in Section 5.1.

3.2.2 Charging Infrastructure Demand in Berlin

Based on the determined BEV charging demand in Berlin, the number and spatial distribution
of the charging stations required to meet the charging demand are determined. The required
number of charging stations is determined for different parking space types and utilization
levels.
This unpublished topic can be found in Section 5.2.



4 Estimating the Spatial and Temporal Distribution of
BEV Charging Demand in Urban Areas - Method and
Implementation

In this chapter, the method is developed that allows forecasting the spatial and temporal
distribution of BEV charging energy demand in an urban area resulting from the complete
electrification of private internal combustion engine passenger cars. The method is developed
in three publications. These original publications can be found in Sections 4.1, 4.2 and 4.3.

4.1 Publication I

Methodology for Estimating the Spatial and Temporal Power Demand of
Private Electric Vehicles for an Entire Urban Region using Open Data

Florian Straub1, Simon Streppel1, Dietmar Göhlich1

1Chair of Methods for Product Development and Mechatronics, Technische Universität Berlin,
Strasse des 17.Juni 135, 10623 Berlin, Germany

(This article has been published on 08 April 2021 by MDPI in the “Energies” Special Issue:
Integrated Energy Systems and Transportation Electrification, available online:

https://doi.org/10.3390/en14082081)

Abstract: With continuous proliferation of private battery electric vehicles (BEVs) in
urban regions, the demand for electrical energy and power is constantly increasing. Electrical
grid infrastructure operators are facing the question of where and to what extent they need
to expand their infrastructure in order to meet the additional demand. Therefore, the aim
of this paper is to develop an activity-based mobility model that supports electrical grid
operators in detecting and evaluating possible overloads within the electrical grid, deriving
from the aforementioned electrification. We apply our model, which fully relies on open
data, to the urban area of Berlin. In addition to a household travel survey, statistics on
the population density, the degree of motorisation, and the household income in fine spatial
resolution are key data sources for generation of the model. The results show that the spatial
distribution of the BEV charging energy demand is highly heterogeneous. The demand per
capita is higher in peripheral areas of the city, while the demand per m2 area is higher in the
inner city. For reference areas, we analysed the temporal distribution of the BEV charging
power demand, by assuming that the vehicles are solely charged at their residential district.
We show that the households’ power demand peak in the evening coincide with the BEV
power demand peak while the total power demand can increase up to 77.9%.

Keywords: electric vehicle; activity-based simulation; transportation electrification; charg-
ing power demand; spatial temporal distribution; open data

https://doi.org/10.3390/en14082081
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4.1.1 Introduction

Poor air quality in cities and continuously rising greenhouse gas emissions worldwide have led
to a steady tightening of emission limits in recent years. The European Union has committed
itself to reducing greenhouse gas emissions by 2050 by 80–95% of the level of 1990 [79]. In
Germany, greenhouse gas emissions are planned to be reduced by 50% by 2030 compared to
1990 [80]. One key driver of this reduction is the substitution of internal combustion engine
vehicles (ICEVs) with vehicles with alternative drive systems, primarily battery electric
vehicles (BEVs). However, an increasing number of BEVs and the resulting large demand
of electrical energy and power can lead to bottlenecks in the power supply if the necessary
electrical grid infrastructure is not established or reinforced [20]–[23]. The investigations
in this paper are restricted to the electrification of private internal combustion engine cars.
The electrification of other urban vehicles such as buses or urban freight transport vehicles
was investigated, for example, by the authors of [81]–[83]. The additional demand of private
battery electric cars for electrical energy and power varies greatly depending on spatial and
temporal factors. In general, areas with high population density and a high vehicle per
capita rate have a higher demand for electrical energy compared to sparsely populated areas
with few vehicles per inhabitant [22], [77], [78]. The authors of [20]–[22], [24] show that the
electrical energy and power demand for charging BEVs differs depending on the time of the
day and the type of the day (working day or weekend day). This large degree in variability
creates difficulties concerning the planning of the expansion and optimisation of the electric
grid, which is necessary to meet the additional charging energy and power demand. To
overcome this limitation, data-based models with high spatial resolution are required in order
to make realistic statements about the spatial and temporal energy and power requirements
arising from the electrification of motorised individual traffic.

The authors of [71] developed a model based on diffusion theory that determines the spatial
power requirements in the city of Porto, considering different charging capacities and five
battery electric vehicle penetration rates from 10% to 100%. However, the study does
not include a differentiated temporal determination of the power demand. By generating
commuting travel chains for their investigation, the authors of [24] estimate the spatial and
temporal distribution of the charging power demand of BEVs in urban areas. Result-relevant
values such as the start time of the first trip or the covered trip distance are random and
independent of the activity drawn from a normal distribution and a lognormal distribution,
respectively. The distributions are adjusted to average values derived from a travel survey.
The authors of [72] simulate the spatial and temporal distribution of the charging energy
demand for an artificial city consisting of a city center, suburban areas, and connecting
highways. All simulated persons and their vehicles undertake a round trip, which starts in a
suburban area then goes to a random point within the city center and back. Within the city
center, the persons decide whether to charge their car, depending on the depth of discharge.
The arrival and departure times of the vehicles in the city center are drawn from a gamma
distribution and are imprinted on the vehicles. The distribution is fitted to the results of a
travel survey, which was conducted in Chicago.
Another approach to modelling the spatial and temporal energy and power demand deriving
from electrification of the traffic is offered by activity-based models [77], [78], [84]. In
activity-based models, the individual properties of individual persons within the research
space are used to create full-day travel schedules for those persons. The resulting daily
patterns for individual persons consist of a consecutive sequence of activities and trips.
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According to [84], activity-based models are particularly suitable for simulating the energy
and power demand of BEVs. They capture the relationship between activity and mobility
patterns, which can be used to determine the dwell times of the persons and their vehicles
at different locations. The energy and power demand can then be determined by imposing
charging strategies.
An example for an activity-based mobility model is the framework FEATHERS [85], which
the authors of [77] used to simulate spatial and temporal charging power demand in the
Flemish region in Belgium. Therefore, they divided the region into several districts. As
there were no empirical data such as a travel survey available in the region, the authors used
self-acquired data including “activity-travel diaries”, information on “activity (re)scheduling
decisions of individuals” and “data on household multi-day activity scheduling”. The vehicle
class category distribution, which has a significant impact on the energy and power demand
(larger and heavier vehicles tend to have a higher energy consumption compared to smaller
and lighter vehicles), matches the numbers for the entire region and not the individual
districts. This results in a non-precise estimate of the spatial distribution of the energy and
power demands. Furthermore, the authors do not verify their results by comparing them
with the empirical data from the underlying survey. The authors of [78] used a household
interview travel survey to create a activity-based mobility model for the Singapore urban
area. After the division of Singapore into several districts, they used their model to estimate
the spatial and temporal distributions of the charging energy demand for a working day and
a weekend day, considering different electrification rates for private vehicles. Similar to [77],
the vehicle class categories were drawn from a distribution that matches the overall vehicle
class category distribution in Singapore. Additionally, the mobility model was not verified
by comparison with the underlying survey results.
In their research on decarbonisation of the urban traffic, the authors of [86] used the
activity-based simulation framework MATSim [87], [88] to analyse the effects of complete
replacement of the current population of ICEVs with BEVs in urban regions. The authors
focused on electrification of the entire transport system including private vehicles, the public
transportation sector, and commercial and municipal traffic. Since the authors studied the
impact of ICEV electrification for the entire urban area of Berlin and not its districts, they
did not focus on the spatial resolution of the occurring charging energy and power demand.
The vehicle class categories were drawn from a distribution that matches the overall vehicle
class category distribution in Berlin and not the distribution in the Berlin districts. Between
the MATSim data basis, namely census data, and the resulting trips in the simulation, there
are several process steps leading to a risk of inaccuracies in spatial resolution. For this reason,
we decided to infer the activity pattern and the energy and power demand in the individual
districts directly from the census data and other data sources.

The aim of this paper is to develop a model that supports electrical grid operators to detect
and evaluate possible overloads within the electrical grid, deriving from the electrification of
private ICEVs in urban regions. Therefore, we develop a methodology, the novelty of which
lies in the generation of an activity-based mobility model through the direct combination
of a survey on travel behaviour [89]–[91], with data sets containing information about the
population density [92], the degree of motorisation (which indicates the amount of vehicles
per 1000 inhabitants) [93], and the household income in fine spatial resolution [94], [95].
Through this direct combination, our model provides data-based results with high spatial
and temporal resolution. Furthermore, the fine resolution of the household income enables
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us to determine the vehicle class category distribution in fine spatial resolution, which has,
as we discussed in the previous paragraphs, a significant impact on the energy and power
demand and is neglected by other researchers. In contrast to most other scientific works, we
do not use a person-based but a vehicle-based approach. This allows us to realistically depict
the use of the same vehicle by several persons (for example, in family groups). Since all used
data sets are openly available and therefore relatively easy to acquire in most places of the
world, our methodology is transferable to other urban areas. We apply our methodology
to the urban area of Berlin and assume a scenario where 100% of the current private car
population is electrified. We consider a working day and a Saturday in our simulation. We
exclude Sundays from our simulation as 69% of the vehicles remain parked on Sundays,
compared to 56% on Saturdays. In addition, the average distance of all vehicles is 23.9 km on
Sundays, which is below the 26.1 km on Saturdays [90]. A higher energy and power demand
on Sundays compared to Saturdays is therefore not to be expected. By applying the charging
strategy “home-charging”, we calculate the spatial and temporal energy and power demand
distribution resulting from charging the BEVs.
In the city of Berlin, 40% of the population has access to private car parking spaces [90] while
the remaining cars are parked in public spaces. Therefore, in this paper “home-charging”
does not mean that all cars are charged in private parking lots at the owner’s place of
residence but that they are charged within the district where the owner of the vehicle
lives. We assume that sufficient public charging infrastructure is available. We chose the
strategy “home-charging” since, according to [96], 65% of the German population prefers
home charging to charging at public charging stations (15%) or at work (7.5%). Reference
[96] is a study on the acceptance of e-mobility in Germany. It was conducted in 2019 by
interviewing 1200 German households.

This paper is structured as followed: In Section 4.1.2, our methodology is described and
the implemented scenario is presented. The results are shown and analysed in Section 4.1.3.
Finally, the main conclusions of this paper are derived in Section 4.1.4.

4.1.2 Methodology

The methodology used for our mobility model consists of three main parts. As a first step, we
divide the city of Berlin into districts and determine for each the number of electric vehicles
and the vehicle class categories within it. To do so, we use data sets containing information
about the population density [92], the degree of motorisation [93], and the household income
within the districts [94], [95]. In the second step, we generate individual daily patterns for
the vehicles based on a household travel survey [89]–[91]. Finally, we use these daily patterns
to determine the energy and power demand generated by charging the BEVs for a working
day and a Saturday. These results are compared to the base power demand of the households
within the districts.

4.1.2.1 District Classification and Vehicle Population

Most activity-based mobility models share one disadvantage. When the daily patterns of the
persons are created and the means of transport is chosen, they assign each person their own
vehicle. Therefore, multiple use of one vehicle is not considered. Since the dwell times of the
vehicles are then determined incorrectly, the determination of the temporal distribution of
the charging power demand is inaccurate. To overcome this problem, in our mobility model,
we do not consider the individual persons but the vehicles within the system boundaries.
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We assume a scenario where 100% of the current private car population is electrified having
the same share regarding vehicle class category as the current car population. Due to the lack
of open data, commercially used vehicles such as delivery vehicles or taxis are not considered
in our study. According to the “Kraftfahrtbundesamt”, which is the German Federal Motor
Transport Authority, 1.203 million cars were registered in Berlin in 2018, of which 1.045
million of them were private cars [97]. In order to distribute this number of vehicles spatially
correctly, we make use of the official classification of the Berlin administration [98], which
divides the twelve Berlin districts into 448 subdistricts, called “Lebensweltlich orientierte
Räume” (neighbourhood oriented districts) (LORs). The LOR classification was firstly
introduced in 2006. Within each LOR, the structure of the contained buildings and the
socioeconomical status of the inhabitants are similar. The LORs are usually separated from
each other by major roads, rivers, or rails.
We derive the number of inhabitants for each LOR from [92], which is a freely available
statistic provided by the Berlin authorities. The statistic is created by counting all registered
residents within the LORs in 2018. The LOR classification, the population density, and the
number of inhabitants within the LORs are depicted in Figure 4.1.

(a) Inhabitants in the Berlin LORs (b) Population density in the Berlin LOR

Figure 4.1: Distribution of the population in the Berlin subdistricts, “Lebensweltlich orientierte
Räume” (LORs).

To estimate the number of vehicles in each LOR, we use freely available data about the
degree of motorisation (amount of vehicles per 1000 inhabitants) in each LOR [93]. The
degree of motorisation for the Berlin LORs is depicted in Figure 4.2. It can be seen that
the degree of motorisation is higher in LORs that are located in the peripheral areas of the
city compared to the city center. By multiplying the amount of vehicles per person with the
total amount of persons within the LORs, we calculate the number of vehicles for each LOR
separately.

Since the BEVs’ energy consumption is highly dependent on the vehicle class category (larger
and heavier vehicles tend to have a higher energy consumption compared to smaller and
lighter vehicles), the vehicle class category distribution for all vehicles within the LORs has to
be determined. To do so, we make use of the 2017 German household travel survey (GHTS)
[89]–[91]. The survey contains information on 316,361 persons from 156,420 households in
Germany and on almost one million trips. For the study, the members of a household were
asked about their activities and trips during reference days. This allowed for conclusions on
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daily travel patterns. Furthermore, as a classical household travel survey, the study contains
sociodemographic information such as gender and age, or the income of the household. It
contains further information, such as the amount of vehicles in the household and information
on the vehicle class category. The data set can be obtained freely, either as raw data [90] or
already pre-evaluated [91]. As the data set contains information on the travel behaviour in
all of Germany, we initially limited the data set to households and persons within the city of
Berlin. Furthermore, we excluded all trips that were not undertaken by car.

Figure 4.2: Degree of motorisation in the Berlin LORs.

According to the GHTS data set, the amount of cars per household in Berlin correlates with
the income of the household. In general, households with higher income own more vehicles
compared to households with lower income. Furthermore, the GHTS indicates that the
vehicle class category distribution in Berlin also depends on the income of the household.
Households with high income tend to own larger vehicles. The distributions are depicted
in Table 4.1. In the GHTS data set, the household’s income is divided into five income
categories. For a one-person household, the average net income for the income category “very
low” lies below e900, between e900 and e1500 for the category “low”, between e1500 and
e2800 for the category “medium”, between e2800 and e4000 for the category “high”, and
above e4000 for the category “very high”.

Table 4.1: Correlation between household income and vehicles in Berlin.

Household Average Amount of Relative Frequency Vehicle Class Category
Income Cars per Household Mini Compact Compact Medium Large

very low 0.3 0.31 0.37 0.27 0.054
low 0.5 0.35 0.35 0.25 0.052

medium 0.7 0.27 0.39 0.26 0.074
high 1.0 0.24 0.34 0.32 0.11

very high 1.3 0.18 0.30 0.34 0.19

In their research on the socio-structural situation in Berlin, the authors of [99] show that
the residential area quality strongly correlates with the household income. This means
that households with higher income tend to live in areas with higher quality. High-quality
residential areas are mostly located close to the city center and are usually characterised
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by rather high greening. In comparison, low-quality residential areas mostly have high
building density, which may be intermixed with or adjacent to commerce and industry. In
addition, simple residential areas usually have little greenery [95]. According to [99], we
estimate the shares of household income in the LORs by analysing the residential area quality
[95]. To verify our results, we check whether our results match the distributions of the
household income in the twelve Berlin districts. We derived those distributions from the
2018 census data [94]. The census is conducted on a yearly basis in Germany by interviewing
1% of the population. It is freely available and provides information on the economic and
social situation of the population in Germany, such as information on household and family
structures, employment, or income situation. The resulting distribution of the household
income for the Berlin LORs is depicted in Figure 4.3.
By combining the aforementioned information, we obtain the amount of vehicles for each
vehicle class category within the LORs.

Figure 4.3: Household income distribution in the Berlin LORs.

4.1.2.2 Mobility Profiles

As a basis for the mobility profiles of the vehicles, we analysed the data set from the 2017
German household travel survey (GHTS) [89]–[91]. A mobility profile is a sequence of
activities and trips between those activities. For our study, we assumed that BEV drivers
show the same mobility behaviour as ICEV users. In Figure 4.4, a general mobility profile of
a vehicle is shown. The vehicle starts at “Home” in the morning before spending 7 h and
50 min at the activity “Working” and 30 min at the activity “Shopping”. It arrives back
“Home” at 17:00. In order to create mobility profiles, we extracted the relevant information
on trips (activity, departure and arrival times, and trip distance) from the GHTS data.
The data set distinguishes more than 25 activities. Similar to [78], [88], we divide those
activities into five superordinate activities for simplification reasons: “Working”, “Shopping”,
“Education”, “Home”, and “Else”.

The GHTS data set is evaluated for an average working day (Monday–Thursday) and
Saturdays. We exclude Fridays from our analysis, as the average distance of all vehicles is
15.1 km on Fridays, which is less than half of the 32.6 km average distance on the other
working days. On Fridays, 62% of the vehicles remain parked, compared to 45% on the other
working days. Sundays are excluded from our analysis, as 69% of the vehicles remain parked
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compared to 56% on Saturdays. In addition, the average distance of all vehicles is 23.9 km on
Sundays, which is below the 26.1 km on Saturdays. A higher energy and power requirement
on Sundays compared to Saturdays and on Fridays compared to the other working days is
therefore not to be expected.

Home Working
10 km

Shopping
5 km

Home
8 km

07:45 08:10 16:00 16:10 16:40 17:00

7 h 50 min 30 min

Figure 4.4: Example of a general mobility profile.

The creation of the mobility profiles is performed successively for each individual vehicle
within the individual LOR. The basis for this process is the distribution of the vehicle class
categories we derive in Section 4.1.2.1. For each of the four vehicle class categories, we
considered three reference vehicles, making in total a sum of twelve considered reference
vehicles, which are depicted in Table 4.2. For each reference vehicle, the energy demand
per 100 km and the vehicles’ battery capacity can be obtained from Table 4.2. The average
consumption is divided into inner-city trips, which are characterised by distances of less than
20 km and outer-city trips. The values of the energy consumption and the battery capacity
are based on test drives of the “Allgemeine Deutsche Automobil Club” (ADAC), a German
motoring association, and already include charging losses [100].

Table 4.2: Reference Vehicles.

Class Model
Battery

Capacity (kWh)
Consumption (kWh/100km)

Inner City Outer City

Mitsubishi
15.9 11.3 16.9

Mini compact
i-MiEV [101]

Renault Zoe [102] 64.3 14.5 19.0
VW e-Up! [103] 18.6 14.0 17.7

BMW i3 [104] 48.8 13.0 17.9
Compact Hyundai Kona E [105] 73.9 14.0 19.5

VW e-Golf [106] 34.9 12.7 18.2

Kia e-Niro [107] 72.3 12.5 18.1
Medium Nissan Leaf [108] 68.4 17.2 22.7

Tesla Model 3 [109] 60.0 17.4 19.3

Audi e-tron [110] 94.3 23.5 25.8
Large Mercedes EQC [111] 93.1 23.0 27.6

Tesla Model S [112] 100.4 21.2 24.2
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The general process for creating the mobility profile for one vehicle consists of six main steps
(1)–(6). The process is depicted in Figure 4.5 and is described below. Taking the vehicle
class category of the vehicle as input, one of the three reference vehicles is drawn from Table
4.2 with equal distribution (1).

Start

Vehicle Class Category

(1) Draw Reference Vehicle

(2) Draw Amount of Trips

Amount Trips > 0

(3) Draw Trip Starting Time

yes
i = 0

(4) Draw Trip Activity

(5) Draw Trip Distance

(6) Draw Trip Activity Duration

Another Trip?

Vehicle
Range

Sufficient?

no

yes

i = i+1

Draw Vehicle Starting Time Next Day

yes

Mobility Profile of the Vehicle

End

no

Select Vehicle with
Higher Range

no

Vehicle
Range

Sufficient?

yes

Another
Vehicle with

Higher
Range?

no

yes

no

Figure 4.5: General process for creating the mobility profile for one vehicle.

In (2), the number of trips per day for the vehicle is drawn. We derive the underlying discrete
probability distribution by analysing the GHTS data set. A separate probability function is
evaluated for each vehicle class category. If the number of trips is zero, no mobility profile is
created for the vehicle and the process starts with the next vehicle. If the number of trips is
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greater than zero, the starting time of the first trip is drawn from a probability distribution
we generated for a 24 h interval by analysing the GHTS data set (3). The probability
distributions we use in (3) are depicted in Figure 4.6 for a working day (Monday–Thursday)
and a Saturday. On a working day, one sharp peak can be seen at around 08:00 in the
morning. This is due to the fact that many vehicles are used early in the morning on the way
to work. In comparison, two less sharp peaks can be seen on Saturdays. Vehicles tend to be
used on weekends for shopping or leisure activities, which start either in the late morning or
afternoon.
Depending on the trip’s starting time, the trip’s activity is drawn afterwards (4). For this
purpose, we use discrete distribution functions on an hourly basis, which provide information
about the probability that a certain activity will occur. In (5), the distance of the trip
is drawn depending on the trip’s activity. For the activities “Working”, “Shopping”, and
“Home”, the underlying probability distributions are depicted in blue in Figure 4.7a–c for a
working day and in Figure 4.7d–f for a Saturday. It can be seen that “Working” trips on
working days usually cover higher distances compared to “Shopping” and “Home” trips. The
trip distance for 80% of the “Shopping” trips is below 11 km, while it is below 16 km for
“Home” trips and 29 km for “Working” trips. On Saturdays, the trip distance for 80% of the
“Shopping”, “Working”, and “Home” trips is about 19 km. The distributions in (4) and (5)
are generated by analysing the GHTS data set.

Figure 4.6: Starting time of the first trip on a working day (Monday–Thursday) and a Saturday.

To determine the respective travel times for the trips, we use speed assumptions. We use [113]
to estimate the activity duration in (6). Reference [113] is a survey from German authorities
on the time usage behaviour of German citizens. The statistic provides information on how
much time is spent on different activities such as working, shopping, education, or leisure
activities. The survey was conducted in 2012, the third time after 1992 and 2002. For
the survey, a total of 11,000 persons in approximately 5000 households in Germany were
interviewed. If the vehicle undertakes further trips, the loop is repeated with (4). The
starting time of the next trip is the ending time of the last trip. If the last trip is for the
activity “Home”, the loop is repeated with (3) and a new starting time is drawn. Finally we
check whether the total driven distance between two consecutive charging events is covered by
the range of the reference vehicle. As we only consider “home-charging”, a charging event can
only occur if the activity is “Home”. If the vehicle’s range is not sufficient, a vehicle with a
higher range within the same vehicle class category is drawn. If the vehicle’s range is still too
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small to cover the driven distance, a vehicle with a sufficient range is searched for in the other
vehicle class categories. If the total driven distance between two consecutive charging events
exceeds the maximum range of all reference vehicles, the vehicle is re-simulated starting with
(1). If the total driven distance can be covered by the reference vehicle, steps (2) and (3) are
repeated to determine whether and when the vehicle drives off again the next day.

4.1.2.3 Assumptions to Calculate the Spatial and Temporal Power Demand

Based on the created mobility profiles for all privately owned vehicles in Berlin, we simulated
24 h of a working day (Monday–Thursday) and a Saturday to derive the spatial and temporal
distribution of the BEV charging energy and power demand. Vehicles that started within
this period are allowed to return later than 24:00. The results are then projected onto a 24 h
interval. We made the following assumptions for the simulation in this paper:

• The vehicle’s state of charge (SOC) at the start of the day is 100%.

• Charging exclusively at the home LOR. Sufficient public charging infrastructure
is available.

• Charging starts immediately upon arrival at home and does not end until the vehicle is
fully charged or drives off again.

• Constant charging power, which is independent of the SOC. To show the effects of
different charging powers on the spatial and temporal distribution of the charging power
demand, we run our simulation for charging powers of 3.7 kW and 11 kW, respectively.

• Power demand can be fully covered by the electrical grid at any time.

4.1.3 Results and Discussion

The first part of this section compares the simulation results with the GHTS data set. The
comparison results are shown and discussed for the vehicles’ trip distance distribution, the
vehicles’ average daily distances, and the amount of moving vehicles in Section 4.1.3.1; for
the vehicle class category distribution in Section 4.1.3.2; and for the vehicles’ trip starting
time distribution in Section 4.1.3.3

In the second part of this section, we show and discuss in Section 4.1.3.4 the simulated result
of the spatial distribution of the charging energy demand. In Section 4.1.3.5, the results of
the temporal distribution of the charging power demand are presented and discussed.

4.1.3.1 Trip Distance and Moving Vehicles–Simulation and GHTS Data Comparison

In Figure 4.7, a comparison of the cumulative distribution function of the trip distance of
the simulation (blue) and the GHTS data set (orange) is shown. Figure 4.7a–c show the
results for a working day (Monday–Thursday), Figure 4.7d–f show the results for Saturday.
The figures are depicted for the activities “Working”, “Shopping”, and “Home”. The steps in
the GHTS data graphs result from the self-reported travel times in the survey. Participants
tend to report rounded numbers rather than give exact values. As it can be seen, the general
distribution shape matches for all activities and days. In Figure 4.8, the modelling errors
of the results in Figure 4.7 are depicted as a boxplot. The blue square indicates the mean
error. The boxplot’s whiskers are modeled in such way that they represent the 2.5% quantile
and the 97.5% quantile, respectively; 95% of all errors are thus within the whisker limits.
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The mean error is between −6.1% and 2.6% for a working day and between −2.0% and
3.3% on a Saturday. This indicates that the simulation represents the GHTS data with high
accuracy.

(a) Trip distance for working (Monday–Thursday) (b) Trip distance for shopping (Monday–Thursday)

(c) Trip distance for home (Monday–Thursday) (d) Trip distance for working (Saturday)

(e) Trip distance for shopping (Saturday) (f) Trip distance for home (Saturday)

Figure 4.7: Cumulative distribution function for trip distance–simulation and German household
travel survey (GHTS) data set comparison.



32 4 Estimating the BEV Charging Demand in Urban Areas

(a) Working day (Monday–Thursday) (b) Saturday

Figure 4.8: Modelling error distance distributions. The blue square depicts the mean error.

Table 4.3 compares the average daily distance driven by the simulated vehicles with the
GHTS data set. The relative error is −10.4% for working days (Monday–Thursday) and
−5.7% on Saturdays. This error can be easily explained. As we show in Section 4.1.2.2, the
daily distances of the simulated vehicles are limited. Vehicles that cover large daily distances
are not represented in our simulation. For working days (Monday–Thursday) trips with
high distances are mostly “Working” trips, as can be seen in Figure 4.7a. The GHTS data
set indicates that 95% of all “Working” trips are below 85 km, whereas the remaining 5%
can reach values up to 750 km. On Saturdays, trips with high distances are mostly “Home”
trips, as can be seen in Figure 4.7f. The GHTS data set shows that 95% of all “Home” trips
on Saturdays are below 80 km whereas the remaining 5% can reach values up to 320 km.
“Home” trips on Saturdays are higher compared to working days, as persons tend to travel
higher distances for their leisure activities on Saturdays, which results in accordingly higher
home distances.

Table 4.3: Comparison of the simulation and the GHTS data set–average daily distance and moving
vehicles.

Type of Day GHTS Data Set Simulation Relative Error

Average Daily
Distance

Working Day 32.6 km 29.2 km −10.4%
Saturday 26.1 km 24.6 km −5.7%

Percentage Moving
Vehicles

Working Day 54.8% 54.9% 0.18%
Saturday 43.3% 43.8% 1.15%

This small share of trips with high distances in the GHTS data set lead to a higher average
daily distance compared to our simulation. As time-consuming, inter-trip charging is necessary
to cover high-distance trips, we assume that those trips are not undertaken with a private
BEV but with other vehicles (e.g., shared vehicles) with alternative drives (e.g., hydrogen)
in the future. Therefore, the reliability of the model is not affected by this error.
In Table 4.3, the proportion of moving vehicles for the simulation and the GHTS data set
is shown. The relative error is 0.18% on a working day and 1.15% on a Saturday, which
indicates that the simulation represents the GHTS data set with high accuracy.
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4.1.3.2 Vehicle Class Category Distribution–Simulation and GHTS Data Comparison

In Table 4.4, the simulated vehicle class category distribution is compared to the GHTS
data set. The relative error is 5.9% for the mini compact class, −1.7% for the compact class,
−1.0% for the medium class, and −6.3% for the large class; hence, our simulation represents
the data set well.

Table 4.4: Comparison of the simulation and the GHTS data set–vehicle class category distribution.

Vehicle Class Category GHTS Data Set Simulation Relative Error

Mini Compact 25.5% 27.0% 5.9%
Compact 36.2% 35.6% −1.7%
Medium 28.7% 28.4% −1.0%

Large 9.6% 9.0% −6.3%

4.1.3.3 Trip Starting Time–Simulation and GHTS Data Comparison

In Figure 4.9, a comparison of the simulated cumulative distribution function of the trip’s
starting time (blue) and the cumulative distribution function derived from the GHTS
data set (orange) is shown. Figure 4.9a–c show the results for a working day (Monday–
Thursday), Figure 4.9d–f show the results for Saturday. The figures are depicted for the
activities “Working”, “Shopping”, and “Home”. While the general distribution shape for
the activity “Home” matches well, errors exist for the activities “Working” and “Shopping”.
Further improving the fit of those distributions would be a valuable future improvement. In
Figure 4.10, the modelling errors of the results in Figure 4.9 are depicted as a boxplot. The
mean error is between −4.3% and 2.6% for a working day (Monday–Thursday) and between
−5.3% and 3.1% on a Saturday.
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(a) Trip starting time for working (Monday–
Thursday)

(b) Trip starting time for shopping (Monday–
Thursday)

(c) Trip starting time for home (Monday–Thursday) (d) Trip starting time for working (Saturday)

(e) Trip starting time for shopping (Saturday) (f) Trip starting time for home (Saturday)

Figure 4.9: Cumulative distribution function for trip starting time–simulation and GHTS data set
comparison.
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(a) Working day (Monday–Thursday) (b) Saturday

Figure 4.10: Modelling error starting time distributions.

4.1.3.4 Spatial Distribution of the Charging Energy Demand

By using the mobility model explained in Section 4.1.2.2 and the assumptions made in
Section 4.1.2.3, we calculate the spatial distribution of the charging energy demand in Berlin.
Figure 4.11 shows the resulting spatial distribution of the charging energy demand in the
Berlin LORs for a working day (Monday–Thursday). As we consider “home-charging” only,
the spatial demand of energy is equally distributed over Berlin on Saturdays compared to
working days. The total charging energy demand in Berlin of 4730 MWh on Saturdays is
around 14.9% less compared to a working day with 5435 MWh.

Figure 4.11: Spatial distribution of the battery electric vehicle (BEV) charging energy demand in
the Berlin LORs for a working day (Monday–Thursday).

This can be explained as follows. The average distance of all vehicles is 18.7% higher on
working days than on Saturdays. The proportion of moving vehicles is 25.3% higher on
working days compared to Saturdays (see Table 4.3). This leads to the fact that the daily
distances of moving vehicles are greater on Saturdays compared to working days. According
to Section 4.1.2.3, a higher energy consumption is assumed for higher distances. Therefore,
the energy consumption on Saturdays is 14.9% lower compared to working days and not, as
may expected 18.7% lower. As it can be seen in Figure 4.11, the energy demand in LORs
located in the peripheral areas of the city are higher compared to the ones located in the
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city center. This is due to a higher degree of motorisation and a higher household income in
the peripheral areas. LORs with near zero charging energy demand are pure forest, lake, or
industrial areas without inhabitants. It can be seen that LORs with a high energy demand
coincide with LORs of high populations, high degrees of motorisation, and high household
incomes.

The influence of the factors “degree of motorisation”, “population size”, and “household
income” on the LOR’s energy demand is illustrated for five LORs in Table 4.5. The energy
demand is depicted for a working day (Monday–Thursday). The comparison of the LOR
“Stülerstrasse” with the LOR “Huttenkiez” shows the influence of the household income
distribution on the energy demand within a LOR. Although more cars are registered in
the LOR “Huttenkiez”, the LOR “Stülerstrasse” has a higher energy demand (5275 kWh
compared to 4441 kWh). This is due to the fact that there are more high-income households
in the “Stülerstrasse” LOR, which tend to own larger cars, which require more energy. The
influence of the motorisation degree can be studied, for example, by comparing the LOR
“Griessingerstrasse” with the LOR “Lübarser Strasse”. Both LORs have a similar distribution
of household income, with slightly higher income in “Griessingerstrasse”. The lower degree of
motorisation in “Lübarser Strasse” leads to the lower daily energy consumption of 3423 kWh
compared to “Griessingerstrasse”, with 6151 kWh.
In Figure 4.12, the spatial distribution of the BEVs’ charging energy demand is depicted
per m2 and per inhabitant for the Berlin LORs. It can be seen that the charging energy
demand per m2 is higher in the inner city LORs compared to the peripheral areas. The
higher population densities within the inner city LORs compensates the lower degree of
motorisation and lower household income. The charging energy demand per inhabitant is
higher in the peripheral areas of the city, as the degree of motorisation and the household
income are higher in the peripheral LORs.

(a) Energy demand per m2 (b) Energy demand per inhabitant

Figure 4.12: Spatial distribution of the BEV charging energy demand for a working day (Monday–
Thursday) normalised to the size and the inhabitants in the Berlin LORs.
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4.1.3.5 Temporal Distribution of the Charging Power Demand

For charging powers of 3.7 kW and 11 kW, respectively, we evaluate the temporal distribution
of the charging power demand for the LOR “Heiligensee”. “Heiligensee” is located in the
district “Reinickendorf” in the northwest of Berlin. This LOR was chosen for evaluation as
it has the highest energy demand of all LORs for the simulated working day. The result
is compared to the cumulative power demand of the households within this district. The
cumulative power demand of the households is calculated by scaling the standard load profile
for Berlin households, which we received from [114]. Standard load profiles are forecasts
of the electrical energy consumption at quarter-hourly intervals, provided by the energy
supplier. In Germany, they are usually normalised to 1000 kWh per year, which makes scaling
necessary [115]. This scaling at the LOR level requires knowledge concerning the distribution
of different household sizes as well as annual household electricity consumption. The relevant
data is shown in Table 4.6. We derive the yearly energy demand per household size from
[116]. The authors specify the yearly energy demand of different German household sizes as
a normal distribution. For our calculations, we use the mean values. The cumulative LOR
household power demand is calculated for a working day and a Saturday in May 2018.

In Figure 4.13a,b, temporal distribution of the charging power demand for a working day
(Monday–Thursday) is depicted in blue for 11 kW charging power and 3.7 kW charging power,
respectively. In orange, the temporal distribution of the cumulative household power demand
within the LOR can be seen. In grey, the superposition with the simulated charging power
demand of the BEVs is shown. The results for a Saturday are depicted in Figure 4.13c for 11
kW charging power and in Figure 4.13d for 3.7 kW charging power. As it can be seen, the
cumulative household power demand between 06:00 and 23:00 is higher on Saturdays, since
persons are more likely to be at home, as they do not have to work.
As depicted in Figure 4.13, the charging power demand curves of the BEVs for 11 kW
charging power show a more pronounced valley and peak compared to their corresponding
curves for 3.7 kW charging power. Due to the uncontrolled charging strategy, the vehicles
start charging immediately upon arrival at home, which is mainly in the evening hours. The
resulting simultaneity of the charging events leads to a peak in the evening hours (maximum
around 20:00), which is higher for an 11 kW charging power compared to a 3.7 kW charging
power. Since vehicles that are charged with 11 kW charging power need less charging time
to fully recharge, the valley of the BEV charging power demand curve is lower for 11 kW
charging power compared to 3.7 kW charging power. As illustrated, the households’ power
demand peak in the evening coincides with the BEVs’ power demand peak for Saturdays
and working days. The maximum total power demand of the LOR “Heiligensee” is increased
by 77.9% for 11 kW charging power and 59.1% for 3.7 kW on working days with additional
BEV load. It is increased by 64.2% for 11 kW charging power and 50.4% for 3.7 kW on
Saturdays.

In Figure 4.14, the temporal distribution of the BEV charging power demand is compared to
the cumulative power demand of the households for the LOR “Invalidenstrasse”, which is
located in the district “Mitte” in the center of Berlin. The results are shown for a working
day and charging powers of 3.7 kW and 11 kW. The cumulative household power demand
curve is calculated by scaling the standard load profile for Berlin households, as described in
the previous paragraph. The distribution of the different household sizes needed for scaling
can be found in Table 4.6.
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(a) Working day (Monday–Thursday), 11 kW (b) Working day (Monday–Thursday), 3.7 kW

(c) Saturday, 11 kW (d) Saturday, 3.7 kW

Figure 4.13: Temporal distribution of the BEV charging power demand for the LOR “Heiligensee”.

Since more single-person households are located in the LOR “Invalidenstrasse” compared
to “Heiligensee”, the cumulative household power demand is higher. In comparision to
“Heiligensee” the maximum total power demand of the LOR “Invalidenstrasse” is only
increased by 19.0% for 11 kW charging power and by 15.7% for 3.7 kW with the additional
BEV load. Both LORs have a similar population (18,070 in “Heiligensee” and 17,950 in
“Invalidenstrasse”) and similar household incomes. Since the degree of motorisation in
“Heiligensee” (638 vehicles/1000 inhabitants) is almost four times higher compared to the
LOR “Invalidenstrasse” (173 vehicles/1000 inhabitants), the BEV charging power demand is
accordingly higher. The temporal distribution of the charging power demand on Saturdays
is not depicted for the LOR “Invalidenstrasse”, since it shows the same behaviour compared
to a working day as already shown for the LOR “Heiligensee”.

The computed results of the temporal distribution of the BEV charging power demand can
be compared to other studies. The authors of [20] investigated the impact of uncoordinated
BEV charging on a medium voltage distribution network. They assumed 1.5 vehicles per
household and a 10% electric vehicle penetration rate, resulting in a total of 1270 electric
vehicles in the network area. The charging power of the vehicles is between 1.5 kW and 6
kW. They showed that the peak charging power demand can reach values up to 2500 kW
in the evening hours. This number is 2.7 times higher than the peak demand of 900 kW
that we determined for the LOR “Invalidenstraße” (3126 BEVs) and 3.7 kW charging power
on a working day. The difference arises since the authors assume that all vehicles are used
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during the simulated day and then are charged almost simultaneously in the evening hours.
In contrast to our results, this simultaneity of the charging events reduces the charging power
demand in the study to near zero in the early morning.

(a) Working day (Monday–Thursday), 11 kW (b) Working day (Monday–Thursday), 3.7 kW

Figure 4.14: Temporal distribution of the BEV charging power demand for the LOR “Invaliden-
strasse”.

The author of [117] investigated the impact of uncoordinated BEV charging on the residential
power demand of 200 households in the midwest region of the USA. Similar to our work, the
author showed an increased demand in the evening hours. For a motorisation degree of 347
vehicles per 1000 inhabitants, the author showed that the maximum total power demand can
increase by 44% for 6.6 kW charging power and 31% for 1.92 kW on working days with the
additional BEV load. These findings are comparable to our results. We showed for a charging
power of 3.7 kW that the total power demand can increase by 59.1% for a motorisation
degree of 638 vehicles per 1000 inhabitants and by 15.7% for a motorisation degree of 173
vehicles per 1000 inhabitants. In contrast to our work, the author showed a similar power
demand on Saturdays and on working days, which is mainly due to the different driving
behaviours in Berlin and the USA.

4.1.4 Conclusions and Outlook

In this paper, a methodology was presented to estimate the spatial and temporal distribution
of the charging energy and power demand that derives if urban, privately owned cars
are fully electrified. The results support the electrical grid operators in detecting and
evaluating possible overloads within the electrical grid. The novelty of our approach lies
in the development of an activity-based mobility model by directly combining the 2017
German household travel survey (GHTS) with statistics on the population density, the
degree of motorisation, and the household income in fine spatial resolution. Through this
direct combination, our model provides data-based results with high spatial and temporal
resolution. In contrast to other researchers, we take the vehicle class category distribution,
which has an significant impact on the energy and power demand, in fine spatial resolution
into account. Additionally, unlike most other scientific works, our model is vehicle-based and
not person-based. The multiple use of the same vehicle by several persons is therefore better
portrayed. We applied our methodology to the urban area of Berlin in Germany. Since the
data sets we used to create our mobility model are available in a similar or identical form to
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many rural and urban regions in Germany, an upscaling of our model is feasible. Due to our
open-data approach, it is relatively easy to obtain similar data sets in most places of the
world. Therefore, our methodology is transferable to non-German regions.

The results of our developed mobility model match well with the underlying key data sources.
The mean simulation error is between −5.3% and 3.1% for the trip starting time of the
vehicles and the activities “Home”, “Working”, and “Shopping”. For those activities and
the trip distance, the mean simulation error is between −6.1% and 3.3%. The application
of our model showed that the spatial distribution of the charging energy demand in Berlin
is highly heterogeneous. In the peripheral areas of the city, the total energy demand and
the energy demand per capita is higher compared to the city center, mainly because the
residents own more cars per capita. Since their household income is higher, the residents
in peripheral areas own larger cars that consume more energy. The energy demand per m2

area is higher in the inner city LORs compared to the peripheral areas, since the higher
population densities compensate the lower degree of motorisation within the inner city LORs.
We additionally showed that the total daily charging demand in Berlin is about 14.9% less
on Saturdays compared to working days, which is mainly due to the fact that fewer cars
travel on Saturdays.
Regarding the temporal distribution of charging power demand, we compared the cumulative
household power demand with the additional BEV charging demand for two LORs. We
showed the variability of the BEV charging power demand in the LORs. While the total
power demand is only increased by 19.0% in the LOR “Invalidenstraße” on a working day
and a charging power of 11 kW, it is increased by up to 77.9% in the LOR “Heiligensee”. For
a charging power of 3.7 kW, the increase is 59.1% in the LOR “Heiligensee”. These results
shows the necessity for and are the basis for intelligent load shifting methods. Those methods
can be used to reduce the charging power demand peaks and to flatten the load curve, as
shown by other studies [21], [81], [118]–[120].

In further research, we will investigate load-shifting potentials by combining our model with
a smart charging algorithm. We will investigate if the BEVs’ charging power demand peaks
can be reduced without limiting the vehicle’s range. Furthermore, as we currently solely
consider “home-charging” in our model, we will use geodata to analyse the building structure
in each LOR. The results can be used to evaluate the attractiveness for vehicles to enter the
LORs for specific activities. By using a routing algorithm and the attractiveness information,
the daily routes for all vehicles can be determined. The resulting knowledge about the
location and the duration of stay for the different activities will be used for the investigation
of combined charging strategies.

4.1.5 Author Contributions

Florian Straub: Conceptualization, Supervision, Validation, Visualisation, Writing - Origi-
nal Draft.
Florian Straub, Simon Streppel: Methodology, Investigation.
Florian Straub, Dietmar Göhlich: Writing - Review & Editing.
Dietmar Göhlich: Project administration, Funding acquisition.



42 4 Estimating the BEV Charging Demand in Urban Areas

4.2 Publication II
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Abstract: With the continuous proliferation of private battery electric vehicles, the demand
for electrical energy and power is constantly increasing. As a result, the electrical grid may
need to be expanded. To plan for such expansion, information about the spatial distribution
of the energy demand is necessary. This can be determined from e-mobility traffic simulations,
where travel schedules of individuals are combined with an attractiveness rating of locations
to estimate traffic flows. Typically, attractiveness is determined from the “size” of locations
(e.g., number of employees or sales area), which is applicable when all modes of transportation
are considered. This approach leads to inaccuracies for the estimation of car traffic flows,
since the parking situation is neglected. To overcome these inaccuracies and fill this research
gap, we have developed a method to determine the car-access attractiveness of districts for
shopping and working trips. Our method consists of two steps. First, we determine the
car-access attractiveness of buildings within a district based on the parking situation of each
individual building and then aggregate the results at the district level. The approach is
demonstrated for the city of Berlin. The results confirm that conventional models cannot
be used to determine the car-access attractiveness of districts. According to these models,
attractive districts are predominantly located in the city centre due to the large amount of
sales areas or the large number of employees. However, due to the high density of buildings,
only limited space is available for parking. Attractive districts rated according to our new
approach are mainly located in the outer areas of the city and thus match the parking
situation.

Keywords: electric vehicle; traffic simulation; traffic assignment; location attractiveness;
transportation electrification; open geodata

4.2.1 Introduction

This introduction consists of three subsections. In Section 4.2.1.1, we discuss how the
conversion from private internal combustion engine vehicles (ICEVs) to battery electric
vehicles (BEVs) contributes to a reduction in greenhouse gas emission. Furthermore, we
discuss how e-mobility traffic simulations are used to estimate the spatial and temporal
distribution of the charging demand of BEVs and why these simulations are necessary. Since
the currently used models rely on data that is not always available, we have developed
a novel research approach to estimate the charging demand of BEVs. This is presented
in Section 4.2.1.2. This paper is one of three main parts that together form the research

https://doi.org/10.3390/su132011345
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approach. Therefore, this subsection also discusses which part of the overall research
approach is addressed in this paper. In Section 4.2.1.3, a literature review about the car-
access attractiveness of locations is conducted, and the research gap filled by this paper is
identified.

4.2.1.1 Global Warming and E-Mobility Traffic Simulations to Estimate the Charging
Demand of BEVs

In recent years, emission limits have been steadily tightened due to continuously rising
greenhouse gas emissions and poor air quality. Germany, for example, is planning to reduce
greenhouse gas emissions by 50% by 2030 compared to 1990 [80]. The European Commission
agreed on the “European Green Deal”, with the intention to achieve net zero greenhouse gases
emissions by 2050. To achieve this goal, “a 90% reduction in transport emissions is needed
by 2050” [2]. This reduction leads to a substitution of private internal combustion engine
vehicles with vehicles with alternative drive systems, primarily battery electric vehicles. As
a result, the increasing demand for electrical energy and power can lead to bottlenecks in
the power supply if the electrical grid infrastructure is not reinforced [20], [21]. In order to
support the electrical grid operators to detect and evaluate possible overloads within the
electrical grid, accurate models are needed to predict the spatial and temporal energy and
power requirements arising from the electrification of private internal combustion engine
vehicles.

E-mobility traffic simulations, mostly in the form of activity-based models, are commonly
used for this purpose [27], [77], [78], [86]. In activity-based models, individual full-day travel
schedules are generated for all persons or vehicles within the considered geographical area.
These travel schedules, also referred to as mobility profiles, consist of a consecutive sequence
of activities at different locations and trips between those activities. An example of a mobility
profile is shown in Figure 4.15, where the individual starts at ”Home” in the morning before
spending 8 h and 30 min at the activity “Working” and 40 min at the activity “Shopping”.
The person arrives back “Home” at 18:00.

Home Working
20 km

Shopping
5 km

Home
17 km

07:40 08:10 16:40 16:50 17:30 18:00

8 h 30 min 40 min

Figure 4.15: Example of a general mobility profile.

Since the mobility profiles capture the relationship between activity and mobility patterns
and mode of transportation, they can be used to determine the idle times of the vehicles at
different activities. If the geographic locations of the activities are known, the spatial and
temporal distribution of the charging energy and power demand for a geographic area can be
calculated from the mobility profiles by applying charging strategies.
In activity-based models, the standard approach to determine mobility profiles containing
information about the activity locations is to combine a travel survey with an origin-
destination (O-D) matrix [77], [78]. The travel surveys are obtained by questioning households
within a geographical area about their activities and trips during reference days, which allows
for determining the daily travel patterns of the population in the investigated area. An
O-D matrix is then used to derive the locations of the activities. In O-D matrices, each cell
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represents the probability of a trip from an origin location (row) to a destination location
(column) within a geographical area. As the starting location of the first trip (usually the
“Home” location) is known through, e.g., statistics on population density or the degree of
motorisation, O-D matrices are used to assign the destination locations for different activities.
In some cases, travel surveys contain sufficient data to directly derive an O-D matrix [77], [78].
If the data availability is insufficient, O-D matrices have to be generated by other approaches,
usually by using traffic count data [121]–[124] or mobile phone data [125]–[127].

4.2.1.2 Novel Research Approach for Estimating the Charging Demand of BEVs

In the case where an O-D matrix neither exists nor can be determined, we have developed
a new approach which can be used to determine mobility profiles containing information
about the activity locations for the considered geographical area. This approach is depicted
in Figure 4.16. As a first step (depicted in the blue box), a travel survey is used to create
mobility profiles that do not contain information about the activity locations. The mobility
profiles are vehicle-based and not person-based. This means that individual travel schedules
are created for BEVs in the geographic area and not for persons. In this way, the multiple
use of the same vehicle by several people can be realistically represented. Population density
statistics as well as data on the degree of motorisation are used to determine the residence of
the individuals and thus the spatial distribution of the vehicles in the investigated area.

Travel survey for
investigated area

Population
density

Degree of
motorisation

Household
income

Spatial distribution data
for investigated area:

Usage Parking situation

Analysis of each building
in investigated area regarding:

Mobility profiles.
Locations of activities

are unknown

Car-access attractiveness
of buildings and districts

in investigated area

Spatial temporal energy demand.
Charging at home

Vehicle routing

Mobility profiles.
Locations of activities

are known

Spatial temporal energy demand
Charging for all activities

Scope of this paperDemonstrated in [27]

Figure 4.16: Method for estimating the spatial and temporal energy and power demand from the
electrification of private ICEVs.
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From the spatial distribution of household incomes, vehicle size classes and therefore vehicle
consumption can be determined. Based on these partial results, it is possible to estimate
the spatial distribution of the charging energy and power demand that arises when the
individuals solely charge their BEVs at home. This approach has been demonstrated in [27]
for the urban area of Berlin, Germany, and its 448 sub-districts. However, these results need
further refinement as they neglect the fact that vehicles do not always charge at home but
can also charge at, e.g., work and shopping locations.

Therefore, as second step we determine the car-access attractiveness of locations, as depicted
in the orange box of Figure 4.16. Car-access attractiveness is a measure of how attractive
locations are to drive to by car for a certain activity. A high attractiveness means that
a location is highly likely to be accessed by car, while a low attractiveness indicates that
a location is more likely to be accessed by another mode of transportation. In order to
determine the car-access attractiveness of a location for a certain activity, the performed
activities at each location need to be known. Therefore, the usage of each building in the
investigated area is first determined and then the car-access attractiveness of each building
is computed based on its usage and parking situation. The results for the buildings are
subsequently aggregated at the district level. In the last step, the attractiveness information
and the mobility profiles without information about the activity locations are combined with
a suitable routing method. The routing of the vehicles allows for determining the locations
of the activities based on the location attractiveness. This enables the estimation of the
spatial distribution of the charging energy and power demand, considering charging at all
activities. Whereas the routing method will be part of future work, this paper deals with the
evaluation of the car-access attractiveness of buildings and districts.

4.2.1.3 Literature Review and Research Gap Filled by This Paper

Typically, attractiveness is represented by the “size” of locations, assuming that larger places
attract more persons than smaller ones [66]. Horni et al. [128] as well as Kubis and Hartmann
[129] proposed an attractiveness factor depending on store size to model the location choice
of individuals for shopping trips. They assume that larger stores attract more persons than
smaller ones. In order to relate retailing attractiveness of an urban district with its resulting
freight and shopping trip attraction rates, Gonzalez-Feliu and Peris-Pla [130] assume that
districts with a high number of employees attract more trips as their attractiveness increases.
Caceres et al. [131] assume that districts with high population attract more trips and propose
a relative attractiveness factor to estimate traffic flow profiles. Drezner and Drezner [132]
propose that the annual sales of a retail facility indicate its attractiveness.
The described models can only be applied when all modes of transport are considered. They
cannot be applied when cars are the only mode of transport under consideration. This is
mostly because these models do not consider the availability of parking spaces. An example is
that of large department stores, which are usually located in the city centres. Since they offer
a large amount of sales area, they are characterized by very high car-access attractiveness if
evaluated with conventional attractiveness models. However, within the city centres, usually
limited or no space is available for parking.

Since the evaluation of the car-access attractiveness of locations has not been addressed so
far in the literature, this research gap is filled by this paper. The car-access attractiveness
is evaluated separately for shopping and working trips and is based on the consideration
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of the available parking space in relation to the sales area per district and the number of
employees per district, respectively. To refine our attractiveness rating, we also consider the
distance of the parking spaces from the shops and working locations, the distance of the
working location to the nearest public transportation stop and information about the parking
fees. We apply our method to the urban area of Berlin, Germany, and its 448 sub-districts.
The car-access attractiveness rating is based on open geodata and freely available data sets,
making the approach traceable and reproducible.
Since the car-access attractiveness of the districts is determined solely for shopping and
work trips, vehicle routing can only determine the locations for shopping and work activities.
However, in addition to the places of residence, these are the locations with the highest
charging potential, as they have the highest average car idle times in Berlin (places of
residence: 20.9 h per day, workplaces: 1.7 h and shopping locations: 0.1 h) [27].

This paper is structured as follows: in Section 4.2.2, the method for the attractiveness-based
district rating is introduced. The results are presented and analysed in Section 4.2.3, which
is divided into two main parts. In Section 4.2.3.1, the results of the attractiveness-based
district rating are shown for shopping trips. The results are shown for working trips in
Section 4.2.3.2. The conclusions are presented in Section 4.2.4.

4.2.2 Methodology

The methodology used to rate districts regarding their car-access attractiveness consists of
four main parts, which are depicted in Figure 4.17. As a first step, we divide the city of
Berlin into districts and analyse the usage of each building inside the districts. The building
usage describes how the building is used, e.g., as a commercial or residential building. For
the division we make use of the official classification of the Berlin administration, which
divides the twelve Berlin districts into 448 sub-districts called “Lebensweltlich orientierte
Räume” (neighbourhood oriented districts) (LORs). Within each LOR, the structure of the
contained buildings and the socio-economic status of the inhabitants are similar. The LORs
are usually separated from each other by major roads, rivers or rails [98], [133]. The analysis
of the buildings’ usage is based on geodata, which is information about geographic positions
in a computer-processable format.

Building usage analysis
Section 4.2.2.1

Step 1

Determination number of employees
Section 4.2.2.3

Determination sales area
Section 4.2.2.2

Step 2

Parking situation analysis
Section 4.2.2.4

Step 3

Car-access attractiveness rating
for shopping trips
Section 4.2.2.5

Step 4
Car-access attractiveness rating

for working trips
Section 4.2.2.6

Figure 4.17: Method for the attractiveness-based district rating for shopping and working trips.
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For the analysis of the buildings’ usage within the LORs, we use OpenStreetMap (OSM)
geodata [134], derived from the Geofabrik GmbH Karlsruhe [135]. We chose OSM geodata
because it is freely available under an open database license 1.0 [136] for the whole earth. The
car-access attractiveness of a district is based on the available parking space in relation to
the sales area per district and the number of employees per district, respectively. Therefore,
in the second step we use the results of the building usage analysis to derive the sales area
and the number of employees for all buildings in the Berlin LORs. We analyse the parking
space availability in the Berlin LORs in step three. As a last step, we combine the obtained
results and introduce the methodology for the attractiveness-based district rating.

4.2.2.1 Building Usage Analysis in the Berlin LORs

In this section, we derive the building’s usage for every building inside the Berlin LORs.
Additionally, we determine the number of floors for each building, which is necessary to
compute the sales area and the number of employees per building. For the building usage
analysis we solely rely on OSM raw data, which is xml-formatted. The OSM raw data
structure is composed of the three elements—“nodes”, “ways” and “relations”—as well as
“tags” associated with the elements [137].

• “Nodes” are points defined by their latitude and longitude and therefore correspond to
locations on the surface of the earth.

• “Ways” are ordered lists of nodes. Up to 2000 nodes define a polyline, which can be
used to define linear features (e.g., rivers or roads) or boundaries of areas in the form
of a polygon (e.g., buildings or parking spaces).

• “Relations” are used to model logical or geographical relationships between elements.

• “Tags” describe the element they are attached to. A tag consists of a key and a value.
For example, a supermarket would be assigned the key = “shop” and the value =
“supermarket”.

For each building, three main pieces of information can be obtained from the OSM data set:
firstly, the predominant land use of the area the building lies in (e.g., residential, industrial or
retail land use); secondly, the building type such as an office, church or residential building;
and thirdly the points of interest (POIs) within the building. While the land use and the
building type are mainly given as polygons, POIs are usually given as nodes and give deeper
insights into the building’s usage.
The Berlin OSM geodata set includes 19 different land uses, 191 different building types
and 852 different POIs. Conditions are defined to categorize the Berlin buildings into
their corresponding building usage class, taking the buildings land use, type and POIs
within it into account. For example, if no POI is given and the building’s land use and the
building’s type are “residential”, the building is considered as a residential building. The POI
“supermarket” within a building of the land use and building type “residential” would reveal
that a supermarket is located inside the building, and the building would be considered as a
residential building with additional retail usage.
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For the categorization, we consider 10 different building usage classes in total:

• Residential buildings;

• Residential buildings with additional commercial usage, such as small offices or doctor’s
practices;

• Residential buildings with additional retail usage, such as small supermarkets or bak-
eries;

• Residential buildings with additional commercial and retail usage;

• Commercial buildings, such as an office building;

• Retail buildings, such as supermarkets or furniture stores;

• Commercial buildings with additional retail usage;

• Industrial buildings, such as factories;

• Department stores;

• Others, such as churches, monuments or stadiums.

The number of floors can be directly derived from the OSM geodata set for most Berlin
buildings. However, since the data set is not complete, the floor numbers for the buildings
without information need to be determined. The Berlin LORs are defined in such a way that
the building structure within each LOR is similar [98], [133]; hence, the number of floors of
the buildings is similar. Therefore, we estimate the number of floors for buildings without
information by calculating the average number of floors for each building usage class in the
LOR and assign the results to buildings without information.

4.2.2.2 Determination of the Sales Area of the Buildings in the Berlin LORs

In order to calculate the sales area of a building, two major pieces of information need to
be known: namely, the sales area per floor and the number of floors within the building
containing sales areas. To derive the relevant information for a building, we make use of its
usage class and its number of floors, derived in Section 4.2.2.1. We calculate sales areas for
the following building usage classes:

• Residential buildings with additional retail usage;

• Residential buildings with additional commercial and retail usage;

• Retail buildings;

• Commercial buildings with additional retail usage;

• Department stores.
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As the OSM data set reveals no information concerning the number of floors per building that
contain sales area, we assume that for a residential and a commercial building with additional
retail usage, only one floor contains sales area. For retail buildings and department stores,
we assume that each floor contains sales area. We further assume that each floor contains
the same amount of sales area. To avoid overestimating the sales areas of department stores
with additional commercial usage such as offices or a hotel, we limit the number of floors
containing sales area to two floors for those.

Two steps are then necessary to derive the sales area per floor from the gross floor area of a
building. First, the net internal area needs to be calculated. The net internal area equals the
gross floor area minus the area used for, e.g., stairs and elevators, electrical services or walls
and columns. As second step, the sales area needs to be determined from the net internal
area. The sales area only contains the shelf areas and the paths running between them, as
well as counters and the checkout area. The sales area does not include storage areas or
administration offices. For Germany, Tillman et al. [138] have published guideline factors to
derive the net internal area from the gross floor area for residential and commercial buildings.
For both building types, this factor K1 can be computed as

K1 = Net Internal Area
Gross Floor Area = 0.8 (4.1)

The authors additionally provided a guideline factor of K2 = 0.8 for the estimation of the
sales area from the net internal area, resulting in a total factor of K3 = 0.64 for the estimation
of the sales area from the gross floor area.

K2 = Sales Area
Net Internal Area = 0.8 (4.2)

K3 = K1 · K2 = Sales Area
Gross Floor Area = 0.64 (4.3)

While the factor K2 is also applicable for the usage classes “retail building” and “department
store”, no values are available to estimate the net internal area from the gross floor area for
these two usage classes. We therefore assume K1 = 0.8 as well for these building usage classes.
To check this assumption, we compare the calculated sales areas of retail buildings and
department stores with reference values in the following. As Berlin is highly populated and
construction land is rare, pure retail buildings are uncommon. The few that exist are mostly
supermarkets. Accordingly, we take Aldi Nord and Kaufland supermarkets into account for
the comparison. Aldi Nord supermarkets are chosen for the verification, since they offer
an “average” product assortment on an average sales area size of 850 m2 and hence can be
considered as an “average” Berlin supermarket [139]. Kaufland supermarkets are chosen, since
they offer a wide product assortment on large sales areas of 4340 m2 on average [140] and
therefore differ in means of building structure compared to Aldi Nord supermarkets. Thus,
they provide a useful second comparison value. The results of the comparison are depicted
in Table 4.13. Since the relative error between the computed average sales area and its
reference value is −2.8% for Aldi Nord supermarkets and −1.1% for Kaufland supermarkets,
we consider a factor of K3 = 0.64 as applicable to derive the sales area from the gross floor
area for retail buildings. For department stores, we verify the assumption by comparing
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the calculated sales areas with known numbers for 15 department stores in Berlin. As the
calculated mean relative error is 4.2%, we assume an applicability of the factor K3 = 0.64 to
derive the sales area from the gross floor area for department stores as well. The results of
the comparison are depicted for three departments stores in Table 4.13.

The computed total sales areas for the Berlin buildings needs to be verified. Therefore,
we compare our computed results with a study on Berlin retail structures and sales areas,
commissioned by Berlin authorities in 2014 [141]. The study provides information on the
sales area per inhabitant in the 12 Berlin districts in the year 2016. In order to calculate
the sales area per district, we use census data, which provides the number of inhabitants for
the Berlin districts in 2016 [142]. The number of inhabitants in Berlin has grown by 1.9%
from 3,537,100 in 2016 [142] to 3,604,100 in 2019 [143]. Accordingly, we assume that the
total sales area increased by 1.9% from 2016 to 2019. The results of the comparison can be
found in Table 4.14. The maximum relative error is 5.8% for all districts, except for the
district Tempelhof-Schöneberg, indicating high accuracy of the computation. The high error
of −9.7% in the district Tempelhof-Schöneberg is most likely due to the incomplete data set
available for this district.

Figure 4.18 shows the computed sales area of each building in the LORs “Emdener Straße”
and “Karl-August-Platz”. The usage distribution of the buildings in the LOR “Emdener
Straße” can be considered as rather typical for Berlin. The LOR contains mostly residential
buildings, intermixed with some commercial buildings and a main street (in the south of the
LOR), where most of the buildings are used for retail or commercial purposes. The total
sales area is 16,287 m2. In comparison, the buildings in the LOR “Karl-August-Platz” are
mainly used for retail and commercial purposes. In addition, this LOR contains a shopping
street with department stores. The total sales area is 66,555 m2.
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(a) “Emdener Straße” LOR.

(b) “Karl-August-Platz” LOR.

Figure 4.18: Computed sales area per building for two Berlin LORs.
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4.2.2.3 Determination of the Number of Employees of the Buildings in the Berlin LORs

The calculation of the employees per building is carried out for each usage class introduced in
Section 4.2.2.1, except for “residential buildings” and “other” usage classes, as they only have
few or no employees. For the calculation, three major pieces of information need to be known:
first, the number of companies per building, which we derived by analysing the POIs for each
building; second, the number of employees per m2 of operating area for each company; and
third, the share of the buildings operating area used by the individual companies. The total
operating area of a building equals the gross floor area multiplied by the number of floors.

The number of employees per m2 of operating area Eo can be directly derived for more than
30 types of businesses from [144]. Reference [144] is a study on the energy consumption of
different economic sectors in Germany and also gives the average operating area ca of the
business types. Exemplary values for five types of businesses can be found in Table 4.7.

Table 4.7: Number of employees per m2 of operating area and average operating area for different
types of businesses.

Type of Business
Employees per m2

Operating Area Eo

Average Operating Area ca

Restaurants 0.023 260 m2

Retail non-food 0.011 530 m2

Insurances 0.036 477 m2

Small offices (e.g., law firm) 0.039 210 m2

Public institutions 0.019 2890 m2

According to the determination of the sales area per building, we limit the number of
floors used by the companies to one for residential buildings with additional retail and/or
commercial usage. If the building’s usage class is a retail building, a department store or an
industrial building, we consider all floors of the building for commercial activities. We limit
the number of floors of department stores with additional commercial usage to two. The
remaining floors are treated as a commercial building. If several companies are located in
the same building, the total operating area is distributed among the companies according to
their weighted average operating area, as expressed in Equation (4.4).

Oi = Ot · cai

n∑︁
j=1

caj

(4.4)

where Ot is the building’s total operating area, Oi the operating area of the company i

located in the building and cai is the average operating area of the company i, while n equals
the total number of companies in the building and their corresponding average operating
area caj .

Based on the values determined, the number of employees for all buildings in Berlin can be
determined. For each building, its total number of employees Eb can be calculated as

Eb =
n∑︂

i=1

Oi · Eoi (4.5)
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where Oi is the operating area of the company i located in the building, and Eoi is the
number of employees per m2 of operating area of the company i, while n equals the total
number of companies in the building.

In order to evaluate the generated results, we compare them to the 2019 Berlin census data
[143]. The census data specify the total number of employees in Berlin and their distribution
among three major commercial sectors: the manufacturing sector (e.g., automotive industry
or chemical industry); the trade, hospitality and transport sector; and third, other commercial
services sector (e.g., doctors or lawyers). The generated numbers from the OSM data, the
numbers from the census and the relative error between them are depicted in Table 4.8. The
numbers of employees as derived from the census data are scaled to take commuters into
account [145], [146]. The computed total number of employees deviates by −41.8% compared
to the census data. While the relative error is only 0.185% for the manufacturing sector, it is
−58.7% for the trade, hospitality and transport sector and −43.6% for the other commercial
services sector. Since OpenStreetMap is a community project, geographic data are collected
on a voluntary basis by project members using their GPS devices [135]. Therefore, the large
error for the trade, hospitality and transport sector and other commercial services sector is
most likely due to the incompleteness of the OSM data set. The comparison of the OSM data
with local knowledge confirms this assumption. Many small offices (e.g., architects, lawyers,
consultancies), small doctor’s practices, restaurants or the offices of self-employed persons
are not included in the data set, while large companies and factories of the manufacturing
sector are fully included. In order to fit the calculated results to the census data, we linearly
scale the computed results for each building with employees by economic sector.

Table 4.8: Number of employees in Berlin in 2019 by summarized economic sector. Comparison of
census data and computed results.

Economic Sector Census Data
Computed

Results
Relative Error (%)

Manufacturing Sector 284,319 284,844 0.185
Trade, Hospitality and Transport 580,933 239,903 −58.7

Other Commercial Services 1,201,074 677,209 −43.6
Total Number 2,066,326 1,201,956 −41.8

The results of the determination of the number of employees are shown in Figure 4.19 for
the LORs “Emdener Straße” and “Germaniagarten”. For each building, the calculated total
number of employees is given. The usage of the buildings in the LOR “Emdener Straße” has
been discussed in Section 4.2.2.2. The calculated total number of employees is 4901. Although
the LOR “Germaniagarten” contains two industrial areas in the south and west as well as
a commercial area in the centre, the number of employees in the LOR “Germaniagarten”
is 3078 and thus is lower than in the LOR “Emdener Straße”. This is due to the fact that
most of the industrial and commercial buildings in the LOR “Germaniagarten” have only
one floor, while most buildings in the LOR “Emdener Straße” have more than two floors.
Furthermore, industrial buildings have fewer employees per square metre operating area
compared to buildings with solely or partly commercial usage which are common in the LOR
“Emdener Straße”.
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(a) “Emdener Straße” LOR.

(b) “Germaniagarten” LOR.

Figure 4.19: Computed number of employees per building for two Berlin LORs.
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4.2.2.4 Parking Situation Analysis in the Berlin LORs

The goal of the parking situation analysis is to determine the number of parking spaces and
their individual capacity within each LOR. The capacity of a parking space equals its number
of parking spots. In addition, the intended use of the parking spaces is determined by the
assignment of the parking spaces to one or more buildings. Since we aim to determine the
attractiveness of the Berlin LORs for access by car for the activities working and shopping,
this step is necessary to differentiate between employee, customer and other parking spaces.

For the analysis, we make use of the OSM data set which distinguishes between three different
parking space classes that are suitable for cars.

• Surface parking spaces, which are single-level on the surface. Their gross parking area
is equal to the surface area they cover, which can be directly derived from the OSM
data set. The gross parking area includes areas for parking spots as well as areas that
are part of the parking space but cannot be used for parking (e.g., columns or roads
between parking spots).

• Multi-storey parking spaces such as parking garages. Their gross parking area equals
the gross parking area per floor multiplied with the number of parking floors. The
gross parking area per floor can be directly derived from the OSM data set, whereas
the determination of the amount of parking floors is described in Section 4.2.2.1.

• Underground parking spaces, which are usually located beneath a building. Their gross
parking area is calculated identically to that of multi-storey parking spaces. However,
the OSM data set does not specify the gross parking area per floor as a percentage of
the gross floor area of the building nor does it indicate the number of parking floors.
Due to the high building density in Berlin and the resulting necessity for efficient use
of construction space, we assume that the total gross floor area of the building is used
for underground parking.

For each parking space class, there are parking spaces in the OSM data set for which their
capacity is specified. In total, the capacity is known for 12.3% of the parking spaces. This
allows easy back-calculation to parking spots per m2 of gross parking area. This correlation is
shown in Figure 4.20, where each data point equals the given capacity information. By using
linear regression, linear curves can be fitted to the data tuples. This relation can be used to
determine the number of parking spots for parking spaces without capacity information. In
order to confirm the applicability of this approach, we compared the number of parking spots
estimated using the curves in Figure 4.20 with the correct number which was determined by
manual counting for several parking spaces in all three parking space classes. The comparison
showed reasonable deviations. In Figure 4.20, it can be seen that the curve for multi-storey
parking spaces is steeper compared to the curve of surface parking spaces, which is due to
the more efficient use of space. Since no information is provided on the number of parking
floors for underground parking spaces, their capacities are normalized to one floor. This
results in an underestimation of gross parking area. The curve is therefore steeper compared
to surface and multi-storey parking spaces since parking floors are implicitly included.
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Figure 4.20: Linear approximation of the amount of parking spots per m2 gross parking area from
OSM data.

Since the number of parking spots of each parking space is known from the previous step,
the usage class for each parking space needs to be determined through the assignment of
the parking spaces to one or more buildings. The general assignment process is depicted in
Figure 4.21 and is described below.

Unassigned
parking space

Private
access?

Building
with employees

in range?

Building
with sales area

in range?

yes no

Employee
parking

Residential
parking

yes no

Customer
parking

Public
parking

yes no

Parking
fee?

50% Customer
parking

25% Customer
parking

25% Employee
parking

yes no

Figure 4.21: General process for the utilization assignment of parking spaces.

The access type for each parking space is given in the OSM data set. This information
can be used to differentiate the parking spaces into four different usage classes: customer
parking spaces (only accessible for shopping trips), private parking spaces for employee
parking (accessible only for working trips), private parking spaces for residential parking (not
accessible) and public parking spaces, which are accessible for shopping and working trips.
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Parking spaces with private access need to be distinguished as parking spaces for employees or
residential parking spaces. For this purpose, we consider all buildings that have a minimum
distance of less than 50 m from the parking space (the influence of different distances on the
result is investigated in Sections 4.2.3.1 and 4.2.3.2) as potentially assignable to the parking
space. If none of the potential buildings contains employees, the parking space is considered
as a residential parking space. If one of the potential buildings contains employees, the
parking space is assigned to this building and is considered as an employee parking space. If
the parking space can be assigned to several buildings containing employees, the parking
space is shared among those buildings according to their weighted number of employees, as
expressed in Equation (4.6).

Ci = Ct · Ebi
m∑︁

j=1
Ebj

(4.6)

where Ct is the number of parking spots of the parking space, Ci the number of the parking
space’s spots assigned to the building i and Ebi is the number of employees in building i,
while m is the total number of buildings which are assigned to the parking space and their
corresponding number of employees Ebj . If the access to the parking space is non-private, we
check whether buildings exist that contain sales area and have a minimum distance of less
than 10 m from the parking space. If one building meets these requirements, the parking
space is assigned to this building as a customer parking space. If several buildings meet the
requirements, the parking space is shared among those buildings according to their weighted
sales area, as expressed in Equation (4.7).

Ci = Ct · Sbi

k∑︁
j=1

Sbj

(4.7)

where Ct is the capacity of the parking space, Ci the amount of the parking space’s spots
assigned to the building i and Sbi is the sales area in building i, while k equals the total
number of buildings which are assigned to the parking space and their corresponding sales
area Sbj .

If no building meets the aforementioned requirements, the parking space is considered as
a public parking space. The usage of public parking spaces varies greatly. Depending on
their location and size, a different share of the parking space capacity is used for different
activities. Therefore, it is difficult to make a general statement about their usage. We
therefore assume that 50% of their capacity is used for activities which are not considered
in this paper, such as leisure activities or doctor visits. For public charged parking, the
remaining 50% of the parking space’s capacity is assigned to the buildings with sales area
that have a minimum distance of less than 100 m from the parking space. The information on
parking fees can be obtained directly from the OSM data set. The parking space’s spots are
distributed among those buildings according to their weighted sales area (see Equation (4.7)).
For free public parking spaces, we assign 25% of their capacity to buildings with sales areas
and 25% to buildings with employees, according to their weighted sales area and number
of employees. For this assignment we only consider buildings with sales area which have a
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minimum distance of less than 100 m from the parking space and buildings with employees
which have a minimum distance of less than 200 m from the parking space (the influence of
different distances on the result is investigated in Sections 4.2.3.1 and 4.2.3.2).

4.2.2.5 Attractiveness-Based District Rating for Shopping Trips

In order to compute the attractiveness of districts to drive to by car for shopping trips, we
use a two-step approach. In the first step, we determine the car-access attractiveness of
the individual buildings in the LOR. In the second step, we aggregate the results at the
LOR level to derive an overall rating for the district. In the literature, the attractiveness of
shopping locations is typically represented by their amount of sales area [128], [129]. The
parking situation, which is crucial for the car-access attractiveness of shopping locations, is
not considered. To overcome this limitation, in this paper, we determine the attractiveness
of each building in the LORs by considering both the sales area and the overall availability
of parking spots. To achieve this, we combine the following three criteria:

• Criterion y1s: the amount of parking spots per m2 sales area.

• Van der Waerden et al. [147] as well as Zhang et al. [148] showed that persons prefer
low walking distances between a parking facility and their final destination. Thus, as a
second criterion, y2s, we consider the distance of the parking space to the building.

• Hymel [149] and van der Waerden et al. [150] showed that when a shopping location
charges for parking, the number of shopping trips there decreases. Therefore, the third
criterion for car-access attractiveness evaluation y3s is whether parking fees have to be
paid for the use of the parking space.

To determine the car-access attractiveness of a building from the three criteria, we apply
the weighted sum model, which is typically used for multicriteria decision analysis [151].
The fundamental concept behind this technique is the additive utility assumption. If each
criterion is measurable and has the same unit, then the best alternative is the one with the
largest cumulative value [151], [152]. The value R of each alternative j can be computed as

Rj =
n∑︂

i=1

ai · wi for j = 1, 2, . . . , m (4.8)

where n is the number of criteria, ai is the value of the criterion i and wi is the individual
weighting-coefficient of the criterion i. In principle, the higher the weighting, the more
important the criterion. Normally, the weighting-coefficients are normalized so that they sum
to one [151]. For the application of the weighted sum model, all criteria must have the same
unit. For this purpose, we use the rating-coefficients β1s, β2s and β3s that assign a discrete
value between 1 (very unattractive) and 5 (very attractive) to value ranges of the criteria
y1s, y2s and y3s. In Table 4.9, the value ranges of the criteria and their corresponding rating-
coefficients are given. Since there is no parking space ordinance in Berlin that prescribes the
number of parking spots for buildings with retail usage, the value ranges for y1s are derived
in this paper by manually calculating the number of parking spots per m2 of sales area
for fifteen “Aldi” supermarkets. “Aldi” supermarkets are chosen, as they can be regarded
as “average” Berlin supermarkets (see Section 4.2.2.2). The computed average value of 0.1
parking spots per m2 sales area is considered as very attractive. Linear division is used
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to specify the remaining value ranges. As we described in Section 4.2.2.4, parking spaces
can only be assigned to buildings with sales area to which they have a minimal distance of
less than 100 m. Accordingly the value ranges of y2s are divided linearly. For the criterion
parking fee y3s, we do not consider ranges. We differentiate between free parking spaces
which are very attractive and parking spaces with fees which are very unattractive. In Section
4.2.3.1, the influence of modified value ranges of the factors y1s, y2s and y3s on the result is
investigated.

For each building with sales area and assigned parking spaces, its car-access attractiveness,
hereinafter called attraction-factor xs, is computed as the weighted sum of the three afore-
mentioned criteria according to Equation (4.9). It is possible that several parking spaces
can be assigned to a building, each with a different distance to the building and different
parking fees. Therefore, in order to receive a global rating-coefficient α2s and α3s for each
building, the rating-coefficients of the parking spaces are weighted according to their number
of parking spots assigned to the building.

xs = a1s · w1s + a2s · w2s + a3s · w3s with
3∑︂

i=1

wis = 1

a1s = β1s

a2s = 1
Ctb

n∑︂
i=1

Cib · βi2s

a3s = 1
Ctb

n∑︂
i=1

Cib · βi3s

(4.9)

In Equation (4.9), Ctb is the total number of parking spots assigned to the building, n is the
total number of parking spaces assigned to the building and Cib is the number of parking
spots of the parking space i. w1s, w2s and w3s are the weighting-coefficients of the criteria.
Their values can range from 0 to 1, and their sum equals 1. Hence, the attraction-factor xs

of the building can take continuous values between 1 and 5. Buildings with sales area that
have not been assigned a parking space receive an attraction-factor xs of 0.

Since the attraction-factor xs of each building is known, the total LOR attractiveness As for
shopping trips by car can be calculated by weighting each building by its sales area according
to Equation (4.10).

As = 1
St

m∑︂
i=1

Sbi · xis (4.10)

In Equation (4.10), St is the total number of sales areas in the LOR, m is the total number
of buildings with sales area in the LOR and Sbi is the sales area of the building i. Since
the attraction-factor xs can take values between 0 and 5, the attractiveness As of the LOR
can take continuous values between 0 and 5 as well. A high car-access attractiveness As

means that an LOR is highly likely to be accessed by car for a shopping activity, while low
attractiveness means that people who shop at the LOR are more likely to choose another
mode of transportation to travel there.
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4.2.2.6 Attractiveness-Based District Rating for Working Trips

In order to compute the attractiveness of districts to drive to by car for working trips, we
use the same two-step approach as for the attractiveness-based district rating for shopping
trips. In the literature, the attractiveness of working locations is typically represented by its
number of employees [130]. We describe the car-access attractiveness of the buildings with
employees by combining three criteria related to the parking situation.

• Criterion y1w: the parking spots per employee.

• Criterion y2w: the distance of the parking space to the building [147], [148].

• Boulange et al. [153] and Limtanakool et al. [154] showed that short distances to public
transportation services encourage public transport use. Therefore, the third criterion
y3w is the average distance of the building to the nearest public transportation stop.

To apply the weighted sum model, all criteria must have the same unit. Therefore, we use
the rating-coefficients β1w, β2w and β3w that assign a discrete value between 1 and 5 to the
value ranges of the criteria y1w, y2w and y3w. This relationship is shown in Table 4.10.

In the city of Berlin, there is no parking space ordinance that prescribes the number of
parking spots for buildings with commercial usage. Therefore, the value ranges of y1w are
derived by manually calculating the number of parking spots per employee for 15 companies
with 250+ employees. The computed average value of 0.06 parking spots per employees is
considered as very attractive. Linear division is used to specify the remaining value ranges.
As we described in Section 4.2.2.4, parking spaces can only be assigned to buildings to which
they have a minimal distance of less than 200 m. Accordingly, the value ranges for the
criterion y2w are divided linearly.

According to Wibowo and Olszewski [155], a distance of 400 to 800 m can be considered
as acceptable walking distance to the nearest public transportation stop. In the state of
Zürich in Switzerland, a distance of 400 to 750 m is considered as acceptable walking distance
according to Schäffeler [156]. For the city of London, [157] considered 960 m as the maximum
acceptable walking distance for rail, underground and light rail services. For Sydney, Daniels
and Mulley [158] showed that people walk on average 573 m to a public transportation stop.
In accordance with these findings, the value ranges of the criterion y3w are divided linearly.
A walking distance of less than 200 m is considered as very unattractive, and a walking
distance greater than 800 m is considered as very attractive to undertake the trip by car.
Since the computation time to compute the average air distance between a building and its
nearest public transportation stop is much faster compared to the computation of a walking
distance, we introduce a general conversion factor of 1.494 ≈ 1.5, which means that 100 m of
air distance equals 150 m of walking distance in the city of Berlin. This factor is determined
by using the OpenRouteService Distance Matrix API [159] to compute the walking distance
between two coordinates. For a data set containing 50,000 randomly distributed coordinates
on Berlin roads (motorways, forests and parks are excluded), the conversion factor for all
coordinate pairs with a walking distance of less than one kilometre is computed. The average
result is used as a general conversion factor. In Figure 4.22, the average walking distance of
the district buildings to the nearest public transportation is depicted for the district “Mitte”,
which is located in the centre of Berlin, and the peripheral district “Spandau” in the west of
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Berlin. As expected, the comparison shows a high density of public transportation stops in
the centre district “Mitte” and a low density in the peripheral district “Spandau”.

(a) District “Mitte”. (b) District “Spandau”.

Figure 4.22: Average distance to the nearest public transportation stop y3w in the districts “Mitte”
and “Spandau”.

For each building with employees that also has assigned parking spaces, its attraction-factor
xw is computed as the weighted sum of the three aforementioned criteria according to
Equation (4.11). Since several parking spaces can be assigned to a building, each with
a different distance to the building, the rating-coefficients β2w of the parking spaces are
weighted.

xw = a1w · w1w + a2w · w2w + a3w · w3w with
3∑︂

i=1

wiw = 1

a1w = β1w

a2w = 1
Ctb

n∑︂
i=1

Cib · βi2w

a3w = β3w

(4.11)

In Equation (4.11), Ctb is the total number of parking spots assigned to the building, n

is the total number of parking spaces assigned to the building and Cib is the number of
parking spots of the parking space i. w1w, w2w and w3w are the weighting-coefficients of the
criteria. Buildings with employees that have not been assigned a parking space receive an
attraction-factor xw of 0.
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Since the attraction-factor xw of each building is known, the total LOR attractiveness Aw for
working trips by car can be calculated by weighting each building by its number of employees.

Aw = 1
Et

m∑︂
i=1

Ebi · xiw (4.12)

In Equation (4.12), Et is the total number of employees in the LOR, m is the total number
of buildings with employees in the LOR and Ebi is the number of employees of the building
i. As shown for shopping trips in Section 4.2.2.5, the attractiveness Aw of the LOR can
take continuous values between 0 and 5. While a high car-access attractiveness indicates
that a LOR is highly likely to be accessed by car for a working activity, a low attractiveness
Aw means that people who work at the LOR are more likely to choose another mode of
transportation to travel there.

4.2.3 Results and Discussion

This section is organized as follows: the results of the attractiveness-based district rating are
presented for shopping trips in Section 4.2.3.1 and for working trips in Section 4.2.3.2. In
Section 4.2.3.3, the limits of the developed model are discussed, as well as possible future
steps to improve the accuracy.

4.2.3.1 Attractiveness-Based District Rating for Shopping Trips

This section is divided into two parts. First, the results of the district rating are presented
and discussed for the entire city of Berlin. Subsequently, the results for the buildings in two
LORs are analysed.

4.2.3.1.1 Results on Berlin Level for Shopping Trips
As we described in Section 4.2.2.5, the car-access attractiveness of the districts is computed
by applying the weighted sum model. Depending on the choice of parameters, different
results are obtained. Therefore, in this section, we conduct a sensitivity analysis based on
15 parameter combinations (hereafter referred to as cases) to assess the impact of different
combinations on the car-access attractiveness of the LORs (see Table 4.11). In the first step,
the influence of the search range (i.e., the maximum distance between a parking space and
the building it is assigned to) is analysed. In a further comparison, the influence of different
value ranges of the criteria and different weighting-coefficients on the results is investigated.

In order to investigate the sensitivity of LOR attractiveness to search ranges, the cumulative
distribution function of the car-access attractiveness As of the LORs is depicted in Figure 4.23a
for three different combinations of search ranges. For each combination, we also investigate
the sensitivity of the LOR attractiveness to the criteria y1s, y2s and y3s by successively
setting the corresponding weighting-coefficient to 1 (as shown in Table 4.11). First, it can be
seen that for each case investigated, the cumulative frequency is non-zero for As = 0. This
is due to the fact that there are LORs in which no parking space has been assigned to a
building with sales area. In addition, there are LORs which do not contain buildings with
sales areas, as in the case of forest, lake or industrial areas. As a result, those LORs receive
an attractiveness As of 0. It can be observed that the smaller the search ranges, the greater
the number of LORs with a car-access attractiveness As of 0, as simply fewer parking spaces
are assigned to buildings.
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The highest attractiveness ratings are obtained by the cases S3, S12 and S15 (grey), where
only the criterion parking fee is considered, since the weighting-coefficient w3s is set to
1. The high rating is due to the fact that buildings that have been assigned one or more
parking spaces without parking fees automatically receive an attraction factor xs of 5 (very
attractive). However, this neglects the fact that only a very small number of parking spots
may be assigned to the building or that the assigned parking spaces might be far away,
since the weighting-coefficients w1s and w2s are set to 0. Good results are also obtained by
cases S2, S11 and S14 (orange), where only the distance of the buildings from the parking
spaces is considered to determine the attractiveness of the LORs. This is also mainly due to
the fact that the number of parking spots is neglected. The lowest scores are achieved by
cases S1, S10 and S13 (blue), where only the number of parking spots per m2 sales area is
considered.

In order to investigate the sensitivity of LOR attractiveness to different value ranges of the
criteria and different weighting-coefficients, the cumulative distribution function of car-access
attractiveness As is depicted in Figure 4.23b for a fixed search range. The comparison of
case S1 and case S4 shows that when the threshold values of the criterion y1s (i.e., customer
parking spots per sales area) are doubled, a significant decrease in LOR attractiveness As is
observed. This shows that the attractiveness rating is very sensitive to criterion y1s. The
car-access attractiveness rating is significantly less sensitive to a change in the parking fee
criterion y3s. This is shown by comparing cases S3 and S5, where it can be observed that
the car-access attractiveness of the LORs increases only slightly when the threshold values of
y3s are increased.

By comparing cases S6, S7, S8 and S9, the influence of different combinations of the weighting-
coefficients on the results can be investigated. In accordance with the previous results, it can
be seen that an increased weighting of the criterion y1s leads to a decreasing attractiveness
of the LORs. Furthermore, the comparison of case S7 and case S8 shows that the influence
of criteria y2s and y3s on the attractiveness of LORs is similar if the car-access attractiveness
is determined using all three criteria.

(a) Variable search range for parking spaces. (b) Constant search range for parking spaces.

Figure 4.23: Attractiveness-based district rating for shopping trips in the Berlin LORs. Cumulative
distribution function.
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In Figure 4.24, the spatial distribution of the car-access attractiveness As of the Berlin
LORs is shown for case S6 and is compared to the amount of sales area in the LORs. The
parameter combination of case S6 is chosen because it results in medium attractiveness values
for the entire city of Berlin (as shown in Figure 4.23b). The comparison of Figure 4.24a and
Figure 4.24b shows that LORs with a high amount of sales area are mostly located in the
city centre and do not match LORs with a high number of customer parking spaces per m2

of sales area, which are mostly located in the outer areas of the city. This is mainly due to
the fact that the building density in the outer districts is low and therefore more space is
available for parking. These results show that an attractiveness rating based only on total
sales area is not an appropriate evaluation parameter to estimate the probability that a
person will drive to a district for shopping by car, as the parking situation is neglected.

(a) Case S6. (b) Sales area.

Figure 4.24: Attractiveness-based district rating for shopping trips (case S6) and sales area in the
Berlin LORs.

4.2.3.1.2 Results on LOR Level for Shopping Trips
For case S6, the results of the parking situation analysis and the attractiveness-based building
rating are shown for two Berlin LORs in Figure 4.25. Buildings displayed in grey do not
contain any sales area. Buildings displayed in white have an attraction-factor xs of 0 which
means that no parking space has been assigned to these buildings. The numbers displayed
on the parking spaces indicate the calculated number of parking spots. In case S6, the main
weighting of car-access attractiveness is on the number of parking spots per m2 of sales area
(weighting-coefficient w1s = 0.8). Accordingly, the buildings that have been assigned many
parking spots receive a high attraction-factor. The average car-access attractiveness As of
the LOR “Karl-August-Platz” is 1.086. The average car-access attractiveness of the LOR
“Germania Straße” is 1.772. The value for the “Germania Straße” is higher because a higher
percentage of the buildings have been assigned parking spaces and thus do not receive an
attraction-factor of 0. In addition, in the LOR “Karl-August-Platz”, several buildings often
share one parking space. In contrast, in the “Germania Straße” LOR, customer parking
spaces are each assigned to a single building, which then results in a higher number of parking
spots per m2 of sales area.
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(a) “Karl-August-Platz” LOR.

(b) “Germania Straße” LOR.

Figure 4.25: Attractiveness-based building rating for shopping trips for two Berlin LORs. Case S6.
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4.2.3.2 Attractiveness-Based District Rating for Working Trips

The structure of this section is identical to Section 4.2.3.1. First, the results of the district
rating for working trips are presented and discussed for the entire city of Berlin. Subsequently,
the results for the buildings in two LORs are analysed.

4.2.3.2.1 Results on Berlin Level for Working Trips
With the same objectives as in Section 4.2.3.1.1, a sensitivity analysis based on 15 parameter
combinations is conducted in this section (see Table 4.12). For the investigation of the
sensitivity of LOR attractiveness to search ranges, the cumulative distribution function of
the car-access attractiveness Aw is depicted in Figure 4.26a for three different combinations
of search ranges. Additionally, the sensitivity of the LOR attractiveness to the criteria y1w,
y2w and y3w is investigated for each combination. It can be observed that for each case, the
cumulative frequency is non-zero for As = 0 and that smaller search ranges lead to a greater
number of LORs with a car-access attractiveness As = 0. These findings have already been
justified in Section 4.2.3.1.1.

The highest attractiveness ratings are obtained by cases W2, W11 and W14 (orange), where
only the distance of the buildings to the parking spaces is considered. This is because a
building automatically receives a high attraction-factor xw if it is located near a parking
space. However, this neglects that only a small number of parking spots may be assigned to
the building. Intermediate results are obtained by cases W3, W12 and W15 (grey), where
only the minimal distance of a building to the nearest public transportation stop is considered.
The lowest scores are obtained by cases W1, W10 and W13 (blue), where only the number
of parking spots per employee is considered.

(a) Variable search range for parking spaces. (b) Constant search range for parking spaces.

Figure 4.26: Attractiveness-based district rating for working trips in the Berlin LORs. Cumulative
distribution function.

For the investigation of the sensitivity of LOR attractiveness to different value ranges of the
criteria and different weighting-coefficients, the cumulative distribution function of car-access
attractiveness Aw of the LORs is depicted in Figure 4.26b for a fixed search range. The
comparison of case W3 and case W5 shows that the attractiveness rating is very sensitive
to a change in the criterion distance to public transportation y3w, since the doubling of its
threshold values leads to a significant decrease in LOR attractiveness.



4.2 Publication II 69

Ta
bl

e
4.

12
:I

nv
es

ti
ga

te
d

ca
se

s
an

d
se

le
ct

ed
pa

ra
m

et
er

s
to

co
m

pu
te

th
e

at
tr

ac
ti

ve
ne

ss
of

th
e

B
er

lin
LO

R
s

to
dr

iv
e

to
by

ca
r

fo
r

w
or

ki
ng

tr
ip

s.

W
ei

g
h

ti
n

g
-F

ac
to

r
S

ea
rc

h
R

an
g

e
P

ar
k

in
g

S
p

ac
e

(m
)

P
ar

k
in

g
S

p
o

ts
p

er
D

is
ta

n
ce

to
D

is
ta

n
ce

to
P

u
b

li
c

C
as

es
E

m
p

lo
y

ee
y

1
w

P
ar

k
in

g
S

p
ac

e
y

2
w

T
ra

n
sp

o
rt

S
to

p
y

3
w

w
1

w
w

2
w

w
3

w
E

m
p

lo
y

ee
P

u
b

li
c

C
u

st
o

m
er

V
er

y
A

tt
ra

ct
iv

e
V

er
y

U
n

at
tr

ac
ti

v
e

V
er

y
A

tt
ra

ct
iv

e
V

er
y

U
n

at
tr

ac
ti

v
e

V
er

y
A

tt
ra

ct
iv

e
V

er
y

U
n

at
tr

ac
ti

v
e

C
as

e
W

1
1.

0
0.

0
0.

0

50
.0

20
0.

0
10

.0

y
1w

>
0.

06
y

1w
≤

0.
01

6

y
2w

≤
40

.0
m

y
2w

>
16

0.
0

m

y
3w

≥
80

0.
0

m
y

3w
<

20
0.

0
m

C
as

e
W

2
0.

0
1.

0
0.

0
C

as
e

W
3

0.
0

0.
0

1.
0

C
as

e
W

4
1.

0
0.

0
0.

0
y

1w
>

0.
13

y
1w

≤
0.

03
C

as
e

W
5

0.
0

0.
0

1.
0

y
1w

>
0.

06
y

1w
≤

0.
01

6

y
3w

≥
16

00
.0

m
y

3w
<

40
0.

0
m

C
as

e
W

6
0.

8
0.

1
0.

1

y
3w

≥
80

0.
0

m
y

3w
<

20
0.

0
m

C
as

e
W

7
0.

6
0.

3
0.

1
C

as
e

W
8

0.
6

0.
1

0.
3

C
as

e
W

9
0.

3
0.

3
0.

3
C

as
e

W
10

1.
0

0.
0

0.
0

15
.0

30
.0

5.
0

y
2w

≤
6.

0
m

y
2w

>
24

.0
m

C
as

e
W

11
0.

0
1.

0
0.

0
C

as
e

W
12

0.
0

0.
0

1.
0

C
as

e
W

13
1.

0
0.

0
0.

0
15

0.
0

40
0.

0
10

.0
y

2w
≤

80
.0

m
y

2w
>

32
0.

0
m

C
as

e
W

14
0.

0
1.

0
0.

0
C

as
e

W
15

0.
0

0.
0

1.
0



70 4 Estimating the BEV Charging Demand in Urban Areas

This can be explained as follows: for case W5, an LOR attractiveness Aw of 5 indicates that
the distance of all buildings with employees to the nearest transportation stop is at least
1600 m. In Berlin, however, the public transport network is very well developed. Therefore,
LORs in which all, or most, buildings meet these requirements are rare.

As observed for the district rating for shopping trips, the comparison of cases W6, W7,
W8 and W9 shows that an increased weighting of the criterion y1w leads to a decreasing
car-access attractiveness of the LORs, which is in accordance with the previous findings. In
addition, the comparison of case W7 and case W8 shows that the influence of criteria y2w

and y3w on the attractiveness of LORs is similar if the car-access attractiveness is determined
using all three criteria.

In Figure 4.27, the spatial distribution of the car-access attractiveness Aw of the Berlin
LORs is shown for case W6 and is compared to the number of employees in the LORs. The
parameter combination of case W6 is chosen because it results in medium attractiveness
values for the entire city of Berlin (as shown in Figure 4.26b). By comparing Figure 4.27a,b,
it can be observed that LORs with a high quantity of employees are mostly located in
the city centre area and do not match LORs with a high number of parking spaces per
employee, which are mostly located in the outer areas of the city. The reasons for this and the
implications of the results have already been discussed in the analogous study for shopping
trips (see Figure 4.24).

(a) Case W6. (b) Number of Employees.

Figure 4.27: Attractiveness-based district rating for working trips (case W6) and number of employ-
ees in the Berlin LORs.

4.2.3.2.2 Results on LOR Level for Working Trips
For case W6, the results of the parking situation analysis and the attractiveness-based
building rating are shown for the LORs ”Karl-August-Platz” and ”Germania Straße” in
Figure 4.28. Buildings displayed in grey do not contain any employees. Buildings displayed
in white have an attraction-factor xw of 0, which means that no parking space has been
assigned to these buildings. Since the main weighting of the car-access attractiveness Aw

is on the number of parking spots per employee (weighting-coefficient w1w = 0.8), the
buildings that have been assigned many parking spots receive a high attraction-factor. The
average car-access attractiveness Aw of the LOR “Karl-August-Platz” is 1.263. The average
car-access attractiveness of the LOR “Germania Straße” is 2.057. The low value in the
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LOR “Karl-August-Platz” is due to the high percentage of buildings that have not been
assigned a parking space and therefore receive an attraction-factor of 0. Additionally, in
the LOR “Karl-August-Platz”, most parking spaces are customer and public parking spaces.
In contrast, there are many employee parking spaces in the LOR “Germania Straße”. As
a result, many buildings, especially in the south of the LOR, have a high attraction factor,
resulting in a higher attractiveness Aw of the LOR.

4.2.3.3 Discussion

After presenting the results of the attractiveness-based district rating and the method for
determining it, a couple of aspects concerning the proposed approach should be discussed.

• The proposed method should be validated by extensive surveys of motorists about
their location choice behaviour. From the parameter combinations presented in
Sections 4.2.3.1 and 4.2.3.2 for calculating the attractiveness-based district rating,
the combination that most accurately describes reality can then be selected.

• The proposed computation of the building’s attraction-factors xs and xw is based on
the combination of three different criteria, each of which should be understood as the
initial point for further improvements. Due to the weighted sum approach, additional
criteria can be easily added in order to further refine the results.

1. It is conceivable to investigate the accessibility of the building by determining
the distance of the building to a main road using the OpenRouteService Distance
Matrix API [159].

2. Since OSM is a community project, geographic data are collected on a voluntary
basis. Therefore, not every parking space is labelled as such in the data set.
Unlabelled parking spaces are mainly located on the roadside. Based on a district’s
land area, road network, building density and degree of motorisation, it is possible
to estimate the number of unmarked roadside parking spaces available for shopping
and work activities. The density of the buildings can be derived from the results of
the building usage analysis (Section 4.2.2.1). The road network can be extracted
from the OSM data set. For Berlin, the degree of motorisation is given in [93].

3. In order to evaluate the car-access attractiveness of the work locations, we consider,
among other criteria, the accessibility of the locations by public transportation. The
results can be further improved by considering pedestrian and bicycle accessibility.
This accessibility could be evaluated, for example, by infrastructure per capita, as
shown in [160].

• As described in Figure 4.16, the vehicle-based mobility profiles and the attractiveness-
based district rating can be combined with an appropriate routing algorithm to deter-
mine BEV routes. To avoid assigning too many BEVs to certain districts during the
routing process, each district must be assigned a maximum intake capacity for each
activity. One solution is to use the total number of customer or employee parking spots
per district as an upper limit.
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(a) “Karl-August-Platz” LOR.

(b) “Germania Straße” LOR.

Figure 4.28: Attractiveness-based building rating for working trips for two Berlin LORs. Case W6.
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4.2.4 Conclusions and Outlook

The increasing number of battery electric vehicles (BEVs) and their demand for electrical
power can lead to bottlenecks in the electrical grid infrastructure if it is not strengthened [20],
[21]. In order to locate those bottlenecks, the spatial distribution of the energy demand of
BEVs needs to be known. For this purpose, travel schedules of individuals can be combined
with an attractiveness rating of districts within an e-mobility traffic simulation to estimate
traffic flows. Typically, attractiveness is represented by the “size” of locations (e.g., number of
employees or sales area), assuming that larger places attract more persons than smaller ones
[128], [129], [131]. Whereas this assumption can be applied when all modes of transportation
are considered, it cannot be applied if cars are the only mode of transport under consideration,
since the availability of parking spaces is neglected. Due to this neglect, department stores
with a high amount of sales area and companies with many employees, for example, are
classified as very attractive, regardless of whether sufficient parking infrastructure is available.
Since the evaluation of car-access attractiveness of locations has not been addressed so far in
the literature, this research gap is filled by this paper.

The car-access attractiveness of a district regarding shopping and working trips is determined
in each case in a two-step process. First, we determine the car-access attractiveness of the
individual buildings in the district by applying the weighted sum model and then aggregate
the results on the district level. For shopping trips, the car-access attractiveness of a building
is based on three criteria: the amount of parking spots per sales area of the building, the
distance of the parking spaces to the building and whether there are fees for the usage
of the parking spaces. For working trips, the car-access attractiveness is computed by
considering the number of parking spots per employee of the building, the distance of the
parking spaces to the building and the average distance of the building to the nearest public
transportation stop. We have demonstrated the approach for the urban area of Berlin and
its 448 sub-districts called LORs. Since the method is based on open geodata and freely
available data sets, our approach is traceable and reproducible. The data sets we used to
develop our method are available in a similar or identical form in many rural and urban
regions in Germany. Therefore, an upscaling of our model is feasible. For Berlin, we show
that LORs with a great amount of sales area or employees are mostly located in the city
centre. Those LORs would obtain high attractiveness under the assumption that larger
places are more attractive. However, this contradicts the fact that in Berlin, more parking
spaces are available in the outer districts since the building density there is lower. In contrast,
we showed that LORs with a high attractiveness according to our evaluation method are
mostly located in the outer areas of the city, which matches the parking situation.

Our model provides an important building block for the complete evaluation of power demand
due to the massive electrification of private urban mobility expected in upcoming years.
Nevertheless, the validity of the model should be investigated in detail by surveying car
drivers on their location choice behaviour in the near future.

4.2.5 Author Contributions

Florian Straub: Conceptualization, Supervision, Writing - Original Draft. Florian
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4.2.6 Appendix A. Sales Area in the Berlin Districts and Buildings
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Forecasting the Spatial and Temporal Charging Demand of Fully
Electrified Urban Private Car Transportation based on Large-Scale

Traffic Simulation
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(This article has been published on 23 October 2022 by Elsevier in “Green Energy and Intelligent
Transportation”, available online: https://doi.org/10.1016/j.geits.2022.100039)

Abstract: To support power grid operators to detect and evaluate potential power grid
congestions due to the electrification of urban private cars, accurate models are needed to
determine the charging energy and power demand of battery electric vehicles (BEVs) with
high spatial and temporal resolution. Typically, e-mobility traffic simulations are used for
this purpose. In particular, activity-based mobility models are used because they individually
model the activity and travel patterns of each person in the considered geographical area. In
addition to inaccuracies in determining the spatial distribution of BEV charging demand,
one main limitation of the activity-based models proposed in the literature is that they
rely on data describing traffic flow in the considered area. However, these data are not
available for most places in the world. Therefore, this paper proposes a novel approach to
develop an activity-based model that overcomes the spatial limitations and does not require
traffic flow data as an input parameter. Instead, a route assignment procedure assigns a
destination to each BEV trip based on the evaluation of all possible destinations. The basis
of this evaluation is the travel distance and speed between the origin of the trip and the
destination, as well as the car-access attractiveness and the availability of parking spots at
the destinations.

The applicability of this model is demonstrated for the urban area of Berlin, Germany, and
its 448 sub-districts. For each district in Berlin, both the required daily BEV charging energy
demand and the power demand are determined. In addition, the load shifting potential is
investigated for an exemplary district. The results show that peak power demand can be
reduced by up to 31.7% in comparison to uncontrolled charging.

Keywords: electric vehicle; activity-based simulation; transportation electrification; spatial
temporal distribution of charging demand; open data

https://doi.org/10.1016/j.geits.2022.100039
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4.3.1 Introduction

Man-made climate change can be slowed down if greenhouse gas emissions are reduced
quickly and drastically. The signatories to the 2015 Paris Climate Agreement have therefore
committed to reducing their greenhouse gas emissions to such an extent that the man-
made temperature increase is limited to below 2 °C [1]. A key driver of this decline is the
decarbonization of the transport sector. The European Union, for example, has agreed on
an emission limit of 95 g CO2/km for passenger cars registered in 2021 [11]. As a result,
private passenger cars with internal combustion engines (hereinafter referred to as internal
combustion engine vehicles (ICEVs)) are being replaced by passenger cars with alternative
drive systems, primarily battery electric passenger cars (hereinafter referred to as battery
electric vehicles (BEVs)). Without reinforcement of the electric grid infrastructure, the
resulting additional demand for electrical energy and power may cause congestion in the
power supply [20], [21]. To enable electric grid operators to identify possible congestions
in the grid, accurate models are needed that predict the spatial and temporal energy and
power demand resulting from the electrification of private ICEVs. Typically, e-mobility traffic
simulations are used for this purpose:

The authors of [24] develop a traffic simulation to forecast the spatial and temporal distribution
of the charging energy demand of an urban area. In their method, they first divide the
area into different functional areas (e.g., residential, work, shopping and entertainment)
and assign a certain number of BEVs to each functional area. Using the known geographic
origin of each BEV trip, the destinations are randomly selected. Based on the geographic
location of the destinations, arrival and departure times, and travel distances, the spatial
and temporal distribution of BEV charging demand is determined. However, this spatial
distribution is highly inaccurate due to the random selection of destinations. Each functional
area is different from the others (e.g., number of employees or number of available parking
spaces) and therefore has a different probability of attracting trips which is not considered.

In [72], the authors simulate the spatial and temporal distribution of charging energy demand
for an artificial city consisting of a city center, suburban areas, and connecting highways.
All simulated individuals and their vehicles make a round trip that begins in a suburb
and then travels to a randomly selected location in the city center and back. At each
stop, the individuals decide whether to charge their vehicles, depending on their current
state of charge (SOC). Based on the resulting charging demand of the vehicles at the
different locations, the charging times are determined, which allows the spatial and temporal
distribution of the charging demand to be determined. Due to the assumption that all
vehicles make two trips per day and travel to a random location in the city, both the spatial
and temporal distribution of charging demand are highly inaccurate.

For 11 districts in the city of Reykjavík, Iceland, the authors of [73] use a traffic simulation
to determine the spatial and temporal distribution of BEV energy demand. The authors do
not divide Reykjavík into 11 districts themselves, but use an existing classification created
by official bodies. To determine the energy demand per district, the daily distances of the
combustion engine vehicles and the arrival times of the vehicles at the places of residence
are first extracted from a travel survey (travel surveys are obtained by surveying households
in a geographic area about their activities and trips on reference days). The conventional
cars are then replaced by a reference BEV with 60 kWh battery capacity and an average
energy consumption of 0.2 kWh/km. All vehicles are assumed to be charged at home at the
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end of the day, as this charging scenario is expected to have the largest impact on the power
grid. Since only arrival times at residences and the geographic locations of the residences
are determined, the method can only determine the spatial and temporal distribution of
charging demand, assuming that charging occurs exclusively at the residences. This does not
reflect reality.

Another approach for forecasting the spatial and temporal BEV charging demand distribution
is to use an activity-based mobility model [75]–[78], [164].
Activity-based models are particularly well suited for simulating the energy and power
demand of BEVs because they capture the relationship between activities and mobility
patterns, which can be used to determine the parking times of vehicles at different locations
[84]. Energy and power demand can then be estimated by applying charging scenarios. In
activity-based mobility models, individual full-day travel schedules are generated for each
person in the considered area. The assumption for this generation is that a person’s activity
and travel patterns depend on the person’s characteristics (e.g. the place of residence, income,
age, household and other social structures).
The travel schedules (also referred to as mobility profiles) consist of a sequence of activities
at different locations and trips between these activities. They are usually generated based on
a detailed travel survey [75], [77], [78], [164]. Travel surveys are conducted by interviewing
households in a geographic area about their activities and trips on reference days, which
allows the determination of the daily travel patterns of the population in the studied area.

In Figure 4.29 an example of a mobility profile of a person is depicted. The person starts
with its car at its “Home” location and goes shopping and works during the day, before
arriving back home at 17:15. The daily distance covered is 45 km in total.

Home Shopping
6 km

Car
Work

18 km

Car
Home

21 km

Car
07:20 07:30 08:50 09:10 16:50 17:15

1 h 20 min 7 h 40 min

Figure 4.29: Example of a general mobility profile.

An activity-based model is used by the authors of [77] to determine the spatial and temporal
BEV charging demand of electric cars in the Flemish region, Belgium. The basis of the
determination is the number of vehicles in each district in the region, which are replaced by
electric reference vehicles of three different vehicle size classes. The authors do not divide the
Flemish region into districts themselves, but use an existing classification created by official
bodies. For each vehicle, a mobility profile is generated using a detailed travel survey. Based
on the average consumption of the reference BEVs, the arrival and departure times, and
the travel distances of the BEVs, the spatial and temporal distribution of charging demand
is determined. However, this spatial distribution is inaccurate because it is assumed that
the proportions of the three vehicle size classes are the same in all districts. In general,
larger and heavier vehicles have higher energy consumption than smaller and lighter vehicles.
Thus, if the individual distribution of vehicle size classes in the districts is not taken into
account, the charging demand will be underestimated in districts with many large vehicles
and overestimated in districts with many small vehicles.
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The authors of [78] determine the spatial and temporal BEV charging demand for Singapore
using an activity-based model. They first determine the number of current internal combustion
engine cars in each district, which are then replaced with electric reference vehicles. The
authors do not divide Singapore into districts themselves, but use an existing classification
created by official bodies. A mobility profile is created for each vehicle based on a detailed
travel survey. These mobility profiles and a vehicle dynamics model are used to determine
the temporal and spatial distribution of BEV charging demand in Singapore and its districts.
Similar to the method developed in [77], the proportions of vehicle size classes are assumed
to be the same in all districts. Therefore, the spatial distribution of charging demand is
inaccurate, as previously justified (see study [77]).

For the Seattle metropolitan area, USA, the authors of [76] use an activity-based model to
investigate how the current ICEV driving behavior of the population can be electrified. The
current driving behavior of the population is derived from extensive GPS measurements in
conventional vehicles. A mobility profile is created from this data for each vehicle in the area
under consideration. The conventional vehicles are then replaced by a reference BEV with
an average consumption of 0.186 kWh/km and a range of 161 km (100 miles). Based on the
BEV consumption and mobility profiles of the BEVs, the temporal and spatial distribution
of the charging demand can be determined. However, since only one reference vehicle is used,
the determined spatial distribution is inaccurate. In general, larger and heavier vehicles have
higher energy consumption than smaller and lighter vehicles. If vehicle size is not taken into
account, the charging demand will be underestimated in districts with many large vehicles
and overestimated in districts with many small vehicles.

This paper makes two important contributions to the literature. As shown, the studies
proposed in the literature have limitations that lead, in particular, to inaccuracies in the
identified spatial distribution of BEV charging demand. Therefore, this paper develops an
activity-based mobility model that overcomes these spatial limitations.
In activity-based models, a person’s destination choice is usually determined based on traffic
flow data between subareas of the area under consideration. These traffic flow data can be
obtained from extensive GPS measurements, as in reference [76], but are usually derived from
detailed travel surveys. However, to derive traffic flows, the input data must be available
at an extremely high level of detail. These detailed datasets are usually not available for
most regions of the world because they are very expensive to generate. To address this
problem, in this paper we develop an activity-based mobility model that does not rely on
traffic flow data. In contrast, we propose a model based on open data, which ensures its
traceability, reproducibility, and transferability. The developed model is applied to forecast
the spatial and temporal distribution of charging energy and power demand resulting from
the complete electrification of private ICEVs in an urban area. The use case of this paper is
Berlin, Germany, with a total number of 1,045,000 [97] private passenger cars.

The developed model consists of three main parts which are discussed in Section 4.3.2. Two of
these three parts have already been presented in previous articles [27], [28]. In this paper, we
present the development of the third part in Section 4.3.3, thereby completing the model and
enabling the determination of the spatial and temporal charging energy and power demand.
The charging scenarios investigated are discussed in Section 4.3.4. The results are presented
and analysed in Section 4.3.5. Finally, the main conclusions of this paper are presented in
Section 4.3.6.
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4.3.2 Three-step Model for Estimating the Charging Demand of BEVs using
Open Data

The three-step model for estimating the spatial and temporal distribution of BEV charging
demand is depicted in Figure 4.30. The model is applied to the urban area of Berlin, Ger-
many, and its 448 sub-districts, which are referred to as ”Lebensweltlich orientierte Räume“
(Eng.: neighbourhood-oriented districts, abbr.: LORs). The LOR classification is an official
classification of the Berlin administration. Within each LOR, the structure of the included
buildings and the socio-economic status of the inhabitants are similar. The LORs are usually
separated from each other by major roads, rivers or rails [98], [133].
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Figure 4.30: Three-step model for estimating the spatial and temporal energy and power demand
from the electrification of private ICEVs.
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The first part of the model was developed in [27] and is summarized below.
In [27], the current conventional vehicle fleet in the districts (in total, 1,045,000 private cars
in Berlin [97]) is first completely electrified. For electrification, data on motorization levels
and population density are used to determine the spatial distribution of the vehicles in the
considered area. The spatial distribution of household income is then used to determine the
spatial distribution of vehicle size classes in the districts. This yields the number and size of
vehicles for each district, which are then replaced with reference electric vehicles.
For the replacement of the current ICEV fleet 12 electric passenger cars are used which
are depicted in Table 4.16. For each reference vehicle, Table 4.16 also specifies its energy
consumption per 100 km and its battery capacity. The average consumption is divided into
inner-city trips, characterised by distances of less than 20 km and outer-city trips. The values
of the energy consumption and battery capacity are based on test drives of the “Allgemeine
Deutsche Automobil Club” (ADAC), a German motoring association, and already include
charging losses [100].

Subsequently, a travel survey is used to determine vehicle-based mobility profiles. Vehicle-
based mobility profiles are generated (instead of person-based ones) because they realistically
represent multiple uses of the same vehicle by multiple people (e.g. families). The survey
data is limited. While it is possible to determine the driving behaviour of the population
from this data, it is not possible to derive activity- and time-dependent traffic flows between
districts. Therefore, the vehicle-based mobility profiles generated do not contain information
about the geographic location where the vehicle is parked while the BEV user is performing
an activity. Unlike travel surveys, from which traffic flows can be derived, these limited travel
surveys are widely available. Figure 4.31 shows example vehicle-based mobility profiles for
the 1,045,000 private BEVs in Berlin. It can be seen that some vehicles are not driving on
the simulated day and each vehicle is assigned an individual route.

Based on these preliminary mobility profiles, the spatial and temporal distribution of charging
energy and power demand in Berlin is determined. However, there is one major limitation to
the results. Since the locations of the activities are not known, the charging demand can
only be determined for the assumption that charging occurs exclusively at the residences of
BEV owners.
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Figure 4.31: Vehicle-based mobility profiles of the population under consideration.
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To overcome this limitation, the geographic location where the vehicle is parked while the
BEV user is performing an activity needs to be determined. An important input variable in
this determination is the car-access attractiveness of the districts. The determination of the
car-access attractiveness is the second part of the model. It was developed in [28] and applied
to the 448 LORs of Berlin. The car-access attractiveness is a measure of how attractive
buildings and districts are to drive to by car for a particular activity. A high attractiveness
indicates that a location is highly likely to be accessed by car, while a low attractiveness
means that the location is more likely to be accessed by another mode of transportation.
The car-access attractiveness is determined based on the number of available parking spots
in the districts, the distance of the buildings in the district from the parking spots, and their
distance to public transportation.

The last part of the model combines the results of Parts I and II and corresponds to the scope
of this paper. A route assignment method is developed that is used to assign an appropriate
route to each BEV to determine the unknown geographic destinations of BEV trips (in the
following, a BEV’s route is referred to as the sequence of the BEV’s locations, not the route
the vehicle chooses on the road to get from an origin to a destination). This allows the
determination of the spatial and temporal distribution of charging energy demand of an
urban region, taking into account charging for all activities.
The basis of this route assignment method is a destination choice model. In destination choice
models, the most plausible destination among all possible destinations is selected for each
BEV trip based on predefined criteria. The most common criteria are the attractiveness of
the destination and the distance between origin and destination, which are usually combined
in a gravity model [129]–[131], [165], [166]. The basic principle of the gravity model is
the assumption that a traffic cell behaves like a gravitational point, i.e. the more mass
(attractiveness) a cell has (e.g. number of employees or sales area), the higher its gravitational
pull. As the distance increases, the cell’s gravitational pull decreases [66]. Analogous to the
gravity model, we also use the distance between origin and destination and the attractiveness
of the destination for the destination choice model of this paper.

However, we do not use the number of employees or the sales area to describe the attractiveness
of a district, but the car-access attractiveness developed in Part II. This is because the
availability of parking spots is neglected. This neglect means that, for example, shopping
centers with a large sales area and companies with many employees are considered very
attractive, regardless of whether sufficient parking infrastructure is available. However, it is
obvious that it is not possible to park at a location where there is no parking infrastructure.
Additionally, to these two criteria, the travel speed between origin and destination is considered
as a criterion, as it has a strong influence on the choice of the destination itself [166]–[169].
As fourth criterion the time-dependent availability of parking spots in the districts is
considered. This is necessary to prevent individual districts with high car-access attractiveness
from being allocated all vehicles.

We apply the route assignment method to the mobility profiles generated for BEVs in the
urban area of Berlin, Germany, and its 448 sub-districts (LORs) in Part I. These mobility
profiles show that in Berlin 41.5% of the trips lead to the BEV owner’s residence (18.3 hours
average parking time), 17.7% to work locations (7.5 hours average parking time) and 8.3%
to shopping locations (50 minutes average parking time). Other activities such as leisure
activities, visits to the doctor etc., each account for less than 2% of the trips [27], [91].
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From these findings, we conclude that the home, workplace, and shopping locations are where
most charging events will occur in the future. Therefore, the locations of shopping and work
activities are determined in this paper. However, the method is designed to be extensible so
that additional activities can be easily integrated.

Since Berlin cannot be considered a closed unit, commuters must be taken into account. The
total number of commuters in and outbound is derived from [143], [145], [146]. Vehicle-based
mobility profiles are created for inbound commuters analogous to the procedure described in
[27] for Berlin; the driving behaviour of inbound commuters is described in [89], [90], [113],
[146], [170].
Based on the routing results, the spatial and temporal distribution of BEV charging energy
and power demand is determined for four different charging scenarios. The results are then
used to investigate the load shifting potential in an exemplary LOR.

4.3.3 Methodology

The goal of the route assignment method is to determine the most likely destination for each
vehicle trip. To achieve this goal, all possible destinations must be evaluated and compared.
In this paper, the evaluation of each destination is based on four criteria according to the
weighted sum model, which is commonly used for multicriteria decision analysis [151]. The
basic concept behind the weighted sum model is the additive utility assumption. If all criteria
are measurable with the same unit, the best alternative is the one with the largest cumulative
value R [151], [152]. The value R of each alternative j can be computed as

Rj =
n∑︂

i=1

ki · wi for j = 1, 2, . . . , m (4.13)

where n is the number of criteria, ki is the value for the criterion i and wi is the individual
weighting-coefficient of the criterion i. In general, the higher the value of wi, the more
important the criterion. Typically, the weighting-coefficients are normalized so that their
sum is one [151].

As explained in the previous section, the four selected criteria for rating a destination are the
distance and travel speed between districts, as well as the car-access attractiveness and the
availability of parking spots in the districts. Since these criteria do not have the same unit, a
dimensionless rating value k is used for each criterion, ranging from 1 to 10. The derivation
of the rating values of the criteria is explained in detail in Section 4.3.3.1 – Section 4.3.3.4.
Section 4.3.3.5 then presents the route assignment method. The methodological approach is
applied to Berlin and its 448 sub-districts (LORs), in the following sections.

4.3.3.1 Criterion 1: Travel Distance

The mobility profiles of the BEVs are the basis for route assignment. As shown in Figure
4.31, they consist of a sequence of activities at different locations and trips between these
activities. For each trip, the travel distance is known. Since the origin district of each
trip is also known (as explained in Section 4.3.3.5), all possible destination districts can be
determined and rated based on the distance travelled. For this evaluation, we determine the
frequency distribution of travel distances for each origin-destination LOR combination (448
LORs yield 200,704 combinations).
The basis for this determination is a self-generated dataset containing 50 randomly distributed
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coordinates on roads in the LOR for each LOR (highways, forest roads, etc. are excluded).
This dataset is used to calculate the travel distances between the 50 origin coordinates and
the 50 destination coordinates for each O-D LOR combination. Thus, a total of 2500 travel
distances are determined for each combination. The calculation of the driving distance
between two coordinates is done via the freely usable OpenRouteService Time-Distance
Matrix API [159].

The 2500 values of each combination form the basis for the evaluation of the travel distances.
We assume that the probability of traveling to a destination LOR decreases as the deviation
between the travel distance and the median of the 2500 values increases. The median is used
instead of the average because it is more robust to outliers.
In order to convert the 2500 values into a dimensionless rating, they are sorted in ascending
order and divided into 20 equal-sized data bins, i.e. 125 values are assigned to each bin.
Similar to [171], [172], each bin is then assigned a rating value kd between 1 and 10. A rating
value kd = 10 means that it is very likely to travel from the known origin to the destination
LOR, and correspondingly very unlikely for kd = 1.

The assignment of rating values to bins is exemplified for one origin LOR and three possible
destination LORs in Figure 4.32. The location of the origin LOR and the destination LORs
in Berlin is shown in Figure 4.32a. In Figure 4.32b, the division of the calculated driving
distances into the 20 bins and the rating value assigned to them is shown.
It can be seen that the further the driving distances are from the distance median, the lower
the rating value obtained. For an example travel distance of 9.5 km, it can be determined
which of the three destination LORs is the most likely destination (when starting from the
origin LOR). It can be seen that destination LOR 1 is not a possible destination, because it
cannot be reached from the origin LOR with a travel distance of 9.5 km. The distance median
of O-D LOR combination 2 is 8.3 km which is close to 9.5 km. Therefore, the destination
LOR 2 receives a medium rating value kd of 6. For O-D LOR combination 3 the distance
median is 13 km. Accordingly, at a distance of 9.5 km, destination LOR 3 receives a low
rating value kd of 2. Therefore, it is more likely to travel to destination LOR 2 than to
destination LOR 3, considering the travel distance criterion.

4.3.3.2 Criterion 2: Travel Speed

The travel speed between an origin and a destination is a key criterion in destination choice
models [166]–[169]. The basic assumption is that the higher the travel speed between an
origin and a destination, the more likely it is to travel to the destination.
Although it would be possible to describe the travel speed for each O-D LOR combination
with a mean value, we use frequency distributions to achieve greater accuracy. The basis
of these frequency distributions are the 2500 travel distances computed for each O-D LOR
combination in Section 4.3.3.1. Using the OpenRouteService Time-Distance Matrix API, it
is possible to calculate the associated travel time and thus travel speed for each of the travel
distances.

For two origin-destination LOR combinations, the 2500 data tuples obtained are shown as a
scatter plot in Figure 4.33a. In particular, for the origin-destination LOR combination 2, it
can be seen that higher travel distances lead to higher travel speeds. This is due to the fact
that increasing travel distance increases the likelihood of using major roads or highways that
allow higher travel speeds.
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Origin LOR
Destination LOR 1
Destination LOR 2
Destination LOR 3

(a) Location of the origin LOR and the three destination LORs in Berlin.
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Figure 4.32: Travel distance criterion.

To reflect this correlation, the evaluation of travel speed between origin and destination must
be based on travel distance.
Since different travel speeds occur for the same distance, the average speed of each of the
20 travel distance ranges identified in Section 4.3.3.1 is determined for each O-D LOR
combination. This average speed is shown as solid green line in Figure 4.33a.
For the 9.5 km travel distance used as an example in Section 4.3.3.1, the average travel speed
for the O-D LOR combination 2 is 28 km/h, as can be seen in Figure 4.33a. To derive a
dimensionless rating value for this travel speed, it is compared to the distribution of travel
speeds for all of Berlin. To derive this Berlin distribution, the 2500 calculated travel speeds
for all origin-destination-LOR combinations are first combined into one dataset and sorted
in ascending order. Then, the values are divided into 10 equal-sized data bins, i.e. 10% of
the values are assigned to each bin. Similar to [171], [172], a dimensionless rating value ks is
then assigned to each bin. As shown in Figure 4.33b, the 10% lowest speeds in Berlin are
assigned a rating value ks of 1 and the 10% highest are assigned a rating value of 10. This
classification means that the higher the travel speed between an origin and a destination,
the more likely it is to travel to the destination.
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In Figure 4.33b it can be seen that 28 km/h is a rather low speed in Berlin. This results in a
low rating value ks of 2. Therefore, it is unlikely to travel from the origin LOR to destination
LOR 2, considering the travel speed criterion.

6 8 10 12 14
Travel distance (km)

20

22

24

26

28

30

32

34

Tr
av

el
 sp

ee
d 

(k
m

  
h

1 )

O-D LOR
combination 1
O-D LOR
combination 2
Average
travel speed
Travel distance
(9.5 km)

(a)

1 2 3 4 5 6 7 8 9 10
Rating value ks

20

25

30

35

40

45

Tr
av

el
 sp

ee
d 

(k
m

  
h

1 )

Travel speed bins
Exemplary travel
speed (26 km  h 1)

(b)

Figure 4.33: Travel speed criterion. (a) Correlation between travel distance and travel speed for 2
origin-destination LOR combinations. (b) Division of the calculated travel speeds in
Berlin into 10 bins and corresponding rating value ks.

4.3.3.3 Criterion 3: Car-access Attractiveness

The attractiveness of locations is another key factor in destination choice models [129]–[131].
The higher the attractiveness of a location, the higher is the probability for trips to that
location. In this paper we use an attractiveness description of locations, specifically developed
for access by car. This car-access attractiveness provides information on how attractive it
is to drive to a particular LOR to perform a particular activity. The determination of the
car-access attractiveness of Berlin’s LORs is described in detail in [28].

In [28] car-access attractiveness is first determined for shopping and work trips at the building
level, and the results are then aggregated at the LOR level. For shopping trips, the car-access
attractiveness is based on three criteria: the number of customer parking spots per sales
area of the building, the distance of the parking spaces to the building, and whether there
is a charge for using the parking spaces. For work trips, the car-access attractiveness is
determined based on the number of employee parking spots per employee of the building,
the distance of the parking spaces to the building, and the average distance of the building
to the nearest public transportation stop.

Car-access attractiveness is described in [28] with a dimensionless value between 1-5, where
a value of 5 indicates high attractiveness. In this paper, the scale is adjusted to the other
rating values by multiplying by 2. The result is a rating value ka between 1 and 10 for each
LOR, which describes its car-access attractiveness.

4.3.3.4 Criterion 4: Availability of Parking Spots

A rating value kc is determined to evaluate the parking availability in the LORs. Its values
vary from 1 (if less than 10% of parking spots are available) to 10 (if at least 90% of the
parking spots are available). The total number of customer and employee parking spots
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per LOR, available for shopping or work activities, is determined along with car-access
attractiveness in [28] using OpenStreetMap geodata.
In [28], roadside parking spots that are not labelled in the OpenStreetMap dataset are not
considered. To determine the additional number of roadside parking spots available for
shopping and work trips, we first determine the total number of roadside parking spots for
each LOR, analogous to the method described in [173].
Then, roadside parking spots that are permanently occupied by commercial or private vehicles
are excluded. In the city of Berlin, 40% of the population has access to private parking (e.g.
garages), while the remaining 60% park their cars on roadside parking spots when they are
at home [90]. 63% of commercial vehicles are parked at roadside parking spots [90]. As a
result, especially in densely populated LORs, many roadside parking spots are occupied at
night and in the morning and become vacant when vehicles leave. Consistent with [28] we
assume that 50% of vacant roadside parking spots can be used for activities that are not
considered in this paper, such as leisure activities or doctor visits. The remaining 50% are
equally usable for work and shopping activities.

4.3.3.5 Route Assignment Method

The input data for the route assignment method are the mobility profiles of the Berlin
vehicles and the inbound commuter vehicles. While the home locations of the vehicles (i.e.,
the residences of the vehicle owners) are known, the locations where the other activities are
performed are unknown. Therefore, the goal of the route assignment method is to determine
the most likely destination LOR for each vehicle trip.
The route assignment method distinguishes between two different types of mobility profiles,
depending on whether the first trip starts at the residence of the BEV’s owner. For those
BEVs whose first trip begins at home, an iterative process is performed, as shown in Figure
4.34. For BEVs that do not start at home, the route assignment is described at the end of
this section.

In Step (1), all possible routes are determined for each vehicle. The determination is based on
the individual travel distances of the trips and the minimum and maximum travel distances
of the O-D LOR combinations (determined in Section 4.3.3.1).
The selection of the most plausible route is time-driven, i.e., routes are determined trip by
trip rather than vehicle by vehicle. This means that destinations are assigned chronologically
based on the starting time of each trip for each vehicle. This approach allows considering
the availability of parking spots as a time-dependent parameter.

When the first trip of a vehicle starts and is to be assigned to a destination LOR, it is first
checked for each possible destination whether its maximum BEV intake capacity has already
been reached. The maximum intake capacity of a LOR for work activities is 85% of its
number of employees. The number of employees per LOR was derived in [28]. 85% is derived
from the ratio of full-time and part-time employees according to [174], [175].
The maximum BEV intake capacity per LOR for shopping activities is 10% of its sales area.
This number is derived from [28], where it was shown that the average Berlin supermarket
provides one parking spot per 10 m2 of sales area.
The LORs to which a vehicle can be assigned are then rated according to Equation 4.14 in
step (2). For shopping and work trips, the evaluation of the single destination LOR RLOR is
based on the four criteria introduced in Section 4.3.3.1 – Section 4.3.3.4.
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Figure 4.34: Route assignment method.

As we explained in Section 4.3.2, this paper analyzes the spatial and temporal BEV charging
energy demand considering home and workplace charging, as well as opportunity charging at
shopping locations. For all other activities, vehicle charging is not considered. Therefore, a
reduced version of Equation 4.14 is used to rate a destination LOR for “other” activities.
However, this reduced version still ensures that a plausible destination LOR is determined
for the trip.

Work or shopping trips: RLOR = kd · wd + ks · ws + ka · wa + kc · wc

with
∑︂

(wd, ws, wa, wc) = 1

Home or other trips: RLOR = kd · wd + ks · ws

with
∑︂

(wd, ws) = 1

(4.14)
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Following the rating of all possible destination LORs for the first trip, the route assignment
procedure continues depending on whether another trip takes place. If no further trip takes
place, the destination LOR with the highest rating according to Equation 4.14 is selected
(Step (5) in Figure 4.34). Since a parking spot in the selected LOR is now occupied, the
criterion “availability of parking spots” for this LOR is updated considering the parking time
of the vehicle (Step (6) in Figure 4.34).

If another trip takes place, it is also considered when determining the destination LOR for the
first trip. The necessity of this consideration is illustrated in Figure 4.35a for two destinations
D1 and D2. It can be seen, that both destinations can be reached with the first trip. The
rating of destination D2, RLOR = 9.2, is significantly higher than the rating of destination
D1, RLOR = 4.4. However, the subsequent possible trips from D2 to destination D4 or D5
are very unlikely, as indicated by the very low ratings RLOR of 1.2 and 1.6, respectively.

Therefore, to avoid selecting a destination for the first trip that is an unsuitable origin for
the second trip, the ratings of the possible second trips are also taken into account. For
this purpose, first their average rating (Step (3)) is calculated as 1.4. Then, in Step (4),
the average rating of the first and second trip RLOR, a is determined according to Equation
4.15.

RLOR, a = RLOR, i + RLOR, i+1

2 (4.15)

In Equation 4.15, RLOR, i is the rating of the destination LOR for trip i, while RLOR, i+1

is the average rating of the destination LORs for subsequent trip i + 1. As can be seen
in Figure 4.35b, the average rating RLOR, a for destination D2 is 5.3. For destination D1,
RLOR, a = 5.7. Consequently, destination D1 is selected as the destination of the first trip.
After this selection, in Step (6), the criterion “availability of parking spots” is updated for
the selected LOR, taking into account the parking time of the car. Since the second trip
does not lead home, the route assignment procedure starts again and the destination of the
second trip is determined.
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Figure 4.35: Route assignment procedure for an example vehicle.
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For vehicles whose starting location of the first trip is unknown, the described route assignment
procedure cannot be performed because it requires a known starting location. Therefore,
the starting location must first be determined. For this purpose, all possible routes of the
vehicle are first determined. This is possible because it is known that the last trip of the
vehicle ends at the home location. If the first trip is to be assigned to a destination LOR,
the possible destination LORs for all possible origin LORs are rated analogously to Step (2).
If the vehicle makes a second trip, the possible destination LORs for the second trip are also
rated (Step (3)). Then, the origin-destination LOR combination with the highest rating is
selected, which means that both the destination LOR and the origin LOR are determined
for the first trip of the vehicle. Since the starting location of the vehicle’s first trip is now
known, the route assignment procedure described in Figure 4.34 can be applied starting from
Step (6).

4.3.4 Investigated Charging Scenarios

In Berlin 41.5% of the trips lead to the BEV owner’s residence (18.3 hours average parking
time), 17.7% to work locations (7.5 hours average parking time) and 8.3% to shopping
locations (50 minutes average parking time). Other activities such as leisure activities, visits
to the doctor etc., each account for less than 2% of the trips [27], [91]. From these findings,
we conclude that the home, workplace, and shopping locations are where most charging
events will occur in the future and which are therefore considered in the charging scenarios.
For these locations four different types of parking spots are considered (see Section 4.3.3.3
and Section 4.3.3.4):

1. Employee parking spots, used for parking while at work;

2. Customer parking spots, used for parking while shopping;

3. Private parking at the residences, used for parking while at home;

4. Roadside parking spots, that can be used for parking while at work and shopping and
by BEV owners who do not have a private parking spot at their residence.

In this paper, four different charging scenarios are investigated. Three base charging scenarios
which are described in Section 4.3.4.1 and one data-driven charging scenario which is described
in Section 4.3.4.2.

4.3.4.1 Base Charging Scenarios

• Home-charging scenario.
The state of charge (SOC) of each BEV is 100% before its first trip. Each BEV starts
charging immediately upon arrival at home and does not end until the vehicle is fully
charged or starts driving again.
As some inbound commuters drive long distances, these vehicles cannot travel their daily
distance without recharging. Therefore, these vehicles are charged at the commuter’s
workplace.

• Work-charging scenario.
The SOC of each BEV is 100% before its first trip. Each BEV starts charging immedi-
ately upon arrival at its place of work and at home and does not end until the vehicle
is fully charged or starts driving again.
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Many vehicles are not used for a trip to work on the simulated day. In order not to
neglect the energy demand of these vehicles and to allow a comparison between the
home-charging and work-charging scenario, the vehicles can also be charged at home.

• Opportunity-charging at shopping locations.
The SOC of each BEV is 100% before its first trip. Charging starts immediately upon
arrival at a shopping location and at home and does not end until the vehicle is fully
charged or starts driving again. As justified above, home charging is required for
comparison with the other scenarios. Analogous to the Home-charging scenario, the
vehicles of commuters who travel long distances are recharged at workplaces.

The maximum available charging power is set to 11 kW for private parking and roadside
parking spots in accordance with [176]. For charging at employee parking spots, the maximum
power is limited to 22 kW in accordance with real world applications [177], [178]. For customer
parking spots, the maximum power is limited to 50 kW which is in accordance with real
world applications as well [179]–[181].
The three charging scenarios presented should be understood as extreme cases. Setting the
SOC to 100% before the first trip is necessary to ensure comparability between the scenarios.
The maximum charging power that BEVs can use is SOC-dependent. BEVs can usually
retrieve the highest charging power at a SOC between 20% and 80%. At a higher SOC, the
usable charging power decreases significantly, resulting in longer charging times.
In Berlin, the average daily distance of private passenger cars is 59.5 km (parked vehicles
excluded) [27]. Consequently, the SOC of the vehicles usually ranges between 80% - 100% if
the above charging scenarios are applied. In order not to massively overestimate the charging
times, we assume for the base charging scenarios that 95% of the maximum charging power
can be retrieved constantly by the BEVs regardless of their SOC. The reduction factor of
95% is taken from [176].

4.3.4.2 Data-driven Charging Scenario

The spatial and temporal distribution of BEV charging demand resulting from the three
base-charging scenarios can be used for extreme value analyses. The actual future charging
behavior and thus the future distribution of BEV charging demand is unknown.
One way to model the future charging behavior is to assume that the future charging behavior
corresponds to the current BEV charging behavior. Since no BEV charging data is available
for Berlin, we use charging data from 41 private BEVs in Beijing, China. The data and its
analysis are described in [182]. For the development of the data-driven charging scenario,
the authors of this paper were provided with the raw data set. The data from Beijing are
used because the driving behavior of the 41 BEVs and the driving behavior of the BEVs
in Berlin are very similar. In Beijing, for example, 80% of vehicle trips are shorter than 21
km, compared to 81.1% of vehicle trips in Berlin. In addition, the average daily distance
of non-parked vehicles is similar. In Berlin, this distance is 53.2 km while it is 49.8 km in
Beijing. Furthermore, in Beijing 85.2% of the total daily distances are below 80 km, while
82.3% are computed for Berlin in [27]. It is important to note that charging behavior depends
not only on driving behavior, but also on the available charging infrastructure (number,
locations, charging power). It is unclear whether the charging infrastructure available to
the 41 BEVs in Beijing is comparable to that in Berlin. To reduce the resulting uncertainty,
charging behavior is not modeled by predetermined statements (e.g., 80% of charging events
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occurs at home with 11 kW), but by two driving behavior-based probability distributions
derived from the dataset. These distributions are depicted in Figure 4.36. Figure 4.36a shows
the relative frequency distribution of SOC at the first trip of the day of Beijing BEVs. The
Beijing dataset reveals, that vehicles that use a greater share of their battery capacity over
the course of a day (i.e., tend to drive longer distances), have a higher SOC before their first
trip of the day. To map this, one distribution is determined for vehicles that use more than
50% of their battery capacity during the day. The other for vehicles that consume less than
50% of their battery capacity during the day. For both cases it can be seen that it is most
likely to start the first trip of the day with a SOC of 100%. Figure 4.36b shows the charging
probability of Beijing BEVs for different rechargeable SOC differences. The rechargeable
SOC difference describes the difference between an initial SOC and an end SOC up to which
charging is possible during parking time. A SOC of 10% before charging and a rechargeable
SOC difference of 60% would for example result in a SOC of 70% after charging. As can
be seen in Figure 4.36b, 78% of BEV users charge their vehicle when the rechargeable SOC
difference is 60%.
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Figure 4.36: Data-driven charging scenario. Charging behaviour of the BEVs, according to Beijing
dataset [182].

Based on these two probability distributions, the data-driven charging scenario is developed,
which is shown schematically in Figure 4.37. It is applied to each BEV individually.
In Step (1) the share of battery capacity used over the course of a day is determined. In Step
(2), depending on this result, the SOC before the first trip is determined using Figure 4.36a.
In Step (3) the energy consumption of the next trip is calculated. If the SOC, determined in
Step (2) is not sufficient to complete the next trip, Step (2) is executed again. If the SOC
is sufficient, it is examined whether charging is possible at the destination of the trip. As
justified in the introduction of this section, this paper only considers charging at home, at
work, and while shopping. If the vehicle travels to another destination, it is not charged. If
the BEV can be charged at the destination, the rechargeable SOC difference is calculated in
Step (4) based on the parking time of the vehicle. Besides the parking time, the rechargeable
SOC difference depends on the available charging power at the charging station and the
charging curve of the BEV. The SOC-dependent charging power of the reference vehicles is
described by charging curves, which are shown in the Appendix (Figure 4.43). The charging
curves were determined by experimental measurement [65], [183]. Consistent with the other
charging scenarios the maximum available charging power is set to 11 kW for private parking
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and roadside parking spots, to 22 kW at employee parking spots and to 50 kW at customer
parking spots.
In Step (5), the rechargeable SOC difference is used to determine whether the vehicle is
recharged according to the probability distribution shown in Figure 4.36b. If the vehicle
makes another trip, Step (3) is executed again.

Start

(1) Calculation of share
of battery capacity
used during the day

(2) Draw SOC at the
first trip of the day
(see Figure 4.36a)

(3) Calculation of
the trip’s energy
consumption.

SOC after
trip > 0

no

Charging
possible at parking
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(4) Calculation of possible
rechargeable SOC delta
during parking time.

yes

(5) Draw
charging probability
(see Figure 4.36b)

Charging
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Another
trip?

End

no

no

yes

Figure 4.37: Data-driven charging scenario. Method for determining the charging behaviour of a
BEV.

4.3.5 Results and Discussion

By applying the route assignment method to all vehicles, a route can be determined for each
BEV. Thus, it is known which districts the BEVs travel to for their trips, as well as the
parking times of the vehicles in the districts. This, in turn, enables the prediction of spatial
and temporal BEV charging demand through the application of charging scenarios.
In this section, this demand is computed for the city of Berlin. For all results presented below,
an identical weighting of the rating criteria is used, i.e. wd = ws = wa = wc = 0.25. In terms
of destination choice, this means that all criteria are considered equally important.

This section is organized as follows: the total BEV charging energy demand for Berlin is
discussed in Section 4.3.5.1. We present the spatial and temporal distribution of the charging
energy demand in the Berlin LORs in Section 4.3.5.2 and Section 4.3.5.3, respectively. These
results are the basis for intelligent load shifting methods. Therefore, in Section 4.3.5.4, we
demonstrate for an example LOR how load shifting can reduce the grid impact of BEVs.
Finally, the results are discussed in Section 4.3.5.5.

4.3.5.1 BEV Charging Energy Demand in Berlin

In Table 4.15, the total BEV charging energy demand for an average working day (Monday-
Thursday) in Berlin is listed for each charging scenario. Energy demand is lowest for the
home charging scenario at 5468 MWh. This is because most inbound commuters do not
charge in Berlin.
In the work-charging scenario, 72.9% of the BEVs’ total energy demand is charged at
residences. This high share compared to workplaces is due to the fact that (i) not all BEVs
travel to work and are therefore still charged at their owner’s residence, and (ii) vehicles that
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charged at work also charge each time they arrive home. The higher total demand compared
to the home charging scenario is due to inbound commuters charging at their workplaces.
Similar results are observed for the opportunity-charging scenario. 90.1% of the total energy
demand is charged at the residences. The higher percentage compared to the work-charging
scenario can be explained by the lower number of vehicles going shopping and by the fact
that shopping stops are usually short and therefore the amount of energy that can be charged
is limited. The higher total energy demand compared to the home-charging scenario is due
to commuters shopping in Berlin.

Table 4.15: BEV charging energy demand results for an average workday in Berlin by charging
scenario.

Charging scenario
BEV energy demand (MWh) at

Residences Places of work Shopping locations Total

Home 5435.1 32.5 - 5467.6

Work 4405.1 1629.7 - 6034.8

Opportunity 5066.6 23.3 530.3 5620.2

Data-driven 3765.9 2044.8 281.8 6092.5

The highest total energy demand results from the data-driven charging scenario. It is found
that the energy demand at the places of work is 25.5% higher compared to the work-charging
scenario. This is due to the fact that vehicles in this scenario do not start their first trip
with a SOC of 100%. Especially for BEVs that only drive to work and back to the owner’s
home and do not perform any other activities, this leads to a high charging demand at the
workplaces. In contrast, the energy demand at shopping locations is 46.9% lower compared
to the opportunity-charging scenario. This is because the amount of energy that can be
charged during the stops is limited due to the short parking times. As a result, many vehicles
do not to charge. In the data-driven charging scenario, 61.8% of the total charging energy
demand is charged at the residences.

4.3.5.2 Spatial Distribution of the Charging Energy Demand

In Figure 4.38 the spatial distribution of the BEV charging energy demand in the Berlin
LORs is shown for the data-driven charging scenario on an average working day. Separate
figures are shown for the total energy demand as well as for the share of total energy demand
charged at residences, workplaces, and shopping locations.

For the spatial distribution of energy demand at workplaces, the demand is relatively similar
in the inner-city and outer-city LORs. This is because there are more employees in the
inner-city LORs than in the outer-city LORs, but a higher proportion of employees in the
outer-city LORs drive to work because of lacking public transportation and good parking
possibilities (see Figure 13 in [28]). The highest energy demand at workplaces can be
observed for the LOR “Motardstraße” in western Berlin. This is due to (i) the high number
of employees, (ii) the high parking ratio per capita and (iii) the proximity to a highway. As
a result, the car-access attractiveness and accessibility of this LOR is very high.
Except for two LORs, the spatial distribution of energy demand at shopping locations in
Berlin is also relatively homogeneous. These exceptions are the LOR “Alexanderplatz” in the
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center of Berlin and the LOR “Alt Tegel” in the northwest. Both districts have a significantly
higher energy demand than the other LORs. The LOR “Alexanderplatz” has the largest sales
area of all LORs. Several parking garages allow parking there. However, the fact that many
vehicles are assigned to it in the routing process is mainly due to its central location and
the very good connection via several federal highways. The LOR can therefore be reached
easily and quickly from anywhere. The high demand in the LOR “Alt Tegel”, on the other
hand, can be explained by the fact that the surrounding LORs have hardly any sales area as
can be seen in Figure 10 in [28]. Since the LOR “Alt Tegel” is easily accessible by highway
access and people tend to shop close to their residences, the LOR attracts people from the
surroundings to shop there.

In Figure 4.38c, the spatial distribution of the charging energy demand at the residences
in the Berlin LORs can be seen. LORs with high energy demand coincide with LORs with
high population density, high motorization rate, and high household income. These results
have already been discussed in Section 3.4 in [27]. The spatial distribution of total energy
demand is very similar to the distribution of the demand charged at residences. This is due
to the fact that 61.8% of total demand is charged at the residences, as shown in Table 4.15.
LORs with near zero total charging energy are sparsely populated, as they mostly consist of
forests and lakes.
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Figure 4.38: Spatial distribution of the BEV charging energy demand in the Berlin LORs – Data-
driven charging scenario.
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4.3.5.3 Temporal Distribution of the Charging Power Demand

In Figure 4.39 the temporal distribution of the BEV charging power demand in the Berlin
LORs is shown for all charging scenarios on an average working day. For the work- and
data-driven charging scenario, it can be seen that the power demand at the workplaces
mainly occurs in the morning hours, reaching its maximum around 9:00 AM and decreases
thereafter.
The decrease is significantly faster for the work-charging scenario, because all vehicles are
charged immediately after arrival at their user’s workplace (regardless of their SOC). Since
their energy demand is therefore often low, power demand drops sharply due to decrease of
arriving BEVs after the start of the work day. In contrast, fewer vehicles are charged in the
data-driven charging scenario, but these vehicles have a higher energy demand. Because of
this higher demand, the vehicles have a longer charging time, which means that charging
power is needed over a longer period of time. The power demand curve becomes wider.
Charging power demand at shopping locations reaches its maximum around 4:30 PM, both
for data-driven charging and opportunity-charging scenario. This corresponds approximately
to the time when people leave work. As justified in Section 4.3.5.1, the energy demand at the
shopping locations is lower for the data-driven charging scenario than for the opportunity-
charging scenario, resulting in a lower peak in the power demand.
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(a) Work-charging scenario
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(b) Opportunity-charging scenario
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(c) Home-charging scenario
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(d) Data-driven charging scenario

Figure 4.39: Temporal distribution of the BEV charging power demand in Berlin.
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The shape of the power demand curves at the residences is similar for all charging scenarios
except the data-driven charging scenario and has already been discussed in Section 3.5 in [27].
In contrast to the other scenarios, it can be observed for the data-driven charging scenario
that the peak power demand is reached at about 2:00 AM instead of 6:30 PM. This is due to
outbound commuters driving long distances to work (>85 km). Due to the longer distances
and associated longer travel times, these outbound commuters return to Berlin late in the
evening. Since the BEVs have travelled long distances, their rechargeable SOC difference is
high and thus the probability that the BEVs will be charged is high as well. In addition, the
vehicles in the data-driven charging scenario tend to have a higher energy demand than in
the other charging scenarios. Therefore, the transition point where the number of BEVs that
start charging is lower than the number of BEVs that finish charging is later.

For the data-driven charging scenario, the spatial distribution of charging power demand
over the course of the day is shown in the Appendix (Figure 4.44 to Figure 4.47).

4.3.5.4 Temporal Distribution of the Charging Power Demand with Load Shifting

The parking times of BEVs are usually much longer than their charging times. Therefore, it
is possible to shift vehicles’ charging times to times when the impact on the electric grid is
minimal. These load shifting investigations require knowledge of the parking location and
duration of the vehicles as well as their charging requirements, which were determined in
this paper.
In Berlin, 45% of private cars are parked all day. The used vehicles are parked on average
18.3 hours per day at the owner’s place of residence [27], [91]. Due to these long parking
times, it is of particular interest to investigate the load shifting potential at the residences.
Therefore, this section investigates how the BEV charging power demand can be shifted
(depending on the residential load curve) to reduce the grid impact. For this purpose, a
valley-filling method is used which is shown schematically in Figure 4.40. As can be seen,
valley-filling is done vehicle by vehicle. The individual vehicle is not charged immediately
after its arrival, but at times (within its parking time) when power demand in the considered
area is minimal.
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Figure 4.40: Smart charging using valley-filling approach.

The load-shifting investigation is conducted using the LOR “Heiligensee” as example, which
is located on the north-western city boundary. It is selected because it has both, the highest
BEV energy demand at the residences of all LORs and a very high BEV charging energy
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demand per resident in Berlin. The determination of the residential power demand for the
LOR “Heiligensee” is described in detail in Section 3.5 in [27]. In Figure 4.41 the load
shifting results for the home-charging and the data-driven charging scenario is presented. For
both charging scenarios, it can be seen that in the case of uncontrolled charging (immediate
charging upon arrival with maximum charging power), the BEV charging peak coincides
with the residential evening power demand peak. The peak value is lower for the data-driven
charging scenario because the total amount of energy charged at the residences is lower (see
Table 4.15).
When load shifting is applied, the peak power demand for the home-charging scenario can be
reduced by 31.7%. Due to the comparatively low charging times and the high parking times
in the home-charging scenario, the BEV power demand can be distributed in such a way that
the total demand in the LOR remains constant. Therefore, the peak-to-average power ratio
of a LOR, which describes the ratio of peak power demand to average power demand, is 1.0.
Compared to residential power demand, the maximum power demand (residential + BEV
power demand) increases by 21.5% for controlled charging and by 77.9% for uncontrolled
charging. In the data-driven charging scenario, the peak power demand can be reduced by
28.2%. Due to the longer charging times of BEVs compared to the home-charging scenario,
the power demand of BEVs cannot be shifted to achieve a peak-to-average power ratio of 1.0.
However, the total power demand is nearly constant. The peak-to-average power ratio is
1.055. Compared to residential power demand, the maximum power demand increases by
only 6.6% for controlled charging and by 48.4% for uncontrolled charging.
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(a) Power demand. Home-charging scenario.
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(b) Power demand. Data-driven charging scenario.

Figure 4.41: Load shifting results in the LOR “Heiligensee” for the home- and data-driven charging
scenario.

Since the load shifting investigations are conducted for a LOR with one of the highest BEV
charging demands per resident, it is expected that peak power demand in most other LORs
can also be significantly reduced compared to uncontrolled charging. It should be noted,
however, that the results represent a theoretical ideal case and indicate the theoretically
possible optimum. In a real application, the driving and parking behavior of all considered
vehicles is not exactly known in advance.
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4.3.5.5 Discussion

The results show that between 5468 MWh and 6093 MWh of charging energy is required on
an average working day in Berlin, depending on the charging scenario. At least 61.8% of this
energy is charged at the residences.
Regarding the spatial distribution of energy demand at workplaces, demand is relatively
similar in inner-city and outer-city LORs. Demand ranges from 0 kWh per day in LORs
with no employees to 21.2 MWh per day in a LOR with many employees, high car-access
attractiveness, and good accessibility. Charging energy demand at shopping locations ranges
from 0 kWh per day in LORs without shopping facilities to 5.5 MWh per day in LORs that
attract many shopping trips due to their location and parking situation. Charging energy
demand at residences ranges from 0 kWh per day in uninhabited LORs to 40.7 MWh per
day in LORs with high population and motorization levels. High demand is most prevalent
in outer-city LORs. The temporal distribution of the charging power demand is highly
dependent on the charging scenario. The peak power demand ranges from 328 MW to 412
MW. The minimum power demand is between 78 MW and 169 MW.

In 2021, the peak load in the Berlin power grid was 2119 MW [184]. Assuming that this
peak load coincides with the BEV peak power demand of 412 MW, this results in a 19.4%
increase in peak power demand. However, there is significant load shifting potential in the
LORs. As shown in Sectio 4.3.5.4, the peak power demand at the residences can be reduced
by 28.2% through load shifting for the data-driven charging scenario.
Berlin’s total electric energy demand in 2021 was 13.9 TWh [184]. In this paper, we calculated
a daily charging demand on an average workday (Monday-Thursday) of 5435 MWh for the
Berlin BEVs. In [27], a charging demand of 4730 MWh was determined for an average
Saturday. Assuming that the energy demand on Fridays and Sundays corresponds to the
demand on Saturdays, an annual charging energy demand of 1.87 TWh is derived for Berlin
from our results. Comparing this number with Berlin’s current total energy demand shows
that it increases by 13.5% due to the additional BEV charging demand.

To check the validity of the results, they can be compared with the results of other studies.
Due to different assumptions, differences between the results of this dissertation and the
comparative studies are to be expected. Therefore, the main focus of the comparison of
results is to check whether the results are in the same order of magnitude. A summary of
the comparisons is presented in Figure 4.42.

It is estimated, that complete electrification of all 45 million passenger cars in Germany
would require 100 TWh of annual energy [185]. Of this, 2.32 TWh would be required for the
electrification of vehicles in Berlin. As derived above, our results for Berlin yield an annual
charging energy demand of 1.87 TWh. This corresponds to 80.6% of the demand determined
in [185] (see Figure 4.42a). The difference is most likely due to the fact that reference [185]
uses the average mileage of passenger cars in all of Germany, which is significantly higher
than the mileage of passenger cars in Berlin [89], [90].

The author of [186] determines the power demand of BEVs in German urban areas. Analogous
to our approach, the German household travel survey provides the data basis for simulating
the driving behaviour of the BEVs. The temporal distribution of BEV charging power
demand is determined for two charging scenarios assuming a constant charging power of 11
kW.
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Scenario 1: all vehicles are charged exclusively at their users’ residences. Due to similar
assumptions, the results obtained for scenario 1 are comparable to the temporal charging
power demand we determined for the residences for the home-charging scenario (see Figure
4.39c). Scenario 2: vehicles are charged at both the residences and the places of work. The
results determined for scenario 2 are comparable to the total charging power demand we
determined for the work-charging scenario (see Figure 4.39a).
For scenario 1, the peak power demand can be observed at 6:00 PM. Due to the high
simultaneity of the charging events, the required charging power starts to decrease sharply
from 7:00 PM and is close to 0 kW per vehicle during the night hours. As a result of this high
simultaneity, the peak power demand of 0.5 kW per vehicle in the study is slightly higher
than the 0.31 kW per vehicle we determined in this paper (see Figure 4.42b). The high
simultaneity of the charging events is not discussed in the study. One reason for this could
be the simulation condition that forces all BEVs to arrive back at their owners’ residences on
the same day they left.
For scenario 2, the study identifies a power demand curve that reaches its global maximum
around 8:30 AM (0.65 kW per vehicle), then decreases until around 11:00 AM before rising
again slightly and reaching a local maximum around 4:00 PM. During the night-time hours,
the power demand is again close to 0 kW per vehicle. In contrast, in this paper we show that
peak power demand is reached as early as 7:30 AM and then stagnates at this level until
9:00 AM, as BEVs that start charging and those that stop charging balance each other out.
Although we assume a charging capacity of 22 kW at employee parking spots, we determine
a lower maximum power demand per vehicle of 0.32 kW. This discrepancy is most likely also
due to the high simultaneity of the charging events in the study as well.

In [187], the energy demand resulting from the electrification of passenger cars in Stuttgart,
Germany and its surrounding areas is determined. Analogous to our approach, the driving
behaviour of BEVs is modeled based on a travel survey. In the study, vehicles are charged
as soon as their SOC value is below 50%. Charging power at private parking spots at
residential buildings is assumed to be 3.7 kW and 50 kW at all other locations (roadside,
workplaces, etc.). Due to similar assumptions, the results of the study can be compared
to the total charging power demand we determined for the data-driven charging scenario.
This comparison shows similar results for the daytime. The power demand peak is observed
around 9:00 AM, which is mainly due to charging at the places of work. After this peak,
power demand decreases before increasing again in the evening hours due to charging at
residences. However, in contrast to our results the study identifies a power demand of nearly
0 kW per vehicle between 4:00 and 5:00 AM. This low power demand in the night is not
discussed. One possible reason for this could be the simulation condition that forces all BEVs
to arrive back at their owners’ residences on the same day they left. Another reason could
be that the charging events are terminated more quickly since the study assumes a charging
power of 50 kW at roadside parking spots.
In addition, differences in peak power demand can be observed. While the peak power
demand calculated in this paper is 0.37 kW per vehicle, it is 0.54 kW per vehicle in the study
(see Figure 4.42c). This higher demand is most likely due to the higher car usage in Stuttgart
(58% of all trips) [188] compared to Berlin (34%) [90]. As a result, peak power demand is
higher. A higher peak power demand per vehicle also results from the fact that the study
assumes a charging power of 50 kW, which is higher than in our work (22 kW at employee
parking spots and 11 kW at roadside parking spots).
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Figure 4.42: Comparison of the results of this paper with the results of studies [185]–[187].

Reference [189] presents the results of an experimental study on BEV usage behaviour of
10 households and their 11 BEVs, conducted in Stuttgart, Germany. The BEVs in the
study were charged exclusively at residences; accordingly, the results are comparable to
the residential charging power demand we determined for the home-charging scenario. The
temporal distribution of charging power demand in the study is similar to our results, showing
highest demand at 9:00 PM and lowest demand at 9:00 AM. In the study, the minimum
power demand is 43% of the peak power demand. This is higher than our results, where
the minimum demand is 22.8% of the peak demand. The difference is most likely due to
the overrepresentation of pensioners among the study participants. In particular, pensioners
do not have the “typical” daily routine of going to work in the morning and returning in
the evening. As a result, charging events are much more evenly distributed throughout the
day.

Overall, it can be stated that our results show some deviations from the existing literature, but
are in overall agreement with it. The deviations can be plausibly justified by methodological
differences and deviating parameters. Therefore, the results of this paper can be considered
valid.

4.3.6 Conclusions and Outlook

To support power grid planners in detecting and evaluating potential power grid congestions
due to the electrification of urban private cars, accurate models are needed to determine
BEV charging energy and power demand with high spatial and temporal resolution.
Typically, activity-based mobility models are used for this purpose, with detailed travel
surveys forming the data basis. From these surveys, activity- and time-dependent traffic
flows between sub-areas in the considered area can be directly determined, which in turn can
be used to derive BEV charging demand. However, detailed travel surveys are typically not
available for most places in the world.

To address this research gap, we developed an activity-based model for estimating the spatial
and temporal distribution of BEV charging demand that does not require detailed travel
surveys as input parameters. The method is based on individual, full-day travel schedules for
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each vehicle in the considered area, which provide information on the sequence of activities
and trips between these activities [27]. Since the locations where activities are performed
are not included in these travel schedules, we developed a route assignment method in this
paper to determine the unknown activity locations.

We applied our approach to the urban area of Berlin and its 448 sub-districts. Assuming full
electrification of the 1,045,000 private cars in Berlin, we determined both the required BEV
charging energy demand and the power demand over the course of the day for each district.
Since the developed method operates at the vehicle level, it can also be used to determine
BEV charging energy demand for lower levels of electrification (e.g. 50%).
The method is based on open data (e.g. OpenStreetMap and publicly available statistics),
therefore it is transferable to other urban regions.

On the basis of our results, load shifting potentials can be investigated. Compared to
uncontrolled charging, we show for an exemplary district that it is theoretically possible to
reduce peak power demand at residences by up to 31.7% through load shifting. In addition,
we show that the peak-to-average power ratio can be significantly reduced. Since load shifting
is often easier and cheaper to implement (e.g., via price incentives) than grid expansion, grid
expansion should only take place if no further load shifting potential exists. In addition to
load shifting, the results of this paper can also be used to investigate vehicle-to-grid potential
in an urban area, which will be part of future work.

In Germany, only 0.64% of passenger cars were battery electric at the end of 2021 [190].
Accordingly, there is no data on the charging behavior of BEV users in Germany or Berlin.
BEV charging demand was therefore determined for four different charging scenarios in this
paper. As soon as data on charging behavior in Germany is available, the BEV charging
demand for Berlin should be recalculated and compared with the results of the four scenarios.
We have validated our results by comparing them with similar studies. However, since the
results are forecasts, it is desirable to compare them with exhaustive data. This requires
extensive measurement campaigns in which both the routes and the charging behaviour of
BEVs are recorded.
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4.3.8 Appendix A. Electric Reference Vehicles and Charging Curves
Table 4.16: Electric reference vehicles.

Class Model
Battery

Capacity (kWh)
Consumption (kWh/100km)

Inner City Outer City

Mitsubishi
16.2 11.4 18.0

Mini compact
i-MiEV [191]

Renault Zoe [102] 64.3 14.5 19.0
VW e-Up! [103] 18.7 14.0 17.7

BMW i3 [104] 48.8 13.0 17.9
Compact Hyundai Kona E [105] 73.9 14.0 19.5

VW e-Golf [192] 34.9 12.7 17.3

Kia e-Niro [107] 72.3 12.5 18.1
Medium Nissan Leaf [108] 68.4 17.2 22.7

Tesla Model 3 [193] 60.0 17.4 19.5

Audi e-tron [110] 94.3 23.5 25.8
Large Mercedes EQC [111] 93.1 23.0 27.6

Tesla Model S [194] 93.6 21.7 24.0
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Figure 4.43: Charging curves of the reference vehicles [65], [183].
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4.3.9 Appendix B. Spatial Temporal Distribution of Charging Power Demand in
the Berlin LORs
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Figure 4.44: Spatial temporal distribution of charging power demand at workplaces in the Berlin
LORs – Data-driven charging scenario.
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Figure 4.45: Spatial temporal distribution of charging power demand at shopping locations in the
Berlin LORs – Data-driven charging scenario.
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Figure 4.46: Spatial temporal distribution of charging power demand at residences in the Berlin
LORs – Data-driven charging scenario.
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Figure 4.47: Spatial temporal distribution of the total charging power demand in the Berlin LORs –

Data-driven charging scenario.



5 Further Research
In this chapter, research is conducted based on the results of the methodology developed
in Chapter 4. Section 5.1 examines the Vehicle to grid (V2G) potential of fully electrified
passenger cars. Section 5.2 determines the charging infrastructure demand to meet BEV
charging demand.

5.1 Publication IV

Sector Coupling through Vehicle to Grid: A Case Study for Electric
Vehicles and Households in Berlin, Germany
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Abstract: A key factor in limiting global warming is the conversion of conventional
electricity generation to renewable energy sources. However, a major obstacle is that
renewable energy generation and energy demand often do not coincide in time, and energy
must therefore be stored temporarily. Vehicle to grid (V2G) can be used to store excess
renewable energy in battery electric vehicles (BEVs) and feed it back into the electric grid
when needed. For effective V2G operation, the grid may have to be expanded, as the energy
needs to be transported to BEVs. However, the grid should only be strengthened where
renewable energy demand exceeds current grid capacity due to high grid expansion costs.
This requires a method that determines the spatial distribution of V2G potential at a high
resolution. Since such a method has not yet been reported in the existing literature, and
so is developed in this paper. The method is demonstrated for the city of Berlin and its
448 sub-districts. For each sub-district, the method allows determining the percentage of
residential and BEV energy demand that can be met by renewables if V2G is deployed, and
answers the question of whether a full renewable supply is possible. The results show that
BEVs can be effectively used as intermediate storage for renewable energy. If 30% of the
BEVs participate in V2G, more than 99% of the energy demand of households and BEVs in
Berlin can be covered by renewables on certain days. On the other hand, V2G deployment
increases the average peak load in the districts by up to 100% and results in a nearly double
load on vehicle batteries. High shares of renewable energy can be observed in districts with
a high degree of motorization, which are predominantly found in the outskirts of the city.

Keywords: electric vehicle; renewable energy; vehicle to grid; sector coupling; spatial
resolution
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5.1.1 Introduction

The worldwide reduction in greenhouse gas emissions is the main factor limiting the global
temperature increase to 2 °C above pre-industrial levels, as agreed in the 2015 Paris Agree-
ment [1]. To meet this goal, the European Commission has agreed on the “European Green
Deal” which stipulates net zero greenhouse gas emissions for the entire European Union
by 2050 [2]. In accordance with these guidelines, Germany plans to reduce greenhouse gas
emissions by 50% by 2030 with respect to 1990 [80].
The decarbonization of the transport sector is one of the most important levers to achieve this
result. Therefore, private vehicles with internal combustion engines (ICEVs) are increasingly
being replaced worldwide by vehicles with decarbonized drive systems, especially battery
electric vehicles (BEVs) [12]. According to the German Federal Motor Transport Authority
(KBA), around 356,000 BEVs were registered in Germany in 2021, 5.6 times as many as in
2019 [19].
In addition to decarbonizing the transportation sector, replacing electricity generation by
fossil fuels with renewable energy sources such as solar and wind energy is an important
component to reduce emissions. Tröndle et al. [195] have shown that all European countries
can cover their entire energy consumption with renewable energies if their infrastructure is
expanded accordingly. However, a major limitation of renewable energies is their volatile
generation. Power generation and demand do not always coincide in time [196]–[198]. To re-
duce this discrepancy, load shifting strategies can be employed to charge BEVs whenever a
surplus of energy is available [196], [197], [199]–[201].

Load shifting cannot be fully exploited in times when the demand exceeds the power
generation. This problem can be addressed by coupling the energy and transportation sectors
through Vehicle to grid (V2G). Sector coupling is the connection, interaction and joint
optimisation of energy sectors. The aim is to consider all sectors (e.g., electricity, transport
and industry) holistically and to create synergy effects instead of developing solutions tailored
to individual sectors [202]–[204].
One possibility for sector coupling is V2G, in which surplus renewable energy is stored in
BEVs and fed back into the electric grid as needed. This allows other consumers, such as
households, to increase their share of renewable energy in their total energy demand [205]–
[207]. However, the grid may have to be expanded for effective V2G operation, as the energy
needs to be transported to the BEVs unless it is generated locally.

The need to strengthen the grid is evident from Figure 5.1, which shows the energy demand
of an example region and the renewable energy provided to meet that demand. The energy
demand in the region is equal to the energy supply from renewable sources. However,
because renewable energy is available primarily at midday (e.g., solar energy), more energy
must be supplied to the region at midday than is needed. The excess energy is temporarily
stored in the BEV batteries to meet the region’s demand in the evening and morning. This
significantly increases the peak load in the example region. If the grid is not dimensioned for
this new peak power demand, it must be reinforced.

In addition to the integration of renewable energies, BEVs can also be used for other
services when connected to the grid. For example, for voltage regulation [208], frequency
regulation [209]–[211] or as reactive power support operation [212].
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Figure 5.1: Peak power increase due to V2G.

The application of V2G for renewable energy integration has been the object of extensive
research both in the case of microgrids [120], [198], [213], [214] and in large geographic areas
with thousands of BEVs [215]–[219].
For a reference area in northern Italy containing 200,000 BEVs, Fattori et al. [215] studied
the usage of V2G to reduce the peak power demand. Assuming a photovoltaic peak power of
620 MW, they showed that a 35% reduction in the peak power demand is possible.
For four interconnected islands in Croatia, Pfeifer et al. [216] investigated what share of the
total energy demand could be covered by renewable energies if 7700 BEVs were used for V2G.
They showed that, for three of the four islands, a share of at least 80% can be achieved with
a photovoltaic capacity of 62 MW and additional stationary batteries with a capacity of 179
MWh.
For the Croatian island of Korčula, Dorotić et al. [217] showed that the entire energy
consumption can be covered by renewable energies by 2030 if 40 MW of wind and 6 MW of
solar capacity were installed and V2G deployed.
Forrest et al. [218] predicted that California can meet 80% of its total energy demand by
using renewables in 2050 if 80% of light-duty vehicles are BEVs and V2G is deployed. No
additional energy storage systems are required for this.
Again for 2050, Nunes et al. [219] showed that, with an installed photovoltaic capacity of
16,669 MW and an electric vehicle fleet of 4.176 million, 95% of Portugal’s energy demand
can be met by renewable energies if V2G is deployed.

The studies discussed do not consider spatial variance in the degree of motorization, the BEV
driving behaviour, and the distribution of vehicle size classes. As a result, spatial variance in
available battery capacity, and consequently in energy storage, are not represented. Therefore,
these results provide a good overview of a geographic area’s V2G potential, but cannot be
used by grid planners to adapt infrastructure for effective V2G operation. For this, the V2G
potential of an area must be known with high spatial resolution, as the grid should only be
strengthened where renewable energy demand exceeds current grid capacity due to high grid
expansion costs.
To overcome the aforementioned limitations and fill this research gap, we develop a method to
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determine the V2G potential of an entire geographic area with high spatial resolution. To en-
sure the ability to trace and reproduce this method, only open data were used. The method
is demonstrated for the urban area of Berlin, Germany and its 448 sub-districts called
“Lebensweltlich-orientierte Räume” (Eng.: neighbourhood-oriented districts, abbr.: LORs).
The LOR classification is an official classification of the Berlin administration. Within each
LOR, the structure of the included buildings and the socio-economic status of the inhabitants
are similar. The LORs are usually separated from each other by major roads, rivers or rails
[98], [133]. For each of the 448 sub-districts, the method is able to determine the percentage
of residential and BEV energy demand that can be met by renewables if V2G is deployed
and answer the question of whether a full renewable supply is possible.
The percentage of power demand that can be met by renewable energies if V2G is applied is
highly dependent on the number of BEV owners who provide their vehicles for V2G services.
Therefore, we examine a total of ten scenarios ranging from 0 to 75% participation in V2G
services. The availability of renewable energies during the course of the day depends on the
season. We, therefore, distinguish between a summer and a winter case.
V2G requires communication between the vehicle owner and the V2G control centre, in which
the vehicle owner specifies, for example, their planned parking time. The V2G control centre
collects the information and processes it. Appropriate communication between the V2G
control centre and the vehicle owner is assumed in this work. An overview of the current
communication standards can be found in [206], [220].

The rest of this paper is structured as follows: in Section 5.1.2, the methodology is introduced.
The results are presented and analysed in Section 5.1.3. The main conclusions of this paper
are derived in Section 5.1.4.

5.1.2 Methodology

This section is divided into three parts. In Section 5.1.2.1, the driving and charging behaviour
of the BEVs is described. In Section 5.1.2.2, the availability of renewable energy sources
depending on the time of day is discussed. Section 5.1.2.3 presents the method we used to
determine the share of residential and BEV power demand that can be met by renewables if
V2G is applied.

5.1.2.1 Driving and Charging Behaviour

In order to determine the V2G potential of a geographic area with high spatial resolution,
the spatial distribution of BEVs in the area must be determined. In addition, to know when
BEVs are available for V2G services, the daily driving behaviour of each BEV must be known,
including parking times, parking locations, and parking duration.

A method for determining these input parameters is described in [27] and is demonstrated for
the urban area of Berlin, Germany. In the first step of this method, the spatial distribution
of conventional passenger cars (1,045,000 in Berlin in 2018 [97]) is determined using statistics
on population density, motorization rate, and household income. Then, assuming full
electrification of the conventional fleet, the vehicles are replaced by electric reference vehicles.
The vehicle type, battery capacity, and WLTP consumption of all reference vehicles are
listed in the Appendix (Table 5.2). Finally, on the basis of a travel survey, a full-day travel
schedule for an average work day (Monday–Thursday) is generated for each BEV.
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As can be seen in Figure 5.2, each schedule consists of a sequence of activities and trips
between these activities and describes the driving behaviour of the BEVs.

Home Shopping
2 km

Work
18 km

Home
19 km

07:10 07:20 09:00 09:30 17:10 17:45

1 h 40 min 7 h 40 min

BEV 1

Home

00:00 23:59

BEV 2

Home Leisure
32 km

Home
32 km

4 h 20 min

11:20 12:00 16:20 17:05

BEV 1,045,000

.

.

.

Figure 5.2: Full-day travel schedules of BEVs [29].

Based on the known driving behaviour, the charging behaviour of BEVs can be simulated
by applying charging scenarios. Two different charging scenarios are applied in this paper
depending on whether the owner of the BEVs has decided to participate in V2G.

Charging scenario 1: BEVs whose owners have decided to participate in V2G services are
charged exclusively at the owner’s place of residence, as we assume that an energy contract
has been negotiated with the grid operator. This is advantageous for the grid operator since in
Berlin 45% of private cars are parked all day at their owners’ places of residence. The vehicles
used are parked on average 18.3 h per day at their owners’ places of residence [27], [91]. Such
an agreement is also worthwhile for vehicle owners, as the contract includes benefits such as
a lower electricity price in comparison with other locations, such as charging stations at their
workplace or at public parking spots [221], [222]. The grid connection time of a BEV for
scenario 1 corresponds to its parking time.

Charging scenario 2: the charging behaviour of BEVs whose owners have decided not to
participate in V2G services is derived from the operational data measured for 41 private BEVs
in Beijing, China in [182]. This charging scenario is described in detail in Section 4.2 in [29].
According to this scenario, BEVs are charged at locations with long parking times, namely
private residences, workplaces, and shopping locations. The probability of BEV charging
at these locations is determined based on the rechargeable state of charge (SOC) difference
of the vehicles during their parking times. The higher the rechargeable SOC difference,
the higher the probability of charging. The rechargeable SOC difference describes how much
SOC can be recharged at a specific location during the parking time (a SOC of 20% before
charging and a rechargeable SOC difference of 40% would, for example, result in a SOC of
60% after charging). When charging, the maximum available charging power is always used.
The grid connection time of a BEV for scenario 2 corresponds to its charging time.

The maximum charging power available at the charging stations is set to 11 kW at the
residences. For charging at work, the maximum power is set to 22 kW in accordance with
real-world applications [177], [178]. For opportunity charging while shopping, the maximum



110 5 Further Research

power is set to 50 kW, which is in accordance with real-world applications [179]–[181] as
well. The maximum charging power that can be used by the BEVs is SOC-dependent and
is described by charging curves. For both previously described charging scenarios 1 and
2, the charging curves of the reference vehicles are shown in the Appendix (Figure 5.13).
The charging curves were determined by experimental measurements [65], [183].

5.1.2.2 Energy Availability from Renewable Sources

In contrast to other renewable energy sources such as biomass or geothermal energy, the avail-
ability of wind and solar power is weather- and time-dependent. Since energy generation
often does not match demand, temporary storage of surplus energy is desirable. Therefore,
for intermediate energy storage in car batteries, only wind and solar energy are considered
in this paper. In Figure 5.3, the daily profiles of average power generation from renewable
energies (RE) in Germany are depicted. It is assumed that these profiles are also valid in
Berlin. The profiles are derived from reference [223], which lists historical data on energy
generation in Germany.
To compensate for fluctuations in power generation (e.g., summer day with zero hours of
sunshine), the average values from two weeks are used to generate the profiles. Accordingly,
the results that will be derived show the V2G potential for such an average day. On a
particular day, the amount of renewable energy that can be integrated into the electricity
mix depends on the actual daily profile.

Since the availability of solar and wind energy is highly dependent on the season, a distinction
is made between a day in summer and a day in winter. The comparison between Figure 5.3a,b
shows that power generation from renewable sources is dominated by solar energy in summer,
while it is dominated by wind energy in winter. The peak power in summer is 64% higher
than in winter. However, the electrical energy generated is almost the same in summer and
winter. 4% less energy is available on the summer day than on the winter day.
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Figure 5.3: Average energy generation from renewables in Germany, determined from data for two
weeks in summer and winter 2021 [223].

5.1.2.3 Vehicle to Grid Approach

The iterative V2G approach developed in this paper is schematically shown in Figure 5.4
and is applied to each LOR in Berlin individually. The goal is to determine for each LOR
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whether V2G can be used to store and release renewable energy in such a way that the
residential and BEV power demand is met exclusively with RE sources. To reach this goal,
BEVs are employed to store energy when the available RE exceeds the demand (surplus) and
to release it back to the electric grid when the demand exceeds the available RE (deficit).
The availability of renewable energy in the LORs is described by the RE profiles defined in
Section 5.1.2.2. It is assumed that the required amount of renewable energy in the LOR
can be provided. To avoid RE losses, the amount of RE available is adjusted by fitting the
RE profile to each LOR. In districts where energy demand cannot be met with renewable
energy without loss, the method determines how much additional energy is needed from
non-renewable sources.

Start

(1) Determination resi-
dential power demand

(2) Determination
non-shiftable power

demand of BEVs

(3) Determination
total power demand

(4) RE profile fitting

(5) Individual BEV
executes V2G

RE surplus? RE deficit?
yes

no

BEV available?
yes no

yes

RE deficit?

no

BEV available?
yes yes

End

no no

Figure 5.4: Method for determining the share of residential and BEV power demand coverable by
renewables if V2G is deployed.

In step (1), the residential power demand of the LOR is determined by scaling the standard
load profile for Berlin households. This is performed based on the household numbers and
sizes in the LOR. The scaling process is described in detail in Section 3.5 in [27]. In step
(2) the non-shiftable power demand (at the residences) of the BEVs whose owners have
decided not to participate in V2G is determined (see charging scenario 2 in Section 5.1.2.1).
The charging efficiency (grid to battery) is considered with a constant factor of 0.88 according
to [32]. In step (3) the total, non-shiftable power demand of the LOR is determined as the
sum of the residential power demand and the non-shiftable BEV power demand, as can be
seen in Figure 5.5a. Then in step (4) the base RE profile is fitted to the energy demand of
the LOR. This is performed by fitting the RE profile defined in Section 5.1.2.2 in such a way
that the amount of renewable energy available is equal to the energy demand in the LOR.
The base RE curve is depicted for the summer case as a green dotted line in Figure 5.5a as
well. Subtracting the total power demand from this base RE curve yields the initial curve for
the V2G process. This initial curve is depicted in Figure 5.5b. During the day, there is both
a surplus (+area in Figure 5.5b) and a deficit (−area) of RE power, which is to be balanced
by applying V2G.
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Figure 5.5: Exemplary power demand and RE profile for a LOR and resulting initial curve for V2G.

The V2G process is a combination of peak-shaving and valley-filling and is performed in step
(5) for one BEV at a time. Peak-shaving is used for charging the vehicle. This means that
the vehicle is charged at times when the surplus of renewable energy is greatest.
Valley-filling is used for discharging the vehicle. This means that the vehicles feed energy
back into the grid when the renewable energy deficit is greatest. Thus, the combination of
peak shaving and valley filling reduces both the surplus and deficit of renewable energy. All
parking events at the BEV owner’s residence are considered grid connection events. Therefore,
the vehicle can only participate in V2G at home and can only be discharged at home. While
the vehicle is connected to the electric grid, it is allowed to charge and discharge several
times.

The charging and discharging efficiencies are both considered to be 88% according to [32].
The factors are similar, but slightly more conservative compared to [31], [33], which consider
a charging and discharging efficiency of 90%. High discharge rates lead to accelerated battery
ageing [224], [225]. Therefore, discharge during V2G is limited to a SOC of 20%, which is
consistent with literature data and real V2G applications [226], [227]. The charge target
value is set to a SOC of 90% in accordance with [227] and must be reached before the vehicle
leaves for its next trip.

If the vehicle requires more than 90% capacity for its trips between two grid connection
times, the charge target value is adjusted accordingly. This is necessary to ensure that the
vehicle has sufficient energy to complete the trip.
After V2G is executed for the individual BEV in step (5), the following conditions are checked,
and the iterative process continues accordingly:

• If there remains a RE surplus but no RE deficit (see Figure 5.6a), the process continues
with step (4) and the RE profile is scaled down, which is exemplarily shown in Figure 5.5a.
This is necessary to prevent RE losses in the LOR.
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• If both, a RE surplus and a RE deficit remain (see Figure 5.6b) and another BEV is
available for V2G, step (5) is executed again for the next BEV. If no other BEV is
available, the process continues with step (4) and the RE profile is scaled down to
prevent RE losses.

• If no RE surplus but a RE deficit remains (see Figure 5.6c) and another BEV is available
for V2G, the RE profile is scaled up in step (4) to try to further reduce the RE deficit.
If no other BEV is available, the process is terminated and the additional energy which
is required from non-renewable sources is determined for the LOR.

• If neither a RE surplus nor a RE deficit remain (surplus deficit balance achieved, see
Figure 5.6d), the process is terminated. Residential and BEV energy demand is met
exclusively with RE sources.
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Figure 5.6: Distribution possibilities of renewable energy surplus and deficit after V2G application.
(a) RE surplus, (b) RE surplus and deficit, (c) RE deficit, (d) Surplus deficit balance.

5.1.3 Results and Discussion

This section is organized as follows: Section 5.1.3.1 presents the power demand and supply for
an example LOR as a function of time. Section 5.1.3.2 discusses the share of renewable energy
in the total energy demand that can be provided through V2G application. Section 5.1.3.3
analyses the increase in peak power demand in the Berlin LORs due to V2G application.
In Section 5.1.3.4, the battery load increase due to V2G is investigated. The results are
discussed in Section 5.1.3.5.

5.1.3.1 Power Demand and Supply over the Course of the Day

This section presents the results of applying the method described in Section 5.1.2.3
to the LOR “Invalidenstraße”, which is located in the centre of Berlin. The LOR has
17,950 inhabitants and a motorization rate of 173 vehicles/1000 inhabitants. Figure 5.7
shows the power demand and supply over the course of the day in the LOR “Invalidenstraße”
for the summer and winter case and different V2G participation scenarios.

For the summer case and 0% vehicle participation in V2G, Figure 5.7a shows that significant
non-renewable energy must be provided to meet energy demand, especially in the evening
hours (peaking between 6:00 PM and 9:00 PM). This is due to (i) the high residential demand
in the evening hours, (ii) the high BEV charging energy demand in the evening (vehicles
start charging immediately when they arrive home), and (iii) the low availability of renewable
energy in the evening compared to midday hours. In total, 52.4% of the total energy demand
is covered by renewables. If the share of vehicles participating in V2G is increased to 20% in
summer (participating vehicles are randomly selected), the share of renewable energy in the
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total energy demand can be increased to 89.9%, as shown in Figure 5.7b. This is because
BEVs store renewable energy during midday hours and feed it back into the grid during
evening hours.
As shown in Figure 5.7d, with a V2G share of 20%, 100% of the districts’ energy demand
can be met by renewables in winter, although residential energy demand is significantly
higher than in summer. This is due to the fact that renewable energy is available more
evenly throughout the day in winter compared to summer (see Section 5.1.2.2). In particular,
availability during midday is not significantly higher than at other times in winter. Midday
is generally the time when the least amount of renewable energy can be temporarily stored
by BEVs, as this is the time when the fewest vehicles are parked at their homes.
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(a) Summer case. 0% vehicle participation in V2G.
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(b) Summer case. 20% vehicle participation in V2G.
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(c) Winter case. 0% vehicle participation in V2G.

00:00
03:00

06:00
09:00

12:00
15:00

18:00
21:00

24:00

Time

0

2000

4000

6000

8000

Po
we

r (
kW

)

370

420

470

520

570

Nu
m

be
r o

f p
ar

ke
d 

BE
Vs

(d) Winter case. 20% vehicle participation in V2G.

Figure 5.7: Power demand and supply for the LOR “Invalidenstraße” as a function of time.

5.1.3.2 Share of Renewable Energies in the LORs

Table 5.1 shows, for the ten V2G participation scenarios studied, the number of LORs whose
energy demand can be met entirely by renewable energy if V2G is deployed. It can be seen
that in winter, already at a V2G share of 15% (participating vehicles are randomly selected
for each LOR individually), more than 50% of the LORs can fully cover their energy demand
with renewables, compared to only 6.7% in summer.
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The reason that more LORs are able to cover their energy demand entirely from renewables
in the winter than in the summer is due to the near-constant availability of renewables
throughout the day in the winter. Therefore, as described in Section 5.1.3.1, more renewable
energy can be temporarily stored by BEVs than in summer. With 75% vehicle participation in
V2G, the energy demand of Berlin’s households and BEVs can be met entirely by renewable
energy in winter and summer. Table 5.1 also shows the share of renewables in total energy
demand (i.e., household and BEV demand) in Berlin for the ten participation scenarios.
With 10% vehicle participation in V2G, 80.4% of the energy demand in summer and 95.2%
in winter can be covered by renewable energies. From a V2G share of 30%, more than 99% of
the energy demand of Berlin’s households and BEVs can be covered by renewable energy.

The share of renewable energy in the total energy demand of each LOR is shown in Figure 5.8
as boxplots. The blue square indicates the mean error. The outliers are shown as circles. It
can be seen that the average share in the LORs is very similar to the average share in Berlin
shown in Table 5.1. In summer, the average share is 49.2% at 0% vehicle participation in
V2G and then increases to 66.3% at 5% participation. With a V2G participation of 25%,
the average renewable energy share in the LORs is 98.2%. Therefore, the renewables share
has almost doubled compared to the 0% V2G participation scenario.
In winter, this doubling is already achieved with a V2G share of 10%. At 0% vehicle
participation in V2G, the average renewable energy share in the LORs is 46.1%, and at 10%
participation, it is 95.8%. The reason why doubling the renewables share in winter is possible
with lower V2G participation is that renewables are available more evenly throughout the
day in winter compared to summer.
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Figure 5.8: Share of renewables in the Berlin LORs with V2G application.

Figure 5.9 shows the spatial distribution of the share of energy demand that can be met by
renewables in summer, both at 0 and 15% vehicle participation in V2G. With 0% vehicle
participation in V2G, higher shares are achieved in the inner-city LORs. This is due to the
fact that inner-city LORs have low levels of motorization, correspondingly few BEVs, and thus
a low BEV charging energy demand. The share of renewable energy in the residential area
and BEV energy demand is therefore the highest.
In contrast, as the number of BEVs participating in V2G increases, high shares of renewables
are observed, especially in outer-city LORs. Due to the high level of motorization and the
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resulting higher number of BEVs, more renewable energy can be temporarily stored during
the midday hours (and fed back into the grid in the evening) than in the inner-city districts.
Accordingly, the share of renewable energy in the energy demand of households and BEVs
is higher.
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(a) 0% vehicle participation in V2G.
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(b) 15% vehicle participation in V2G.

Figure 5.9: Spatial distribution of the share of energy demand met by renewables in Berlin LORs.
Summer case.

5.1.3.3 Peak Power Demand Increase in the LORs

This section examines the increase in peak load in the LORs resulting from the application
of V2G. The peak power demand increase P DI always refers to the residential peak load
and is calculated as follows:

P DI = max(LOR demand) − max(Residential demand)
max(Residential demand) (5.1)

where LOR demand is obtained by adding the curves of renewable energy supply, non-
renewable energy supply, and BEV supply (see Figure 5.7).

The distribution of the peak power demand increase in the LORs can be seen in Figure 5.10
as boxplots. The blue square depicts the average increase in the LORs. The outliers are
shown as circles. For the summer case shown in Figure 5.10a, it can be seen that the average
increase is 28% when no BEVs are participating in V2G and therefore uncontrolled charging
occurs. This increase is due to the fact that the residential peak power demand in the
evening coincides with the BEV peak charging demand (as shown in Figure 5.7a). With 5%
vehicle participation in V2G (participating vehicles are randomly selected for each LOR
individually), the increase in peak power demand decreases to 22% because 5% of BEVs
are charged in a controlled manner and therefore BEV power demand is reduced in the
evening hours.

From a V2G participation of 10%, the peak power demand increases sharply compared to the
0% V2G participation scenario; at a participation of 20%, the average increase in peak power
demand is 86%. At 75% participation, the average increase is 102%. This increase is due
to the fact that, as V2G participation increases, more renewable energy can be temporarily
stored and the renewable energy curve rises accordingly (see Figure 5.7a,b). As can be seen
in Figure 5.7b, the renewable peak load then exceeds the residential peak load. Accordingly,
the peak load in the LOR increases. Other findings can be observed for the winter case
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in Figure 5.10b. With 0% vehicle participation in V2G, the average peak power demand
increase is 16%, which is lower than in summer. The lower increase is due to the fact that
the residential peak power demand is significantly higher in winter (see Figure 5.7). From 5%
participation, the average peak power demand increase is close to 0%. This is due to the fact
that, in contrast to summer, renewable energy is available more evenly throughout the day
and the residential peak power demand is higher. As a result, the renewable energy peak
load is lower than the residential peak load (see Figure 5.7d). Accordingly, the peak power
demand in the LOR does not increase.
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Figure 5.10: Peak power demand increase in the Berlin LORs with V2G application.

Figure 5.11 shows the spatial distribution of the peak power demand increase in Berlin LORs
in summer, both at 0 and 15% vehicle participation in V2G. As explained above, it can be
seen that as the number of BEVs participating in V2G increases, the peak power demand in
the LORs increases.
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(a) 0% vehicle participation in V2G.
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(b) 15% vehicle participation in V2G.

Figure 5.11: Spatial distribution of the peak power demand increase in Berlin LORs. Summer case.

In addition, it can be seen that the increase in peak power demand is higher in the outer-city
LORs than in the inner-city LORs. This is due to the fact that, with a higher level of
motorization and a correspondingly higher number of BEVs in the LOR, more renewable
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energy can be temporarily stored. As discussed in the previous paragraph, the renewable
peak load then exceeds the residential peak load. Accordingly, the peak power demand in
the LOR increases.

5.1.3.4 Battery Load Increase due to Vehicle to Grid

This section examines the increase in battery load due to V2G. The battery load increase
(BLI) is calculated for each LOR as follows:

BLI = Ec − Ed

Ed
(5.2)

where Ec is the amount of energy charged by the vehicles which participate in V2G and Ed

is the amount of energy consumed by the participating vehicles during their trips.

The distribution of the battery load increase in the LORs is shown in Figure 5.12 as boxplots.
The blue square depicts the average battery load increase in the LORs.
In the summer case shown in Figure 5.12a, the average increase in battery load in the LORs
is 134% at 5% vehicle participation in V2G and 173% at 10% vehicle participation. At higher
participation rates, the average battery load continues to decrease and is 54% at 75% vehicle
participation in V2G. The reason for this decrease is the increasing number of LORs whose
energy demand is fully met by renewable energy. The amount of energy charged therefore
remains almost constant, while the number of vehicles to which this amount of energy is
distributed increases. Accordingly, the battery load decreases. The reason that the average
increase in battery load is lower when 5% of vehicles participate in V2G than when 10%
participate is because, when 5% of vehicles participate, the absolute number of participating
vehicles is very small in some LORs (<10 vehicles). Due to the small number of vehicles, it
is possible that all vehicles are on the road during the midday hours. In summer, however,
midday is the time when renewable energy is mainly available. From 10% participation, it
becomes increasingly unlikely that all vehicles are on the road during midday due to the
larger absolute number of participating vehicles. Therefore, more renewable energy can be
temporarily stored and the average battery load increases.
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Figure 5.12: Battery load increase in the Berlin LORs due to V2G application.
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For the winter case shown in Figure 5.12b, this effect cannot be observed because renewable
energy is more evenly available throughout the day. The highest average increase in battery
load is observed for 5% vehicle participation in V2G and is 189%. As explained previously,
the average battery load decreases at higher participation rates and is 33% at 75% vehicle
participation in V2G. The reason that the average battery load is lower in winter than in
summer when 75% of vehicles participate in V2G, is due to the nearly constant availability
of renewable energy. As a result, more renewable energy can be used directly and does not
have to be stored temporarily in the BEVs.

5.1.3.5 Discussion

The results show that, already at 10% vehicle participation in V2G, a significant share of
the energy demand of households and BEVs in Berlin can be covered by renewable energy
(80.4% in summer and 95.2% in winter). High shares of renewables are observed mainly in
the outer-city LORs, as the motorization rate is higher than in the inner-city. With 30%
vehicle participation in V2G, more than 99% of household and BEV energy demand can be
met by renewables in summer and winter. A renewables share of 100% can be obtained with
75% vehicle participation in V2G.
Uncontrolled charging (0% V2G participation) increases the average peak power demand
in summer by 28% compared to residential power demand. V2G deployment increases the
average peak power demand in the LORs by up to 102% in summer compared to residential
power demand. In winter, peak power demand in the LORs hardly increases due to V2G
(close to 0% increase) and can even be reduced compared to uncontrolled charging.
V2G deployment leads to an additional load on the vehicle batteries. The average battery
load increase is up to 189% in winter and 173% in summer.

Concerning these results and the proposed approach, a couple of aspects should be discussed:

• In this work, the V2G potential in Berlin was determined for two specific days, one in
summer and one in winter. An average profile for available renewable energy was used
for each of these two days. However, the availability of renewable energy fluctuates and
can deviate significantly from this average. Accordingly, the generated results indicate
the V2G potential in Berlin. On a particular day, the amount of renewable energy
that can be integrated into the electricity mix depends on the actual daily profile (see
Outlook).

• The vehicles participating in V2G are randomly selected in the LORs for each V2G
participation scenario. Depending on the selected vehicles, the results may vary from
the calculated value, which has not been investigated. However, due to the large number
of vehicles in Berlin (1,045,000), we expect a rather small fluctuation.

• The power grid was not modelled. Therefore, network congestion as well as losses of
transmission and distribution of electric power were disregarded. If grid conditions
are also considered in the model, a lower V2G potential is expected. A possibility of
modelling grid conditions is described in [228].

• V2G requires communication between the vehicle owner and the V2G control centre,
in which the vehicle owner specifies, for example, their planned parking time. The V2G
control centre collects the information and processes it. Appropriate communication



5.1 Publication IV 121

between the V2G control centre and the vehicle owner was assumed in this work.
An overview of the current communication standards can be found in [206], [220].

• Battery ageing is not considered for the V2G investigations. However, due to the increase
in battery load battery life is expected to be shortened. The V2G investigations should
therefore be extended by a battery ageing model with the aim to find a good trade-off
between renewable energy integration and battery degradation. In addition, BEV
owners should receive financial compensation for the loss in value of their vehicle due
to battery ageing.

• In our case study, we assume that the driving and parking behaviour of all considered
vehicles is known in advance. In reality, however, these factors are subject to considerable
uncertainty. Therefore, our study clearly shows the potential benefits of V2G integration
but the results must be seen as an upper bound and further work is necessary to include
uncertainty in our model. One possibility is to use stochastic approaches, as shown
in [229].

• With 30% vehicle participation in V2G, more than 99% of the residential energy demand
and BEV charging demand in Berlin can be met by renewable energy. Accordingly,
there is further untapped V2G potential that could be used to increase the share of
renewable energy in commercial or industrial energy consumption.

• In addition to passenger cars, other vehicles such as commercial vehicles or buses are
currently being electrified. These vehicles can contribute significantly to the integration
of renewable energies into the electricity mix through V2G, as shown in [230]. For a
holistic view, these vehicles should therefore be included in our model.

5.1.4 Conclusions and Outlook

In this paper, a method is developed that determines the V2G potential of BEVs in a
considered area with high spatial resolution. The method is applied to the urban area of
Berlin and its 448 sub-districts, assuming full electrification of the 1,045,000 private cars in
Berlin. For each sub-district, the method allows determining the percentage of residential
and BEV energy demand that can be met by renewables if V2G is deployed, and answers the
question of whether a full renewable supply is possible. We investigated the V2G potential
for each district considering ten V2G participation scenarios (0–75% participation). Since the
availability of renewable energy during the day depends on the season, we distinguish between
a summer and a winter case. For each case, the availability of renewable energy is described
by an availability profile. The profiles correspond to the average availability of renewable
energy in Germany for two weeks each in the summer and winter of 2021. Accordingly,
the results obtained refer to a single day in summer or winter with the two-week-average
renewable power availability.

The results show that with 5% vehicle participation in V2G, more than 60% of the energy
demand of households and BEVs in Berlin can be met by renewable energy in summer and
more than 80% in winter. High shares of renewables are mainly observed in the outer-city
districts, as they have a higher motorization rate than the inner-city districts. With 30%
vehicle participation in V2G, more than 99% of household and BEV energy demand in
summer and winter can be met with renewable energy. A share of 100% renewable energy
can be achieved with 75% vehicle participation in V2G.
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However, V2G deployment increases the average peak power demand in the LORs by up
to 100% in summer compared to residential power load. This may require reinforcement of
the electric grid. In winter, peak load in the LORs hardly increases due to V2G (close to
0% increase). In addition, the deployment of V2G leads to an additional load on the vehicle
batteries. The average battery load increase is up to 190% in winter and 170% in summer.
This increase in battery load leads to increased battery ageing. BEV owners must therefore
receive financial compensation for the loss in value of their vehicle.

Based on the proposed methodology, we plan to conduct further research in the future: It was
assumed that vehicles only participate in V2G if they are parked at their owner’s residence.
The method also allows for investigation of the V2G potential for other parking locations
such as workplaces.
In this work, full electrification of Berlin’s private vehicles was assumed. Since the developed
method operates at the vehicle level, it can also be used to determine V2G potential in the
districts for lower levels of electrification (e.g., 50%).
An average profile for available renewable energy was used for one day in summer and one day
in winter. To account for the fluctuation of renewables, simulations should be conducted on
a daily basis with the actual daily availability profile over several weeks and across different
seasons. In addition, the local resolution of renewable energy availability should be increased
by using the profile of the geographic region around Berlin instead of the profile of Germany.
Furthermore, it is desirable to consider the modelling of the power grid in order to account
for the effects of network congestion as well as losses of transmission and the distribution of
electric power.
Finally, the electricity demand side has to be expanded beyond private households by
including commercial and industrial electricity demand.
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5.1.6 Appendix A. Electric Reference Vehicles and Charging Curves

Table 5.2: Electric reference vehicles. The vehicle data are obtained from databases of the ADAC
(Allgemeiner Deutscher Automobil Club), a German motoring association [231].

Class Model
Battery

Capacity (kWh)
WLTP Consumption

(kWh/100km)

Mitsubishi i-MiEV 14.5 13.5*
Mini compact Renault Zoe 52.0 17.7

VW e-Up! 16.0 14.3

BMW i3 37.9 15.3
Compact Hyundai Kona E 64.0 14.7

VW e-Golf 32.0 15.8

Kia e-Niro 64.0 15.9
Medium Nissan Leaf 60.0 18.5

Tesla Model 3 53.0 14.3

Audi e-tron 83.6 23.0
Large Mercedes EQC 80.0 22.6

Tesla Model S 85.8 18.9
∗New European Driving Cycle (NEDC) consumption. WLTP consumption is not available.
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Figure 5.13: Charging curves of the reference vehicles [65], [183].
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5.2 Charging Infrastructure Demand in Berlin
Installing and operating charging infrastructure for BEVs is costly. Installing private charging
stations cost up to e2500, fast charging stations can cost more than e50000 [232], [233]. The
operating costs for charging stations (e.g maintenance costs) are up to e2500 per year [233],
[234]. Due to these high costs, charging stations should only be installed at locations where
they are sufficiently utilized and can therefore be operated economically.
In order to determine the optimal number and location of charging stations, research is being
conducted worldwide [75], [76], [235]–[237]. A comprehensive overview can be found in [238].
For Germany, there are numerous studies that determine the number of charging stations
required for the electrification of passenger cars [25], [239]–[243]. However, these studies
have limited spatial resolution and only identify demand at the county or state level or for
Germany as a whole.

In contrast, based on the spatial and temporal distribution of energy and power demand in
Berlin identified in Chapter 4, the number of charging stations required to meet demand can
be determined with high spatial resolution. The methodology used for this determination is
presented in Section 5.2.1. The results are discussed in Section 5.2.2.

5.2.1 Methodology

This section presents the method used to determine the demand for charging infrastructure
in Berlin on the average working day simulated in this dissertation. The developed method
determines the number of required charging stations per LOR for each of the four parking
spot types distinguished in this dissertation.

These parking spot types are:

1. Private parking spots at the residences. Charging power 11 kW.

2. Employee parking spots, used for parking while at work. Charging power 22 kW.

3. Customer parking spots, used for parking while shopping. Charging power 50 kW

4. Public parking spots and public roadside parking spots, that can be used for parking
while at work and while shopping and by BEV owners who do not have a private
parking spot at their residence. Charging power 11 kW.

The determination of the number and spatial distribution of private charging stations is
explained in Section 5.2.1.1. The determination of the number and spatial distribution of
employee, customer, and public charging stations is explained in Section 5.2.1.2.

5.2.1.1 Determination of the Number of Private Charging Stations per LOR

In Berlin, 1,045,000 private cars were registered in 2018 [97], 54.8% of which are used on an
average working day [89], [91]. 40% of these passenger car owners have a private parking
spot for their vehicle [89], [90]. Since this dissertation examines full electrification of private
passenger cars, this equates to 418,000 BEVs with a private parking spot. In the following, it
is assumed that vehicle owners install a separate charging station for each of these vehicles for
reasons of convenience. For Berlin, this results in a total number of 418,000 private charging
stations. To determine their spatial distribution, the number of private parking spots per
LOR has to be determined. In Berlin, there are two different types of private parking.
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On the one hand, there are private parking spots that belong to small residential buildings.
These are for example garages or carports on the property of one- or two-family houses.
On the other hand, there are residential parking spaces, for residents of larger residential
buildings (e.g apartment buildings). Since residential parking spaces are usually larger
contiguous areas, these parking spaces are usually marked in the OSM dataset. The number
and capacity of residential parking spaces in the LORs was therefore determined using OSM
data, as described in Section 4.2.2.4.
The private parking spots belonging to small residential buildings are not marked in the OSM
dataset. To determine their number for each LOR, the gross living space of each residential
building in each LOR is first determined. The gross living space is equal to the gross floor
area of the building multiplied by the number of floors of the building. The determination of
these two variables is described in Section 4.2.2.1 and is based on OSM data.
Then the BEVs in the LOR are assigned to the residential buildings. For this purpose, BEVs
are allocated according to the percentage of the total living space of the respective residential
building. For example, if the total number of BEVs in the LOR is 100 and the residential
building’s living space is 2% of the total living space in the LOR, two BEVs are assigned
to that building. If a building is assigned three or fewer BEVs, it is assumed to be a small
residential building with private parking spots for the BEVs. If more than three vehicles are
allocated to a building, it is assumed that either a designated residential parking space is
provided to the building’s residents4 or the residents park their vehicles on public roadside
parking spots.

The preliminary number of private parking spots per LOR is then determined by summing
the capacity of residential parking spaces in the LOR and the number of private parking spots
belonging to small residential buildings. In total, this approach can be used to determine the
spatial distribution of 345,000 private parking spots.
In order to distribute the remaining 73,000 private parking spots among Berlin, the sum
of the preliminary number of private parking spots and public roadside parking spots is
determined for each LOR. The determination of the number of public roadside parking spots
per LOR is described in Section 4.3.3.4. If the number of BEVs per district exceeds this sum,
the remaining BEVs are assigned a private parking spot. Finally, the remaining unallocated
private parking spots are randomly distributed among the LORs5.
As a result of the process described, the number of private parking spots and therefore the
number of private charging stations for each LOR is known.

5.2.1.2 Determination of the Number of Employee-, Customer-, and Public Charging
Stations per LOR

While private parking spots belong to a specific vehicle and therefore a direct correlation
can be made between the number of private charging stations required and the number
of private parking spots, customer-, employee-, and public parking spots can be used by
different vehicles, consequently there is no direct correlation.
The determination of the number of charging stations for these parking spot types is based on
the results of the route assignment method developed in Section 4.3. During route assignment,

4The determination of the capacity of such residential parking spaces has been discussed previously in this
section.

5The maximum number of private parking spots allowed per LOR is equal to the number of BEVs per
LOR.
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each vehicle was assigned not only a destination LOR for each trip but also a parking spot
type where it parks. Accordingly, for each district, it is known at any time how many parking
spots of a certain type are occupied. The charging infrastructure demand can therefore be
determined from the maximum number of parking spots occupied at the same time.
For this determination, a table is generated separately for each LOR and each parking
spot type, in which the charging station connection times of the BEVs are listed. This
is exemplarily illustrated in Table 5.3 for four BEVs. A “1” indicates that the vehicle is
connected to a charging station, and a “0” indicates that it is not connected. The entries
are then summed up. The maximum value (4 in the example) corresponds to the number of
vehicles that are connected to a charging station simultaneously. This maximum number
of simultaneously charging BEVs per LOR corresponds to the number of required charging
stations per LOR.

Table 5.3: Determination of the demand for charging infrastructure to meet the charging demand.
Legend: “1” BEV connected to charging station; “0” BEV not connected.

Time

00:00 –
00:01

00:01 –
00:02

—
13:01 –
13:02

13:02 –
13:03

—
18:20 –
18:21

18:21 –
18:22

—
23:59 –
00:00

BEV 1 1 1 0 1 1 1 1
BEV 2 0 0 1 1 0 0 0
BEV 3 1 1 1 1 1 1 1
BEV 4 0 0 1 1 0 0 0

Sum 2 2 3 4 2 2 2

BEV users often block a charging station for longer than the time it takes their vehicle to fully
charge. This behavior is referred to as “charging station hogging”. In order to investigate the
impact of charging station hogging on the charging infrastructure demand, three different
charging station connection time cases are examined:

1. Case A:
Each vehicle is connected to the charging station for the duration of the charging
process. The charging station can be used by another vehicle as soon as the previous
vehicle has finished charging.

2. Case B:
The connection time is equal to the parking time of the vehicle.

3. Case C for public charging stations:
Especially in the case of public charging stations, it can be assumed that operators
will charge a blocking fee in order to increase utilization. This fee must be paid if
the vehicle continues to block the charging station after the charging process has been
completed. The fee is already charged by individual operators in Germany [244]. To
estimate the number of public charging stations required for case C, it is assumed that
the connection time is twice as long as the charging time. This 50% blocking time
corresponds to the findings for Berlin [74].
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For each of the three charging station connection time cases, three different levels of satis-
faction are examined (100%, 99%, and 95%). A satisfaction level of 95% means that 95%
of the time the demand for infrastructure is satisfied. 5% of the day, or 72 minutes, the
demand for charging infrastructure is higher than the available infrastructure, which means
that more BEVs want to charge than infrastructure is available. By introducing different
levels of satisfaction, it is possible to investigate what proportion of charging stations are
needed to cover short-term peaks in demand and are therefore often only used for a few
minutes per day.
The introduction of satisfaction levels may lead to a situation where BEVs that need to be
charged in order to complete their next trip cannot find a free charging station. This is a
realistic scenario, as there is no guarantee from policymakers that sufficient charging infras-
tructure will be available at all times. The affected drivers must search for free infrastructure
again at a later time (e.g., during a break from work). An alternative is the introduction
of an intelligent and automated system that connects such vehicles to a charging station as
soon as one is available.

5.2.2 Results and Discussion

In Section 5.2.2.1, the necessary charging infrastructure for the full electrification of private
cars in Berlin is discussed. In Section 5.2.2.2, the spatial distribution of the infrastructure
demand is analyzed.

5.2.2.1 Charging Infrastructure Demand in Berlin

In Table 5.4 – Table 5.6, the determined charging infrastructure demand is shown for the
three charging station connection time cases and satisfaction levels, as well as for all charging
scenarios described in Section 4.3.4. For private charging stations, the tables distinguish
between the total number and the used number of charging stations on the simulated day.
The number “used” corresponds to the number of charging stations actually used by BEVs
on the simulated day.
Tables 5.7 – 5.9 show the number of charging events at the charging stations.
The results are discussed in the following based on Figure 5.14 – Figure 5.18.
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In Figure 5.14 the relative deviation of the required number of charging stations between
100% and 99% satisfaction level and between 100% and 95% satisfaction level is shown for
the charging station connection time case A and for all charging scenarios.
As expected, the required number of charging stations decreases as the satisfaction level
decreases. The reduction in charging stations is higher for employee and customer charging
stations than for public charging stations. This is because there is a high simultaneity of
charging events at the employee charging stations during the morning hours (see Section
4.3.5.3). At 99% and 95% satisfaction levels, not all BEVs are provided with a charging
station during this peak period, and the number of charging stations decreases accordingly.
Charging events at customer parking spots do not overlap at any particular time of day.
Rather, there is a short-term, simultaneous demand for charging stations in the LORs at
different times of the day.
Public charging stations can be used by BEVs while at work while shopping or at home. As
a result, there are fewer short-term peaks in demand compared to employee and customer
charging stations. Accordingly, a decrease in the satisfaction level leads to a smaller decrease
in the number of charging stations.
Of all the charging scenarios studied, the effect that the required number of charging stations
decreases as the satisfaction level decreases is the smallest for the data-driven charging
scenario. This is because the charging time is longer compared to the other charging
scenarios, thus short-term peaks are unlikely.
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Figure 5.14: Relative deviation of the required number of charging stations for the charging station
connection time case A. Comparison between 100% and 99% satisfaction level and
between 100% and 95% satisfaction level for all charging scenarios.

In Figure 5.15 the relative deviation of the required number of charging stations between
100% and 99% satisfaction level and between 100% and 95% satisfaction level is shown for
the charging station connection time case B and for all charging scenarios.
Compared to the charging station connection time case A in Figure 5.14, it can be seen that
a decrease in the satisfaction level leads to a smaller decrease in the number of charging
stations. This can be explained by the fact that the vehicles are connected to the charging
stations for their entire parking time. Accordingly, there are fewer short-term peaks in
charging station demand.
In comparison to the employee and public charging stations, the relative deviation for
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customer charging stations is high. This is because there are short-term peaks in charging
station demand due to the shorter parking times.
In contrast to the results in Figure 5.14, it can be seen that for the data-driven charging
scenario, most charging infrastructure can be reduced at low satisfaction levels. This is due
to the lower total number of vehicles charging compared to the other charging scenarios.
Accordingly, short-term peaks in demand for charging stations are more likely.
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Figure 5.15: Relative deviation of the required number of charging stations for the charging station
connection time case B. Comparison between 100% and 99% satisfaction level and
between 100% and 95% satisfaction level for all charging scenarios.

In Figure 5.16 the relative deviation of the required number of charging stations between the
charging station connection time cases A and B is depicted for all charging scenarios and a
satisfaction level of 99%.
A significant charging station demand reduction of more than 35% can be observed for
employee-, customer-, and public charging stations. This is because of the higher utilization
rate in the charging station connection time case A which is due to the fact that each vehicle
is only connected to the charging station as long as it is being charged. The charging station
demand reduction is the smallest for the data-driven charging scenario since the charging
times are higher compared to the other scenarios. Thus the difference between charging time
and parking time is lower.
For the home-, work- and opportunity-charging scenario, slightly more than half of the
private charging stations are used on the simulated day. This is partly due to vehicles not
driving on the simulated day and partly due to a small number of vehicles not returning to
their home location. The lowest number of private charging stations used, results from the
data-driven charging scenario. This is because, unlike the other charging scenarios, the BEVs
are not charged every time they arrive at home.
From these results, it can be concluded that the effective control of charging, e.g. through
blocking fees, leads to a significant reduction in the number of charging stations required.
This applies not only to public charging stations but also to employee and customer charging
stations.
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Figure 5.16: Relative deviation of the required number of charging stations at a satisfaction level of
99%. Comparison between the charging station connection time cases A and B for all
charging scenarios.

In Figure 5.17, the number of charging events per charging station (hereinafter also referred
to as utilization) is shown for the home-charging scenario and charging station connection
time cases A and B. Since private charging stations are only used by a single vehicle, the
number of charging events per charging station is the same for all satisfaction levels and
both charging station connection time cases.
For public charging stations, utilization increases significantly in the charging station con-
nection time case A compared to case B. This is due to the fact that in the home-charging
scenario, vehicles are charged regardless of their charging demand (see Section 4.3.4 for
a detailed description of the charging scenario). As the average daily distance of Berlin’s
vehicles is 29.2 km, their charging demand is low and the charging time is therefore short.
Since in charging station connection time case A it is assumed that vehicles are only con-
nected to a charging station as long as they are charging, the very short charging times
lead to significantly higher utilization of charging stations than in case B, where vehicles are
connected as long as they are parked.
This effect is less distinct at the employee charging stations, since in the home-charging
scenario only those vehicles are charged at the employee charging stations that cannot cover
their daily distance without recharging. Accordingly, these vehicles have a high charging
demand. Therefore, the difference between parking and charging time is smaller than for
public charging stations, which means that the difference in utilization between cases A and
B is also smaller.
In addition, it can be seen in Figure 5.17 that in charging station connection time case
A the utilization of charging stations increases with lower satisfaction levels, while this is
not observed in case B. This is due to the fact that there are more short-term peaks in
infrastructure demand in case A, as the charging station connection times are shorter. The
infrastructure required to meet these short-term peaks in demand is often not needed for
the rest of the day. As the amount of infrastructure provided is reduced during these peak
demand periods with lower satisfaction levels, the utilization of charging stations increases.
However, it should be noted that at lower satisfaction levels, fewer charging events take
place.



5.2 Charging Infrastructure Demand in Berlin 133

100% satisfaction level
95% satisfaction level

99% satisfaction level

Private Employee Public
Charging station type

0
2
5
8

10
12
15
18

Ch
ar

gi
ng

 e
ve

nt
s p

er
ch

ar
gi

ng
 st

at
io

n

(a) Charging station connection time case A
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(b) Charging station connection time case B

Figure 5.17: Charging events per charging station type. Home-charging scenario.

In Figure 5.18, the number of charging events per charging station is shown for the data-driven
charging scenario and charging station connection time cases A and B.
As already discussed for the home-charging scenario, it can be observed that the utilization
of the charging stations in case A increases at lower satisfaction levels, while this is not
observed in case B.
Furthermore, it can be seen that the utilization rates of the charging stations in case A are
higher than in case B, which has also been discussed for the home-charging scenario.
The highest utilization in both connection time cases is observed at customer charging
stations. This is due to the fact that customer charging stations have the shortest charging
and parking times.

In summary, the analysis of Figure 5.17 and Figure 5.18 shows that a reduced satisfaction
level increases the utilization of charging stations in the connection time case A. However, a
lower satisfaction level also means that fewer charging events take place.
In comparison to reducing satisfaction levels, charging station utilization can be more
effectively increased by reducing vehicle connection times, i.e., by preventing vehicles from
continuing to block charging stations when they are fully charged.
It is therefore advisable to control vehicle charging and motivate BEV users to leave the
charging stations after charging, rather than increasing the utilization of charging stations
through artificial scarcity.
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(b) Charging station connection time case B

Figure 5.18: Charging events per charging station type. Data-driven charging scenario.

5.2.2.2 Spatial Distribution of Charging Infrastructure Demand in Berlin

In Figure 5.19 the spatial distribution of the required number of charging stations in the Berlin
LORs is depicted for the data-driven charging scenario, the charging station connection time
case B and a satisfaction level of 99%. The number of required charging stations is shown for
(a) employee, (b) customer, (c) private, and (d) public parking spots. The spatial distribution
of the required number of charging stations is not shown for the other charging scenarios,
charging station connection time cases, and satisfaction levels since similar distributions are
obtained.

It can be seen, that the spatial distribution of customer and employee charging stations is
consistent with the observations on the spatial distribution of energy demand discussed in
detail in Section 4.3.5.2.
For private charging stations, it can be observed that most of them are located in the
outer-city LORs. This is mainly due to the fact that there are more single- and two-family
houses in the outer-city LORs than in the densely populated inner-city LORs.
In the case of public charging stations, it can be seen that demand is relatively evenly
distributed across Berlin. This is because public charging infrastructure usually compensates
for a lack of private charging infrastructure. In inner-city LORs, this compensation is
necessary because there is limited private parking due to the lack of space. In outer-city
LORs the share of BEVs with private infrastructure is much higher than in inner-city LORs.
However, since there are more BEVs in the outer-city LORs due to high population density
and high motorization rate (see Figure 4.1 and Figure 4.2), the number of BEVs without
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private charging infrastructure is also high. This results in a similar need for public charging
infrastructure as in inner-city LORs.
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Figure 5.19: Required number of charging stations in the Berlin LORs. Charging station connection
time case B, data-driven charging scenario, 99% satisfaction level.



6 Discussion
In order to check the plausibility of the results of this dissertation, they are compared with
the results of similar studies in Section 6.1. In Section 6.2 the charging infrastructure demand
results are compared with policy guidelines. Finally, the limitations of the methodology
developed in this dissertation are discussed in Section 6.3.

6.1 Comparison of the Results with Literature
In this dissertation, a methodology was developed to determine the spatial and temporal
charging demand resulting from the electrification of large ICEV fleets. The methodology
was applied to Berlin, Germany, with its 1,045,000 private passenger cars, and a future
scenario of full electrification of these vehicles was studied. Since hardly any passenger cars
are fully electrified today (in Germany, 1.4% of all passenger cars were BEVs in April 2022
[245]), the empirical data required to validate the generated results cannot be collected.
Therefore, in order to check the plausibility of the results, they are compared with the
results of other studies. Due to different assumptions, differences between the results of this
dissertation and the comparative studies have been found.

In Section 6.1.1 the temporal distribution of BEV charging power demand identified in
this dissertation is compared to other studies. In Section 6.1.2 the spatial distribution of
the charging energy demand. Section 6.1.3 compares the charging infrastructure demand
identified in this dissertation with another Berlin study.

6.1.1 Temporal Distribution of Power Demand

The dissertation results on the temporal distribution of charging power demand have already
been extensively compared with other studies in Publication III (Section 4.3.5.5). However, a
comparison with the results of [74], a study that was commissioned by the Berlin government,
has not been conducted in Publication III. This study also estimates the spatial and temporal
distribution of charging demand resulting from the electrification of Berlin’s passenger vehicles.
Hereafter, reference [74] is referred to as “RLI-study” because it was conducted at the Reiner
Lemoine Institute.

A comparison between the methodologies employed in the RLI-study and this dissertation
can be found in Table 6.1. In the RLI-study, the German household travel survey 2017 and
expert interviews serve as the major data basis. In this dissertation, the travel survey is also
used, but the second main source of information is OpenStreetMap geodata.
In the RLI-study, mobility profiles are generated for 5 different person groups (residents,
commuters, day visitors, overnight visitors, commercial traffic), providing information on
the traveled distances, activities, and parking times of BEVs. A total of 1,768,000 cars are
considered, with 79.2% of their mileage being battery-electric. In contrast, only the passenger
cars of residents and commuters are considered in this work. It is assumed that 100% of
these cars are electrified.
In the RLI study, a total of 7 different charging locations (so-called “charging use cases”)
with different maximum charging power are considered6. BEVs are assumed to be charged

6In Table 6.1 the charging locations “small residential buildings” (one or two family houses) and “larger
residential buildings” (e.g. apartment buildings) are already grouped into “private parking spots”.
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throughout the time they are parked. The charging process is carried out with the lowest
possible charging power with which the vehicle can be fully charged during its parking time.
If the vehicle cannot be fully charged, it is charged with the maximum charging power. This
means, for example, if the vehicle has a charging demand of 10 kWh, and the parking time is
10 hours, the vehicle is charged for 10 hours with a charging power of 1 kW (independent of
the available max. charging power). In this dissertation, 4 different charging locations are
considered. The maximum charging power available at the respective location is always used
for charging.
The temporal resolution of the charging demand is determined at minute-level in both the
RLI-study and this dissertation. The spatial resolution corresponds to the 448 Berlin LORs
in both works.
In order to determine the spatial and temporal distribution of charging demand, the RLI-
study first generates mobility profiles for the various groups of people. The data basis for this
generation is the German household travel survey 2017. The mobility profiles created do not
contain any information on activity locations. Subsequently, a charging scenario is applied
to determine the total charging demand and the temporal distribution of the total charging
demand per charging location. This charging scenario specifies (among other constraints)
that a vehicle is charged only (i) when the vehicle’s SOC is below a SOC threshold and (ii)
the parking time is sufficient to charge, for example, at least 2 kWh at private parking spots
or 11 kWh at employee- or customer parking spots. In addition, parking constraints are
defined, e.g. if the vehicle has a private parking spot, it is only 68% likely that it will also be
charged at a workplace.
These constraints are most comparable to the “data-driven charging scenario” used in this
dissertation. Therefore, the “data-driven charging scenario” is used as the comparative
charging scenario in the following.
In the final step of determining the spatial and temporal distribution of charging demand
in the RLI-study, the total charging demand is distributed among the 448 LORs using
charging-location-dependent spatial distribution keys. These distribution keys are described
in detail in Section 6.1.2. As a result of this distribution, the temporal distribution of the
charging demand per charging location is obtained per district. However, it should be noted
that the temporal profiles of the charging demand are the same in each district, only the
scaling of the profiles is different per district.

In Figure 6.1 the charging power demand curves determined in the RLI-study and in this
dissertation are shown. A comparison of the results shows that the total energy demand
determined in the RLI-study is lower than in this dissertation and the power demand is more
evenly distributed throughout the day. The more even power demand curve can be explained
by the fact that in the RLI-study BEVs are assumed to be charged for the entire time they
are parked. As explained above, the charging process is carried out with the lowest possible
charging power with which the vehicle can be fully charged during its parking time.
The fact that the RLI-study identifies a lower energy demand even though more vehicles are
considered can be explained by several reasons. First, in the RLI-study, only 79.2% of the
mileage is battery-electric, while this dissertation assumes 100%. In addition, the RLI-study
assumes that inbound commuters and day visitors charge primarily at their residences.
In contrast, commuters charge a significant fraction of their energy demand in Berlin if
the “data-driven charging scenario” of this dissertation is applied. Finally, a daily average
distance of 22.2 km is assumed for the 1,045,000 private cars in Berlin in the RLI-study,
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which corresponds to the average distance for the entire week [89], [90]. This dissertation
uses a daily average distance of 29.2 km, which corresponds to the average of a working day
(Monday-Thursday) [89], [90].
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Figure 6.1: Temporal distribution of the BEV charging power demand in Berlin. Comparison
between the results of this dissertation and the RLI-study. (The “Senatsverwaltung
für Umwelt, Mobilität, Verbraucher- und Klimaschutz” kindly granted permission to
republish the results of the RLI-study in this dissertation.)

For the power demand at workplaces, the RLI-study determines a high power demand
between 9:30 AM and 2:30 PM. The peak value of about 125 MW is reached around 11:00
AM. The minimum power demand of about 25 MW is required between 10:00 PM and 04:00
AM. These results differ from the results of this dissertation. A maximum charging power of
about 310 MW is determined, which occurs around 8:00 AM; at night, demand is close to 0
kW. The difference in peak load is most likely due to the fact that the entire parking time is
assumed to be the charging time in the RLI-study. In contrast, this dissertation assumes
that arriving vehicles are immediately charged at maximum charging power, which leads to
the distinct peak power demand.

For the power demand at customer parking spots, the RLI-study determines a peak power
demand of 35 MW around 11:30 AM. In this dissertation, peak power demand is determined
around 4:30 PM, which is about the time people leave their workplaces. The earlier peak
in the RLI-study is most likely due to the fact that not only shopping activities are taken
into account in the RLI-study, but also customers of office buildings, banks, etc. charge their
vehicles at customer parking spots. Nevertheless, the peak power demand in the RLI-study
and this dissertation is similar. The larger number of simultaneously charging vehicles in the
RLI-study compensates for the fact that the peak power demand per vehicle is lower since
the total parking time is used as charging time.

For charging power demand at residences, the RLI-study identifies a peak power demand of
about 130 MW at night and a minimum power demand of about 60 MW. In contrast, this
dissertation determines a peak power demand of 270 MW and a minimum power demand
of 35 MW. The lower peak demand and higher minimum demand in the RLI-study are
most likely due to the fact that the RLI-study uses the total parking time as the charging
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time. Especially at the residences, parking times are very high, which allows for a significant
reduction of charging power. Consequently, the peak-to-average power ratio (ratio of peak
power demand to average power demand) in the RLI-study is also significantly lower at 1.39
than in this dissertation at 1.74. Furthermore, it can be seen that the total energy demand
at the residences determined in this dissertation is higher than in the RLI-study. This is
most likely due to the lower daily average distance of 22.2 km for Berlin cars assumed in the
RLI-study.

6.1.2 Spatial Distribution of Energy Demand

The dissertation results on the spatial distribution of charging energy demand are not
comparable to most other studies discussed in the literature review (see Section 2.3). This is
due to the fact that the studies do not include sufficient information about the selected districts
to allow a comprehensive comparison of the results (e.g., no information on population,
number of vehicles, number of employees, sales area, etc.) [25], [71]–[73], [77], [78], [246].
In contrast, as described in Section 6.1.1, reference [74] (RLI-study) estimates the spatial
and temporal charging demand resulting from the electrification of Berlin’s passenger cars.
Therefore, a comparison of the results can be conducted.

In the RLI-study, the total charging energy demand is first determined and then distributed
to the 448 Berlin LORs using a charging-location-dependent spatial distribution key. For the
energy demand charged at residences, this distribution key is mainly based on the number of
inhabitants and the degree of motorization in the LORs, which is similar to the assumptions
used in this dissertation (see Section 4.1). Therefore, the distributions obtained in the
RLI-study and this dissertation are very similar (see Figure 4.38c).

Energy demand at workplaces is distributed in the RLI study according to the number of
employees per LOR. Other criteria are not considered. This means that if, for example, a
district accounts for 5% of the total number of employees in Berlin, it is allocated 5% of BEV
charging demand at workplaces. As can be seen in Figure 6.2a, this leads to high energy
demand in inner-city LORs due to their high number of employees7.
This concentration of energy demand in inner-city LORs is not found in this dissertation
(see Figure 6.2b). The difference is mainly due to the fact that this dissertation considers
not only the number of employees but also the availability of parking spots in the LORs,
which is low in the inner-city LORs.

Energy demand at customer parking spots is distributed in the RLI-study according to the
number of customers per LOR. These numbers are determined by dividing employees into
different sectors and then multiplying them by a specific factor that indicates how many
customers an employee generates. For example, an employee in the retail sector generates
25.1 customers, while an employee in the manufacturing sector generates 0.51 customers.
As can be seen in Figure 6.3a, this results in the spatial distribution of energy demand at
shopping locations being very similar to that determined for workplaces. The energy demand
is especially high in the inner-city LORs8. In contrast, this dissertation identified a more
homogeneous distribution of energy demand at customer parking spots as shown in Figure
6.3b.

7It should be noted that the energy demand is not quantified in the RLI study, but is stated as “high” or
“low”.

8See Footnote 7
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One possible reason for this deviation could be, that in this dissertation only shopping
activities are considered, while in the RLI-study also customers of office buildings, banks, etc.
charge their vehicles at customer parking spots. However, this is most likely not the reason,
as this dissertation has found that inner-city LORs have more sales area and thus more
employees than outer-city LORs. Thus, if the distribution key of the RLI-study would be
applied, this dissertation would also show a concentration of charging demand in the inner-city
LORs. Therefore, similar to the spatial distribution of charging demand at workplaces, the
difference is most likely due to the consideration of parking availability.

low

high

E
ne

rg
y 

de
m

an
d

(a) RLI-study

0

5

10

15

20

E
ne

rg
y 

de
m

an
d 

(M
W

h)

(b) Dissertation result

Figure 6.2: Spatial distribution of BEV charging energy demand in Berlin at places of work. (The
“Senatsverwaltung für Umwelt, Mobilität, Verbraucher- und Klimaschutz” kindly granted
permission to republish the result of the RLI-study in this dissertation.)
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Figure 6.3: Spatial distribution of BEV charging energy demand in Berlin at shopping locations.
(The “Senatsverwaltung für Umwelt, Mobilität, Verbraucher- und Klimaschutz” kindly
granted permission to republish the result of the RLI-study in this dissertation.)

6.1.3 Charging Infrastructure Demand

In this section, the results of this dissertation on charging infrastructure demand are compared
with reference [74] (RLI-study), which also determined the future charging station demand
in Berlin. For this comparison, it is necessary to estimate the number of charging stations
needed by vehicles which were not considered in this dissertation.
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For this purpose, their energy demand is first estimated:

• Free-floating carsharing BEVs:
According to [247], 5300 free-floating BEVs are registered in Berlin in 2019 (without
a fixed rental station). In 2013, an average daily mileage of 51 km was measured for
these vehicles [248]. More recent data is not available, thus it is not known if the daily
mileage of vehicles has increased in recent years. To compensate for this uncertainty,
a high energy consumption of 0.2 kWh/km is assumed for the BEVs. Accordingly,
their daily energy demand is 54 MWh. It is assumed that this energy demand is fully
charged at public charging stations.

• Day visitors and overnight visitors:
Their energy demand is determined using data from the RLI-study. According to the
RLI-study, there are 219,937 BEVs of day visitors in Berlin, with an average daily
mileage of 37.1 km. Assuming a consumption of 0.18 kWh/km, this results in an energy
demand of 1469 MWh. For overnight visitors, 20,245 BEVs and a daily average distance
of 22.5 km result in an energy demand of 82 MWh. It is also assumed that these
vehicles are exclusively charged at public charging stations.

• Commercial vehicles:
There are 158,000 registered commercial vehicles in Berlin [97], with a average daily
mileage of 54.2 km [74]. This results in an additional energy demand of 1541 MWh
at 0.18 kWh/km. According to [89], [90], 63% of commercial vehicles park at public
parking spots and the rest at private parking spots. Accordingly, 972 MWh are charged
at public charging stations and 570 MWh at employee charging stations.

Among the different combinations for which charging infrastructure demand was determined
in this dissertation, the results obtained for the charging station connection time case A, the
“data-driven charging scenario”, and a 99% satisfaction level are most comparable to the
results of the RLI-study.
To determine the charging station demand of the above-mentioned vehicles for this combina-
tion, it is assumed that the infrastructure demand increases linearly to the energy demand.
From the charging station and energy demand results (see Section 5.2 and Section 4.3), a
specific demand of 9.23 public charging stations per MWh is calculated. This means that 9.23
charging stations are needed to charge one megawatt-hour in public parking spots. Therefore,
additional demand of 2576 MWh leads to an additional demand for 23,776 public charging
stations. For employee charging stations, the specific demand is 14.67 charging stations per
MWh. Accordingly, 570 MWh results in 8362 additional employee charging stations.
In Table 6.2 the required number of charging stations determined in this dissertation and
in the RLI-study are given. It can be observed that although the RLI-study identified a
total energy demand of 5530 MWh and this dissertation identifies 9238.5 MWh (including
additional vehicles)9, the total amount of charging infrastructure required is almost identical
which can be explained by several reasons. In the RLI-study, it is assumed that 82% of
commercial vehicles are charged at employee parking spots, while this dissertation assumes
37%. Since the specific demand for employee charging stations is higher than for public
charging stations, more charging stations are needed in the RLI-study to charge the same
amount of energy.

9The large difference in energy demand was discussed in Section 6.1.1.
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Furthermore, the RLI-study assumes that 8.4% of vehicles can only charge with a maximum
charging power of 3.7 kW at private- and 90.8% can only charge with 11 kW at employee
parking spots. Due to the lower charging power, the vehicles charge longer, therefore the
charging events overlap more often and more infrastructure is needed.

Table 6.2: Required charging infrastructure in Berlin. Comparison between the results of this
dissertation and the RLI-study.

Number of charging stations

private employee customer public total

Dissertationa 418,000 22,674 1479 52,336 494,489
RLI-study 342,000 92,000 2,000 52,000 488,000

aResults are obtained for the charging station connection time case A, the “data-driven charging
scenario”, and a 99% satisfaction level (see Table 5.5 in Section 5.2). Number of employee and
public charging stations is scaled up as previously described.

Overall, for both the spatial and temporal distribution of BEV charging demand and charging
infrastructure demand, it can be observed that the results show deviations from the existing
literature. However, the deviations can be plausibly justified by methodological differences
and deviating parameters. The results of this work can therefore be considered plausible.
Due to the more detailed methodology used in this dissertation, the results obtained are
likely to be more accurate than the literature results.

6.2 Comparison of the Charging Infrastructure Demand with Policy
Guidelines

In the following, the dissertation results on public charging infrastructure demand are
compared with policy guidelines.
The Berlin government has set a goal of providing one public charging station for every 10
registered BEVs [240]. This goal is in line with EU requirements [249]. To evaluate this ratio,
it is compared to the maximum charging station demand determined for the charging station
connection time case C, a satisfaction level of 100%, and the “data-driven charging scenario”.
The “data-driven charging scenario” is chosen because it is the most realistic among the
charging scenarios used in this dissertation. The charging station connection time case C
is chosen since it is likely that charging station operators will charge blocking fees for their
public charging stations to increase their utilization rate [244].
Analogous to Section 6.1.3, the charging station demand of vehicles not considered in this
dissertation is determined first to enable a comparison. Using the specific demand of 14.45
public charging stations per MWh, the additional energy demand of 2576 MWh at public
charging stations results in an additional demand of 37,223 public charging stations. For
Berlin, this results in a total demand of 83,580 public charging stations, which corresponds
to a ratio of 14.4:1 for 1,203,000 BEVs. This result is higher than the government’s target
ratio but is in line with the findings of reference [239], which determined a ratio of 14:1 for
urban areas in Germany.
A ratio of 14.4:1 can still be considered conservative (i.e., more charging stations are provided
than necessary) since the assumption that the energy demand of car-sharing BEVs and
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visitors is fully charged at public charging stations is rather unlikely. Therefore, from the
results of this dissertation, it can be concluded that the 10:1 target ratio of the government
can be considered oversized.

In addition to the number of public charging stations, the Berlin government has defined
locations where the charging stations should be installed [250]. These areas are predominantly
located in inner-city LORs.
In Figure 6.4a the registered public charging stations in Berlin are depicted. It can be
seen that, in line with the government’s target, public charging infrastructure is mainly
available in inner-city LORs. The dataset on registered charging stations is provided by
the “Federal Network Agency” and also includes the number and spatial distribution of
semi-public charging stations10 (supermarkets, furniture stores, etc.) [251]. Contrary to the
government’s target, the results identified in this dissertation show that there is no increased
need for public charging stations in inner-city LORs compared to outer-city LORs (see Figure
6.4b).
The reasons for this have already been discussed in Section 5.2.2.2. Consequently, based on
the results of this dissertation, a balanced expansion of the public charging infrastructure in
Berlin’s LORs is recommended.
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Figure 6.4: Spatial distribution of public charging stations in Berlin.

6.3 Limitations of the Methodology
The methodology developed in this work enables high-resolution determination of the spatial
and temporal charging energy and power demand in an urban area, resulting from the
electrification of private vehicles with internal combustion engines. Since the SOC, BEV
user activities and geographic location of activities are tracked for each BEV, the results can
be used for further investigation, such as determining the demand for charging stations or
the V2G potential of the considered area. Being based on open data, the methodology is
transferable to other urban areas.
The proposed methodology overcomes the limitations of the methods proposed in the
literature (see Section 2.4). However, due to the resulting complexity of the methodology,
a compromise had to be found between the level of detail and the implementation effort
for certain subcomponents. Accordingly, the methodology has some limitations, which are
discussed in the following:
10Semi-public charging stations are not shown in Figure 6.4a.
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The spatial and temporal distribution of charging demand is determined for Berlin’s private
passenger cars and inbound commuters. The energy demand of other vehicles such as cars
of day and overnight visitors, commercial passenger cars, or car-sharing vehicles is not
determined. Therefore, the total energy demand is underestimated.

It is assumed that the current conventional vehicle fleet is fully electrified while its driving
behavior remains unchanged. Potential future developments in urban mobility (e.g., more
carsharing) or changes in vehicle numbers are not considered. This can lead to an inaccurate
estimate of future energy demand.

When determining energy demand, it is assumed that charging occurs at residences, work-
places, and shopping locations. This may result in an inaccurate estimate of the spatial
distribution of charging energy demand, since charging may also be performed for other
activities.

The energy consumption of BEVs is based on average values, assuming different consumption
for distances of more than 20 km than for distances of less than 20 km. Depending on the
route, the actual consumption can deviate considerably from the average consumption. This
simplification may result in an inaccurate estimate of the charging energy demand.

The accuracy of the results is dependent on the completeness of the employed OSM geodataset.
For example, if parking spaces are not labeled in the OSM geodataset, they are not considered
in the investigations. Therefore, an incomplete data set may cause an inaccurate spatial
distribution of BEV charging demand.

How to overcome these limitations is discussed in the Outlook (Section 7.2).



7 Summary and Outlook

7.1 Summary

In this dissertation a method was developed which enables high-resolution determination
of the spatial and temporal charging energy and power demand in an urban area, resulting
from the electrification of private vehicles with internal combustion engines. The method
consists of three main parts:
In the first part (see Section 4.1), the urban area is divided into districts, and the current
conventional vehicle fleet in the districts is completely electrified. For electrification, data on
motorization levels and population density are used to determine the spatial distribution
of the vehicles in the considered area. The spatial distribution of household income is then
used to determine the spatial distribution of vehicle size classes in the districts. This yields
the number and sizes of vehicles for each district, which are then replaced with reference
electric vehicles. Subsequently, a travel survey is used to determine vehicle-based mobility
profiles. The survey data is limited. While it is possible to determine the driving behaviour
of the population from this data, it is not possible to derive activity- and time-dependent
traffic flows between districts. Therefore, the vehicle-based mobility profiles generated do
not contain information about the geographic location where the vehicle is parked while the
battery electric vehicle (BEV) user is performing an activity. Based on these preliminary
mobility profiles, the spatial and temporal distribution of charging energy and power demand
in the urban area is determined. However, there is one major limitation to the results. Since
the locations of the activities are not known, the charging demand can only be determined
by assuming that BEVs are exclusively charged at or near the residences of BEV owners.

To overcome this limitation, the geographic location where the vehicle is parked while the
BEV user is performing an activity needs to be determined. An important input variable in
this determination is the car-access attractiveness of the districts. The determination of the
car-access attractiveness is the second part of the model which is described in Section 4.2.
The car-access attractiveness is a measure of how attractive buildings and districts are to
drive to by car for a particular activity. A high attractiveness indicates that a location is
highly likely to be accessed by car, while a low attractiveness means that the location is more
likely to be accessed by another mode of transportation. The car-access attractiveness is
determined based on the number of available parking spots in the districts, the distance of the
buildings in the district from the parking spots, and their distance to public transportation.

Thirdly, the unknown geographical locations of the activities are determined (see Section
4.3). For this purpose, a route assignment approach is developed that assigns a destination
district to each vehicle trip based on a destination choice model. In addition to the car-access
attractiveness determined in the second part of the method, the distance and travel speed
between districts, as well as the availability of parking spots in the districts are considered
for destination choice. By determining the destinations of BEV trips, a complete mobility
profile is now available for each BEV. This allows determining the spatial and temporal BEV
charging energy and power demand in the urban area by applying charging scenarios.

The developed method is demonstrated for Berlin, Germany, and its 448 sub-districts called
“Lebensweltlich orientierte Räume” (neighbourhood oriented districts) (LORs), assuming
full electrification of Berlin’s 1,045,000 private cars. However, because the method is based
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on open data, it is reproducible and transferable to other urban areas. Since the developed
method operates at the vehicle level, it can also be used to determine BEV charging demand
for lower levels of electrification (e.g. 50%).
The results show that between 5468 MWh and 6093 MWh of charging energy is required on
an average working day in Berlin, depending on the charging scenario. At least 61.8% of this
energy is charged at the residences.
Regarding the spatial distribution of energy demand at workplaces, demand is relatively
similar in inner-city and outer-city LORs. Demand ranges from 0 kWh per day in LORs
with no employees to 21.2 MWh per day in a LOR with many employees, high car-access
attractiveness, and good accessibility. Charging energy demand at shopping locations ranges
from 0 kWh per day in LORs without shopping facilities to 5.5 MWh per day in LORs which
attract many shopping trips due to their location and parking situation. Charging energy
demand at residences ranges from 0 kWh per day in uninhabited LORs to 40.7 MWh per
day in LORs with high population and motorization levels.
The temporal distribution of the charging power demand in Berlin is highly dependent on
the charging scenario as well. The peak power demand ranges from 328 MW to 412 MW.
The minimum power demand is between 78 MW and 169 MW. In 2021, the peak load in the
Berlin power grid was 2119 MW [184]. Assuming that this peak load coincides with the BEV
peak power demand of 412 MW, this results in a 19.4% increase in peak power demand.
Berlin’s total electric energy demand in 2021 was 13.9 TWh [184]. In this dissertation,
an annual BEV charging energy demand of 1.87 TWh was calculated (see Section 4.3.5.5).
The additional BEV charging demand would therefore increase Berlin’s energy demand by
13.5%.

The determined temporal distribution of charging power demand shows some deviations
from the existing literature but is in overall agreement with it. The deviations are caused by
methodological differences and deviating parameters such as different assumptions on driving
and charging behavior (see Section 6.1.1).
The identified spatial distribution of BEV charging demand in the LORs shows differences
from the results of another Berlin study. The differences are primarily due to the fact that
the study makes oversimplified assumptions to spatially distribute the charging demand (e.g.,
based on the number of employees per LOR). Different parking availability in the LORs
is not considered (see Section 6.1.2). Due to the more detailed methodology used in this
dissertation, the results obtained are likely to be more accurate than the study results.

Based on the complete mobility profiles of BEVs and the charging demand of BEVs determined
for Berlin, further investigations were conducted:
(i) It was investigated whether vehicle charging times can be shifted to times when the impact
on the electric grid is minimal. In Section 4.3.5.4 it was shown for an example LOR that it
is possible to reduce peak power demand by up to 31.7% through load shifting, compared
to uncontrolled charging. In addition, the peak-to-average power ratio can be significantly
reduced. Since the load shifting investigations were conducted for a LOR with one of the
highest BEV charging demands per resident, it is likely that peak power demand in most
other LORs can also be significantly reduced through load shifting.
Load shifting is often easier and less expensive to implement (e.g., through price incentives)
than grid expansion and, as shown, can contribute significantly to reducing grid load.
Therefore, grid expansion should only take place if no further load shifting potential exists.
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(ii) Section 5.1 examined for each of Berlin’s LORs the percentage of household and BEV
energy demand that can be met by renewable energy if Vehicle to grid (V2G) is deployed.
Ten different V2G participation scenarios were investigated (0% – 75% participation, 75%
participation means that 75% of the Berlin BEVs participate in V2G), and for each scenario a
distinction was made between one day in winter and one day in summer since the availability
of renewable energies differs between the seasons.
Results show, that already at 10% vehicle participation in V2G, a significant share of the
energy demand of households and BEVs in Berlin can be covered by renewable energy (80.4%
in summer and 95.2% in winter). With 30% vehicle participation in V2G, more than 99%
of household and BEV energy demand can be met with renewables in summer and winter.
100% renewables share can be obtained with 75% vehicle participation in V2G.
V2G deployment increases the average peak power demand in the LORs by up to 102% in
summer compared to residential power demand. In winter, peak power demand in the LORs
hardly increases due to V2G (close to 0% increase). In addition, the deployment of V2G
leads to an additional load on the vehicle batteries. The average battery load increase is up
to 189% in winter and 173% in summer.
In summary, the results show that BEVs can be effectively used as electricity storage units
and can contribute to increasing the share of renewable energy in the electricity mix. However,
grid reinforcement may be required as the peak load increases significantly. Furthermore,
the increase in battery load leads to increased battery aging. BEV owners must therefore
receive financial compensation for the loss in value of their vehicle.

(iii) In Section 5.2, the number and spatial distribution of charging stations required to meet
the BEV charging demand were determined for Berlin. For public charging stations, a BEV
to charging station ratio of 14.4:1 was determined, which is significantly lower than the Berlin
government’s target ratio of 10:1. Therefore, based on the results of this dissertation, the
target ratio of 10:1 can be considered oversized.
In addition, the Berlin government has identified areas where charging stations should be
installed as a priority. These areas are predominantly located in inner-city areas. Contrary
to the government’s target, the results identified in this dissertation show a similar need for
public charging infrastructure in inner-city and outer-city LORs. Consequently, based on
the results of this dissertation, a balanced expansion of the public charging infrastructure in
Berlin’s LORs is recommended.

7.2 Outlook

The route assignment method generates district-level results. Improved accuracy could be
achieved by increasing the resolution of the model, such as building-level results. Some of the
data required for this are already available, for example, both the car-access attractiveness
and the number of parking spots have already been determined at the building level in this
dissertation.

Average energy consumption values are used to determine the energy demand of BEVs.
Depending on the route, the actual consumption can deviate considerably from the average
consumption. By using the OpenRouteService Directions API [252] a route could be
determined for each BEV and energy consumption could be estimated based on a vehicle
dynamics model. In addition, seasonal consumption could be considered to account for
heating or cooling.
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When determining energy demand, it is assumed that charging occurs at residences, work-
places, and shopping locations. This may result in an inaccurate estimate of the spatial
distribution of charging energy demand, since charging may also be performed for other
activities. Further activities were defined when the mobility profiles were created. For these,
charging events can also be considered.

Battery aging is not considered for the V2G investigations. However, due to the higher
number of charge cycles when V2G is employed, battery life is expected to be reduced. The
V2G investigations should therefore be extended by a battery aging model with the aim to
find a good trade-off between grid support and battery degradation. In addition, a financial
compensation system needs to be developed to compensate BEV owners for the loss in value
of their vehicle due to battery aging.

It is assumed that the current conventional vehicle fleet is fully electrified while its driving
behavior remains unchanged. Potential future developments in urban mobility (e.g., more
carsharing) or changes in vehicle numbers are not considered. Since the methodology is based
on the mobility profiles of individual vehicles, changes in BEV numbers and modal share can
be easily considered by adjusting the mobility profiles.

The spatial and temporal distribution of charging demand in Berlin is determined assuming
electrification of private car transport and inbound commuter vehicles. To increase the
accuracy, the model should be expanded to include other types of passenger cars, such as
cars owned by day and overnight visitors, commercial passenger cars, or car-sharing vehicles.
The charging demand of these vehicles can be estimated by generating mobility profiles for
these vehicles, which could be easily integrated into the simulation.
In addition, the developed method should be extended to include other vehicle types such
as buses or trucks for a holistic determination of the energy demand. The electrification of
buses and trucks has already been studied, e.g. in [81]–[83].
Since future electrification of conventional vehicles is not limited to urban areas, the model
should be extended to larger areas (e.g., state-level/Germany).

Although it is shown that the dissertation results are plausible by comparing them with
similar studies, the validity of the results remains to be verified. One possibility would be to
compare the results with extensive measurement campaigns on vehicles in Berlin (which are
currently unavailable). Due to the variability of the methodology, it can be adjusted to the
results of the measurements. Both the car-access attractiveness and the route assignment
model can be extended to include additional criteria. In addition, the weighting of the criteria
can be changed.
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