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Abstract

In the central spirit of harmonic analysis lies the concept of e�ectively de-
composing, analyzing and representing functions or functionals. It has lead
to the �ourish of Fourier analysis and its modern descendants such as wavelets
and its siblings. Especially, the construction of spherical wavelets and its related
theory is at junior age.

This dissertation gives a brief summary of existing results in this �eld, and at
the same time create spherical α-wavelets and further develop spherical kernel
theory. Among various strategies, two types of spherical wavelets are empha-
sized, one constructed in the frequency domain, the other generated through
stereographic projection. In the former one I discuss localized tight frame de-
sign and its directional extension. In the latter one a new anisotropic dilation is
de�ned, and a representation system generated by it consists of the spherical α-
wavelets/shearlets. Summability properties of those wavelets/shearlets are well
established once they are restricted to certain subspaces of square-integrable
functions newly de�ned in this dissertation, including the so called hollow pole
functions.

Kernels, though deeply rooted in classical theory, can �nd its variation and
application in the frame theory. Indeed, frame kernel, a concept which is pro-
posed in this dissertation, is an equivalent formulation to the frame itself. Be-
sides, there exist a variety of kernels which exhibit their own special properties.
For zonal kernels, I give its necessary and su�cient conditions to approximate
square integrable functions on the sphere. Multiscale kernel, a recently appeared
concept, will meet its spherical version here and it turns out to have reproducing
property for certain Hilbert space of spherical functions.

One of the climaxes in this work is the invention of two novel frames, based
on the two spherical wavelets constructions. In the zonal kernel approach I give
frame properties inside the multiresolution structure; while for α-wavelets, I
prove that under certain conditions they form tight frames in continuous and
discrete setting respectively, following from which are reproducing formulae that
enable us to reconstruct or approximate numerically an integrable function or
solutions of PDEs. Based on the obtained frames a spherical Galerkin scheme
is proposed afterwards. At the end of this dissertation I prove an inner product
formula with respect to a recently emerged surface-value dependent inner prod-
uct space on a triangular mesh, prove its equivalence to the combinatoric inner
product, and give eigenvalues estimation for a discrete Laplacian.



Zusammenfassung

Ein zentraler Aspekt der Harmonischen Analysis ist die e�ziente Zerlegung,
Analyse und Repräsentation von Funktionen und Funktionalen. Diese Konzepte
führten zu einem Aufblühen der Fourier Analysis und deren jüngsten Teilgebiete,
wie Wavelets und verwandte Methoden. Dabei be�ndet sich insbesondere die
Konstruktion von sphärischen Wavelets und die damit verbundene Theorie noch
in den Anfängen ihrer Entwicklung.

Die vorliegende Dissertation gibt einen Überblick über bereits existierende
Resultate in diesem Bereich und entwickelt neuartige Instrumente, wie z.B.
sphärische Wavelets und sphärische Kernels. Ein besonderes Augenmerk liegt
dabei auf zwei Typen von sphärischen Wavelets: Zum einen eine Konstruktion
im Frequenzbereich und zum anderen eine Konstruktion durch stereographis-
che Projektionen. Hinsichtlich der Erzeugung im Frequenzbereich werden ak-
tuelle Fortschritte im Bereich des Localized-tight-Frame und deren richtungsab-
hängige Erweiterungen diskutiert. In den Ausführungen über die Erzeugung
von Wavelets durch stereographische Projektionen wird andererseits ein neues
Konzept von richtungsabhängigen Dilationen eingeführt, was schlieÿlich zu so-
genannten sphärischen α-Wavelets/Shearlets führt. In diesem Zuge können
Summierbarkeitseigenschaften hergeleitet werden, nachdem die konstruierten
Wavelets/Shearlets auf einen Unterraum von L2-Funktionen eingeschränkt wur-
den, was insbesondere sogenannte Hollow-Pole Funktionen einschlieÿt.

Es wird sich herausstellen, dass klassische Kernels ebenfalls sehr vielfältige
Anwendungsmöglichkeiten in der modernen Frame-Theorie haben. In diesem
Kontext wird das Konzept von Frame-Kernels eingeführt, welches eine äquiv-
alente Formulierung der Frame-Eigenschaft ermöglicht. Darüber hinaus wer-
den noch weitere Beispiele von Kernels hinsichtlich ihrer speziellen Eigen-
schaften untersucht. Für Zonal-Kernels werden notwendige und hinreichende
Bedingungen gezeigt, sodass diese quadratisch integrierbare Funktionen auf der
Sphäre approximieren. Schlieÿlich wird eine sphärische Version von Multiskalen-
Kernels hergeleitet und es wird gezeigt, dass diese für spezielle Hilberträume von
sphärischen Funktionen die Reproduzierbarkeitseigenschaft besitzen.

Ein Hauptergebnis dieser Arbeit bildet die Er�ndung von zwei neuarti-
gen Frame-Typen, basierend auf den zwei obengenannten Konstruktionen von
sphärischen Wavelets. Hinsichtlich des Zonal-Kernel-Ansatzes wird die Frame-
Eigenschaft innerhalb der Multiskalenstuktur nachgewiesen. Für α-Wavelets
dahingegen wird bewiesen, dass diese unter bestimmten Annahmen Tight-
Frames sowohl im kontinuierlichen als auch im diskreten Sinne bilden. Daraus
folgt insbesondere die Reproduzierbarkeitseigenschaft, die die exakte Rekon-
struktion von integrierbaren Funktionen oder Lösungen der partiellen Di�er-
entialgleichungen ermöglicht. Auf der Grundlage der erhaltenen Frames wird
anschlieÿend ein sphärischer Galerkin-Ansatz vorgeschlagen. Zum Abschluss
der Arbeit wird eine Formel für das innere Produkt eines kürzlich eingeführten
Prä-Hilbertraums bewiesen, der auf einem Dreiecksnetz de�niert ist.
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Chapter 1

Introduction

The purpose of this dissertation is to build analysis tools to analyze information
distributed on those surfaces that can be identi�ed with the unit sphere either
geometrically or topologically. We shall cover di�erent topics from spherical
wavelets, through spherical kernels, to their approximations. However, I am
not ambitious in a way to make an encyclopedia here, but rather to explore
these areas and their interconnection while at the same time make contribution
to some interesting topics along the path, to re�ect the beauty and colorfulness
lying between harmonic analysis and other mathematical �elds and applications.

1.1 Summary of contents

Each chapter is developed systematically and has their own introduction part,
hence here I only brie�y summarize the contents and contributions. The �rst
chapter serves both as an explanation of mathematical concepts that are cru-
cial in later chapters, such as spherical harmonics, Laplace-Beltrami operator,
and as an introduction to spherical operators that emerged recently along with
their properties. Especially I derive some commutativity properties of a newly
introduced spherical Hilbert-transform. Immediately after that is a reminder of
Funk-Hecke formula, integral formulae on the rotation group, as well as the fact
that the rotation operator, which plays fundamental role in later chapters, is an
irreducible representation of the classical rotation group.

The second chapter starts with the construction of spherical wavelets in the
frequency domain, in which a dilation on the half real line using radial basis func-
tions played a key role. In this approach there has been localized tight frames
successfully constructed in recent years and an extended version into anisotropic
case can be achieved by attaching a steerable directional function onto the ra-
dial basis function. In the second section of this chapter, we construct a type
of spherical α-wavelet system through stereographic projection, which incorpo-
rates spherical wavelets and spherical shearlets. This method is geometrically
the most natural, intuitively can be understood as the correspondence between
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CHAPTER 1. INTRODUCTION

plane and the sphere; it inherits the advantage of conformal mappings, hence
has great mathematical properties such as preserving frame structure. What
quite di�erent from the previous work of others is that I discuss under a setting
incorporating both isotropic and anisotropic dilation. The main new theorem
in this chapter gives a pioneering necessary and su�cient condition for a large
subclass of square integrable functions to be admissible, based on which further
frame properties can be achieved. At the end is a selective review of several
other ways of constructing wavelets on the sphere. Each of them has di�er-
ent emphasis on one speci�c aspect, such as orthogonality, restoration, reduced
redundancy, fast computation and so forth.

The third chapter is an extension to di�erent topics with multiple new re-
sults that have lines of interconnection beneath. The �rst topic concerns kernel
approximation, in which I would like to invite readers to have a tour through
various types of kernels, from the classical reproducing kernel since Hilbert's
time to the recently developed multiscale kernels. The underlying questions
that I am going to answer in this part include: When is a zonal kernel capable
of approximating a square integrable function on the sphere? If such a condition
exists, how well can it approximate the function? Does a sphere version mul-
tiscale kernel and its corresponding multiscale structure exist? If exists, what
properties does it have?

After an a�rmative answer to those questions I would like to draw your
attention to the construction of spherical frames. In this part two di�erent types
of new frame systems are built corresponding to two di�erent ways of spherical
wavelet construction in the pervious chapter: one is developed in the frequency
domain, where frame property inside the inherited multiresolution structure is
for the �rst time explored, which allows us to transform an arbitrary frame or
basis without any good properties into a localized one; while another, technically
much more involved, adapts to the wavelets/shearlets systems coming through
conformal mapping. Notice that mapping a plane wavelet system to the sphere
inevitably su�ers from defects such as distortion. In other words, a regular grid
on the plane, once we impose on it some translation and dilation operation,
does not necessarily give a regular grid on the sphere. Therefore it becomes
meaningful to develop frame systems directly on the sphere. In fact, I am
going to give both continuous and discrete version localized tight frames on the
sphere and their exact reproducing formulae for the stereographic approach,
which is absent since twenty years. These new frames, unlike the ones obtained
by using energy conservation through conformally projecting planar wavelets
or shearlets frames, have the potential to adapt to any preferable grids on the
sphere. However, I leave the speci�c choices of grids, that have been or to be
smartly designed and implemented by mathematicians, engineers, scientists and

2



1.1. SUMMARY OF CONTENTS

artists, as well as redundancy analysis to future work. Based on those spherical
frames and their multiresolution structure a Galerkin scheme which enable us
to do numerical analysis of PDEs on the sphere can be formed.

Afterwards a short discussion is devoted to triangulated surface, as another
step into the discrete surface world. This part is not tightly related to the
previous parts, and by no means I intend to dive deeply here, but rather only
give a �avor of how an object living in the continuous world can �nd their
discrete partners. We start by giving a formula for a new inner product of
continuous piecewise-linear functions on a given triangulation, comparing it with
the weighted inner product on graphs. Along this way, we see two di�erent types
of discrete Laplacian on surfaces, one purely combinatoric, while the other is
de�ned in a geometrical manner. The eigenvalues of the geometric discrete
Laplacian are less known and I derive their expressions and bounds as a step
forward, while the eigenvalues estimation of the combinatoric Laplacian has
been well established before this dissertation and I summarize some in the �nal
chapter as supporting material.

The �nal chapter also contains a self-contained section of elegant introduc-
tion to Sturm-Liouville theory is given, from which di�erent kinds of orthogonal
polynomials that are essential to the main results in this dissertation are derived
naturally. After that, a small section about quaternions and metrics on rotation
group gives an alternative representation for the spherical points.

Except for the last chapter which consists of reformulation of known results
from personal perspective, most theorems in this dissertation are established
and proved either in original or progressive ways, while prepared by discussions
based on excellent works of others', so that I believe a balance has been achieved
between what are historical and what are innovative in this work.
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CHAPTER 1. INTRODUCTION

1.2 Spherical representing systems and operators:
old and new

We live in an era that the perception of the world is reformed into mathematical
simulation and the understanding of its objects is deepened through systematical
deduction using mathematical symbols. Many natural objects like the planet on
which we live can be studied abstractly as a sphere, and representing a sphere
mathematically is the �rst step we shall take.

By "representing" I ask two di�erent but united questions. The �rst ques-
tion is how to represent points on a sphere? It actually asks, how to build a
correspondence relation between the sphere and some parameter space. One
obvious way is using the coordinates in Euclidean space, that we have been fa-
miliar with in our daily life and in the university analysis and geometry course;
another way is to build a group identi�cation, which is partly illustrated in this
chapter and the last chapter for reference.

The second question is what are natural representations on the function
spaces de�ned on a sphere? The function space in most context of this work
means the L2 space or subspaces of it, which is Hilbert. We shall encounter
several approaches, including representing a function by the superposition of
eigenfunctions of the spherical Laplace operator, the integral representation with
respect to some wisely chosen kernels, and the representation through expansion
of a specially designed representation system.

Let (I, dµ) be a measure space, a family of elements Φ = {ϕi}i∈I in a Hilbert
space H is called a dictionary1 if span{ϕi} = H, namely it is a complete subset.
Various kinds of dictionaries may be chosen to provide optimal representation of
certain class of function spaces, for instance the spherical harmonics introduced
below constitute an orthogonal basis for the space of square integrable func-
tions on the sphere, in �nite element methods multivariable polynomials under
di�erent restrictions provide approximation to Sobolev spaces and wavelets are
well adapted to Besov space by its de�nition. The "optimal" here could either
mean an accurate and unique expression of a signal f with fast convergence
rate, or it could mean the linear expansion of f in terms of an overcomplete
dictionary which has sparse coe�cients through minimizing certain norms, or
sensitive to special features like high frequency or singularities, depending on
objects or tasks; just like preparing a tasty noodle soup for the new years eve,
you can either choose ingredients like lamb or �shes inside if the family members

1The name dictionary is borrowed from learning theory, with the underlying meaning that

the vocabulary inside is su�ciently complete to express any sentences or meanings, in other

context it could be alternatively called atoms or molecules, namely a collection of building

blocks
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1.2. SPHERICAL REPRESENTING SYSTEMS AND OPERATORS: OLD
AND NEW

are meat fans, or tofu and seegrass if your lovers coincidentally are vegetarian.
Being overcomplete intuitively means that to prepare a �sh noodle soup, you
must at least have �sh and noodles, and in addition you can add pepper or soy
to achieve di�erent �avors. In real computation usually people aim to obtain
a balance between the precision and the sparsity, by minimizing a functional
like ∥f − Φg∥22 + αM(g), with α a regularization parameter and M some cost
function.

While there is great �exibility of choosing di�erent ingredients for your soup,
you shall not put in everything so that it spoils or does not remains as a �sh
noodle soup anymore; in other words structure stability and compatibility shall
be guaranteed. The concept of frames comes in to provide more �exibility than
the orthogonal basis and at the same time requires the basic ingredients that
can stably represent a given function. Precisely, a dictionary Φ is called a frame
if there are positive constants A ⩽ B such that

A∥f∥2 ⩽
∫︂
I

|⟨f, ϕi⟩|2dµ ⩽ B∥f∥2 (1.1)

for any f ∈ H. In particular, when I is discrete, the above inequality becomes

A∥f∥2 ⩽
∑︂
i∈I

|⟨f, ϕi⟩|2 ⩽ B∥f∥2 (1.2)

Meanwhile for any f ∈ H there exists at least one dual frame(the canonical
dual) {ϕi}˜ i∈I with frame bounds 1

B and 1
A such that

f =
∑︂
i∈I

⟨f, ϕi⟩ϕĩ (1.3)

When the frame {ϕi}i∈I is super tight, namely when the frame bounds A, B
coincide and equal to one, it holds that ϕi = ϕĩ for all i ∈ I. The canonical
dual may not be equipped with the properties that Φ has, for instance the dual
system does not necessarily have a single generator when the frame Φ does,
hence does not inherits a wavelet structure. In fact, there might exist in�nitely
many (alternate) duals, but how to choose a dual wisely is much depending on
the problems to deal with.

Spherical harmonics form an orthogonal system, hence its dual is itself. It
has become a useful tool to analyze functions on the sphere, since the time of
Laplace and Legendre. A spherical harmonic Yl is a homogeneous polynomial
of degree l which solves the Laplace equation. After being restricted on the
sphere, they are sometimes called surface spherical harmonics. In this work, if
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CHAPTER 1. INTRODUCTION

we don't give additional clari�cation, it is assumed that spherical harmonics are
already restricted and they satisfy the equations

∆S2Yl = −l(l + 1)Yl (1.4)

where

∆S2 =
1

sin θ
(
∂

∂θ
(sin θ

∂

∂θ
) +

1

sin θ

∂2

∂φ2
) (1.5)

is the Laplace-Beltrami Operator on S2. The operator of in�nitesimal rota-
tions[65] or operators of angular momentum[71] up to a change of sign i are

Lx = −i(y ∂
∂z

− z
∂

∂y
) = i(sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ
)

Ly = −i(z ∂
∂x

− x
∂

∂z
) = i(− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ
)

Lz = −i(x ∂
∂y

− y
∂

∂x
) = −i ∂

∂φ

(1.6)

It can be immediately veri�ed that

−∆S2 = L2
x + L2

y + L2
z (1.7)

If we denote by (η1, η2, η3)
T the eigenvector of σ ∈ SO(3) with its length

equal to the rotation angle ϕ and the identity matrix of rotation group by σ0,
when ϕ is mall, there is

R(σ) = R(η1, η2, η3) = R(σ0)− iLxη1 − iLyη2 − iLzη3 +O(ϕ2)

where R(σ0) is just the identity operator.
Since for s, s

′
> 0 there is the obvious relation

R(sη1, sη2, sη3)R(s
′
η1, s

′
η2, s

′
η3) = R((s+ s

′
)η1, (s+ s

′
)η2, (s+ s

′
)η3)

it follows that

dR(sη1, sη2, sη3)

ds
= −iR(sη1, sη2, sη3)Lη⃗ (1.8)

where Lη⃗ = Lxη1 + Lyη2 + Lzη3, hence

e−iLη⃗ = R(η1, η2, η3) (1.9)

and the unitarity of representation R(η1, η2, η3) is equivalent to the hermiticity
of the operators Lx, Ly and Lz in L2(S2).
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AND NEW

Notice that the element σ̃ = σ1σσ
−1
1 leaves σ1(η1, η2, η3)T invariant. Fur-

thermore, if η⊥ is a unit vector perpendicular to η = (η1, η2, η3)
T such that

(ση⊥, η⊥) = cosϕ, then (σ̃σ1η
⊥, σ1η

⊥) = cosϕ. Thus the rotation angle of σ̃ is
the same as σ. Assume that σ1 is a small rotation, namely

R(σ1) = R(σ0)− i(Lxζ1 + Lyζ2 + Lzζ3) +O(|ζ|2)

with |ζ| small. Let η = (|η|, 0, 0)T and ζ = (0, |ζ|, 0)T , then as a consequence of
the identity R(σ̃) = R(σ1)R(σ)R(σ−1

1 ) there is

R(σ̃) = R(σ0)− i(Lxη̃1 + Ly η̃2 + Lz η̃3) +O(|η|2)
= (R(σ0)− i|ζ|Ly)(R(σ0)− i|η|Lx)(R(σ0)− i|ζ|Ly)
= R(σ0)− i|η|Lx + |η| · [Lx, Ly]|ζ|+O(|ζ|2)

(1.10)

Identity σ1ζ = ζ implies

σ1 =

⎛⎝ cosϕ1 0 sinϕ1
0 1 0

− sinϕ1 0 cosϕ1

⎞⎠
where ϕ1 = |ζ| and η̃ = σ1η = (|η| cosϕ1, 0,−|η| sinϕ1)T , hence by comparing
the �rst order term of |ζ| in (1.10) we obtain [Lx, Ly] = iLz. By exchanging the
role of x, y and z, we arrive at the following elegant commutation rules

[Lx, Ly] = iLz, [Ly, Lz] = iLx, [Lz, Lx] = iLy (1.11)

By de�ning
L+ = Lx + iLy, L− = Lx − iLy

relations (1.11) become

[L+, Lz] = −L+, [L−, Lz] = L−, [L+, L−] = 2Lz (1.12)

Notice that L+, L− and Lz are self-adjoint and if m ∈ R nonzero is an
eigenvalue of Lz with eigenfunction f , then L+f is an eigenvector corresponding
to eigenvalue m+ 1 while L−f is one corresponding to eigenvalue m− 1. Since
the total number of distinct eigenvalues is �nite, assume that the largest of them
is l and write its normalized eigenfunction as Y l, similarly the smallest of them
is written as l∗ with eigenfunction Y l

∗
.

De�ne by induction αmY m−1 = L−Y
m where αm are chosen so that

⟨Y m−1, Y m−1⟩ = 1

7



CHAPTER 1. INTRODUCTION

Since L+Y
l = 0, that is

L+Y
l−1 =

1

αl
L+L−Y

l =
2

αl
LzY

l =
2l

αl
Y l = αlY

l (1.13)

an induction argument leads to the claim that L+Y
m is proportional to Y m+1,

namely L+Y
m = αm+1Y

m+1. Moreover, the fact that L†
+ = L− gives

αm⟨Y m, Y m⟩ = αm⟨Y m−1, Y m−1⟩

namely αm = αm = αm. Thus from the observation that

α2
m+1Y

m+1 = L+L−Y
m+1 = (2Lz + L−L+)Y

m+1 = (2m+ 2 + α2
m+2)Y

m+1

we obtain the relation α2
m+1 − α2

m = −2m. From this relation, our observation
that α2

l = 2l leads to the expression

α2
m = (l +m)(l −m+ 1) (1.14)

L−Y
l∗ = 0 gives αl∗ = 0, hence l∗ = −l. Therefore l is either an integer or half

an odd number and every irreducible representation is uniquely determined by
l with its dimension equal to 2l + 1.

In real calculation and approximation, frequently used is the normalized
expression

Y ml (θ, φ) = (−1)m

√︄
(2l + 1)(l −m)!

4π(l +m)!
eimφPml (cos θ) (1.15)

which naturally appears when one solves the Laplace equation through separa-
tion of variables, where l ∈ N and |m| ⩽ l. Those spherical harmonics of degree
l form an orthonormal basis for the space of homogeneous polynomials of degree
l, denoted by Hl.

From the property that −i ∂∂φY
m
l = mY ml we already see that Y ml (φ, θ) =

eimφFml (θ) for some function Fml (θ) =: F̃
m

l (cos θ). Let x = cos θ, from (1.5) we
deduce that

(1− x2)
d2

dx2
F̃
m

l (x)− 2x
d

dx
F̃
m

l (x) +

[︃
l(l + 1)− m2

1− x2

]︃
F̃
m

l (x) = 0 (1.16)

when m = 0 it is exactly di�erential equation (4.41), thus F̃
m

l are nothing else

8
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but the associated Legendre Polynomials

Pml (x) := (−1)m(1− x2)m/2
dm

dxm
Pl(x)

=
(−1)m(1− x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l

= (−1)m
(l +m)!

(l −m)!
P−m
l (x)

(1.17)

which satisfy the orthogonality relation that∫︂ 1

−1

Pml (x)Pm
l′
(x)dx =

(l +m)!

(l −m)!

2

2l + 1
δl,l′ (1.18)

where the last equality of (1.17) follows from Rodrigues formula

dl−m(x2 − 1)l

dxl−m
=

(l −m)!

(l +m)!
(x2 − 1)m

dl+m(x2 − 1)l

dxl+m

Sometimes Laplace's integral expression for Legendre polynomials is as useful
as the di�erential expression. It reads equivalently as

Pl(x) =
1

π

∫︂ π

0

(︂
x±

√︁
x2 − 1 cos θ

)︂l
dθ (1.19a)

Pl(x) =
1

π

∫︂ π

0

(︂
x∓

√︁
x2 − 1 cos θ

)︂−l−1

dθ (1.19b)

More generally there is

Pml (x) = γ+l,m

∫︂ π

0

(︂
x∓

√︁
x2 − 1 cos θ

)︂l
cos(mθ)dθ

Pml (x) = γ−l,m

∫︂ π

0

(︂
x±

√︁
x2 − 1 cos θ

)︂−l−1

cos(mθ)dθ

where γ+l,m = (±1)m (l+m)!
πl! e−

m
2 πi and γ−l,m = (±1)m l!

π(l−m)!e
−m

2 πi.
The spherical Hilbert transform, as an analogue of the plane situation, �rstly

appears in [85](but no mathematical properties are given there)

ˆ︁(Hf)lm =

⎧⎨⎩ −i ˆ︁flm m > 0
0 m = 0

i ˆ︁flm m < 0

(1.21)

9



CHAPTER 1. INTRODUCTION

whereˆ︃flm is the Fourier coe�cient of a square integrable function f with respect
to the spherical harmonics Y ml . Let us derive some new commutativity relations
and formulae of those operators in the next theorem.

Theorem 1.1. (i) iH is self-adjoint and (iH)2f = −f for any f ∈ L2(S2).
When ˆ︁fl,m = ˆ︁fl,−m for all l and |m| ⩽ l, f and iHf are orthogonal.

(ii) The di�erential operator Lx, Ly, Lz de�ned in (1.6) commute with H.
In particular [∆S2 ,H] ≡ 0.

(iii) Given any bounded operator A : L2(S2) → L2(S2), there is

[∆S2 , A]Hl⊥Hl and [∆S2 , A]Mm⊥Mm (1.22)

where for each m ∈ Z,

Mm = span{Y ml : l ⩾ 0} (1.23)

(iv) For each l, there holds the identity

{ˆ︁(Hf)l,m}m ⊛ {ˆ︁(Hf)l,m}m(n)− { ˆ︁fl,m}m ⊛ { ˆ︁fl,m}m(n)

= −isgn([n])
(︂
{ˆ︁(Hf)l,m}m ⊛ { ˆ︁fl,m}m(n) + { ˆ︁fl,m}m ⊛ {ˆ︁(Hf)l,m}m(n)

)︂ (1.24)

where ({am}⊛ {bm}) (n) =
∑︁

|m|⩽l
a[n−m]bm and [n] taking the module2.

Proof. The claim that iH is self-adjoint and (iH)2f = −f is obvious. The rest
of (i) is a result of the observation that

⟨f, iHf⟩L2 =
∑︂
l

∑︂
|m|≤l

sgn(m)|f̂ lm|2 (1.25)

is zero since each m term cancels the −m term.
It can be checked through calculation that the identity

LzHY
m
l =

⎧⎨⎩ −imY ml if m > 0
0 if m = 0
imY ml if m < 0

= −i|m|Y ml
= HLzY

m
l

2Here I make the convention that [n] = −(|n| mod l + 1) when n is a negative integer;

[n] = l + 1 when (n−m mod l + 1) = 0

10
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holds for any spherical harmonics, hence for square integrable functions. Ob-
serve that

HL+Y
m
l = −iαm+1sgn(m)Y ml = L+HY

m
l for m ̸= l

HL+Y
l
l = 0 = L+HY

l
l

and [H, L−]Y
m
l = 0 for any m. As linear combination of L+ and L−, operators

Lx and Ly commute with H respectively. The assertion that ∆S2 commutes
with H is thus an immediate result of (1.7).

Besides, there is

⟨[∆S2 , A]Y
m
l , Y m

′

l′
⟩ = ⟨AY ml ,∆S2Y

m
′

l′
⟩ − ⟨A∆S2Y

m
l , Y m

′

l′
⟩

= [−l
′
(l

′
+ 1) + l(l + 1)]⟨AY ml , Y m

′

l′
⟩

(1.26)

Similarly,

⟨[Lz, A]Y ml , Y m
′

l′
⟩ = −⟨AY ml , LzY

m
′

l′
⟩ − ⟨ALzY ml , Y m

′

l′
⟩

= (m
′
−m)⟨AY ml , Y m

′

l′
⟩

(1.27)

hence (iii) is veri�ed.
Finally, the left hand side of (1.24) is equal to

−
∑︂
|m|⩽l

(sgn([n−m])sgn(m) + 1) f̂ l,[n−m]f̂ l,m

while the right hand side is equal to

−sgn([n])
∑︂
|m|⩽l

(sgn([n−m]) + sgn(m)) f̂ l,[n−m]f̂ l,m

hence identical to each other. Indeed, under our convention if [n−m] and m are
of opposite sign, both left and right hand side vanish; if sgn([n−m]) = sgn(m) =
1, then sgn[n] = 1; if sgn([n−m]) = sgn(m) = −1, then sgn[n] = −1.

The renormalized Poisson kernel has the expression

Qr(t) =
1

4π

1− r2

(1− 2rt+ r2)3/2
=

∞∑︂
l=0

2l + 1

4π
rlPl(t) (1.28)

with r ∈ (0, 1) and t ∈ [−1, 1]. It has the following approximation property for
continuous functions, which shall be used later. Its proof can be found in [40]
for instance, but for completeness we give a greatly simpli�ed version.

11



CHAPTER 1. INTRODUCTION

Lemma 1.2. For any continuous function f on the two sphere, there is

lim
r→1−

sup
y∈S2

|
∫︂
S2
Qr(x · y)f(x)dΩ(x)− f(y)| = 0

Proof. Firstly notice that for any ϵ > 0 there exists δ ∈ (0, 1) such that |f(x)−
f(y)| < ϵ whenever |x · y − 1| < δ.∫︂

S2
Qr(x · y)dy =

∞∑︂
n=0

2n+ 1

2
rn
∫︂ 1

−1

Pn(t)dt = 1

hence ⃓⃓⃓⃓∫︂
S2
Qr(x · y)f(y)dy − f(x)

⃓⃓⃓⃓
⩽
∫︂
S2
Qr(x · y)|f(y)− f(x)|dy

⩽ 2∥f∥C
∫︂
x·y⩽1−δ

Qr(x · y)dy + ϵ

2

∫︂
x·y>1−δ

Qr(x · y)dy

⩽ ∥f∥C
∫︂ 1−δ

−1

1− r2

(1 + r2 − 2rt)3/2
dt+

ϵ

2

∫︂ 1

1−δ

1− r2

(1 + r2 − 2rt)3/2
dt

=
1− r2

r

∥f∥C√
1 + r2 − 2rt

⃓⃓⃓⃓1−δ
−1

+
1− r2

r

ϵ

2
√
1 + r2 − 2rt

⃓⃓⃓⃓1
1−δ

→ ϵ

2

as r approaches 1−. Due to the arbitrariness of ϵ, the claim follows.

Spherical harmonics in (1.15) have the important property that they form
an orthonormal basis for the Hilbert space L2(S2, dΩ). Therefore

Zl(ξ, η) =
∑︂
|m|≤l

Y ml (ξ)Y ml (η) (1.29)

gives a unique reproducing kernel of the space Hl. This de�nition does not
depend on the orthonormal system that we choose. In fact, the well known
addition theorem says that

Zl(ξ, η) =
2l + 1

4π
Pl(ξ · η). (1.30)

12
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where Pl are Legendre Polynomials. For curious readers, I refer to [10] or [36]
for its proof. In a general dimension, Pdl can be de�ned in the same way, with

Zdl =
l + λd

|Sd−1|λd
Pλd

l (1.31)

where λd = (d−2)/2 and Pλd

l is the Gegenbauer polynomials. De�ne projection
operators Pl : L2(S2) → Hl as

Pdl f(ξ) := f ∗ Zdl (ξ) :=
∫︂
Sd−1

Zdl (ξ · η)f(η)dΩ(η) (1.32)

In most of the discussion below we assume d = 3 and brie�y denote it by Pl.
Every function on [−1, 1] which is integrable with respect to the weight

function (1− t2)
d−3
2 satis�es the so called Funk-Hecke formula,∫︂

S2
f(ξ · η)Y (η)dΩ(η) = clY (ξ) (1.33)

with cl = |Sd−1|
∫︁ 1

−1
f(t)(1 − t2)

d−3
2

P
λd
l (t)

P
λd
l (1)

dt and Y ∈ Hl. Furthermore, as an

immediate consequence,∫︂
S2
Zl(ξ, ω)Zl(η, ω)dΩ(ω) = Zl(ξ, η) (1.34)

Let SO(3) be the rotation group, consisting of matrices that are orthogonal
and of determinant one. This group or its representation plays an essential role
in the analysis on spheres. For instance, the Fourier transform of f ∈ L1(S2)
can be de�ned alternatively as

𭟋f(γ) =
∫︂
SO(3)/SO(2)

f(x)(−x, γ)dµ(x), γ ∈ Γ (1.35)

where Γ is the dual group of SO(3)/SO(2), annihilator of SO(2).
Since SO(3)/SO(2) is compact, Γ is discrete. Let q : SO(3) → SO(3)/SO(2)

be the natural homomorphism, then

f →
∫︂
SO(3)

f ◦ q dσ (1.36)

is a bounded linear functional on C(SO(3)/SO(2)), hence induces a unique
measure µ ∈M(SO(3)/SO(2)) with ∥µ∥ ≤ ∥σ∥ and∫︂

SO(3)

f ◦ q dσ =

∫︂
SO(3)/SO(2)

fdµ (1.37)

13



CHAPTER 1. INTRODUCTION

The operator de�ned by Sf([x]) =
∫︁
SO(2)

f(xy)dµ(y) projects functions in
C(SO(3)) onto C(SO(3)/SO(2)).

Besides, the integral on SO(3) can be expressed explicitly in the form∫︂
SO(3)

fdσ =
1

8π2

∫︂ 2π

0

∫︂ π

0

∫︂ 2π

0

f(φ̄1, θ̄, φ̄2) sin θ̄dφ̄1dθ̄dφ̄2 (1.38)

where (φ̄1,θ̄,φ̄2) is the Euler angle. When f depends only on the rotation angle
α it has the expression∫︂

SO(3)

fdσ =
2

π

∫︂ π

0

f(α) sin2
α

2
dα (1.39)

where α(g1gT2 ) = arccos( 12 (Trg1g
T
2 − 1)) is the rotation angle.

What is important to later chapters is the left regular unitary representation
of SO(3) on the Hilbert space L2(S2) de�ned by

(R(σ)f)(ω) = f(σ−1ω) (1.40)

where σ ∈ SO(3). R(σ) is called rotation operator. [71] is a brilliant reference for
some of its interesting properties and applications in angular momentum theory
of quantum mechanics. [16] is a classic in both group representation theory
and orthogonal polynomials. The rotation operator, together with the spherical
dilation operators that are going to be de�ned and discussed intensively in the
next chapter, are building blocks for the frame systems in this dissertation.

We have mentioned that for nonnegative integer l, {Y −l
l , · · · , Y ll } form an

orthonormal basis for Hl. In this situation R is irreducible, for otherwise sup-
pose there is an invariant subspace H′

, then it is invariant under L+, L− and Lz

as well. Take any h
′
=

l∑︁
m=−l

cmY
m
l ∈ H′

, let m
′
be the smallest index such that

cm′ ̸= 0. There is Ll−m
′

+ h
′
= cm′αl · · ·αm′+1Y

l
l ∈ H′

by invariance under L+.
Thus Y ll ∈ H′

and Ll−m− Y ll = αlαl−1 · · ·αm+1Y
m
l ∈ H′

implies that Y ml ∈ H′

for arbitrary |m| ⩽ l, hence H′
= Hl.

Similarly we can de�ne the regular representation of SO(d) and denote by
the Rl,d its restriction on Hd,l. In fact, the next classic theorem generalize
the irreducible property to Rd,l on SO(d). Its proof is quite instructive in
decomposing polynomial spaces aspect, hence I include it here. However, it is
like a cherry on the cake, not every child likes or needs to eat it.

Theorem 1.3. Rd,l is an irreducible representation of SO(d).

14
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Proof. For σd−1 ∈ SO(d− 1), there is

Rl,d(σd−1) =
⨁︂
l′⩽l

Rl
′
,d−1(σd−1) (1.41)

Indeed, for f := xl−l
′

d hl
′

∈ xl−l
′

d Hd−1,l′ assume with out loss of generality that
σd−1 leaves ed unchanged, then there is

Rl,d(σd−1)f = xl−l
′

d hl
′

(σ−1
d−1(x1, · · · , xd−1))

hence xl−l
′

d Hd−1,l′ is an invariant subspace of Pd,l, the space of homogeneous
polynomials of degree l. Since Pd,l = Hd,l ⊕ r2Pd,l−2, there is

Pd,l =
⌞ l

2⌟⨁︂
k=0

r2kHd,l−2k (1.42)

Let q : Pd,l ↦→ Pd,l/r2Pd,l−2 be the canonical map and V d
l,l′

= q(xl−l
′

d Hd−1,l′ )

which is invariant under Rl,d(σd−1). By (1.42) there is

Pd,l = r2Pd,l−2 + xd Pd−1,l−1|x′ + Pd−1,l|x′

= r2Pd,l−2 + xd

⌞ l−1
2 ⌟∑︂

k=0

(r2 − x2d)
kHd−1,l−1−2k +

⌞ l
2⌟∑︂

k=0

(r2 − x2d)
kHd−1,l−2k

⊂ r2Pd,l−2 +

l⨁︂
k=0

xkdHd−1,l−k

where x
′
= (x1, · · · , xd−1), and the converse inclusion is obvious. Thus we get

Pd,l = r2Pd,l−2 +

l⨁︂
k=0

xkdHd−1,l−k (1.43)

hence q(Pd,l) = Pd,l/r2Pd,l−2 =
l⨁︁

k=0

V dl,k and (1.41) follows.

As a consequence is the irreducibility of Rl,d of the group SO(d) for d ⩾ 3.
Suppose this has been proved for d ⩽ n − 1. For d = n, notice in (1.41) that

the restriction of Rl,d on SO(d− 1) is the the direct sum of irreducible Rl
′
,d−1

on V d
l,l′

. Therefore if W is a non-trivial invariant subspace under Rl,d, it must

15
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be of the form W =
⨁︁

l′∈L V
d
l,l′

for some subset L of {0, · · · , l}. Thus it only
remains to prove L = {0, · · · , l}.

Let ls be the smallest index in L and lb biggest and assume V d
l,l′

⊂ W .
Since each rotation can be decomposed as a series of rotations in planes xj , xk
(j ̸= k), in�nitesimal operators Lj,k = xk

∂f
xj

− xj
∂f
∂xk

must leave V d
l,l′

invariant

and choose some j such that ∂hd−1,lb

∂xj
̸= 0. If neither j nor k are equal to d,

then Ljk(xl−l
′

d hd−1,l
′

(x
′
)) ∈ xl−l

′

d Hd−1,l′ . If k = d for instance(the same to the
situation j = d),

Lj,d(x
l−l

′

d hd−1,l
′

(x
′
)) = xl−l

′
+1

d

∂hd−1,l
′

∂xj
− (l − l

′
)xl−l

′
−1

d xjh
d−1,l

′

∈ xl−l
′
+1

d Hd−1,l′−1 + xl−l
′
−1

d Hd−1,l′+1

Thus if lb < l, then Lj,d(x
l−lb
d Hd−1,lb) ∩ x

l−lb−1
d Hd−1,lb+1 ̸= ∅ and

xl−lb−1
d Hd−1,lb+1 ⊂W

since W is invariant, contradictory to the assumption that lb is the biggest
index. Similarly, if ls > 0, then ∂hd−1,ls

∂xj
̸= 0 implies xl−ls+1

d Hd−1,ls−1 ⊂ W ,
contradictory to the smallest assumption on ls. Therefore we can conclude that
W = Hd,l.

On the one hand we have been immersed in the exhilarating success of spher-
ical harmonics which not only expand the L2 space, but also form rotational
invariant subspaces with hierarchical structure; on the other hand we have to
admit that, the nowadays most widely used planar wavelets, which was origi-
nally based on the idea of Gabor functions, have replaced traditional Fourier
transform in dealing with shock waves in seismology, acoustic or image signals
characterized with singularities, and spherical harmonics face the same awk-
wardness in this aspect due to its global feature. Furthermore, after witnessing
the fast development of wavelets' planar descendants like ridgelets, curvelets,
brushlets, contourlets and cone-adapted shearlets in an attempt to complement
the ine�ciency of the wavelets in detecting anisotropic structures, it is very
natural to ask for the generalization of those "-lets" adapting to an arbitrary
surface.
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Spherical Dilation Systems

In the past decade emerged multiple methods to de�ne wavelets on the sphere
or a general manifold, and each of them bears di�erent merits. Furthermore,
like those a�ne-like systems on the plane, whenever possible, it is convenient
to introduce operations like translation and dilation. Not only because through
them a system can be generated and implemented in a simple manner, but also
pertaining to them there are wonderful properties. Thus in this section let us
pay attention to those special wavelet systems equipped with various means of
dilation operation.

2.1 Dilation in frequency domain

One attempt of this, the so called the curvelets on the sphere, is given in [22].
The idea behind this is similar to that of di�erential geometry, namely the
surface is divided smoothly into charts for multiple scales and then apply the
curvelets on each of the building block. The scaling function there is proposed
as follows. Let L = 2J for some J ∈ N and

ϕL =

L∑︂
l=0

ˆ︁ϕL(l, 0)Yl,0 (2.1)

to form a sequence of functions of multi-scale ϕL, ϕ2−1L, · · · , ϕ2−jL.
With the low pass �lter

ˆ︁hj(l,m) =

{︄ ˆ︁ϕ2−j−1L(l,m)ˆ︁ϕ2−jL(l,m)
l < 2−j−1L and m = 0

0 otherwise
(2.2)

17
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and the high pass �lter

ˆ︁gj(l,m) =

⎧⎪⎨⎪⎩
ˆ︁ψ2−j−1L(l,m)ˆ︁ϕ2−jL(l,m)

l < 2−j−1L and m = 0

1 l ⩾ 2−j−1L and m = 0
0 otherwise

(2.3)

where one of the simplest choice of ψ is ˆ︁ψ2−jL(l,m) = ˆ︁ϕ2−j+1L(l,m)−ˆ︁ϕ2−jL(l,m).
Clearly in this case ˆ︁gj = 1− ˆ︁hj The isotropic wavelet coe�cients function for a
function f are

wj = ϕ2−jL ∗ f ∗ gj
or ˆ︁wj = ˆ︁ϕ2−jL

ˆ︁f(1− ˆ︁hj) = ˆ︁ψ2−jL
ˆ︁f (2.4)

One possible choice of ˆ︁ϕL(l,m) is 3
2B3

(︁
2l
L

)︁
, the B-spline of order 3, but in

general it is not speci�ed except for being bandlimited. However, a class of
choices using radial basis functions can be found in the earlier works in [66][67],
namely if we �rstly ignore the bandlimit and simply set the scaling function asˆ︁Φj(l) = γ(2−j l), where γ : [0,∞) → R monotonously decreasing satis�es the
following conditions⎧⎪⎨⎪⎩

γ continuous at zero and γ(0) = 1∑︁
l

2l+1
4π

(︄
sup

x∈[l,l+1)

⃓⃓
γ(2−jx)

⃓⃓)︄2

<∞
(2.5)

In particular the �rst condition implies lim
j→∞

∥f − f ∗ Φj∥L2 = 0, namely Φj

forms an approximate identity. Examples of such functions include (1 + x)−s

with x ∈ [0,∞), which is natural for the Sobolev setting, the linear construction

γ(x) =

⎧⎨⎩
1 for x ∈ [0, τ)

1−x
1−τ for x ∈ [τ, 1)

0 for x ∈ [1,∞)
(2.6)

and the cubic construction

γ(x) =

{︃
(1− x)2(1 + 2x) for x ∈ [0, 1)
0 for x ∈ [1,∞)

(2.7)

Wavelets and its dual are chosen in this setting to meet the simple equality

Ψj ∗ Ψ̃j = Φj+1 ∗ Φj+1 − Φj ∗ Φj (2.8)

18



2.1. DILATION IN FREQUENCY DOMAIN

and consequently there is

Φ0 ∗ Φ0 +

∞∑︂
j=0

Ψj ∗Ψj = 1 (2.9)

Two typical choices are thus

ˆ︁Ψj = ˆ︁Ψ̃j =√︂ˆ︁Φj ˆ︁Φj − ˆ︁Φj+1
ˆ︁Φj+1 and

{︄ ˆ︁Ψj = ˆ︁Φj − ˆ︁Φj+1ˆ︁Ψ̃j = ˆ︁Φj + ˆ︁Φj+1

(2.10)

The advantage of this setting is that reconstruction of zonal functions follows
immediately from the hierarchical property of radial basis functions without
extra e�orts. Indeed, by set Vj = {Φj ∗ Φj ∗ f : f ∈ L2} where Φj ∗ Φj is the
low-pass and Wj = {Ψj ∗ Ψ̃j ∗ f : f ∈ L2} where Ψj ∗ Ψ̃j is the band-pass, a
natural multi-resolution structure appears, namely

⎧⎪⎪⎨⎪⎪⎩
V0 ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ⊂ L2

∞⋃︁
j=0

Vj dense in L2

If Φj ∗ Φj ∗ f ∈ Vj , then Φj+1 ∗ Φj+1 ∗ f ∈ Vj+1

(2.11)

As a result any square-integrable function can be approximated by adding de-
tailed terms fromWj level-wise. It is desirable that band-pass vanishes for lower
orders, one possible way is to de�ne γL0 equal to 1 on [0, L0] being continuous
at x = L0 and set

ˆ︁ΦL0
j (l) = DL0

j γL0(l) = γL0(L0 + 2−j(l − L0)) (2.12)

which has the properties that ˆ︁ΦL0
j (l) = 1 for l = 0, · · · , L0 and lim

j→∞
ˆ︁ΦL0
j (l) = 1

for any l. Thus for arbitrarily given f ∈ L2, ΨL0
j ∗ Ψ̃L0

j ∗ f is orthogonal to Hl

for l ⩽ L0. Meanwhile for bandlimited function, say f̂ l = 0 for l > L, we could
instead set ˆ︁ΦL0

j (l) = γL0(2−j l), then the corresponding wavelets have the good

property that ΨL0
j ∗ Ψ̃L0

j ∗ f = 0 whenever 2−j ⩽ L0/L.

In the continuous setting, however, the admissibility conditions imposed on
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CHAPTER 2. SPHERICAL DILATION SYSTEMS

the wavelets are

ˆ︁Ψρ(0) = 0 and
∫︂ ∞

0

ˆ︁Ψρ(l)α(ρ)dρ = 1 for l ⩾ 1

∞∑︂
1

2l + 1

4π

(︃∫︂ ∞

a

ˆ︁Ψρ(l)α(ρ)dρ)︃2

<∞

∫︂ 1

−1

⃓⃓⃓⃓∫︂ ∞

a

Ψρ(t)α(ρ)dρ

⃓⃓⃓⃓
dt < T

(2.13)

where α(ρ)dρ is an arbitrary positive measure. Under the �rst condition there
is ∫︂ ∞

a

∫︂
S2
Ψρ(ξ · η)f(η)dηα(ρ)dρ =

∑︂
l

ˆ︁Φa(l)Pl(f) → f as a→ 0

in the sense of L2, where Φa(t) =
∫︁∞
a

Ψρ(t)α(ρ)dρ or equivalently ˆ︁Φa(l) =∫︁∞
a
ˆ︁Ψρ(l)α(ρ)dρ is well de�ned in L2 since the second condition of (2.13) im-

plies that Φa ∈ L2([−1, 1]). The convergence holds because of the uniform

boundedness
⃓⃓⃓ˆ︁Φa(l)⃓⃓⃓ ⩽ ∫︁ 1

−1

⃓⃓∫︁∞
a

Ψρ(t)α(ρ)dρ
⃓⃓
dt < T and the Banach-Steinhaus

theorem.
To deal with the anisotropic situation, one strategy is to add an additional

directional function h ∈ L2(S2) with
∑︁

|m|≤l |hlm|2 ̸= 0 to form the directional
wavelet

ψ̂lm = ˆ︁Ψ(l)hlm (2.14)

If h is bandlimited, one can assume without loss of generality that h preserves
the energy on each degree l, namely

∑︁
|m|≤l |hlm|2 = 1, hence ∥ψ∥22 =

∑︁∞
0
ˆ︁Ψ(l)2.

The dilation operation in this formulation is de�ned by

ˆ︂D2(a)ψlm = ˆ︁Ψ(al)hlm (2.15)

By choosing a Ψ such that suppˆ︁Ψ ⊂ (a, a−1) with a ∈ (0, 1) and J the
smallest integer such that aJL ⩽ 1, one can de�ne in the same way as in (2.10)
that

ˆ︁Ψj(L−1l) = ˆ︁Ψ(a−jL−1l) =
√︂
γ2a(a

−(j−1)L−1l)− γ2a(a
−jL−1l) (2.16)

with γ2a(t) =
∫︁ 1
t
r2a(u)du∫︁ 1

a
r2a(u)du

and ra(t) = r
(︂

2
1−a (t− a)− 1

)︂
for some Schwartz func-

tion r on [−1, 1].
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2.1. DILATION IN FREQUENCY DOMAIN

Note that supp(ra) ⊂ [a, 1] and γa(t) = 1 when t ⩽ a, hence there is

suppγa(a
−jL−1l) ⊂ (−∞, ajL]

and ˆ︁ψjlm = ˆ︁Ψj(l)hlm is supported in [aj+1L, aj−1L], which together with the
scaling function ˆ︁φlm = γa(a

−JL−1l)δm,0 (2.17)

give the reconstruction formula for each l within the bandlimit of h that

ˆ︁φ2
l0 +

J∑︂
j=0

∑︂
|m|⩽l

ˆ︁ψ2
lm(a−jL−1l) = 1 (2.18)

in a similar manner as (2.9).
One choice for the directional function h, as proposed in [41], is based on the

concept of steerability. The class of steerable functions on R2 under the steering
constrain that

fθ(r, ϕ) =

M∑︂
m=1

km(θ)gm(r, ϕ) (2.19)

for some M ∈ N and basis functions gm were discussed �rstly in [69]. In [9]
this de�nition was applied to spherical functions with respect to the third Euler
angle, a quantity that can be understood as the direction in the tangent plane.

Let us, however, generalize the de�nition in [41] slightly and prove a stronger
result on the sphere. Denote by R(t) the rotation operation around axis ξ0 by
an angle t, we call a function f ∈ L2(S2) steerable, if there exists some tm ∈ S1,
m = 1, · · · ,M such that

R(t)f =

M∑︂
m=1

km(t)R(tm)f (2.20)

holds for almost every t.

Proposition 2.1. Steerability is equivalent to the existence of an azimuthal
band limit in m for L2(S2) functions.

Proof. In fact, if a function f(θ, φ) =
∞∑︁

n=−∞
an(θ)e

inφ ∈ L2(S2) satis�es (2.20)

for some tm and almost every t ∈ [0, 2π], then

∞∑︂
n=−∞

einφ

[︄
an(θ)

(︄
e−int −

M∑︂
m=1

km(t)e−intm

)︄]︄
= 0 a.e. (2.21)
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Since Fourier series forms a Schauder basis for L2(S1), for any an(θ) ̸= 0, there

is e−int−
M∑︁
m=1

km(t)e−intm = 0 a.e.Without loss of generality, assume for some

L > M there is⎛⎜⎜⎜⎝
e−i(t1−t) e−i(t2−t) · · · e−i(tM−t)

e−i2(t1−t) e−i2(t2−t) · · · e−i2(tM−t)

...
...

...
e−iL(t1−t) e−iL(t2−t) · · · e−iL(tM−t)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

k1(t)
k2(t)
...

kM (t)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠ (2.22)

or simply Gtkt = E for almost every t, which implies that rankGt ≤ M a.e.,
contradictory to the linear independence of set {eijt : j = 1, · · · , L}. Therefore
the number of non-zero Fourier coe�cients of f with respect to variable φ is at
most M . The other direction of the proof of the equivalence is an immediate
consequence of the next Lemma.

Lemma 2.2. If f ∈ L2(S2) and f̂ lm = 0 for any |m| ⩾ L + 1 ∈ N0, then for
any t ∈ [0, 2π],

L∑︂
n=−L

k(t− tn)R(tn)f = R(t)f (2.23)

with tn = 2πn
2L+1 and k ∈ L2(S1) given by k(t) =

L∑︁
n=−L

1
2L+1e

int.

Proof. Since
1

2L+ 1

∑︂
|n|⩽L

e−imtn =

{︃
1 for m = 0
0 for m ̸= 0

(2.24)

the Fourier coe�cients of both sides of (2.23) coincide, namely

ˆ︂(R(t)f)lm′ = eim
′
tf̂ lm′

=
1

2L+ 1

∑︂
|m|⩽L

∑︂
|n|⩽L

ei(m
′
−n)tmeintf̂ lm′

=
1

2L+ 1

∑︂
|m|⩽L

∑︂
|n|⩽L

ein(t−tm) ˆ︂(R(tm)f)lm′

=
∑︂

|m|⩽L

k(t− tm) ˆ︂(R(tm)f)lm′

Therefore the equality (2.23) holds.
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2.1. DILATION IN FREQUENCY DOMAIN

Under the assumption that h is steerable, namelyR(t)h =
∑︁

|m′ |⩽L
km′ (t)R(tm′ )h

for some �nite L, there is

R(t)ψ =
∑︂
l

ˆ︁Ψ(l)R(t)Plh

=
∑︂

|m′ |⩽L

km′ (t)
∑︂
l

ˆ︁Ψ(l)Pl (R(tm′ )h)

=
∑︂

|m′ |⩽L

km′ (t)R(tm′ )ψ

(2.25)

namely ψ is steerable too. In this case there is

⟨R(t)ψj ,R(t
′
)ψj⟩L2 =

∑︂
l

∑︂
|m′ |⩽min{l,L}

e−im
′
(t−t

′
)
⃓⃓⃓
ψ̂
j

lm′

⃓⃓⃓2
=
∑︂
l

∆l(t− t
′
)
⃓⃓⃓
Ψ̂j(l)

⃓⃓⃓2 (2.26)

where ∆l(t) =
∑︁

|m′ |⩽L
|hlm′ |2e−im

′
(t). Intuitively speaking, if we choose 0 = t1 <

t2 < · · · < tN < 2π and form a N ×N matrix

M = ⟨R(ts)ψj ,R(tu)ψj⟩L2 (2.27)

with 1 ⩽ s, u ⩽ N , the diagonal elements are 1's, while the smaller the o�
diagonal elements are, the more directional ψj is.

Within this approach, the best known work in frame properties aspect is
probably [30], where a localized tight frame is constructed in the following del-
icate way. By taking a continuous function a supported in [ 12 , 2], for instance
a(t) = m0(π log2(t)) withm0 the standard orthogonal wavelet mask on real line,
such that

|a(t)|2 + |a(2t)|2 = 1 on [
1

2
, 1] (2.28)

We have obviously for any J ∈ Z+ that

b(2−J t) :=

J∑︂
j=−∞

⃓⃓
a(2−jt)

⃓⃓2
=

{︄ ⃓⃓
a(2−jt)

⃓⃓2
+
⃓⃓
a(2−j+1t)

⃓⃓2
= 1 for t ∈ 2j [ 12 , 1], j ⩽ J⃓⃓

a(2−J t)
⃓⃓2

for t ∈ 2J+1[ 12 , 1]

(2.29)
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In particular, when J → ∞,
∞∑︁

j=−∞

⃓⃓
a(2−jt)

⃓⃓2
= 1 on (0,∞). Thus, if we de�ne

for j ⩽ J that

Adj (t) =

⎧⎪⎪⎨⎪⎪⎩
1
π

∞∑︁
l=1

a(2−j l) cos(l arccos t) for d = 2

∞∑︁
l=0

a(2−(j+jd)(l + λd))Z
d
l (t) for d ⩾ 3

(2.30)

and

BdJ(t) =

⎧⎪⎪⎨⎪⎪⎩
1
2π + 1

π

∞∑︁
l=1

b(2−J l) cos(l arccos t) for d = 2

∞∑︁
l=0

b(2−(J+jd)(l + λd))Z
d
l (t) for d ⩾ 3

(2.31)

where jd = log2[λd] for d ⩾ 3 and j1 = 0 are so that the minimal eigenvalue of
the operator

Ln =
√︁
λd −∆Sd−1 =

∞∑︂
l=0

(l + λd)Pdl (2.32)

lies in interval [1, 2], then for any f ∈ L2(Sd−1)

J∑︂
j=−∞

Adj ∗A
d
j ∗ f =

{︃
(BdJ − P0) ∗ f for d = 2
BdJ ∗ f for d ⩾ 3

(2.33)

and by Funk-Hecke formula and the support of a

⟨Adj ∗A
d
j′
∗ f, f⟩ = ⟨

∑︂
l

a(2−(j+jd)(l + λd))a(2
−(j

′
+jd)(l + λd))Pdl f, f⟩

= 0

(2.34)

for any |j − j
′ | ⩾ 2, d ⩾ 3.

Suppose Sd−1 has a subdivision into {Ωi}i∈I labeled by a set of points V =
{pi}i∈I . For a mesh with good uniformity, namely the mesh ratio

ρV =
hV
qV

=

sup
x∈Sd−1

inf
pi∈V

d(x, pi)

1
2 min
pi ̸=pj

d(pi, pj)
(2.35)

is larger than 2, where hV is called mesh norm and qV called separation radius
of V respectively, there exists a nested sequence Vk ⊂ Vk+1 such that

1

4
hVk

< hVk+1
<

1

2
hVk

(2.36)
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It is proved in [30] as main theorems, here we cite as lemmas without proof,
that

Lemma 2.3. There exist constants sd depending solely on dimension d such
that, for any δ ∈ (0, 12 ) and integer L ∈ Z+, whenever ∥V∥ = max

p∈V
diam(Ωi) ⩽

δs−1
d (L+ λn)

−1,

(1− δ)∥f∥1 ⩽
∑︂
p∈V

|f(p)||Ωp| ⩽ (1 + δ)∥f∥1 (2.37)

holds for spherical harmonics in ΠdL =
⨁︁
l⩽L

Hd
l ; there exist positive weights w(p)

such that ∫︂
Sd−1

f(η)dη =
∑︂
p∈V

w(p)f(p) (2.38)

and w(p) have the following bounds

1− 2δ

1− δ
|Ωp| ⩽ w(p) ⩽

|Sd−1|
dim(Πd[L/2])

(2.39)

Lemma 2.4. For a ∈ Ck(R) with k > max{d − 1, 2}, if f ∈ Lq(Sd−1) with
1 ⩽ q ⩽ ∞, then there exists constant Cb,k,d such that

∥f −BdJ ∗ f∥q ⩽ Cb,k,ddistLq (f,ΠdL) (2.40)

As a result, on j−th level mesh Vj , by de�ning

ψj,p(η) =
√
wj,pA

d
j (η · p) (2.41)

with a ∈ Ck, we have for f ∈ C(Sd−1) or f ∈ Lq(Sd−1) with 1 ⩽ q <∞,

f =

∞∑︂
j=0

∑︂
p∈Vj

⟨f, ψj,p⟩ψj,p (2.42)

with convergence in the corresponding space norms. For f ∈ L2, it is equivalent
to

∥f∥2 =

⎧⎪⎪⎨⎪⎪⎩
1
2π |⟨f, 1⟩|

2 +
∞∑︁
j=0

∑︁
p∈Vj

|⟨f, ψj,p⟩|2 for d = 2

∞∑︁
j=0

∑︁
p∈Vj

|⟨f, ψj,p⟩|2 for d ⩾ 3
(2.43)
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namely {ψj,p} forms a tight frame. Meanwhile, when 2−j < ϵ, there is the
integral expression of

Adϵ (t) =

⎧⎪⎪⎨⎪⎪⎩
1
π

∞∑︁
l=1

a(ϵ) cos(l arccos t) for d = 2

∞∑︁
l=0

a(ϵ(l + λd))Z
d
l (t) for d ⩾ 3

that

Adϵ (cos θ) =
γd

sind−1 θ

∫︂ π

θ

Cϵ,d(ϕ)

(cos θ − cosϕ)
dϕ (2.44)

where γd =
2λdΓ(λd+1/2)√

π|Sd−1|Γ(λd)Γ(2λd)
and

Cϵ,d(ϕ) =
1

2ϵ

∑︂
n∈Z

(−1)(d−2)nQ̃d−2(i
d

dϕ
)â(

ϕ+ wπn

ϵ
) (2.45)

with

Q̃d−2(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[ d−2

2 ]∏︁
j=1

(︁
z2 − (λd − j)2

)︁
z sin(λdπ) if j even

[ d−2
2 ]∏︁
j=1

(︁
z2 − (λd − j)2

)︁
cos(λdπ) if j odd

(2.46)

It leads to an estimation for a ∈ Ck(R) that

|Adϵ (cos θ)| ⩽
βd,k,aϵ

−d+1

1 + ( θϵ )
k

(2.47)

with some constants βd,k,a. Thus we see that when j and k increase, |ψj,p|
decrease in scale value as 2−(j+jd)k, hence is localized.

2.2 Dilation through stereographic projection

In contrast to doing dilation in frequency domain, this section we discuss dilation
through geometric approach. As we have encountered at the beginning of the
chapter and we shall see in the review part later, one common strategy is to
wisely cover the whole manifold by local patches, and then construct a dictionary
as it was done on the plane followed by lifting it back. This method has the
advantage that it can be applied to any manifolds and it has localized nature.
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On the sphere there is much more to say than on a general manifold, not only
because the stereographic projection is obviously ideal for building a one-to-one
correspondence with the plane, but also that the Euclidean sphere has exquisite
group structures that has been introduced above. Stereographic map is confor-
mal and can be used to generate the whole system globally, while by choosing
localized generators it allows us to construct frame systems with ideal local prop-
erties. Although at the pole it may cause distortion it avoids the consistency
problem arising from di�erent patches, hence much easier to implement in my
opinion. The �rst work in this approach probably dates back to [92][93], where
admissibility condition is proposed without successfully formulating frames.

In this section, however, dilation is done in both isotropic and parabolic
manner. Especially the second brings much di�erence when one deals with
anisotropic problems, exactly for this reason I shall call the corresponding gen-
erators "spherical shearlets" or "spherical α-wavelets". A long lasting unsolved
problem in the stereographic projection approach before the writing of this dis-
sertation is the lack of a constructible tight frame. Discussion about that is
going to be delayed till the next chapter, where exact design of a class of tight
frames is given.

By identifying a 2-sphere with the homogeneous space SO(3)/SO(2), the
sphere is embedded into the rotation group and group operations can be applied
naturally. Therefore the translation on the sphere can be achieved by rotation.
However, in comparison with translation in the Euclidean plane, it obviously
brings much more complicated work since parameters are located in the rotation
group instead of R. Let dΩ = sin θdθdφ be the rotation invariant measure on the
unit sphere, and dx be the Lebesgue measure on R2. Denote by σ an element
in the group SO(3) and by dσ the Haar measure on it. The Haar measure is
normalized so that the whole group SO(3) has volume one. Recall that the left
regular unitary representation de�ned by

(R(σ)f)(ω) = f(σ−1ω)

where σ ∈ SO(3). Related to the rotation operator R(σ) there is the Wigner
D-matrix which consists of coe�cients with respect to the normalized orthogo-
nal spherical harmonics. Peter-Weyl Theorem tells us that these coe�cients are
dense in L2(S2) andR can be written as the direct sum of �nite-dimensional irre-
ducible representations. L2(S2) is correspondingly decomposed into R-invariant
vector subspaces, those are exactly the eigenspaces Hl corresponding to the dif-
ferent eigenvalues of the Laplace-Beltrami operator on the sphere, as we have
seen in the introduction.
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Schulr's orthogonality relations in this case are∫︂
SO(3)

Dl
mn(σ)D

l′

m′n′ (σ)dσ =
1

dl
δll′ δmm′ δnn′ (2.48)

where indexes m,n and m
′
, n

′
are integers of absolute value no larger than l

and l
′
respectively.

Let ω = (θ, φ) denote the polar coordinate of a point on the unit sphere.
In particular, θ = π is the north pole ξ0. The stereographic projection π :
S2\{ξ0} ↦→ R2, by

π(θ, φ) = (r cosφ, r sinφ) (2.49)

with r = 2 tan( θ2 ), gives an isomorphism, and its inverse is denoted by π−1.
One strategy of doing dilation on the sphere is to utilize the dilation operator

d(a) on L2(R2, dx) de�ned as

(d(a)h)(x, y) = a−(1+α)/2h(a−1x, a−αy) (2.50)

with α ∈ [0, 1].

De�nition 2.5. Given a ∈ R+ and f ∈ L2(S2, dΩ), de�ne D(a) : L2(S2, dΩ) ↦→
L2(S2, dΩ) as

D(a)f(ω) =

{︃
U−1d(a)Uf(ω) ω ̸= ξ0
a

−1−α
2 f(ξ0) ω = ξ0

where U is the operator such that

(Uf)(x) = ν(π−1x)f(π−1x)

with ν(θ, φ) = cos2(θ/2) guaranteeing the unitarity of the operator.

Let us make the convention that throughout this chapter α is chosen as a
positive number no larger than 1. In the special case α = 1

2 , D(a) will be called
parabolic spherical dilation operator.

A simple calculation shows that ω = (θ, φ) and the point after dilation
ω 1

a
= d̂(a)(θ, φ) = (θ 1

a
, φ 1

a
), are related by⎧⎪⎨⎪⎩

tan(θ 1
a
/2) =

√︁
γ(a, φ) tan(θ/2)

tanφ 1
a
= a1−α tanφ when φ ̸= π

2 and φ ̸= 3π
2

φ 1
a
= φ when φ = π

2 or 3π
2

(2.51)

where
√︁
γ(a, φ) = (a−2 cos2 φ+ a−2α sin2 φ)1/2.
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Let θ
′
= θ1/a, φ

′
= φ1/a. By (2.51), it is easy to see the following relations

that are going to facilitate our mathematical deduction.

sin2 φ =
a2α−2 tan2 φ

′

1 + a2α−2 tan2 φ′ , cos2 φ =
1

1 + a2α−2 tan2 φ′

sin θ =
2 tan( θ

′

2 ) cosφ
′√︁

a2 + a2α tan2 φ′

1 + tan2( θ
′

2 ) cos
2 φ′(a2 + a2α tan2 φ′)

cos θ =
1− tan2( θ

′

2 ) cos
2 φ

′
(a2 + a2α tan2 φ

′
)

1 + tan2( θ
′

2 ) cos
2 φ′(a2 + a2α tan2 φ′)

(2.52)

With these, we arrive at an explicit formulation of the spherical dilation
operator.

Proposition 2.6. For f ∈ L2(S2, dΩ),

∥D(a)f∥2 = ∥f∥2 (2.53)

(D(a)f)(ω) =

{︄ √︁
λ(a, θ, φ)f(ω 1

a
) ω ̸= ξ0

a
−1−α

2 f(ξ0) ω = ξ0
(2.54)

where

√︁
λ(a, θ, φ) =

2a
3−α
2

Φ−
a cos θ +Φ+

a
= a−(1+α)/2(1 + J2) cos2(

θ
′

2
) (2.55)

Φ±
a = a2[1± γ(a, φ)] and J = tan θ

2 = tan( θ
′

2 ) cosφ
′√︁

(a2 + a2α tan2 φ′).

Proof. ∥D(a)f∥2 = ∥f∥2 comes from the fact that both d(a) and U are unitary
operators. From the de�nition (2.5) it follows immediately that

U−1g(θ, φ) =
1

ν(θ, φ)
g(π(θ, φ)) (2.56)

and from (2.49) that

π−1(x1, x2) = (2 arctan(

√︁
x21 + x22
2

), arctan(
x2
x1

)) (2.57)
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for any g ∈ L2(S2, dΩ) and x = (x1, x2) on the plane. Therefore by the de�ni-
tions (2.50) and (2.5) for θ ̸= π

D(a)f(θ, φ) = [U−1d(a)Uf ](θ, φ)

=
1

ν(θ, φ)
(d(a)Uf)(π(θ, φ))

=
a−(1+α)/2

ν(θ, φ)
ν(π−1(

2 tan θ
2 cosφ

a
,
2 tan θ

2 sinφ

aα
))f(ω1/a)

=
a−(1+α)/2

cos2 θ2
cos2(arctan[(

cos2 φ

a2
+

sin2 φ

a2α
)1/2 tan

θ

2
])f(ω1/a)

=
2a(3−α)/2f(ω1/a)

(a2 − a2−2α sin2 φ− cos2 φ) cos θ + a2 + a2−2α sin2 φ+ cos2 φ

which is exactly the expression (2.54).
Meanwhile, from (2.52) we deduce that

Φ±
a = a2 ± 1

cos2 φ′(1 + a2α−2 tan2 φ′)

hence

Φ−
a cos θ +Φ+

a = a2(cos θ + 1) +
a2 tan2( θ

′

2 )(1− cos θ)

J2

=
2a2

1 + J2
+

2a2 tan2( θ
′

2 )

1 + J2

=
2a2 sec2( θ

′

2 )

1 + J2

and (2.55) follows.

Remark 2.7. The coe�cient λ(a, θ, φ) can be alternatively de�ned as the
Radon-Nikodym derivative dΩ(ω1/a)

dΩ(ω) , and it is easy to check these two di�er-
ent ways of de�nition give the same result. In this sense, λ can be interpreted
as the change of measure caused by dilation operation.

With the rotation operator as well as the dilation operator, the continuous
spherical wavelets on the sphere is generated by a single function.
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De�nition 2.8. For ψ ∈ L2(S2, dΩ), de�ne spherical α-wavelet system on S2
as

{ψσ,a(ω) = R(σ)D(a)ψ(ω) =
√︁
λ(a, θ, φ)ψ((σ−1ω)1/a) : σ ∈ SO(3), a ∈ R+}

in particular when α ̸= 1, let us call it a continuous spherical shearlet system.
De�ne spherical α-wavelets/shearlet transform as

Sf (σ, a) = ⟨f, ψσ,a⟩.

It is natural to ask if we can exchange the order of the rotation and the
dilation as de�ned above, namely if D(a) is a rotation commutative operator,
unfortunately the answer is no in general. In fact, there are the following simple
counter examples.

Example 2.9.

(i) Let [D(a),R(σ)] = D(a)R(σ)−R(σ)D(a).

σ3(φ) =

⎛⎝ cosφ sinφ 0
− sinφ cosφ 0

0 0 1

⎞⎠, α < 1 in (2.51), then as a→ 0,

[D(a),R(σ3(φ))]f(θ0, φ0) −→ f(π, φ)− f(π, 0)

or f(π, π + φ)− f(π, π).

(ii) σ2(θ) =

⎛⎝ cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎞⎠, α < 1, then as a→ 0,

[D(a),R(σ2(θ))]f(θ0, φ0) −→ f(π + θ, 0)− f(π, 0)

or f(π + θ, π)− f(π, π), depending on whether tanφ ⩾ 0 or tanφ < 0.

2.3 Spaces of admissible α-wavelets/shearlets

Like the Fourier basis in Rn, spherical harmonics have the draw back that they
are not sensitive to local behavior in the spatial domain, or more precisely, a
perturbation of the function value at a point may lead to the change of all
coe�cients and we are forced to do integration on whole sphere. Consequently
they are insu�cient in representing functions of high frequency. This motivates
us to construct localized generators.
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De�nition 2.10. A spherical α-wavelet ψ is admissible, if

0 < Clψ =
1

2l + 1

∑︂
|m|≤l

∫︂ ∞

0

da

a3
|( ˆ︁ψa)lm|2 <∞

where ( ˆ︁ψa)lm is the Fourier coe�cients of the dilated function ψa = D(a)ψ with
respect to spherical harmonics. Denote by A the set of admissible functions.

Without loss of generality we use spherical shearlet for the development of
the theory in the rest of this section.

Proposition 2.11. When a spherical shearlet is admissible, the following re-
construction formula holds∫︂ ∞

0

da

a3

∫︂
SO(3)

Sf (σ, a)ψσ,a(ω)dσ =
∑︂
l

∑︂
|m|≤l

Clψ
ˆ︃flmY ml (ω).

Proof. By de�nition
Dl
mn(σ) = ⟨R(σ)Y ml , Y nl ⟩ (2.58)

Since Hl are invariant subspaces under R(σ), it follows immediately that

ˆ︂[R(σ)f ]lm =
∑︂
|n|≤l

Dl
mn(σ)

ˆ︁fln (2.59)

Therefore (2.48) and (2.59) together give us∫︂ ∞

0

da

a3

∫︂
SO(3)

⟨f,R(σ)ψa⟩[R(σ)ψa](ω)

=

∫︂ ∞

0

da

a3

∫︂
SO(3)

⟨
∑︂
l

∑︂
|m|≤l

ˆ︃flmY ml ,R(σ)ψa⟩
∑︂
l′

∑︂
|n|≤l′

ˆ︂[R(σ)ψa]l′ ,nY
n
l′
(ω)

=

∫︂ ∞

0

da

a3

∫︂
SO(3)

∑︂
l,l′

∑︂
|m|≤l

ˆ︃flm ∑︂
|n|≤l

Dl
mn(σ)

ˆ︂(ψa)ln
∑︂

|m′ |≤l′

∑︂
|n′ |≤l′

Dl
′

m′n′ (σ)ˆ︃(ψa)l′n′Y m
′

l′
(ω)

=
∑︂
l

1

2l + 1

∫︂ ∞

0

da

a3

∑︂
|m|≤l

∑︂
|n|≤l

|ˆ︃(ψa)ln|2ˆ︃flmY ml (ω)

=
∑︂
l

∑︂
|m|≤l

Clψ
ˆ︃flmY ml (ω)
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Thus the reconstruction formula holds when Clψ in De�nition 2.10 has �nite
value for every l.

In particular, if Clψ is positive and independent of l, identity in Proposition
2.11 becomes

f(ω) = C

∫︂ ∞

0

da

a3

∫︂
SO(3)

Sf (σ, a)ψσ,a(ω)dσ (2.60)

for some constant C > 0. The question concerning the existence of such con-
struction arises, but an a�rmative answer comes after much e�orts.

Furthermore, the observation∑︂
|m|≤l

|( ˆ︁ψa)lm|22 = ∥Plψa∥22 ⩽ ∥ψa∥22 = ∥ψ∥22 <∞ (2.61)

and ∑︂
l

∥Plψ∥22 = ∥ψ∥22 (2.62)

show that Clψ = 0 for all l only if ψ vanishes identically, and that under the
assumption

Clψ =
1

2l + 1

∫︂ ∞

0

∥Plψa∥22
a3

da <∞

the space of admissible functions is closed under certain algebraic rules.

Lemma 2.12. For ψ ∈ L2(S2), the two conditions:
(i) ψ ∈ A
(ii) ∥Plψa∥2 = o(a) as a→ 0 for l ∈ Z+

are equivalent. In particular, it indicates that
(i

′
) f1, f2 ∈ A ⇒ c1f1 + c2f2 ∈ A for any pair c21 + c22 > 0

(ii
′
) If 1

p +
1
q = 1 and p, q > 0, f1, f2 ∈ A ⇒ f

1
p

1 f
1
q

2 ∈ A
(iii

′
) {fn} ⊂ A, fn ⇒ f ⇒ f ∈ A

Let us de�ne some important function spaces that will appear frequently
through out this section and later.

De�nition 2.13. Let Bn be the subset of square integrable functions with the
property that lim

θ→π
|f(θ, φ) · tann θ

2 | exists and being bounded. De�ne

N = {f ∈ L2(S2) :
∫︂ 2π

0

∫︂ π

0

f(θ, φ) tan(
θ

2
)dθdφ = 0}
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and for ξ ∈ S2, let

KΘ(ξ) = {f ∈ L∞(S2) : f(ξ · η) = 0 a.e. for ξ · η ⩾ cosΘ}.

In particular, f is called a hollow pole function, if f ∈ K(ξ0) =
⋃︁

Θ KΘ(ξ0).

By de�nition it is clear that KΘ ⊂ Bn, hence we have the inclusion relation
Bn ⊃ K. Furthermore, there is K = Bn, where the closure can be taken both in
L∞ and L2 norm.

Let us take the following formula from [60]

Pl(cos θ) =

(︃
θ

sin θ

)︃ 1
2

J0

(︃
(l +

1

2
)θ

)︃
+

{︃
θ1/2O(l

−3
2 ) if c/l ⩽ θ ⩽ π − ϵ

θ2O(1) if 0 < θ ⩽ c/l

(2.63)

where Jν are the Bessel functions (4.52), but here we need its integral form

Jν(z) =
(z/2)

ν

Γ(ν + 1
2 )Γ(

1
2 )

∫︂ 1

−1

(1− t2)ν−
1
2 eiztdt (2.64)

Taking derivative leads to the following asymptotic result.

Lemma 2.14.

P
(m)
l (cos θ) =

Γ(l +m+ 1)

(l + 1
2 )
m(l −m)! sinm θ

(︃
θ

sin θ

)︃ 1
2

Jm

(︃
(l +

1

2
)θ

)︃
+

{︃
θ1/2O(l

−3
2 ) if c/l ⩽ θ ⩽ π − ϵ

θm+2O(lm) if 0 < θ ⩽ c/l

With the preparation above we are standing at the point to prove the main
result of this section. It indicates how to construct a shearlet system meeting
the admissibility condition. Without loss of generality let us take α = 1

2 , the
parabolic case, for the simplicity of the proof.

Theorem 2.15. Bn ∩N = Bn ∩ A for n ⩾ 3.

Proof. We �rstly prove that K ∩ N = K ∩ A. Set θ
′
= θ1/a, φ

′
= φ1/a,

dΩ
′
= sin θ

′
dθ

′
dφ

′
and suppose |ψ(θ, φ) · tan θ

2 | ⩽ M a.e.. By Lemma 2.12, in
order to prove mutual inclusion we only have to check that ψ ∈ N if and only
if ∥Plψa∥22 =

∑︁
|m|≤l |(ˆ︂ψa)lm|2 = o(a2).
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By (1.15),
Y ml (θ, φ) = cl,me

imφ sinm(θ)P
(m)
l (cos θ)

with cl,m = (−1)m
√︂

(2l+1)(l−m)!
4π(l+m)! .

Consider ψΘ = χ[0,2π]×[0,Θ]ψ ∈ K. Using the fact that λ(a, θ, φ) = dΩ
′

dΩ , we
get

(ˆ︂(ψΘ)a)lm =

∫︂
S2
Y ml (ω)(D(a)ψΘ)(ω)dΩ

=

∫︂
S2
Y ml (θ, φ)

√︁
λ(a, θ, φ)ψΘ(θ1/a, φ1/a)dΩ

=

∫︂
S2
Y ml (θ, φ)λ−1/2(a, θ, φ)ψΘ(θ

′
, φ

′
)dΩ

′

(2.65)

To avoid confusion of the notation in (2.65) and also in later part, we clarify here
that φ(θ

′
, φ

′
) are now taken as new variables while θ and φ shall be understood

as θ(θ
′
, φ

′
) and φ(θ

′
, φ

′
).

Insert (2.51) into (2.65) and replace
√︁
λ(a, θ, φ) by the expression a−

1+α
2 (1+

J2) cos2( θ
′

2 ) in (2.55), we get

(ˆ︂(ψΘ)a)lm = 2a
1+α
2 cl,m

∫︂ 2π

0

∫︂ π

0

e−imφ sinm(θ)P
(m)
l (cos θ)

ψΘ(θ
′
, φ

′
) tan( θ

′

2 )dθ
′
dφ

′

1 + J2

(2.66)

where J = tan( θ
′

2 ) cosφ
′√︁

(a2 + a2α tan2 φ′).

Let us examine the integrand in (2.66) in detail. Since θ
′ ∈ (0,Θ), tan θ

′

2 ⩽
tan Θ

2 bounded almost everywhere. What's more, Lemma 2.14 and the obser-
vation that θ → 0 as a → 0 tell us sinm θP

(m)
l (cos θ) = O(aαml2m). Indeed,

according to (2.52) there is

| sin θ| = |
2 tan( θ

′

2 ) cosφ
′√︁

a2 + a2α tan2 φ′

1 + tan2( θ
′

2 ) cos
2 φ′(a2 + a2α tan2 φ′)

|

= |2 tan(θ
′

2
) cosφ

′
√︂
a2 + a2α tan2 φ′ |+O(a3α)

= O(aα)

we conclude that for �xed l,

Y ml (θ, φ) = O(aα|m|+(1+α)/2) (2.67)
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for all m ⩾ 0, and hence for all |m| ≤ l due to the fact that

Y −m
l = (−1)mY ml (2.68)

Thus |(ˆ︂(ψΘ)a)lm| = O(aαm+(1+α)/2), (ˆ︂(ψΘ)a)lmY
m
l ∈ A for all |m| ⩾ 1, and

∥Pl(ψΘ)a∥22 =
∑︁

|m|≤l |(ˆ︂(ψΘ)a)lm|2 = o(a2) if and only if we impose the require-
ment that

0 = lim
a→0

a−1(ˆ︂(ψΘ)a)l0

= 2 lim
a→0

a−1/4cl,0

∫︂ 2π

0

∫︂ Θ

0

Pl(cos θ)
ψ(θ

′
, φ

′
) tan( θ

′

2 )

1 + J2
dθ

′
dφ

′

= 2 lim
a→0

a−1/4cl,0

∫︂ 2π

0

∫︂ Θ

0

ψ(θ
′
, φ

′
) tan(

θ
′

2
)dθ

′
dφ

′

namely that
∫︁ 2π

0

∫︁ Θ

0
ψ(θ

′
, φ

′
) tan( θ

′

2 )dθ
′
dφ

′
= 0. The last step used Lebesgue

dominated Theorem with the observation that |Pl(cos θ)| ⩽ Pl(1) = 1, J → 0
as a → 0. Although we used a specially designed ψΘ, the whole argument we
used above applies to any function in K, namely K ∩A = K ∩N .

Due to our assumption that ψ ∈ Bn, |ψ(θ
′
, φ

′
) tan3( θ

′

2 )| is bounded by some
M > 0 almost everywhere whenever |Θ − π| < δ, we see that if ∥Pl(ψ)a∥22 =
limΘ→π ∥Pl(ψΘ)a∥22 = o(a2), we necessarily have

0 = lim
Θ→π

∫︂ 2π

0

∫︂ Θ

0

ψ(θ
′
, φ

′
) tan(

θ
′

2
)dθ

′
dφ

′
=

∫︂ 2π

0

∫︂ π

0

ψ(θ
′
, φ

′
) tan(

θ
′

2
)dθ

′
dφ

′

Conversely, assume
∫︁ 2π

0

∫︁ π
0
ψ(θ, φ) tan( θ2 )dθdφ = 0. Let

˜︂ψΘ(θ, φ) =

{︃
ψΘ(θ, φ)− TψΘ(θ, φ) for θ ≤ Θ
0 for θ > Θ

(2.69)

where

TψΘ(θ, φ) = (tan
θ

2
)−1

∫︂ 2π

0

∫︂ π

0

ψΘ(θ, φ) tan(
θ

2
)dθdφ (2.70)

Since ˜︂ψΘ(θ, φ) ∈ KΘ∩N , by our former conclusion we get ˜︂ψΘ(θ, φ) ∈ A. Hence
it follows from Lemma 2.12 that ∥Pl(˜︂ψΘ)a∥22 = o(a2). Fix θ < π, it's easy to
see that ˜︂ψΘ(θ, φ) → ψ(θ, φ) as Θ → π, and that |(˜︂ψΘ(θ, φ) − ψΘ(θ, φ)) tan

3 θ
2 |
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is bounded for any Θ < π. In fact, there is

|˜︂ψΘ(θ, φ)− ψ(θ, φ)| tan3(θ
2
)

⩽
(︂
|˜︂ψΘ(θ, φ)− ψΘ(θ, φ)|+ |ψΘ(θ, φ)− ψ(θ, φ)|

)︂
tan3(

θ

2
)

⩽

⃓⃓⃓⃓∫︂ 2π

0

∫︂ π

0

(ψΘ(θ, φ)− ψ(θ, φ)) tan(
θ

2
)dθdφ

⃓⃓⃓⃓
tan2(

θ

2
)

+ max
θ>Θ

⃓⃓⃓⃓
ψ(θ, φ) tan3(

θ

2
)

⃓⃓⃓⃓
⩽ tan2

(︃
θ

2

)︃∫︂ 2π

0

∫︂ π

Θ

⃓⃓⃓⃓
ψ(θ, φ) tan(

θ

2
)

⃓⃓⃓⃓
dθdφ+max

θ>Θ

⃓⃓⃓⃓
ψ(θ, φ) tan3(

θ

2
)

⃓⃓⃓⃓
which is bounded almost everywhere as Θ approaches π, since ψ ∈ B. By
replacing ˜︂ψΘ in (2.66), we use Lebesgue dominated Theorem again to get

lim
a→0

a−2∥Pl(ψa)∥22 = lim
a→0

lim
Θ→π

a−2∥Pl(˜︂ψΘ)a∥22 = 0

In the last step the exchange of order of limits is allowable since the convergence
is uniform. Indeed, for m = 0 and any a ∈ (0, 1], there is

a−1

⃓⃓⃓⃓
ˆ︂(︂
(˜︂ψΘ)a

)︂
l0
− ˆ︃(ψa)l0 ⃓⃓⃓⃓ = a−

1
4

⃓⃓⃓⃓
⃓
∫︂ 2π

0

∫︂ π

0

Pl(cos θ)

1 + J2

(︂˜︂ψΘ − ψ
)︂
(θ

′
, φ

′
) tan

θ
′

2
dθ

′
dφ

′

⃓⃓⃓⃓
⃓

Since ˜︂ψΘ − ψ ∈ N , the latter goes to

4a
3
4

⃓⃓⃓⃓
⃓
∫︂ 2π

0

∫︂ π

0

d

da

(︃
Pl(cos θ)

1 + J2

)︃(︂˜︂ψΘ − ψ
)︂
(θ

′
, φ

′
) tan

θ
′

2
dθ

′
dφ

′

⃓⃓⃓⃓
⃓

as a → 0, which further converges to zero uniformly due to the fact that
|˜︂ψΘ(θ, φ) − ψ(θ, φ)| tan3

(︁
θ
2

)︁
is bounded almost everywhere. For m ̸= 0 it can

be veri�ed similarly. Thus we have proved that ψ ∈ A.

This main result reduces the complicated admissibility condition into the
easy-to-check condition in De�nition 2.13, hence greatly helpful for selecting
candidate shearlets. Another natural question is whether an admissible shearlet
remains admissible after dilation. In other words, we need to check whether our
system de�ned in (2.8) is closed under the dilation operation. The following
lemma gives us a positive answer.
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Proposition 2.16. If ψ ∈ N ∩ Bn, then ψa ∈ N ∩ Bn for any a ∈ R+ and
n ⩾ 1

Proof. Let θ
′
= θ1/a and φ

′
= φ1/a. Suppose |ψ(θ, φ) tann θ

2 | ⩽ M for some
M > 0, then by (2.51) and Proposition 2.6,

|ψa(θ, φ) tann
θ

2
| = |

√︁
λ(a, θ, φ)ψ(θ

′
, φ

′
) tann

θ

2
|

⩽
2a

3−α
2 +nM

|Φ−
a cos θ +Φ+

a |(cos2 φ+ a2−2α sin2 φ)n/2

Further, we observe that∫︂ 2π

0

∫︂ π

0

ψa(θ, φ) tan(
θ

2
)dθdφ

=

∫︂ 2π

0

∫︂ π

0

√︁
λ(a, θ, φ)ψ(θ1/a, φ1/a) tan(

θ

2
)dθdφ

=

∫︂ 2π

0

∫︂ π

0

sec2 θ2
2

λ−1/2(a, θ, φ)ψ(θ
′
, φ

′
) sin θ

′
dθ

′
dφ

′

=

∫︂ 2π

0

∫︂ π

0

1 + J2

2

a(α+1)/2 sec2( θ
′

2 )

1 + J2
ψ(θ

′
, φ

′
) sin θ

′
dθ

′
dφ

′

= a(α+1)/2

∫︂ 2π

0

∫︂ π

0

ψ(θ
′
, φ

′
) tan(

θ
′

2
)dθ

′
dφ

′

therefore ψa(θ, φ) ∈ Bn ∩N .

Remark 2.17. Once we have a square integrable function ψ on the sphere
which ful�lls the requirements in Theorem 2.15, then taking the di�erence of
two sides of (2.3), we see a natural candidate of admissible shearlets is the
function ψa(θ, φ) − a3/4ψ(θ, φ). Besides, for hollow pole functions, operator
D(a) preserves regularity on the whole sphere. Indeed, given f ∈ Ck(S2) with
k ⩾ 0, it is obvious that D(a)f is k-times continuously di�erentiable away from
the pole according to (2.54); while if f is a hollow pole function, then its dilated
version keeps regularity at θ = π, hence D(a)f ∈ Ck(S2).

The relationship between functions on R2 and shearlets on S2 is described by
the next proposition. More precisely, we prove that every zero mean function on
R2 after being projected inversely by U is an admissible shearlet on the sphere.
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Proposition 2.18. Let ψ ∈ L2(R2) be a function such that∫︂
R2

ψ(x1, x2)dx = 0

and
|ψ(x1, x2)rn+2| ⩽M ∀n ⩽ N

for some M > 0 and N ∈ Z+. Then U−1ψ ∈ BN ∩N ∈ A.

Proof. Let r = 2 tan( θ2 ), ψ compactly supported implies U−1ψ is a hollow pole
function.∫︂ 2π

0

∫︂ π

0

U−1ψ(θ, φ) tan(
θ

2
)dθdφ =

∫︂ 2π

0

∫︂ π

0

ψ(r cosφ, r sinφ) sec2(
θ

2
) tan(

θ

2
)dθdφ

=
1

2

∫︂ 2π

0

∫︂ ∞

0

ψ(r cosφ, r sinφ)rdrdφ

=

∫︂
R2

ψ(x1, x2)dx

Since
∫︁
R2 ψ(x1, x2)dx = 0, by de�nition, we have U−1ψ ∈ N . Furthermore,

|ψ(x1, x2)rn+2| ⩽ M for all n ⩽ N implies that U−1ψ ∈ BN . Therefore, U−1ψ
is an element in A.

2.4 Other approaches: a selective review

In this section let us have a tour and make some comments on other represen-
tative and creative approaches of constructing spherical wavelets that exhibit
certain merits as well as insu�ciency in di�erent applications.

Firstly, I want to comment that, in the dilation aspect, the anisotropic spher-
ical Gaussian(ASG) is probably the most widely used tool by engineers, for in-
stance in the description of directional dependence radio waves from antenna.
Mathematically, without loss of generality, if we denote by x,y,z a set of mutu-
ally perpendicular unit eigenvectors of a 3×3 symmetric matrix A, correspond-
ing to eigenvalues λ1 ⩾ λ2 ⩾ λ3 respectively, the ASG(as a function of ξ) is
de�ned to be

G(ξ, A) = eξ
TAξ ·max{z · ξ, 0}

Note that the matrix A can be rewritten in the form A = (λ1 − λ3)xx
T +

(λ2 − λ3)yy
T + λ3I, hence ASG has another expression

e−[(λ1−λ3)(ξ·x)2+(λ2−λ3)(ξ·y)2+λ3] ·max{z · ξ, 0} (2.71)
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Comparing it with the traditional von Mises-Fisher distribution

e2λ(ξ·z−1) = e−λ[(ξ·x)
2+(ξ·y)2] · e−λ(ξ·z−1)2

= e−λ[(ξ·x)
2+(ξ·y)2])+1] · e−λ(ξ·z)

2+2λ(ξ·z)
(2.72)

where λ is the bandwidth and z is chosen to be the lobe axis, the axis of
the smallest eigenvalue which corresponds to the smallest radiation amplitude,
we see that the last z term is replaced by a smoothing term, which is used
to constrain value in upper hemisphere while preserving smoothness. It is
demonstrated[7] that ASG have approximate closed-form solutions for product
and convolution operators.

A subdivision scheme is used in the 1995 work by Schröder and Swelden[25]
to build the orthogonal Haar wavelet transform on arbitrary manifolds. This
method starts with an initial quasi-uniform triangulation of the surface and
builds �ner level mesh by connecting the midpoint of each edge. Whenever
there is a multiresolution analysis on the surface either based on vertex basis or
face basis, one can use the lifting scheme to obtain wavelets of better properties
like improved smoothness or vanishing moments. That is to say, if we have a
biorthogonal wavelet basis system such that for any f ∈ L2(S2) there is

f =
∑︂
j,m

⟨f, ψ̃j,m⟩ψj,m

ψj+1,k =
∑︂
k′

h̃j,k,k′φj,k′ +
∑︂
m

g̃j,k,mψj,m
(2.73)

with re�nement relations
∑︁
k′
h̃j,k,k′ φ̃j+1,k′ = φ̃j,k and

∑︁
m
g̃j,k,mφ̃j+1,m = ψ̃j,k,

then a new wavelet system can be generated through the following design of
�lters ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

hnew
j,k,k′

= hj,k,k′

h̃
new

j,k,k′ = h̃j,k,k′ +
∑︁
m
cj,k,mg̃j,k′ ,m

g̃newj,k,m = g̃j,k,m
gnewj,k,m = gj,k,m −

∑︁
k′
cj,k,k′hj,m,k′

(2.74)

namely the scaling function remains the same while its dual and the wavelet
function are lifted, where gj,k,m and hj,m,k′ are similarly de�ned and cj,k,k′ and
cj,k,m are coe�cients to be chosen.

There are in general two types of schemes of subdivision, the face splitting
scheme and the vertex splitting scheme. In the face setting, the scaling function
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and its bi-orthogonal dual at di�erent levels supported in a local triangle can
be simply formed by taking the characteristic functions, namely setting φj,k =
χTj,k

and φ̃j,k = 1
|Tj,k|χTj,k

. If the subdivision triangles of Tj,k are labeled as
{T0, T1, T2, T3} with T0 indicating the middle triangle, the wavelet dual pairs
can be chosen as

ψj,m = 2

(︃
φj+1,m −

∫︁
S2 φj+1,mdΩ∫︁
S2 φj,0dΩ

φj,0

)︃
(2.75a)

ψ̃j,m =
1

2
(φ̃j+1,m − φ̃j,k) (2.75b)

where m = 1, 2, 3, so that the wavelet here has vanishing integral. In order to
achieve higher vanishing moments in the sense that there exist n linearly inde-
pendent polynomials restricted on the sphere such that their wavelet coe�cients
vanish for all j ⩾ 0 and all m in index set at level j, one can propose the lifted
dual as

ψ̃j,m =
1

2
(φ̃j+1,m − φ̃j,k)−

∑︂
k′∈N (k)

cj,k′ ,mφ̃j,k′ (2.76)

where k
′
are index of the neighboring triangles of Tj,k.

In the vertex setting, the scaling functions are often chosen as delta functions.
If the vertices are labeled by k at level j and the midpoint of an edge(or the newly
generated vertex) is labeled by m, then one could simply subsample followed by
upsampling the scaling coe�cients and let the re�nement relation be

ψj,m = φj+1,m −
∑︂

k∈N (m)

cj,k,mφj,k

A special choice would be

cj,k,m =

{︄ ∫︁
S2 φj+1,mdΩ

2
∫︁
S2 φj,kdΩ

for k = v1, v2

0 otherwise

where v1 and v2 are endpoints corresponding to m.
Suppose now we have a convex polyhedron Γ with triangular surfaces and

having all its vertices located on the 2-sphere. Through certain subdivision
scheme we obtain re�ned triangulations T j with the set of vertices Vj and
nodal functions ϕv at vertex v ∈ Vj . The space P1

j of piecewise linear continuous
function on T j is a subspace of P1

j+1. In fact, if only neighboring vertices are
involved, there is the relation ϕjv = ϕj+1

v + 1
2

∑︁
v′∈N (v)

ϕj+1

v′
; while in the butter�y
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scheme more vertices could be involved. Thus the composition of ϕjv and inverse
projection p−1 : S2 → ∂Γ, denoted by φjv, satisfy the re�nement equation

φjv = φj+1
v +

1

2

∑︂
v′∈N (v)

φj+1

v′
(2.77)

and if u ∈ Vj+1\Vj be the newly added midpoint on an edge [v1, v2], the next
step is to de�ne a wavelet space such that Wj

⨁︁
P1
j = P1

j+1. One strategy used
in [70] is to assume that the wavelet function at m is a linear combination of
the nodal functions of the previous level in the neighborhood of v1 and v2, and
vanishes P1

j . It is proved there if one de�ne

ψj,u =

⎛⎝c1ϕj+1
v1 +

∑︂
v′∈N j+1(v1)

cv′ϕ
j+1

v′

⎞⎠+

⎛⎝c2ϕj+1
v2 +

∑︂
v′∈N j+1(v2)

cv′ϕ
j+1

v′

⎞⎠
= ψ

(1)
j,u + ψ

(2)
j,u

(2.78)
by requiring that for any v ∈ Vj

⟨ψ(1)
j,u, ϕ

j
v⟩∂Γ =

⎧⎨⎩ (−1)2−2jγ v = v1
2−2jγ v = v2

0 else

and

⟨ψ(2)
j,u, ϕ

j
v⟩∂Γ =

⎧⎨⎩ (−1)2−2jγ v = v2
2−2jγ v = v1

0 else

where γ is a given nonzero constant, so that ⟨ψj,u, ϕjv⟩∂Γ = 0, then ψ
(1)
j,u and

ψ
(2)
j,u are uniquely determined, hence ψj,u.
Spherical Haar wavelets are later improved into a both orthogonal and sym-

metric basis in the work [46], where instead of using the geodesic bisectors they
smartly designed the subdivision by employing a spherical trigonometry for-
mula from a college and school book a century ago that is not well-known to
the people nowadays, so that areas of the children triangles on the �ner level
are equal.

The authors of [82] project from the plane to the sphere the Mexican hat
wavelet 1√

2π
(2 − x2)e−x

2/2, which is almost the Laplacian of a Gaussian, to
form the so called spherical Mexican wavelet. Noticed by computer scientists
that spherical Haar wavelets are constructed after subdivision and the re�ning
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scheme depending heavily on the connectivity of the mesh hence computation-
ally expensive, the authors from [59] recently introduced a Mexican hat wavelet
formulated in the frequency domain as an alternative choice, namely by de�n-
ing the continuous wavelet on an a compact manifold as the derivative of the
heat kernel ht(x, y) and the discrete version wavelet as its di�erence. It has the
advantage being localized in both space and frequency domains. Precisely, let

ψt(x, y) =

∞∑︂
k=0

λke
−λktϕk(x)ϕk(y) (2.79)

with {ϕk} are eigenfunctions of the Laplace-Baltrami operator on the manifold
and λk the corresponding distinct eigenvalues, then the continuous wavelets
transform of a square integrable function f on M is

Wψf(x, t) =

∫︂
M

ψt(x, y)f(y)dy

and it has the inverse transform

f =

∫︂ ∞

0

Wψf(x, t)dt+ f̂(0)ϕ0(x) (2.80)

By de�nition heat kernel and the associated wavelets have the properties that
for all x and y on M ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

lim
t→0

ht(x, y) = δx(y)

lim
t→∞

ht(x, y) = 1/ν(M)

lim
t→∞

ψt(x, y) = 0

lim
t→0+

ψt(x, y) =
∑︁
k

λkϕk(x)ϕk(y)

(2.81)

In particular the last term is the kernel of ∆M.
Similarly, if we divide the time line into a sequence [t0, · · · , tN ], the discrete

Mexican hat wavelet transformation and its inverse are

ˆ︁W†
ψf(k) =

ˆ︂ψtj (k) ˆ︁f(k)
f(x) =

N∑︂
j=1

W†
ψf(x, tj) +

∫︂
M

htN (x, y)f(y)dy
(2.82)

where ˆ︂ψtj (k) = e−λktj−1 − e−λktj , using the fact that h0 is the reproducing
kernel of the Hilbert space L2(M). Since the heat kernel preserves the integral
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∫︁
M ht(x, y)dy = 1 for all t ⩾ 0, the wavelet formulated in this way automatically
has zero mean. I would like to brie�y mention that a comparable construction of
the Mexican hat wavelet is the Poisson wavelet from [51], where frame properties
are discussed in a more theoretical way.

Another relatively new method is the Geometric Multi-Resolution Analy-
sis(GMRA) adapted to a m-dimensional smooth compact Riemannian manifold
M embedded in Rn was built in [97]. This method consists of the following
steps. Firstly decompose the m-dimensional manifold in each scale j ∈ Z into
subsets Uj = {Uj,k}k∈Kj , such that:

(i) They completely cover M and ν(Uj,k′
⋂︁
Uj,k) = 0 for any k

′ ̸= k ∈ Kj
(ii) Uj′ ,k′ is included in one and only one Uj,k whenever j < j

′

(iii) comparison principle: for each level j,

Bρ(cj,k, 2
−j

′

) ⊂ Uj ⊂ Bρ(cj,k, 2
−j)

holds for some j
′
> j, where the Riemannian metric is denoted by ρ and the

Borel measure by µ. Such a decomposition for instance can be achieved through
intersection of the manifold with dyadic cubes in Rn.

The second step is to �nd the minimizer of the functional

min
P

∫︂
Uj,k

d(x, P )2dν(x) (2.83)

where d measures the Euclidean distance to an a�ne plane P . The solution
of this minimization problem is the a�ne space spanned by the m eigenvectors
corresponding to the maximum eigenvalues of the covariance matrix

E[(x− Ex)(x− Ex)†|x ∈ Uj,k] = Bj,kΣj,kB
†
j,k (2.84)

with Σjk a dimP × dimP diagonal matrix and dimP equals the number of
vectors in Bj,k, centered at

cj,k = E[x ∈ Uj,k] =
1

ν(Uj,k)

∫︂
Uj,k

xdν(x) ∈ Rn

denoted by cj,k + Vj,k. Indeed, let ξi (i = 1, · · · , n −m) be orthonormal unit
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2.4. OTHER APPROACHES: A SELECTIVE REVIEW

vectors in Rn, then (2.83) equals to

min
λ∈Rn−m

ξi∈Sn−1

1

ν(Uj,k)

∫︂
Uj,k

n−m∑︂
i=1

|x · ξi − λi|2dν(x)

= min
ξi∈Sn−1

1

ν(Uj,k)

∫︂
Uj,k

n−m∑︂
i=1

|⟨x− Ex, ξi⟩|2dν(x)

= min
ξi∈Sn−1

n−m∑︂
i=1

ξ†iE[(x− Ex)(x− Ex)†|x ∈ Uj,k]ξi

(2.85)

therefore the minimum value is achieved by choosing arbitrary n−m eigenvec-
tors corresponding to the minimum eigenvalues. We point out that in the paper
[97] the assumption that E[(x− Ex)(x− Ex)†|x ∈ Uj,k] has rank m≪ n would
be not right when the manifold is of poor regularity or having large curvature.
Covariance matrix in general could have full rank when its curvature is not iden-
tically zero. In fact, assume without loss of generality that Bj,k form the last m
coordinates and points in U have the expression x = (h1(x

′
), · · · , hn−m(x

′
), x

′
),

where x
′
is m-tuple (xn−m+1, · · · , xn). If at U the curvature is large, then

U ⊂ P and for any i ⩽ n and j > m, since xj = 0 there is

cij =
1

|U |

∫︂
U

(xj − Exj)(xi − Exi)dx = 0

hence the rank of E[(x − Ex)(x − Ex)†|x ∈ U ] is at most m. However, when
the curvature at U is not zero, say hi > 0 for all i ⩽ n, then cii > 0 and
detE[(x − Ex)(x − Ex)†|x ∈ U ] does not have to vanish. In other words co-
variance matrix can have full rank n regardless of the fact that M is a m-dim
manifold. Nevertheless if we know in advance that the surface consists of points
distributed around a hyperplane or its sectional curvatures are small every-
where, namely hi ≪ diam(U), then the low rank assumption holds as a �rst
order approximation.

Let Πj,k := Bj,kB
†
j,k, the third step is to compare the di�erence between

the a�ne projection xj,k = Πj,k(x − cj,k) + cj,k to the plane centered at cj,k
and the projection Πj+1,k′ (x− cj+1,k′ ) + cj+1,k′ to the next level plane, where
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x ∈ Uj,k ∩ Uj+1,k′ . Without confusion we omit the index k and k
′
. Then

∆jx := Πj+1(x− cj+1)−Πj(x− cj)

= (I −Πj)Πj+1(x− cj+1)−Πj [(x− cj)−Πj+1(x− cj+1)]

= (I −Πj)Πj+1(x− cj+1)−Πj [(x− cj)−ΠJ+1(x− cJ+1)]

+

J∑︂
s=j+1

Πj(Πs+1(x− cs+1)−Πs(x− cs))

= wj −Πj [(x− cj)−ΠJ+1(x− cJ+1)] + Πj

J∑︂
s=j+1

∆sx

(2.86)

for any J ⩾ j + 1, where wj ∈ Wj+1 := (I − Πj)Vj+1. Thus we have the
decomposition of Πj+1(x− cj+1) ∈ Vj+1 into two orthogonal parts, namely the
detail part wj in Wj and the coarse part that belongs to Vj . An obvious fact in
this method is that the centers change at di�erent levels and eigenvectors must
be recalculated, as a result there is no simple operations like translation and
dilation directly applicable.

In my humble opinion one of the main obstacles in local projection approach
is how to smartly build an adaptive mesh on an arbitrary surface so that the
transition functions have good regularity properties. Even for the special case
of the unit sphere, it is not a trivial question. Best performance in regularity
aspect is achieved interestingly, however, by the earliest works in Germany. In
[74] the authors divide the whole domain into quad mesh and utilize tensor
product of exponential splines and B-wavelets to form the wavelets on a square
and join smoothly the pull-back of those wavelets which are able to obtain
C1 regularity at the pole and C∞ elsewhere. In [79] arbitrary smoothness of
the wavelets is realized on the whole sphere in theory, although it had the
drawback in implementation according to Prof. Dahmen and Prof. Schneider.
An optimized and implementable version is given by Kunoth and Sahner[48].
A similar strategy using local plane approximation for arbitrary manifold is
adopted recently in [94]. The representation system formed in this way in general
could be highly redundant and it is not always clear whether frame properties
hold globally.

In our projection means for constructing spherical α-wavelets/shearlets, how-
ever, as I have mentioned in Remark 2.17, hollow pole functions preserve reg-
ularity globally under dilation and as you shall see in the next chapter, they
generate a frame system under suitable assumptions, so that they recover a
function completely and stably even though there might exist overlaps.

Those methods mentioned above as well as ours have potentially many col-
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laborators in di�erent scienti�c �elds from astrophysics to medical imaging. For
instance, as a strong support for the big bang theory, the cosmic microwave back-
ground was originally assumed to be perfectly uniform or isotropic[32]. However,
detection of small �uctuation of its temperature leads physicists to search for
the anisotropic structure behind it. Thus precise measurement of small param-
eters of the cosmological model is crucial according to physicists, and the scale
property of wavelets naturally perfectly �ts into this needs. In this aspect I
would like to refer the readers to [24][58] for physics background, [42] for real
observation data based on wavelet tools and [23] for a recent survey. In [90]
spherical wavelets are used for analyzing the lithosphere structure of terrestrial
planets including the Earth, Venus, Mars and Moon, where the admittance and
correlation functions of given wavelet degree possess negative values for lowland
basins and positive values for highlands. Besides, spherical wavelets are also
used in image segmentation[84], and other applications.
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Chapter 3

Extension to Miscellaneous

Results

3.1 Kernel approximation

A real continuous kernel K : M×M → R for some subset M ⊂ Rn is said to be
positive de�nite if for any integer N the quadratic form

N∑︂
i,j=0

K(xi, xj)cicj ⩾ 0 (3.1)

holds for arbitrary set of points {xi}Ni=1 in the set M and coe�cient vector c =
(c1, c2, . . . , cN ) ∈ RN . WhenK is symmetric, according to Theorem 4.7, integral
operator

∫︁
MK(x, y)f(y)dy has eigenfunctions {φn}n∈N forming an orthonormal

basis of L2(M), hence K(x, y) =
∑︁
n
cn(x)φ(y) for some vector of functions c

depending on x. Replacing this into the equation∫︂
M
K(x, y)φn(y)dy = λnφn(x)

and using the linear independence of {φn}n∈N, we see that cn(x) = λnφn(x)
and hence obtain the representation

K(x, y) =

∞∑︂
n=0

λnφn(x)φn(y) (3.2)
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Conversely if K has such an expression with respect to an orthonormal basis,
then each basis element φn is an eigenfunction corresponding to λn. Especially
when M is equipped with a norm and K(x, y) = ˜︁K(∥x−y∥) for some continuous
function ˜︁K and norm ∥ · ∥, it is called a radial kernel.

On a compact domain, Mercers' Theorem says that a continuous symmetric
kernel K is a positive de�nite if and only if∫︂

M×M
K(x, y)w(x)w(y)dxdy ⩾ 0 (3.3)

for all w ∈ L1(M).
We remark here that both the kernel and the coe�cient vector c ∈ Rn can

be complex, and the de�nition can obviously be rewritten in the matrix form
c†Kc ≥ 0. Nevertheless the de�nition (3.1) shall serve our current purpose.

Let us list some important examples of positive de�nite kernels:
(i)(Stationary kernel and its multivariate version)
The name "stationary" comes from the translation-invariant property. Let

x, y ∈ Rn, a stationary kernel is of the form K(x, y) = k̃(x − y) for some
continuous function k̃ : Rn → R. Bochner showed that∫︂

Rn

k̃(x− y)w(x)w(y)dxdy ⩾ 0

for all w ∈ L1(R) is equivalent to the existence of a positive, �nite Borel measure
µ such that k̃ = µ̂.

In the multi-dimension situation tensor product of one dimension kernels
k̃i : R → R with i = 1, · · · , n leads to the multivariate kernel K(x, y) =
n∏︁
i=1

k̃i(xi− yi). This kind of kernels, since it involves di�erent dimensions, could

certainly embrace anisotropic traits, and is mostly used in statistics as a spe-
cial nonparametric regression method. In that context, given d-variate random
vectors xi (i = 1, · · · , n) with a common density function ρ, one needs to wisely
choose symmetric and positive de�nite d×d smoothing matrix H, such that the
kernel density estimate

ρH(x) =
1

n

n∑︂
i=1

KH(x− xi)

with KH(x) = |H|−1/2K(H−1/2x) minimizing the mean integrated squared
error MISE(ρH) =

∫︁
E
[︁
(ρH(x)− ρ(x))2

]︁
dx. The latter can be decomposed
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and written as∫︂ [︂
Var(ρH(x)) + (EρH(x)− ρ(x))

2
]︂
dx

=

∫︂ [︃
1

n

(︁
K2
H ∗ ρ(x)− E2(ρH(x))

)︁
+ (KH ∗ ρ(x)− ρ(x))

2

]︃
dx

where we used the fact that

EρH(x) =

∫︂
KH(x− y)ρ(y)dy

=

∫︂
KH(y)[ρ(x)−H−1/2y · ∇ρ(x) + 1

2
(H1/2y)THess.ρ(x)H1/2y

+ o((H1/2y)T (H1/2y))]dy.

and

Var(ρH(x)) =
1

n2
E

⎡⎣(︄ n∑︂
i=1

KH(x− xi)

)︄2
⎤⎦− EρH(x)EρH(x)

=
1

n

[︁
K2
H ∗ ρ(x)− (EρH(x))2

]︁
An example is that H chosen to be diag(h21, · · · , h2d), KH to be the Gaussian

|H|−1/2 1
(2π)d/2

exp(− 1
2x

TH−1x), and

ρH(x) =
1

n

∏︂
j

h−1
j

n∑︂
i=1

K(
x1 −X1

i

h1
, · · · , xd −Xd

i

hd
)

Under the moments assumption that∫︂
K(x)dx = 1,

∫︂
xK(x)dx = 0 and

∫︂
K(x)xxT dx = µI

where µ =
∫︁
x2iK(x)dx independent of i, and the restriction that entries of H

and n−1|H|−1/2 both go to zero as n goes to in�nity, as well as that each term
of Hess.ρ is piecewise continuous and square integrable, the above expressions
become

EρH(x) = ρ(x) +
µ

2
tr(H.Hess.ρ) + o(|H|)

VarρH(x) =
1

n
|H|−1/2

∫︂
K(y)2dyρ(x) + o(|H|−1/2 · 1

n
)
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thus
MISE(ρH) = AMISE(ρH) + o(

1

n
|H|−1/2 + tr2H)

where the leading term

AMISE(ρH) =
1

n
|H|−1/2

∫︂
K2(x)dx+

µ2

4

∫︂
tr2(HHess.ρ)dx

is called asymptotic mean integrated squared estimate. Certainly one can adopt
an adaptive strategy and locate di�erent smoothing matrices at di�erent points,
but in general a linear transformation enables one to consider random data of
zero mean and unit covariant matrix. To maintain the structure of this chap-
ter I do not intend to stretch out to full details, but rather refer the interested
readers to monographs [15][72] among many excellent literatures. However, I do
want to mention that the spirit of this method is very close to that of wavelets
approximation, and it has the advantage that data distribution can be expressed
graphically and perceived by human cognition very well, similar to the isotherm
on a temperature distribution map.

(ii)(Power series kernel and zonal kernel)
For x,y ∈ (−1, 1)n, the kernel

K(x, y) =
∑︂
α∈Nn

0

cα
xα

α!

yα

α!
with

∑︂
α∈Nn

0

cα
(α!)2

<∞ (3.4)

is �rstly introduced in [1] as a generalization of the in�nite product kernel
∞∑︁
n=0

cn(x · y)n given in [45], where the coe�cients cn are often assumed to be

positive to guarantee the positive de�niteness of the kernel, and the nonlinearly

factorizable kernel of the form
d∏︁
j=1

∞∑︁
n=0

cn(xj · yj)n. Among the simplest and

most popular examples there are the exponential kernel exp(x · y) =
∞∑︁
n=0

x·y
n! =∑︁

α∈Zn

1
|α|!x

αyα and
d∏︁
j=1

1
1−cxj ·yj with c ∈ (0, 1). It has the expansion (3.2) with

the eigenfunctions being some modi�cation of the Hermite polynomials Hj(see
Example 4.13).

Zonal kernel adapts the stationary kernel in Euclidean spaces to spheres, in
the sense that it uses the geodesic distance between x and y on Sn−1 instead of
the Euclidean distance. Note that when the kernel function is analytic, it re-
duces to an in�nite product kernel. A special example is the spherical Gaussian
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exp(−2ϵ(1 − x · y)). We shall discuss properties of this kind of kernels further
in this chapter.

(iii)(Multiscale kernel)
Sometimes the function spaces arising from PDEs or analysis have multi-

scale structure, hence a class of kernels combined with multiscale property is of
particular interest. As was introduced in [34][35], the multiscale kernel on the
plane has the form

K(x, y) =
∑︂
j⩾0

λj
∑︂
k∈Zd

φ(2jx− k)φ(2jy − k) with x, y ∈ Rd (3.5)

It is clearly a special example of (3.2) and being particularly interesting in the
sense that it is endowed with wavelet-like properties, where φ is either compactly
supported or of decay rate O(1+∥x∥

−(d+1)
2 ). However, in the light of radial basis

construction of spherical wavelets in section 2.1, I would like to propose a new
type of kernels of the form

KΦ,λ(x, y) =
∑︂
l⩾0

∑︂
j⩾0

1

µj
ˆ︁Φ4
j (l)Pl(x · ξ0)Pl(y · ξ0) (3.6)

which can be viewed as spherical version of the multiscale kernel. As we shall
see soon this kernel is a reproducing kernel for a certain Hilbert space.

(iv)(Reproducing kernel)
Suppose H is a function space which is Hilbert under certain norm, for

instance a subspace of L2(M,R) or C(M,R). It is well known that H has a
reproducing kernel K if and only if the evaluation operator is bounded, namely
there exists C > 0 such that |v(x)| ⩽ C∥v∥H for all x and any v ∈ H .
Reproducing kernel is positive de�nite due to the observation that

N∑︂
i,j=1

cicjK(xi, xj) =

N∑︂
i=1

∥ciKxi
∥2 ⩾ 0 (3.7)

where we adopt the notation Kx = K(x, ·). In particular, under the further
assumption that

N∑︂
i=1

civ(xi) = 0 for every v and {xi}Ni implies ci = 0 (3.8)
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K is strictly positive de�nite. Conversely, if K is symmetric positive de�nite
on a set M, there exists a unique Hilbert space in which K is the reproducing
kernel. In fact, H can be de�ned as the completion of {Kx}x∈M with respect
to inner product ⟨

∑︁
i

aiKxi
,
∑︁
j

bjKxj
⟩ =

∑︁
i

∑︁
j

aibjK(xi, xj) and uniqueness of

H follows from a mutual inclusion argument.
Many questions can be solved or approximated once they are restricted to a

�nite dimensional subspace which has a reproducing kernel. In applied mathe-
matics, a useful example is that the minimization problem

min
g∈X

{∥Ag − f∥2Y + αM(g)} (3.9)

in some Hilbert space X provided that M is a di�erentiable functional, can be

solved explicitly by taking derivative if the solution is of the form
N∑︁
i=1

ciKxi .

This kind of minimization is widely applicable in inverse problems[37]. In
complex analysis, an important example is the Bermann kernel KB(z, w̄) =
∞∑︁
k=0

1
λk
φk(z)φk(w) with {φk}k⩾0 an orthonormal basis such that∫︂

C

φk(z)φk′ (z)dz = δkk′ and
∫︂
Ω

φk(z)φk′ (z)dz = λkδkk′

which is the reproducing kernel for Bergmann space which consists of ana-
lytic functions on a bounded domain Ω ⊂ Cd with �nite L2 norm; while the
Hua-Poisson kernel H(z, w) = P (z,w̄)P (w,z̄)

P (z,z̄) de�ned by Hua[57] with P (z, w̄) =
∞∑︁
n=0

φn(z)φn(w), is the reproducing kernel for the class of functions v(z) =∑︁
k⩾0

ckφk(z)/P (z, z̄) on the characteristic manifold C ⊂ ∂Ω of Ω, namely

v(z) =

∫︂
C

H(z, w)v(w)dw (3.10)

In particular, for Laplacian ∆BC = 4
∑︁
j,k

1−|z|2
3 (δj,k− z̄jzk) ∂2

∂zk∂z̄j
on the complex

ball BC ⊂ Cn with C = Sd−1
C ,

u(z) =

∫︂
Sd−1
C

H(z, w)f(w)dw (3.11)

solves the Cauchy-Dirichlet problem{︄
∆Bu(z) = 0 z ∈ BC
u|Sd−1

C
(z) = f(z) z ∈ Sd−1

C
(3.12)
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with PBC(z, w) = (d−1)!
2πd(1−z·w̄)d

. Nevertheless, we shall not extend further into
those examples.

In spherical context, note that Hl are RKHS themselves with kernel Zl in
(1.29). Suppose K is a reproducing kernel of a subspace H

′
of the square

integrable functions on the sphere and every Zl is an element of H
′
, then K

meets the condition (3.8), hence is strictly positive de�nite. Indeed, if we assume

that
N∑︁
i=1

civ(xi) = 0 for every v ∈ H
′
, in particular

N∑︁
i=1

ciPl(xi · x) = 0, then

there is
N∑︂
i=1

ciQr(xi · x) =
∞∑︂
l=0

2l + 1

4π
rl

N∑︂
i=1

ciPl(xi · x) = 0

where Qr(t) is the Poisson kernel. Let

θi(x) =

{︃
x·xi−1+h

h if x · xi < 1− h
0 else

(3.13)

with h ⩽ min
i ̸=j

xi · xj . Since θi is continuous and θi(xj) = δij , by Lemma 1.2 it

follows that

ci =

N∑︂
j=1

cjθxi
(xj) =

N∑︂
j=1

cj lim
r→1−

⟨Qr(xj · x), θxi
(x)⟩L2 = 0

A function ψ : [0, π] → R is called conditionally strictly positive de�nite of
order m on Sn−1 if ψ(xi · xj) is positive de�nite with respect to

{(c1, . . . , cN ) :

N∑︂
i=1

ciY (xi) = 0 for all Y ∈ Hl−1}

a concept facilitates the discussion of positiveness on subspaces like
⨁︁
l′∈L′

Hl′ .

Clearly a radial function ψ that is conditionally strictly positive de�nite on Rn is
conditionally strictly positive de�nite on Sn−1. Furthermore,

∑︁
l′∈L′

al′Pl′ (xi · yj)

being strictly positive de�nite for al′ > 0 is obviously equivalent to that of∑︁
l′∈L′

Pl′ (xi · yj), which holds if and only if L
′
contains in�nitely many odd

terms and even terms, which was proved in [6].
Before we proceed, I would like to give the following lemma which bridges two

di�erent reproducing kernel spaces. Let H1 and H2 be two reproducing kernel
Hilbert spaces of real(or complex)-valued functions on M1 and M2 respectively,
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and K1 be the reproducing kernel of H1. The lemma says that under certain
isometries K2 is uniquely determined by K1.

Lemma 3.1. If K1 is the reproducing kernel of H1 and F : H1 → H2 is an
isometry such that FIvh = IvFh for any integrable function h : M1 ×M1 → R
where Iv(·) := ⟨v, ·⟩ is the evaluation operator at v ∈ H1, then FFyK1(x) is the
reproducing kernel of H2.

Proof. For �xed point y in the domain M2 of the functions in H2, (FyK1)(z) :=
F (K1(·, z))(y) is a function in H1 with respect to x ∈ M1.

⟨Fv, F (FyK1)⟩ = ⟨v, FyK1⟩
= Iv(FyK1)

= (FIvK1)(y)

= Fv(y)

(3.14)

By uniqueness of the reproducing kernel we arrive at our conclusion.

Remark 3.2. Whenever there is a linear isometry F between L2(S2) into
L2(M), we are able to use the the above lemma to obtain the reproducing
kernel of L2(M). In fact, the linearity of F implies that F commutes with Iv,
the integral operator.

For sampling points x1, · · · , xN in M, it is a classical result that v∗ from a

RKHS H achieves sup
∥v∥2⩽E

N∑︁
i=1

v2(xi) when

v∗(x) =

N∑︂
i=1

ξM (xi)Kxi
(3.15)

with ξM the eigenfunction corresponding to the maximum eigenvalue λM of the
matrix (K(xi, xj))i,j=1,··· ,N . In fact,

N∑︂
i=1

v2(xi) =

N∑︂
i=1

v(xi)⟨v,Kxi
⟩

⩽ ∥v∥

⌜⃓⃓⎷ N∑︂
i,j=1

v(xi)v(xj)K(xi, xj)

⩽ E

⌜⃓⃓⎷λM

N∑︂
i=1

ξ2M (xi)

(3.16)
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with equality holds if and only if v = c
N∑︁
i=1

v(xi)Kxi
and

N∑︁
j=1

v(xj)K(xi, xj) =

λMv(xi), namely v = v∗.
Another question that is often asked is whether there exist v ∈ H of mini-

mum norm that solves the equations

v(xi) = ai (3.17)

where ai ∈ R are given. The answer is a�rmative at the presence of a reproduc-
ing kernel that satis�es (3.8). Indeed, if (3.17) holds for v, then its projection
into the space HN = span{Kxi

, · · · ,KxN
}, written as vN , solves the set of

equations as well, since ⟨v− vN ,Kxi⟩ = 0 for any i ∈ {1, · · · , N}. Furthermore,
∥vN∥ ⩽ ∥v∥, thus the minimum norm solution, if exists at all, lives in HN . Un-
der assumption (3.8), the matrix A = (K(xi, xj)) is invertible and the unique
minimum solution is given by

(a1, · · · , aN )A−T (Kx1 , · · · ,KxN
)T (3.18)

Our next theorem gives the kernel condition under which kernel integral
expression can be used to approximate an arbitrary L1 integrable function. I
also refer to the coming work [20] for a generalization of this result to higher
dimension situation.

Theorem 3.3. Given K ∈ L1([−1, 1]) and a dense subset Γ = {σi}i of the
rotation group, the span of functions {R(σi)K(ξ0 · y)} is dense in L1(S2) if and
only if K̂l ̸= 0 for all l ∈ N.

Proof. Firstly observe that for any g ∈ L∞(S2) there is

(ˆ︂K ∗ g)ml =

∫︂
S2

∫︂
S2

∫︂
S2
K(x · y)Pl(x · z)g(y)dxdyY ml (z)dz

= K̂l

∫︂
S2

∫︂
S2
Pl(y · z)Y ml (z)g(y)dzdy

= K̂lĝ
m
l

(3.19)

hence it is easy to see that Kl ̸= 0 for all l ∈ N, if and only if the equation

K ∗ g(x) = 0 a.e. (3.20)

does not have any bounded solution other than the zero function.
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Let V = {all �nite linear combinations
∑︁
i

ciK(xi · y)} and denote by V̄ its

closure. For every S ∈ V̄ and ϵ > 0, suppose ∥S − SN∥L1 ⩽ 1
N with SN (y) =∑︁

i

ciK(xi · y), we see immediately from the fact that

∫︂
S2
|(S − SN )(y)g(y)|dy ⩽ ∥g∥∞ · 1

N

the equation (3.20) holds if and only if∫︂
S2
S(y)g(y)dy = 0 (3.21)

for any S ∈ V̄ , which is further equivalent to the condition that V̄ = L1(S2). In-
deed, Hahn-Banach Theorem implies that if V̄ ̸= L1(S2), we can �nd a nonzero
continuous linear functional v in L1(S2) which is vanishing on V̄ . Since S2 is of
�nite measure, by Riesz-representation Theorem there exists a bounded nonzero
function g such that v(S) =

∫︁
S2 S(y)g(y)dy = 0 for any S ∈ V̄ , a contradiction.

Thus we have proved that the span of all rotated functions {R(σi)K(ξ0 · y)}
being dense in L1(S2) is equivalent to the condition K̂l ̸= 0 for ∀l ∈ N.

Finally, by the density of continuous functions in L1 space, for any f ∈ L1

there exist Kc ∈ C([−1, 1]) and some set {σNi }i such that ∥SN − ScN∥L1 < 1
N

and ∥SN − f∥ < 1
N , where ScN =

∑︁
i

ciR(σNi )Kc(η0 · y). Now by the density

assumption of Γ in SO(3), for arbitrary ϵ > 0, we can �nd some {σi′} ⊂ Γ such
that ∥f −

∑︁
i′
ci′R(σi′ )K

c(η0 · y)∥L1 < ϵ, hence the claimed result follows.

Similarly, for a family of kernels {Kj}j∈J we have the following extension

Corollary 3.4. The equations∫︂
S2
Kj(x · y)g(y)dy = 0 ∀x ∈ S2, j ∈ J

have a nonzero bounded solution g when and only when for some l ∈ N, K̂
j

l = 0
for all j ∈ J .

Proof. If K̂
j

l = 0 for all j ∈ J , then
∫︁
S2 K

j(x · y)Y ml (y)dy = 0 for all x and j.
Conversely, if

∫︁
S2 K

j(x · y)g(y)dy = 0 has a nonzero bounded solution g for all

j, then 0 = Zl ∗ (Kj ∗ g) = K̂
j

lPlg. Since g is not identically zero, there exists

some Plg ̸= 0, hence K̂
j

l = 0 for all j ∈ J .
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Remark 3.5. In the proof we already use the fact that g ∈ L∞(S2) ⊂ L2(S2),
otherwise (3.19) does not make sense. In fact, the theorem is still valid even if
we set g ∈ L2(S2), and the corresponding proof is not much changed.

Let ν be an arbitrary linear continuous functional on L1([−1, 1]). Due to
the fact that ν(K) =

∫︁ 1

−1
K(t)gν(t)dt for some gν ∈ L∞([−1, 1]) and that

∥ν∥ = sup
∥gν∥∞=1

∫︁ 1

−1
K(t)gν(t)dt, as an immediate consequence of theorem 3.3 is

following expansion result for linear continuous functionals on L1(S2) in terms
of translations of ν.

Corollary 3.6. Given a dense subset Γ = {σi}i of the rotation group and
ν ∈ (L1(S2))∗ such that ker ν = {0}, there is

(L1(S2))∗ = span{νi}

where

νi(f) =

∫︂
S2
f(y)R(σi)gν(η0 · y)dy

for any f ∈ L1(S2).

Proof. We only need to prove (L1(S2))∗ ⊂ span{νi}. For any µ ∈ (L1(S2))∗
and f ∈ L1(S2), there exists h ∈ L∞(S2), such that µ(f) =

∫︁
S2 f(y)h(y)dy.

Due to our assumption that ker ν = {0}, (3.20) implies that ˆ︁gνl = 0 for any
l. Consequently, given any ϵ > 0 there exist some ci and {σi}i ⊂ Γ such that
∥h(y)−

∑︁
i

ciR(σi)gν(η0 · y)∥L1(S2) < ϵ, hence we have⃓⃓⃓⃓
⃓µ(f)−∑︂

i

ciνi(f)

⃓⃓⃓⃓
⃓ < ϵ∥f∥∞

for any f ∈ L∞(S2) such that ∥f∥L1 = 1, since L∞ is dense in L1 on compact
set. The claim follows from the arbitrariness of ϵ.

Let Qa ∗ g :=
∫︁
SK(x · ya)g(y)dy, the observation that

ˆ︂Qa ∗ g(l,m) =

∫︂ ∫︂
K(x · ya)Y ml (x)g(y)dydx

=

∫︂
K̂(l)Y ml (ya)g(y)dy

(3.22)

leads to
lim
a→0+

ˆ︂Qa ∗ g(l,m) =
1√
4π
K̂(l)δm,0

∫︂
S2
g(x)dx
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or

lim
a→0+

Qa ∗ g(y) =
∑︂
l

√
2l + 1

4π
K̂(l)

∫︂
S2
g(x)dxPl(cos θy) (3.23)

and
lim
a→1

ˆ︂Qa ∗ g(l,m) = K̂(l)ĝlm

or equivalently

lim
a→1

∫︂
S2
|Qa ∗ g(y)− g(y)|2dy =

∑︂
l

∑︂
|m|⩽l

|K̂(l)− 1|2|ĝlm|2 (3.24)

Proposition 3.7. {Qa} is an approximate identity at a = 1 in L2 i� K̂(l) = 1
for any l ∈ N.

Let I be the parameter set of frames {ϕi}i∈I and {ϕ†i}i∈I . Consider kernels
of the form

Kt(x, y) =
∑︂
i∈I

λi(t)ϕi(x)ϕ
†
i (y) (3.25)

with λi ∈ ℓ∞ such that Kt(x, y) exist for all t, x, y.

De�nition 3.8. Let us call the kernel in (3.25) a frame kernel. Set IN ⊂ I

with ∥IN∥0 = N and I⊥N = I \ IN . Denote by Kt
IN

(x, y) =
∑︁
i∈IN

λi(t)ϕi(x)ϕ
†
i (y).

If ⟨f,Kt(x, ·)⟩ = f(x), then fIN (x) = ⟨f(·),KIN (x, ·)⟩ is called a N -term kernel
approximation of f . When

∥⟨f(·),Kt
I⊥N

(·, y)⟩∥ ⩽ ∥⟨f(·),Kt
J⊥
N
(·, y)⟩∥

for any JN ⊂ I with ∥JN∥o = N we call fIN a best N -term kernel approximation
of f .

Remark 3.9. In contrast to the standard text in approximation theory where
N -term approximation is usually reserved for nonlinear spaces, here I do not
distinguish between linear and nonlinear spaces.

Example 3.10. Clearly frame property (1.2) can be reformulated in the kernel
means

A∥f∥2 ⩽ ⟨f(x), ⟨Kt(x, y), f(y)⟩⟩ ⩽ B∥f∥2 (3.26)

in the special case that λi = 1 for all i ∈ I and ϕi = ϕ†i .
If {ϕ†i}i∈I is the dual frame of {ϕi}i∈I and λi = 1, then

∥f∥2 = ⟨f(x), ⟨Kt(x, y), f(y)⟩⟩ (3.27)
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namely Kt is a reproducing kernel.
If λi(t) = e−cit with ci the eigenvalues of Laplace-Beltrami operator on a

manifold, we call

ht(x, y) =

∞∑︂
i=0

e−citϕi(x)ϕ
†
i (y) (3.28)

a generalized heat kernel.

Another good example of frame kernel is the multiscale kernel we have de-
�ned in (3.6), its reproducing property is given in Theorem 3.13. In addition,
if we denote by A† and B† the lower and upper bound of frame {ϕ†i}i∈I respec-
tively, from the de�nition it is obvious that

∥⟨f(·),KI⊥N
(·, y)⟩∥ = sup

∥g∥=1

⃓⃓⃓
⟨⟨f(·),KI⊥N

(·, y)⟩, g(y)⟩
⃓⃓⃓

= sup
∥g∥=1

∥{λi⟨f, ϕi⟩}i∈I⊥N ∥ℓ2∥{⟨ϕ†i , g⟩}i∈I⊥N ∥ℓ2

⩽
√
BB† max

i
|λi|∥f∥

(3.29)

and by assuming without loss of generality that λi ̸= 0, there is

∥⟨f(·),KI⊥N
(·, y)⟩∥ ⩾

√
AA† min

i
|λi|∥f∥ (3.30)

The error of the best l-term Legendre kernel approximation of image with
smooth boundary decays as l−1/2 when l → ∞, which is shown in the next
proposition by choosing the characteristic function of the spherical cap C(ξ0,Θ)
centered at ξ0. The following asymptotic result about Legendre polynomials
can be derived from our Lemma 2.14 and can also be found in [18] and [71].

Lemma 3.11. Let c be a �xed positive constant, l → ∞. Then

P
(m)
l (cos θ) =

{︃
θ−m− 1

2O(lm− 1
2 ) if c/l ≤ θ ≤ π/2

O(l2m) if 0 ≤ θ ≤ c/l
(3.31)

In fact, the �rst term of the asymptotic expansion of Pml (cos θ) is

Pml (cos θ) = (−l)m(
2

πl sin θ
)

1
2 cos[(l +

1

2
)θ +

(m− 1)

2
π] +O(l

−3
2 ) (3.32)

where Pml (cos θ) = (−1)l sinm θP
(m)
l (cos θ), ϵ ≤ θ ≤ π− ϵ, ϵ > 0, l ≫ m, l ≫ 1

ϵ .
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Proposition 3.12. min
IL

∥
∑︁
l/∈IL

PlχC(ξ,Θ)∥2 = O(L−1/2), namely the error of

best N -term kernel approximation with respect to {Pl}l⩾0 decays at least as
O(N−1/2);

Proof. Let f = χC(ξ,Θ), then

⟨f, Pl(ω·)⟩ = b(l,Θ)Pl(ω · ξ) (3.33)

where b(l,Θ) = 2π
∫︁ Θ

0
Pl(cos θ) sin θdθ.

By integrating (4.44) we obtain∫︂ Θ

0

Pl(cos θ) sin θdθ = (l + 1)−1 (Pl−1(cosΘ))− cosΘPl(cosΘ))

= O(l−3/2)

(3.34)

By (3.31), if ξ · ω ̸= 1, Pl(ω · ξ) = O(l−1/2) as l → ∞; If ξ · ω = 1,
Pl(ω · ξ) = O(1). Therefore

∥⟨χ(ξ,Θ), Zl(ω·)⟩∥22 = (

∫︂
|ω·ξ−1|⩾ 1

l

+

∫︂
|ω·ξ−1|⩽ 1

l

)|b(l,Θ)Zl(ω · ξ)|2dΩ(ω)

= O(l−2) +O(l−1 · l−1)

= O(l−2)

due to the observation that surface area of the region {ω : |ω · ξ − 1| ⩽ 1
l } is of

size O(l−1).

∞∑︂
L

∥Plf∥22 =

∞∑︂
L

∥⟨χ(ξ,Θ), Zl(ω·)⟩∥22 = O(L−1) (3.35)

Thus the error of best L-term kernel approximation is

∥f − fL∥2 = O(L−1/2) (3.36)

As I promised, now let us turn our attention back to the kernel KΦ,λ de�ned

in (3.6). Endow the space Vj with norms ∥f ∗ Φj ∗ Φj∥2Vj
=
∑︁
l

⃓⃓⃓
f̂(l)

⃓⃓⃓2
, we can

claim the following result.
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Theorem 3.13. Given γ satisfying the conditions in (2.5) and a positive se-
quence λ = {λj,l}j,l such that

∑︁
j,l

λj,l < ∞ and µj = γ(2−j l)4/λj,l independent

of l, then KΦ,λ(x, y) forms a reproducing kernel of the Hilbert space

HΦ,λ = {g ∈ L2 : g =
∑︂
j

gj ∈
⋃︂
j

Vj and
∑︂
j

µj∥gj∥2Vj
<∞} (3.37)

with norm
∥g∥2Φ,λ = inf{

∑︂
j

µj∥gj∥2Vj
: g =

∑︂
j

gj} (3.38)

Proof. Recall that ˆ︁Φj(l) = γ(2−j l) and let us de�ne

A∗
{Φj}j⩾0

(c) =
∑︂
l,j⩾0

cl,j ˆ︁Φj(l)2Pl(x · ξ0) (3.39)

or abbreviated as A∗ without confusion, where

c ∈ ℓ2µ = {{cl,j}l,j :
∑︂
l,j

µj |cl,j |2 <∞} (3.40)

Denote by NA∗ = {c ∈ ℓ2µ : A∗(c) = 0} the null space of A∗. With the inner
product⟨︄∑︂

l,j

cl,j ˆ︁Φj(l)2Pl(x · ξ0),
∑︂
l,j

c
′

l,j
ˆ︁Φj(l)2Pl(x · ξ0)

⟩︄
A∗

=
⟨︂
PN⊥

A∗
(c), PN⊥

A∗
(c

′
)
⟩︂
ℓ2µ

(3.41)
the range of A∗ becomes a Hilbert space, where PN⊥

A∗
is the projection onto the

sequence subspace N⊥
A∗ . Indeed, it is obviously bilinear and symmetric. It is

well-de�ned, for A∗(c) = A∗(d) implying that PN⊥
A∗
(c) = PN⊥

A∗
(c − d + d) =

PN⊥
A∗
(d). Furthermore, it is clear that ⟨A∗(c),A∗(c)⟩ ⩾ 0, and equality holds

when and only when PN⊥
A∗
(c) = 0. The completeness of RanA∗ follows from

that of ℓ2λ, due to the fact that A∗ is an isometric isomorphism.
Fix x on the sphere. { 1

µj
γ(2−j l)2Pl(x · ξ0)}j,l forms a sequence in ℓ2µ under

our assumption, hence KΦ,λ(x, ·) ∈ RanA∗. Notice that

⟨A∗(c),KΦ,λ(x, ·)⟩A∗

=

⟨︄∑︂
l,j⩾0

cl,j ˆ︁Φj(l)2Pl(y · ξ0), ∑︂
l,j⩾0

1

µj
ˆ︁Φ4
j (l)Pl(x · ξ0)Pl(y · ξ0)

⟩︄
A∗

=
∑︂
l,j

cl,j ˆ︁Φ2
j (l)Pl(x · ξ0)
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Thus KΦ,λ is a reproducing kernel for the Hilbert space (RanA∗, ⟨·, ·⟩A∗). Fur-
thermore, since for any c

′ ∈ ℓ2µ such that A∗(c
′
) = A∗(PN⊥

A∗
(c)) there is

∥PN⊥
A∗
(c)∥2ℓ2µ = ∥PN⊥

A∗
(c

′
)∥2ℓ2µ ⩽ ∥c′∥2ℓ2µ , it follows that

∥A∗(c)∥2A∗ = ∥PN⊥
A∗
(c)∥2ℓ2µ

= min{
∑︂
l,j

µj |c
′

l,j |2 : c
′
∈ ℓ2µ,A

∗(c
′
) = A∗(c)}

= ∥A∗(c)∥2Φ
hence the claim of the theorem holds.

3.2 Construction of spherical frames

The goal of this section is to establish frame properties for two types of represen-
tation systems on the sphere that we have met in Chapter 2. Recall that the �rst
type considers dilation in the frequency domain. For this type, starting with a
general basis, for instance the spherical harmonics, our next theorem allows us
to transform them into a new frame suited to the multiresolution structure and
at the same time equips them with good properties such as local support and
fast decay. Interestingly, as far as I know when I am writing this part, it has
never been discussed by any before. For that purpose, we �rstly need a lemma,
whose proof can be found in [81] for instance, hence omitted here.

Lemma 3.14. If {ϕk}k⩾0 is a frame for Hilbert space H with bounds A and
B, and T is an bounded operator on H with closed range, then {Tϕk}k⩾0 is
a frame for the range of T with bounds A∥T̄∥−2 and B∥T∥2, where T̄ is the
pseudo-inverse of T .

Let Ξ ⊂ N and HΞ =
⨁︁

l∈Ξ Hl be a subspace of L2(S2) and denote by
Vj = Φj ∗Φj ∗ HΞ and Wj = Ψj ∗ Ψ̃j ∗ HΞ the spaces of multiresolution for the
subspace HΞ.

Theorem 3.15. Let γ be piecewise di�erentiable and admissible in the sense of
(2.5) with inf

l∈Ξ
|γ(l)| > 0. Given a frame {bk} for HΞ, then {ϕk,j = 1

(
√
2c)j

Φj ∗
Φj ∗ bk} is a frame for Vj. If additionally for some constant τ > 0, t0 ⩾ 0 there
is

−γ
′
(t) ⩾

τγ(t)

t
for all t > t0 (3.42)

then {ψk,j = 1
(
√
2c)j

Ψj ∗ Ψ̃j ∗ bk} is a frame for Wj ∩ HΞ[t0,j], where Ξ[t0, j] is

any subset of {l : l ⩾ t02
j+1}.
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Proof. Suppose {bk} is a frame with lower bounds A and upper bounds B.
De�ne a new function class

G2,c = {f ∈ L2(Sd−1) : ∥Plf∥ ⩽ c∥Pl′ f∥ for any l ⩾ 2l
′
} (3.43)

where c > 0. Notice that {ϕk,0} forms a frame for V0. For any f ∈ HΞ and
g = Φ ∗ Φ ∗ f ∈ V0 there is∑︂

k

|⟨g, ϕk,0⟩|2 ⩽ B∥
∑︂
l

γ4(l)Plf∥2 ⩽ sup
l
γ2(l)∥g∥2B

and similarly
∑︁
k

|⟨g, ϕk,0⟩|2 ⩾ inf
l∈Ξ

γ2(l)∥g∥2A > 0.

Introduce the operator

Djg =
1

(
√
2c)j

∑︂
l∈Ξ

γ(2−j l)2Plf (3.44)

on V0 ∩ G2,c.
It is clearly a map onto Vj,c = Φj ∗ Φj ∗ HΞ ∩ G2,c, which consists solely of

functions like Φj ∗ Φj ∗ f . Besides, by separating the sum into even terms and
odd terms, under our assumption that f ∈ G2,c we can get an estimation

∥Dj+1g∥2 = (2c2)−j−1

⎡⎣∑︂
odd

γ4(2−j−1l)∥Plf∥2 +
∑︂
even

γ4(2−j−1l)∥Plf∥2
⎤⎦

⩽ (2c2)−j−1
∑︂
l⩾0

γ4(2−j(l +
1

2
))∥P2l+1f∥2

+ (2c2)−j−1
∑︂
l⩾0

γ4(2−j l)∥P2lf∥2

⩽ ∥Djg∥2

for j ⩾ 0, hence
(
√
2c)−jI ⩽ Dj ⩽ I (3.45)

and
I ⩽ Dj = D−j ⩽ (

√
2c)jI (3.46)

Meanwhile Dj −
√
2cDj+1 is an operator onto Wj,c, and there is the estima-

tion⃦⃦⃦(︂
Dj −

√
2cDj+1

)︂
g
⃦⃦⃦2
2
= (2c2)−j

∑︂
l

(︁
γ(2−j l)2 − γ(2−j−1l)2

)︁2 ∥Plf∥2
⩽ 2c2∥Dj+1g∥22

(3.47)
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and for g ∈Wj,c ∩HΞ[t0,j]⃦⃦⃦⃦(︂
Dj −

√
2cDj+1

)︂
g

⃦⃦⃦⃦−2

2

=
⃦⃦⃦(︂
Dj −

√
2cDj+1

)︂
g
⃦⃦⃦2
2

= (2c2)−j
∑︂

l⩾t02j+1

⃓⃓⃓⃓
⃓
∫︂ 2−j l

2−j−1l

−γ
′
(t)dt

⃓⃓⃓⃓
⃓
2 (︁
γ(2−j l) + γ(2−j−1l)

)︁2 ∥Plf∥2
⩾ (2c2)−j

∑︂
l⩾t02j+1

γ2(2−j l)

⃓⃓⃓⃓
⃓
∫︂ 2−j l

2−j−1l

τ

t
dt

⃓⃓⃓⃓
⃓
2

· 4γ2(2−j l)∥Plf∥2

= 4τ2 ln2 2∥Djg∥2

(3.48)

due to (3.42).
Those together with Lemma 3.14 imply that {ϕl,j}l⩾0 form a frame for

Vj,c, while {(Dj −Dj+1)ϕl,0}l⩾0 form a frame for the space Wj,c ∩ HΞ[t0,j] =
Φj ∗ Φj ∗ HΞ ∩ G2,c ∩HΞ[t0,j].

Taking any h ∈ L2(Sd−1) and c > 1, suppose l1 is the smallest degree such
that Pl1h ̸= 0. Let hl0(x) = 0 and

ul0(x) =

min{l1−1,0}∑︂
l=0

c−l

√︄
4π

(2l + 1)
Zl(x · ξ0) (3.49)

De�ne inductively, for the smallest degree l̄k+1 ⩾ l̄k such that Plk+1
h ̸= 0, the

functions

hlk+1
= hlk + ulk +

∥hlk − hlk−1
− ulk−1

∥

clk+1−lk

Plk+1
h

∥Plk+1h
∥

(3.50)

and

ulk+1
=

lk+1−1∑︂
l=lk+1

c−l+lk

√︄
4π

(2l + 1)
Zl(x · ξ0)∥hlk+1

− hlk − ulk∥ (3.51)

Then h ∈ span{hlk+1
− (hlk + ulk) : k ⩾ 0} ⊂ G2,c, namely G2,c is dense in

L2(Sd−1). Consequently Vj,c is dense in Vj and Wj,c is dense in Wj , hence
{ϕk,j} and {ψk,j} are frames of Vj and Wj ∩ HΞ[t0,j] with the same bounds
respectively.
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Corollary 3.16. Under the same assumptions of theorem 3.15 with (3.42) being
replaced by

γ(2−1t)− γ(t) ⩾ τγ(t) for all t > t0 (3.52)

{ψk,j} form a frame for Wj ∩HΞ[t0,j−1].

Proof. This claim follows from the same line proof of the above theorem except
that here we have for g ∈Wj ∩HΞ[t0,j−1] that⃦⃦⃦(︂

Dj −
√
2cDj+1

)︂
g
⃦⃦⃦2
2

= (2c2)−j
∑︂
l⩾t02j

⃓⃓
γ(2−j−1l)− γ(2−j l)

⃓⃓2 (︁
γ(2−j l) + γ(2−j−1l)

)︁2 ∥Plf∥2
⩾ (2c2)−jτ2

∑︂
l⩾t02j

γ2(2−j l) · 4γ2(2−j l)∥Plf∥2

= 4τ2∥Djg∥2

(3.53)

Example 3.17. The Shannon type wavelets is a good example for our theory
here. Let ˆ︁Φj(l) = {︃ 1 l ⩽ 2j − 1

0 l ⩾ 2j
(3.54)

with corresponding wavelets

ˆ︁Ψj(l) = ˆ︁Ψ̃j(l) = {︃ 1 2j ⩽ l ⩽ 2j+1 − 1
0 else (3.55)

It is clear that Wj ⊥ Vj and Vj
⨁︁
Wj = Vj+1 in this situation. Thus Wi ⊥ Wj

for any i ̸= j. By choosing t0 = 1, HΞ[1,j−1] = {l : l ⩾ 2j}, we see that for

γ(t) =

{︃
1 t ∈ [0, 1)
0 t ⩾ 1

inequality γ( t2 ) − γ(t) ⩾ γ(t) holds for any t > 1, hence by Corollary 3.16
J⋃︁
j=0

{ψk,j : k ⩾ 0} form a wavelet frame for
⨁︁J

j=0Wj ∩HΞ[1,j−1] =
⨁︁J

j=0Wj .

The second type spherical wavelets we have encountered is constructed through
stereographic projection. In proposition 2.18 it has been proved that a plane
wavelet under certain conditions gives an admissible wavelet on the sphere.
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Since stereographic projection π is conformal, hence preserves angle, a plane
wavelet frame {ψi}i∈I of unit norm with lower and upper frame bounds A,B
respectively immediately implies that for any f ∈ L2(S2) there is

AC∥f∥2L2(S2) ⩽
∑︂
i∈I

⟨π−1πf, π−1ψi⟩L2(S2) ⩽ BC∥f∥2L2(S2) (3.56)

where C = ∥πf∥2L2(R2)/∥f∥
2
L2(S2), namely {π−1ψi}i∈I is automatically a frame

on the sphere. It seems that nothing needs to be done further, due to all kinds of
plane wavelets with good frame properties having been well studied. However,
a closer look tells a di�erent story. Since the natural lattice on the plane does
not generate a good grid on the sphere through projection, it is necessary to
establish principles or conditions, under which we can obtain spherical frames
directly on the sphere. This is the next theorems in this section about.

I would like to mention that main di�erences between our second type frame
construction and those kernel based frames in [63] that apply to more general
Lie groups, include but not limited to: the latter is solely designed for isotropic
case while ours includes anisotropic case; and the latter starts from contin-
uous wavelets without a result like Theorem 3.19 but rather directly utilizes
the Calderón reproducing formula with respect to the scaling parameter, hence
immediately having reproducing property, while in the system we introduced
above, Calderón's formula does not apply. However, in this work we are able
to achieve tight frames for continuous and discrete α-wavelets/shearlets on the
sphere in a di�erent way.

To meet our purpose let us �rstly extend the traditional spherical harmonics,
as a natural generalization of the solutions of (4.41).

De�nition 3.18. Let the spherical harmonics of fractional degree λ and order
β to be

Y βλ (θ, φ) = cλ,βe
iβφP βλ (cos θ) (3.57)

where λ, β ∈ R, cλ,β = eiβπ
√︂

(2λ+1)Γ(λ−β+1)
4πΓ(λ+β+1) and P βλ are associated Legendre

functions which solve the di�erential equation

(1− z2)u
′′
− 2zu

′
+

[︃
λ(λ+ 1)− β

1− z2

]︃
u = 0 (3.58)

and such that
∫︁ 1

−1
|P βλ (t)|2dt =

2Γ(λ+β+1)
(2λ+1)Γ(λ−β+1) .

For |z − 1| < 2 in the complex domain, there is the following expression(see
for instance [11])

P βλ (z) = dλ,β 2F1(λ+ β + 1,−λ+ β, β + 1;
1− z

2
)(z2 − 1)

β
2 (3.59)
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where 2F1(a, b, c; z) is a solution of the hypergeometric equation

z(1− z)
d2u

dz2
+ [c− (a+ b+ 1)z]

du

dz
− abu = 0 (3.60)

and

dλ,β =
(−1)β

2βΓ(β + 1)

Γ(λ+ β + 1)

Γ(λ+ 1)
(−λ+ β − 1)(−λ+ β − 2) · · · (−λ) (3.61)

when λ > 0, −λ+β and −λ−β are negative integers; by identity Γ(x)Γ(1−x) =
π

sin(πx) for non-integer values x, there is

dλ,β =
(−1)β

2βΓ(β + 1)

Γ(λ+ β + 1)Γ(−λ+ β)

Γ(λ+ 1)Γ(−λ)

=
(−1)β

2βΓ(β + 1)

Γ(λ+ β + 1)

Γ(λ− β + 1)

(3.62)

when β ∈ Z+, −λ+ β and −λ are not integers.

Theorem 3.19. Let h ∈ B ∩ C∞(S2) be admissible such that there exists ν ∈
(0, π2 ) such that h(θ

′
, φ

′
) = 0 for |φ′ | < ν and for |φ′ − π| < ν. Assume that,

on subset Λ ̸= ∅ of integer pairs (λ0,m0) such that
⃓⃓⃓
⟨e−im0φ

′

h, Y m0

λ0
⟩
⃓⃓⃓
= bλ0,m0

for some bλ0,m0
> 0. Then for any f ∈

⨁︁
m⩽M

Mm and α = 1
2 , there exists

0 < A ⩽ B <∞ such that

A∥f∥2 ⩽
∫︂ ∞

0

da

a3

∫︂
SO(3)

|⟨f, ψσ,a⟩|2dσ ⩽ B∥f∥2 (3.63)

where

ψ(θ
′
, φ

′
) = h(θ

′
, φ

′
)

√︃
θ′

sin θ′ (1 + J2) cos2
θ
′

2
(3.64)

In particular we can take

A =
∑︂

(λ0,m0)∈Λ

γλ0,m0

(︄
m0∏︂
s=1

λ0
λ0 + s+ 1

)︄2
ln(λ0 + 1/2)

ln(λ0 + 1/2− ϵλ0,m0
)

(3.65)

with ϵλ0,m0
solely depending on bλ0,m0

and γλ0,m0
= b2

(2λ0+2)2m0+2

(λ0+m0−1)!
(λ0−m0+1)! .
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Proof. Suppose that
⃓⃓⃓
⟨e−im0φ

′

h, Y m0

λ0
⟩
⃓⃓⃓
= b for some integer λ0 ∈ Λ and b > 0.

Take any large l ∈ N there exists a0 such that λ0+ 1
2 =

√
a0(l+

1
2 ). Let λ(a)+

1
2 =√

a(l+ 1
2 ), then there exists δ ∈ (0, a0/2) such that for a ∈ (a0 − δ, a0 + δ) there

is |λ− λ0| < ϵ for some �xed ϵ ∈ (0, 1/4) and⃓⃓⃓
⟨e−im0φ

′

h, Y m0

λ ⟩
⃓⃓⃓
>
b

2

For instance we can choose δ = 2ϵ(λ0+1/2)−ϵ2
(l+1/2)2 . Notice that

a−1/2(λ+ 1
2 )−

1
2 + k

λ+ k
= a−1/2

(︃
λ+ 1/2

λ+ k

)︃
+O(1)

for any 1 ⩽ k ⩽ 2m− 1 and that

Pm0

l (cos θ) =

(︁
a−1/2(λ+ 1

2 ) +
1
2

)︁ (︁
a−1/2(λ+ 1

2 ) +
3
2

)︁
· · ·
(︁
a−1/2(λ+ 1

2 ) +m0 − 1
2

)︁(︁
a−1/2(λ+ 1

2 )
)︁m0

Γ
(︁
(a−1/2(λ+ 1

2 ) + 1
)︁(︁

a−1/2(λ+ 1
2

)︁
−m0)!

(︄
θ sin θ

′

θ′ sin θ

)︄ 1
2
(︄

θ
′

sin θ′

)︄ 1
2

Jm0

(︃
(λ+

1

2
)θ

′
)︃

+O(am0/2+1)

= q(a)

(︄
sin θ

′

θ′

)︄ 1
2

Pm0

λ (cos θ
′
) +O(am0/2+1)

(3.66)

where q(a) = a−m0/2
m0−1∏︁
s=0

λ+1/2
λ+s+1 +O(a−

m0−1
2 ).

From the previous analyzing we know that for ψ admissible ˆ︃(ψa)l0 van-
ishes, hence we can without loss of generality assume that m0 is positive. Since
ψ(θ

′
, φ

′
) = 0 for |φ′ | < ν and for |φ′ − π| < ν, along with α = 1

2 , there is

Il,m0
=

1

2l + 1

∫︂ ∞

0

⃓⃓⃓ ˆ︃(ψa)l,m0

⃓⃓⃓2 da
a3

⩾
4|cl,m0 |2

(2l + 1)

∫︂ a0+δ

a0−δ
|cλ,m0 |−2

⃓⃓⃓
⟨e−im0φ

′

h, Y m0

λ ⟩
⃓⃓⃓2
q2(a)a−3/2da

⩾
b2(l −m0)!

4π(l +m0)!

∫︂ a0+δ

a0−δ
|cλ,m0

|−2

(︄
m0−1∏︂
s=0

λ+ 1/2

λ+ s+ 1

)︄2

a−m0− 3
2 da

⩾
b2(l −m0)!

(l +m0)!

(λ0 +m0 − 1)!

(2λ0 + 1)(λ0 −m0 + 1)!

∫︂ a0+δ

a0−δ

(︄
m0−1∏︂
s=0

λ+ 1/2

λ+ s+ 1

)︄2

a−m0− 3
2 da
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Using the estimations

(2l + 1)−2m0 ⩽ (2l2)−m0 ⩽
(l −m0)!

(l +m0)!
(3.67)

and
(l −m0)!

(l +m0)!
⩽ l−2m0 ⩽ 2m0

(︃
l +

1

2

)︃−2m0

for l ⩾ m2
0 (3.68)

it follows that

Il,m0
⩾

b2

(2λ0 + 2)2m0+2

(λ0 +m0 − 1)!

(λ0 −m0 + 1)!

(︄
m0∏︂
s=1

λ0
λ0 + s+ 1

)︄2

ln
a0 + δ

a0 − δ

Furthermore, by the choice of δ, we have

ln

(︃
a0 + δ

a0 − δ

)︃
⩾ 2 [ln(λ0 + 1/2)− ln(λ0 + 1/2− ϵ)]

independent of l. Thus we have arrived at (3.65) when we consider all those
integer pairs (λ0,m0).

For an arbitrary pair (λ0,m0) ∈ Λ, due to our analyzing in Theorem 2.15,
the estimation (3.68) and the observation

|cλ,m0
|−2 ⩽

4π(λ0 +m0 + 1)!

(2λ0 + 1/2)(λ0 −m0 − 1)!
(3.69)

we have for l ⩾ m2
0 that

Il,m0
[0, α0] =

1

2l + 1

∫︂ a0

0

⃓⃓⃓ ˆ︃(ψa)l,m0

⃓⃓⃓2 da
a3

⩽
8|cl,m0

|2

(2l + 1)

∫︂ a0

0

|cλ,m0 |−2
⃓⃓⃓
⟨e−im0φ

′

h, Y m0

λ ⟩
⃓⃓⃓2
q2(a)a−3/2da

⩽ 22m0+2(l +
1

2
)−2m0−1 (λ0 +m0 + 1)!

(2λ0 +
1
2 )(λ0 −m0 − 1)!

(︄
m0−1∏︂
s=0

1

s+ 1

)︄2

×∫︂ a0

0

(λ+ 1/2)2m0

⃓⃓⃓
⟨e−im0φ

′

h, Y m0

λ ⟩
⃓⃓⃓2
a−m0−3/2da

(3.70)
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Let λ+ 1
2 = λ̄, dλ̄ = λ̄

2ada, hence∫︂ a0

0

(l +
1

2
)−2m0−1(λ+ 1/2)2m0

⃓⃓⃓
⟨e−im0φ

′

h, Y m0

λ ⟩
⃓⃓⃓2
a−m0−3/2da

⩽
1

2
∥h∥21

∫︂ λ0+
1
2

0

∥Y m0

λ ∥2∞λ̄
2m0 λ̄

−2m0dλ̄

⩽
1

2
∥h∥21 sup

λ∈[0,λ0+
1
2 ]

∥Y m0

λ ∥2∞(λ0 +
1

2
)

Thus we claim that Il,m0 [0, α0] is bounded. Furthermore, the assumption that
ψ ∈ C1(S2) immediately leads to ∥Pλ0

ψa∥2 = O(λ−1
0 ), hence the integral

on the domain (a0, 1) is bounded by some constant. Finally the fact that
∥Plψ∥ ⩽ ∥ψ∥ su�ces to conclude the boundedness on (1,∞). In sum, the
integral 1

2λ0+1

∫︁∞
0

|Pλ0
ψa|2 a−3da is bounded by some B < ∞ independent of

λ0 and it �nishes the proof.

Combining the above result with Proposition 2.11 we arrive at a reproducing
formula:

Corollary 3.20. Given ψ that satis�es the conditions in Theorem 3.19, there
is ∫︂ ∞

0

da

a3

∫︂
SO(3)

⟨f, ψ♯σ,a⟩ψ♯σ,adσ = f

for any f ∈ L2(S2), where Plψ♯ := Plψ/
√︂
Clψ for each l.

In practice we cannot do integration on the whole domain, but rather re-
course to a discretized summation to approximate the smooth case.

Theorem 3.21. Under the same assumption of Theorem 3.19, let Υδ,ϵ be the
set of sequences {aj}j⩾0 such that aj → 0, |aj − aj+1| ⩽ δ, a3α−1

j /a2j+1 ⩽ C

and 1 ⩽ a20ϵ with δ and ϵ su�ciently small. Then for each {aj}j ∈ Υδ,ϵ,
{√sjψaj}j∈N forms a semi-frame system for L2(S2), where sj = 1

a2j+1
− 1

a2j
.

Proof. Firstly notice that d cos θ
da = O(a2α−1) and that

d

d cos θ
Pml (cos θ) = −m cos θ sinm−2 θ

Γ(l +m+ 1)

2mΓ(l + 1)
Pm,ml−m (cos θ)

+ sinm θ
Γ(l +m+ 2)

2m+1Γ(l + 1)
Pm+1,m+1
l−m−1 (cos θ)

= O(aα(m−2))
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hence d
daP

m
l (cos θ) = O(aαm−1). Since ψ(θ, φ) = 0 for φ < ν, there is

d

da
e−imφ = −me−i(m+1)φ

(︄
i tanφ

′
+ a1−α

±
√︁
tan2 φ′ + a2−2α

)︄′

= O(a−α)

Besides, a direct calculation gives d
da (1 + J2) = O(a2α−1). From (2.66) there is(︂ˆ︂ψa)︂′

lm
= O(a(α−1)/2+αm), hence combined with our previous result we arrive

at
⃓⃓⃓⃓(︂ˆ︂ψa)︂2

lm

⃓⃓⃓⃓′
= O(aα(2m+1)). Thus

1

2l + 1

⃓⃓⃓⃓
⃓⃓12 ∑︂

1⩽|m|⩽l

∞∑︂
j=0

⃓⃓⃓(︂ˆ︃ψaj)︂
lm

⃓⃓⃓2(︄ 1

a2j+1

− 1

a2j

)︄
−
∑︂
|m|⩽l

∫︂ ∞

0

d

da3

⃓⃓⃓(︂ˆ︂ψa)︂
lm

⃓⃓⃓2 ⃓⃓⃓⃓⃓⃓
⩽

1

2l + 1

∑︂
1⩽|m|⩽l

⃓⃓⃓⃓
⃓⃓ ∞∑︂
j=0

∫︂ aj

aj+1

∫︂ aj

a

⃓⃓⃓⃓(︂ˆ︂ψs)︂2
lm

⃓⃓⃓⃓′
ds
da

a3

⃓⃓⃓⃓
⃓⃓+ 1

2l + 1

∑︂
1⩽|m|⩽l

∫︂ ∞

a0

da

a3

⃓⃓⃓(︂ˆ︂ψa)︂
lm

⃓⃓⃓2
⩽

∞∑︂
j=0

(aj − aj+1)
2
a3α−1
j

a2j+1

+ ϵ

where ϵ is arbitrarily small for su�ciently large a0. Furthermore, under our

assumption that |aj − aj+1| ⩽ δ and
a3α−1
j

a2j+1
⩽ C, the last line of the above

inequality is bounded by Cδ + ϵ, thus the conclusion holds.

The next result from [62] provides us one candidate sampling method on the
rotation group. I include its simple proof here for completeness.

Lemma 3.22. If the quadrature formulae

1

4π

∫︂ 2π

0

∫︂ π

0

Y ml (φ, θ) sin θdθdφ =
∑︂
i∈I1

wi(S2)Y ml (φi, θi) (3.71)

with l ≤ N and
1

2π

∫︂ 2π

0

einϕdϕ =
∑︂
j∈I2

wj(S1)einϕj (3.72)

with |n| ≤ N , then all polynomials f ∈ ⊕l≤NHl can be expressed by∫︂
SO(3)

fdσ =
∑︂
i∈I1

∑︂
j∈I2

wi(S2)wj(S1)f(φ1i, θi, φ2j) (3.73)
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where (φ1, θ, φ2) represents the Euler angles.

Proof. For n ̸= 0, by (3.71) and (3.72) we have

1

8π2

∫︂ 2π

0

∫︂ π

0

∫︂ 2π

0

Dl
m,n(φ̄1, θ̄, φ̄2) sin θ̄dφ̄1dθ̄dφ̄2

=
1

4π

∫︂ 2π

0

∫︂ π

0

e−imφ̄1dlm,n(θ̄) sin θ̄dθ̄dφ̄1

1

2π

∫︂ 2π

0

e−inφ̄2dφ̄2

=
∑︂
i∈I1

wi(S2)e−imφ1idlm,n(θi)
∑︂
j∈I2

wj(S1)e−inφ2j

For n = 0, note thatDl
m,0(φ̄1, θ̄, φ̄2) = (−1)m

√︂
4π

2l+1Y
−m
l (φ̄1, θ̄) and

∑︁
j

wj(S1) =

1, hence
1

8π2

∫︂ 2π

0

∫︂ π

0

∫︂ 2π

0

Dl
m,0(φ̄1, θ̄, φ̄2) sin θ̄dφ̄1dθ̄dφ̄2

=
∑︂
i

wi(S2)(−1)m
√︃

4π

2l + 1
Y −m
l (φ̄1i, θ̄i)

=
∑︂
i

∑︂
j

wi(S2)wj(S1)Dl
m,0(φ̄1i, θ̄i, φ̄2j)

Now (3.73) is an immediate result of the expression that

f =
∑︂
l

dl
∑︂
m

∑︂
n

⟨f,Dl
m,n⟩SO(3)D

l
m,n (3.74)

This lemma enables us to have a fully discretized frame, as a consequence
of Theorem 3.19. Let

Clψ,Υ =
1

2l + 1

∑︂
ak∈Υδ,ϵ

sk∥Plψak∥2 (3.75)

Corollary 3.23. Under the assumptions of Theorem 3.19 and Theorem 3.21,

{ψi,j,k =
√︂
wi(S2)wj(S1)skR(σi,j)ψak : i ∈ I1, j ∈ I2, {ak}k⩾0 ∈ Υδ,ϵ}

is a fully discrete frame for L2(S2), where σi,j = (φi, θi, ϕj). In particular, let

Plψ♯i,j,k := Plψi,j,k/
√︂
Clψ,Υ (3.76)
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then {ψ♯i,j,k}i,j,k is super tight, and there is the reproducing formula:

f =
∑︂
i′∈I1

wi′ (S
2)
∑︂
i∈I1

∑︂
j∈I2

∑︂
ak∈Υ

f(φi′ , θi′ )ψ
♯
i,j,k(φi′ , θi′ )ψ

♯
i,j,k (3.77)

for any f ∈ L2(S2).

Proof. Similar to Proposition 2.11, we can prove that∑︂
i∈I1

∑︂
j∈I2

∑︂
ak∈Υδ,ϵ

⟨f, ψi,j,k⟩L2(S2)ψi,j,k =
∑︂
l

∑︂
|m|⩽l

Clψ,Υf̂ lmY
m
l (3.78)

Since Theorem 3.21 implies that Clψ,Υ > 0, there is

f =
∑︂
i∈I1

∑︂
j∈I2

∑︂
ak∈Υ

⟨f, ψ♯i,j,k⟩ψ
♯
i,j,k (3.79)

Using (3.71) again leads to the claimed result (3.77).

I do not intend to give redundancy analysis of spherical frames in this dis-
sertation, and their numerical simulations are also left to my future work. How-
ever, at this point it is appropriate to mention brie�y their connection to solving
PDEs. Consider an operator equation

Su = g (3.80)

where S can be a di�erential operator or integral operator from L2(S2) into
itself.

Suppose that we have a multi-resolution structure such that L2(S2) =
∞⨁︁
j=0

Wj

in which each Wj has a �nite frame. I have given such a structure for Shannon
type spherical wavelets in Example 3.17, though temporarily it has not been
done for spherical α-wavelets/shearlets. In this situation we can propose a
Galerkin scheme

⟨Su, ν⟩ = ⟨g, ν⟩ for ν ∈ Vj (3.81)

or
⟨Su, ψ⟩ = ⟨g, ψ⟩ for ψ ∈Wj (3.82)

for j = 0, · · · , J , and denote by uJ the solution of this �nite element formulation.
In particular, under the assumption that {ψji }i∈Ij is a super tight frame forWj ,
if S is invertible, then there are explicite expressions for uJ and u, namely

uJ =

J∑︂
j=0

∑︂
i∈Ij

⟨g, (S−1)∗ψji ⟩ψ
j
i (3.83)
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and

u =

∞∑︂
j=0

∑︂
i∈Ij

⟨g, (S−1)∗ψji ⟩ψ
j
i (3.84)

although practically it is often not clear what is the inverse operator hence not
recommendable for computation.

Proposition 3.24. Let PWj
denote the projection onto Wj, we have the esti-

mation for the error eJ = u− uJ that

∥eJ∥L2 =

∞∑︁
j=J+1

∥PWj
S−1g∥2L2

∞∑︁
j=J+1

∥PWj
S−1g∥L2

If S is a unitary operator, then

∥eJ∥L2 =

∞∑︁
j=J+1

∥PSWjg∥2L2

∞∑︁
j=J+1

∥PSWjg∥L2

Proof. This is an immediate consequence of the observation that the left-hand
side of (3.24) is equal to

sup
∥φ∥=1

⃓⃓
⟨eJ , φ⟩

⃓⃓
= sup

∥φ∥=1

∞∑︂
j=J+1

∑︂
i∈Ij

⃓⃓⃓
⟨S−1g, ψji ⟩⟨ψ

j
i , φ⟩

⃓⃓⃓
= sup

∥φ∥=1

∞∑︂
j=J+1

⃓⃓
⟨PWjS−1g, φ⟩

⃓⃓
L2

=

∞∑︁
j=J+1

∥PWjS−1g∥2L2

∞∑︁
j=J+1

∥PWjS−1g∥L2

Similarly when S is unitary, there is

∥eJ∥L2 = sup
∥φ∥=1

∞∑︂
j=J+1

∑︂
i∈Ij

⃓⃓⃓
⟨g,Sψji ⟩⟨Sψ

j
i ,Sφ⟩

⃓⃓⃓
= sup

∥φ∥=1

∞∑︂
j=J+1

⃓⃓
⟨PSWj

g,Sφ⟩
⃓⃓
L2
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which is further equal to the right-hand side of (3.24).

3.3 A product formula on simple surfaces

To avoid confusion with previous sections, throughout this section the symbol
Γ is reserved for polyhedra and T denotes triangles on surfaces. For topologists,
triangulation of a topological manifold M means a simplicial complex together
with a homeomorphism from its geometric realization to the manifold. It is
a deep result in topology that every smooth surface has a triangulation and
manifolds of dimension less than four has a piecewise linear triangulation. Nev-
ertheless, I have no intention to delve into topological context or any of these
advanced questions, because the purpose in this small section is to establish a
formula for a newly introduced inner product on surfaces.

According to the de�nition from [70], a set of triangles in R2 is a triangulation
if
(i) for i ̸= j, Ti ∩ Tj is either empty or a common vertex or a common edge
(ii) the number of boundary edges incident on a boundary vertex is two
(iii)

⋃︁
i

Ti is simply connected.

Meanwhile a triangulation can be considered as embedding of the graph G
and here we additionally assume that
(iv) every vertex has �nite degree or G is locally �nite.

A more general concept for a graph embedded into an oriented surface with-
out self-intersection is the so called tessellation, where the faces are not limited
to triangular ones, namely a graph that satisfy
(I) every edge is contained in two faces
(II) every two faces are either disjoint or intersect in one vertex or one edge
(III) every face is homeomorphic to a closed disc

Let N (v) be the set of neighboring vertices of v, and |N (v)| = deg(v) be the
degree of v. An edge v1v2 is simple if v

′ ∈ N (v1) ∩ N (v2), then v
′
v1v2 ∈ T .

When every edge is simple, the triangulation is called simple. Obviously for an
interior edge, it is simple if and only if |N (v1) ∩ N (v2)|=2, where | · | means
cardinality.

Square summable maps on the graph form a Hilbert space ℓ2(V) with inner
product

(f, g)w =
∑︂
v∈V

f(v)g(v)deg(v) (3.85)
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and the weighted combinatoric Laplacian reads

∆wg(v) =
1

deg(v)

∑︂
v′∈N (v)

(︂
g(v

′
)− g(v)

)︂
= −g(v)+ 1

deg(v)

∑︂
v′∈N (v)

g(v
′
) (3.86)

which is obviously a self-adjoint operator on the space {f : ∆wf ∈ ℓ2(V)}.
While at the same time due to the Green's formula

(−∆wf, g)w =
1

2

∑︂
v

∑︂
v′

df([v, v
′
])dg([v, v

′
])δvv′ (3.87)

where df([v, v
′
]) = f(v

′
) − f(v) and δvv′ = 1 if v and v

′
are neighboring, zero

otherwise, it follows that −∆w is positive. Thus its spectrum σ(−∆w) = {z ∈
C : zI+∆w has no bounded inverse} lies on the positive part of the real line. In
fact, Theorem 4.18 gives bounds estimation for σ(−∆w)\{0}, particularly the
lower bound for the �rst minimal eigenvalue that is larger than zero.

By using radial projection method, once given a polyhedron with triangular
facades T = {T1, · · · , TN}, one get a natural triangulation p(T ) on the sphere.
A norm adapted to the triangulation, as the square root of a newly introduced
inner product in L2(∂Γ) is de�ned as

⟨f, g⟩∂Γ =
∑︂
T∈T

1

|T |

∫︂
T

f(x)g(x)dx (3.88)

where we denote by ∂Γ the surface of the polyhedron Γ, to distinguish this norm
from the L2(M) norm on the Riemannian manifold.

The pull-back of the norm (3.88) by p then gives a norm on the sphere. Fur-
thermore, a continuous function f piecewise-linear on triangle in T is uniquely
determined by the values f(V), where V is the set of vertices in the triangula-
tion. Denote by the space of these functions by P1, we generalize a useful result
in [28] and give a di�erent but simpler proof here

Proposition 3.25. Let T be a simple triangulation of an oriented surface with-
out boundary, f and g be two elements in P1(T ), and denote by Vi = {vik}k=1,2,3

the set of vertices of triangle Ti. Then

⟨f, g⟩∂Γ =
1

24

⎡⎣2(f, g)w +
∑︂
v∈V

∑︂
v′∈N (v)

(︂
f(v)g(v

′
) + g(v)f(v

′
)
)︂⎤⎦ (3.89)
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Proof. Let ϕs and ϕt be two arbitrary nodal functions at vertices s and t re-
spectively. Firstly observe that, if s and t are contained in the same triangle Ti,
then

1

2|Ti|

∫︂
Ti

ϕs(x)ϕt(x)dx

=

∫︂ 1

0

∫︂ 1−λ2

0

(ϕs · ϕt)(λ1vi1 + λ2v
i
2 + (1− λ1 − λ2)v

i
3)dλ1dλ2

=

{︃
1
24 s ∼ t
1
12 s = t

where s ∼ t means that they are neighboring vertices. Consequently,

Is,t =
∑︂
Ti∈T

1

2|Ti|

∫︂
Ti

ϕs(x)ϕt(x)dx =
∑︂

i∈N (s)∩N (t)

1

2|Ti|

∫︂
Ti

ϕs(x)ϕt(x)dx

=

{︃
1/12 s ∼ t
deg(s)/12 s = t

In the situation that s and t are not contained in any triangle, clearly there is
Is,t = 0.

Since the nodal functions form a basis for P1 and a piecewise linear function
restricted to Ti is the linear combination of {ϕv}v∈Vi

, we arrive at the result
that ∑︂

Ti∈T

1

2|Ti|

∫︂
Ti

f(x)g(x)dx

=
∑︂
Ti∈T

1

2|Ti|

∫︂
Ti

∑︂
v∈Vi

f(v)ϕv(x) ·
∑︂
v∈Vi

g(v)ϕv(x)dx

=
1

12

∑︂
v∈V

deg(v)f(v)g(v) +
1

24

∑︂
v∈V

∑︂
v′∈N (v)

(︂
f(v)g(v

′
) + g(v)f(v

′
)
)︂

Note that ∥f∥2L2(M) =
∑︁
Ti

∫︁
M f

2(x)dx ⩽ maxi |Ti|⟨f, f⟩∂Γ. Thus when f has

normalized L2(M) norm and the triangulation becomes �ner and �ner such
that maxi |Ti| turns smaller and smaller, ⟨f, f⟩∂Γ becomes unbounded. In other
words, they are not comparable on the same scale. However, Proposition 3.25
does allow us to compare ⟨f, f⟩∂Γ with (f, f)w.
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Corollary 3.26. Under the assumption that each vertex in the triangulation
has degree no bigger than p for some p ⩾ 2, there is

1 +
2

p
⩽

12⟨f, f⟩∂Γ
(f, f)w

⩽ 2 (3.90)

for any f ∈ P1(T ) ⊂ L2(∂Γ) not identically zero on V.

Proof. In the case that f = g, (3.89) reduces to

⟨f, f⟩∂Γ =
1

12

⎡⎣(f, f)w +
∑︂
v

∑︂
v′

f(v)f(v
′
)δv,v′

⎤⎦ (3.91)

Thus on the right side

⟨f, f⟩∂Γ ⩽
1

12

⎡⎣(f, f)w +
∑︂
v

∑︂
v′

f(v)f(v
′
)δv,v′

⎤⎦
⩽

1

12

⎡⎣(f, f)w +
1

2

∑︂
v

∑︂
v′

(f(v)2 + f(v
′
)2)δv,v′

⎤⎦
=

1

6
(f, f)w

while the left side of (3.90) is obvious.

While in di�erential geometry there are equivalent descriptions of one math-
ematical concept, in the discrete world di�erent de�nitions motivated by the
various smooth properties do not usually lead to the same thing. For instance
in [8] a discrete Laplace operator is constructed through the discretization of
mean curvature, while another discrete Laplace operator can be formulated
based on a discrete analogue of Green's theorem(see [4] for instance),∑︂

i

| ∇g|Ti
|2 · |Ti| = −

∑︂
j

g(vj)∆T g(vj)w(vj) (3.92)

where w(vj) is some area weight at vertices vj .
On an oriented surface which has a consistent triangulation, the discrete

gradient of a function g on M can be de�ned at each triangle Ti as the solution
of

⟨∇g|Ti
, vik − ci⟩ = g(vik)− g(ci) i = 1, 2, 3 (3.93)
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where ci = 1
3

3∑︁
k=1

(vik) and the inner product is in the Euclidean sense. From this

de�nition it is clear that ⟨∇g|Ti
, vij−vik⟩ = g(vij)−g(vik). Suppose ei1 = vi3−vi2,

ei2 = vi1 − vi3, e
i
3 = vi2 − vi1 and ∇g|Ti

= c1e
i
1 + c2e

i
2, then

G

(︃
c1
c2

)︃
=

(︃
⟨∇g|Ti

, ei1⟩
⟨∇g|Ti

, ei2⟩

)︃
=

(︃
g(vi3)− g(vi2)
g(vi1)− g(vi3)

)︃
(3.94)

where

G =

(︃
⟨ei1, ei1⟩ ⟨ei1, ei2⟩
⟨ei1, ei2⟩ ⟨ei2, ei2⟩

)︃
Thus, if we omit the index i without bringing confusion(︃

c1
c2

)︃
=

1

detG
·
(︃

⟨e2, e2⟩ −⟨e1, e2⟩
−⟨e1, e2⟩ ⟨e1, e1⟩

)︃(︃
g(v3)− g(v2)
g(v1)− g(v3)

)︃
and

(e1, e2)

(︃
c1
c2

)︃
=

1

detG
[− (⟨e2, e2⟩e1 − ⟨e1, e2⟩e2) g(v2)

+ (⟨e1, e1⟩e2 − ⟨e1, e2⟩e1) g(v1)
− (⟨e3, e2⟩e1 − ⟨e3, e1⟩e2) g(v3)]

Note that [e1, e2] = e1e
T
2 − e2e

T
1 = eT3 e

T
1 − eT1 e

T
3 = eT2 e

T
3 − eT3 e

T
2 , hence

∇g|Ti
= (e1, e2)

(︃
c1
c2

)︃
=

−1

4|Ti|2
[e1, e2] · (g(v1)e1 + g(v2)e2 + g(v3)e3)

(3.95)
since detG = |e1|2|e2|2 sin2 θ3 = 4|Ti|2.

There is

| ∇g|Ti
|2

= (c1e1 + c2e2)
T (c1e1 + c2e2)

= (c1 c2)G(c1 c2)
T

=
1

4|Ti|2

(︃
g(v3)− g(v2)
g(v1)− g(v3)

)︃T (︃ ⟨e2, e2⟩ −⟨e1, e2⟩
−⟨e1, e2⟩ ⟨e1, e1⟩

)︃(︃
g(v3)− g(v2)
g(v1)− g(v3)

)︃
=

1

4|Ti|
gTi E

igi

(3.96)
where gi = (g(v1), g(v2), g(v3))

T and Ei is 3 × 3 matrix with elements Eij,k =
⟨ej , ek⟩/|Ti|.
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CHAPTER 3. EXTENSION TO MISCELLANEOUS RESULTS

Therefore,∑︂
Ti∈T

| ∇g|Ti
|2·|Ti| =

1

4

∑︂
v∈V

g(v)
∑︂
Ti∋v

[︂
|ev|2g(v) + ⟨ev, ev′ ⟩g(v

′
) + ⟨ev, ev′′ ⟩g(v

′′
)
]︂
/|Ti|

which implies that we shall de�ne the discrete Laplace-Beltrami operator at v
as

∆T g|v = − 1

4wv

∑︂
Ti∋v

1

|Ti|

[︂
|eiv|2g(v) + ⟨eiv, eiv′ ⟩g(v

′
) + ⟨eiv, eiv′′ ⟩g(v

′′
)
]︂

(3.97)

where v
′
and v

′′
are the other two vertices in the triangle Ti. It is clear that

when g is a constant function the above equality gives ∆T g ≡ 0.
As a small step forward and a wonderful ending for this chapter, I give the

eigenvalues estimation for ∆T . Without loss of generality, assume that w(v) = 1
for all vertices. Let us also assume that the restriction

h

r
⩽ CT (3.98)

applies to all the triangles uniformly, where h is the mesh size and r is the radius
of the largest interior circle inside a triangle.

De�nition 3.27. Let U be the subspace of L2(M) consisting of functions g
such that on any Ti,

(︁
g|Ti

(vi0), g|Ti
(vi1), g|Ti

(vi2)
)︁T

/∈ kerEi.

Theorem 3.28. On a triangular mesh satisfying (3.98), there are

λmin(T ) = inf
g∈U

−
∑︁
j

g(vj)∆T g(vj)∑︁
j

g2(vj)
⩾
p̄

4
κ̄(CT )

λmax(T ) = sup
g∈U

−
∑︁
j

g(vj)∆T g(vj)∑︁
j

g2(vj)
⩽
p

4
κ(CT )

where κ̄(CT ) =
√
3CT −

√︁
3C2

T − 12, κ(CT ) =
√
3CT +

√︁
3C2

T − 12, p is the
maximum degree and p̄ is the minimum degree of the vertices.

Proof. Suppose the eigenvalues of Ei are reordered so that 0 ⩽ λ0 ⩽ λ1 ⩽ λ2,
based on the fact that Ei is positive semi-de�nite. Let I = {0, 1, 2} be the index
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set and denote by θj (j ∈ I) the interior angles of the triangle corresponding to
the edge ej respectively. From the observation that

2∏︂
j=0

λj = detEi

=
1

|Ti|3

⎛⎝ 2∏︂
j=0

|ej |2 −
2∏︂
j=0

|ej |2 |⟨ek, el⟩|2k ̸=l∈I\{j} + 2⟨e0, e1⟩⟨e1, e2⟩⟨e2, e0⟩

⎞⎠
=

|e0|2|e1|2|e2|2

|Ti|3
(︁
1− cos2 θ0 − cos2 θ1 − cos2 θ2 − 2 cos θ0 cos θ1 cos θ2

)︁
= 0

(3.99)
we see λ0 = 0.

Besides, it holds that

2∑︂
j=1

λj = TrEi =

2∑︁
j=0

|ej |2

|Ti|2
=

2∑︂
j=0

2

sin θj
:= Si (3.100)

and that

λ1λ2 =
1

|Ti|2
(︁
|e0|2|e1|2 sin2 θ2 + |e1|2|e2|2 sin2 θ0 + |e2|2|e0|2 sin2 θ1

)︁
= 12

(3.101)
Equations (3.100) and (3.101) together give us the eigenvalues⎧⎨⎩ λ1 =

Si−
√
S2
i −48

2

λ2 =
Si+

√
S2
i −48

2

(3.102)

The the assumption (3.98) implies 1

sin
θj
2

⩽ CT for any j, hence

⎧⎨⎩
2

sin θj
⩽ CT

cos
θj
2

⩽ 2
√
3CT
3 θj ∈ (0, π3 ] ∪ [ 2π3 , π)

2
sin θj

⩽ 4
√
3

3 θj ∈ (π3 ,
2π
3 )

(3.103)

from which we deduce that

λ1 ⩽ 2
√
3 ⩽ λ2 (3.104)
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Meanwhile it is easy to verify that Si achieves minimum if and only if θj = π
3

(j ∈ I). Thus it follows that

4
√
3 ⩽ Si ⩽ 2

√
3CT (3.105)

and {︃
λ1 ⩾ κ̄(CT )
λ2 ⩽ κ(CT )

(3.106)

hold for any triangle in the triangulation.
Thus for any g ∈ U\{0},

−
∑︁
j

g(vj)∆T g(vj)∑︁
j

g2(vj)
⩾

p̄
∑︁
Ti∈T

| ∇g|Ti
|2 · |Ti|∑︁

Ti

∑︁
v∈Ti

g2(v)
(3.107)

as a consequence of (3.96). The inequality (3.107) holds because
∑︁
Ti∈T

| ∇g|Ti
|2 ·

|Ti| ⩾ 1
4 κ̄(CT ) ·

∑︁
v∈Ti

g2(v) for each Ti. Similarly we see that

−
∑︁
j

g(vj)∆T g(vj)∑︁
j

g2(vj)
⩽

p
∑︁
Ti∈T

| ∇g|Ti
|2 · |Ti|∑︁

Ti

∑︁
v∈Ti

g2(v)
(3.108)

which gives us the estimation (3.28).

Remark 3.29. U automatically excludes piecewise constant functions, which
are eigenfunctions of ∆T corresponding to eigenvalue 0. Furthermore, λmin(T )
can be viewed as the minimum eigenvalue besides zero adapted to a suitable
triangulation, it is strictly positive and has lower bound depending on the value
of CT according to (3.28).
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Chapter 4

Supporting topics

4.1 Orthogonal polynomials: a di�erential
equation point of view

Sturm-Liouville theory has a long history dating back to the beginning of 19th
century, with thousands of papers and articles published under this topic. Here
we only give an elegant and short introduction to this profound theory, so as
to exhibit how various kinds of orthogonal polynomials can be derived from
di�erential equations. For recent development and ongoing research in this area
we refer to monographs [3][96]; for a more detailed introduction we refer to [98].

Consider linear second-order ODE on I(interval, half line, real line etc.)

(L̃y)(x) := a0(x)y
′′
(x) + a1(x)y

′
(x) + a2(x)y(x) = f(x) (4.1)

where a0 > 0 a.e. on I, 1
a0
, a1 ∈ Lloc(I). When necessary we can assume without

loss of generality that a0 = 1 and (4.1) is simpli�ed to be

L0y := y
′′
+ a1y

′
+ a2y = f (4.2)

otherwise equation (4.1) is called singular and the zero is called singular point.
Let x0, a, b be arbitrary points in I. For any given values c1 and c2, the

general conditions imposed on (4.1) is{︃
α1y(a) + α2y

′
(a) + α3y(b) + α4y

′
(b) = c1

β1y(b) + β2y
′
(b) + β3y(a) + β4y

′
(a) = c2

(4.3)
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with
4∑︁
i=1

|αi| > 0 and
4∑︁
i=1

|βi| > 0. Especially, when α3 = α4 = β3 = β4 = 0 and

a, b are endpoints of I, we have the separated boundary conditions{︃
α1y(a) + α2y

′
(a) = c1

β1y(b) + β2y
′
(b) = c2

(4.4)

when a = b = x0, we have the initial conditions

y(x0) = c1, y
′
(x0) = c2 (4.5)

and a0 > 0 a.e. on I, 1
a0
, a1 ∈ Lloc(I) are in fact the minimal conditions required

to have a unique solution; the special case

y(a) = y(b), y
′
(a) = y

′
(b) (4.6)

is called periodic boundary condition. Unlike the initial value problems, sepa-
rated boundary value problems (4.4) do not always have solutions.

Assume a0 = 1 on I. If the coe�cients a1(x) and a2(x) are both analytic
at some point x0, then we obviously have an (locally) analytic solution of the

equation (4.2) of the form
∞∑︁
n=0

cn(x− x0)
n.

The space of solutions of (4.2) in L2(I) ∩ C2(I) is closed under linear com-
bination. Integral by parts shows that L̃ : L2(I) ∩ C2(I) ↦→ L2(I) satis�es

⟨L̃f, g⟩ = ⟨f, (a0g)
′′
− (a1g)

′
+ a2g⟩+ [a0(f

′
g − fg

′
) + (a1 − a

′

0)fg]|ba
= ⟨f, L̃∗

g⟩+ [a0(f
′
g − fg

′
) + (a1 − a

′

0)fg]|ba
(4.7)

Then L̃ = L̃
∗ ≡ (a0)

d2

dx2 + (2a0
′
− a1)

d
dx + (a0

′′
− a1

′
+ a2)

⇔
a0 = a0, 2a0

′
− a1 = a1, a0

′′
− a1

′
+ a2 = a2 (4.8)

⇔
a0, a1 and a2 are real and a1 = a

′

0 (4.9)

In this case, L̃ is called formally self-adjoint and

L̃ =
d

dx
(a0(x)

d

dx
) + a2(x) (4.10)

The equation L̃y = 0 with L̃ formally self-adjoint was �rstly studied by Charles
Sturm and Joseph Liouville in the 1830's, and there all the coe�cients and
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solutions are of two variables x and r. Under the additional assumption that
1. a0 is strictly positive and decreasing in r
2. a2 is increasing function of r
3. a2(a,r)

y(a,r)
∂y
∂x (a, r) = h(r) where y solves Ly = 0 and h is a given decreasing

function of r, Sturm claims that a2(a,r)
y(a,r)

∂y
∂x (a, r) = h(r) is decreasing in r for any

x ∈ I.
By multiplying a positive weight function w to a general L̃ = a0(x)

d2

dx2 +

a1(x)
d
dx + a2(x), we can make wL̃ be formally self-adjoint. In fact, by (4.9) wL

is formally self-adjoint if w
′
a0 + wa

′

0 = wa1, or equivalently

|w(x)| = |a0(a)w(a)|
|a0(x)|

exp(

∫︂ x

a

a1(t)

a0(t)
dt) (4.11)

De�nition 4.1. (Sturm-Liouville Eigenvalue Problem)
Let L be formally self-adjoint operator satisfying (4.10). Solve the eigenvalue

equation
−Ly = λw(x)y (4.12)

on L2
w(I) subject to the separated homogeneous boundary conditions{︃

α1y(a) + α2y
′
(a) = 0

β1y(b) + β2y
′
(b) = 0

(4.13)

How about the linear dependence of two solutions of equation (4.12)? If two
solutions y1 and y2 are linearly dependent, then the Wronskian

W (y1, y2)(x) =

⃓⃓⃓⃓
y1(x) y2(x)

y
′

1(x) y
′

2(x)

⃓⃓⃓⃓
(4.14)

is identically zero. Conversely, a0(y1y
′′

2 − y2y
′′

1 ) + a
′

0(y1y
′

2 − y2y
′

1) = 0 gives us
the identity

W
′
(x) +

a
′

0(x)

a0(x)
W (x) = 0 (4.15)

Thus W (y1, y2)(x) = c · exp(−
∫︁ x
a
a
′
0(t)
a0(t)

dt) for any x ∈ I. W (y1, y2)(x) = 0 for
some x ⇒ c = 0 ⇒ W (y1, y2)(x) ≡ 0. Hence we have arrived at the following
conclusion.

Lemma 4.2. Solutions y1 and y2 of (4.12) are linearly independent if and only
if W (y1, y2)(x) ̸= 0 on I.
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Now according to standard existence theorem of ODE, there exist unique
solutions y1 and y2 of the homogeneous equation Ly = 0 such that y1(a) = α2,
y

′

1(a) = −α1; y2(b) = β2, y
′

2(b) = −β1. Thus{︃
Ly1 = 0

α1y1(a) + α2y
′

1(a) = 0
(4.16)

and {︃
Ly2 = 0

β1y2(b) + β2y
′

2(b) = 0
(4.17)

In order to construct Green's function we need y1 and y2 to be linearly
independent(y1 and y2 are independent i� α1y2(a) + α2y

′

2(a) ̸= 0). This is
guaranteed under the assumption that 0 /∈ spec(L), since otherwise v1 is a
multiple of v2, and v1 solves both (4.16) and (4.17), namely v1 solves the SL
eigenvalue problem with λ = 0, a contradiction. Furthermore, as we shall see
soon, 0 /∈ spec(L) is a reasonable assumption.

De�nition 4.3. Green's function is de�ned as

G(t, s) =

{︄
y1(s)y2(t)

a0(s)W (y1,y2)(s)
if a ⩽ s ⩽ t ⩽ b

y1(t)y2(s)
a0(s)W (y1,y2)(s)

if a ⩽ t ⩽ s ⩽ b
(4.18)

using the fact that a0(s) ̸= 0 and W (y1, y2)(s) ̸= 0 on I.

Since
[a0W (y1, y2)]

′
= y1Ly2 − y2Ly1 = 0 (4.19)

the denominator of Green's function a0W (y1, y2) turns out to be a nonzero
constant c. Thus the following properties of Green's function are satis�ed:
(1)G is symmetric
(2)G is continuous on I × I, and belongs to C2 except for the line t = s.

lim
δ→0+

∂G

∂t
(s+ δ, s)− ∂G

∂t
(s− δ, s) = lim

δ→0+
c−1[y1(s)y

′

2(s+ δ)− y
′

1(s− δ)y2(s)]

= c−1W (y1, y2)(s)

=
1

a0(s)
(4.20)

(3)G is in the kernel space of L, namely

LG(·, s) = c−1y1(s)Ly2 (or c−1(Ly1)y2(s))

= 0
(4.21)
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Proposition 4.4. The operator T : C(I) → C2(I)

Tf(t) :=

∫︂
I

G(t, s)f(s)ds ∈ C2(I) (4.22)

solves the equation (4.1), i.e. LTf = f .

Proof.

(Tf)
′
(t) =

∫︂ t

a

Gt(t, s)f(s)ds+G(t, t−)f(t−)

+

∫︂ b

t

Gt(t, s)f(s)ds−G(t, t+)f(t+)

=

∫︂ t

a

Gt(t, s)f(s)ds+

∫︂ b

t

Gt(t, s)f(s)ds

(4.23)

due to the continuity of G.

(Tf)
′′
(t) =

∫︂ t

a

Gtt(t, s)f(s)ds+Gt(t, t
−)f(t−)

+

∫︂ b

t

Gtt(t, s)f(s)ds−Gt(t, t
+)f(t+)

=

∫︂ t

a

Gtt(t, s)f(s)ds+

∫︂ b

t

Gtt(t, s)f(s)ds+
f(t)

a0(t)

(4.24)

by the same argument as (4.20).

Hence

L(Tf)(t) = a0(t)(Tf)
′′
(t) + a

′

0(t)(Tf)
′
(t) + a2(t)Tf(t)

= (

∫︂ t

a

+

∫︂ b

t

)LtG(t, s)f(s)ds+ f(t)

= f(t)

(4.25)

due to (4.21).
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If g ∈ C2(I) satis�es (4.13)

TLg(t) = (

∫︂ t

a

+

∫︂ b

t

)[
d

ds
(a0(s)

dg(s)

ds
) + a2(s)g(s))]G(t, s)ds

= a0(s)
dg(s)

ds
G(t, s)|ba − a0(s)g(s)Gs(t, s)|ta − a0(s)g(s)Gs(t, s)|bt

+ (

∫︂ t

a

+

∫︂ b

t

)LsG(t, s)g(s)ds

= a0(s)g(s)Gs(t, s)|t
+

t− + a0(s)[g
′
(s)G(t, s)− g(s)Gs(t, s)]|ba

= g(t)
(4.26)

where we have used (4.20) and the fact that both g and G satisfy (4.13).

Here I give a lemma and leave its proof as an exercise.

Lemma 4.5. If A is a self-adjoint compact operator on a Hilbert space H , then
there exists an eigenvalue λ such that |λ| = ∥A∥.

Remark 4.6. T de�ned in (4.22) is equicontinuous and uniformly bounded
due to the fact that G(·, s) is uniformly continuous on I, or equivalently T
is compact as we have shown in Lemma 4.8. Thus Arzelà Ascoli Theorem
applies and the Lemma 4.5 holds for T . To prove ∥A∥ = sup

∥x∥=1

|⟨Ax, x⟩|, no

matter we deal with a Hilbert space H or C(I), we only have to show that
2Re⟨Tu, v⟩ ⩽ (∥u∥2 + ∥v∥2) sup |⟨Tu, u⟩| and then replace v with Tu/∥Tu∥.

The following theorem describes the distribution of eigenvalues of a linear,
self-adjoint compact operator.

Theorem 4.7. (Hilbert-Schmidt) Let A be a linear, self-adjoint, compact op-
erator on a Hilbert space H with dim(H ) = ∞. All eigenvalues of A are real
and can be ordered so that

|λn+1| ⩽ |λn|, lim
n→∞

λn → 0 (4.27)

Furthermore, eigenvectors {φn}n∈N can be chosen to be an ONB of Ran(A).
In particular, when ker(A) = 0, each element h ∈ H has an expansion h =∑︁
n
λn⟨h, φn⟩φn.
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Proof. By Lemma 4.5, there exists φ1 such that ∥φ1∥ = 1 and Aφ1 = λ1φ1 with

|λ1| = ∥A∥. Let H1 = span{φ1}
⊥
, then A|H1 is another self-adjoint compact

operator with operator norm ∥A|H1∥ ⩽ ∥A∥. It has an eigenvector φ2 such that
A|H1

φ2 = λ2φ2 with λ2 = ∥A|H1
∥ ⩽ λ1. Continuing the same argument gives

us a sequence of eigenvalues such that |λ1| ⩾ |λ2| ⩾ · · ·
Assume eigenvalues of A are bounded away from zero, namely |λn| ⩾ b > 0.
Then the fact that {bφn}n∈N ⊂ A(BH(0, 1)) has no convergent subsequence(φn
orthonormal) contradicts the compactness of A.

Finally, if x ∈ span{φ1, φ2, · · · }
⊥
, then ∥Ax∥ ⩽ λn∥x∥ for each n ∈ N, hence

Ax = 0. If ker(A) = {0}, then H = span{φ1, φ2, · · · }.

Lemma 4.8. If k ∈ L2
w(I × I), then integral operator Kw : L2

w(I) → L2
w(I),

Kwf(t) :=
∫︁
I
k(t, s)f(s)w(s)ds is compact.

Proof. Let {ϕi} be an ONB of L2
w(I) and suppose k(x, y) =

∞∑︁
i,j=1

kijϕi(x)ϕj(y).

Then ∥k∥2L2
w(I×I) =

∑︁
ij

|kij |2. For any f ∈ L2
w(I), denote by fj = ⟨f, ϕj⟩w, we

have

⟨Kwf,Kwf⟩w =

∫︂
I

⎛⎝ ∞∑︂
i,j=1

kijϕi(t)fj

⎞⎠⎛⎝ ∞∑︂
i′ ,j′=1

ki′ j′ϕi′ (t)fj′

⎞⎠w(t)dt

=
∑︂
i

∑︂
j

∑︂
j′

kijkij′ fjfj′

⩽
√︄∑︂
i,j,j′

(kijfj′ )
2
∑︂
i,j,j′

(kij′ fj)
2

= ∥f∥2w∥k∥2w

(4.28)

namely Kf belongs to L2
w.

Given any n ∈ N, Knf :=
n∑︁

i,j=1

kij⟨f, ϕi⟩ϕj is a bounded operator with

�nite dimensional range, hence compact. ∥Kw − Kn∥2 =
∞∑︁

i,j=n+1

|kij |2 → 0,

namely Kn → Kw in operator norm, thus we claim that K is compact. Indeed,
let {fm} be a bounded sequence, Arzelá-Ascoli argument tells us that there
exists a subsequence {fmj

} such that, for each n ∈ N, Knfmj
is convergent,

hence {Kwfmj
} a Cauchy sequence. Thus the completeness of L2

w(I) gives us a
convergent subsequence {Kwfmj

}.
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Let
Twf =

∫︂
I

G(t, s)f(s)ds (4.29)

By Proposition 4.4, we see that

1

w
LTwf = f (4.30)

for positive w. Note that if yi ∈ L2
w(I)(i = 1, 2), then G ∈ L2

w(I × I), hence
Tw is linear, self-adjoint and compact. Since the eigenvalues of Tw goes to zero,
as a left-inverse operator, the Sturm-Liouville operator has eigenvalues {λn}
which is increase and goes to in�nity. When yn is some eigenfunction of Tw
corresponding to eigenvalue λ̃n > 0, then Lyn = 1

λ̃n
wyn. Thus we have proved

the following result that I intend to give in this section, which allows us to
study the functions on I in terms of various kinds of orthogonal polynomials
with di�erent properties.

Theorem 4.9. The eigenfunctions of SL-problem (4.12) form a complete ONB
for L2

w(I), with w strictly positive.

Before I proceed to exhibit examples of orthogonal polynomials, let us have
a brief look at the zeros of the solution functions, which is a topic that attracted
several generations of mathematicians. The zeros of a non-trivial solution u of
(4.12) in (a, b) are isolated from the simple observation that, u(x0) and u

′
(x0)

cannot be zero at the same time, hence u must increase or drop in a neighbor-
hood of the zero x0.

Assume I
′ ⊂ I is an subinterval on which a solution u1 of (4.12) does not

vanish. If u2 is another solution that is independent of u1, then u1(a0u
′

2) −
u2(a0u

′

1) = a0W (u1, u2) is a non-zero constant ĉ, hence we have

(
u2
u1

)
′
(x) =

ĉ

a0(x)u21(x)
, for x ∈ I

′
a.e. (4.31)

Integrating on (a
′
, x) ⊂ I

′
yields

u2
u1

(x) =
u2
u1

(a
′
) +

∫︂ x

a′

ĉ

a0u21
(4.32)

Suppose u1 and u2 are two linearly independent solutions. When x1 and
x2 are successive zeros of a solution u1, from W (u1, u2) ̸= 0, we shall have
u

′

1(x1)u2(x1) and u
′

1(x2)u2(x2) are either both positive or negative. Since u
′

1(x1)
and u

′

1(x2) have opposite sign, u2(x1)u2(x2) < 0. There must exist exactly one
point x3 ∈ (x1, x2) such that u2(x3) = 0, for otherwise it would contradicts the
assumption that x1 and x2 are successive zeros of u1. We conclude that
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Proposition 4.10. The zeroes of two linearly independent solutions of (4.12)
must intertwine with each other.

Now we arrive at some famous polynomials coming as the eigenfunctions of
the Sturm-Liouville eigenvalue problems.

Example 4.11. (Laguerre Polynomials)
Laguerre polynomials

Ln,α(x) =
exx−α

n

dn

dxn
xn+αe−x (4.33)

are non-singular solutions of

xu
′′
+ (1 + α− x)u

′
+ nu = 0, 0 < x <∞ (4.34)

with α > −1 and n non-negative integer; especially when α = 0 it is equivalent
to

(xe−xu
′
)
′
+ ne−xu = 0 (4.35)

Obviously in this example a0(x) vanishes at x = 0. Those polynomials are also
eigenfunctions of the Sturm-Liouville operator in (4.35) with respect to eigen-
values λn = n(n+1), with the orthogonality property that ⟨Ln,α, Lm,α⟩e−xxα =
δn,m in L2

e−xxα(0,∞). Its series expression is

Ln,α(x) =

n∑︂
k=0

Γ(n+ α+ 1)

Γ(k + α+ 1)

(−x)k

k!(n− k)!
(4.36)

Besides, they satisfy the recurrence relation

nLn,α(x) = (2n+ α− 1− x)Ln−1,α(x)− (n+ α− 1)Ln−2,α(x) (4.37)

Example 4.12. (Legendre Polynomials)
When we solve the Laplace equation in R3

∂

∂r
(r2

∂u

∂r
) +

1

sin2 φ

∂2u

∂θ2
+

1

sin θ

∂

∂φ
(sinφ

∂u

∂φ
) = 0 (4.38)

by assuming that the solution u is independent of θ and using the method
of separation of variables, we obtain the two ODEs with respect to φ and r
respectively, namely

r2v
′′
+ 2rv

′
− λv = 0 (4.39)
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and
1

sinφ
(sinφw

′
)
′
+ λw = 0 (4.40)

A change of variable u = cosφ gives the Legendre's equation

(1− x2)u
′′
− 2xu

′
+ λnu = 0, −1 < x < 1 (4.41)

which has singular points x = 1, where λn = n(n + 1), n ∈ N and the corre-
sponding eigenfunctions Pn are Legendre polynomials, having the orthogonality
⟨Pn, Pm⟩ = 2

2n+1δm,n in L2(−1, 1) if we assume Pn(1) = 1.

From (1.19) it can be derived that

(1− x2)
d

dx
Pl(x) = l(Pl−1(x)− xPl(x)) (4.42)

and that
(1− x2)

d

dx
Pl(x) = (l + 1)(xPl(x)− Pl+1(x)) (4.43)

Taking derivative on both sides of the above equations and using (4.41) give

lPl(x) = x
d

dx
Pl(x)−

d

dx
Pl−1(x) (4.44)

and
(l + 1)Pl(x) = −x d

dx
Pl(x) +

d

dx
Pl+1(x) (4.45)

Example 4.13. (Hermite Polynomials)
Probably the most well known polynomials in Fourier analysis is the Hermite
polynomials, due to the fact that they constitute eigenfunctions of the Fourier
transform on R, namely Ĥn = (−i)nHn. They solve the Hermite's equation:

u
′′
− 2xu

′
+ 2nu = 0, −1 < x < 1 (4.46)

or
(e−x

2

u
′
)
′
+ 2ne−x

2

u
′
= 0, −1 < x < 1 (4.47)

Therefore, they are at the same time eigenfunctions Hn = (−1)nex
2 dn

dxn e
−x2

of
the SL operator in (4.47) with respect to eigenvalues λn = 2n. By induction,
Hn(x) = (2x)n + (−1)np(x) where the polynomial degree of p(x) is less than n.
In fact, it has the series expression

Hn(x) =

⌞n/2⌟∑︂
k=0

(−1)kn!

k!(n− 2k)!
(2x)n−2k (4.48)
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Setting H−1 ≡ 0, the recurrence relation reads

Hn(x) = 2xHn−1(x)− 2nHn−2(x) (4.49)

Hermite polynomials have the orthogonality property in L2
e−x2 (R)

⟨Hn, Hm⟩e−x2 =

∫︂ ∞

−∞

dn

dxn
Hm(x)e−x

2

dx = 2nn!
√
πδm,n (4.50)

where we used the fact that dn

dxnHm(x) = 0 for polynomial degree m < n.
Besides, it is easy to verify that Hermite polynomials' generating function is

e2xt−t
2

=
∞∑︁
n=0

1
n!Hn(x)t

n.

Example 4.14. (Bessel Functions)
Bessel's equation takes the form

x2u
′′
+ xu

′
+ (x2 − ν2)u = 0 (4.51)

where ν is a nonnegative parameter. It obviously has singular point at x = 0.
Here the SL eigenvalue problem generates non-polynomial eigenfunctions Jν ,
called the Bessel functions.

In fact, by assuming u = xs
∞∑︁
k=0

ckx
k and collecting the coe�cients of the

powers xs, xs+1, · · · , we get s = ν and ck = − 1
k(k+2ν)ck−2, hence c2m =

(−1)m

2ν+2mm!Γ(ν+m+1)x
2m and c2m+1 = 0. Let

Jν(x) := (
x

2
)ν

∞∑︂
m=0

(−1)m

m!Γ(ν +m+ 1)
(
x

2
)2m (4.52)

then

lim
x→0+

Jν(x) =

{︃
1 ν = 0
0 ν > 0

(4.53)

tells us that Jν is well de�ned for ν ⩾ 0. For t = −ν, we can similarly de�ne

J−ν(x) := (
x

2
)−ν

∞∑︂
m=0

(−1)m

m!Γ(ν +m+ 1)
(
x

2
)2m (4.54)

but it is not necessarily bounded at x = 0. In fact, when ν = n, J−ν = (−1)nJν ;
but for ν ∈ R+ \ N0, lim

x→0+
|J−ν | = ∞. Thus we have arrived at the following

conclusion.
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Lemma 4.15. Bessel functions Jν and J−ν are linearly independent i� ν ∈
R+ \ N0.

If we take a = 0 and b <∞, the scaled Bessel Functions form an orthogonal
and complete basis in L2

x(0, b), namely

⟨Jn(
√︁
λjx), Jn(

√︁
λkx)⟩x = δj,k (4.55)

where the eigenvalue λk = (xnk

b )2 and xnk is the k-th zero of Jn, i.e. 0 < xn1 <
xn2 < · · · < xnk < · · · , coming as the eigenvalue of the scaled Bessel's equation

xu
′′
+ u

′
+ (λx− ν2

x
)u = 0 (4.56)

We are not going to prove those, but rather refer to [13] for a thorough and
exquisite exposition of the properties of Bessel functions.

4.2 Spectrum of discrete Laplacian

Given a �nite subgraph H of G, analogues of the length of boundary of a
submanifold H in the continuous setting could be the number of joint edges of
vertex set in H with its complement vertex set

|E(∂vH)| = |{xy ∈ E(G) : x ∈ V (H), y ∈ V (G)\V (H)}| (4.57)

or probably more naturally de�ned as the number of edges between faces in H
and its complement part, namely

|E(∂fH)| = |{xy ∈ E(H) ∩ E(F (G)\F (H))}| (4.58)

Similarly, the surface area ofH can be measured either by A(H) =
∑︁

v∈V (H)

deg(v)

or by the number of faces |F (H)| in H. These lead to two di�erent isoperimetric
constants measuring the ratio of length and area, that are closely connected to
the curvature, namely

α(G) = inf
0<|H|⩽ 1

2 |V (G)|
{|E(∂vH)|/A(H)} (4.59a)

α∗(G) = inf
0<|H|⩽ 1

2 |V (G)|
{|E(∂fH)|/|F (H)|} (4.59b)

where α(G) is called Cheeger constant.
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Let C0(G) be the space of real valued functions of vertices with inner product

(g1, g2) =
∑︂

v∈V (G)

g1(v)g2(v)

and {R} be the set of real constant functions on G. The set of 1-forms C1(G) is
de�ned as functions on oriented edges satisfying ω([x, y]) = −ω([y, x]) endowed
with inner product

(ω1, ω2) =
∑︂
e

ω1(e)ω2(e)

In particular, there is dg([x, y]) = ∇xyg = g(y)− g(x) for any g ∈ C0(G). Sim-
ilarly, we can de�ne C0(G,H) ⊂ C0(G) consisting of those functions vanishing
on subcomplex H. It follows that

(dg1, dg2) =
∑︂
[x,y]

(g1(y)− g1(x)) (g2(y)− g2(x))

=
∑︂
x

∑︂
y∈N (x)

(g1(x)− g1(y)) g2(x)

where [x, y] run over all the possible edges in E(G) with an arbitrarily chosen
direction on each of them. Thus the Laplacian on G can be de�ned as

∆Gg(x) = −d∗dg(x) =
∑︂

y∈N (x)

(g(y)− g(x)) =
∑︂

y∈N (x)

g(y)−deg(x)·g(x) (4.60)

The restricted Laplacian ∆H on subcomplex H can be de�ned correspondingly
as ∆G restricted on subspace C0(G,H).

If G is an in�nite connected graph, it was proved in [75] under the geometric
assumptions that

a. deg(v) is uniformly bounded above by some constant p
b. there exists positive constant γ such that γV (H) ⩽ V (∂H)

(4.61)

for any �nite subcomplex H < G, the minimal positive eigenvalue of −∆H(and
−∆G) has lower bound

γ2

2p (respectively).

Theorem 4.16. If H \ ∂H is connected, then the minimal eigenvalue of −∆H

in σ(−∆H)\{0} satis�es

λmin = inf
g∈C0(H,∂H)\{R}

(−∆Hg, g)

(g, g)
⩾
γ2

2p
(4.62)

97



CHAPTER 4. SUPPORTING TOPICS

and the in�mum can be achieved by a positive, subharmonic and nonconstant
function h. As H asymptotically approach G, if follows that the minimal positive
eigenvalue of −∆G satis�es (4.62) with a positive, subharmonic and nonconstant
eigenfunction.

Proof. The idea of the proof is based on estimation of the quantity

∑︂
e

⃓⃓
d(g2)(e)

⃓⃓
=
∑︂
[x,y]

⃓⃓
g2(x)− g2(y)

⃓⃓

where g ∈ C0(H, ∂H) while [x, y] run over the set of edges. On the one hand,
there is

∑︂
e

⃓⃓
d(g2)(e)

⃓⃓
⩽

⎛⎝∑︂
[x,y]

|g(x) + g(y)|2
⎞⎠1/2

·

⎛⎝∑︂
[x,y]

|g(x)− g(y)|2
⎞⎠1/2

⩽
√
2

⎛⎝∑︂
[x,y]

(g2(x) + g2(y))

⎞⎠1/2

· (dg, dg)1/2

⩽
√︁

2p(g, g)1/2(dg, dg)1/2

(4.63)

On the other hand, note that for any g ∈ C0(H, ∂H) \ {R}

(g(x)− g(y))
2

(g, g)
⩾

(|g(x)| − |g(y)|)2

(|g|, |g|)
⩾ inf
g/∈{R}

(−∆Hg, g)

(g, g)

hence if g is an eigenfunction corresponding to the smallest positive eigenvalue
λmin, so is |g|. In fact, by the connectness assumption, g = |g|, for otherwise
g has negative value, then there exists x and its neighboring point y such that
(g(x)− g(y))

2
> (|g(x)| − |g(y)|)2, which leads to the absurdity that λmin >

λmin. There cannot be a point x ∈ H \ ∂H such that g(x) = 0, for otherwise
−λming(x) = ∆Hg(x) =

∑︁
y∈N (x)

(g(y)− g(x)) ⩾ 0, hence g is identically zero on

H, a contradiction as well. Thus we see the positivity of the eigenfunction g.

Now suppose the values set of g on H is ordered as 0 = β0 < β1 < · · · < βN .
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We have

∑︂
g(x)=βi

i∑︂
k=1

∑︂
{y∈N (x):g(y)=βi−k}

(︁
g2(x)− g2(y)

)︁
=

∑︂
g(x)=βi

i∑︂
k=1

∑︂
{y∈N (x):g(y)=βi−k}

i∑︂
t=i−k+1

(︁
β2
t − β2

t−1

)︁
=

∑︂
g(x)=βi

i∑︂
t=1

∑︂
k⩾i−t+1

∑︂
{y∈N (x):g(y)=βi−k}

(︁
β2
t − β2

t−1

)︁
=

∑︂
g(x)=βi

i∑︂
t=1

(︁
β2
t − β2

t−1

)︁ ∑︂
k⩾i−t+1

|{y ∈ N (x) : g(y) = βi−k}|

Thus

∑︂
e

⃓⃓
d(g2)(e)

⃓⃓
=

N∑︂
i=1

∑︂
g(x)=βi

i∑︂
t=1

(︁
β2
t − β2

t−1

)︁ ∑︂
k⩾i−t+1

|{y ∈ N (x) : g(y) = βi−k}|

=

N∑︂
t=1

(︁
β2
t − β2

t−1

)︁ ∑︂
g(x)⩾βt

|{y ∈ N (x) : g(y) ⩽ βt−1}|

(4.64)
∆Hg(x) < 0 indicates that there is at least a neighboring point y such that
g(y) < g(x). By (4.61) there is

∑︂
e

⃓⃓
d(g2)(e)

⃓⃓
⩾

N∑︂
t=1

(︁
β2
t − β2

t−1

)︁
|∂{x : g(x) ⩾ βt}|

⩾ γ

N∑︂
t=1

(︁
β2
t − β2

t−1

)︁
|{x : g(x) ⩾ βt}|

= γ

[︄
β2
N |{g(x) = βN}|+

N−1∑︂
t=1

β2
t (|{g(x) ⩾ βt}| − |{g(x) ⩾ βt+1}|)

]︄
⩾ γ(g, g)

(4.65)
Combining (4.63) and (4.65) gives the desired result (4.62). Besides, if λmin

is obtained by function g, then −∆Hg = λming > 0, namely g is subharmonic
and nonconstant. g being positive and subharmonic also gives that Harnack
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inequality

1

deg(y)
g(x) ⩽ g(y) ⩽ deg(y)g(x) (4.66)

which follows immediately from de�nition.
Choose an arbitrary point in x0 in G, and we can form a �nite subgraph

Hn including vertices connected to x0 by at most n edges from E(G). The
second part of the assertion comes as the limit of the smallest eigenvalue λn
and associated eigenfunctions of ∆Hn

. In fact, let gn ∈ C0(Hn, ∂Hn)\{R} such
that gn(x0) = 1, where ∂Hn consists of points in Hn that have at least one
neighboring point not in Hn. Notice that C0(Hn, ∂Hn) ⊂ C0(Hn+1, ∂Hn+1),
hence λn = min

g∈C0(Hn,∂Hn)\{R}
(−∆Hg,g)

(g,g) ⩾ λn+1 ⩾ γ2

2p and there exists λ ⩾ γ2

2p as

the limit of λn.
Denote by gn the eigenfunction corresponding to λn. Then by (4.66), if

vertex x ∈ G is of s-edge distance to x0, there is

1

deg(y)min{n,s} gn(x) ⩽ gn(y) ⩽ deg(y)min{n,s}gn(x) (4.67)

and if n < s, gn(x) = 0. Therefore {gn(x)}n⩾0 is a bounded sequence. A
diagonal argument gives a subsequence such that lim

k→∞
gnk

(x) exists for all

vertices in G, and we de�ne through pointwise value a function h. Clearly
h(x0) = lim

n→∞
gn(x0) = 1, and −∆Gh = λh ⩾ 0. In fact, for any x in G, (4.67)

gives that h(x) is strictly positive, namely h is positive and nonconstant.

Remark 4.17. In the original paper [75], it was somehow miscalculated that∑︁
e

⃓⃓
d(g2)(e)

⃓⃓
=

N∑︁
t=1

(︁
β2
t − β2

t−1

)︁
|∂{x : g(x) = βt}|, although the �nal conclusion

remains correct. In fact, we see in (4.65) that this holds only with an inequality,
and the precise expression for

∑︁
e

⃓⃓
d(g2)(e)

⃓⃓
is given in (4.64), which is exactly

N∑︁
t=1

(β2
t − β2

t−1) |E(∂vLt)| with Lt := {x : g(x) ⩾ βt}. Probably noticed this im-

precision, in a later work[76] the same author changed the setting for Laplacian
and used a di�erent assumption (4.59) in replacement of (4.61). Thus the same

100



4.2. SPECTRUM OF DISCRETE LAPLACIAN

argument as in (4.65) applies and gives the estimation

∑︂
e

⃓⃓
d(g2)(e)

⃓⃓
⩾ α

N∑︂
t=1

A(Lt)

= α(β2
t − β2

t−1)
∑︂
x∈Lt

deg(x)

= α

N−1∑︂
t=1

β2
t

∑︂
g(x)=βt

deg(x) + αβ2
Ndeg(x)

= α
∑︂
x∈H

deg(x)g2(x)

= α(g, g)w

(4.68)

Meanwhile (4.63) gives
∑︁
e

⃓⃓
d(g2)(e)

⃓⃓
⩽

√
2(g, g)

1/2
w (dg, dg)1/2. Together it gives

the minimal positive eigenvalue estimation

λ∗min ⩾
α2

2

for weighted Laplacian∆w. The positivity of α was given in same work under the
assumption that deg(x) ⩾ 7 for all vertices x ∈ V , for that there is α(G) ⩾ 1

78 .
The other situations are veri�ed as the main result of [61]. In fact, it is proved
there that κ(v) < 0 for every v ∈ V (G) implies α∗(G) > 0; while χ(f) < 0 for
every face in F (G) implies α(G) > 0. Here

χ(f) = 1− |f |
2

+
∑︂
v∈f

1

deg(v)
(4.69)

is the Euler-characteristic with |f | the number of vertices contained in f , and

κ(v) = 1− deg(v)
2

+
∑︂

{f :v∈f}

1

|f |
(4.70)

is the combinatorical curvature at a vertex v. The discrete Gauss-Bonnet theo-
rem says ∑︂

v

κ(v) = 2− genus (4.71)

where the genus as usual is de�ned as the maximal numbers of nonintersecting
simple closed curves that can be drawn on a surface without separating it. For
a proof of this fundamental result I refer the readers to [50].
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Theorem 4.18. On a weighted �nite graph without loops, there is

α2(G)

2
⩽ λ∗min ⩽ min{2α(G), V (G)− 2

|V (G)| − 1
}

and

max{2− 2α(G),
|V (G)|

|V (G)| − 1
} ⩽ λ∗max ⩽ 2− α2(G)

2

Proof. The lower bound for λ∗min has been given in the previous remark. In the
upper bound aspect, given any nonempty W ⊂ V (G), by letting

g♯W (x) =

{︄
1 x ∈W

− A(W )
A(W c) x ∈W c (4.72)

we get

(−∆wg
♯
W , g

♯
W )w

(g♯W , g
♯
W )w

=

∑︁
x∈∂W

(1 +A(W )/A(W c))
2
A(x)

A(W ) +
∑︁

x∈W c

A(x)A2(W )/A2(W c)

=
A(∂W )A(V )

A(W c)A(W )

⩽ 2α

(4.73)

Let δv be orthonormal basis on V (G) such that δv(v
′
) = 1 for v

′
= v, and

zero otherwise. The trace of the discrete Laplacian is

N∑︂
i=0

λ∗i =
∑︂
v∈V

(∆wδv, δv)

(δv, δv)

=
1

2

∑︂
v∈V

∑︁
u′ ,v′

(︂
δv(u

′
)− δv(v

′
)
)︂2
δv′ ,u′∑︁

v′
δ2v(v

′)A(v′)

= |V |

(4.74)

Therefore

λ∗N = λ∗max ⩾
|V |
N

(4.75)
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where N + 1 = |V |. Meanwhile, let fN be the eigenfunction of the largest
eigenvalue λ∗N , we have

λ∗1 + λ∗N ⩽
(∆w|gN |, |gN |)w
(|gN |, |gN |)w

+
(∆wgN , gN )w
(gN , gN )w

=

∑︁
v,v′∈V (G)

[︃(︂
|gN (v)| − |gN (v

′
)|
)︂2

+
(︂
gN (v)− gN (v

′
)
)︂2]︃

Avv′

2
∑︁

v∈V (G)

g2N (v)A(v)

⩽

∑︁
v,v′∈V (G)

(︂
g2N (v) + g2N (v

′
)
)︂
Avv′∑︁

v∈V (G)

g2N (v)A(v)

= 2
(4.76)

hence λ∗1 ⩽ 2− |V |
N = V−2

V−1 while λ∗N ⩽ 2− α2

2 .
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4.3 Other representations on the sphere

Rotation group is closely related to quaternions, which provides us with an
alternative and convenient way to represent points and compute on the sphere.
Let H denote the set of quaternions consisting of elements like

q = q0 + q1i+ q2j+ q3k = q0 +Vec(q) (4.77)

which can be represented as q = ∥q∥(cos θ + n̂ sin θ), analogous to complex
numbers, where ∥q∥ =

√
qq and n̂ = (n1, n2, n3) is the unit vector in the

direction of the vector part of the quaternion q, i.e. n̂∥q − q0∥ = q − q0.
Therefore a unit quaternion means a rotation about the axis n̂ by the angle 2θ.
H is a division algebra, and the inverse of a nonzero element p is p−1/∥p∥2.
We denote the set of all unit quaternion by BH,1. Whenever two quaternions
p,q are conjugate with each other in the sense that there exists r ∈ H such that
p = rqr−1, they have exactly the same norm and the same real part. In fact,
we have the relation

Re(pq) = p0q0 −Vec(p) ·Vec(q)

Vec(pq) = p0Vec(q) + q0Vec(p) +Vec(p)×Vecq
(4.78)

Two quaternions are called orthogonal if pq ∈ VecH. It is obvious that p,q are
orthogonal if and only if there exists a pure quaternion v such that p = vq.
Quaternion multiplication preserves Euclidean norm, namely ∥pq∥ = ∥p∥∥q∥.
If we identify H with R4, it is easy to check that R × {0} is the center of H.
Therefore its complement is an invariant subspace under conjugation too. In
fact, if we take a unit quaternion q and a pure quaternion v, then

J(cos θ + n̂ sin θ)v := (cos θ + n̂ sin θ)v(cos θ − n̂ sin θ)

= (n̂× v) sin 2θ + (1− cos 2θ)[n̂(n̂ · v)− v] + v cos 2θ

∈ VecH

It is clear that J maps BH,1 onto SO(3). In particular, when θ = 0 or θ = π,
J(cos θ + n̂ sin θ) = I.

One can identify H with C2 if a quaternion is rewritten in the form q =
q0+ q1i+(q2+ q3i)j = z+wj, and the multiplication rule here is (z1+w1j)(z2+
w2j) = (z1z2 − w1w̄2) + (z1w2 + w1z̄2)j. It is easy to check that

z + wj ∈ BH,1 → Uz,w :=

(︃
z w
−w̄ z̄

)︃
∈ SU(2) (4.79)
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is an isomorphism. In other word SU(2) is one-to-one parameterized by unit
quaternions. The exponential map from the Lie algebra su(2) has the explicit
form

exp(A) = cos θI+
sin θ

θ
A with A = θ

(︃
in1 n2 + in3

−n2 + in3 −in1

)︃
In conclusion we have the identi�cation SO(3) = SU(2)/± I. Another way

to look at the identi�cation is through

J̃ : g ∈ SU(2) → [M → gMg†] ∈ SO(3) (4.80)

whereM is a complex Hermitian matrix satisfying TrM = 0. Since U(1) = {g ∈
SU(2) : Adσ3

g = g} and it is connected, J̃(g)σ3 gives a map from SU(2) into

S2, where σ3 is the Pauli matrix
(︃

1 0
0 −1

)︃
, hence there is an identi�cation

between SU(2)/U(1) and S2.
Six de�nitions of bi-invariant inner-product induced metrics on the rotation

groups are compared in [56] and proved to be functional equivalent in the sense
that there exist positive continuous strictly increasing functions hi such that
hi ◦ Φ1 = Φi with i = 2, · · · , 6 while some of them are boundedly equivalent.
These metrics in general can be classi�ed into three types, one measures by
using the quaternion di�erence, for instance

Φ1(p,q) = arccos(|p · q|)

another measures the derivation from the identity matrix in the Euclidean space,
for instance

Φ2(σ1, σ2) = ∥I− σ1σ
T
2 ∥F

with ∥ · ∥F the Frobenius norm; the other measures in the Riemannian way,
namely by the distance in Lie algebra

Φ3(σ1, σ2) = ∥ log(σ1σT2 )∥

with ∥ · ∥ being either the Frobenius norm or ∥S∥2H = 1
2 tr(S

TS) for S ∈ so(3).
Some characterization of mean rotation with respect to Φ1 and Φ2 is given in
[39]. In particular there is

argmin
σ∈SO(3)

N∑︂
i=1

Φ2(σ, σi)
2 = argmin

σ∈SO(3)

Φ2(
1

N

N∑︂
i=1

σi, σ)
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namely the projection of 1
N

N∑︁
i=1

σi onto the rotation group is the rotation mean

with respect to Φ2; and for σ1, · · · , σN belonging to a same one-parameter
subgroup of SO(3) such that Φ3(σi, σj) <

√
2π for any i, j with respect to

Frobenius norm, there is an explicit expression

argmin
σ∈SO(3)

N∑︂
i=1

Φ3(σ, σi)
2 = σ1(σ

T
1 σ2(σ

T
2 σ3(· · ·σN−1(σ

T
N−1σN )

1
2 )

2
3 · · · )

N−2
N−1 )

N−1
N

meanwhile
N∑︂
i=1

log(σTi σ) = 0

is a necessary but not su�cient condition such that
N∑︁
i=1

Φ3(σi, σ)
2 achieves local

minima.

106



Bibliography

[1] Barbara Zwicknagl, Power series kernels, Constr. Aporox. (2009)29:61-84

[2] Yanmu Zhou, Arrangements of points on the sphere, Thesis, University of
South Florida, (1995)

[3] A. Zettl, Sturm-Liouville theory, AMS. (2005)

[4] L. Younes, Shapes and di�eomorphisms, Springer (2010)

[5] Yuan Xu, Funk-Hecke formula for orthogonal polynomials on spheres and
balls, Bull. London Math. Soc. 32, 447-457, (2000)

[6] Yuan Xu and E.W. Cheney, Strictly positive de�nite functions on spheres,
Proc. Amer. Math. Soc., Vol. 116, No. 4 (Dec., 1992), 977-981

[7] Kun Xu, Wei-Lun Sun, Zhao Dong, Dan-Yong Zhao, Run-Dong Wu, and
Shi-Min Hu, Anisotropic spherical Gaussians, ACM Trans. Graphics, Vol.
32 Issue 6, November (2013)

[8] Guoliang Xu, Discrete Laplace-Beltrami operator on sphere and optimal
spherical triangulations, Int. J. Comput. Geom. Appl. Vol.16, No.1 (2006)
75-93

[9] Y. Wiaux, J.D. McEven, P. Vandergheynst, and O. Blanc, Exact recon-
struction with directional wavelets on the sphere, Mon. Not. R. Astron.
Soc.000, 1-21, (2007)

[10] Kunyang Wang and Luoqing Li, Harmonic analysis and approximation on
the unit sphere, Science Pr. (2000)

[11] N. Virchenko and I. Fedotova, Generalized associated Legendre functions
and their applications, World Scienti�c Publishing (2001)

107



BIBLIOGRAPHY

[12] Grant V. Welland, Beyond wavelets, Academic Press (2003)

[13] G.N. Watson, A treatise on the theory of Bessel functions, 2nd Edition,
Cambridge University Press (1944)

[14] J. Wang and W. Huang, Image segmentation with eigenfunctions of an
anisotropic di�usion operator, IEEE T. Image. Process. (2016)

[15] M.P. Wand and M.C.Jones, Kernel smoothing, �rst edition (1995)

[16] N.Ja. Vilenkin and A.U. Klimyk, Representation of Lie groups and special
functions, Vol.1 and Vol.2, Mathematics and its applications(Soviet series)
(1991-1993)

[17] P. Vandergheynst, J-P. Antoine, L. Jacques, and M. Morvidone, Stereo-
graphic wavelet frames on the sphere, Appl. Comput. Harmon. Anal. vol.19,
num.2, p.223-252, (2005)

[18] G. Szeg®, Orthogonal polynomials, AMSCP, Vol.23 (1975)

[19] W. Sweldens, The lifting scheme: a construction of second generation
wavelets, SIAM J. Math Anal. Vol.29, No.2, p.511-546, (1998)

[20] Yizhi Sun and Zhilin Sun, Generating probability distributions on intervals
and spheres with application to �nite element method, submitted

[21] E.M. Stein, Introduction to Fourier analysis on Euclidean spaces, Princeton
University Press (1971)

[22] J.-L. Starck, Y. Moudden, P. Abrial, and M. Nguyen, Wavelets, ridgelets
and curvelets on the sphere, Astron. Astrophys. 446, p.1191�1204 (2006)

[23] J.-L. Starck, F. Murtagh, and J.M Fadili, Sparse image and signal pro-
cessing: wavelets, curvelets, morphological diversity, Cambridge University
Press (2010)

[24] G.F. Smoot, Nobel Lecture: Cosmic microwave background radiation
anisotropies: their discovery and utilization, Rev. Mod. Phys., Vol. 79,
No. 4, Oct.�Dec. (2007)

[25] P. Schröder and W. Sweldens, Spherical wavelets: e�ciently representing
functions on the sphere, in the book "Wavelets in the geosciences", p158-
188, Springer (2000)

108



BIBLIOGRAPHY

[26] I.J. Schoenberg, Positive de�nite functions on spheres, Duke Math J. vol.9,
No.1, p.96-108 (1942)

[27] H. Harbrecht and R. Schneider, Rapid solution of boundary integral
equaitons by wavelet Galerkin schemes, in the book "Multiscale, nonlin-
ear and adaptive approximation", Springer (2009)

[28] D. Ro³ca, Locally supported rational spline wavelets on a sphere, Math
Comput. Vol. 74, No. 252, p.1803�1829 (2005)

[29] F. Narcowich, P. Petrushev, and J. Ward, Decomposition of Besov and
Triebel-Lizorkin spaces on the sphere, J. Funct. Anal. 238, 530-564 (2006)

[30] F. Narcowich, P. Petrushev, and J. Ward, Localized tight frames on spheres,
SIAM J. Math. Anal. 38 p.574-594 (2006)

[31] G. Plonka and D. Ros,ca, Easy path wavelet transform on triangulations of
the sphere, Math. Geosci. (2010) 42:839-855

[32] A.A. Penzias and R.W. Wilson, A measurement of excess antenna temper-
atures at 4080 Mc/s, Astrophys. J. Vol.142(1965), p.419-421

[33] S. Pawelke, Über die Approximationsordnung bei Kugelfunktionen und al-
gebraischen Polynomen, Tôhoku Math. Journ. 24 p.473-486 (1972)

[34] Roland Opfer, Multiscale kernels, Adv. Comput. Math. 25: 357-380 (2006)

[35] Roland Opfer, Tight frame expansions of multiscale reproducing kernels in
Sobolev spaces, Appl. Comput. Harmon. Anal. 20 (2006) 357-374

[36] C. Müller, Analysis of spherical symmetries in Euclidean spaces, Springer
(1997)

[37] J.L. Müller and S. Siltanen, Linear and nonlinear inverse problems with
practical applications, SIAM (2012)

[38] M.J. Mohlenkamp, A fast transform for spherical harmonics, J. Fourier.
Anal. Appl. Vol.5(2/3), p.159-184 (1999)

[39] Maher Moakher, Means and averaging in the group of rotations, SIAM J.
Matrix Anal. Appl. Vol.24, No.1, p.1-16 (2002)

[40] V. Michel, Lectures on constructive approximation, Springer (2013)

109



BIBLIOGRAPHY

[41] J.D. McEwen, C. Durastanti, and Y. Wiaux, Localisation of directional
scale-discretised wavelets on the sphere, Appl. Comput. Harmon. Anal. 44
(2018) 59-88

[42] J.D. McEwen, P. Viela, Y. Wiaux, R.B. Barreiro, L. Cayón, M.P.Hobson,
A.N. Lasenby, Martínez-González, and J.L. Sanz, Cosmological applications
of a wavelet analysis on the sphere, J. Fourier Anal. Appl. Vol.13, Issue 4
(2007)

[43] S. Mallat, A wavelet tour of signal processing: the sparse way, third edition
(2009)

[44] Jianwei Ma and Gerlind Plonka, The curvelet transform-a reveiw of recent
applications, IEEE Signal Processing Magazine 118 (2010)

[45] Fangyang Lu and Hongwei Sun, Positive de�nite dot product kernels in
learning theory, Adv. Comput. Math. 22:181-198 (2005)

[46] Christian Lessig and Eugene Fiume, SOHO: orthogonal and symmetric
Haar wavelets on the sphere, ACM Trans. on Graphics, Vol. 27, No. 1
(2008)

[47] G. Kutyniok and D. Labate, Resolution of the wavefront set using contin-
uous shearlets. Trans. Amer. Math. Soc. 361(5), p.2719�2754, (2009)

[48] A. Kunoth and J. Sahner, Wavelets on manifolds: an optimized construc-
tion, Math. Comput. Vol.75, No.255, p.1319-1349 (2006)

[49] J. Korevaar, Tauberian theory, a century of developments, Springer (2004)

[50] Matthias Keller, Geometric and spectral consequences of curvature bounds
on tessellations, in the book "Modern approaches to discrete curvature"
(2017)

[51] I. Iglewska-Nowak and M. Holschneider, Frames of Poisson wavelets on the
sphere, Appl. Comput. Harmon. Anal. 28(2010) 227-248

[52] I. Iglewska-Nowak, Frames of directional wavelets on n-dimensional
spheres, Appl. Comput. Harmon. Anal. 43(2017) 148�161

[53] I. Iglewska-Nowak, Semi-continuous and discrete wavelet frames on n-
dimensional spheres, Appl. Comput. Harmon. Anal. 40(2016) 529�552

[54] I. Iglewska-Nowak, Continuous wavelet transforms on n-dimensional
spheres, Appl. Comput. Harmon. Anal. 39(2015) 248�276

110



BIBLIOGRAPHY

[55] S. Hubbert and B. Baxter, Radial basis functions for the sphere, London:
Birkbeck ePrints (2001)

[56] Du Q. Huynh, Metrics for 3D rotations: comparison and analysis, J. Math.
Imaging Vis. (2009) 35: 155-164

[57] L. K. Hua, Harmonic analysis of functions of several complex variables in
the classical domains, Science Press, Peking (1958)

[58] Wayne Hu and Scott Dodelson, Cosmic microwave background anisotropies,
Annu. Rev. Astron. and Astrophys. (2002)

[59] T. Hou and H. Qin, Continuous and discrete Mexican hat wavelet trans-
forms on manifolds, Graph. Models 74, p.221-232 (2012)

[60] E. Hilb, Über die Laplacesche Reihe, Math. Z. vol.5 (1919), p.17-25; vol.8
(1920), p.79-90

[61] Yu. Higuchi, Combinatorial curvature for planar graphs, J. Graph Theory
38:220-229 (2001)

[62] M. Gräf and D. Potts, Sampling sets and quadrature formulae on the rota-
tion group, Numer. Func. Anal. Opt. 30 7-8 p.665-688 (2009)

[63] D. Geller and A. Mayeli, Continuous wavelets on compact manifolds, Math.
Z. (2009) 262:895�927

[64] D. Geller and D. Marinucci, Mixed needlets, J. Math. Anal. Appl.375 p.610-
630 (2011)

[65] I.M. Gel'fand, R. A. Minlos and Z. Ja �apiro, Representations of the ro-
tation group and of the Lorentz group, and their applications, Fizmatgiz,
Moscow, 1958; English translat., Macmillan, New York.

[66] W. Freeden and U. Windheuser, Spherical wavelet transfrom and its dis-
cretization, Adv. Comput. Math. 5(1996) 51-94

[67] W. Freeden, T. Gervens, M. Schreiner, Constructive approximation on the
sphere with applications to geomathematics, Oxford University Press (1998)

[68] W. Freeden and M. Gutting, Special functions of mathematical (geo-
)physics, Springer (2013)

[69] W.T. Freeman and E.H. Adelson, The design and use of steerable functions,
IEEE Trans. Patt. Anal. and Machine Intell. Vol. 13, No. 9, p.891-906,
(1991)

111



BIBLIOGRAPHY

[70] M.S. Floater and E.G. Quak, Linear independence and stability of piece-
wise linear prewavelets on arbitrary triangulations, SIAM J. Numer. Anal.,
Math. No. 1, p.58-79 (2000)

[71] A.R. Edmonds, Angular momentum in quantum mechanics, Princeton Uni-
versity Press (1957)

[72] Tarn Duong, Bandwidth selectors for multivariate kernel density estima-
tion, doctor thesis, (2005)

[73] Javier Duoandikoetxea, Fourier analysis, AMS, (2000) translated and re-
vised by David Gruz-Uribe.

[74] S. Dahlke, W. Dahmen, I. Weinreich and E. Schmitt, Multiresolution anal-
ysis and wavelets on S2 and S3, Numer. Func. Anal. Opt. 16:1-2, 19-41
(1995)

[75] Josef Dodziuk, Di�erence equations, isoperimetric inequality and transience
of certain random walks, Trans. Amer. Math. Soc. Vol.284, No.2 (1984)

[76] Josef Dodziuk and W.S. Kendall, Combinatorial Laplacians and isoperi-
metric inequality, (1986)

[77] Minh N. Do and Martin Vetterli, The contourlet transform: an e�cient di-
rectional multiresolution image representation, IEEE Trans Image Process.
(2005) Dec;14(12):2091-106.

[78] Feng Dai and Yuan Xu, Approximation Theory and Harmonic Analysis on
Spheres and Balls, Springer (2013)

[79] W. Dahmen and R. Schneider, Wavelets on manifolds I: construction and
domain decomposition, SIAM J. Math. Anal. Vol.31, No.1, p.184-230,
(1999)

[80] V. Climenhaga and A. Katok, From groups to geometry and back, AMS.
(2017)

[81] O. Christensen, An introduction to frames and Riesz bases, second edition.
Springer (2016)

[82] L. Cayon, J.L. Sanz, E.Martinez-Gonzalez, A.J.Banday, F. Argueso, J.E.
Gallegos, K.M. Gorski and G.Hinshaw, Spherical Mexican hat wavelet: an
application to detect non-Gaussianity in the COBE-DMR maps, Mon. Not.
R. Astron. Soc. (2001)

112



BIBLIOGRAPHY

[83] M. Calixto, J. Guerrero, and D. Ro³ca, Wavelet transform on the torus: a
group theoretical approach, Appl. Comput. Harmon. Anal. 38 (2015) 32-49

[84] Xiaohao Cai, Christopher G. R. Wallis, Jennifer Y. H. Chan, and J.D.
McEwen, Wavelet-based segmentation on the sphere, arXiv:1609.06500v1
[cs.CV] 21 Sep 2016

[85] Thomas Bülow, Multiscale image processing on the sphere, Pattern Recog-
nition, DAGM2002, p.609-617 (2002)

[86] I. Bogdanova, P. Vandergheynst, and J-P. Antoine, Continuous wavelet
transform on the hyperboloid, Appl. Comput. Harmon. Anal. 23 (2007)
p.285�306

[87] J.J. Benedetto and M. Fickus, Finite normalized tight frames, Adv. Com-
put. Math. 18: 357-385 (2003)

[88] Frank Bauer, Bobo Hua, Jürgen Jost, Shiping Liu, and Guofang Wang,
The Geometric meaning of curvature: local and nonlocal aspects of Ricci
curvature, in the book "Modern approaches to discrete curvature" (2017)

[89] P. Auscher, G. Weiss, and M. Victor, Local sine and cosine bases of Coifman
and Meyer and the construction of smooth wavelets, Wavelets-A Tutorial,
Academic Press, p.237-256, (1991)

[90] P. Audet, Directional wavelet analysis on the sphere: application to gravity
and topography of the terrestrial planets, J. Geophys. Res., 116, E01003
(2011)

[91] N. Aronszajn, Theory of reproducing kernels, Amer. Math. Soc. Trans. 63,
p.337-404 (1950)

[92] J-P. Antoine, L. Demanet, L. Jacques, and P. Vandergheynst, Wavelets on
the sphere: implementation and approximations, Appl. Comput. Harmon.
Anal. vol.13, p.177-200 (2002)

[93] J-P. Antoine and P. Vandergheynst, Wavelets on the 2-sphere: a group-
theoretical approach, Appl. Comput. Harmon. Anal. vol.7 (1999) p.262-291

[94] J-P Antoine, D. Ro³ca, and P. Vandergheynst, Wavelet transform on man-
ifolds: old and new approaches, Appl. Comput. Harmon. Anal. 28 (2010)
p.189�202

113



BIBLIOGRAPHY

[95] M. Andreux, E. Rodola, M. Aubry, and D. Cremers, Anisotropic Laplace-
Beltrami operators for shape analysis, Computer Vision - ECCV 2014
Workshops. vol.8928, p.299-312 (2015)

[96] W.O. Amrein, A.M. Hinz, and D.B. Pearson, Sturm-Liouville theory: past
and present, Springer (2005)

[97] W.K. Allard, G. Chen, and M. Maggioni, Multi-scale geometric methods for
data sets II: geometric multi-resolution analysis, Appl. Comput. Harmon.
Anal. 32 p.435-462 (2012)

[98] M.A. AL-Gwaiz, Sturm-Liouville theory and its applications, Springer
(2007)

114


	Title page
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Summary of contents
	1.2 Spherical representing systems and operators: old and new

	2 Spherical Dilation Systems
	2.1 Dilation in frequency domain
	2.2 Dilation through stereographic projection
	2.3 Spaces of admissible α-wavelets/shearlets
	2.4 Other approaches: a selective review

	3 Extension to Miscellaneous Results
	3.1 Kernel approximation
	3.2 Construction of spherical frames
	3.3 A product formula on simple surfaces

	4 Supporting topics
	4.1 Orthogonal polynomials: a differential equation point of view
	4.2 Spectrum of discrete Laplacian
	4.3 Other representations on the sphere

	Bibliography

