
Higher-Order Nested Data Parallelism:
Semantics and Implementation

vorgelegt von
Diplom-Informatiker

Roman Leshchinskiy

Von der Fakultät IV — Elektrotechnik und Informatik —

der Technischen Universität Berlin
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

— Dr. rer. nat. —

genehmigte Dissertation

Promotionsausschuß:

Vorsitzender: Prof. Dr. Peter Pepper

Berichter: Prof. Dr. Stefan Jähnichen
Berichter: Prof. Dr. Sergei Gorlatch

Tag der mündlichen Prüfung: 16. Dezember 2005
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Zusammenfassung

Das veschachtelt datenparallele Programmiermodell ist ein attraktiver Ansatz
zur Entwicklung von Software für massiv parallele Systeme. Das Modell er-
laubt es, komplexes paralleles Verhalten durch verschachtelte kollektive Oper-
ationen zu spezifizieren, ohne maschinennahe Details wie Synchronisation oder
Kommunikation betrachten zu müssen. Dieses hohe Abstraktionsniveau wird er-
reicht, indem die Aufgabe leicht parallelisierbare Repräsentationen von Daten-
strukturen abzuleiten und Berechnungen entsprechend zu transformieren, vom
Programmierer auf den Compiler übertragen wird.

Erreicht wird dies durch die Flattening-Transformation, die verschachtelten
Parallelismus eliminiert und flache datenparallele Programme erzeugt. Letztere
können mit Hilfe einer Reihe bekannter Techniken optimiert und schließlich ef-
fizient auf modernen parallelen Rechnern ausgeführt werden. Die Korrektheit
des Flattening hängt entscheidend von der referenziellen Transparenz der Quell-
sprache ab. Allerdings war die Benutzbarkeit der Transformation in einem rein
funktionalen Ansatz bisher stark eingeschränkt, da sie Funktionen höherer Ord-
nung nicht behandeln konnte.

Die vorliegende Dissertation führt diese Einschränkung auf das in der Stan-
dardsemantik der Lambda-Kalküls inhärente Vermischen von Berechnungen und
Daten zurück und zeigt auf, wie dieses Problem durch eine Kombination von Flat-
tening mit Closure Conversion gelöst werden kann. Closure Conversion ist eine
bekannte Programmtransformation, die genau die erforderlich Trennung zwischen
Code und Daten vornimmt. Zur Validierung des Ansatzes wird eine repräsentative
Menge von parallelen Operationen betrachtet und aufgezeigt, wird diese erweitern
werden können, um Funktionen höherer Ordnung in durch Closure Conversion
transformierten Programmen zu unterstützen.

Ferner enthält die Dissertation eine detaillierte Untersuchung der Interaktionen
zwischen Flattening und nicht-strikter Auswertung. Diese sind sehr komplex, da
die durch die Transformation erzeugten Datenstrukturen auf strikten Vektoren
basieren. Durch eine im Vergleich zu früheren Arbeiten modifizierte Definition
der Flattening-Transformation können nicht-strikte Programme trotzdem korrekt
übersetzt werden.

Schließlich wird die Korrektheit von Flattening für eine nicht-strikte Sprache
mit Funktionen höherer Ordnung beweisen. Für den Beweis wird eine neue Form
des Lambda-Kalküls eingeführt, in der die Trennung zwischen Berechnungen und
Daten syntaktisch sichergestellt wird.

Diese Ergebnisse erlauben es, Flattening und somit verschachtelten Datenpar-
allelismus transparent in eine funktionale Programmiersprache wie Haskell zu in-
tergrieren. Wir glauben, daß dies sowohl der Akzeptanz des Programmiermodells
als auch der Entwicklung von paralleler Software zugute kommen wird.





Abstract

Nested data-parallel programming is an attractive approach to implementing
applications for massively parallel systems. It allows complex parallel behaviour
to be specified by combining and nesting operations on parallel collections and
liberates the programmer from low-level concerns such as synchronisation and
communication. The high degree of abstraction is achieved by transferring to
the compiler the problem of finding easily parallelisable representations for data
structures and transforming the computations accordingly.

This task is carried out by the flattening transformation which eliminates
nested uses of parallelism, generating flat data-parallel code which is amenable
to a wide range of optimisations and can be executed efficiently on modern par-
allel architectures. The correctness of flattening crucially depends on referential
transparency of the source language; but until now, the usefulness of this trans-
formation in a purely functional setting has been severely restricted as it could
not handle higher-order functions.

The present dissertation shows that this shortcoming is due to the intertwining
of computation and data inherent in the standard semantics of the lambda calculus
and proposes to combine flattening with closure conversion as a solution to this
problem. Closure conversion is a well-established program transformation which
provides precisely the required degree of separation between code and data. The
viability of this approach is validated by investigating a representative range of
parallel operations and demonstrating how they can be naturally extended to
support higher-order functions in closure-converted programs.

Moreover, the dissertation provides a detailed discussion of the interactions
between flattening and lazy evaluation. These interactions are quite intricate, as
the flat data structures derived by the transformation a based on strict, unboxed
arrays. Nevertheless, it is shown that lazy programs can be correctly flattened by
suitably modifying the transformation as compared to previous accounts.

Finally, the correctness of the flattening transformation in a higher-order, non-
strict setting is proved. The proof relies on a novel form of the lambda calculus
which syntactically enforces the separation of computation and data achieved by
closure conversion.

These results allow flattening and, hence, nested data parallelism to be seam-
lessly integrated into a full-fledged functional language, such as Haskell. We be-
lieve that this will have a beneficial impact on the acceptance of this programming
model and on the delevopment of parallel software applications.
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Chapter 1

Introduction

In 1965, Gordon Moore formulated his famous law stating that the complexity of micropro-
cessors doubles every twelve months. This prediction has proved to be astonishingly accurate
ever since. However, Moore did not foresee or, at least, did not express with such precision
that the complexity of computations performed by computers will increase at an even more
dramatic rate. The performance of a single processor is inadequate for a large variety of
problems solved with the help of computers; this discrepancy is perhaps even larger today
than it was in 1965. Thus, the need for parallel processing is more urgent than ever. Mas-
sively parallel systems are used for searching the internet, forecasting the weather, simulating
physical processes and chemical reactions and other tasks too numerous to mention here.

However, while our understanding of how to build such systems has increased significantly,
their programming remains a difficult and highly error-prone task. Mainly, this is due to the
lack, at least lack of acceptance, of programming models which provide the programmer with a
sufficiently high degree of abstraction while still maintaining the desired performance. Parallel
programs are usually implemented in Fortran or C, and rely on low-level communication
libraries, such as MPI, which, while very efficient, require the user to deal with the minutiae
of parallel programming best left to the compiler. In this situation, it is not surprising that
even moderately complex parallel software systems are perceived to be hard to write, expensive
to maintain and almost impossible to get right. As Gorlatch (2004) points out, point-to-point
communication, the most popular parallel programming technique today, is comparable to the
infamous goto statement and equally harmful from the software engineering point of view.

This is all the more unfortunate as a large number of structured and highly expressive
approaches to the development of parallel software have been proposed. However, many of
them have suffered from serious drawbacks. Frequently, only a limited number of language
constructs and programming techniques are supported, leaving out those which, while useful,
are difficult to handle in the presence of parallelism. Moreover, the available implementations
are often just proofs of concept and unusable for real-world programming.

1.1 Nested data parallelism

A prime example of a promising technique which exhibits these deficiencies is the nested
data-parallel programming model. Based on arrays with an inherently parallel semantics, it
provides collective operations as the only means of expressing parallelism. This approach
eliminates many stumbling blocks in the development of parallel applications. In particular,



2 Introduction

nested data-parallel programs have only a single control flow, obliviating the need and, in
fact, making it impossible to explicitly specify synchronisation and communication patterns.
This allows the programmer to concentrate on the algorithms and data structures involved in
solving the problem at hand rather than trying to avoid deadlocks, race conditions and other
troublesome aspects of low-level communication.

Nested data parallelism (NDP) was originally conceived as a generalisation of data parallel
constructs found in languages like High Performance Fortran and C*. The latter provide
parallel collections and efficient parallel operations on them but do not allow either the former
or the latter to be nested. This restriction is lifted in the NDP model, thus enabling it to
transparently support a much wider range of algorithms, including irregular ones (Blelloch,
1996). In fact, the nesting of parallel computations allows for surprisingly concise and intuitive
specifications of complex parallel behaviour.

Blelloch and Sabot (1990) have demonstrated that this highly expressive programming
model can be translated into code which runs very efficiently on modern massively parallel
systems. Their approach relies on the flattening transformation which maps nested data par-
allel computations to flat ones; the latter can be compiled using well-established techniques.
Thus, the task of finding a suitable parallel representation for irregular data structures and
transforming the computations accordingly is transferred form the programmer to the com-
piler.

Due to the high degree of reordering performed by flattening, this compilation technique
induces numerous non-obvious restrictions in an imperative language, in particular severely
limiting the use of side effects (Pfannenstiel et al., 1998). The picture changes dramatically
when flattening is applied to purely functional languages, however. Here, computations may
be reordered freely as side effects are provided in a way which does not violate referential
transparency (Achten et al., 1993; Peyton Jones and Wadler, 1993). This suggests that the
functional paradigm and nested data parallelism can be combined to provide an expressive
and efficient framework for parallel programming.

Not surprisingly, the first full implementation of transparent support for nested data par-
allelism was provided in the functional language Nesl (Blelloch, 1995), which demonstrated
the feasibility of the approach. Unfortunately, the language suffered from a number of limi-
tations. In particular, it only provided a severely restricted set of types — neither recursive
types nor sum types were available — and did not support higher-order functions. This was
due to the corresponding shortcomings of the flattening transformation which, as originally
presented, could not handle any of these features. Keller and Chakravarty (1998) extended
flattening to recursive structures and, later, to algebraic sums (Chakravarty and Keller, 2000).
However, even their technique does not treat functions as first-class citizens.

1.2 Higher-order computations

In a purely functional setting, this deficiency is particularily unfortunate — it is precisely the
flexible treatment of computations that makes this programming paradigm so expressive and
powerful. Moreover, higher-order programming has been demonstrated to be beneficial in a
parallel setting, where frequently recurring patterns of parallelism and communication can be
captured by skeletons (Cole, 1999; Rabhi and Gorlatch, 2002). Thus, a seamless integration
of nested data parallelism into a full-fledged functional language is highly desirable and can
be expected to allow for concise, understandable and easily maintainable implementations of
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parallel algorithms. This goal can only be achieved by extending the flattening transformation
to support arbitrary uses of higher-order functions.

Why, then, has this support not been provided hitherto? Essentially, this shortcoming is
due to the way flattening eliminates nested parallelism by changing the representation of data
structures and modifying computations specified by the programmer such that they operate
on the new representation. This is only possible if computations and data can be manipulated
independently of each other. However, the two are usually highly intertwined in functional
programs. A prime example are partial applications of curried functions, which implicitly
bind a computation, i.e., the function itself, to data encoded in the supplied arguments. The
standard lambda calculus does not allow such bindings to be undone, thereby precluding their
use in programs which are to be compiled by means of flattening.

In this dissertation, we propose to solve this problem by combining flattening with closure
conversion, a well-known program transformation which has already been demonstrated to
be highly beneficial in a sequential setting. Closure conversion retains the aforementioned
connection between computation and data, but makes this connection explicit, providing
precisely the necessary degree of separation between the two. Flattening can be extended to
make use of this property, allowing it to handle arbitrary programs, including higher-order
ones. Thus, the goal of integrating nested data parallelism and functional programming can
be achieved without compromising the efficiency of generated code.

1.3 Correctness

No specification of a program transformation is complete without a proof of its correctness.
In the case of flattening, a correctness proof is particularily important as the transformation
is highly intrusive and its implications not at all obvious. Consequently, we validate our
approach by showing that flattening, as defined in this work, is semantics-preserving. This
task is significantly complicated by the choice of a non-strict evaluation strategy for the
languages we consider, a choice motivated by the intention to ultimately implement nested
data parallelism as an extension to Haskell, a popular and mature language with excellent
tool support.

One of the main reasons for the efficiency of the code produced by flattening is the heavy
use of unboxed arrays. But unboxed arrays are strict and the interactions between the non-
strict semantics of the host language and the strictness properties of the generated data
structures are quite intricate. In fact, these interactions have not been investigated in any
meaningful degree of detail until now, as previous accounts of the flattening transformation
either have assumed a call-by-value semantics or have disregarded the termination behaviour
of non-strict programs.

In the present dissertation, we provide a novel formalisation of flattening and include a
detailed discussion of its semantics in a non-strict setting. In addition to serving as a sound
base for establishing the correctness of the transformation, this allows us to formulate a set
of requirements on the supporting run-time system which are essential if the generated code
is to behave as expected.
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1.4 Goals and contributions

To summarise, the main goal of the present dissertation is to provide a sound foundation for
the integration of nested data parallelism into a non-strict, purely functional programming
language such as Haskell. To this end, contributions are made in the following points.

• Based on closure conversion, the dissertation extends the flattening transformation with
support for higher-order and curried functions and demonstrates the flexibility of this
strategy by discussing its interactions with various parallel operations. This allows
nested data parallelism to be seamlessly integrated into purely functional languages,
resulting in a high-level approach to designing and implementing parallel applications.

• It introduces a new form of the lambda calculus which captures the crucial aspects of
closure-converted programs. This calculus plays an essential role in the formal devel-
opment; but it also exhibits a number of properties which lead us to believe that its
usefulness is not restricted to the rather specialised area of the compilation of nested
data-parallel programs.

• It investigates the intricate implications of compilation by flattening on the seman-
tics of non-strict programs and formalises the results. This clarifies the impact of the
transformation on a call-by-name language but also serves as a guideline for future
implementations of the approach.

• It includes a proof of correctness for the flattening transformation, with respect to both
static and dynamic semantics.

1.5 Overview of the dissertation

The dissertation is organised as follows.

Nested Data-Parallel Programming. Chapter 2 introduces the nested data-parallel pro-
gramming model as a conservative extension to Haskell and demonstrates its expressive-
ness. It also describes the underlying abstract model of a parallel machine and shows
how it correlates to modern massively parallel systems.

Compiling Nested Data Parallelism. Chapter 3 outlines the compilation strategy and
introduces the flattening transformation for first-order programs. It is, for the most
part, based on previous work and provides a basis for subsequent discussion.

Higher-Order Functions. Chapter 4 demonstrates how closure conversion and flattening
can be combined to compile higher-order NDP programs. It investigates the interactions
between higher-order functions and operations on parallel collections and explains their
impact on the implementation of nested data parallelism.

Formalising the Approach. Chapter 5 formalises the results of the preceding discussion.
It defines the syntax and static semantics of the intermediate languages used in the
compilation process and specifies closure conversion and flattening as transformations
between these languages. Moreover, it establishes the type correctness of the latter
transformation.
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Semantics of Flattening. Chapter 6 establishes the operational correctness of the flatten-
ing transformation. To this end, it investigates the interactions between flattening and
call-by-name evaluation and specifies the operational semantics of the intermediate lan-
guages.

Conclusion. Chapter 7 concludes the dissertation by summarising the results and discussing
related and future work.



6 Introduction



Chapter 2

Nested data-parallel programming

In this chapter, we give an overview of the nested data-parallel programming model and de-
scribe the underlying assumptions about the execution platform. Following Chakravarty et al.
(2001), we introduce nested data parallelism as an extension to Haskell (Peyton Jones et al.,
1999). The extension is conservative in the sense that the semantics of existing Haskell con-
structs and programs remains unchanged. It seamlessly integrates new syntax for expressing
parallelism into the language (Section 2.1) and adds a set of parallel operations to the prelude
(Section 2.2).

The choice of Haskell as the host language is easily justified. In the recent years, it has
become the de-facto standard purely functional language and is the subject of active research.
Moreover, the Glasgow Haskell Compiler (Peyton Jones et al., 1993) is an industrial-strength
implementation which we intend to use as a basis for implementing the approach presented
in this work.

After describing the extension, we demonstrate the merits of the approach by examining
three parallel algorithms and discussing their implementations in the NDP framework. Section
2.3 describes the multiplication of a sparse matrix with a vector as an introductory example.
In Section 2.4, we provide an intuitive implementation of Quicksort which crucially relies
on transparent support for irregular parallelism. Section 2.5 discusses Wang’s algorithm for
solving systems of linear equations and explains how a combination of parallel and sequential
data structures can be used to specify the desired parallel behaviour. Finally, in Section
2.6 we introduce the abstract machine which underlies the NDP model.

2.1 Parallel arrays

Our extension is based on parallel arrays, which are ordered, homogeneous collections of
values with strictly parallel semantics. Since parallel arrays are ubiquitous in NDP programs,
they enjoy the same level of syntactic support as lists, arguably the most heavily used data
structure in Haskell. In particular, the brackets [: and :] denote array expressions and types.
Thus, a parallel array containing elements of type τ has the type [:τ :]; an array with n elements
can be constructed directly by [:x1, . . . , xn :]. An empty array is denoted by [::].

Contrary to earlier accounts of nested data parallelism in non-strict languages (Chakravarty
et al., 2001; Chakravarty and Keller, 2000), parallel arrays as used in this work are not head-
strict. They do, however, impose strictness constraints on their elements. As these do not
affect the following examples, we defer the discussion of strictness to Chapter 6.
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It is important to keep in mind that parallel arrays are not lists and, in particular, that
they do not have an inductive definition. Rather, we view them as a built-in type with a
semantics specialised for the needs of NDP programming. Although it is possible to implement
computations on parallel arrays recursively, e.g., by iterating over the indices, the resulting
program would be executed sequentially. Parallel computations, instead, rely on primitive
operations provided by the standard prelude as described in the next section.

2.2 Parallel operations

Most standard list functions, such as map and replicate , have parallel versions which are
distinguished from their sequential counterparts by the suffix P . Thus, the standard prelude
contains, among others, the following declarations:

mapP :: (α→ β)→ [:α:]→ [:β:]
repP :: Int → α→ [:α:]

Here, mapP maps a function over a parallel array while repP creates a new array which
contains n copies of a given value. Note that here and in the rest of this work, we deviate
slightly from the naming scheme described above and abbreviate the parallel versions of
the standard Haskell functions replicate and length by, respectively, repP and lenP . Figure
2.1 lists the most important array primitives.

Crucially, these functions have a parallel semantics. Thus, mapP (+1) [:1, 2, 3, 4, 5, 6:] in-
crements all numbers in the array simulatneously. Analogously, repP n 1 is executed in a single
parallel step regardless of the value of n. This already allows us to easily formulate simple
parallel algorithms. For instance, zipWithP (∗) xs ys denotes the elementwise multiplication
of two vectors xs and ys ; again, the result is obtained in one parallel step.

It should be noted that some standard list operations have an inherently sequential seman-
tics and do not naturally carry over to a parallel setting. A well-known example are foldl and
foldr which prescribe a strictly left-to-right and right-to-left evaluation order, respectively.
If possible, we provide a similar but easily parallelisable operation in such cases. Thus, the
prelude includes the primitive

foldP :: (α→ α→ α)→ α→ [:α:]

which assumes that the reduction operator is associative and has an obvious parallel imple-
mentation.

Parallel array comprehensions. Haskell includes list comprehensions as a convenient
alternative to explicit function calls for expressing computations on lists. In the following
examples, we make use of array comprehensions which are modelled on Haskell’s list syntax
but, again, are executed in parallel. For instance,

[:sqrt x | x ← xs:]

simultaneously computes the square root for each element of the parallel array xs . Array
comprehensions allow for a more concise formulation of parallel algorithms. However, it is
important to realise that they do not add any functionality to the language and can always
be replaced by explicit function calls; e.g., the above expression is equivalent to mapP sqrt xs .
Chakravarty et al. (2001) provide the exact rules for eliminating comprehensions.
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mapP
:: (α→ β)→ [:α:]→ [:β:]

Mapping: mapP f xs maps the function f over
xs

repP , replicateP
:: Int → α→ [:α:]

Replication: repP n x yields an array of length
n containing x in every position

lenP , lengthP :: [:α:]→ Int Length: lenP xs yields the length of xs

(!:) :: [:α:]→ Int → α Indexing: xs !: i yields the element of xs at posi-
tion i (starting with 0)
Precondition: i < lenP i

(+++) :: [:α:]→ [:α:]→ [:α:] Concatenation: xs +++ ys yields the array ob-
tained by concatenating xs and ys

zipP :: [:α:]→ [:β:]→ [:(α, β):] Zipping: zipP xs ys yields an array of pairs ob-
tained by elementwise tupling of xs and ys
Precondition: lenP xs == lenP ys

zipWithP
:: (α→ β → γ)
→ [:α:]→ [:β:]→ [:γ:]

Generalised zipping: zipWithP f xs ys yields an
array obtained by applying f to corresponding
elements of xs and ys
Precondition: lenP xs == lenP ys

filterP
:: (α→ Bool)→ [:α:]→ [:α:]

Filtering: filterP f xs yields an array containing
those elements of xs which satisfy the predicate
f

packP :: [:Bool :]→ [:α:]→ [:α:] Packing: packP bs xs yields an array containing
those elements of xs for which the corresponding
element in bs is True
Precondition: lenP bs == lenP xs

combineP
:: [:Bool :]
→ [:α:]→ [:α:]→ [:α:]

Combining: combineP bs xs ys merges xs and ys
according to the flag vector bs
Precondition: falsesP bs == lenP xs

truesP bs == lenP ys

foldP
:: (α→ α→ α)
→ α→ [:α:]→ α

Folding: foldP (⊕) e xs reduces xs with the bi-
nary operator ⊕ and neutral element e in un-
specified order
Precondition: ⊕ is associative

sumP :: [:Int :]→ Int Sum: sumP xs computes the sums of all elements
of xs

falsesP , truesP
:: [:Bool :]→ Bool

False/True count: falsesP xs and truesP xs yield
the number of False and True elements, respec-
tively, in xs

Figure 2.1 Standard array operations
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[: [:(0, 2.5), (3, 1.4):]
[:(1, 3.7):]
[::]
[:(0, 5.2), (2, 4.3):] :]

Figure 2.2 Representation of a sparse matrix

Nested parallelism. A key property of the NDP model is its transparent support for nested
and irregular parallelism. In particular, the nesting level of parallel arrays does not affect the
degree of parallelism available in a computation. Thus, the expression

mapP (mapP (+1)) [:[:1, 2:], [:3, 4, 5:], [::], [:6:]:]

is still evaluated in a single step even though it operates on a nested array. This becomes
evident if we consider the semantics of this term. When applied to an array, mapP (+1)
simultaneously increments its elements. Since this function is applied to all element arrays at
once, as specified by the outer mapP , all incrementations are performed in parallel.

2.3 Sparse matrices

As a first example which demonstrates the expressiveness of our approach, we consider the
multiplication of a sparse matrix with a dense vector. The elegant formulation of this algo-
rithm presented below was first introduced by Blelloch (1996). It is based on the compressed
row format, a well-known, optimised representation of sparse matrices. For each row, it stores
only the non-zero elements associated with their indices; a matrix is an array of such rows.
The following two data types capture this principle:

type Row = [:(Int ,Float):]
type Matrix = [:Row :]

An example is given in Figure 2.2, which depicts a sparse matrix together with its represen-
tation.

The multiplication of such a matrix with a dense parallel vector is easily expressed with
array comprehensions by nesting three levels of parallel operations.

smvm :: Matrix → [:Float :]→ [:Float :]
smvm m v = [:sumP [:x ∗ (v !: i) | (i, x) ← row:]

︸ ︷︷ ︸

products of one row

| row ← m:]

For each row, the products are computed by the inner comprehension by multiplying the value
of the row element with the corresponding element of the vector. The latter has the same
index within the vector as the one associated with the row element. Then, sumP computes
the sum of the resulting array of products in a parallel reduction. The outer comprehension
specifies that this computation is to be applied to all rows simultaneously.

The parallel complexity of the algorithm can be determined informally by making the
following observations. For each row, the products are computed simultaneously; since all
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rows are processed at once, all products are obtained in one parallel step. Each of the
following reductions is logarithmic in the number of elements in the corresponding row. Since
they, too, are executed simultaneously, the entire computation has the parallel complexity of
O(log n) where n is the maximal number of non-zero elements in a row.

Note that the above implementation achieves optimal parallel complexity while still being
clear and concise. In fact, it is nearly identical to the sequential, list-based formulation of
the algorithm — the latter can be obtained by simply replacing parallel operations, including
comprehensions, by their sequential counterparts.

2.4 Quicksort

A slightly more involved example is Quicksort, an algorithm which is frequently used to
demonstrate the advantages of functional programming. The following implementation is
nearly identical to the one found in many introductory textbooks.

qsort :: Ord α ⇒ [:α:]→ [:α:]
qsort [::] = [::]
qsort xs = let

m = xs !: (lenP xs ‘div ‘ 2)
ls = [:x | x ← xs, x < m:]
ms = [:x | x ← xs, x == m:]
gs = [:x | x ← xs, x > m:]
ss = [:qsort ys | ys ← [:ls, gs:]:]

in
(ss !: 0) +++ ms +++ (ss !: 1)

Again, we parallelise the algorithm by using parallel arrays instead of lists. We would
severely restrict the available parallelism, however, if we embedded the recursion directly in
the concatenation of the sorted subarrays, as in qsort ls +++ ms +++ qsort gs . In this case, the
recursive calls would be executed one after another, which is clearly undesirable. Instead,
the two arrays ls and gs are combined into a single, nested array structure, allowing us
to perform the two recursive calls in parallel. Figure 2.3 depicts the evaluation strategy
of this implementation. First, the initial array is recursively split into chunks of at most
one element according to the quicksort strategy; these are then repeatedly concatenated,
ultimately yielding the sorted array. In each recursion level, the operations are performed
in parallel on all subarrays as indicated by the grey ovals. Obviously, the average parallel
complexity of the implementation is, as expected, logarithmic in the length of the array.

Figure 2.3 illustrates the highly irregular parallel structure of the algorithm. Still, this is
of no concern to the programmer — all she has to do is provide a high-level specification of
the available parallelism which is then translated into efficient code by the compiler without
further intervention. This transparent support for irregular parallelism is, in fact, one of the
strongest merits of the NDP model.

2.5 Wang’s algorithm

The previous two examples demonstrate that the nested data parallel programming model
utilises all available parallelism as specified by the programmer. In particular, in the imple-
mentation of Quicksort we had to avoid unnecessary sequentialisation by using appropriate
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Figure 2.3 Evaluation strategy of Quicksort

data structures. Frequently, however, exactly the opposite is desirable — we want to restrict
the degree of parallelism, either because doing so causes the compiler to generate more efficient
code or due to interactions between parallelism and the complexity of an algorithm.

An interesting example of the latter class of algorithms is the one proposed by Wang (1981)
for solving tridiagonal systems of linear equations. Here, the matrix representing the system
of equations is subdivided into blocks of consecutive rows, as depicted on the left-hand side of
Figure 2.4. In the first phase, each block is traversed first from top to bottom and then from
bottom to top, eliminating the lower and upper diagonals, respectively, and replacing them
by vertical chains of fill-in elements. The resulting matrix is depicted on the right-hand side
of the figure. The next phase uses the last row of the first block to eliminate the left fill-in in
the first and last row of the second one. The latter is, in turn, propagated to the third block
and so on, until the last block is reached. This process is then repeated for the right fill-ins,
starting with the last block and propagating the first rows of each block upwards. Finally, the
last phase of the algorithm eliminates all fill-ins in each block using the information obtained
from adjacent blocks.

In the context of this dissertation, we are only interested in the parallel behaviour ex-
hibited by this algorithm. In the first phase, all blocks can be traversed indepedently —
thus, assuming n rows evenly distributed over b blocks, this phase has the parallel complexity
O(n/b). The second phase propagates values from block to block. This computation pattern
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Phase 1 (parallel) Phase 2 (sequential)

Figure 2.4 Wang’s algorithm

is known as pipelining and is inherently sequential; even on a parallel machine, the complexity
is O(b). Finally, all blocks can be processed simultaneously in the last phase. This again takes
O(n/b) parallel steps, leading to an overall complexity of O(n/b + b).

Clearly, by allocating more blocks we can improve the performance of the first and last
phases. Unfortunately, this also increases the length of the pipeline in the second phase. In
an efficient parallel implementation, the number of blocks should be equal to the number of
processors, obtaining the best possible performance in the parallel phases while preventing
the pipelining from dominating the run time for sufficiently large matrices. This amounts to
artificially restricting the parallelism in the specification of the two parallel phases.

This constraint can be naturally expressed by using a mixture of parallel arrays and
sequential data structures, e.g. lists. Then, each block is represented as a list of rows; the
blocks themselves, however, are stored in a parallel array.

type Row = . . .
type Block = [Row ]
type Matrix = [:Block :]

Note how these definitions precisely capture the structure of the first and last phases, where
the blocks are processed in parallel while the rows within a block are traversed one after an-
other. The top-level structure of the algorithm is easily implemented with this representation.

solve :: Matrix → [:[Float ]:]
solve = mapP elimFillIns ◦ pipeline ◦ mapP elimDiagonals

In general, the ability to combine sequential and parallel data structures allows for very
natural and arbitrarily fine-grained specifications of parallel behaviour. This is in stark con-
trast to low-level approaches, where such computation patterns have to be coded explicitly,
leading to programs which are difficult to maintain and often contain a large number of
undetected errors.

2.6 The execution model

We conclude the introductory chapter by describing the model of a parallel machine underlying
the NDP approach and explaining how it correlates with modern massively parallel comput-
ers. Blelloch (1990) introduced the Vector Random Access Machine (VRAM) as an abstract
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Figure 2.5 The VRAM model

architecture with explicit support for data-parallel computations. The VRAM, depicted in
Figure 2.5, extends the usual model of a Random Access Machine with a conceptually infinite
vector memory and a vector processor which can simultaneously apply an operation to all
elements of a collection stored in the vector memory. The scalar components of the VRAM
are responsible for computations which are executed outside of the parallel context.

This simple model is sufficient for executing arbitrary NDP programs. The flattening
transformation replaces nested parallel computations and data structures by flat ones. In the
next chapter, we will see that it also changes the representation of complex parallel arrays
such that the resulting code operates only on flat arrays containing elements of primitive
types. This eliminates the need for more involved memory and processor models.

The VRAM is largely based on vector computers which still dominated the supercomput-
ing market in 1990 but have been mostly replaced by shared-memory multiprocessors and
distributed memory machines, especially clusters, since then. Fortunately, the model is easy
to implement on these as well. In the distributed memory case, the vector memory is sim-
ulated by distributing collections across all available processors. This is unproblematic as
long as the collections do not contain pointer-based elements, a requirement ensured by the
flattening transformation. The processors are then synchronised such that at each point, they
perform exactly the same computation on the elements of some collection. If this principle
is followed strictly, a multiprocessor is essentially reduced to operating as a SIMD machine
which frequently leads to suboptimal performance. By selecting suitable distribution strate-
gies and eliminating unnecessary synchronisation points, however, data-parallel programs can
be executed very efficiently (Keller and Chakravarty, 1999).



Chapter 3

Compiling nested data parallelism

The compilation of first-order nested data-parallel programs is a fairly well understood pro-
cess. The core idea is to transform nested data parallelism, used in the previous chapter as
a convenient and abstract approach to implementing parallel algorithms, to programs which
only contain flat parallel computations and data structures. Such programs can then be trans-
lated into efficient code for modern parallel architectures using standard techniques. In this
chapter, we outline the relevant mechanisms and point out the aspects of our approach which
differ from previous work. These differences are necessary to account for the non-strictness
of the source language.

Keller and Chakravarty (1999) formulate the process of compiling nested data parallelism
as a series of transformations, each making a program less abstract and bringing it closer to
the target machine. In this work, we pursue the same approach, which we describe in Section
3.1. Our transformations are not source-to-source; instead, each transformation performs a
translation from a more abstract intermediate language to a lower-level one. This allows
us to enforce the constraints and invariants introduced in each phase by encoding them in
the grammar of the respective language which significantly simplifies the formalisms in the
following chapters. The intermediate languages are based on the lambda calculus and are
described in Section 3.2.

The key technique for replacing nested data-parallel computations by flat ones is the flat-
tening transformation, first suggested by Blelloch and Sabot (1990) and later refined and
extended by Chakravarty and Keller (2000). It proceeds by selecting an efficient, flat rep-
resentation for nested data structures and adjusting the computations accordingly. Section
3.3 introduces and justifies the flat representation for standard product-sum types. Section
3.4 describes how primitive operations on this representation are implemented using an ap-
proach to generic programming introduced by Hinze (2000). Finally, Section 3.5 explains how
user-specified computations are modified to operate on the generated flat data structures.

Although we discuss several new insights into the compilation of NDP programs below, this
chapter mainly reviews and explains already known techniques. As these cannot, in general,
handle higher-order functions, we do not consider the latter in our exposition, with a few
exceptions necessary for providing a context to the discussion. The next chapter expands on
the material presented here and describes the approach to compiling higher-order parallelism
which constitutes a key contribution of this work. Furthermore, we do not formally define the
transformations and languages until Chapter 5; the account here only explains their important
aspects to aid the understanding of the formal development.
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Figure 3.1 Compilation of NDP programs

3.1 Compilation by transformation

Compilation by transformation is a well-established approach to compiling high-level lan-
guages (Kelsey and Hudak, 1989; Peyton Jones, 1996). It increases the modularity of compilers
and makes them easier to develop and maintain. Furthermore, the individual transformations
are usually self-contained and, thus, can be specified and reasoned about independently from
one another.

Keller and Chakravarty (1999) have demonstrated the merits of this strategy in the con-
text of nested data parallelism. In fact, due to the complexity of the flattening transformation
it is particularily important to cleanly separate it from subsequent optimisation passes inde-
spensable for generating efficient machine code. Without this separation, the formalisation of
flattening and the proof of its correctness, two major contributions of this dissertation, would
not be possible.

Figure 3.1 illustrates the structure of an NDP compiler. A program written in a high-level
language — Haskell, in our case, — is compiled to target code by the following steps.

Desugaring translates the program into a much smaller and more manageable core language
by eliminating high-level constructs, such as comprehensions, and replacing them by
equivalent lower-level code.

Closure conversion separates code from data and allows the two to be manipulated inde-
pendently by using an explicit representation for function closures and rewriting func-
tions such that they contain no free variables.

Flattening eliminates nested uses of data parallelism, derives an efficient representation for
parallel arrays used in the program and transforms the computations such that they
operate on the new representation.
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Code generation, preceded by several optimisation passes, maps the flat data-parallel pro-
gram to code directly executable on the target machine.

Of these steps, we only discuss closure conversion and flattening in the present disserta-
tion. Desugaring, which includes various correctness checks such as type checking, is a well-
understood process (Aho et al., 1986). Optimisation and generation of target code are the
subjects of innumerable textbooks and research papers. In particular, Keller (1999) introduces
a number of optimisation techniques specific to nested data parallelism.

3.2 Intermeditate languages

When considering a program transformation an important decision is whether to define it such
that it simply rewrites a program without changing the underlying language or to specify it as
a translation between two different languages. Neither of the two strategies is unconditionally
better than the other. In the former case, only one language has to be defined; in the latter, the
constraints and invariants introduced by the transformation can be enforced by the grammar
of the target language, obliviating the need for additional validity checks.

For the transformations considered in this work, the second approach is clearly preferable.
In particular, the proposed mechanisms for handling higher-order functions within the flat-
tening transformation crucially rely on the separation of code and data achieved by closure
conversion, so much so, in fact, that they cannot be specified in a manageable way if this
separation is not enforced by the language. Thus, we formulate both closure conversion and
flattening as translations between intermediate languages, each of which reflects the specific
requirements of the corresponding compilation phase. As depicted in Figure 3.1, we use the
following intermediate languages.

• λP is a variant of the monomorphic lambda calculus extended with parallel arrays. En-
hanced lambda calculi are customarily used as a minimal but still sufficiently expressive
intermediate representation in functional compilers.

• λC , the language of explicit closures, is based on λP , sharing its support for nested data
parallelism. However, it captures the semantics of closure conversion by allowing only
one variable to be in scope at a time, thus ruling out currying and partial applications
of functions. The latter are replaced by explicit closures, i.e., objects which represent
partial applications such that the functions and their arguments can be accessed inde-
pedently.

• λA, the language of flat arrays, shares many of its features with λC , but restricts the
support for data parallelism to flat arrays with elements of primitive types. Moreover,
its type system is slightly more involved due to the way flattening maps algebraic data
types to more efficient representations.

3.2.1 Monomorphism

The description of the intermediate languages immediately raises an important question.
Haskell is, of course, a language with strong support for polymorphic and generic program-
ming. Why, then, do we restrict ourselves to the monomorphic lambda calculus? This decision
is has been influenced by two factors. First, Haskell’s type system is not powerful enough to
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transparently handle all aspects of the flattening transformation. We will see below that the
type of parallel arrays is not a proper algebraic type constructor but, rather, a type function,
which is resolved statically during compilation. The mechanisms provided by Haskell are in-
sufficient for handling this kind of polymorphism. Chakravarty et al. (2005a,b) demonstrate
how this shortcoming can be rectified and, in fact, use nested data parallelism as a motivating
example. Their approach, however, relies on type classes and including this feature in the
intermediate languages has been considered impractical.

More importantly, perhaps, the problems discussed in this dissertation are entirely or-
thogonal to the issue of polymorphism. In particular, we expect the proposed techniques
to extend naturally to the second-order lambda calculus (Girard, 1971; Reynolds, 1974), a
formalism which is used as the intermediate representation by, among others, the Glasgow
Haskell Compiler. Therefore, the inclusion of polymorphism would complicate and obscure
the formal development without leading to significant new insights.

3.2.2 Types

Unfortunately, the important aspects of the intermediate languages cannot be justified without
explaining the principles underlying closure conversion and flattening. Moreover, while the
pure lambda calculus is an excellent internal representation for a compiler, it hardly makes
for readable examples. Thus, we do not formally introduce the intermediate languages until
Chapter 5. In this and the next chapter, we use a rather informal and more intuitive notation
which is based on Haskell’s syntax. We are careful, however, not to use any features which
cannot be easily rewritten to conform to the grammar of the intermediate languages. In
particular, we abandon high-level type definitions in favor of a more basic set of types. These
include

• the primitive types Int, Bool and Float,

• the unit type 〈〉, whose only element is, too, denoted by 〈〉,

• primitive unboxed arrays ArrInt and ArrBool, which have a parallel semantics and are
described in Section 3.3.1,

• products types of the form τ1 × τ2,

• sum types of the form τ1 + τ2,

• parallel array types [:τ :],

• µ-recursive types of the form µα.τ ,

• function types of the form τ1 → τ2 and

• closure types introduced in Section 4.2.

A crucial part of our approach to supporting higher-order functions in NDP programs
is the elimination of currying by means of closure conversion. Consequently, λC and λA

allow functions only to have one parameter. In the following, we distinguish between curried
primitives supported by λP , and uncurried ones provided by the other two intermediate
languages by typesetting them in a different font. For instance, repP refers to the curried
form of replication in λP :
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repP :: Int→ α→ [:α:]

whereas repP is the uncurried version:

repP :: Int× α→ [:α:]

In general, we assume that the curried versions are implemented in terms of the uncurried
ones. Moreover, we will be careful to only use currying when presenting code which has not
yet been transformed by closure conversion.

3.3 Representation of arrays

The overriding concern of a programmer implenting a parallel application is efficiency – if
performance did not matter she would not be writing a parallel program in the first place.
Thus, it is imperative that high-level NDP programs are translated into code which runs very
efficiently on the underlying hardware. Unfortunately, functional languages, especially lazy
ones, have not been famous for their efficiency. In this section, we investigate the reasons
for their suboptimal performance and demonstrate how these can be eliminated in NDP
programs.

3.3.1 Unboxed arrays

One of the main reasons for the suboptimal performance of functional languages is the neces-
sity to use boxed representations even for primitive types like booleans or integers. A boxed
value is represented by a pointer to a heap object storing the object’s actual bit pattern. To
access an element of such an array the corresponding pointer has to be followed; a traversal of
the entire array implies following all pointers. Moreover, in a lazy language, an object pointed
to from the array has not necessarily been evaluated. Instead, it might be represented by a
thunk, i.e. a deferred computation which has to be executed before its value can be accessed.

Such a representation is very unfortunate with respect to performance. The additional
operations necessary to dereference the pointers already might slow down the computations
significantly. Much worse, however, is its impact on the locality of data and code. Modern
computers rely on caches and prefetching to avoid expensive memory accesses. Both mech-
anisms perform best when the traversed data is stored in a contiguous block of memory.
However, with a boxed representation only the pointers are stored in a contiguous block; the
element objects themselves might lie anywhere on the heap. Moreover, evaluating a thunk
might cause the execution of an arbitrary amount of code not related to the traversal itself.
In the worst case, this will remove the traversal loop from the instruction cache and slow
down the computation even further.

This is in stark contrast to an unboxed representation, where the array elements are stored
directly in the array object. This is the representation used by all programming languages
popular in the high-performance field, in particular by C and Fortran. In fact, even functional
languages often provide unboxed arrays for this reason (e.g. UArray in Haskell). Typically,
however, they can only store values of primitive types, but even in this case unboxing has
important consequences, trading flexibility for performance. In particular, unboxed types
cannot represent thunks, i.e. delayed computations, and are therefore always strict. Moreover,
they are of limited use in a polymorphic context. Launchbury and Paterson (1996) and Peyton
Jones and Launchbury (1991) discuss these trade-offs in detail.
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The above implies that an implementation of NDP has to use unboxed arrays as much as
possible if it is to be competitive with other solutions. Another reason for doing so becomes
apparent if we take into consideration our target architecture. Data structures containing
pointers (such as boxed arrays) are notoriously hard to represent and communicate efficiently
on distributed memory machines. Typically, a notion of global addresses is required by not
readily available. In contrast to this, distributing unboxed arrays across processors is very
easy; we have already described the basic strategy in Section 2.6.

Consequently, parallel arrays in λP , the target language of the flattening transformation,
can only store elements of primitive types. This allows them to use an unboxed representation
but is still sufficient to express the flat parallelism generated by the flattening transformation.
The corresponding array types are denoted by Arrτ where τ is a primitive type; terms of these
types are constructed by {x1, . . . , xn}. Note that in contrast to the type constructor [:·:], these
types are not polymorphic. Thus, while they support the same set of operations as the more
general parallel arrays used so far, these operations can be implemented very efficiently due
to their closeness to the underlying hardware as well as to the absence of polymorphism.

3.3.2 Flattening parallel arrays

Blelloch and Sabot (1990) and Chakravarty and Keller (2000) have demonstrated how parallel
arrays can be mapped to an efficient representation utilizing only unboxed arrays of primitive
types. The key idea is to select a suitable representation based on the type of the array
elements. Due to the requirements of a non-strict language, we slightly modify the translation
algorithm described in this previous work. To understand the underlying concepts, let us first
consider the flattening of non-recursive product-sum types.

Primitive types. For arrays containing elements of primitive types, the translation is straight-
forward — we simply use the corresponding unboxed arrays. Note, however, that an
unboxed array diverges if any of its elements does. In Chapter 6, we will see that the
flattening transformation is only correct correct if the length of an array is still available
even if its elements diverge. Therefore, the length is stored a separate integer value such
that, for example, [:Bool:] is transformed to Int× ArrBool. Although the intermediate
languages only provide Int and Bool as primitive types, this scheme easily extends to
other types, such as Float, as long as corresponding unboxed arrays are available. In
the following discussion, we will sometimes use Float in examples.

Unit type. The type [:〈〉:] forms a special case. Since terms of unit type can only have one
value, namely 〈〉, there is no need to store the individual elements separately. Instead,
it is sufficient to know the overall number of the elements and whether any of them
diverges. Thus, [:〈〉:] is transformed to Int× 〈〉, the second component recording the
termination behaviour of the elements.

Products. An array of pairs is represented by a pair of arrays such that one of them
contains all left components and the other all right ones. Obviously, both will have
the same length as the original array; nevertheless, the length is stored separately as
for primitive types and for the same reasons. Thus, [:τ1 × τ2:] will be represented as
Int× [:τ1:]× [:τ2:]. Note that the two arrays representing the first and second compo-
nents of the pairs will undergo further transformation such that ultimately, only unboxed



3.3 Representation of arrays 21

[:Int:] =⇒ Int× ArrInt [:τ1 × τ2:] =⇒ Int× [:τ1:]× [:τ2:]
[:Bool:] =⇒ Int× ArrBool [:τ1 + τ2:] =⇒ [:Bool:]× [:τ1:]× [:τ2:]
[:〈〉:] =⇒ Int× 〈〉 [:[:τ :]:] =⇒ [:Int:]× [:τ :]

Figure 3.2 Transformation of product-sum types

arrays are used in the representation. For instance, the term [:〈1,True〉, 〈2,False〉:] is
transformed to 〈2, [:1, 2:], [:True, False:]〉 and then to 〈2, 〈2, {1, 2}〉, 〈2, {True,False}〉〉.

Sums. The type [:τ1 + τ2:] is transformed in a similar manner. Again, two arrays of types
[:τ1:] and [:τ2:] are used to store elements of the form Left x and Right y , respectively.
In contrast to products, the two arrays do not in general have the same length since a
different number of left and right elements can be present. An array of booleans, the
selector, denotes for each element whether it has been constructed with Left or Right.1

According to this strategy, the term [:Left 1, Right False, Left 2:] is represented as
〈[:False, True, False:], [:1, 2:], [:False:]〉. More generally, the type [:τ1 + τ2:] is trans-
formed to [:Bool :]× [:τ1:]× [:τ2:]. Again, parallel arrays are then eliminated completely
by recursively applying the transformation.

Nested arrays. At the heart of the flattening transformation lies the elimination of nested
arrays. This is achieved by storing all data elements of the subarrays in one flat data
array and tupling it with a segment descriptor, an array which contains the lengths of the
individual subarrays. For instance, the nested array [:[:1, 2:], [::], [:3, 4, 5:]:] is transformed
to 〈[:2, 0, 3:], [:1, 2, 3, 4, 5:]〉; the first array is the segment descriptor while the second one
is the data array. In general, the type [:[:τ :]:] is transformed to [:Int:]× [:τ :].

Figure 3.2 summarises the transformation rules. Let us return to the encoding of sparse
matrices introduced in Section 2.3 to see how this approach works in practice. Figure 3.3
shows the flat representation of the sparse matrix depicted in Figure 2.2 on page 10. Re-
call that the compressed row format is captured by the type [:[:Int× Float:]:]. In the
first step, the nesting is resolved, resulting in the segment descriptor 〈4, {2, 1, 0, 2}〉 (the
length component is omitted in Figure 3.3 and in most of the following figures) and the
as yet untransformed data array of type [:Int× Float:]. The latter is then translated to
Int× (Int× ArrInt)× (Int× ArrBool), such that the first array contains all indices and the
second one the data values.

3.3.3 Strictness

We have already mentioned that parallel arrays are not strict in the sense that their length
is still available even if one of their elements diverges. This property is crucial for ensuring
the correctness of the transformation. However, the flat representation is based on unboxed
arrays which are strict in all elements. For instance, the elements of [:1,⊥, 2:] are stored in an
unboxed array in the flat representation. Since one of the elements diverges, the entire unboxed
array diverges as well. This is precisely why the array’s length is always stored separately

1This is precisely the reason why a built-in boolean type is needed instead of 〈〉 + 〈〉. Of course, a language
can still make just the algebraic boolean type available to the programmer and only use the built-in one
internally.
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(0,2.5) (3,1.4) (1,3.7) (0,5.2) (2,4.3)

Segment descriptor2 1 0 2

Data(0,2.5) (3,1.4) (1,3.7) (0,5.2) (2,4.3)

Segment descriptor2 1 0 2

Indices

Values

0 3 1 0 2

2.5 1.4 3.7 5.2 4.3

Figure 3.3 Flattening of a sparse matrix

from the data, even in cases where this might, at first sight, be unnecessary. Moreover, this
obviously has far-reaching consequences for the semantics of nested data-parallel programs
in a non-strict setting. A more thorough investigation of the interactions between flattening
and strictness is provided in Chapter 6.

3.3.4 Recursive arrays

In Section 2.5, we have considered Wang’s algorithm for solving tridiagonal equation systems,
encoded by the Haskell type [:[Row ]:]. The flat representation for such data structures is
a natural consequence of the transformation rules introduced so far. In this section, we
will consider the type [:[Int]:], i.e. parallel arrays of integer lists, to simplify presentation.
However, the results are easily transferred to arbitrary sequential structures embedded in
parallel arrays.

Integer lists are defined by the type µα.〈〉 + Int× α. By the definition of µ-recursion, this
is equivalent to the fixed point of the equation

IntList = 〈〉+ Int× IntList

How will an array of such lists be represented? By applying the array constructor to both
sides of the equation, we obtain

[:IntList :] = [:〈〉+ Int× IntList :]

Here, the right-hand side can be transformed according to the rules introduced in the previous
section, yielding

[:IntList :] = [:Bool:]× [:〈〉:]× (Int× [:Int:]× [:IntList:]
︸ ︷︷ ︸

[:Int×IntList :]

)
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Figure 3.4 Flat representation of an array of integer lists

By substituting a type name, e.g. IntList ↑, for [:IntList :], we obtain a proper recursive type
equation for the type of integer lists

IntList↑ = [:Bool :]× [:〈〉:]× (Int× [:Int:]× IntList ↑)

This is clearly equivalent to the type µβ.[:Bool :]× [:〈〉:]× (Int× [:Int:]× β). Thus, the flat
representation of a recursive data type can be obtained by simply applying the relevant
transformation rules to its defining equation. The actual transformation introduced in Section
5.5.1 is slightly more involved; however, the underlying principle is the same and we will
assume that the above mechanism is used for the rest of this chapter.

It is instructive to investigate the implications this technique has on a program’s paral-
lelism and the representation of recursive data structures. Consider, for instance, the term
[:[1, 2, 3], [], [4, 5]:]. Here, we use [x1, . . . , xn ] to denote an IntList with n elements. With our
definition of IntList , this is clearly equivalent to [:Left 〈1, [2, 3]〉, Right 〈〉, Left 〈4, [5]〉:], the
first and third elements being represented by cons nodes and the second one by a nil node.
By flattening this term using the rule for sum types, we obtain the triple of parallel arrays
〈[:True, False, True:], [:〈〉:], [:〈1, [2, 3]〉, 〈4, [5]〉:]〉. Here, the booleans in the selector array in-
dicate whether the corresponding list is non-empty. The second array contains as many 〈〉 as
there are empty lists. Finally, the third one stores the topmost cons nodes of the non-empty
lists. It is flattened further to 〈2, [:1, 4:], [:[2, 3], [5]:]〉, such that the heads and tails of the non-
empty lists are stored in separate arrays; the latter will again be flattened. Ultimately, the
flattening transformation will traverse the element lists simultaneously, generating for each
level a selector used to distingiushed empty and non-empty lists and an integer array which
stores the head elements of the non-empty lists. Figure 3.4 illustrates this mechanism.

This approach has two immediate consequences for computations on recursive data struc-
tures in a data-parallel context. First, while all recursive elements of a parallel array will
be processed simultaneously, their traversal will happen sequentially: the first elements of all
lists will be processed in one step which, however, must be completed before the processing
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of the second elements can begin. This gives the programmer a rather fine-grained control
over the degree of parallelism exposed in a program. In particular, it is possible to enforce
sequential processing of data by storing it in a sequential data structure — this is precisely
the technique used in the encoding of Wang’s algorithm.

A somewhat subtle limitation of this transformation becomes apparent if we contrast the
definition of IntList with the type equation derived for IntList ↑. The former uses a sum type
as an anchor for the recursion. However, there is no such anchor in the latter — it defines
a recursive type with only infinite elements. In fact, flattening as discussed in this work will
generate infinite types whenever type recursion is used in a parallel context. This is not a
problem in a non-strict language which can deal with corresponding infinite terms. In a strict
language, however, sum types would have to be injected into the flat representation to provide
termination points for the recursion.

3.4 Operations on the flat representation

The transformations described in the previous sections illustrate an important aspect of our
approach: the type of parallel arrays is not algebraic and does not have a parametrically
polymorphic definition. Instead, it is treated as a function over types which is resolved at
compile time by the flattening transformation. It is precisely this property which enables the
selection of the most efficient representation for each type of array elements.

Unfortunately, this translation scheme significantly complicates the implementation of
primitive operations on parallel arrays. To see why, let us compare parallel arrays with
standard algebraic types, such as lists.

In Haskell, the type of generic lists can be defined as follows:

data List α = Nil | Cons α (List α)

The shape of the data structure is fixed by this definition and does not depend on the concrete
type substituted for α. Consequently, a single, generic implementation of a function over lists,
such as length , can be provided which is valid for all possible instantiations of List . Crucially,
this is only possible because the definition of List is parametrically polymorphic, i.e. all lists
share the same representation regardless of their element type. This is not true for parallel
arrays, however, as their representation depends on the concrete instantiation. Thus, no single
implementation of, e.g., lenP exists which works for arrays of products as well as for arrays
of sums.

A closer look at the transformation rules reveals, however, that a finite number of imple-
mentations is sufficient to completely specify the semantics of lenP. Recall, for instance, that
arrays of products are represented as Int× [:τ1:]× [:τ2:], with the Int component storing the
array’s length. Thus, it is possible to provide a definition of lenP which, while specialised for
arrays of products, is generic over all possible instantiations of such arrays.

lenP prod :: [:α× β:]→ Int

lenP prod 〈n, 〈xs, ys〉〉 = n

The validity of this definition depends crucially on the fact that it exhibits precisely the
same degree of genericity as the corresponding transformation rule. We can describe the
semantics of lenP by providing one such definition for each transformation rule. By doing so,
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though, we end up with a family of functions which, while related on the semantical level, are
completely independent entities in the language. This is clearly not desirable. The situation
can be rectified by extending the language with a mechanism for passing type arguments to
functions and for using them to select an appropriate computation path. Then, a generic
version of lenP is easily obtained by combining the individual, type-specific implementations
into a single definition.

lenP〈τ〉 :: [:τ :]→ Int

lenP〈〈〉〉 〈n, u〉 = n
lenP〈Bool〉 〈n, bs〉 = n
lenP〈Int〉 〈n, is〉 = n
lenP〈τ1×τ2〉 〈n, 〈xs, ys〉〉 = n
lenP〈τ1+τ2〉 〈bs, 〈xs, ys〉〉 = lenP〈Bool〉 bs
lenP〈[:τ :]〉 〈ss, xs〉 = lenP〈Int〉 ss

Here, we use angle brackets to denote type parameters; moreover, we use pattern matching
on types in the definition. This notation follows Hinze (2000), who has demonstrated that
such type-indexed functions can be supported in a functional language and are, in fact, useful
in their own right. Note that under this definition, the name lenP does not refer to a function
of polymorphic type ∀α.[:α:]→ Int. Rather, it denotes a family of functions such that each
instantiation lenP〈τ〉 is a monomorphic function of type [:τ :]→ Int. This subtle distinction is
crucial in the context of this work as our intermediate languages do not support polymorphism.

The above implementation relies on the transformation rules introduced previously, yield-
ing the length component for arrays of primitive types and of products, the length of the
selector for arrays of sums and the length of the segment descriptor for nested arrays. In gen-
eral, type-indexed functions are defined by induction on the structure of their type parameters
such that each case is handled by a specialised algorithm. As a more involved example, let
us consider the following definition of replication:

repP〈τ〉 :: Int× τ → [:τ :]
repP〈〈〉〉 〈n, 〈〉〉 = 〈n, 〈〉〉
repP〈Bool〉 〈n, b〉 = 〈n, repBool 〈n, b〉〉
repP〈Int〉 〈n, i〉 = 〈n, repInt 〈n, i〉〉
repP〈τ1×τ2〉 〈n, 〈x , y〉〉 = 〈n, 〈repP〈τ1〉 〈n, x 〉, repP〈τ2〉 〈n, y〉〉〉
repP〈τ1+τ2〉 〈n, Left x 〉 = 〈repP〈Bool〉 〈n,False〉, 〈repP〈τ1〉 〈n, x 〉, [::]〉〉
repP〈τ1+τ2〉 〈n, Right y〉 = 〈repP〈Bool〉 〈n,True〉, 〈[::], repP〈τ2〉 〈n, y〉〉〉
repP〈[:τ :]〉 〈n, xs〉 = 〈repP〈Int〉 〈n, lenP〈τ〉 xs〉, repeatP〈τ〉 〈n, xs〉〉

Here, we assume that repBool and repInt generate corresponding unboxed arrays. In con-
trast to lenP, the definition of repP make extensive use of recursion. For instance, replicating
a tuple of type τ1 × τ2 to an array of tuples of flat type Int× [:τ1:]× [:τ2:] is performed by
replicating the two tuple components to the required length. Binary sums are replicated in a
similar way; in this case, however, the sum constructor determines the shape of the selector
and the array which will hold the replicated element. Arrays are replicated to nested arrays
of the form 〈ss, ys〉, where ss is the segment descriptor and ys the data array. The former is
easily obtained by replicating the length of the argument array. The latter is computed by
means of the primitive repeatP which repeats an array n times such that, e.g.,

repeatP 〈3, [:4, 5:]〉 = [:4, 5, 4, 5, 4, 5:]
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Of course, repeatP can be implemented by repeatedly concatenating the argument ar-
ray. This would be rather inefficient, however. A better solution is to use the type-indexed
approach again, achieving constant parallel complexity.

3.5 Transforming computations

The primary method of performing parallel computations in the NDP model is the simulta-
neous application of a function to every element of a parallel array, a pattern captured by the
mapP combinator. However, an efficient and conceptually clean implementation of mapP is
far from trivial and requires significant support from the compiler. This becomes obvious if
we consider that in the flat representation, the individual array elements are not stored sep-
arately; instead, the data is distributed over a potentially large number of primitive arrays.
Thus, the traversal of the array implied by the conceptual semantics of mapP simply cannot
be implemented directly.

An obvious solution would be to reconstruct each array element (perhaps by means of
indexing) before applying the function to it and flatten the results of the application. However,
this approach loses all benefits of the flat representation; in fact, we would be better off using
boxed values in the first place.

Fortunately, mapP can be implemented much more efficiently by making use of the follow-
ing property of flattening. Given a function f of type τ1 → τ2, it is possible to automatically
generate a lifted function f ↑ of type [:τ1:]→ [:τ2:] which, when applied to a flattened array,
will compute precisely the result of applying f to each element of that array. This implies
that the following equality holds:

mapP f = f ↑

In fact, this is essentially the implementation of mapP used in this work. Crucially, f ↑ works
directly on the flat array representation thereby avoiding the inefficiencies described above.

3.5.1 Lifting

The lifted version f ↑ of a function f is obtained by means of the lifting transformation. The
transformation is purely syntactical, i.e. f ↑ is derived from the implementation of f without
any additional information. Crucially, lifting as defined in this dissertation can only handle
uncurried functions.2 The basic idea is surprisingly simple and is best demonstrated with an
example.

Consider the following function which, for a floating-point value, computes the sinus of its
square root.

f :: Float→ Float

f x = sin (sqrt x )

Our goal is to derive a lifted version which will perform the same computation on each element
of an array. We will make the basic assumption that a lifted version is available or will be
made available through lifting for every function used in the program, including standard

2While Chakravarty and Keller (2000) provide a specification of lifting which does not exhibit this restriction,
their approach to flattening cannot handle some uses of partially applied functions.
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primitives. This implies, in particular, the existance of the functions sqrt ↑ and sin↑ which,
given an array of numbers, compute the square root and the sinus, respectively, for each of
them. The lifted version of f ↑ can then be obtained simply by substituting these functions
into the implementation of f :

f ↑ :: [:Float:]→ [:Float:]
f ↑ x = sin↑ (sqrt↑ x )

The following function, which computes 3x+y, represents a more complex example due to
the inclusion of constants and binary function applications. Here, addition and multiplication
have the uncurried type Int× Int→ Int; thus, these operations must be applied to tuples
which store both arguments.

g :: Int× Int→ Int

g x = (+) 〈(∗) 〈3, fst x 〉, snd x 〉

The simple lifting strategy employed in the previous example breaks down in this case. For
instance, the lifted multiplication operator ∗↑ has the type [:Int× Int:]→ [:Int:]; thus, if
∗↑ is to replace ∗ in the definition, it must be applied to an array of tuples derived from
the term 〈3, fst x 〉. We do not yet know how to lift the latter, however, because the tuple
constructor 〈·, ·〉 cannot be a function — in contrast to Haskell, where it essentially has
the type α→ β → α× β, it cannot be assigned a meaningful type if currying is disallowed.
Instead, our intermediate languages include tuples as a built-in feature and, in particular,
treat the tuple constructor as a syntactic form rather than a primitive function.

In lifting such terms, we make use of the following observation: a lifted function operates
in a parallel context determined by the shape of its argument. In other words, the length of
the argument array fixes the lengths of the arrays involved in the evaluation of the function.
For the above example, this leads to the following lifting strategy:

• the constant 3 is replicated to the length of the parallel context,

• the term fst x is transformed as before, by replacing fst with fst ↑,

• the tuples are lifted by zipping their lifted components.

This results in the following code derived for g ↑:

g↑ :: [:Int× Int:]→ Int

g↑ x = (+↑) (zipP 〈(∗↑) (zipP 〈repP 〈lenP x, 3〉
︸ ︷︷ ︸

lifted 3

, fst↑ x 〉), snd↑ x 〉)

To see that this implementation has the desired behaviour, let us consider how the application
of g↑ to an example array is evaluated.

g↑ [:〈4, 5〉, 〈6, 7〉:]
= (+↑) (zipP 〈(∗↑) (zipP 〈repP 〈lenP[:〈4, 5〉, 〈6, 7〉:], 3〉, fst ↑ [:〈4, 5〉, 〈6, 7〉:]〉),

snd↑[:〈4, 5〉, 〈6, 7〉:]〉)
= (+↑) (zipP 〈(∗↑) (zipP 〈repP 〈2, 3〉, [:4, 6:]〉), [:5, 7:]〉)
= (+↑) (zipP 〈(∗↑) [:〈3, 4〉, 〈3, 6〉:], [:5, 7:]〉)
= (+↑) (zipP 〈[:12, 18:], [:5, 7:]〉)
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= (+↑) [:〈12, 5〉, 〈18, 7〉:]
= [:17, 25:]
(=[:4 ∗ 3 + 5, 6 ∗ 3 + 7:])

In general, given a term of type τ , lifting generates a term of type [:τ :] which evaluates to
an array whose length is determined by the parallel context. The only exception are function
applications, where it simply replaces the function by its lifted version.

3.5.2 Vectorisation

The remaining question is how lifted functions are associated with their sequential counter-
parts. Clearly, if mapP f is to evaluate to f ↑, there must exist a mapping from f to f ↑.
NESL achieves this by providing only named, first-order functions and replacing the mapP
combinator with a form of array comprehensions. The expression

{f x : x in xs}

(apply f to each element of xs in parallel) is then transformed to f ↑ xs based on purely textual
manipulation of function names.

This method is unsatisfactory, however, if we want to be able to support both unnamed
and higher-order functions. Chakravarty and Keller (2000) suggest a different approach.
The entire program is vectorised by tupling each function with its lifted version. Ordinary
function application are translated to applications of the tuple’s first (sequential) component;
applications in array contexts use the second (lifted) component. The essential steps of this
vectorising transformation are as follows (here, τ ′ and e ′ denote the vectorised version of a
type τ and a term e, respectively).

• Function types of the form τ1 → τ2 are replaced by (τ ′
1 → τ ′

2)× ([:τ ′
1:]→ [:τ ′

2:]).

• A lambda term λx .e is replaced by the tuple 〈λx .e ′, λx .e↑〉, where e↑ is obtained by
lifting e to the context x as described above.

• Applications of the form e1 e2 are replaced by (fst e ′
1) e ′2, thus applying the sequential

function to the argument.

• Lifted functions are used in parallel contexts as necessary.

This strategy maintains the required association between sequential and lifted versions of
functions but does not impose any restrictions on how they can be used. While it does
introduce some inefficiencies by effectively enlarging the representation of functions at run
time, we expect these to be neglectable and, in many cases, easy to eliminate by subsequent
optimisations.

3.5.3 Lifted primitives

The requirement that a lifted version must exist for every function in a program obviously
applies to primitives, including type-indexed ones. Unfortunately, the lifted versions of the
latter cannot be derived by lifting their definitions. This is because type-indexed primitives
operate on the flat representation of parallel arrays, whereas lifting, as part of the flattening
transformation, only applies to computations operating on the nested representation. Thus,
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for every type-indexed primitive the standard prelude has to provide a lifted version with the
correct semantics.

For lenP, this is easily done. Given a nested array, its lifted version lenP↑ computes the
lengths of its subarrays. This information is already stored in the segment descriptor:

lenP↑ ::

[:[:α:]:]
︷ ︸︸ ︷

[:Int:]× [:α:]→ [:Int:]
lenP↑ 〈ss, xs〉 = ss

Other lifted primitives, however, can only be defined using the type-indexed approach. We
do not discuss their definitions here and refer the interested reader to Keller’s (1999) thesis.
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Chapter 4

Higher-order functions

One of the key aspects of functional programming languages is the treatment of functions
as first-class citizens. Functions can be passed as arguments to other functions, returned as
results and stored in data structures. This flexibility is one of the features (if not the main
one) which make functional languages so attractive (Hughes, 1989).

This freedom comes at a cost, though. In a typical functional program, computation
and data are highly intertwined. When translating NDP programs, however, it is necessary
to separate the two such that they can be manipulated independently. A prime example
are partially applied functions which occur whenever a curried function is applied to fewer
arguments than it expects. Partial application are unproblematic as long as they are not used
in a parallel context. However, the ability to treat such functions as data implies that they
can be stored in parallel arrays on which arbitrary array computations can be performed.

Unfortunately, the techniques used in the previous chapter for deriving flat representations
of parallel arrays are not directly applicable to arrays of functions. This is due to the fact that
ultimately, such arrays contain computations which, even in a functional language, cannot
be broken up into primitive items in the same way as was done for product-sum types in
the previous chapter. Closure conversion has already been introduced as a solution to this
problem. While still not allowing us to deconstruct computations, it separates them from the
embedded data for which a flat representation can be derived. This is achieved by representing
partial applications as closures, which store the function and the argument separately and
allow them to be accessed and manipulated independently from each other.

This turns out to be sufficient for the purposes of compiling nested data parallelism,
even in the presence of higher-order functions. In Section 4.1 we provide a more detailed
motivation for closure conversion by demonstrating how computations on arrays of functions
can be rewritten to operate on the already bound arguments of these functions, provided the
latter can be accessed at runtime. Section 4.2 describes closure conversion and introduces
some aspects of the two intermediate languages λC and λP not mentioned in the previous
chapter.

A key aspect of this transformation is that it replaces all functions in a program, including
those stored in arrays, by closures. In Section 4.3, we derive a flat representation for arrays of
closures generated in this way. Importantly, we do so by relying on parametric properties of
array operations rather than on ad-hoc mechanisms. Section 4.5 uses the same well-founded
approach to introduce the elimination of nested parallelism based on closures. Finally, in
Section 4.6 we describe a representation for a limited form of arrays of functions. These
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do not occur in closure-converted programs and are only intended for internal use by the
compiler. While not strictly necessary, they simplify the formalisation of flattening in the
next chapter.

As in the previous chapter, we have tried to keep the account fairly informal. In Chapters
5 and 6, the techniques and concepts introduced here are formalised and their correctness
proved.

4.1 Computation and data

Why are the techniques introduced in the previous section not sufficient to handle higher-order
functions? In Section 3.5.1, we have described how sequential computation can be transformed
into data-parallel ones such that they operate on entire arrays instead of individual elements.
The key idea was to generate, for every function occuring in the program, a version which is
lifted into array space. Thus, given a function f of type τ1 → τ2, its lifted version f ↑ would
have the type [:τ1:]→ [:τ2:].

This works well as long as functions are first-order. Consider, however, what happens if
τ1 or τ2 contain function types, as in the following example:

apply :: (α→ β)→ α→ β

According to the strategy described earlier, the lifted function apply ↑ will have the following
signature:

apply↑ :: [:α→ β:]→ [:α→ β:]

Here, lifting introduces arrays of functions and, obviously, it does so for every higher-order
function, including curried ones. While innocuous at first sight, this property of lifting is the
very reason why higher-order functions are not supported by the flattening transformation.

4.1.1 Mutable computations

To see why arrays of functions are so problematic, let us consider case distinction as an
example, since this operation highlights the major difficulties. The language λP provides the
primitive

case :: ((α→ γ)× (β → γ))× (α + β)→ γ

as the only means of inspecting and deconstructing sum types. Consider the following func-
tion:

f :: Int× (Int + Int)→ Int

f 〈m, Left n〉 = m + n
f 〈m, Right n〉 = n

By eliminating pattern matching and using case for case distinction, it can be rewritten to
conform to the grammar of λP :

f = λx . case 〈〈λn. fst x + n, λn. n〉, snd x 〉
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From this implementation, the flattening transformation must derive the lifted function f ↑.
Using the strategy described in Section 3.5.1, we obtain:

f ↑ :: Int× [:Int:]× (

[:Int+Int:]
︷ ︸︸ ︷

[:Bool:]× [:Int:]× [:Int:])→ [:Int:]
f ↑ = λx . case↑ (zipP 〈zipP 〈(λn. fst x + n)↑, (λn. n)↑〉, snd↑ x 〉)

The type of f ↑ is obtained by flattening [:Int× Int + Int:]→ [:Int:]. Note that case↑ is,
essentially, applied to three arguments:

• the function array denoted by (λn. fst x + n)↑,

• the function array denoted by (λn. n)↑ and

• the array of sums computed by snd ↑ x .

This is consistent with the type of case↑, which is easily derived from the signature of case:

case↑ :: Int× (Int× [:α→ γ:]× [:β → γ:]
︸ ︷︷ ︸

[:(α→γ)×(β→γ):]

)× ([:Bool:]× [:α:]× [:β:]
︸ ︷︷ ︸

[:α+β:]

)→ [:γ:]

How, then, can the lambda abstractions λn. fst x + n and λn. n be lifted? A first
attempt might be to simply employ the same algorithm used for lifting f , such that

(λn. fst x + n)↑ = λn. fst↑ x +↑ n
(λn. n)↑ = λn. n

This would imply that an array of functions of type [:τ → υ:] would be represented by a
function over arrays of type [:τ :]→ [:υ:] and, indeed, Chakravarty and Keller (2000) observe
that there is a strong connection, though not quite an isomorphism, between the two types.

Observe, however, what happens if f ↑ is applied to an argument such as, for instance, the
array [:〈1, Left 5〉, 〈3, Right 4〉, 〈7, Left 2〉:]. By the usual β-reduction rules, this array is
substituted for x , which implies that the following arguments are passed to case↑:

• the lifted function λn. [:1, 3, 7:] +↑ n,

• the lifted function λn. n and

• the array [:Left 5, Right 4, Left 2:], represented as 〈[:False,True,False:], 〈[:5, 2:], [:4:]〉〉.

The result of this computation should be [:6, 4, 9:] but, unfortunately, there exists no imple-
mentation of case↑ which could compute this result. This is because the two lifted functions
passed to case↑ represent the computations which should be performed on the left and right
components of the array of sums. In particular, λn. [:1, 3, 7:] +↑ n encodes the computation
which must be applied to the array [:5, 2:]; but this application leads to an error, as it ul-
timately invokes [:1, 3, 7:] +↑ [:5, 2:], thereby violating the precondition that lifted functions
always operate on arrays of the same length.

This problem arises because +↑ should only be applied to those tuples stored in x for
which the second component has been constructed with Left, but [:1, 3, 7:] is computed by
fst↑ x and, therefore, contains the first components of all tuples and has too many elements.
This is, unfortunately, a necessary consequence of the way substitution works in the standard
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lambda calculus. The abstraction λn. fst↑ x +↑ n contains references to the parameter x of
the outer function f ↑. As soon as x is bound to some value, this value also gets substituted
into the abstraction, thereby fixing the first argument to +↑. The binding happens too early,
however, as the array which +↑ should be applied to is not yet known at this point.

Conceptually, the function λn. fst↑ x +↑ n encodes a computation for every element of
the array of sums; however, only some of these should be executed due to the semantics of
case distinction. It turns out that this problem cannot be solved in the framework of the
standard lambda calculus since here, substitution and, hence, β-reduction can mutate com-
putations by replacing variables with data in lambda abstractions. The difficulties only arise
when the computation is intertwined with data, i.e., when a concrete array is substituted
for x . In the above example, the function λn. fst↑ x +↑ n encodes almost the correct com-
putation. This observation can be made explicit by replacing it with the equivalent term
(λx . λn. fst↑ x +↑ n) x . Now, the abstraction represents precisely the correct computation
which, however, is partially applied to an incorrect argument.

4.1.2 Functions in arrays

The previous discussion demonstrates that arrays of functions cannot be represented by func-
tions over arrays. This becomes even more obvious if we consider that the former must
support all array operations, such as concatenation and packing, a flexibility which the latter
cannot easily provide.

In fact, the semantics of case↑ crucially relies on this support. While Haskell’s type system
— and, consequently, the one adopted in this work, — is not powerful enough to express the
requirements on the lengths of array arguments, dependent types (Augustsson, 1998; Xi and
Pfenning, 1999) easily allow us to do so. For instance, using a rather informal notation, we
could write n × [:Int:]n to denote the type of tuples 〈n, xs〉 such that n is an integer and xs
an integer array of length n. Then, case↑ could be assigned the following type:

case↑ :: n × (n × [:α→ γ:]n × [:β → γ:]n)× ([:Bool:]n × [:α:]p × [:β:]q)→ [:γ:]n

This type captures the requirement that case↑, as every lifted primitive, expects all its ar-
guments to have the same length. This does not hold for all arrays passed to it, however, as
exemplified by the types [:α:]p and [:β:]q which, together with the selector [:Bool:]n , constitute
the flat representation of [:α + β:]n . Here, p and q depend on the number of left and right
elements; the only requirement (which we have not tried to encode in the dependent type) is
p + q = n.

Note, however, that the arrays of functions passed to case↑ must have the length n.
Assume that case↑ is applied to the function arrays fs , gs and the array of sums 〈sel , 〈xs, ys〉〉.
Then, the constraints encoded by the type imply that fs cannot be directly applied to xs ,
since the former contains n and the latter p ≤ n elements. This is, in fact, precisely the
difficulty we have encountered in the previous example.

This problem is easily solved if arrays of functions support the usual array operations. Con-
sider what happens in the previous example if, instead of lifting the abstraction λn. fst x + n,
we simply generate an array containing a separate function for each element of x , as encoded
by [:λn. 1 + n, λn. 3 + n, λn. 7 + n:]. The array can then be packed according to the selector,
retaining only those elements for the corresponding element of x has the form 〈m, Left n〉.
This results in [:λn. 1 + n, λn. 7 + n:], which can be applied elementwise to [:5, 2:] to perform
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Figure 4.1 Lifted case distinction

the desired computation, yielding [:6, 9:]. By the same mechanism, [:λn. n, λn. n, λn. n:] gen-
erated from the second abstraction can be packed and the applied to [:4:], which contains
the only element constructed with Right. The results of the two computations can then be
combined, again according to the selector, to ultimately obtain [:6, 4, 9:], the correct overall
result, as illustrated by Figure 4.1.

An obviously correct implementation of case↑ is easily derived from the principle described
above:

case↑ 〈n1, 〈〈n2, 〈gs, hs〉〉, 〈sel , 〈xs , ys〉〉〉〉 =
let

gs ′ = packP 〈not↑ sel , gs〉
hs ′ = packP 〈sel , hs〉
xs ′ = zipWithP 〈($), gs ′, xs〉
ys ′ = zipWithP 〈($), hs ′, ys〉

in
combineP 〈sel , xs ′, ys ′〉

Here, ($) is Haskell’s explicit application operator, i.e., g $ x = g x and, thus, the expression
zipWithP 〈($), gs ′, xs〉 denotes the elementwise application of the function array gs ′ to xs .
This is essentially the implementation of case↑ used in this work. Note that it crucially
depends on the ability to pack arrays of functions, which, as demonstrated earlier, is lost if
lifted functions can be mutated by substitution.

To summarise, the preceding discussion outlines the problems in handling functions with
embedded data or, equivalently, partially applied functions within the flattening framework,
especially in parallel contexts. The rest of this chapter is devoted to finding a representation
for arrays of functions which

• supports all array primitives,

• retains the data-parallel nature of the source program,

• has a clear and easy-to-understand semantics and

• does not introduce unacceptable inefficiencies.
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4.1.3 Boxed representations

A simple solution is to forgo the flat representation of function arrays and use boxed arrays
instead, for which operations such as packing and concatenation can be supported in the
obvious way — this is precisely what we have done previously by considering arrays containing
lambda abstractions. While attractive at first, this approach has a number of drawbacks.
Obviously, in the above example, the individual elements of the array bound to x would
have to be converted to boxed objects expected by fst and +. More generally, the unboxed
representation would have to be given up and its performance benefits lost for arguments of
partially applied functions. This, in turn, would imply that the following two functions, while
semantically equivalent, would have two very different performance characteristics.

f xs = mapP 〈sqrt , xs〉
g xs = zipWithP 〈($), repP 〈lenP xs, sqrt〉

︸ ︷︷ ︸

array of functions

, xs〉

Both functions compute the square root for each element of xs . However, while the imple-
mentation of f is straightforward, g first constructs an array containing sqrt in every position
and then applied it elementwise to xs. Clearly, f will be much more efficient than g if a
boxed representation is used in the implementation of the latter. Introducing such non-
obvious performance traps into a general-purpose functional language is unacceptable from
the programmers’ point of view.

More importantly, perhaps, this still does not solve all problems caused by partially applied
functions. In a parallel setting, array elements often have to be communicated between
processors due to load balancing concerns or because the programmer has requested the
communication explicitly. Consider, for instance, the expression foldP (◦) fs which reduces
an array of functions by composing its elements. On a distributed memory machine, fs will
be distributed across processors such that each node only stores some of the functions in
its local memory. The result of the computation, however, must be available in the local
memory of every node, i.e., the individual functions will have to be communicated in some
way. If fs contains partially applied functions, their already bound arguments will have
to be communicated as well, thus requiring a general mechanism for sending and receiving
arbitrary boxed objects, including thunks. While such mechanisms exist, they are based on
virtual shared memory and have a non-trivial impact both on the complexity of the run-time
system and on the performance of parallel programs (Loidl, 2002).

Finally, the interactions with the data-parallel programming model must be considered. So
far, we have assumed that at any given moment, all processors perform the same computation.
For many parallel algorithms, this principle leads to a very natural implementation with little
synchronisation and communication. Maintaining this property becomes difficult, though,
if the above representation is used. Now, a parallel array may contain arbitrary functions.
When such an array is to be applied elementwise to some argument array, different strategies
can be chosen.

• All applications are performed in parallel, even if this causes two different functions
to be applied at the same time. This does not lead to problems as long as no paral-
lel computations are involved. Once that happens, however, different processors will
in general have to execute different parallel operations at the same time, thereby in-
validating several key assumptions underlying the usual strategy of implementing data
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parallelism. This is not merely a theoretical issue — in fact, it is not at all clear how
such computations can be supported.

• The runtime system somehow keeps track of equivalence between element functions and
applies only equivalent ones in parallel. Still, this does not ensure that the transformed
program is data parallel since applications of the same function to different arguments
might follow different computation paths, ultimately causing different parallel opera-
tions to be executed simultaneously.

• The applications are performed sequentially, one after another. For the example given in
Section 4.1.1, this implies that, e.g., the additions are serialised even though they could
be easily executed in parallel. Thus, this strategy is overly pessimistic and unacceptable
for performance reasons.

All in all, it becomes evident that in the long run, a boxed representation causes more
problems than it solves and has to be rejected.

4.1.4 A calculational approach

Let us now take a step back and investigate how operations on arrays of partially applied
functions can be described from a semantical point of view. Consider, for instance, the term
packP 〈bs, mapP 〈(+), xs〉〉, i.e. the packing of an array containing partially applied functions
(here, we assume that (+) is curried). Crucially, this term can be evaluated by packing the
argument array first and then applying the addition to the result. This strategy is obviously
sound because packP and mapP satisfy the following equality:

packP 〈bs, mapP 〈(+), xs〉〉 = mapP 〈(+), packP 〈bs, xs〉〉

This insight suggests that in the example from Section 4.1.1, x should be packed before being
substituted into the abstraction. The example can be modified accordingly, but this principle
cannot be used to implement case↑, since it would have to be able to pack data which has
already been substituted into a function.

As a more involved example, let us consider the elementwise application of an array of
functions obtained by concatenation, as in the term zipWithP 〈($), fs +++ gs , xs〉. The same
result can be obtained by splitting xs into two arrays according to the lengths of fs and gs ,
applying the function arrays individually and concatenating the results:

zipWithP 〈($), fs +++ gs, xs〉 = zipWithP 〈($), fs, takeP 〈lenP fs, xs〉〉
+++ zipWithP 〈($), gs, dropP 〈lenP fs, xs〉〉

The two evaluation strategies are shown in Figure 4.2.

Note how the two laws discussed so far eliminate operations on arrays of functions by
performing suitable computations on arrays containing the arguments to which the former
are applied. Interestingly, a number of such laws can be derived. In fact, this principle
is easily recognisable as an application of parametricity (Wadler, 1989). In Section 4.3, we
expand upon this idea and show that all problematic operations on arrays of functions can
be eliminated using this strategy.

For our introductory example, this elimination can easily be performed at compile time
by a suitable transformation. Unfortunately, this is not always possible — the necessary
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Figure 4.2 Concatenation and elementwise application

bookkeeping is, in general, intractable and cannot be done statically. Thus, it must be
possible to make use of these transformations dynamically during the execution of a program.
For instance, when applied to an array of partially applied functions, packP must be able to
extract and pack the argument array. In general, this requires that already bound arguments
of partial applications can be manipulated by array operations at any time.

4.2 Closure conversion

Fortunately, closure conversion achieves exactly the required separation between code and
data. It does so by expressing all partial applications as closures which store the function’s
code and its environment, i.e., the arguments it has already been applied to, as two separate
components which can be accessed independently. Closure conversion has originally been
developed for the untyped lamdba calculus (Reynolds, 1972; Cousineau et al., 1985; Steele,
Jr., 1978); later, Minamide et al. (1996) reformulated it as a type-preserving transformation.
In this dissertation, we largely follow the simplified version proposed by Morrisett et al. (1999).
In contrast to this previous work, however, we introduce a novel, variableless target language
which syntactically enforces the crucial properties of closure-converted programs.

A simple example of this transformation is the conversion of the following function.

f :: Bool→ Int→ Bool

f = λb. λn. if b then n else 0

Here, the inner abstraction contains references to the variable b, which is bound by the outer
abstraction. Closure conversion transforms it such that it must be applied to a pair which
stores both b, its environment, and n, its actual argument. Accesses to the two variables are
replaced by accesses to the composite argument, as in the following code.

finner :: Bool× Int→ Int

finner = λy . if fst y
︸︷︷︸

b

then snd y
︸ ︷︷ ︸

n

else 0
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Note that this is just a simple instance of uncurrying. The outer function is transformed in
a similar manner. In this case, however, an environment is not needed as the function only
makes use of its direct argument and does not access any variables bound outside of its scope.
To keep the transformation consistent it still has to be given an environment of unit type.
The parameter is now a tuple of type 〈〉 × Bool.

To understand how the outer function is implemented, let us consider what happens when
it is applied to some tuple 〈〈〉, b〉. The environment of finner must then be bound to b; its direct
argument is not yet known, though. Such partial applications are represented by closures of
the form 〈〈f , τ, e〉〉 where

• f is the (closure-converted) closure function of type τ × τ1 → τ2,

• τ is the type of the environment and

• e is the function’s environment (of type τ).

In the above example, the closure 〈〈finner , Bool,True〉〉 would be created to represent the
partial application of finner to the boolean argument True.

For a program to be well-typed after closure conversion, the type of the environment may
not appear in the type of the closure. This becomes evident if we consider that given

g :: Bool→ Bool→ Int

h :: Int→ Bool→ Int

the terms g True and h 1 will have the same type, namely Bool→ Int. Thus, the two closures
representing these partial applications must also have the same type, even though the first
one will have a boolean-typed environment and the second an integer-typed one. Therefore,
the type of a closure depends only on the type of the missing argument and the type of the
result, but not on the environment. We denote the type of closures which, when applied to
a value of type τ1, yield a value of type τ2 by τ1 ⇒ τ2. The closure created by binding the
environment of finner would then have the type Int⇒ Int. The outer function from our
example is thus transformed to

fouter :: 〈〉 × Bool→ (Int⇒ Int)
fouter = λx . 〈〈finner , Bool, snd x

︸ ︷︷ ︸

b

〉〉

In general, closure conversion transforms every function of type τ1 → τ2 to a closure of
type τ1 ⇒ τ2. For our example, this implies that the function f will be transformed to a
closure of type Bool⇒ (Int⇒ Int). Indeed, the following code will be generated in this case
(note that in analogy to →, we assume ⇒ to be right-associative).

f :: Bool⇒ Int⇒ Int

f = 〈〈fouter , 〈〉, 〈〉〉〉

This is, in fact, necessary because the value of the closure’s environment is only known at
its definition site; the callers have no way of determining it. Thus, the environment of fouter
must be bound in the definition of f .
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4.2.1 Applying closures

We have not yet described how a closure can be applied to an argument. The semantics of this
operation is straightforward: it extracts the environment from the closure, tuples it with the
argument and applies the closure’s function to the resulting pair. We denote the application
of a closure c to some value x by c † x . Essentially, this operation can be implemented as
follows:

(†) :: (α⇒ β)× α→ β
〈〈f , τ, e〉〉 † x = f 〈e, x 〉

However, the flattening transformation is considerably simplified if closure application is built
into the language rather than provided as a library function. Thus, the above definition is
only a specification of the operation’s semantics rather than an actual implementation.

4.2.2 Eliminating variables

Let us consider what happens if a function contains more that one free variable, as in the
following example.

g :: Bool→ Int→ Int→ Int

g = λb. λm. λn. if b then m + n else 0

Again, the inner function is transformed by eliminating references to parameters of enclosing
abstractions and replacing them by references to the environment. In this case, the latter will
contain the values of both b and x ; thus, it has the type Bool× Int.

ginner :: (Bool× Int)× Int→ Int

ginner = λz . if fst (fst z)
︸ ︷︷ ︸

b

then snd (fst z)
︸ ︷︷ ︸

m

+ snd z
︸ ︷︷ ︸

n

else 0

The outer two abstractions are transformed as in the previous example:

gmiddle :: Bool× Int→ (Int⇒ Int)
gmiddle = λy . 〈〈ginner , Bool× Int, 〈fst y

︸ ︷︷ ︸

b

, snd y
︸ ︷︷ ︸

m

〉〉〉

gouter :: 〈〉 × Bool→ (Int⇒ Int⇒ Int)
gouter = λx . 〈〈gmiddle , Bool, snd x

︸ ︷︷ ︸

b

〉〉

g :: Bool⇒ Int⇒ Int⇒ Int

g = 〈〈gouter , 〈〉, 〈〉〉〉

Note that after closure conversion, at most one variable, namely the parameter of the
innermost lambda abstraction, is visible at any given point in the program. This becomes
evident if we inline ginner , gmiddle and gouter into the definition of g :

g = 〈〈λx .〈〈λy .〈〈λz .if fst (fst z ) then snd (fst z ) + snd z else 0,
Bool× Int, 〈fst y , snd y〉〉〉,

Bool, snd x 〉〉,
〈〉, 〈〉〉〉
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Here, the inner abstraction does not refer either to x or to y . In fact, it is precisely the
task of closure conversion to eliminate all references to free variables. This suggests that
closure-converted programs do not need variable names at all. Consequently, the language of
explicit closures, the target language of the transformation, abandons named value variables
in favour of a more concise notation. A lambda abstraction has the form λ•. e; within e, the
symbol • is used to reference the parameter. Thus, the definition of g is rewritten as follows:

g = 〈〈λ•.〈〈λ•.〈〈λ•.if fst (fst •) then snd (fst •) + snd • else 0,
Bool× Int, 〈fst •, snd •〉〉〉,

Bool, snd •〉〉,
〈〉, 〈〉〉〉

Crucially, by abandoning named variables we eliminate the problems associated with data
embedded into computations as discussed in Section 4.1. Since conceptually, all variables now
have the same name, substitution can no longer modify terms within a lambda abstraction.
Instead, the data which would be substituted directly into the code in the standard lambda
calculus is collected in environments. This implies that in the calculus described here, com-
putations are immutable and, in contrast to previous work, their immutability is enforced
syntactically. This property is formalised and discussed in more detail in Section 6.5.

4.2.3 Primitives

The elimination of curried functions has important consequences for the operations provided
by the standard prelude. Consider, for instance, the signature of mapP :

mapP :: (α→ β)→ [:α:]→ [:β:]

After closure conversion, no less than three versions of this operation will be used:

mapP :: (α⇒ β)× [:α:]→ [:β:]
—

mapP0 :: 〈〉 × (α⇒ β)→ ([:α:]⇒ [:β:])
mapP0 = λ•.〈〈mapP, α⇒ β, snd •〉〉

—
mapP :: (α⇒ β)⇒ ([:α:]⇒ [:β:])
mapP = 〈〈mapP0, 〈〉, 〈〉〉〉

Here, mapP is the primitive performing the actual computation, mapP is the curried closure
and mapP0 is an auxiliary function which binds the first argument. This is analogous to the
mechanisms discussed in the preceding sections; however, it is important to realise that all
three functions must be included into the standard prelude.

4.2.4 Notation

To avoid a proliferation of identifiers in the text, we adopt the following convention. As
described before, identifiers set in typescript refer to the uncurried primitives, whereas
those set in italics denote the corresponding closure in λC and λA, as in the above example,
or the curried primitive in λP . Auxiliary functions like mapP0 play no role in the following
exposition.
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Moreover, in informal discussions, we will use the notation 〈〈f 〉〉 to refer to the closure
representing the unapplied function f . Thus, 〈〈mapP〉〉 would denote the closure mapP . While
somewhat imprecise, this notation is sufficiently clear and unambiguous and avoids unneces-
sary verbosity.

4.2.5 Representation of closures

Commonly, existential types are used for encoding closures in a strongly-typed language
(Mitchell and Plotkin, 1988). The semantics of the type constructor ⇒ can be captured by
the following pseudo-Haskell type definition:

type α⇒ β = ∃τ.(τ × α→ β)× τ

There exists a large body of work on selecting the best representation for the environment
and on its effects on the run-time performance of functional languages (Shao and Appel,
1994; Appel and Jim, 1988; Wand and Steckler, 1994). However, for the purposes of this
dissertation, neither the representation of closures nor that of environments is relevant, as we
expect these issues to be resolved later in the compilation process. Consequently, we treat
closures as an abstract data type with a well-defined interface.

4.3 Array closures

Although the inclusion of closure conversion in the compilation of NDP programs has been
motivated by the desire to handle arrays of functions correctly and efficiently, we have not
considered how closures interact with parallelism so far. We will now demonstrate that closure
conversion fits very naturally with the flattening transformation and, in fact, is a complete
and lightweight solution to the problems we encountered earlier.

In the previous section, we described how the transformation replaces functions by clo-
sures. Clearly, this implies that arrays of functions will be converted to arrays of closures.
Thus, we mainly concentrate on deriving an efficient representation for the latter; while we
briefly discuss arrays of functions in Section 4.6, they play only a minor role in the trans-
formation since they are severly restricted and do not occur in closure-converted programs
unless introduced by subsequent optimisations.

4.3.1 Vectorisation of closures

First, however, it is important to consider how closures are treated by vectorisation. Recall
that the main purpose of the latter is to tuple each function with its lifted version, as de-
scribed in Section 3.5.2. Every closure represents a partial application and thus contains a
function which will be transformed accordingly. After vectorisation, a closure 〈〈f , τ, e〉〉 will
then be represented by 〈〈〈f ′, f ↑〉, τ ′, e ′〉〉 where τ ′ and e ′ are the results of vectorising τ and e,
respectively, f ′ is the vectorised version of f and f ↑ its lifted version. Thus, after flattening,
closures store pairs of functions such that the second one is the lifted version of the first. We
will see below that our compilation strategy crucially relies on this fact.

Obviously, the closure application operator has to be modified to account for this. After
vectorisation, its has the following semantics.

〈〈〈f , f ↑〉, τ, e〉〉 † x = f 〈e, x 〉
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Figure 4.3 An array closure

Here, the sequential version of the closure’s function is applied to the environment and the new
argument. This corresponds directly to the semantics of closure application before flattening
as described in the previous section.

4.3.2 Arrays of closures

How, then, can arrays of closures be represented? To answer this question, let us consider
a simple form of such arrays, namely those generated by applications of mapP, as in, e.g.,
mapP 〈〈〈+〉〉, xs〉. Here, the resulting array will, in each position, contain a partial application
of the same function (i.e., (+) in this example) to the corresponding element of xs . This
suggests that such arrays can be represented much like regular closures, except that they
should store arrays of environments, such that each element defines the environment of the
closure at the corresponding position.

Indeed, this is the representation we use in this work. An array of closures is transformed
to an array closure of the form 〈〈:〈f , f ↑〉, τ, es:〉〉, where

• f and f ↑ are functions of types τ × τ1 → τ2 and [:τ × τ1:]→ [:τ2:], respectively,

• τ is the type of the individual environments and

• es is the array of environments of type [:τ :].

We denote the type of such closures by [:τ1:] V [:τ2:]; the flattening transformation replaces
all occurences of [:τ1 ⇒ τ2:] by this type. Note that array closures only appear in λA where
the types [:τ1:] and [:τ2:] are flattened and the type constructor [:·:] eliminated. However, for
the sake of readability of the informal presentation we will continue to use a mixed notation,
considering array types and their flat representations to be equivalent.

While the above representation allows for differing environments, it requires the function to
be same at every position of the array. Although this may seem like a rather severe restriction,
we will see below that this approach is entirely sufficient for representing arbitrary closure
arrays and, in fact, ensures that the semantics of generated code is consistent with the data-
parallel model. In particular, it naturally supports operations such as concatenation, as well
as the nesting of closure arrays, discussed in Sections 4.4 and 4.5, respectively.

With this representation, the partial application of a curried function to each element of
an array simply constructs an array closure which, in addition to the function, stores the
argument array as the environment. For instance, mapP 〈〈〈+〉〉, xs〉 ultimately evaluates to
〈〈:〈(+), (+↑)〉, Int, xs:〉〉. Figure 4.3 illustrates this representation.
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4.3.3 Elementwise application

Perhaps the most important operation on array closures is their elementwise application to
arrays of arguments. Although we have previously used zipWithP 〈($), fs, xs〉 to express this
operation, it must be provided as a built-in operator in λA. In analogy to †, the application
of sequential closures, we denote the elementwise application of array closures by ‡. The
semantics of this operation is as follows:

(‡) :: ([:α:] V [:β:])× [:α:]→ [:β:]
〈〈:〈f , f ↑〉, τ, es:〉〉 ‡ xs = f ↑ (zipP 〈es, xs〉)

Recall that the closure represents the partial application of f to each element of es. Thus, the
result of the elementwise application contains, at each position i , the term f 〈ei , xi 〉, where
ei and xi are the elements of es and xs , respectively, at that position. This is precisely the
array obtained by mapping f over or, equivalently, applying f ↑ to zipP 〈es, xs〉.

4.3.4 Polymorphic operations

In Section 4.1.4, we introduced rewriting rules which replaced operations on arrays of partially
applied functions by those on their arguments. Array closures, by providing direct access
to the already bound arguments, allow these rules to be used for implementing primitive
operations. Consider, for instance, the following rule (here, we assume that f is a binary
function):

packP 〈bs, mapP 〈〈〈f 〉〉, xs〉〉 = mapP 〈〈〈f 〉〉, packP 〈bs, xs〉〉

By replacing applications of mapP by array closures, the above can be rewritten as follows:

packP 〈bs, 〈〈:〈f , f ↑〉, τ, xs:〉〉〉 = 〈〈:〈f , f ↑〉, τ, packP 〈bs, xs〉:〉〉

Clearly, this completely specifies the semantics of applying packP to array closures. In the
following, we give the signature and implementation specialised for array closures for each
operation we consider; the latter is added to the type-indexed implementation as defined in
Appendix C, while the former is only included for exposition purposes. For packP, we can
derive the following implementation:

packP〈τ1⇒τ2〉 :: [:Bool:]× ([:τ1:] V [:τ2:])→ ([:τ1:] V [:τ2:])

packP〈τ1⇒τ2〉
〈bs, 〈〈:〈f , f ↑〉, τ, xs:〉〉〉 = 〈〈:〈f , f ↑〉, τ, packP〈τ〉 〈bs, xs〉:〉〉

Figure 4.4 depicts this evaluation strategy.
Other array operations can be implemented in a similar way, by performing corresponding

computations on the environments. Note, however, how the type argument for the recursive
call to packP is obtained from the closure and does not depend on the closure’s type. This
highlights an important constraint: for this implementation strategy to be viable, the opera-
tion must be polymorphic in the type of the array’s elements.

This approach is closely related to the concept of parametricity and free theorems, as
discussed by Wadler (1989). Here, properties of polymorphic operations are derived from
their types, without inspecting the actual implementations. For instance, the following famous
theorem covers the semantics of map on lists. Given a polymorphic list function g of type
∀α.[α]→ [α], the following equality holds:
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Figure 4.4 Packing array closures

g ◦ map f = map f ◦ g

A similarily general law cannot be easily derived for parallel arrays. Although type-
indexed primitives, which form the bulk of the interesting operations on parallel arrays, are
polymorphic, this polymorphism is not parametric, and, thus, they are not amenable to the
same kind of free theorems as polymorphic functions in, e.g., Haskell (Hinze, 2000). Moreover,
in Chaper 6, we will see that parallel arrays and operations on them exhibit some non-obvious
strictness properties which make the usual formulation of parametricity break down in much
same way as it does in the presence of seq (Johann and Voigtländer, 2004). However, by
restricting ourselves to arrays of partially applied functions, we can formulate the following
more specialised principle.

Let f be a function of type τ1 → (τ2 ⇒ τ3), g a type-indexed
primitive and xs a parallel array of type [:τ1:]. Then,
g (mapP 〈〈〈f 〉〉, xs〉) = mapP 〈〈〈f 〉〉, g xs〉.

We do not claim this statement to be in any way precise or universally valid, nor do we intend
to give it a more formal meaning later. However, we will use it as a guideline when deriving
the implementations of type-indexed primitives.

The above can be rewritten in terms of array closures by suitably replacing applications
of mapP:

g 〈〈:〈f , f ↑〉, τ, xs:〉〉 = 〈〈:〈f , f ↑〉, τ, g xs:〉〉

This is precisely the principle employed in the implementation of packP discussed earlier.
However, parametricity suggests that the equality holds for arbitrary array operations re-
gardless of their actual semantics, as long as they are polymorphic in the type of the array
elements. Thus, this technique is immediately applicable to a large number of primitives,
such as reverseP:

reverseP〈τ1⇒τ2〉 〈〈:〈f , f ↑〉, τ, xs:〉〉 = 〈〈:〈f , f ↑〉, τ, reverseP〈τ〉 xs:〉〉
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It is easy to see that this implementation has the desired semantics. In fact, this prop-
erty of array closures can also be used for implementing primitives other than those of type
[:τ :]→ [:τ :]. In the following, we consider three such operations, deriving their implementa-
tions from the corresponding laws.

Length. The length of an array closure is obviously determined by the length of the envi-
ronment array, as indicated by the following equation:

lenP (mapP 〈〈〈f 〉〉, xs〉) = lenP xs

It is important to note that the above only holds if none of the terms involved in the computa-
tion diverge. For now, we will assume that this is the case. In Chapter 6, we will see that the
strictness properties of array closures guarantee that the following is a valid implementation:

lenP〈τ1⇒τ2〉 :: ([:τ1:] V [:τ2:])→ Int

lenP〈τ1⇒τ2〉 〈〈:〈f , f ↑〉, τ, xs:〉〉 = lenP〈τ〉 xs

Replication. The following law covers the replication of partially applied functions:

repP 〈n, f x 〉 = mapP 〈〈〈f 〉〉, repP 〈n, x 〉〉

This suggests that a closure of the form 〈〈〈f , f ↑〉, τ, x 〉〉 is replicated to an array closure by
replicating the environment x , while leaving the pair of functions 〈f , f ↑〉 unchanged:

repP〈τ1⇒τ2〉
:: Int× (τ1 ⇒ τ2)→ ([:τ1:] V [:τ2:])

repP〈τ1⇒τ2〉 〈n, 〈〈〈f , f ↑〉, τ, x 〉〉〉 = 〈〈:〈f , f ↑〉, τ, repP〈τ〉 〈n, x 〉:〉〉

Indexing. Indexing is, roughly speaking, the inverse of replication. For arrays of partially
applied functions, its semantics is given by

mapP 〈〈〈f 〉〉, xs〉 !: i = f (xs !: i)

Similar to the previous case, this means that the operation can be implemented by leaving
the closure functions unchanged and extracting the corresponding element of the environment
array:

(!:〈τ1⇒τ2〉) :: ([:τ1:] V [:τ2:])× Int→ (τ1 ⇒ τ2)

〈〈:〈f , f ↑〉, τ, xs:〉〉 !:〈τ1⇒τ2〉 i = 〈〈〈f , f ↑〉, τ, xs !:〈τ〉 i〉〉

The last two operations rely crucially on the association between functions and their
lifted versions introduced by vectorisation. For instance, in the array closure 〈〈:〈f , f ↑〉, τ, es:〉〉,
the unlifted function f is not used by either elementwise application or any other primitive
operation except indexing. The latter, however, could not be implemented if f was not stored
along with f ↑. Likewise, the lifted functions in regular closures are unnecessary for most
operations but essential for converting them to array closures, either by replication of by
mapping.
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Figure 4.5 Evaluation of mapP

4.3.5 Mapping

Although mapP has been used extensively in the preceding discussion, we have not yet shown
its implementation. The latter is easily derived by considering the semantics of this operation:
Given a closure c of type τ1 ⇒ τ2 and an array xs of type [:τ1:], mapP applies c to each element
of xs . This is clearly equivalent to replicating c to the length of xs and applying the resulting
array closure elementwise:

mapP :: (α⇒ β)× [:α:]→ [:β:]
mapP 〈c, xs〉 = repP 〈lenP xs, c〉 ‡ xs

The definitions of repP and (‡) ensure that this implementation has the expected seman-
tics. This is easily verified by considering how an application of mapP is evaluated:

mapP 〈〈〈〈f , f ↑〉, τ, e〉〉, xs〉
= repP 〈lenP xs, 〈〈〈f , f ↑〉, τ, e〉〉〉 ‡ xs
= 〈〈:〈f , f ↑〉, τ, repP 〈lenP xs, e〉:〉〉 ‡ xs
= f ↑ (zipP 〈repP 〈lenP xs, e〉, xs〉)

Ultimately, the lifted version of the function is applied to the environment, which has been
replicated to the required length, and the argument array. This evaluation strategy is depicted
in Figure 4.5.

The above demonstrates that mapP is not a primitive operation in the sense that it does not
have to be built into the language and does not even require a type-indexed implementation.
This is a major advantage of using closure conversion in the compilation process. In Section
4.5, we will see that the elimination of nested parallel computations, which had to be specified
explicitly in previous flattening-based approaches, arises as a natural consequence of this
implementation of mapping.

4.3.6 Case distinction

Let us revisit the example from Section 4.3.6 which we used to demonstrate the difficulties
arising in combining nested data parallelism with higher-order functions:
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f :: Int× (Int + Int)→ Int

f = λx . case 〈〈λn. fst x + n, λn. n〉, snd x 〉

Closure conversion essentially transforms this function as follows (we omit unnecessary details
for the sake of clarity):

g :: (Int× (Int + Int))× Int→ Int

g = λ•. fst (fst •) + snd •
h :: 〈〉 × Int→ Int

h = λ•. snd •
f :: Int× (Int + Int)→ Int

f = λ•. case 〈〈〈〈g , Int× (Int + Int), •〉〉, 〈〈h, 〈〉, 〈〉〉〉〉, snd •〉

Here, g and h are the functions generated for the two lambda abstractions, which we have
hoisted to the top level. Both are now binary functions, expecting • to be bound to an envi-
ronment/argument pair. In the case of g , the environment, accessed by fst •, corresponds to
the value of x in the original abstraction, while snd • accesses the value of n. The environment
of h is empty, since no free variables occured in the original abstraction. In the body of f , the
two functions have been replaced by closures; the one generated for g stores, as expected, the
argument to f in the environment. Note that after closure conversion, the function arguments
to case are replaced by closures, i.e., it has the type

case :: ((α⇒ γ)× (β ⇒ γ))× (α + β)→ γ

Let us investigate how these functions are transformed by flattening. Their lifted versions
are generated according to the strategy described in Section 3.5.1:

g↑ :: [:(Int× (Int+ Int))× Int:]→ [:Int:]
g↑ = λ•. fst↑ (fst↑ •) +↑ snd↑ •
h↑ :: [:〈〉 × Int:]→ [:Int:]
h↑ = λ•. snd↑ •
f ↑ :: [:Int× (Int + Int):]→ [:Int:]
f ↑ = λ•. case↑ (zipP 〈zipP 〈〈〈:〈g , g↑〉, Int× (Int + Int), •:〉〉,

〈〈:〈h, h↑〉, 〈〉, repP 〈lenP •, 〈〉〉:〉〉〉,
snd↑ •〉)

Closures are lifted to array closures by leaving the function tuples unchanged, as in the case
of replication, and lifting the environments.

Of course, the type of case↑ undergoes the same modifications as that of case, i.e., the
primitive now expects to be passed array closures instead of arrays of functions. Earlier, we
have derived an implementation of case↑ which relied on the ability to pack array of functions
and therefore could not be supported in the standard lambda calculus. The combination of
closure conversion and flattening, however, ensures that packing can be used by case↑. The
implementation given on 4.1.2 can now be reformulated in terms of array closures:
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case↑ :: Int× (

[:(α⇒γ)×(β⇒γ):]
︷ ︸︸ ︷

Int× ([:α:] V [:γ:])× ([:β:] V [:γ:]))× (

[:α+β:]
︷ ︸︸ ︷

[:Bool:]× [:α:]× [:β:])→ [:γ:]
case↑ 〈n1, 〈〈n2, 〈fs, gs〉〉, 〈sel , 〈xs, ys〉〉〉〉 =

let
gs ′ = packP 〈not↑ sel , fs〉
hs ′ = packP 〈sel , gs〉
xs ′ = gs ′ ‡ xs
ys ′ = hs ′ ‡ ys

in
combineP 〈sel , xs ′, ys ′〉

The application of f ↑ to [:〈1, Left 5〉, 〈3, Right 4〉, 〈7, Left 2〉:] is evaluated by invoking
case↑ with three suitably zipped array arguments:

• the array closure 〈〈:〈g , g↑〉, Int× (Int + Int), [:〈1, Left 5〉, 〈3, Right4〉, 〈7, Left 2〉:]:〉〉, rep-
resenting the partial elementwise application of g ↑,

• the array closure 〈〈:〈h, h↑〉, 〈〉, [:〈〉, 〈〉, 〈〉:]:〉〉 and

• the array of sums [:Left 5, Right 4, Left 2:].

In case↑, the values of gs ′ and hs ′ are obtained by packing the two array closures according
to the selector:

gs ′ = packP 〈[:True,False,True:],
〈〈:〈g , g↑〉, Int× (Int + Int), [:〈1, Left 5〉, 〈3, Right 4〉, 〈7, Left 2〉:]:〉〉〉

= 〈〈:〈g , g↑〉, Int× (Int + Int),
packP 〈[:True,False,True:], [:〈1, Left 5〉, 〈3, Right 4〉, 〈7, Left 2〉:]〉:〉〉

= 〈〈:〈g , g↑〉, Int× (Int + Int), [:〈1, Left 5〉, 〈7, Left 2〉:]:〉〉
hs ′ = packP 〈[:False,True,False:], 〈〈:〈h, h↑〉, 〈〉, [:〈〉, 〈〉, 〈〉:]:〉〉〉

= 〈〈:〈h, h↑〉, 〈〉, packP 〈[:False,True,False:], [:〈〉, 〈〉, 〈〉:]〉:〉〉
= 〈〈:〈h, h↑〉, 〈〉, [:〈〉:]:〉〉

Packing retains precisely those environments which are needed for the subsequent elementwise
applications:

xs ′ = gs ′ ‡ [:5, 2:]
= g↑ (zipP 〈[:〈1, Left 5〉, 〈7, Left 2〉:], [:5, 2:]〉)
= [:1, 7:] +↑ [:5, 2:]
= [:6, 9:]

ys ′ = hs ′ ‡ [:4:]
= h↑ (zipP 〈[:〈〉:], [:4:]〉)
= [:4:]

The selector determined how the resulting arrays are combined to obtain the final result:

combineP 〈[:False,True,False:], [:6, 9:], [:4:]〉 = [:6, 4, 9:]

It is easy to see that this is exactly the evaluation strategy depicted in Figure 4.1.
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4.4 Composite closures

So far, we have only considered operations which obviously maintain the invariant that arrays
of closures contain partial applications of the same function in every position and, even though
we have claimed that array closures can represent arbitrary arrays, the relevant mechanisms
have not been explained. We are now in the position to correct this omission, using the
concatenation of array closures as a running example.

4.4.1 Concatenation

In the following, we consider the concatenation of two array closures cf and cg of type
[:τ1:] V [:τ2:], where

cf = 〈〈〈f , f ↑〉, τf , xs〉〉 and
cg = 〈〈〈g , g↑〉, τg , ys〉〉

The result of concatenating cf and cg will be some array closure d , again of type [:τ1:] V [:τ2:],
such that

d = cf +++ cg = 〈〈〈cappP, cappP↑〉, υ, es〉〉

for suitable values of cappP and es . We will see below that cappP can be treated as a primitive
function, i.e., a single implementation provided by the standard library is sufficient to cover
all uses of concatenated array closures.

In Section 4.1.4, the elementwise application of an array of functions obtained by concate-
nation has been used as an example demonstrating the merits of the calculational approach
to representing such arrays. In particular, the following rewriting rule (slightly adapted for
the purposes of this discussion) has been derived for this operation:

zipWithP 〈($), mapP 〈f , xs〉 +++ mapP 〈g , ys〉, zs〉 =
zipWithP 〈($), mapP 〈f , xs〉, takeP 〈lenP xs, zs〉〉
+++ zipWithP 〈($), mapP 〈g , ys〉, dropP 〈lenP xs, zs〉〉

Here, instead of concatenating the two function arrays before the elementwise application,
each of them is applied to the respective part of the argument array and the results are concate-
nated, as illustrated by Figure 4.2. Of course, this assumes that lenP zs = lenP xs + lenP ys .
By taking into account the semantics of closure conversion, this equation can be rewritten as
follows:

(cf +++ cg) ‡ zs
= d ‡ zs (by definition of d)
= cappP↑ (zipP 〈es, zs〉) (by definition of ‡)
= (cf ‡ takeP 〈lenP cf , zs〉) +++ (cg ‡ dropP 〈lenP cg , zs〉)

Again, the argument array is split, allowing the concatenation to be executed after the ele-
mentwise application. But how can cappP and es be chosen to satisfy this condition?

The answer to this question is a direct consequence of the following observation. In λC ,
i.e. before flattening but after closure conversion, cf , cg and d represent arrays of closures of
type [:τ1 ⇒ τ2:]. Moreover, each element of d is equal either to some element of cf or to some
element of cg , i.e.,

d = [:cf !: 0, . . . , cf !: (m − 1), cg !: 0, . . . , cg !: (n − 1):]
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where m and n are the lengths of cf and cg , respectively. However, we have seen that the
elementwise application of d can be reduced to applications of cf and cg , which suggests that
splitting the two closures, either by indexing or by some other means, is unnecessary. This
can, indeed, be avoided by choosing the environment es of d such that it has the λC type
[:(τ1 ⇒ τ2) + (τ1 ⇒ τ2):] and is computed as follows:

es = [:Left (cf !: 0), . . . , Left (cf !: (m − 1)), Right (cg !: 0), . . . , Right (cg !: (n − 1)):]

or, in other words,

es = mapP 〈〈〈Left〉〉, cf 〉 +++ mapP 〈〈〈Right〉〉, cg 〉

Here, es stores all elements of cf and cg ; the sum constructors Left and Right indicate from
which of the two arrays an element has been obtained. Note that we argue simultaneously on
two levels of abstraction: the array closure d and hence, the environment es only exist after
flattening but the value assigned to es is only valid before that transformation has taken place.
Unfortunately, this is necessary in order to demonstrate both the semantics and the validity
of the technique. Thus, before considering the impact of this representation on elementwise
application and the implementation of cappP, let us investigate how it interacts with the
flattening transformation.

Under the transformation rules given in Section 3.3.2, the type of es is translated to
[:Bool:]× [:τ1 ⇒ τ2:]× [:τ1 ⇒ τ2:] and then to [:Bool:]× ([:τ1:] V [:τ2:])× ([:τ1:] V [:τ2:]) Re-
call that the latter two components store the left and the right elements of es, respectively,
whereas the boolean values indicate whether the corresponding element has been constructed
with Left or Right. Thus, es has the following flat representation:

es = 〈[: False, . . . , False
︸ ︷︷ ︸

m times

, T rue, . . . , T rue
︸ ︷︷ ︸

n times

:], cf , cg〉

Since cf and cg store precisely the left and right elements of es , respectively, they can
be used directly in the representation of the environment array; this is crucial synergy effect
between flattening and the proposed handling of closures. Ultimately, the environment of d
consists of the two array closures and an array of booleans, each indicating which closure
contains the corresponding element, as shown in Figure 4.6.

Accordingly, the concatenation of two array closures is implemented as follows:

(+++〈τ1⇒τ2〉) :: ([:τ1:] V [:τ2:])× ([:τ1:] V [:τ2:])→ ([:τ1:] V [:τ2:])
cf +++〈τ1⇒τ2〉 cg =

〈〈:〈cappP, cappP↑〉,
(τ1 ⇒ τ2) + (τ1 ⇒ τ2),
〈repP 〈lenP cf ,False〉 +++〈Bool〉 repP 〈lenP cg ,True〉, 〈cf , cg〉〉:〉〉

Here, the selector is computed directly by replicating False and True to the length of c f and
cg , respectively. This implementation obviously generates precisely the desired representation.

4.4.2 Indexing

Having fixed the representation of the environment, we will now turn our attention to the
implementations of the two functions cappP and cappP↑. Since the latter can be obtained by
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Figure 4.6 Concatenation of array closures

lifting the former, we consider cappP first. Recall that it is only used for applying a single
element of d , i.e., a closure of type τ1 ⇒ τ2, to an argument. Thus, its semantics is best
explained by considering such an application, as in (d !: i) † x . By the definitions of d , (!:)
and (†), this can be rewritten as

(d !: i) † x
= 〈〈〈cappP, cappP↑〉, (τ1 ⇒ τ2) + (τ1 ⇒ τ2), es !: i〉〉 † x
= cappP 〈es !: i , x 〉

Depending on the value of i , the term es !: i evaluates to either Left (cf !: i1) or Right (cg !: i2),
i.e., to a closure obtained, depending on the index, from either cf or cg and embedded in a
sum type constructor which designates its origin. The latter information is important in a
parallel context but useless when dealing with individual elements. Thus, cappP simply has
to apply the embedded closure to x , as in the following implementation:

cappP :: ((τ1 ⇒ τ2) + (τ1 ⇒ τ2))× τ1 → τ2

cappP 〈Left c, x 〉 = c † x
cappP 〈Right c, x 〉 = c † x

Let us return to Figure 4.6. The second element of the concatenated closure has the value

〈〈〈cappP, cappP↑〉, (τ1 ⇒ τ2) + (τ1 ⇒ τ2), Left 〈〈〈f, f ↑〉, Int, 2〉〉
︸ ︷︷ ︸

cf !:1

〉〉
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The result of its application to some x is obtained by applying the closure 〈〈〈f , f ↑〉, Int, 2〉〉,
i.e., the second element of cf , to x . Ultimately, this performs the computation f 〈2, x 〉, which
is exactly the desired result.

4.4.3 Elementwise application

The semantics of cappP↑ and, thus, of elementwise application of concatenated array closures
is fixed by the above definition of cappP. Still, it is important to understand the underlying
evaluation strategy. The implementation of cappP↑, as obtained by lifting cappP, while cor-
rect, is quite unreadable. For the sake of clarity, we present a semantically equivalent but
simplified version:

cappP↑ :: ([:Bool:]× (([:τ1:] V [:τ2:])× ([:τ1:] V [:τ2:])))× [:τ1:]→ [:τ2:]
cappP↑ 〈〈sel , 〈cf , cg〉〉, xs〉 = let

xs1 = packP 〈not↑ sel , xs〉
xs2 = packP 〈sel , xs〉
ys1 = cf ‡ xs1
ys2 = cg ‡ xs2

in
combineP 〈sel , 〈ys1, ys2〉〉

Here, cappP↑ is applied to the environment of an concatenated array and the argument array
xs , the former consisting, as before, of a selector sel and two array closures cf and cg . The
argument array is split into two arrays xs1 and xs2 as determined by the selector, such that
they contain precisely those elements to which cf and cg , respectively, must be applied. After
performing these applications, the results are combined into a single array, again according
to the selector.

The implementation of cappP↑ is quite similar to the one suggested for case↑. There,
however, the argument was an array of binary sums, which required the two closures to be
packed and applied separately to its component arrays. In the case of cappP↑, on the other
hand, the closures are represented by an array of sums, which is applied to an argument array
by splitting the latter and then performing the actual applications.

Figure 4.7 illustrates this evaluation strategy. Note how it precisely corresponds to the
one described in Section 4.1.4 and depicted in Figure 4.2. This should not come as a surprise
since it has been derived by applying the calculation approach outlined in that discussion.

Crucially, these mechanisms fulfill the requirements formulated in Section 4.1. In partic-
ular, they obviously do not violate the constraints imposed by the data-parallel model. In
the above example, f and g represent different computations which should not be executed
simultaneously. The implementation of cappP accounts for this by splitting the argument
array and applying the two functions one after another. How these applications will be per-
formed depends on the structure of the respective closures. If they, too, have been obtained by
concatenation or similar operations and, thus, embed multiple computations, the argument
array will be split further, ensuring that the latter are not executed in parallel. However,
if an array closure has been constructed such that each of its elements represents the same
computation, e.g., by mapping or replication, then the application will be executed in one
parallel step, retaining as much parallelism as possible.
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Figure 4.7 Application of concatenated array closures

4.4.4 Array operations

In Section 4.3.4, we have demonstrated how array primitives are implemented for array clo-
sures. Crucially, our implementation of concatenation ensures that these implementations
handle concatenated closures correctly. For instance, packP packs an array closure by pack-
ing its environment array which, in the case of concatenated closures, stores two closures as
an array of binary sums. The latter naturally supports all array operations, including pack-
ing, which will be performed by packing the selector and the two embedded array closures as
required. In general, since array closures generated by concatenation do not violate any of
the constraints formulated in Section 4.3.2, they are indistinguishable from those obtained by
mapping or replication.

4.4.5 Combining array closures

While the approach to concatenating array closures described in the previous section is se-
mantically sound, it is, in a sense, suboptimal. In particular, the selector always has the
form [:False, . . . ,False,True, . . . ,True:]; clearly, it could be represented more compactly than
by an array of booleans. However, the usefulness of this representation is not restricted to
concatenation, as exemplified by combineP.

Recall that this operation, which can be seen as the inverse of packing, combines two
parallel arrays into a single one according to an array of booleans. Thus, it suffers from the
same problems as concatenation when applied to array closures. Although the two closures
do not represent contiguous chunks of the resulting array in this case, the mechanisms used
for implementing concatenation also apply to combineP. The two operations only differ in
how the selector is obtained. Concatenation computes the selector according to the lengths
of the two array closures. In the case of combineP, however, the array of booleans already is
a valid selector. Thus, this operation can be implemented as follows for array closures:
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Figure 4.8 Nested mapping before and after flattening

combineP〈τ1⇒τ2〉 :: [:Bool :]× ([:τ1:] V [:τ2:])× ([:τ1:] V [:τ2:])→ ([:τ1:] V [:τ2:])

combineP〈τ1⇒τ2〉 〈bs, 〈c, d〉〉 = 〈〈:〈cappP, cappP↑〉, (τ1 ⇒ τ2) + (τ1 ⇒ τ2), 〈bs, 〈c, d〉〉:〉〉

It is easy to verify that the resulting closure exhibits exactly the desired semantics.

Thus, while it might be possible to implement concatenation more efficiently, the approach
taken in this work has, in our view, the overwhelming advantage of being much more gen-
eral and natural. Furthermore, a compiler might still provide optimised versions of specific
operations; this, however, should remain an implementation detail.

4.5 Nested parallelism

The elimination of nested parallel computations is one of the crucial tasks of the flattening
transformation. The archetypal example of nested parallelism is the nested application of
mapP , as in mapP (mapP (1+)). Before demonstrating how this case is handled in our
approach, let us consider the semantics of this computation.

Given a nested array of type [:[:Int:]:], it increments every integer element while preserving
the array’s nesting structure. This strategy is naturally supported by the flat representation
of parallel arrays. Recall that after flattening, the nested array has the type [:Int:]× [:Int:],
where the segment descriptor contains the lengths of the subarrays while the integers are
stored in the flat data array. The desired result can be obtained by incrementing the elements
of the data array — a flat data-parallel computation — and leaving the segment descriptor
unchanged, as illustrated by Figure 4.8. In general, nested uses of mapping can be transformed
to flat ones as follows:

mapP 〈〈〈mapP 〈〈f 〉〉〉〉, 〈ss, xs〉〉 = 〈ss, mapP 〈〈〈f 〉〉, xs〉〉

The application of mapP to a partially applied function f is represented by the following
closure:

〈〈〈mapP, mapP↑〉, τ1 ⇒ τ2, 〈〈〈f, f ↑〉, τ, e〉〉
︸ ︷︷ ︸

f e

〉〉
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Then, the definitions of mapP and repP can be unfolded in the left-hand side of the above
equation:

mapP 〈〈〈〈mapP, mapP↑〉, τ1 ⇒ τ2, 〈〈〈f , f ↑〉, τ, e〉〉〉〉, 〈ss, xs〉〉
= mapP↑ (zipP 〈repP 〈lenP xss, 〈〈〈f , f ↑〉, τ, e〉〉〉, 〈ss, xs〉〉)
= mapP↑ (zipP 〈〈〈:〈f , f ↑〉, τ, repP 〈lenP 〈ss, xs〉, e〉:〉〉, 〈ss, xs〉〉)

It should not come as a surprise that the two applications of mapP are evaluated to a single
application of mapP↑. Thus, to see how the nested parallelism in this example is eliminated,
the implementation of this lifted primitive must be investigated.

4.5.1 Lifted mapping

Given an array of closure/subarray pairs, mapP↑ maps each closure over the corresponding
subarray, as indicated by its nested type [:(α⇒ β)× [:α:]:]→ [:[:β:]:]. Flattening transforms
the latter to Int× (([:α:] V [:β:])× ([:Int:]× [:α:]))→ [:Int:]× [:β:]. Thus, arguments to
mapP↑ are tuples of the form 〈n, 〈c, 〈ss, xs〉〉〉, where

• n is the length of the arrays involved in the computation,

• c is an array closure of the form 〈〈:〈f , f ↑〉, τ, es:〉〉, where the environment array has the
length n,

• ss is the segment descriptor, again of length n, of the nested argument array and

• xs is the data array.

Ultimately, our goal is to apply the array closure c to the flat data array. Note, however,
that its environment has the same length as the segment descriptor; in other words, it contains
as many elements as there are subarrays in the nested representation. Before the application
can be performed, the environment must be expanded such that each of its elements is repeated
as many times as there are elements in the corresponding subarray. The primitive expandP

does just this: Given an array of integers and a data array, it repeats each data element as
many times as specified by the corresponding integer, as in the following example:

expandP 〈[:2, 3, 2:], [:1, 2, 3:]〉 = [:1, 1, 2, 2, 2, 3, 3:]

This suggests that mapP↑ can be implemented as follows:

mapP↑ 〈n, 〈〈〈:〈f , f ↑〉, τ, es:〉〉, 〈ss, xs〉〉〉 =
〈ss, 〈〈:〈f , f ↑〉, τ, expandP 〈ss, es〉:〉〉 ‡ xs〉

Thus, mapP↑ expands the environment of the array closure according to the segment descriptor
and applies it elementwise to the data array; the segment descriptor determines the nesting
structure of the result. This evaluation strategy is depicted in Figure 4.9.
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Figure 4.9 Evaluation of mapP↑

4.5.2 Nested mapping

We are now in the position to demonstrate how nested applications of mapP are transformed
to flat computations. The definition of mapP↑ can be substituted into the equation derived on
page 56:

mapP 〈〈〈〈mapP, mapP↑〉, τ1 ⇒ τ2, 〈〈〈f , f ↑〉, τ, e〉〉〉〉, 〈ss, xs〉〉
= mapP↑ (zipP 〈〈〈:〈f , f ↑〉, τ, repP 〈lenP 〈ss, xs〉, e〉:〉〉, 〈ss, xs〉〉)
= 〈ss, 〈〈:〈f , f ↑〉, τ, expandP 〈ss, repP 〈lenP ss, e〉〉

︸ ︷︷ ︸

environment

:〉〉 ‡ xs〉

The last term makes it obvious that the nested application of mapP has been reduced to the
elementwise application of a suitably derived array closure to the data array. The closure’s
environment is computed in two steps as follows:

• first, it is replicated to the length of the segment descriptor as specified by the definition
of mapP such that it contains exactly one element for each subarray and

• then, mapP↑ expands it such that ultimately, it has the same number of elements as the
data array.

It it easy to verify that this leads to the desired results by comparing this process with the
evaluation strategy depicted in Figure 4.8.

As the environment will ultimately contain the same value in every position, it can be
computed more efficiently by making use of the following equivalence:

expandP 〈ss, repP 〈lenP ss, e〉〉 = repP 〈sumP ss, e〉

Unfortunately, it is not clear if and how this case can be recognised at runtime. We believe,
however, that the impact of this inefficiency will be minimal on real-world programs. In
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particular, in many cases it can be eliminated by judicious use of inlining and subsequent
compiler optimisations.

This key technique for replacing nested computations by flat ones was first suggested by
Blelloch (1996). In his approach, it was used for generating repeatedly lifted functions. This
is not required and, in fact, not possible with the strategy described in this work. Instead,
the elimination of nested computation is achieved by performing suitable operations on array
closures as described above.

4.6 Arrays of functions

The combination of closure conversion and flattening used in this work ensures that functions
do not occur outside of closures in generated programs. In particular, arrays of functions
are replaced by arrays of closures and, theoretically, do not have to be handled by flattening.
It is, however, beneficial, with respect to the uniformity of the flattening transformation as
specified in Chapter 5 as well as for subsequent optimisations, if a restricted form of such
arrays is supported.

Again, we require that an array of functions contain the same function in every posi-
tion. This allows us to represent an array of functions of type [:τ1 → τ2:] by a triple of type
Int× (τ1 → τ2)× ([:τ1:]→ [:τ2:]) where

• the array’s length is stored in the first component,

• the second component is some function f and

• the third component is the lifted function f ↑ derived from f .

Note that here we again make use of the associations between unlifted and lifted functions
introduced by vectorisation.

This representation is, in fact, very similar to the one used for closures. In contrast to
closures, however, such arrays only support a very limited set of operations, mainly indexing,
replication and elementwise application. In particular, concatenation and similar operations
cannot be provided in any meaningful way with this representation. This does not lead
to problems as such arrays are inaccessible to the programmer and can only be generated
internally by the compiler. Thus, the author of the latter is responsible for only using the
provided operations.

Those array primitives which can be supported by this representation are easily imple-
mented. For instance, lenP simply returns the length component. Since vectorisation trans-
forms type of the form τ1 → τ2 to (τ1 → τ2)× ([:τ1:]→ [:τ2:]), replication is essentially the
identity function:

repP〈τ1→τ2〉 :: Int×

τ1→τ2
︷ ︸︸ ︷

((τ1 → τ2)× ([:τ1:]→ [:τ2:]))
→ Int× ((τ1 → τ2)× ([:τ1:]→ [:τ2:]))

︸ ︷︷ ︸

[:τ1→τ2:]

repP〈τ1→τ2〉
〈n, 〈f , f ↑〉〉 = 〈n, 〈f , f ↑〉〉

Other primitives have equally simple-minded implementations.
Why, then, are arrays of functions necessary at all? The reason for this becomes clear

if we consider that lifting, in general, transforms terms of type τ to those of type [:τ :].
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Obviously, functions could not be handled in this way if the corresponding arrays could not
be generated. While it is possible to formulate lifting such that this problem does not arise, a
limited form of function arrays makes the transformation much simpler to specify and reason
about. Crucially, the function arrays generated by lifting are only obtained by replication,
thereby guaranteeing that this simple representation is entirely sufficient.
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Chapter 5

Formalising the approach

In the previous chapters we have informally introduced our strategy to compiling nested data
parallelism and described how flattening and closure conversion can be combined to support
higher-order functions. It is now time to formalise the approach and show that the proposed
techniques are, indeed, correct. In this, our main focus is on the flattening transformation
as closure conversion is a fairly standard compilation technique and its correctness has been
proved by Minamide et al. (1996), albeit for a strict language.

Nevertheless, a formal account of closure conversion is both helpful in understanding the
concepts involved and necessary due to the novelty of the target language used in this work.
Thus, after introducing the languages λP and λC in Sections 5.1 and 5.2, we include a detailed
discussion of this transformation in Section 5.3. We do not, however, provide correctness
proofs.

The rest of the chapter is devoted to the flattening transformation. Its target language, the
language of flat arrays λA, is defined in Section 5.4. Although it is quite similar to λC , its type
system is more powerful due to requirements imposed by flattening. Section 5.5 formalises
the mechanisms discussed in Chapters 3 and 4. Building on the work of Blelloch and Sabot
(1990), Keller (1999) and, in particular, of Chakravarty and Keller (2000), we define flattening
in terms of three closely related transformations — flattening of types, vectorisation and lifting
— which, when applied to a nested data-parallel program, generate the corresponding flat λA

code. We also explain how they relate to the informal account of this process given earlier.

Based on this formalisation, we begin the validation of our approach by proving that
flattening is correct with respect to static semantics. To this end, we establish some standard
properties of the type systems of λC and λA required for the subsequent discussion. Finally,
in Section 5.7 we show that flattening preserves type correctness. The operational correctness
of the transformation is investigated in the next chapter.

5.1 The simply-typed lambda calculus

The language λP is based on the simply typed lambda calculus with µ-recursive types and
terms. It is intended as an intermediate representation of programs written in a high-level
language and, therefore, does not provide any syntactic sugar. Its syntax and static semantics
are, for the most part, entirely standard. The only exceptions are the support for nested
data parallelism and minor technical issues required for a clean formalisation of subsequent
transformations.
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Constants

c0 ::= + | − | . . .
c1 ::= lenP | repP | . . .
c2 ::= Left | Right | mapP | . . .
. . .

Literals

i ::= 0 | 1 | . . .
b ::= True | False

Types

τ ::= α | Int | Bool | 〈〉 | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | [:τ :] | µα.τ

Terms

e ::= uτ (annotated terms)
u ::= i (integer literals)
| b (boolean literals)
| 〈〉 (unit)
| cn

〈τ1,...,τn 〉
(constants)

| v τ (variables)
| 〈e1, e2〉 (tuples)
| e.i (i ∈ {1, 2}) (tuple projections)
| e1 e2 (applications)
| λv : τ1. e

τ2 (abstractions)
| µv : τ. e (recursion)

Figure 5.1 The language λP

5.1.1 Syntax

The syntax of λP , given in Figure 5.1, includes the usual constructs of the simply-typed
lambda calculus with recursive types. In the following, we explain the most important ones,
but focus more on the non-standard extensions to this formalism. It should be noted that
most of these properties carry over to λC and λA as well; we will not explain them in as much
detail when specifying these languages.

Types

λP has a rather large number of built-in types. In particular, it includes the unit type 〈〉,
products, sums and µ-recursive types. This is both due to the requirements imposed by the
flattening transformation and because we want to demonstrate how arbitrary product-sum
types are handled in our approach. The built-in boolean type Bool is distinct from the
type 〈〉 + 〈〉. This is necessary because flattening relies on unboxed arrays of booleans for
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representing sum types (cf. Section 3.3.2), which are hard to provide if Bool is not a primitive
type. Still, the implementation can hide its existence from the programmer, exporting the
standard Haskell definition of Bool instead, and only use it internally.

Type annotations

Following Morrisett et al. (1999), we assume that all terms are annotated with their types, as
specified by the productions u (unannotated terms) and e (annotated terms) in the grammar.
This simplifies the definition of transformations by making them independent of the typing
derivations. The well-formedness of the annotations is checked by the typing rules, but we
omit them in informal discussion to avoid clutter.

Variables

As usual, we assume all variables, both type and value ones, to be distinct. Moreover, we
assume that α-equivalent types and terms (i.e. those equivalent up to renaming of bound
variables) are equal. The function FVS yields value variables occuring free in a term. Unless
specified otherwise, we let α, β, γ and δ range over type variables, v and w over value
variables, other small latin letter over terms and τ and υ over types. We write υ[τ/α] for
capture-avoiding substitution of types and e1[e2/v ] for capture-avoiding substitution of terms.

Constants

In Section 3.4, we have described a generic approach to implementing primitive array opera-
tions by using type-indexed definitions. Primitives defined in this way, such as lenP, are not
functions in their own right; instead, lenP denotes a family of functions of the form lenP〈τ〉,
specialised depending on the value of τ . Each lenP〈τ〉 is treated as a separate constant in the

language. Thus, in the grammar of λP cn designates an n-ary family of constants such that
cn
〈τ1,...,τn〉

is a monomorphic constant. Note that the arity specified by the superscript refers
to the number of type parameters.

Moreover, we assume that all constants are functions, i.e. have a type of the form τ1 → τ2.
Where necessary, a dummy parameter of unit type can be added. This does not pose a serious
restriction but considerably simplifies the transformations.

Additionally, the language includes integer and boolean literals which are syntactically
different from constants. While unnecessary from a purely formal point of view, this allows
for a more concise presentation of examples.

Fixing a set of constants is unrealistic for a real-world language. Instead, we axiomise their
properties and introduce constants required for the transformations or used for exposition
purposes as necessary. This flexible approach allows us to support an arbitrary standard
library, provided that the properties of the individual primitives are defined formally.

Recursion

The grammar of λP includes µ-recursive types and values which have an entirely standard
semantics. In particular, we assume that for each type µα.τ there exists a constructor inµα.τ

and a destructor outµα.τ .
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Products and sums

Tuples are constructed by 〈e1, e2〉 and deconstructed by e.1 and e.2, which extract the first and
second component of a tuple, respectively. Since λC and λA do not allow for curried functions,
the construction of tuples must necessarily rely on built-in syntax in these languages; for the
sake of uniformity, it is treated the same way in λP .

The binary sums have the usual constructors Left and Right. The language does not
include a pattern-matching facility. Instead, the primitive

case〈τ1 ,τ2,υ〉 :: (τ1 → υ)× (τ2 → υ)× (τ1 + τ2)→ υ

is used for inspecting and deconstructing binary sums.

Parallel arrays

The attentive reader will have noticed that while λP includes type type constructor [:·:], terms
of the form [:e1, . . . , en :], which we have used extensively so far, are missing from its grammar.
This is not an oversight, as this representation of parallel arrays would make reasoning about
semantics unnecessarily hard. An inductive definition is much better suited for formalisations
and proofs and, most importantly, can be used before flattening, although it will have to be
resolved by the transformation.

Consequently, both λP and λC employ a definition of arrays which is closely modelled on
the one customarily used for lists. To this end, we introduce two families of array constructors,
nilP and consP, with the following types:1

nilP〈τ〉 :: 〈〉 → [:τ :]
consP〈τ〉 :: (Int× τ)× [:τ :]→ [:τ :]

Empty arrays are represented by nilP 〈〉, whereas consP〈x , xs〉 denotes the array obtained by
prepending x to the array xs. The syntax [:e1, . . . , en :] is the easily translated according to
the following scheme:

[:e1, . . . , en :] = consP 〈e1, consP 〈. . . , consP 〈en , nilP 〈〉〉 . . . 〉〉

In addition to facilitating formal reasoning, this representation also allows use to cleanly
formalise the strictness properties of the flattening transformation discussed in Section 6.1.

5.1.2 Static semantics

We use two kinds of contexts for the typing judgements: type variable contexts, which are
simply sets of type variables in all three intermediate languages, and type contexts which in
λP are sets of type assignments of the form v : τ . We let ∆ range over type variable contexts
and Γ over type contexts. As usual, we assume that the assigments are unique, i.e. that a
type context contains at most one assignment for each variable. The static semantics of λP

is then defined by the following judgements.

∆ `P τ the type τ is valid under the context ∆
Γ `P e : τ the term e has type τ under the context Γ

1The parameter of nilP is ignored; it is only necessary because primitives must have function types.
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Types

α ∈ ∆

∆ ` α
(Var-Type)

C ∈ {Int, Bool, 〈〉}

∆ ` C
(Prim-Type)

∆ ` τ1 ∆ ` τ2 ⊗ ∈ {×,+,→}

∆ ` τ1 ⊗ τ2
(Bin-Type)

∆ ` τ

∆ ` [:τ :]
(Array-Type)

∆, α ` τ

∆ ` µα.τ
(Rec-Type)

Terms

Γ ` i : Int (Int) Γ ` b : Bool (Bool) Γ ` 〈〉 : 〈〉 (Unit)

` τ1 . . . ` τn

Γ ` cn
〈τ1 ,...,τn〉

: TP(cn
〈τ1 ,...,τn〉

)
(Const)

v : τ ∈ Γ

Γ ` vτ : τ
(Var)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
(Tup)

Γ ` e : τ1 × τ2

Γ ` e.i : τi
(Proj)

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
(App)

` τ1 Γ, v : τ1 ` e : τ2

Γ ` λv : τ1. e : τ1 → τ2
(Lam)

` τ Γ, v : τ ` e : τ

Γ ` µv : τ. e : τ
(Rec)

Γ ` u : τ

Γ ` uτ : τ
(Ann)

Figure 5.2 Static semantics of λP

The typing rules are given in Figure 5.2. We write `P τ and e : τ for ∅ `P τ and
∅ `P e : τ , respectively, and omit the subscript P whereever the omission does not lead to
ambiguities.

For constants, the type is determined by the function TP(·), which is introduced by the
following definition.

5.1 Definition (Types of constants in λP)
Let cn

〈τ1,...,τn〉
be a constant in λP . Then, TP(cn

〈τ1,...,τn〉
) denotes its type which satisfies the

following conditions.

1. It is a function type, i.e. there exist two λP types υ1 and υ2 such that
TP(cn

〈τ1,...,τn〉
) = υ1 → υ2.

2. It is a valid type if all type arguments are valid, i.e., ` TP(cn
〈τ1,...,τn 〉

) if ` τi for each
1 ≤ i ≤ n.
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5.2 The language of explicit closures λ
C

The language of explicit closures λC is the target language for closure conversion and the
source language for the flattening transformation. It is closely modelled on λP , sharing with
the latter the important properties of the type system and most of the syntax. Therefore,
it, too, can be considered a variant of the simply typed lambda calculus. There are two
major differences, however: the absence of named value variables and the explicit support
for closures, which have been described in detail in Section 4.2. Especially the treatment of
value variables is novel and has not, to our knowledge, been hitherto proposed in this form.
The flattening transformation relies crucially on this aspect of λC — it is not clear if and how
nested data parallelism can be compiled in the presence of both higher-order functions and
named value variables.

5.2.1 Syntax

The syntax of λC is given in Figure 5.3. In the following, we describe its major features and
point out the differences as compared to λP .

Value variables

As described in Section 4.2, closure conversion completely eliminates named value variables.
Thus, at every point in a λC program, at most one value variable is in scope, namely the
parameter of the innermost lambda abstraction, which we denote by •. Lambda abstractions
and recursion have the form λ• : τ. e and µ• : τ. e, respectively.

Closures

Closures have already been explained in detail in Section 4.2. Compared to the simplified
form used there, in λC they additionally store their argument and result type. Even though
this information is recorded by type annotations, this will allow us to omit the latter in the
operational semantics defined in Chapter 6. Thus, a closure has the form 〈〈e1, τ1, τ2, τ3, e2〉〉
where e1 is the closure function of type τ1 × τ2 → τ3 and e2 the environment of type τ1. Such
a closure has the type τ2 ⇒ τ3 and represents the partial application of e1 to e2. The built-
in operator † applies a closure to an argument, which is equivalent to applying the closure
function to the environment tupled with the argument.

Parallel arrays

Parallel arrays in λC , including arrays of closures, are encoded much like they are in λP , based
on the two constructors nilP and consP. In particular, array closures described in Section
4.3 are absent from λC — this mechanism only applies to the flat arrays in λA. This implies
that a specialised treatment of parallel arrays during closure conversion is unnecessary as the
techniques used for translating constants handle the array constructors transparently.

5.2.2 Static semantics

In the type system of λC , type contexts are restricted to reflect the lack of named variables
in λC . Recall that a type context assigns types to term variables. Since at most one such
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Constants

c0 ::= + | − | . . .
c1 ::= lenP | repP | . . .
. . .

Literals

i ::= 0 | 1 | . . .
b ::= True | False

Types

τ ::= α | Int | Bool | 〈〉 | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | τ1 ⇒ τ2 | [:τ :] | µα.τ

Terms

e ::= uτ (annotated terms)
u ::= i (integer literals)
| b (boolean literals)
| 〈〉 (unit)
| cn

〈τ1,...,τn 〉
(constants)

| • (innermost parameter)
| 〈e1, e2〉 (tuples)
| e.i (i ∈ {1, 2}) (tuple projections)
| e1 e2 (applications)
| λ• : τ. e (abstractions)
| 〈〈e1, τ1, τ2, τ3, e2〉〉 (closures)
| e1 † e2 (closure applications)
| µ• : τ. e (recursion)

Figure 5.3 The language of explicit closures λC

variable, namely •, can occur free in a term, the type contexts contain at most one such
assignment. Accordingly, type contexts in λC (and λA) conform to the following grammar:

Γ = · | • : τ

The static semantics of the language is defined by the following judgements:

∆ `C τ the type τ is valid under the context ∆
Γ `C e : τ the term e has type τ under the context Γ

Figure 5.4 details the typing rules.
The rules Lam and Rec capture the visibility of • by replacing the type context instead

of adding to it. The rules for closures and closure applications correspond to their semantics
as explained in Section 4.2. In particular, the type of the environment does not appear in the
type of the closure but must be compatible with the type of the closure function.
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Types

α ∈ ∆

∆ ` α
(Var-Type)

C ∈ {Int, Bool, 〈〉}

∆ ` C
(Prim-Type)

∆ ` τ1 ∆ ` τ2 ⊗ ∈ {×,+,→,⇒}

∆ ` τ1 ⊗ τ2
(Bin-Type)

∆ ` τ

∆ ` [:τ :]
(Array-Type)

∆, α ` τ

∆ ` µα.τ
(Rec-Type)

Terms

Γ ` i : Int (Int) Γ ` b : Bool (Bool) Γ ` 〈〉 : 〈〉 (Unit)

` τ1 . . . ` τn

Γ ` cn
〈τ1 ,...,τn〉

: TC(cn
〈τ1 ,...,τn〉

)
(Const) • : τ ` • : τ (Var)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
(Tup)

Γ ` e : τ1 × τ2

Γ ` e.i : τi
(Proj)

Γ ` e1 : τ1 → τ2 ∆;Γ ` e2 : τ1

Γ ` e1 e2 : τ2
(App)

` τ1 • : τ1 ` e : τ2

λ• : τ1. e : τ1 → τ2
(Lam)

` τ • : τ ` e : τ

µ• : τ. e : τ
(Rec)

Γ ` e1 : τ1 × τ2 → τ3 Γ ` e2 : τ1

Γ ` 〈〈e1, τ1, τ2, τ3, e2〉〉 : τ2 ⇒ τ3
(Clo)

Γ ` e1 : τ1 ⇒ τ2 Γ ` e2 : τ1

Γ ` e1 † e2 : τ2
(CloApp)

Γ ` u : τ

Γ ` uτ : τ
(Ann)

Figure 5.4 Static semantics of λC

Constants are handled much like in λP : the function TC(·) yields the constant’s type which
must satisfy the same validity requirements.

5.2 Definition (Types of constants in λC)
Let cn

〈τ1,...,τn〉
be a constant in λC . Then, TC(c

n
〈τ1 ,...,τn 〉

) denotes its type which satisfies the
following requirements.

1. It is a function type, i.e. there exist two λC types υ1 and υ2 such that
TC(c

n
〈τ1,...,τn〉

) = υ1 → υ2.

2. It is valid if all type arguments are valid, i.e. ` TC(c
n
〈τ1,...,τn〉

) if ` τi for each 1 ≤ i ≤ n.

It is important to point out that in λC , too, constants must be functions, even though
one might expect them to be replaced by closures. This task is instead performed by closure
conversion, as discussed in the next section.
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5.3 Closure conversion

Closure conversion eliminates all free variables in functions and replaces the latter by closures,
which store the function code and the embedded data separately. This is achieved by making
every variable appearing free in a function part of the argument. These variables are then
collected in the environment which, together with the now closed function, makes up the
function’s closure. Such closures are applied by extracting the environment, tupling it with
the argument and passing the result to the function which obtains all necessary data from
this tuple.

This transformation has been studied extensively. In particular, Minamide et al. (1996)
provide a formulation of closure conversion for the simply typed lambda calculus and show
its correctness. The The formalisation of this transformation presented below is largely based
on this work, but, crucially, uses the novel target language λC which syntactically enforces
the important constraints on closure-converted programs.

Since closure conversion is a well-researched compilation technique, we do not discuss it in
as much detail as flattening in this dissertation. In particular, we do not prove its correctness,
neither with respect to static nor to dynamic semantics. The formalisation is only provided to
highlight the underlying concepts, demonstrate their feasibility and, most importantly, justify
the design of λC .

The closure conversion algorithm is given in Figure 5.5. It is specified as two transfor-
mations: Cτ J·K translates types, whereas CE J·, ·K converts type-annotated terms. Since this
specification is not used for formal reasoning, we extend the syntax of λC slightly by making
use of n-ary tuples 〈e1, . . . , en〉 even though λC only includes binary tuples. The translation
from the former to the latter is trivial but tedious and would significantly clutter the presen-
tation without leading to any new insights. Moreover, we omit type annotations except when
they are essential for the correctness of a rule.

Closure conversion must perform the following tasks:

• replace all function types by corresponding closure types,

• eliminate named variables, replacing them by references to the innermost parameter •,

• replace lambda abstractions by closures storing a closed function and an environment,

• replace constants, which are necessarily functions, by suitable closures,

• transform µ-recursion, which also relies on named variables and

• convert function applications to closure applications.

The first and last goals are easily achieved by the corresponding transformation rules. The
other four, however, are considerably more involved. In the following, we provide a detailed
explaination for each of them.

5.3.1 Variables

In addition to a λP term, Cτ J·, ·K is parametrised by the conversion context E which is popu-
lated by the rule translating lambda abstractions. The conversion context is a set of mappings
of the form v 7→ e, where v is a λP variable visible in the current scope and e the λC term by
which v should be replaced. When the transformation encounters v , it simply looks up the
mapping in the context and performs this replacement.
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Types

Cτ JαK = α
Cτ JBoolK = Bool

Cτ JIntK = Int

Cτ J〈〉K = 〈〉
Cτ Jτ1 × τ2K = Cτ Jτ1K× Cτ Jτ2K
Cτ Jτ1 + τ2K = Cτ Jτ1K + Cτ Jτ2K
Cτ Jτ1 → τ2K = Cτ Jτ1K⇒ Cτ Jτ2K
Cτ J[:τ :]K = [:Cτ JτK:]
Cτ Jµα.τK = µα.Cτ JτK

Terms

CE JE , iK = i
CE JE , bK = b
CE JE , 〈〉K = 〈〉
CE JE , (cn

〈τ1,...,τn〉
)υ1→υ2K = 〈〈f , τenv , Cτ Jυ1K, Cτ Jυ2K, env〉〉

where
env = 〈〉
τenv = 〈〉
p = CC (cn)〈Cτ Jτ1K,...,Cτ Jτn K〉

f = λ• : τenv × Cτ Jυ1K. (p •.2)
CE JE , v τK = e where v 7→ e ∈ E
CE JE , 〈e1, e2〉K = 〈CE JE , e1K, CE JE , e2K〉
CE JE , e.iK = CE JE , eK.i
CE JE , e1 e2K = CE JE , e1K † CE JE , e2K
CE JE , (λv : τ1. e)τ1→τ2K = 〈〈f , τenv , Cτ Jτ1K, Cτ Jτ2K, env〉〉

where
{wυ1

1 , . . . , wυn
n } = FVS (λv : τ1. e

τ2)
env = 〈e1, . . . , en〉where wi 7→ ei ∈ E for each 1 ≤ i ≤ n
τenv = Cτ Jυ1K× · · · × Cτ JυnK
E ′ = {w1 7→ •.1.1, . . . , wn 7→ •.1.n} ∪ {v 7→ •.2}
f = λ• : τenv × Cτ Jτ1K. CE JE ′, eK

CE JE , µv : τ. eK = (µ• : τenv . 〈〈f , τenv , τarg , Cτ JτK, •〉〉) † arg
where
{wυ1

1 , . . . , wυn
n } = FVS (µv : τ. e)

arg = 〈e1, . . . , en〉where wi 7→ ei ∈ E
τarg = Cτ Jυ1K× · · · × Cτ JυnK
E ′ = {w1 7→ •.2.1, . . . , wn 7→ •.2.n} ∪ {v 7→ •.1 † •.2}
τenv = τarg ⇒ Cτ JτK
f = λ• : τenv × τarg . CE JE ′, eK

Figure 5.5 Closure conversion
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5.3.2 Functions

The most interesting rule is the one converting lambda abstractions of the form (λv : τ1. e)τ1→τ2

to suitable closures. First, the variables w1, . . . ,wn occuring free in the abstraction as well as
their types υ1, . . . , υn are determined. The corresponding λC terms e1, . . . , en , obtained from
the conversion context, form the closure environment env which has the type τenv . The trans-
formed function will be applied to environment/argument pairs of type τenv × Cτ Jτ1K. Thus,
within the lambda abstraction each occurence of a free variable wi must be replaced by •.1.i ,
which extracts the corresponding component from the environment, while the parameter v is
replaced by •.2. This information is recorded in the new context E ′ and used for converting
the abstraction term e. Finally, the closed function f is constructed which encodes precisely
the same computation as the original lambda abstraction.

5.3.3 Constants

Constants are transformed analogously to lambda abstractions; however, due to the absence
of free variables the corresponding rule is considerably simpler. We assume that for every
family of constants cn in λP , CC (cn) yields the corresponding family in λC . Since constants
are closed functions, the environment of the generated closure must be empty. The function
f simply discards the environment and applies the λC constant to the new argument.

5.3.4 Recursion

The transformation of recursive terms also relies on closures to factor out free variables. The
mechanism described here is similar to the one suggested by Morrisett and Harper (1998).
The key idea is to transform a recursive value to a partial application of a recursive function
which, in turn, can be represented by a recursive closure.

This transformation can be justified by considering the semantics of fixpoint recursion in
λP . Given a function fix with fix f = f (fix f ), we have:

µv .e = fix (λv . e)
= fix (λf . λarg . e[f arg/v ]) x
= (µf .(λf . λarg . e[f arg/v ]) f ) x

The first step is just the definition of µ-recursion. The second step adds a dummy parameter
arg to the function and replaces all occurences of the original parameter v by f w . Finally,
the last step replaces fix by mu-recursion.

The important step is the introduction of the dummy parameter arg. Since it is never
inspected, it can be bound to any value. In particular, it can be used to store the values of
variables that occur free in e:

(µf .(λf . λarg . e[f arg/v ]) f ) x
= (µf .(λf . λarg . e[f arg/v , arg .1/w1 , . . . , arg .n/wn ]) f ) 〈w1, . . . ,wn 〉

where {w1, . . . ,wn} = FVS (λf . λarg . e[f arg/v ])

Crucially, the partially applied function under µ is now closed. Thus, it can be uncurried
and replaced by a λC closure. The environment of the latter is f , which is recursively bound
to the closure itself. The closure is then applied to the free variables of the original term,
yielding a term with the desired semantics. Note that in contrast to lambda abstractions,
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the environment does not store the free variables in this case but is used for encoding the
recursion.

5.3 Example
Consider the term µxs.(x + y) : xs , where (:) is Haskell’s lazy list constructor and x and y
are free variables. It is easy to see that it is equivalent to

(µf .(λf . λarg . (arg .1 + arg .2) : f arg) f ) 〈x , y〉

This recursive term can be represented by the following λC closure:

µ•. 〈〈λ•. (•.2.1 + •.2.2) : •.1 † •.2, (Int× Int)⇒ [Int], Int× Int, [Int], •〉〉

Inside the lambda abstraction, •.1 refers the closure itself and •.2.1 and •.2.2 to the values of
x and y , respectively. When applied to 〈x , y〉, the closure yields an infinite list of x + y , just
like the original term.

5.4 The language of flat arrays λ
A

The language of flat arrays λA shares most of its structure with λC . As the target language
for the flattening transformation, it removes support for nested arrays and includes unboxed
arrays and array closures instead. Moreover, it features a slightly more complex type system
necessary for the formalisation of flattening for types.

5.4.1 Syntax

Figure 5.6 defines the syntax of λA. Note that type-annotated terms are missing from the
language, since they are no longer necessary. Compared to λC , the type constructor [:·:] is
replaced by the unboxed array types ArrInt and ArrBool and the type of array closures τ1 V τ2.
The term grammar includes array closures 〈〈:e1, τ1, τ2, τ3, e2:〉〉 and applications of such closures
of the form e1 ‡ e2. These concepts have been discussed in detail in Section 4.3.

The flat representation of parallel arrays discussed in Section 3.3 relies on unboxed arrays
of integers and booleans. These have the types ArrInt and ArrBool and are represented by
literals of the form {i1, . . . , in}Int and {b1, . . . , bn}Bool. Note that the grammar ensures that
these are indeed literals by only allowing constant values to be used for their construction.

In addition to these changes, flattening requires some support from the type system. In
λC , the two types τ and [:τ :] are clearly related. Flattening, however, transforms them to two
λA types which are syntactically unrelated. In particular, there is no way (or, at least, we do
not require that one exist) to obtain one from the other. In general, the association between
an array type and the type of its elements is lost after flattening.

This association must be preserved in some cases discussed below, however. We solve this
problem by introducing type tuples in λA. A type tuple is a type of the form 〈τ1, τ2〉 where τ1

and τ2 are again types. The semantics is similar to that of term tuples; in fact, we reuse the
syntax τ.i (i ∈ {1, 2}) for denoting the extraction of the ith component from a type tuple.
In contrast to terms, however, the construction and destruction of type tuples are resolved
statically.

In Section 5.5.1 we will see that a λC type υ is transformed to a tuple 〈τ1, τ2〉, where τ1

and τ2 are the flat representations of, respectively, υ and [:υ:]. These type associations (cf.
Definition 5.5) are used whenever a mapping between the two is necessary for ensuring the
correctness of the transformation.
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Kinds

κ ::= ? | ?× ?

Types

τ ::= α | Int | Bool | ArrInt | ArrBool | 〈〉 | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | τ1 ⇒ τ2 | τ1 V τ2

| µα.τ | 〈τ1, τ2〉 | τ.i (i ∈ {1, 2})

Constants

c0 ::= + | − | . . .
c1 ::= lenP | repP | . . .
c2 ::= Left | Right | mapP | . . .
. . .

Literals

i ::= 0 | 1 | . . .
b ::= True | False

Terms

e ::= i (integer literals)
| b (boolean literals)
| 〈〉 (unit)
| {i1, . . . , in}Int (integer arrays)
| {b1, . . . , bn}Bool (boolean arrays)
| cn

〈τ1,...,τn 〉
(constants)

| • (innermost parameter)
| e1 e2 (applications)
| λ• : τ. e (abstractions)
| 〈e1, e2〉 (tuples)
| e.i (i ∈ {1, 2}) (tuple projections)
| 〈〈e1, τ1, τ2, τ3, e2〉〉 (closures)
| e1 † e2 (closure applications)
| 〈〈:e1, τ1, τ2, τ3, e2:〉〉 (array closures)
| e1 ‡ e2 (array closure applications)

Figure 5.6 Syntax of λA
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5.4.2 Static semantics

The inclusion of type tuples has two important consequences for the type system of λA. First,
it requires the introduction of a kind system to distinguish proper types such as Int from
type tuples. Second, as a type can now be denoted by different type expressions (e.g. Int

and 〈Int, Bool〉.1), a notion of type equivalence must be added. Thus, the type system of λP

is based on the following judgements.

∆ `A τ : κ the type τ is valid and has the kind κ under the context ∆
∆ `A τ1 ≡ τ2 : κ τ1 and τ2 are equivalent types of kind κ under the context ∆
Γ `A e : τ the term e has type τ under the context Γ

The typing rules are given in Figure 5.7. For type equivalence, we only give the primary
rules and omit the usual definitions of equivalence and congruence. In the following, we write
∆ ` τ and ∆ ` τ1 ≡ τ2 for ∃κ. ∆ ` τ : κ and ∃κ. ∆ ` τ1 ≡ τ2 : κ.

Since flattening only generates types of kind ? and ?× ?, using the latter to represent
associations between array and element types, we do not permit tuples to be arbitrarily
nested. Thus, types in λC are either proper types or tuples of proper types. This is reflected
in the syntax of kinds and in the corresponding typing rules. Moreover, we assume that type
variables always have the kind ?× ?. This invariant is maintained by flattening which binds
type variables only to type associations.

The type annotations in closures have a similar semantics as in λC but rely on type
associations. In the rule Clo, for instance, τ1 is a type association such that τ1.1 is the
flat type of the environment and τ1.2 the corresponding flat array type. Recall that e1 must
evaluate to a tuple f , f ↑ where f ↑ is the lifted version of f . The components of the associations
τ1, τ2 and τ3 are used to ensure that e1 indeed has the correct type. The rule ArrClo is
similar, except that in this case, the environment must have an array type.

Constants are handled analogously to λC , but are also parametrised with type associations.

5.4 Definition (Types of constants in λA)
Let cn

〈τ1,...,τn〉
be a constant in λA. Then, TA(cn

〈τ1,...,τn〉
) denotes its type which satisfies the

following requirements.

1. It is a function type, i.e. there exist two λA types υ1 and υ2 such that
TA(cn

〈τ1 ,...,τn 〉
) = υ1 → υ2.

2. It is valid if all type association arguments are valid, i.e., ` TA(cn
〈τ1,...,τn〉

) : ? if ` τi : ?× ?
for each 1 ≤ i ≤ n.

5.5 The flattening transformation

The flattening transformation is the final step in translating a higher-order, nested data
parallel program into a closure-based, flat one. It has two main tasks: (a) replace array types
of the form [:τ :] by suitable flat types, thereby eliminating all occurences of [:·:], and (b)
transform the computations accordingly by means of vectorisation and lifting. In this section,
we formalise this process which has already been outlined in Chapters 3 and 4.



5.5 The flattening transformation 75

Types

α ∈ ∆

∆ ` α : ?× ?
(Var-Type)

C ∈ {Int, Bool, ArrInt, ArrBool, 〈〉}

∆ ` C : ?
(Prim-Type)

∆ ` τ1 : ? ∆ ` τ2 : ? ⊗ ∈ {×,+,→,⇒,V}

∆ ` τ1 ⊗ τ2 : ?
(Bin-Type)

∆, α ` τ : ?× ?

∆ ` µα.τ : ?× ?
(Rec-Type)

∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` 〈τ1, τ2〉 : ?× ?
(Tup-Type)

∆ ` τ : ?× ?

∆ ` τ.i : ?
(Proj-Type)

Type equivalence (primary rules)

∆ ` 〈τ1, τ2〉 : ?× ?

∆ ` 〈τ1, τ2〉.i ≡ τi : ?

∆ ` τ : ?× ?

∆ ` τ ≡ 〈τ.1, τ.2〉 : ?× ?

Terms

Γ ` i : Int (Int) Γ ` b : Bool (Bool) Γ ` 〈〉 : 〈〉 (Unit)

Γ ` {i1, . . . , in}Int : ArrInt (ArrInt) Γ ` {b1, . . . , bn}Bool : ArrBool (ArrBool)

` τ1 : ?× ? . . . ` τn : ?× ?

Γ ` cn
〈τ1 ,...,τn〉

: TA(cn
〈τ1 ,...,τn〉

)
(Const) {• : τ} ` • : τ (Var)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
(Tup)

Γ ` e : τ1 × τ2

Γ ` e.i : τi
(Proj)

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
(App)

` τ1 : ? {• : τ1} ` e : τ2

λ• : τ1. e : τ1 → τ2
(Lam)

` τ : ? {• : τ} ` e : τ

µ• : τ. e : τ
(Rec)

Γ ` e1 : (τ1.1× τ2.1→ τ3.1) × (Int× (τ1.2× τ2.2)→ τ3.2) Γ ` e2 : τ1.1

〈〈e1, τ1, τ2, τ3, e2〉〉 : τ2.1⇒ τ3.1
(Clo)

Γ ` e1 : (τ1.1× τ2.1→ τ3.1) × (Int× (τ1.2× τ2.2)→ τ3.2) Γ ` e2 : τ1.2

〈〈:e1, τ1, τ2, τ3, e2:〉〉 : τ2.2 V τ3.2
(ArrClo)

Γ ` e1 : τ1 ⇒ τ2 Γ ` e2 : τ1

Γ ` e1 † e2 : τ2
(CloApp)

Γ ` e1 : τ1 V τ2 Γ ` e2 : τ1

Γ ` e1 ‡ e2 : τ2
(ArrCloApp)

Γ ` e : τ1 ` τ1 ≡ τ2 : κ

Γ ` e : τ2
(Conv)

Figure 5.7 Static semantics of λA
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5.5.1 Flattening types

The flattening of types is defined in terms of a transformation AJ·K which, given a λC type,
generates the corresponding λA type association. Before defining this transformation, let us
specify the concept of type associations and the associated notation more precisely.

5.5 Definition (Type associations)
Let υ be a type in λC and τ a type in λA of kind ?× ? such that τ.1 is the flat representation
of υ and τ.2 the flat representation of [:υ:]. We call τ a type association, τ.2 the associated
array type of τ.1 and υ the original type of τ .

The flattening transformation only generates type associations which are correct in the
sense that they have been derived from a λC type. Subsequent transformations, e.g. optimi-
sations, have to be specified carefully such as to maintain this principle.

For notational convenience, we will now fix the flat representations for each λC type
constructor and for nested arrays. These rules correspond precisely to the flat, unboxed
representations introduced in Sections 3.3 and 4.3.

5.6 Definition (Flat representations)
Let C be an n-ary type constructor in λC , υ1, . . . , υn types in λC and τ1, . . . , τn the corre-
sponding type associations in λA. Then, C τ1 . . . τn denotes the type association generated
from C υ1 . . . υn . The following equations define the appropriate associations.

〈〉 = 〈〈〉, Int〉
Int = 〈Int, ArrInt〉
Bool = 〈Bool, ArrBool〉
τ1 × τ2 = 〈τ1.1× τ2.1, Int× τ1.2× τ2.2〉
τ1 + τ2 = 〈τ1.1 + τ2.1, ArrBool × τ1.2× τ2.2〉
τ1→ τ2 = 〈(τ1.1→ τ2.1)× (τ1.2→ τ2.2), Int× ((τ1.1→ τ2.1)× (τ1.2→ τ2.2))〉
τ1⇒ τ2 = 〈τ1.1⇒ τ2.1, τ1.2 V τ2.2〉

Note that the effects of vectorisation, i.e. the tupling of functions with their lifted versions,
on the types of generated terms have been folded into the definition of →.

5.7 Definition (Lifted associations)
Let τ be a type association in λA. Then, τ ↑ is the association obtained by the following rule:

τ↑ = 〈τ.2, ArrInt × τ.2〉

We will see below that if τ is a type association generated for a λC type υ, then τ ↑ is the
association obtained for [:υ:]. In the following, we will make extensive use of the notation
introduced by the above two definitions. In particular, the next definition employs it to specify
the flattening transformation for types.

5.8 Definition (Flattening of types)
Given a λC type τ , AJτK denotes the corresponding type association in λA. The transformation
AJ·K is defined by the following set of recursive equations.
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AJαK = α AJτ1 + τ2K = AJτ1K +AJτ2K
AJ〈〉K = 〈〉 AJτ1 → τ2K = AJτ1K→AJτ2K

AJIntK = Int AJτ1 ⇒ τ2K = AJτ1K⇒AJτ2K
AJBoolK = Bool AJ[:τ :]K = AJτK↑

AJτ1 × τ2K = AJτ1K×AJτ2K AJµα.τK = µα.AJτK

Furthermore, FJτK denotes the flat representation of τ in λA, i.e. FJτK = AJτK.1.

The above definition reflects an important property already discussed in Chapter 3: the
transformation rule for selecting the flat representation of a type only depends on the outer-
most type constructor. This is, in fact, crucial for the validity of the type-indexed approach
to implementing primitive array operations.

5.9 Example
The λC type Int + [:Bool:] is transformed as follows:

AJInt+ [:Bool:]K
= Int + Bool↑

= 〈Int.1 + (Bool↑).1, ArrBool × (Int.2× (Bool↑).2)〉
= . . .
≡ 〈Int + ArrBool, ArrBool × (ArrInt × (ArrInt × ArrBool))〉

An important aspect of type flattening is the translation of recursive types. Given a
λC type µα.υ, the flattening generates the type association µα.AJυK which contains the flat
representations of µα.υ and [:µα.υ:]. As the latter can be mutually recursive, the recursion is
captured by the type association itself. This ensures that at every occurence of the recursion
variable α in υ, the appropriate representation can be selected depending on whether α is
used within an array context. Since type variables are only used for recursion, this strategy
trivially ensures that the former are always bound to types of kind ?× ?, as required by the
static semantics of λA.

5.10 Example
The λC type µα.α→ Int is flattened as follows:

AJµα.α→ IntK
= µα.AJα→ IntK
≡ µα.〈(α.1 → Int)× (α.2→ ArrInt), Int× (α.1→ Int)× (α.2→ ArrInt)〉

Note that the two components of the generated association are indeed mutually recursive.

5.11 Example
Consider again the type of integer lists µl .〈〉+ Int× l introduced in Section 3.3.4. Flattening
transforms it to

µα.〈〈〉 + (Int× α.1), ArrBool × Int
︸︷︷︸

[:〈〉:]

×(Int× ArrInt × α.2
︸ ︷︷ ︸

[:Int×α:]

)〉

It is easy to see that the first component of the recursive type is equivalent to the original
list type, whereas the second corresponds precisely to the representation of arrays of lists
discussed previously.
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The last example demonstrates that the two components of a recursive type association
are not necessarily mutually recursive. In fact, mutual recursion can only be introduced by
function types, as in Example 5.10, since the corresponding rule is the only one to “leave” an
array context.

It is important to point out that the use of type tuples is, strictly speaking, not neces-
sary for translating recursive types. The flat representation derived in Example 5.10 can be
rewritten as follows:

t = µα.(α→ Int)× (t↑ → ArrInt)
t↑ = µβ.Int× (t → Int)× (β → ArrInt)

By substituting the definitions of t and t ↑ and replacing references to these types by appro-
priate type variables, we obtain

t = µα.(α→ Int)× ((µβ.Int× (α→ Int)× (β → ArrInt))→ ArrInt)
t↑ = µβ.Int× ((µα.(α → Int)× (β → ArrInt))→ Int)× (β → ArrInt)

It is not hard to see that the types t ↑ and Int× t and, in particular, corresponding function
types in t and t↑ are semantically equivalent. However, the introduction of semantical equiv-
alence of recursive types into the type system has non-trivial consequences, significantly com-
plicating type checking and type inference (Cardone and Coppo, 1991; Amadio and Cardelli,
1993). Our approach, while, in a sense, less pure, allows us to only consider syntactical
equivalence modulo projections from type tuples, which is easily decided.

As before, we assume that for each recursive type µα.τ , there exists a constructor inµα.τ

and a destructor outµα.τ . For λA, we also assume the existence of lifted versions of these

constants, in↑µα.τ and out
↑
µα.τ which construct and destruct flat arrays with elements of type

µα.τ .

5.5.2 Vectorisation and lifting

Having defined the flattening transformation for types in the previous section, we will now
turn our attention to transforming computations. Recall that this process

• generates a lifted version for every function in a program,

• tuples every function with its lifted version and

• vectorises the code such that the correct version of a function is selected for each appli-
cation in the program.

The flattening of terms is defined as two mutually recursive transformations, vectorisation
(VJ·K) and lifting (LJ·, ·K), which we have already described in Section 3.5. Vectorisation is
defined for all terms in λC ; lifting, however, only applies to code within a lambda abstraction.
Given a λC term e of type τ and a λA term l, LJl , eK generates a term of type [:τ :] (suitably
flattened), i.e. the resulting computation is performed in array space. The length of the
arrays is determined by the lifting context l, which is always obtained from the parameter of
the lambda abstraction.

5.12 Definition (Vectorised and lifted constants)
Let c be an n-ary family of constants in λC . Then, VCJcK and LCJcK are n-ary families of
constants in λA.
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Vectorisation

VJiK = i
VJbK = b
VJ〈〉K = 〈〉
VJc〈τ1,...,τn〉K = 〈VC JcK〈AJτ1K,...,AJτn K〉, LC JcK〈AJτ1K,...,AJτn K〉〉
VJ•K = •
VJe1 e2K = VJe1K.1 VJe2K
VJλ• : τ. eK = 〈λ• : FJτK. VJeK, λ• : FJ[:τ :]K. LJlenP〈AJτK〉 •, eK〉
VJµ• : τ. eK = µ• : FJτK. VJeK
VJ〈e1, e2〉K = 〈VJe1K,VJe2K〉
VJe.iK = VJeK.i
VJ〈〈e1, τ1, τ2, τ3, e2〉〉K = 〈〈VJe1K,AJτ1K,AJτ2K,AJτ3K,VJe2K〉〉
VJe1 † e2K = VJe1K † VJe2K

Lifting

LJl , iK = repP〈Int〉 〈l , i〉
LJl , bK = repP〈Bool〉 〈l , b〉
LJl , 〈〉K = repP〈〈〉〉 〈l , 〈〉〉

LJl , (c〈τ1 ,...,τn〉)
υ1→υ2K = repP〈AJυ1K→AJυ2K〉 〈l ,VJc〈τ1 ,...,τn 〉K〉

LJl , •K = •
LJl , (e1 e2)

τ K = attachP〈AJτK〉 〈l , LJl , e1K.2.2 LJl , e2K〉
LJl , (λ• : τ1. e)τ1→τ2K = repP〈AJτ1K→AJτ2K〉 〈l , VJλ• : τ1. eK〉
LJl , µ• : τ. eK = repP〈AJτK〉 〈l ,VJµ• : τ. eK〉

LJl , 〈e1, e2〉
τ1×τ2K = zipP〈AJτ1K,AJτ2K〉 〈LJl , e1K,LJl , e2K〉

LJl , (e.i)τ K = attachP〈AJτK〉 〈l , LJl , eK.2.i〉
LJl , 〈〈e1, τ1, τ2, τ3, e2〉〉K = 〈〈:LJl , e1K.2,AJτ1K,AJτ2K,AJτ3K,LJl , e2K:〉〉
LJl , (e1 † e2)

τ K = attachP〈AJτK〉 〈l , LJl , e1K ‡ LJl , e2K〉

Figure 5.8 Vectorisation and lifting

The intention is that VCJcK is the vectorised version of c and LCJcK is its lifted version.
We will formalise these properties later, when discussing the static and dynamic semantics of
flattening.

5.13 Definition (Vectorisation and lifting)
Let e be a term in λC and l a term in λA. Then, VJeK and LJl , eK are terms in λA such
that the former is the vectorised version of e and the latter its lifted version under the lifting
context l. The two transformations are defined by the set of mutually recursive equations
given in Figure 5.8.

The basic algorithm is quite straightforward. Vectorisation traverses a term recursively,
tupling functions with their lifted versions, selecting unlifted functions in applications and
transforming type annotations. Lifting pursues a similar approach but, additionally, ensures
that the generated terms operate on arrays. This essentially amounts to replicating the static
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components of the term. Thus, terms which are guaranteed to be closed (e.g., µ-recursions) are
simply vectorised and replicated. For terms potentially containing free occurences of •, such
as tuples, the replication algorithm is folded into the transformation since • is already an array
and, thus, should not be replicated. Below, we describe the most interesting transformation
rules in more detail.

Functions

A function in λC is either a constant or a lambda abstraction. The vectorisation of constants
relies on the transformations introduced in Definition 5.12. For lambda abstractions, the
vectorised and lifted versions are obtained by vectorising and lifting, respectively, the inner
term. In the latter case, lenP • is used as the lifting context, thus ensuring that the generated
arrays always have the same length as the argument the abstraction is applied to. Since
functions are always closed, lifting simply replicates the tuple obtained by vectorisation, which
is equivalent to attaching the required length as described in Section 4.6.

Applications

The transformation of applications e1 e2 accounts for the tupling performed by vectorisation
by selecting the appropriate function from the transformed version of e1. In the case of
vectorisation, this is the first component. Lifting, however, transforms e1 to an array of
functions which then must be applied elementwise to the array of arguments obtained by
lifting e2. Since the former will have the form 〈n, 〈f , f ↑〉〉, this amounts to applying f ↑, or,
equivalently, LJl , e1K.2.2 to the argument array.

Care has to be taken, however, such as not to introduce nontermination not present in the
original program. Consider that the semantics of the lifted application should be equivalent to
mapping the vectorised version of e1 over the array generated by lifting e2. Clearly, if LJl , e1K
diverges, then so does LJl , e1K.2.2 LJl , e2K. But in Chapter 6, we will see that for flattening
to be correct, mapping over parallel arrays may not be strict in the function in the sense that
even if the function diverges, the length of the resulting array must still be available.

This is ensured by explicitly attaching the length to the result of the lifted application. The
primitive attachP does not change the elements of an array but sets its length component,
such that lenP (attachP 〈n, xs〉) = n. Note that this strategy crucially relies on the implicit
assumption that all arrays generated by lifting either diverge or have the length specified by
the lifting context.

Closures

The vectorised version of a closure is obtained by vectorising the closure function and envi-
ronment and flattening the type annotations. Lifting generates closure arrays by lifting the
environment and selecting the function tuple from the function array obtained by lifting the
closure function. The application of closure arrays is performed by ‡. The length must be
attached explicitly for the same reasons as before.

Literals and tuples

Literals are lifted by replicating them to the length determined by the lifting context. Tuples
are lifted by lifting and then zipping the components. For projections, lifting relies on the
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principle that arrays of tuples are represented by tuples of arrays and simply selectes the
appropriate component of the flat representation. Again, the length has to be attached
explicitly to the result to ensure convergence.

5.6 Properties of typing

In the rest of this chapter, we show that the flattening transformation as defined in the
previous section is type correct. In this section, we establish a number of important properties
of the λC and λA type systems. These are necessary both for showing the type correctness of
flattening and for the proof of semantical correctness given in the next chapter.

Validity

A critical property of every type system is validity. For λC , it is sufficient to show that only
valid type are assigned to terms.

5.14 Lemma (Validity of typing in λC)
If Γ `C e : τ , then `C τ .

Proof. By induction on the given derivation. 2

The type system of λA is more complex. Here, we must also show that equivalence only
applies to valid types and that the types have appropriate kinds.

5.15 Lemma (Validity of typing in λA)
1. If Γ `A e : τ , then `A τ : ?.

2. If ∆ `A τ1 ≡ τ2 : κ, then ∆ `A τ1 : κ and ∆ ` τ2 : κ.

Proof. By straightforward induction on the given derivations. 2

Conversion of contexts

Next, we will show that weakening and strengthening of type variable and type contexts are
admissible in λC and λA. Given a valid derivation ∆ ` τ , the context ∆ can be weakened by
adding new type variables to it and strengthened by removing type variables not used in τ .

5.16 Lemma (Conversion of type variable contexts in λC)
1. If ∆ `C τ , then ∆, α `C τ .

2. If ∆, α `C τ and α does not occur free in τ , then ∆ `C τ .

Proof. By straightforward induction on the given derivations. 2

5.17 Lemma (Conversion of type variable contexts in λA)
1. If ∆ `A τ : κ, then ∆, α `A τ : κ.

2. If ∆ ` τ1 ≡ τ2 : κ, then ∆, α ` τ1 ≡ τ2 : κ.

3. If ∆, α `A τ : κ and α does not occur free in τ , then ∆ `A τ : κ.

4. If ∆, α ` τ1 ≡ τ2 : κ and α does not occur free in τ1 and τ2, then ∆ ` τ1 ≡ τ2 : κ.
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Proof. By straightforward induction on the given derivations. 2

A similar principle can be derived for type contexts. Here, it only applies to terms in
which • does not occur outside of lambda abstraction, i.e. which are closed with respect to
•. The following definition formalises closedness for both λC and λA.

5.18 Definition (Closed terms)
A term e in λC or λA is closed if • does not occur outside of lambda abstractions in e.

5.19 Lemma (Conversion of type contexts)
1. Let e be a closed term in λC such that Γ `C e : τ for some type context Γ. Then, for

every valid type context Γ′, Γ′ `C e : τ .

2. Let e be a closed term in λA such that Γ `A e : τ for some type context Γ. Then, for
every valid type context Γ′, Γ′ `A e : τ .

Proof. By straightforward induction on the given derivation. 2

5.7 Type correctness of flattening

In this section, we show the correctness of flattening with respect to the static semantics of
λC and λA. Intuitively, we want to show, for every term e of type τ in λC , the following
properties of vectorisation and lifting:

• VJeK has the type AJτK.1 and

• LJl, eK has the type AJτK.1.

As the proof relies on a number of key properties of flattened types, we will establish these
first.

5.7.1 Properties of flattened types

We begin by showing that the type flattening transformation FJ·K preserves the validity of
types.

5.20 Lemma (Validity of flattened types)
1. Let τ be a type in λC such that ∆ `C τ for some ∆. Then, ∆ `A AJτK : ?× ?.

2. Let τ be a type in λC such that ∆ `C τ for some ∆. Then, ∆ `A FJτK : ?.

Proof. Part 1 is by straightforward induction on τ and inversion on the derivation ∆ `C τ .
Part 2 is a direct consequence of Part 1. 2

Another crucial property is substituitivity: substituting a type υ into a type τ and flat-
tening the result is equivalent to flattening τ first and then substituting the type association
generated for τ .

5.21 Lemma (Substitutivity of type flattening)
Let τ and υ be types λC. Then, AJτ [υ/α]K = AJτK[AJυK/α].

Proof. By straightforward induction on τ . 2
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5.7.2 Type correctness of vectorisation and lifting

We will see below that the type correctness of vectorisation and lifting is established simul-
taneously. In particular, this implies that given a λC term λ• : τ. e of type τ → υ, we must
show {• : FJτK} ` VJeK : FJυK and {• : FJ[:τ :]K} ` LJl , eK : FJ[:υ:]K. The change in the type
context is captured by the following definition.

5.22 Definition (Lifted type contexts)
Let Γ be a type context in λC . Then, Γ↑ is the type context derived by the following rules.

∅↑ = ∅
{• : τ}↑ = {• : [:τ :]}

5.23 Lemma
If `C Γ, then `C Γ↑.

Proof. Immediate from the definition of Γ↑. 2

The following definition introduces a translation of type contexts from λC to λA. Note
that a similar translation for type variable contexts is not required as they are simple sets of
type variables in both languages.

5.24 Definition (Flattening of type contexts)
Let Γ be a type context in λC . Then, GJΓK is a type context in λA derived by the following
rules.

GJ∅K = ∅
GJ{• : τ}K = {• : FJτK}

5.25 Lemma (Validity of flattened type contexts)
If `C Γ, then `A GJΓK.

Proof. Immediate by validity of flattened types (Lemma 5.20). 2

For flattening to be type correct, the constants in λC and λA related by the functions
VC J·K and LC J·K (cf. Definition 5.12) must have compatible types in the following sense.

5.26 Property (Types of vectorised and lifted constants)
Let c be an n-ary family of constants and τ1, . . . , τn types in λC such that TC(c〈τ1,...,τn〉) = υ1 → υ2

for some types υ1 and υ2. Then the types of the corresponding constants in λA satisfy the
following conditions:

TA(VC JcK〈AJτ1K,...,AJτn K〉) = FJυ1K→ FJυ2K
TA(LC JcK〈AJτ1K,...,AJτn K〉) = FJ[:υ1:]K→ FJ[:υ2:]K
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It is easy to see that the primitives used in this work meet these constraints. They must be
verified should new constants be added to the language. In this sense, the above requirement
can be interpreted as an axiom.

We are now in the position to establish the type correctness of the flattening transformation
as stated at the beginning of this section. The following theorem shows that the terms
generated by vectorisation and lifting are (a) valid and (b) have the expected types.

5.27 Theorem (Type correctness of flattening)
Let e be a term and τ a type in λC such that Γ `C e : τ for some Γ.

1. Then, GJΓK `A VJeK : FJτK.

2. Moreover, if l is a term in λA such that GJΓ↑K `A l : Int, then GJΓ↑K `A LJl , eK : FJ[:τ :]K.

Proof. By simultaneous induction on the derivation Γ `C e : τ . The complete proof is given
in Appendix A.1. 2



Chapter 6

Semantics of flattening

The development in the previous chapter provides a solid foundation for establishing the
operational correctness of the flattening transformation. Ultimately, our goal is to show that
flattening preserves the meaning of programs, which, of course, implies that we must define
the operational semantics of the source and target languages of the transformation. This task
is significantly complicated by the impact of unboxed arrays used in the flat representation of
data structures on the termination behaviour of computations, an issue which we have largely
side-stepped until now. Although unboxed arrays only appear in λA, the strictness induced by
their use must be reflected in the semantics of λC if we are to obtain any meaningful correctness
results. Section 6.1 discusses and formalises this aspect of the flattening transformation.

We have already seen that flattened programs crucially rely on a number of primitives
operations. Section 6.2 introduces the algebraic laws which must be satisfied by the prim-
itives. These laws are used in the subsequent development instead of the implementations
given in Appendices B and C, thereby separating the correctness results from a particular
implementation of the standard library.

The operational semantics of the languages λC and λA is defined in Section 6.3 as a small-
step reduction system. As usual, the operational semantics induces a notion of semantic
equivalence which is introduced in Section 6.4. In Chapter 4, we have informally justified the
elimination of named variables from the two languages. Section 6.5 formalises the properties
of substitution and β-reduction in these mononomic calculi, which are of crucial importance
for subsequent correctness proofs.

After introducing some auxiliary results about flattened terms in Section 6.6, we finally
tackle the problem of establishing the correctness of vectorisation and lifting in the last two
sections. In Section 6.7, we show that lifted functions satisfy the usual map laws, which is
a sufficient correctness criterion for this transformation. Finding such a criterion for vec-
torisation and, thus, flattening is more problematic, as the usual techniques are not directly
applicable here. In particular, flattening does not general semantic equivalence for arbitrary
terms. This is because semantic equivalence implies that two terms can be used interchange-
ably without altering the meaning of a program, but vectorised terms rely on the invariant
that vectorised functions are always tupled with their lifted versions and can behave differ-
ently in contexts which violate this invariant. We circumvent this problem by considering
only flattened programs, i.e., closed terms. In Section 6.8, we prove that such programs yield
the same results as their nested λC versions. We also show that flattening does not introduce
nontermination. While the converse conclusion — that flattening preserves nontermination
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— would also be necessary for establishing the total correctness of the transformation, it is
unclear how its proof could be constructed. We do not consider this to be a pressing problem,
however, as long as flattening preserves the meaning of terminating programs.

Until now, we have not made a distinction between syntactic equality and semantic equiv-
alence. This distinction is highly important when discussing and reasoning about operational
behaviour. Consequently, in the rest of this chapter we use ∼= to denote semantic equivalence
(which, however, is not defined formally until Section 6.4) and = for syntactic equality.

6.1 Strictness of flattening

Before establishing the correctness of the flattening transformation, we must investigate the
impact of using unboxed arrays on the strictness properties of a program. In Section 3.3.1, we
have cited the efficiency of such arrays as one of the main benefits of an unboxed representa-
tion. This efficiency is due to the fact that unboxed arrays are strict in all elements, thereby
avoiding indirections necessary for representing possibly suspended computations. Thus, an
unboxed array diverges if any of its elements does, i.e., {. . . ,⊥, . . .} ∼= ⊥.

This has far-reaching consequences for the semantics of parallel arrays. Consider, for
instance, the translation of the following three λC terms (recall that the λC type [:Int:] is
transformed to Int× ArrInt):

[:1,⊥:] =⇒ 〈2, {1,⊥}〉 ∼= 〈2,⊥〉
[:⊥, 2:] =⇒ 〈2, {⊥, 2}〉 ∼= 〈2,⊥〉
[:⊥,⊥:] =⇒ 〈2, {⊥,⊥}〉 ∼= 〈2,⊥〉

Note that due to the strictness of unboxed arrays, the flat representations of these terms are
equivalent. This highlights two aspects of the semantics of parallel arrays under the flattening
transformation.

• If one element of a parallel array diverges, then all of its elements do.

• The length of a parallel array is available even if its elements diverge.

We will discuss the importance of the latter property for the correctness of flattening before
turning our attention to the first observation.

6.1.1 Shape and data

In Section 2.1, we have already mentioned that, contrary to our earlier work (Chakravarty
et al., 2001), we require parallel arrays not to be head-strict. This requirement is due to both
technical and theoretical reasons. The operational correctness of flattening relies on a number
of algebraic laws satisfied by primitive array operations, of which the following is perhaps the
most important one:

lenP (repP 〈n, x 〉) ∼= n

It is easy to see that the above would not hold for x = ⊥ if arrays were head-strict. This
problem is avoided in our translation by completely separating the length of a parallel array
from its elements in the flat representation, such that the former can still be accessed even if
the latter diverge. For instance, in the case of integer arrays we have:
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lenP〈Int〉 (repP〈Int〉 〈n,⊥〉) ∼= lenP〈Int〉 〈n,⊥〉 ∼= n

Note, however, that parallel arrays are strict in the length. Unfortunately, this constraint
cannot be directly encoded in the representation types since in the intermediate languages,
like in Haskell, all types are lifted, i.e., contain a bottom element. Instead, it must be enforced
by suitably implementing array primitives, such that, for instance, repP 〈⊥, x 〉 ∼= ⊥. The
definition of LJ·, ·K uses seq to explicitly ensure this invariant in the case of tuples.

This separation can also be justified from a more abstract point of view. Jay (1995b)
introduces the concept of shapes which capture the structure of collections but abstract from
the data. For inductive data types, shapes largely correspond to the rather informal notion
of spine; in the case of arrays, the shape is just their length. Thus, we can say that parallel
arrays are strict in the shape but lazy in the data. In this, they are not different from proper
algebraic collection types such as lists, at least if we only consider complete traversals. This
is certainly beneficial as it leads to a less surprising semantics of parallel arrays and makes
the language more uniform. In the context of flattening, this property is also essential with
respect to the correctness of the transformation.

This principle also implies that mapP and other mapping-related primitives may not be
strict in the mapped function or closure, such that, e.g., lenP (mapP 〈f , xs〉) ∼= lenP xs . This,
again, corresponds to the semantics of list operations.

6.1.2 Induced undefinedness

Despite the obvious similarities, parallel arrays are not merely an efficient representation of
finite lists since, as described earlier, they are strict in all elements. This property is easily
explained and formalised for arrays of primitive types, such as integers. The situation becomes
more complex, however, if we take products and sums into account. The following example
illustrates this:

[:〈True, 1〉, 〈False,⊥〉:] [:〈True,⊥〉, 〈False,⊥〉:]
⇓ ⇓

〈2, 〈[:True,False:], [:1,⊥:]〉〉 〈2, 〈[:True,False:], [:⊥,⊥:]〉〉
⇓ ⇓

〈2, 〈2, {True,False}〉, 〈2, {1,⊥}〉〉 〈2, 〈2, {True,False}〉, 〈2, {⊥,⊥}〉〉
⇓ ⇓

〈2, 〈2, {True,False}〉, 〈2, ⊥〉〉 〈2, 〈2, {True,False}〉, 〈2, ⊥〉〉

Here, the same flat representation is derived for two arrays which are, at first glance,
different but contain no diverging elements. This is because the two integers 1 and ⊥ in
the first array are eventually mapped to the same unboxed array which diverges since one
of its elements does. In the second array, both integers diverge, and, again, so does the
corresponding unboxed array in the flat representation.

This implies that the two arrays must be semantically equivalent in λC because the flat-
tening transformation induces undefinedness in the first one. In particular, the result of
extracting the element at position 0 from either array must be 〈True,⊥〉. This is a somewhat
unfortunate consequence of flattening, as these effects are by no means obvious to the pro-
grammer. Still, in our view the overall benefits of the NDP approach far outweigh this quite
obscure deficiency.
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Unfortunately, induced undefinedness also significantly complicates reasoning about the
semantics of flattening. Assuming that f is defined as

f :: Bool× Int→ Int

f 〈b,n〉 = if b then n else 0

we have

mapP 〈〈〈f 〉〉, [:〈True, 1〉:]〉+++ mapP 〈〈〈f 〉〉, [:〈False,⊥〉:]〉 ∼= [:1:] +++ [:0:] ∼= [:1, 0:]

but

mapP 〈〈〈f 〉〉, [:〈True, 1〉, 〈False,⊥〉:]〉 ∼= mapP 〈〈〈f 〉〉, [:〈True,⊥〉, 〈False,⊥〉:]〉 ∼= [:⊥, 0:]
∼= [:⊥,⊥:]

This becomes even more obvious if we consider how these computations are performed in
λA. By vectorising and flattening the above example, we obtain:

f ↑ 〈1, 〈

[:True:]
︷ ︸︸ ︷

〈1, {True}〉,

[:1:]
︷ ︸︸ ︷

〈1, {1}〉〉〉 +++ f ↑ 〈1, 〈

[:False:]
︷ ︸︸ ︷

〈1, {False}〉,

[:⊥:]
︷ ︸︸ ︷

〈1,⊥〉〉〉
∼= 〈1, {1}〉

︸ ︷︷ ︸

[:1:]

+++ 〈1, {0}〉
︸ ︷︷ ︸

[:0:]

∼= 〈1, {1, 0}〉
︸ ︷︷ ︸

[:1,0:]

even though

f ↑ 〈2, 〈〈2, {True, False}〉
︸ ︷︷ ︸

[:True,False:]

, 〈2,⊥〉
︸ ︷︷ ︸

[:⊥,⊥:]

〉〉 ∼= 〈2,⊥〉
︸ ︷︷ ︸

[:⊥,⊥:]

In general, this implies that the following equivalence does not necessarily hold in the
presence of nontermination:

mapP 〈f , xs +++ ys〉 ∼= mapP 〈f , xs〉+++ mapP 〈f , ys〉

To summarise, mapP in λC and lifted functions in λA are not immediately distributive
over concatenated arrays. Still, a limited form of distributivity can be established which is of
crucial importance for the correctness proofs given in this chapter.

6.1.3 Formalising strictness

Undefinedness induced by flattening in λC can be characterised more precisely as follows. Let
x and y be two terms of same type. The result of [:x :] +++ [:y :] is then equivalent to [:x ′, y ′:]
such that

• x ′ is equivalent to x except that it diverges in all positions in which y diverges and

• the reverse holds for y ′.

In order to specify the semantics of concatenation and related operations, we must be able to
compute x ′ and y ′ without using +++. In the following, we introduce a new primitive which
allows us to do so.
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We have already encountered the primitive seq which returns its second argument unless
the first argument diverges.

seq :: α× β → β
seq 〈⊥, y〉 = ⊥
seq 〈x , y〉 = y if x 6= ⊥

This operator already has the desired semantics for primitive types: if x and y are integers,
then x ′ = seq 〈y , x 〉. However, it only inspects the topmost nodes of the two terms and
thus cannot be used directly for products and sums. By combining seq with type-indexed
functions, we can define the operator � (impose) which imposes the definedness structure of
its first argument on the second one by recursively traversing the two terms in lockstep and,
essentially, applying seq at each constructor node.

�〈τ〉 :: τ × τ → τ
x �〈Int〉 y = seq 〈x , y〉
〈x1, x2〉�〈τ1×τ2〉 〈y1, y2〉 = 〈x1 �〈τ1〉 y1, x2 �〈τ2〉 y2〉
Left x �〈τ1+τ2〉 Left y = Left (x �〈τ1〉 y)
repP 〈m, x 〉 �〈[:τ :]〉 repP 〈n, y〉 = repP 〈seq 〈m,n〉, x �〈τ〉 y〉
repP 〈m, x 〉 �〈[:τ :]〉 (ys +++ zs) = (repP 〈m, x 〉 �〈[:τ :]〉 ys) +++ (repP 〈m, x 〉 �〈[:τ :]〉 zs)
. . .

The above is an excerpt from the definition of � in λC (the complete implementation is
given in Appendix B). For types other than products, sums and parallel arrays, it is equivalent
to seq. In the other cases, the semantics of seq are implicit in the pattern matching used
at each constructor node. Additionally, corresponding components are combined recursively.
This algorithm is obvious for tuples and sums; in the case of parallel arrays, � eventually
imposes each element of the first array on each element of the second one by descending into
replicated nodes and distributing over concatenated ones.

How can � be used to specify the strictness properties of array concatenation? Returning
to the example from the previous section, it is easy to verify that x ′ ∼= y � x :

〈False,⊥〉 � 〈True, 1〉 ∼= 〈False � True, ⊥� 1〉 ∼= 〈True, ⊥〉

Conversely, y ′ can be obtained by y ′ ∼= x � y . More importantly, since [:x :] = repP 〈1, x 〉, we
also have

[:〈True, 1〉:] +++ [:〈False,⊥〉:]
∼= ([:〈False,⊥〉:] � [:〈True, 1〉:]) +++ ([:〈True, 1〉:] � [:〈False,⊥〉:])
∼= [:〈False,⊥〉 � 〈True, 1〉:] +++ [:〈True, 1〉 � 〈False,⊥〉:]
∼= [:〈True,⊥〉:] +++ [:〈False,⊥〉:]

In general, array concatenation satisfies the following equivalence:

xs +++ ys ∼= (ys � xs) +++ (xs � ys)

From the above, the desired relation between mapping and concatenation is easily obtained
for λC :

mapP 〈f , xs +++ ys〉 ∼= mapP 〈f , ys � xs〉 +++ mapP 〈f , xs � ys〉
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In fact, every array primitive in λC whose semantics depends on the definedness of its ar-
guments must be implemented using a similar strategy. For instance, indexing on arrays
constructed with +++ is defined as follows:

(xs +++ ys) !: i = (ys � xs) !: i if i < lenP xs
(xs +++ ys) !: i = (xs � ys) !: (i − lenP xs) otherwise

Of course, λA also defines the primitive � with analogous semantics. It has no separate
lifted version since �

↑ = �. This becomes evident if we consider that y �
↑ x simply ensures

that x diverges everywhere y does, which is precisely the computation performed by y � x .
Thus, the distributivity of lifted functions over concatenation in λA is formalised similarily
to distributivity of mapping in λC :

f ↑ (xs +++ ys) ∼= f ↑ (ys � xs) +++ f ↑ (xs � ys)

In Section 6.7, we prove this equivalence, which is fundamental to the correctness of the
flattening transformation.

It is important to understand that � has only been introduced to for the purposes of
reasoning about the semantics of parallel arrays and does not appear in the generated λA code.
However, subsequent optimisations can utilise this primitive to achieve better performance
while preserving the termination structure of the program. For instance, the following rewrite
rule eliminates an unnecessary concatenation:

n ≤ lenP xs =⇒ takeP 〈n, xs +++ ys〉 ∼= takeP 〈n, ys � xs〉

6.2 Properties of primitives

In establishing the correctness of the flattening transformation, we will rely on a number of
laws which are satisfied by the primitive functions used in this work. A formal derivation of
these laws essentially amounts to specifying the semantics of each primitive and proving that
the implementation conforms to it. Due to the large number of primitives and, especially,
to the type-indexed nature of their implementations, it would be impractical to attempt this
without the support of automated tools. Consequently, we do not provide such proofs in this
work.

Nevertheless, the assumptions on the primitives must be made explicit. We summarise
them in Figure 6.1 as a set of algebraic laws and a set of preconditions on the arguments of
primitives. The former must be satisfied by the implementation of the standard library while
the latter must be obeyed by the programmer. In the following, we assume that a primitive
diverges if its preconditions are violated.

Note that some laws have non-trivial consequences. Consider, for instance, the instantia-
tion of law rep/nil for terms of function type. The obvious implementation of repP:

repP〈AJτ1K→AJτ2K〉 〈n, f 〉 = 〈n, f 〉

clearly violates it, particularily so if f diverges. Therefore, replication must be specialised for
n = 0 as follows:

repP〈τ〉 〈0, x 〉 = nilP〈τ〉 〈〉

Note that Figure 6.1 also fixes the semantics of lifted primitives, since for every primitive
p, p↑ xs ∼= mapP 〈〈〈p〉〉, xs〉. We discuss this in more detail in Section 6.7.
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Algebraic laws

len/nil lenP (nilP 〈〉) ∼= 0
len/rep lenP (repP 〈n, x 〉) ∼= n
len/concat lenP (xs +++ ys) ∼= lenP xs + lenP ys
len/attach lenP (attachP 〈n, xs〉) ∼= n
len/zip lenP (zipP 〈xs, ys〉) ∼= seq 〈lenP xs, lenP ys〉
rep/nil repP 〈0, x 〉 ∼= nilP 〈〉
rep/concat repP 〈m, x 〉 +++ repP 〈n, x 〉 ∼= repP 〈m + n, x 〉
rep/zip zipP 〈repP 〈n, x 〉, repP 〈n, y〉〉 ∼= repP 〈n, 〈x , y〉〉
attach/nil attachP 〈0, x 〉 ∼= nilP 〈〉
attach/len attachP 〈lenP xs, xs〉 ∼= xs
attach/rep1 attachP 〈n, repP 〈n, x 〉〉 ∼= repP 〈n, x 〉
attach/rep2 attachP 〈n,⊥〉 ∼= repP 〈n,⊥〉
attach/concat attachP 〈m, xs〉 +++ attachP 〈n, ys〉 ∼= attachP 〈m + n, xs +++ ys〉
attach/zip attachP 〈n, zipP 〈xs, ys〉〉 ∼= zipP 〈attachP 〈n, xs〉, attachP 〈n, ys〉〉
zip/nil zipP 〈nilP 〈〉, nilP 〈〉〉 ∼= nilP 〈〉
concat/zip zipP 〈xs1, ys1〉 +++ zipP 〈xs2, ys2〉 ∼= zipP 〈xs1 +++ xs2, ys1 +++ ys2〉
combine/concat combineP〈repP〈m,False〉 +++ repP〈n,True〉, 〈xs, ys〉〉 ∼= xs +++ ys
pack/take packP〈repP〈m,True〉 +++ repP〈n,False〉, xs〉 ∼= takeP〈m, xs〉
pack/drop packP〈repP〈m,False〉 +++ repP〈n,True〉, xs〉 ∼= dropP〈m, xs〉
take/drop takeP 〈m, xs〉 +++ dropP 〈m, xs〉 ∼= xs
nil/apply (nilP 〈〉) (nilP 〈〉) ∼= nilP 〈〉
nil/capply nilP 〈〉 ‡ nilP 〈〉 ∼= nilP 〈〉
map/rep mapP 〈c, x 〉 ∼= repP 〈lenP x , c〉 ‡ x
rep⊥ repP 〈⊥, x 〉 ∼= ⊥
attach⊥ attachP 〈⊥, x 〉 ∼= ⊥
zip⊥ zipP 〈⊥, x 〉 ∼= zipP 〈x , ⊥〉 ∼= ⊥

Preconditions

Operation Precondition
attachP 〈n, xs〉 lenP xs ∼= n ∨ lenP xs ∼= ⊥
zipP 〈xs, ys〉 lenP xs ∼= lenP ys
takeP 〈n, xs〉 lenP xs ≥ n
dropP 〈n, xs〉 lenP xs ≥ n
combineP 〈bs, 〈xs, ys〉〉 lenP (falsesP bs) ∼= lenP xs ∧ lenP (truesP bs) ∼= lenP ys

Figure 6.1 Properties of primitives
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Values in λC

v ::= i | b | 〈〉 (literals)
| 〈e1, e2〉 (tuples)
| λ• : τ. e | cn

〈τ1,...,τn 〉
(functions)

| 〈〈v , τ1, τ2, τ3, e〉〉 (closures)
| inµα.τ v (µ− constructors)
| Left〈τ1,τ2〉 e | Right〈τ1 ,τ2〉 e (sum constructors)
| nilP〈τ〉 〈〉 | repP〈τ〉 〈v , e〉 | v1 +++〈τ〉 v2 (array constructors)

Values in λA

v ::= i | b | 〈〉 | {i1, . . . , in}Int | {b1, . . . , bn}Bool (literals)
| 〈e1, e2〉 (tuples)
| λ• : τ. e | cn

〈τ1,...,τn 〉
(functions)

| 〈〈〈v1, v2〉, τ1, τ2, τ3, e2〉〉 | 〈〈:e, τ1, τ2, τ3, v :〉〉 (closures)

| inµα.τ v | in↑µα.τ v (µ− constructors)
| Left〈τ1,τ2〉 e | Right〈τ1 ,τ2〉 e (sum constructors)

Figure 6.2 Values in λC and λA

6.3 Operational semantics

Before attempting to prove the correctness of the flattening transformation, we must, of
course, define the semantics of its source and target languages. The languages λC and λA

are, like Haskell, non-strict and, consequently, we assume a call-by-name reduction strategy
(Church, 1941). It should be noted that Haskell, as currently implemented, is a call-by-need
language, such that terms are never evaluated more than once and the results of the evalu-
ation are shared across all occurences of the term (Wadsworth, 1971). While an operational
semantics can be defined such as to reflect sharing (Maraist et al., 1998; Launchbury, 1993),
they, in general, only affect number of reductions and the size of the terms involved in a
computation and not their observational equivalence. Intuitively, the former corresponds to
the execution time and memory usage of a program, while the latter capture the correctness
of the obtained results. Since it is precisely this notion of correctness which we investigate in
this work, the effects of sharing are ignored in the operational semantics of the two languages
and in the subsequent discussion.

6.3.1 Values

We begin the discussion of operational semantics by fixing the sets of values in λC and λA. A
value is a term which cannot be reduced any further and is a valid result of a computation.
As the two languages are non-strict, values define the weak head-normal forms of terms.

6.1 Definition (Values)
A term in λC or λA is a value if it conforms to the respective grammar in Figure 6.2.
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The definition of values highlights the strictness properties of parallel arrays and closures
in the two languages. In λC , a closure 〈〈f , τ1, τ2, τ3, e〉〉 is strict in the closure function f , as
reflected by the constraint that for the closure to be a value, f must a be value as well. That
this is necessary should be obvious from the fact that such a closure represents the partial
application of f to e and that ⊥ e = ⊥. Note that closures are not strict in the environment,
since in a non-strict language, f ⊥ does not necessarily diverge.

The situation is similar in λA. Here, closures are strict in both the vectorised and the
lifted component of the function tuple. In contrast to this, array closures lazy in the function
tuple and strict in the environment. This is due to the fact that array closures represent
the result of mapping a curried function over an array. Therefore, they cannot be strict in
the function, as discussed in Section 6.1, but, of course, the result of mapping over ⊥ must
diverge.

The most significant difference between the two languages lies, unsurprisingly, in the
representation of arrays. Recall that the primitives nilP, repP and (+++) are constructors
in λC but functions in λA. Consequentily, while arrays constructed by these primitives are
values in the former language, they are replaced by array literals and array closures in the
latter. Note that repP is strict in the term determining the length of the array but lazy in
the element which is to be replicated and (+++) is strict in both arguments. This corresponds
to the properties of these primitives discussed in the previous section.

6.3.2 Reduction

The operational semantics of λC and λA is defined as a set of small-step reduction rules in
the style of Plotkin (1981). For the core language constructs, these are given in Figure 6.3.
The rules covering applications, lambda abstractions, tuples and recursive terms are shared
between the two languages while those covering closures and arrays are different, capturing
the differences in the strictness properties and semantics of the respective constructs. For the
sake of clarity, we abbreviate 〈〈x , τ1, τ2, τ3, y〉〉 to 〈〈x , τ , y〉〉 and use a similar notation for array
closures. In Figure 6.3, v ranges over values, requiring the corresponding term to be in weak
head-normal form for the rule to apply.

In addition to the rules given in Figure 6.3, the operational semantics of the two languages
also includes reduction rules for applications of primitives which are determined by the im-
plementations of the latter given in Appendices B and C. For instance, the implementation
of repP in λA includes the following clause:

repP〈Int〉 〈!n, x 〉 = 〈n, repInt 〈n, x 〉〉

Here, we write !n to indicate that repP is strict in n. This definition has an obvious operational
interpretation. In particular, it induces the following reduction rules:

τ ≡ Int e −→ e ′

repP〈τ〉 e −→ repP〈τ〉 e ′
τ ≡ Int e1 −→ e ′1

repP〈τ〉 〈e1, e2〉 −→ repP〈τ〉 〈e
′
1, e2〉

τ ≡ Int

repP〈τ〉 〈v , e〉 −→ 〈v , repInt 〈v , x 〉〉

Note that in λA, the evaluation of type-indexed primitives must take type equivalence into
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Common rules

e1 −→ e ′1
e1 e2 −→ e ′1 e2

(λ• : τ. e1) e2 −→ e1[e2/•]
e1 −→ e ′1

e1 † e2 −→ e ′1 † e2

e −→ e ′

e.i −→ e ′.i

〈e1, e2〉.i −→ ei µ• : τ. e −→ e[µ• : τ. e/•]

Additional rules for λC

e1 −→ e ′1
〈〈e1, τ , e2〉〉 −→ 〈〈e ′1, τ , e2〉〉

〈〈v , τ , e1〉〉 † e2 −→ v 〈e1, e2〉

e1 −→ e ′1
repP〈τ〉 〈e1, e2〉 −→ repP〈τ〉〈e

′
1, e2〉

e1 −→ e ′1
e1 +++〈τ〉 e2 −→ e ′1 +++〈τ〉 e2

e −→ e ′

v +++〈τ〉 e −→ v +++〈τ〉 e ′

Additional rules for λA

e1 −→ e ′1
〈〈e1, τ , e2〉〉 −→ 〈〈e ′1, τ , e2〉〉

e1 −→ e ′1
〈〈〈e1, e2〉, τ , e3〉〉 −→ 〈〈〈e ′

1, e2〉, τ , e3〉〉

e1 −→ e ′1
〈〈〈v , e1〉, τ , e2〉〉 −→ 〈〈〈v , e ′

1〉, τ , e2〉〉
〈〈〈v1, v2〉, τ , e1〉〉 † e2 −→ v1〈e1, e2〉

e1 −→ e ′1
e1 ‡ e2 −→ e ′1 ‡ e2

e2 −→ e ′2
〈〈:e1, τ , e2:〉〉 −→ 〈〈:e1, τ , e ′2:〉〉

〈〈:e1, τ1, τ2, τ3, v :〉〉 ‡ e2 −→ e1.2 (zipP〈τ1,τ2〉
〈v , e2〉)

Figure 6.3 Operational semantics of λC and λA
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account. The derivation of such rules is straightforward; it would be impractical, however,
to include a complete list in this work. Thus, for each primitive defined in the Appendix, we
tacitly assume that the corresponding rules are reflected by the reduction relation.

6.2 Definition (Operational semantics of λC and λA)
The reduction relation −→C is the least binary relation on terms in λC comforming to the
rules given in Figure 6.3 and to those induced by the definitions of primitives in that language.
The relation −→A is defined analogously for terms in λA. The relations

∗
−→C and

∗
−→A are

the reflexive transitive closures of the respective reduction relations. As usual, we omit the
subscript when possible. We say that a term e evaluates to a value v and write e ⇓ v if
e

∗
−→ v . The term e converges, written as e⇓, if ∃v .e ⇓ v ; it diverges, written as e⇑, if ¬(e⇓).

We conclude the discussion of operational semantics of the two languages by establishing
subject reduction, a standard property stating that reduction does not change the type of a
term.

6.3 Lemma (Subject reduction)
For all terms e and e ′ in λC or λA such that e −→ e ′, if e : τ , then e ′ : τ .

Proof. By induction on the derivation e −→ e ′. 2

6.4 Semantic equivalence

We have already used the relation ∼= to denote semantic equivalence, but have so far not
defined it formally. Semantic, or operational, equivalence relates terms which are syntactically
different, but behave the same, i.e., encode the same computation. Commonly, it is defined as
a Morris-style contextual congruence or observational equivalence (Morris, 1968; Barendregt,
1984). Observational equivalence is specified based on contexts, i.e., terms with a hole into
which other terms can be “plugged in”.

6.4 Definition (Contexts)
A context C in λC or λA is a term containing zero or more occurences of the hole −. C [e]
denotes the term obtained by replacing all occurences of − by e. We say that C is a closing
context for e if C [e] is a closed term.

Contexts allow us to formalise the informal concept of “behaving the same”: we consider
two terms to be observationally equivalent if they are indistinguishable in all contexts. The
observation we make is, as usual, simply the fact of convergence (Milner, 1977; Abramsky,
1990).

6.5 Definition (Semantic equivalence)
We say that two terms e and e′ in λC or λA are semantically equivalent, written as e ∼=C e ′

and e ∼=A e ′, respectively, if for all closing contexts C in the language, C [e]⇓ ⇐⇒ C [e ′]⇓.

This definition is sufficient to capture the intuitive notion of equivalence since we can al-
ways construct contexts whose termination behaviour depends on the values e and e ′ evaluate
to.
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6.5 Mononomic lambda calculi

The languages λC and λA differ from the standard lambda calculus in that they do not
allows for multiple value variables. In the setting of this work, this principle is crucial as it
provides precisely the separation between computation and data required to support higher-
order functions. However, we expect such mononomic calculi to be more generally useful.
To see why, we will now establish some properties which are necessary for the following
correctness proofs but are also interesting in other contexts.

6.6 Notation
Given two terms e1 and e2 in λC or λA, we write e1 � e2 if e1 is a subterm of e2 and e1 ≺ e2

if e1 is a proper subterm of e2.

As usual, the definition of operational semantics given in the previous section makes use
of substitution to capture β-reduction. Substitution in a mononomic calculus, however, is
much more restricted than in a lambda calculus with multiple value variables. This becomes
obvious if we compare the respective definitions of substitution in lambda abstractions.

Mononomic substitution Standard substitution

(λ•. e1)[e2/•] = λ•. e1 (λx. e1)[e2/y] =

{
λx. e1 if x = y
λx. e1[e2/y] otherwise

Standard substitution can descend into the term under λ if the substituted variable and the
one bound by the abstraction are different. This, however, is never the cases in a mononomic
calculus and, hence, substitution stops unconditionally. The following lemma captures this
principle.

6.7 Lemma
Let e1 and e2 be terms in λC or λA. For every term λ• : τ. e such that λ• : τ. e � e1[e2/•],
either λ• : τ. e � e1 or λ• : τ. e � e2.

Proof. By induction on e1. 2

This property has far-reaching consequences for evaluation in mononomic calculi. Eval-
uation is based on β-reduction which, in turn, is based on substitution. Since substitution
cannot mutate lambda abstraction, evaluation cannot, either. Thus, if we consider two terms
e and e′ such that e

∗
−→ e ′, then every lambda abstraction in e′ must be present in e as well.

6.8 Theorem (Immutability of computation)
Let e be a term of function type in λC or λA. If e

∗
−→ e ′ and λ• : τ. x � e ′, then λ• : τ. x � e.

Proof. Obvious from Lemma 6.7 and the operational semantics of the two languages. 2

This insight is of crucial importance for the development in the rest of this chapter. In
particular, it implies that if a statement holds for all abstractions in e, then it also holds for
all abstractions in e′ regardless of the reduction steps that lie between the two terms. We will
frequently use this principle in the correctness proofs.

The same guarantee is provided by λσ and other lambda calculi with explicit substitutions
(Abadi et al., 1991; Hardin et al., 1998). Here, the notion of substitution is internalised in
the reduction rules, such that substitutions are only performed on a term when the latter
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is reduced which, of course, never happens for lambda abstractions with outermost reduc-
tion. Operationally, lambda abstractions with deferred substitutions correspond precisely to
closures. However, while computations are immutable in λσ, no theory exists which permits
deferred substitutions to be manipulated by the program. The latter property is crucial for
the implementation of array closures and is provided by the mononomic calculi.

6.6 Properties of flattened terms

In this section, we introduce a number of auxiliary results about terms generated by flattening,
which are of crucial importance for the rest of the development. We begin by establishing the
substitutivity of vectorisation.

6.9 Lemma (Substitutivity of vectorisation)
For all λC terms e and e ′, VJeK[VJe ′K/•] = VJe[e ′/•]K.

Proof. By straightforward induction on e. 2

From the definition of reduction in λA, it is easy to see that if, for some e1, VJe1K reduces
to some e ′1, then there does not necessarily exist a e2 such that e ′

1 = VJe2K. In general, we
only want to consider terms obtained by flattening; in the context of operational semantics,
however, this implies that we also must be able to reason about their reducts. The following
definition summarises the important invariants with respect to the tupling of functions which
flattening relies upon and which are preserved by reduction.

6.10 Definition (V-compatibility)
A λA term e is V-compatible if it satisfies the following conditions.

1. For every x � e such that x : FJτ1 → τ2K and x converges, either x
∗
−→ VJλ• : τ1. yK or

x
∗
−→ VJcn

〈υ1,...,υn〉
K.

2. If e
∗
−→ e ′ and VJλ• : τ. xK � e ′, then VJλ• : τ. xK � e.

3. If e
∗
−→ e ′, then e ′ is V-compatible.

6.11 Fact
If e is a λC term, then VJeK and LJn, eK are V-compatible.

Fact 6.11 follows from the obsevation that the reduction rules in λA (including those for
primitives) never break up function tuples except for applying one of the components and
never construct new ones.

6.7 Correctness of lifting

We are now in the position to establish the first major result about the correctness of flattening
by identifying the relationship between vectorisation and lifting. The main idea underlying
the flattening transformation is, for each function f , to generate a lifted function f ↑, thereby
combining the effects of mapping f over an array into a single algorithm. Clearly, f and f ↑
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are semantically related; this relation must be formalised, and we must show that the lifted
functions derived by flattening are adequate with respect to it.

Fortunately, the algebraic properties of mapping are well-known. In particular, the Bird-
Meertens formalism identifies three key properties of mapping over finite cons lists (Bird,
1989; Malcolm, 1990):

map f [] = []
map f [x ] = [f x ]
map f (xs ++ ys) = map f xs ++ map f ys

These laws are easily transferred to arrays, resulting in the following equivalences:

(1) mapP 〈VJcK, ⊥〉 ∼= ⊥
(2) mapP 〈VJcK, nilP 〈〉〉 ∼= nilP 〈〉
(3) mapP 〈VJcK, repP 〈n, x 〉〉 ∼= repP 〈n, VJcK † x 〉
(4) mapP 〈VJcK, xs +++ ys〉 ∼= mapP 〈VJcK, ys � xs〉 +++ mapP 〈VJcK, xs � ys〉

Equivalence (1) formalises the strictness of mapP in the array argument, which is usually left
implicit in the Bird-Meertens formalism. Equivalence (4) is based on � as described in Section
6.1. Note that we only consider λA closures which have been obtained by vectorisation. In
Section 6.8, we will see that this requirement is necessary, because these equivalence do not
hold for all λA programs.

The above laws only describe properties of closures. These cannot be shown directly,
however, as they ultimately rely on the correctness of lifting. Thus, we must demonstrate
that lifted functions exhibit similar properties.

(1a) (VJeK.2 e ′)⇑ if e ′⇑
(2a) VJeK.2 (nilP 〈〉) ∼= nilP 〈〉 if VJeK⇓
(3a) VJeK.2 (repP 〈1, x 〉) ∼= repP 〈1, VJeK.1 x 〉 if VJeK⇓
(4a) VJeK.2 (xs +++ ys) ∼= VJeK.2 (ys � xs) +++ VJeK.2 (xs � ys)

Here, we assume that e has a function type and, hence, VJeK.2 selects the appropriate lifted
function. The correspondence to the laws formulated earlier is obvious, but, clearly, equiv-
alences (2a) and (3a) can only hold if the function itself converges. Note that these laws,
together with the ones given in Figure 6.1, also fix the semantics of lifted primitives. The
rest of this section is devoted to demonstrating that these requirements are met by flattened
programs.

6.7.1 Strictness

To establish equivalence (1a), we will first show a slightly modified version of the conclusion.

6.12 Lemma
Let e be a λC term such that • : υ ` e : τ . For all terms e ′ : FJ[:υ:]K in λA, if e′ diverges,
then so does LJlenP〈AJυK〉 e ′, eK[e ′/•].

Proof. The proof is by straightforward induction on e. The conclusion follows from the fact
that repP and attachP are strict in the length. 2
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With Lemma 6.12 in hand, we can now show that lifted functions are indeed strict in their
argument.

6.13 Lemma (Strictness of lifting)
Let e be a term in λC and e ′ : FJ[:τ1:]K an V-compatible term in λA such that e ′⇑.

1. If e : τ1 → τ2, then (VJeK.2 e ′)⇑.

2. If e : τ1 ⇒ τ2, then (mapP 〈VJeK, e ′〉)⇑.

Proof. We show the two parts separately.

Part 1. The conclusion follows directly if VJeK diverges. Assume that VJeK converges; by
Definition 6.10 and Fact 6.11, it either evaluates to some VJλ• : τ1. e1K or to some VJcn

〈υ1,...,υ2〉
K.

Case VJeK ⇓ VJλ• : τ1. e1K Then, VJeK.2 e ′ ∼= VJλ• : τ1. e1K.2 e ′ ∼= LJlenP〈AJτ1K〉 •, e1K[e
′/•].

The last term diverges by Lemma 6.12.

Case VJeK ⇓ VJcn
〈υ1,...,υ2〉

K The conclusion holds if all lifted primitives in λA are strict in
their argument, as required earlier.

Part 2. We have

mapP 〈VJeK, ⊥〉
∼= repP 〈lenP⊥, e〉 ‡ ⊥ by Law map/rep
∼= ⊥ ‡ ⊥ by Law rep⊥
∼= ⊥

2

6.7.2 Preservation of empty arrays

The approach to establishing equivalence (2) is similar to the one used above. Instead of
proving the equivalence directly, we will first consider the substitution of nilP into a lifted
term.

6.14 Lemma
For every λC term e such that • : υ ` e : τ , LJlenP〈AJυK〉 •, eK[nilP〈AJυK〉 〈〉/•] ∼= nilP〈AJτK〉 〈〉.

Proof. The proof is by straightforward structural induction on e. In most cases, the con-
clusion follows directly from Laws len/nil and rep/nil or attach/nil . In the case e = •, the
conclusion is immediate by definition of LJ·, ·K and substitution. In the case e = e1 e2, the
conclusion is by induction hypothesis on e1 and e2 and Law zip/nil . 2

From Lemma 6.14, equivalence (2) is easily established.

6.15 Lemma (Preservation of empty arrays)
Let e be a term in λC.

1. If e : τ1 → τ2 and VJeK converges, then VJeK.2 (nilP〈AJτ1K〉 〈〉) ∼= nilP〈AJτ2K〉 〈〉.

2. If e : τ1 ⇒ τ2, then mapP 〈VJeK, nilP〈AJτ1K〉 〈〉〉 ∼= nilP〈AJτ2K〉 〈〉.

Proof. We show the two parts separately.
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Part 1. By Definition 6.10 and Fact 6.11, VJeK either evaluates to some VJλ• : τ1. e
′K or to

some VJcn
〈υ1,...,υ2〉

K.

Case VJeK ⇓ VJλ• : τ1. e
′K Then,

VJeK.2 (nilP〈AJτ1K〉 〈〉)
∼= VJλ• : τ1. e

′K.2 (nilP〈AJτ1K〉 〈〉)
∼= LJlenP〈AJτ1K〉 •, e1K[nilP〈AJτ1K〉 〈〉/•] by definition of VJ·K
∼= nilP〈AJτ2K〉 〈〉 by Lemma 6.14

Case VJeK ⇓ VJcn
〈υ1,...,υ2〉

K This case again relies on the correctness of lifted primitives.

Part 2. We have

mapP 〈VJeK, nilP〈AJτ1K〉 〈〉〉
∼= repP〈AJτ1K⇒AJτ2K〉 〈0, VJeK〉 ‡ nilP〈AJτ1K〉 〈〉 by Law map/rep
∼= nilP〈AJτ1K⇒AJτ2K〉 〈〉 ‡ nilP〈AJτ1K〉 〈〉 by Law rep/nil
∼= nilP〈AJτ2K〉 〈〉 by Law nil/capply

2

6.7.3 Replicativity

The strategy for proving equivalence (3) is fairly similar to that used previously. Again, we
proceed by investigating the corresponding property of substitution and derive the desired con-
clusion from that. Our intention is to show that repP 〈1, VJeK[e ′/•]〉 ∼= LJ1, eK[repP 〈1, e ′〉/•]
by structural induction on e. Unfortunately, this strategy fails in the crucial case e = e1 e2,
where we derive

repP 〈1, VJe1K[e
′/•].1 VJe2K[e

′/•]〉

for the left-hand side of the equivalence. Here, the induction hypothesis cannot be used
directly. We know, however, that in a well-typed program VJe1K[e

′/•].1 either diverges, eval-
uates to a primitive or evaluates to a lambda abstraction. The first two cases are trivial. In
the latter case, we have VJe1K[e

′/•] ∼= λ•. e3 for some e3 and, hence,

repP 〈1, VJe1K[e
′/•].1 VJe2K[e

′/•]〉 ∼= repP 〈1, e3[VJe1K[e
′/•]/•]〉

Since lambda abstractions are never substituted into, λ•. e3 must be a subterm of either VJe1K
or e ′. In the former case, the induction hypothesis can be used on e3 if the proof proceeds by
complete structural induction. However, this still does not allows us to derive the conclusion
if λ•. e3 is a subterm of e ′. Thus, we must require that the vectorised functions in e′ already
satisfy the condition we are about to show, as formalised by the following definition.

6.16 Definition (Replicativity)
A term e in λA is replicative if it is V-compatible and for all VJλ• : τ1. e

′K � e such that
• : τ1 ` e ′ : τ2 and all x : FJτ1K,

VJλ• : τ1. e
′K.2 (repP〈AJτ1K〉 〈1, x 〉) ∼= repP〈AJτ2K〉 〈1, VJλ• : τ1. e

′K.1 x 〉
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By imposing the requirement that e ′ is replicative, we circumvent the problems described
above. We will see below that this requirement is redundant; but the redundancy cannot be
shown directly. Note that the proof strategy outlined above crucially relies on the immutability
of computation in λA. This is not surprising, as it is precisely this property which has allowed
us to extend the flattening transformation to higher-order functions.

Before tackling the proof, let us identify two important properties of replicative terms.

6.17 Fact
All subterms of a replicative term are replicative.

Proof. Obvious from Definition 6.16. 2

6.18 Proposition
Reduction and substitution preserve replicativity.

Proof. Immediate from the definition of V-compatibility and Fact 6.17. 2

The following lemma is similar to Lemma 6.14; however, in addition to identifying an
equivalence with respect to substitution, it also includes replicativity in the conclusion. This
is, strictly speaking, unnecessary, but slightly simplifies the proof.

6.19 Lemma
Let e be a λC term such that • : υ ` e : τ . For all replicative terms x : FJυK,

1. VJeK[x/•] is replicative and

2. LJ1, eK[repP〈AJυK〉 〈1, x 〉/•] ∼= repP〈AJτK〉 〈1, VJeK[x/•]〉

Proof. The two parts are shown simultaneously by complete induction on e. The complete
proof is given in Appendix A.2. 2

6.20 Corollary
All V-compatible terms are replicative.

Proof. Evident from the observation that every VJλ• : τ. eK is replicative by Part 1 of Lemma
6.19 with, e.g., x = 〈〉. 2

Even though the proof of Lemma 6.19 crucially depends on the replicativity of x , Corollary
6.20 demonstrates that this requirement is redundant. Consequently, it can be omitted,
allowing us to establish equivalence (3) for functions and a similar property for closures.

6.21 Lemma
Let e be a term in λC such that VJeK⇓ and x : FJτ1K a V-compatible term in λA.

1. If e : τ1 → τ2, then
VJeK.2 (repP〈AJτ1K〉 〈1, x 〉)

∼= repP〈AJτ2K〉 〈1,VJeK.1 x 〉.

2. If e : τ1 ⇒ τ2, then
repP〈AJτ1K⇒AJτ2K〉〈1,VJeK〉 ‡ repP〈AJτ1K〉 〈1, x 〉

∼= repP〈AJτ2K〉〈1,VJeK † x 〉.

Proof. We first establish Part 1 and then show that Part 2 is implied by it.
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Part 1. VJeK evaluates either to some VJλ• : τ1. e
′K or to some VJcn

〈υ1,...,υn〉
K. The first case

is immediate from Corollary 6.20. The second case follows from the requirements on lifted
primitives.

Part 2. For Part 2, we assume that VJeK evaluates to some 〈〈p,AJυK,AJτ1K,AJτ2K, z 〉〉. As
before, either p ∼= VJλ• : υ × τ1. e

′K or p ∼= VJcn
〈υ1,...,υn〉

K. In any case, we have

repP〈AJτ2K〉 〈1, VJeK † x 〉
∼= repP〈AJτ2K〉 〈1, 〈〈p,AJυK,AJτ1K,AJτ2K, z 〉〉 † x 〉
∼= repP〈AJτ2K〉 〈1, p.1 〈z , x 〉〉
∼= p.2 (repP〈AJυK×AJτ1K〉 〈1, 〈z , x 〉〉) by Part 1
∼= p.2 〈1, 〈repP〈AJυK〉 〈1, z 〉, repP〈AJτ1K〉 〈1, x 〉〉〉 by definition of repP
∼= p.2 (zipP〈AJυK,AJτ1K〉〈repP〈AJυK〉 〈1, z 〉, repP〈AJτ1K〉 〈1, x 〉〉) by definition of zipP
∼= 〈〈:p,AJυK,AJτ1K,AJτ2K, repP〈AJυK〉 〈1, z 〉:〉〉 ‡ repP〈AJτ1K〉 〈1, x 〉
∼= repP〈AJτ1K⇒AJτ2K〉 〈1, 〈〈:p,AJυK,AJτ1K,AJτ2K, z :〉〉〉 ‡ repP〈AJτ1K〉 〈1, x 〉

by definition of repP
∼= repP〈AJτ1K⇒AJτ2K〉 〈1,VJeK〉 ‡ repP〈AJτ1K〉 〈1, x 〉

2

6.7.4 Concatenativity

The remaining requirement on lifting is equivalence (4), which captures the distributivity of
mapping and concatenation. As before, we will first establish a corresponding property for
substitution:

LJlenP •, eK[y � x/•] +++ LJlenP •, eK[x � y/•] ∼= LJlenP •, eK[x +++ y/•]

Recall, however, that concatenation is not supported by arrays of functions, as described in
Section 4.6. This implies that such arrays may not occur in the terms being concatenated.
Unfortunately, this restriction also significantly complicates the proof of the equivalence.

The proof is, again, by structural induction on e. In the case e = e1 e2, however, the
induction hypothesis cannot be used on e1 because the term LJlenP •, e1K[y � x/•] represents
an array of functions which cannot be concatenated. This makes a direct proof impossible.

We can circumvent this problem by making the following observation. The execution
model underlying the semantics of the intermediate languages is data-parallel, which implies
that the structure of computations performed in a parallel context does not depend on the
data. Assume that f is a higher-order function of type τ1 → (τ2 → τ3). By mapping it over an
array of type [:τ1:], we can obtain an array of functions of type [:τ2 → τ3:]; but the computation
encoded by this array will be the same regardless of the arguments supplied to f .

More specifically, the lifted version f will yield function arrays represented by the type
Int× ((τ2 → τ3)× ([:τ2:]→ [:τ3:])) and, satisfy the equality (f ↑ x ).2 = (f ↑ y).2 for all values
of x and y , unless either of the two results diverge. This principle also extends to more
complex data structures which embed arrays of functions.

The technical problem described earlier can now be solved by establishing that the terms
LJlenP •, e1K[x/•].2 and LJlenP •, e2K[y/•].2 evaluate to the same function tuple regardless
of the values of x and y , thereby eliminating the need to rely on the induction hypothesis in
this case. First, of course, we must formalise this principle. We do so by introducing a notion
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of equivalence which only depends on termination and equality of functions but disregards
the data stored in data structures.

6.22 Definition (Data-erasing equivalence)
Let ∼τ be the largest reflexive, symmetric, transitive and type equivalence respecting family
of relations obeying the rules given below. We call ∼τ data-erasing equivalence and say that
e and e ′ are equivalent under data-erasure if e ∼τ e ′.

e ∼τ e ′ ⇐⇒ (e⇓ ⇐⇒ e ′⇓)
if τ ∈ {Int, ArrInt, ArrBool} or τ = τ1 V τ2

e ∼τ1×τ2 e ′ ⇐⇒ (∀e1 e2. e ⇓ 〈e1, e2〉 =⇒ ∃e ′1 e ′2. e
′ ⇓ 〈e ′1, e

′
2〉 ∧ e1 ∼τ1 e ′1 ∧ e2 ∼τ2 e ′2)

e ∼(µα.τ).2 e ′ ⇐⇒ (∀e1. e ⇓ in
↑
µα.τ e1 =⇒ ∃e ′1. e

′ ⇓ in↑µα.τ e ′1 ∧ e1 ∼τ [µα.τ/α].2 e ′1)
e ∼τ1→τ2 e ′ ⇐⇒ (∀ x . e ⇓ λ• : τ1. x =⇒ e ′ ⇓ λ• : τ1. x )

∧ (∀ c υ1 . . . υn . e ⇓ cn
〈υ1,...,υn〉

=⇒ e ′ ⇓ cn
〈υ1,...,υn〉

)

The definition of data-erasing equivalence is, essentially, coinductive, which is not sur-
prising given that we considering a non-strict language. Moreover, data-erasing equivalence
is only defined for those types which are used for representing parallel arrays. It is easily
extended to cover all types in λA, but doing so does not seem worthwhile as we will only use
it to compare the results of parallel computations.

The erasure of data is captured by the rules for integers and unboxed arrays which only
require the terms to have the same termination behaviour in all positions, but abstract from
their values. Crucially, only syntactically equal functions are equivalent under data erasure
— this is a direct encoding of the principle described above.

Since data-erasing equivalence is defined in terms of reduction, we can immediately identify
the following useful property.

6.23 Proposition
Reduction preserves data-erasing equivalence.

Proof. Obvious from Definition 6.22. 2

Subsequent proofs rely in the primitives lenP, attachP and zipP being extensional with
respect to data-erasing equivalence, as formalised by the following lemma.

6.24 Lemma
Let x and y be terms in λA of type τ such that x ∼ y.

1. If τ = FJ[:τ ′:]K, then lenP〈AJτ ′K〉 x ∼ lenP〈AJτ ′K〉 y.

2. If τ = FJ[:τ1:]K×FJ[:τ2:]K, then zipP〈AJτ1K,AJτ2K〉 x ∼ zipP〈AJτ1K,AJτ2K〉 y.

3. If τ = Int×FJ[:τ ′:]K, then attachP〈AJτ ′K〉 x ∼ attachP〈AJτ ′K〉 y.

Proof. Immediate from the definitions of these primitives given in Appendix C. 2

We are now in the position to formulate the insight which led to the introduction of
data-erasing equivalence: the results of applying a lifted function to two equivalent terms,
are, again, equivalent under data-erasure. As before, the actual formalisation is based on
substitution rather than application.
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6.25 Lemma
Let e be a λC term such that • : υ ` e : τ . For all x : FJ[:υ:]K and y : FJ[:υ:]K, if x ∼FJ[:υ:]K y,
then LJlenP〈AJυK〉 •, eK[x/•] ∼FJ[:τ :]K LJlenP〈AJυK〉 •, eK[y/•].

Proof. By complete structural induction on e. The complete proof is given in Appendix
A.3. 2

Since we are ultimately interested in distributivity over concatenation, the relationship
between this operation and data-erasing equivalence must be investigated. We begin this
discussion by identifying the class of terms which do not evaluate to functions and, thus, can
be concatenated.

6.26 Definition (Concatenability)
A type τ in λC is concatenable if, for every type υ such that [:υ:] occurs in τ , υ does not
contain function types. A type in λA is concatenable if it contains no function types. We say
that two terms are concatenable if they are of the same concatenable type.

We have already described the impact of concatenation on definedness. If we restrict
ourselves to concatenable terms, which cannot evaluate to arrays of functions, then definedness
is precisely what is captured by data-erasing equivalence. Thus, we can formulate the following
crucial principle.

6.27 Lemma
Let x and y be concatenable terms of type FJ[:τ :]K such that x ∼ y. Then, x ∼ x +++〈AJτK〉 y.

Proof. By induction on τ . 2

For concatenable terms, there also exists an obvious relationship between data-erasing
equivalence and operator �, since the latter ensures that two terms diverge in exactly the
same positions.

6.28 Lemma
Let x and y be concatenable terms of type FJ[:τ :]K. Then, y � x ∼ x � y.

Proof. By induction on τ . 2

6.29 Lemma
Let e be a λC term such that • : υ ` e : τ . For all concatenable x and y of type FJ[:υ:]K such
that x ∼ y,

LJlenP〈AJυK〉 •, eK[x/•] +++〈AJτK〉 LJlenP〈AJυK〉 •, eK[y/•]
∼= LJlenP〈AJυK〉 •, eK[x +++〈AJυK〉 y/•]

Proof. By complete structural induction on e. The complete proof is given in Appendix
A.4. 2
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6.8 Correctness of vectorisation

Based on the properties of lifting formalised in the previous section, we are now in the position
to show the operational correctness of vectorisation and, thus, the correctness of the flattening
transformation. For this, we need to find a suitable definition of correctness first. A standard
approach in such cases is to show that the transformation is equivalence-preserving, such that
e1
∼= e2 in λC implies VJe1K ∼= VJe2K in λA. Unfortunately, this implication does not hold in

general. This is because semantically equivalent terms can be used interchangeably in all
contexts, but in λA, a context can violate the crucial assumption underlying vectorisation —
the invariant that functions are always tupled with their lifted versions.

6.30 Example
Consider the two λC functions:

f = λ•. mapP 〈•, repP 〈1, 2〉〉
g = λ•. repP 〈1, • † 2〉

Both take a closure as the argument; f maps over the array [:2:], while g first applies it to 2
and then constructs the array. These two operations are equivalent in λC and, hence, f ∼= g .

The vectorised versions of these functions are, however, not equivalent in λA. For instance,
if both are applied to the closure 〈〈〈λ•. 1, λ•. •.2〉, τ , 〈〉〉〉, we have:

VJf K.1 〈〈〈λ•. 1, λ•. •.2〉, τ , 〈〉〉〉 ∼= (λ•. •.2) (zipP 〈repP 〈1, 〈〉〉, repP 〈1, 2〉〉) ∼= repP 〈1, 2〉
VJgK.1 〈〈〈λ•. 1, λ•. •.2〉, τ , 〈〉〉〉 ∼= repP 〈1, (λ•. 1) 〈〈〉, 2〉〉 ∼= repP 〈1, 1〉

The results of the two computations are different since due to the definition of mapP, the
former is ultimately obtained by applying λ•. •.2 to the array created by replication, whereas
the latter is computed by first applying λ•. 1 and then replicating the result. We will see
below that these operations would be equivalent if λ•. •.2 were the lifted version of λ•. 1.
This, however, is obviously not the case. Therefore, VJf K 6∼= VJgK; in particular, based on the
above observation it is trivial to construct a context C such that C [VJf K] converges while
C [VJgK] diverges.

The above example demonstrates that observational equivalence is too strong a require-
ment for our purposes. Moreover, as mentioned before, we do not intend to show that flat-
tening preserves nontermination, which renders observational equivalence even less usable.
Note, however, that the closure used to distinguish the two functions in Example 6.30 cannot
be obtained by flattening. Our intention, however, is to apply flattening to entire programs,
i.e., we do not consider the interactions between flattening and code written directly in λA

(?????). Thus, we should only take into account those terms and, by extension, contexts
which have been generated by the flattening transformation.

6.31 Definition (Flattening of contexts)
The transformations VJ·K and LJ·, ·K are naturally extended to contexts in λC by adding the
following rules to the definitions in Figure 5.8:

VJ−K = −
LJl ,−K = repP 〈l ,−〉
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Based on this definition, we specify a notion of simulation of programs in λC by those in
λA which corresponds to our intentions much better than observational equivalence.

6.32 Definition (Simulation)
A λC term e is simulated by a λA term e′, written as e ; e ′, if for all λC contexts C,
C [e]⇓ =⇒ VJC K[e ′]⇓.

Simulation is similar to observational equivalence in that it relates terms depending on
their behaviour in all contexts. But it is also different, relating terms in different languages,
only considering λA contexts obtainable by vectorisation and allowing the λA term to be more
defined than its λC counterpart. This corresponds precisely to the notion of correctness which
we informally described earlier: we will consider vectorisation to be correct if every λC term
is simulated by its vectorised version.

To obtain any meaningful correctness results, we must establish a formal link between the
operational semantics of λC and λA. The semantics of the two languages is based on reduction
which, therefore, will be our starting point. Ideally, we would like to show that if e and e ′

are terms in λC such that e −→ e ′, then VJeK
∗
−→ VJe ′K. Unfortunately, this is not the case

in general.
This is due to the fact that while mapping and similar operations rely on the inductive

definition of parallel arrays in λC , they are performed in an entirely different manner in λA.
For instance, according to the reduction rules induced by the implementation of mapP in λC

we have

mapP 〈c, repP 〈n, x 〉〉 −→ repP 〈n, c † x 〉

Let us consider how the vectorised versions of the two terms are evaluated. The second term
remains essentially unchanged and is computed by applying the closure to x and replicating
the result. The first term, however, encodes an entirely different evaluation strategy in λA.
Here, the closure is replicated and then applied elementwise to the argument array, eventually
leading to a single application of the lifted closure function.

The reductions performed in the two cases are quite different, so much so that the desired
direct correspondence cannot be established. However, while there exists no one-to-one or
one-to-many correspondence between the individual reductions, the two computations are
equivalent as investigated in the previous section. This suggests that the desired relationship
between reduction in λC and the semantics of λA can be expressed in terms of semantic
equivalence. The following lemma is a direct consequence of this insight.

6.33 Lemma
Let e and e ′ be terms in λC such that e

∗
−→ e ′. Then, VJeK ∼= VJe ′K.

Proof. It is sufficient to show that if e −→ e ′, then VJeK ∼= VJe ′K, as the conclusion then
follows by transitivity of semantic equivalence. The proof is by induction on the derivation
e −→ e ′.

Case D = (λ• : τ. e1) e2 −→ e1[e2/•]

VJ(λ• : τ. e1) e2K
= (λ• : FJτK. VJe1K) VJe2K by definition of VJ·K
∼= VJe1K[VJe2K/•] by semantics of λA

∼= VJe1[e2/•]K by Lemma 6.9
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Case D = µ• : τ. e −→ e[µ• : τ. e/•]

VJµ• : τ. eK
= µ• : FJτK. VJeK by definition of VJ·K
∼= VJeK[µ• : FJτK. VJeK/•] by semantics of λA

= VJeK[VJµ• : τ. eK/•] by definition of VJ·K
∼= VJe[µ• : τ. e/•]K by Lemma 6.9

For the other core language derivations, the conclusion follows immediately from the induc-
tion hypothesis on the premise and corresponding properties of semantic equivalence. For
primitives, the conclusion follows from their implementations and the properties of lifting
established in the previous section. As before, we will not provide proofs for the primitives.

2

Note that Lemma 6.33 does not contradict to Example 6.30, which assumes that e and
e ′ are semantically equivalent and relies on the extensionality of this relation. Extensionality
implies that we can change terms under lambdas; this, however, is never done by call-by-name
reduction. Consequently, no such examples can be constructed if, as in Lemma 6.33, e and
e ′ are connected by a sequence of reductions.

From the above, it is already obvious that flattening is correct for programs which produce
scalar values. Assume, for instance, that e : Int is a converging λC term. Then, e evaluates
to some integer literal i and by Lemma 6.33, VJeK ∼= VJiK. Since VJiK = i , we have VJeK ∼= i ,
i.e., the vectorised version of e yields the desired result.

Since we are mainly interested in parallel programs, however, ruling out programs which
produce parallel arrays is not practical. Unfortunately, the above reasoning is not directly
applicable to array values, as these are represented differently before and after flattening. In
contrast to integers, vectorising a λC array value does not yield a value in λA, since array
constructors are mapped to applications of corresponding primitives which can be evaluated
further. Fortunately, it is easy to show that such computations always converge.

6.34 Lemma
Let v be a value in λC. Then, VJvK⇓.

Proof. By straightforward induction on v . 2

With this in mind, it is straightforward to prove that vectorisation never introduces non-
termination.

6.35 Lemma (Preservation of termination)
Let e be a converging term in λC. Then, VJeK⇓.

Proof. Since e converges, there must exists a value v such that e
∗
−→ v . By Lemma 6.33,

VJeK ∼= VJvK. By Lemma 6.34, VJvK converges and by definition of observational equivalence,
so does VJeK. 2

The above lemma is central to establishing the correctness of vectorisation. The following
observation enables us to use it in the proof.

6.36 Lemma
If C is a context and e a closed term in λC, then VJC K[VJeK] ∼= VJC [e]K.
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Proof. By straightforward induction on C. 2

Note that this is very similar to the substitutivity of vectorisation as formalised by Lemma
6.9. Here, however, we can only show semantic equivalence instead of syntactic equality be-
cause in lifted contexts, holes are replicated (cf. Definition 6.31), but the replication algorithm
has been folded into the definition of flattening for terms in some cases.

From Lemmas 6.35 and 6.36, the correctness of vectorisation is easily established.

6.37 Theorem (Correctness of vectorisation)
Let e be a term in λC. Then, e ; VJeK.

Proof. We must show that for every λC context C, VJC K[VJeK] converges if C [e] does.
Assume that C [e] converges. Then, VJC K[VJeK] ∼= VJC [e]K by Lemma 6.36 and VJC [e]K
converges by Lemma 6.35. 2



Chapter 7

Conclusion

The combination of nested data parallelism and functional programming provides a highly
expressive framework for writing parallel applications. It allows the programmer to focus on
the overall structure of the algorithm and specify its parallel behaviour rather than having to
implement it by hand. The examples in Chapter 2 demonstrate the conciseness and clarity
of the resulting code.

This expressiveness comes at a cost, however, in the form of a significantly increased
complexity of the compiler. Indeed, the nested data-parallel model would not be a viable
approach if the high-level specifications could not be automatically translated into code which
runs efficiently on modern massively parallel systems. The flattening transformation has long
been recognised as a sensible and well-founded solution to this problem. But it was also
an incomplete solution, since it did not cover higher-order functions which, arguably, are
the defining feature of the functional paradigm. This had a highly negative impact on the
utility and acceptance of flattening and, by extension, of nested data parallelism in general.
First, this deficiency severely limited the expressiveness of the approach, thereby negating its
main advantage to a certain extent. Secondly, and perhaps more importantly, it precluded
a seamless integration of nested data parallelism into a complete and wide-spread functional
language, thus making the technique unusable for real-world programming.

In Chapter 4, we have seen that the reasons for this shortcoming are deeply rooted in
the interactions between flattening and the standard lambda calculus which serves as the
foundation of functional programming languages. The former must be able to manipulate
computations and data independently; the latter interweaves the two such that they cannot
be easily separated. Identifying and resolving this conflict has been the main challenge in the
research presented in this dissertation.

By combining flattening with closure conversion, we have been able to provide a clean and
lightweight solution to this problem. Closure conversion achieves the required separation of
computation and data by making partially applied functions explicit entities in the calculus
which allows already bound arguments to be accessed and modified. A closure represents a
single partial application; but this principle is easily extended to arrays of such functions.
By suitably extending the flattening transformation, closures can be utilised to support arbi-
trary uses of higher-order functions in nested data-parallel programs. We provided a detailed
discussion of the implications and the parallel behaviour of this compilation strategy and
validated it by considering the semantics and implementations of fundamental parallel opera-
tions. An interesting aspect of this development is that closure conversion allows us to derive
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many of the implementations by adopting a well-founded approach based on parametricity.

A program transformation, especially one as complex and intrusive as flattening, cannot be
considered a viable compilation technique without a correctness proof. Consequently, after
the detailed but informal discussion of higher-order nested data parallelism, we embarked
on a programme to show that flattening is, indeed, correct with respect to both static and
dynamic semantics. The proof of type correctness, together with the formal specifications
of the flattening transformation and its source and target languages, is the main result of
Chapter 5.

Not surprisingly, the operational correctness has been much harder to establish, particu-
larily so since, motivated by the desire to integrate nested data parallelism into Haskell, we
have adopted a call-by-name evaluation strategy for our intermediate languages. The data
structures generated by flattening necessarily rely on unboxed arrays since the latter are easily
parallelisable, in contrast to structures based on pointers and thunks. But unboxed arrays
are strict and their use in a lazy setting has highly non-obvious implications on the opera-
tional behaviour of programs. A detailed analysis of the interactions between flattening in
laziness has been the main topic of the first part of Chapter 6. In addition to providing a solid
foundation for the subsequent formal development, this has also clarified the requirements on
the implementation of nested data parallelism and the supporting library in lazy languages.
We consider this to be one of the key contributions of this work, as this aspect has not been
investigated before.

In the second part of Chapter 6, we have demonstrated that the flattening transformation
preserves the semantics of terminating programs. The proof of this property crucially relies
on the immutability of lambda abstractions which is syntactically enforced by the underly-
ing calculi. This has justified the slightly unsual choice of our intermediate languages and
highlighted the importance of closure conversion for higher-order nested data parallelism.

7.1 Related work

We have already covered specifically relevant related work in the respective chapters. Still,
the embedding of support for parallel programming into functional languages is a very active
research topic and it is, therefore, important to provide a context for the main results of this
dissertation by reviewing similar approaches.

Trinder et al. (2002) provide a comprehensive overview of various approaches to extend-
ing Haskell with facilities for parallel programming. Of these, Data Parallel Haskell (Hill,
1994) is probably closest to the nested data parallel model as presented in this work. Data
Parallel Haskell also relies on a special form of parallel collections (called PODs) and collec-
tive operations for expressing parallelism, and on a vectorising transformation for compiling
it. However, in contrast to parallel arrays, PODs are lazy, both in their elements and in
their shape. This brings their semantics closer to that of lists but leads to entirely different
trade-offs and runtime behaviour. In particular, while PODs are more flexible, operations on
them are harder to optimise as less static information is available to the compiler.

Data Field Haskell (Holmerin and Lisper, 2000) introduces a more general model of data
parallelism based on the theory of data fields (Lisper and Hammarlund, 2001). Here, parallel
collections are seen as partial functions from index domains to value domains. By selecting
suitable index domains, a wide range of complex data structures can be specified. However,
the efficiency of this approach remains an open question, as no parallel implementation has
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been provided so far.
A large number of implicitly and explicitly control-parallel extensions to Haskell have been

proposed. An example of the former is Parallel Haskell (Aditya et al., 1995) which allows very
fine-grained parallelism to be utilised but changes the semantics of the language by requir-
ing lenient evaluation and, ultimately, compromising referential transparency. Herrmann and
Lengauer (2000) describe HDC, a strict subset of Haskell in which parallelism is automatically
extracted from a program and compiled based on a library of predefined skeletons. Glasgow
Parallel Haskell (Trinder et al., 1996; Trindler et al., 1998) is an explicitly parallel approach
which allows the programmer to designate those expressions that may be evaluated in parallel
and provides evaluation strategies as a means of specifying the required degree of evaluation.
Eden (Loogen et al., 2005) uses stream processors and process abstractions to separate coor-
dination from computation; unfortunately, it, too, breaks referential transparency. Although
nested data parallelism can be seen as explicit in the sense that it requires the programmer to
employ specialised data structures and operations, it is closer to the implicit approaches from
the implementor’s point of view, as the programs have to undergo extensive transformations.
Importantly, the integration of NDP does not necessitate any changes to Haskell’s semantics
and has no impact on programs which do not use it.

Of course, functional approaches to parallel programming are not restricted to Haskell
extensions. The supported forms of parallelism range from purely regular computations in
Sisal (Feo et al., 1990) and SAC (Scholz, 1998) to arbitrary control-parallel structures, as in
Concurrent Clean (Nocker et al., 1991) and Concurrent ML (Reppy, 1991). Hammond and
Michaelson (1999) provide a comprehensive overview of several such approaches.

In the context of this dissertation, the language FISh (Jay and Steckler, 1998). Although
not immediately parallel, it uses shape analysis (Jay and Sekanina, 1996; Jay, 1995a) to derive
an efficient, unboxed representation for nested, polymorphic arrays. This approach is quite
similar to the flattening transformation and, indeed, we have discussed the connection to
shape theory in Section 6.1.1.

7.2 Future work

The research presented in this dissertation provides a foundation for a number of directions
for future work. This section describes some of the most interesting ones.

7.2.1 An implementation

A final evaluation of the mechanisms proposed in this work is, of course, not possible until
they are implemented in a compiler and applied to parallel applications of meaningful size.
Our main focus has been on Haskell and we envisage the Glasgow Haskell Compiler to be the
primary vehicle for integrating nested data parallelism into the language. Such an integration,
however, is far from being straightforward. First and foremost, GHC does not perform closure
conversion, which must be included in the compilation process before attempting to implement
flattening. We expect this to have far-reaching consequences on the structure of the compiler,
especially in the presence of separate compilation, but believe these consequences to be, for
the most part, beneficial with respect to both the performance of the generated code and the
architecture of GHC’s backend and runtime system.

Another problem which, although orthogonal to the ones investigated in this dissertation,
must be resolved for an implementation of NDP to be viable is the handling of polymorphism.
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Chakravarty et al. (2005b,a) propose a sound and clean solution based on an extension of type
classes with a mechanism for defining functions over types. Unfortunately, this approach has
not yet been implemented in GHC or any other Haskell compiler. We expect this to change
in the near future, however.

Finally, the code generated by the flattening transformation must undergo extensive opti-
misations if it is to exhibit competitive performance on distributed-memory machines. Such
optimisations have been investigated in detail by (Keller, 1999) but these results have been
obtained for a strict, first-order language. We believe that they are directly applicable to the
higher-order techniques developed in this work, but this, again, cannot be concluded without
a working implementation.

7.2.2 Cost model

The implementation of nested data parallelism provided by Nesl is accompanied by a language-
based cost model (Blelloch and Greiner, 1996). Such a model is highly desirable as it can be
used to assess and compare different formulations of a parallel algorithm and to identify cases
in which flattening increases the parallel step count of a program as compared to its source-
level metrics (Riely and Prins, 2000). Moreover, a cost model can also guide the compiler
in selecting and applying optimisations. In earlier work, we have investigated the complex-
ity of flattened data-parallel fold -programs (Lechtchinsky et al., 2002). The results suggest
that a standard set of nested data parallel skeletons can help the programmer in avoiding
performance traps and allow programs to be costed automatically. In fact, the amenability of
skeletons to well-founded cost models has long been recognised (Rangaswami, 1996; Hamdan,
1999; Hayashi, 2001). We expect that the general form of flattening developed in this dis-
sertation will make these techniques applicable to nested data-parallel programs, ultimately
facilitating a concise and uniform specification of a cost model.

7.2.3 Skeletons

We have already mentioned the relationship between nested data parallelism and skeleton-
based parallel programming. The latter has received a lot of attention (Cole, 1999; Rabhi and
Gorlatch, 2002) and, indeed, the idea of implementing parallel applications by instantiating
and assembling predefined computation patterns with well-defined semantics and complexity
is highly attractive. Many important skeletons are data-parallel — the prime example is, of
course, map. Moreover, it is desirable for skeletons to be arbitrarily composable and nestable
(Darlington et al., 1995).

Higher-order nested data parallelism can be seen as a well-founded and efficient platform
for implementing a wide range of skeletons. This would amount to introducing another layer of
abstraction on top of the bulk operations on parallel arrays. For instance, the implementation
of Quicksort in Section 2.4 can easily be refactored into a generic divide-and-conquer skeleton.
Similarily, Wang’s algorithm discussed in Section 2.5 uses an instance of a pipelining skeleton,
which is easily realised by combining parallel and sequential data structures. Thus, while
our extension to Haskell already provides the programmer with a high-level framework for
developing parallel applications, its expressiveness can be increased even further by furnishing
it with a library of standard skeletons. Crucially, such a library does not have to be realised
in a lower-level language since higher-order nested data parallelism already provides the tools
necessary for its implementation.
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Long proofs

A.1 Proof of Theorem 5.27 (Type correctness of flattening)

The two parts of the theorem are proved simultaneously by induction on the derivation
Γ `C e : σ.

Case D = Γ `C i : Int

Vectorisation

GJΓK ` i : Int by typing rules
GJΓK ` i : Int.1 by rule (type conversion)

Lifting

GJΓ↑K ` i : Int by typing rules
GJΓ↑K ` l : Int assumption
GJΓ↑K ` 〈l , i〉 : Int× Int by typing rules
GJΓ↑K ` 〈l , i〉 : (Int× Int).1 by rule (type conversion)
GJΓ↑K ` repP〈Int〉 〈i , l〉 : Int.2 by type of repP

Case D = Γ `C b : Bool Analogous to the previous case.

Case D = Γ `C 〈〉 : 〈〉 Analogous to the previous case.

Case D =
`Cτ1 . . . `C τn

Γ `C c〈τ1,...,τn〉 : TC(c〈τ1 ,...,τn〉)

Vectorisation

P1: TC(c〈τ1 ,...,τn 〉) = υ1 → υ2 for some υ1, υ2 by Definition 5.2
TA(VC JcK〈AJτ1K,...,AJτn K〉) = AJυ1K.1→ AJυ2K.1 by Property 5.26

P2: AJτiK : ?× ? for all 1 ≤ i ≤ n by Lemma 5.20
P3: GJΓK ` VC JcK〈AJτ1K,...,AJτn K〉 : AJυ1K.1→ AJυ2K.1 by typing rules
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with P1

TA(LC JcK〈AJτ1K,...,AJτn K〉) = AJυ1K.2→ AJυ2K.2 by Property 5.26
with P2

GJΓK `A LC JcK〈AJτ1K,...,AJτn K〉 : AJυ1K.2→ AJυ2K.2 by typing rules
with P3

GJΓK ` 〈VC JcK〈AJτ1K,...,AJτn K〉, LC JcK〈AJτ1K,...,AJτn K〉〉
: (AJυ1K.1→ AJυ2K.1)× (AJυ1K.2→ AJυ2K.2)

by typing rules
GJΓK ` 〈VC JcK〈AJτ1K,...,AJτn K〉, LC JcK〈AJτ1K,...,AJτn K〉〉 : (AJυ1K→AJυ2K).1

by rule (type conversion)
P4: GJΓK ` VJc〈τ1,...,τn 〉K : (AJυ1K→AJυ2K).1 by definition of VJ·K

Lifting

from P4

GJΓ↑K ` VJc〈τ1,...,τn〉K : (AJυ1K→AJυ2K).1 by conversion of type contexts

GJΓ↑K ` l : Int assumption
GJΓ↑K ` 〈l ,VJc〈τ1 ,...,τn〉K〉 : Int× (AJυ1K→AJυ2K).1 by typing rules

GJΓ↑K ` repP〈AJυ1K→AJυ2K〉 〈l ,VJc〈τ1 ,...,τn〉K〉 : (AJυ1K→AJυ2K).2 by type of repP

Case D = • : τ `C • : τ

Vectorisation

• : AJτK.1 ` • : AJτK.1 by typing rules
GJ• : τK ` • : AJτK.1 by definition of GJ·K

Lifting

• : AJτK.2 ` • : AJτK.2 by typing rules
GJ• : [:τ :]K ` • : AJτK.2 by definition of GJ·K

Case D =

D1

Γ `C e1 : τ1 → τ2

D2

Γ `C e2 : τ1

Γ `C e1 e2 : τ2

Vectorisation

GJΓK ` VJe1K : (AJτ1K→AJτ2K).1 by ind. hyp. (1) on D1

GJΓK ` VJe1K : (AJτ1K.1→ AJτ2K.1)× (AJτ1K.2→ AJτ2K.2) by rule (type conversion)
GJΓK ` VJe1K.1 : AJτ1K.1→ AJτ2K.1 by typing rules
GJΓK ` VJe2K : AJτ1K.1 by ind. hyp. (1) on D2

GJΓK ` VJe1K.1 VJe2K : AJτ2K.1 by typing rules
GJΓK ` VJe1 e2K : AJτ2K.1 by definition of VJ·K

Lifting

GJΓ↑K ` l : Int assumption
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GJΓ↑K ` LJl , e1K : (AJτ1K→AJτ2K).2 by ind. hyp. (2) on D1

GJΓ↑K ` LJl , e1K : Int× ((AJτ1K.1→ AJτ2K.1) × (AJτ1K.2→ AJτ2K.2))
by rule (type conversion)

GJΓ↑K ` LJl , e1.2.2K : AJτ1K.2→ AJτ2K.2 by typing rules
GJΓ↑K ` LJl , e2K : AJτ1K.2 by ind. hyp. (2) on D2

GJΓ↑K ` LJl , e1.2.2K LJl , e2K : AJτ2K.2 by typing rules
GJΓ↑K ` LJl , e1 e2K : AJτ2K.2 by definition of LJ·, ·K

Case D =
τ1 `C e : τ2 `C τ1

Γ ` λ• : τ1. e : τ1 → τ2

Vectorisation

P1: ` AJτ1K : ?× ? by Lemma 5.20
AJτ1K.1 ` VJeK : AJτ2K.1 by ind. hyp. (1)

P2: GJΓK ` λ• : AJτ1K.1. VJeK : AJτ1K.1→ AJτ2K.1 by typing rules

AJτ1K.2 ` lengthP〈AJτ1K〉 • : Int by type of lengthP
AJτ1K.2 ` LJlengthP〈AJτ1K〉 •, eK : AJτ2K.2 by ind. hyp. (2)
with P1

GJΓK ` λ• : AJτ1K.2. LJlengthP〈AJτ1K〉 •, eK : AJτ1K.2→ AJτ2K.2 by typing rules
with P2

P3: GJΓK ` 〈λ• : AJτ1K.1. VJeK, λ• : AJτ1K.2. LJlengthP〈AJτ1K〉 •, eK〉
: (AJτ1K.1→ AJτ2K.1)× (AJτ1K.2→ AJτ2K.2) by typing rules

GJΓK ` 〈λ• : AJτ1K.1. VJeK, λ• : AJτ1K.2. LJlengthP〈AJτ1K〉 •, eK〉
: (AJτ1K→AJτ2K).1 by rule (type conversion)

P4: GJΓK ` VJλ• : τ1. eK : AJτ1 → τ2K.1 by definitions of VJ·K and AJ·K

Lifting

from P4

GJΓ↑K ` VJλ• : τ1. eK : AJτ1 → τ2K.1 by conversion of type contexts
GJΓ↑K ` l : Int assumption
GJΓ↑K ` 〈l ,VJλ• : τ1. eK〉 : Int× (AJυ1K→AJυ2K).1 by typing rules
GJΓ↑K ` repP〈AJυ1K→AJυ2K〉 〈l ,VJλ• : τ1. eK〉 : (AJυ1K→AJυ2K).2 by type of repP

Case D =
τ `C e : τ `C τ

Γ ` µ• : τ. e : τ

Vectorisation

AJτK : ?× ? by Lemma 5.20
• : AJτK.1 ` VJeK : AJτK.1 by ind. hyp. (1)
GJΓK ` µ• : AJτK.1. VJeK : AJτK.1 by typing rules

P1: GJΓK ` VJµ• : τ. eK : AJτK.1 by definition of VJ·K
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Lifting

from P1

GJΓ↑K ` VJµ• : τ. eK : AJτK.1 by conversion of type contexts
GJΓ↑K ` l : Int assumption
GJΓ↑K ` 〈l ,VJµ• : τ. eK〉 : Int×AJτK.1 by typing rules
GJΓ↑K ` repP〈AJτK〉 〈l ,VJµ• : τ. eK〉 : AJτK.2 by type of repP

Case D =

D1

Γ `C e1 : τ1

D2

Γ `C e2 : τ2

Γ `C 〈e1, e2〉 : τ1 × τ2

Vectorisation

GJΓK ` VJe1K : AJτ1K.1 by ind. hyp. (1) on D1

GJΓK ` VJe2K : AJτ2K.1 by ind. hyp. (1) on D2

GJΓK ` 〈VJe1K,VJe2K〉 : AJτ1K.1×AJτ2K.1 by typing rules
GJΓK ` 〈VJe1K,VJe2K〉 : (AJτ1K×AJτ2K).1 by type conversion

Lifting

GJΓ↑K ` LJl , e1K : AJτ1K.2 by ind. hyp. (2) on D1

GJΓ↑K ` LJl , e2K : AJτ2K.2 by ind. hyp. (2) on D2

GJΓ↑K ` 〈LJl , e1K,LJl , e2K〉 : AJτ1K.2×AJτ2K.2 by typing rules
GJΓ↑K ` zipP〈AJτ1K,AJτ2K〉 〈LJl , e1K,LJl , e2K〉 : (AJτ1K×AJτ2K).2 by type of zipP

Case D =
Γ `C e : τ1 × τ2

Γ `C e.i : τi

Vectorisation

GJΓK ` VJeK : (AJτ1K×AJτ2K).1 by ind. hyp. (1)
GJΓK ` VJeK : AJτ1K.1×AJτ2K.1 by type conversion
GJΓK ` VJeK.i : AJτiK.1 by typing rules

Lifting

GJΓ↑K ` LJl , eK : (AJτ1K×AJτ2K).2 by ind. hyp. (2)
GJΓ↑K ` LJl , eK : Int× (AJτ1K.2×AJτ2K.2) by type conversion
GJΓ↑K ` LJl , eK.2.i : AJτiK.2 by typing rules
GJΓ↑K ` l : Int assumption
GJΓ↑K ` attachP〈AJτi K〉 〈l , LJl , eK.2.i〉 : AJτiK.2 by type of attachP

Case D =

D1

Γ `C e1 : τ1 × τ2 → τ3

D2

Γ `C e2 : τ1

Γ `C 〈〈e1, τ1, τ2, τ3, e2〉〉 : τ2 ⇒ τ3
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Vectorisation

GJΓK ` VJe1K : (AJτ1K×AJτ2K→AJτ3K).1 by ind. hyp. (1) on D1

GJΓK ` VJe1K : (AJτ1K.1×AJτ2K.1→ AJτ3K.1)× ((AJτ1K×AJτ2K).2→ AJτ3K.2)
by type conversion

GJΓK ` VJe2K : AJτ1K.1 by ind. hyp. (1) on D2

GJΓK ` 〈〈VJe1K,AJτ1K,AJτ2K,AJτ3K,VJe2K〉〉 : AJτ2K.1⇒ AJτ3K.1 by typing rules
GJΓK ` 〈〈VJe1K,AJτ1K,AJτ2K,AJτ3K,VJe2K〉〉 : (AJτ2K⇒AJτ3K).1 by type conversion

Lifting

GJΓ↑K ` LJl , e1K : (AJτ1K×AJτ2K→AJτ3K).2 by ind. hyp. (2) on D1

GJΓ↑K ` LJl , e1K : Int× ((AJτ1K.1×AJτ2K.1→ AJτ3K.1)× ((AJτ1K×AJτ2K).2→ AJτ3K.2))
by type conversion

GJΓ↑K ` LJl , e1K.2 : (AJτ1K.1×AJτ2K.1→ AJτ3K.1)× ((AJτ1K×AJτ2K).2→ AJτ3K.2)
by typing rules

GJΓ↑K ` LJl , e2K : AJτ1K.2 by ind. hyp. (2) on D2

GJΓ↑K ` 〈〈:LJl , e1K.2,AJτ1K,AJτ2K,AJτ3K,LJl , e2K:〉〉 : AJτ2K.2 V AJτ3K.2 by typing rules
GJΓ↑K ` 〈〈:LJl , e1K.2,AJτ1K,AJτ2K,AJτ3K,LJl , e2K:〉〉 : (AJτ2K⇒AJτ3K).2

by type conversion

Case D =

D1

Γ `C e1 : τ1 ⇒ τ2

D2

Γ `C e2 : τ1

Γ `C e1 † e2 : τ2

Vectorisation

GJΓK ` VJe1K : (AJτ1K⇒AJτ2K).1 by ind. hyp. (1) on D1

GJΓK ` VJe1K : AJτ1K.1⇒ AJτ2K.1 by type conversion
GJΓK ` VJe2K : AJτ1K.1 by ind. hyp. (1) on D2

GJΓK ` VJe1K † VJe2K : AJτ2K.1 by typing rules

Lifting

GJΓ↑K ` LJl , e1K : (AJτ1K⇒AJτ2K).2 by ind. hyp. (2) on D1

GJΓ↑K ` LJl , e1K : AJτ1K.2 V AJτ2K.2 by type conversion
GJΓ↑K ` LJl , e2K : AJτ1K.2 by ind. hyp. (2) on D2

GJΓ↑K ` LJl , e1K ‡ LJl , e2K : AJτ2K.2 by typing rules
GJΓ↑K ` l : Int assumption
GJΓ↑K ` attachP〈AJτ2K〉〈l , LJl , e1K ‡ LJl , e2K〉 : AJτ2K.2 by type of attachP
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A.2 Proof of Lemma 6.19

The proof is by complete structural induction on e.

Part 1.

Case e = • By assumption on x .

Case e = λ• : τ1. e
′ Then, τ = τ1 → τ2 for some τ2. Let y : FJτ1K be a replicative term.

Then,

repP〈AJτ2K〉 〈1, VJλ• : τ1. e
′K.1 y〉

∼= repP〈AJτ2K〉 〈1, (λ• : FJτ1K. VJe ′K) y〉 by definition of VJ·K
∼= repP〈AJτ2K〉 〈1, VJe ′K[y/•]〉
∼= LJ1, e ′K[repP〈AJτ1K〉 〈1, y〉/•] by ind. hyp. 2 on e ′

∼= (λ• : FJ[:τ1:]K. LJlenP〈AJτ1K〉 •, e
′K) (repP〈AJτ1K〉 〈1, y〉)

∼= VJλ• : τ1. e
′K.2 (repP〈AJτ1K〉 〈1, y〉) by definition of VJ·K

Moreover, e ′ is replicative by induction hypothesis 1. Hence, VJeK[x/•] is replicative.

In all other cases, VJeK[x/•] is replicative by induction hypothesis 1 on its immediate subterms.

Part 2.

Case e = • Then, τ = υ.

repP〈AJτK〉 〈1, VJ•K[x/•]〉
= repP〈AJτK〉 〈1, x 〉 by definition of VJ·K
= LJ1, •K[repP〈AJτK〉 〈1, x 〉/•] by definition of LJ·, ·K

Case e = e1 e2 Then, • : υ ` e1 : τ ′ → τ and • : υ ` e2 : τ ′ for some τ ′. We have

repP〈AJτK〉 〈1, VJe1 e2K[x/•]〉
= repP〈AJτK〉 〈1, VJe1K[x/•].1 VJe2K[x/•]〉 by definition of VJ·K

Moreover,

LJ1, e1 e2K[repP〈AJυK〉〈1, x 〉/•]
= attachP〈AJτK〉 〈1, LJ1, e1K[repP〈AJυK〉〈1, x 〉/•].2.2 LJ1, e2K[repP〈AJυK〉〈1, x 〉/•]〉

by definition of LJ·, ·K
∼= attachP〈AJτK〉 〈1, (repP〈AJτ ′K→AJτK〉 〈1, VJe1K[x/•]〉).2.2 (repP〈AJτ ′K〉 〈1, VJe2K[x/•]〉)〉

by ind. hyp. 2 on e1 and e2
∼= attachP〈AJτK〉 〈1, VJe1K[x/•].2 (repP〈AJτ ′K〉 〈1, VJe2K[x/•]〉)〉 by definition of repP

Since VJe1K[x/•] is V-compatible, it either diverges or evaluates to VJλ• : τ ′. e ′K � VJe1K[x/•]
for some e ′ or to VJcn

〈υ1,...,υ1〉
K for some cn

〈υ1,...,υ1〉
. We consider these cases separately.
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Case VJe1K[x/•]⇑ Then,

repP〈AJτK〉 〈1, VJe1K[x/•].1 VJe2K[x/•]〉
∼= repP〈AJτK〉 〈1, ⊥〉
∼= attachP〈AJτK〉 〈1, ⊥〉 by Law attach/rep2
∼= attachP〈AJτK〉 〈1, VJe1K[x/•].2 (repP〈AJτ ′K〉 〈1, VJe2K[x/•]〉)〉

Case VJe1K[x/•] ⇓ VJλ• : τ ′. e ′K VJe1K is replicative by induction hypothesis 1 on e1 and,
hence, VJλ• : τ ′. e ′K is replicative by Proposition 6.18. Therefore,

repP〈AJτK〉 〈1, VJe1K[x/•].1 VJe2K[x/•]〉
∼= repP〈AJτK〉 〈1, VJλ• : τ ′. e ′K.1 VJe2K[x/•]〉
∼= attachP〈AJτK〉 〈1, repP〈AJτK〉 〈1, VJλ• : τ ′. e ′K.1 VJe2K[x/•]〉〉 by Law attach/rep1
∼= attachP〈AJτK〉 〈1, VJλ• : τ ′. e ′K.2 (repP〈AJτ ′K〉 〈1, VJe2K[x/•]〉)〉

by replicativity of VJλ• : τ ′. e ′K
∼= attachP〈AJτK〉 〈1, VJe1K[x/•].2 (repP〈AJτ ′K〉 〈1, VJe2K[x/•]〉)〉

Case VJe1K[x/•] ⇓ VJc〈υ1,...,υ1〉K Follows by the requirements on lifted primitives

Case e = 〈e1, e2〉 Then, τ = τ1 × τ2 such that • : υ ` e1 : τ1 and • : υ ` e2 : τ2.

repP〈AJτ1K×AJτ2K〉 〈1, VJ〈e1, e2〉K[x/•]〉

= repP〈AJτ1K×AJτ2K〉 〈1, 〈VJe1K[x/•], VJe2K[x/•]〉〉 by definition of VJ·K
∼= zipP〈AJτ1K,AJτ2K〉 〈repP〈AJτ1K〉 〈1, VJe1K[x/•]〉, repP〈AJτ2K〉 〈1, VJe2K[x/•]〉〉

by Law rep/zip
∼= zipP〈AJτ1K,AJτ2K〉 〈LJ1, e1K[repP〈AJυK〉〈1, x 〉/•], LJ1, e2K[repP〈AJυK〉〈1, x 〉/•]〉

by ind. hyp. 2 on e1 and e2

= LJ1, 〈e1, e2〉K[repP〈AJυK〉〈1, x 〉/•] by definition of LJ·, ·K

Case e = e ′.i Assume without loss of generality i = 1. Then, • : υ ` e ′ : τ × τ ′ for some τ ′.

repP〈AJτK〉 〈1, VJe ′.1K[x/•]〉
= repP〈AJτK〉 〈1, VJe ′K[x/•].1〉 by definition of VJ·K
∼= attachP〈AJτK〉 〈1, repP〈AJτK〉 〈1, VJe ′K[x/•].1〉〉 by Law attach/rep1
∼= attachP〈AJτK〉 〈1, (repP〈AJτK×AJτ ′K〉 〈1, VJe ′K[x/•]〉).2.1〉 by definition of repP
∼= attachP〈AJτK〉 〈1, LJ1, e ′K[repP〈AJυK〉〈1, x 〉/•].2.1〉 by ind. hyp. 2 on e ′

= LJ1, e ′.1K[repP〈AJυK〉〈1, x 〉/•] by definition of LJ·, ·K

The proof is analogous for i = 2.

Case e = 〈〈e1, τ1, τ2, τ3, e2〉〉 Then, τ = τ2 ⇒ τ3.

repP〈AJτ2K⇒AJτ3K〉 〈1, VJ〈〈e1, τ1, τ2, τ2, e2〉〉K[x/•]〉
= repP〈AJτ2K⇒AJτ3K〉 〈1, 〈〈VJe1K[x/•],AJτ1K,AJτ2K,AJτ3K,VJe2K[x/•]〉〉〉
∼= 〈〈:VJe1K[x/•],AJτ1K,AJτ2K,AJτ3K, repP〈AJτ1K〉 〈1, VJe2K[x/•]〉:〉〉 by definition of repP
∼= 〈〈:repP〈AJτ1K→AJτ2K〉 〈1, VJe1K[x/•]〉.2,AJτ1K,AJτ2K,AJτ3K, repP〈AJτ1K〉 〈1, VJe2K[x/•]〉:〉〉

by definition of repP
∼= 〈〈:LJ1, e1K[repP〈AJυK〉〈1, x 〉/•].2,AJτ1K,AJτ2K,AJτ3K,LJ1, e2K[repP〈AJυK〉〈1, x 〉/•]:〉〉

by ind. hyp. 2 on e1 and e2

= LJ1, 〈〈e1, τ1, τ2, τ3, e2〉〉K[repP〈AJυK〉〈1, x 〉/•] by definition of LJ·, ·K
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Case e = e1 † e2 Then, • : υ ` e1 : τ2 ⇒ τ and • : υ ` e2 : τ2 for some τ2. We have

repP〈AJτK〉 〈1, VJe1 † e2K[x/•]〉
= repP〈AJτK〉 〈1, VJe1K[x/•] † VJe2K[x/•]〉 by definition of VJ·K

VJe1K[x/•] either diverges or evaluates to 〈〈p,AJτ1K,AJτ2K,AJτK, z 〉〉 for some p and z .

Case VJe1K[x/•]⇑ Then,

repP〈AJτK〉 〈1, VJe1K[x/•] † VJe2K[x/•]〉
∼= repP〈AJτK〉 〈1,⊥〉
∼= attachP〈AJτK〉 〈1,⊥〉 by Law attach/rep2
∼= attachP〈AJτK〉 〈1, repP〈AJτ1K⇒AJτ2K〉〈1,VJe1K[x/•]〉 ‡ repP〈AJτ1K〉〈1,VJe2K[x/•]〉〉

by definition of repP and semantics of ‡
∼= attachP〈AJτK〉 〈1,LJ1, e1K[x/•] ‡ LJ1, e2K[x/•]〉 by ind. hyp. 2 on e1 and e2

= LJ1, e1 † e2K[x/•] by definition of LJ·, ·K

Case VJe1K[x/•] ⇓ 〈〈p,AJτ1K,AJτ2K,AJτK, z 〉〉 Then,

repP〈AJτK〉 〈1, VJe1K[x/•] † VJe2K[x/•]〉
∼= repP〈AJτK〉 〈1, 〈〈p,AJτ1K,AJτ2K,AJτ3K, z 〉〉 † VJe2K[x/•]〉
∼= repP〈AJτK〉 〈1, p.1 〈z ,VJe2K[x/•]〉〉

Since p is V-compatible, it either diverges or evaluates to some VJλ• : τ1 × τ2. e
′K � VJe1K[x/•]

or to some VJc〈υ1,...,υn 〉K. By the same reasoning as in the case e = e1 e2, we arrive at

∼= repP〈AJτK〉 〈1, p.1 〈z ,VJe2K[x/•]〉〉
∼= attachP〈AJτK〉 〈1, p.2 (repP〈AJτ1K×AJτ2K〉 〈1, 〈z ,VJe2K[x/•]〉〉)〉
∼= attachP〈AJτK〉 〈1, p.2 (zipP〈AJτ1K,AJτ2K〉 〈repP〈AJτ1K〉 〈1, z 〉, repP〈AJτ2K〉 〈1, VJe2K[x/•]〉〉)〉

by Law rep/zip
∼= attachP〈AJτK〉 〈1,

〈〈:p,AJτ1K,AJτ2K,AJτ3K, repP〈AJτ1K〉 〈1, z 〉:〉〉 ‡ repP〈AJτ2K〉 〈1, VJe2K[x/•]〉〉
by semantics of ‡

∼= attachP〈AJτK〉 〈1,
repP〈AJτ2K⇒AJτ3K〉 〈1, 〈〈p,AJτ1K,AJτ2K,AJτ3K, z 〉〉〉 ‡ repP〈AJτ2K〉 〈1, VJe2K[x/•]〉〉

by definition of repP
∼= attachP〈AJτK〉 〈1, repP〈AJτ2K⇒AJτ3K〉 〈1, VJe1K[x/•]〉 ‡ repP〈AJτ2K〉 〈1, VJe2K[x/•]〉〉

by assumption
∼= attachP〈AJτK〉 〈1, LJ1, e1K[repP〈AJυK〉〈1, x 〉/•] ‡ LJ1, e2K[repP〈AJυK〉〈1, x 〉/•]〉

by ind. hyp. 2 on e1 and e2
∼= LJ1, e1 † e2K[repP〈AJυK〉〈1, x 〉/•] by definition of LJ·, ·K

Case e = 〈〉 Then, τ = 〈〉 and we have

repP〈〈〉〉 〈1, 〈〉[x/•]〉

= repP〈〈〉〉 〈1, 〈〉〉

= LJ1, 〈〉K by definition of LJ·, ·K
= LJ1, 〈〉K[repP〈AJυK〉〈1, x 〉/•]

The remaining cases are analogous to the above.
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A.3 Proof of Lemma 6.25

By complete structural induction on e.

Case e = • Then, τ = υ and we have

LJlenP〈AJυK〉 •, •K[x/•]
= x by definition of LJ·, ·K
∼ y by assumption
= LJlenP〈AJυK〉 •, •K[y/•] by definition of LJ·, ·K

Case e = e1e2 Then, • : υ ` e1 : τ ′ → τ and • : υ ` e2 : τ ′ for some τ ′. By induction hy-
pothesis on e1, LJlenP〈AJυK〉 •, e1K[x/•].2 ∼ LJlenP〈AJυK〉•, e1K[y/•].2. Thus, the two terms
must either diverge or evaluate to the same function tuple by definition of ∼ for function
types. Due to the V-compatibility of the terms involved, if LJlenP〈AJυK〉 •, e1K[x/•].2 con-
verges, then it evaluates to either VJλ• : τ ′. e ′K for some e ′ or cn

〈υ1,...,υn〉
for some cn . We

consider these three cases separately.

Case LJlenP〈AJτK〉•, e1K[x/•].2⇑ ∧ LJlenP〈AJτK〉•, e1K[y/•].2⇑ Then,

LJlenP〈AJτK〉 •, e1 e2K[x/•] by definition of LJ·, ·K
= attachP〈τ〉 〈lenP〈AJυK〉 x ,LJlenP〈AJυK〉 •, e1K[x/•].2.2 LJlenP〈AJυK〉 •, e2K[x/•]〉
∼ attachP〈τ〉 〈lenP〈AJυK〉 x , ⊥〉 by Lemma 6.24
∼ attachP〈τ〉 〈lenP〈AJυK〉 y , ⊥〉 by Lemma 6.24
∼ attachP〈τ〉 〈lenP〈AJυK〉 y ,LJlenP〈AJυK〉 •, e1K[y/•].2.2 LJlenP〈AJυK〉 •, e2K[y/•]〉

by Lemma 6.24
= LJlenP〈AJτK〉 •, e1 e2K[y/•] by definition of LJ·, ·K

Case LJlenP〈AJυK〉•, e1K[x/•].2 ⇓ VJλ• : τ ′. e ′K ∧ LJlenP〈AJυK〉•, e1K[y/•].2 ⇓ VJλ• : τ ′. e ′K By
immutability of computation and since the result of evaluating x does not contain functions,
λ• : τ ′. e ′ � e1

LJlenP〈AJυK〉 •, e1 e2K[x/•]
= attachP〈AJτK〉 〈lenP〈AJυK〉 x , LJlenP〈AJυK〉 •, e1K[x/•].2.2 LJlenP〈AJυK〉 •, e2K[x/•]〉

by definition of LJ·, ·K
∼ attachP〈AJτK〉 〈lenP〈AJυK〉 x , VJλ• : τ ′. e ′K.2 LJlenP〈AJυK〉 •, e2K[x/•]〉

by Proposition 6.23 and Lemma 6.24
∼ attachP〈AJτK〉 〈lenP〈AJυK〉 x , (λ• : FJ[:τ ′:]K. LJlenP〈AJτ ′K〉 •, e

′K) LJlx , e2K[x/•]〉
by definition of VJ·K

∼ attachP〈AJτK〉 〈lenP〈AJυK〉 x , LJlenP〈AJτ ′K〉 •, e
′K[LJlenP〈AJτ ′K〉 •, e2K[x/•]/•]〉

∼ attachP〈AJτK〉 〈lenP〈AJυK〉 y , LJlenP〈AJτ ′K〉 •, e
′K[LJlenP〈AJτ ′K〉 •, e2K[y/•]/•]〉

by Lemma 6.24 and ind. hyp. on e2 and then e ′

∼ LJlenP〈AJυK〉 •, e1 e2K[y/•] (inverse to the above)

Case LJlenP〈AJυK〉•, e1K[x/•].2 ⇓ VJc〈υ1,...,υn〉K ∧ LJlenP〈AJυK〉•, e1K[y/•].2 ⇓ VJc〈υ1,...,υn〉K Fol-
lows by requirements on primitives.
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Case e = 〈e1, e2〉 Then, τ = τ1 × τ2 such that • : υ ` e1 : τ1 and • : υ ` e1 : τ2. We have

LJlenP〈AJυK〉 •, 〈e1, e2〉K[x/•]
= zipP〈AJτ1K,AJτ2K〉 〈LJlenP〈AJυK〉 •, e1K[x/•], LJlenP〈AJυK〉 •, e2K[x/•]〉

by definition of LJ·, ·K
∼ zipP〈AJτ1K,AJτ2K〉 〈LJlenP〈AJυK〉 •, e1K[y/•], LJlenP〈AJυK〉 •, e2K[y/•]〉

by Lemma 6.24 and ind. hyp. on e1 and e2

= LJlenP〈AJυK〉 •, 〈e1, e2〉K[y/•] by definition of LJ·, ·K

Case e = e ′.i Assume without loss of generality that i = 1. Then, • : υ ` e ′ : τ × τ ′ and
we have

LJlenP〈AJυK〉 •, e
′.iK[x/•]

= attachP〈AJτK〉 〈lenP〈AJυK〉 x ,LJlenP〈AJυK〉 •, e
′K[x/•].2.1〉 by definition of LJ·, ·K

∼ attachP〈AJτK〉 〈lenP〈AJυK〉 y ,LJlenP〈AJυK〉 •, e
′K[y/•].2.1〉 by Lemma 6.24 and

ind. hyp. on e ′

= LJlenP〈AJυK〉 •, e
′.iK[y/•] by definition of LJ·, ·K

Case e = e1 † e2 . Then, • : υ ` e1 : τ ′ ⇒ τ and • : υ ` e2 : τ ′. We have

LJlenP〈AJυK〉 •, e1 † e2K[x/•]
= attachP〈AJτK〉 〈lenP〈AJυK〉 x , LJlenP〈AJυK〉 •, e1K[x/•] ‡ LJlenP〈AJυK〉 •, e2K[x/•]〉

by definition of LJ·, ·K
∼ attachP〈AJτK〉 〈lenP〈AJυK〉 y , LJlenP〈AJυK〉 •, e1K[y/•] ‡ LJlenP〈AJυK〉 •, e2K[y/•]〉

by Lemma 6.24 and ind. hyp. on e1 and e2

= LJlenP〈AJυK〉 •, e1 † e2K[y/•] by definition of LJ·, ·K

The remaining cases are immediate from the definition of ∼.
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A.4 Proof of Lemma 6.29

The proof is by complete structural induction on e.

Case e = • Then τ = υ and we have

LJlenP〈AJυK〉 •, •K[x/•] +++ LJlenP〈AJυK〉 •, •K[y/•]
= x +++ y by definition of LJ·, ·K
= LJlenP〈AJυK〉 •, •K[x +++ y/•] by definition of LJ·, ·K

Case e = e1 e2 Then, • : υ ` e1 : τ ′ → τ and • : υ ` e2 : τ ′. We have

LJlenP〈AJυK〉 •, e1 e2K[x/•] +++ LJlenP〈AJυK〉 •, e1 e2K[y/•]
= attachP〈AJτK〉 〈lenP〈AJυK〉 x , LJlenP〈AJυK〉 •, e1K[x/•].2.2 LJlenP〈AJυK〉 •, e2K[x/•]〉

+++ attachP〈AJτK〉 〈lenP〈AJυK〉 y , LJlenP〈AJυK〉 •, e1K[y/•].2.2 LJlenP〈AJυK〉 •, e2K[y/•]〉
by definition of LJ·, ·K

∼= attachP〈AJτK〉 〈lenP〈AJυK〉 (x +++ y), LJlenP〈AJυK〉 •, e1K[x/•].2.2 LJlenP〈AJυK〉 •, e2K[x/•]
+++ LJlenP〈AJυK〉 •, e1K[y/•].2.2 LJlenP〈AJυK〉 •, e2K[y/•]〉

by Laws attach/concat and len/concat

Moreover,

LJlenP〈AJυK〉 •, e1 e2K[x +++ y/•]
= attachP〈AJτK〉 〈lenP〈AJυK〉 (x +++ y),

LJlenP〈AJυK〉 •, e1K[x +++ y/•].2.2 LJlenP〈AJυK〉 •, e2K[x +++ y/•]〉
by definition of LJ·, ·K

By Lemma 6.25 we have LJlenP〈AJυK〉 •, •K[x/•].2 ∼ LJlenP〈AJυK〉 •, •K[y/•].2 and, by Lemma
6.27 and Lemma 6.25, LJlenP〈AJυK〉 •, •K[x/•].2 ∼ LJlenP〈AJυK〉 •, •K[x +++ y/•].2. By defini-
tion of data-erasing equivalence and due to the V-compatibility of the terms involved, the
three terms either diverge or evaluate to some VJλ• : τ ′. e ′K or to some VJc〈υ1,...,υn 〉K. We
consider the three cases separately.

Case LJlenP〈AJυK〉•, •K[z/•].2⇑ for all z ∈ {x , y , x +++ y} Then,

LJlenP〈AJυK〉 •, e1K[x/•].2.2 LJlenP〈AJυK〉 •, e2K[x/•]
+++ LJlenP〈AJυK〉 •, e1K[y/•].2.2 LJlenP〈AJυK〉 •, e2K[y/•]

∼= ⊥+++⊥
∼= ⊥ by definition of +++
∼= LJlenP〈AJυK〉 •, e1K[x +++ y/•].2.2 LJlenP〈AJυK〉 •, e2K[x +++ y/•]

Case LJlenP〈AJυK〉•, e1K[z/•].2 ⇓ VJλ• : τ ′. e ′K for all z ∈ {x , y , x +++ y} Due to the fact that
none of x , y and x +++ y evaluate to structures containing functions, VJλ• : τ ′. e ′K � e1. Then,

LJlenP〈AJυK〉 •, e1K[x/•].2.2 LJlenP〈AJυK〉 •, e2K[x/•]
+++ LJlenP〈AJυK〉 •, e1K[y/•].2.2 LJlenP〈AJυK〉 •, e2K[y/•]

∼= VJλ• : τ ′. e ′K.2 LJlenP〈AJυK〉 •, e2K[x/•] +++ VJλ• : τ ′. e ′K.2 LJlenP〈AJυK〉 •, e2K[y/•]
∼= LJlenP〈AJτ ′K〉 •, e

′K[LJlenP〈AJυK〉•, e2K[x/•]/•]
+++ LJlenP〈AJτ ′K〉 •, e

′K[LJlenP〈AJυK〉•, e2K[y/•]/•] by definition of VJ·K
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∼= LJlenP〈AJτ ′K〉 •, e
′K[LJlenP〈AJυK〉•, e2K[x/•] +++ LJlenP〈AJυK〉•, e2K[y/•]/•]

by Lemma 6.25 and ind. hyp. on e ′

∼= VJλ• : τ ′. e ′K.2 (LJlenP〈AJυK〉•, e2K[x/•] +++ LJlenP〈AJυK〉•, e2K[y/•])
by definition of VJ·K

∼= VJλ• : τ ′. e ′K LJlenP〈AJυK〉 •, e2K[x +++ y/•] by ind. hyp. on e2
∼= LJlenP〈AJυK〉 •, e1K[x +++ y/•].2.2 LJlenP〈AJυK〉 •, e2K[x +++ y/•]

Case LJlenP〈AJυK〉•, e1K[z/•].2 ⇓ VJc〈υ1,...,υn〉K for all z ∈ {x , y , x +++ y} Follows by require-
ments on primitives.

Case e = 〈e1, e2〉 Then, τ = τ1 × τ2 such that • : υ ` e1 : τ1 and • : υ ` e2 : τ2. We have

LJlenP〈AJυK〉 •, 〈e1, e2〉K[x/•] +++ LJlenP〈AJυK〉 •, 〈e1, e2〉K[y/•]
= zipP〈AJτ1K,AJτ2K〉 〈LJlenP〈AJυK〉 •, e1K[x/•], LJlenP〈AJυK〉 •, e2K[x/•]〉

+++ zipP〈AJτ1K,AJτ2K〉 〈LJlenP〈AJυK〉 •, e1K[y/•], LJlenP〈AJυK〉 •, e2K[y/•]〉
by definition of LJ·, ·K

∼= zipP〈AJτ1K,AJτ2K〉 〈LJlenP〈AJυK〉 •, e1K[x/•] +++ LJlenP〈AJυK〉 •, e1K[y/•],
LJlenP〈AJυK〉 •, e2K[x/•] +++ LJlenP〈AJυK〉 •, e2K[y/•]〉 by Law zip/concat

∼= zipP〈AJτ1K,AJτ2K〉 〈LJlenP〈AJυK〉 •, e1K[x +++ y/•], LJlenP〈AJυK〉 •, e2K[x +++ y/•]〉
by ind. hyp. on e1 and e2

= LJlenP〈AJυK〉 •, 〈e1, e2〉K[x +++ y/•] by definition of LJ·, ·K

Case e = e ′.i Assume without loss of generality that i = 1. Then, • : υ ` e ′ : τ × τ ′. We
have

LJlenP〈AJυK〉 •, e
′.iK[x/•] +++ LJlenP〈AJυK〉 •, e

′.iK[y/•]
= attachP〈AJτK〉 〈lenP〈AJυK〉 x , LJlenP〈AJυK〉 •, e

′K[x/•].2.1〉
+++ attachP〈AJτK〉 〈lenP〈AJυK〉 y , LJlenP〈AJυK〉 •, e

′K[y/•].2.1〉
by definition of LJ·, ·K

∼= attachP〈AJτK〉 〈lenP〈AJυK〉 (x +++ y),
LJlenP〈AJυK〉 •, e

′K[x/•].2.1 +++ LJlenP〈AJυK〉 •, e
′K[y/•].2.1〉

by Laws attach/concat and len/concat
∼= attachP〈AJτK〉 〈lenP〈AJυK〉 (x +++ y),

(LJlenP〈AJυK〉 •, e
′K[x/•] +++ LJlenP〈AJυK〉 •, e

′K[y/•]).2.1〉
by definition of +++

∼= attachP〈AJτK〉 〈lenP〈AJυK〉 (x +++ y), LJlenP〈AJυK〉 •, e
′K[x +++ y/•]〉.2.1 by ind. hyp. on e ′

= LJlenP〈AJυK〉 •, e
′.1K[x +++ y/•] by definition of LJ·, ·K

Case e = 〈〈e1, τ1, τ2, τ3, e2〉〉 Then, τ = τ2 ⇒ τ3. Below, we use the following abbreviations:

cx ≡ 〈〈:LJlenP〈AJυK〉 •, e1K[x/•].2,AJτ1K,AJτ2K,AJτ3K,LJlenP〈AJυK〉 •, e2K[x/•]:〉〉
cy ≡ 〈〈:LJlenP〈AJυK〉 •, e1K[y/•].2,AJτ1K,AJτ2K,AJτ3K,LJlenP〈AJυK〉 •, e2K[y/•]:〉〉
cxy ≡ 〈〈:LJlenP〈AJυK〉 •, e1K[x +++ y/•].2,AJτ1K,AJτ2K,AJτ3K,

LJlenP〈AJυK〉 •, e2K[x +++ y/•]:〉〉
sel ≡ repP〈Bool〉 〈lenP〈AJυK〉 x ,False〉 +++ repP〈Bool〉 〈lenP〈AJυK〉 x ,True〉

Then,
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LJlenP〈AJυK〉 •, 〈〈e1, τ1, τ2, τ3, e2〉〉K[x/•] +++ LJlenP〈AJυK〉 •, 〈〈e1, τ1, τ2, τ3, e2〉〉K[y/•]
= cx +++ cy by definition of LJ·, ·K
∼= 〈〈:〈cappP, cappP↑〉, (AJτ2K⇒AJτ3K) + (AJτ2K⇒AJτ3K),AJτ2K,AJτ3K, 〈sel , 〈cx , cy〉〉:〉〉

by definition of +++

Moreover,

LJlenP〈AJυK〉 •, 〈〈e1, τ1, τ2, τ3, e2〉〉K[x +++ y/•] = cxy by definition of LJ·, ·K

The two array closures are equivalent if they yield equivalent results when applied to an array
argument. Let z be an array of type FJ[:τ2:]K and of suitable length. Then,

〈〈:〈cappP, cappP↑〉, (AJτ2K⇒AJτ3K) + (AJτ2K⇒AJτ3K),AJτ2K,AJτ3K, 〈sel , 〈cx , cy〉〉:〉〉 ‡ z
∼= cappP↑ (zipP 〈〈sel , 〈cx , cy〉〉, z 〉)
∼= combineP 〈sel , 〈cx ‡ packP 〈not

↑ sel , z 〉, cy ‡ packP 〈sel , z 〉〉〉 by definition of cappP↑

∼= (cx ‡ packP 〈not
↑ sel , z 〉) +++ (cy ‡ packP 〈sel , z 〉) by Law combine/rep

∼= (cx ‡ takeP 〈lenP x , z 〉) +++ (cy ‡ dropP 〈lenP x , z 〉) by Laws pack/take and pack/drop
∼= LJlenP〈AJυK〉 •, e1K[x/•].2.2 (zipP 〈LJlenP〈AJυK〉 •, e2K[x/•], takeP 〈lenP x , z 〉〉)

+++ LJlenP〈AJυK〉 •, e1K[y/•].2.2 (zipP 〈LJlenP〈AJυK〉 •, e2K[y/•], dropP 〈lenP x , z 〉〉)

By the same argument as in the case e = e1 e2, we have

LJlenP〈AJυK〉 •, e1K[x/•].2.2 (zipP 〈LJlenP〈AJυK〉 •, e2K[x/•], takeP 〈lenP x , z 〉〉)
+++ LJlenP〈AJυK〉 •, e1K[y/•].2.2 (zipP 〈LJlenP〈AJυK〉 •, e2K[y/•], dropP 〈lenP x , z 〉〉)

∼= LJlenP〈AJυK〉 •, e1K[x +++ y/•].2.2 (zipP 〈LJlenP〈AJυK〉 •, e2K[x/•], takeP 〈lenP x , z 〉〉
+++ zipP 〈LJlenP〈AJυK〉 •, e2K[y/•], dropP 〈lenP x , z 〉〉)

∼= LJlenP〈AJυK〉 •, e1K[x +++ y/•].2.2
(zipP 〈LJlenP〈AJυK〉 •, e2K[x/•] +++ LJlenP〈AJυK〉 •, e2K[y/•],

takeP 〈lenP x , z 〉 +++ dropP 〈lenP x , z 〉〉)
by Law concat/zip

∼= LJlenP〈AJυK〉 •, e1K[x +++ y/•].2.2 (zipP 〈LJlenP〈AJυK〉 •, e2K[x +++ y/•],
takeP 〈lenP x , z 〉 +++ dropP 〈lenP x , z 〉〉)

by ind. hyp. on e2
∼= LJlenP〈AJυK〉 •, e1K[x +++ y/•].2.2 (zipP 〈LJlenP〈AJυK〉 •, e2K[x +++ y/•], z 〉)

by Law take/drop
∼= cxy ‡ z

Case e = e1 † e2 Then, • : υ ` e1 : τ ′ ⇒ τ and • : υ ` e2 : τ ′. We have

LJlenP〈AJυK〉 •, e1 † e2K[x/•] +++ LJlenP〈AJυK〉 •, e1 † e2K[y/•]
= attachP〈AJτK〉 〈lenP〈AJυK〉 x , LJlenP〈AJυK〉 •, e1K[x/•] ‡ LJlenP〈AJυK〉 •, e2K[x/•]〉

+++ attachP〈AJτK〉 〈lenP〈AJυK〉 y , LJlenP〈AJυK〉 •, e1K[y/•] ‡ LJlenP〈AJυK〉 •, e2K[y/•]〉
by definition of LJ·, ·K

∼= attachP〈AJτK〉 〈lenP〈AJυK〉 (x +++ y), (LJlenP〈AJυK〉 •, e1K[x/•] ‡ LJlenP〈AJυK〉 •, e2K[x/•])
+++ (LJlenP〈AJυK〉 •, e1K[y/•] ‡ LJlenP〈AJυK〉 •, e2K[y/•])〉

by Laws attach/concat and len/concat

By Lemma 6.25, LJlenP〈AJυK〉 •, e1K[x/•] and LJlenP〈AJυK〉 •, e1K[y/•] exhibit the same con-
vergence beahviour. Using a similar argument as in the previous case, it is easy to show
that
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(LJlenP〈AJυK〉 •, e1K[x/•] ‡ LJlenP〈AJυK〉 •, e2K[x/•])
+++ (LJlenP〈AJυK〉 •, e1K[y/•] ‡ LJlenP〈AJυK〉 •, e2K[y/•])

∼= (LJlenP〈AJυK〉•, e1K[x/•] +++ LJlenP〈AJυK〉•, e1K[y/•])
‡ (LJlenP〈AJυK〉 •, e2K[x/•] +++ LJlenP〈AJυK〉 •, e2K[y/•])

Therefore,

attachP〈AJτK〉 〈lenP〈AJυK〉 (x +++ y), (LJlenP〈AJυK〉 •, e1K[x/•] ‡ LJlenP〈AJυK〉 •, e2K[x/•])
+++ (LJlenP〈AJυK〉 •, e1K[y/•] ‡ LJlenP〈AJυK〉 •, e2K[y/•])〉

∼= attachP〈AJτK〉 〈lenP〈AJυK〉 (x +++ y), (LJlenP〈AJυK〉 •, e1K[x/•] +++ LJlenP〈AJυK〉 •, e1K[y/•])
‡ (LJlenP〈AJυK〉 •, e2K[x/•] +++ LJlenP〈AJυK〉 •, e2K[y/•])〉

∼= attachP〈AJτK〉 〈lenP〈AJυK〉 (x +++ y),
LJlenP〈AJυK〉 •, e1K[x +++ y/•] ‡ LJlenP〈AJυK〉 •, e2K[x +++ y/•]〉

by ind. hyp. on e1 and e2

= LJlenP〈AJυK〉 •, e1 † e2K[x +++ y/•] by definition of LJ·, ·K

Case e = 〈〉 Then, τ = 〈〉 and we have

LJlenP〈AJυK〉 •, 〈〉K[x/•] +++ LJlenP〈AJυK〉 •, 〈〉K[y/•]
= repP〈〈〉〉 〈lenP〈AJυK〉 x , 〈〉〉 +++ repP〈〈〉〉 〈lenP〈AJυK〉 y , 〈〉〉 by definition of LJ·, ·K
∼= repP〈〈〉〉 〈lenP〈AJυK〉 (x +++ y), 〈〉〉 by Laws rep/concat and len/concat

= LJlenP〈AJυK〉 •, 〈〉K[x +++ y/•] by definition of LJ·, ·K

The remaining cases are analogous to the above.
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Primitives in λ
C

lenP

lenP〈τ〉 :: [:τ :]→ Int

lenP (nilP 〈〉) = 0
lenP (repP 〈n, x 〉) = n
lenP (xs +++ ys) = lenP xs + lenP ys

(!:)

(!:〈τ〉) :: [:τ :]× Int→ τ
repP 〈n, x 〉 !: i = x
(xs +++ ys) !: i = if i < lenP xs then xs !: i else ys !: (i − lenP xs)

mapP

mapP〈τ,υ〉 :: (τ ⇒ υ)× [:τ :]→ [:υ:]
mapP 〈c, nilP 〈〉〉 = nilP 〈〉
mapP 〈c, repP 〈n, x 〉〉 = repP 〈n, c † x 〉
mapP 〈c, xs +++ ys〉 = mapP 〈c, xs〉 +++ mapP 〈c, ys〉

Other array primitives like packP are defined analogously by distributing over (+++) and
performing the obvious computations for repP and nilP.
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(�)

x �〈〈〉〉 y = seq 〈x , y〉
x �〈Bool〉 y = seq 〈x , y〉
x �〈Int〉 y = seq 〈x , y〉
〈x1, x2〉 �〈τ1×τ2〉 〈y1, y2〉 = 〈x1 �〈τ1〉 y1, x2 �〈τ2〉 y2〉
Left x �〈τ1+τ2〉 Left y = Left (x �〈τ1〉 y)
Left x �〈τ1+τ2〉 Right y = Right y
Right x �〈τ1+τ2〉 Left y = Left y
Right x �〈τ1+τ2〉 Right y = Right (x �〈τ1〉 y)
nilP 〈〉 �〈[:τ :]〉 xs = xs
repP 〈m, x 〉 �〈[:τ :]〉 nilP 〈〉 = nilP 〈〉
repP 〈m, x 〉 �〈[:τ :]〉 repP 〈n, y〉 = repP 〈seq 〈m,n〉, x �〈τ〉 y〉
repP 〈m, x 〉 �〈[:τ :]〉 (ys +++ zs) = (repP 〈m, x 〉 �〈[:τ :]〉 ys) +++ (repP 〈m, x 〉 �〈[:τ :]〉 zs)
(xs +++ ys) �〈[:τ :]〉 zs = xs �〈[:τ :]〉 (ys �〈[:τ :]〉 zs)



Appendix C

Primitives in λ
A

lenP

lenP〈τ〉 :: τ.2→ Int

lenP〈〈〉〉 〈n, u〉 = n

lenP〈Int〉 〈n, is〉 = n
lenP〈Bool〉 〈n, bs〉 = n
lenP〈τ1×τ2〉 〈n, p〉 = n
lenP〈τ1+τ2〉 〈sel , p〉 = lenP〈Bool〉 sel
lenP〈τ1→τ2〉 〈n, p〉 = n
lenP〈τ1⇒τ2〉 〈〈:p, υ1, υ2, υ3, e:〉〉 = lenP〈υ1〉 e
lenP〈τ↑〉 〈ss, xs〉 = lenP〈Int〉 ss

attachP

attachP〈τ〉 :: Int× τ.2→ τ.2
attachP〈〈〉〉 〈!n, xs〉 = 〈n, xs.2〉

attachP〈Int〉 〈!n, xs〉 = 〈n, xs.2〉
attachP〈Bool〉 〈!n, xs〉 = 〈n, xs.2〉
attachP〈τ1×τ2〉 〈!n, xs〉 = 〈n, xs.2〉
attachP〈τ1+τ2〉 〈!n, xs〉 = 〈attachP〈Bool〉 〈n, xs.1〉, xs.2〉
attachP〈τ1→τ2〉 〈!n, xs〉 = 〈n, xs.2〉
attachP〈τ1⇒τ2〉 〈!n, 〈〈:p, τ , e:〉〉〉 = 〈〈:p,AJτK, attachP 〈n, e〉:〉〉
attachP〈τ↑〉 〈!n, xss〉 = 〈attachP〈Int〉 〈n, xss.1〉, xss.2〉
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nilP

nilP〈τ〉 :: 〈〉 → τ.2
nilP〈〈〉〉 〈〉 = 〈0, 〈〉〉

nilP〈Int〉 〈〉 = 〈0, nilInt〉
nilP〈Bool〉 〈〉 = 〈0, nilBool〉
nilP〈τ1×τ2〉 〈〉 = 〈0, 〈nilP〈τ1〉 〈〉, nilP〈τ2〉 〈〉〉〉
nilP〈τ1+τ2〉 〈〉 = 〈nilP〈Bool〉 〈〉, 〈nilP〈τ1〉 〈〉, nilP〈τ2〉 〈〉〉〉
nilP〈τ1→τ2〉 〈〉 = 〈0, 〈λ• : (τ1.1).⊥, λ• : (τ1.2). nilP〈τ2〉 〈〉〉〉
nilP〈τ1⇒τ2〉 〈〉 = 〈〈:(nilP〈〈〉×τ1→τ2〉 〈〉).2, 〈〉, τ1, τ2, nilP〈〈〉〉 〈〉:〉〉

repP

repP〈τ〉 :: Int× τ.1→ τ.2
repP〈τ〉 〈0, u〉 = nilP〈τ〉 〈〉
repP〈〈〉〉 〈!n, u〉 = 〈n, u〉

repP〈Int〉 〈!n, i〉 = 〈n, rep
Int
〈n, i〉〉

repP〈Bool〉 〈!n, b〉 = 〈n, rep
Bool
〈n, b〉〉

repP〈τ1×τ2〉 〈!n, p〉 = 〈n, 〈repP〈τ1〉 〈n, p.1〉, repP〈τ2〉 〈n, p.2〉〉〉

repP〈τ1+τ2〉 〈!n, p〉 = 〈repP〈Bool〉 〈n, isRight p〉, rep 〈n, p〉〉
where

isRight (Left x ) = False
isRight (Right y) = True
rep 〈n, Left x 〉 = 〈repP〈τ1〉 〈n, x 〉, nilP〈τ2〉 〈〉〉
rep 〈n, Right y〉 = 〈nilP〈τ1〉 〈〉, repP〈τ2〉 〈n, y〉〉

repP〈τ1→τ2〉 〈!n, p〉 = 〈n, p〉
repP〈τ1⇒τ2〉

〈!n, 〈〈p, υ1, υ2, υ3, e〉〉〉 = 〈〈:p, υ1, υ2, υ3, repP〈υ1〉
〈n, e〉:〉〉

repP〈τ↑〉 〈!n, xs〉 = 〈repP〈Int〉 〈n, lenP〈τ〉 xs〉, repeatP〈τ〉 〈n, xs〉〉

(+++)

(+++〈τ〉) :: τ.2× τ.2→ τ.2
〈!m, x 〉 +++〈〈〉〉 〈!n, y〉 = 〈m + n, seq〈〈〉〉 〈x , y〉〉

〈!m, is〉 +++〈Int〉 〈!n, js〉 = 〈m + n, concatInt 〈is, js〉〉
〈!m, bs〉 +++〈Bool〉 〈!n, cs〉 = 〈m + n, concatBool 〈bs, cs〉〉
〈!m, ps〉 +++〈τ1×τ2〉 〈!n, qs〉 = 〈m + n, 〈ps.1 +++〈τ1〉 qs.1, ps.2 +++〈τ2〉 qs.2〉〉
〈!bs, ps〉 +++〈τ1×τ2〉 〈!cs, qs〉 = 〈bs +++〈Bool〉 cs, 〈ps.1 +++〈τ1〉 qs.1, ps.2 +++〈τ2〉 qs.2〉〉
fs +++〈τ1→τ2〉 gs = ⊥

!c +++〈τ1⇒τ2〉 !d = 〈〈:〈cappP, cappP↑〉, (τ1⇒ τ2) + (τ1⇒ τ2), τ1, τ2,
〈repP〈Bool〉 〈lenP〈τ1⇒τ2〉 c,False〉
+++〈Bool〉 〈lenP〈τ1⇒τ2〉 d ,True〉〉,
〈c, d〉:〉〉

〈!ss, xs〉 +++〈τ↑〉 〈!ts, ys〉 = 〈ss +++〈Int〉 ts, xs +++〈τ〉 ys〉
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(!:)

(!:〈τ〉) :: τ.2× Int→ τ.1
〈!n, u〉 !:〈〈〉〉 i = u

〈!n, is〉 !:〈Int〉 i = indexInt 〈is, i〉
〈!n, bs〉 !:〈Bool〉 i = indexBool 〈bs, i〉
〈!n, xs〉 !:〈τ1×τ2〉 i = 〈xs.1 !:〈τ1〉 i , xs.2 !:〈τ2〉 i〉
〈!bs, xs〉 !:〈τ1+τ2〉 i = embed 〈bs !:〈Bool〉 i , xs.1 !:〈τ1〉 i1, xs.2 !:〈τ2〉 i2〉

where
embed 〈False, x , y〉 = Left〈τ1,τ2〉 x
embed 〈True, x , y〉 = Right〈τ1,τ2〉 y
i1 = falsesP (takeP〈Bool〉 〈i , bs〉)
i2 = truesP (takeP〈Bool〉 〈i , bs〉)

〈!n, p〉 !:〈τ1→τ2〉 i = p
〈!n, 〈〈:p, υ1, υ2, υ3, xs:〉〉〉 !:〈τ1⇒τ2〉 i = 〈〈p, υ1, υ2, υ3, xs !:〈υ1〉 i〉〉
〈ss, xs〉 !:〈τ↑〉 i = attachP〈τ〉 〈n, 〈n, chunk 〈i , ss, xs〉〉〉

where
n = ss !:〈Int〉 i
chunk 〈i , ss, xs〉 = takeP〈τ〉 〈n, dropP〈τ〉 〈sumP (takeP〈Int〉 〈i , ss〉), xs〉〉

packP

packP〈τ〉 :: Bool.2× τ.2→ τ.2
packP〈〈〉〉 〈〈!m, !bs〉, 〈!n, u〉〉 = 〈truesP 〈m, bs〉, u〉

packP〈Int〉 〈〈!m, !bs〉, 〈!n, is〉〉 = 〈truesP 〈m, bs〉, pack
Int
〈bs, is〉〉

packP〈Bool〉 〈〈!m, !bs〉, 〈!n, cs〉〉 = 〈truesP 〈m, bs〉, pack
Bool
〈bs, cs〉〉

packP〈τ1×τ2〉 〈〈!m, !bs〉, 〈!n, ps〉〉 = 〈truesP 〈m, bs〉, 〈packP〈τ1〉 〈〈m, bs〉, ps.1〉,
packP〈τ2〉 〈〈m, bs〉, ps.2〉〉〉

packP〈τ1×τ2〉 〈〈!m, !bs〉, 〈!cs, ps〉〉 = 〈packP〈Bool〉 〈〈m, bs〉, cs〉, 〈packP〈τ1〉 〈ds, ps.1〉,
packP〈τ2〉 〈es, ps.2〉〉〉

where
ds = packP〈Bool〉 〈not

↑ cs, 〈m, bs〉〉
es = packP〈Bool〉 〈cs, 〈m, bs〉〉

packP〈τ1→τ2〉 〈〈!m, !bs〉, 〈!n, p〉〉 = 〈truesP 〈!m, !bs〉, p〉
packP〈τ1⇒τ2〉

〈〈!m, !bs〉, 〈〈:p, υ1, υ2, υ3, xs:〉〉〉 = 〈〈:p, υ1, υ2, υ3, packP〈υ1〉
〈〈m, bs〉, xs〉:〉〉

packP〈τ↑〉 〈〈!m, !bs〉, 〈!ss, xs〉〉 = 〈packP〈Int〉 〈〈m, bs〉, ss〉, packP〈τ〉 〈cs, xs〉〉
where

cs = expandP〈Bool〉 〈ss, 〈m, bs〉〉
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zipP

zipP〈τ,υ〉 :: τ.2× υ.2→ (τ × υ).2
zipP〈τ,υ〉 〈xs, ys〉 = attachP〈τ×υ〉 〈seq〈Int,Int〉 〈lenP〈τ〉 xs, lenP〈υ〉 ys〉,

〈lenP〈τ〉 xs, 〈xs, ys〉〉〉

mapP

mapP〈τ,υ〉 :: (τ.1⇒ υ.1) × τ.2→ υ.2
mapP〈τ,υ〉 〈c, !xs〉 = repP〈τ⇒υ〉 〈lenP〈τ〉 xs, c〉 ‡ xs
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Keller, Friedrich-Wilhelm Schröer, and Martin Simons. Aspects of the compilation of nested
parallel imperative languages. In J. Darlington, editor, Proceedings of the Third Interna-
tional Conference on Programming Models for Massively Parallel Computers (MPPM ’98),
pages 102–109. IEEE Computer Society Press, 1998.

G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, University of Aarhus, 1981.

F. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and Distributed Com-
puting. Springer, 2002.

R. Rangaswami. A Cost Analysis for a Higher-order Parallel Programming Model. PhD
thesis, Department of Computer Science, Edinburgh University, 1996.



138 BIBLIOGRAPHY

John H. Reppy. CML: A higher concurrent language. In PLDI ’91: Proceedings of the ACM
SIGPLAN 1991 conference on Programming language design and implementation, pages
293–305, New York, NY, USA, 1991. ACM Press.

John C. Reynolds. Definitional interpreters for higher-order programming languages. In ACM
’72: Proceedings of the ACM annual conference, pages 717–740, New York, NY, USA, 1972.
ACM Press.

John C. Reynolds. Towards a theory of type structure. In Colloq. sur la Programmation, vol-
ume 19 of Lecture Notes in Computer Science, pages 408–423, London, UK, 1974. Springer-
Verlag.

James Riely and Jan Prins. Flattening is an improvement. In SAS ’00: Proceedings of
the 7th International Symposium on Static Analysis, pages 360–376, London, UK, 2000.
Springer-Verlag.

S.-B. Scholz. On defining application-specific high-level array operations by means of shape-
invariant programming facilities. In Proceedings of APL’98, pages 40–45. ASM Press, 1998.

Zhong Shao and Andrew W. Appel. Space-efficient closure representations. In LISP and
Functional Programming, pages 150–161, 1994.

Guy L. Steele, Jr. Rabbit: A compiler for Scheme. Technical report, Massachusetts Institute
of Technology, Cambridge, MA, USA, 1978.

P. W. Trinder, H. W. Loidl, and R.F. Pointon. Parallel and distributed Haskells. Journal of
Functional Programming, 12(4–5):469–510, 2002.

Philip W. Trinder, Kevin Hammond, James S. Mattson Jr., A. S. Partridge, and Simon
L. Peyton Jones. GUM: A portable parallel implementation of haskell. In SIGPLAN
Conference on Programming Language Design and Implementation, pages 79–88, 1996.

P. W. Trindler, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones. Algorithm + Strategy
= Parallelism. Journal of Functional Programming, 8(1):23–60, 1998.

Philip Wadler. Theorems for free! In FPCA’89: Proceedings 4th International Conference on
Functional Programming Languages and Computer Architecture, pages 347–359, New York,
1989. ACM Press.

C. P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD thesis, Oxford
University, 1971.

Mitchell Wand and Paul Steckler. Selective and lightweight closure conversion. In POPL ’94:
Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 435–445, 1994.

H. H. Wang. A parallel method for tridiagonal equations. ACM Transactions on Mathematical
Software, 7(2):170–183, June 1981. ISSN 0098-3500.

Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In A. Aiken,
editor, Conference Record of the 26th Symposium on Principles of Programming Languages
(POPL’99), pages 214–227. ACM Press, 1999.


