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Necessary and sufficient conditions for commutativity of two projections in Hilbert space
are given through properties of so-called conditional connectives which are derived from the
conditional probability operator PQP. This approach unifies most of the known proofs, provides
a few new criteria, and permits certain suggestive interpretations for compound properties of

quantum-mechanical systems.

1. Introduction

Commutativity of two projections P and @ in
a complex Hilbert space H plays an important
réle in the mathematical formulation and physical
interpretation of quantum-mechanical systems.
PQ= QP is interpreted as ‘‘commensurability”’
of the properties represented by P and Q. This
means: On a quantum-mechanical system in a
given state, measurement of P and @ can be made
simultaneously or, a measurement of first P and
then @ affects any state ¢ in the same way as does
a measurement first of @ and then of P:

{p, QPp)> = {p, PQy).

Mathematically speaking, this identity is equivalent
to the fact that P@Q is a projection onto the meet
of P and @, which in turn means physically that
PQ (= QP) is again a ‘“compound” property of
the system.

On the other hand, the meet (which by abuse
of language we write P A Q) of P and @ is uniquely
defined even for non-commuting projections. In
this case, P is not a projection and a fortiori
PQ == QP. PQ is not even an observable (hermitian
operator) in H and hence is not interpreted in
quantum mechanics. The interpretation of Pa @,
however, has been controversial (see Jammer’s
book [4], p. 353—361).

The purpose of this paper is to present a some-
what unified approach to commutativity proofs
for two projections in Hilbert space. We shall
derive necessary and sufficient conditions for com-
mutativity from properties of the so-called “con-
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ditional probability operator” PQP (cf. Bub’s dis-
cussion in [3], and the relevant literature quoted
there). This observable leads to the introduction
of derived connectives P @, Pui@Q, and the
material quasi-implication P— . These connec-
tives allow a reasonable physical interpretation
for the meet P AQ even for non-commuting pro-
jections. Most of the following material can be
proved in the more general setting of quasimodular
orthocomplemented lattices (cf. [9] and [10]). These
criteria are rephrasings of known results in terms
of the new connectives; only (3.17) below appears
to be new.

2. Conditional Connectives

Let P and @ be projections in a complex Hilbert
space H. Because of the one-to-one correspondence
between projections and their ranges, we denote
the range of P by P as well, so that

Px=x and z€eP
have the same meaning.
Let Eo(PQP) denote the null-space of PQP:
Eo(PQP) = {xc H| PQPx = 0}.

2.1. Definition

The “conditional” connective P @ is (the pro-
jection onto) the orthocomplement of E¢(PQP):

PHQ:EOJ—(PQP)r

read “P and then Q.

In other words, P @ is the projection onto the
range of PQP.

It follows from <x, PQPzx)=| QPx|2 that
PQPx=0if QPx=0. Now the following represen-
tation of Eo(PQP) = Eo(QP) ensues:
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2.2. Theorem
For all projections P, @ in H
Eo(PQP) = P+v (P @QY),
where v may be replaced by +.

Proof. QPx=0 is equivalent to Pz e @, and
this is certainly fulfilled for all  in the subspace
on the right-hand side.

Conversely, if = is such that Px e @, then we
see from = (I — P)x+ Px and I — P= P+ that
z belongs also to the right-hand side of the equality
above.

2.3. Corollary
Prn@Q=PAr(P+v Q).
2.3 justifies our reading of Pr@ as “P and then
Q”’; for, if we interpret the right-hand side of (2.3)
via ‘“classical”’ connectives, we see that Prm @ is
true iff P is true and it is true that @ follows
“materially” from P. It is now clear how to define
PLiQ: “P or then @7, and a material ‘“‘quasi-
implication” or “conditional implication” P—@Q:
2.4. Definitions
For projections P, @ in H put
PLi@Q:=(Ptm@4Y)*
— Bo(P-Q*PY)
= 4| QL PLe=10}
— Py (P*rQ);
P—Q:=PruQ
= Eo(PQ* P) = {z| Q- Px =0}
= PLv(PrQ).
P—@ can be read as follows: “P—Q is true
iff either P+ is true or the occurrence of the yes-

outcome of P leaves the system in a state which
makes true @.” (cf. [2], p. 378).

2.5. Corollary

For all projections P, @ in H (commuting or not),
we have

(1) PrQ@Q=PngQ,

(2) Pv@=Pug,

@) PrQ=Pn(Pru@)=Qn(Q-uP),

4) Pv@Q=Pu(PnQ)=Qu(@' nPp),
note that P Ly (Pt m Q)= P + (P+m Q).

W. Rehder - When Do Projections Commute

Proof. (1) and (2) are clear from (2.3) and (2.4).
We prove (4): Since

P<PvQ, PvQ—P=(PvQ)nrP+.
(3) follows from (4).

PArQ and Pv@ can also be expressed in terms
of the spectral measure of the observable PQP:

2.6. Theorem
For all projections P, @ in H
PrQ=E(PQP)= E1(QPQ),

where E; is the respective projection onto the
eigenspace with the eigenvalue 1.

Proof.x € E1(PQP)iff PQPx=xz. From |z|2=
(PQPzx,xz)=|QPx|2< | Px|2<| |2 we see that
Pxr=z,i.e.xe P, and also QPx =z, and together
with Pz ==, that Qz = x. The converse is evident.

2.5 (3) allows a suggestive reading of the meet
P AQ, whether P and ¢ commute or not:

P Q@ iff P and then P quasi-implies ¢, which is
the same as @ and then @ quasi-implies P.

3. Commutativity of Projections

Abbreviate P ~ @ for PQ =@QP. Obviously,
P~QeQ~P<=P~Q+

= Pln Qe Pl QL. (3.1)

Main Theorem: P ~(@ is equivalent to each
of the following equalities or inequalities in (3.2)
through (3.17). (We shall prove only sufficiency;
the proof that P ~ @ implies (3.2) through (3.17)
is straightforward and will be omitted).

PrQ=PnQ. (3.2)

Proof: (3.2) is the same as
Ey(PQP) = E¢-(PQP),

which means that PQP is the projection onto
PA Q. Because of Eo(PQP)=E((QP), PQP and
QP coincide on (P AQ)*. On the other hand, for
every x€ PrQ, x=QPx and x= PQPz, so that
PQP and QP are identical.

PvQ=PuQ. (3.3)
Proof: (3.2) and (3.1).
P=Pr@Q+ PrQ+. (3.4)
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Proof: PAQ+ <P implies P \Q=P—PrQ*
=PAr(PrQY)*r=PAr(P*v@)= Pr Q. Now apply
(3.2).

(3.2) is often used to define the 2-place relation C
of commensurability

(P,Q)eC<=P=PrQ+ Pr@Q+

in an orthocomplemented lattice Lo (e.g. Mittel-
staedt [9], p.32). It is worth noting that C is
symmetrical if and only if Ly is quasimodular
(some authors say ‘‘orthomodular” or ‘“weakly
modular’):

P<Q=>QnP=P.

If this implication holds in Ly, (3.1) is true in Lo
(see Mittelstaedt [9], p. 30—34); the reverse im-
plication QmP=P=P=<Q is always true. If
equality of the antecedent is weakened to mere
inclusion, we get that P~ @ is a consequence of

QrP<P. (3.5)

Proof: PAQ=Qnr P from (2.5) (1); QNP =Q
together with (3.5) and (3.2) give P ~ Q.

P=Z=QuP. (3.6)
Proof: (3.5) and (3.1).
P=(Q@—P). (3.7)

Proof: Q—>P=Q+*uuP=P. Apply (3.6) and
(3.1). (We remark that always P~ (P—>Q); cf.
[9], p. 41, 2.40(b)).

Ps(Q—>P)=H. (3.8)

Proof: (3.8) is the same as saying
Pt (QtuP)=H.
Because of (2.5) (2) we have also H= P+ v (Q*L P).
But then P < H implies P <Q*11 P, and (3.6) to-
gether with (3.1) yield P ~ @.

PnQ=QnP. (3.9)

Proof: Using (3.2), we have to prove that (3.9)
implies Prn@Q=PrQ. We know that always
Prn@Q=PArQ. On the other hand, if ze Prn@Q
=@nr P, then z € P and « € Q (from the represen-
tation (2.3)), i.e. xe P Q.

PL@Q=QuP. (3.10)
Proof: (3.9) and (3.1).
P—>Q=Q—>PL. (3.11)
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Proof: (3.11) says P+L1Q =Qu P+. Apply (3.10)
and (3.1).

we(PVv Q) = we(P) 4 we(Q)

for all states @ € H, where wgy(R):= (¢, Rp) for
projections R in H.

Proof: Pv@Q= P+ (P+nQ) from (2.5) (4), and
we(PrMQ) <we(Q) for all states ¢ if and only if
P+n@Q =Q. Using (3.5) and (3.1) gives P ~ Q.

(Cf. also Jauch’s lemma, p. 117 of [5]).

P=QnP+@Q'nP.

Proof:
QrP+ QN P={z|PQz=0}*
+ {z] PQta = 0}
= {z|PQx =0 and
Px — PQx = 0}*
=f{g| Pe=0 and
PQxz=0}*
= (P AQtL Py
=Pv(Qn P)
=P+ P-n(QnP).
Therefore, (3.13) is equivalent to Pt (QrP)=0
or H=PLi(Q+*v P+)= P+ —(Q— P'), which by
(3.8) and (3.1) implies P ~ Q.
The proof of (3.13) shows also that Prm(Qm P)
=P (Q*nP)=:1I(P,Q), which may be called
the “interference term”, and (3.13) is equivalent to

I(P,Q)=0. (3.14)

P=QPQ + Q+PQ*. (3.15)
Proof: Due to (3.13), (3.15) is the same as

QPR+ Q*PR*=Qn P+ Q- nP.

Since always QPQ <Qr P and Q+PQ+*<Q‘nP,
the latter equality can only hold if QPQ=Qn P
and @+PQ+=@Q+n P. But this means that QPQ
is the projection onto @A P, and thus coincides
with PQ as was shown in the proof of (3.2).

From QPQ+Q*PQ*=P—(QPQ*+QPQ) it
can be seen that (3.15) holds if and only if J (P, Q)
=QPQ++Q+PQ is zero:

J(P,Q)=0. (3.16)

J(P,Q) is the observable which defines Mittel-
staedt’s probability of interference ([8], p. 215):

wglt(P:Q) =<¢’J(P’Q)‘P>’

(3.12)

(3.13)
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which is zero if and only if (J (P, @) is hermitian!)
the condition (3.16) holds, i.e. iff P ~ Q.

(3.4), (3.13) and (3.15) are saying that each of
the following representations for P is equivalent
to P~ Q:

P=PnrQ+ PrQ+,
P=QnP+Q+nP,
P = QPQ+ Q*PQ*.

As our final criterium we show that P ~ @ is equiv-
alent to

PQP = QPQ. (3.17)

Proof: By (3.2), P~Q iff PAQ=PnQ, i.e.
E,(PQP)=E)(PQP). This equality is true iff
PQP is a projection. But, using (3.17) twice, we
get

(PQP)2 = PQPPQP = PQ(PQP)

= PQ(QPQ) = P(QPQ)
= P{PQP)= PP,

so that the hermitian operator PQP is idempotent,
i.e. in fact a projection.

From the standpoint of physical interpretation,
(3.17) is to be expected: PQP is the defining
operator for the “joint” probability of P and
(then) @ and determines the conditional probability
of @, given P. Considering this interpretation,
and (3.16), for instance, which is equivalent to
(3.17), it comes as no surprise that PQP=QPQ
should imply P ~@. Mathematically speaking,
however, this implication seems curious: (3.17)
means that for PQ=QP it is sufficient that PQ
has the same value for Px as QP has for Qu,
for all x€ H. In other words, (3.17) permits an
implication from the equality of positive self-ad-
joint operators PQP and QPQ to the equality
of prima facie more general operators PQ and QP.
Putting 4 = PQ, A*=QP, (3.17) may be restated
as: A=A* is equivalent to AA*=A4%*4, i.e. for
A= PQ self-adjointness and normality are the
same.

For this reason it may be of interest to have a
proof of (3.17) independent of (3.2) and of the repre-
sentation of Pr@Q and P AQ through the spectral
measure of PQP. We shall do so now.

Proposition. For any two projections P and @
in a complex Hilbert space H, the commutativity
relation PQ=QP is equivalent to PQP=QPQ.
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Again, we need only prove the non-trivial direc-
tion.
We need the following

Lemma: Let 4 and B be bounded linear
operators in H such that

(1) AB= BA,
(2) A2= B2 and
@) A—B)=—(4—B)*
Then (4) £ commutes with any transformation
that commutes with 4 — B, and (5) A =(2E —1I) B,

where Z is the orthogonal projection onto the null-
space M = Eo(4A — B) of A — B.

Proofofthe Lemma: (Cf. [1], p. 424, Theorem
23.3; note that in our proof A and B need not be

self-adjoint!). Suppose that ¢ commutes with
A — B. This implies C(M)c M. From

C(A— B)=(4— B)C = (4 — B)*C*
= (C*(4 — B)*
and (3), we have
(A — B)C*=C(C*(4 — B),
which implies C* (M) c M. Therefore C reduces M,

i.e. CE = EC, proving (4).
From (1) and (2) we have

(A— B)(A+ B)=42— B2=0,
i.e. (6)

EA+B)y=4+ B.
For any vector z € H write z=x+y, where x € M
and y € M*. It follows

E(A—B)z=E(4d— B)x+ E(4 — B)y.
The first term on the right is zero, because x € M
=FEyo(A — B) and- the second is zero because K

commutes with 4 — B, according to (4).
Hence

(7) E(A4A—B)=0.
Combining (6) and (7), gives
E(A4+B) —E(A—B)=A+B
or

A=2-EB— B=(2E—I)B,

which proves (5).
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We wish to apply the Lemma for 4= PQ,
B=@QP. Assumption (1) is the same as PQP
=@PQ. Using this, and observing

(8) (PQ)2= PQPQ = PPQP = PQP

= QPQ = (QP),
we note that (2) is fulfilled.
Moreover,
(PQ — QP)* = QP — PQ
= — (PQ— @P),

which is assumption (3) of our Lemma.

Proof of the Proposition: From
(PQP)2 = PQPPQP = PQPQP
= PQQPQ = (PQ)?
and (8), we see that PQP =@ P must be a projec-

tion. We claim that PQP is the projection onto
P A Q. This may be seen from

PP = (PQP)2 = (PQ)?,

ie.
PQP = (PQ)*, k=1,

and from the fact that the projection onto P Q
is given by the limit of (PQ)?, n—> co.

We prove PQ = QP.

If ze PAQ, trivially PQz— QPz=z—z=0.
Ifz € P+v @+, write z=lim (¢, + y,), where x, € P+
and y, € @*. Using (5) of our Lemma gives

PQ—=(2E —I)QP and
QP = (2E — 1) PQ,
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where E is the orthogonal projection onto
Eo(PQ — QP) = Eo(QP — PQ)

(note that the assumptions of the Lemma are sym-
metrical in 4, B).
Therefore, using continuity,

PQz = lim (PQzn + PQyn)
n
=lim PQz, =lim(2E — I)QPx, =0,
n n

similarly QPx = 0.
Hence, PQ and QP coincide on H.

Remark

It should be noted that the Proposition is also
a special case of a rather deep theorem by Fuglede-
Putnam, Rosenblum (cf. [11], p. 300, Theorem 12.16,
where Rosenblum’s proof is given):

Assume that A, B, T are bounded transforma-
tions on H, A and B are normal, and

AT =TB.

Then A*T = T B*.
Taking A=PQ, B=QP, T=P yields our

Proposition.

Acknowledgement

I am indebted to Dr. E.-W. Stachow, of Cologne
University, who kindly pointed out to me the two
references [6] and [7] where the conditional con-
nectives have been studied in great detail, and in
a more general setting than Hilbert space.

[7] H. Kroger, Das Assoziativgesetz als Kommutativi-
tatsaxiom in Boole’schen Zwerchverbanden, J. Reine
Angew. Math. 285, 53 (1974).

[8] P. Mittelstaedt, Philosophische Probleme der moder-
nen Physik, BI Mannheim, 1976. Engl. Transl. as
Philosophical Problems of Modern Physics, Reidel,
Dordrecht 1976.

[9] P. Mittelstaedt, Quantum Logic, Reidel, Dordrecht
1978.

[10] C. Piron, Foundations of Quantum Physics, Reading,
Mass., 1976.

[11] W. Rudin, Functional Analysis, McGraw-Hill, New
York 1973.

Bereitgestellt von | Technische Universitat Berlin
Angemeldet
Heruntergeladen am | 04.01.19 15:59



