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Necessary and sufficient conditions for commutativity of two projections in Hilbert space 
are given through properties of so-called conditional connectives which are derived from the 
conditional probability operator PQP. This approach unifies most of the known proofs, provides 
a few new criteria, and permits certain suggestive interpretations for compound properties of 
quantum-mechanical systems. 

1. Introduction 

Commutativity of two projections P and Q in 
a complex Hilbert space H plays an important 
role in the mathematical formulation and physical 
interpretation of quantum-mechanical systems. 
PQ = QP is interpreted as "commensurabil ity" 
of the properties represented by P and Q. This 
means: On a quantum-mechanical system in a 
given state, measurement of P and Q can be made 
simultaneously or, a measurement of first P and 
then Q affects any state cp in the same way as does 
a measurement first of Q and then of P: 

<(T, QPcpy = <9?, PQ<P>. 

Mathematically speaking, this identity is equivalent 
to the fact that PQ is a projection onto the meet 
of P and Q, which in turn means physically that 
PQ QP) is again a " c o m p o u n d " property of 
the system. 

On the other hand, the meet (which by abuse 
of language we write P A Q) of P and Q is uniquely 
defined even for non-commuting projections. In 
this case, PQ is not a projection and a fortiori 
PQ =j= QP. PQ is not even an observable (hermitian 
operator) in H and hence is not interpreted in 
quantum mechanics. The interpretation of P A Q, 
however, has been controversial (see Jammer's 
book [4], p. 3 5 3 - 3 6 1 ) . 

The purpose of this paper is to present a some-
what unified approach to commutativity proofs 
for two projections in Hilbert space. W e shall 
derive necessary and sufficient conditions for com-
mutativity from properties of the so-called "con-
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ditional probability operator" PQP (cf. Bub's dis-
cussion in [3], and the relevant literature quoted 
there). This observable leads to the introduction 
of derived connectives Pr\Q, PuQ, and the 
material quasi-implication P->Q. These connec-
tives allow a reasonable physical interpretation 
for the meet P AQ even for non-commuting pro-
jections. Most of the following material can be 
proved in the more general setting of quasimodular 
orthocomplemented lattices (cf. [9] and [10]). These 
criteria are rephrasings of known results in terms 
o f the new connectives; only (3.17) below appears 
to be new. 

2. Conditional Connectives 

Let P and Q be projections in a complex Hilbert 
space H. Because of the one-to-one correspondence 
between projections and their ranges, we denote 
the range of P by P as well, so that 

Px — x and xe P 

have the same meaning. 
Let EQ(PQP) denote the null-space of PQP: 

EQ(PQP) = {xeH\PQPx = 0}. 

2.1. Definition 

The "condit ional" connective P n Q is (the pro-
jection onto) the orthocomplement of EQ(PQP) : 

PnQ = E0±(PQP), 

read " / J and then Q" . 
In other words, P n Q is the projection onto the 

range of PQP. 
It follows from <.r, PQPx} = || QPx\\2 that 

PQPx = 0 if QPx = 0. N o w the following represen-
tation O{EQ{PQP) = EQ(QP) ensues: 
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2.2. Theorem 

For all projections P, Q in H 

Eq{PQP) = Pxv(PA Qx) , 

where v may be replaced by - f . 

P r o o f . QPx — 0 is equivalent to PxeQ, and 
this is certainly fulfilled for all x in the subspace 
on the right-hand side. 

Conversely, if x is such that Px e Q, then we 
see from x={I—P)x + Px and I—P=P± that 
x belongs also to the right-hand side of the equality 
above. 

2.3. Corollary 

2.3 justifies our reading of PnQ as " P and then 
Q" ; for, if we interpret the right-hand side of (2.3) 
via "classical" connectives, we see that P n Q is 
true iff P is true and it is true that Q follows 
"materially" from P. It is now clear how to define 
PuQ: " P or then Q", and a material "quasi-
implication" or "conditional implication" P-+Q: 

2.4. Definitions 

For projections P, Q in H put 
P u Q : = ( P x n < n ^ 

= ^o(PJ - Q±P±) 
= {a:|Q±P±a; = 0} 
= P v ( P x A Q); 

P-*Q:=PxuQ 
= E0(PQxP) = {x\Q1-Px = 0} 
= P j - V ( P A Q ) . 

P-^-Q can be read as follows: " P - » $ is true 
iff either P x is true or the occurrence of the yes-
outcome of P leaves the system in a state which 
makes true Q." (cf. [2], p. 378). 

2.5. Corollary 

For all projections P, Q in H (commuting or not), 
we have 
( 1 ) P A Q ^ P H Q , 

(2) PvQ^PuQ, 

(3) PAQ = Pn(P±uQ) = Qn(Q±uP), 

(4) P v Q = P u ( P ^ n Q ) = Q u ( ^ n P ) , 
note that P u ( P i n ö ) = i ) + ( P i n Q). 
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P r o o f . (1) and (2) are clear from (2.3) and (2.4). 
We prove (4): Since 

P^PVQ, P M Q — P — ( P V Q ) A P X . 

(3) follows from (4). 
P AQ and PMQ can also be expressed in terms 

of the spectral measure of the observable PQP: 

2.6. Theorem 

For all projections P, Q in H 

PaQ = E1(PQP) = E1(QPQ), 

where Ei is the respective projection onto the 
eigenspace with the eigenvalue 1. 

P r o o f , a; e E1{PQP) iff PQPx = z. From || a;||2 = 
(PQPx, x) = I QPx I'2 ̂  || Px 1'2 ̂  I z I'2 we see that 
Px = x, i.e. xe P, and also QPx — x, and together 
with Px — x, that Qx = x. The converse is evident. 

2.5 (3) allows a suggestive reading of the meet 
P A Q, Avhether P and Q commute or not: 

P A Q iff P and then P quasi-implies Q, which is 
the same as Q and then Q quasi-implies P. 

3. Commutativity of Projections 

Abbreviate P ~ Q for PQ = QP. Obviously, 

P ~ QOQ~ P O P ~ 

oP^~QoP±~Q±. (3.1) 

Main T h e o r e m : P~Q is equivalent to each 
of the following equalities or inequalities in (3.2) 
through (3.17). (We shall prove only sufficiency; 
the proof that P~Q implies (3.2) through (3.17) 
is straightforward and will be omitted). 

P/ Q = PnQ. (3.2) 

P r o o f : (3.2) is the same as 

E1(PQP) = E^{PQP), 

which means that PQP is the projection onto 
PAQ. Because of E0{PQP) = E0{QP), PQP and 
QP coincide on (P A Q)1-. On the other hand, for 
every xePAQ, x — QPx and x—PQPx, so that 
PQP and QP are identical. 

Pm Q = P LJQ. (3.3) 

P r o o f : (3.2) and (3.1). 

P = P A Q + P A Q - l . (3.4) 
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P r o o f : PAQ±^P i m p l i e s PAQ=P-PAQX 

= P A ( P A $ - L ) X = P A(P±VQ) = PNQ. N o w a p p l y 
(3.2). 

(3.2) is often used to define the 2-place relation C 
of commensurability 

( P , Q ) E C O P = PAQ + PAQX 

in an orthocomplemented lattice LQ (e.g. Mittel-
staedt [9], p. 32). It is worth noting that C is 
symmetrical if and only if LQ is quasimodular 
(some authors say "orthomodular" or "weakly 
modular"): 

P ^ Q = > Q N P = P . 

If this implication holds in LQ , (3.1) is true in LQ 
(see Mittelstaedt [9], p. 30—34); the reverse im-
plication QN P = P => P T^Q is always true. If 
equality of the antecedent is weakened to mere 
inclusion, we get that P ~Q is a consequence of 

Q N P ^ P . ( 3 . 5 ) 

P r o o f : P HQ^QNP f r o m ( 2 . 5 ) ( 1 ) ; QNP^Q 

together with (3.5) and (3.2) give P ~ Q. 

P ^ Q u P . (3.6) 

P r o o f : (3.5) and (3.1). 

P ^ ( Q - > P ) . ( 3 . 7 ) 

P r o o f : Q - > P = Q x u P ^ P . Apply (3.6) and 
(3.1). (We remark that always P ~ ( P - > £ ) ; cf. 
[9], p. 41, 2.40(b)). 

P ^ ( Q ^ P ) = H . (3.8) 

P r o o f : (3.8) is the same as saying 

P ± U ( Q ± U P ) = H. 

Because of (2.5) (2) we have also H = P ± v ( Q x u P). 
But then P ^ H implies P ^ @ x u P , and (3.6) to-
gether with (3.1) yield P ~ Q. 

PR\Q= QR\P. ( 3 . 9 ) 

P r o o f : Using (3.2), we have to prove that (3.9) 
implies P n Q = P A Q. We know that always 
P n Q ^ P h Q . On the other hand, if xePnQ 
— QnP, then x e P and x e Q (from the represen-
tation (2.3)), i.e. XEPAQ. 

PLJQ= QLJP. (3.10) 

P r o o f : (3.9) and (3.1). 
= (3.11) 

P r o o f : ( 3 . 1 1 ) s a y s P X U £ = C > L J P x A p p l y ( 3 . 1 0 ) 
a n d ( 3 . 1 ) . 

U>9(PVQ)£wv{P) + W9(Q) ( 3 . 1 2 ) 

for all states yeH, where w<j,(R) := <(cp, R(py for 
projections E in H. 

P r o o f : P v Q = P + ( P x n Q ) from (2.5) (4), and 
w<p(P±nQ) -^WcpiQ) for all states <p if and only if 
P x n Q ^ Q . Using (3.5) and (3.1) gives P ~ Q . 

(Cf. also Jauch's lemma, p. 117 of [5]). 

P=QnP + Q±nP. ( 3 . 1 3 ) 

P r o o f : 
QnP+QxnP = {x\PQx = 0 } X 

= {x\PQx = 0 and 
Px - PQx = 0 } X 

= {x | Px = 0 and 
PQx = 0 } X 

= ( P x a < 3 x l j P x ) x 

= P v ( $ n P ) 
= P + P x n ( < 3 n P ) . 

T h e r e f o r e , ( 3 . 1 3 ) i s e q u i v a l e n t t o P X N ( £ N P ) = 0 
or H = Pu(Q±uP±) = P±-*{Q-+P±), which by 
(3.8) and (3.1) implies P ~ Q. 

The proof of (3.13) shows also that P X N ( Q N P ) 
= Pxn{QxnP) = :I(P,Q), which may be called 
the "interference term", and (3.13) is equivalent to 

I(P,Q) = 0 . ( 3 . 1 4 ) 

P=QPQ+QXPQX. ( 3 . 1 5 ) 

P r o o f : D u e t o ( 3 . 1 3 ) , ( 3 . 1 5 ) is t h e s a m e a s 

QPQ +Q±PQ±=QnP+QxnP. 

Since always QPQ^QnP and QxPQ±^Q±nP, 
the latter equality can only hold if QPQ=QnP 
and QxPQ± = QxnP. But this means that QPQ 
is the projection onto Q A P, and thus coincides 
with PQ as was shown in the proof of (3.2). 

From QPQ + Q±PQ± = P-(QPQ^ + Q±PQ) it 
can be seen that (3.15) holds if and only if J(P, Q) 
- = QPQX + Q±PQ is zero: 

J(P,Q) = 0 . ( 3 . 1 6 ) 

J(P,Q) is the observable which defines Mittel-
staedt's probability of interference ([8], p. 215): 

«F(P,Q) = <<p,J(P,Q)<p>, 
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which is zero if and only if (J (P, Q) is hermitian!) 
the condition (3.16) holds, i.e. iff P ~Q. 

(3.4), (3.13) and (3.15) are saying that each of 
the following representations for P is equivalent 
to P ~ Q: 

P = P a Q + P A £ \ 

P=QnP+Q±nP, 

P=QPQ + Q±PQ±. 

As our final criterium we show that P ~ Q is equiv-
alent to 

PQP = QPQ • (3.17) 

P r o o f : By (3.2), P~Q iff P^Q^PnQ, i.e. 
E1(PQP) = E0(PQP). This equality is true iff 
PQP is a projection. But, using (3.17) twice, we 
get 

(PQP) 2 = PQPPQP = PQ(PQP) 
= PQ(QPQ) = P(QPQ) 
= P(PQP) = PQP, 

so that the hermitian operator PQP is idempotent, 
i.e. in fact a projection. 

From the standpoint of physical interpretation, 
(3.17) is to be expected: PQP is the defining 
operator for the " jo int" probability of P and 
(then) Q and determines the conditional probability 
of Q, given P. Considering this interpretation, 
and (3.16), for instance, which is equivalent to 
(3.17), it comes as no surprise that PQP = QPQ 
should imply P ~Q. Mathematically speaking, 
however, this implication seems curious: (3.17) 
means that for PQ = QP it is sufficient that PQ 
has the same value for Px as QP has for Qx, 
for all XEH. In other words, (3.17) permits an 
implication from the equality of positive self-ad-
joint operators PQP and QPQ to the equality 
of prima facie more general operators PQ and QP. 
Putting A = PQ, A*=QP, (3.17) may be restated 
as: A = A * is equivalent to = .4*^1, i.e. for 
A = PQ self-adjointness and normality are the 
same. 

For this reason it may be of interest to have a 
proof of (3.17) independent of (3.2) and of the repre-
sentation of P n Q and P A Q through the spectral 
measure of PQP. We shall do so now. 

Proposition. For any two projections P and Q 
in a complex Hilbert space H, the commutativity 
relation PQ = QP is equivalent to PQP = QPQ. 

Again, we need only prove the non-trivial direc-
tion. 

We need the following 

L e m m a : Let A and B be bounded linear 
operators in H such that 

(1) AB = BA, 

(2) A2 = P 2 , and 

(3) ( A - B) = - ( A - B)*. 

Then (4) E commutes with any transformation 
that commutes with A — B, and (5) A = (2E —I)B, 
where E is the orthogonal projection onto the null-
space M = E0(A - B) of A - B. 

P r o o f o f the L e m m a : (Cf. [1], p. 424, Theorem 
23.3; note that in our proof A and B need not be 
self-ad joint!). Suppose that C commutes with 
A — B. This implies C(M) c M. From 

C(A — B) — (A — B)C => (A — B) *C* 
- C*(A - B)* 

and (3), we have 

(A - B)C* = C* (A - B), 

which implies C*(M) c M. Therefore C reduces M, 
i.e. CE = EC, proving (4). 

From (1) and (2) we have 

{A - B) (A + B) = A* - P2 = 0, 

i.e. (6) 
E(A + B) = A + B. 

For any vector z e H write z = xJ\- y, where x e M 
and y e It follows 

E(A - B)z = E(A - B)x + E(A - B)y. 

The first term on the right is zero, because x e M 
— EQ(A-B) and the second is zero because E 
commutes with A — B, according to (4). 

Hence 

(7) E (A — P) = 0. 

Combining (6) and (7), gives 

E(A + B) - E(A - B) = A + B 

or 

A = 2 E B - B = ( 2 E - I) B, 

which proves (5). 
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W e wish to apply the Lemma for A — PQ, 
B = QP. Assumption (1) is the same as PQP 
— QPQ. Using this, and observing 

(8) (PQ)2 = PQPQ= PPQP= PQP 

= QPQ = (QP)2, 

we note that (2) is fulfilled. 
Moreover, 

(PQ - QP)* = QP — PQ 

= - ( P Q - Q P ) , 

which is assumption (3) of our Lemma. 

P r o o f o f t h e P r o p o s i t i o n : From 
(PQP) 2 = PQPPQP = PQPQP 

= PQQPQ=(PQ)2 

and (8), we see that PQP = QPQ must be a projec-
tion. W e claim that PQP is the projection onto 
P A Q. This may be seen from 

PQP = (PQP)2 = (PQ)2, 

i.e. 
PQP=(PQ) 2*. 1, 

and from the fact that the projection onto P A Q 
is given by the limit of ( P Q ) n , n-> oo. 

W e prove PQ = QP. 
I f z e P A Q, trivially PQz- QPz = z-z = 0. 

If z E Pxw Qx, write 2 = lim (xn -j- yn), where xn e Px 

and yn E Qx. Using (5) of our Lemma gives 

PQ = (2E — I) QP and 
QP = (2E — I) PQ, 
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where E is the orthogonal projection onto 

E0(PQ - QP) = EO(QP - PQ) 

(note that the assumptions of the Lemma are sym-
metrical in A, B). 

Therefore, using continuity, 

PQz = lim (PQxn + PQyn) 
n 

= lim PQxn = lim (2E — I) QPxn = 0, 
n n 

similarly QPx = 0. 
Hence, PQ and QP coincide on H. 

Remark 

It should be noted that the Proposition is also 
a special case of a rather deep theorem by Fuglede-
Putnam, Rosenblum (cf. [11], p. 300, Theorem 12.16, 
where Rosenblum's proof is given): 

Assume that A, B, T are bounded transforma-
tions on H, A and B are normal, and 

AT = TB. 

Then A*T = TB*. 
Taking A = PQ, B = QP, T=P yields our 

Proposition. 
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