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Chapter 1

Introduction

Machine Learning is a field of research concerned with developing new (parameter depen-

dent) algorithms for solving problems that are commonly denoted as regression and/or

classification problems. The goal in both problem settings is to learn a functional re-

lationship between some input data x and some associated output y without explicitly

knowing the real dependence. This is achieved by learning a mathematical model f̂ of

the real (unknown) function f . Situations in which the output variable y is continuous

are called regression problems and if y is comprised of discrete values it is referred to

as classification. In fact, classification can be regarded as a discrete regression problem,

and can, therefore, be considered a special case of regression. In general, the model f̂

depends on a limited number of parameters which are inferred from a given set of data.

After inference, the parameters are applied to the model to perform a prediction of new

data. Commonly, it is assumed that two D-dimensional datasets are given, the first set

XP ⊂ RD×M ,M ∈ N is used for the prediction and will be referred to as primary dataset

as it is of primary interest (it is also called target or testing data). The second dataset

XS ⊂ RD×N , N ∈ N is for inferring the parameters and will be named secondary data

because it takes the role of a helper dataset that is not of primary concern for the pre-

diction. It is therefore often called auxiliary, source or training data. In addition to the

data, one also gives the so called labels or dependent variables Y P ⊂ RM and Y S ⊂ RN

respectively. The labels encode the value that one wants to predict. The secondary

labels are used for the parameter inference of the prediction model and the primary

labels for assessing the quality of the actual model prediction. The inference or learning

procedure in a standard machine learning assumes that both dataset samples are equal-

ly/identically and independently distributed (i.i.d.) and, therefore, sampled according

to the same distribution 1. This means that for a given distribution p : RD+1 → R+, the

1In machine learning literature the terms density and distribution are used interchangeably.
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2 Chapter 1 - Introduction

data is distributed as XP , Y P ∼ p and XS , Y S ∼ p. Such an assumption is often jus-

tified and furthermore provides a very consistent and convenient analytical framework

for the analysis and the development of a diversified set of algorithms. Moreover, this

model is an ideal simplification and intuitive in most cases. The main problem is that

in certain cases, the assumption of identically distributed data can be violated and both

dataset samples do not necessarily follow the same distribution. The reason for that is

a change in the underlying distribution, i.e. the distribution pP for the primary data

differs from the secondary distribution pS .

A well known example of a violation of this assumption is the stock market. The price

of a stock, in general, depends on several influences, like the actual financial and opera-

tive situation of a company or shareholders speculations on the future of the company,

etc.. These influences and their impacts fully characterize the underlying distribution p

but are normally unknown and unobservable in most cases. Further, if these influences

and/or their impacts change, the characteristics of the distribution p also change. There-

fore, if one has given secondary data XS , Y S from a period where the data generating

process followed a distribution pS the current primal data XP , Y P usually follows an-

other distribution pP 6= pS . This change in distribution is also known as non-stationary

stochastic process [69] and as a result the old data XS , Y S is shifted towards the new

data XP , Y P . Such kind of shift (or shifts), which are known as dataset shifts, have

a huge impact on the model, since the model inferred on the S data is no longer ap-

plicable to the data of interest, i.e. the P data. One can think of different approaches

for solving this problem. For instance, in the stock market example the influences are

extremely difficult to model and therefore the stock price is commonly modeled as a

brownian motion [55] (a.k.a Wiener process) which is actually an oversimplification.

Since the brownian motion is by construction a stationary process, one often applies

an additional (often deterministic) function for modeling the non-stationarity (for in-

stance an Ornstein-Uhlenbeck process [81]). This implies that the characteristics of

non-stationarity are exactly known. Similarly, in most other real world scenarios, the

non-stationary cannot be modeled due to the same or comparable reasons as for the

stock market example.

In contrast to the deterministic approach, statistical methods simplify such problems

by providing general models that depend on a limited number of parameters. The ad-

vantages of such approaches are that they are flexible and relatively easy to apply. The

disadvantage is that one has to accept a certain degree of inaccuracy due to the lack of

exactness. However, in many situations statistical approaches provide satisfiable results

and are a good compromise between complexity, accuracy and costs. Yet, statistical

methods are fundamentally different from the deterministic setting. Instead of estimat-

ing a model of a drift function, as in the deterministic setting, a statistical method tries
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to figure out a function that gives information about which datapoints from a given state

are applicable to another state such that a modified model only considers those points

of the dataset that could as well correspond to the other state of the process. Following

this idea and ignoring the estimation of a model of a transformation or a drift function,

the problem gets simplified such that a more flexible framework is considered.

Therefore, statistical approaches are well suited for the dataset shift problem, since the

goal is to provide a good model for the prediction of the data of primary interest and

not the determination of the actual hidden transformation process. Considering only

the secondary data that helps to improve the inference of a prediction model for the P

data, it can be achieved by stating a function that assesses which secondary datapoints

are appropriate and which ones are not. One idea for getting this function could be

the determination of the difference inbetween the states of the data generating process.

The resulting function can then be applied to an existing model such that the old model

is transformed to account for the shift between the secondary and the new data and

therefore better predicts the new shifted data with the help or in the context of the

secondary data. Since the states of the process are characterized by the distributions

pP and pS one can figure out this function by applying these distributions. That means,

that the difference between the distributions pP and pS needs to be somehow measured.

Special types of functionals, called divergence measure, provide an analytical framework

for measuring the difference between two given distributions. The result of such a

divergence measure is a positive number that can be understood as a similarity or

dissimilarity score between these distributions. The score then provides a guideline for

inferring the drift compensating function which is then applied to the existing model.

Ideally, the resulting modified model is less prone to the drift which, as a consequence,

provides a better prediction.

While this approach is reasonable the problem, in general, the two distributions pP and

pS are unknown. If both were known, one would already have an exact mathematical

model of the underlying data generating process. Instead, normally, one only gives the

dataset samples XP , Y P and XS , Y S that correspond to each state or distribution of

the process. However, since the data XP , Y P and XS , Y S reflect the characteristics of

the primal and secondary distribution pP and pS , respectively, it is possible to conduct

properties of each distribution by applying the corresponding dataset. Thus, instead of

applying a divergence measure directly, an empirical approximation based on the given

data is used for the estimation of the similarity score between the two distributions. The

so obtained similarity scores can then be used to determine a function w whose values

can be interpreted as some sort of weights. That means for a given new datapoint

(x∗, y∗) from the domain of definition, this weight function w(x∗, y∗) returns a number

that states the similarity of the datapoint (x∗, y∗) to the dataset of interest, i.e. the
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P data XP , Y P . A high value of a weight w(x∗, y∗) denotes a high similarity to the P

data while a low value a dissimilarity. By applying this function w to the problem at

hand, it becomes possible to figure out those points of the secondary data XS , Y S that

are similar to the P data. Therefore, one can extend the number of data available for

inferring a new model on the P data by adding similar S datapoints to the inference

procedure. This is especially of advantage in situations where only very few P data is

available such that one can improve the inference of parameters for the prediction model

of the P data. Approaches that apply this strategy are commonly referred to as instance

based approaches since they treat each datapoint or instance of the S data individually.

Instance based approaches are very versatile and can be applied in a lot of dataset shift

situations. This thesis presents two new algorithms for compensating two different types

of dataset shifts.

The first algorithm improves an existing set of instance based algorithms by applying

a Fourier series approximation. Although instance based methods are very intuitive

approaches, they still have some drawbacks that become evident when only a very low

number of data points at some process states is sampled. Given a very low number of

samples, the risk of an inappropriate approximation of the divergence measure grows.

The weight function for compensating the shift might become too volatile such that it

no longer provides a proper solution. This volatility is due to the noise in the given data

which has an higher impact since only a limited number of datapoints is given. In order

to compensate this obstacle, one can apply the Fourier series to the divergence measure

which yields a new kind of approximation. It turns out that the volatility of the weight

function is mainly encoded in the higher frequencies spectrum. Therefore, by truncating

the length of the Fourier series, one can eliminate these higher frequencies or noise and

only capture those frequencies that have a systematic impact. This kind of technique

can be understood as some sort of filtering that leads to a smoother weight function

also in situations where only very few dataset samples are given. While providing better

approximation properties for some dataset shift settings, the method unfortunately is

prone to the curse of dimensionality. The reason for that is the Fourier series itself.

When considering D-dimensional problems, the Fourier series approximation of length

K requires the calculation of (2K + 1)D coefficients which grows exponentially. Even at

a very low number of dimensions like for instance D = 10 this approach can be computa-

tionally too demanding such that calculations might become too expensive to perform.

To compensate this problem a structure called the Hyperbolic cross can be applied

which is a special selection scheme for the Fourier coefficients that reduces the amount

of coefficients to an acceptable number. By applying this selection scheme, ideally those

coefficients are applied that contribute significantly to the actual approximation while

the other low contributing ones are omitted. As a result, the final approximation is very
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accurate and simultaneously computationally feasible. This way, one can also benefit

from the smoothing property in higher dimensional spaces.

The second new contribution of this thesis are two new algorithms for compensating

a special type of dataset shifts, called Source Component Shift. This is a situation

where not only the samples of the features or covariates X are shifted but also the

corresponding labels or dependent variables Y . The new algorithms can be applied to

regression problems and produces good results when the number of P data samples is

very low. Both algorithms also belong to the class of instance based approaches and

assign large weight factors to S data that is similar to the P data. Therefore, these

algorithms augment the P data by adding only those S datapoints that are similar to

the P data in the sense of a divergence measure. Both algorithms are very general such

that they do not require a special structure of the data.

This thesis is structured in the following way: Chapter 2 gives an introduction of the

topic of importance sampling which plays a central role for stating the weight function.

This provides a basis for the introduction of divergence measures in the next section of

the chapter. Chapter 3 gives a brief introduction of Fourier series approximation and

basically is a chapter that briefly summarizes the properties and benefits. In addition,

the Hyperbolic cross is introduced and its benefits are highlighted. Chapter 4 explains

the types of dataset shifts considered in the machine learning setting and how it can

be compared to the standard machine learning setting. Each type shift will be defined

in mathematical terms and illustrated by figurative examples. Given the definitions of

different types of dataset shifts, chapter 5 is about types of machine learning approaches

for compensating those shifts. Different types of such approaches for compensating

shifts are presented which are commonly referred to as Transfer Learning approaches

since they transfer knowledge from one dataset to another. Since instance based transfer

learning approaches are paramount for this thesis, this type of transfer learning tech-

nique is discussed in details in the subsequent chapter 6. The beneficial properties of

divergence measures that have been explained in chapter 2 are investigated in more

detail in reference to the derivation of an appropriate approximation of the weight func-

tion. Further, the characteristics of the weight function approximation are explained

and illustrated such that the reader will get a feeling which critical properties should be

paid attention to when considering this type of approximation. Based on these consid-

erations, the current state of scientific work of instance based approaches is introduced

such that it becomes clear how the new methods fit into the current state of the art

methods. Finally, modifications of standard learning algorithms are derived such that

they can employ weight coefficients and therefore become able to compensate dataset

shifts. Chapter 7 introduces a new approach for compensating a dataset shift called co-

variate shift. The new approach is derived by applying the Fourier series approximation
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to different divergence measures. In order to make it applicable to higher dimensional

problems the Hyperbolic cross is implemented. Several properties of the new approaches

are investigated and an extensive experimental section shows the benefits compared to

existing methods. The last chapter 8 introduces two new types of algorithms for com-

pensating source component shifts. The chapter provides detailed derivations of both

algorithms and an extensive analytical and experimental analysis.



Chapter 2

Importance Sampling and

Divergence Measures

The results presented in this thesis rely on several mathematical concepts which are

explained in the next few chapters. The first concept is called Importance Sampling.

Importance Sampling is a technique that states the similarity of two given distributions

p and q as a function of x (called importance function) such that one can get a similarity

value in R+ at each point. The second part of this chapter will discuss divergence

measures. Divergence measures are functions that can be understood as a class of

functions for measuring the similarity of two given probability functions. They can be

used in combination with importance sampling such that they extend the importance

function to a measure of the similarity of two given distributions p and q on the whole

domain of definition. Therefore, the main goal of this chapter is the introduction of a

set of mathematical tools for measuring similarities for a given set of distributions.

2.1 Importance Sampling

The first section will start with the technique called Importance Sampling. Importance

sampling is basically a transformation mechanism that can be useful in situations in

which data samples generated by a distribution p are preferably investigated under an-

other distribution q of interest. Thus, importance sampling can be an ideal choice when

working with non-deterministic quantities. Typical applications are variance reduction

and/or the calculation of Monte Carlo estimators.

7
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2.1.1 Introduction to Importance Sampling

A common approach in statistics is the calculation of Monte Carlo estimators. Monte

Carlo denotes the approximation of an expectation by the sample mean of a function of

simulated random variables. Mathematically speaking, given a set X ⊂ RD, a function

f : X 7→ R, and a density p(x) one would like to calculate:

Ep [f ] =

∫
X
f(x)p(x)dx ≈ 1

N

N∑
i=1

f(xi) =: f̄

where {xi}Ni=1 is data drawn according to p. The approximation of this integral f̄ is

called the mean or Monte Carlo estimate. Since the result of the Monte Carlo estimate

f̄ depends on the samples {xi}Ni=1 and its corresponding size it is in itself a random

variable. Therefore, the expression f̄ has also a variance which is given by:

Var
[
f̄
]

= Var

[
1

N

N∑
i=1

f(xi)

]
≈ NVar [f ]

N2
=

1

N

∫
X
(f(x)− E [f ])2 p(x)dx. (2.1)

This variance can be interpreted as the risk of the mean estimator. A large variance

implies a high uncertainty about the estimation of the real expectation. Therefore it

would be desirable if one could reduce this risk. Importance sampling is a technique for

reducing the variance of such estimators by sampling data points from another distribu-

tion that accounts for events that have a higher impact on the calculation of the Monte

Carlo estimate and are therefore considered important events. The variance is especially

high if these important events only happen infrequently. Since then, these events would

be rare and have a high impact on the outcome. A more frequent consideration of these

rare events could reduce the variance and hence improve the reliability of the calculation

of the expectation. A classical example for the application of importance sampling in

combination with such rare events can be found in the finance sector. There, the price

calculation (a.k.a. pricing) is a common problem where the price of a financial deriva-

tive, for instance a knock out or barrier option, has to be estimated. A barrier option

only generates a payout if a certain goal, like price barrier, is reached - otherwise the

payout is zero. Having several trials of samples of the underlying (for instance stock

price samples simulated by a brownian motion) the price is then given by calculating

the Monte Carlo estimate of
∑

payouts/trials, where the payout is either positive or zero

and the trials are the number of several simulated samples. The price is therefore the

expected (fair) gain one can achieve with the derivative. Commonly, the payout is very

often a rare event because the touching of such an event, i.e. the price barrier, might

happen only very scarcely. This can lead to a situation with several simulated trials of

samples which, due to the low probability of a rare event, do contain zero or only very
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few samples that reflect such a payout event. Typically, this happens if the current price

of the underlying (the stock) of the derivative is distant to a payout event such that the

price or value of the option will be low due to the low probability of a payout. However,

these rare events are very critical for the correct pricing of the option. If, for instance,

only 100 trials are given, there is a chance that all sampled payouts are 0 which results

in a price of 0 for the option. This cannot be, since the chance of making a profit with

this option is not 0. Therefore, when having only very few data, the risk or variance of

the estimate is in this case too high. On the other hand, the acquisition of more data

solves the problem because the estimation becomes better. Unfortunately, acquiring

more data usually goes along with higher computational costs which often is neither

possible nor acceptable. Therefore, instead, another method for the mean estimation

is needed that is reliable and simultaneously employs only very few data. Importance

sampling accounts for this by calculating the mean under a different distribution q that

more often generates these rare events:

Ep [f ] =

∫
X
f(x)p(x)dx

=

∫
X
f(x)

q(x)

q(x)
p(x)dx

=

∫
X
f(x)

p(x)

q(x)
q(x)dx = Eq

[
p

q
f

]
.

Interpreting the latter expression means that the data is now generated by another dis-

tribution q that more frequently generates the rare events. However, if the data would

only be sampled from q one would get a biased estimate. To prevent this, a correction or

reweighting is performed by applying p(x)
q(x) to each realization of f(x). By construction,

these reweighting factors exactly compensate for this bias which makes importance sam-

pling an unbiased method. Therefore, if one would know the exact distribution of the

payouts one could better estimate the option price by applying importance sampling.

In fact, in practical applications the outcome of the empirical estimate essentially only

depends on such important or rare events. Therefore, due to the higher sampling rate of

those events the relevant information is observed much more often which in return in-

creases the confidence of the estimation. Proofs that the importance sampling approach

reduces the variance of an estimator make use of the Cauchy-Schwarz inequality and

are given for instance in [82]. As shown, by choosing a good sampling distribution q it

becomes possible to reduce the risk of the estimator. Unfortunately, an unwise choice of

q on the other hand can also increase the risk which should be taken into account when

selecting another sampling distribution q. Consequently, densities for importance sam-

pling should be constructed in a way such that they preferably pick important samples.
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2.1.2 Importance Sampling Example

The following illustrative example gives insights on the benefits of importance sampling

methods by showing how the application improves the accuracy of an estimator. The

following event or indicator function (see also figure 2.1) is given:

1A(x) =

{
1 if x ∈ A = [7, 8]

0 otherwise.
(2.2)

The distribution of the variable x is considered to be normally distributed by p ∼
N (µ, η2) with µ = 5 and η =

√
2 (blue function plot in 2.1). Then the exact analytical

mean of the event function is given by:

Ep[1A(x)] =

∫ ∞
−∞

1A(x)dp(x) =

∫ ∞
−∞

1√
2πη2

1A(x)e
− (x−µ)2

2η2 dx. (2.3)

Pretending that the exact analytical mean value can not be calculated due to an unknown

distribution p it is assumed to have a finite set of samples X = {x1, . . . , xN} that have

been drawn from the original or canonical sampling distribution p. Then, the empirical

mean is given by its Monte Carlo estimate:

X̄ =
1

N

N∑
i=1

1A(xi). (2.4)

By the strong law of large numbers, this sample average converges to the true mean as

N tends to infinity. But since in practise only a finite sample of observations X from

the distribution p is given, one is facing a situation which implies a certain variance

on the sample mean which is given by (2.1). In unfortunate situations, the variance of

the estimator can be very high due to the fact that important events occur very rarely.

The empirical variance of expression (2.4) is calculated by considering various empirical

means {X̄1, . . . X̄M} that have themselves been calculated by considering multiple sam-

ple sets Xj = {xj1, . . . , x
j
N}Mj=1 from the distribution p. The upper right plot in figure 2.1

shows the empirical distribution of various sample means as a histogram. The broader

the distribution, the larger the variance and the more uncertainty about the reliability

of the approximation of the real mean is present.

As previously explained, an appropriate application of importance sampling will reduce

this uncertainty. However, in order to benefit from this technique the choice of sampling

function q is crucial. Considering the event function (2.2) one faces the problem that

the event 1 of the indicator function is relatively rare to happen when sampling from

the canonical distribution p. Yet, this event has a huge impact on the final result

and is therefore considered important. Therefore, frequent observations of this event
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Figure 2.1: Illustrative example of the benefits of importance sampling. Upper left
plot: The blue normal distribution denotes the canonical sampling distribution. Up-
per right plot: The histogram of various calculated sample means according to (2.4).
Estimator (2.4) has relatively large variance. Lower right plot: The histogram of the
reweighted empirical mean (2.4) according to the importance sampling weights given
in the lower left plot (green dashed line). The variance is significantly reduced which
enables a much more accurate estimation of the empirical mean.

would be desirable because it would enable the calculation of the empirical mean more

precisely. Following the idea of importance sampling one should choose a new sampling

distribution q which more often generates the event 1. Thus, to get more rare events,

an appropriate sampling distribution could be q ∼ N (µIS , σ
2
IS) with mean µIS = 7.5

and variance σIS =
√
.2 (see red function plot in figure 2.1). A sample XIS according

of this distribution would much more often produce samples that correspond to the rare

events of the event function 2.2. However, in order to prevent a biased estimator for the

sample mean w.r.t. to the canonical distribution p one additionally has to calculate the

importance weights for the reweighting of each sample:

Ep [1A] =

∫ ∞
−∞

1A(x)p(x)dx =

∫ ∞
−∞

1A(x)
p(x)

q(x)
q(x)dx = Eq

[
p

q
1A

]
.

Due to the considerations in section 2.1.1 this is an unbiased estimator of the original

sample mean under p and therefore converges to the exact mean when N tends to infinity.

The main advantage of this approach is that as a result one gets a much lower variance

in the estimation of the mean which in turn means that either less samples are needed

or a more confident estimation of the mean becomes possible by applying the same

number of samples to the calculation. The other plots at the right in figure 2.1 show the

distribution/histogram of 1000 sample means once taken by distribution p (upper right)

and once by sampling according to q and sample reweighting by the importance function
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(lower right). As can be seen from the figure the application of importance sampling

reduces the variance significantly resulting in a much narrower and peaked distribution.

2.1.3 The Importance Function

Of special interest for this work are the importance weights p(x)
q(x) for unbiasing the sample

mean. The quotient assigns an individual weight to each value x from the domain and

can therefore be considered being a weight function, defined by w(x) := p(x)
q(x) . This weight

function w : X ⊂ RD 7→ [0,∞) is also known as the Radon-Nikodym derivative [62] .

The Radon-Nikodym theorem states that for two given measures (in this particular case

the densities) p and q with p being absolute continuous2 w.r.t. q (p� q) on a measure

space Ω and its corresponding σ-algebra [46] F there exists a function w (the so called

Radon Nikodym derivative) such that for a set A ∈ F the equality p(A) =
∫
Awdq

holds. The derivative is often denoted by w = dp/dq. In the importance sampling setting

the Radon Nikodym derivative w(x) is usually called importance function and can be

interpreted as giving a similarity score of two given probability measures p and q at each

point x. For instance, having two identical distributions p ≡ q the score will be constant

w(x) ≡ 1. Therefore, a value of 1 denotes that at a point x the distributions are equal

while any other value different from 1 indicates a difference in both distributions. The

differences can either be in [0, 1) or (1,∞). The first case where {x ∈ X |w(x) < 1}
means that w.r.t. the distribution p the other distribution q samples such an x too

frequently. As a result, in order to conform the distribution p, this particular x needs to

be corrected by a ”reduction factor” smaller than 1. The second case {x ∈ X |w(x) > 1}
is exactly the opposite, meaning that in this case the distribution q samples such a x too

infrequently resulting in a lift of importance for matching the distribution p. Further,

the similarity score induced by the importance function (or Radon-Nikodym derivative)

w is exact. That means that the similarity score matches the exact correction ratio for

the probability of x under q w.r.t. p. This result can be very useful when dealing with

data samples that have been drawn from these two distributions p and q. Given the

two distributions p and q one can ask how likely a sample x from distribution q is under

p. This can become especially useful when having a dataset sample {x1, . . . , xN} from

q for which one would like to know how likely the observed data is sampled from the

other distribution p. As a result it becomes possible to determine which samples from

the q dataset might be very similar to another dataset sample from p and which are not.

Therefore, the potential of the application of importance sampling and in particular of

the importance function w goes beyond the mere (although important) improvement of

the calculation of the sample mean. The idea and application of the weight function

2A measure p is called absolutely continuous w.r.t. another measure q if for any element A ∈ σ(Ω)
(the σ-algebra [46]) p(A) = 0⇒ q(A) = 0. The notation for this is p� q.
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for measuring the similarity between some dataset samples is paramount for this thesis

and will be the basis for the new findings. The next chapters will introduce concepts

that depend on this idea in detail and show the benefits when applying these concepts

to some new kind of problems.

2.2 Divergence Measures

This section is about a class of mathematical functions that are commonly referred to

as divergence measures. The purpose of these functions is to measure the similarity or

dissimilarity of probability distributions. This is achieved by wrapping the importance

function introduced in the previous section and returning a value that can be interpreted

as a similarity score. The following subsection mainly follows the presentations given in

[23].

2.2.1 Divergence Measure

Divergence measures are widely used in a lot of areas of statistics, machine learning,

inference, optimization and others [23]. The definition requires two probability density

functions p, q from the space of functions P := {f |f : X ⊂ RD → R+,
∫
X f(x)dx = 1}.

Then the divergence measure is defined by D (·||·) : P × P → R+ such that D(.||.) :

(p, q) 7→ R+ assigns two given probability density functions p and q a positive number.

In the case of a discrete probability distribution p = (p1, . . . , pn) ∈ [0, 1]N , where the

probabilities are given as a N -dimensional vector, the definition is given as D(·||·) :

[0, 1]N × [0, 1]N → R+. A divergence measure is often applied as a distance measure

between two distributions p, q although it does not satisfy all the requirements of a

metric. Since it does not necessarily meet the symmetry condition, i.e. D(p||q) = D(q||p)
does in general not hold, it can not be considered a metric. Further, it also does not

need to satisfy the triangular equality, i.e. D(q||p) � D(q||r) + D(r||p) for some other

distribution r. However, they are reflexive, i.e. D(p||q) = 0 if and only if p = q,

and positive D(p||q) ≥ 0. Therefore a divergence measure provides a quasi-distance or

directed difference between two probability distributions or densities p and q.

It should be noted that in most machine learning literature the terms distance and

divergence are used interchangeably although this is strictly formally spoken not correct.

For this work, two main classes of divergences are of importance. The first one is the

class of Csiszár f-divergences and the second one is the class of Bregman divergences.

Csiszár f-divergences [25] describe a class of (permutation) invariant and non-decreasing

local projections [23]. The class of Csiszár f-divergences covers properties of popular
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divergences like Kullback-Leibler divergence [52] or Hellinger distance [42]. The second

class are the so called Bregman divergences [15]. This class emerges from strictly convex

functions and gives a generalization of the squared euclidian distance. Both classes are

briefly discussed in the following two sections.

2.2.1.1 Csiszár f divergences

The Csiszár f-divergences describe a class of functions or functionals that can be used to

quasi-measure the difference between two given probability functions p and q. They have

been independently defined by [25], [58] and [4]. For two given probability densities p

and q with support X ⊂ RD and p absolutely continuous w.r.t q (i.e. p� q) the function

is defined by:

Df (p||q) =

∫
X
f

(
p(x)

q(x)

)
q(x)dx. (2.5)

Here, f : [0,∞)→ R+ is a convex function with f(1) = 0 and p, q are absolutely continu-

ous with respect to the Lebesgue integral. The quotient dp
dq denotes the Radon–Nikodym

derivative [62]. In a discrete setting the divergence becomes:

Df (p||q) =

N∑
i=1

d (pi||qi) =

N∑
i=1

f

(
pi
qi

)
qi (2.6)

where the distributions are given as p = {p1, . . . , pN} and q = {q1, . . . , qN}. The quotient

(which is the discrete counter part of the Radon-Nikodym derivative) is also referred to

as odds ratio or likelihood ratio.

f -divergences have several properties which are briefly stated here. The first property is

the separability property which means that in the case of discrete distributions D(p||q)
can be written as a sum D(p||q) =

∑N
i=1D(pi, qi). This holds true for any f -divergence.

The f -divergence is invariant which means that in the case of permutations of discrete

distributions pi and qi the divergence measure does not change. In the continuous setting

one has to apply a diffeomorphism h : X 7→ X ′. Given Jh(x) the determinant of the

Jacobian of h one gets for a density p(y) = p(h(x)) = p(x)|Jh(x)|−1. Therefore this

transformation yields:

Df (p||q) =

∫
X ′
q(y)f

(
p(y)

q(y)

)
dy =

∫
X
q(x) |Jh(x)|−1 f

(
p(x) |Jh(x)|−1

q(x) |Jh(x)|−1

)
|Jh(x)| dx

=

∫
X
q(x)f

(
p(x)

q(x)

)
dx = Df (p||q).
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f -divergences are also non-negative, since due to Jensen’s inequality and the fact that f

is convex function it holds that:

Df (p||q) =

∫
f

(
p(x)

q(x)

)
q(x)dx ≥ f

(∫
p(x)

q(x)
q(x)dx

)
= f(1) = 0.

Further f -divergences satisfy the information monotonicity [22] criteria. Figuratively

spoken that means that combinations of events on which the divergence is calculated is

upper bounded by the calculation on the most basic sets. Mathematically, this can be

described by assuming several events A = {A1, . . . , An} ⊂ X and B = {B1, . . . , Bn} ⊂ X
with each event Ai and Bi being an atomic element [46] having a probability pi and qi

each and
∑n

i=1 qi =
∑n

i=1 pi = 1. By considering the σ-algebras [46] σ(A) and σ(B) with

cardinality |Ã| = |B̃| each new element Ã ∈ σ(A) and B̃ ∈ σ(B) is a combination (like

union, intersection etc.) of those basic or atomic elements. From the properties of a σ-

algebra each new set arising from σ(A) and σ(B) has corresponding distributions p̃ and

q̃. The information monotonicity states that the combination of atomic events to one

event implies that the divergence measure does not increase. That is: D(p||q) ≥ D(p̃||q̃)
for each distribution p and q defined on the atomic set and any other distributions p̃, q̃

defined on elements from the σ-algebras.

Depending on the convex function f one gets different f -divergence measures. An ex-

tensive list of different measures is given in [23]. Important examples are:

• Total Variation distance where f(u) = |u− 1|. Plugging this f into the definition

of a f -divergence one gets (the non-differentiable):

D(p||q) =

n∑
i=1

|pi − qi| .

• Squared Hellinger distance [42] which is given by f(u) = (
√
u− 1)2 for which the

divergence becomes:

D(p||q) =

n∑
i=1

(
√
pi −

√
qi)

2 .

• Pearson and Neyman Chi-square divergence defined by f(u) = 1
2(u − 1)2 and

f(u) = 1
2

(u−1)2/u yield:

D(p||q) =
1

2

n∑
i=1

(pi − qi)2

pi
and D(p||q) =

1

2

n∑
i=1

(pi − qi)2

qi
.
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• The Kullback-Leibler divergence [52] or KL-divergence given by f(u) = u−1−log u

yields:

D(p||q) =
n∑
i=1

qi log

(
pi
qi

)
.

The KL-divergence and the Hellinger distance are special cases of the so-called α diver-

gence [23].

2.2.1.2 Bregman Divergences

A second important class are the so-called Bregman divergences. The name and defini-

tion of this class of divergences goes back to [15]. Bregman divergences appear naturally

in many fields of applications and the justification of its application depends on the

problem at hand. For instance, Bregman divergences are used in the field of regret (or

opportunity loss) 3 minimization [79]. [93] state a new algorithm for maximum margin

estimation of structured output models like Markov Random Fields [13] which are undi-

rected graphical models having a Markov property. They apply Bregman’s method [37]

which is an iterative algorithm for solving convex optimization problems by applying

divergence measures. [12] develop an abstraction framework for the k means clustering

algorithms. Instead of only applying the euclidian distance they consider different di-

vergences of the class of Bregman divergences which leads to a generalization to a large

class of clustering loss functions. Another application is the definition of conjugate priors

with the help of Bregman divergences [2]. [2] give new insights on why it is reasonable to

apply conjugate priors in Bayesian approaches by applying Bregman divergences. This

way they can show that the geometric properties of different Bregman divergences give a

better intuition on conjugate priors and additionally state a method for deriving better

hyperparameters. A further notable application of Bregman divergences is given by [24].

They show that boosting in the view of a Bregman divergence leads to a new conver-

gence proof of the adaboost algorithm [31] and additionally allows to make a connection

to Logistic Regression.

Bregman divergences can be understood as a generalization of the squared euclidean

distance between two points to a class of distances that share certain similarities. To

understand this, consider the following decomposition for the distance between two

points:

||p− q||2 = 〈p− q, p− q〉 = ||p||2 − ||q||2 − 〈2q, p− q〉 (2.7)

3The regret is the difference between the difference of the outcome f̂(x) and the actual real label y,
namely ||f̂(x)− y|| and the difference between any other outcome ¬f̂(x) (read like not f̂(x)) and y.
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The geometrical interpretation of this expression is that the second part of the expres-

sion, namely ||q||2−〈2q, p−q〉 denotes a tangent at q evalutated at the point p. Therefore

(2.7) is the difference between the convex function f(q) := ||p||2 and the corresponding

tangent for q evaluated at p. That is:

D(p, q) = f(p)− f(q) + 〈∇f(q), p− q〉. (2.8)

The function D(·, ·) is always positive which geometrically implies that any tangent of f

lies always below the function f . Therefore this expression (2.7) can also be considered

a measure of convexity. However, the function f does not necessarily have to be the

squared euclidian distance but can be any convex function.

This directly leads to the definition of the class of Bregman divergences: Given a

continuously-differentiable, real-valued and strictly convex function f : X → R where

X ⊂ RD is convex and closed. Then, for two given points p, q ∈ X the Bregman

divergence is defined by:

Df (p||q) := f(p)− f(q)− (p− q)t∇f(q)

where ∇f(q) denotes the gradient of f at q. Thus, Bregman divergences are parameter-

ized by the convex function f .

Since Bregman divergences can be understood as some kind of distance measure between

a convex function f and it’s tangent a lot of results of convex analysis can be applied

to this mathematical structure. Like the Csiszár f -divergences Bregman divergences

are in general not symmetric and also do not satisfy the requirements of the triangular

inequality. In contrast to the Csiszár f -divergences the Bregman divergences do not con-

form to the information monotonicity criteria. Other properties of this class of functions

are the non-negativity which is a consequence of the convexity of f . Further, due to

the strict convexity of the function f the Bregman divergence can be expressed in dual

terms. One can apply the Legendre transformation to obtain a dual representation. By

defining q∗ := ∇f(q) one gets a bijective mapping between the slope of the function f

and it’s function value. And the Legendre transformation is given by:

f∗(q∗) = max
q
{qq∗ − f(q)} . (2.9)

Geometrically speaking, the function inside the max{·} expression denotes a tangent of

f which is always smaller or equal to the original function f due to the convexity of f .

From this fact one can conclude that for a certain value q0 and for q∗(q0) = d
dqf(q0) the
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following holds:

f∗(q∗) = max
q
{qq∗ − f(q)} = q0q

∗ − f(q0).

Therefore, the Legendre transform satisfies f(q) + f∗(q∗) − qq∗ = 0. Taking these con-

siderations, the dual expression of an arbitrary Bregman divergence is given by:

D(p, q) = f(q) + f∗(p∗)− qp∗.

A special case of a Bregman divergence is the Kullback-Leibler divergence (KL-divergence).

The KL-divergence is the only divergence that satisfies the requirements for both the

f -divergence and the Bregman divergence. The KL-divergence in the Bregman setting

is obtained by considering f(p) = p log(p). Other examples for frequently used Bregman

divergences are:

• Squared Euclidian distance by setting f = || · ||2

• Itakura-Saito distance by f := − log(p) yields:

DIS(p, q) =
N∑
i=1

(
log

(
qi
pi

)
+
pi
qi
− 1

)

This special divergence is often used in the spectral analysis of speech signals.

• Inverse divergence, when f := 1/p:

D(p, q) =

N∑
i=1

(
pi
q2
i

+
1

pi
− 2

qi

)

• Exponential divergence for f := ep:

D(p, q) =
N∑
i=1

(epi − (pi − qi + 1) eqi)

Further examples for Bregman divergences can be found in [23].

2.2.2 Summary

Divergence measures are a broad toolkit for measuring the similarity of two given distri-

butions. Most of the divergences rely at their core on the Radon-Nikodym derivative and

can therefore be considered to be closely connected to importance sampling. Thus, the
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concept of importance sampling fits canonically and naturally into this whole concept.

Further, divergence measures may serve as a framework for applying the importance

function w(x) = p(x)
q(x) in the process of estimating or determining similarity. Therefore,

the combination of both importance sampling and divergence measures provide a foun-

dation for stating new kind of algorithms which enable to solve new kind of problems.

The settings for such kind or problems will be introduced in the coming chapters.





Chapter 3

Fourier Series Approximation and

Hyperbolic Cross

The following chapter will introduce the Fourier Transform and an approximation

scheme for reducing the computational costs of the numerical calculations. For com-

pleteness, the first part will introduce the well known Fourier transform and the Fourier

series and its basic properties. Of special interest will be the situation of a truncated

Fourier series and its smoothing property for approximated functions which is due to

omitting higher frequencies. Subsequently, the Fourier Transform will be considered

for higher dimensional settings. In order to handle the arising curse of dimensionality

an approximation scheme called Hyperbolic Cross will be introduced which reduces the

computational costs significanty. Therefore, the main purpose of this chapter is the in-

vestigation of the smoothing property of a truncated Fourier series and the introduction

of a special approximation scheme for accelerating the computations.

3.1 Fourier Transform

The first section of this chapter will give an introduction to the Fourier transform which

is a field of study in the area of Fourier analysis. It generally investigates the represen-

tation of a function by trigonometric functions. Fourier analysis can be considered a

branch of harmonic analysis, a field in mathematics that investigates the representation

of functions by linear combinations of wave like functions. Within this field the Fourier

transform itself can be again categorized into several types. The most general one is the

continuous Fourier transform that is given by:

F(f)(ξ) :=

∫ ∞
−∞

f(t)e−i2πξtdt

21
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for a Lebesgue integrable function f : R → C. As the name suggests, both t and ξ are

required to be continuous. In many applications these variables t and ξ are commonly

referred to as time t and frequency ξ, respectively. Since the transformed function,

F(f)(ξ), only depends on the frequency ξ it is also often called the frequency distribution.

An interesting property of the Fourier transform is that under certain circumstances the

Fourier transform can be reverted: If the function f and it’s corresponding Fourier

transform are both absolutely integrable (w.r.t. Lebesgue) then the Fourier transform

can be fully reversed by:

f(t) =

∫ ∞
−∞
F(f)ei2πξtdξ.

Here, f is again the original function. Whenever f ∈ L2(R) the Fourier transform is

an isomorphism such that every function f has a characteristic frequency distribution

that uniquely identifies the function. Therefore, having two frequency spectrums that

are equal implies that both underlying functions f1 and f2 are the same.

Under certain conditions the Fourier transform may be represented by an infinite sum

of complex exponentials. Then the Fourier transform becomes:

f(x) =
∞∑

k=−∞
cke

i2πx k
T (3.1)

and the coefficients ck are given by:

ck =
1

T

∫ c+T

c
f(x)e−i2πx

k
T dx. (3.2)

Here, c ∈ R and T ∈ R+. This representation of a function is referred to as Fourier

series. It should be noted that expression (3.1) already is the inverse of the Fourier

transform, which implies that one actually deals with the inverse transform rather than

the (forward) transform when talking about the Fourier series. The Dirichlet conditions

give criterias under which conditions the Fourier series exactly approximates a function:

Dirichlet Conditions [19] Let f(x) be a real or complex valued function. The Fourier

series of f equals exactly the original function f if the following conditions are all satis-

fied on some finite interval [c, c+ T ]:

1. f is bounded on [c, c+ T ] ⊂ R with c ∈ R and T ∈ R+

2. f has a finite number of minimas and maximas on the interval

3. f has a finite number of discontinuities and

4. f is periodic on the interval [c, c+ T ], i.e. with period T
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further, for a given point x ∈ [c, c+T ], ε > 0 and denoting f(x+) = limε→0 f(x+ ε) and

f(x−) = limε→ε f(x− ε) respectively, then

f(x+) = f(x−) = f(x) =
∞∑

k=−∞
cke

i2πx k
T

where the coefficients ck are defined as in (3.2).

The Dirichlet conditions are sufficient conditions that guarantee that the Fourier series

is equal to the function f . However, not every function meets the Dirichlet conditions.

This is often especially the case for practical problems. Therefore, it is reasonable to

ask what happens to the approximation quality if at least one condition is violated.

Of special interest for this question is in particular the periodicity condition. If the

periodicity condition is violated, one still can try to approximate the function with a

Fourier series though. Then, the function f will be exactly approximated in the interval

[c, c+ T ] but outside the deviation of the original function can be arbitrarily large. As

a consequence, figuratively spoken, one can arrive at the continuous Fourier transform

by extending the bounds of the interval [c, c + T ] to [−∞,∞], i.e. when the period

reaches infinity. Due to that property, it also makes sense applying the Fourier series

approximation to functions which are not periodic but for which only a certain subset of

the domain of definition is of interest. Situations in which the periodicity condition does

not hold often occur in practical settings and one then pretends that a given function is

periodic outside of the sub domain of interest and therefore can continue to deal with an

exact approximation within. Fourier methods are only occasionally used in the machine

learning context. For instance, [73] apply Fourier to approximate the calculation of the

the kernel function. This approach was extended by [107] by stating another method

for approximating the kernels. The application of the Fourier series approximation in

the thesis requires some further considerations and results.

A very important set of functions that can be represented as a Fourier series are functions

from a space known as Isotropic Sobolev spaces. The reason is that these functions

provide a certain type of smoothness. A function is called smooth if all of it’s partial

derivatives of any order exist and are continuous. The Isotropic Sobolev space is defined

by:

Hs(R) :=

f(x) ∈ L2 :
∑

0≤υ≤s
||Dυf ||2L2 <∞

 .

Here, Dυ denote the derivatives up to degree s. So far this definition is not explicitly

related to functions that are represented by the Fourier series. However, it is possible

to state an equivalent definition in the trigonometric setting by applying the continuous
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mapping
(

(1 + | · |2)−
s
2 û(·)

)v
. Then one gets an equivalent definition of the Soblev space

by [48]:

Hs =

{
f(x) =

∑
k∈Z

cke
−i2πkx :

∑
k∈Z

(1 + |k|)2s|ck|2 <∞

}
.

The smoothness properties of functions fromHs(R) have direct implications for the decay

of the Fourier coefficients ck [1, 8, 97]. Therefore, the latter set is characterized by the

decay of the ck coefficients, i.e. each function f for which the coefficients of it’s Fourier

series decay like |ck| ≤ C(1 + |k|)−s belongs to Hs. This decay of the coefficients will

become especially important in the next sections for the construction of the Hyperbolic

cross approximation of the Fourier series in higher dimensional spaces.

Another problem that occurs in practical applications is the actual calculation of the

Fourier series itself. Since the calculation of the infinite sum is always infeasible it

is necessary to approximate the Fourier series. This is commonly achieved by simply

truncating the sum of the Fourier series at some integer K ∈ N:

f(x) =
K∑

k=−K
cke

i2πx k
T .

The consequence of this approach is the lack of contribution of higher frequencies (en-

coded by large values of k) in the approximation of the original function f . By truncating

the Fourier series one implicitly restricts the space of functions that are considered. Thus,

this approach can be understood as some kind of regularization, a.k.a. regularization

by discretization [48, 60]. The degree of truncation, however, has a major impact on

the approximation quality of the Fourier series of the function f . For a given function

f ∈ Cν,β(2π) that is 2π-periodic, has continuous derivatives up to order ν ∈ N, and is

Hölder continuous with Hölder exponent β ∈ (0, 1] it holds that ||f−FK(f)|| ≤ ρν logK
Kν+β ,

where FK(f) denotes the truncated Fourier series up to degree K, and ρν is a constant

that linearly depends on the Hölder constant Mν of f (ν) [9]. In a common approxima-

tion setting, in which one is interested in approximating f very accurately, one normally

would like to truncate the Fourier series as less as possible in order to get a very precise

approximation of high quality. This becomes particularly important when the function

f is very volatile or finely structured at some points (see figure 3.1 for an illustrative

example). Those volatile or finely structured parts are mostly captured at points of

high frequency, i.e. large values for k. On the other hand the lower values (i.e. low

values of k) of the frequency spectrum approximate the dominating (global) structure

of the function f . Figure 3.1 demonstrates the effect of the truncation of the Fourier

series and the consequences for the quality of approximation. The plot shows how fine
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Figure 3.1: Illustrative example of the influence of the truncation of the Fourier series
(red) on the quality of the function approximation. Lower values of K mainly capture
the general structure of a function f (blue) while high values of K approximate finer
structures. The result of such a truncation can therefore be interpreted as some kind
of smoothing. In certain situations this behaviour can be useful.

structures are better approximated when K grows. Although not being shown in the

plot, at K = 100 the approximation is very accurate. On the other hand, reducing the

integer K to lower values means that the approximation only captures lower frequencies

and thus represents the major global structure of the function f . This can be useful if

finer grained areas of the function are not of interest or if these fine areas are the result

of some (random) distortions. Then one could say that the transform is some kind of

filtering that filters the perturbations that are only reflected in these high frequencies

from the Fourier series. This can become, for example, very useful in situations when

a function has been regressed from data. The resulting fitted function might be very

varying due to unknown perturbations the data has been exposed to. An appropriate

truncation then could soften the approximation and therefore yields a better fit. Section

7.2.1 will carry out this idea and give examples when such a truncation makes sense.

3.1.1 Higher Dimensional Fourier Transform

So far the Fourier transform was only considered for the one dimensional space. The

extension to higher dimensions can be achieved by a tensor product construction:

F(f)(x) :=

∫
R
. . .

∫
R
e−2πxtξf(x)dxD . . . dx1

where x, ξ ∈ RD and xtξ denotes the dot product. The Fourier series is then given by:

f(x) =
∞∑

k1=−∞
. . .

∞∑
kD=−∞

ck1,...,kDe
i2π

∑D
d=1

kd
Td
xd (3.3)

ck =
1∏D

d=1 Td

∫ t1+T1

t1

. . .

∫ tD+TD

tD

f(x)e
−i2π

∑D
d=1

kd
Td
xddx. (3.4)

As in the one dimensional case a numerical approximation of the Fourier series requires

a truncation at some integer K ∈ N. Although one could consider different Ks for each
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dimension and for the sake of simplicity it is assumed that K is the same for each dimen-

sion. As for the one dimensional case the aspects about the approximation of a function

of higher dimensions generalize as well. However, although being a simple generalization

to the multidimensional case one quickly runs into numerical problems when trying to

practically calculate the Fourier series for higher dimensions. The problem that arises

is the exponential growth of the computational costs one has to face. Considering that

the one dimensional case requires just the calculation of 2(K + 1) coefficients ck the

calculation of approximations of dimensions of the order of D ∈ N require (2(K + 1))D

which grows too quickly for high dimensional functions. Thus, the calculation of the

Fourier series is prone to the curse of dimensionality leading to a situation in which

the computation of a sufficiently good approximation becomes infeasible. As a conse-

quence, it is virtually impossible to calculate the Fourier series in an adequate quality

for the full set of coefficients. The solution to this difficulty has to be a compromise or

trade off between the number of coefficients ck taken into account and the accuracy of

the approximation such that the result is of acceptable quality while providing tolera-

ble computational costs. An approach that pursues such a compromise is the so called

Hyperbolic cross which will be introduced in the next section.

3.2 Hyperbolic Cross

The previous section highlighted the problems that arise when trying to calculate the

Fourier transform in higher dimensional spaces. The question is whether it is possible

to give an alternative to the full calculation that reduces the computational efforts while

achieving good approximation properties. In fact, an alternative has been very well in-

vestigated in the past [10, 87]. The idea is to approximate the Fourier series by employing

only a very selective subset of the full coefficients ck. Preferably the coefficients that

contribute the most to the approximation of the function should be taken into account

while simultaneously dropping those that do not have a huge impact. Under certain

assumptions on the function, an approach for achieving this is the so called Hyperbolic

cross [10, 87] - a method that basically is said to describe a special selection scheme for

the coefficients ck. As a result, the Hyperbolic cross approximation significantly reduces

the computational costs while simultaneously keeping a high approximation accuracy.

This section will give an introduction to the Hyperbolic cross, how it can be constructed,

and what the benefits are. Fortunately, the application of the Hyperbolic cross requires

just a certain smoothness of a function f . A function is called smooth if all of its partial
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derivatives of any order exist and are continuous:

Dυf(x) :=
∂|υ|

∂υ1x1 . . . ∂υDxD
f(x). (3.5)

Here, υ = (υ1, . . . , υD) ∈ ND is a multi-index of length D and |υ| = υ1 + . . . + υD is

called the order. As stated in the previous section, this smoothness of functions ap-

plies to function from the Sobolev space Hs and has implications for the decay of the

Fourier coefficients ck. The application of the Hyperbolic cross requires some further

decay properties that are ensured by considering a special combination of several one

dimensional Sobolev spaces in form of tensor products [94]. The relationship between

the tensor product space and the decay of the Fourier coefficients - as for the one di-

mensional case - has also been very well investigated [16, 28, 63] and extends to the

multidimensional setting. The extension, however, is not straight forward and requires

a modification of the existing definition. In particular, each dimension can be combined

differently with another dimension by providing different types of combined decay cri-

terias [38]. The Hyperbolic cross considers additive and multiplicative combinations for

the characterization of the coefficient decays.

In this particular case the set of functions taken into account is defined by the following

set:

Ht,lmix :=

f(x) =
∑
k∈ZD

cke
−ikx : ||f ||Ht,lmix=

∑
k∈ZD

D∏
i=1

(1 + |ki|)2t(1 + |k|∞)2l|ck|2
 1

2

<∞


for −∞ < t, l < ∞ and |k|∞ = max1≤i≤D{ki}. This special construction is a two

parametric Sobolev space that contains the isotropic as well as the spaces with dominated

mixed smoothness. By appropriately setting the parameters t and l one gets:

Hs = H0,s
mix =

f(x) =
∑
k∈ZD

cke
−ikx : ||f ||Hs =

∑
k∈ZD

(1 + |k|∞)2l|ck|2
 1

2

<∞


the isotropic Sobolev space and correspondingly the so-called space of dominated mixed

smoothness:

Htmix = Ht,0mix =

f(x) =
∑
k∈ZD

cke
−ikx : ||f ||Ht,0mix =

∑
k∈ZD

D∏
i=1

(1 + |ki|)2t|ck|2
 1

2

<∞

 .
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The name dominated mixed smoothness refers from the fact that the norm is equivanlent

to:

||f ||2Htmix ≡
∑

0≤υ≤t
||f (υ)||2L2

where f (υ), υ ∈ ND a multi-index, denotes the general mixed derivative. The main

aspect about these spaces is that they are all characterized by the decay of the Fourier

coefficients. In particular the Fourier coefficients of a function from Ht,lmix are bounded

by |ck| ≤ C
(∏D

i=1(1 + |ki|)t(1 + |k|∞)l
)−1

and k ∈ ZD. This kind of decay provides a

guideline for the construction of the Hyperbolic cross. For the construction one needs

to define two sets. Let D ∈ N the dimension and T a parameter with T ∈ (−∞, 1]. The

first set is the set of indeces or frequencies:

FITd :=

{
k ∈ ZD :

D∏
i=1

(1 + |ki|) · (1 + |k|∞)−T ≤ (1 + d)1−T

}
(3.6)

and the second set defines the actual function approximations:

FV T
d :=

f(x) =
∑

k∈FITd

cke
−ikx

 .

From the definition, one can see that the sets only depend on the parameters T and d.

The first parameter T describes the number of coefficients taken into account. Here the

relationship is reversed meaning that a smaller (negative) value implies a larger set while

a bigger reduces the number of elements. The second parameter d controls the number

of frequencies taken into account in each direction. This value normally matches the

truncation value of the truncated Fourier series. When T → −∞ one can give a natural

extension as FI−∞d := {k ∈ ZD : |k|∞ ≤ d} and analogously the set of approximations

by FV −∞d . This extension exactly matches the normal case, i.e. when the full (cubical)

space of [−d, d]D is considered which corresponds to the complete set of coefficients ck of

the truncated Fourier series. By keeping the parameter d fixed the sets become nested

with respect to the value of T , i.e.:

FV T1
d ⊂ FV T2

d , for 1 ≥ T1 > T2 > −∞.

The standard Hyperbolic cross now arises by fixing the parameter T = 0 and arbitrary

parameter d [87]. Thus the Hyperbolic cross is just a special case of FV T
d = FV 0

d . An

example plot of the Hyperbolic cross and other realizations of the index sets FITd are

given in figure 3.2.
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Figure 3.2: Different index sets FIT50 (defined in 3.6) for different parameters T ∈
{0.5, 0,−2,−7} and d = 50. The special case T = 0 is also referred to as Hyperbolic
cross.

Since the Hyperbolic cross is an approximation of the Fourier series, it is desirable to

state analytical bounds on the approximation quality. The following theorem [50] states

such bounds for different parameter combinations d and T and for different functions:

Let s < l + t, t ≥ 0, u ∈ Ht,lmix, u(x) =
∑

k cke
−ikx and uTd =

∑
k∈FITd

cke
−ikx ∈ FV T

d .

Then the following holds:

||u− uTd ||Hs ≤

(1 + d)s−l−t+(Tt−s+l) D−1
D−T ||u||Ht,lmix if T ≥ s−l

t

(1 + d)s−l−t||u||Ht,lmix if T < s−l
t

(3.7)

This theorem guarantees certain error bounds for functions from the Ht,lmix that are

approximated by the Hyperbolic cross. The particular error bounds for the Hyperbolic

cross are given for T = 0 as [50]:

||u− u0
d||Hs ≤

(1 + d)s−l−t+(s+l)D−1
D ||u||Ht,lmix if 0 ≥ s−l

t

(1 + d)s−l−t||u||Ht,lmix if 0 < s−l
t
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Thus, the quality of the approximation will depend on the choice of parameters or

functions considered that are to be approximated. On the other side, the computational

costs decrease significantly. The effort that is necessary is given by [50]:

O (1 + d) for 0 < T ≤ 1

O
(
(1 + d) log(1− d)D−1

)
for T = 0

O
(

(1 + d)
T−1/ T

D−1

)
for T < 0

O
(
(1 + d)D

)
for T = −∞.

Therefore, the computational costs for the calculation of the Hyperbolic cross are reduced

to O
(
(1 + d) log(1− d)D−1

)
in constrast to the full set O

(
(1 + d)D

)
. This makes the

computation of an approximated Fourier series in higher dimensional space feasible by

simultaneously keeping a good approximation of the original problem. In later chapters,

these results will be applied in order to calculate the Fourier series approximations.

3.3 Fourier Series, Hyperbolic Cross and Monte Carlo Method

This section will discuss the approximation properties of the combination of the Fourier

series approximation by the Hyperbolic cross and the Monte Carlo method introduced

in chapter 2. The analysis presented here is of importance for chapter 7 which will apply

this combination in order to state new and improved data analysis methods.

For this analysis, it is assumed that an arbitrary distribution p : RD → R+ is given

(where D denotes the dimension) with a compact support [c, c+T ]D ⊂ RD that satisfies

the requirements for the application of the Fourier series approximation. To simplify

the presentation the case D = 1 is considered. The Fourier series is then given by:

p(x) =

∞∑
k=−∞

cke
i2πx k

T and ck =
1

T

∫ c+T

c
p(x)e−i2πx

k
T dx.

Of special interest here is in particular the expression for the coefficients ck since they

denote in fact the analytic calculations of the expectation of the random variable e−i2πx
k
T

w.r.t. the distribution p, i.e. Ep
[
e−i2πx

k
T

]
. Therefore, the application of the Monte-

Carlo method discussed in the previous chapter 2 can be applied. T do so, one needs a

dataset sample {x1, . . . , xL} ⊂ RD×L (here D = 1) which has been sampled according

to the distribution p. Then the expectation can be approximated by:

ck =
1

T

∫ c+T

c
p(x)e−i2πx

k
T dx ≈ 1

TL

L∑
l=1

e−i2πxl
k
T .
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For a complete understanding of the approximation properties of this approach, one has

to consider the approximation quality of the (truncated) Fourier series or, when applied,

of the Hyperbolic cross and those of the empirical mean. Since the empirical mean

highly depends on the number of available (random) data samples it is only possible to

state error bounds for the empirical approximation of the integral for the computation

of the Fourier coefficients in a probabilistic manner. An appropriate way to do so is the

derivation of confidence intervals. The following observations are based on statistics and

the theory of Monte Carlo methods, further details can for example be found in [78] or

[30].

The setting is now extended to the D-dimensional case for a more general and complete

analysis. Then:

ck1,...,kD =
1∏D

d=1 Td

∫ t1+T1

t1

. . .

∫ tD+TD

tD

e
−i2π

∑D
d=1

kd
Td
xddp(x)

≈ 1

L
∏D
d=1 Td

L∑
l=1

e
−i2π

∑D
d=1

kd
Td
xdl =: ĉ

(L)
k1,...,kD

. (3.8)

Since the function e
−i2π

∑D
d=1

kd
Td
xdl is integrable, and the empirical mean is a sum of in-

dependent and identically distributed samples, expression (3.8) converges to the expec-

tation ck1,...,kD . Therefore, as a result of the central limit theorem the sum is distributed

normally, i.e.

ĉ
(L,0)
k1,...,kD

:=
(
ĉ

(L)
k1,...,kD

− ck1,...,kD
)
∼ N

(
0,

(
η(k1,...,kD)

)2
L

)
,

here,
(
η(k1,...,kD)

)2
denotes the variance for the combination (k1, . . . , kD). Note that

for simplicity, the real exact mean ck1,...,kD has been subtracted in order to center the

distribution at mean 0. Although the analytic variance
(
η(k1,...,kD)

)2
is, in general,

unknown it is possible to use the empirical variance instead for practical calculations.

The unbiased sample variance is given by:

(
η(k1,...,kD)

)2
≈
(
η̂

(k1,...,kD)
L

)2
=

1

(L− 1)
∏D
d=1 T

2
d

L∑
l=1

(
e
−i2π

∑D
d=1

kd
Td
xdl − ck1,...,kD

)2

.

Hence, the (1− γ)% confidence interval for expression (3.8) can be stated as:[
ĉ

(L,0)
k1,...,kD

− z(1− γ
2 )
η̂

(k1,...,kD)
L√

L
, ĉ

(L,0)
k1,...,kD

+ z(1− γ
2 )
η̂

(k1,...,kD)
L√

L

]

where z(1− γ
2 ) denotes the 1− γ

2 quantile of the standard normal distribution.



32 Chapter 3 - Dataset Shifts in Machine Learning

Considering the complete Fourier series, one can give a point-wise confidence interval,

for each x. To do so, the definition of the covariance for two distinct ĉ
(L,0)
k1,...,kD

is required.

Given two distinct combinations (k1, . . . , kD), (k̃1, . . . , k̃D) ∈ [−K,K]D ⊂ ZD, where at

least one kd 6= k̃d, d ∈ {1, . . . , D}, the covariance is given by Cov
(
ĉ

(L,0)
k1,...,kD

, ĉ
(L,0)

k̃1,...,k̃D

)
.

Then the completed Fourier series approximation of function p(x) at an arbitrary but

fixed point x can be understood as a sum of the random variables:

Var (p(x)) ≈ Var

 K∑
k1=−K

. . .

K∑
kD=−K

ĉ
(L,0)
k1,...,kD

e
i2π

∑D
d=1

kd
Td
xd



Since x is arbitrary but fixed each expression e
i2π

∑D
d=1

kd
Td
xd can be considered constant,

i.e. ς(k1,...,kD) := e
i2π

∑D
d=1

kd
Td
xd . Being a sum of random variables multiplied by coeffi-

cients the following calculation holds:

Var (p(x)) ≈ V̂ar (p(x)) := Var

 K∑
k1=−K

. . .
K∑

kD=−K
ĉ

(L,0)
k1,...,kD

ς(k1,...,kD)


=

K∑
k1=−K

. . .
K∑

kD=−K

(
ς(k1,...,kD)

)2
Var

(
ĉ

(L,0)
k1,...,kD

)

+
K∑

k1,k̃1=−K

. . .
K∑

kD,k̃D=−K

1(k1,...,kD)6=(k̃1,...,k̃D)ς
(k1,...,kD)ς(k̃1,...,k̃D)Cov

(
ĉ

(L,0)
k1,...,kD

, ĉ
(L,0)

k̃1,...,k̃D

)

Here, 1(k1,...,kD)6=(k̃1,...,k̃D) denotes the indicator function that is 1 if at least one kd 6=
k̃d, d ∈ {1, . . . , D}. Due to a special version of the central limit theorem (Lyapunov

CTL) this sum converges to a normal distribution and the bounds for the (1 − γ)%

confidence intervals for this expression are given by:

p(x)± z(1− γ
2 )

√
V̂ar (p(x)).

The latter expression holds for a truncated version of the Fourier series. Additionally,

the coefficient indeces can be replaced by those of the Hyperbolic cross. Therefore, one

can achieve a probabilistic estimate of the point-wise difference between the Hyperbolic

cross approximation using exact Fourier coefficients and the one employing approximated

Fourier coefficients based on empirical means, where the estimate involves a variance
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depending on the given point x, which goes to zero for larger numbers of data. Thus,

the error of the latter expression primarily depends on the amount of given data.





Chapter 4

Dataset Shifts in Machine

Learning

This chapter is an introduction to Dataset Shifts in Machine Learning. The first part

states the well known standard machine learning setting by introducing the mathe-

matical framework and terms like model, classification, regression, discriminative and

generative models. The second part is about new concepts that can occur in machine

learning settings that have become known as Dataset Shifts. Important types of dataset

shifts are explained and mathematically defined. Of special interest for this thesis are

in particular the covariate and source component shift. These types of shifts will be

investigated in later chapters in more detail. The dataset shift part follows mainly after

the book [71]. The main goal of this chapter is to give the reader an overview about

what dataset shifts are.

4.1 Traditional Machine Learning setting

When talking about traditional machine learning most people refer to supervised ma-

chine learning. It is a term that describes a situation in which one tries to learn an

unknown functional relationship between some source domain X ⊂ RD and a target

domain Y ⊂ R. Formally spoken the goal is to learn a function f : X → Y. These

functional relationships are typically referred to as regression when Y ⊂ R or classifica-

tion when Y ∈ {y1, . . . , yn} with each yi ∈ R an arbitrary discrete value. If Y ∈ {0, 1}
or Y ∈ {−1, 1} the classification task is also referred to as binary classification. For

the sake of simplicity this work will assume Y ⊂ R since this also includes the spe-

cial case of classification. An explicit remark will be given for situations in which it is

appropriate to differentiate between both types of target domains. The mathematical

35



36 Chapter 4 - Dataset Shifts in Machine Learning

treatment of such problems requires several assumptions in order to state a practical

analytical framework. Firstly, it is assumed that one has given some data X ⊂ RD×N ,

the so called covariates and the corresponding labels Y ⊂ RN . Equivalent terms for the

covariates are explanatory variable, independent variable or predictors. Other common

terms for labels are dependent variable or regressand. The covariates are assumed to be

a subsample from the domain of the unknown function f and the labels correspond to

the output of f , i.e. f(x) = y. This subsampling however follows certain rules which

by assumption can be modeled by an unknown probability distribution p meaning that

the subsamples X,Y are considered to be the result of a sampling that is distributed

according to p, i.e. {X,Y } ∼ p(x, y).

The main goal of machine learning applications is the approximation or inference of the

functional relationship f between X and Y by applying the datasets X,Y which was

sampled from p. Since the dependencies of y on x by f are reflected in the distribution of

the sampled data one can approximate the relationship by approximating the distribu-

tion p. However, the original p is unknown and therefore one has to make assumptions

about it by assuming that p can be stated by a model p̂ that depends on some set of

parameters denoted by Θ ⊂ RD. The idea is that given the data X,Y and the model p̂

one tries to find an appropriate set of admissible parameters θ ∈ Θ such that the model

gives a best explanation of the data, i.e. the model needs to be fitted to the data by

adjusting the parameters. However, since the model p̂ itself is an assumption the fit

can be arbitrarily bad. Therefore a variety of models exist in order to face different

situations. The quality or goodness of fit is generally determined by applying a so called

error or loss function `(·). While the chosen model is an assumption about the structure

of the problem at hand the error or loss function ` evaluates which parameters θ ∈ Θ fit

the model best to the given data. The determination of such parameters with respect

to the loss function is commonly achieved by solving an optimization problem. Since

the parameter fitting requires the given sample data X,Y and the model p̂ the problem

can be formulated as:

θopt = argmaxθ∈Θ` (p̂(x, y|θ), X, Y )

where ` denotes a loss function. The resulting parameters θopt fully specify the model

p̂. Although there exist a large number of models for solving machine learning problems

all these models can be categorized into just two general types of models.
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4.2 Generative Models and Discriminative Models

Modern machine learning approaches assume that the given or observed data was gener-

ated by or sampled from a probability distribution p(x, y) and one has to use models for

approximating the data. These models can be categorized into two complementary types

of general models which are derived by applying the multiplication rule of probability.

The first one is the so called generative model which is given by:

p(x, y) ≈ p̂(x, y) = p̂(x|y)p̂(y). (4.1)

This approach fully models the joint distribution over the covariates x and dependent

variables y. Once the model has been completely learned, it can be used to, as the name

suggests, generate new samples, as it tries to explain all relationships and dependencies

of the variables. The second class of models are the so called discriminative models or

conditional models which are given by:

p(x, y) ≈ p̂(x, y) = p̂(y|x)p̂(x) (4.2)

In practice, however, as a model one only tries to fit the conditional p̂(y|x) and the

distribution of the covariates p(x) is omitted. This is because a model for the covariates

is of no interest - since they are already given - but only the conditional dependency

is. As a consequence, the model can be much simpler than a generative model because

potential complex dependencies between covariates are ignored. Therefore, the model

is fully stated by modelling the conditional p̂(y|x). Important discriminative methods

are for instance Logistic Regression [43] or Support Vector Machines [84]. The most

significant disadvantage of discriminative models is that it can not be used to generate

data.

Discriminative models are often used in supervised settings where one does not need or

is not interested in the distribution of the covariates since one is only interested in the

relationship of covariates x and dependent variable y but not in the dependencies in

between the covariates. Ignoring such dependencies or correlations between the covari-

ates yields a simpler model and reduces the potential risk of model miss specification

because the number of assumptions about the structure of the problem is reduced and

hence the sources of errors as well. In contrast, unsupervised methods often require the

complete dependencies of all variables because unsupervised approaches commonly have

to take strong assumptions about the structure of the data into account in order to get

an appropriate fit. With that, a higher risk of model misspecification comes along and

therefore generative models are very appropriate in cases where the properties about

the data generating process are very well understood. Examples for generative models
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include Näıve Bayes (very high dimensional sparse data) [61], Hidden Markov Models

(sequential data) [72] or Gaussian Mixture models (hierarchical clustering) [104].

4.3 Model Prediction

In the context of machine learning the purpose of models, as they have been introduced

in section 4.2, is making predictions. In order to make predictions one has to fit a model

p̂ to a given set of so called training data X,Y which is assumed to be generated by

some unknown distribution p. The fitting process requires the selection of a parameter

θ from a parameter set Θ that fully specifies the model. The resulting model does no

longer require any data since the information contained within the data is represented

by the inferred parameters. After having learned an appropriate parameter one can use

the obtained model to make predictions for new unseen data. I.e. given a new data

point x∗ ∈ X one is interested in the prediction of the corresponding label y∗ ∈ Y. In

the case of a generative model one would calculate:

y∗ = argmaxyp̂(x
∗, y) = argmaxyp̂(x

∗|y)p̂(y) and y∗ = argmaxyp̂(y|x∗) (4.3)

for the discriminative case. In order to get the best possible predictions given the model,

this approach assumes that both the training data X,Y and the new data x∗ have

been drawn from the same unknown distribution, i.e. p. If this assumption holds true

the training data and the new data point come from the same structure and therefore

the knowledge from the training data can be applied straight forwardly to the new

unknown data. However, this is an ideal situation which might not always hold true in

most settings. The next section gives an overview of challenges that might violate this

standard assumption.

4.4 Dataset shifts in Machine Learning

In most applications the assumption of equally distributed training data, and data that

is to be predicted makes sense and yields good prediction quality. However, there are also

a lot of situations in which this assumption does not hold true. The online advertising

market is a good illustrative example for explaining different types of dataset shifts.

As of 2015, online advertsing is currently facing a dramatic change. As technology is

advancing new types of systems enable new types of businesses also in online advertising.

Online advertising becomes more and more data driven which means the evaluation and

prediction of data preferably in real time. Basically the business is made out of two
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types of parties. The first one are the so-called publishers. The term publisher stands for

entities like persons, companies or organizations that operate web pages or mobile apps

that beside the actual content (like news, blogs, etc.) also contain blank spaces reserved

for placing online advertisements (ads) in form of display ads (for example banners).

One such reserved blank space for one ad is commonly called a placement. The second

party are the so called advertisers. Advertisers generally represent companies that want

to promote their products on the internet in form of banners, videos, texts, etc. They are

the ones that are responsible for the actual content of the display ads. In the (financial)

interest of each others both parties have to be brought together. In general, however,

advertisers do not approach publishers directly. Instead they are represented by agencies

called DSPs (Demand Side Platforms) that provide additional services and a technical

infrastructure to manage the display ads for them. On the other side, publishers do not

directly provide access to their placements but commercialize them through agencies

which are called SSPs (which stands for Service Side Platforms). SSPs are companies

that provide a new type of technology called Real Time Bidding or RTB. RTB describes

an auction market (also called RTB exchange) for buying impressions. An impression

is a complete page load or site visit of a web page or mobile app of a publisher by some

internet user. In the process of one RTB auction the first thing to happen is that an

internet user visits the site of a publisher. The web server of the publisher then contacts

the RTB server of the SSP and tells it that a new user just started to load the web

page. Then an auction is opened for this particular user for the particular web page

and placement. Now, usually, several DSPs start bidding on this impression and the

highest bid will win the auction. After the auction has been finished the winning DSP

is allowed to place it’s ad on the web page of the publisher. This whole process happens

within 100 milliseconds (therefore the term real time in RTB) while the user is loading

the webpage. The user normally does not take any notice of this background process.

Since the requirement of 100 milliseconds is very short, it is no longer possible to perform

an auction process manually. Instead, the whole process is completely automated and

programs called bidders automatically perform the bidding for a placement on a RTB

exchange. However since every user can be treated individually it is possible to pursue

a bidding strategy where one is willing to bid higher on users that can be considered

as valuable (or click friendly) and lower bids for users being less worthy. Therefore, a

prediction of click probability, also called click through rate (ctr), is done by evaluating

data about the user. By being able to track the user behaviour it becomes possible to

gather huge amounts of different data about each internet user.

This data then is normally given by X ⊂ RD×N the measurements of user features, and

Y ⊂ RN the historically observed click probability (ctr). However, usually this data X,Y

is highly non-stationary which means it changes over time and thus the predictive power
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of a certain feature or attribute changes as well. Mathematically, this situation can be

described by actually having two different datasets within the complete dataset X,Y .

The first one is of the current time period or today and will be denoted by (XP , Y P ) ⊂
RD+1×M ,M ∈ N, the primal or P data also called target or testing data. This data is the

data for which one would like to perform predictions and is therefore of primary interest.

It is distributed according to the primal distribution pP (x, y). The second dataset also

referred to as secondary or S data (XS , Y S) ⊂ RD+1×N , N ∈ N , a.k.a. source/training

data, is distributed according to a secondary distribution pS(x, y) which is for instance

from last month. This secondary dataset can be considered being a helper dataset

since it is not of primary concern. To understand now why this is a problem, one should

consider a model for ctr prediction that has been inferred on the S data from last months

data. This model will most likely show good prediction performance on some control or

evaluation data from the same time period but in todays live operations it dramatically

fails and even makes false predictions resulting in inappropriate ctr predictions and a

loss of money for the DSP and hence the advertiser. The reason for that lies in a drift

or transformation of the distributions from which the two datasets have been sampled.

Mathematically expressed, this means that:

pS(x, y) 6= pP (x, y). (4.4)

In general, these two distributions are different since the data generating process is non-

stationary. As a consequence, the obtained data for both time periods is differently

distributed which causes a so called dataset shift. That means that the assumption of a

standard machine learning setting is violated and thus the previously learned model is

no longer applicable to the new unseen data. Even worse, it can become arbitrarily poor

which in a real world setting can lead to dramatic losses. Therefore it makes sense to

investigate these frequently occurring situations separately and consider them as dataset

shifts in machine learning. Since expression (4.4) gives a rather general definition of such

a context it is required to further characterize different types of dataset shifts. Briefly,

typical types which are considered in the scientific literature [71] in the fields of machine

learning are:

• Covariate shift - The functional relationship p(y|x) remains but p(x) changes.

• Prior Probability Shift - p(y|x) changes and p(x) remains.

• Sample Selection Bias - Application of a biased selection process to {X ,Y}

• Imbalanced data - The dataset is dominated by one realization of y

• Source component shift - distributions pP and pS can differ arbitrarily
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The following sub-sections will give an illustrative introduction to each of those dataset

shifts. Since all kinds of explained dataset shifts can occur in the data provided by

RTB exchanges the following examples will be motivated by typical situations in online

advertising.

4.4.1 Covariate Shift

Covariate shift [71] is considered to be one of the simpler types of dataset shifts. Gen-

erally the model is inferred on the training/secondary or source data XS , Y S and a

prediction is performed on the testing/primal or target data XP , Y P . As the name

covariate shift suggests, the distributions of the covariates x differ. That means:

p(y|x)pS(x) = pS(x, y) 6= pP (x, y) = p(y|x)pP (x). (4.5)

Here, the conditional p(y|x) does not change but the covariate distribution pP (x) is not

the same as pS(x). Informally speaking, while the functional relationship p(y|x) stays

the same the actual locations of the sampled data given by p(x) differ between the two

datasets. For instance consider a web page that at some time gets a lot of traffic from

users that are interested in fashion. Therefore, display ads that are somehow related to

fashion perform very likely better than ads about different topics. Consequently, if one

would learn a model on the data given by the fashion users one would yield a very good

model for the ctr on this particular group of users, i.e. p(click|user data, placement) is

learned well. However, due to some changes on the web page (consider another news

story) the topic changes and other different kind of users are now attracted to the new

content. This new user group might be interested in technology and therefore the click

probability for ads about tech products will be much higher. Although, the model

learned on the fashion users still exhibits good prediction performance for user that are

interested in fashion this model will perform not so well for the now much more frequently

seen technology interested users. Mathematically loosely spoken the functional relation-

ship p(click|user) remains the same but the sampling location p(user) has changed and

the covariate distributions pS(fashion interested user) 6= pP (technology interested user)

have changed. Figure 4.1 reflects this simple situation which can also be characterized

by a change of sampling location of the data.

4.4.2 Prior Probability Shift

In contrast to the Covariate shift setting a Prior Probability shift [71] denotes a situation

in which the distribution of the dependent variable y changes from secondary/source to
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P data

S data

conditional

Figure 4.1: Illustrative example for a typical Covariate shift setting. While the
functional relationship, i.e. the conditional p(y|x), remains the same for all data points
the ”location” of the sampled data has changed between S and P data. The S data
was obtained from other locations than the P data. As a consequence less information
about the test data is contained within the training data.

primal/target dataset, i.e.:

pS(x, y) = pS(y|x)p(x) 6= pP (y|x)p(x) = pP (x, y).

Such a relationship is refered to as Prior Probability shift where the functional relation-

ship p(y|x) changes but the location of the sampled covariates p(x) remains the same.

A practical example from online advertising would be the application of so-called ”re-

targeting”. E-commerce websites like internet shops try to increase user engagement

by providing DSPs with information about users visiting their shop. In combination

with this shop behaviour the DSP tries to retarget the user by showing the users ads

about products they looked at in the shop after they have visited the corresponding e-

commerce website. This type of advertisement is therefore called user retargeting. From

the collected DSP’s data from the RTB exchanges it can be seen that the probability

of clicking a retargeting ad and actually purchasing the product is the highest shortly

after a user has visited the shop and then monotonically decreases over time. Therefore,

every time a user is seen on a RTB exchange and does not click and buy the product

the chances that the user is still interested in a purchase decreases. Hence, a purchase

prediction model that has been learned on the purchase behaviour of recent users is not

appropriate for users that have been already observed several times as it would be too

optimistic. This is due to the shift in purchase probability which is the dependent vari-

able in the model and implies a change in the functional relationship p(y|x) over time

although the user group p(x) remains the same since the users and hence their charac-

teristic properties remain the same. A graphical illustration of a Prior Probability shift

is given in figure 4.2.
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P data

S data

conditional

Figure 4.2: Figurative example of a Prior Probability shift setting. The functional
relationship, i.e. the conditional p(y|x), differ for the S and P datasets. However, in
contrast to Covariate shift, the locations of the sampling process remain the same.

4.4.3 Sample Selection Bias

Sample Selection Bias [71] describes a dataset shift in which the sampled data was

affected by a systematic bias in selecting samples from a distribution, i.e.:

pS(x, y) = p(x, y|c = 1) = p(c = 1|x, y)p(x, y)

and pP (x, y) = p(x, y).

That means that the target (or P) domain contains an unbiased data sample while for

the source data a selection process has been applied before choosing a data point. Such

a selection can be intentional. Consider a DSP that wants to learn a specific model

for a subuser group interested in a particular topic in order to identify new similar

users. In that case the DSP would learn a model on those users but would also apply

the learned biased model to all new users in order to identify new users belonging to

this interest group by investigating the click behaviour. However, although being an

important dataset shift problem, Sample Selection Bias is not of any concern in this

work.

4.4.4 Imbalanced Data

Imbalanced data [71] occurs primarily in classification settings where the dependent

variable is discrete and one class is overrepresented. That means that the number of

samples from one class strongly dominates the number of samples of all other classes.

This type of imbalance has a huge impact on the prediction quality of a model since the

model is very likely to consider just the examples that are ubiquitously available and

further ignores the seldomly occurring but important other classes. Such a situation is

typical in online advertisement since the number of clicks on ads is significantly lower

than the number of ad impressions. As for Sample Selection Bias this type of dataset

shift will not be investigated in this work.



44 Chapter 4 - Dataset Shifts in Machine Learning

4.4.5 Source Component Shift

Another important dataset shift is the Source Component shift [71] that can be con-

sidered as a mixture of covariate and prior probability shift. Source component shift

normally results from a non-stationary stochastic process that is responsible for the ob-

served/generated data and which changes (for instance) over time. As a consequence,

two different dataset samples from such a process are the result of two different distri-

butions that can differ in both the covariates and the dependent variables. The source

component shift is characterized by:

pS(x, y) 6= pP (x, y) where pS(y|x) 6= pP (y|x) and pS(x) 6= pP (x).

Since the conditional and the covariate distribution are not necessarily the same, this

situation can also be understood as a full shift in distribution. One can think about the

non-stationarity of the generating process as a (smooth) transition from one distribution

pS to another pP . However, this might not be the case. In reality, the two datasets

XS , Y S and XP , Y P might also be the result of two independent underlying processes.

A practical example of a source component shift in the online advertising space is the

combination of the retargeting shift (prior probability shift) and simultaneously a shift

in the interests of some users (covariate shift). As in the previous prior probability shift

section the dependent or conditional variable y, which is the ctr, decreases monotoni-

cally but now additionally the types of users also change. The given data XP , Y P might

therefore be comprised of recent users that are more likely to click and that are fashion

interested and older users XS , Y S which are less likely to click and that are maybe inter-

ested in shoes. Thus, a current model that has been learned on recent fashion interested

users performs well in the prediction of the ctr, that is

p̂(ctr|recent-user, fashion-interested)p̂(recent-user, fashion-interested)

but this same model will probably show a poorer prediction performance on the shoes

interested older users for which a model described by

p̂(ctr|older-user, shoes-interested)p̂(older-user, shoes-interested) (4.6)

will most likely perform better. In such a case one could characterize the situation as

being the result of a data generating process that devolves from one type of an user

to another. However, it must be mentioned that the source component shift can lead

to situations that are virtually impossible to solve. The biggest problem in the source

component shift setting is the dissimilarity of the two datasets or put differently the

amount of variation of the underlying generating non-stationary process. A well known

example for such a problem are stock markets. In the stock market the distributions

are so highly non-stationary that in a practical setting it effectively becomes impossible
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P data

S data

conditional

Figure 4.3: Toy example of a Source Component Shift setting. This type of shift
can be understood as a mixture of Covariate and Prior Probability shift. It can be
a particularly hard problem because in cases when both datasets differ too much a
transfer of knowledge will become impossible. Thus, in order to tackle such a shift one
must always assume that both datasets are at least partially similar.

to find any connection between different sources. Even worse, one neither knows how

many source distributions (or hidden influences) are currently influencing the market nor

their impact on the stock prices. Also, it is not clear what kind of assumptions about

the price generating process should be considered as meaningful. Or put differently:

nothing is known about the complex structure of the data generating process. Hence,

source component shift can be so severe that a model learned on the training or S data

is no longer applicable for the prediction of the testing or P data. Therefore, the source

component shift can only be tackled appropriately if the S and P distributions are similar

or the complex non-stationarity is so well understood that the transformation of the data

generating process can be stated very accurately.

Unfortunately, source component shift is ubiquitous and all the other types of dataset

shifts can be considered a special case of this type of shift. Since the definition of this

type of shift is so broad one has to consider additional assumptions in order to specify

a problem that can be solved. This normally is reflected in either assuming a mild

non-stationarity or a known type of transformation within the process. For instance,

in the fashion and shoes example, it is rational to assume that both user groups still

have something in common because people interested in fashion are very likely to be

also interested in beautiful shoes. If no assumption holds, the problem is infeasible as

the stock market example shows.

4.5 Summary

The latter chapter gives a brief introduction to different types of dataset shifts in machine

learning. The first part considers the traditional machine learning setting where the

data is assumed to follow a certain stationary distribution. Subsequently the current

abstract idea of what is considered to be a dataset shift in the domain of scientific

research is introduced and the differences to the standard setting are pointed out. Several
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types of dataset shifts are explained while for this thesis the most important ones are

covariate shift and source component shift (which also includes the prior probability shift

implicitly). In addition to the standard setting the dataset shift setting assumes two

(or more) datasets, a primary and secondary dataset(s), that have been sampled from

a non-stationary distribution. Due to these distributional differences in the datasets,

the prediction task of the new primal data by a model learned on the secondary data

becomes harder than in the standard setting. From the example of online marketing

it can be shown that these dataset shifts are not just theoretical considerations but

are often occurring problems in real life. In fact, as for the standard machine learning

setting, considering that, for instance, two datasets are from the same distribution is

quite often (a necessary) simplification.



Chapter 5

Transfer Learning

The previous chapter introduced dataset shifts as some kind of difference in distribution

between S and P data. This chapter is about Transfer Learning that builds on top of

these concepts and describes a set of machine learning approaches for compensating these

shifts. For point out the difference, dataset shifts describe the mathematical setting while

the term transfer learning describes a set of algorithms for accounting for such shifts that

can themselves be categorized into different classes of algorithms. Therefore, the first

part of the chapter explains why the definition of a new class of algorithms makes sense

and which classes of transfer learning algorithms exist. For each class, a set of known

algorithms is presented. The second part mainly focuses on how importance sampling

and divergence measures can be applied in order to compensate dataset shifts. Such

an approach is known as instance based approach because it considers each data point

or instance individually. Since this work is primarily concerned with instance based

approaches this special type of technique is, therefore, discussed in detail. By reading

this chapter the reader should become familiar on how to account for dataset shifts by

applying different methods and techniques.

5.1 Motivation for transfer learning

Dataset shifts do occur frequently and have a serious impact on the prediction quality.

Therefore, they should be considered when inferring a model for the prediction of new

data. An intuitive way to tackle the problem could be a regular update of the models such

that the model accounts for recent changes in the distributions. This could be done every

time after the prediction quality has dropped below a predefined and subjectively chosen

threshold. However, it could also be dealt with by taking the information of the shifted

data, i.e. the S data, into account when learning the model on the P dataset. As an

47
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example, consider the behaviour of internet users concerning a certain online advertising

ad where one has a lot of data and a new but related display ad is considered to replace

an older one. It is reasonable to assume that the following new ad will attract similar

user groups however the behaviour will not be the same as for the old one. Since in the

beginning one only has very few data available for the new ad it could be beneficial to

incorporate the knowledge of the older ad into the prediction for the new one. Transfer

learning is a term that describes methods which try to transfer the knowledge contained

in one dataset A to another dataset B in order to improve the prediction performance

of a new model on the dataset B that is of interest. This is done by modifying existing

models or developing new ones. In the past, numerous approaches have been stated

for handling such situations that conform the transfer learning setting. Since transfer

learning is also highly related to dataset shifts, there exist different methods for each

type of shift pursuing different strategies. In fact, a lot of formulations and definitions

go hand in hand with the ones for dataset shifts. Therefore, as in the case of dataset

shifts, a good practice is to categorize different methods into the type of shift they deal

with and type of strategy for treating such shift occurrences.

Before going into detail, the setting of transfer learning should be mathematically for-

mulated. It can be generally described by several given sources or secondary datasets

denoted by
{
XS
i , Y

S
i

}N
i=1

, with XS
i ∈ RNi×D, Y S

i ∈ RNi×1, which have been sampled

according to some source distributions pSi (x, y), i ∈ {1, . . . , N} and a target or primal

set
{
XP , Y P

}
which is a sample from pP (x, y). Further, the distributions of the datasets

are assumed to be not equal that is pSi (x, y) 6= pP (x, y),∀i. The goal of transfer learning

is to learn a good model on the primal data
{
XP , Y P

}
by applying the part of knowl-

edge contained within the sources that improves the prediction of the primary or target

data. For simplicity this work will consider just one source dataset
{
XS , Y S

}
as the

general setting is a straight forward extension. Thus in the following, the given data

is stated by the source data
{
XS , Y S

}
=
{

(xS1 , y
S
1 ), . . . , (xSN , y

S
N )
}

and the target data{
XP , Y P

}
=
{

(xP1 , y
P
1 ), . . . , (xPM , y

P
M )
}

. Additionally in the second part of this work

a transfer learning setting is considered that assumes that the amount of given primal

data is much smaller than the amount of source data, i.e.
∣∣{XP , Y P

}∣∣ � ∣∣{XS , Y S
}∣∣

(where |.| denotes the cardinality of a dataset). It will be shown that in such a situation

it will make obvious sense to use additional data. Since the data in the target domain

can be considered being sparse, it therefore can be assumed that a model solely learned

on the target domain will not perform very well since the information within the target

domain will be, in general, also sparse.
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5.2 Transfer Learning Problem Classes

There basically exist three types of transfer learning settings. The first one is the

Transductive Transfer Learning setting.

5.2.1 Transductive Transfer Learning

In the context of Transductive Transfer Learning [64] the functional relationship be-

tween covariates X and the dependent variables Y remains the same but the covariates

themselves are shifted. This situation is commonly referred to as Covariate Shift (see

section 4.4.1) and can be further categorized into two types. The first one occurs when

the space of realm from which the covariate data has been drawn is different. This

means that the actual dimensionality of the data can be different or the data itself (the

features or attributes) are different. For instance, one dimension is comprised of discrete

data while the other one comes from a continuous set. The other type of Transductive

Transfer Learning (which is also considered extensively in this work) corresponds to the

actual (canonical) Covariate Shift setting in which the covariate data comes from the

same space and all dimensions describe the same data but the sampling location is dif-

ferent, i.e. pS(x) 6= pP (x). The Sample Selection Bias (see section 4.4.3) scenario is very

comparable to the covariate shift setting and algorithms for compensating this kind of

shifts also fall in the class of Transductive Transfer Learning algorithms.

5.2.2 Inductive Transfer Learning

The Inductive Transfer Learning [64] setting assumes a source and a target dataset such

that
∣∣{XP , Y P

}∣∣� ∣∣{XS , Y S
}∣∣. Both datasets are assumed to not having been sampled

from the same distribution, i.e. pS(x, y) 6= pP (x, y). Therefore, this setting also covers

the Prior Probability shift, i.e. pS(y|x)p(x) 6= pT (y|x)p(x), that is the distribution of the

covariates remain the same but the dependent variable changes. In such a situation, one

is only interested in the performance of the model prediction quality on the target data

while the prediction performance on the source data is irrelevant. Therefore, the source

data is exclusively used to improve the prediction of the target data and the evaluation

of a trained model will only be performed on the target data. This kind of augmentation

is also often referred to as knowledge borrowing [64].

Another specialized Inductive Transfer Learning setting is referred to as self taught

learning [76] where the source data exhibits no labels but only covariates. In such

situations, the source data cannot be applied directly to the target data. Instead, one
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tries to identify or intensify characteristic features of the target data with the help of

the unlabeled data. This way the signal within the data may become clearer.

5.2.3 Unsupervised Transfer Learning

Unsupervised Transfer Learning [64] describes situations in which one has given source

and target data that have been sampled from different distributions and additionally

do not provide any label information. The datasets are only given by XS and XP .

The information about the functional relationship is completely missing and cannot be

reconstructed. However, it is commonly assumed that the topic (i.e. images, text, etc.)

is similar but not necessarily the same [51]. Since this is deeply connected to clustering,

unsupervised transfer learning can be understood as the attempt to improve clustering,

dimensionality reduction or density estimation [27], [65] and [51]. For instance [27]

show a way to learn high quality features in the target domain by applying unlabled

auxiliary or source data to the learning approach. The results demonstrate that learning

those features exclusively on the target data exhibits a poorer performance than the

combination of both datasets. However, although being well defined, so far there is not

much work on Unsupervised Transfer Learning available. The reason for that might be

that unsupervised transfer learning is a particularly hard problem to solve.

5.2.4 Multi-Task Learning versus Transfer Learning

In contrast to all other types of transfer learning, the Multi-Task learning setting is a

little bit different. However, due to its relatedness to transfer learning it is important

to mention. Given a set or family of N ∈ N different datasets {Xn, Yn}Nn=1 Multi-Task

learning is concerned with the problem of learning a method that performs well on all

given datasets. As all the other transfer learning settings describe situations in which

one is only and exclusively interested in improving the prediction performance on the

target data, Multi-Task learning also tries to achieve good performance on the source

and the target datasets simultaneously. Since in this scenario it does not make any

further sense to speak about source and target datasets all datasets are denoted as tasks

that are treated with equal priority. As a consequence, multi-task learning approaches

can be considered as an isolated special topic in the area of machine learning. The

topic is well investigated and a huge amount of scientific works have been published

already. Important works are for instance [6], [112], [39], [40], [44] and [113]. There

exist some connections to the classical transfer learning setting since some ideas could

also be applied to transfer learning. However, the assumption of tasks instead of source

and target data makes the problem fundamentally different and is a clear criteria for
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differentiating the two areas. Therefore, although being related to transfer learning,

multi-task learning is not a particular topic of or of particular interest for this thesis

and is not discussed further.

5.3 Types of Knowledge Transfer

Having seen different types of Transfer Learning settings, the next question is how to

actually transfer the knowledge from one dataset to another. This knowledge transfer

from one dataset to another can be achieved in different ways which also depend on

the type of transfer learning setting under consideration. Therefore, a lot of methods

have been stated. Since each method harnesses different possibilities, it is reasonable to

categorize them. One category, however, namely the instance based transfer is of special

interst for this work and will be discussed in much more detail than the other types.

5.3.1 Feature-Representation-Transfer

This first one is appropriately described by feature-representation-transfer. Such ap-

proaches try to identify those dimensions or features of the data that contribute to the

dependent variable in the same way while simultaneously trying to avoid features that

contribute negatively. Therefore, a common subspace of source and target data is learned

such that the information contained in a subspace can be shared between each dataset.

One then augments the information of the target data with the additional information

from the source data which can be shared in between. As a consequence the model

for the prediction of the target data can apply much more data in the learning process

than before. The idea of these subspaces comes from the assumption that a common

latent structure behind all dataset samples is assumed that is primarily responsible for

the data generation process. However, generally the type of latent process is unknown

which implies that the focus of feature-representation-transfer lies in trying to learn this

shared structure.

An important work on this topic has been done by [6]. Their novel approach is to learn

a low dimensional subspace that is shared across all datasets. [59] state a method called

DICA (Domain Invariant Component Analysis) that is similar to kernel PCA [85]. The

idea is to learn a projection onto a subspace such that features that contribute pos-

itively are identified. The data to predict is also projected onto this subspace which

enables the augmentation of the target problem with data from the source datasets.

The effectiveness of this method has been shown on diverse medical data that exhibits

a covariate shift. Another important work treating such settings is given by [67] in

which a non-parametric Baysian model is specified that infers the parameters (i.e. the
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weight vector) for a Logistic Regression model by inferring the parameters by sampling

from non-parametric mixture of factor analyzers [36]. This model can be considered as

generalized model for a number of other approaches such as [21], [105] and [74].

5.3.2 Hypothesis Transfer Learning

Another category of methods can be summarized by the term parameter-transfer or

hypothesis transfer learning. Parameter transfer learning does not apply the source data

directly to the model for the target data. Instead, a common model that is specified by

a parameter θS is inferred on the source data. After that, the source data can be ignored

and the new model is solely learned on the target data. However, the regularization for

the parameter of new model will then incorporate the θS parameter which includes the

knowledge from the source data. Mathematically represented, the following steps are

taken. First, learn a model θS on the source data, i.e.:

θSopt = argmaxθS∈Θ `
(
p(x, y|θS), XS , Y S

)
.

After having estimated this parameter the new problem to solve becomes:

θPopt = argmaxθP∈Θ

(
`
(
p(x, y|θP ), XP , Y P

)
+ λR

(
θS , θP

))
.

Here R(.) denotes a special regularization function and λ is the trade off-parameter

that describes how much impact the regularization will have on the optimization. A

common regularization term is the squared L2-norm ||θP − θS ||2 [53], [54]. This prior is

equivalent to a Bayesian regression approach where the prior is a gaussian with mean

θS and variance 1. A loose interpretation of such a regularization would be that the

new parameter θP should be close (in terms of λ) to the model parameter for the source

data. Since the source data is not explicitly required, such an approach can be beneficial

in cases where the source data is too large [14] for consideration in computation of the

target model. In a Bayesian setting, parameter transfer can be tackled by constructing

an informative prior. For instance, [75] try to improve the prediction of text documents

by applying auxiliary text documents. [75] achieved this by first learning models with

non-informative priors on those auxiliary text documents. These text documents are

specialized texts and therefore each source text can be considered as sampled from

different distributions that are characteristic for each topic. Therefore the specialized

texts contain robust data on the correlation of diverse sub-groups of words, like for

instance technical terms. Due to sparseness of the data in the target domain, such

a robust estimation will be infeasible when only performed on the target data. The

correlations learned on the sources are represented in the parameters for the source
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models and are then incorporated into the correlation matrix for the target model in

the form of an informative prior. The experiments done by [75] show that this approach

improves the prediction quality of the target model significantly.

5.3.3 Instance Based Transfer

Instance based transfer learning describes an approach in which each data point or

instance from the source and the target domain is considered individually. This is

achieved by assigning each distinct data point a factor or weight that controls the degree

of influence of that particular data point for the prediction of the target or primal data.

The goal of every instance based method is to infer appropriate weight factors for each

data point such that data points that contribute positively to the prediction of the

primal data get a higher influence for the inference of the prediction model and those

which do contribute negatively get less. Usually, a large weight indicates high and a

small weight indicates low influence. Figuratively speaking, the idea of this approach is

supported by the assumption that for some regions in the source and target datasets,

the distributions do match locally or are at least very similar. In that case, it would

make sense to consider source data from these regions that match the distribution of the

target data in some degree since they exhibit a similar structure and hence reflect the

same information. On the other hand, in regions where both datasets differ significantly,

it would be desirable to penalize those data points such that their influence on the target

model is reduced. The instance-based transfer approach accounts for such requirements.

Figure 5.1: The idea of instance based approaches as an illustrative example.

Primary data

conditional

Secondary data

(a) Two functions with similar properties
in some regions. Primary and secondary
data samples are obtained from each func-
tion. For the prediction of the primal func-
tion one could apply the secondary data
from regions of similarity in order to im-
prove the prediction quality of the P data.

Primary data

conditional

Secondary data

(b) Reweigted data from the example left.
Larger secondary datapoints denote heavy
weighted data with high importance for
or influence on the final prediction while
smaller weighted datapoints get less influ-
ence. Large points are similar, small ones
dissimilar to the primal data.
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Figures 5.1a and 5.1b give illustrative examples for the general idea of instance based

approaches. Instance-based approaches are very intuitive and have been investigated in

several works. A lot of instance based methods are guided by the idea of importance

sampling. The following chapter will discuss the instance based approach in more detail

since this work is mainly concerned with the introduction of two new instance based

approaches.

5.4 Summary

Transfer Learning describes a problem setting in machine learning that is concerned

with the transfer of knowledge or information contained in one dataset to another tar-

get dataset in order to improve the prediction on this target dataset. Transfer Learning

is also highly related to dataset shifts and actually motivated by them. In the con-

text of machine learning, three major Transfer Learning types have been established,

the Transductive, Inductive and Unsupervised Transfer Learning settings. Each of these

settings is different to the related Multi-Task learning setting and for each problem type,

different methods have been developed that can be categorized into Feature Representa-

tion Transfer, Hypothesis Transfer, and Instance-based Transfer. The next chapter will

extensively discuss the instance based transfer learning setting.



Chapter 6

Importance Sampling for Instance

Based Transfer Learning

As explained in the previous two chapters, instance based transfer learning methods re-

quire the determination of individual weights for each datapoint. These weights indicate

how important a datapoint is for the calculation of the final model for prediction. As

has been shown in chapter 2, importance sampling is a method to state an accurate

transformation function, i.e. the importance function, for transforming between two

distributions. This transformation function can also be applied to a single individual

point such that it expresses the importance of that point. Therefore, it seems straight

forward to apply this method for the determination of individual weight for instance

based transfer learning setting. The following chapter discusses this idea, will give an

overview of existing methods and, further, will state modified learning methods for the

application of those importance weights.

6.1 Importance Sampling for Distribution Matching

Practical settings that comprise shifted data arise from datasets that have been sampled

from different distributions, pP and pS . As a consequence, a model learned on one

dataset might not be well suited for the prediction of another dataset. As already

pointed out instance-based methods provide one way to compensate for this shift by

assigning individual weights to each data point. Importance sampling is one possibility

to obtain such data point weights. The weights are calculated from the importance

function and are then applied to an (often) modified model for the target data such

that it can better fit the target dataset. In fact, as a result from section 2.1.3 this

way one would obtain perfect weights, because these weights then come from the real

55
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analytical importance function which yields the exact actual ratio. This is possible in any

analytical framework where the distributions of the sampled data are all known. Then,

the estimation of the importance function is relatively easy because it can be exactly

and straightforwardly calculated: w(x) = pP (x)/pS(x). Thus, the optimal transformation

would actually be the ratio between the two distributions, because then the transformed

distribution w(x)pS(x) exactly matches the target or primal distribution pP (x). As a

result, due to that distribution match, a sampling from the secondary distribution can

be used as if it was a sample of the primal distribution, although is has been sampled

differently. However, in general, these distributions pS and pP are completely unknown

and the exact calculation becomes impossible. Instead, the only information about the

distributions one can get is reflected within the given datasets for which it is assumed that

they are sampled from these distributions. Distribution Matching [70] in the context of

machine learning is a term that describes the attempt to obtain a transformation function

ŵ(x) for distribution pS(x) to arrive at the target distribution pP (x) based only on the

given empirical datasets. It is basically a term that denotes methods that try to find

an approximation of the real importance function. A very simple and straight forward

approach in solving this distribution matching problem is the application of empirical

density estimators. The field of Density Estimation [86] provides a variety of methods

for the approximation of densities from given sample data. The idea is to apply two

separate density estimations to each dataset to obtain density functions for pP and pS .

Afterwards, these approximated densities are taken for the calculation of the importance

function at each new datapoint of interest. However, although being very intuitive and

simple, this approach has some drawbacks. For instance, it is not clear which type of

density estimation method one should apply to the given datasets. Therefore, choosing

an inappropriate method can lead to severe errors due to a false model assumptions for

the density. Another problem is that the curse of dimensionality leads virtually always

to the empty space phenomenon. As a result, only very scarce data is available for

the density estimation in high dimensional spaces. This can very easily lead to highly

incorrect model estimations of the density. Thus, approaches employing a two step

procedure of estimating empirical densities and using those for the calculation of the

importance weights are not preferable for the Distribution Matching problem setting.

Instead, one should skip the step of empirical density estimation and state a direct model

for the importance function. [100] propose a method that approximates the solution of

the integral equation
∫ x
−∞ dp

P (y) =
∫ x
−∞w(y)pS(y) in a least squares setting. Another

common approach for the direct approximation of the importance function of two given

distributions pS and pP is a linear combination of Gaussian kernel functions as for
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instance given by [91]:

pP (x)

pS(x)
= w(x) ≈ ŵ(x) :=

N∑
i=1

αie
− ||x−ζi||

2

2σ2 . (6.1)

Occasionally, the notation ŵα will be used in order to emphasize the dependence on

the α coefficients. It is also possible to apply other approximation methods like linear

or more general polynomial functions instead of the Gaussian functions [41]. However,

Gaussian kernels are often applied in machine learning settings and provide a very flexible

framework. For very small values of the bandwidth parameter σ one can construct very

non-linear function shapes as well as linear shapes for large values of σ. Additionally,

each αi coefficient regulates the amount of influence of the corresponding kernel function

for the whole approximation. While on the one hand the α coefficients and the σ

bandwidth parameter can be regarded as parameters that determine the approximation

the values for ζi’s on the other hand have to be chosen carefully. The ζi’s describe the

centers or maximums of each of the N Gaussian functions. Therefore the ζi’s will be

referred to as center points for the approximation. The choice of center points is a crucial

part for the accuracy of the approximation and it depends mostly on the problem at

hand. In general, the center points should be set to those points for which one would like

to measure the similarity. This can be the whole primary or secondary data, a subset of

those datasets or even completely different data which might have been selected due to

some kind of pre-knowledge about the current problem. Since the choice depends on the

situation, the definition of the center points is discussed for each problem separately in

the upcoming chapters. For a general discussion of the model, the specific structure of

the center points is less important such that for the sake of simplicity it is now assumed

that the center points have been chosen appropriately. Expression (6.1) gives a model

which enables the calculation of individual weights simply by plugging in a location x

of interest. Thus, one can determine the weights for each secondary data point from the

set XS very easily by considering an individual point ŵ(xS).

Remark: An alternative notation that explicitly contains the labels for expression (6.1)

is:

pP (x, y)

pS(x, y)
= w(x, y) ≈ ŵ(x, y) :=

N∑
i=1

αie
− ||(x,y)−ζi||

2

2σ2 .

This expression also implies that the ζi’s also include the label information implicitly.

The latter notation will be used in cases for which it will be convenient to explicitly state

or emphasize that the labels are also considered in the process of distribution matching.
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6.2 Caveats of the approximation ŵ

The approximation ŵ (6.1) of the importance function w depends on several entities

that influence the quality of the approximation. These entities are the data samples

X or (X,Y ), respectively, the center points ζi and the parameter σ. This section will

explain intuitively how the approximation depends on those. Since ŵ applies a linear

combination of Gauss kernels (a.k.a. radial basis functions (RBF) in the machine learn-

ing context) the reader should also refer to [77], [13] and [84] for more information about

their properties.

The first entity are the given data points X ⊂ RM×D or when the labels are explicitly

given (X,Y ) ⊂ RM×D+1. Normally, the data X are measurements that have been

recorded at some time and should therefore be considered as just given. Thus the data

can be considered as being arbitrary but fixed which implies that the fit of approximation

cannot be improved by obtaining additional data. This can be especially a problem when

only very few measurements are given because then, this limited amount of data prevents

the ability of estimating a good fit of ŵ due to the lack of information about the structure

of the problem. The best situation for compensating this would be ”all” possible data

since then the actual distribution p(x), which encodes the complete characteristics of

the data, could be estimated. But not only is insufficient amount of data available, but

also the properties of p naturally imply a different amount of sampled data at different

regions. That means for instance that data is relatively dense in some regions of high

sampling probability while being scarce at other regions of lower sampling probability.

Thus, if one has given a limited sample of data points X the unknown distribution is

most likely reflected very poorly or unclearly by this data X - at least in regions of low

sampling probability. Therefore, the quality of fit will deviate depending on the amount

and hence the quality of the data X.

The second crucial entity in the equation are the center points ζ ⊂ RN×D. These data

points are assumed to be a sample from a second distribution q(x). Essentially, the same

issues that hold for data X also hold true for the ζ center points. I.e. the amount of

given center points determines the quality of fit of the importance function. However,

additionally, since the importance function w(x) depends on both quantities p and q

it is necessary to investigate the way both datasets X and ζ interact in terms of ŵ.

Figure 6.1 provides an illustrative example of the problems that can occur. To better

understand the interaction of both datasets, one should start by considering the worst

case possible. A worst case scenario is when one cannot infer anything at all from some

given data samples. The following example describes a situation when it is impossible

to learn anything about ŵ. Considering two distributions p for X and q for ζ. Both

distributions p and q are assumed to be normally distributed (figure 6.1) with an equal
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Figure 6.1: Left plot: Two sufficiently large dataset samples that are dense and
overlapped. This provides an ideal situation for inferring an importance function ap-
proximation. Middle plot: No overlap implies that virtually nothing can be learned
about the importance function of the datasets (worst situation). Right plot: Both
datasets are overlapped, however, the overlap is sparse which can make inferences very
difficult.

and fixed variance η ∈ R but two (different) means, μ1 for p and μ2 for q. Now, from

both distributions, two data samples are taken denoted, by X ∼ p and ζ ∼ q. Given

an equal variance for both distributions, the similarity/closeness or overlap of the data

points X and ζ depends on the distance between μ1 and μ2. By having a large distance

in between, this means that the actual overlap of both datasets might be too small or

even worse the datasets might be disjoint (figure 6.1 middle plot). In the case of two

disjoint data samples there is virtually nothing one can learn about. Such a situation can

be considered as too sparse in order to learn a good representation for the importance

function w. Therefore, it is assumed that both datasets must have at least partially a

sufficiently large overlap in order to determine properties of w. On the other hand, the

more data lying in the overlap, the better the representation ŵ of w can be learnt (figure

6.1 left plot). Another problem can arise when an overlap is present but the data within

this overlap is too sparse (figure 6.1 right plot). This situation makes the approximation

basically possible but prone to perturbed data. The consequence is that methods of

instance based approaches should also take robustness into account. Hence the actual

second crucial issue is the degree and density of overlap between both datasets. Since

this cannot be controlled, it must be assumed that at least some overlap exists.

The third entity that crucially influences the approximation quality depends on the

bandwidth parameter σ. The possible values for σ depend directly on the number of

samples of both datasets X and ζ and its corresponding degree of overlap. To better

see this, it is now assumed that the two dataset samples X and ζ are considered as

being fixed. In that case, the number or density of samples have great implications on

the magnitude of the (controllable) parameter σ. These implications are visualized in

figure 6.2 where the influence of the bandwidth parameter on the fit is shown. In order

to make the figure better interpretable, each resulting function has been normalized to

max(ŵ(x)) = 1. This is achieved by setting αi = 1/max(ŵ) ∀i ∈ {1, . . . ,M}, x ∈ X.
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Figure 6.2: The term density of the data samples depends on the magnitude of the
bandwidth parameter σ. If σ is chosen small the density of the data sample can be
interpreted as being too small. On the other hand an increased value of σ leads to a
generalization which might be too broad. In this particular example the value σ = 1
will yield a very good result. However, this is due to the fact that the number of data
points in this particular example can already be considered as a very dense sample.
In higher dimensional spaces this will most probably not continue to hold due to the
empty space phenomenon. Additionally, it should be noted that the center points are
a sample from a normal distribution which has a relatively simple structure and thus
is relatively easy to approximate.

Further, the X data in this example is an equidistant ”sample” set since it makes the

approximation less dependent on the sparseness of X. Under these circumstances, if, for

instance, the bandwidth parameter is chosen small relative to the amount of available

data, the resulting approximation will expose a high variance. Thus, the approximation

of the importance function in between sampled data points can be regarded as an over-

fit and will be very unreliable or, even worse, will output wrong results. On the other

hand, increasing the value of σ will soften this volatility. However, increasing σ can lead

to a too large bandwidth which might yield an approximated importance function that

generalizes too strongly. Figuratively speaking, the function becomes to broad such that

the weights are all similar and no longer individual enough. This effect becomes espe-

cially problematic for higher dimensional data where due to the curse of dimensionality,

the sampled dataset will virtually always be very sparse. Also the degree of overlap has

implication on the choice of σ. If for instance no overlap exists, the approximation ŵ

(6.1) has to be broadened in order to capture the interaction of both dataset samples on

the edges. If σ is chosen too small the weights in the overlap are also small which leads

to a situation where all additional data get 0 weights and hence can not be applied.

However, this can partially be a desired property since it indicates that the additional

data is too dissimilar to the primary data and will not be applied. Therefore, dependent

on the number of data samples X and ζ the bandwidth σ has to be chosen smaller or

greater which makes the approximation of function ŵ (6.1) dependent of the density of

data samples. The more data is given the smaller σ can be and the more characteristic

properties of the importance function can be approximated without risking a too volatile

function fit.

However, in some situations it is necessary to apply a small σ which is potentially prone
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to result in an overfit. This is especially true for higher dimensional problems when

the given dataset is sparse. For example in a 10 dimensional space a sample of 1000

data points is very often already a very sparse dataset. Sparse data often leads to

a too large choice for the bandwidth σ. The consequence is that this leads to a too

broad approximation which in turn yields a too general weight function that assigns

each additional secondary datapoint the same weight. This means that each secondary

datapoint is equally important to take into account. However, if a dataset shift is

present this cannot be the case because then the two datasets are at least partially

different which implies different weights. Therefore, it can happen that one has to

accept a certain amount of overfit and consequently a volatile approximation. Since this

is a problem, the new algorithm presented in chapter 7 was designed with this aspect in

mind and improves the approximation of ŵ in such cases.

Finally, a fourth entity has also to be considered which cannot be controlled. So far it

was assumed that the data is a ”clean” sample from both distributions. This actually

does not match the circumstances in practical settings. Normally the measurements

have been exposed to some random influences such that the data sample is practically

always perturbed or noisy. These perturbations are commonly considered to be the

result of various unknown and overlaid hidden sources of influence. Due to that, they

are commonly modeled as noise in form of a Gaussian distribution. However, since these

perturbations have a direct influence on the quality of the dataset samples, it is even

more difficult to estimate an appropriate ŵ function. This holds particularly true for

situations of sparse data since then the effect of an individual distorted data point has

a higher impact relative to the number of all data points. As a consequence, in order

to make the approximation smoother, there is a further tendency to estimate a larger σ

than the one that is actually required.

From the above, one can see that although approximation ŵ (6.1) is very simple, there are

a lot of problems that might arise. Some of these, like the data itself, cannot be controlled

while other caveats (especially in higher dimensional spaces) can be thought of when

inferring the approximation ŵ of the importance function. This reduces the instance

based approach to the estimation of an appropriate importance function approximation

ŵ which captures the given structure well by simultaneously not being too volatile. To

account for this, the thesis will concentrate on the third and last aspect of the discussed

topics, i.e. the influence of the parameters of the importance function approximation and

the perturbations of the given data. Throughout the rest of this work, the assumptions

for the data are that they are sufficiently dense and provide at least some overlap. Such

assumptions are required because normally one does not have a lot of influence on the

structure of the given data itself. The next question to ask would be the inference of an

appropriate ŵ under these assumptions.
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6.3 Divergence Measures for Distribution Matching

Until now no method for estimating the parameters of expression (6.1) is stated. Since

this work will apply importance sampling for the estimation of appropriate weights a

reasonable idea is the application of divergence measures (as discussed in chapter 2).

The reason for its application is that divergence measures are motivated by probability

functions, distributions and at its core by importance sampling and can therefore be

considered a natural approach. Thus divergence measures are a good choice because

they offer a mathematical framework for estimating appropriate parameters. Further,

by providing these capabilities they consequently serve well the needs required in dis-

tribution matching such that one arrives at the distribution of interest. Assuming pP

is the target or primal distribution and pS the source distribution, then mathematically

presenting, one is looking for something like:

pP (x) = w(x)pS(x)⇔ pP (x)

pS(x)
= w(x) ≈ ŵ(x).

Here, ŵ(x) denotes the approximation or model of the importance function given in (6.1).

Based on the model (6.1) for the reweighting function w it becomes possible to apply

divergence measures to obtain an optimization problem in order to find appropriate α

and σ parameters. The abstract formulation for this problem is given by:

min
w
D(pP ||wpS) ≈ min

ŵ
D(pP ||ŵpS).

This expression suggests that this approach is straight forward because it is formulated

using a general definition of a divergence. However, employing any divergence measure

is only possible in principal. In a practical settings, in which one lacks of the knowledge

of the distributions, this will not always be possible because one will encounter different

problems on an analytical level. The biggest problem one has to care for is that these

two quantities, pP and pS , vanish somehow from the optimization problem. This is

necessary because these two functions are unknown and therefore cannot be employed.

Not every divergence measure can (in an analytical way) be transformed in such a way

that the optimization no longer depends on the distributions pP and pS . Yet, some

divergence measures are well suited for this task. An important example of a divergence

for which this analytical transformation is possible is the Kullback-Leibler divergence:

min
ŵ
DKL(pP ||ŵpS) = min

ŵ

∫ ∞
−∞

log

(
pP (x)

ŵ(x)pS(x)

)
pP (x)dx.
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Using this divergence one can get rid of the explicit distributions by applying the fol-

lowing calculations:

arg min
ŵ

∫ ∞
−∞

log

(
pP (x)

ŵ(x)pS(x)

)
pP (x)dx (6.2)

= arg min
ŵ

(∫ ∞
−∞

log
(
pP (x)

)
pP (x)dx−

∫ ∞
−∞

log (ŵ(x)) pP (x)dx−
∫ ∞
−∞

log
(
pS(x)

)
pP (x)dx

)
(6.3)

= arg min
ŵ

∫ ∞
−∞

log (ŵ(x)) pP (x)dx ≈ arg min
ŵ

M∑
i=1

log
(
ŵ(xPi )

)
with xPi ∼ pP (6.4)

Since pP and pS do not contribute to the optimization of the problem the first and third

term in the second line can be regarded as constant and can therefore be ignored. In

the last line the empirical mean has been applied on expression
∫∞
−∞ log (ŵ(x)) pP (x)dx

which denotes an expectation with respect to pP . Therefore, the data points x1, . . . , xM

in the empirical estimate are samples from the distribution pP . For large M this ap-

proximation becomes very accurate.

6.4 Instance Based Approaches for Compensating Covar-

itate Shift

The covariate shift problem setting has been introduced in section 4.4.1 where it was

defined as pP (x, y) 6= pS(x, y) caused by different marginal or covariate distributions

pP (x) 6= pP (x) but equal conditionals i.e.: pP (y|x) = pS(y|x). As section 5.2.1 points

out, the machine learning methods for compensating such a shift are often referred to

as transductive transfer learning. This section will give an introduction on how instance

based methods can be applied for compensating such shifts. Chapter 7 will present new

findings based on similar methods which better compensate such a shift.

Covariate shift situations occur for instance if a non stationary process drifts over time

such that the covariates change. In the experimental sections of the next chapter 7 an

earth quake dataset is applied where the measurements are taken at different locations

such that the actual (geographical) location may have an impact. To rectify the covariate

shift problem, one can put more weight on secondary/training data points that lie close to

the primal data XP ⊂ RD×M , assuming that these better represent the structure of the

primal data. In supervised learning, such a situation where, besides the secondary data,

additional samples are available for whose only the locations x are given is known as semi-

supervised learning [20]. However, the difference is that semi-supervised learning does
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not assume a shift of any kind within the given data and is therefore more comparable

to the classical machine learning setting.

For recent surveys on the state of the art on covariate shift as well as the more general

dataset shift see [57, 71, 89]. In this survey, an important method discussed is the so

called Kullback-Leibler Importance Estimation Procedure (a.k.a. KLIEP) [91]. The

derivation of KLIEP is basically shown in (6.2) of the previous section. It benefits

from the property of the KL divergence where the probabilities pP and pS vanish by

approximating the KL divergence by taking empirical expectations. By further applying

the approximation (6.1) of the importance function, as shown in (6.2), KLIEP determines

importance weights that can then be applied to compensate the covariate shift.

Another application of a divergence measure was investigated in [47]. In their work they

consider the euclidian distance as a divergence measure which is a divergence of the class

of Bregman divergences. The idea is to consider the distance between the real unknown

importance function w and it’s approximation ŵ (6.1):

arg min
ŵ

1

2

∫ ∞
−∞

(ŵ(x)− w(x))2 pP (x)dx

= arg min
ŵ

1

2

∫ ∞
−∞

ŵ(x)2pP (x)dx−
∫ ∞
−∞

ŵ(x)w(x)pP (x)dx+
1

2

∫ ∞
−∞

w(x)2pP (x)dx

= arg min
ŵ

1

2

∫ ∞
−∞

ŵ(x)2pP (x)dx−
∫ ∞
−∞

ŵ(x)w(x)pP (x)dx

≈ arg min
ŵ

1

2

M∑
i=1

(ŵ(xi) (ŵ(xi)− 1))

Similar to the KLIEP approach, this method applies the approximation of the integral

by the empirical mean such that the probability functions vanish from the calculation.

They call this method uLSIF (Unconstraint Least Squeares Importance Fitting). As in

the case of KLIEP it is formulated for and applied to the covariate shift problem.

A further widely known method for instance based transfer is the so called Kernel Mean

Matching algorithm (KMM) [45]. The idea of KMM is to find a match between data that

has been mapped into some feature space by applying a kernel map and subsequently

minimizing the distance in between these two mappings. The mathematical problem

formulation can be given as:∣∣∣∣∣∣
∣∣∣∣∣∣ 1

N

N∑
j=1

βjφ(xSj )− 1

M

M∑
i=1

φ(xPi )

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=
1

N2
βtKβ − 2

N2
κtβ + const.

Here, βt denotes the transpose of the parameter of coefficient vector β, φ denotes the

feature mapping, K the implied empirical kernel matrix, N,M the number of source and
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target data, and κ is the similarity measured by the kernel mapping function k(x, y),

i.e. κj = N
M

∑M
i=1 k(xPi , x

S
j ) for xSj coming from pS and xPi coming from pP . The final

optimization problem is:

min
β

1

2
βtKβ − κtβ s.t. βj ∈ [0, B] and

∣∣∣∣∣∣
N∑
j=1

βj −N

∣∣∣∣∣∣ ≤ Nε.
The first constraint βj ∈ [0, B] bounds each individual value of β and the second con-

straint ensures that the sum of the β values sums up to 1 in expectation. A major

drawback of KMM is that the authors do not provide a possibility for adjusting the

parameters. For instance, when applying a Gaussian kernel function, there is no known

method for adjusting the bandwidth parameter η. Therefore, one has to guess the pa-

rameter which clearly is a huge disadvantage, since the practical performance differs

significantly on the chosen parameter.

6.5 Regression and Classification Methods for Covaritate

Shift Compensation

The previous section introduced some methods for estimating individual weights for

each datapoint. In particular, a weight for each S datapoint can be calculated such that

each of these S datapoints gets assigned a certain amount of importance. These weights

then determine how much importance or influence a datapoint gets for compensating

the shift. High values denote important data points, whereas low values stand for less

important data points. Classification and regression methods need to incorporate this

information such that the prediction in regions of heavily weighted S data points is

more accurate. To make use of this weighting, it is necessary to modify classification

and regression methods such that they can employ a weight for each given S data point.

The derivation of these modified methods is presented in this section.
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6.5.1 Weighted Support Vector Regression (WSVR)

For regression problems a modified version of a support vector regression (SVR) problem

is given here by:

min
θ,b,ξ,ξ∗

1

2
‖θ‖2 + C

N∑
n=1

ŵ(xn)(ξn + ξ∗n)

subject to: yn − θtφ(xn)− b ≤ ε+ ξn ξn ≥ 0

θtφ(xn) + b− yn ≤ ε+ ξ∗n ξ∗n ≥ 0.

Here θ and b denote the model parameters and the newly introduced ŵ(xn) are the

estimated importance weights. For each data point, the slack variable ξ and ξ∗ is

multiplied by ŵ(xn). This implies higher values for large weights and lower values for

small weights respectively. Therefore, the slack at data points with large weights will

tend to be lower than those multiplied by small weights, thus causing a lower tolerance

to errors on important data points. In order to apply the kernel trick [84] it is necessary

to dualize the optimization problem. The Lagrange function is given by:

L(θ, b, ξ, ξ∗, a, a∗, β, β∗) =
1

2
||θ||2 + C

N∑
i=1

wi(ξi + ξ∗i )−
N∑
i=1

βiξi −
N∑
i=1

β∗i ξ
∗
i

−
N∑
i=1

ai
(
ε+ ξi − yi + θtxi + b

)
−

N∑
i=1

a∗i
(
ε+ ξ∗i − θtxi − b+ yi

)
For the elimination of the primal variable one needs to derive the Lagrange function

w.r.t. each primal variable:

∂

∂θ
L = θ −

N∑
i=1

(ai + a∗i )xi = 0

∂

∂b
L =

N∑
i=1

(a∗i − ai) = 0

∂

∂ξ
(∗)
i

L = wiC − a(∗)
i − β

(∗)
i = 0

Here, as for β(∗), a(∗) denotes a as well as a∗. Transforming the first equation to θ and

the last to β(∗) one can substitute θ and β(∗) in the primal problem. Finally, the dual
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version of the problem becomes:

max
a,a∗

yt(a− a∗)−ε
N∑
n=1

(an + a∗n)− 1

2
(a− a∗)tK(a− a∗)

subject to: 0 ≤ a ≤ ŵ(xn)C a ≥ 0

0 ≤ a∗ ≤ ŵ(xn)C a∗ ≥ 0

where dot product xtixj has been replaced by K (the kernel trick). As for the weighted

support vector machine, K denotes the resulting empirical kernel map. In the following

Gaussian kernels will be applied.

6.5.2 Weighted Support Vector Machine (WSVM)

Analogously, a modified version of a weighted support vector machine for classification

is given in [45] by the following optimization problem:

min
θ,b,ξ

1

2
‖θ‖2 + C

N∑
n=1

ŵ(xn)ξn

subject to: yn(θtφ(xn)− b) ≥ 1− ξn

ξn ≥ 0

where θ describes the separation hyperplane and b its offset from 0. ξ are the slack

variables. The dual formulation is also obtained in a similar way as the WSVR. The

Lagrange function for the WSVM is:

L(θ, b, ξ, a, β) =
1

2
‖θ‖2 + C

N∑
n=1

ŵ(xn)ξn −
N∑
n=1

an
(
ξn − 1− yn

(
θtφ(xn)− b

))
−

N∑
n=1

βnξn

From that Lagrange function, similary as for the WSVR, the dual formulation of the

optimization problem is given by:

max
a

N∑
n=1

an −
1

2

N∑
n,m=1

anamynymK

subject to:

N∑
n=1

an = 0

0 ≤ an ≤ ŵ(xn)C ∀n = 1 . . . N

where a are the dual variables and K denotes the empirical kernel matrix.
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6.6 Instance Based Approaches for Inductive Transfer Learn-

ing

The inductive transfer learning (ITL) problem has been presented in section 5.2.2. In

contrast to the covariate shift setting, the ITL setting further assumes an additional shift

also in the dependent variables y. Formally speaking, inductive transfer learning (ITL)

refers to the situation with at least two datasets (XP , Y P ) ⊂ RM×D+1 and (XS , Y S) ⊂
RN×D+1, which are sampled from the distributions pP (x, y) and pS(x, y), while in general

pP (x, y) 6= pS(x, y). The kind of underlying dataset shift is called source component shift

and is explained in detail in section 4.4.5. Although the main assumption is pP 6= pS ,

it is also assumed that the distribution pP and pS are at least somewhat similar, and

that for some connected sets of (x, y) one has pP (x, y) ≈ pS(x, y). Otherwise it is not

possible to transfer anything from the S data to the P data. Additionally, it is assumed

that the number of P data is much smaller than that of the S data, i.e. |XP | � |XS |,
where | · | is the cardinality of a set. Therefore, a model learned solely on the P data

will not provide a very good prediction quality due to the small number of data. As a

consequence, the goal of ITL is to improve the prediction model and hence the quality

of a model for the P data by employing data from the S data. In contrast to multi-task

learning [6], inductive transfer learning is not concerned with the prediction quality on

both the S and P data, but concentrates only on the prediction of the P data; the S data

is exclusively used as data that helps to improve the prediction quality of the P data.

ITL situations often occur when the distribution drifts over time. An example for such

a shift is given in the experimental section in Chapter 8, where a dataset is applied that

describes the causes of delays of aircrafts over some years. Over the years, the delays and

measurements vary which is due to a shift of the underlying data generating process.

The cause for a changing generating process might be due to new airports that have

been opened recently or new aircraft models that are more reliable. Therefore, the data

can shift from year to year. Other examples are the classification of text data where one

would like to transfer knowledge learned on texts about a certain topic to texts about a

different topic [75].

As for the covariate shift, the ITL setting can also be dealt with instance based methods.

Since, by assumption, it partially holds that pP (x, y) ≈ pS(x, y) the instance based

methods should pick these similar datapoints from the S data and assign them a high

importance. Ideally, the dissimilar points get a low importance and hence a low influence.

TrAdaBoost [26] and an extension [3] are instance based methods that assign a weight

to each data point such that some S data have an influence on the prediction quality for

the P data. [66] states a similar boosting approach for regression. Other recent work
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based on instance transfer has been put forward by [92], [108] and [110] in which they

use multiple input sources to improve the prediction quality of classifiers.

Other important existing works that implement instance based reweighting methods

have been discussed in the previous section 6.4 and focus primarily on the covariate

shift setting. For comparison reasons, it is interesting to apply these methods also to

the inductive transfer learning setting. However, the major drawback of these methods

in the ITL setting is that they do not take the information about the target labels from

the P data into account. This can lead to situations where a S data point still gets a

high weight assigned due to the similarity to the covariates of the P data although the

label, which eventually is what one wants, is fundamentally different from the ones in

the P data.

In chapter 8 two new instance based methods are presented and derived. The first

one, which is called Direct ITL or DITL, can be considered being a supervised method

and is a completely new approach. The second approach (explained in section 8.3.3) is

inspired by KLIEP [91]. However, to compensate the shortcoming of the covariate shift

assumption of KLIEP the second approach is modified such that it takes also the labels

of the P data into account. The second approach will be refered to as Kullback-Leibler

ITL or KLITL.

6.6.1 Weighted Kernel Ridge Regression for Compensating Source

Component Shift

The application of the learned weights requires an adjusted model for the prediction.

Therefore, a new weighted kernel ridge regression model is proposed now, which will be

referred to as ITL-KRR in the following. The modified ridge regression model is given

by:

JW (θ) =
1

2

(
M∑
i=1

(θtφ(xPi )− yPi )2+

N∑
j=1

wj(θ
tφ(xSj )− ySj )2

+
λ

2

D∑
d=1

θ2
d (6.5)

where θ ∈ RD denotes the model parameter, λ the regularization parameter, φ the

feature map that maps the input x into the feature space (see e.g. [13]), and wj :=

ŵ(xSj , y
S
j ) denotes the weight for each supplementary data point from

(
XS , Y S

)
. This

expression can be written in a more compact way. To get there, each term in the first sum

will be multiplied by a neutral 1. Each 1 will become a weight factor for a corresponding

data point from XP . Secondly, the data points XP and XS , as well as the labels Y P
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and Y S , will be concatenated to:

XPS =
(
XP |XS

)
∈ RM+N×D

Y PS =
(
Y P |Y S

)
∈ RM+N×1

and (w̃1, . . . ,w̃M , w̃M+1, . . . , w̃M+N ) = ( 1, . . . , 1︸ ︷︷ ︸
M elements

, w1, . . . , wN ).

Equipped with these new notations, the optimization problem can be rewritten as:

JW̃ (θ) =
1

2

(
M+N∑
i=1

w̃i(θ
tφ(xPSi )− yPSi )2

)
+
λ

2

D∑
d=1

θ2
d.

In order to be able to apply kernels to this method, it is necessary to dualize the latter

expression. The derivative w.r.t. the primal parameter vector θ is:

∇θJW̃ (θ) = 0

θ =

M+N∑
i=1

(
− 1

λ
w̃i
(
θtφ(xPSi )− yPSi

))
︸ ︷︷ ︸

=:ai

φ(xPSi )

θ = Φ(XPS)a =: Φa (6.6)

Substitution of θ by Φa yields:

JW̃ (Φa) =
1

2

M+N∑
i=1

w̃i
(
(Φa)t φ(xPSi )− yPSi

)2
+
λ

2
(Φa)2

=
1

2
atΦt

M+N∑
i=1

φ(xPSi )w̃iφ(xPSi )tΦa− atΦt
M+N∑
i=1

φ(xPSi )w̃iy
PS
i

+
1

2

M+N∑
i=1

w̃iy
PS
i

2
+
λ

2
atΦtΦa

The last expression can be written in matrix notation. Therefore, it is necessary to

introduce the following new notations:

W :=

[
IM 0

0 diag
(
w(xS1 , y

S
1 ), . . . , w(xSN , y

S
N )
)]

where IM denotes the identity matrix of size M ×M . Additionally, the kernel trick [84]

is considered, i.e.:

K = Φ(XPS)tΦ(XPS) = ΦtΦ.



Chapter 6 - Compensating Covariate Shift 71

As the dual optimization problem, one then gets:

1

2
atKWKa− atKWY PS +

1

2
Y PSWY PS +

λ

2
atKa.

Predictions for new data x∗ can be obtained by considering the dual version of primal

function for prediction:

f̂(x∗) = θtφ(x∗) = (Φa)t φ(x∗) = atΦtφ(x∗) = atk (x∗) (6.7)

where f̂ denotes the prediction function and the model parameter θ has to be substituted

by the expression Φa (6.6). The kernel trick [84] has been applied on the expression

Φtφ(x∗). Thus, the expression k (x∗) is given by (k(x1, x
∗), . . . , k(xL, x

∗))t, i.e. the

kernel map of the new datapoint x∗ and the data XPS on which the model is learned.

6.7 Summary

Instance based approaches for tackling the transfer learning problem setting are an ade-

quate way for compensating diverse data set shifts. In fact, by pursuing the distribution

matching paradigm one tries to approximate the importance function which is an exact

transformation function. A further advantage of the approximation ŵ given in (6.1) is

that it is a direct way that avoids several pitfalls of the naive density estimation approach.

Although the approximation (6.1) reduces the number of potential error sources, there

still exist circumstances which have an impact on the approximation quality of (6.1).

One critical property is the number and overlap of the given data: if not enough infor-

mation or overlap is provided one cannot learn anything from the given data. However,

if all requirements for a good approximation are satisfied, the application of divergence

measures provide a range of different ways for estimating appropriate weight coefficients.

By doing so, it is important that the canonical distributions pP and pS somehow vanish

from the calculation since due to the lack of knowledge, they cannot be employed. This

is mostly achieved by taking the empirical mean by employing the given data.

By following the described instance based approach, the next two chapters will introduce

several new instance based approaches for compensating covariate shift and inductive

transfer learning.





Chapter 7

Compensating Covariate Shift

The covariate shift setting (a.k.a. transductive transfer learning) has been discussed in

sections 4.4.1 and 5.2.1. This chapter states a new approach for compensating such a

shift and can therefore be considered a new method for the transfer learning problem set-

ting. This new approach presented here will be, in particular, an instance based method

that applies the importance sampling technique discussed in the previous chapters. But

since the exact distributions of the datasets are unknown, it is necessary to approxi-

mate the weight function. Therefore, the approximation of the importance sampling

function given in (6.1) is taken into account. The performance of the new method will

be compared with KLIEP [91], Kernel Mean Matching [45] and uLSIF [98] since these

methods are well known within the community and are often considered for comparing

new approaches within the literature. Another reason is that all these methods are also

instance based. They all assume some overlap of the samples from the two distributions

pS and pP . As explained in section 6.2 if no overlap exist, i.e. where the secondary

and primal distribution have nothing in common, no similarity between the data can be

derived. In such a situation, without additional strong assumptions about the types of

distributions involved, it will not be possible to derive reasonable information from the

given data for the calculation of the weights.

The main idea of the proposed new approach for estimating the appropriate importance

weights is based on the application of a Fourier approximation on different divergence

measures. As a consequence, in a certain sense the measuring of the divergence becomes

less data centered since an explicit discretization of the underlying error function is

involved. The Fourier based approach can be applied to any distance measure, and a

specific point set for empirically estimating the distance measure. The applied distance

measures include the minimization of the total variation distance, the Kullback-Leibler

divergence and the Euclidean distance. The primal and secondary data are then used

73
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during the estimation of the Fourier coefficients of the resulting distance function. It can

be seen that the resulting constrained optimization problem is convex and can be solved

with standard methods. Furthermore, some evidence will be given that under certain

circumstances the application of the Fourier series will lead to a better weight estimation

in comparison to other approaches. The curse of dimensionality for which the Fourier

series approximation is prone to for high dimensional functions will be tackled with the

Hyperbolic cross approach [10, 49, 88] which enables the application of a Fourier series

approximation to high dimensional functions by simultaneously keeping an acceptable

degree of accuracy.

7.1 New Fourier Based Approach

The new approach is now motivated and derived for the calculation of importance

weights for the secondary data. Mathematically speaking, one would like to minimize

the distance of the primal/test distribution pP and the secondary or training distribution

pS which is reweighted by w

min
w
D(pP (x)‖w(x)pS(x)). (7.1)

Expression (7.1) can be minimized using different distance measures. Typically, diver-

gence measures from the classes of Csiszár or Bregman divergences are chosen, which

are then empirically evaluated on some points {xl}Ll=1. Here one often uses secondary

datapoints XS ⊂ RD×N or primal data points XP ⊂ RD×M for the evaluation points in

the distance estimation.

The class of Csiszár divergences are now considered, which are defined as Dh(p||q) =∑L
l=1 qlh(plql ), L ∈ N, where h is a real-valued convex function satisfying h(1) = 0 (for

abbreviation define pl := p(xl), ql := q(xl)). Different h yield different divergences. For

the following exposition h is set to h(u) = |u− 1|. Considering that ql > 0 ∀i the total

variation distance becomes:

Dh(p||q) =
L∑
l=1

ql

∣∣∣∣plql − 1

∣∣∣∣ =
L∑
l=1

|pl − ql|. (7.2)

Substituting (7.2) into (7.1) yields:

min
w
Dh(pP (x)‖w(x)pS(x)) = min

w

L∑
l=1

|pP (xl)− w(xl)p
S(xl)|. (7.3)
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It should be noted that in contrast to many other approaches, the methodology does

not depend on a specific choice of the points {xl}Ll=1 and is able to use any point set

in the distance estimation (7.3). Nevertheless, for the sake of comparison with other

approaches, either the primal or secondary data points are used in (7.3) and for the

experiments in section 7.4.

The Fourier based approach which will be described in the following can be directly

applied to different divergence measures. For example, a generalisation of the total

variation distance, the so called Matsusita or Hellinger distance, i.e. h(u) = |uγ − 1|
1
γ

which yields
∑L

l=1 |p
γ
l − qγl |

1
γ , could be used. In later sections, the approach will be

combined with the Kullback-Leibler divergence and the Euclidean distance, respectively.

7.1.1 Choice of the Weight Function

The optimization problem (7.1) states the problem of finding an optimal weight function

w(x) which minimizes the distance of the two functions pP and w ·pS . The exact solution

would be the quotient of the density functions, i.e. w(x) = pP (x)/pS(x), which of course

is not available and cannot be computed. Instead, as introduced in chapter 6.1, the

approximation of w namely ŵ (6.1) is applied. The experiments will use the primal data

as the center points ζ = XP , as in [47, 91]. In that case, it is argued that using P data

points as the Gaussian centers is preferable, since kernels may be needed where the target

function w(x) is large, which is the case where the secondary density pS(x) is small and

the primal density pP (x) is large. Note that the ratio w(x) = pP (x)/pS(x) implies positive

weights, which is the case for any x and any α ≥ 0 in ŵ(x, α). Other weight function

representations are possible, but to concentrate on the effect of the new Fourier based

distance estimation and to be able to better compare with other approaches the linear

combination of Gaussian kernels is considered in this work.

Inserting (6.1) into (7.3) then yields

min
w
Dh(pP (x)‖w(x)pS(x)) ≈ min

α≥0

N∑
j=1

|pP (xj)− ŵ(xj , α)pS(xj)|. (7.4)

However, this minimization problem still employs the probability densities directly. The

next step will be to approximate this term by using a Fourier series approximation,

which then removes the explicit densities.
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7.1.2 Fourier Series Approximation

The new approach is based on the ideas introduced in chapter 3. It will employ the

Fourier series approximation (as it was explained in section 3.1), with which the em-

ployed distance measure will be discretized by taking a more function centric view as

opposed to the more common data centric view. Section 7.2.2 provides a discussion of

the advantages of this new approach, and section 3.2 explains the case of more than one

dimension.

A suitably smooth function f can be approximated by a Fourier series in a controlled

fashion via a truncation with |k| ≤ K, k ∈ Z

f(x) ≈
K∑

k=−K
cke

i 2πk
T
x, (7.5)

where K is chosen to achieve a given error, see section 3.2 for more details on the

approximation properties.

Of interest now is the error function between the two densities:

f(x) := pP (x)− ŵ(x, α)pS(x).

It is assumed that the given data (here in the one dimensional case, D = 1) is bounded

to a certain region, i.e. XP ∪XS ⊂ [t, t+T ] ⊂ R, for suitable chosen t, T . Assuming pe-

riodicity of f on that interval implies that the same small error is made on the boundary,

which is the aim in the minimization. Furthermore, the interesting region is the inner

part where the two samples overlap, near the boundary of the domain the densities will

be small in any case, which, if necessary, can even be enforced by having a reasonable

gap between the given data and the actual boundary of the interval. Therefore one can

assume a continuous periodic extension of the Fourier series of f and avoid the Gibbs

phenomenon, i.e. potential overshoots on the boundary, in practice.

The Fourier series approximation will now be applied to problem (7.4). From its defi-

nition, the densities are replaced by the empirical samples in the formula (3.2) for the

coefficients ck after splitting the integral into two:

ck(α) =
1

T

∫ t+T

t
e−i

2πk
T
xdpP (x)− 1

T

∫ t+T

t
ŵ(x, α)e−i

2πk
T
xdpS(x) (7.6)

≈ ĉ(M,N)
k (α) =

1

TM

M∑
m=1

e−i
2πk
T
xPm − 1

TN

N∑
n=1

ŵ(xSn , α)e−i
2πk
T
xSn . (7.7)
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In the last part of this equation, the two integrals are approximated by taking the empir-

ical expectation based on the training data
{
xSn
}N
n=1
∼ pS and test data

{
xPm
}M
m=1

∼ pP ,

respectively. Therefore, the unknown densities are no longer explicitly needed but their

known samples can be used.

7.1.3 Optimization Problem

The original problem (7.1) is about finding an appropriate weight function. Employing

ŵ (6.1) for given parameter σ and center points (ζj)
Z
j=1 and using the Fourier approxi-

mation (7.5) for a suitably chosen K one obtains the following optimization problem:

min
α≥0

L∑
l=1

∣∣pP (xl)− ŵ(xl, α)pS(xl)
∣∣ ≈ min

α≥0

L∑
l=1

∣∣∣∣∣
K∑

k=−K
ĉ

(M,N)
k (α)ei

2πk
T
xl

∣∣∣∣∣ . (7.8)

Due to the linearity, this problem can be expressed in matrix notation. Defining the

matrix A ∈ RL×Z as A = [A1| . . . |AL], where the Al ∈ RZ are column vectors comprised,

after inserting the explicit expression (6.1) for ŵ, of the entries:

(Al)j =
K∑

k=−K

1

TN

N∑
n=1

e−
‖xSn−ζj‖

2

2σ2 e−i
2πk
T
xSnei

2πk
T
xl , j = 1, . . . , Z. (7.9)

Additionally a vector b ∈ RL is obtained, that is defined as:

bl =
K∑

k=−K

M∑
m=1

1

TM
e−i

2πk
T
xPmei

2πk
T
xl , l = 1, . . . , L. (7.10)

The problem (7.8) can now be stated as a L1 minimization problem with side conditions

in a compact notation by employing A and b

min
α≥0
‖Aα− b‖1 .

The latter expression is a L1-norm of system of linear equations and, therefore, convex

[11].

7.1.4 Normalization Constraints

It is possible that a solution to the optimization problem (7.8) might not yield appro-

priate weights. Often only a small fraction of αs will be larger than zero, which leads to

a situation where only a few training data points will get importance. To compensate,

an approach will be employed which is similar to the one introduced in [91]. Given ex-

pression pP (x) = w(x)pS(x) derived from the expression w(x) = pP (x)/pS(x), and taking
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the integral on both sides yields the natural side condition:

1 =

∫
pP (x)dx =

∫
w(x)dpS(x) ≈ 1

N

N∑
n=1

ŵ(xSn , α),

again using the empirical samples and the approximation ŵ. This side condition ensures

that the transformed pS is again a valid density. By augmenting (7.8) one gets a new

constrained optimization problem which can e.g. be solved with the solver Yall1 [106]

(Yall1 applies alternating direction algorithms for a diverse set of l1 problems):

min
α≥0
‖Aα− b‖1 s.t.

1

N

N∑
n=1

ŵ(xSn , α) = 1. (7.11)

An instruction for the implementation of the complete procedure is given by:

input : Data XS ∈ RN×D and XP ∈ RM×D
output: Vector α ∈ RN for obtaining weights from ŵ(x, α) (6.1)

1 Initialize with zeros A ∈ RM×N , b ∈ RM and W ∈ RN
2 for l← 1 to M do
3 bl ← (7.10)
4 for j ← 1 to N do
5 Alj ← (7.9)
6 end

7 end
8 Calculate the constraint
9 for j ← 1 to N do

10 for l← 1 to M do

11 Wj ←Wj + e−
||xSj −x

P
l ||

2
2

2σ2

12 end
13 Wj ← 1

NWj

14 end
15 For the final optimization problem: Randomly initialize α ∈ RN
16 Apply A, b,W to the solver Yall1 [106] with the configuration ”(BP+)” and

solve ||Aα− b||1 w.r.t. the constraint Wα = 1
17 Retrieve a weight for arbitrary x∗ by applying the resulting αs and x∗ to (6.1)

7.1.5 Kullback-Leibler Divergence

An advantage of the Fourier approach is that it can directly be applied to different

divergence measures. To demonstrate this flexibility, a second Csiszár divergence namely

the Kullback-Leibler divergence will be used, which also allows the comparison with
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KLIEP [91]. Roughly following the KLIEP derivation gives:

KL(pP ‖wpS) =
L∑
l=1

pP (xl) log

(
pP (xl)

w(xl)pS(xl)

)

=

L∑
l=1

pP (xl) log

(
pP (xl)

pS(xl)

)
−

L∑
l=1

pP (xl) log (w(xl)) .

Since the first part does not depend on w, it suffices to minimize:

arg min
w

KL(pP ‖wpS) ≈ arg min
α≥0

−
L∑
l=1

pP (xl) log (ŵ(xl, α)) , (7.12)

where the approximation ŵ of w was employed. Using the same normalization approach

as above, the final optimization problem becomes

min
α≥0

L∑
l=1

K∑
k=−K

ĉ
(M)
k (α) ei

2πk
T
xl s.t.

1

N

N∑
n=1

ŵ(xSn , α) = 1, (7.13)

where

ĉ
(M)
k (α) =− 1

TM

M∑
m=1

log
(
ŵ(xPm, α)

)
e−i

2πk
T
xPm (7.14)

≈ 1

T

∫ t+T

t
− log (ŵ(x, α)) e−i

2πk
T
xdpP (x) = ck(α).

Although the approach is very similar to the one suggested by [91], the optimization

problem is different due to the Fourier approximation and also the divergence is es-

timated in a different fashion. Note that the KL divergence is a special case of the

generalized KL divergence or I-Divergence which is from the class of Bregman diver-

gences. The Fourier approach could also be applied for these.

7.1.6 Euclidean Distance

The third distance measure that will be investigated is the Euclidean distance, which

belongs to the class of Bregman divergences, and was also used for uLSIF [47]. The

Squared Euclidean distance was derived in expression (2.7) by:

D||·||22(p‖q) = ||p||22 − ||q||22 − 2q(p− q) = ||p− q||22.

Thus, employing the data, the weight function ŵ and applying the Fourier approxima-

tion the following optimization problem and corresponding normalization constraint is
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input : Data XS ∈ RN×D and XP ∈ RM×D
output: Vector α ∈ RN for obtaining weights from ŵ(x, α) (6.1)

1 Initialized vector ĉ of length 2K + 1 with zeros
2 for k ← −K to K do
3 ĉk ← (7.14)
4 end
5 Calculate the constraint: Initialize W ∈ RN with zeros
6 for n← 1 to N do
7 for p← 1 to M do

8 Wn ←Wn + e−
||xSn−x

P
m||

2
2

2σ2

9 end
10 Wn ← 1

NWn

11 end
12 For the final optimization problem: Randomly initialize α ∈ RN
13 Apply the calculated ĉks and W to (7.13) a solver, e.g. IPOpt
14 Retrieve weights for arbitrary x∗ by applying the resulting αs and x∗ to (6.1)

Algorithm 1: Pseudo code for the KL Fourier method described in (7.13).

obtained:

min
α≥0
‖Aα− b‖22 s.t.

1

N

N∑
n=1

ŵ(xSn , α) = 1, (7.15)

where A and b are defined as in (7.9) and (7.10) respectively. As for the KL setting

above, this problem is also solved by applying IPOpt [101].

7.1.7 Hyperbolic Cross Approximation

Until now, only a one dimensional Fourier series was considered. The straightforward

D-dimensional generalisation of a Fourier approximation for f : RD 7→ R implies the

problems discussed in section 3.1.1. Since this straight forward approach is practically

infeasible, the Hyperbolic cross (3.2) will be applied to this problem. Therefore, the

computational costs reduce from (1 +K)D coefficients to O
(

(1 +K) (log(1 +K))D−1
)

.

Using a Hyperbolic cross one achieves for f ∈ Hsmix the same order of approximation

as the standard Fourier approximation. A question is if p(x) − ŵ(x)q(x) ∈ Hsmix can

be expected, which resolves to the question of the smoothness of p and q, since ŵ is

sufficiently smooth by definition. This is a problem-specific question and in particular

depends on the unknown quantities p and q, so one can neither answer this in general,

nor for a specific data set a priori. But indications can be given that the assumption

p, q ∈ Hsmix is warranted, if one expects reasonably smooth probability distributions at

all. Firstly, the mixed Sobolev spaces have an intrinsic tensor product structure with

distinguished dimensions, each of which can be related to a specific attribute of the
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data set in its D-dimensional domain. This is in contrast to the standard Sobolev space

Hs which only considers isotropic smoothness and has no distinguished dimensions, e.g.

the coordinate system could be rotated without changing the function space. Secondly,

the spaces Hsmix are the underlying function spaces for regression and classification

approaches based on sparse grids, whose very good empirical performance was shown in

recent years [33, 68].

7.2 Investigation of Diverse Properties on Synthetic Data

The following sections investigate some properties of the newly introduced Fourier meth-

ods and shows advantages and discussed problems that might occur. It is also serves

the purpose of illustration of the method.

7.2.1 Regularization Effect of the Fourier Approximation

In a first experiment, the behaviour of the procedure in regard the number of Fourier

coefficients and the number of data will be studied in one dimension. For illustrative

purposes, a standard normal distribution is considered. The example is based on the

effect discussed in section 3.1. Three curves are shown in each subplot of figure 7.1. The

black curve is the plot of the exact function, the normal distribution, plus two types of

approximations.

The first is a Fourier series approximation of degree K ∈ {3, 5, 10, 15, 50} where the

integral for each Fourier coefficients ck, as given in (3.2), is calculated by numerical

integration, in this case adaptive Gauss-Kronrod quadrature, using the known exact

distribution. The resulting Fourier approximation is shown by dashed red curve. The

second is a Fourier approximation where the ck coefficients are computed by Monte-Carlo

integration, which is shown by the blue curve. Using a Monte-Carlo integration for the ck

coefficients can be viewed as taking the empirical mean according to the available data.

Therefore, this approach is comparable to the previously derived optimization problems.

Here weighted Monte-Carlo is used, i.e. a sampling according to the distribution.

For each column in Figure 7.1 a different number N ∈ {500, 5000, 50000} of sample

data/Monte-Carlo points for evaluating the empirical mean are taken. One can see

from the plots that for lower K the obtained Fourier approximation is very smooth. As

N is increased the accuracy of the approximation gets better, in particular for larger

K. On the other hand, when K is increased for fixed N overfitting can be observed,

which consequently would be reduced by additional datapoints for the calculation of the
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Figure 7.1: Fourier approximation of a standard normal distribution. The black line
is the original analytic density function, which is the same in each plot. The dashed
red curve is the approximation of this density by a truncated Fourier series of degree
K ∈ {3, 5, 10, 15, 50}, this is the same for each N . The blue line shows the Fourier
series where the Fourier coefficients ck are approximated by the empirical mean, this
curve varies in K and N

empirical mean. However, since it is assumed that no further data can be obtained, this

cannot be a solution to the problem at hand.

Hence, by choosing a smaller value for K, and therefore considering only the lower fre-

quencies and ignoring high frequencies, results in a more robust approximation of the

original function by the truncated Fourier series approach when the ck are computed

using the data dependent sample mean. This beneficial effect of coarser resolutions for

data-dependent problems is also known as regularization by discretization, or regular-

ization by projection, going back to [60]. As can be seen, the Fourier approximation

with exact ck is for this example already almost the same as the original function for
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K = 5. For more complex functions or divergence measures a higher degree K is in

order to achieve a reasonable approximation.

7.2.2 Benefits of the Fourier Approximation

The following illustrative example shows the behaviour of the new Fourier approaches.

The weight function ŵ is chosen according to (6.1). In contrast to the previous setting

where the focus was on the approximation quality of the empiricial approximation of the

coefficients, this section will illustrate the actual approximation of the weight function

ŵ and compares the quality of fit with other approaches. Therefore, this toy example

gives better insights of the consequences of the approximation for the weight function.

For the sake of comparison, the Kullback-Leibler divergence and the Euclidean distance

are used here.

As observed, estimating a function, i.e. the divergence measure, using the truncated

Fourier approximation achieves a smoothing of the function, i.e. the weights. This

becomes especially useful when a small bandwidth parameter σ is chosen for the weight

function ŵ. As figure 7.2 illustrates, the weights learned by the Fourier methods are

much smoother and stable than the weights learned by KLIEP [91] or uLSIF [47] which

involve a much higher volatility. For the sake of comparison, in figure 7.2 the same

bandwidth parameter σ was applied to the Fourier methods that was chosen by KLIEP.

Although a parameter selection method that is not necessarily appropriate for the Fourier

approaches was applied, the Fourier methods outperform KLIEP, in the sense of a less

volatile weight function. The parameters for uLSIF have been determined by its own

parameter estimation method.

Figure 7.2: Plot of the learned weight functions ŵ for a 1D toy example. Regions
of low P data (magenta) density imply small weights while high density regions imply
large weights. KLIEP (green) and uLSIF (blue) compute much more volatile weight
functions than the Fourier methods. Total variation Fourier was omitted in this plot
for clarity of the diagram and due to similarity to the other shown Fourier results.
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The comparison of KLIEP and KL-Fourier is of special interest here because this is a

direct comparison of two very similar methods which clearly shows the advantages of the

smoothing of the Fourier approximation method. As already argued, the reason for this

smoothing is that the Fourier approximation only takes low frequencies into account that

contain the relevant information for learning good weights. High frequencies are ignored,

which usually pay more attention to noisy data that does not positively contribute to the

learning of weights. Therefore it becomes possible to learn more appropriate weights.

Another property of the approach is that the distance measures can be estimated on

any point set. The secondary or the primal data are just one way, and not the only

set of locations where to estimate the distances (7.11), (7.13), or (7.15). Merely the

computation of the Fourier coefficients requires the S and P data. This is possible

since firstly by empirically estimating the distance and secondly by applying the Fourier

approximation. That is for example different to KLIEP where the error is calculated

on the primal data and cannot be straightforwardly computed on the S data, or uLSIF

where the S and P data points need to be employed in a specific way. One can argue,

that to compute suitable weights for the purpose of weighted regression, a divergence

estimation on the secondary data is beneficial since the weights are employed for the

secondary data in the regression algorithm and therefore for those points the distance

should be small. This hypothesis is supported in section 7.4, where we calculated the

distance using the secondary or the primal data for each Fourier method.

7.2.3 Properties Hyperbolic Cross Approximation

As mentioned in section 7.1.7 the application of the hyperbolic cross makes the method

feasible in higher dimensional spaces. Insights on the appropriateness of the application

of the Hyperbolic cross are given in the experimental results in the next sections as

well as the following empirical study of the decay of the absolute values of the Fourier

coefficients ck once for the full complete Fourier series and once for the set of coefficients

derived from the Hyperbolic cross. Therefore, a 2 dimensional problem is considered.

To give a simple and clear illustration, the first problem will be the decay of the co-

efficients of the approximation of the euclidean distance as given in (7.15) for some

normally distributed toy data. This toy data is sampled from two 2 dimensional normal

distributions with means µP = (1, 1) and µS = (0, 0) for the primal and secondary distri-

bution, respectively. The variance is equal in each dimension with ηP = 3 and ηS = 1.5.

From each distribution 100 datapoints are sampled yielding |XP | = |XS | = 100 for each

dataset sample. Given this data, expression (7.15) can be computed which yields a set

of coefficients that can be plotted as a 2D heatmap. The colors of the heatmap denote

the magnitude of the absolute value |ck| ∈ R+ of each coefficient for each frequency
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combination (k1, k2) with k1, k2 ∈ {−K, . . . ,K}. For the Hyperbolic cross, the set of

coefficients denotes a subset of these frequency combinations. The full set of coefficients

is shown in the left plot in figure 7.3. There, the largest values for the coefficients are

located close to the center k = (0, 0). Since only those large coefficients have an ac-

tual impact on the approximation of the original function by the Fourier series all other

coefficients (that have a small value) could be neglected without having a huge loss of

approximation quality. In fact, by looking at figure 7.3 one can see that the coefficients

outside the ”hotspot” tend to be noisy which might have a negative effect on the ap-

proximation. On the other hand, the Hyperbolic cross (figure 7.3, right plot) only pays

attention to exactly those coefficients that are important for the approximation. Thus,

the Hyperbolic cross not only reduces the amount of coefficients that have to be calcu-

lated but also removes the coefficients that could potentially harm the approximation

due to being noisy. Also, from the plot, one can see that the actual upper bound for the

frequency K can be set to a very small value. The reason for that is that the normal

distribution is very smooth and can be captured by considering only a very low number

of frequencies. However, this is specific for this toy example and can therefore not be

generalized.

Figure 7.3: Comparison of the impact of each coefficient ck of the frequency combi-
nations k = (k1, k2) ∈ {−K, . . . ,K} × {−K, . . . ,K}. Each combination of the x and y
axis denote such a frequency combination. The left plot is the full set of coefficients and
the right set is the Hyperbolic cross (note the characteristic shape of the coefficients).
From the plots one can see that the Hyperbolic cross very accurately captures only
those coefficients that are also large in the full set. Hence the Hyperbolic cross only
applies the important coefficients and neglects higher frequencies which only seem to
have a noisy influence.

By considering a toy example one can gain an intuition about when a Hyperbolic cross

approximation might be beneficial. But since this does not reflect a realistic setting it is

interesting to further consider an example from an actual real world dataset. Therefore,

here a 2 dimensional subset of the earth quake dataset [5] which is also used in the exper-

imental section is considered in order to demonstrate the effectiveness of the Hyperbolic
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cross approach. The dataset is a regression dataset and it is comprised of measurements

recorded during earthquakes in California and Japan. The features describe values such

as magnitude or distance to the center. A categorical feature describes the type of the

earthquake, the dataset is augmented and gets assigned a separate dimension for each

category, which turns one dimension into three. For figure 7.4 a 2D subset of magnitude

and distance to the center is taken from the full dataset in order to provide a visual

illustration. The plots show that the Hyperbolic cross approximation is very applicable

here. One could even further reduce the amount of coefficients need by further reducing

the set of coefficients. Therefore, in the real world example the amount of coefficients

that need to be calculated can also be reduced without observing any negative impact

on the approximation quality.

Figure 7.4: Comparison of the absolute value of the coefficients |ck| of the euclidian
distance (7.15) for a 2D subset of the earth quake dataset [5]. The legend reads as in
figure 7.3. However, here a real world problem is consider. The left plot shows, again,
the full Fourier coefficients set and the right those of the Hyperbolic cross. In contrast
to the toy data plot (7.3) some coefficient at higher frequencies have some impact.
However, the most important coefficients lie again around the center such that the
Hyperbolic cross captures the important information very well. In fact, from the shown
plots one could also say that still the Hyperbolic cross considers too many coefficients.

Another question that arises is the approximation quality of the function ŵ given the

amount of data for each method. To answer this, another toy example will be applied

to demonstrate the implications by measuring the difference between the real analytical

importance function w(x) = pP (x)/pS(x) and the approximation ŵ(x) as it was defined in

6.1. The specification of the analytical importance function w(x) requires the knowledge

of the exact distributions pP and pS . Therefore, both distributions are considered to

be normal distributions with pP ∼ N (µ1, η) and pS ∼ N (µ2, η), where the means

µ1, µ2 ∈ R2 are µ1 = (0, 0), µ2 = (1, 1) and the variance is η = 1.0. The S data

is sampled once and then kept fix such that it consists of 1000 data samples. The

bandwidth parameter σ in ŵ(x) is chosen to be σ = 0.1 in order to provide a more

consistent experimental setting. The P data is varied such that for the P data samples of
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Figure 7.5: Different results for the approximation of the weight function ŵ. The data
is a sample of two gaussian distributions with identical variance but different mean. The
left plot shows the weight surface of the weight function approximated by KLIEP. The
right plot is the approximated weight function as a result of the KL Fourier method
which employs the Hyperbolic cross. The plot shows the consequences of the Fourier
smoothing as a 3D surface plot (compare with figure 7.2).

100, 500, 1000, 2000 and 5000 data points are applied. Then, for each combination of the

S and P data the weight approximation function ŵ is estimated once for KLIEP, for KL-

Fourier with K = 10 and KL-Fourier with K = 50. The three resulting approximations

of w are then evaluated by calculating the Mean Square Error (MSE) on a separately

sampled and fixed set of 10000 equidistant datapoints X̃ ⊂ RD that fully cover the S

and P data, i.e. 1/10000
∑10000

i=1 ||w(x̃i) − ŵ(x̃i)||22. This type of calculation reduces the

error of the actual P data sampling.

Figure 7.6 shows the results. As can be seen from the figure, not surprisingly, the more

data available, the smaller the error. This holds true especially for KLIEP. However,

the figure also suggests that in the beginning, a lower number of data points might

have a negative effect on the calculation of the approximation ŵ when no type of any

smoothing is applied. On the other hand, the KL-Fourier method with K = 10 performs

better at a low number of data points but then becomes relatively worse when more and

more data becomes available. The reason for that might be the filtering property of the

truncation of the Fourier series. This effect could also be responsible for the higher error

at #P-Data = 5000. Although the number of data points grows the fitting does not

get better when considering more data points because the structure for K = 10 is not

able to capture more details. This hypothesis appears to be supported by comparing

the KL-Fourier method with K = 10 versus K = 50. For K = 50 the error is at the

beginning higher but at the end lower. This might be due to a mild overfitting at the
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Figure 7.6: MSE between the real analytical function w(x) and it’s approximation
ŵ(x) measured on 10000 equidistant datapoints that completely cover the S and P data.
As more data becomes available all methods become better. However, at the beginning
the smoothing property of the Fourier approaches yields a better approximation while
at a higher number of data points a Fourier method with truncated at a low K lacks
of capturing more details. The effect is less present when considering Fourier with
K = 50 but then the overfitting at the start has a higher impact. The errors have been
normalized to the initial error of KLIEP (100% error) in order to make the comparison
easier.

start and a lack of exactness at the end due to the filtering properties.

To better understand this effect, another toy example is considered. It applies the

same setting as it was used for figure 7.6. However, in figure 7.7 the data is sam-

pled once and then kept fix. Instead, the x axis now depicts different values of k =

{10, 20, 30, 40, 50, 75, 100} and plots the MSE error between the KLIEP and Fourier ap-

proximation and the real analytical weight function w(x). For these experiments the,

data samples are # S data = 1000 for both plots and # P data = 1000 for the left

plot and # P data = 5000 for the right plot. Since the error between KLIEP and w

is constant for each sample, the MSE of KLIEP will be denoted by 100% of the error.

Thus figure 7.7 shows the relative performance of the Fourier method in comparison to

KLIEP.

The left plot in figure 7.7 shows that in a setting with a very low number of datapoints

the reduction of the K has a beneficial impact on the error made. However, if K is

increased and more and more higher frequencies are considered the approximation ŵ

lines up to the KLIEP approximation. On the other side, the plot on the right side

shows that if a lot of data is already given, then, the approximation at low values of K

becomes worse since then the noise gets a lower impact and the weight function learned

by KLIEP becomes better. These given toy examples give more insights that when
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Figure 7.7: Comparison of the error between the approximation ŵ(x) and the real
analytical importance function w(x) retrieved by applying KLIEP (100% of the er-
ror) and the error of the KL-Fourier method at different frequency cuts K. The left
plot suggests that not enough data is available for KLIEP to infer an appropriate ap-
proximation. However, the smoothing property of the KL-Fourier method becomes
beneficial since the noise (contained in higher frequencies) gets a lower impact. If K
gets increased the error of the KL-Fourier approach lines up with KLIEP. The right
plot shows the opposite: if enough data is given already, then KLIEP infers a better
weight approximation function since noise has an overall lower impact on the inference.

dealing with a very low number of data points (either P data or both S and P data)

the Fourier methods should be preferably applied. On the other hand, if more data is

available, it is advisable to increase the truncation K such the complex structures are

better fit.

7.3 Convergence of the Empirical Fourier Approximation

The functions f(x) that are considered in the context of the Fourier approximation

involve at least in parts a density p(x). Furthermore, the given samples, the data

points, {x1, . . . , xL} ⊂ RD×L are from this distribution p. The integral (3.3) therefore

involves a density, see e.g. (7.6), so the integral can be rewritten as being in respect to

that density and then the employed empirical samples are considered as a kind of Monte

Carlo integration.

As a consequence, the result from section 3.3 can be applied. Equipped with these

theoretical preparations provided there, the statistical error bounds can now be derived

for the Fourier coefficients that are employed. For the total variation distance and the

squared Euclidean distance the same integral is used for the Fourier coefficients and
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obtained by its empirical/Monte Carlo estimation:

ĉ
(M,N)
k1,...,kD

(α) =
M∑
m=1

e
−i2π

∑D
d=1

kd
Td
xPdm

M
∏D
d=1 Td

−
N∑
n=1

w(xSn , α)e
−i2π

∑D
d=1

kd
Td
xSdn

N
∏D
d=1 Td

.

Both sums are normally distributed with empirical variances η2
M and η2

N And the (1−γ)%

confidence interval becomes:[
ĉ

(M,N,0)
k1,...,kD

(α)− z(1− γ
2 )

√
η2
M

M
+
η2
N

N
, ĉ

(M,N,0)
k1,...,kD

(α) + z(1− γ
2 )

√
η2
M

M
+
η2
N

N

]
.

The index (M,N, 0) denotes that the empirical mean has been centered by the real mean.

Similarly for the Kullback-Leibler Fourier method one gets as the (1 − γ)% confidence

interval: [
ĉ

(M,0)
k1,...,kD

(α)− z(1− γ
2 )
ηM√
M
, ĉ

(M,0)
k1,...,kD

(α) + z(1− γ
2 )
ηM√
M

]
where η2

M is the empirical variance of expression (7.14) minus the mean ck1,...,kD . As

N tends to infinity these confidence intervals tend to zero. The resulting conclusion is

that with a certain probability a given computed approximate Fourier coefficient has an

error of ε in regard to the exact Fourier coefficient, where this error goes to zero with

increasing number of points.

To directly combine the result of this section with the approximation result from 3.7

one would need an estimate for the pointwise variances jointly over the whole domain,

which cannot be easily given. Nevertheless, the observations in the last two sections give

justification that in the limit, both in the number of data and the Fourier resolution,

the employed Hyperbolic Cross Fourier approximation converges to the exact difference

function under consideration.

7.4 Experiments

The following sections will show the benefits of the Fourier approaches and that the

new approach can compete with methods for compensating the covariate shift that

are currently state of the art. First, the Fourier based approach is compared to other

methods on some benchmark datasets, where the distance is estimated either on the S

data or the P data. And secondly, results on a real world dataset are listed. The Fourier

method is applied the following divergence measures: the total variation distance (TV),

the Kullback-Leibler divergence (KL), and the squared Euclidean distance (SE).



Chapter 7 - Compensating Covariate Shift 91

7.4.1 Benchmark Datasets

The first experiments taken into account are performed on artificially generated data.

This way, it is possible to compare the Fourier methods on standard datasets and in

the same way other state of the art methods have been tested. Thus, for reasons of

comparison, the same method for the creation of a synthetically generated covariate

shift dataset is used as described in [91]. First, the dataset is normalized to [0, 1]D and

then 100 datasets of 100 S data points and 500 P data points are created each. The P

data samples are obtained by choosing a data point (xl, yl) randomly and accepting it

with a sampling factor of min(1, 4(xdl)
2, where xdl is the dth element of xl. For each

of the 100 datasets the dimension d ∈ {1, . . . , D} is chosen randomly but kept fixed.

Every randomly chosen xl is removed from the pool even if it was not accepted. The

secondary dataset is sampled uniformly from the remaining data. During the learning,

the methods will only use the S data {xSn , ySn}Nn=1 and the P data points without labels

{xPm}Mm=1. The P labels {yPm}Mm=1 are used for performance measurements.

7.4.2 Parameter Estimation

In the experiments, a set of best parameters for a SVR and a SVM without weights

(uniform) is estimated with classic cross-validation. Then the weights are calculated

once with the Fourier based approach and once with the KLIEP, uLSIF and the Kernel

Mean Matching (KMM) method. These weights are then employed to the weighted

SVR and weighted SVM (as described in [45]) with RBF kernels and a new set of best

parameters by using IWCV (Importance Weighted Cross-Validation) [90] is estimated.

IWCV works like classic cross-validation but additionally weights each fold, such that

errors in regions of importance get an higher impact on the cross-validation error.

The new Fourier based method uses two types of parameters. The parameter K, which

denotes the length of the Fourier series, will be fixed to 10 here which gives a reasonable

approximation. In general K should be viewed as a hyperparameter to be suitably

selected, but note that in the experiments a larger K does not result in significantly

different performance, whereas with smaller K the results degrade as one would expect.

In other words, the experiments indicate that a large enough K can be easily selected.

For further insights on the influence of this parameter, also, consider the synthetic

experiments in section 7.2.3. The other parameter is σ, the kernel width in the weight

function (6.1). A method for estimating a good σ parameter is now suggested.

The idea is that an appropriate parameter combination will minimize the expressions

(7.11), (7.13), and (7.15). For given σ the corresponding αs have been determined
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Table 7.1: Results for regression benchmark datasets. The results are obtained by
taking the average of 100 mean errors on the P data. The values in the parentheses
denote the standard deviation. All errors have been normalized by the uniform result
(no weights).

Dataset kin-8fh kin-8fm kin-8nm abalone avgerage
Dimension 8 8 8 7 -

Uniform 1.00 1.00 1.00 1.00 1.00
Fourier:TV (S) 0.93 (0.062) 0.93 (0.059) 0.91 (0.090) 0.94 (0.046) 0.93
Fourier:TV (P) 0.95 (0.061) 0.94 (0.055) 0.93 (0.078) 0.94 (0.056) 0.94
Fourier:SE (S) 0.94 (0.077) 0.92 (0.055) 0.94 (0.081) 0.92 (0.091) 0.93
Fourier:SE (P) 0.95 (0.063) 0.93 (0.061) 0.96 (0.090) 0.95 (0.072) 0.95
Fourier:KL (S) 0.93 (0.060) 0.94 (0.050) 0.95 (0.095) 0.91 (0.081) 0.93
Fourier:KL (P) 0.94 (0.078) 0.96 (0.059) 0.95 (0.068) 0.93 (0.085) 0.94
KLIEP 0.92 (0.069) 0.92 (0.063) 0.97 (0.041) 0.94 (0.071) 0.94
uLSIF 0.98 (0.071) 0.94 (0.044) 0.96 (0.072) 0.95 (0.067) 0.95
KMM 0.97 (0.071) 0.94 (0.074) 0.95 (0.056) 0.93 (0.041) 0.95

by minimizing (7.11), (7.13), and (7.15). The lowest value of the objective functions

obtained during the optimization for different σ parameters will be chosen.

To get a more stable result, a method that is similar to cross-validation is used, but will

not use any label information. Given the original datasets, XP and XS , the P dataset

is splitted into five parts, (XP
j )5

j=1. Each split XP
j should contain enough samples of P

data since they can normally be obtained quite easily. Each of the j = {1, . . . , 5} folds is

constructed by Xj := XP \XP
j . Now for a fixed parameter σ expressions (7.11), (7.13),

and (7.15) are minimized for each dataset combination {XS , Xj}. The means of these

five minima are calculated and the parameter that corresponds to the lowest average is

chosen.

Minimizing the differences of the distributions of the covariates (7.11), (7.13), and (7.15)

are independent of the labels of the P data. Therefore, one can explicitly make use of

the locality of the P data here. This way, a simple method for estimating adequate

parameters is obtained.

7.4.3 Experimental Results

For the experiments artificial covariate shift data was created as described in section

7.4.1. Data from the DELVE repository and the abalone dataset for regression was

used. For classification experiments the IDA datasets which is available on mldata.org

is applied. For each of the datasets 100 subdatasets were created and the P data is set

as the center points of the weight function (6.1). For all datasets the mean error on the
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Table 7.2: Results for classification benchmark datasets. As in table 7.1 results are
obtained by taking the average of 100 mean errors on the P data. The values in the
parentheses denote the standard deviation. All errors have been normalized by the
uniform result (no weights).

Dataset twonorm waveform ringnorm image data average
Dimension 20 21 20 18 -

Uniform 1.00 1.00 1.00 1.00 1.00
Fourier:TV (S) 0.92 (0.079) 0.91 (0.055) 0.96 (0.091) 0.92 (0.092) 0.92
Fourier:TV (P) 0.97 (0.072) 0.96 (0.061) 0.96 (0.081) 0.93 (0.080) 0.95
Fourier:SE (S) 0.89 (0.083) 0.90 (0.045) 0.95 (0.081) 0.90 (0.082) 0.91
Fourier:SE (P) 0.93 (0.068) 0.95 (0.052) 0.98 (0.083) 0.94 (0.069) 0.95
Fourier:KL (S) 0.91 (0.067) 0.89 (0.056) 0.96 (0.096) 0.93 (0.076) 0.92
Fourier:KL (P) 0.93 (0.089) 0.93 (0.045) 0.97 (0.074) 0.93 (0.079) 0.94
KLIEP 0.93 (0.069) 0.95 (0.033) 0.96 (0.077) 0.93 (0.064) 0.94
uLSIF 0.93 (0.076) 0.91 (0.048) 0.95 (0.071) 0.92 (0.079) 0.92
KMM 0.97 (0.045) 0.98 (0.040) 0.99 (0.071) 0.97 (0.083) 0.97

P data is calculated and normalized by the mean P data error of the uniform SVR or

SVM, respectively. Note that the computing times of the Fourier methods and KLIEP

are roughly the same, whereas uLSIF is slightly faster.

The results in tables 7.1 and 7.2 show that employing weights improves the prediction

performance. The Fourier approach measuring the distance on the S data is always

better than the corresponding one using the P data. A reason for the slightly poorer

results on the P data might be due to the fact that for SVR and SVM one is interested

in calculating weights for the S data. Therefore, it seems to be preferable to use the S

data for the distance estimation to achieve on these a small distance between the P and

reweighted S distribution.

The best method varies over the datasets, but on average the Fourier based approaches

measuring the distance on the S data are better than KLIEP, uLSIF, and KMM for both

the regression and the classification data. When comparing the results using KL, it can

be observed that the Fourier based approaches when measuring the distance (7.12) on

the P data is on average comparable to KLIEP, which also estimates the distance on

the P data, whereas measuring the distance on the S data slightly improves the results.

The second experiment is performed on the earthquake regression dataset a real world

dataset [5] which is described in section 7.1.7. The label to predict is the so called PGA

(Peak Ground Acceleration) value.

The achieved model for prediction is learned on the California data and applied on the

Japan earthquake data. Again Gaussian kernels are used in the normal SVR with no
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Table 7.3: Results for the earthquake dataset [5]. Weighted SVR significantly im-
proves the prediction on the P data.

Uniform 1.00
KMM 0.93 uLSIF 0.96 KLIEP 0.96

Fourier: TV (S) 0.91 Fourier: KL (S) 0.87 Fourier: SE (S) 0.93
Fourier: TV (P) 0.92 Fourier: KL (P) 0.92 Fourier: SE (P) 0.93

weights (uniform) and the weighted SVR method described in section 6.5. As in the

previous experiments, the results are normalized by the normal unweighted (or uniform)

result. For the Fourier approach, the chosen weight parameters have been estimated

by the modified cross validation procedure described in section 7.4.2. It turns out that

learning a weighted SVR improves the prediction result on the Japan dataset, as shown

by Table 7.3. It seems natural to assume that due to the geographical differences,

especially location of the measurements, there occurs a natural shift in the data, but

that the implications remain the same for the PGA value. The experiments show that

the application of weights to the regression method considerably improves the results,

where the Fourier based approaches show even more error reduction than the uLSIF,

KMM, and KLIEP methods.

7.5 Summary

This chapter introduced a new method for measuring and compensating the covariate

shift. A new formulation for finding appropriate importance weights is derived by using

a Fourier approximation of the divergence measure between the P distribution and the

reweighted S distribution which does not make explicit use of the density functions and

takes a more function centric view than other data centered approaches. Higher dimen-

sional problems can be treated by using a Hyperbolic cross approximation in Fourier

space. An advantage is that it enables the calculation of less volatile and therefore bet-

ter weights especially in cases of small bandwidth parameters σ. Furthermore, the new

approach gives a flexible framework since it can handle different divergence measures

and can use any point set for the empirical estimation of the divergence. Currently, all

attributes are treated equally, but the Hyperbolic cross approach can be extended to

have different resolutions in each dimension, which corresponds to dimension-dependent

smoothness properties. An individual treatment of each dimension might improve the

method further. In such a case, a dimension-adaptive choice of the Fourier resolution in

the different dimensions can be achieved in a similar fashion to that described in [35].

Such an approach would allow the treatment of even higher dimensional problems.
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Inductive Transfer Learning (ITL)

The following chapter contains and extends parts of [34].

This chapter investigates methods for compensating a dataset shift in both the covariates

x and the dependent variables y. Such a situation is known as Inductive Transfer

Learning and was introduced in section 6.6 and 5.2.2. Motivated by the concept of

importance sampling, two approaches are investigated for improving regression in the

ITL setting by assigning each instance in the S data a weight. The first one called

Direct ITL (DITL) is a supervised and the second Kullback-Leibler ITL (KLITL) an

unsupervised method. The resulting weights are then used in a modified ridge regression

(explained in section 6.6.1) in combination with the S and P data in order to improve

the prediction quality of the P data. Experiments show that both new approaches yield

good results.

Section 6.6 presents some instance based approaches but additionally other numerous

approaches have been developed. Kernel based ideas have been presented by [83] and

[17], where a special kernel matrix is learned that reflects the similarities between the

S and P data. A further method is given in [75], in which an informative prior is con-

structed from the S data in order to improve a model on the P data. An additional

advance is feature representation transfer [6]. This method learns a projection of the S

and P data onto a lower dimensional subspace such that the common or shared infor-

mation of both the P and S data can be used for the model on the P data. Learning

feature representation is in particular common in the domain of natural language pro-

cessing (NLP). Differences in vocabulary and writing style imply a bias in distribution

such that normal learning approaches tend to perform worse in different domains. In

this area, [29] proposed a simple, but often well performing, kernel-mapping function for

NLP problems, which maps the data from both source and target domains to a high-

dimensional feature space, where standard discriminative learning methods are used.

95
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Model transfer or hypothesis transfer learning comprise another class of approaches for

treating ITL. In the model transfer setting, a model parameter θS is learned on the S

data. Assuming that the models should be similar, the idea is to regularize the model

parameter for the P data θP with the help of the parameter θS . Recent work on this

topic is given by [53] and [96].

8.1 Problem Formulation

For inductive transfer learning, it is now a situation assumed where the two datasets

(XS , Y S), the S data, and (XP , Y P ), the P data, are given by:

(XS , Y S) ∼ pS(x, y) and (XP , Y P ) ∼ pP (x, y).

Further, the number of P data is assumed to be much smaller than the number of S

data, and the two distributions from which the data was sampled are not equal, i.e.

pP (x, y) 6= pS(x, y). Nevertheless, a further assumption is that the two datasets are

somehow related to each other, so that in some parts of the domain the distributions

are similar (or even equal), i.e.:

pS(x̃, ỹ) ≈ pP (x̃, ỹ) for some (x̃, ỹ).

Therefore, one can employ data points from the S data to improve the prediction on

the P data. By assumption, having pP (x, y) 6= pS(x, y) implies that the S and P data

cannot be simply combined. The crucial part is to determine points from the S data that

contribute positively to the P data prediction and neglect points that have a negative

influence. A solution to this problem is based on a measure of similarity between the

two distributions. A common way to achieve this is importance sampling (chapter 2).

Defining the importance weight function as w(x, y) := pP (x,y)
pS(x,y)

one could reweight the S

data distribution by:

pP (x, y) = w(x, y)pS(x, y) =
pP (x, y)

pS(x, y)
pS(x, y). (8.1)

With the help of the function w(x, y) it becomes possible to assign each S datapoint

(xS , yS) an individual and appropriate weight. A weight close to one indicates a prefer-

able point, while a weight far from one indicates the opposite. Hence this approach

seems suitable for tackling the induction transfer learning setting. However, this defini-

tion of the importance function requires knowledge of both distributions, which is not

available. Therefore, an approximation of the importance function w(x, y) is needed
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instead. By employing an appropriate approximation, the idea of importance sampling

offers a guideline for solving the task of ITL.

8.2 New Instance Based Approach

8.2.1 Reweighting of the Prediction Function

By assuming that some given data (X,Y ) ⊂ RL+1×D, L ∈ N is distributed according to

an (unknown) distribution p(x, y), it can be expressed differently by applying the chain

rule:

p(x, y) = p(y|x)p(x) or p(x, y) = p(x|y)p(y).

Although the suggested method can be applied to both cases, the discriminative (left)

and the generative one (right), the following will refer to the first equation for the

discriminative approach. Predictions are obtained by:

ŷ∗ = argmaxy (p(y|x∗)p(x∗)) .

By assumption, the new data x∗ and its corresponding (unknown) label y∗ is distributed

according to p(x, y), and therefore, loosely speaking, the best prediction one can make

is the y with the highest probability given the data x∗.

However, in the setting of inductive transfer learning, two different distributions are given

which for some primal data point (xP , yP ) ∼ pP yields the following two expressions for

the prediction of yP :

yPP = argmaxy
(
pP (y|xP )pP (xP )

)
yPS = argmaxy

(
pS(y|xP )pS(xP )

)
.

In general, the prediction of yP based on pS for the S data, namely yPS , can differ

arbitrarily from the prediction yPP based on the P distribution. Therefore, in order

to make better predictions for the P data using the distribution of the S data, the S

distribution will now be reweighted as suggested in (8.1):

yP = argmaxy
(
pP (y|xP )pP (xP )

)
= argmaxy

(
pP (y|xP )pP (xP )

pS(xP , y)
pS(y|xP )pS(xP )

)
= argmaxy

(
w(xP , y)pS(y|xP )pS(xP )

)
. (8.2)
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From this derivation one can see that this also is an unbiased estimator for the P data.

8.2.2 Estimation of the Weight Function

Due to the lack of knowledge about the true distributions pP and pS one cannot obtain

the correct importance function directly. Instead the model ŵ(x, y) as given in 6.1 is

used for the inference of an appropriate approximation. To determine suitable weights

ŵ two approaches for the estimation will be introduced. The first one will be referred to

as the direct method or DITL (Direct ITL) because it will directly rely on the prediction

performance of the model learned on the S data. The goal of the model is to minimize

the prediction error, i.e.

min ||Y P − Ŷ P ||2

where Y P is the vector of the real labels {yi}i=1,...,M and Ŷ P the model predictions.

Therefore, by following this approach, and with the help of expression (8.2), an opti-

mization problem for the estimation of a weight function can be stated as:

min
ŵ

M∑
i=1

(
yPi − argmaxy

(
ŵ(xPi , y)pS(y|xPi )pS(xPi )

))2
.

The idea behind this approach is that the computation of the weights ŵ is performed

with respect to the known labels Y P in the context of a reweighted model for the S

data. Therefore this approach provides a supervised method for adjusting the weights

ŵ. Since for a given point xP the argmax does not depend on pS(xP ) that term can be

omitted, which leads to:

min
ŵ

M∑
i=1

(
yPi − argmaxy

(
ŵ(xPi , y)pS(y|xPi )

))2
. (8.3)

Additionally, a second method is proposed which does not depend directly on predic-

tion models and can be regarded as an unsupervised approach. Following the idea of

[91] the Kullback-Leibler divergence will be minimized between two distributions. This

straightforwardly extends the approach [91] for covariate shift by also taking the labels
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into account:

argminŵKL(pP (x, y)||ŵ(x, y)pS(x, y))

= argminŵ

(∫
pP (x, y) log

(
pP (x, y)

ŵ(x, y)pS(x, y)

)
dxdy

)
= argminŵ

(
−
∫
pP (x, y) log (ŵ(x, y)) dxdy

)
.

Here, the dependence on the S data lies in the approximation ŵ which will use the S

data as the centerpoints. The last expression can be approximated by the empirical

mean:

⇒ min
ŵ

M∑
i=1

− log
(
ŵ(xPi , y

P
i )
)
. (8.4)

Additionally, the following constraint is obtained:

pP (x, y) = w(x, y)pS(x, y)

⇒ 1 =

∫
pP (x, y)dxdy =

∫
w(x, y)pS(x, y)dxdy

⇒ N =
N∑
j=1

ŵ(xSj , y
S
j ). (8.5)

As for the Fourier setting in section 7.1.4, this constraint ensures that the transformed

pS is again a density. This approach will be refered to as the indirect method or KLITL

(Kullback-Leibler ITL).

8.3 Determination of Individual Weights

The following sections will describe methods for computationally obtaining weights for

both approaches.

8.3.1 Weight Function

As for the covariate shift case, this approach will apply the approximation for the impor-

tance weight function introduced in section 6.1. However, here in addition the labels will

be explicitly included into the formula since the source component shift is not restricted
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to the covariates, i.e.:

ŵα(x, y) =
N∑
j=1

αj exp

(
−
||(x, y)− (x′j , y

′
j)||2

2σ2

)
. (8.6)

Here, the index α is added to the notation in order to emphasize the dependence on the

αs.

8.3.2 Direct Approach (DITL)

Following the abstract modelling of a prediction function in a standard machine learning

setting, one obtains for the discriminative case:

ŷ∗ = argmaxyp(y|x∗). (8.7)

Here, x∗ denotes a data point to be predicted on, and ŷ∗ the prediction. For (8.7)

one needs a concrete model f(x) that can actually be calculated. Such a f can be

the prediction function of the kernel ridge regression. The derivation of f is similar

derivation for the weighted kernel ridge regression (6.7) and is given by:

argmaxyp(y|x∗) ≈ f(x∗) = atk(x∗), (8.8)

where k(x∗) := (k(x1, x
∗), . . . , k(xL, x

∗))t is the kernel map of the new datapoint x∗ and

the data X ⊂ RL×D on which the model has been learned, with k(xl, x
∗) := φ(xl)

tφ(x∗),

and a ∈ RL is the vector of coefficients for the linear combination in the feature space.

Hence for (8.3) one needs a different mathematical approximation:

argmaxy (ŵ(x∗, y)p(y|x∗)) ≈ fŵ(x∗,y)(x
∗) (8.9)

where the model f now also depends on the weight function ŵ.

Derived from the kernel ridge regression approximation, a new weighted prediction model

is now suggested. Considering the weighted kernel ridge regression problem:

JW (θ) =
1

2

L∑
l=1

wl
(
yl − θtφ(xl)

)2
+
λ

2
||θ||2 (8.10)

where θ ∈ RD again denotes the model parameter, φ is the feature map and wl is a

weight coefficient for each data point xl. By the process of dualization of the ridge
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regression [13], one gets the weighted prediction function as:

0 = ∇JW (θ)⇔ θ =
L∑
l=1

wl

(
− 1

λ
(yl − θtφ(xl))

)
︸ ︷︷ ︸

=:âl

φ(xl).

Here, âl = alwl are the coefficients for the linear combination in the feature space.

Analogously to (8.8), this prediction function can be taken as an approximation for the

weighted prediction, i.e.:

argmaxy (ŵ(x∗, y)p(y|x∗)) ≈ fŵ(x∗,y)(x
∗)

= atŴ (x∗, y)k(x∗) (8.11)

where, as in (8.8) k(x∗) := (k1(x∗), . . . , kL(x∗))t with kl(x∗), l ∈ {1, . . . , L} being a

compact notation for kl(x∗) = k(xl, x
∗) := φ(xl)

tφ(x∗) and Ŵ denotes a diagonal matrix

where each entry is a weight function ŵ as given in (8.6). The centerpoints (x′j , y
′
j)
N
j=1 will

be set to the S data points. The reason for this choice is that in (8.12) one optimizes over

the P data; using the P data as centerpoints would exhibit a higher risk of overfitting.

Obviously, this prediction function contains the label that is to be predicted. Therefore,

label prediction for new data points is not possible with (8.11). However, this model

is actually not intended for making predictions; rather one would like to estimate ap-

propriate weights for the subsequent step, in which the weights are applied to learn a

model on the P data combined with the weighted S data. (8.3) provides a framework

for getting the best possible weights by conditioning the expression to the labels of the

P data. Inserting (8.11) into (8.3) yields:

min
Ŵ

M∑
m=1

(
yPm − atŴ (xPm, y

P
m)k(xPm)

)2
(8.12)

= min
ŵ

M∑
m=1

(
yPm −

L∑
l=1

alŵ(xPm, y
P
m)kl(xPm)

)2

.

In the latter expression, the diagonal matrix is Ŵ := diag
(
ŵ(xPm, y

P
m), . . . , ŵ(xPm, y

P
m)
)

where each diagonal entry corresponds to a wl as given in (8.6) and L kernel functions

k1(xPm), . . . , kL(xPm) are taken into account. Now, by making the approximation (8.6)

one replaces the x1, . . . , xL by the S data. Then the resulting weight function depends

only on the given set of αs and optimization is straight forward by optimizing w.r.t. the

αs. However, in some experiments an unregularized version of (8.12) sometimes returns

αs that are comprised of only one or very few elements that dominate. In order to

account for such an overfitting, a regularization term is added to (8.12) which penalizes
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large coefficients:

min
α≥0

M∑
m=1

(
yPm − atŴα(xPm, y

P
m)k(xPm)

)2
+ γ||α||2 (8.13)

= min
α≥0

M∑
m=1

(
yPm −

N∑
n=1

anŵ
α(xPm, y

P
m)kn(xPm)

)2

+ γ||α||2.

The final expression (8.13) shows that one is now dealing with a weighted L2 regression

problem, since the ŵ function can be moved outside the parenthesis which yields:

min
α≥0

M∑
m=1

(
yPm − ŵα(xPm, y

P
m)atk(xPm)

)2
+ γ||α||2. (8.14)

The estimated αs will then be subsequently used in the weights for the actual ITL-KRR.

Expression (8.14) can also be interpreted from a different point of view. In (8.14) the

datapoints xPm are fixed, but also, the model vector a of the S model is fixed. On the

other hand, the optimization is performed over the α’s. By looking at and altering

expression ŵα(xPm, y
P
m) one gets:

ŵα(xPm, y
P
m) =

N∑
j=1

αje
−
||(xPm,y

P
m)−(x′j ,y

′
j)||

2

2σ2 = αtk (xPm, y
P
m).

Here, k replaces the Gauss kernel on the left side of the equation. This change in

notation shows, that expression (8.14) can be, again, interpreted as a weighted kernel

ridge regression. However, in this particular case, the weights are given by the factors

atk(xPm). Therefore, in this sense, (8.14) is again a weighted regression problem by itself.

Learning the weights and a better model from the combined P data and weighted S data

requires a three step procedure. Problem (8.13) depends on a model of the S data for

adjusting the αs. Therefore, the first step requires the inference of a model solely on the

S data, which returns the coefficients a for the prediction function (8.11). With this a

a solution to (8.13) has to be found which yields proper αs. These αs are then used in

(6.5) for calculating the weight for each S data point. The procedure can be stated as:

1. Learn a model a for the normal kernel ridge regression using solely the S data and

ignore any P data.

2. Use the coefficients vector a from step 1 to determine appropriate αs for the weight

function (8.6) by using the weighted prediction model (8.11) and solve (8.13).

3. After having determined the αs in step 2, use these to calculate the weight for the

application of the ITL-KRR (6.5). Use the resulting model to make predictions

for new P data.
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The optimization in step 2 is w.r.t. the α’s which denote the coefficients. Since the sum

in ŵ is convex as well as the quadratic function (·)2 the optimization in step 2 is convex

and therefore guarantees a single optimal solution. Good parameters in each step are

estimated by performing standard cross-validation on the P data. We employ Gaussian

kernels in the kernel ridge regression, therefore we need to estimate η (the bandwidth

parameter for the kernel function) and λ in step 1 and 3 similarly to the two parameters

γ and σ (bandwidth parameter of the weight function) in step 2.

8.3.3 Indirect Approach (KLITL)

In addition to the direct approach, a further procedure for the indirect approach can be

derived. Following the derivation in section 8.2.2, using expression (8.4) as the objective

and expression (8.5) as the constraint, the suggested method is:

1. Optimize the following problem with a standard solver for constraint problems:

max
α

1

M

M∑
i=1

log
(
ŵα(xPi , y

P
i )
)

s.t. N =
N∑
j=1

ŵα(xSj , y
S
j ) and α ≥ 0.

(8.15)

2. Use the αs from step 1 to compute the weights ŵ of each S data point for the

optimization of the ITL-KRR (6.5). Use the resulting model to make predictions

for new P data.

Here, the same representation of the weight function (8.6) is used as for the direct

approach. For the estimation of a good σ in (8.15) a modified version of cross-validation

is applied that is explained in the experimental section 8.5.1.

8.3.4 Comparison of the Direct and Indirect Approach

Comparing the two approaches, an advantage for the indirect approach is that it does

not require the estimation of a model on the S data. This might be advantageous when

a lot of S data is available. Additionally, the method requires the estimation of just

one parameter σ for the kernel width used in the weight function. However, on the

downside is the fact that this is an unsupervised method. By this, a method is meant

that does not consider an objective cost function for the parameter inference. Therefore

it is less likely to obtain robust or reliable estimations for α. On the other hand DITL

applies a supervised optimization problem that takes a subset of the target labels in

order to assess the quality of parameter inference. As mentioned further in section 8.3.2
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the additional regularization term allows a higher control of the fitting process. As a

consequence the DITL method is much more robust in compensating the dataset shift.

The experimental section shows the conditions under which this becomes advantageous.

The disadvantage are a higher calculation costs since it requires the calculation of an

additional model on the S data and the parameters σ and γ.

8.4 Theoretical Analysis

8.4.1 RKHS Introduction

In order to investigate different properties of the ITL KRR it is necessary to introduce

some further theoretical concepts. In particular, an introduction to the so called Re-

producing Kernel Hilbert Spaces (RKHS) is required. The theory of RKHS has been

developed by Nachman Aronszajn and Stefan Bergman [7]. Further analysis of the the-

ory can be found in [102], [103] and [84]. The following section gives a brief overview of

the theory of Reproducing Kernel Hilbert Spaces.

The section starts with the definition of a kernel k : A kernel is a function that maps

two arguments into the real space, i.e. k : X × X 7→ R, where X denotes an arbitrary

set. It is symmetric k(x, y) = k(y, x) and it is called positive semidefinite (psd) if:∫
X×X

k(x, x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0

for any function f ∈ L2(X , µ). Further there must exist a Hilbert space H and a map

Φ : X 7→ H such that for every x, y ∈ H:

k(x, y) = 〈Φ(x),Φ(y)〉H.

This map Φ(·) is also called feature map and the corresponding space H the feature

space. Then the RKHS can be defined as follows [77]:

Definition (Reproducing Kernel Hilbert Space). Let H be a Hilbert space of real valued

functions f on an arbitrary set X with an inner product given by 〈·, ·〉H. The space H is

called Reproducing Kernel Hilbert Space if the following two requirements are fulfilled:

• there exists a function k : X ×X 7→ R such that for every arbitrary but fixed x ∈ X
the function k(x, x′) is a function of x′ and belongs to H and

• k satisfies the reproducing property, which is defined by 〈f(·), k(·, x)〉 = f(x).
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Note that for a given kernel function k ∈ H the reproducing property implies: 〈k(x, ·), k(·, x′)〉H =

k(x, x′). The next theorem [7] gives insight on the relationship between a kernel k and

RKHS.

Theorem (Moore-Aronszajn theorem). Given a set X and a symmetric, positive definite

kernel k then there exists a unique Hilbert space H of functions f on X such that k is

a reproducing kernel.

In other words the theorem states that a kernel is isomorph to a corresponding associated

RKHS.

In order to better understand the reproducing property the so-called Dirac functional

[32] can be considered. Given the delta function

δ(x) :=

+∞ x = 0

0 x 6= 0

with
∫∞
−∞ δ(x)dx = 1 the Dirac functional can be derived by defining a distribution that

satisfies: ∫ ∞
−∞

f(x)δ(dx) = f(0).

Although the Radon-Nikodym derivative [62] does not exist, a convenient and frequently

used but incorrect notation is: ∫ ∞
−∞

f(x)δ(x)dx = f(0).

The Riesz representation theorem gives an idea on how the Dirac functional can be

understood in terms of the reproducing property:

Theorem (Riesz Representation [80]). Given T a bounded linear functional on a Hilbert

space H, there exists a unique vector v ∈ H such that T (f) = 〈f, v〉H

This theorem can also be applied to the Dirac functional. Thus for each δx there exists

a unique vector k x ∈ H such that δx(f) = f(x) = 〈f, k x〉H.

It is possible to construct a RKHS by applying the so called Mercer’s theorem [56]. The

theorem applies the eigenfunctions of a given kernel k , i.e.
∫

k(x, x′)φ(x′)dµ(x′) = λφ(x′)

for all x where λ is the corresponding eigenvalue to the eigenfunction φ with respect to

the given measure µ. Using the dot product notation this relation can be expressed as

〈k(x, ·), φ〉H = λφ. These preparations lead to a theorem that allows the characterization

of a kernel k in terms of eigenvalues and eigenfunctions:
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Theorem (Mercer’s theorem). For a given psd kernel k and associated linear operator

Tk(ϕ)(x) =
∫

Ω k(x, y)ϕ(y)dy, ϕ ∈ L2(Ω) there exists an infinite sequence of eigenfunc-

tions {φi}i∈I , I ⊂ N and corresponding non-negative eigenvalues {λi}i∈I with λi ≥ λi+1

of k such that the {φi}i∈I are an orthonormal basis of L2(Ω). Then k has the represen-

tation:

k(s, t) =
∑
i∈I

λiφi(s)φi(t)

where convergence is absolute and uniform.

As a consequence one can express the feature map Φ(x) as:

Φ : X → `2(I)

x 7→
{√

λiφi(x)
}
i∈I

Thus one gets:

k(x, y) = 〈Φ(x),Φ(y)〉H =
〈√

λiφi(x),
√
λiφi(y)

〉
`2(I)

.

With this, a RKHS can be constructed by applying the eigenfunctions φi of the integral

operator Tk .

Theorem. Let X be a compact metric space and k : X × X → R a continuous kernel

with the representation k(x, y) =
∑

i∈I λiφi(x)φi(y) according to Mercer’s theorem, Hk

the corresponding RKHS (by Moore-Aronszajn theorem) and define:

H :=

{
f(x) =

∑
i∈I

fiφi(x) :

{
fi√
λi

}
∈ `2(I)

}

with inner product given by:

〈f, g〉H =

〈∑
i∈I

fiφi(x),
∑
i∈I

giφi(x)

〉
H

=
∑
i∈I

figi
λi

.

Then H = Hk.

Proof: It is easy to verify that the inner product meets all the necessary requirements.

Thus, H is a Hilbert space. Due to Mercer’s theorem the decomposition k(·, x) =∑
i∈I λiφi(x)φi(·) is given, and therefore:

∑
i∈I

∣∣∣∣λiφi(x)√
λi

∣∣∣∣2 =
∑
i∈I

λiφi(x)φi(x) = k(x, x) <∞.
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Hence, k(·, x) ∈ H,∀x ∈ X . Set f(·) =
∑

i∈I aiφi(·) ∈ H with
{

ai√
λi

}
∈ `2(I) then:

〈f(·), k(·, x)〉H =

〈∑
i∈I

aiφi(·),
∑
i∈I

(λiφi(x))φi(·)

〉
H

=
∑
i∈I

aiλiφi(x)

λi
= f(x).

Thus, H is a Hilbert space of functions that has a reproducing kernel k . By the unique-

ness of the RKHS this must be the Hk. This concludes the proof.

As a consequence, the norm ||f ||2H is given by
∑

i∈I
f2i
λi

. Briefly summarized, the idea

for the constuction of a RKHS for given psd kernel k follows from the following chain

of implications:

k Mercer
====⇒ {λi}i∈I , {φi}i∈I

Eigenfunctions
=========⇒ dot product ==⇒ RKHS

Moore-Aronszajn
===========⇒ k .

8.4.2 More data implies better model

Based on the properties of the RKHS in the last section one can show some theoretical

properties of the ITL-KRR. The following entities will be used: firstly, the regression

function Ψ(x) which will be defined by:

Ψ(x) = EpP [y|x] =

∫
Y
ydpP (y|x), Y ⊂ R (8.16)

the exact function w.r.t. the distribution pP . Here, the term exact function means,

that this is the exact functional relationship (expressed in terms of an expectation)

one wants to infer by solving the regression problem. However, this regression function

Ψ depends on the unknown distribution pP and the model is inferred based on the

sampled (and perturbed) y values from this function. Important to note is that the

conditional distribution of the ys given the xs is considered and therefore, the labels are

implicitly contained in the regression problem. The next entities needed are empirical

labels yP ∈ RM and yS ∈ RN two vectors of perturbed samples from the real (unknown)

function and f̂ , the actual model, i.e. the ITL-KRR solution (based on the empirical

data), which minimizes the following functional:

f̂ = argminfJ [f ] =
1

2

M∑
i=1

(
f(xPi )− yPi

)2
+

1

2

N∑
i=1

w(xSi , y
S
i )
(
ySi − f(xSi )

)2
+
λ

2
||f ||2H.

(8.17)

Here, the data comes from the P and S data, i.e. xPi , y
P
i ∈

{
XP , Y P

}
and xSi , y

S
i ∈{

XS , Y S
}

and each data pair (xSi , y
S
i ) gets a weight factor w(xSi , y

S
i ) assigned. In the
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following, it is assumed that one has given the exact importance function, i.e. w(x, y) =
pP (x,y)
pS(x,y)

.

Since by assumption the given P data is limited but a large S data is available, a question

to ask could be: What happens to the performance of the model if more and more S

data is taken into account? Or expressed differently: What happens if the number of

data N →∞? To answer this question, one needs to consider the expected error made

w.r.t. the pP distribution, i.e.:

EpP

[
1

N

N∑
i=1

(
ySi − f̂(xSi )

)2
]

=EpS

[
1

N

N∑
i=1

w(xSi , y
S
i )
(
ySi − f̂(xSi )

)2
]

=
1

N

N∑
i=1

EpS
[
w(xSi , y

S
i )
(
ySi − f̂(xSi )

)2
]

=

∫
w(x, y)

(
y − f̂(x)

)2
dpS(x, y). (8.18)

The latter equality holds since, each xSi is also a random variable distributed according

to pS such that one gets N times the same expectation. To see this, consider, that the

particular samples are sampled from a random variable that is distributed according to

pS . Similarly, the error on the P data:

EpP

[
1

M

M∑
i=1

(
yPi − f̂(xPi )

)2
]

=

∫ (
y − f̂(x)

)2
dpP (x, y). (8.19)

By applying the regression function Ψ(x) (8.16) w.r.t the distribution pP and further

setting y − f̂ = (y −Ψ) + (Ψ− f̂) one gets for expression (8.18):∫
w(x, y)

(
y − f̂(x)

)2
dpS(x, y) =

∫
w(x, y) (y −Ψ(x))2 dpS(x, y)+∫
w(x, y)

(
Ψ(x)− f̂(x)

)2
dpS(x, y)+∫

w(x, y) (y −Ψ(x))
(

Ψ(x)− f̂(x)
)
dpS(x, y)
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Due to the definition of Ψ and that the integral cancels out the perturbations in the ys,

the ys match the regression function Ψ and the cross term vanishes, i.e.:∫
w(x, y) (y −Ψ(x))

(
Ψ(x)− f̂(x)

)
dpS(x, y)

=

∫
(y −Ψ(x))

(
Ψ(x)− f̂(x)

)
dpP (x, y)

=

∫ (
yΨ(x)− yf̂(x)−Ψ(x)2 + Ψ(x)f̂(x)

)
dpP (x, y)

=

∫ Ψ(x) (y −Ψ(x))︸ ︷︷ ︸
=0

 dpP (x, y) +

∫ f̂(x) (y −Ψ(x))︸ ︷︷ ︸
=0

 dpP (x, y) = 0.

Further, the first term: ∫
w(x, y) (y −Ψ(x))2 dpS(x, y)

is constant since it does not depend on the model f̂ and can therefore be omitted. The

remaining term is:∫
w(x, y)

(
Ψ(x)− f̂(x)

)2
dpS(x, y) =

∫ (
Ψ(x)− f̂(x)

)2
dpP (x, y) (8.20)

This expression denotes the expected error between the model and the regression func-

tion and can be considered as an alternative expression for the difference of the observed

labels y and the model f̂ . On the other side, this expression is fully specified in terms

of a distribution p which is required for the next analytical steps.

The latter expression can be identified as the expected error made by the first two

empirical terms in the ITL-KRR (8.17) by considering an expression for each of those

two terms. Part one is given by:

1

2

M∑
i=1

(
f(xPi )− yPi

)2 ≈ M

2

∫ (
Ψ(x)− f̂(x)

)2
dpP (x, y).

Analogously, for the second term one gets:

1

2

N∑
i=1

w(xSi , y
S
i )
(
ySi − f(xSi )

)2 ≈ N

2

∫
w(x, y)

(
Ψ(x)− f̂(x)

)2
dpS(x, y). (8.21)

By combining these two expressions one gets an analytical model for (8.17) except for

the regularization term. The regularization in expression (8.17) denotes a Tikhonov

regularization [95]. This type of regularization restrains the limits of freedom of the

model by reducing the variance of the model vector θ. From a Bayesian point of view,

this means that the error of the given data is normally distributed with zero mean and
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variance η2, i.e. yi = xi + εi with εi ∼ N (0, η2), ∀i. Thus, the regularization term can

be interpreted as the inverse noise variance or expressed differently, given the data and

the a priori distribution of the data the solution of the ridge regression problem (8.17)

is, according to Bayes’ theorem, the most probable solution [18]. Therefore, following

this idea, the regularization term can be simply added in order to get an analytical

model that corresponds to the empirical model. As the following proof shows, this has

no impact on the convergence of the method such that it can be safely added here:

J [f̂ ] =
M

2

∫ (
Ψ(x)− f̂(x)

)2
dpP (x, y) +

N

2

∫
w(x, y)

(
Ψ(x)− f̂(x)

)2
dpS(x, y) +

1

2
||f̂ ||2H.

This expression can now be used to determine the behavior of the approximation if more

data is taken into account. Therefore, given now a psd kernel k , then thanks to Mercer’s

theorem one gets an orthonormal basis of eigenfunctions φi(x) (w.r.t. probability mea-

sure pP ) that span the RKHS. Thus one can represent the functions Ψ and f̂ by a linear

combination of these eigenfunctions, i.e. Ψ(x) =
∑∞

i=1 ψiφi(x) and f̂ =
∑∞

i=1 f̂iφi(x).

Further, from the reproducing property of a RKHS, for ||f ||2H one gets:

〈f̂(·), k(·, x)〉H =
∞∑
i=1

f̂iλiφi(x)

λi
= f̂(x)⇒ ||f̂ ||2H =

∞∑
i=1

f̂2
i

λi
<∞ (8.22)

where the λis are the eigenvalues of the kernel given in Mercer’s theorem. Plugging this

into the equation above one gets:

J [f̂ ] ≈ M

2

∫ ( ∞∑
i=1

ψiφi(x)−
∞∑
i=1

f̂iφi(x)

)2

dpP (x, y)+

N

2

∫
w(x, y)

( ∞∑
i=1

ψiφi(x)−
∞∑
i=1

f̂iφi(x)

)2

dpS(x, y) +
1

2
||f̂ ||2H

(8.23)

The first term can be transformed in the following way:

M

2

∫ ( ∞∑
i=1

ψiφi(x)−
∞∑
i=1

f̂iφi(x)

)2

dpP (x, y)

=
M

2

∫ ( ∞∑
i=1

(
ψi − f̂i

)
φi(x)

)2

dpP (x, y)

=
M

2

∞∑
i=1

(
ψi − f̂i

)2
∫

(φi(x))2 dpP (x, y)

Since the convergence of the sum is uniform, the integral and sum can be interchanged.

Due to Mercer’s theorem the φ’s comprise an orthonormal basis of eigenfunctions such

that the term
∫

(φi(x))2 dpP (x, y) = 1. By applying the same steps to the second term
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of expression (8.23) one gets:

J [f̂ ] ≈ M

2

∞∑
i=1

(
ψi − f̂i

)2
∫

(φi(x))2 dpP (x, y)+

N

2

∞∑
i=1

(
ψi − f̂i

)2
∫
w(x, y) (φi(x))2 dpS(x, y)︸ ︷︷ ︸

=1 since wpS=pP

+
1

2

∞∑
i=1

f̂2
i

λi

=
N +M

2

∞∑
i=1

(
ψi − f̂i

)2
+

1

2

∞∑
i=1

f̂2
i

λi
.

The integral and sum expressions can be swapped due to the result of Mercer’s theorem

which states uniform convergence. Due to the transforming importance function w, the

orthogonality of the φ’s in the scalarproduct given by the integral w.r.t. pP translates

to the pS term. The minimum of this expression is obtained by taking the derivative

w.r.t. f̂i and setting it to zero. Hence one gets:

f̂i
λi
− (N +M)

(
ψi − f̂i

)
= 0⇔ f̂i =

λi

λi + 1
N+M

ψi −−−−→
N→∞

ψi. (8.24)

This proof is an extension of the convergence of a Gaussian process [77] such that it

considers P & S data. Thus, the consequences on the convergence are essentially the

same as in the Gaussian process setting. From the last expression (8.24), one can see

that as more and more data, either from the P data or the S data, is taken into account

the coefficients for the model function f̂ converge to the coefficients of the real function

Ψ. Another thing that can be derived is that the regularization term (or prior in term

of a Bayesian viewpoint) looses influence as more and more data is coming in. From the

proof, one might get the impression that it would suffice to just add more S data such

that new P data could be ignored completely. This is the case if the real importance

function w(x, y) is known which is required here, to state a valid proof. However, in the

practical setting, where one does not know the exact w one has to rely on additional P

data.

8.5 Experiments

In the experimental section, the performance of the direct (DITL) and indirect (KLITL)

approaches versus the boosting for transfer learning method , another instance-weighted

approach, described in [66] will be investigated. Further, a method called ”Frustrat-

ingly Easy Domain Adaptation” by [29] is applied, a simple, but often well performing

feature learning approach, in combination with kernel ridge regression (in the following

referred to as FS-KRR). Two more methods that both are based on Gaussian process
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(GP) regression are considered for comparison. The first one, referred to as ATL [17],

calculates a special correlation matrix for the GP and the second, called SMTR [111], is

a GP-based multi-task method where the common knowledge of all tasks is reflected in

form of a shared prior. Additionally, the performance of a normal kernel ridge regression

for regression problems learned from the three dataset combinations: P data, S data,

and P & S data is provided. As a weighted baseline KLIEP [91], presented in chapter 7,

is taken into account for determining instance weights, as an alternative Kernel Mean

Matching (KMM) [45] is also employed.

This experimental section also consider the previously discussed earthquake data. How-

ever, in contrast to the covariate shift setting where the full dataset of Japan (without

labels) was employed in the learning procedure, this section will assume a different situ-

ation. Here, it is assumed that only very few data from the Japan dataset including the

labels is given. This is fundamentally different from the covariate shift setting where it

is assumed that the full Japan dataset is available but without any label information.

Yet, this dataset can still be applied as an example for the source component shift, as

the experimental section will show. Therefore, if the data provided for Japan is scarce,

the model learned on the Japan data might not provide a good prediction quality. Even

if the distributions for the California data and Japan data differ in general, it is reason-

able to assume that in some respects the distributions are very similar or almost equal.

Therefore, it might be helpful to augment the Japan data with some data from the

California data to improve prediction quality for the Japan dataset. For the earthquake

example the data for California would be the S data, and the Japan data would be the

P data.

8.5.1 Parameter Selection

DITL applies a kernel ridge regression (KRR), a weight estimation procedure and the

ITL-KRR. In each of the three steps, a 5-fold standard cross-validation is performed for

the parameter estimation. The KRR and the ITL-KRR will apply RBF kernel functions

for the calculation of the kernel matrix K. Denoting the bandwidth parameter of the

RBF kernels with η two parameters have to be calculated η and the regularization

parameter λ in step 1 (KRR) on the S data, and furthermore step 3 (ITL-KRR) on the

S and P data. In the second step DITL requires the estimation of the parameters σ

(the bandwidth for the importance function approximation) and γ (the regularization

parameter for the α vector). Since all problems are quadratic, one can use standard

algorithms for quadratic programming.
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Figure 8.1: Illustrative toy example for DITL. From left to right the number of P data
is: 5, 10 and 20 datapoints. The location of an S datapoint is marked by a red cross
’×’. The round purple points indicate how much weight an S datapoint gets assigned.
The thicker the point the more weight it has. As can be seen from the example, in
one dimension 20 datapoints are already dense enough to learn a reliable kernel ridge
regression.

KLITL is different in the parameter estimation from the DITL method. KLITL requires

just two steps. In the first step, problem (8.15) is solved; i.e. a simple maximization of

the sum constrained by the expectation equal to N .

In order to get a good estimate for σ a selection criteria is proposed that will choose

the σ from all the proposed σ values that maximizes (8.15). Since KLITL in the first

step is unsupervised, a similar method to cross-validation is used to get a more stable

selection result. Given the original S dataset,
(
XS , Y S

)
, the dataset is splitted into five

disjoint parts,
(
XS , Y S

)5
l=1

. Each split
(
XS , Y S

)
l

should contain enough samples of the

S data but due to the assumption of a sufficiently large S dataset, this should not be a

problem. Now for a fixed parameter σ expression (8.15) is maximized for each dataset

combination {
(
XS , Y S

)
l
,
(
XP , Y P

)
}. The parameter with the highest mean of these

five maximas is picked. Therefore. in this way, a more robust method for estimating an

adequate parameter is obtained.

8.5.2 Datasets

First, for illustration purposes, by using a toy example it is shown how the proposed

DITL algorithm learns weights, and how these weights influence the model prediction.

The performance of the new methods is then verified on some standard benchmark

datasets that have been slightly modified. Finally, the methods are applied to three real

world datasets, the earthquake dataset that was previously used for the covariate shift

methods, a second new one describing delays of aircrafts and a third new describing

radio signal strengths from WiFi access points for indoor location estimation. However,

in contrast to the covariate shift setting, here the earthquake dataset will also employ

the labels and less P data is given.
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8.5.2.1 Toy Examples

The toy example mainly serves as an illustrative demonstration of how and where the

DITL algorithm learns weights for the S data, and shows the consequences for the

prediction of the P data when taking additional S data into account. Similar results can

be obtained by applying KLITL, but are not exposed due to redundancy.

The dataset is generated by sampling data points from two functions that are - as

assumed for the methods - partially almost identical. The S data is sampled as:

fs(x) = sin(2πx) + ηSN (0, 1), (8.25)

where ηS is a factor for controlling the influence of the variance (in the experiments

ηS = 0.1). The P data is sampled according to:

fp(x) =

{
0 + ηPN (0, 1) 0 ≤ x ≤ 1/2

sin(2πx) + ηPN (0, 1) 1/2 < x ≤ 1
(8.26)

where ηP , as in the case for the S data, is the sample variance (in the experiments

ηP = 0.4). Parameter selection is performed as described in the previous section 8.5.1.

The experiments in figure 8.1 only apply a very small number of P data points (just 5,10

and 20). The reason for this is that, for the example, the performance of a standard KRR

is already very good at 20 data points. This is due to the fact that in one dimension one

gets a non-sparse dataset very quickly. Since the aim of the example is the illustration

that the lack of data points (as by assumption), and hence sparseness of data, leads to

models that perform poorly on predicting new data, this setting for the toy example is

reasonable. However, in high dimensions the situation is different and the number of P

data points can be much larger, in parts due to the empty space phenomenon.

8.5.2.2 Benchmark Datasets

In this section DITL, KLITL, ATL, FS-KRR, SMTR and TL-boosting are applied to

standard benchmark datasets. The experimental setup is as follows: The following

standard benchmark datasets for evaluation are taken: abalone, elevators4, and the kin

family datasets5. From the kin dataset the so-called n datasets (n for nonlinear) with 8

dimensions are used. The nm data (non linear medium variance) is used as the S data

and nh data (non linear high variance) as the P data. Since abalone and elevators do

not necessarily comprise a dataset shift the S and P data is determined according to a

4abalone and elevators can be found on mldata.org
5kin datasets are part of the delve dataset repository
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special selection criteria. The selection process is performed upfront and independently

of the ITL method. In the first step, the covariates X are normalized to [0, 1] for each

dimension. Then the following three values are calculated randomly; First, a dimension

d ∈ {1, . . . , D} is selected randomly. In the same way a threshold value ϑ ∈ [0, 1] is

chosen randomly and finally with a selection probability pselect ∈ [0, 1] it is sampled. All

values are selected according to a uniform distribution on the corresponding domain.

After that, these three values are fixed for the actual data generation process. For

the dataset generation a data point (x, y) is selected from the set (X,Y ), x ∈ X is

taken and then the value for dimension d, i.e. xd, is considered. If xd is larger than

the threshold ϑ this (x, y) combination is added with probability pselect to the S data

(XS , Y S), and to the P dataset (XP , Y P ) otherwise. That way, 50 instances of the data

sets are generated randomly for each individual experiment with a drift, i.e. a covariate

shift, in the distribution. In order to get also a shift in the labels the function

f(y) = y + ν sin (2πy) , ν ∈ [0, 1] (8.27)

is applied to the labels of the P data only. For instance ν = 0 means no shift in the

labels. This way a dataset is generated that accounts for the ITL setting and, due to

the ν parameter, gives control about the strength of the shift such that S and P data

still have something in common.

Tables 8.1 and 8.2 show the results for each method for a different number of P data.

For illustration results with ν = 0 are stated in table 8.1, i.e. with only a covariate shift.

As one would expect, a standard KRR using both S and P data performs best, since for

ν = 0 the datasets only contain a covariate shift. Nevertheless, this experiment verifies

that the introduced ITL methods learn proper weights in order to employ the right S

data points for improving prediction of the P data. Their prediction performance is

best over all approaches which aim to take a shift into account, both the covariate shift

procedures and the full dataset shift procedures. Experimental results are qualitatively

the same on each dataset.

Table 8.2 shows results when an artificial shift of ν > 0 is added to the labels. By adding

such a shift one gets a full dataset shift setting and the situation is as expected differently

from the covariate shift setting. The KRR learned exclusively on the S data does not

show any performance gain by adding P data. This is to be expected since the P data

has no influence on the learning procedure but only serves as an evaluation dataset. On

the other hand, if learned on P ∪ S the results improve slightly but they are still biased

by the S data. Over all approaches, as the proportion of the P data grows the error

gets reduced. FS-KRR and ATL show comparable errors, this can be explained by the

similarity in these approaches, by construction both do not use weights for each instance
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Table 8.1: Results on different benchmark datasets for mean square error. Sampling
of the S and P data is explained in the text. Each experiment has been performed 50
times and the results have been normalized by the error on the P data. Therefore, each
number in the other columns denotes the proportion in percent. Further comments
on the results can be found in the text. Error calculation has been performed on a
randomly sampled Peval for each trial. Best results are marked as bold text.

Number of P data # P50 # P100 # P 200 # P 300

Abalone ν = 0 (no additional label shift), error on |Peval| = 1000 and |S| = 1000

KRR (on P) 0.0017 / 1.00 0.0016 / 1.00 0.0014 / 1.00 0.0012 / 1.00
KRR (on S) 0.88 0.94 0.98 1.03

KRR (on S ∪ P ) 0.72 0.77 0.85 0.99
FS-KRR 0.87 0.94 0.97 1.02

KMM 0.91 0.95 0.96 1.00
ATL 0.85 0.92 0.96 1.00

TL-boosting 0.83 0.90 0.98 1.00
KLIEP 0.90 0.94 0.98 1.00
KLITL 0.84 0.89 0.96 1.01

DITL 0.78 0.85 0.89 0.99

Elevators ν = 0 (no additional label shift), error on |Peval| = 1000 and |S| = 2000

KRR (on P) 5.4e-6 / 1.00 5.2e-6 / 1.00 4.4e-6 / 1.00 3.5e-6 / 1.00
KRR (on S) 0.67 0.71 0.80 0.99

KRR (on S ∪ P ) 0.66 0.71 0.79 1.00
FS-KRR 0.76 0.81 0.93 1.02

KMM 0.91 0.95 0.98 1.01
ATL 0.77 0.80 0.91 1.01

TL-boosting 0.75 0.79 0.90 1.01
KLIEP 0.88 0.92 0.97 1.00
KLITL 0.73 0.74 0.86 0.99

DITL 0.65 0.68 0.81 1.00

kin dataset ν = 0 (no additional label shift), error on |Peval| = 1000 and |S| = 2000

KRR (on P) 0.054 / 1.00 0.050 / 1.00 0.046 / 1.00 0.042 / 1.00
KRR (on S) 0.90 0.92 0.96 1.00

KRR (on S ∪ P ) 0.91 0.92 0.97 1.00
FS-KRR 0.91 0.95 0.97 1.03

KMM 0.96 0.97 1.00 1.02
ATL 0.92 0.94 0.98 1.00

TL-boosting 0.93 0.95 1.00 1.00
KLIEP 0.95 0.97 0.98 1.01
KLITL 0.93 0.94 0.97 1.01

DITL 0.92 0.93 0.97 1.00

but one weight for the correlation of P and S data. Consequently, each S data point has

an equal influence. For KMM the pP (x,y)
pS(x,y)

is considered for the ratio calculation since that
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Table 8.2: Results on different benchmark datasets for mean square error. The data
has been augmented by adding an artificial shift to the labels. The other settings for
these experiments are the same as in table 8.1. Best results are marked as bold text.

Number of P data # P50 # P100 # P 200 # P 300

Abalone ν = 1/2 (artificial label shift), error on |Peval| = 1000 and |S| = 1000

KRR (on P) 0.0024 / 1.00 0.0019 / 1.00 0.0016 / 1.00 0.0013 / 1.00
KRR (on S) 1.53 1.41 1.42 1.45

KRR (on S ∪ P ) 1.46 1.38 1.27 1.20
FS-KRR 0.92 0.93 0.96 1.01

KMM 0.93 0.96 1.01 1.00
ATL 0.89 0.91 0.94 0.99

TL-boosting 0.81 0.85 0.93 0.99
KLIEP 1.48 1.38 1.25 1.21
KLITL 0.80 0.87 0.92 1.00

DITL 0.76 0.80 0.89 0.97

Elevators ν = 1.0 (artificial label shift), error on |Peval| = 1000 and |S| = 2000

KRR (on P) 6.5e-6 / 1.00 5.7e-6 / 1.00 4.1e-6 / 1.00 3.6e-6 / 1.00
KRR (on S) 1.61 1.51 1.42 1.49

KRR (on S ∪ P ) 1.51 1.40 1.38 1.29
FS-KRR 0.91 0.97 0.99 1.01

KMM 0.89 0.95 0.98 1.02
ATL 0.88 0.91 0.97 1.01

TL-boosting 0.74 0.78 0.94 1.00
KLIEP 1.53 1.45 1.35 1.30
KLITL 0.76 0.79 0.90 1.01

DITL 0.68 0.71 0.89 0.99

kin dataset ν = 1/4 (artificial label shift), error on |Peval| = 1000 and |S| = 2000

KRR (on P) 0.065 / 1.00 0.056 / 1.00 0.050 / 1.00 0.044 / 1.00
KRR (on S) 1.30 1.34 1.32 1.30

KRR (on S ∪ P ) 1.28 1.23 1.19 1.15
FS-KRR 0.88 0.91 0.95 1.03

KMM 0.90 0.93 0.95 1.00
ATL 0.87 0.89 0.94 1.00

TL-boosting 0.83 0.88 0.92 1.00
KLIEP 1.27 1.24 1.18 1.12
KLITL 0.84 0.88 0.91 1.00

DITL 0.79 0.84 0.91 1.00

better fits the ITL setting. KMM does not provide a method for parameter selection,

and it is unsupervised since it does not use a subset of the target labels to adjust

the parameters, which overall makes it less robust and shows moderate performance.

KLIEP used as a baseline covariate shift approach shows a poor performance, which
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is reasonable since it is not adapted to the ITL setting. The performance differences

to the other methods show that it makes sense to treat ITL and covariate shift as two

separate problem classes. Further, it demonstrates that one should be careful in the

choice of the algorithm in the presence of a dataset shift. Other (related) methods for

covariate shift [89] were also considered in the experiments, their performance is similar

to KLIEP and therefore are not reported here in detail. TL-boosting and KLITL show

a similar performance. DITL performs best, which might be due to the supervised way

for estimating the weights. Nearly all methods eventually converge to a value of 1.00

because, as demonstrated by the toy example in section 8.5.2.1, with some data set size

the P data provides enough information about its structure to allow a good prediction

performance.
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8.5.2.3 Real World Datasets

This section investigates the more interesting situation of real data that very likely

contains a distribution shift. The first dataset [5] describes measurements taken during

earthquakes in Japan and California. The features describe values that have the same

measurements as in the experimental section of the covariate shift methods.

The second real world dataset describes the flight arrival and departure details for all

commercial flights within the USA6. The complete dataset contains records from October

1987 to April 2008. Data from 2007 is taken as the S data and from 2008 data as the

P data. In this case, one can argue that the measurement taken in 2008 are different to

2007 due to a shift in time. The predicted value is the delay of a particular flight.

The third dataset [109] comprises data for indoor location estimation from radio signal

strengths received by a user device (like a PDA) from various WiFi Access Points. The

measurements are taken at different locations and therefore contain a dataset shift. The

results are shown in table 8.3. Besides FS-KRR and ATL all approaches which take a

shift into account consistently improve the result in comparison to the baseline approach

of KRR on P (and/or S).

Adjusting for a covariate shift with KLIEP only slightly improves the result, whereas

approaches which also adjust with weights stemming from a dataset shift view achieve

much better performance. The supervised approach DITL consistently performs best,

with KLITL and TL-boosting as second.

In a final experiment (see table 8.4) additional distortions are added to the labels with

(8.27) and thereby the shift is artificially increased in the labels. The purpose of this

additional shift is to investigate the robustness of the methods, assuming that with a

stronger shift, the methods become more sensitive in the weight calculation, which might

lead to a higher error rate. The results confirm this expectation, but also show that it

is reasonable to assume that DITL provides a better robustness to stronger shifts than

other methods.

8.6 Summary

This chapter suggested two new approaches for tackling the problem of inductive transfer

learning. The first one DITL, a supervised method, is motivated by a reweighted and

unbiased prediction function of the S data. The second method uses an approximation

of the Kullback-Leibler divergence to measure the difference in the distributions of the S

6Flight dataset available at http://stat-computing.org/dataexpo/2009/
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Table 8.3: Results for the mean square error on the real world datasets. Since these
datasets exhibit real dataset shifts the advantage of applying weighted S data becomes
obvious. Best results are marked as bold text.

Number of P data # P 20 # P 30 # P 50 # P 70

Earthquake ν = 0, error on |Peval| = 1000 and |S| = 841

KRR (on P) 0.0138 / 1.00 0.0106 / 1.00 0.0076 / 1.00 0.0064 / 1.00
KRR (on S) 1.13 1.15 1.20 1.23

KRR (on S ∪ P ) 1.12 1.07 1.04 1.04
FS-KRR 1.13 1.14 1.19 1.24

KMM 0.91 0.95 0.98 1.02
ATL 1.04 1.09 1.13 1.16

TL-boosting 0.64 0.88 0.96 0.99
KLIEP 0.97 0.99 1.00 1.01
KLITL 0.60 0.83 0.95 1.02

DITL 0.51 0.78 0.93 1.00

Number of P data # P 50 # P 200 # P 400 # P 800

Flight Data ν = 0, error on |Peval| = 1000 and |S| = 2000

KRR (on P) 898.01 / 1.00 611.39 / 1.00 265.97 / 1.00 211.12 / 1.00
KRR (on S) 0.96 1.02 1.36 1.41

KRR (on S ∪ P ) 0.95 0.99 1.23 1.36
FS-KRR 1.01 1.04 1.35 1.42

KMM 0.88 0.92 0.99 1.01
ATL 0.92 0.99 1.10 1.14

TL-boosting 0.53 0.78 0.89 1.01
KLIEP 0.92 0.96 0.97 1.02
KLITL 0.55 0.76 0.90 1.00

DITL 0.51 0.71 0.86 0.99

Number of P data # P 50 # P 100 # P 200 # P 400

Wireless ν = 0, error on |Peval| = 1000 and |S| = 2000

KRR (on P) 256.83 / 1.00 230.74 / 1.00 197.23 / 1.00 153.21 / 1.00
KRR (on S) 1.02 0.98 1.10 1.13

KRR (on S ∪ P ) 0.96 1.00 1.12 1.15
FS-KRR 0.99 1.01 1.05 1.10

KMM 0.91 0.95 0.97 1.03
ATL 0.93 0.97 1.02 1.08

TL-boosting 0.74 0.82 0.93 0.99
KLIEP 0.95 0.97 0.99 1.01
KLITL 0.71 0.78 0.89 0.98

DITL 0.69 0.79 0.87 0.96
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Table 8.4: Results for the mean square error on the artifically augmented real world
datasets. The robustness of the methods become apparent when the shift is artificially
intensified (i.e. (8.27) with ν > 0). Best results are marked as bold text.

Number of P data # P 20 # P 30 # P 50 # P 70

Earthquake ν = 1/3 (with additional label shift), error on |Peval| = 1000 and |S| = 841

KRR (on P) 0.0261 / 1.00 0.0189 / 1.00 0.0160 / 1.00 0.0141 / 1.00
KRR (on S) 1.90 1.98 1.73 1.82

KRR (on S ∪ P ) 1.40 1.35 1.32 1.28
FS-KRR 1.30 1.24 1.19 1.16

KMM 1.08 1.10 1.06 1.03
ATL 1.21 1.18 1.14 1.09

TL-boosting 0.83 0.89 0.95 1.00
KLIEP 1.30 1.32 1.38 1.41
KLITL 0.81 0.90 0.96 1.00

DITL 0.60 0.83 0.92 1.00

Number of P data # P 50 # P 200 # P 400 # P 800

Flight Data ν = 1 (with additional label shift), error on |Peval| = 1000 and |S| = 2000

KRR (on P) 1432.12 / 1.00 1151.32 / 1.00 813.21 / 1.00 350.94 / 1.00
KRR (on S) 1.45 1.51 1.39 1.47

KRR (on S ∪ P ) 1.25 1.19 1.12 1.08
FS-KRR 1.11 1.09 1.06 1.02

KMM 1.01 1.03 0.99 1.00
ATL 1.12 1.08 1.05 1.00

TL-boosting 0.79 0.88 0.92 0.99
KLIEP 1.21 1.24 1.30 1.38
KLITL 0.79 0.89 0.94 1.01

DITL 0.59 0.82 0.88 0.99

Number of P data # P 50 # P 100 # P 200 # P 400

Wireless ν = 1 (with additional label shift), error on |Peval| = 1000 and |S| = 2000

KRR (on P) 431.23 / 1.00 398.19 / 1.00 354.21 / 1.00 299.85 / 1.00
KRR (on S) 1.78 1.65 1.77 1.59

KRR (on S ∪ P ) 1.17 1.13 1.10 1.07
FS-KRR 1.20 1.14 1.09 1.04

KMM 1.10 1.05 1.07 1.02
ATL 1.18 1.12 1.10 1.05

TL-boosting 0.86 0.90 0.97 1.01
KLIEP 1.34 1.38 1.40 1.45
KLITL 0.84 0.88 0.94 0.99

DITL 0.74 0.83 0.92 1.00
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and P data. The results indicate that both methods are suitable to account for dataset

shifts while the supervised method performs better.



Chapter 9

Conclusions and Outlook

Dataset shifts in machine learning describe problems that - depending on the structure

of the data - can be very hard to solve. The term is very general such that it is required

to consider special classes of dataset shifts. Since the standard model in the machine

learning setting is described by the expression p(x, y) the different types of dataset

shifts can be categorized into covariate shift (4.4.1), prior probability shift (4.4.2) and

source component shift (4.4.5). Each shift can become infeasible to compensate in

situations where either the sample size is too small or the difference inbetween (i.e. the

actual shift itself) is too large or even both cases. Therefore, if the transformation of

the data generating process is unknown and cannot be stated as an accurate informed

mathematical model it becomes necessary to apply statistical methods that require at

least some existing connections between the shifted datasets.

Instance based approaches provide an intuitive way of facing such situations. Further

they are analytically well justified since they aim to approximate the exact transforma-

tion function which is the actual Radon-Nikodym derivative. The approximation itself is

then infered based on the sampled datasets available. In this theses a linear combination

of gauss kernels (6.1) is applied since such an approach provides a flexible yet simple

model and which has been proven to be reliable in serveral other works [57, 71, 89, 91]

previously.

The thesis introduced several new algorithms for compensating the covariate shift and

source component shift. The methods for compensating a covariate shift are based

on other existing work but extend them in a new way by applying the Fourier series

approximation. The advantage of the approximation is that the estimation of the weight

function becomes more robust in terms of the number of data available. The Fourier

series is truncated which implies the neglection of the higher frequencies that mainly

only capture the noise that is contained within the data. Therefore, the Fourier series
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methods put the emphasize on lower frequencies that capture the main structure of the

shift. Additionally, in order to make the Fourier series applicable to higher dimensional

problems the Hyperbolic cross is applied.

The second type of dataset shift that is considered is the source component shift. Two

new methods have been stated. A direct approach (DITL) (8.3.2) that is derived from a

weighted kernel ridge regression (6.6.1) and the KL-ITL (8.3.3) method. DITL provides

a frameworks that assesses the quality of fit by applying cross validation. Therefore,

DITL is a very robust method which is shown in the experimental section 8.5. The

second algorithm KLITL is based on the idea of KLIEP and can be considered being an

unsupervised approach. The advantages of both methods are that they are very easily

applicable by simultaneously providing good results.

All algorithms have been benchmarked on diverse well known datasets and put in com-

parison with other algorithms that have been developed for the same problem set (8.5,

7.4).

However, still, a lot of unanswered questions remain. It could be interesting to apply

the algorithms, discussed in this thesis, to other divergence measures. Or, the question

about the kind of weight function approximation that should be used. The currently

applied approximation (6.1) is simple and very general. For instance, the approach for

compensating covariate shift is not limited to the current choice of a linear combinations

of (Gaussian) kernels for the weight function. An interesting possibility would be the

use of a sparse grid-based approach [33, 68], where the same underlying idea of a sparse

tensor product construction and Sobolev spaces with dominating mixed smoothness as

for the Hyperbolic cross approximation exists. Therefore, this approach is an interesting

alternative to the application of the Hyperbolic cross. Further, in situations in which a

little bit more is known about the transforming process one could consider this knowledge

in form of an informed model for the weight approximation which, therefore, would assign

more reliable weights. Another question is the robustness of the methods. One could

ask: How much similarity in between the data is required in order to apply any of the

methods currently available? This implies the next important question: What criteria

could indicate when to use shift compensating techniques for which datasets?

Finally, from a wider and more abstract perspective, the results presented in this thesis

might also be interesting for other research approaches in the machine learning area.

For instance, a high level question is: why do humans learn quicker with less examples

than traditional algorithms [99]? One hypothesis is that they have access to an intelli-

gent (human) teacher which has previous experience and knowledge about a particular

problem. While traditionally only data x and outcome y is given for the inference a

teacher might provide additional information. For that reason, special teacher student



Chapter - Conclusions and Outlook 125

interactions can lead to a quicker learning process. One way to model these interactions

is by considering knowledge transfer techniques that are similar to those presented in

the previous chapters. Therefore, another interesting topic would be the combination of

existing teacher student models with these new approaches.
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