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ABSTRACT

Thermoacoustic instabilities prevent the implementation of mod-
ern combustion concepts in gas turbines, which are essential for
higher efficiency and lower emissions. Bias flow liners are able to
suppress these instabilities by increasing the acoustic losses of the
system. However, it is an open question under which conditions
their full potential can be retrieved.

This thesis collects the available information concerning the
acoustic properties of bias flow liners and puts it into perspec-
tive for the application in a gas turbine combustor. The review
includes a rigorous assessment of the existing models. The mod-
els and previous findings are evaluated by comparing them to the
results of a comprehensive experimental study regarding the rel-
evant acoustic, geometric, thermodynamic, and flow parameters.
This includes for the first time the influence of pressure and tem-
perature.

The results reveal that there is a resonance dominated regime
at low bias flow Mach numbers with rather complex parameter
dependencies and a bias flow dominated regime which is mainly
dependent on three parameters only: the bias flow, the porosity,
and a resonance parameter.






ZUSAMMENFASSUNG

Der Einsatz moderner Verbrennungskonzepte zur Effizienzsteige-
rung und Schadstoffreduktion bei Gasturbinen wird oft durch
thermo-akustische Instabilitdten verhindert. Durchstromte Brenn-
kammerliner konnen die akustische Dampfung des Systems er-
hohen und die Instabilitdten unterdriicken. Eine wesentliche Fra-
ge ist, bei welchen Parametereinstellungen eine optimale Damp-
fungswirkung erzielt werden kann.

Diese Arbeit liefert eine umfassende Ubersicht der bisherigen
Forschung. In einer experimentellen Studie werden akustische,
geometrische, thermodynamische und stromungsmechanische Pa-
rameter untersucht. Zum ersten Mal wird hier auch der Einfluss
von Druck und Temperatur durch eine Messung abgebildet. Diese
weitreichende Datenbasis ermoglicht eine detaillierte Bewertung
der einzelnen Parameter und der Qualitdt der Modelle.

Die Ergebnisse zeigen einen Betriebsbereich bei langsamen Ge-
schwindigkeiten der von Resonanzen dominiert ist und kompli-
zierte Parameterabhingigkeiten aufweist. Bei hoheren Geschwin-
digkeiten dominiert die Durchstromung und die Schallabsorption
ist im Wesentlichen von nur drei Parametern abhéngig: Porositit,
Durchstromungsgeschwindigkeit und einem Resonanzparameter.
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INTRODUCTION

Gas turbines convert the chemical energy inherent in a gaseous
or liquid fuel into mechanical energy. Depending on their applica-
tion they are designed to deliver shaft power or thrust, for exam-
ple to generate electricity in a power plant or as aircraft propul-
sion, respectively.

1973 2011
Other Other
;l 1y %r;) 0.6% Coall peat r Sy%r% 4.5% Coall peat

38.3% 41.3%

Nuclear
1.7%

Nuclear
3.3%

Natural gas
12.2%
0il Natural gas 0il
24.6% 21.9% 4.8%
6 115 TWh 22 126 TWh

Figure 1.1: 1973 and 2011 fuel shares of electricity generation. (Key
World Energy Statistics © OECD/IEA, 2013 [231])

The energy industry relies heavily on gas turbines for electric-
ity production. The global electricity consumption has more than
tripled from 439Mtoe' in 1973 to 1582 Mtoe in 2011 [231]. Fig-

1 Million tonnes of oil equivalent, 1 Mtoe = 11630 GWh [231].
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ure 1.1 illustrates the fuel shares involved in the electricity gener-
ation. With a collective share of 68 % in 2011, fossil fuels (coal, oil,
and natural gas) remain the largest supplier of primary energy
for electricity generation. While gas turbines can run on a variety
of fuels, natural gas is the most common for power generation.
The contribution of natural gas has nearly doubled from 1973 to
2011, indicating the growing dominance of gas turbines in that
field. Today, gas turbines are one of the most widely-used power
generating machines with industry leading efficiencies of around
40 % in simple cycle and up to 60 % in combined cycle* operation
(331, 439].

Many countries are working on the Energiewende3, that is in-
creasing the use of renewable energy as an alternative to fossil
and nuclear fuels. The gas turbine is essential to support this tran-
sition. Due to its short start-up time, compared to other means
of power generation, the power supply can be balanced flexibly
at peak times or when there is a temporary shortage of wind or
solar power, for example. Gas turbines will remain a dominant
technology for power generation and business analysts predict a
stable growth for the gas turbine industry [163].

The first flight of a gas turbine powered aircraft took place
on 27th of August 1939 in Rostock, Germany [80]. Light weight*,
compact size*, and reliable operation have quickly made the gas
turbine the engine of choice throughout the aviation industry. As
of December 2013 there are a total of 44836 jet engines in service
on active commercial aircraft in operation with airlines [159]. This
number is expected to grow quickly, with predictions of 31 % rise
in passenger demand by 2017 compared to 2012 [230].

2 A combined cycle gas turbine (CCGT) power plant reuses the hot exhaust
gas of the gas turbine to additionally drive a steam turbine.

3 Due to the lack of an appropriate equivalent in the English language (see the
discussion in [499]), the German term Energiewende has been adopted here.

4 Compared to traditional reciprocating engines of the same power rating.



INTRODUCTION

Figure 1.2: Rolls-Royce Trent goo, a modern high-bypass turbofan engine
powering the Airbus A380. (Courtesy of Rolls-Royce plc © Rolls-Royce
plc, 2012.)

A modern high-bypass turbofan engine is shown in Figure 1.2.
The Rolls-Royce Trent goo is one of the most powerful jet engines
in operation, delivering a maximum thrust of 334-374 kN with a
fan diameter of 2.95 m and a length of 5.478 m [151].

The increased environmental awareness has made the reduction
of pollutant emissions from the combustion process one of the key
challenges for modern gas turbines [292]. The global® aircraft en-
gine emission standards are set by the Committee on Aviation En-
vironmental Protection (CAEP) of the International Civil Aviation
Organization (ICAO) and are published in the current edition of

5 The emissions of power plant gas turbines are regulated regionally, so that a
wide diversity exists. An overview is given in [306].
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Annex 16, Volume 2. The Advisory Council for Aviation Research
and Innovation in Europe (ACARE) has formulated future goals
for the emissions of carbon dioxide CO, and nitrogen oxide® NOy
in their Vision 2020 [4] and Flightpath 2050 [5] reports. It should
be aimed for a reduction in CO, of 50% and 75% and NOy of
80 % and 9o % until 2020 and 20507, respectively. The amount of
CO, in the exhaust gases is directly related to the combustion effi-
ciency [292], so that the levels have been reduced continuously, in
line with the optimization for low fuel consumption. The prime
factor in reducing NOjy is to lower the flame temperatureg, which
adversely affects the efficiency and the CO, production. Thus, the
reduction of NOy is a major concern throughout the gas turbine
industry, including both aviation and power.

This problem is addressed by modern combustion concepts,
which operate in the lean regime. The lean combustion increases
the air-fuel-ratio beyond the stoichiometric mixture?, i. e. more air,
relative to the fuel, is taking part in the combustion. As a result,
the flame temperature is lowered and NOy production is reduced.
Particularly rewarding is the lean pre-mixed/pre-vaporized com-
bustion (LPP) [292].

However, the implementation of this concept is often prevented
by its tendency to promote combustion instabilities. Combustion
instabilities are pressure pulsations resulting from a thermoacous-
tic feedback between the heat release of the flame and acoustic
pressure oscillations. The instabilities lead to excessive wearing
or even cracking of exposed components within or adjacent to
the combustor. High amplitude instabilities can result in a flame
blow-off or in the immediate and fatal damage of components, po-

6 This collectively includes nitrogen monoxide NO and nitrogen dioxide NO..
These values are relative to the capabilities of a typical new aircraft in the
year 2000.

8 Two additional factors are a uniform temperature distribution and a short
residence time.

9 A stoichiometric mixture contains sufficient oxygen for a complete combus-
tion of the available fuel.



INTRODUCTION

tentially releasing detached pieces into the turbine downstream.
Low amplitude instabilities require an increased downtime of gas
turbines for inspections and repairs if necessary. The maintenance
costs that can be directly associated with damages due to com-
bustion instabilities exceed $1 billion annually [305]. Furthermore,
combustion instabilities are not limited to gas turbines, but are a
widespread problem in combustion systems, e. g. liquid and solid
propellant rocket engines [102, 190, 497], ramjet engines [102, 440],
afterburners of turbojet engines [67, 102], and domestic or indus-
trial furnaces [375].

The process leading up to an instability is not yet fully under-
stood. Thus, it is not possible to predict the occurrence of insta-
bility or avoid it in the first place. Lieuwen and Yang [305] give
an overview of the recent situation and mitigation strategies in
the gas turbine industry. Commonly, thermoacoustic instabilities
occur at one dominant frequency, which is mainly dependent on
the combustor geometry and the operating condition. The gen-
eral mechanism can be described as follows: The oscillating heat
release of the flame produces sound, which is reflected at the com-
bustor boundary, feeding back to the heat release oscillation. This
teedback loop in itself does not necessarily lead to instability, the
combustion becomes unstable only when the heat release fluctua-
tion and the acoustic pressure oscillations are in phase ([388, 390]).
This necessary condition is referred to as Rayleigh criterion™. In
mathematical terms, instability does occur when [376]"

JT p'(t) Q'(t) dt > @, (1.1)

where T is the period of one oscillation, p’ is the acoustic pressure
fluctuation, Q’ is the heat release fluctuation, and ® describes the

10 Named after John William Strutt, Lord Rayleigh (1842-1919, English physi-
cist).

11 The original derivation by Putnam and Dennis [376] neglects the acoustic
losses, so that ® = o. The expression including the acoustic losses can be
found in [238, 506], for example.
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acoustic losses of the system. Equation (1.1) suggests two possibil-
ities to control the instabilities:

1. Adjusting the phase relationship for a destructive interac-
tion between the heat release fluctuation and the acoustic
pressure (active control).

2. Increasing the acoustic losses of the system (passive control).

Active control measures mostly act on the modulation of the fuel
flow. Even though it has been successfully demonstrated in lab-
oratory setups, several barriers to implementation in full-scale
gas turbine combustors still exist [98, 333], so that the industry
is relying heavily on passive control concepts to suppress com-
bustion instabilities. Traditionally, that means adding Helmholtz
resonators or quarter-wave resonators to the combustor system
[42, 85, 137, 189, 284, 395]. Unfortunately, the damping abilities
of these resonators are limited to a rather small frequency range,
so that several resonators of different sizes would be required to
cover various operating conditions. Generally, a broadband damp-
ing characteristic would be preferred. Furthermore, at low fre-
quencies the resonators grow to a considerable size and are cer-
tainly difficult to integrate into the engine. At the same time the
increasing weight prevents their installation in an aero-engine.
An alternative approach is to use the acoustic absorption capa-
bilities of the perforated combustor liner [131]. It is a well known
fact, that perforations or orifices in general can be applied to
damp acoustic pulsations. For example, Putnam [375] humorously
quotes an anonymous author?: “To stop pulsation, drill one hole
[...]; if that doesn’t work, drill two holes!” One particular feature
of the holes in a combustor liner is, that they are always purged
with a cooling flow. This bias flow through the orifices has been
found to have a substantial effect on the absorption characteristics
of the liner. Bechert [38] has shown that the absorption mechanism
is dominated by the transfer of acoustic energy into the shedding

12 Anonymous: “To reduce pulsations”, Fuel-Oil Journal, Vol. 18, p. 16, 1940
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vorticity when a bias flow is present. In order to distinguish such a
configuration from a perforated liner without flow, it is commonly
referred to as bias flow liner. The main advantages over Helmholtz
and quarter-wave resonators are, that the bias flow liner is able
to provide a broadband damping and that the actual components
are already available in a combustor.

While an acoustically well designed combustor liner could de-
cide over the stability of the combustion, its acoustic properties
are rarely considered in the design of a new combustor. Through-
out the industry overview given in [305], it is only Dowling and
Stow [131] who address the acoustic properties of the combustor
liner in their modeling. While a considerable amount of research
is available, the industry is clearly hesitant to rely on the existing
models.

1.1 MOTIVATION

The high potential of bias flow liners as dampers in a gas tur-
bine combustor is well-known. However, it still seems to be an
open question, under which circumstances this potential can be
retrieved. One obvious complexity is due to the multitude of pa-
rameters that are involved. The amount of literature that deals
with acoustic properties of orifices or perforations in general is
overwhelming, so that all the parameters considered here have
been addressed in the literature in some way. However, most ge-
ometries or operating conditions are very far from what is encoun-
tered in a gas turbine combustor. In particular, the presence of the
bias flow is often not considered, while it is a key parameter for
the combustor application. On the other hand, there exist plenty
of studies aimed at the combustor application and many impor-
tant conclusions could be drawn. Commonly, these studies are
focused on one parameter, which additionally might be limited in
its range, so a generalization of conclusions can only be assumed.
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It seems to be necessary to take a step back and look at the
broader picture. The scattered fragments of information need to
be collected and put into perspective. However, the available ex-
perimental data varies immensely in setup, experimental method,
and describing quantities, so that an independent set of data,
based on one foundation, is required for the evaluation of the
information.

The goal of this holistic approach is to identify and determine
the influence of the significant parameters. Furthermore, a com-
prehensive assessment of the existing models can be provided, so
that possible improvements can be suggested if necessary.

1.2 OUTLINE

Chapter 2 begins with a detailed overview of the liner setup and
the operating conditions within a gas turbine combustor. The rel-
evant geometric, thermodynamic, acoustic, and flow parameters
are defined with respect to the experiments performed here and
put into perspective with the definitions found in the literature.
The parameter in focus is the bias flow, so that its definition is
complemented by a review of the available research involving
bias flow liners in Chapter 3. The various modeling approaches
that are available to predict the acoustic performance of bias flow
liners are illustrated in Chapter 4, concluding the review part of
the thesis.

The second part focuses on the experimental parameter study.
Chapter 5 collects the essential theoretical background, which is
needed to understand the acoustic phenomena occurring within
a duct. Special attention is put on the various loss mechanisms,
that a sound wave experiences when propagating through a hard-
walled duct. As will be shown later, these effects become more
significant at elevated pressure and temperature.

Chapter 6 discloses all the details about the realization and the
analysis of the measurements. This includes a detailed description
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of the features and properties of the Duct Acoustic Test Rig and
the Hot Acoustic Test Rig, which have both provided their services
in the parameter study. The results of the study are presented in
Chapter 7. The influence of each parameter is discussed separately,
regarding the current findings as well as previous results from
other studies. When applicable, the models are compared to the
experimental results.






BIAS FLOW LINERS

This chapter takes a detailed look at the setup of typical gas tur-
bine combustors and their operating conditions. The parameters
that are relevant for the acoustic performance of a perforated liner
are collected and discussed individually. The discussion includes
a brief review of the presence and definition of each parameter in
the literature, not limited to combustor liners but for orifices in
general. Due to the essential nature of the bias flow in this work,
the literature review regarding the bias flow effect receives its own
dedicated chapter (see Chapter 3).

2.1 COMBUSTOR LINER

Until today, the layout of the holes in a combustor wall has been
determined by combustion and cooling requirements and not by
acoustic demands. Figure 2.1 illustrates the setup of a conven-
tional combustion chamber. Traditionally, the openings in the liner
serve the following purposes: 1. Introducing additional air to the
combustion process (secondary air holes in Figure 2.1), 2. cooling
down the hot gas before it enters the turbine (dilution air holes
in Figure 2.1), and 3. cooling of the combustor wall (corrugated
joint in Figure 2.1). The amount of air taking part in the combus-
tion process, that is the primary air injected through the swirler
and the secondary air injected through the walls, yields only 40 %
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Figure 2.1: Setup of a conventional combustion chamber. (From [408],
courtesy of Rolls-Royce plc.)

of the total airflow. The remaining 60 % are required for dilution
(20 %) and wall cooling (40 %) [408].

The flow distribution has drastically changed in modern com-
bustors. Lean combustion demands more air to take part in the
combustion process. As a consequence, a reduction of cooling air
became necessary. With novel materials being available and opti-
mized cooling techniques, the wall cooling air could be reduced
by half to 20 % for combustors that are now in service [292].

The arrangements of two modern combustors, designed for low
emissions and high efficiency, are shown in Figures 2.2 and 2.3.
Both examples employ angled effusion cooling of the walls. Ac-
cording to Lefebvre and Ballal [292], this is the most promising
advancement in cooling methods regarding its potential for fur-
ther significant reductions in cooling air requirements. The walls
are perforated by a large number of small holes, where a shallow



2.1 COMBUSTOR LINER

=T "”4’/2'\‘ Y

Figure 2.2: The GE twin annular premixing swirler (TAPS) combustor
with effusion cooling, designed for low emissions and high efficiency.
(From [157], courtesy of General Electric Company.)

angle in combustor mean flow direction provides two advantages
for the cooling [292]: A larger surface area within the hole for
increased heat removal and the establishment of a cooling film
along the surface of the wall.

Typical orifice inclination angles are between 20°—60°. The ori-
entation of the cooling orifices might be additionally skewed in
the circumferential direction [92, 253]. The hole diameters range
between 0.64-8.82mm [88]. The cooling efficiency can be further
increased by using shaped holes, i. e. holes with an enlarged exit
area where the velocity is reduced and the lateral spreading of the
cooling air is improved [178, 183]. A typical wall thickness is in
the range of 0.5-1.5 mm [351].

Generally, the combustor operates at high pressure, high tem-
perature, and with a relatively low flow velocity within the cham-
ber. Aero-engines are designed to deliver much higher pressure

13
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Figure 2.3: View into the annular combustor of the Rolls-Royce E3E Core
3/2 technology demonstrator, optimized for lean burn combustion and
NOx reduction. (Courtesy of Rolls-Royce plc.)

ratios than stationary gas turbines. Current engine configurations
achieve an overall pressure ratio* between 30 and 52. For example,
the pressure ratio of the Rolls-Royce Trent goo shown in Figure 1.2
is 39. Stationary gas turbines typically operate at pressure ratios
between 10 and 25.

A characteristic temperature of a gas turbine is the turbine inlet
temperature, that is the temperature of the flow leaving the com-
bustor and entering the turbine. While a high turbine inlet temper-
ature is desirable from an efficiency point of view, the maximum
temperature is limited by the material properties of the turbine
blades and the applied cooling. Currently, temperatures of nearly
1900K can be achieved [331], while typical values are between
1300-1700 K [80]. However, the flame temperature within the com-

1 The overall pressure ratio is defined as p;/p:, where p; is the pressure at the
inlet and pj the pressure delivered to the combustor [408].
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buster can be as high as 2200-2600K [80], with lean burn tempera-
tures usually below 2000K [292]. The cooling air provided by the
compressor is typically between 500-800 K [408].

In pre-mixed flames, the flow velocity is restricted by the flash-
back and blowoff limits. Flashback occurs at low flow velocities,
when the flame starts propagating upstream into the supply pas-
sages, i.e. when the flow velocity is slower than the flame speed.
In order to stabilize the flame, the flow velocity exceeds the flame
speed in any real combustor. The upper limit of the flow veloc-
ity is given by the blowoff condition, where the flame cannot be
stabilized and is convected downstream by the flow [304]. Due to
the latter restriction the mean Mach number in the combustor is
fairly low and commonly around o.05 [305].

The velocity of the bias flow through the perforated wall is de-
termined by the pressure drop across the wall. Typical operating
conditions correspond to a 3 % pressure drop [417].

Combustion instabilities are a tonal phenomenon, so that they
are observed as a narrow peak in a frequency spectrum of the com-
bustor. Several types of instabilities do exist, depending on vari-
ous coupling mechanisms (see [301, 305] for an overview and clas-
sification). Thermoacoustic instabilities in gas turbine combustors
are typically observed at frequencies in the range of 100-1000 Hz
[272, 333]. The actual frequency is depending mainly on the com-
bustor geometry and the operating condition, thus the frequency
is not fixed but might change during operation.

2.1.1 Parameter Qverview

The setup within a gas turbine combustor reveals a multitude of
parameters that might be relevant for the acoustic performance of
the liner. Table 2.1 gives an overview of these parameters, grouped
into four categories based on their physical origin.

Some of these parameters are fixed by the operating condition
and are not available for modification. Thus, an additional classifi-

15
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Table 2.1: Overview of parameters relevant to the acoustic performance
of gas turbine combustor liners. The independent parameters are avail-
able for modification to improve the acoustic performance.

GEOMETRY PARAMETERS THERMODYNAMIC PARAMETERS

Orifice Geometry* Pressure
Perforation Geometry* Temperature
Cavity Geometry*

ACOUSTIC PARAMETERS FLOW PARAMETERS

Frequency Bias Flow*
Amplitude Grazing Flow

*independent parameter

cation into dependent and independent parameters makes sense. The
dependent parameters cannot be used as a design tool to improve
the acoustic performance. They are determined by the operational
requirements of the gas turbine combustor. Nonetheless, their im-
pact on the performance is of great importance. The independent
parameters can be adjusted within certain restrictions to optimize
the damping. The independent parameters are indicated by a star
in Table 2.1.

2.2 GEOMETRY PARAMETERS

As seen in Figures 2.2 and 2.3, the geometry of a combustion
chamber is rather complex. Putting the focus on the perforated
liner, the geometric features can be abstracted and simplified. A
simplified geometry that resembles the characteristic features, i.e.
the circular shape and the grazing sound incidence, is illustrated
in Figure 2.4. This configuration is generally referred to as a cylin-
drical perforated liner and will be used in the parameter study in
Chapter 7. A similar setup was used in [16, 17, 142, 198, 279, 294,
310, 501], for example.
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Figure 2.4: Simplified geometry of a combustor liner for acoustic studies:
a cylindrical perforated liner.

2.2.1  Orifice Geometry

The orifice geometry is composed of three main features: the ori-
fice cross-section shape, the orifice edge, and the orifice profile.

The orifice cross-section shape is given by a cut through a plane
normal to the direction of the orifice. Figure 2.5 gives an overview
of the orifice shapes that have been studied in the literature re-
garding their acoustic properties: circle, ellipse [336, 385], square
[7, 89, 169, 181], rectangle [89, 129, 225, 336, 389], oblong [410], tri-
angle [7, 169, 181], cross [89, 282], star [7, 169], crown [181], eye?
[7, 169], and trapezoid [213].

A single rectangular orifice with a high aspect ratio, i.e. a long
and thin slit, is often used for its two-dimensional characteristics

2 The eye-shape is obtained by sliding a perforation consisting of circular ori-
fices over another identical perforation, as indicated in Figure 2.5;j.

17
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Figure 2.5: Overview of orifice cross-section shapes, that have been stud-
ied in the literature regarding their acoustic properties.

[10, 138, 168, 203, 204, 267, 332, 468, 469, 478]. The circular orifice
(Figure 2.5a) is the standard orifice that serves as a status quo
in all3 the references given above. The majority of the literature
treats circular orifices only, so that a circular shape is assumed if
not stated otherwise.

Introducing sharp corners and breaking up straight edges, the
different cross-section shapes can be compared by the orifice cross-
section area A and the length of the orifice edge, i.e. the orifice
perimeter P. For a circular orifice the area and perimeter are given
by A = nir*> and P = 27r, respectively, where r is the orifice radius.
The hydraulic diameter relates the cross-section area to the perime-
ter Dy, = 4A/P. In fluid dynamics the hydraulic diameter defines
the diameter of an equivalent circular geometry for a non-circular
shape.

3 Except Howe [213], who compares the trapezoid to a square.
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Figure 2.6: Overview of orifice edge shapes, that have been studied in
the literature regarding their acoustic properties.

Several orifice edge shapes, that are found in the literature, are
illustrated in Figure 2.6: square, round [258, 282, 284, 480], bevel
[360, 412], and wedge [269, 284, 478]. The square edge is the most
common geometry and treated in most studies.

Looking at a cut through the wall material reveals the orifice

profile shape. Figure 2.7 compiles some geometries that have been
treated in the literature: straight, inclined [16, 17, 55, 141, 142, 286,
332, 478], conical [286], and sharp. Generally, the straight orifice is
the most common. A circular, straight orifice is defined by its di-
ameter d = 2r and the wall thickness t. In this case, the orifice length
1 is identical to the wall thickness. A characteristic dimensionless
quantity is the orifice aspect ratio 1/d.
As shown in the previous section, inclined orifices are very com-
mon for cooling the combustor wall. The orifice inclination angle «
increases the orifice length at constant wall thickness, as demon-
strated in Figure 2.7b. The orifice length is then given by

l=1t/sin o (2.1)

The sharp orifice, shown in Figure 2.7d, is a standardized geom-
etry employed in flow measurements with orifice plates. The di-
mensions are specified in ISO 5167-2:2003 [234]. Generally, a sharp
orifice is a straight orifice with square edges and 1/d < 0.02. How-
ever, for structural reasons the wall thickness is often larger than
1, so that the downstream edge needs to be beveled to maintain
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Figure 2.7: Overview of orifice profile shapes, that have been studied in
the literature regarding their acoustic properties.

the sharp edge characteristics. According to the ISO standard, the
bevel angle needs to be within 30°—60°.

2.2.2  Perforation Geometry

Owing to their simplicity, single orifices are often employed in sci-
entific studies. While many parameters can be investigated with a
single orifice, the arrangement of a multitude of orifices in a liner
adds some more degrees of freedom and complexity. Figure 2.8
illustrates different perforation patterns.

The most simple pattern is the square perforation pattern pre-
sented in Figure 2.8a. Shown is the plan view of a segment of
a cylindrical liner with the coordinates x in axial direction and ©
in circumferential direction. Any curvature effects are neglected
for now, so that the liner is considered to be flat. The orifices are
arranged in straight rows in axial and circumferential direction.
The perforation spacing s is identical in both directions, forming a
square grid. Based on the perforation spacing, an orifice unit area
Sx X sg can be assigned to each orifice (in the case of the square
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Sx

(b) rectangular

- Left .
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Figure 2.8: Overview of perforation patterns that have been studied in
the literature regarding their acoustic properties.

pattern that is s?). This is indicated by the dashed grid lines in
Figure 2.8. For a uniform perforation pattern the porosity o is de-
fined as the ratio of the open-area of one orifice to its unit area*
0 = A/(sxse). For a circular orifice in a square perforation pattern
that yields o = ntr?/s. This is illustrated by the filled black orifice
and the gray area around it. For a specified surface area the same

4 In the literature this ratio is often called open-area-ratio. Here, the term open-
area-ratio is reserved for the ratio of the open areas of two liners in a double-
skin configuration (see Section 2.2.3).
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porosity can be realized by applying many small orifices or fewer
large ones.

The maximum axial distance between two orifices defines the
perforation length L. An effective perforation length Leg of the perfo-
ration can be specified according to the unit areas of all orifices.
Finally, the cavity length L. is defined by the dimensions of the cav-
ity behind the liner. In a theoretically constructed setup the effec-
tive perforation length and the cavity length would most probably
be identical (as they are in Figure 2.8b). In Figure 2.8a, the effec-
tive perforation length is shorter than the cavity length, resulting
in some margins on both sides. It is as well possible, that the ef-
fective perforation length becomes longer than the cavity length,
producing a ‘negative’ margin. In other cases the perforation only
covers a fraction of the available length, resulting in large mar-
gins of hard wall. Then, the perforation placement could be shifted
along the axial coordinate. The default position is at the center
with equal margins on both sides.

An important parameter regarding the efficiency of a bias flow
liner is the total open area, which is the open area of all orifices
combined. The larger the open area, the more mass flow is needed
to achieve a certain bias flow velocity.

The rectangular perforation pattern in Figure 2.8b is similar to the
square pattern described above. The only difference is that the ori-
fice spacing is not identical in axial and circumferential direction.
This can happen easily when designing a cylindrical liner of a cer-
tain porosity. The selection of circumferential spacing is not con-
tinuous, but dependent on the circular pitch resulting from the
number of orifices around the circumference. The axial spacing
has to be adapted accordingly to obtain the desired porosity. The
rectangular pattern is defined by the perforation aspect ratio sy /sg.
The influence of the aspect ratio on the acoustic performance was
studied in [17, 288, 289].

The staggered perforation pattern in Figure 2.8c is the most wide-
spread in technical applications. The structural strength of the ma-
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terial is enhanced compared to a rectangular or square pattern.
Common perforation stagger angles « are 60° (sometimes called
triangular pattern) and 45° (sometimes called diagonal pattern).
At 60° the distances between any neighboring orifices are equal
so = s%. Thus, the sheet material retains the most strength while
offering the largest possible open area. The pattern presented here
has a stagger angle of 53.1°. This value might seem odd at first, but
it can be easily obtained by just turning every second row of the
square pattern about half the orifice circumferential spacing. By
doing so, the porosity remains constant compared to the square
pattern, as in both cases sg = sx. In order to obtain a 60° stagger
angle the axial distance between the rows has to be reduced, so
that the porosity would be increased in relation to the square pat-
tern.

Another effect of the circumferential stagger is, that a potential
interaction of two adjacent orifices in grazing flow direction is re-
duced as their distance is doubled (the orifice in-between is moved
sideways).

Figure 2.8d demonstrates an example of a nonuniform perfora-
tion pattern. The term nonuniform is used for patterns where the
porosity is not constant, either in axial direction (as shown), cir-
cumferential direction, or both. Still, the pattern is not completely
random and shows some sort of regularity. In the example, the ‘lo-
cal’” porosity increases towards the center of the liner. For nonuni-
form patterns the porosity is given by the ratio of the total open-
area to the area defined by the active length, as indicated in Fig-
ure 2.8d. This gives an overall or average porosity. The significance
of this value might be questionable, but it provides a comparative
value between uniform and nonuniform patterns. The influence
of nonuniform patterns is studied in [116, 259, 282] with very dif-
ferent configurations.
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Figure 2.9: Effect of the curvature on the definition of the circumferential
perforation spacing.

Curvature

Any effects of curvature on the geometric specifications above
were neglected. However, the curvature requires a more detailed
look at the specifications of the circumferential perforation spac-
ing. Figure 2.9 illustrates the curvature effect. For a cylindrical
liner sg is given as the arc length between the centers of two
neighboring orifices. Due to the curvature it makes a difference
if the inner arc length sg or the outer arc length s (or the center
arc length) is used. Here, the inner arc length (s¢ = 7R «/180°
for oo in degree) will be used as the sound is incident from that
side. The difference is very small for the geometries studied here,
but might become more substantial for smaller duct radii and/or
larger wall thickness.

2.2.3  Cavity Geometry

The volume behind a cylindrical liner forms an annular cavity (see
Figure 2.4). Figure 2.10 gives examples of a single-skin, double-
skin, and partitioned configuration. Shown is the top half of a cut
through the axisymmetric cavity. The liner has the same radius as
the duct and it forms the inner wall of the cavity.

Figure 2.10a illustrates a standard single-skin configuration. All
boundaries of the cavity, except the liner, are acoustically hard.
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(a) single-skin (b) double-skin (c) partitioned

Figure 2.10: Overview of common variations in cavity geometry.

The cavity length L. corresponds to the axial dimension of the cav-
ity. The liner radius R and the cavity radius R. are indicated in
the drawing. The annular cavity volume can be calculated from
V = n(RZ — (R +t)?)L. Variations of the cavity volume have been
presented for plane liner configurations with normal sound inci-
dence in [219, 241, 417, 423, 429, 434, 481].

The double-skin configuration in Figure 2.10b introduces a sec-
ond liner in-between the existing liner and the cavity wall. The
second liner is introduced to match the required pressure drop
in a combustor, when a lower pressure drop is desired for the in-
ner liner>. The velocities through the orifices of the two liners are
related via the open-area-ratio between the two liners. According
to their functions, the inner liner is called damping liner and the
outer liner metering liner. Double-skin configurations are used in
[142, 282, 310, 417], for example.

A variation of the cavity geometry can be obtained by parti-
tioning the cavity into several smaller cavities. Such a partitioned
cavity is illustrated in Figure 2.10c by introducing two solid par-
tition walls in axial direction. Partition walls might be necessary
for structural reasons.

5 Such a configuration can already be found in a combustor with an impinge-
ment cooling setup, for example.
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2.3 THERMODYNAMIC PARAMETERS

A combustor operates at extreme pressure and temperature condi-
tions. Many fluid properties change considerably when these two
parameters are changing. Appendix A.3 gives an overview of the
behavior of some properties of air with variation of pressure and
temperature.

2.3.1  Temperature

The temperature within the combustor is around 2000K and the
cooling flow is provided at temperatures between 500-800 K. Most
laboratory test rigs for liner measurements operate at ambient
temperature, i. e. the temperature of the grazing flow and the bias
flow is around 288 K. Some results are reported for tests including
combustion [55, 294, 310, 357, 481, 484]. In that case, the tempera-
ture is much higher, but it is fixed at that level so that the influence
of varying temperature on the absorption cannot be determined.
Only a few studies exist where the temperature was controlled,
e.g. involving perforated liners [381], a single orifice with cavity
[144], or porous materials [93, 174, 355, 379, 381, 403, 462]. Mea-
surements of porous materials at reduced temperature (172 K) are
presented in [9]. None of the references above include a bias flow.
The only configuration where temperature effects have been stud-
ied including a bias flow is a duct termination issuing a hot jet
[104, 166, 251, 346, 370, 382].

Here, measurements are presented from the Hot Acoustic Test
Rig (see Section 6.6). It provides an acoustically defined environ-
ment where the temperature of the grazing flow can be adjusted
between ambient and 823 K. The bias flow is provided at a con-
stant temperature of 288 K. The mean temperature of the grazing
flow entering the lined section will serve as a reference tempera-
ture.
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2.3.2 Pressure

The combustor operates at very high static pressure levels. Com-
monly, this is not accounted for when testing perforated liners.
Even the measurements that involve combustion are typically at
atmospheric conditions [55, 310, 481]. The Hot Acoustic Test Rig
allows to increase the static pressure in the duct from ambient
up to 1100 kPa (see Section 6.6), so that the influence of the static
pressure on the absorption can be determined.

2.4 ACOUSTIC PARAMETERS
2.4.1  Frequency

A combustion instability is a discrete frequency phenomena. How-
ever, the exact frequency where the instability occurs cannot be
predicted and it changes with the operating condition of the com-
bustor. Therefore, the frequency characteristic of the liner is one
of its most important features.

Commonly, the performance of a liner is measured over a range
of frequencies. In order to obtain such a performance spectrum,
various test signals can be applied, e.g. single-sine [52, 162, 247],
multi-sine[82, 282], swept-sine [87], or broadband [go0].

Closely related to the frequency, or more precisely the wave
length, is the spatial structure of the sound field. Due to the low
frequency (<1kHz) nature of the combustion instabilities, it is
often the plane wave mode® that is dominant [305]. Thus, most
studies are limited to plane waves. Some theoretical studies are
available that describe the interaction of higher order modes with
an acoustic liner, e. g. [140, 393].

6 That means, the acoustic field quantities are a function of the axial coordinate
only (see Section 5.3).
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2.4.2  Amplitude / Sound Pressure Level

The influence of the amplitude on the acoustic properties of an
orifice has been the subject of many studies, e.g. [26, 58, 61, 72,
105, 123, 225, 227, 228, 243, 327, 361, 441, 473, 474, 505]. Depending
on the amplitude, a linear or a nonlinear behavior is observed. The
definition of a linear system is given by Bendat and Piersol [47]:
The response characteristics are additive” and homogeneous®. At
high amplitudes the behavior of the orifice is not homogeneous
anymore, i.e. the response depends on the excitation amplitude.
As a conclusion, the knowledge of the exact amplitude is rather
unimportant in the linear regime, while it becomes relevant in the
nonlinear regime.

Unfortunately, the definition of the amplitude is not quite con-
sistent in the literature. Actually, often no clear definition is given.
Authors refer to: the particle velocity amplitude in the orifice [227,
441], the pressure amplitude at the liner surface [41, 158, 161, 243],
the amplitude of the incident wave [8, 415, 425], the amplitude at
a fixed reference location in the hard-walled duct section in front
of the liner [82, 142, 199, 247], the peak amplitude of the standing
wave field in the hard-wall duct section [327], the amplitude in the
loudspeaker mounting [7], or the amplitude in the cavity behind
the perforation [227, 481].

It is generally assumed that the physical quantity relevant to the
nonlinear behavior is the particle velocity in the orifice. However,
in most cases it would take a great effort to measure the particle
velocity in the orifice, so that the amplitude is often given in terms
of sound pressure level (SPL). Now, the three most common ap-
proaches are discussed and evaluated for their comparability and
practicality.

7 Additive means, that the output to a sum of inputs is equal to the sum of the
outputs produced by each input individually: f(x; +x,) = f(x1) + f(x2) [47].
8 Homogeneous means, that the output produced by a constant times the input
is equal to the constant times the output produced by the input alone: f(cx) =

cf(x) [47].
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In a setup with normal (perpendicular) sound incidence it is
common to specify the SPL at the liner surface. It is either mea-
sured directly with a microphone installed at the liner surface
[158, 161, 243]°, or determined from a wave decomposition based
on microphone measurements in the hard-walled duct section
[41]. The direct measurement has the advantage of being very
straightforward and fast, while it requires a microphone within
(or at least very close to) the liner surface. The wave decompo-
sition method enables to extrapolate the sound field from micro-
phones placed along the hard-walled duct onto the liner surface.
However, the wave decomposition is not performed in real time
with the measurements, so that typically several iterations (pre-
liminary measurements) are necessary to set the desired SPL. The
amplitude at the liner surface is dependent on the reflection co-
efficient of the liner, so that for keeping a constant SPL the loud-
speaker output needs to be adjusted when modifying any param-
eters that change the liner properties, e.g. frequency, geometry,
flow condition.

Another approach considers the SPL of the incident wave only
[8, 105, 415, 425]. Normally*®, the incident wave amplitude cannot
be measured directly, so that a wave decomposition is necessary.
The advantage over the previous approach is that the incident
wave amplitude is independent of the axial position within the
hard-walled duct''. Furthermore, the incident wave amplitude is
independent of the liner properties. The desired output of the
source needs to be determined once for each frequency and SPL
and can then be applied to different liner configurations and flow
settings. Again, this requires an iterative measurement procedure.

9 The reference location in [161] and [243] is chosen to be very close to the liner
surface, so that for low frequencies the amplitude value can be considered
identical to the amplitude at the liner surface.

10 The incident wave amplitude can be measured directly when there is no
reflected wave, i. e. when there is no liner installed and the duct is terminated
anechoically.

11 When disregarding any losses within the hard-walled duct.
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Figure 2.11: Illustration of the sound field at a nominal amplitude of
125 dB measured at position x,.¢ for a liner configuration with a small
and large reflection coefficient R. Plotted is the amplitude of the sound
field including the reflected wave |p’| and the amplitude of the incident
wave alone [p™].

The most straightforward approach defines the SPL at a fixed
reference location in the hard-walled duct section in front of the
liner [82, 142, 199, 248]. However, Figure 2.11 demonstrates that
the results can be quite misleading. Plotted is the sound pressure
level over the axial coordinate obtained from a wave decomposi-
tion in the hard-walled duct section upstream of the liner for a
configuration with a small and a large reflection coefficient R. The
loudspeaker output is adjusted, so that the amplitude [p’| at the
reference position X.f is 125 dB for both configurations. However,
the amplitude at the liner location at x = o would be very dif-
ferent when choosing another axial position as reference or when
the reflection coefficient changes.

The amplitude at the liner surface is independent of the test
rig and thus serves well as a reference quantity when comparing
different measurements. However, in a setup with grazing sound
incidence the liner extends in axial direction, so that the amplitude
changes along the liner (due to the presence of a standing wave
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content in the sound field and due to the absorption of the liner).
In this case, it is difficult to choose the ‘correct’ reference plane,
so this approach is not applicable in a grazing incidence setup.
The incident wave amplitude should be the preferred quantity in
a grazing incidence setup.

Multi-Sine Signals

Time in ms

Figure 2.12: Superposition of two single-sine signals (- -- 330Hz and
————— 800 Hz) to one multi-sine (—— 330 + 800 Hz) signal in the time do-
main.

Using multi-sine signals'® can reduce the measurement time
dramatically. However, multi-sine signals should be used with
special care when studying high amplitude effects. Figure 2.12
illustrates the superposition of two frequency components to one
multi-sine signal in the time domain. While the single-tone sig-
nals have a constant peak amplitude, the multi-sine signal shows
events of varying amplitudes. Analyzing the data in the frequency
domain disregards these events which are a product of the super-
position. However, the orifice “sees’ these events and might behave
nonlinear, when the amplitude of an event is high enough. That
means, when specifying the amplitude of a multi-sine signal the

12 A multi-sine signal is synthesized by combining multiple single-sine signals.
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overall SPL is the more appropriate quantity, and not the SPL of
each tonal component separately. In other words, in order to en-
sure that one acts in the linear domain the overall SPL should be
consulted. For a single-sine signal the amplitude of the tone and
the overall SPL are identical.

Another characteristic of multi-sine signals in the nonlinear do-
main is that the different frequency components might influence
each other [68, 281].

2.5 FLOW PARAMETERS

The flow paths in a combustor liner were discussed in Section 2.1.
The general motion of fluid at the liner is a combination of a flow
grazing the liner surface tangentially on the inside of the combus-
tor, referred to as grazing flow, and the cooling flow through the
orifices of the liner, referred to as bias flow.

2.5.1  Grazing Flow

The effect of a grazing flow on the acoustic properties of orifices
and liners has been studied in many publications, e.g. [21, 24,
56, 81, 83, 106, 122, 145, 153-155, 175, 177, 209, 215, 244, 264—266,
268, 274, 290, 312, 322, 329, 341, 364, 384, 396, 406, 426, 467, 478,
480]. This interest in the grazing flow effect is mostly motivated
by the application of liners in aero engine inlets and bypass ducts,
where grazing flow Mach numbers of 0.5-0.7 are typical. This is in
contrast to gas turbine combustors where M = 0.05 is a common
value. So the typical grazing flow Mach number is an order of
magnitude lower. Most of the references given above study the
influence of the flow boundary layer on the acoustic behavior, i.e.
the significance of the friction velocity over the mean flow velocity.
However, Peat et al. [364] conclude that the mean flow velocity
is the adequate parameter when the flow is turbulent and fully
developed. The flow in a combustion chamber as well as in the
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Figure 2.13: Illustration of the relationship between mean grazing flow
velocity U, and maximum velocity at the center-line U,.

test rigs used here (see Sections 6.5 and 6.6) is fully turbulent'3,
so that only the mean grazing flow Mach number is considered.
The mean grazing flow velocity can be computed from the con-
tinuity equation U = /(pA), if the mass flow rate 1 is known.
Otherwise, the mean velocity can be determined from velocity
profile measurements or, assuming turbulent pipe flow, from the
measurement of the center-line velocity only. In turbulent flow the
center-line velocity U, is related to the mean velocity via' [496,
p- 346]
U

U~ ———=,
¢ 1+1.35\/1z

(2.2)
where f is the Darcy friction factor'>. For Reynolds numbers in the
range Re = 4000...10°%, it can be approximated by f = 0.316+/Re
[65, 496]. The relationship between mean and center-line velocity
is illustrated in Figure 2.13.

2.5.2 Bias Flow

The bias flow in a combustor is driven by a steady pressure differ-
ence across the liner. The higher pressure is applied to the cavity,

13 The grazing flow Reynolds number is larger than the critical Reynolds num-
ber Re. = 4000 [496].

14 Equation (2.2) assumes that the boundary layer profile is described by the
logarithmic law [496].

15 Named after Henry Darcy (1803-1858), French engineer.
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so that the fluid discharges from the cavity, through the orifices,
into the combustor. Some authors have studied the effect of neg-
ative bias flow [6, 26, 87, 241, 276, 332]'°, that is in the opposite
direction as described above. However, such a concept cannot be
applied to a combustion chamber. The discharging hot gas would
compromise the integrity of the liner and other components down-
stream. Therefore, this study exclusively treats bias flow directed
into the combustor or test duct. The effect of a periodic oscillating,
unsteady bias flow is studied by Heuwinkel et al. [200] and Lahiri
et al. [280, 281] and also, will not be included here.

A steady bias flow can be defined by its mass flow rate, the
pressure drop across the wall, or the velocity through the orifices.
As these three quantities provide different information and enable
different conclusions it is an advantage to have all three available
at the same time.

The bias flow pressure drop, that is the pressure difference across
the liner, is an operational quantity of a gas turbine combustor. A
certain operating condition yields a fixed pressure drop. The air
flow in the combustor is regulated by the relation of the pressure
drops of the different components. Thus, it is very important to
match the pressure drop when replacing a liner with a new de-
sign. Otherwise the intended air distribution might change. The
pressure drop across the liner can be measured with a differential
pressure meter via static pressure taps on both sides of the liner,
i.e. in the cavity and in the duct. The pressure drop is then given
in relation to the absolute pressure in the duct as

_ Pcavity — Pduct
Pduct

In a double-skin configuration (see Section 2.2.3) the pressure
drop refers to the total pressure drop across both liners, as this

AP X 100 % . (2.3)

16 Jing and Sun [241] and von Barthel [26] found that blowing and suction
have the same effect. However, when a grazing flow is present the results
are substantially different [332], e. g. Tonon et al. [478] report that the acous-
tic resistance appears to be a factor four lower for a grazing-bias outflow
compared to a grazing-bias inflow case.
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is the relevant quantity for the operation of the combustor. A typ-
ical pressure drop across a combustor wall is about 3 % [417].

The bias flow mass flow rate can be a measure of the efficiency of
the liner, i. e. a liner achieving the same damping performance at a
lower mass flow rate is more efficient. The efficiency is evaluated
for the liner as a whole, so that the total mass flow rate, instead
of the mass flow rate per orifice, should be compared. Most lab-
oratory experiments use a mass flow controller to adjust the bias
flow. Thus, its value is available in most cases.

The bias flow velocity is the quantity that is related to the absorp-
tion of sound. Typically, the velocity is not measured directly, but
estimated from the pressure difference across the liner or the mass
flow rate through the liner.

The literature offers two views on a definition of the bias flow
velocity. Some authors [8, 17, 142, 210, 214, 219] use the velocity
based on the orifice area, usually referred to as mean orifice velocity.
The mean orifice velocity can be calculated when the mass flow
rate and the open area of the liner is known. Howe [210] argues
that the vorticity convection velocity is the mean velocity in the
plane of the orifice. The second definition is based on the jet veloc-
ity [41, 55, 282]. The difference between these two velocities can
be as large as a factor of 2. For a better understanding of these
differences, a closer look at the steady flow field in the vicinity of
the orifice is required.

Figure 2.14 illustrates the steady flow through an orifice for
three significant geometries. In Figure 2.14a the fluid discharges
through a thin orifice with square edges. The streamlines cannot
follow the sharp contour of the geometry. They form a smooth
path, resulting in a contraction of the emerging jet. The cross-
section area of the jet is reduced to a value that is smaller than the
actual area of the orifice'”. The location of maximum contraction

17 Evangelista Torricelli (1608-1647), Italian physicist and mathematician, is ac-
credited with the observation of this phenomenon.
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Figure 2.14: Illustration of the bias flow through orifices of three signifi-
cant geometries, demonstration the jet contraction and friction losses.

is named vena contracta*® (latin for “contracted vein”). For a circu-
lar, sharp orifice the vena contracta is located approximately half
a diameter downstream of the leading edge of the orifice [76, 353].
Here, the streamlines of the jet are parallel, the velocity is at max-
imum, and the pressure in the jet is equal to the surrounding
pressure.

For the thick orifice shown in Figure 2.14b the flow separates
at the sharp inlet edge and then reattaches to the wall before it
discharges through the outlet. The emerging jet is of the same area
as the orifice, but the friction losses increase. The reattachment of
the flow occurs for orifice aspect ratios beyond 1/d > 2 [119, 302].
ISO 5167-2:2003 [234] defines a thin orifice as 1/d < 0.02. In the
transition region, say 0.02 < l/d < 2, the flow might or might
not reattach, so that the flow field is subject to wide variations
[320]. Unfortunately, typical liner geometries are often within this
transition region.

The round edge orifice in Figure 2.14¢ guides the flow along the
smoothly curved inlet of the orifice. The area of the resulting jet
is identical with the orifice area. The friction losses are similar to
the thin orifice and are small for both geometries.

18 The term vena contracta was introduced by Sir Isaac Newton (1642-1727, En-
glish physicist, mathematician, astronomer, natural philosopher, alchemist,
and theologian) [353].
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Hydraulic coefficients of the orifice

The friction losses and the jet contraction can be accounted for by
introducing the hydraulic coefficients of the orifice [25, 91, 456].
The velocity coefficient Cy relates the theoretical velocity of an ideal
fluid™ to the actual velocity of a viscous fluid, accounting for the
friction losses within the orifice

u
Cy = . 2.
Llideal ( 4)

The velocity coefficients for sharp or round orifices are similar and
range from 0.95 to 0.99 [76, 456]. Typically, a value of Cy = 0.98
is given [25, 303], so that C, is often neglected for these geome-
tries. The friction losses increase considerably in a thick orifice
(l/d > 1), where a typical value is given by Cy = 0.8 [25].

In engineering, the friction losses are often expressed by the resis-
tance coefficient C., which is related to Cy by

Cr=1/C. (2.5)

The contraction coefficient C. relates the area of the jet Ajet to the
cross-section area of the orifice A. The area of the jet corresponds
to location 2 in Figure 2.14 and the contraction coefficient is given
by

C.= A}i\et (2.6)
An appreciable contraction is only observed for the thin orifice,
where Aje; corresponds to the vena contracta. Kirchhoff [262] gives
an analytical expression for the contraction of a jet through a
circular orifice in a thin and infinitely extending wall as C. =
nt/(mt+2) ~ o.611. Rayleigh [386] derives a theoretical limit of
0.5 < C. < 1. Measurements with a circular, sharp orifice find a

19 Ideal fluids are free from all dissipative phenomena, e.g. they have zero vis-
cosity and thermal conductivity [338]. The term should not be confused with
ideal gas.
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Table 2.2: Nominal values of the hydraulic coefficients for three signifi-
cant orifice geometries corresponding to Figure 2.14 (from [25, p. 3-60]).

Orifice geometry C. G (4

Thin orifice (see Fig. 2.14a) 0.62 0.98 0.61
Thick orifice (see Fig. 2.14b) 1.00 0.80 0.80
Round edge (see Fig. 2.14c) 1.00 0.98 0.98

contraction coefficient in the range from 0.61 to 0.67 [76]. Typically,
C. = 0.62 is used [25].

The discharge coefficient Cq is the ratio of the actual to the theoret-
ical flow rate through the orifice. It considers the jet contraction
as well as the friction losses and is given by the product of the
velocity and contraction coefficients

m
Ca Ttheoretical Cer v (27)
Often, the discharge coefficient and the contraction coefficient are
used interchangeably in literature®. Indeed, in many cases Cy is
close to unity, so that C4 = C.. However, one should keep in mind
that this is just an approximation and that the influence of Cy
increases with thicker orifices.

For circular, sharp orifices in a straight pipe there exists a large
amount of empirical formulas [221] and tabulated values [76, 442,
443). However, the flow conditions at a liner can include non-
uniform inflow conditions, orifice interaction, and maybe grazing
flow, so that the standard formulas are not applicable. There is
data available for more realistic flow conditions and geometries
[84, 124, 125, 184, 185, 254, 407, 478], but in most cases it is more
reliable to determine the hydraulic coefficients experimentally.

Nominal values of the hydraulic coefficients for geometries cor-
responding to Figure 2.14 are summarized in Table 2.2.

20 This was already noted by Ahuja and Gaeta [7].
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Determination of the bias flow velocity from the pressure drop

For the steady flow of an ideal, incompressible** fluid, the pres-
sure and velocity of any two points along a streamline are related
via the Bernoulli equation®* (Bernoulli [49], or [33, 283])

1 1
P:+ Epui =P, -+ ;pui ’ (28)

where gravity is neglected. Equation (2.8) can be applied to the
orifices presented in Figure 2.14. For convenience, the location of
point 1 is chosen to be far upstream, so that the velocity on the
inlet side is assumed to be zero (the flow is driven by the pressure
difference only). The pressure at location 2 refers to the pressure
within the duct, so that the location of point 2 is at the vena con-
tracta (Figure 2.14a) or the orifice outlet (Figure 2.14b and 2.14c).
Viscosity is neglected in Equation (2.8), so that U, is the velocity
of the jet of an ideal fluid

2
uz = uB,ideal = 6(}71 - pz)- (2-9)

The friction losses can be accounted for by the velocity coefficient
Cy, see Equation (2.4). Then the bias flow velocity Uy is given by

U = Cyy /%(p1 —Pa). (2.10)

The bias flow velocity corresponds to the jet velocity. For thin ori-
fices Cy is close to unity, so that it is often neglected.
Determination of the bias flow velocity from the mass flow rate

The theoretical mass flow rate of an ideal fluid through an orifice
is given by the continuity equation:

T.ntheoretical = pAuE,ideal . (2-11)

21 Air can be considered incompressible for M < 0.3 [33].
22 Named after Daniel Bernoulli (1700-1782, Swiss mathematician and physi-
cist).
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A is the orifice cross-section area, so that Ug corresponds to the
mean velocity in the plane of the orifice, i.e. it is not taking the
jet contraction into account. This is indicated by the bar over the
index B.

The actual mass flow rate includes the jet contraction via the con-
traction coefficient C., as well as friction losses with the velocity
coefficient Cy, so that

m= P- CCA : CVuB,ideal . (2-12)

Here, Uyigeal represents the jet velocity of an ideal fluid, corre-
sponding to Equation (2.9). The bias flow velocity Uy = CyUyg jigeal
is given by

_om

- pCA”

Us (2.13)
Uy corresponds to the jet velocity including viscosity effects, cor-
responding to Equation (2.10). Unfortunately, C. is mostly not
known a priori and can only be approximated. In that case, the
pressure drop and Equation (2.10) should be used to determine
Us.

In a liner with many orifices 1 is the total mass flow rate and
the corresponding area is nA, where n is the number of orifices.
This approach assumes that the mass flow is divided up evenly
through all orifices. In practice, the mass flow through the orifices
might vary due to a non-uniform flow distribution on the inlet
side and manufacturing differences of the orifices. Then, Equa-
tion (2.13) yields the mean velocity of all orifices of the liner.

Measurement of the discharge coefficient

The discharge coefficient can be determined when the pressure
difference across the liner and the mass flow rate through the
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liner are both available. Combining Equations (2.10) and (2.13),
together with (2.7) yields
m
Cq= - . (2.14)
PA (/5 (P1—P2)

For sufficiently thin orifices it can be assumed that C, is close to
unity, so that C4 ~ C..

Here, the bias flow velocity refers to the velocity of the jet as
defined in Equations (2.10) and (2.13). A certain mass flow rate or
pressure difference is set for the measurement, while both quanti-
ties are recorded. Then, the velocity is calculated from the pres-
sure difference with Equation (2.10), where it is assumed that
Cy = 1. The bias flow velocity is given in dimensionless form
as the bias flow Mach number

_ U
_C

Mg (2.15)

Furthermore, Cq4 is calculated from the mass flow rate and the
pressure difference with Equation (2.13).
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LITERATURE ON BIAS FLOW LINERS

Historically, the damping effect of a bias flow orifice was observed
in 1916, when Borth [73] reports on the successful suppression of
resonances in the ducts of a piston blower with the help of a bias
flow orifice. In fact, he created a constriction by partially closing a
throttle valve. His observation was confirmed by Maier and Lutz
[311] and Lutz [309], who eliminated resonances by deliberately
placing orifice plates into the exhaust ducts of combustion engines
and reciprocating engines, respectively.

3.1 BIAS FLOW AS A CONCEPT OF IMPEDANCE CONTROL

The first study of a more fundamental nature was published in
1950 by McAuliffe [319], presenting the results of impedance tube
measurements. He demonstrated the dependency of the orifice
impedance on a steady bias flow. Increasing the velocity revealed
a substantial drop of the orifice reactance and a linear increase
of the orifice resistance’. When applied to a Helmholtz resonator,
the bias flow provokes a shift of the resonance frequency to higher
values and a decrease of the Q factor? of the resonance. Other au-

1 The resistance and the reactance are, respectively, the real and imaginary
part of the acoustic impedance, which will be introduced in Section 4.2.

2 The Q factor, short for quality factor, describes the bandwidth of a resonance.
A high Q factor represents a sharp peak, while a resonance with a low Q has
a higher bandwidth.
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thors reproduced these findings with a wide variety of different
setups: The same setup was used by Westervelt [491], the experi-
ments of Barthel [26] were performed with a Helmholtz resonator
with normal sound incidence, the theoretical setup of Ingard [226]
consisted of a perforated screen, Mechel et al. [326] studied a duct
termination, and Mechel et al. [325] employed screens of porous
materials. In conclusion of these studies, Utvik et al. [483, p. 3]
summarize the general effects of the flow: “Alteration in absorp-
tion, which can either increase or decrease the damping effective-
ness of the liner configuration; and a shift in resonant frequency,
with broadening of the bandwidth characteristics.”

In the meantime, technological advancements have produced
further applications of the bias flow concept, namely the suppres-
sion of combustion instabilities in rocket engines [20, 62, 78, 170,
180, 300, 367, 368, 484]. An early patent describes, “[...] a combus-
tion chamber with a perforated absorption liner having a regula-
tor [...] to control the air flow in the space behind the liner and
through the perforations thereof in such a manner so as to com-
pensate for variations in the absorption of the liner with variations
in pressure level” (US2941356 [62, p. 1]).

Feder and Dean [158] and Dean and Tester [118] propose the
bias flow concept as a method of impedance control to turbofan
inlet liners. Dean and Tester [118] see the greatest benefit in the
ability to easily tune the impedance of the liner when it is installed
in an engine. This helps to overcome the inaccuracies of the avail-
able models, thus reducing the need for expensive trial-and-error
testing.

The effect of the bias flow is commonly modeled by a resistance
that depends linearly on the bias flow velocity. Several authors
[118, 171, 227, 326, 459, 491] use this approach with varying em-
pirical constants. While an effect on the reactance has also been
reported, this is often not reflected in the models.

The impact of the bias flow on the impedance characteristics is
very similar to the behavior observed at high amplitude excita-
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tion [26, 58, 61, 72, 105, 123, 225, 227, 228, 243, 327, 361, 441, 473,
474, 505]. Indeed, the high amplitude produces an oscillating flow
through the orifice [228, 423, 473], so that the relevant quantity
in both cases is the velocity in the orifice. Dean and Tester [118]
include the bias flow in their impedance model by simply replac-
ing the acoustic particle velocity v/ with the bias flow velocity Us.
However, this can only be correct if Uy > |[v/|.

The impedance model of Bauer [34] is often referred to when
perforations with bias flow are involved, e. g. [14, 18, 143]. Actu-
ally, Bauer’s model includes only a v’ term describing the nonlin-
earity at high amplitudes, but not an explicit bias flow term. How-
ever, it seems common practice to replace the acoustic velocity in
the nonlinear term with the bias flow velocity, as Dean and Tester
[118] demonstrated. The Bauer model is presented in Section 4.6.

After a long break, the bias flow concept was revived in a com-
prehensive study initiated by the Boeing Company [56, 57]. The
work regarding the bias flow involves measurements of various
liner geometries as well as impedance modeling [52-54, 161, 162,
276, 373]. The resulting impedance model proposed by Betts [52,
54] is based on the state of the art models used in the industry
with the addition of a bias flow resistance term. The bias flow
term is integrated in the nonlinear impedance term by using the
sum of the acoustic particle velocity and bias flow velocity as pro-
posed by Premo [373]. The impedance model will be referred to
as Betts model and is discussed in more detail in Section 4.7.

3.2 SOUND ABSORPTION DUE TO VORTICITY SHEDDING

In the late 1970s Bechert et al. [39, 40] could provide some insight
into the interaction of sound with a turbulent jet. In their experi-
ments they observed a substantial attenuation at low frequencies
for pure tone sound propagating through a nozzle along a tur-
bulent jet. The conical nozzle issuing the jet was located in an
anechoic room, while the acoustic signal was introduced into the
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duct upstream of the nozzle. The transmitted sound power from
within the duct was compared to the sound power radiated into
the far field at various jet velocities between o < M < o.7. While
the sound power is conserved without flow, with flow it is atten-
uated at low frequencies3. It was verified that the sound power
is neither shifted to other frequencies nor that it contributes to
the broadband jet noise amplification. Also, measurements at dif-
ferent sound power levels revealed that the absorption effect is
independent of the sound power level, i.e. it has a linear behav-
ior.

These results reveal the existence of a sound absorption pheno-
menon which has not been considered previously. Bechert et al.
emphasize that the characteristics of the new phenomenon, i.e.
broadband, low frequency sound absorption, has been a long de-
sired characteristic of an acoustic absorber.

Shortly after his experimental observations, Bechert [37, 38] il-
lustrates the physical mechanisms of the absorption phenomenon
and proposes a model to account for the absorption. In his theory,
acoustic energy is converted into energy of fluctuating vorticity,
which is shed from the nozzle edge and is dissipated into heat fur-
ther downstream#. This is implemented in his model by applying
a Kutta condition’ at the edge to enable the vorticity shedding.

Bechert’s observation and his associated theory are regarded
as a breakthrough in understanding the physical phenomena of
the interaction of flow and sound at an orifice. He could experi-

3 That is below He = 0.8 or 2000 Hz for the geometry in the experiments.

4 The existence of such a phenomenon was already suspected by Gordon and
Smith [180, p. 267]: “We believe that this luxuriance of interaction phenom-
ena at low Mach numbers is all to be explained by coupling between sound
and fluid flow, particularly vortices, at the sharp edges of the vent. A quanti-
tative explanation has not been attempted.”

5 Named after Martin Wilhelm Kutta (1867-1944, German mathematician)
[275]. From [338]: The Kutta condition is applied to a sharp trailing edge
to simulate the effects of viscosity, in flow models where viscosity is not ex-
plicitly included. The Kutta condition requires that all velocities remain finite
in the vicinity of the edge.
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mentally demonstrate the existence of a new mechanism of sound
absorption and was able to give an explanation of the responsible
physics.

Howe [208] analytically derives a model based on Powell’s vor-
tex sound theory [207, 371] applied to a low Mach number nozzle
flow. His approach confirms that the main mechanism of sound
absorption, when flow discharges through a nozzle, stems from
the transfer of acoustic energy into vorticity.

Inspired by Bechert’s experiments, Howe [210, 214] presents a
model for the unsteady flow through a circular orifice. He analyti-
cally derives an expression of the Rayleigh conductivity for an ori-
fice with bias flow and demonstrates the application of his model
to a perforated plate with bias flow. Howe’s model has become a
quasi-standard when modeling bias flow orifices or perforations
[16, 42, 131, 142, 219, 282, 317, 318, 391, 417, 430, 489]. The model
itself is discussed in detail in Section 4.3.

Hughes and Dowling [219] and Dowling and Hughes [129] ap-
ply Howe’s approach to a perforated plate with a solid back wall.
Based on the work of Leppington [297] they develop a smooth
boundary condition for the perforation in terms of an effective
compliance®?. The perforation consists of a uniform array of cir-
cular orifices or slits, respectively. They show theoretically and
experimentally that it is possible to absorb all the incident sound
energy when a solid back wall is provided. The predictions of
Howe’s model agree well with the experimental data.

One of the shortcomings of Howe’s model is the assumption of
an infinitesimal thin wall, which does not exist in practice. Jing
and Sun [241] introduce a thickness term in Howe’s model by
physical reasoning. The resulting expression of the Rayleigh con-
ductivity is commonly referred to as modified Howe model. Fol-
lowing the notation here, it will be referred to as Jing model (see
Section 4.4).

6 The concept of acoustic compliance is introduced in Section 4.2.1.
7 A recent mathematical discussion on the effective compliance for various
orifice geometries is given by Laurens et al. [285].
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Later, Jing and Sun [242] include a finite wall thickness and
the contraction of the jet in Howe’s equations. However, an an-
alytical solution can not be obtained, so that the equations are
solved with the boundary element method. This extension yields
an improved agreement to their measurements, compared to the
modified Howe model.

Luong et al. [308] use the Cummings equation [105, 107] to de-
rive a simplified formula for the Rayleigh conductivity of a circu-
lar bias flow orifice in an infinitesimally thin wall and in a wall
of finite thickness. This approach is often referred to as simplified
Howe model and is labeled Luong model in the notation used
here (see Section 4.5).

Eldredge and Dowling [142] apply Howe’s model to a cylin-
drical geometry, as described in Section 4.9.2. The Eldredge and
Dowling method solves the acoustic equations in the lined sec-
tion of a duct, which are coupled to the sound propagation in
the cavity via the compliance of the perforation. This approach is,
for example, included in a Low-Order Thermo-Acoustic Network
model (LOTAN) developed by Stow and Dowling [130, 131, 452—
455] and used by Rolls-Royce plc [282].

Howe’s model [210], as well as the later adaptations by Jing
and Sun [241] and Luong et al. [308], focus exclusively on the
bias flow and do not include predictions of an orifice without bias
flow. A more comprehensive approach is followed by Bellucci et al.
[42]. They present an impedance model which takes into account
all the usual effects when there is no flow, e.g. viscosity, mass
reactance, end correction, nonlinearity, orifice interaction, and is
then modified to include the bias flow effect. In contrast to the
other impedance models mentioned in Section 3.1, the bias flow
resistance in this model is based on Howe’s formulation. This
model will be referred to as Bellucci model and is described in
Section 4.8.
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3.3 RECENT DEVELOPMENTS

Based on publications within the last five years, there are several
groups doing active research regarding bias flow orifices.

LOUGHBOROUGH UNIVERSITY / ROLLS-ROYCE (UK)

Rupp and Carrotte [415] present an experimental study regarding
high amplitude effects at a single orifice with and without bias
flow. The same setup is used to perform Particle Image Velocime-
try (PIV) measurements. The results are processed with a Proper
Orthogonal Decomposition (POD) technique to identify the co-
herent structures of the periodic velocity field. In a later paper
[419], they are able to compare the energy found in the unsteady
flow field to the lost acoustic energy and find a surprisingly good
agreement. In [417], Rupp et al. present an experimental study
with a model combustor geometry, but without combustion. The
airflow through the fuel injector produces a complex flow field
at the surface of the liner, which is representative of a realistic
combustor situation. The main parameter in the study is the dis-
tance between the liners in a double-skin configuration. They are
able to find an optimum distance with the help of a simple model.

UNIVERSITY OF FLORENCE / AVIO (ITALY)

Andreini et al. [16, 17, 18, 19] have published a series of papers
while building up their expertise regarding bias flow liners. An-
dreini et al. [16] compare numerical tools for the evaluation of bias
flow liners. In particular, these are a 1D network tool based on
[142], the FEM solver COMSOL, and large eddy simulations with
the OpenFOAM toolbox. Andreini et al. [17] present an experi-
mental study regarding various parameters, including frequency,
bias flow velocity, porosity, orifice angle, and perforation aspect
ratio. A full annular geometry is analyzed in [18]. Three different
models for the perforation are applied, i.e. the Howe model (see
Section 4.3), the Jing model (see Section 4.4), and the Bauer model
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(see Section 4.6). In their most recent paper Andreini et al. [19]
study the cooling effectiveness of the perforation geometries that
have been investigated for their acoustic properties in [17].

KTH ROYAL INSTITUTE OF TECHNOLOGY (SWEDEN)

Bodén and Zhou [70] and Zhou and Bodén [504] study the combi-
nation of bias flow and high amplitude acoustic excitation. In [70]
they make a detailed experimental study of the transition between
the dominance of the nonlinear high amplitude effect and the bias
tflow effect. In [504] they derive an impedance model from a modi-
fication of the Cummings equation [105, 107]. They include a new
model for the discharge coefficient, which introduces a separate
discharge coefficient for the periodic acoustic flow, different from
the steady flow discharge coefficient.

EINDHOVEN UNIVERSITY OF TECHNOLOGY (NETHERLANDS)
Moers et al. [332] and Tonon et al. [478] present a comprehensive
treatment of the grazing and bias flow interaction. They discuss
the different steady flow regimes, i.e. pure grazing flow, low in-
flow, ..., pure bias outflow, which were introduced by Baumeister
and Rice [35] and Rogers and Hersh [406]. They present an ana-
lytical model for the inflow regime and present impedance mea-
surements for various orifice geometries.

ECOLE CENTRALE PARIS / CNRS (FRANCE)

Tran et al. [481] investigates the use of perforated plates backed
by a cavity in a combustion chamber. They designed two perfo-
rated plates that are tested in an impedance tube as well as in
an atmospheric combustion test rig. Scarpato et al. [427] conduct
Large Eddy Simulations of an orifice with bias flow at low and
high sound levels. Scarpato et al. [428, 429, 430] present a low
Strouhal number analysis and find that the optimal bias flow ve-
locity is controlled by the porosity only. Then, the peak absorp-
tion frequency can be modified by changing the cavity depth.



3.3 RECENT DEVELOPMENTS

They achieve a larger absorption bandwidth in the low Strouhal
number regime and claim, that a low Strouhal number design is
generally superior compared to previous efforts looking at the
Helmholtz regime (e. g. [219]).

CAMBRIDGE UNIVERSITY (UK)

Bhayaraju et al. [55] and Schmidt et al. [434] conduct acoustic mea-
surements in a rectangular model combustor. The acoustic absorp-
tion is measured for various perforation geometries and bias flow
velocities at ambient conditions with loudspeaker excitation. In
combustion tests, they evaluate the influence of the different per-
foration geometries on the flame.

UNIVERSITY OF DAYTON (USA)

Mazdeh and Kashani [317, 318] present results from an ongoing
numerical study. They are using Large Eddy Simulation (LES) and
are working on including geometry parameters like the hole size,
shape, orientation, and radius to thickness ratio. So far they have
presented impedance results while varying the thickness to radius
ratio of the orifices. More results are announced to be presented
in future publications.

DLR GERMAN AEROSPACE CENTER (GERMANY)

Two optical measurement techniques, Particle Image Velocimetry
(PIV) and Laser Doppler Anemometry (LDA), are applied to a
bias flow liner in [201]. This work is a joint effort with ONERA
who performed the LDA measurements. Both techniques deliver
similar results and are able to resolve the acoustic flow structures
in the vicinity of the orifice. A third optical technique is used
in a cooperation with TU Berlin and TU Dresden. Haufe et al.
[191, 192] perform measurements applying Doppler Global Ve-
locimetry with Frequency Modulation (FM-DGV). Schulz et al.
[436] investigate the energy transfer with a spectral analysis ap-
proach based on FM-DGV data. The results reveal a correlation
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between the absorbed energy and the production of additional
spectral turbulence fluctuation components.

Heuwinkel et al. [200] and Labhiri et al. [280, 281] study the effect
of an oscillating unsteady bias flow. The unsteady bias flow is gen-
erated by a high amplitude acoustic excitation within the cavity of
the liner. This new concept, the Zero Mass Flow Liner, promises a
dramatic reduction of the required mass flow rate while achieving
a similar damping performance.

The comprehensive experimental parameter study with cylin-
drical bias flow liners presented in [277, 279, 282] is the basis of
this thesis. All details can be found in the following chapters.

3.4 CHRONOLOGICAL OVERVIEW

Due to the large amount of publications addressing the bias flow
effect, the previous sections only present a limited selection. A
more comprehensive overview is given in Table 3.1. The table
includes not only the perforated liner setup, but various setups
where the bias flow effect can be observed: single orifice, Helm-
holtz resonator, perforated plate, sudden area expansion in a duct,
duct termination, single-degree-of-freedom (SDOF) liner, double-
degree-of-freedom (DDOF) liner. The nature of the work in the
references can be mainly theoretical, experimental studies, and
numerical simulations, indicated by the cross in the T (theoret-
ical), E (experimental), and S (simulation) columns, respectively.
A ’c’ in the experimental column indicates that combustion tests
have been performed. For a quick reference, the last columns list
some common parameters that are addressed in each publication:
frequency f, sound pressure level p’, bias flow Mach number M,
grazing flow Mach number M, porosity o, orifice diameter d,
wall thickness t, orifice angle «, cavity volume V, and tempera-
ture T.
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Table 3.1: Chronological overview of publications concerned with the
bias flow effect. The columns T, E, and S indicate if the nature of the
work is mainly theoretical, experimental, or numerical simulations, re-
spectively. A ‘¢’ in the experimental column indicates that combustion
tests have been performed.

Author TES Setup Parameters
Borth (1916) [73] x  orifice Mg
Maier (1934) [311] x  orifice M

Lutz (1934) [309] X x  orifice Msg
McAuliffe (1950) [319] x  orifice M d
McAuliffe (1950) [319] x  Helmholtz res. M Mg
Westervelt (1951) [491] x orifice f M ot
Barthel (1958) [26] x  Helmholtz res. fp’ Ms
Ingard (1959) [226] X perforated plate f M;
Gordon (1965) [180] x  orifice Mg o
Mechel (1965) [326] x x  duct termination f My d
Mechel (1965) [325] x  orifice f M d
Utvik (1965) [483, 484] x ¢ perforated liner f MyMco
Ingard (1967) [227] x  orifice P’ Mg
Ronneberger (1967) [409, 412] x  duct expansion f My
Feder (1969) [158] x  perforated plate fp’ Mg Mg o
Garrison (1969) [170, 171] x  perforated liner fp’ Mg o

Tonon (1970) [479] X Helmholtz res. f Mg
Alfredson (1971) [11] x X ductexpansion f Ms
Oberg (1971) [357] ¢ perforated liner Msg o
Cummings (1975) [103] X duct expansion M d
Dean (1975) [118] x x  DDOF liner f Ms o
Munt (1977) [346, 347] X duct termination f Mg
Bechert (1977) [39, 40] x x  duct termination f My
Imelmann (1978) [223, 224] x  duct termination f M;
Richter (1978) [397, 399, 412] x  orifice f Ms
Bechert (1979) [37, 38] x x  duct termination f My
Howe (1979) [208] X duct termination f Mg
Howe (1979) [210] X orifice f Ms d
Nilsson (1981) [354] X duct expansion f M,
Rienstra (1981) [400] X duct termination f Mg
Salikuddin (1981) [421, 422] x  duct termination f M; T
Sullivan (1982) [461] x  perforate f Mg
Cummings (1983) [109] x X  duct termination fp’ Mg o

continued on the next page
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Table 3.1 — continued from the previous page

Author TES Setup Parameters
Whiffen (1983) [494] x  duct termination M

Pallek (1984) [360, 412] x  orifice f My

Pallek (1984) [360, 412] x  perforated plate f Mg

Pallek (1984) [360, 412] x  duct expansion f Mg

Peat (1988) [363] X duct expansion f M;
Hughes (1990) [219] x  perforated liner f M; o A%
Salikuddin (1990) [424, 425] x  perforated liner fp’ My ot V
Fukumoto (1991) [168] X perforated plate f M
Dowling (1992) [129] x  perforated liner f M;

Keller (1995) [258] x x  Helmholtzres. f My
Dupere (1998) [133, 134] x  ductexpansion f M;
Wendoloski (1998) [489] X orifice f Mg d
Ahuja (1999) [6, 87] x  DDOF liner f Mg Mg
Jing (1999) [241] x  perforated liner f Mg ot V
Kwan (1999) [276] x  SDOF liner fp' My Mg
Premo (1999) [373] x x  SDOF liner fp' Mg o
Zhao (1999) [502] x  perforated liner fp’ Mg o
Ahuja (2000) [8] x  orifice f Mg

Betts (2000) [52, 54, 162] x x  perforated liner fp’ M; ot
Jing (2000) [242] x x  perforated plate f M; ot
Betts (2001) [53] x x  perforated plate f M; o
Dupere (2001) [135] x  duct expansion f Mg
Durrieu (2001) [138] X x  orifice f Mg o
Durrieu (2001) [138] x x  perforated plate f M; o
Hofmans (2001) [138, 203] x x  orifice f M

Follett (2001) [161] x x  DDOF liner f Mg
Bellucci (2002) [41, 43] x x  perforated liner fp’ M; ot
Bielak (2002) [56] x  DDOF liner fp' Mg Mg
Dupere (2002) [136, 137] x x  Helmholtzres. f Ms

Sun (2002) [463] X  orifice f MgMgot
Sun (2002) [463] x  perforated plate f MyzMcot
Eldredge (2003) [142] x X  cylindrical liner f Mz Mg
Forster (2003) [164] x  perforated plate f My o
Forster (2003) [164] x  cylindrical liner f M;M¢d
Eldredge (2004) [140] X cylindrical liner f Ms
Rademaker (2004) [378] x  3DOF liner fp' My Mg
Boij (2005) [71] x X  duct expansion My

Luong (2005) [308] X orifice f M dt
Heuwinkel (2006) [197, 198] x  cylindrical liner f M; Mg o

continued on the next page
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Table 3.1 — continued from the previous page

Author TES Setup Parameters
Macquisten (2006) [310] ¢ cylindrical liner My Mg o T
Efraimsson (2007) [139] x orifice f Ms

Eldredge (2007) [141] x perforated plate f Mz Mg o
Lee (2007) [291] x x  perforated plate f M; o

Leung (2007) [299] x orifice f Mg d

Dasse (2008) [112, 328] x perforated plate f M;

Gullaud (2008) [187, 188] x perforated plate f M,

Heuwinkel (2008) [199] x  cylindrical liner fp’ My Mg

Mendez (2009) [328] x perforated plate f M,

Rupp (2009) [415, 418] x  orifice P’ My

Tran (2009) [481] ¢ perforated plate fp’ My VT
Zhao (2009) [500, 501] x  cylindrical liner fp’ My

Bhayaraju (2010) [55] ¢ perforated liner f M, o «
Heuwinkel (2010) [201] x  cylindrical liner f Mz Mg

Lahiri (2010) [202, 282] x  cylindrical liner f MzMgot V
Lei (2010) [294] c perforated liner My, © T
Rupp (2010) [415, 419] x  orifice P’ Mg t
Schmidt (2010) [434] x  perforated liner f MzMgo «V
Andreini (2011) [16] x cylindrical liner f MzMgo o
Mazdeh (2011) [317] x orifice f Mg

Rupp (2011) [416, 417] x  perforated liner f M; \%
Scarpato (2011) [427] x perforated plate  p’ My

Andreini (2012) [17] x  cylindrical liner f M;g o «
Bodén (2012) [70] x  orifice fp' Mg

Jayatunga (2012) [240] x  perforated liner f M; ot

Jorg (2012) [252] x  cylindrical liner f M; \Y
Lahiri (2012) [279] x  cylindrical liner f Mg Mg VT
Mazdeh (2012) [318] x orifice f Mg dt
Moers (2012) [332] x  slit f  Ms Mg x
Scarpato (2012) [428, 430] x  perforated liner f My o \%
Zhong (2012) [503] X cylindrical liner f Mg Mg

Andreini (2013) [18] x perforated liner f Ms T
Schulz (2013) [436] x  perforated liner f Mz Mg

Tonon (2013) [478] x  slit f Mg Mg x
Zhou (2013) [504] x  orifice f Ms t
Rupp (2014) [420] x  Helmholtzres. fp' Mg t







MODELING OF BIAS FLOW LINERS

4.1 RAYLEIGH CONDUCTIVITY

The first attempt at a theoretical description of the acoustic prop-
erties of an orifice was presented by Rayleigh [385, 390] when he
was studying Helmholtz resonators. He introduced the concept
of acoustic conductivity as an analogy to Ohm’s law" in electricity.
While the electric conductivity of a circuit element is described
by the ratio of the electric current to the potential difference, the
acoustic conductivity of an orifice is given by the ratio of the vol-
ume flow through the orifice to the driving pressure difference. It
is commonly referred to as Rayleigh conductivity?.

Let the fluctuating pressure on both sides of an orifice be a
harmonic function of time, so that p, = Re{p, e!’} for the fluc-
tuating pressure above and p, = Re{p, e!®!} for the fluctuating
pressure below the orifice. Then, the pressure difference across the
orifice Re{(p; — P.) et} produces the fluctuating volume velocity
q' = Re{qe'®'} through the orifice. When the flow is regarded

1 Named after Georg Simon Ohm (1789-1854, German physicist and mathe-
matician) [358].

2 Named after John William Strutt, Lord Rayleigh (1842-1919, English physi-
cist).
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Figure 4.1: Illustration of the quantities determining the Rayleigh con-
ductivity of an orifice.

as incompressible and the orifice is acoustically compact, that is
A > 71, then the Rayleigh conductivity is defined as [385, 390]3

g
P P2’

Kgr =iwp (4.1)
where p is the mean density. The acoustic volume velocity is de-
tined as § = A¥, with the orifice area A = 7r* and the acoustic
particle velocity ¥. This is illustrated in Figure 4.1.

In an ideal fluid the Rayleigh conductivity is determined by the
orifice geometry alone. For a circular orifice in a wall of infinitesi-
mal thickness Rayleigh found that [385, 390]

Kr =27, (4.2)

where 7 is the orifice radius. For an orifice in a wall of finite thick-
ness the Rayleigh conductivity can be expressed as the ratio of the
area of the orifice and an effective length [385, 390]

A
Kgr = T (4-3)

eff
The effective length is longer than the physical length of the orifice
1. The additional length U accounts for the additional mass of
fluid that takes part in the oscillatory motion outside of the orifice

3 In addition to Rayleigh’s original derivation detailed discussions are given
by Stewart and Lindsay [447, Ch. 2.4], Morfey [336], and Howe [214, Ch. 5.3].
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and is commonly referred to as end correction. This is illustrated
in Figure 4.1. The effective length is defined as the sum of the
physical length of the orifice and the end correction for both ends:
legg =1+21.

In continuation, Rayleigh derives an upper and lower limit of
the conductivity* [385, 390]

T2  Kn < r?
16 R [
Lt oor L+ 27

(4.4)

For 1 = o the upper limit coincides with Equation (4.2) and the
end correction can be determined from Equation (4.4) to be in the
range 0.78517 < I’ < 0.8497. In a further analysis Rayleigh [385,
390] suggests I’ = 0.82r as the appropriate value for an orifice in
an infinite wall. The exact value of the end correction has been an
ongoing topic of discussion. A generally accepted value for one
end of an orifice in a wall> is [72, 100, 225, 260, 339]

8
U = 3—7Tr ~0.85T. (4.5)

While the end correction can be neglected for 1 > r it contributes
substantially when 1 — o.

4.2 ACOUSTIC IMPEDANCE

The concept of acoustic impedance is similar® to the Rayleigh con-
ductivity, but allows a more comprehensive description of a dy-
namic system. Originally, the impedance concept was introduced
by Heaviside [193] for treating alternating currents of electricity.

4 Arecent mathematical discussion of the limits is given by Laurens et al. [286].

5 This configuration is often referred to as flanged pipe, in contrast to an un-
flanged pipe.

6 Itis shown in Appendix B.1, how the Rayleigh conductivity is converted into
an impedance.
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The electric impedance is defined by the ratio of voltage to current
and is measured in Ohm. It describes the opposition of an element
to transmit a current when a voltage is applied. Accordingly, the
acoustic impedance is defined as the complex ratio of the acoustic
pressure to the acoustic volume velocity (Webster [487] or [369])

Z=", (4.6)

o

Another form of impedance is given by the specific impedance

7= (4.7)

<

The specific impedance is related to the acoustic impedance by
Z = z/A and is used to describe the acoustic properties of a
medium or material, for example a perforated wall. Then, ¥ is the
normal component of the acoustic particle velocity directed into
the surface. The specific impedance of a fluid is a characteristic
quantity of the medium only and is therefore referred to as char-
acteristic impedance z,. For plane waves z, = pc. A convenient
dimensionless quantity is obtained by the ratio of specific and
characteristic impedance, i. e. the normalized specific impedance

(=12/z25. (4.8)

Mathematically, the impedance is represented by a complex num-
ber”

Z=R+iX, z=r+ix, and (=0+Iix, (4-9)

where the real part is referred to as resistance and the imaginary
part as reactance.

7 The notation is for an e'®! time dependency. For a negative exponent the
imaginary part in Equation (4.9) changes sign.
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4.2.1  Impedance Modeling of Perforations

When the dimensions of an acoustic element, e.g. orifice, Helm-
holtz resonator, etc., are much smaller than the relevant acoustic
wavelength, its characteristic behavior can be described by three
parameters: the resistance R, the inertance M, and the compliance
C. The acoustic impedance can be written as the sum of these
three quantities [260]

Z=R+ilwM—1/(wC)]. (4.10)

The three parameters R, M, and C are commonly referred to as
lumped parameters and an element that complies with the acous-
tic compact assumption is a lumped element.

In a mechanical system the resistance represents a linear, mass-
less, viscous damper, the inertance corresponds to a lumped mass,
and the compliance describes the reciprocal of the stiffness of a
lumped, linear, massless spring [156]. Generally, the resistance de-
scribes the energy dissipation, while the reactive elements store
energy, either in the form of potential energy in a spring-like ele-
ment or kinetic energy in a mass-like element [338].

Now, the process of building up an impedance model of a per-
forate is demonstrated. Similar, but more detailed derivation can
be found in [271, 327].

Internal Impedance

First, the impedance within an orifice is considered, without any
end effects. The normalized specific impedance for a unit length 1
of an infinite tube filled with a viscous fluid is given by (Crandall
[100] or [327])

1 ikl

C= o T (4.11)
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The division by the porosity o converts the impedance of a single
orifice into the impedance of an array of orifices in a perforation®.
ikl is the inviscid impedance of an infinite tube. It describes the
inertia of the oscillating mass of air. The function F introduces
the viscous effects. Based on the theories given by Stokes [451],
Helmholtz [195], and Kirchhoff [261], which are presented in Sec-
tion 5.4.1, Crandall [100, Appx. A] derives

2l

xJo(x)’

where J, and J; are Bessel functions? of the first kind. The effective
Stokes wave number™ k/ considers the viscosity as well as ther-
mal conductivity losses near a highly conducting wall. In order to
include both effects an effective kinematic viscosity v/ = 2.179v
is used, so that k! = \/—iw/Vv’. Sometimes the heat conduction is
neglected entirely, then Vv’ is replaced by v.

The Bessel functions with a complex argument produces a com-
plex result, so that the impedance consists of a reactive and re-
sistive part. Unfortunately, more physical insight is not provided
by Equation (4.11). However, two approximations do exist, which
are more physically revealing. Depending on the shear number

Sh = ry/w/v they yield [100, 327]:

F(x) =

(4.12)

8vl .k 1
C~ oz Tig (l + 31) for Sh < 2 (4.13)
QURECALN! (kl + ¥ 2“”1) forSh>10  (4.14)
cor o cor

8 Often, the impedance is divided also by the discharge coefficient, e.g. [271].
However, this was not done traditionally, e. g. [100, 327].

9 Named after Friedrich Wilhelm Bessel (1784-1846, German mathematician
and astronomer). Bessel functions are the solutions to the Bessel differential
equation [51]. They are a standard mathematical tool when dealing with
cylindrical geometries, e.g. [3, 77].

10 Named after Sir George Gabriel Stokes (1819-1903, Irish mathematician and
physicist.
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The resistance terms in Equations (4.13) and (4.14) represent the
well known Poiseuille- and Helmholtz-type losses within a tube
(e.g. [260]), respectively. Besides the obvious introduction of a re-
sistance term, the viscosity also affects the mass reactance, which
is increased from its inviscid value.

Mass End Correction (Radiation Reactance)

It was already discussed in Section 4.1, that the effective length
which needs to be accounted for in the inertance is longer than
the actual length of the orifice. This additional length is defined
by the reactive part of the radiation impedance of a circular piston
of air in an infinite baffle. A typical value considering both ends
is 2" = 161/(3m), e. g. [260].

Resistance End Correction

In the idealization of the effective length the orifice is virtually
extended, keeping the same cylindrical shape. In reality the air is
drawn from the radial direction as well. This is considered by In-
gard [225] and he introduces an additional resistive end correction
to account for the friction losses on the wall surrounding the ori-
fice. A very similar term is presented by Sivian [441], but he justi-
ties the additional resistance with friction losses in the shear layer
of the emerging jet. Following the discussion of Melling [327], Si-
vian’s expression will be used here. Similar to the mass end correc-
tion, the additional resistance is included by extending the length
of the orifice (now in the resistance term). Sivian finds good agree-
ment with experiments when using the same additional length as
for the reactance. Applying both end corrections to Equation (4.11)

yields [327, 441]

ik 1 161/(37)
¢= o (F(kgr) + F(ker) )/ (4.15)
Please note, that the Stokes wave number external to the orifice
considers the viscosity only, i.e. ks = \/—iw/v.
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Figure 4.2: Orifice interaction factor 1 plotted over the porosity accord-
ing to Ingard (Equation (4.16)) and Fok (Equation (4.17)).

Orifice Interaction

Ingard [225] studied the interaction effect of two adjacent orifices
and introduces a correction factor for the end correction

V(o) —1—\/5 (4.16)

The correction factor V(o) reduces the end correction with increas-
ing porosity, i. e. with decreasing orifice distance. The term above
was used by Guess [186] and Bellucci et al. [41], for example.
Melling [327] presents a comprehensive discussion on the topic
and refers to a solution that was found by Fok [160]

8
(o) =) an(v0)", with (4.17)
n=o
a, =1, a; = —1.4092, a, =o,
a; = 0.33818, a, =o, as = 0.06793,

ag = —0.02287, a- = 0.03015, ag = —0.01614.
7 7
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Figure 4.2 plots Equations (4.16) and (4.17) over the porosity. The
Fok function predicts a stronger influence of the interaction than
Ingard’s approach and will be used here. Melling [327] states that
the interaction effects can be neglected for porosities < 4 %.
Applying the correction for orifice interaction to Equation (4.15)
yields [327, Eq. 18]"*

L l 167/(37)
CMelling 5 (F(Sh/) + F(Sh) 1l)> ’ (418)

Equation (4.18) will be referred to as Melling model.

Nonlinear Resistance

At high amplitudes the acoustic behavior of the orifice becomes
nonlinear [327, 441], i.e. the impedance depends on the ampli-
tude of the oscillation. Various approaches have been followed
to include this effect in the impedance formulation [72, 225, 227,
228, 327, 441, 479, 505, 507]. For example, Melling [327] derives
a resistance term that depends on the velocity within the orifice,
describing the nonlinear behavior*?:

1.2 1—0% ,

O = zm\’rms ’ (4.19)

11 Please note, that there is a mismatch in the handling of the Fok function in
Melling’s paper [327]. Melling defines the Fok function as in Equation (4.17),
but divides the end correction by 1, instead of multiplying it as shown in
Equation (4.18). This is clearly not correct. As shown in Figure 4.2, the Fok
function is smaller than unity and thus needs to be multiplied to achieve
the desired effect. However, it seems that Melling uses the Fok function as
it would be defined as the reciprocal of Equation (4.17). For example, in Fig.
6 of [327], Melling plots 1/1, but labels it with 1. Unfortunately, Melling’s
erroneous formula had been reproduced by others, e. g. [52, 54, 271, 288, 472]
(though Kraft et al. [271] seem to use it correctly). The correct notation was
used by Randeberg [383] and the mismatch was also pointed out by Elnady
[143].

12 Generally, the nonlinearity will affect the reactance as well [143, 186], which
was neglected by Melling.
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where Vv is the root-mean-square value of the acoustic veloc-
ity within the orifice. The difficulty is, that the impedance now
depends on the acoustic particle velocity. So it is not possible
to directly calculate the impedance when the acoustic pressure
is known. The acoustic particle velocity can be determined itera-
tively from [v'| = [p’l/(pcy/02 + x?) [143]. However, a first approx-
imation of the acoustic particle velocity can be given from the
applied sound pressure level SPL by [54]

r 1 PreflO
rms —

SPL/20
2c0Cyq pc ’ (4-20)
Including the nonlinear resistance term in Equation (4.18) yields
the nonlinear Melling model

_ ik l 167/(37) 121—0%
Cellingnl = (F(Sh’)+ Fsn) V)t e (oc e Vms e @21)

Radiation Resistance

Another contribution that was neglected by Melling is given by
the resistive part of the radiation impedance?3. It accounts for the
acoustic losses by radiation into the surrounding medium. The
radiation resistance for an array of circular orifices is (Morse and

Ingard [340, p. 384] or [271])

Orad = % <1 - ]1(]i]~<ﬂ> . (4.22)

For small kr Equation (4.22) can be approximated by [271]

(kr)*
20

erad ~ (423)

Equation (4.22) or (4.23) can be simply added to the impedance,
similarly to 6, above.

13 The reactive part of the radiation impedance is already included by the mass
end correction as discussed above.
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4.2.2  Grazing Flow Impedance

The effect of grazing flow on the impedance is often accounted for
by a simple contribution to the resistance [34, 186, 194, 392]'4

_ 0.3Mg
o

Oc (4-24)

More sophisticated models are available, e.g. [106, 181, 209, 244,
266, 290]. Especially the importance of the friction velocity, rather
than the mean flow velocity, has been studied [175, 194]. However,
Peat et al. [364] conclude that the influence of the friction velocity
is of no significance when the boundary layer is turbulent and
fully developed. That is the case for the measurements presented
here, so that the use of the mean velocity is adequate and the
simple model of Equation (4.24) is sufficient. It should be noted,
that Equation (4.24) neglects the reduction of the attached mass
by the grazing flow.

4.2.3 Bias Flow Impedance

Traditionally, there are two alternatives to include the influence of
a steady bias flow on the impedance of an orifice or perforation.
In the first approach the acoustic particle velocity in a nonlinear
model is replaced by the bias flow velocity [34, 118, 171, 227, 326,
459, 505]. This replacement is only reasonable if the bias flow ve-
locity is assumed to be much greater than the acoustic particle
velocity. For a simple linear relationship of resistance and bias
flow Mach number given by Sivian [441] this yields

_CMB
o

Os

(4.25)

and is very similar to the grazing flow resistance introduced in
Equation (4.24). C is a constant that is based on empiricism and

14 The factor of 0.3 is most common. However, some variations can be found in
the literature, for example Rice [392] suggests o0.5.
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is in the range 1 — 1.5, typically 1.15 [34]"5. For a steady bias flow
Cummings and Eversman [109] derive C = (1 — 0>CZ)/CZ from
the linearized Bernoulli equation, where C. is the contraction co-
efficient of the jet.

The second approach combines the effects of the acoustic par-
ticle velocity and the steady bias flow velocity in one resistance
term. For example, Premo [373] suggests a combined velocity term
of \/ (1.15Vine)2 + (2 Ug)2. Betts [52, 54] finds the similar expres-
sion |1.2 v}, + 2 Ug|. Adding this to Equation (4.19) yields

1 1—0°
0 = = (ch)zh.zv;ms + 2 Uy (4.26)

Both approaches are mostly based on empiricism and lack the
influence of the bias flow on the reactance.

More advanced approaches are presented by Jing and Sun [242]
and Lee et al. [291]. However, both need to be solved numerically,
so that they do not provide a simple parametric description of the
impedance. Jing and Sun [242] solve Howe’s [210] governing equa-
tions with a boundary element method. Howe himself obtains an
analytical solution when assuming infinitesimal thickness and a
cylindrical vortex sheet (see Section 4.3 below). Jing and Sun [242]
include a finite thickness and allow a contraction of the vortex
sheet, which requires a numerical solution of the equations. Lee
et al. [291] determine the impedance of a perforated plate by solv-
ing the incompressible Euler equation. In particular, they consider
the interaction effect.

4.3 HOWE RAYLEIGH CONDUCTIVITY MODEL

Howe [210, 214] analytically derives a formulation of the Rayleigh
conductivity for an orifice with a bias flow and includes the ab-

15 This value is often accredited to Bauer [34]. However, Bauer himself refer-
ences Zinn [505]. Both, Zinn [505] and Bauer [34], use this term to describe
high amplitude effects, not a steady bias flow. See as well the discussion in
Section 4.6.
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sorption caused by vorticity shedding. He treats a single, circular
orifice in a wall of infinitesimal thickness. On the inlet side the
flow field resembles that of a potential sink at the center of the
orifice and on the outlet side that of an axisymmetric jet flow with
a potential core and shear layer. Viscosity is neglected except at
the rims of the orifice, where the acoustic perturbations trigger
the periodical shedding of vortex rings. The convection velocity
of the vortex rings is taken to be the mean velocity within the
orifice. The radius of the vortex rings coincides with the orifice ra-
dius and remains constant when traveling downstream, forming
a cylindrical vortex sheet. The assumptions can be summarized:

1. The frequency of the sound is low, so that the wavelength is
much larger than the orifice radius (the orifice is acoustically
compact)’®: A > r

2. The Mach number of the bias flow is low, so that the fluid
can be considered incompressible'”: My < 1

3. The Reynolds number of the bias flow is high, so that viscos-
ity is only considered at the rims of the orifice’®: Uy T/v > 1

4. The wall is infinitely thin: t = o

After a lengthy derivation Howe arrives at [210, 214]™

Kg = 2r(y +1i0) (4-27)

16 For the largest orifice dimension treated in the parameter study here (r =
1.25 mm), this yields a frequency limit of f <« 272360Hz at standard tem-
perature and pressure conditions. Higher temperatures and smaller radii in-
creases the limit further.

17 Typically, My < 0.3.

18 The highest limit is given at high temperature, low pressure, and small
radius. The extreme values of the parameter study here (T = 823.15K,
p = 101.325kPa, v = 0.5 mm) restrict the applicability of Howe’s model to
Mg > 0.0003.

19 Here, the sign is adjusted to the e

1wt convention.
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Figure 4.3: Real part vy and imaginary part § of the normalized Rayleigh
conductivity plotted over the Strouhal number.

with

21, (St) e St +iK,(St) sinh(St)
St [Z1,(St) e St —iK,(St) cosh(St)] ’

y+id=1+ (4.28)

where St is the Strouhal number, and I,, and K., are the modi-
fied Bessel functions of order m of first and second kind, respec-
tively. Equation (4.28) is a function of the Strouhal number only.
The Strouhal number is based on the vorticity convection velocity,
which is, according to Howe [210], assumed identical to the mean
velocity within the orifice Ug, and the orifice radius St = w r/Us.

Figure 4.3 plots the real and imaginary part of Equation 4.28
over the Strouhal number. y represents the inertia of the orifice,
while § is a resistance term responsible for the acoustic absorption.
At very high Strouhal numbers & — o, i. e. the vorticity shedding
has a negligible influence and $ reverts to its value in the absence
of the flow. The maximum of the imaginary part is found at a
Strouhal number just beyond unity.
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Howe’s model has become a quasi-standard describing the bias
flow effect at an orifice [16, 42, 131, 142, 219, 282, 317, 318, 391, 417,
430, 489]. However, Howe’s model assumes an infinitely thin wall.
This assumption does not hold for any practical application. A
modified Howe model that includes a finite thickness is proposed
by Jing and Sun [241] (see below). Most references listed above
resort to the modified version to include the thickness.

4.4 JING MODEL (MODIFIED HOWE MODEL)

Jing and Sun [241] propose a way to include the wall thickness
in Howe’s model. Their argumentation is expressed in terms of
impedance. The relation between the normalized specific impe-
dance ¢ and the Rayleigh conductivity is given by°

kA

C_KiR'

(4-29)
For a circular orifice A = 7tr* with bias flow Kg = 2r(y +i6) and
after splitting the real and imaginary parts by multiplication with
(y —108)/(y —1i0) this results in

k7mtrd . kmry
e Cahrre

(4.30)

The thickness adds a mass inertance to the system so that the
impedance for a circular orifice of finite thickness and with bias
flow yields [241]

k7trd . kmtry
kt ), :
2 (v + ) 1<2(v2+62)+ ) 451

C]ing =

where viscosity effects have been neglected. The § term represents
the acoustic resistance due to the bias flow, the y term describes
the end correction when a bias flow is present, and the t term adds
the mass inertance of the fluid within the orifice. The thickness

20 This relation is derived in Appendix B.1.
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Table 4.1: Parameter range of experimental data that has been compared
to the modified Howe model.

Jing Eldredge Andreini  Scarpato

241, 242]  [142] [17] 1428, 430]
f Hz  300-1400 100-700 200-1500 100-2000
SPL dB 90-125 90-120 N/A 100

My - 0.004-0.07 0.005-0.045 0.03-0.13  0.005-0.0.045
M; - N/A 0-0.057 0.02 N/A

o Y% 1.13-2.54 4 1.16 1-15.3

d mm 2-5 0.75 0.8 0.6-1

t mm 0.2-3 3 2.5 1

x  deg 90 45 30-90 90

term was simply added to the impedance. The conductivities need
to be added reciprocally 1/Kgr = 1/K; +1/K,, so that the Rayleigh
conductivity for a circular orifice of finite thickness with bias flow
yields

1 2t "
Kgr = — . .
R = 2T <y+ié + m) (4-32)

The outcome of Equation (4.32) has been compared to experi-
mental data by several authors. Table 4.1 gives an overview of the
parameter ranges from these measurements. Jing and Scarpato
study a perforated screen with normal sound incidence, while
the measurements of Eldredge and Andreini include a cylindrical
liner. Generally, the modified Howe model agrees well with the
experimental data. The data from Lahiri et al. [282] is presented
in Chapter 7, so that these parameters are not listed in the ta-
ble. Another comparison is presented by Macquisten et al. [310]
for measurements in a combustion test rig. While the data is a
valuable contribution to demonstrate the behavior at combustion
conditions, it exhibits large scatter which makes a comparison dif-
ficult.
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4.5 LUONG MODEL (SIMPLIFIED HOWE MODEL)

Luong et al. [308] use the Cummings equation [105, 107] to de-
rive a simplified formula for the Rayleigh conductivity of a circu-
lar bias flow orifice. They modify the Cummings equation using
the assumption that the steady pressure drop across the orifice is
much larger than the acoustic pressure, in particular a reversal of
the flow within the orifice against bias flow direction is excluded.
Luong et al. derive the Rayleigh conductivity for an infinitesimal
thin wall*'. Including a finite thickness they arrive at

Kg = A M (4.33)
lefr \ wlefr/Ug + é

where A/l is the Rayleigh conductivity without flow (see Equa-
tion (4.3)) and Uz is the mean velocity in the plane of the ori-
fice. From comparison with experiments, Cummings [107] recom-
mends a contraction coefficient of C. ~ 0.75. Luong et al. [308]
find that the agreement between Howe’s linear theory [210] and
their approach is best for this particular choice of C.. This is
demonstrated in Figure 4.4, where both results are compared. Lu-
ong et al. state that Equation (4.33) is a good approximation for
the linear and nonlinear regime, when flow reversal does not oc-
cur. The principal effect of nonlinearity is expressed in a small
reduction of the steady bias flow velocity.

46 BAUER IMPEDANCE MODEL

Bauer [34] presents an impedance model that includes the effect of
bias** and grazing flow. He compiles a resistance expression from

21 For an infinitesimal thin wall le represents the end correction only, in that
case lggf can be replaced by nir/2 in Equation (4.33).

22 Originally, the bias flow term was included to describe nonlinear effects at
high amplitudes. However, it has become common practice to use this term
for the steady bias flow and negelect nonlinear effects, cf. [12, 14, 18, 143, 363]
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Figure 4.4: Comparison of the Rayleigh conductivity derived by Howe
[210] and Luong et al. [308] for an infinitesimal thin wall and C. = 0.75.

the viscous term of Ingard [225], an empirical grazing flow term
from Dean [117], an empirical bias flow term given by Zinn [505],
and an expression for the reactance proposed by Rice [394] and
Dean [117] based on experimental data. The resulting normalized
specific impedance yields

V8 t 3M .15 M
CBauer: Hpw <1+)+03 G+115 2
pco d o o
. . (4.34)
L (t +((Y).25 )‘

The factor of 0.25 in the reactance term was found to match well
when a grazing flow is present, but seems to be somewhat higher
without grazing flow [34, 117]. However, Bauer [34] does not give
any guidance on the actual value without grazing flow, so that
0.25 is used even without grazing flow.

The bias flow term is originally derived by Zinn [505]. The factor
1.15 results from 4/(37C3) = 1.1406 where C4 = 0.61. Zinn actu-
ally gives 1.16 as result. The differences in the second digit after
the decimal point are probably due to rounding errors. Commonly
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1.15 is used. More importantly, the dependency on the discharge
coefficient is already included in this value, so that it does not
need to be divided by C4 as was done in [14, 18, 143, 290].

Bauer [34] divides the bias flow term by o? instead of ¢ as in
Equation (4.34). However, dividing by the square of the porosity
produces unreasonable results, so that the division is done with o
only, as was done by others [14, 18, 143, 290].

4.7 BETTS IMPEDANCE MODEL

The impedance model proposed by Betts [52, 54] is based on Equa-
tion (4.18) with the extension for nonlinear effects proposed by
Melling [327], i.e. Equation (4.19). Then, Betts modifies the non-
linear term to include the bias flow as shown in Equation (4.26).
However, he does not use the exact solution of Equation (4.18),
but a combination of the low and high shear number approxima-
tions. The approximations are combined in order to obtain an intu-
itive impedance formulation without Bessel functions that "works’
for all frequencies. As a result half the Poiseuille viscous term is
added to the Helmholtz approximation, so that*3-4

4vl Vva2wvl L1 o’ ’Meff
coCqr2  coCygr 0Cqy

4 kl +\/2wvl+ 16 T ’
0Cq coCyqr 3m

CBetts =

(4-35)

23 While Melling [327] still includes the thermal conductivity losses inside the
orifice with an effective viscosity (see discussion on page 62), Betts [52, 54]
and as well Kraft et al. [271] only consider the regular viscosity when they
present the approximations. If this modification was made intentionally or
unconsciously remains unclear. However, Melling’s notation might be mis-
leading as he refers to the regular viscosity as p’ and the effective viscosity
as p. For consistency with [52, 54] the regular viscosity is used here as well.

24 Please note that the use of 1 is not correct in Equation (4.35). The end cor-
rection needs to be multiplied by 1, not divided by 1 (please see footnote
™ on page 65). The error is kept for consistency with [52, 54]. Anyhow, the
differences are small for the porosities considered here.
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Table 4.2: Parameter range of experimental data from Betts [52, 54] that
has been compared to the Betts impedance model.

f Hz 1000 — 3000
SPL dB 120 — 140
My - 0—0.0175
o Y% 0.9 —16.5
d mm  0.24—1.48
t mm  0.51 —1.02
dc mm 272

where M is the effective bias flow Mach number considering the
acoustically induced flow as well as the steady bias flow [54]

/ 10SPL/zo >
M= (pfef v2) (4.36)

~ 2c0Cy pc

Betts calls this model the Perforate Bias Flow Intermediate Fre-
quency (PBFIF) model. He compares the model to impedance
measurements of a perforated plate with normal sound incidence.
The parameters of the study are listed in Table 4.2. The impedance
model and the measured data show a generally good agreement
for these parameters.

48 BELLUCCI IMPEDANCE MODEL

The impedance model of Bellucci et al. [41, 43] is based on Cran-
dall’s impedance model given in Equation (4.11). However, they
do not consider the thermal conductivity losses, so that the nor-
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malized specific impedance of a perforation without end correc-
tions and without flow yields®>

1 ikl
(= o)’ (4-37)

where the function F is defined in Equation (4.12). Bellucci et al.
use the common approximation of Equation (4.37) for large shear
numbers

(= %ikll“ with T = [(1 + ‘Sf) —i (\Sfﬂ . (4-38)

Several terms are added to include the effect of the bias flow and
the end corrections. They introduce an end correction length, con-
sisting of contributions from the radiation reactance 1_;, the ori-
fice interaction 1/, the bias flow 1}, and nonlinear effects of high

amplitudes 1/,. Including both ends this yields

l]/3ellucci = ]';ad ' ]'{nt ’ ]';3 ' ;11 . (439)
The individual terms, compiled from various publications, are
given by:

from [356] (4.40)

7 He)2 \ !
l,.q=2-08216T (1 + (o77e)>

1+o0.77He
U,=1—+/0/2 from [225] (4.41)
0.3(6.0/5t*) + 1
U = 60/5F 11 from [242, 366, 401] (4.42)
Ly = 1—0.3/5t3¢ from [366] (4.43)

The references are the ones given by Bellucci et al. [41]. The Helm-
holtz and Strouhal numbers are based on the orifice radius, so

25 Please note that there is a spelling mistake in Eq. 18 of reference [41]. It
should be T'=[...]7" (see [327]). However, the approximate expression for I'
given in Eq. 19 of reference [41], i. e. Equation (4.38) here, is correct.
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that He = kr, St = wr/U;, and St,c = wr/[¥|. The coefficients for
1; and 1, have been fitted to their experimental data.

The resistance term of Bellucci et al. [41] regarding the bias flow
effect and the nonlinearity due to high amplitudes yields

&
eBellucci = a <|V|> | | (444)

where G(x) is given by Keller and Zauner [258] as

. N .
2 (x -arcsin(x) + %(z—kxz)) if x| < 1

x| if x| >1

G(x) = (4-45)

The term & in Equation (4.44) is evaluated depending on the ratio
of bias flow velocity to acoustic particle velocity?®:

1/C§1 if Uy = 0, Stae < (Stac)qs (4.46)

Tt .
0.5 (34> Stallc/3 if Uy = o, Stac > (Stac)qs (4-47)

&= T OSt . .

EYZ T2 if Uy > [¥] (4-48)

E1-G)+& (G—3)
PR ifo< Uy < [¥] (4-49)

37T

In Equation 4.49, &, refers to Equations 4.46 or 4.47, depending
on St,., and &g refers to Equation 4.48. vy and o are, respectively,
the real and imaginary part of Howe’s Rayleigh conductivity, de-
fined in Equation (4.28). The limit of the quasi-steady assumption
for the acoustic Strouhal number is given by (Staic)qs = 0.61/ Cg.
Adding Equations (4.39) and (4.44) to (4.37) yields

E u
CBellucci = —— G < E T) o]+ = (IF + Weltucei) - (4.50)

26 Please note that there is a spelling mistake in Eq. 29 of reference [41]. The
radius is already contained in the Strouhal number, so that the additional
radius term needs to be dropped. See Equation 4.48.
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Table 4.3: Parameter range of experimental data from Bellucci et al. [41]
that has been compared to the Bellucci impedance model.

f Hz 50 — 600

SPL dB N/A
My - 0—0.023
o Y% 1.03 —2.31
mm  4—13.8
t mm 1.5 —43

Equation (4.50) describes the impedance of the perforation only,
while Bellucci et al. [41] also included the cavity reactance.

Bellucci et al. [41] determine the acoustic particle velocity [¥]
iteratively with a Newton-Raphson method. Here, the particle ve-
locity is approximated as suggested by Betts et al. [54]

o = — (péefloSP” 2°ﬁ>

= 20C4 oc (4.51)
Bellucci et al. [41] present a comparison of the model with exper-
imental data from measurements of the reflection coefficient of a
perforated plate with normal sound incidence. The parameters of
the study are listed in Table 4.3. The impedance model and the
measured data show a good agreement for these parameters.

4.9 APPLICATION TO A CYLINDRICAL GEOMETRY

It is straightforward to calculate the plane wave reflection and ab-
sorption coefficients of a perforated liner with normal sound inci-
dence when its impedance is given (see [260], for example). How-
ever, when the same liner with an unpartitioned cavity is mounted
as a sidewall, i.e. with grazing sound incidence, the sound prop-
agation within the cavity needs to be considered. These type of
liners are commonly called liners with extended reaction or non-
locally-reacting liners. That is in contrast to a locally-reacting sur-
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face, where the acoustic particle velocity at one point depends
on the acoustic pressure at only the same point [369]. For a non-
locally-reacting liner the acoustic field inside the duct and the
acoustic field inside the cavity need to be modeled, while they
are coupled via the impedance boundary of the perforated liner
in-between. Two methods are presented that follow this approach
for a cylindrical geometry.

4.9.1  Transfer Matrix Method

The transfer matrix method is a convenient approach for model-
ing one-dimensional, linear dynamic systems. With its origins in
electrical circuit theory, it has become a standard tool in acoustics
(Igarashi and Toyama [222] or [323, 343]). It is especially popular
in muffler modeling [343] and as well widely used for the model-
ing of thermoacoustic effects in gas turbine combustors [44, 362,
452, 455].

A transfer matrix T relates the input and output state variables,
commonly the acoustic pressure p and the acoustic volume veloc-
ity §. For a two-port system [343]:

f)l f)z . Tll T12:|
=T th T= 52
{qj [q] b [Tn T2 (4-52)

The individual terms are [343]:

Ty = &

o b A
g.=o0 42

11 ~ T12 = E T21 = &
P2

da=0 92 p,=0 P2

P.=0

The transfer matrix of a network of elements is obtained by multi-
plication of the individual transfer matrices of all the elements of
the network. For example, the transfer matrix T of a network of n
elements, each represented by a transfer matrix T, is given by

T=T,-T,-...-T4. (4-53)
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Figure 4.5: Transfer matrix representation of a uniform tube.

The literature provides transfer matrices for many common duct
elements, e.g. uniform tube, sudden area change, orifice, Helm-
holtz resonator [323, 342].

Uniform Tube

The transfer matrix method is demonstrated with a simple uni-
form tube. The uniform tube setup is illustrated in Figure 4.5. The
transfer matrix from position 1, where x = o, to position 2, where
x = L, along the uniform tube with constant flow Mach number
M is given by the elements [323, 343]

T,, = cos(kL) e MKL
T., =iZ, sin(kL) e "MKL
T, = (i/Z,) sin(kL) e 7MKL

T,, = cos(kL) e MkL

(4.54)

with the convective wave number k = k,/(1 — M?). Z, is the char-
acteristic acoustic impedance of a duct element. For plane waves

p pc
Z = — = = —. .
o= A X (4.55)
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Concentric-Tube Resonator

A description of the transfer matrix for a cylindrical perforated
liner, or in muffler terminology called concentric-tube resonator,
was presented by Sullivan and Crocker [460] and Sullivan [458,
459]. The sound field in the duct and in the annular cavity are
described by their respective differential equation. However, the
equations are coupled by the connection of the duct and the cav-
ity through the perforated wall. Sullivan used a segmentation ap-
proach by dividing the geometry into many small control volumes.
According to Peat [363] this approach is very flexible in the rep-
resentation of different geometries, but it requires relatively high
computing effort and might lead to numerical instabilities at high
porosities. A decoupling approach that yields a closed form so-
lution of the coupled differential equations was presented by Ja-
yaraman and Yam [239]. This approach overcomes the necessity of
forming small control volumes, so that the solution is much more
compact. Unfortunately, the decoupling requires for the grazing
flow Mach number within the duct and the cavity to be equal. A
condition which is unlikely in most applications. These shortcom-
ing have been solved in the formulations by Munjal et al. [345]
and Peat [363], where Peat claims that his solution is more stable
numerically. The state of the art approach is described in [323, 343]
and will be summarized here.

The set of coupled differential equations for the setup illus-
trated in Figure 4.6a can be described by the 4 x 4 transfer matrix

relation
ﬁl(o) ]51(]—) T11 T12 T13 T14
]52(0) ]52(1—) . T21 Tzz T23 T24
L =T |" with T = , 56
d: (o) q.(L) T31 T32 T33 T34 (4-56)
g2(0) q.(L) Ty Tia Tz Ty

where the indexes 1 and 2 refer to the inner and outer tube, re-
spectively. The transfer matrix is given by

T=A(x=0)A"(x=L). (4-57)
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Figure 4.6: Transfer matrix representation of a concentric-tube resonator.

The elements of matrix A(x) are

A1,n = 11)3,ne[3nX ’ Az,n = 11)4,neﬁnx ’
Al — _eﬁinx and A, . — _M (458)
3n iko + M f3n ’ o iko + M Pn .

with n = 1,2,3,4. P and (3 are respectively the eigenmatrix and
eigenvector of the matrix

L o o o | (4-59)
0 1 0 0
where
o — iM, k2 + k2 o — k2 oy = iM, k2 —k2 ,
1—M?2 ko 1—M?2 1— M2 ko

(IR M ok (KK
4 1—-M2)" 01— M2 Ko ’ 1—M2)’

iM, [K2+k2 K2
_ _ 6
1—M§< ke ) T 1Mz (4-60)

X7
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with
4ikoD4

(D3 —-D3) ¢

w
Ko = —
0 c DIC/

R (461
and ¢ is the normalized specific impedance of the perforation.

All elements of the transfer matrix in Equation (4.56) can be cal-
culated from Equations (4.58) to (4.61). The setup of a concentric-
tube resonator, as illustrated in Figure 4.6b, introduces hard-wall
boundary conditions at both ends of the cavity, so that it can be

represented by the 2 x 2 transfer matrix®7

f’1(0) . ]52(1—) . . Ta Ty
|:01(O):| =T {02“—) with T = T. Ty (4.62)
with
Ta=Tn+AA;, Ty = (T14 + B1A2) Ly (463)

Te=(T2+A.By) /Zy,and T4 =T, +B,B,,

where T.,, Ty, T3, and T, are elements of the matrix in Equa-
tion (4.56). The remaining quantities are given by

A= (XiToa = Tg) /F, By = (XiTay —Ty) /F,
Az = Tu + X2T13 ’ BZ = T31 + X2T33 4
X; = —i tan (koL,) , X, =1itan(koL,) , and

F=Tu+XoT— X (Tar +XoTog)

The transfer matrix in Equation (4.62) describes the relation of
acoustic pressure and velocity when a sound wave is traveling
from position 1 to 2 in Figure 4.6b. The equations above include
the convective effect of a grazing flow. Commonly, there is no
grazing flow within the cavity, so that M, = o. The acoustic be-
havior of the perforation is represented by the impedance term ¢
in Equation (4.61).

27 To avoid confusion between the elements of the matrices in Equations (4.56)
and (4.62), an a,b,c,d indexing scheme has been used.
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Acoustic Performance Criteria

Traditionally, the performance of a muffler is evaluated by its
transmission loss, level difference, or insertion loss. For example,
the transmission loss?® can be calculated directly from the transfer
matrix elements as [323]

Z,1+ M,
TL =20 Ig (\/;11+Mn
where the index 1 refers to the first and the index n to the last ele-
ment of the network and the terminations are assumed anechoic.

Here, the acoustic performance is evaluated with the dissipa-
tion coefficient. Therefore, the transfer matrix is converted into a
scattering matrix. This is demonstrated in Appendix B.2. Then, the
dissipation coefficient can be calculated from the reflection and
transmission coefficients given by the scattering matrix according
to Section 6.4.

This method will be referred to as Transfer Matrix Method,
short TMM. The acoustic properties of the liner are included in
Equation (4.61) and can be represented by an impedance model of
choice. This will be indicated, for example, by TMM:Bauer, where
the Transfer Matrix Method is used in combination with the Bauer
impedance model.

2

Tut+ 2 +TuZ +Tu%
, (4.64)

4.9.2 Eldredge & Dowling Method

Eldredge and Dowling [142] develop equations for the stagnation
enthalpy® and the acoustic particle velocity in the lined section

28 The transmission loss describes the difference between the incident power
and transmitted power in dB, that is TL = 10 1g (P;/Pt).

29 The fluctuating stagnation enthalpy is defined by [142, 214] B’ = p’/p+ V'
For a plane wave, where the acoustic pressure and velocity are related via
the impedance pc = /9, the fluctuating stagnation enthalpy yields BE =
B xem).
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of a duct by applying a mass and momentum balance to a de-
fined control volume. An analytic solution does exist for the hard-
walled duct sections upstream and downstream, so that the stag-
nation enthalpy and acoustic particle velocity need to match at the
respective boundaries. For convenience, they introduce the char-
acteristic quantities

b=
Vo=

(1+Ug) [B+(1—Ug)¥x] , and (4.65)

NIRN]|R

(1—Ue) [B—(1+Uc) 0], (4.66)

where Ug is the grazing flow velocity and ¥ is the complex am-
plitude of the particle velocity in axial direction within the duct.
Then, the equations for the lined duct are given by

dp ikLegp 4 1CiLeg
E— - ¢ d .
i 1+uc(x)d’ to—x 0oan (4.67)
dy— ikLeff _ 1C, ]—eff ~
_ 1 ) 68
dx  1—Ug(x) 2 A (4:68)

with the two boundary conditions
PFo) =1 and W (1)e ™ T —p*(1)ree™ e = 0, (4.69)

the liner circumference C;, the effective perforation length3® L,
the duct cross-section area A, and the acoustic particle velocity
through the perforation ¥, specified below. Please note, that the
grazing flow velocity increases with x over the length of the liner

CiLegr

uG:MG+ A

Mgx . (4.70)

Eldredge and Dowling consider three configurations: 1. Open ex-
terior, 2. Annular cavity enclosed by a rigid wall, and 3. Annular
cavity enclosed by a second liner. Only the last two are of impor-
tance here.

30 The effective perforation length yields best agreement with the experimental
data (see the discussion in Section 4.10.2).
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The equations within the annular cavity enclosed by a rigid wall
yield

dB L
Xl = —ikLeg¥x, and (4.71)
das¥ . A CiLletr
d:cll = —ikLegB: — 1A:HV1 . (4.72)

Vx,1 is the axial particle velocity in the cavity with the rigid wall
boundary conditions

A

Vx1(0) =0 and Yy:(1)=o0. (4.73)
The particle velocity through the liner is given by

o - M
T ikLeg

(B:(x) =T (x) =~ (x)) . (4.74)

When a second liner is present Equation (4.72) is modified to

dA . A C L A C L N
V:1 il IeffBl 1 Ceff X 2 Ceff 5, (4'75)
with
R n ~ A
Vy, = o 2 (Bz(x) — Bl(x)) . (4.76)

For the rigid wall case, the four differential equations (4.67), (4.68),
(4.71) and (4.72) form a closed system for the four unknowns ",
P, By, and Vx,1- The liner velocity V5 is given in Equation (4.74)
and the four boundary conditions by Equations (4.69) and (4.73).
The boundary value problem is solved using the shooting method,
for example in Matlab with the function bvp4c. This can be done
accordingly for the case with a second liner with equations (4.67),
(4.68), (4.71) and (4.75). When the surrounding enclosure is suffi-
ciently large, the stagnation enthalpy fluctuation external to the
second liner can be assumed negligible, i.e. B, = o.
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The damping liner is represented by the compliance3’ 1, in
Equation (4.74). It is defined as

1 m? 1 1l

o= o= Ky + e (4.77)

The compliance of the second liner 1, is given accordingly, when
needed. As was done with the impedance in Section 4.2.1, the
compliance delivers a homogeneous boundary condition for the
perforation by dividing the single orifice value by the porosity.
The acoustic properties of the bias flow orifice are given by the
Howe Rayleigh conductivity model, i.e. that is Equation (4.27).
Here, the compliance includes a thickness term, following the ar-
gumentation given by Jing and Sun [241], see Section 4.4.
Eldredge and Dowling [142] define an absorption coefficient as
the net energy absorbed by the liner, scaled by the energy incident
upon the lined section, thus
B B

where the index 1 and 2 refers to the upstream and downstream
hard-walled duct section adjacent to the liner. Equation (4.78) can
be expressed in terms of P+ and ¢y~ as

o1t (Irel* — 1) Wb (1)* = b~ (o)
1+ [re* WH (1) '

(4-79)

Eldredge and Dowling [142] give several expressions to calculate
the end reflection coefficient re, with and without flow. Here, the
duct end is assumed to be anechoic, so that v« = 0. Then, the
absorption coefficient and the average dissipation coefficient are
identical and can be compared directly, as shown in Section 6.4.3.

31 This term was introduced by Hughes and Dowling [219] to describe the
homogeneous boundary condition of an acoustically ’soft” wall. It should
not be mixed up with the acoustic compliance that was introduced in Equa-
tion (4.10).
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This approach will be referred to as Eldredge and Dowling
Method, short EDM, and EDM:Jing when including the descrip-
tion of the liner according to Equation (4.77).

4.10 SOME COMPARISONS
4.10.1  Impedance Models

The first comparison is done for a configuration without any flow.
The linear acoustic behavior of a perforation without flow is fairly
well understood, so that the models should predict a similar be-
havior. The Howe model and its derivatives are only valid when
a bias flow is present, so that they are excluded from this compar-
ison.

Figure 4.7 plots a) the resistance, b) the reactance, and c) the
dissipation over the frequency. The liner geometry corresponds to
configuration DCoob6 of the parameter study. The specifications are
given in Table 7.1. Even without flow the impedance prediction of
the models varies slightly. The effect of these variations on the ab-
sorption are revealed in Figure 4.7c. The theoretical dissipation is
calculated with the transfer matrix method and compared to the
experimental results. Surprisingly, the oldest model, i. e. the linear
Melling model, shows the best agreement with the experiments.
The other models do not include some effects that are considered
in the Melling model, i.e. thermal conductivity losses within the
orifice are neglected or approximations of the Bessel functions are
used, for example. The prediction quality for the no flow case
would have benefited from including these effects. The peak fre-
quency predicted by the Bauer model is significantly higher than
the other models. This results from the empirical correction factor
in the reactance, which is strictly valid only when a grazing flow
is present (see discussion in Section 4.6).

The impedance of the same setup as above, but including a bias
flow of My = 0.03 is plotted in Figure 4.8. The Melling model does
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Normalized Reactance Normalized Resistance

Average Dissipation

0 300 600 900 1200

Frequency in Hz

Figure 4.7: Comparison of the impedance and the dissipation predicted
by various models plotted over the frequency for pcoo6 without flow: a)
normalized specific resitance, b) normalized specific reactance, c) aver-
age dissipation coefficient. Legend: — Melling; ---- Bauer; -+ Betts;
-:= - Bellucci; o Experiment.
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Figure 4.8: Comparison of the impedance models plotted over the fre-
quency for pcoo6 with My = 0.03. — Jing; ---- Bauer; - Betts;
-:=:- Bellucci.

not consider bias flow, so that it would remain unchanged from
Figure 4.7 and has been omitted here. Instead, the Jing model is
plotted.

All models predict a significant increase of the resistance due
to the bias flow. The resistance terms of Jing and Bellucci are both
based on the Howe model (with an addition contribution from
viscous losses in the Bellucci model), so that they give similar re-
sults. The resistance predicted by Betts and Bauer is much lower.
The Betts and Bauer models neglect any influence of the bias flow
on the reactance, so that the reactance is identical to the config-
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a)

Normalized Reactance Normalized Resistance

Bias Flow Mach Number

Figure 4.9: Comparison of the impedance models plotted over the bias
flow Mach number for pcoo6 with f = 1000 Hz. — Jing; ---- Bauer;
------ Betts; - - - Bellucci.

uration without flow in Figure 4.7. The reactance of Bellucci is
significantly reduced compared to the no flow configuration.
Figure 4.9 plots the impedance over the bias flow Mach number
for a fixed frequency. All models predict a mainly linear increase
of the resistance with the bias flow Mach number. As discussed
above, the reactance is constant for the Betts and Bauer models.
On the other hand, Jing and Bellucci predict a decreasing reac-
tance, when increasing the bias flow. In that case, the reactance is
rapidly reduced at low bias flow Mach numbers and approaching
a constant value at high bias flow Mach numbers. The effect is
much stronger in the Bellucci model. The more complex models



4.10 SOME COMPARISONS

s | — EDMJing 1
£ 06/ --- TMMiing .
Ry

% 04

A

)

o0

g 0.2

>

<

| ! ! | ! ! | ! ! | |

! ! ! ! | !
300 600 900 1200 1500 1800

Frequency in Hz

Figure 4.10: Comparison of the Eldredge and Dowling method and the
transfer matrix method for three configurations: 1. pcoo6 with My =
0.015; 2. bcooy with My = 0.029; 3. DCo08 with Mgy = 0.049.

of Jing and Sun [242] and Lee et al. [291], which require a numer-
ical solution and are not plotted here, predict a similar effect (not
shown here).

4.10.2  Transfer Matrix Method vs. Eldredge & Dowling Method

Theoretically, the Eldredge and Dowling Method (EDM) and the
Transfer Matrix Method (TMM) should give identical results when
the same model for the perforation is used. The remaining differ-
ences are due to the two methods. This will be demonstrated for
three configurations, varying liner geometry as well as bias flow
Mach number, applying the Jing model. The liner geometries cor-
respond to configurations bcoo6, pcooy, and pcoo8 of the param-
eter study. The specifications can be found in Table 7.1.

A first comparison is given in Figure 4.10. Both methods predict
similar results, but they are not identical. While both methods pre-
dict a similar level of dissipation for setup 3, TMM yields slightly
higher dissipation levels for setups 1 and 2. However, the pre-
dicted peak frequencies agree for setups 1 and 2, while they are
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Figure 4.11: Comparison of EDM using the effective perforation length
and TMM using the perforation length plus additional hard-wall sec-
tions for three configurations: 1. bcoo6 with My = 0.015; 2. bcooy with
M5 = 0.029; 3. DCoo8 with My = 0.049.

slightly different for setup 3. The origin of these differences is not
obvious and no general trend can be observed (e.g. one method
always predicts higher values than the other).

It was found that the axial length is a crucial parameter. It is not
entirely clear which length should be used here, that is either the
perforation length L, the effective perforation length L., or the
cavity length L. as defined in Figure 2.8. Additionally, TMM can
account for hard-walled sections at either end of the perforation,
see Figure 4.6b. For the theoretical comparison of the two methods
in Figure 4.10, the effective perforation length was used in both
methods and any additional hard-wall sections were neglected in
TMM.

When comparing the models to measurement data, it will be
made use of the feature of TMM which takes the hard-walled
sections into account. In that case, the perforation length is used
and the length of the hard-walled sections is treated separately.
However, due to the lack of this feature in EDM, it will continue
to use the effective perforation length. The comparison between
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Figure 4.12: Comparison of the Howe model and the Luong model for
three configurations: 1. bcoo6 with My = 0.015; 2. DCcooy with My =
0.029; 3. DCoo8 with My = 0.049.

the two methods looks slightly different when they are based on
different characteristic lengths. This is shown in Figure 4.11. Var-
ious length combinations have been applied to the models and
were compared to the experimental data. There was no clear best
match of any one length. Using the effective perforation length
with EDM and the perforation length plus additional hard-wall
sections with TMM yielded the best overall agreement. Thus, this
setup is applied throughout this work.

4.10.3 Howe vs. Luong

Figure 4.12 compares the results when using the Jing model or
the Luong model to represent the perforation. Both cases are cal-
culated with the Eldredge and Dowling method, setting C. = 0.75
for EDM:Luong. The Luong model for zero thickness is used with
the thickness term applied by EDM. The three configurations are
the same as in the previous section.

The results from the two models are very similar. However,
EDM:Luong predicts a slightly lower peak frequency in all three
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cases. Due to their similar results, only EDM:Jing will be com-
pared with the experimental data in Chapter 7.



DUCT ACOUSTICS

5.1 ACOUSTIC WAVE EQUATION

Fundamental Equations of Fluid Dynamics

The motion of fluid is governed by the conservation laws for
mass, momentum, and energy. The conservation of mass in the
absence of any sources is described by the partial differential equa-
tion" (Euler [148], or [33, 369])

%—l-v'(pv):o. (5.1)
It is commonly known as the continuity equation. It relates the
velocity of the fluid to its density and is valid without any restric-
tions, except that the fluid and its properties must be continuous.
An alternative formulation is given by replacing the local time
derivative 0/0t with the substantial derivative (Stokes [449], or

[33, 59])

D 0
Dt at—i—vV. (5.2)
1 This and the following equations are given in Gibbs notation (Gibbs and Wil-
son [173], or [59]). The Nabla operator V is used as a convenient mathemati-
cal notation for either the gradient grad f = Vf, the divergence divf =V -f,
or rotation (or curl) rotf =V x f [77].
2 The continuum hypothesis disregards the discrete molecular nature of a fluid
and assumes, that its macroscopic behavior is the same as if it were perfectly
continuous in structure [33].
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The substantial time derivative follows the motion of the fluid,
thus it reveals the convective effect of the mean flow. It follows
from Equation (5.1) that [33]

Dp

ﬁ—i-p(v-v):o. (5.3a)

The conservation of momentum for an ideal fluid is given by (Eu-
ler [148] or [33, 369])

where gravity is neglected. This equation is also called equation
of motion, while this special case for an ideal fluid is commonly
known as the Euler equation3. It relates the pressure to the veloc-
ity of the fluid.

The conservation of energy is expressed by the equation of state,
which for an ideal gas* is given by (Clapeyron [97], or [33])

p = pRT.

This equation is also called ideal gas law. The acoustic motion is
considered to be isentropic’, so that the thermodynamic relation
between the density and the pressure can be given by [33, 369]

0 D
<az>s =c¢* with D—i =o. (5.3¢)

This system of three Equations (5.3) is commonly referred to as Eu-
ler equations®. They describe the motion of a compressible, ideal
fluid.

3 Named after Leonhard Euler (1707-1783), Swiss mathematician and physi-
cist.

4 An ideal gas is an idealization where the molecular interaction is neglected.
Air of normal atmospheric temperature and pressure can be considered to
behave ideal.

5 Morfey [338]: “In an isentropic change of thermodynamic state the entropy
remains constant. An adiabatic process is isentropic provided it is reversible.”

6 Even though only the first two originate from Euler.
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Equations of Linear Acoustics

The field quantities (pressure, velocity, and density) that are used
in the previous section can be written as the sum of their mean
and fluctuating (acoustic) values:

P=Potp
V:VO+V/ (5'4)
p=po+p

- (6]

A linearization of Equations (5.3) is possible by assuming that the
acoustic quantities are much smaller than the mean quantities

/ / /
P Twi 2« (5.5)

Po Vo Po
which is fulfilled in most applications. This assumption allows
to disregard higher order terms in Equations (5.3), so that the

approximate acoustic equations are given by [176, 369]

/

Dp
Dt

+po(V-V) =0, (5.6a)

D /
poD—‘; +Vp' =o0,and (5.6b)
p'=c%p. (5-6¢)

Acoustic Wave Equation

The acoustic wave equation can be obtained from Equation (5.6)
in a few simple steps: Substitute the fluctuating density p’ in
Equation (5.6a) with (5.6¢). Then, taking the time derivative of
Equation (5.6a) and replacing its second term with Equation (5.6b)
yields the acoustic wave equation

1 sz/
c2 Dt2

V2p’ =o. (5.7)
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where V? is the Laplace operator”. This general notation includ-
ing the material derivative, see Equation (5.2), can be applied to
stationary or moving medium. The assumptions that have been
introduced are:

* homogeneous medium?®

¢ ideal fluid

¢ linear acoustics®

¢ isentropic relation between pressure and density
¢ uniform flow'® or stationary medium

Expanding the material derivative in Equation (5.7) results in the
commonly used form of the convected wave equation (Howe [207,

214], or [340, 343])

1 /0 2

Vz‘p, — g <at —+ VOV) p/ =0. (58)
In stationary medium, v, = o, the material derivative can be re-
placed by the local time derivative and Equation (5.7) and ((5.8))
reduce to the well known form of the classical acoustic wave equa-
tion (d’Alembert [111] and Euler [149, 150], or [369])

1 aZp/

2 /_7
VP c2 0t2

=0. (5.9)

7 The Laplace operator V2, or sometimes denoted as A, is named after Pierre-
Simon de Laplace (1749-182y, French mathematician). It prescribes the sum-
mation of the second partial derivatives of a function f with respect to a
given coordinate system. In general: V*f =V - (Vf) = div(grad f) [77]

8 Morfey [338]: “A homogeneous medium is a medium whose properties are
spatially uniform, i.e. independent of position.”

9 Morfey [338]: “Linear acoustics is limited to small amplitude signals or os-
cillations, so that the relation between any two oscillatory quantities is inde-
pendent of amplitude. Linear sound waves propagate independently of one
another, without interaction.”

10 In uniform flow the magnitude and direction of the velocity is spatially uni-
form.
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The wave equations above are expressed for the acoustic pressure.
However, since all coefficients are constant they apply to all acous-
tic variables, e.g. pressure, velocity, density, and potential [86].

5.2 THREE-DIMENSIONAL WAVES

For the description of the wave propagation in a circular duct
the wave equation (5.7) can be expressed in cylindrical coordi-
nates with the axial coordinate x, the radial coordinate r, and the
circumferential coordinate 0. The Laplace operator in cylindrical
coordinates is given by (e. g. [77])

g o221 () 12

ox2  ror or r2 902’ (5.10)

so that the three-dimensional wave equation in cylindrical coordi-
nates yields

azp/ Ia< W) N 1 azpl 1 sz/ _

(5.11)

o "ror\'or ) "2 002 ¢ Dt

This is a linear second-order partial differential equation which
can be solved by the separation of variables'. A general solution
for a circular duct is given by (e. g. [206, 352, 444])"*

Pmn(X,7,0,1) = Pre N 4 Py el
X Jm (kr,mnr) + an Ym (kr,mnr)
« @im® (5.12)
x el®t

11 The separation of variables introduces a substitution in the form
p'(x,1,0,t) = fx(x) - fr(r) - fo(0) - fr(t) and reduces the partial differential
equation into a set of ordinary differential equations (Bernoulli [50] or [77]).

12 The original derivation of the modal character of a sound field goes back
to Duhamel [132] and Rayleigh [387]. Detailed discussion are given by Tyler
and Sofrin [482], Morfey [335], or Morse and Ingard [340], for example.
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where the axial and radial wave numbers are related by

(%) = Kmn + K% mn- (5.13)

The four rows in Equation (5.12) describe the spatial (axial, radial,
and circumferential) and temporal shape of the mode, respectively.
While the spatial patterns in axial and circumferential direction
are sinusoidal (as well as the temporal development), the radial
pattern is defined by Bessel functions. ], is the Bessel function
of the first kind, commonly only called Bessel function, Yy, is the
Bessel function of the second kind, often called Weber3 or Neu-
mann'# function, and Qmn is the n-th Eigenvalue of Yp,.

Equation (5.12) represents the so called modal solution. The ac-
tual sound pressure of a time harmonic wave is given by the real
part of the superposition of an infinite number of modes™

P7,0,) =Y ) Pmnlx,T,6,1), (5.14)
m n

wherem e€{...,—2,—1,0,1,2,...}and n € {0, 1, 2, ... }. Each mode
is characterized by its circumferential mode order m and its radial
mode order n. The integers m and n describe the number of nodal
lines in circumferential and radial direction, respectively. For m =
o and n = o there are no nodal lines in transverse direction, so that
the sound field is one-dimensional with variations in x-direction
only. This special case is called fundamental mode or plane wave
and will be discussed separately in Section 5.3. All other modes
are referred to as higher order modes.

In a cylindrical duct, without any central hub, Qmn in Equa-
tion (5.12) becomes zero, so that the solution for a time harmonic

13 Named after Heinrich Martin Weber (1842-1913, German mathematician).

14 Named after Carl Gottfried Neumann (1832-1925, German mathematician).

15 Morfey [338]: “A mode is a spatial pattern of vibration, whose shape remains
invariant as the vibration propagates spatially.”
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Table 5.1: Eigenvalues of the hard-wall solution for a cylindrical duct,
sorted in ascending order of jmn. (From [3, p. 411])

mmn o:.0 1:0 2:0 01 3:0 4:0 11

jmn O 1.8412 3.0542 3.8317 4.2012 5.3176 5.3314

wave propagating in a cylindrical duct with hard walls and uni-
form mean flow yields (e. g. [315, 330, 337, 343, 444])

A im0 jiwt

p (pmn an +pmn an )]m( T‘mnr)e € 7 (515)

with the axial wave number

k jmn )
kf,mnzl_Mz —Mj:\/l—(1—M2)<]]3§> . (5.16)

The hard-wall boundary condition'® requires that the derivative
of Jm vanishes at the wall, so that for r = R

Jim (KrmnR) =0, (5.17)

with the radial wave number
jmn
k1",mn = 5 - (518)

jmn is the n-th root of J, or the n-th Eigenvalue of |, for the
hard-wall boundary condition. Some values of jm, are given in
Table 5.1. More extensive tables can be found in mathematical
references, e. g. Abramowitz and Stegun [3].

The mathematical description of the acoustic pressure in a cylin-
drical duct is demonstrated graphically in Figure 5.1. The spatial
distribution of the acoustic pressure is plotted for the four modal

16 The hard-wall boundary condition demands that the radial velocity vanishes
at the wall. From Equation (5.6b) follows the boundary condition for the
acoustic pressure: aa—rl =oatr=R.
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W g

Figure 5.1: [llustration of the acoustic pressure in a cylindrical duct for
four modal components (m:n) o:0, 1:0, 0:1, and 1:1 and the resulting
sound field p’ at a single frequency.

components (m:n) o0:0, 1:0, 0:1, and 1:1 and the resulting sound
field p’ = pl.o, + Pl + Phs + Phr- The nodal lines of the circum-
ferential and radial patterns are visible in the duct cross-section.
Another characteristic feature of modes of higher circumferential
order m > o is that their transversal pattern is rotating around the
x-axis. A behavior which has coined the term spinning mode [482].
While the images are snapshots of the instantaneous acoustic pres-
sure at t = o, the spinning modes produce the spiral pattern of
the acoustic pressure at the duct surface.

5.2.1 Cut-On Frequency

The axial wave number ki, defines the propagation of a mode
in x-direction. Equation (5.16) allows for two fundamentally dif-
ferent propagation characteristics depending on the evaluation of
the square root in the equation:

. 2
1.1—(1—M2)<Jk—m§) >0 — kim€R
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. 2
2.1—(1—M2)<%) <o — k,jflme(C

In the first case k;—ﬁmn is a real quantity. The mode propagates
along the duct unattenuated (considering ideal fluid). In the sec-
ond case ki, is complex and its imaginary part serves as an
attenuation coefficient. The amplitude of the mode decays expo-
nentially with axial distance from the source, i.e. the mode is not
able to propagate. A characteristic frequency can be defined as the
frequency where a mode becomes ’cut-on’, i.e. the mode starts
propagating. At this cut-on frequency the term under the square

root in Equation (5.16) vanishes, so that

fe,mn = ;ﬂﬂRc 1—Mz2. (5.19)
The cut-on frequency is dependent on the duct radius, the mean
flow Mach number, the speed of sound, and the Eigenvalue of the
associated mode. The Eigenvalue jm, of the fundamental mode
0:0 is zero and it follows that the cut-on frequency is also zero, i. e.
the fundamental mode is able to propagate at all frequencies.
The cut-on behavior of the higher order modes introduces a ma-
jor advantage. Only a limited number of higher order modes are
able to propagate at a given frequency, so that the remaining non-
propagating modes can be neglected (in most cases). The cut-on
frequency of the first'” higher order mode defines the transition
between one-dimensional and three-dimensional sound propaga-
tion.

5.2.2 Evanescent Modes

A mode that is excited below its cut-on frequency is not able to
propagate. These modes are referred to as evanescent modes or

17 The first” higher order mode refers to the higher order mode with the lowest
cut-on frequency. For a fixed setup (R, M, ¢ = constant) the numerical order
of the cut-on frequencies is given by the numerical order of the values of jmn
(as they are given in Table 5.1).
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cut-off modes. Their amplitude decays exponentially with axial
distance from their source. The decay is determined by the imag-
inary part of the axial wave number kf/m in Equation (5.16), so
that the evanescent mode attenuation coefficient is given by

4 27

Omn = [Im {k3 o | = NeEYa] 2 — 2 1l - (5.20)

The unit of the attenuation coefficient is Np/m, i.e. Neper™ per
meter. It can be converted to the attenuation rate am, in dB/m by

applying

Omn = 20 - 1g (e*™) ~ 8.69 Xmn - (5.21)

The attenuation decreases when increasing the frequency towards
the cut-on frequency of a mode.

At a certain frequency only a limited number of modes are able
to propagate and it is reasonable to neglect all evanescent modes.
However, evanescent modes might become important if the fre-
quency of interest is close to the cut-on frequency and the location
of interest is in the vicinity of the source, e. g. a microphone which
is located near a loudspeaker (see Section 6.5.4).

Figure 5.2 concludes the discussion of cut-on frequency and
evanescent modes by demonstrating the phenomena visually. The
acoustic pressure of the plane wave p(., the first higher order
mode p’.,, and the resulting sound field p’ = p/., + p’., is plotted
for three distinct frequencies:

1. The frequency is below the cut-on frequency,
2. the frequency is equal to the cut-on frequency, and

3. the frequency is above the cut-on frequency.

18 This notation is according to Tyler and Sofrin [482], where it was given for a
stationary fluid.

19 Similar to the decibel, the Neper is a logarithmic scaled ratio of field or power
quantities. While the Neper uses the natural logarithm In, the decibel uses
the decadic logarithm lg.



5.2 THREE-DIMENSIONAL WAVES

Figure 5.2: Illustration of the cut-on phenomena of higher order modes
and the influence on the resulting sound field for mode 1:0.

The source of the circumferential mode is located at x = o, that
is the visible cross-section. The amplitude of the circumferential
mode is chosen, so that the maximum acoustic pressure at the
duct wall corresponds to the maximum acoustic pressure of the
plane wave.

In the first case, the circumferential mode is excited at a frequency
below its cut-on frequency. The mode is not able to propagate
and becomes insignificant within a short axial distance. The re-
sulting sound field, shown at the bottom, reflects the influence of
the higher order mode close to its source, while it blends into the
one-dimensional plane wave further along the duct. In the middle
column the frequency is equal to the cut-on frequency, so that the
circumferential mode is able to propagate along the duct. The re-
sulting sound field is three-dimensional throughout the pictured
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Table 5.2: Eigenvalues of the hard-wall solution for an annular duct ac-
cording to Equations (5.22) and (5.23) with 1 = 0.59 and sorted in as-
cending order of jmn.

mn 00 1:0 20 30 40 50 60 01 11

jmn 0 1.269 2.529 3.772 4.990 6.179 7.338 7.772 7.887
Qmn 0 -0.320 -0.298 -0.239 -0.178 -0.126 -0.084 0.935 -0.745

duct segment and beyond. Even though the circumferential mode
starts spinning at its cut-on frequency, the spinning motion can be
observed much better at higher frequencies (as shown in the right
column).

5.2.3 Resonances in an Annular Cavity

Starting from Equation (5.12), a resonance condition for a hard-
walled annular cavity can be derived. The annular cavity is con-
fined by two concentric cylinders with axial boundaries in both
directions. The solution in radial direction is now dependent on
the radius-ratio of the inner and outer wall, the so called hub-to-
tip ratio n = Rpup/R. jmn and Qmn are determined by solving the

equations (e. g. [255])

Ir/n(].mn)len(njmn) - ]r/n(njmn)len(jmn) =0 (5-22)
AT
Qmn = Y7 Gonn) (5.23)

Equation (5.22) needs to be solved numerically. Some values of
jmn and Qmn for a hub-to-tip ratio n = 0.59 are listed in Table 5.2.
The radial wave number is still defined by Equation (5.18), with
the appropriate values of jmn for the annular geometry.

The hard-wall boundary conditions in axial direction require
that P, = Pon at x = o and that sin(kymnLe) = 0 at x = L,
where L. is the length of the cavity. The latter one is fulfilled for
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any integer multiples of 7, so that the axial wave number for the
annular cavity is given by
il .
ky = T with le{1,2,...}. (5.24)
C
Inserting Equations (5.18) and (5.24) into (5.13) yields the reso-
nance condition?

flmn = ;\/(2) + (]r]nzn> . (525)

Equation (5.25) defines the resonance frequencies in a hard-walled
annular cavity for resonances in axial, radial, and circumferential
directions.

5.3 PLANE WAVES

At low?' frequencies the sound field in a duct is one-dimensional.

The acoustic field quantities of a wave traveling in x-direction vary

with time and x, but are constant in any plane normal to the di-

rection of wave propagation, i.e. in the duct cross-section. Such

one-dimensional waves are called plane waves. For plane waves

the acoustic wave equation (5.7) reduces to (e. g. [369])
azp/ 1 sz/ B

0x2 c2 Dtz

(5.26)

A general solution regarding stationary medium (v, = 0) is given
by (d’Alembert [111] and Euler [149], or [343, 369])

p'(x,t) =f; (t— z) +f, (t—i— E) , (5.27)

20 This equation is equally valid in a cylindrical geometry, with the appropriate
value for jmn (e. g. [284]).

21 The frequency limit is given by the cut-on frequency of the first higher order
mode, as discussed in Section 5.2.1.
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where f,; and f, are arbitrary functions, with the only limitation
that they have continuous derivatives of first and second order.
The equation describes the superposition of two plane waves trav-
eling in opposite direction with the propagation speed c. The
acoustic fluctuations are assumed to be sinusoidal, so that f; and
f, can be approximated by a Fourier series®*. In complex expo-
nential notation the Fourier series is expressed as (Fourier [165]

or [369])
t)=) Poe®t (5:28)

The coefficient p = A e'® is a complex quantity with amplitude
= |p| and phase ¢ = argp, commonly called complex pressure
amplitude. Applying (5.28) to (5.27) yields (e. g. [48])

ZRe{A+ iw(t-3) | poelwltr )} : (5.29)

where P, is the complex pressure amplitude of the wave traveling
in positive x-direction and P, for the wave in opposite direction.
The use of the complex exponential notation is convenient mathe-
matically. However, the relevant physical quantity is only the real
part. This fact is indicated above by taking the real part Re{z} of
the expression. It is common practice to omit this explicit nota-
tion, while still taking the real part. This reduced notation will be
adopted here.

The acoustic pressure is given by the sum over all frequency com-
ponents. Typically, the solution is given for one frequency compo-
nent or a single frequency wave only, so that the summation of
the frequencies can be dropped.

Applying these simplifications and introducing the wave number
k = w/c yields the familiar notation (e. g. [260, 343])

—ikx ikx) iwt

P t) = (pre ™ +pe) eVt (5.30)

22 Named after Jean Baptiste Joseph Fourier (1768-1830, French mathematician
and physicist).
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Equation (5.30) describes the temporal development and spatial
distribution of the acoustic pressure of a one-dimensional, single
frequency sound wave in a stationary medium. The behavior is
illustrated in Figure 5.3 for three distinct cases depending on the
values of p:

1. Traveling wave: [p~|=o0
2. Standing wave: [pT|=[p~|

3. Mixed wave: P # 1P|

Introducing a uniform mean flow in x-direction affects the propa-
gation speed of the wave. In flow direction the propagation speed
c is increased by the mean flow velocity, while it is decreased
against flow direction, i.e. ¢ & v, respectively. The convective ef-
fect of the mean flow is included in the wave number

w/c
Kkt = )
1+ M

(5:31)

where the superscript = denotes in and against flow direction,
respectively. Equation (5.30) changes to (e. g. [340, 343])

p/(X,t) — <ﬁ+efik+x+ﬁfeik’x> eiwt. (532)

5.4 ATTENUATION OF SOUND

Until now all dissipative effects have been neglected. In many ap-
plications the dissipative effects can be considered small and ne-
glecting them reproduces the physical behavior adequately. How-
ever, certain conditions require their inclusion to describe the phy-
sics accurately.

The absorption of sound results in an attenuation of the wave
amplitude with propagation distance and a change in propagation
speed, i.e. phase velocity. Both can be expressed by adjusting the
wave number. Disregarding all absorption phenomena the wave
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a) Traveling Wave

Acoustic Pressure

Acoustic Pressure

Acoustic Pressure

Time Axial Coordinate

—vp atx;/ty, ---patx,/t,, o p’atx;/t;

Figure 5.3: Illustration of the temporal development (on the left) and
spatial distribution (on the right) of the acoustic pressure for three char-
acteristic plane wave sound fields: a) Traveling Wave, b) Standing Wave,
¢) Mixed Wave.
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number is real and given by k, = w/c (in a stationary medium).
Including absorption the wave number becomes a complex quan-
tity, while Equation (5.30) remains unchanged

P,(X,t) _ (f)Jrefikx_’_p elkX) iwt with k = Ci_i(xl (5_33)
ph
where &« = —Im{k} is the attenuation coefficient in Np/m and

cph = w/Refk} is the phase velocity in m/s.

The attenuation coefficient accounts for the amplitude attenuation.
Without any absorption o = o. The attenuation rate a in units
dB/m can be computed according to Equation (5.21). The phase
velocity reflects a possible change in propagation speed. When
Cph is a function of the frequency, the propagation is dispersive,
i.e. waves of different frequencies propagate at different speeds.
Disregarding any absorption cp, = ¢ and the propagation is non-
dispersive.

Some authors prefer the formulation with the propagation con-
stant ' instead of the wave number. Confusingly, there are some
slightly different notations in use. Defined in ISO 80000-8:2007
[235] the propagation constant is related to the wave number by
I' = ik, so that (e. g. [257, 492, 508])

p'=(pTe ™ +p e ) et with I'= oc—i—icﬁ , (5.39)
ph

where o = Re{l'}, ¢pn = w/Im{T'}, and k = I'/i. However, another
common notation seems to be (e. g. [359, 405, 475, 498])

TRolx pprekel™) et with T = k— +1— (5.35)
(o)

where o = koRe{l'}, cpn = ¢/Im{l'}, and k = k,I'/i. Yet another

notation can be found in [126—-128]?3

p' = (ﬁJre—ikOFx o elkorX) JRTT A ¢ _i % (5.36)
Cph k0

23 Unlike here, the references include the sign of the exponent ik,I" in the prop-
agation constant I".
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where « = —koIm{T'}, c,n, = ¢/Ref{l’}, and k = koI'. These differ-
ences should be kept in mind when browsing the literature. Here,
the wave number notation as in Equation (5.33) will be used.

5.4.1 Losses at the Wall

Historically, the effect of viscosity on sound propagation has been
studied by Stokes [451] and von Helmholtz [195]. Inspired by the
experiments of Kundt [273], Kirchhoff [261] included the thermal
conductivity losses and presented a theoretical description of the
sound propagation including viscosity and thermal conductivity.
His result is still the state of the art used today.

Navier-Stokes-Fourier Model

The equation of continuity 5.3a is generally valid, ideal fluid or
otherwise, and is repeated here for convenience

0

zTi +V-(pv) =o. (5.372)
The equation of motion for a viscous fluid is given by the Navier-
Stokes equation®#. When neglecting all body forces?>, applying the
Stokes hypothesis®®, and assuming Newtonian fluid?” it is given

by (Navier [348] and Stokes [449], or [33, 283, 495])

Dv
PO = —Vp+ V-1, (5-37b)

24 Named after Claude Louis Marie Henri Navier (1785-1836, French engineer
and physicist) and Sir George Gabriel Stokes (1819-1903, Irish mathematician,
physicist, politician, and theologian).

25 That is in particular gravity.

26 The Stokes hypothesis (Stokes [449], or [495]) neglects the bulk viscosity
ug = A+ 2p = o, where A is the second viscosity coefficient. The bulk viscos-
ity will be introduced in Section 5.4.3

27 Named after Sir Isaac Newton (1642-1727, English physicist and mathemati-
cian). In Newtonian fluids, e.g. air and water, the viscous stresses are linearly
related to the rate of strain [33, 495].
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with the viscous, or deviatoric, stress tensor

aV;L aV]' 2 aVk
Lo _= 5
b H <an + aXi 3 an v

where 8;; is the Kronecker delta?®. The energy equation is given
by the Kirchhoff-Fourier equation® (Kirchhoff [261] and Fourier

[165], or [33, 283, 495])

D

S
pTa =V-(xkVT)+¢, (5-37¢)

where the viscous dissipation rate is specified as

avi
~ U
)

¢

This system of partial differential equations 5.37a to 5.37c de-
scribes the motion of fluid in a compressible, viscous, and heat
conducting fluid. It is commonly referred to as Navier-Stokes-
Fourier model.

Acoustic, Vorticity, and Entropy Modes

After applying the typical acoustic linearization (corresponding
to Equation (5.5)) a solution to Equations 5.37 can be obtained
by assuming that the sound field is a superposition of vorticity,
entropy, and acoustic modes. Wave equations for the three compo-
nent modes are derived by Cremer [101] and Kovasznay [270], or
in [369]. The fluctuating pressure of the acoustic mode yields

VP = G50 (5.38a)

28 Named after Leopold Kronecker (1823-1891, German mathematician). The
Kronecker delta, or unit tensor, is such that for i = j — &;; = 1 and for
i#=j — by =o[77]

29 Named after Gustav Robert Kirchhoff (1824-1887, German physicist) and
Jean Baptiste Joseph Fourier (1768-1830, French mathematician and physi-
cist).
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All dissipative effects within the fluid are neglected, so that Equa-
tion (5.38a) is identical with (5.9). The fluctuating velocity of the
vorticity mode is expressed as

p vy,
VVior = ;Tm : (5.38b)

Finally, the entropy mode is described by

2./ pcp asfent
Sent = T ot

The subscript at the field variables indicates the associated mode,
‘ac’ for the acoustic mode, ‘vor’ for the vorticity mode, and ‘ent’
for the entropy mode.

In a viscous and heat conducting fluid the boundary conditions
at the stationary wall are vanishing velocity (no slip) and con-
stant temperature (isothermal wall), respectively. The first bound-
ary condition is generally valid for any combination of fluid and
solid wall material. The second one requires that the heat capacity
of the wall material is much larger than the heat capacity of the
fluid, a condition which is generally met when the fluid in the
duct is air. However, these boundary conditions can not be satis-
fied by the acoustic mode alone, but only by superposition with
the vorticity and entropy mode.

This will be illustrated for the acoustic temperature fluctua-
tions3°. The fluctuating temperature field, which is a solution to
Equations 5.37, is given by

(5.38¢)

T = Teic + T\/IOI‘ + Te/,-nt . (539)

The temperature fluctuations are related to the field quantities
used in Equations 5.38 by (e. g. [369])

TR T
Ta:c ~ (P%)o p;c ’ Txﬁor =0, ént ~ <Cp>0 Sént ’ (540)

30 The discussion applies to the acoustic particle velocity in a similar manner
(as shown in [369]).
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where the subscript ‘0" indicates that the approximation is of ze-
roth order. The vorticity mode does not contribute to the temper-
ature fluctuations. Assuming the acoustic mode to be a lossless
plane wave, where the excess temperature is a function of the ax-
ial coordinate x and the time t only. The entropy mode introduces
a secondary wave which is dependent on time, as well as the dis-
tance from the wall y, for a cylindrical geometry y = R—1. The
boundary condition is satisfied if T/, + T, = o for y = o. Further-
more, T/, must vanish for y — oco. The characteristic lengths after

which the secondary waves become insignificant are

I ET EY] _ [ [
oy = wp Vo and 0y wpey " (5.41)

for the vorticity wave and the entropy wave, respectively. They are
related via the Prandtl number &, /8, = v/Pr.

These characteristic lengths can be regarded as a boundary-
layer thickness. The fluid dynamic boundary-layer concept3* was
adopted to an acoustic boundary-layer by Cremer [101]3>. The idea
is that dissipative effects only need to be considered in a thin layer
very close to the wall, while the remaining fluid can be regarded
as ideal where the acoustic wave is not affected.

The thickness of the viscous and the thermal acoustic boundary-
layers are of the same order of magnitude, with the latter one be-
ing slightly thicker. They are thin at high frequencies, but tend
to infinity as f — o. The numerical values at 1 kHz and standard

31 The boundary-layer concept was introduced by Prandtl [372] in 1904 and
is considered one of the most important advances in fluid dynamics [15].
Schlichting and Gersten [432] give detailed discussions on all aspects of the
subject.

32 Blackstock [64]: “Notice that the acoustic boundary-layer is qualitatively dif-
ferent from the ordinary viscous boundary-layer that develops in a pipe
when the flow through the pipe is steady (unidirectional). The thickness of
the steady flow boundary layer grows with the distance, eventually filling
the entire cross-section of the pipe. The acoustic boundary layer, on the other
hand, cannot grow very much because the fluid never flows in one direction
for more than half a period.”
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conditions are 6, = 0.068 mm and 6, = 0.081 mm, which is gen-
erally small compared to the wavelength (at the same conditions
A = 340.5mm).

Equation (5.38¢c) together with (5.40) yields an entropy wave
expressed by the fluctuating temperature of the form [101, 340,

369]

it = Re { ~Tiee™ (iIv/Exgiet | (542)
The temperature field close to the wall resulting from the super-
position of the acoustic mode with the entropy mode is then given

by [214]%
T' =Re {T;C <1 - e_(1+i)9/5X) ei“’t} : (5.43)

The temperature profiles of the entropy mode alone and of the su-
perposition according to Equations (5.42) and (5.43), respectively,
are plotted in Figure 5.4 over a complete oscillation cycle in steps
of 7/4. As required, the superposition shows that the temperature
fluctuations vanish at the wall and fade into the acoustic mode
away from the wall. At the distance given by the boundary-layer
thickness 8, the magnitude of the combined wave |T’| is within
86 % of |T..|.

Kirchhoff's Solution

Kirchhoff [261] was seeking a solution of Equations 5.37 in or-
der to quantify the absorption of sound. With some mathematical

33 The notation in the reference is slightly different. The conversion can be done
with the help of the relation Vi=(1+41)//2 [101]. Please also note the e~ 1%t
time-dependency in the reference.
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Figure 5.4: lllustration of the entropy mode and the resulting fluctuating
temperature field at a wall. a) Temperature fluctuations of the entropy
mode. b) Fluctuating temperature field T’ = T}, + T/;. The temperature
profiles follow a complete oscillation period in 71/4 steps.
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effort he derived a complicated transcendental equation for the
propagation constant3* I' (Kirchhoff [261] or [390, 475]):

ol SN TR 1) Jul(a)
: <r _1Hez> <x1 x2>lo a,

@fé}i —ixl> (M —x,)> }1(22) (5.44)
vYHe* 1 2 1 ]1(0-3) .
(PI‘Sh2 1X2> (r XZ) Jo(a_:;) ’

with

h2
a; = He\, r _iIieZ’ a, =Hey/T?—x;, a;=HeyI?—x,,

and x, and x, are the small and large roots of

. He? .YHe* (1 . 4He?

nr [”lsw <:+13rﬂ *iprshe <v+1§ ShZ) o
The notation that is used here was introduced by Tijdeman [475],
where He = kR is the Helmholtz number (or reduced frequency),
Sh = Ry/w/v is the shear number (square root of the Stokes num-
ber), Pr = cpu/k is the Prandtl number, and ], and J; are Bessel
functions of the first kind of zeroth and first order, respectively.
Equation (5.44) is subject to the following assumptions (Kirchhoff
[261], or [475, 492]):

1. Homogeneous medium35,
2. linear acoustics (small amplitude, sinusoidal perturbations),
3. semi-infinite tube, so that end-effects can be neglected,

4. radial velocity is zero at tube axis,

34 The propagation constant is defined as in Equation (5.35).

35 The wave length and the tube radius must be large in comparison with the
mean free path. For air of normal atmospheric temperature and pressure the
limits are f < 108 and R > 104 mm [475].
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5. velocity vanishes at the wall (no-slip boundary condition),
6. isothermal walls (const. temperature boundary condition),
7. cylindrical geometry3®,

8. plane waves37, and

9. stationary medium.

The importance of Equation (5.44) is given by the fact that it is
exact?®, and thus has served as a starting point for several further
studies [257, 261, 390, 448, 492]. Unfortunately, it fails an analytic
solution. In his original paper Kirchhoff [261] presents an approx-
imate solution by restricting himself to a

10. wide tube39.

That means, the influence of the wall affects only a small layer
of fluid which is an insignificant fraction of the whole of the con-
tents. Ultimately, that is the same assumption that Cremer [101]
treated rigorously about 8o years later, so that the wide tube case
is limited to 8,04 < R [369]. The wide tube assumption yields
the following expression for the propagation constant (Kirchhoff
[261], or [369, 475])

. (141) ( Y — 1)
=i+ 1+ . .
/25h or (5.45)
The notation is again that of Tijdeman [475] with the quantities
specified above and the propagation constant is defined as in

36 For non-cylindrical geometries Davies [113] suggest to replace the radius
with the hydraulic radius 11, = 2 A/P. More detailed (and more complicated)
treatments are given in [108, 448].

37 A discussion including the effect on higher order modes can be found in
(36, 79].

38 It is an exact solution of the linearized Navier-Stokes-Fourier model (lin-
earization of Equations 5.37), which are an approximation to first order.

39 A survey of models for various tube dimensions is given in [475].
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Equation (5.35). Written in terms of attenuation coefficient, phase

velocity, and wave number this yields
w
\/ X2 (5460)

PO S G [vw
wall = /2Sh VPr Rc

O‘wall (XWBHX
y—1\]""
CPh,wall =cC |: \/»Sh < 1+ \/IT >:| (546b)
. w .
kwall = — 1&wall = ? + (1 - 1) Kwall (546C)

Cph,wall

where oty and a1y are the separate attenuation coefficients
due to viscosity and thermal conductivity, respectively.

The attenuation is proportional to the square root of the fre-
quency .y x V/f and also dependent on the duct radius and the
properties of the fluid. As a numeric example, the wall attenuation
coefficient at 1 kHz and ISA conditions*° is &y, = 0.0266 Np/m,
corresponding to an attenuation rate a = 0.23 dB/m. The effect on
the phase velocity is rather small.4* At 1 kHz and standard condi-
tions the phase velocity is reduced from 340.45m/s to 339.96 m/s.
This corresponds to a change of 0.14 %.

Ronneberger [411] used the low reduced frequency solution of
[475, 508] to derive a corrected attenuation coefficient*?

04 - ¢ ! 1+Y_1 + ! 1—1—1/_1—1 Y1
wall = ¢ v/25Sh \/Pr Sh2 \/Pr 2V Pr ’
(5-47)

The first term in Equation (5.47) is identical to the attenuation co-
efficient found by Kirchhoff and the second term adds a constant

40 The International Standard Atmosphere [220] defines the temperature and
pressure at sea level as 288.15K and 101.325 kPa, respectively.

41 Some authors, e. g. [113, 115], suggest to neglect the change of phase velocity,
so that the wave number yields k = w/c — iy, -

42 See as well the discussion by Peters et al. [366].
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value which is independent of frequency. Its relative contribution
to the total losses is larger at low frequencies and small duct radii,
where the first term becomes smaller.

Convective Effect of a Mean Flow

The assumptions listed above require a stationary medium. Now,
the convective effect of a mean flow will be discussed. A more
profound approach including the additional absorption due to a
turbulent flow boundary-layer is treated in the succeeding section.

Without any dissipative effects the convective wave number is
given by Equation (5.31), where the mean flow introduces a dis-
tinction between the wave number in and against flow direction.
Following this definition, but without any further explanation,
Davies et al. [115]*3 suggest that the appropriate wave numbers
including viscothermal losses at the wall are given by

w/c

+ .y wall
kwall,DaVies = m +(1-1) 1 :LVE}\/I (548)

Dokumaci [126, 127] presents an asymptotic solution of the con-
vective acoustic equations for large shear numbers Sh > 1 follow-
ing the simplifications given by Zwikker and Kosten [508]. His
result is different from Equation (5.48) and reads

k.:t w r w/c ( _) “wall

wall Dokumaci = ¢ T £ 1M~ 1=rM T rzrm (549

where I' is the propagation constant that corresponds to the Kirch-
hoff solution, but given in the notation of Equation (5.36)

=1+ (\I/E_Sll_l) <1+‘</_>Pr1> :1+(1_i)%(xwall- (550)

The earliest and probably most rigorous derivation is given by
Ronneberger [411, 413]. He presents a quasi-laminar theory that,

43 Please note that Equation (3) in the reference is erroneous, as is discussed in
[114].
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according to Peters et al. [366], describes the damping of acoustic
waves quite accurately, when the acoustic boundary-layer thick-
ness is small compared to the thickness of the viscous sublayer of
the flow. To first order and with 1 —0.18 M? = 1 (for small Mach
numbers) Ronneberger results at [411]

+ - w/ c s Kwall, v Kwall,x
kwall,Ronneberger - 1+M + (1 1) ((1 :EM)3 + (1 :EM)) ’ (551)

where oty and oy, are the attenuation coefficients due to vis-
cosity and thermal conductivity losses at the wall given in Equa-
tion (5.46a), respectively.

The corresponding attenuation coefficients oF an = —Im{k*}
are plotted in Figure 5.5. While the attenuation is reduced in flow
direction, it increases against the flow, compared to the stationary
case Xy,). The approach of Davies shows the smallest effect. The
values of Dokumaci’s and Ronneberger’s model are very close,
but Ronneberger predicts a slightly stronger influence of the flow.
The influence of convection on the phase velocity is visualized
in Figure 5.5b. Here, Acffh/ wal Shows only the additional contri-
bution that is introduced by the losses, so that for Davies and
Ronneberger the change is given by AC;)th,wall = C;Jth,wall —c(1xM)
and for Dokumaci Acgthlwau = C;Eh,wall —c (1 = Re{l'} M). While the
change of phase velocity in a stationary medium is small already;,
the convection introduces an even smaller variation around that
value. The results of Davies” and Dokumaci’s models are identi-
cal. They express a reduction of phase velocity in flow direction
and an increase against the flow. Ronneberger’s model predicts
the opposite and a generally smaller effect.

Comparison to experimental data has shown [366] that Ron-
neberger’s model includes the physical effects most accurately.
However, browsing in recent literature it seems that Dokumaci’s
approach is the most accepted [13, 147, 205]. In the end, the small
differences in the result of these two models (Dokumaci vs. Ron-
neberger) can be neglected in most practical applications.

The limit that the acoustic boundary-layer thickness needs to be
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Figure 5.5: Convective effect of a mean flow on the wall attenuation

coefficient for M = 0.1 and R = 0.035 m at ISA conditions.
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smaller than the thickness of the viscous sublayer of the turbulent
flow 8,8y < &¢ holds for all three models and is generally ful-
filled for the parameters studied here, except for low frequencies
at high static pressures. When 8,5, > 0+, then the additional
losses due to the interaction with the turbulent flow boundary-
layer need to be considered. This is discussed in the next section.

5.4.2 Losses due to Turbulent Flow

The absorption of sound in a duct is increased by the presence
of a turbulent flow boundary-layer. This fact has been studied
experimentally (e.g. [229, 366, 413]) and theoretically (e.g. [211,
212, 229, 263, 366, 413, 490]). The additional absorption is due to
the transfer of acoustic energy to the turbulent stresses, a phe-
nomenon which occurs when the acoustic boundary-layer thick-
ness is larger than the viscous sublayer of the turbulent flow. Al-
lam and Abom [13] presented a comparison of the available mod-
els and concluded that the model by Howe [212, 214] is the most
complete model developed so far+.

Howe [212, 214] derives the following expression for the wave
number, including the attenuation due to turbulent flow:

+ w/c 2ipc

= Y, .
kturb 1+ M + (1 :EM) Dh (5 52)

where Y is the wall shear layer admittance

w/c [iw

1+ M \/> FA (E/ v )
/ hw

44 Since then, some extensions have been proposed in [263, 490], which are not
included here.

_in
e 4

pw3/2

(5-53)
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Dy, = 4A/P is the hydraulic diameter of the duct (with the duct
cross-section area A and the duct perimeter P), k is the Kdrmén
constant> (please note that the same symbol was used to repre-
sent thermal conductivity before), v, is the friction velocity, . is
the thickness of the viscous acoustic boundary layer, {3 is the coef-
ficient of expansion at constant pressure, ¢;, is the specific heat
capacity at constant pressure per unit of mass, Pr; is the turbu-
lence Prandtl number+’, and

i [Hi”(a) cos(b) — HY (a) sin(b)]

Fa (a,b) = (5-54)

H(()l)(a) cos(b) +H£1)(a) sin(b)

with the Hankel functions#® HI(;) and Hfﬁ). The friction velocity v,
can be computed from the empirical pipe flow formula [212, 432]

Uly) 1. /vy
W) e, 555

where U(y) is the flow velocity at a specified distance from the
wall y, k is again the Kadrman constant, and C is an empirical con-
stant, usually specified as C = 5 [212, 432]. U(y) can be replaced
by the mean flow velocity U, when setting y = R and C = 2 in the
above equation, where the adjustment of C accounts for the dif-
ference between the mean flow velocity and the maximum flow
velocity at the centerline (y = R) of the duct [212, 432].

The thickness of the viscous acoustic boundary layer 8. is calcu-
lated from [212, 214]

vV olw/wy)3
Y 6.5 <1 + H‘(CU/(U>|<)3> ’ (5.56)

45 Named after Theodore von Kdrmén (1881-1963, Hungarian-American math-
ematician, aerospace engineer, and physicist) [256]. The Karmdan constant
is a universal constant for turbulent boundary layers. Its empirical value is
K = 0.41 [214, 432].

46 For an ideal gas 3 = 1/T, so that Bc?/cp =y — 1 [212]

47 Schlichting and Gersten [432] state that Pry = 0.87, while Howe [212, 214]
gives a value of Pry = 0.7, which will be used here

48 Named after Hermann Hankel (1839-1873, German mathematician). Also
known as Bessel functions of the third kind.
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comparison to the stationary and Ronneberger’s convective attenuation
coefficient: a) attenuation coefficient, b) change of phase velocity.
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Figure 5.7: Average attenuation coefficient due to losses within the tur-
bulent flow boundary-layer at various Mach numbers and R = 0.035 m.

where the critical frequency w. can be roughly estimated by [212,
214] w,v/vi = 0.01, and o = 1.7 yields best agreement with exper-
imental results [212, 214]. At low frequencies, when w — o, Equa-
tion (5.56) estimates the thickness of the viscous acoustic bound-
ary layer with 6,v,/v = 6.5, which yields better agreement with
experiments [212] than the commonly used value of 7. This value
increases at higher frequencies to account for viscous diffusion
and for the reduced efficiency of turbulent diffusion.

The turbulence attenuation coefficient is plotted in Figure 5.6a,
where it is compared to Ronneberger’s convective attenuation co-
efficient. The wall attenuation coefficient for a stationary medium
Otwall 1S given as reference and the average turbulence attenuation
coefficient Xy, = (octtrb + &) /2 is introduced. The additional
absorption due to the interaction with the turbulent boundary-
layer occurs at low frequencies only. At high frequencies, ocirb
becomes identical with ocf/aH’Romeberger. The same behavior is ob-
served for the phase velocity in Figure 5.6b.

The dependency on the Mach number is illustrated in Figure 5.7
for the average attenuation coefficient and the Mach numbers o.05,
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0.1, and o.2. Generally, the losses due to the turbulent flow in-
crease at higher Mach numbers, so that higher frequencies are
affected.

5.4.3 Losses Within the Fluid

At normal atmospheric temperature and pressure conditions, the
losses within the fluid become significant at high frequencies (be-
yond the audible range) or when sound travels long distances.
Such conditions are met when dealing with waves propagating
through the atmosphere, for example. In duct acoustics, these ef-
fects are commonly neglected as they are two orders of magnitude
smaller than the losses at the duct walls. While this generally
holds for air at normal atmospheric temperature and pressure,
it will be shown in Section 6.6.5 that the losses within the fluid
might become important at elevated pressure and temperature.

This section will be limited to a collection of the necessary for-
mulas. A detailed historical review of the subject is presented by
Delany [120] and an in-depth discussion of the physics is given
by Bass et al. [30]. Furthermore, the subject is treated extensively
in the book of Pierce [369]. Today’s state of the art models that
describe the sound absorption within the fluid have been estab-
lished in a series of publications by Evans et al. [152] and Bass
et al. [29, 31, 32], which ultimately led to the international stan-
dard ISO 9613-1:1993 [236]. Bass [28] discussed the validity of the
available models under high temperature conditions and came to
the conclusion that they are accurate within 10 % for low water
vapor concentrations (less than 10 %).

The loss mechanisms within the fluid can be grouped into classi-
cal absorption mechanisms, resulting from the fundamental trans-
port properties of a fluid, and the losses based on the movement
of the molecules, referred to as molecular relaxation losses.
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Viscothermal Losses

The classical absorption is associated with the transfer of kinetic
energy of molecules into heat. The responsible fluid properties are
viscosity, thermal conductivity, diffusion, and radiation. However,
the contribution of diffusion?® and radiation> to the total losses
is very small, so that only the first two are considered here. There-
fore, the classical absorption is also referred to as viscothermal
absorption.

The effect of viscosity on sound propagation has been treated
by Stokes [449, 451], and the dependency on thermal conductivity
has been introduced by Kirchhoff [261]. Both effects are additive,
so that the classical attenuation coefficient due to viscothermal
absorption within the fluid is given as (Stokes [451] and Kirchhoff

[261], or [30, 369])

o w? 4 w?* (y—1)k  w’p 4 y-—1
(Xd_zpc3 3u+ 2pc3 ¢ ~ 2pc3 3+ Pr - (5:57)

viscosity thermal conductivity

The classical attenuation coefficient is proportional to the square
of the frequency: «y o f?. It accurately describes the sound at-
tenuation in a monoatomic gas. In polyatomic gases, for example
nitrogen and oxygen (the main constituents of air), the degrees of
freedom within the molecules generate additional energy losses,
so that the classical absorption underestimates the attenuation.

49 The effect of diffusion is known to be small, mainly because the two ma-
jor constituents of air, nitrogen and oxygen, are of such similar molecular
weights; as Rocard [404] and Herzfeld and Litovitz [196] have shown, this
process typically contributes only 0.3 % to the total classical absorption at
audio frequencies. (from [120])

50 The effect of radiation is very small (Stokes [450]). Radiation absorption plays
little role in gases, except possibly at very low pressures or very high tem-
peratures (Markham et al. [314]). Radiation losses are significant only at very
low frequencies (Evans et al. [152]).
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Molecular Relaxation Losses

The molecular relaxation losses consider the transfer of energy
from various states of molecular motion into rotational and vi-
brational movements. The time that is necessary for energy to be
transferred between the states of motion is called relaxation time.
The losses are maximized if the associated relaxation frequency
corresponds to the acoustic frequency. Each relaxation process
has its own characteristic relaxation frequency. For frequencies
below the relaxation frequency, the absorption is proportional to
f> (a behavior already found for the classical absorption). How-
ever, above the relaxation frequency the absorption approaches a
constant value.

The relaxation frequency of rotational relaxation is much higher
than any frequency of interest>’, so that the associated attenuation
is proportional to f> over the whole audible range and beyond
[120, 369]. The attenuation coefficient due to rotational relaxation
is given as [30]

w?* yly—1)R
2pc3 1.25Cp

Krot = Zrot ’ (558)
where R is the specific gas constant and the rotational collision
number is given by

Zyot = 61.6€ 05T 7,
A simplified approach accounts for the rotational relaxation losses
with a bulk viscosity ug [29, 369]

wz

2pc3

UB . (5-59)

Krot =

The bulk viscosity is related to the dynamic viscosity by ug =
0.6 1 [29, 182, 369]. While Equations (5.58) and (5.59) give nearly
identical results at normal atmospheric temperature and pressure,

51 In the order of 108 Hz [120].
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Equation (5.59) underestimates the attenuation at higher tempera-
tures, so that Equation (5.58) will be used.

The relaxation frequencies of the vibrational movements can
be much lower than the one for rotation and must be treated for
each species separately. The resulting attenuation coefficient is the
sum over all species, while for air only the two main constituents,
nitrogen N and oxygen O, are considered:

Oyib = ) Ouib,i = Otyib,0 + Oyib, N (5.60)
i

The attenuation coefficient due to vibrational relaxation for one
particular constituent is given by [30, 236]

2f f/rs

bi=—(0A)paxi—————s . .6
Kyib,i c (OL )ma ,11 T (f/fr,i)z (5 1)
with the maximum attenuation over a distance of one wavelength
given in Np/m
max,i 35 i T ’ .

where X; is the mole fraction, 0; is the characteristic vibrational
temperature, and f,; is the vibrational relaxation frequency of
constituent i. For oxygen O and nitrogen N [32, 236, 414]:

80 =2239.1K, On =3352.0K, Xp =o0.209, Xn =0.781,

P 0.02+h >
fro= 24+ 4.04-10°h———— | , and
"0 Pref < 440 0.391 + h

f = +280hexp < —4.170 | | =— —1 .
"N Pref <Tref (9 p{ 417 [ To

p and T are the ambient pressure in kPa and the ambient tem-
perature in K, respectively, while p,f = 101.325kPa and T, =
293.15 K are atmospheric reference values. h is the molar concen-
tration of water vapor in % (fraction of air molecules that are wa-
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ter). It can be calculated from the relative humidity RH (also in %)
via the saturation water vapor pressure pws [236, 369]

h = RH % . (5.63)

While ISO 9613-1:1993 [236] presents a simplified calculation for
Pws, the state of the art formula is given by [485, 486]

T
In (1;%) = o (@D + 205+ 307 + 0,937 + asd* + a6d7)
C
(5.64)
with

a; = —7.85951783 a, = 22.6807411 Tc = 647.006 K
a, = 1.84408259 as = —15.9618719 Pe = 22.064 x 10° Pa
a; = —11.7866497 ag = 1.80122502 d=1-T/T,

The saturation water vapor pressure is a function of temperature
and is defined for temperatures up to the critical point of water at
Tc, where the properties of the gas and liquid phase converge.

Combined Losses Within the Fluid

The losses within the fluid are additive>, so that they are given
by the sum

Ofluid = Ol + Krot + Cyib,0 + Kyib,N (5.65)

The classical and rotational relaxation losses are functions of pres-
sure, temperature and frequency only. Often they are combined
in one expression &g = & + rot. The vibrational relaxation at-
tenuation depends on the particular atmospheric constituent and
the mole fraction of water vapor, as well as pressure, temperature,
and frequency.

52 Bass et al. [30] states that this is valid for frequencies up to 1o MHz.
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The characteristics of the attenuation within air at normal condi-
tions is illustrated in Figure 5.8a, where the different contributions
according to Equation (5.65) are plotted. The relaxation frequen-
cies of oxygen f, o and nitrogen f, N are indicated with arrows.
The combined losses within the fluid (the sum of all contributions)
is given by the solid black line. The attenuation rate of the total
losses at 1 kHz is aguq = 8.174 x 1073 dB/m.

The wave number regarding the attenuation within the fluid is

given by [369, 414]>3

Kfiuid = % — 1ot — 10trot — %f ;(ax)maxim . (5.66)
The phase velocity is only affected by the vibrational relaxation
losses, while it remains unchanged and identical to c by the classi-
cal and rotational relaxation losses alone [414]. Around the relax-
ation frequency of each constituent, the phase velocity increases
by Cphmaxi = €/T(0A)max,i- This is illustrated in Figure 5.8b. The
corresponding increments of oxygen and nitrogen at 288K are
Cph,max,0 = 0.104M/s and Cpp max,N = 0.018 m/s, respectively. The
effect of the losses within the fluid on the phase velocity is even
smaller than the wall influence (at the specified radius). Further-
more, it should be noted that the attenuation at the wall reduces
the phase velocity, while it is increased due to the losses within
the fluid.

Figure 5.9 shows the dependency of the attenuation on the rel-
ative humidity. At high frequencies, depending on the relative
humidity, the total losses within the fluid are given by o, alone.

53 Please note that the references use a e 't time dependency.
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EXPERIMENTAL METHOD & ANALYSIS

The general methodology of the measurements is based on an
approach proposed by Ronneberger [411], which was developed
further by Ronneberger and his students [74, 146, 360, 397-399,
412]". The same methodology, in principle, is commonly referred
to as two-source scattering matrix method [1]. This method was used
for liner or orifice characterization in [17, 83, 138, 198, 399], for
example.

For the evaluation of its acoustic performance, the lined duct
section is regarded as a black box and only the input and output
quantities are considered, i. e. the lined duct section is represented
by an acoustical two-port>. The reflection and transmission coeffi-
cients of a two-port can be determined from the incoming and out-
going wave amplitudes based on two linearly independent mea-
surements.

The liner is inserted in between two hard-walled duct sections,
within which the acoustic pressure is measured at a minimum of
two axial locations. Two acoustic measurements are performed,
one with acoustic excitation from a loudspeaker located beyond

1 Unfortunately, most of these publications are hard-to-come-by reports, the-
ses, or conference papers.

2 An acoustical two-port is a linear, physical system with one input and one
output port. The state at the input and output is fully defined by two state
variables, i. e. two independent physical quantities. Based on its origin from
electrical network theory, sometimes the term four-pole is used instead of
two-port. [1]
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the microphones in the first duct section and another one with a
second loudspeaker located beyond the microphones in the sec-
ond duct section. Such a measurement pair is repeated for each
frequency of interest.

6.1 SPECTRAL ANALYSIS

The time series data recorded by the microphones is transformed
into the frequency domain following the Welch method3 [488]. In
short, that is the calculation of an averaged spectrum from over-
lapped, windowed signal segments. Additionally, turbulent noise
is rejected by using a coherence function method as proposed by
Chung [95].

6.1.1  Welch Method

The Welch method is an extension and more generalized form of
the Bartlett method [27] for spectral density estimation. The con-
cept of the Bartlett method involves the averaging over several sig-
nal segments in order to reduce the variance of the resulting spec-
trum estimation. In order to reduce the leakage that is produced
by calculating the Fourier transformation of non-periodic* signals,
Welch [488] proposes to apply a window function to each segment.
However, using this procedure attenuates the signal at the begin-
ning and end of each segment, so that more averages must be
taken to obtain the same statistical accuracy of the estimated spec-
trum, when compared to not using window functions. This would
require a longer measurement time. Welch [488] overcomes this
by allowing the segments to overlap. The overlapping re-uses the
data attenuated by the window function and provides more seg-

Named after Peter D. Welch.

4 For example, the non-periodicity of a harmonic sine signal is introduced by
taking time-series data of finite length, where the length does not correspond
to multiples of the sine period.
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Figure 6.1: Illustration of the Welch method. Top: A two second time
series signal is split into several segments of one second length with
50 % overlap. Bottom: Each segment is modified by applying the Hann
window function.

ments to the averaging process, keeping the overall length of the
signal the same. This procedure is illustrated in Figure 6.1.

Here, the microphone signals are split into segments of one sec-
ond with 50% overlap and the Hann> window function is used
for the modification of the data. For a discrete time series x(n)
with N samples the Hann window function is defined as [47]

w(n) zé {1—cos (Z]Z—nﬂ withn=o0,1,2,...,N—1. (6.1)

The modified segments are transformed into the frequency do-
main by Fourier transformation [165]. The discrete Fourier trans-

5 Named after Julius Ferdinand von Hann (1839-1921, Austrian meteorologist).
It is often referred to as Hanning window. Originally, the term Hanning was
introduced by Blackman and Tukey [63] for the process of applying the Hann
window function.
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formation X(k) of a discrete time signal x(n) with N samples is
given by (e. g. [47])

N—1
X(k) = Z x(n)-e 2N with k=o0,1,2,...,N—1. (6.2)

n=o

The use of a window function introduces some losses to the mag-
nitude of the Fourier transformed signal. Using the Hann window
function X(k) can be corrected by multiplication with /8/3.

The one-sided auto-spectral density, or short auto spectrum, is
then given by averaging over all segments s and normalizing with
the number of samples [47]

Xs(kK)? fork=1,2,...,(N/2)—1
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where S is the number of segments. Accordingly the one-sided
cross-spectral density, or short cross spectrum, of two signals x(n)
and y(n) is given by [47]

S
o XK VoK) fork=1,2,...,(N/2) =1
ny = S:I (64)
o0 Y IX:(K) - Vo) for k=0, (N/2)

where X* is the complex conjugate® of X. In acoustics, the spec-
trum is commonly scaled to the root-mean-square value by divi-
sion with /2.

6 The complex conjugate of the complex number z = a +ib is given by invert-
ing the sign of the imaginary part, i.e. z* = a—1ib (e. g. [77]).
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6.1.2  Rejection of Flow Noise

The pressure fluctuations measured with the microphones are a
superposition of the sound pressure and flow induced turbulent
pressure fluctuations. Chung [95] presents a method to reject the
turbulent flow noise using three signals measured at different lo-
cations. The basic premise is that the flow noise at these three
positions is uncorrelated, while the sound pressure is completely
coherent. The coherence between any two signals x and y is calcu-
lated from the auto-spectral and cross-spectral densities [47]

Yiy = |Guy|*/ (Gxx - Gyy) - (6.5)

The ‘noise-free” auto-spectral density G, yields [95]

G/u =Gy (Vlz ‘Y31) /V23 . (6.6)

The indexes 1, 2, and 3 refer to the three signals. Here, the signal
of two microphones and the input signal of the loudspeaker are
used. In that case index 1 refers to the target microphone, index 2
to an arbitrary reference microphone, and index 3 to the speaker
input signal.

The result of Equation (6.6) is a real valued auto spectrum with
unit Pa®>. However, the plane wave decomposition (see Section 6.2
below) relies on the phase information of each microphone. The
phase information is added by using the loudspeaker input signal
as an arbitrary, but fixed for all microphones, phase reference. In-
serting Equation (6.5) into (6.6) and adding the phase of the cross
correlation between the target signal and the loudspeaker signal
yields

_ |GIZ| }Gl3|

1arg ) X 6
Ton (6.7)

G/

The complex pressure amplitude at the position of the target mi-
crophone x, is then given by P