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Abstract

In this paper, we consider a stirred liquid-liquid dispersion, i. e. a tank

filled with two immiscible fluids which are stirred so that one of the phases

disperses into the other one by building droplets.

To model all relevant processes appearing in such a system, one has

to account for the turbulent flow in the tank as well as for the popula-

tion dynamical processes of the dispersed phase. We derive a system of

equations that contains both occurring phenomena.

Furthermore, the properties of the corresponding differential-algebraic

equations describing the dynamics of the process will be determined in

order to analyze the behavior of the system when solving it numerically.

1 Introduction

In this report, we consider a stirred tank filled with two immiscible fluids (such
as water and oil, for example). When the two fluids are stirred, one disperses
into the other one by building droplets (see Fig. 1). All droplets together are
called the dispersed phase, whereas the other fluid is called the continuous phase.

To model the phenomena that occur in the stirred tank, one has to describe the
turbulent flow of the continuous phase as well as the behavior of the dispersed
phase. Therefore, one has to account for the population dynamical processes of
the drops, i. e. one has to describe how the number of drops of a certain size
changes with time. On the one hand, when two drops collide, they may form a
larger drop. That means a new larger drop is generated, whereas two smaller
drops disappear. On the other hand, a drop may also collide with an eddy such
that it breaks up into some smaller drops. In this case, some smaller drops are
formed and the larger, so-called mother drop, is destroyed. The confluence of
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Figure 1: Stirred liquid-liquid system

drops is called coalescence, the break-up is called dispersion.
Note that we only consider binary coalescence (since the probability that three
or more drops collide in a time interval (t, t+ dt) at a certain point is negligibly
small compared to the probability that two drops meet), but allow dispersion
of a drop into two or more daughter drops. The two processes can be seen in
Fig. 2.

In the next section, we will derive a mathematical model describing the above
mentioned processes. The flow field in the stirred tank can be described by the
Navier-Stokes equations for incompressible fluids. Furthermore, we will model
turbulence by Reynolds-averaging and then solve the arising closure problem
by using a k-ε model. The behavior of the drops is modeled by a population
balance equation, where coalescence and dispersion appear as source and sink
terms on the right-hand side.

Then, in Section 3, the system of equations will be discretized in space in or-
der to determine the index of the underlying differential-algebraic system that
describes the dynamics of the process. Generally, one can say that the higher
the index, the more difficult it is to solve the problem numerically [BCP89].
Therefore, it is quite important to know the index so that the problem can be
treated appropriately. If the index is higher, index reduction may be one way
to treat the problem.

In Appendix A, we briefly discuss the phenomena of coalescence and dispersion.
There, we also derive some physically based formulas to model these processes
mathematically.
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Figure 2: Source and sink terms for a drop of volume V due to coalescence and
dispersion

In Appendix B, we give a short introduction to the concept of the strangeness-
index for nonlinear differential-algebraic equations.

2 Modeling

If we want to model the processes that occur in a stirred tank appropriately,
we do not only need spatial coordinates x = (x1, x2, x3)

T ∈ Ω ⊂ � 3 and a time
coordinate t ∈ [0, T ] but also so-called internal coordinates e = (e1, . . . , em)T ∈

� m, which describe m different properties of the dispersed phase. We need these
additional coordinates, since the individuals of the dispersed phase (i. e. the
drops) must be distinguishable from each other with respect to some significant
characteristics.

In general, these internal coordinates describe properties related to geometry
(e. g., size, volume), material properties (e. g., density, chemical composition,
color), or characteristics in the interaction with the continuous phase (e. g.,
surface charge).

In the discussed application, it is sufficient to distinguish the drops due to their
size. Therefore, in this paper, we only use one internal coordinate, namely the
volume V . Note that, in the literature, there is often used the diameter d of a
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drop as internal coordinate. Therfore, most of the formulas in Appendix A are
also given for the diameter. But since the diameter d of a drop is directly related
to its volume V by the relation V = cV d3, the formulas from the appendix can
easily be transformed such that they depend on the volume V . (For spherical
drops one has: cV = π

6 ; for other shapes cV has to be chosen appropriately.)

In the simulation package Parsival [Wul], which is used for the solution of
the population balance equation within our project, the volume as well as the
diameter can be chosen as internal coordinate. However, some modules are
harder to implement if the volume is used. The coordinate transformations,
which describe how to switch between volume and diameter representation in
the different terms of the population balance equation, can be found in the
Parsival tutorial [GB04].

In this context, when internal coordinates are used, the space coordinates are
called external coordinates accordingly.

2.1 Modeling the flow

First, we model the flow in the stirred tank. We assume that the drops do not
have any influence on the flow field. (They are just moving with the fluid with
the same velocity.) This implies that the description of the flow is independent
of the internal coordinates.

The flow field in the stirred tank is described by the Navier-Stokes equations
for incompressible fluids [GDN95]

∂
∂tu + ∇ · (u ⊗ u) + 1

ρf
∇p = ν∆u + g

∇ · u = 0

}

in Ω, (1)

where u is the velocity of the fluid, p is the pressure, and g are the external
forces. In the discussed application, the only external force that has to be
considered is gravity. Furthermore, ρf is the density of the fluid, ν = µ

ρf
is the

kinematic viscosity, and µ is the dynamic viscosity. The first equation in (1)
accounts for the conservation of momentum. Here, ∂

∂tu + ∇ · (u ⊗ u) describes
the acceleration of the particles of the fluid, ∇p is the pressure gradient, and
ν∆u accounts for the friction between the particles of the fluid. The second
equation in (1) is called the “continuity equation” and models the conservation
of mass.

Additionally, we prescribe the following boundary conditions on ∂Ω =: Γ =
Γstirrer ∪ Γwall ∪ Γsurface:

u = ustirrer on Γstirrer, u = 0 on Γwall,
∂u1

∂n1
=

∂u2

∂n2
= 0, u3 = 0 on Γsurface,

where Γstirrer describes the stirrer, Γwall the fixed walls, and Γsurface the surface
of the liquid in the tank. Furthermore, u1, u2, and u3 are the velocities in x1-,
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x2-, and x3-direction, and n1 and n2 are the outer normal vectors in x1- and
x2-direction, respectively. The prescribed velocity on the stirrer ustirrer is given
by

ustirrer = [−r sin(ϕ)ω, r cos(ϕ)ω, 0]
T

,

where the radius r and the angle ϕ are defined by

r =
√

x2
1 + x2

2, ϕ = arccos
(x1

r

)

,

and ω is the constant frequency. This frequency is determined by the adjusted
rotational speed N∗. This parameter can be used as a control input in order to
influence the drop size distribution.
The initial condition is chosen such that it is consistent with the boundary
conditions.

The turbulence of the flow is modeled by “averaging” each quantity. The idea
is that in most practical investigations of turbulent flows, one is not interested
in every microscopic detail but only in macroscopically observed mean values
[GDN95]. That is why we split each quantity – velocity u, pressure p, and outer
forces g – into a mean part u, p, and g, respectively, and into the so-called
fluctuations u′, p′, and g′, which model smallest variations of each quantity:

u = u + u′, p = p + p′, g = g + g′.

The mean part is usually chosen as a component-wise temporal averaged value.
But in general also other averages can be used. This can be expressed by
applying a filter 〈·〉, i. e.

u := 〈u〉, p := 〈p〉, g := 〈g〉.

After introducing these relations into the Navier-Stokes equations (1) and aver-
aging them (i. e. applying the filter 〈·〉 to them) we get the Reynolds-averaged
Navier-Stokes equations

∂
∂tu + ∇ · (u ⊗ u) + 1

ρf
∇p − ν∆u + ∇ · 〈u′ ⊗ u′〉 = g

∇ · u = 0

}

in Ω,

where the tensor
R(u′) := −〈u′ ⊗ u′〉

is known as Reynolds stress tensor. This shows that the averaging leads to
almost the same equations as we had before, just with the additional term
−∇ · R(u′). Since R depends on the fluctuations u′ of the velocities, the sys-
tem consists of one more unknown variable u′ such that the Reynolds averaged
Navier-Stokes equations do not build a closed system any more, i. e. there are
more unknowns than equations. This difficulty is known as the closure problem
in turbulence modeling [GDN95].
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In order to solve this problem, one has to introduce new equations which are
usually based on hypotheses and approximations given by empirical information
or experimental data. These equations form the so-called “turbulence model”.

The most widely used model is the k-ε model by Launder and Spalding [LS72].
It is a so-called two-equations model, since two additional partial differential
equations are introduced in order to get a closed system. In the k-ε model, the
following two additional variables are used to model the Reynolds stresses: the
turbulent kinetic energy k and its dissipation rate ε given by

k :=
1

2
〈‖u′‖F 〉, ε :=

ν

2
〈‖∇u′ + (∇u′)

T ‖2
F 〉,

where ‖ · ‖F denotes the Frobenius norm defined by

‖X‖2
F = tr(XXT ) =

n∑

i=1

m∑

j=1

x2
ij

for matrices X = [xij ]i=1,...,n,j=1,...,m ∈ R
n×m. Note that this definition also

includes the norm of a vector x ∈ � n, since it can be seen as a n × 1-matrix.

In the k-ε model the Reynolds tensor R(u′) is approximated by

R(u′) ≈ R(∇u, k, ε) := −2

3
kI + cµ

k2

ε
(∇u + (∇u)T ),

where I denotes the identity matrix. If we insert this into the averaged momen-
tum equation and set ν∗ := ν + νt with

νt = cµ
k2

ε
, (2)

we get

∂

∂t
u + ∇ · (u ⊗ u) +

1

ρf
∇p +

2

3
∇k −∇ · (ν∗(∇u + (∇u)T )) = g.

With the two additional transport equations for k and ε, which close the system
of equations, the following system is derived:

∂

∂t
u + ∇ · (u ⊗ u) +

1

ρf
∇p +

2

3
∇k −∇ · (ν∗(∇u + (∇u)T )) = g,

∂

∂t
k + u · ∇k − νt

2
‖∇u + (∇u)T ‖2

F −∇ · (νt∇k) + ε = 0,

∂

∂t
ε + u · ∇ε − c1cµ

2
k‖∇u + (∇u)T ‖2

F −∇ ·
(

1

cε
νt∇ε

)

+ c2
ε2

k
= 0,

where the constants cµ, cε, c1 and c2 are chosen from experimental investigations.
Launder and Spalding [LS72] proposed the following values:

cµ = 0.09, cε = 1.3, c1 = 1.44, c2 = 1.92.
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For the averaged velocity u we can use the same boundary conditions as pre-
scribed for the velocity u in the Navier-Stokes equations (1) before. Therefore,
we set:

u = ustirrer on Γstirrer, u = 0 on Γwall,
∂u1

∂n1
=

∂u2

∂n2
= 0, u3 = 0 on Γsurface

with the same notation as above.

For k and ε we additionally prescribe the following boundary conditions:

k = 0 on Γstirrer ∪ Γwall,
∂k

∂n

= 0 on Γsurface,

and
∂ε

∂n

= 0 on Γ,

where n denotes the outer normal vector. Again, the initial conditions for u, k,
and ε are chosen such that they are consistent with the boundary conditions.

2.2 Modeling the dispersed phase

The population dynamical processes can be modeled using the following general
population balance equation given in Gerstlauer [Ger99]:

∂f(e, x, t)

∂t
= −∇x,e · φN (e, x, t) + s(e, x, t),

where f(e, x, t) is the number density function depending on internal and exter-
nal coordinates e and x, respectively, as well as on time t. Further, ∇x,e· denotes
the divergence operator with respect to internal and external coordinates. The
right-hand side consists of the transport density ∇x,e ·φN and the sum of source
and sink terms s.

The transport density ∇x,e ·φN (e, x, t) can be split up into the transport density
concerning the internal coordinates ∇e ·φN,e and the one concerning the external
coordinates ∇x · φN,x:

∇x,e · φN (e, x, t) = ∇x · φN,x(e, x, t) + ∇e · φN,e(e, x, t),

where the ∇-operators are defined by

∇x :=





∂
∂x1
∂

∂x2
∂

∂x3



 and ∇e :=






∂
∂e1

...
∂

∂em




 .

Furthermore, the transport flows φN,x and φN,e can be divided into a convective
and a diffusive part:

φN,x = wx · f(e, x, t) + φD
N,x,

φN,e = we · f(e, x, t) + φD
N,e.
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The convective part in x-direction wx·f(e, x, t) describes the deterministic move-
ment of the particles. The diffusive part φD

N,x can be used to account for the
Brownian motion of the particles. The convective part in direction of the inter-
nal coordinates states the rate of change of the single particle properties. The
diffusive part can be used to describe the stochastic variation of the rate of
change.

In the discussed application, we consider a system without changes in the inter-
nal coordinates per time, i. e. there is no growth or shrinkage of droplets due to
mass transfer or reaction. Therefore, we get ∇e ·φN,e(e, x, t) = 0. Furthermore,
the Brownian motion is assumed to be very small compared to the deterministic
particle movement and therefore will be neglected. Additionally, we can approx-
imate the velocity wx by the velocity u of the surrounding continuous phase.
(The drops are just moving with the surrounding fluid.)

With these simplifications and using just one internal coordinate, namely the
volume V , we get the following population balance equation:

∂f(V, x, t)

∂t
= −∇x · (u · f(V, x, t)) + s(V, x, t). (3)

Note that the divergence operator ∇x· used here is equal to the divergence oper-
ator ∇· in the Navier-Stokes equations (1), since we do not have any derivatives
with respect to the internal coordinate V in both cases. Therefore, we will in
the following just use ∇· instead of ∇x·.
For f we prescribe the following initial condition

f(V, x, t = 0) = f0(V, x),

where – for simplicity – f0 is for fixed x and t usually chosen as the density of
a Gaussian normal distribution. Additionally, we use as boundary condition

f(V, x, t) = 0 on Γ.

Furthermore, s is the sum of source and sink terms describing the population
dynamical processes. In our application only coalescence and dispersion can be
observed. Therefore, the term s can be divided into

s = s+
coal + s−coal + s+

disp + s−disp,

where s±coal and s±disp are describing the rate of increase / decrease of the number
density function f due to coalescence and dispersion, respectively. The four
different terms occurring on the right-hand side are explained graphically in
Fig. 2. In the following, we discuss the mathematical representation of these
terms.

Let us start with the coalescence process:
The source term s+

coal due to coalescence accounts for all the drops which are
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formed by coalescence of two smaller drops. So, the source term can be written
as

s+
coal(V, x, t) =

∫ V

0

Rcoal(V
′, V ′′, y(x, t))f(V ′, x, t)f(V ′′, x, t)dV ′,

where V ′ and V ′′ are the volumes of the two coalescing drops. Since the drops
with volumes V ′ and V ′′ form a drop with volume V , the following relation
must hold:

V ′′ = V − V ′.

The function Rcoal describes the probability that two individuals coalesce. The
vector y denotes the so-called continuous phase vector (e. g. [Ram00]), i. e. the
properties of the continuous phase that influence the coalescence process. Thus,
the vector y may consist of pressure, temperature, or other values that we get
from the calculation of the flow field.
Note that the lower limit of the integral could also be substituted by the minimal
possible volume of a drop Vmin.

The sink term due to coalescence accounts for the droplets that are lost because
they form a larger one together with another droplet. Mathematically, the sink
term due to coalescence is given by integration over all drops which are able to
coalesce with a given one:

s−coal(V, x, t) = −f(V, x, t)

∫ Vmax−V

0

Rcoal(V, V ′, y(x, t))f(V ′, x, t)dV ′.

Dispersion can, like coalescence, mathematically be modeled by a source and a
sink term. The source term describes the generation of daughter droplets while
the sink term stands for the loss of the mother drop.

The source term due to dispersion is given by

s+
disp(V, x, t) =

∫ Vmax

V

n(V ′, y(x, t))γ(V, V ′, y(x, t))Rdisp(V ′, y(x, t))f(V ′, x, t)dV ′,

where n(V ′, y(x, t)) is the number of daughter drops formed by dispersion of a
drop with volume V ′, γ(V, V ′, y(x, t)) is the probability density function that
describes the probability that a daughter drop with volume V is formed by
the dispersion of a mother drop with volume V ′, and Rdisp(V ′, y(x, t)) is the
breakage rate that accounts for the number of dispersed drops per unit time.
The function γ has to fulfill the following normalization condition:

∫ Vmax

0

γ(V, V ′, y(x, t))dV = 1. (4)

Conservation of mass leads to the additional condition:

n(V ′, y(x, t))

∫ V ′

0

m(V )γ(V, V ′, y(x, t))dV = m(V ′), (5)
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where m(V ) denotes the mass of a drop with volume V .

The sink term due to dispersion accounts for the drops which are lost because
they break up into smaller droplets. It is given by

s−disp(V, x, t) = −Rdisp(V, y(x, t)) f(V, x, t).

The coalescence rate Rcoal, the dispersion rate Rdisp, the distribution of daughter
drops γ as well as the number of daughter drops n have to be specified for certain
dispersion processes depending on the considered application.

In Appendix A, we present some different approaches how these functions can be
modeled in our application. There, we consider three different approaches: one
by Coulaloglou and Tavlarides [CT77], one by Tsouris and Tavlarides [TT94],
and one by Ritter [Rit02]. In all these models, it is assumed that the dispersed
phase is homogeneously distributed in the physical space, i. e. that we have an
ideally mixed tank. In this case, a space-independent population balance equa-
tion can be used to describe the processes in the stirred tank. In addition, there
does not occur any transport term in their population balance equations but
only changes of the number density function due to coalescence and dispersion.
But although we use a more general approach (namely a space-dependent num-
ber density function f(V, x, t) and changes in f due to convective transport, see
Eq. (3)), we can nevertheless use the coalescence and dispersion rates proposed
there. In our model, we account for the space-dependency in the coalescence
and dispersion rates by substituting the constant value εl used in the three men-
tioned papers by the local energy dissipation rate ε (from the k-ε model) at a
certain point (x, t).

To model turbulence, the population balance equation is also averaged. We use
the same approach as for the Navier-Stokes equations, i. e. we split all occurring
quantities, which here are the number density function f and the velocity u,
into mean values f and u, and fluctuations f ′ and u′. Again, we regard f and
u as averaged values, received by a filter operator 〈·〉

f = f + f ′, f = 〈f〉,
u = u + u′, u = 〈u〉.

Inserting this into Eq. (3), we get

∂(f + f ′)

∂t
= −∇ · ((u + u′)(f + f ′)) + s.

Applying the filter operator 〈·〉 to this equation, we then get the averaged pop-
ulation balance equation

∂f

∂t
= −∇ · (uf) −∇ · (u′f ′) + s,

where s is the mean value of s, i. e. s = 〈s〉. This term represents the averaged
source and sink terms.
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The term ∇ · (u′f ′) is modeled by

∇ · (u′f ′) = −∇ · (ct ∇f)

in analogy to the approach for the Reynolds stress tensor (see [Pas04]). Similar
to the Reynolds stress tensor, which is assumed to be proportional to the gra-
dient of the velocity in this approach, it is assumed here that the term (u′f ′)
is proportional to the gradient of the averaged number density function ∇f .
Furthermore, ct is specified by the turbulent Schmidt number Sct

Sct =
µt

ρf ct
,

which is assumed to be approximately one. (In many applications the value 0.9
is used.)
The turbulent eddy viscosity µt is given by the turbulent kinetic energy k and
the energy dissipation rate ε (cf. Eq. (2)):

µt = νtρf = cµρf
k2

ε
.

Together, the averaged population balance equation then reads as

∂f

∂t
= −∇ · (uf) + ∇ · (ct∇f) + s. (6)

Again, we can apply the former initial and boundary conditions for f to our
averaged number density function f .

3 Analysis of the differential-algebraic system

In order to analyze the dynamics of the system, we apply a method of lines
(MOL) approach to the system of equations describing the considered stirred
tank reactor. This spatial discretization leads to a differential-algebraic system,
for which the index will be determined.

3.1 Derivation of the differential-algebraic system

As we have seen in the last section, the system of equations describing the
processes in the stirred tank is given by:

∂
∂tu + ∇ · (u ⊗ u) + 1

ρf
∇p + 2

3∇k −∇ · (ν∗(∇u + (∇u)T )) = g,

∂
∂tk + u · ∇k − νt

2 ‖∇u + (∇u)T ‖2
F −∇ · (νt∇k) + ε = 0,

∂
∂tε + u · ∇ε − c1

2 k‖∇u + (∇u)T ‖2
F −∇ ·

(
cε

cµ
νt∇ε

)

+ c2
ε2

k = 0,

∂f
∂t + ∇ · (uf) −∇ · (ct∇f) = s,

∇ · u = 0







(7)
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with constants cµ = 0.09, cε = 0.07, c1 = 0.126, and c2 = 1.92 as defined in
Section 2.

Note that ν∗ = ν + νt with νt = cµ
k2

ε and ct = µt

Sct
=

cµρf
k2

ε

Sct
are dependent on

the quantities k and ε. Furthermore, since the term s is modeled in such a way
that it is dependent on the local energy dissipation rate ε (see Appendix A),
the averaged source term s is also dependent on ε.
Additionally, we have to take care that the condition for mass conservation,
given by Eq. (5), is fulfilled.

In the following, the system of equations given in (7) will be discretized in space
in order to analyze the resulting differential-algebraic system.
In analogy to the construction in [BCP89], it can be shown that the spatial dis-
cretization of the Navier-Stokes equations (1) leads to a semi-discretized system
of the following form:

M
duh

dt
+ (K + N(uh))uh +

1

ρf
Cph = gh,

C̃T uh = 0,

where uh, ph, and gh are the semi-discretized velocity, pressure, and outer forces,
respectively. Further, M is the mass matrix and K and N are the discretized dif-
fusive and convective parts, corresponding to −ν∆u and ∇·(u⊗u), respectively.
The matrices C and C̃T are the discretized gradient and divergence operators.
(Normally the discretization is done in such a way that C̃ = C holds, but in
general this need not be like this.)

For the system in (7), consisting of the Reynolds-averaged Navier-Stokes equa-
tions with k-ε model and the averaged population balance equation, this can be
done in the same way. Here, spatial discretization leads to

M1
duh

dt + (N1(uh) + N2(kh, εh))uh + 2
3C1kh + 1

ρf
C2ph = G1,

M2
dkh

dt + (N3(uh) + N4(kh, εh))kh + N5(kh, εh)uh = G2(εh),

M3
dεh

dt + (N3(uh) + Ñ4(kh, εh))εh + Ñ5(kh, εh)uh = G3(kh, εh),

M4
dfh

dt + (N6(uh) + N7(kh, εh))fh = G4(εh, fh),

CT
3 uh = 0,







(8)

where uh and ph are the semi-discretized averaged velocity and pressure, respec-
tively. Furthermore, kh, εh, and fh are the corresponding quantities derived by
the semi-discretization of the turbulent kinetic energy k, the energy dissipation
ε, and the averaged number density function f . The terms G1, . . . , G4 on the
right-hand side are the semi-discretized source terms. The matrices M1, . . . , M4

are mass matrices, the matrices N1, . . . , N7, Ñ4 and Ñ5 are discretizations of
the nonlinear terms. Finally, C1 and C2 are the discretized gradient operators
and CT

3 is the discretized divergence operator.

Additionally, the discretization of the equation for mass conservation, given by
Eq. (5), leads to

G5(mh) = 0, (9)
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where mh is the vector consisting of the discretized particle masses.

To make the notation clearer, we summarize the quantities uh, kh, εh, and fh

to the variable qh := [uT
h , kT

h , εT
h , fT

h ]T . With this, the system in (8) together
with Eq. (9) can be written as





M
0

0









q̇h

ṁh

ṗh



 =





G + P
G5

CT
3 uh



 , (10)

where q̇h, ṁh, and ṗh denote the time derivatives of the corresponding variables.
Furthermore, M , G and P are given by

M =






M1

. . .

M4




 , G =







−(N1 + N2)uh − 2
3C1kh + G1

−(N3 + N4)kh − N5uh + G2

−(N3 + Ñ4)εh − Ñ5uh + G3

−(N6 + N7)fh + G4







,

and

P =







− 1
ρf

C2ph

0
0
0







.

Note that G is not dependent on the semi-discretized pressure ph.

3.2 Index determination

In this subsection, we will determine the index of the differential-algebraic sys-
tem in (10), since this tells us something about how strong the coupling between
the equations is and, therefore, also something about numerical problems which
may arise.

In the literature, various index concepts can be found. The probably most
widely used are the differentiation index (d-index) introduced by Gear and
Campbell [Gea88, Gea90, CG95] and the perturbation index (p-index) intro-
duced by Hairer, Lubich and Roche [HLR89] (see also [HW96]). But there
are also other concepts, e. g. the geometric index by Rheinboldt [Rhe84], the
tractability index by Griepentrog and März [GM86], or the structural index by
Pantelides [Pan88].

In this paper, the so-called “strangeness-index” (s-index) by Kunkel and Mehr-
mann [KM94, KM98] will be used for the analysis, since this concept is the most
general one of all these index concepts. The strangeness-index can be seen as
generalization of the differentiation index (see [KM94], [KM96b], and [KM01])
as well as of the perturbation index (see [KM96a]). Further, also over- and
under-determined systems can be treated with this concept (see [KM01]).

A brief introduction to the strangeness-index of general (nonlinear) differential-
algebraic equations can be found in Appendix B.
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To determine the index of the nonlinear differential-algebraic system in (10), we
proceed as described in Appendix B. Therefore, we first rewrite the system in
the form

F (t, z, ż) = 0

with t ∈ � , z =
[
qT
h , mT

h , pT
h

]T ∈ � z ⊂ � n̂, ż =
[
q̇T
h , ṁT

h , ṗT
h

]T ∈ � ż ⊂ � n̂,
n̂ = nq + nm + np, and F ∈ C( � × � z × � ż,

� n̂) given by

F =





Inq

0
0









q̇h

ṁh

ṗh



−





M−1(G + P)
G5

CT
3 uh



 .

Then we determine the Jacobians E(t) := Fż(t, z, ż) and A(t) := −Fz(t, z, ż) as
functions of t. Here, these matrices are given by

E =





Inq

0
0



 and A(t) =





G(t) 0 C
0 R(t) 0

C̃ 0 0



 ,

where G ∈ C( � ,
� nq×nq ) and R ∈ C( � ,

� nm×nm) denote the following Jacobians:

G = M−1 ∂G
∂qh

, R =
∂G5

∂mh
.

Moreover, C ∈ � nq×np and C̃ ∈ � np×nq are given by

C =







− 1
ρf

M−1
1 C2

0
0
0







, C̃ =
[

CT
3 0 0 0

]

with C2 and C3 as defined before.

Let us now apply the theory from Appendix B to the nonlinear system, its
Jacobians, and the corresponding inflated system. As shown in the appendix,
the strangeness-index of a differential-algebraic equation can be determined by
finding the smallest value µ̂ ∈ � 0 for which Hypothesis 2 from the appendix is
fulfilled.
Therefore, we start with µ̂ = 0 and check if Hypothesis 2 is satisfied in this case.

1. First, we have to determine Z2 ∈ C( � ,
� n̂×â) with maximal rank such that

ZT
2 M0 = 0 holds. Since M0 is given by

M0 =





Inq
0 0

0 0 0
0 0 0



 ,

it is clear that rank(M0) = nq = n̂ − â holds and we get the condition

â = nm + np. (11)
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Therefore, Z2 is given by

Z2 =





0 0
Inm

0
0 Inp



 .

Note that Z2 is uniquely determined up to a transformation with a non-
singular matrix (which does not have any influence on the rank).

2. Since the matrix A2 is given by

A2(t) = ZT
2 N0(t) =

[
0 Inm

0
0 0 Inp

]




G(t) 0 C
0 R(t) 0

C̃ 0 0





=

[
0 R(t) 0

C̃ 0 0

]

,

we get the condition â = rank(C̃) + rank(R) and further with (11)

rank(C̃) = np, rank(R) = nm, (12)

which means that C̃ and R must both have full rank. Furthermore, nq ≥
np must hold.

The matrix T2 ∈ C( � ,
� n̂×d̂) has to be chosen such that ZT

2 N0T2 = 0
holds. Therefore, we get

T2 =





0
0

Inp



 .

3. It then follows that

rank(ET2) = rank(





0
0
0



) = 0
!
= d̂,

which leads to the contradiction n̂ = d̂ + â = nm + np < n̂, since nq

is greater than zero. (Otherwise all the equations for the mean velocity,
the turbulent kinetic energy, the energy dissipation rate, and the number
density function would not occur in the system.)

Therefore, the strangeness-index of the system is greater than zero.

In the next step, we try out if Hypothesis 2 holds for µ̂ = 1:

1. Again, we first determine a matrix Z2 ∈ C( � ,
� 2n̂×â) which has maximal

rank â (where â is defined by the rank of the kernel of M1) and fulfills
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the condition ZT
2 M1 = 0. Since M1 ∈ C( � ,

� 2n̂×2n̂) is given by

M1(t) =











Inq
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

−G(t) 0 −C Inq
0 0

0 −R(t) 0 0 0 0

−C̃ 0 0 0 0 0











,

we get the condition rank(M1) = 2nq + rank(R)
!
= 2n̂ − â. Therefore, it

follows that
â = 2nm + 2np − rank(R) (13)

and Z2 is given by

ZT
2 (t) =







0 Inm
0 0 0 0

0 0 Inp
0 0 0

0 0 0 0 R+(t) 0

C̃ 0 0 0 0 Inp







,

where R+ ∈ C( � ,
� nm×(nm−rank(R))) denotes the Co-range of R.

2. Then, we can determine A2 ∈ C( � ,
� â×n̂) by

A2(t) = ZT
2 (t)N1(t)

[
In̂

0

]

=







0 R(t) 0

C̃ 0 0

0 R+Ṙ(t) 0

C̃G(t) 0 C̃C







.

Since the rank of A2 has to be equal to â, we get the following condition:

â = rank

([
C̃ 0

C̃G C̃C

])

+ rank

([
R

R+Ṙ

])

.

With this, we get on the one hand

d̂ = n̂ − â = nq + nm + np − rank

([
C̃ 0

C̃G C̃C

])

− rank

([
R

R+Ṙ

])

,

whereas, on the other hand, Eq. (13) gives

d̂ = n̂ − â = nq − nm − np + rank(R).

By equating these two expressions and using the fact that

rank

([
C̃ 0

C̃G C̃C

])

≤ np + min(np, nq),

rank(R) ≤ nm,

rank

([
R

R+Ṙ

])

≤ nm,
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this leads to the following conditions:

nq ≥ np, rank(R) = nm, rank(C̃) = np, rank(C̃C) = np. (14)

Therefore, it follows that the matrix R is nonsingular, and the third row
in the matrix A2 does not occur. Furthermore, d̂ and â are given by
d̂ = nq − np and â = 2np + nm.
Since the condition A2T2 = 0 must hold, we get for T2 ∈ C( � ,

� n̂×(nq−np)):

T2(t) =





C̃−

0

−(C̃C)−1C̃G(t)C̃−



 ,

where C̃− denotes the kernel of the matrix C̃.

3. Furthermore, since rank(C̃) = np due to (14), it follows that

rank(ET2) = rank(C̃−) = nq − np = d̂

such that we can choose Z1 ∈ C( � ,
� n̂×d̂) as

ZT
1 =

[
Inq

0 0
]
,

yielding that ZT
1 E(t)T2 =

[

C̃−

]

has constant rank d̂.

This shows that the strangeness-index of the differential-algebraic system in
(10) corresponding to the partial differential equations, which describes the
dynamical processes in the stirred tank, is equal to one if we choose the spatial
discretization in such a way that the conditions in (14) are satisfied.

These conditions are easily fulfilled by using a sensible discretization. First of all,
one can say that every discretization scheme should satisfy the condition nq ≥
np, since otherwise there would be more discretization points for the pressure
than for the velocity, the turbulent kinetic energy, the energy dissipation rate,
and the number density function together. Furthermore, in order to fulfill the
condition that R is nonsingular, we only have to choose a suitable quadrature
formula. In addition, the conditions rank(C̃) = np and rank(C̃C) = np are
satisfied if the additive constant for the pressure is fixed and the continuity
equation is discretized appropriately. This is due to the fact that in the Navier-
Stokes equations, the pressure is only determined up to an additive constant,
since only the gradient of the pressure occurs in the equations (see e. g. [Wes01]).

Since the rank conditions for C̃ and C̃C already occur in the Navier-Stokes
equations themselves, the considered system in (10) has the same strangeness-
index as the Navier-Stokes equations. This means that the index of the Navier-
Stokes equations was not increased by the coupling with the population balance
equation. This observation can be summarized by the following corollary:
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Corollary 1 All solvers that are adapted to the solution of the Navier-Stokes
equations are also suited for solving the discussed coupled system.

Since the differential-algebraic system derived by the spatial discretization of
the Navier-Stokes equations has strangeness-index one, it is hard to treat this
system in its original form. When solving such a system as it appears originally,
one can get into difficulties due to the mixing of differential and algebraic com-
ponents. Therefore, it is useful to first remove this “strangeness” before solving
the differential-algebraic system. Many Navier-Stokes solution techniques carry
out such an index reduction, although this is often not mentioned explicitely
[Wei96].

Among such typical solution methods are the so-called “penalty method”, the
pressure correction methods (also known as operator splitting methods), or
the so-called “stream function-vorticity-pressure method” (see e. g. [Wes01],
[Wei97]).

Within our project, the solver Featflow [TB98] is used for the simulation of
the Navier-Stokes equations. This method uses a finite element approach for
the spatial discretization and a discrete projection scheme for the decoupling of
pressure and velocity. In [Wei96], it has been shown that this kind of approach
leads to a strangeness-free differential-algebraic system. Therefore, the approach
used in Featflow is suitable for the solution of the Navier-Stokes equations.

However, it must be reckoned with a order reduction in the time discretization
[Wei96].

A Some models describing coalescence and dis-

persion processes

In this section we describe some possibilities how coalescence and dispersion
processes can be modeled.

In the following we present the idea and the approach of the physically based
model by Coulaloglou and Tavlarides [CT77]. Furthermore, we describe the
differences to later introduced models by Tsouris and Tavlarides [TT94] and
Ritter [Rit02].

In all these models, only one internal coordinate is used in the population bal-
ance equation in order to describe the properties of the particles. This internal
coordinate is chosen to be the volume V of a particle or its diameter d. These
two quantities are directly related to each other by the formula V = cV d3. (If
we assume the drops to be spherical, we have cV = π

6 .)

As already mentioned before, the following models assume that coalescence
and dispersion rates are space-independent. Additionally, the influence of the
continuous phase vector is not taken into account in the models considered here.

Furthermore, the models underly the following assumptions [CT77]:
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• The droplets are in a turbulent flow field which is locally isotropic. (Ex-
perimental investigations show that the flow field can be considered as
locally isotropic for Re ≥ 10, 000 [CT77].) The droplet size d is within
the following range: ηmacro ≥ d ≥ ηmicro, where ηmacro and ηmicro are the
macroscale and microscale of turbulence, respectively.

• The energy spectrum function has a −5/3-dependency on the wave num-
ber, viscous effects are negligible, and the drop performs due to local
pressure fluctuation.

• An oscillating deformed drop will break if the energy of the turbulent
eddies exceeds the surface energy of the drop.

But as a first approach these models can also be used to describe the processes
occurring in dispersions which do not fulfill all the assumptions above.

A.1 Coalescence

Coalescence is the confluence of fluid particles with each other or of a fluid par-
ticle with its mother phase. This means that smaller drops are formed together
to larger ones.

The process of coalescence of two drops can be divided into three phases [Che91]:

• Collision of the drops,

• drainage of the film between the drops, and

• rupture of the film (after a critical thickness is reached) and confluence of
the drops.

So, a necessary condition for coalescence of two drops is that they must remain
in contact for a sufficiently long time so that the processes of film drainage, film
rupture and coalescence may occur [CT77].

A.1.1 Coalescence rate

Coulaloglou and Tavlarides [CT77] model the coalescence rate RCT
coal of two drops

of volumes V and V ′ as a product of the collision frequency ϑCT and the coa-
lescence efficiency λCT :

RCT
coal(V, V ′) = ϑCT (V, V ′)λCT (V, V ′).

They derive an expression for the collision frequency ϑCT by assuming that the
mechanism of collision in a locally isotropic flow field is analogous to collisions
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between molecules as in the kinetic theory of gases. Hence they use the following
formula:

ϑCT (V, V ′) =

(
9π

2

)1/3

(V 2/3 + V ′2/3)(u2(V ) + u2(V ′))1/2, (15)

where u2(V ) is the mean square fluctuation velocity of a drop of volume V ,
given by

u2(V ) = c1 ε
2/3
l V 2/9, (16)

where εl is the local energy dissipation rate per unit mass and c1 is a dimen-
sionless constant. In [CT77] it is assumed that εl is constant throughout the
tank and given by the following relation:

εl ∼ N∗3Dimp, (17)

where N∗ is the impeller speed (revolutions per time) and Dimp is the impeller
diameter.

Inserting this into Eq. (15) yields

ϑCT (V, V ′) = c2 ε
1/3
l (V 2/3 + V ′2/3)(V 2/9 + V ′2/9)1/2

with a constant c2.

According to Coulaloglou and Tavlarides [CT77], the coalescence efficiency λCT

can be related to the physical phenomena which occur: The drops must be
compressed for a sufficient time so that the film between them can rupture and
the drops are able to coalesce. This means that the drops have to be in contact
for a longer time than coalescence needs to take place. In [CT77] the following
approach is used:

λCT (V, V ′) = e−t
CT
coal/t

CT
contact , (18)

where t
CT
coal and t

CT
contact are the averages of coalescence and contact time, respec-

tively.

Coulaloglou and Tavlarides [CT77] estimate the coalescence time as the time
required for film drainage between the drops. They use

t
CT
coal ∼

3

16

µcK

πσ2

(
1

h2
1

− 1

h2
0

)(
dd′

d + d′

)2

, (19)

where K is the force compressing the drops, given by

K ∼ ρcu2

(
dd′

d + d′

)2

, (20)

with u2 ∼ ε
2/3
l (d + d′)2/3 due to Eq. (16). Here, µc and ρc are viscosity and

density of the continuous phase, respectively, and σ is the interfacial tension.
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(The model assumes that the drops are located in a fluid eddy of size d+d′.) The
two parameters h0 and h1 are the film thicknesses at initial contact of the drops
and the one at the time when spontaneous film rupture can occur. Inserting the
formulas for u2 and K into Eq. (19) leads to

t
CT
coal ∼

µcρcε
2/3
l (d + d′)2/3

σ2

(
1

h2
1

− 1

h2
0

)(
dd′

d + d′

)4

.

Coulaloglou and Tavlarides estimate the contact time t
CT
contact as the time two

drops of size d and d′ will stay together in a turbulent flow:

t
CT
contact ∼

(d + d′)2/3

ε
1/3
l

.

Altogether the coalescence efficiency can be written as

λCT (V, V ′) = exp

(

−c3
µcρcεl

σ2

(
V 1/3V ′1/3

V 1/3 + V ′1/3

)4
)

, (21)

since the film thicknesses h0 and h1 are assumed to be constant.

Therefore, the coalescence rate RCT
coal by Coulaloglou and Tavlarides [CT77] is

given by

RCT
coal(V, V ′) = C1

(

V 2/3 + V ′2/3
)(

V 2/9 + V ′2/9
)1/2

ε
1/3
l

exp

(

−C2
µcρcεl

σ2

(
V 1/3V ′1/3

V 1/3 + V ′1/3

)4
)

,

where C1 and C2 are adaption parameters.

After comparing numerical and experimental results, Coulaloglou and Tavlari-
des found a damping of turbulence depending on the volume fraction χ of the
dispersed phase. To take this into account, they used a different formula for the
velocity in a dispersion:

u2
χ = (1 + χ)−2u2. (22)

Inserting this into the Formulas (15) and (20), then leads to

R̃CT,χ
coal (V, V ′) = C1

ε
1/3
l

1 + χ

(

V 2/3 + V ′2/3
)(

V 2/9 + V ′2/9
)1/2

exp

(

−C2
µcρcεl

σ2(1 + χ)2

(
V 1/3V ′1/3

V 1/3 + V ′1/3

)4
)

.

But Coulaloglou and Tavlarides [CT77] derived a slightly different final form for

their coalescence rate RCT,χ
coal : Instead of the term (1 + χ)2 in the denominator
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of the exponential function, they have the term (1+χ)3, but besides this, there
are no further differences.

Tsouris and Tavlarides [TT94] use basically the same approach as Coulaloglou
and Tavlarides [CT77] to model the coalescence rate, i. e. they also express the
coalescence rate by the product of collision frequency and coalescence efficiency.
Furthermore, they also model the collision frequency by assuming that the drops
in a turbulent flow behave like gas molecules, but use the following (slightly
different) formula:

ϑTT (d, d′) =
π

4
(d + d′)

2
(

u2(d) + u2(d′)
)1/2

with u2(d) = 1.07ε
2/3
l d2/3, (23)

where the constant εl is given by Eq. (17) as proposed in [CT77]. As approach
for the coalescence efficiency, they also use Eq. (18).

The only main difference between the two models lies in the formulas for coales-

cence and contact time. In [TT94], the averaged coalescence time t
TT
coal between

two drops with diameters d and d′ is given by

t
TT
coal = c4

6πµcc5

ρcε
2/3
l (d + d′)2/3

,

where µc and ρc are the viscosity and density of the continuous phase, respec-
tively. Tsouris and Tavlarides use the value 3.44 for the constant c4. The
parameter c5 is given by

c5 = 1.872 ln

[

h
1/2
0 + 1.378c6

h
1/2
1 + 1.378c6

]

+ 0.127 ln

[

h
1/2
0 + 0.312c6

h
1/2
1 + 0.312c6

]

,

where h0 and h1 are the film thicknesses at initial contact of the drops and at
the time when spontaneous film rupture can occur, respectively. The parameter
c6 is given by

c6 =
µc

µd

(
dd′

2(d + d′)

)1/2

,

where µd is the viscosity of the dispersed phase. For the contact time t
TT
contact of

two drops with diameters d and d′ they use the following formula:

t
TT
contact =

(D2
tankHtank)

1/3

31.25N∗Dimp
,

where Dtank is the vessel diameter, Htank is the tank height, N∗ is the impeller
speed, and Dimp is the impeller diameter.

Ritter [Rit02] uses a kind of mixture of the two models introduced above. For
the collision frequency he uses Eq. (23) by Tsouris and Tavlarides, whereas he
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models the coalescence efficiency by Eq. (21) given by Coulaloglou and Tav-
larides. Further, he includes a damping factor DF , depending on the volume
fraction χ, given by

DF (χ) =

[

1 + 2.5 χ
µd + 0.4µc

µd + µc

]2

, (24)

in both functions, the collision frequency as well as the coalescence efficiency.
Here, as before, µd and µc denote the dynamic viscosity of the dispersed and
the continuous phase, respectively. Note that this damping factor was already
used by Tsouris and Tavlarides to take into account the turbulence damping
of the dispersed phase when modeling the dispersion process. Altogether, the
coalescence rate used by Ritter is given by

RR
coal(d, d′) = C3

ε
1/3
l

DF (χ)1/2
(d + d′)

2
(

d2/3 + d′2/3
)1/2

exp

(

−C4
µcρcεl

σ2DF (χ)3/2

(
dd′

d + d′

)4
)

.

A.2 Dispersion

Dispersion means the breakup of larger particles into smaller ones. This can be
originated by the collision of individuals with each other or with the stirrer or
by shear stresses caused by the streaming.

Deformation and breakage of a drop in a turbulent flow depends on many pa-
rameters, e. g., drop size, density, interfacial surface tension, viscosity of both
phases, holdup fraction, local flow, and local energy dissipation (see [CT77]).

A.2.1 Dispersion rate

Again, we first consider the approach by Coulaloglou and Tavlarides [CT77],
which is based on the nature of dispersion.

They use the following approach for the dispersion (or breakage) rate of a droplet
of volume V :

RCT
disp(V ) =

1

tb

∆N(V )

N(V )
,

where tb is the breakage time and ∆N(V )
N(V ) is the fraction of drops breaking.

This fraction is assumed to be proportional to the fraction of turbulent eddies
colliding with the drop and having a turbulent kinetic energy greater than the
surface energy of the drop:

∆N(d)

N(d)
= e−Eσ/E,
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where Eσ(d) is the surface energy of a drop with diameter d and E(d) is the
mean turbulent kinetic energy of an eddy. For the surface energy Eσ the formula

Eσ(d) = c̃1 σd2

is used, while the mean turbulent kinetic energy E is given by

E(d) = c̃2 ρdd
3u2(d), (25)

where σ is the interfacial tension and ρd is the density of the dispersed phase.
The mean square of the relative velocity u2(d) between two points separated by
a distance d in the inertial subrange is again given by

u2(d) = c̃3 ε
2/3
l d2/3,

where for εl again Eq. (17) can be used.

The breakage time tb is estimated by assuming that the motion of the centers
of mass of the daughter drops is similar to the relative motion of two lumps of
fluid in a turbulent flow field:

tb ∼ d2/3ε
−1/3
l .

Altogether the dispersion rate by Coulaloglou and Tavlarides [CT77] is given
by

RCT
disp(V ) = C̃1V

−2/9ε
1/3
l exp

(

− C̃2σ

ρdε
2/3
l V 5/9

)

with two dimensionless constants C̃1 and C̃2. They can be used as adaption
parameters.

Taking again the turbulence damping due to the volume fraction χ of the dis-
persed phase into account, their dispersion rate becomes

RCT,χ
disp (V ) = C̃1

ε
1/3
l

1 + χ
V −2/9 exp

(

− C̃2σ(1 + χ)2

ρdε
2/3
l V 5/9

)

.

Again, we get a slightly different formula if we just substitute u2 by u2
χ in

Eq. (25), namely:

R̃CT,χ
disp (V ) = C̃1ε

1/3
l V −2/9 exp

(

− C̃2σ(1 + χ)2

ρdε
2/3
l V 5/9

)

.

Let us now have a closer look at the model of Tsouris and Tavlarides [TT94].
They use the approach of Prince and Blanch [PB90] to model the dispersion
(or breakage) rate. There, the dispersion rate RTT

disp of a drop with diameter
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d is given by the product of eddy-drop-collision frequency ϑTT and breakage
efficiency BTT :

RTT
disp(d) = ϑTT (d)BTT (d).

In their model, the eddy-drop-collision frequency is modeled (like the drop-
drop collision frequency in the model of Coulaloglou and Tavlarides [CT77]) by
assuming that the eddies and drops move like ideal gas molecules. Therefore,
their collision process can be described with the help of the kinetic theory of
gases.

Accordingly, Tsouris and Tavlarides state for the collision frequency between
drops of size d and eddies of a size range that can break these drops:

ϑTT (d) =

∫
π

4
(de + d)2(u2

e + u2
d)

1/2dne, (26)

where de is the size of an eddy that can break a drop with diameter d and dne

is the number of eddies of size between de and de + δde. Eddy velocity ue and
drop velocity ud are given by

u2
e = 8.2

(
εl

κe

)2/3

and u2
d = 1.07ε

2/3
l d2/3,

where εl is chosen as before and κe = 2
de

is the wave number of an eddy with
diameter de.

Inserting these two formulas into Eq. (26) (and using de = 2
κe

) gives

ϑTT (d) =

∫
π

4

(
2

κe
+ d

)2

ε
1/3
l

[

8.2κ−2/3
e + 1.07d2/3

]1/2

dne.

Tsouris and Tavlarides substitute the integration variable ne by the eddy wave
number κe by using the following differential equation for the number of eddies
per unit mass of the fluid ne,m:

dne,m(κe)

dκe
= 0.1

κ2
e

ρf
,

where ρf is the density of the fluid. Hence, the collision frequency by Tsouris
and Tavlarides is given by

ϑTT (d) = c̃4ε
1/3
l

∫ 2/de,min

2/d

(
2

κe
+ d

)2 [

8.2κ−2/3
e + 1.07d2/3

]1/2

κ2
edκe.

Here, the integral term represents the total number of eddies that are able to
break drops with diameter d. The upper limit of the integration is the (large)
wave number that corresponds to the eddy size de,min. This eddy size de,min can
be taken arbitrarily as half of the critical drop size, since eddies of size less than
the critical drop diameter are not able to break any drop in the system because
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they do not have enough kinetic energy. In [TT94] the constant c̃4 includes a
turbulence damping factor DF (χ) due to the dispersion as well as the fraction
of the volume of the impeller region Vi to the total volume Vt of the tank:

c̃4 =
Vi

Vt

0.1π

4
DF (χ),

where the damping factor DF (χ) is given by Eq. (24).

For the breakage efficiency Tsouris and Tavlarides use the approach to describe
it by an exponential function (cf. Coulaloglou and Tavlarides [CT77] or Prince
and Blanch [PB90]). This approach accounts for the different forces acting on
the drop. (A drop breaks if its surface tension is exceeded by the energy of a
colliding eddy.) Therefore, the breakage efficiency can be described by

BTT = exp

(

− Eσ

c̃5Eeddy

)

,

where Eσ is the average energy required for drop breakage, Eeddy is the average
energy of an eddy, and c̃5 is a constant. The average energy required for drop
breakage is assumed to be the arithmetic mean of the minimal and maximal
energy required for forming two daughter drops. The minimal energy is given
by the energy needed to form the smallest and largest possible daughter drop,
the maximal energy by the one needed to form two equal-size drops. Therefore,
we get

Eσ =
1

2

{

2πσ

(
d

21/3

)2

︸ ︷︷ ︸

maximal energy Eσ,max

+ πσd2
max + πσd2

min
︸ ︷︷ ︸

minimal energy Eσ,min

}

− πσd2
︸ ︷︷ ︸

energy of breaking drop

,

where σ is the interfacial tension and dmax and dmin are the diameters of the
largest and smallest possible drops which can be formed by dispersion of a
drop with diameter d. (Note that, due to conservation of mass, the formula
d3 = d3

max + d3
min must hold.) The average energy of an eddy is given by

Eeddy = 0.43πρfε
2/3
l d11/3

e

de= 2
κe= 5.47πρfε

2/3
l κ−11/3

e .

Altogether the dispersion rate by Tsouris and Tavlarides [TT94] is given by

RTT
disp(d) = C̃3DF (χ)ε

1/3
l

∫ 2/de,min

2/d

(
2

κe
+ d

)2 [

8.2κ−2/3
e + 1.07d2/3

]1/2

exp

(

− Eσ

C̃4Eeddy

)

κ2
edκe, (27)

where DF (χ) is the (above mentioned) damping factor dependent on the volume
fraction χ of the dispersed phase. Tsouris and Tavlarides use the following values
for the constants C̃3 and C̃4:

C̃3 = 0.0118 and C̃4 = 1.3.
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The dispersion rate by Ritter [Rit02] is quite similar to that one by Tsouris and
Tavlarides. The only difference is that Ritter puts the damping factor into the
denominator and takes the square root of it. In [Rit02] the constants C̃3 and
C̃4 are given by

C̃3 = 0.1
π

4
≈ 0.0785 and C̃4 = 1.

A.2.2 Distribution of daughter drops

To be able to model the source term due to dispersion, a distribution of daugh-
ter drops is needed. The distribution of daughter drops is a probability density
function which states the probability that the dispersion of a drop of diameter
d′ (or volume V ′) leads to a daughter drop of diameter d (or volume V ). The
distribution of daughter drops (or breakage distribution function) can be mod-
eled in different ways. Many different approaches can be found in the literature
(see e. g. [CT77], [TT94] and [Rit02]).

Coulaloglou and Tavlarides [CT77] assume that the distribution of daughter
drops takes the form

γCT (V, V ′) =
2.4

V ′
exp

(

−4.5
(2V − V ′)2

V ′2

)

,

i. e. they use a normal distribution. Here, the variance is chosen such that more
than 99.6 percent of the droplets formed lie within the volume range 0 to V ′.
Note that this function can be rewritten in the following form:

γCT (V, V ′) =
1

V ′

6

√
2π

exp

(

(V − 1
2V ′)2

2
(

V ′

6

)2

)

. (28)

Ritter [Rit02] also uses a normal distribution, given by the following formula:

γR(V, V ′) =
1

V ′

10

√
2π

exp




−

(

V − V ′

2

)2

2
(

V ′

10

)2




 .

Comparison with Eq. (28) shows that the normal distribution used by Ritter
has a smaller variance than the one used by Coulaloglou and Tavlarides.

It can be shown that the energy requirement for a breakage into two equal-size
drops is greater than the energy requirement for a breakage into a small and
a large drop [TT94]. The use of a normal distribution, which is unimodal and
has a higher probability density in the middle, does not take this into account.
Therefore, it is better to use a bimodal distribution with higher probability at
the ends than in the middle.



B STRANGENESS-INDEX 28

Tsouris and Tavlarides [TT94] use the following function for the distribution of
daughter drops:

γTT (d, d′) =
Emin(d) + Emax(d) − E(d)

∫ d′

0 [Emin(δ) + Emax(δ) − E(δ)] dδ
,

where Emin(d) and Emax(d) are the minimal and maximal energy which is
needed for dispersion of a drop with diameter d into two daughter drops, and
E(d) is the energy of a dispersing drop of diameter d.

However, they only give concrete formulas for these energies for the discrete
case. Therefore, we will use the above introduced formulas to model these
energy terms:

Emin(d) := Eσ,min(d) = πσd2
max + πσd2

min with d3
max + d3

min = d3,

Emax(d) := Eσ,max(d) = 2πσ

(
d

21/3

)2

,

E(d) := πσd2.

In [Ger99] another bimodal distribution can be found:

γG
∗ (V, V ′) = V ′(V ′−V ) exp



−Ĉ4
1





(
V ′

V
− 1

2

)4

−
(

1 − 2Ĉ2√
2

(
V ′

V
− 1

2

))2








with constants Ĉ1 = 0.065 and Ĉ2 = 3.5. This function has to be scaled such
that it fulfills the normalization condition (4). This leads to:

γG(V, V ′) =
γG
∗ (V, V ′)

∫ Vmax

0 γG
∗ (V, V ′)dV ′

.

In general, for every distribution of daughter drops, the dependency on the
internal coordinate can be changed from volume V to diameter d (and vice
versa) by the following transformation:

γ(d, d′) = 3cV d2γ(V, V ′),

where cV is the shape factor between volume and diameter. (It holds cV = π
6

for spherical drops.)

B How to determine the strangeness-index of a

nonlinear differential-algebraic equation

In this section, we give a brief introduction how the strangeness-index of a
nonlinear differential-algebraic equation is defined and how it can be determined.
This introduction is a brief summary of parts of the theory presented in [KM98].
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We consider a general differential-algebraic equation

F (t, z, ż) = 0, (29)

with F ∈ C( � × Dz × Dż,
� n̂), � ⊂ �

(compact) interval, Dz, Dż ⊂ � n̂ open.

The standard method for the solution of nonlinear problems is Newton’s method.
There, we first linearize around some given initial guess, then solve the so ob-
tained linear problem and afterwards correct the initial guess.
This suggests to consider any linearization of (29) and apply the theory for lin-
ear systems to the resulting equations in order to determine the index of the
nonlinear system given in (29).
But counter-examples show that for higher index differential-algebraic equations
it makes no sense to consider linearizations of the original equation alone. We
must also include derivatives of the equation. Thus, we define the so-called “in-
flated differential-algebraic equation”, which consists of the original equation
and its derivatives up to order l ∈ � 0, by

Fl(t, z, ż, . . . , z(l+1)) =








F (t, z, ż)
d
dtF (t, z, ż)

...
( d

dt )
lF (t, z, ż)








=






F (t, z, ż)
Ft(t, z, ż) + Fz(t, z, ż)ż + Fż(t, z, ż)z̈

...




 = 0

and denote its Jacobians by

Ml(t, z, ż, . . . , z(l+1)) = Fl;ż,...,z(l+1)(t, z, ż, . . . , z(l+1)),

Nl(t, z, ż, . . . , z(l+1)) = −
[

Fl;z(t, z, ż, . . . , z(l+1)), 0, . . . , 0
]

.

If we define
E := Fż(t, z, ż) and A := −Fz(t, z, ż),

the Jacobians Ml and Nl can be written as in the linear case (see [KM96b], for
example):

Ml =











E

Ė − A E

Ë − 2Ȧ 2Ė − A E
...

. . .
. . .

E(l) − lA(l−1) . . . lĖ − A E











,

Nl =










A 0 . . . 0

Ȧ 0 . . . 0

Ä 0 . . . 0
...

...
...

A(l) 0 . . . 0










.
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The following hypothesis shows an approach to determine the invariants of a
nonlinear differential-algebraic equation.

Hypothesis 2 There exist integers µ̂, â, and d̂ such that for all values
(t, z, ż, . . . , z(µ̂+1)) ∈ L, where L associated with F is given by

L = {(t, z, ż, . . . , z(µ̂+1)) ∈ � × � n̂ × � n̂ × · · · × � n̂ | Fµ̂(t, z, ż, . . . , z(µ̂+1)) = 0}

and Fµ̂(t, z, ż, . . . , z(µ̂+1)) = 0 is considered as an algebraic equation, the follow-
ing properties are satisfied.

1. It holds that

rank(Mµ̂(t, z, ż, . . . , z(l+1))) = (µ̂ + 1)n̂ − â,

such that there exists a matrix function Z2 of size (µ̂ + 1)n̂ × â and with
maximal rank which is smooth on L and satisfies there ZT

2 Mµ̂ = 0.

2. It holds that

rank(A2(t, z, ż, . . . , z(l+1))) = â with A2 = ZT
2 Nµ̂[In̂ 0 . . . 0]T ,

such that there exists a matrix function T2 of size n × d̂, d̂ = n − â, and
with maximal rank which is smooth on L and satisfies there A2T2 = 0.

3. It holds that

rank(Fż(t, z, ż)T2(t, z, ż, . . . , z(l+1))) = d̂,

such that there exists a matrix function Z1 of size n̂ × d̂ which is smooth
on L and satisfies there rank(ZT

1 E) = d̂ (such that ZT
1 ET2 has full rank

d̂ on L).

By means of this hypothesis we can define the strangeness-index:

Definition 3 The strangeness-index of the nonlinear differential-algebraic equa-
tion given in (29) is the smallest integer µ̂ for which Hypothesis 2 is satisfied.
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