
 

 

 

 

 

Lithium-ion Battery State Monitoring Method via Frequency 

Excitation: Verification in Experiments and Simulations 

 

 

 

vorgelegt von 

M. Sc.  

Jonghyeon Kim 

ORCID: 0000-0003-2632-3695 

 

 

von der Fakultät IV - Elektrotechnik und Informatik 

der Technischen Universität Berlin 

zur Erlangung des akademischen Grades 

 

Doktor der Ingenieurwissenschaften 

- Dr.-Ing. - 

 

genehmigte Dissertation  

 

 

 

Promotionsausschuss:  

 

Vorsitzender:  Prof. Dr.-Ing. Sibylle Dieckerhoff 

Gutachter:  Prof. Dr.-Ing. Julia Kowal 

Gutachter:  Prof. Dr. Sangyoung Park 

Gutachter:  Prof. Dr.-Ing. Young Hyun Lee 

 

Tag der wissenschaftlichen Aussprache: 06. April 2022  

 

 

 

 Berlin 2022 

  



 
            
    

II            
  

  



 
 

                 III 
 

Abstract 

As rapid industrialization and the use of fossil fuel resources accelerate climate change, such as 

greenhouse effects, interest in eco-friendly energy is increasing worldwide. Especially, as interest in 

eco-friendly vehicles and efforts to reduce carbon emission from vehicles with internal combustion 

engines increase, the demand for secondary batteries is increasing, and among them, lithium-ion 

batteries (LIBs) are leading the innovation. However, LIBs with high energy have high safety risks as 

well, requiring improved diagnosis and management technology. 

 

Electrochemical impedance spectroscopy (EIS) is a non-invasive analysis technique that determines 

the dynamic behavior of an electrochemical system and is used to characterize battery behavior with 

impedance at a wide frequency range. Therefore, it can be used to measure parameters of battery 

cells in which the model structure is determined by cell state of charge (SoC), state of health (SoH), 

temperature, internal defects, etc. However, typical EIS analyzers require high performance applicable 

to general-purpose measurement, thus they may be an excessive investment to be used in battery 

monitoring systems and are especially large in mass and volume to be applied to portable devices. 

Furthermore, they require a long time to measure impedance in a wide frequency range. 

 

This thesis deals with LIB state monitoring methods using frequency excitation. By using the proposed 

method, the cell SoH and SoC can be monitored by impedance, and an over-discharged cell in a battery 

pack can be detected by frequency distortion rate. Unlike other studies on battery impedance, the 

state of the battery is monitored during operation. By applying multi-sine frequency signals, SoH and 

SoC of operating cells are estimated at the same time and the time required to measure cell impedance 

at a wide range of frequencies is reduced. 

 

A MATLAB/Simulink model is developed as well to optimize and simulate LIB cell state monitoring 

algorithms using frequency excitation. The battery cell simulation model saves experimental time as 

well as cost for experimental devices. This is because simulation results are quickly displayed by simply 

entering parameters representing the state of the battery cell. Considering the effect of cell SoC, SoH, 

temperature and C-rate, the proposed model successfully predicts the continuous cell voltage, 

impedance and distortion rate when multiple frequency signals are applied to DC bias of cell while 

being discharged. 
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Zusammenfassung  

Da die rasante Industrialisierung und Nutzung fossiler Brennstoffe den Klimawandel wie den 

Treibhauseffekt beschleunigen, steigt weltweit das Interesse an umweltfreundlicher Energie. 

Insbesondere mit dem steigenden Interesse an umweltfreundlichen Fahrzeugen und den Bemühungen, 

die CO2-Emissionen von Fahrzeugen mit Verbrennungsmotor zu reduzieren, steigt die Nachfrage nach 

Sekundärbatterien, und unter diesen sind Lithium-Ionen-Batterien (LIBs) führend bei der Innovation. 

Dennoch können LIBs mit hohen Energien kritische Sicherheitsprobleme aufwerfen, die verbesserte 

Diagnosetechniken erfordern. 

 

Die elektrochemische Impedanzspektroskopie (EIS) ist eine nicht-invasive Analysetechnik zur 

Bestimmung des dynamischen Verhaltens elektrochemischer Systeme und wird genutzt, um das 

Batterieverhalten durch Impedanz über einen weiten Frequenzbereich zu charakterisieren. Daher kann 

es verwendet werden, um die Parameter einer Batteriezelle zu messen, deren Modellstruktur durch 

Ladezustand (SoC), Gesundheitszustand (SoH), Zelltemperatur, interne Defekte usw. bestimmt wird. 

Nichtsdestotrotz sind typische EIS-Analysatoren auf Allzweckmessungen angepasst und haben deshalb 

einen hohen Leistungsumfang, sodass sie für den Einsatz in Batterieüberwachungssystemen eine 

Ü berinvestition darstellen können, und insbesondere sind Masse und Volumen zu groß, um auf 

tragbare Geräte angewendet zu werden. Außerdem benötigen sie eine lange Zeit für die 

Impedanzmessung über einen weiten Frequenzbereich. 

 

Diese Dissertation befasst sich mit der Ü berwachung des Zustands von LIBs durch Frequenzanregung. 

Die Batteriezellenimpedanz wird gemessen, um SoH und SoC zu überwachen, und die 

Frequenzverzerrungsrate des Batteriepacks wird gemessen, um eine überladene Zelle zu erkennen. 

Unter Verwendung von Multi-Sinus-Frequenzsignalen werden SoH und SoC der Betriebszelle 

gleichzeitig geschätzt, wodurch die Zeit für die Messung der Zellimpedanz über einen weiten 

Frequenzbereich reduziert wird. 

 

Außerdem wurde ein MATLAB/Simulink-Modell entwickelt, das zur Optimierung und Simulation von 

frequenzbasierten Algorithmen zur Ü berwachung des Batteriezustands verwendet werden kann. Das 

Batteriezellen-Simulationsmodell spart nicht nur Zeit für das Experimentieren, sondern auch die 

Kosten für den Versuchsaufbau, da die Simulationsergebnisse durch einfache Eingabe von Parametern, 

die den Zustand der Batteriezellen anzeigen, schnell angezeigt werden. Die Auswirkungen von SoC, 

SoH, Temperatur und C-Rate der LIB-Zelle werden berücksichtigt, und das vorgeschlagene Modell gibt 

erfolgreich eine kontinuierliche Spannung, Impedanz und Frequenzverzerrungsrate aus, wenn 

mehrere Frequenzsignale während der Batterieentladung angelegt werden. 
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1 Motivation 

The 2019 Nobel Prize in Chemistry was awarded to John B. Goodenough, M. Stanley Whittingham 

and Akira Yoshino for their contributions to lithium-ion battery (LIB) development. The Nobel 

Committee of the Royal Swedish Academy of Sciences said the lithium-ion rechargeable battery laid 

the foundation for wireless electronic devices such as mobile phones and laptops, and has been used 

to power electric vehicles (EVs) to store energy from renewable sources. 

 

Due to rapid industrialization and the use of fossil fuel resources, climate change such as the 

greenhouse effect caused by carbon dioxide is accelerating around the world, increasing interest in 

eco-friendly energy sources. In December 2015, the 21st Conference of the Parties (COP21) was held 

in Paris, France. At the meeting, representatives of 195 countries agreed that the average global 

temperature rise would not exceed 2°C by 2100 compared to before industrialization. The Paris 

Agreement, which took effect in November 2016, replaces the Kyoto Protocol, which was an 

international commitment to greenhouse gas emissions from 1997 to 2020. The concept that emerged 

as a global issue in this process is carbon neutral (net zero), which reduces carbon dioxide emissions 

and increases absorption to zero net emissions. Finland has set a goal of achieving carbon neutrality 

by 2035, Iceland and Austria by 2040, Sweden by 2045, the European Union, the United Kingdom, 

Canada, Japan and South Korea by 2050, and China by 2060. In particular, interest in eco-friendly cars 

is increasing, and efforts are being made to reduce carbon emissions from internal combustion engine 

vehicles. Norway banned the launch of internal combustion engine vehicles by 2025 and set a goal of 

selling 100% of EVs. In Europe, a fine of €95 per g/km will be imposed on car manufacturers and dealers 

for carbon dioxide emissions exceeding their targets. The EU fleet-wide target by 2025 is an average 

of 81g CO2 /km. In the United States, greenhouse gas reduction and zero-emission vehicle (ZEV) 

mandate are being implemented, and tax breaks are provided depending on battery capacity when 

purchasing EVs. The U.S. also established energy storage system (ESS) obligatory rules and installation 

grants. China announced a new energy vehicle credit obligation system in 2017. Companies that 

produce or import more than 30,000 cars a year must either produce or import new energy vehicles 

(electric, plug-in hybrid, and fuel cell vehicles) or buy from other manufacturers that have exceeded 

new energy car credits [1]. 

 

For the reasons mentioned, technologies using secondary batteries are rapidly developing, such as 

ESS, which increases the power reserve ratio and enables efficient use of renewable energy, and EVs 

that reduce emissions of environmental pollutants [2, 3]. Bloomberg New Energy Finance (BNEF) 

estimates that demand for LIBs will increase about 5 times between 2022 and 2030, mainly due to EVs 

in 2021 as shown Fig. 1.1. 

 

However, high-energy batteries using electrode materials with low thermal stability have high safety 

risks [4–6] for battery failure caused by an excessive external force, excessively high/low temperature, 

overcharge, over-discharge, etc. [7–9]. Therefore, there is an increasing need for the development of 

battery management system (BMS) technology that responds appropriately to the operation of the 

battery under various conditions and ensures safety while allowing it to operate for a longer time. 
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Figure 1.1 Annual LIB demand, announced by Bloomberg New Energy Finance (2021).  

 

This thesis deals with methods of monitoring the state of LIBs using frequency response, which 

includes methods of monitoring cell state of health (SoH) and state of charge (SoC) as well as a method 

of detecting an over-discharged cell in a battery pack. 

Chapter 2 introduces the components and operating principles of LIB cells and outlines battery 

management. In addition, not only the major degradation processes of LIB cells but also the state of 

the arts of cell state estimation methods are introduced. 

Chapter 3 presents an overview of the experiments. Electrochemical impedance spectroscopy (EIS) 

of LIB cells at different SoHs, SoCs, and temperatures is analyzed to select the optimal test frequency 

for the state estimation. A measurement system for measuring the continuous impedance of a cell 

during operation as well as considerations for selecting measurement parameters are presented. 

Chapter 4 introduces the SoH monitoring method of LIB cells during operation using impedance. The 

investigations and results presented in this chapter have been published in [10]. 

Chapter 5 deals with the SoC monitoring method of LIB cells using impedance. A multi-sine frequency 

signal is used to estimate SoH and SoC simultaneously during cell discharge. To estimate the SoC, the 

cell temperature and the estimated cell SoH are considered. The investigations and results presented 

in this chapter have been published in [11]. 

Chapter 6 presents a LIB cell simulation model that outputs continuous impedance during discharging. 

This simulation model is developed in the MATLAB/Simulink environment and can be used for the 

simulation and optimization of a cell state monitoring algorithm using cell impedance, considering cell 

SoC, SoH, temperature, and C-rate. The investigations and results presented in this chapter have been 

published in [12]. 

In Chapter 7, a method of detecting one over-discharged cell by measuring the nonlinearity of the 

battery pack is introduced. A test frequency is applied to the operating current of the battery pack in 

which the battery cells are connected in series. Even if each cell voltage is not measured, the presence 

of one over-discharge cell can be detected with the total harmonic distortion (THD) measured by 

voltage responses at two terminals of the battery pack. The proposed method is verified through 

simulation and measurement. The investigations and results presented in this chapter have been 

published in [13]. 

Lastly, chapter 8 summarizes the results and presents conclusions, limitations, and future works. 
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2 Fundamentals 

This chapter deals with the main components and operating principles of LIB cells. In addition, major 

degradation processes of LIB cells as well as state estimation methods presented in the literature are 

introduced. 

2.1  Fundamentals of LIB Cells 

Since early lithium secondary batteries were developed for the purpose of rechargeable lithium 

primary batteries, lithium metal was used as an anode. Although Lithium metals allow for high capacity, 

it is transferred to dendrite during the charging process, which can cause ignition or explosion due to 

an internal short circuit by penetrating a thin polymer separator inside the battery cell. In addition, 

since dead lithium is produced, lithium metals need to be filled in large quantities. Later, graphite was 

developed as a new anode for battery cells to replace lithium metal. When graphite is used as an anode, 

the theoretical capacity is smaller than that of lithium metal, but the operating voltage of the battery 

cell is not significantly different. Graphite has layered structures that enable intercalation and de-

intercalation of lithium-ions. In lithium-ion secondary batteries, lithium participates in reactions in 

ionic states, not metallic states. Since lithium metals are not used as electrodes, the problems of dead 

lithium and internal short circuits caused by the growth of lithium dendrite are greatly improved.  

 

The secondary batteries are rechargeable, unlike the primary batteries that cannot be reused after a 

complete discharge. Therefore, secondary batteries are considered eco-friendly by reducing the 

consumption of resources to make cells as well as reducing environmental substances caused by 

chemicals in the disposal process. Lithium secondary batteries, which use lithium-ions as charge 

carriers within electrodes and electrolytes, exhibit high energy density by maintaining a high average 

discharge voltage of 3.7 V or higher while being lightweight, making them the leading battery in 

innovation. In addition, since they hardly show self-discharge and memory effects and have stable 

performance and long cycle life, they are widely adopted [14, 15] in portable electronic devices [16], 

EVs [17], spaceships and aircraft power systems [18], renewable energy systems [19], marine current 

energy systems [20], stationary energy storage [21], etc.  

 

The terms battery and battery cell are often used incorrectly. In this thesis, a battery or battery pack 

refers to a device composed of galvanic cells connected in series or parallel and the battery cell or cell 

is used as a term for a single individual galvanic device [22]. 
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2.1.1 Operating principles of LIB cells

LIB cell converts chemical energy into electrical energy through redox reactions at the anode and 
cathode. The main components of LIB cells are anode, cathode, electrolyte, and separator as Fig. 2.1.

Figure 2.1 Main components of a LIB cell.

- Positive electrode (cathode)

The cathode is an electrode that is reductive. Therefore, the positive electrode is cathode when the 
battery cell is discharged, but it is also technically anode when charged. However, the positive 
electrode in the battery cell is called cathode regardless of charge or discharge, which has continued 
in the primary cell field.

LIB cells are applied with different electrode materials depending on their application and each has 
its own advantages and disadvantages [23, 24]. The most commercially used cathode materials are 
lithium manganese oxide spinel (LMO) and lithium cobalt oxide (LCO). Subsequently, a cathode 
composed of lithium nickel manganese cobalt oxide (NMC) belonging to the mixed transition metal 
oxide is widely used for longer cycle life and higher energy density. However, a major disadvantage of 
NMC is its high cost due to limited cobalt resources. Lithium nickel cobalt aluminum oxide (NCA) is 
used for LIB cathode in some applications because it has a relatively high practical specific capacity of 
199 mAh/g [24]. However, it is thermally less stable than other cathode materials. Lithium iron 
phosphate (LFP) is widely used as a cathode material as well [25, 26].

- Negative electrode (anode)

The anode is an electrode where oxidation occurs. Therefore, the negative electrode is an anode 
when the cell is discharged and technically a cathode when the cell is charged. However, the negative 
electrode in the battery cell is called an anode, regardless of charging or discharging. An anode of a LIB 
cell is generally composed of copper current collecting foil coated with a carbonaceous active material
[27], and graphite is most widely used due to advantages such as low cost, mechanical stability, good 
electrochemical, and wide availability. The anode material lithium titanium oxide (LTO) is also used for 
high power purposes [28] along with the cathode material LFP. There are Silicon alloys as anode and 
nickel enriched NMC as a cathode are thought to be in use in 2030 [23], and LIBs using Si/C composite 
anode have also been developed [29, 30].
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- Electrolyte 

The electrolyte is an ionic conductor, a medium that transfers internal ion charges between the two 

electrodes. It is often composed of a liquid solvent containing dissolved chemicals that provide ionic 

conductivity, and solid polymer electrolytes are also available. Carbonate-based solvents are mainly 

used as electrolytes for LIB cells [31].  

- Separator 

The current is generated by ionic transport via an electrically insulated separator. The separator is a 

porous polymer film for an ion conductor and an electronic insulator, which physically isolates positive 

and negative electrodes. It prevents internal short circuits between two electrodes and prevents cells 

from becoming useless by rapidly self-discharging. An electrolyte composed of an organic solvent, a 

conductive salt, and an additive is located in the pores of the active material and the separator [32]. 

- Current collector 

The current collector is an electronic conductor attached to or mixed with electrode materials. 

Current collectors are not involved in the chemical reactions of cells, instead being included to allow 

electronic connections to materials that are difficult to connect to cell terminals or to reduce the 

electronic resistance of electrodes. In LIB cells, the negative electrode current collector is usually made 

of copper foil and the positive electrode current collector is usually made of aluminum foil. 

- LIB cell operation 

The operation of a LIB cell is based on intercalation and deintercalation of lithium-ions [33]. During 

charging, lithium-ions stored in the cathode are oxidized and deintercalated, and the cathode is 

oxidized. While electrons are released from the positive terminal to the external current path, lithium-

ions are transferred from the cathode to the anode through diffusion and migration through the 

electrolyte. When electrons from an external current path reach an anode active material through a 

negative terminal, lithium-ions from an electrolyte are intercalated into the active material and 

reduced to neutral lithium atoms. During discharging, this process is reversed [34]. During discharging 

of the LIB cell, while the anode is oxidized and electrons are released through an external current path, 

lithium-ions pass through the electrolyte to reach the cathode and the cathode is reduced. When M is 

a transition metal mixture used in an oxide, the chemical equation during charging and discharging is 

represented by Eq. 2.1, and the equation for the anode and the cathode is represented by Eq. 2.2. 

LixC6 ⇌ xLi+ + xe− + C6 (2.1) 

Li1−xMO2 + xLi+ + xe− ⇌ LiMO2 (2.2) 
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2.2  Aging Processes of LIB Cells 

Battery cell performance deteriorates over time due to unwanted chemical reactions and physical 

changes in active chemicals. Aging of battery cells is usually irreversible and eventually results in cell 

failure. 

 

The following are representative aging processes of LIB cells: 

- Corrosion 

Corrosion is degradation due to undesirable chemical side reactions in the cell, and in some cases, 

the product of these reactions itself has corrosion effects on other cell components. This includes the 

reaction between the solvent and the current collector and the reaction between the solvent and the 

electrode active/inactive material. LIB cells with graphite negative electrodes are vulnerable to certain 

corrosion called passivation, and electrochemical corrosion may occur in the aluminum current 

collector on the positive electrode side due to acidic HF, which increases contact resistance between 

the current collector and the active material of the cathode [35, 36]. 

- Solid electrolyte interface (SEI) formation 

The formation of SEI is the most prominent aging process in the anode, which reduces the electrolyte 

at the electrode-electrolyte interface during the initial cycle [17, 22, 23].  

In most LIB cells, the solvent in the electrolyte is not chemically stable at a high voltage, and thus 

reacts with graphite particles to form a passive layer called SEI on the surface of the particles. The 

formation of this layer has the advantage of protecting graphite from further reactions and significantly 

slowing the passivation process, but also has the disadvantage of permanently losing cell capacity 

because lithium consumed by SEI growth cannot return to the previous properties that enabled cycling 

[37, 38]. Afterward, the SEI slowly grows, and when the pores of the electrode and the separator 

penetrate, the active area accessible to the electrode is reduced [39], so that the capacity of the 

battery cell is reduced and the internal resistance is increased. At high temperatures, additional SEI is 

formed in graphite exposed by the decomposition reaction of the SEI layer. When the cell is charged 

at a high C-rate, the solvent is distilled with lithium to cause an SEI reaction inside the graphite particles, 

in which case the expansion pressure of the generated gas is applied to the graphite particles to crack 

or exfoliate along the grain boundaries, and more graphite is exposed to the solvent to form more SEI 

[40, 41]. Electrolytes, solvents, and conductive salts cause SEI to have different stability, structure, and 

conversion [31].  

- Lithium plating 

Among the aging effects at an anode, lithium plating significantly reduces the remaining cell capacity, 

degrades cell performance, and causes an internal short circuit due to dendritic growth or an external 

short circuit due to an exothermic reaction between the electrolyte and plated lithium [39, 42]. When 

a positive potential falls below 0 V as compared to Li/Li+ during charging of a LIB cell, lithium is plated 

on the surface of an anode particle, and as lithium is plated, the positive potential is lower, and thus 
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lithium plating is a self-accelerated aging effect. In particular, lithium plating is formed during cell 

operation at a high charging rate, a high SoC, and a low external temperature [43–45], and when the 

plated lithium loses electrical contact with the anode and is separated into the electrolyte, it reacts 

with the electrolyte to form an SEI component, resulting in irreversible capacity loss. 

- Crystal formation 

In chemical redox cells, a material removed from the electrode during discharging does not return to 

an original position during charging, but instead forms a crystal structure on the surface of the 

electrode, which reduces the effective surface area of the electrode to increase resistance and degrade 

the ability to transfer high power. As an example of crystal growth in a LIB cell, when lithium metal is 

deposited on particles of a negative electrode due to overcurrent or charging at a low temperature, 

lithium dendrite grows on the surface of the electrode, which may penetrate a separator to accelerate 

self-discharge and cause a short circuit. 

- Volume change 

Charging and discharging of the intercalation-based electrode causes a volume change of less than 

10% of graphite, which stresses the electrode and causes cracks in the active material and the SEI, 

particularly at high rates [46]. The electrolyte leaked from cracks reacts with the active material to 

form an additional SEI layer, which consumes cyclable lithium [40, 47–50]. In addition, changes in 

volume during cycling weaken electrical contact between active material particles and cause 

delamination of the current collector, increasing the internal resistance of the cell [50, 51]. 

- Gas evolution  

Some chemicals in the LIB cell evolve gas when charged and return to the previous aqueous state 

when discharged, but if gas leaks due to cracks in the cell enclosure, the cell capacity is lost and the 

cell may be ruptured or exploded due to an increase in pressure in the sealed cell. 

- Aging from porous separators 

The porous separator of LIB cells is electrochemically inactive but can affect the performance of cells. 

Aging studies have shown that deposits due to electrolyte decomposition can block pores in the 

separator, increasing impedance and reducing the accessible active surface area of the electrodes [39, 

52]. Mechanical stress can change the porosity and tortuosity of the separator, and mechanical 

compression and viscoelastic creep can block pores, interfere with ionic pathways, and increase 

impedance at high frequencies [53, 54]. 
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2.3  Overview of Battery Cell Management 

This thesis deals with the method of monitoring the battery cell state using cell impedance. Therefore, 

it is necessary to distinguish three terms; battery cell diagnosis, monitoring, and management so that 

they are not misused. 

- Battery diagnosis 

Battery diagnosis is to determine the state of the battery. For example, batteries can be diagnosed in 

laboratory environments for accelerated aging tests or performance tests in the development of new 

materials. In most cases, the target battery must be disconnected from the application system and 

connected to a separate diagnostic device. 

- Battery monitoring 

Battery monitoring is the continuous observation of the battery state during operation. The battery 

monitoring system reports battery state data to the user or management system and stores it for later 

analysis. In most cases, due to limitations in weight, volume, and cost, measuring devices such as in a 

laboratory environment are not applicable. In addition, continuous changes in operating current, 

temperature, SoC, etc. make it difficult to estimate the battery state during operation. 

- Battery management 

The purpose of the BMS is to operate LIB cells in optimal conditions within acceptable electrical 

parameters to maximize cell life. The BMS maintains the optimal battery operating range in response 

to the state information received as a result of battery monitoring and diagnosis. In order to prevent 

overcharge and over-discharge of the battery cells, the cut-off voltage should be determined at 

different temperatures and unnecessary electrical loads should be terminated. These active responses 

are not performed in battery monitoring and diagnostic systems and are processed in a BMS that has 

received diagnostic information from them. As a result, the increased discharge range increases the 

available energy, which reduces the size of the battery pack and simplifies the design. This not only 

reduces the required number of cells, pack design and manufacturing costs, but also reduces the 

weight of the battery pack, as well as ensures stability and user safety. 
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The main purpose of the BMS can be summarized as follows: 

• It protects the user safety of battery-powered systems. The BMS must detect and respond to unsafe 

operating conditions. 

• It protects cells in battery packs from damage in cases of abuse or failure. 

• It extends battery life during normal operation. BMS sets a limit on the power that can be consumed 

or absorbed to prevent cells in the battery pack from being overcharged or over-discharged. In 

addition, the thermal management system should be controlled to ensure that the battery pack 

remains within the appropriate temperature range. 

• It maintains the battery pack in a state where the functional design requirements are met. For 

example, it does not allow the battery pack to discharge beyond the limits that can provide rated 

discharge power. 
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2.4  Definition of Key Terms 

SoC and SoH of the battery cell may be defined differently depending on the battery application 

system, and therefore, it is required to clarify the key terms before discussing cell state estimation. 

- Definition of C-rate 

C-rate refers to the rate at which the battery is discharged in relation to the maximum capacity, and 

1C rate refers to the discharge current that discharges the entire battery within 1 hour. The relationship 

shown in Eq. 2.3 is given between the cell maximum capacity Cmax and the operating current 𝒾. 

 

h = Cmax / 𝒾 (2.3) 

 

where h is the time (hour) taken to completely discharge the battery cell, 𝒾 is the current at which 

the cell operates, and Cmax refers to the maximum capacity of the battery in the present state (Ah). 

Here, the reciprocal of the h value is defined as the C-rate. 

- Definition of SoC 

The SoC of a battery cell generally means the residual capacity (Cresidual) of the cell in proportion to 

the maximum capacity (Cmax) as a percentage, and in this thesis, the cell SoC is defined by Eq. 2.4.  

SoC = Cresidual / Cmax × 100 (%) (2.4) 

 

0% SoC means that the cell is completely discharged, and 100% SoC means that the cell is completely 

charged. The depth of discharge (DoD) has the opposite definition of SoC. In other words, 80% SoC 

cells have the same meaning as 20% DoD cells. 

 

The steps to set up the cell SoC in this thesis are as follows: 

1) Full charge of the battery cell. Following the constant current (CC) charging procedure at 1C, a 

constant current (CV) charging procedure is performed at 4.2V, which is the upper limit cut-off 

voltage designated by the cell manufacturer. Charging ends when the charging current falls below 

C/10. 

2) The cell is discharged at 1C to a low cut-off voltage, and the actual maximum cell capacity Cmax is 

obtained at this stage. 

3) Cell is set to target SoC. After the first step is performed again for full charge of the cell, a specific 

amount of charge of the cell is consumed until the target SoC is reached. 

 

Different cell relaxation times can cause errors [55, 56], so the relaxation of the same 90 minutes is 

strictly observed at the end of each step. Each cell is given the same 90 minutes of relaxation time after 

the target SoC is set before it is used for the measurement.  
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- Definition of SoH 

The battery cycle life represents the number of complete charge and discharge cycles achievable. The 

cell SoH can be expressed as a ratio of the maximum available capacity of the present condition and 

the nominal capacity as shown as Eq. 2.5. 

SoH(%) =  
Qmax

Qn
 × 100 (%) 

(2.5) 

 

where Qmax  is the maximum available capacity of the present condition, and Qn  is the nominal 

capacity.  

 

Battery end of life (EoL) is reached when capacity or power is no longer sufficient for the target 

application. In many cases, when the battery SoH reaches 80%, it is considered to have reached the 

EoL [57–60]. 
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2.5  SoH Estimation Methods of LIB Cells 

One of the major problems with electrochemical energy storage devices is the loss of performance 

and eventual loss of function due to the aging process. Batteries end their lives much earlier than all 

other parts of the system, contributing to the cost of replacement and maintenance, which can 

significantly exceed the initial investment. Moreover, many aging processes of LIB cells have a nature 

of self-acceleration, and the presence of one degraded cell inside the battery pack leads to the aging 

of other cells [17]. In addition, energy storage devices using LIB cells are safety-critical in many 

applications [4]. Generally, the larger the battery size, the greater the electrical energy stored in the 

battery, which can lead to fatal safety issues, requiring a higher level of safety assurance. For example, 

EVs often have thousands of LIB cells connected in series and parallel depending on their required 

voltage and capacity. Therefore, protection circuits such as protection circuit modules (PCM) and BMSs 

that guarantee safety and durability should be used. 

 

Battery cells can fail during service or even during standby for a number of reasons. Failure in battery 

cell management includes overcharging, over-discharging, the use of overcurrent, and operation at 

temperatures that are too high or too low. Cells also fail due to physical abuse such as dropping, 

crushing, puncture, impact, immersion in fluids, freezing, contact with fire, etc. Cells do not need to 

survive all these extremes. However, management is required to ensure that the cell itself does not 

increase the risk or safety concerns in these situations. 

 

In most cases, even if it appears to be a sudden battery failure, the battery cell has already been 

degraded and this degradation could have been detected in advance by the monitoring system. 

Applying appropriate operating strategies through monitoring and management can slow down the 

aging process of battery cells. Moreover, if the latest degradation state of the battery cell is identified 

as SoH estimation, it is possible to more accurately estimate the cell SoC, available energy, and 

available power. Estimated battery cell SoH can be used to determine when to replace the cell, to 

evaluate residual value for the second life of battery cells, and prevent unnecessary replacement or 

sudden failure. 

 

The battery capacity that reflects the energy capacity of a battery cell and the internal resistance that 

reflects power capacity are the most widely used SoH indicators [61, 62]. As mentioned earlier, among 

the internal aging mechanisms of LIB cells, the loss of cyclable lithium, decomposition of active 

materials, and structural changes are the main causes of capacity loss [63–65], and the increase in 

resistance is mainly due to the growth of the SEI layer. It is recommended that the battery is replaced 

when the capacity is reduced to 80% of the initial rated capacity [66]. 

 

SoH estimation is an essential technology required for BMS and has been researched with various 

approaches, but it takes a lot of time for cycling cells and for characteristic tests, and it is difficult due 

to various parameters, such as temperature and charge/discharge rate, which affect the battery aging 

process. Various measurement methods are performed in the laboratory to analyze battery aging 

behavior. Some measurement methods are useful for studies that provide a theoretical basis for aging 

mechanisms, although they cannot be used for on-board SoH estimation due to specific experimental 

devices required or differences between actual operation and laboratory environment.  
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The following are the methods used to estimate the LIB cell SOH: 

- Destructive method 

The destructive method is a method for observing cell aging mechanisms from a micromechanism 

perspective to know cell SoH [67], and devices such as Raman spectroscopy [68], X-ray diffraction [69], 

and scanning electron microscope [70] are used to observe changes in microstructure during aging. 

However, the battery cell must be decomposed for measurement, which causes permanent damage, 

thus these methods are suitable for use in laboratories as post-mortem examination methods of 

battery cells. 

- Ultrasonic inspection method 

Ultrasonic inspection is a non-destructive technique that can detect every minor defect inside the 

material for quality inspection and product maintenance. Ultrasonic technology detects aging and 

internal defects without disassembling battery cells [71], and is used for rail inspection [72] and 

composite material inspection [73] as well. Although estimating cell SoH with measured waveforms 

still requires more research, in some areas, it is possible to compare signal characteristics through 

machine learning methods [72, 73].  

- Capacity or energy level measurement 

The battery cell capacity means the amount of energy stored in a fully charged battery, and if it is 

measured accurately, the cell SoH can be determined. There are capacity testers which accurately 

measure the amount of energy of a battery cell, but the battery cell capacity could be calibrated only 

in a specific environment, like laboratories, because it is difficult to measure the energy under 

appropriate conditions while operating in actual battery applications. 

 

- Cycle number counting 

This is a simple method of determining the cell SoH by counting the number of charging and 

discharging cycles, and is commonly used in small electronics such as laptops and nanosatellites [74]. 

If the total available cycle number of the cell is known in advance through the manufacturer and from 

the cycle number experienced by the cell is counted, the battery SoH can be determined. Since the 

number of complete discharges must be counted, conversion coefficients obtained through 

experimental tests are used to convert charging and discharging at different depths into full charging 

and discharging. 

- Ampere hour counting method 

If the amount of charge transferred within the battery cell during full charge-discharge is accurately 

calculated, the remaining capacity can be calculated, and the cell SoH can be determined [75]. 

However, there are limitations to using the ampere-hour counting method. Long-term current 
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monitoring and memorization using high-precision current sensors are required to reduce cumulative 
errors and obtain accurate remaining capacity. In most experiments, the battery cell capacity is 
measured as being fully charged and discharged with a constant current at the controlled temperature, 
but in most battery applications, an error occurs because these conditions are not satisfied. Many 
studies use the ampere-hour counting method to verify the accuracy of their cell capacity estimation 
method [76] which is also mainly used for SoC and capacity estimation using equivalent circuit models 
(ECM).

- Charging curve method

The charging curve can be used to characterize the battery SoH because it varies depending on the 
battery degradation process. In most cases, the CC-CV mode is used to charge the battery, which is 
shown in Fig. 2.2. The cell SoH can be obtained during CC charging, and capacity loss may be estimated 
with parameters obtained from the current curve of CV charging [77]. However, this method depends 
on the charging mode and cannot be used for fast charging, and since the cell temperature must be 
considered, the estimation accuracy decreases unless it is 25°C [78, 79].

Figure 2.2 Voltage and current of the battery cell in the CC-CV charging stage.

- ICA and DVA methods

Since there is not much information that can be obtained directly through the cell voltage curve, 
incremental capacity analysis (ICA), an electrochemical characterization and analysis technique, is used
[78, 79]. The IC curve is calculated by charging or discharging cells at a very low current rate to integrate 
the capacity at a small voltage interval (dQ/dV), which converts the voltage plateaus of two-phase 
transition into a recognizable IC peak. Another method is differential voltage (dV/dQ) analysis (DVA) 
[80]. The distance between the two peaks of the DV curve represents the amount of electrical particles
in the two-phase transition. Therefore, the DV curve facilitates quantitative analysis of cell capacity 
fading [81]. ICs and DV peaks in different aging states reveal specific shapes, amplitudes, and positions, 
thus they can be indicators representing cell SoH [82]. They are used with machine learning methods
as well [80]. Very low current rates, such as C/25, should be used to identify the cell aging mechanism 
in ICA and DVA, thus it is very difficult to accurately measure these small signals in actual on-board 
applications, and accuracy is lowered when larger currents such as C/3 [60, 81] and C/2 [83] are used.
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Since obtaining IC or DV curves generally requires numerical derivation that results in high 
computational effort in microcontrollers, the point counting method [81] and improved center least 
square method [84] are used, and a method using Gaussian filters is proposed to obtain noise-removed 
smoothing curves [83].

- Measurement of cell resistance

As mentioned above, the aging processes of LIB cells result in undesirable results such as reduced 
capacity, increased self-discharge, and increased internal resistance. Since an increase in the internal
resistance of LIB cells is caused by unwanted side effects and structural degradation, cell SoH can be 
estimated by equivalent series resistance. Measuring the latest available capacity to know the SoH of 
a cell requires at least one cycle and takes a long time, whereas estimating the SoH from the cell 
resistance or impedance requires measuring the voltage response to the current signal only for a short 
time. Various techniques have been widely studied to measure resistance, representing the SoH of a 
battery cell. The total internal resistance of a LIB cell includes ohmic resistance and polarization 
resistance, and under normal operating conditions, ohmic resistance mostly contributes to voltage 
drops that depend linearly on operating current and thus can be calculated according to Ohm's law.
Pulse tests are mainly used to obtain ohmic resistance and can be obtained as shown in Eq. 2.6 [85].

RO =
∆VP

∆IP

(2.6)

where, ∆VP is the pulse voltage, and ∆IP is the applied current pulse.

Fig. 2.3 shows an example of obtaining battery resistance through a pulse test. RCT is attributed to 
charge transfer resistance [61] and RP to polarization resistance [86].

Figure 2.3 Pulse test to obtain the resistance of the battery cell.

Because LIB cells are complex electrochemical devices, ohmic resistance is affected by many variables 
and operating conditions, such as temperature and aging state [61].
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- EIS analysis method 

EIS is a non-invasive analysis technique that determines the dynamic behavior of an electrochemical 

system [87–89] and can be used to characterize battery impedance behavior in a wide range of 

frequencies from several mHz to several kHz to obtain a characteristic impedance spectrum [90–94]. 

Therefore, it can be used to measure battery cell parameters in which a model structure is determined 

by cell SoC, SoH, aging, temperature, internal defects, etc [95–97]. 

Galvanostatic or potentiostatic mode is used for EIS analysis, i.e., system response is measured by the 

amplitude and phase (real and imaginary parts) when a sinusoidal voltage or current signal is applied 

to an electrochemical cell. In general, a galvanostatic mode is preferred because an overcurrent may 

easily occur in the potentiostatic mode due to very low battery cell impedance [98]. 

 

If the current 𝒾 of the battery cell is given by Eq. 2.7, and the voltage ℯ is measured as Eq. 2.8, the cell 

impedance Z can be obtained as Eq. 2.9. 

𝒾 = Idc +  ΔIf ∙ sin (2πft) (2.7) 

ℯ = Edc + ΔEf ∙ sin (2πft + ϕf) (2.8) 

Zf =
ΔEf

ΔIf
∙ ejϕf =  |Zf| ∙ ejϕf = Zf

′ + j ∙ Zf
′′ (2.9) 

 

where Idc indicates direct current (DC) bias, ΔIf indicates the amplitude of the test frequency f, Edc 

indicates the offset voltage, ΔEf indicates the amplitude of the output voltage, and ∅f refers to the 

phase difference. 

 

As shown in Eq. 2.9, the electrochemical impedance of a battery cell is a frequency-dependent 

complex number characterized by its modulus |Zf| and phase angle ejϕ. Another expression is given as 

the real and imaginary parts of the complex impedance. 

Table 2.1 shows equations of major electrode processes in LIB cells, except for non-faradaic processes 

including charging or discharging of equivalent capacitors in the interphase of an electrode. EIS can 

isolate most of these processes [99] because the electrochemical loss process occurs at a wide range 

of frequencies, and each process has its own time constant [100]. 
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Table 2.1 Equations of major electrode processes in LIB cells. 

Electrode process Governing equation 

Charge transfer  jfd,i = j0,i [exp (
αF

RT
ηi) − exp ( 

−(1 − α)F

RT
ηi)] (2.10) 

Solid-phase diffusion  
δcs,i(ri, t)

δt
=

Ds.i

ri
2

δ

δri
(ri

2 δcs,i(ri, t)

δri
) (2.11) 

Liquid-phase diffusion εe,i

δce,i(x, t)

δt
=

δ

δx
(De,i

δce,i(x, t)

δx
) +

1 − t+

F
jtot,i(x, t) (2.12) 

Solid-phase conduction 
δ

δx
(σs,i

δ

δx
ϕs,i(x, t)) = jfd,i (2.13) 

Liquid-phase conduction 
2RTκe,i(1 − t+)

F

δ2lnϕe,i(x, t)

δx2 − κe,i

δ2ϕe,i(x, t)

δx2 = jtot,i(x, t) (2.14) 

 

where, F: Faradaic constant (C ∙ mol−1), R: Gas constant (J ∙ mol−1 ∙ K−1), T: Temperature (K), i: 

Domain of negative electrode/positive electrode/or separator, α : Transfer coefficient of 

electrochemical reaction (1), ηi : Over potential (V), j0,1 : Exchange current density ( A ∙ m−2 ), jfd,i : 

Faradaic current density ( A ∙ m−2 ), jtot,i : Total current density ( A ∙ m−2 ), t: Time (s), ri : Radial 

coordinate of solid spherical particles (m), x: Coordinate in the thickness direction of electrodes (m), 

εe,i: Effective volume factor of liquid phase, cs,i: Concentration of lithium ions in solid phase (mol ∙

m−3 ), ce,i : Concentration of lithium ions in solid phase ( mol ∙ m−3 ), Ds.i : Solid-phase diffusion 

coefficient (m2 ∙ s−1), De,i: Effective liquid-phase diffusion coefficient (m2 ∙ s−1) and ϕs,i: Potential in 

solid phase (V). 
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Fig. 2.4 is an example of a Nyquist plot showing the real part of the battery cell impedance on the 
horizontal axis and the negative imaginary part on the vertical axis [101].

Figure 2.4 A representative example of Nyquist plot of LIB cell impedance.

Different sections of the cell impedance spectrum are related to different cell processes because the 
movement of charged particles and the time constant of the reaction in processes are different [102]. 
The influence of mass transfer, whose time constant is slow, is dominant at impedance at low 

frequencies (≤1 Hz), while the influence of charge transfer with a faster time constant is dominant at 
impedance at a mid-high frequency.

At low frequencies drawn in red, impedance is determined by solid and liquid phase diffusion 
processes such as Eq. 2.11 and Eq. 2.12, and is shown as a line with an angle of ca. 45° on the horizontal 
axis.

In the medium-high frequency range drawn by a yellow line, impedance in the charge transfer process 
predominates, which is expressed by Eq. 2.10.

In the high-frequency range drawn in green, it is affected by the impedance of the SEI film. And at a 
frequency where the imaginary part of impedance becomes 0, the phase changes of the inductive 
effect and the capacitive effect compensate for each other, indicating the pure ohmic behavior of the 
cell. It mainly consists of the resistance of the electrolyte, the resistance of the current collector and 
the resistance of the active mass, and the contact resistance between the current collector and the 
active mass [103]. The resistance of the electrolyte depends on the conductivity, i.e., the concentration 
of the conductive salt that changes with cell aging [104, 105], thus it can be used to measure electrolyte 
decomposition related to cell aging. The impedance of the solid phase and liquid phase conduction 
process related to ohmic resistance is expressed by Eq. 2.13 and Eq. 2.14.
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Induction impedance in the super-high frequency range drawn in blue represents inductance mainly 

from the geometric design of cells and electrodes, such as wires and collectors [106]. The position of 

the tab connecting the current collector foil to the external electrode affects the inductance of the cell, 

for example, the longer the spiral winding of the jelly roll between the two tabs, the higher the cell 

inductance [107]. Since the impedance is related to the corresponding processes, the changes in these 

processes directly affect the impedance.  

 

Note that the shape of the Nyquist plot in Fig. 2.4 depends on the inherent characteristics of each 

battery cell. 

 

Despite these advantages of EIS, typical EIS analyzers are mainly used in laboratories to measure the 

impedance of electrochemical systems for general purposes [4, 108]. Since high performance 

applicable to general-purpose measurement is required, it may be an excessive investment to be used 

in a battery monitoring system, and in particular, has a large mass and volume to be applied to portable 

devices. Moreover, EIS measurements take a long time to measure impedance over a wide frequency 

range, and analyze only the impedance of the target system and cannot determine the SoH and SoC of 

the battery cell without an estimation algorithm. 



 
2.6 SoC Estimation Methods of LIB Cells 

    

20 

2.6  SoC Estimation Methods of LIB Cells 

The battery SoC is often described as a fuel gauge on a vehicle dashboard reporting values between 

empty (0%) and full (100%). On petrol vehicles, the fuel tank has sensors that can accurately measure 

the amount of gasoline remaining, but there are no sensors that can directly measure the SoC of the 

battery. Therefore, SoC should be estimated indirectly with measured cell current, voltage, 

temperature, etc. Scientifically, the standard unit for battery capacity is Coulomb. A coulomb is a unit 

of charge equal to one-ampere second (As). This explains how long the battery can produce a constant 

current. However, battery capacity is more commonly described as ampere-hour (Ah) or milliampere-

hour (mAh).  

 

It is important for the BMS and the battery system itself as it allows the estimation of SoC-dependent 

battery parameters. Accurate SoC values are required as input values for energy and power calculation 

as well as cell balancing strategies. Knowing cell SoC is useful to users as well because it allows them 

to know the estimated operating time of the power system or the remaining driving range of the EV. 

 

Overcharge, which occurs when a charge current flows in even after reaching the upper limit cut-off 

voltage of LIB cell, is one of the most important safety issues and is caused by inaccurate SoC estimation 

of BMS or a malfunction of battery cell charger. When a LIB cell is overcharged, internal resistance 

increases, binder and electrolyte decomposition, insoluble products are formed, blocked electrode 

pores and gas are sequentially generated [109] and when the internal pressure exceeds the limit value, 

structural deformation, rupture, and internal short circuit may occur [110, 111]. The heat generated 

by the side reaction and the internal short circuit may accelerate the battery failure mechanism 

through natural positive feedback to cause thermal runaway, hence causing ignition or explosion of 

the battery [8, 112, 113], and when lithium metal and moisture in the air react after cell rupture, 

combustible gases may ignite [8, 114]. When a LIB cell is over-discharged, the active lithium and 

cathode materials are lost [115] thereby reducing the battery capacity [116, 117], changing the SEI on 

the surface of the cathode to increase the impedance [117], and generating gas due to the 

decomposition of the SEI [118]. LIB applications implemented with higher energy and higher power 

capabilities require higher SoC estimation accuracy. Accuracy requirements of 3% to 5% are often 

required for EVs, meanwhile higher accuracy is required for aerospace or defense applications. 

 

Accurate battery cell SoC estimation has the following advantages: 

- It increases the battery cell cycle life by preventing overcharge and over-discharge that may cause 

permanent damage. 

- If the reliability of SoC estimation is low, the battery cell must be operated conservatively for safe 

operation, thus accurate SoC estimation enables more aggressive cell operation. 

- It improves the reliability of the application system as it shows reliable estimation results for various 

cell usage profiles. 

- If accurate SoC estimation is possible, the battery pack design does not need to be over-engineered 

to manufacture a smaller and lighter battery pack and reduce battery pack prices and battery 

maintenance costs.  



 
2 Fundamentals 

    

21 

Nonetheless, there are factors that make it challenging to monitor cell SoC accurately. Although LIB 

cells have very high Coulombic efficiency, the discharge capacity is different from the charging capacity. 

In addition, the cell voltage is affected not only by SoC but also by polarization and hysteresis and 

depends on the cell temperature and charge/discharge rate. Especially, care should be taken for cell 

voltages that are cut-off early at high currents. Since the cell available capacity depends on the cell 

temperature and the discharge rate, the capacity dependence on the C-rate should be considered. The 

higher the discharge rate, not only the greater the cell temperature, but also the voltage drop due to 

ohmic resistance, polarization, and hysteresis. If a cell is discharged at a constant current until the cut-

off voltage is reached, the current causes an additional voltage drop, resulting in a lower apparent 

capacity at a higher discharge rate. However, when residual energy is discharged after the cell is 

relaxed, a capacity similar to that measured at other C-rates may be obtained.  

 

Methods for LIB cell SoC estimation can be classified as follows: 

- Methods based on open-circuit voltage (OCV) 

OCV, which is the cell voltage when an electrode is stabilized without the flow of current for a 

sufficient time, is used to represent the thermodynamic state of cell electrode energy. Since the cell 

voltage is related to the temperature and the surface concentration of electrode particles and the 

average particle concentration, OCV that reflects Gibbs free energy in thermodynamic equilibrium can 

be measured when the electrode reaches equilibrium and there is no voltage deviation depending on 

the position inside the electrode. OCV shows a strong dependence on SoC, but it is unrealistic to be 

used for real-time state estimation of battery cells, in particular, for battery applications where 

sufficient relaxation time cannot exist, because it generally requires a few hours of relaxation to reach 

electrochemical equilibrium [119]. In addition, LIB cells have a flat OCV curve compared to lead-acid 

battery cells, making it difficult to estimate SoC [120], and cell temperature and SoH are factors that 

cause errors when estimating SoC using OCV. 

- Methods based on ampere-hour counting 

In the SoC estimation method based on ampere-hour counting, the accumulated amount of charge 

and discharge current for the discharge capacity is defined as ∆SoC and calculated with the initial SoC 

set. As only the data of the accumulated current for SoC estimation are used, the required hardware 

and software performance is relatively low, but there becomes a problem if the SoC of a battery cell 

entirely depends on the initial SoC. Since only ∆SoC is calculated, if the initial SOC is incorrectly set or 

the total capacity or Coulomb efficiency of the cell is not accurately identified, estimation error 

increases. Self-discharge current, leakage current to electronic circuits that measure cell performance, 

and measurement errors in voltage, current, and temperature contribute to the increase in SoC 

estimation errors [75] as well. These errors are integrated and intensified as the battery cell operation, 

thus if there is no feedback mechanism for error correction, the estimation result of this method is 

accurate for a short time only if the initial conditions are well known. Periodic capacity calibration 

including complete discharge of the cell must be performed to accurately know the maximum capacity 

in the present state of the battery cell, but this results in cell degradation [121]. The cell SoC estimation 

with ampere counting is expressed by Eq. 2.15. 
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SoCk =  SoC0 − ∫ ηIL(t)dt/Q
tk

t0

 (2.15) 

 

where SoCk and SoC0  represent the SoC at discrete-time tk  and t0  respectively. t0  represents the 

initial value, tk = t0 + k × ∆t , ∆t  represents the sampling interval, η  represents the coulomb 

efficiency, IL(t) represents the load current of the battery and Q represents the maximum available 

capacity in the present state. As the battery capacity is influenced by the operation profile and the 

aging state, it is not a constant in the SoC calculation, and thus the maximum available capacity is used 

here. 

- SoC estimation method based on heuristic data 

The heuristic-based SoC estimation methods are based on experimental data and use statistical rules 

or patterns found in data obtained through various cell charging/discharging experiments. These 

methods include fuzzy logic [122–127], neural networks (NNs) [128, 129], support vector machines 

(SVMs) [130–132], genetic algorithms (GAs) [133, 134], and implementing learning techniques using 

large amounts of experimental data under various conditions can yield reliable estimation results, but 

it takes a lot of time to get the necessary experimental data properly.  

- SoC estimation method based on the adaptive filter algorithm 

Kalman Filter (KF) is an intelligent tool for estimating the dynamic state of a battery, a well-designed 

method of filtering parameters from uncertain and inaccurate observations, and is commonly used in 

many applications such as automobile, radar tracking, aerospace technology, and navigator tracking. 

KFs can be used for cell SoC estimation despite high computational costs [135, 136]. KFs have the 

property of self-calibration that help withstand high current changes, and they can accurately estimate 

even under the influence of external obstacles, such as noise controlled by Gaussian distribution. 

However, KFs cannot be used directly to predict the state of nonlinear systems and require very 

complex mathematical calculations. 

Unlike KFs, which cannot handle nonlinear characteristics of battery models, extended Kalman filters 

(EKFs) can be used in nonlinear applications such as LIBs [137–139]. EKFs correct the estimated 

parameters of SoC by linearizing the battery model using partial derivatives and first-order Taylor 

series expansion. However, the first-order Taylor series lacks accuracy due to linearization errors if the 

system is severely nonlinear [140]. 

The unscented Kalman filter (UKF) applies discrete-time filtering algorithms and unscented 

transformations to solve filtering problems, and the posterior mean and covariance of the third-order 

Taylor series can also be accurately covered by the UKF [141–143]. In general, LIBs have very nonlinear 

characteristics, and the property of noise is unknown. This algorithm has the advantage that noise does 

not need to be Gaussian and it is not necessary to calculate a Jacobian matrix, moreover, the accuracy 

of UKF is superior to that of EKF because it accurately predicts the system state up to the third order 

of nonlinear systems, but this method is less robust due to uncertainty in modeling and disturbances 

in the system. 

The Sigma Point Kalman Filter (SPKF) is another alternative method for evaluating the state of 

nonlinear systems, achieving higher accuracy than EKF in the mean and covariance where a limited 

number of functions are used [144, 145]. This algorithm selects a set of sigma points similar to the 
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mean and covariance values in the model, has the same computational complexity as EKF without 

considering the Jacobi matrix, and has the advantage that derivatives and original functions do not 

need to be calculated. 

In addition, Hꚙ filters [146, 147], particle filters (PF) [148, 149], recursive least squares (RLS) [150, 

151], etc. are used for LIB cell SoC estimation.  

 

- Cell SoC estimation method using nonlinear observers (NLOs). 

As nonlinear observers [152, 153], proportional integrated observer (PIO) [154] , sliding mode 

observer (SMO) [155, 156], bi-linear interpolation (BI) [157], and Luenberger observer [158] can be 

used to estimate battery cell SoC. 

- SoC estimation method based on ECM 

The SoC of the battery cell can be estimated through the ECM obtained through EIS [86, 159]. 

However, as stated in Section 2.5, for EIS analysis, battery cells must be separated from the operating 

load and generally take a long time to measure impedance in a wide frequency range. In addition, the 

use of a typical EIS analyzer in battery monitoring systems can be an excessive investment, especially 

mass and volume are too large for use in portable devices. 

 

Unlike the methods using commercialized EIS analyzers, the proposed method in this thesis can be 

used to estimate the SoC of the cell during operation measuring cell impedance. There is an increasing 

interest in using cell impedance to monitor battery conditions [160, 161]. Although there are literature 

that estimates cell SoC with the impedance of an operating cell, physical models and non-linear 

differential equations that increase the complexity of the operation are required [162], and in some 

cases, the effect of temperature on impedance is not applied [163]. 

- Other SoC estimation methods 

Other methods for battery cell SoC estimation include a battery electromotive force (EMF) [164, 165] 

method, multivariate adaptive regression spline (MARS) [166], impulse response (IR) [157], etc. 
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3 Experimental 

This chapter presents an overview of the measurement system for impedance measurement 

experiments of LIB cells. Measurement conditions for EIS analysis in different states of LIB cells are 

shown, and considerations are presented in selecting parameters to measure impedance by applying 

frequencies to operating current. In addition, a measurement system configured for continuous 

impedance measurement of operating battery cells is introduced. 

3.1  EIS Measurement 

3.1.1 Cell impedance at different SoHs 

An EIS analyzer (IM6ex of Zahner-Elektrik GmbH & CoKG) is used to measure cell impedance in 

different cell states, and the temperature is adjusted to 25°C in the temperature chamber MK53 of 

BINDER GmbH.  

Table 3.1 shows conditions for the EIS measurement, and Table 3.2 shows the specifications of the 

battery cell used. The appendix chapter of this thesis summarizes which cells are used for which 

measurements. 

 

Table 3.1 Measurement conditions for EIS analysis. 

Item Description 

EIS method Galvanostatic 

Min. frequency 200 mHz 

Max. frequency 2 kHz 

DC bias 0 A 

AC amplitude 100 mA 

SoC 100 % 

Chamber temperature 25 °C 

 

Table 3.2 Specifications of the Li-ion cell. 

Item Description 

Anode Based on intercalation graphite 

Cathode Based on lithiated metal oxide1 

Product name Samsung ICR 18650-26F 

Battery system Li-ion (LCO) 

Nominal voltage 3.7 V 

Rated capacity 2.6 Ah 

 

Fig. 3.1 (a) shows the cell impedance when the cell SoH is 100 (cell #1), 90% (cell #2), and 80% (cell 

#3), as a Nyquist plot. Cell SoH is obtained as shown in Eq. 2.5 through cycling repetition and cell 

capacity measurement. Fig. 3.1 (b) is a Bode diagram showing the absolute value of cell impedance at 

different frequencies. 
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Figure 3.1 (a) Nyquist plot and (b) Bode diagram at different cell SoHs.

As the cell deteriorates and the SoH decreases, the impedance of the cell increases, and the lower 
the frequency, the greater the difference in impedance at each SoH, especially at a frequency lower 
than ca. 10 Hz.
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3.1.2 Cell impedance at different SoCs

Battery cell impedance depends not only on SoH but also on SoC. Fig. 3.2 (a) is a Nyquist plot showing 
cell impedance at different SoCs, and Fig. 3.2 (b) is a Bode diagram showing the absolute value of cell 
impedance. Cell SoH is 100 % in this measurement (cell #1).

(a)

(b)
Figure 3.2 (a) A Nyquist plot and (b) a Bode diagram showing impedance at each cell SoC. In the Nyquist plot, 
the '+' marker represents 1 Hz impedance, the 'o' marker represents 250 Hz impedance, and the 'x' marker 

represents 1 kHz impedance.

The cell impedance becomes higher as SoC is lower, and in particular, the difference in impedance at 
each SoC becomes larger when the frequency is lower than ca. 10Hz.
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3.1.3 Cell impedance at different temperatures

Cell impedance is affected by cell temperature as well. Fig. 3.3 (a) is a Nyquist plot that compares cell 
impedance at different temperatures, and Fig. 3.3 (b) is a Bode diagram showing the absolute value of 
frequency. The cell temperature of each measurement is regulated to 25°C, and cell SoH is 90% (cell 
#1).

(a)

(b)
Figure 3.3 (a) Nyquist plot and (b) Bode diagram at different cell temperatures.

The cell impedance becomes lower at a higher cell temperature, and the difference in cell impedance 
at each cell temperature becomes larger as the frequency is lower. This is especially noticeable when 
the frequency is less than ca. 10 Hz.

In summary, cell impedance is higher at lower SoHs, lower SoCs, and lower temperatures, and this 
tendency is particularly noticeable as it is lower than 10 Hz.
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3.2  Frequency Excitation 

3.2.1 Signals applied to measure the cell impedance 

Various signals can be used to measure cell impedance, and can be divided into two categories, 

depending on whether they contain only a single frequency or multiple frequencies. A single frequency 

measurement method is advantageous in the signal-to-noise ratio (SNR) of a response signal, but it 

takes a long time to measure battery impedance in a wide frequency range and is suitable for cases 

where precision is more important than speed. In the meanwhile, some applications use signals 

containing multiple frequencies or harmonics to quickly measure the cell impedance, but the 

magnitude of harmonics decreases as the order increases, causing lower SNR at higher frequencies 

[167]. A single frequency measurement method is studied with DC bias [167–171], or without DC bias 

[172]. Methods using multiple frequencies or harmonics include sum-of-sines signals [173, 174], 

square signals, triangular signals and sawtooth signals [170, 171], pseudo-random binary signals [175–

179], step signals [167, 180–185], chirp signal [186], white noise [187], and dynamic signals [188].  

 

In order to consider the effect of biased or large disturbances on impedance, it is recommended to 

check whether impedance is independent of dynamic disturbances with Kramers-Kronig 

transformation [189]. Different sizes of disturbances, DC deflection or relaxation time, have a 

significant influence on the obtained impedance [55, 61, 190]. In pseudo-random binary and chirp 

signals, spectral leakage during signal processing increases the error [173]. In addition, during the long 

period of signal or dynamic driving cycle, the battery SoC and temperature continue to change, 

resulting in greater measurement errors. Therefore, in addition to considering measurement accuracy 

and speed, the type of test signal must be carefully selected in order for the measured impedance to 

have meaning. 

3.2.2 Methods for applying test signals 

Various signal application methods can be used to measure cell impedance. A DC-DC converter [160, 

167, 191], a frequency-applied charger [169, 170], a half-bridge DC-DC converter [168], a phase-shifted 

full-bridge converter [171], a dual-active-bridge converter [172, 192], a switching inductor balancing 

circuit [193], and a switching capacitor balancing circuit [194] are used in literature. NXP [195] and 

Panasonic [196] provide a single board solution for measuring impedance in each battery cell, but 

these systems apply weaker signals to battery cells due to their power capability. Battery cells or 

modules having high capacity generally have very low impedance, so such a single-chip solution may 

not provide a sufficient SNR to ensure measurement accuracy of impedance.
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3.3  Setup for the frequency excitation 

3.3.1 Measurement system for frequency excitation 

A measurement system is configured to compare continuous battery cell impedance by applying a 

test frequency to the charge and discharge currents with different cell SoHs. Fig. 3.4 (a) shows a block 

diagram of the measurement system, and Fig. 3.4 (b) shows a photo of the measurement system. 

 

The voltage signal output port of USB-6212 which is the National Instrument's data acquisition (DAQ) 

module is connected to the electronic load to apply the test frequency to the cell operating current.  

The analog input of the DAQ module has 16-bit analog-to-digital converter (ADC) resolution, the 

maximum sampling rate is 400 kS/s, and the input range is ± 10 V. The analog output has 16-bit digital-

to-analog converter (DAC) resolution, and the output range is ± 10 V and the maximum update rate is 

250 kS/s. In addition to generating test frequency signals, the DAQ module is used to collect cell voltage, 

current, and temperature data as well.  

 

Experiments are controlled by adjusting measurement parameters through a graphical user interface 

(GUI) developed using the LabVIEW of the National Instruments.  

LIB cells are tested inside the temperature chamber of Binder GmbH. NXP's silicon temperature 

sensor KTY81-110 is attached to the center of the cell surface. Cell temperature is measured every 

second through the DAQ module.  

 

Fig. 3.5 shows a schematic diagram of the electronic load designed by Dipl.-Ing. Lars Krüger for the 

experiment.  



 
3 Experimental 

    

31 

 
(a) 

 
(b) 

Figure 3.4 (a) A block diagram of the measurement system and (b) a photo of the measurement system. 
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Figure 3.5 Schematic diagram of the electronic load. 
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3.3.2 Selection of test frequencies 

This subsection covers a general description of frequency selection, and specific frequency selection 

for SoH and SoC monitoring is covered later in Subsection 5.1.1. 

- The use of lower frequencies 

The influence of mass transfer with a slow time constant is dominant at low-frequency impedance as 

shown in Section 2.5. The higher the temperature and the higher the lithium-ion concentration (the 

higher the cell SoC), the faster the mass transfer rate, resulting in a lower cell impedance [197]. 

Therefore, the impedance at lower frequencies may be more suitable for cell SoC estimation, which 

has a greater impact. However, since the frequency is the reciprocal of the period, the lower the 

frequency, the longer time required for cell impedance measurement. For example, if 1 mHz is used 

for impedance measurement, it takes about 17 minutes to collect signals in a period. This not only 

lengthens the time required to estimate the cell state but also increases the measurement error 

because the cell temperature and SoC change continuously during the long measurement time. 

- The use of higher frequencies 

The impedance at high frequencies is dominated by charge transfer with a fast time constant rather 

than mass transfer. In the case of the cells used in this thesis, the imaginary part of the impedance 

becomes 0 at ca. 1 kHz, which indicates the ohmic resistance of the cell, and since most cell 

degradation causes an increase in the ohmic resistance, the impedance at this frequency can be used 

for cell SoH estimation [36, 50, 198, 199]. However, there are also considerations to use higher 

frequencies. Theoretically, signals can be measured when the Nyquist-Shannon criteria are met, but in 

practice, the noise and non-ideal properties of analog filters require oversampling, which requires 

faster hardware sampling rates. In addition, since cell impedance is generally lower at higher 

frequencies, larger test amplitudes may need to be used to overcome SNR problems. 

3.3.3 Selection of test amplitude 

The amplitude of the test frequency should be selected in consideration of the trade-off between the 

measurement accuracy and the investment cost for battery management according to the application 

of the battery cell. Although the test amplitude suitable for impedance measurement should be small 

enough not to violate the pseudo-linear conditions of the electrochemical battery system, it should be 

large enough to obtain a stable SNR. Cell impedance cannot be measured if the amplitude of the 

voltage output from the individual frequency is less than the system noise. Because a current-voltage 

curve of a LIB cell is governed by nonlinear Butler-Volmer kinetics, the amplitude of a test signal should 

be small enough to satisfy pseudo linearity of the cell output voltage, and in general, a voltage response 

amplitude of 5 to 10 mV is recommended [200]. Fig. 3.6 shows pseudo-linearity observed at a small 

amplitude. In particular, when multiple frequency signals are applied, a lower amplitude should be 

used for each frequency because the amplitude of each frequency contributes to the total amplitude. 
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However, if the amplitude of each signal is too small, the problem is caused due to the finite resolution 
of the hardware that acquires or generates the test signal.

Figure 3.6 Lissajous plot of current for potential in a stable pseudo-linear system.
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4 SoH Estimation of LIB Cells Using Frequency Excitation

In this chapter, frequency excitation is used to estimate SoH of LIB cells. Continuous impedance is 
measured while cells with different SoHs are discharged or charged. The measurement time required 
to estimate the cell SoH and the corresponding accuracy are shown. The investigations and results 
presented in this chapter have been published in [10].

4.1 Impedance Measurement during Discharge of Cells with Different SoHs

The continuous impedance of a LIB cell is measured during charging and discharging using the 
measurement system described in Chapter 3. Table 4.1 shows the experimental conditions, and Fig.
4.1 shows the continuous cell impedance during discharge. Cell impedance at five frequencies of 1, 10, 
20, 100, and 250 Hz is compared here. Note that, these five frequencies are not applied at the same 
time, and the impedance at each frequency is measured individually.

Figure 4.1 Continuous cell impedance at five different frequencies and cell voltage during cell discharge.

Table 4.1 Experimental conditions for measuring cell impedance during discharge.
Parameter Value

Discharge range From 4.2 V to 2.8 V
DC bias 2.6 A (1 C)

Amplitude 260 mA (0.1 C)
Test frequency 1, 10, 20, 100, 250 Hz

Cell SoH 100 % (cell #4)
Initial temperature 22 °C

At 10, 20, 100, and 250 Hz, the higher the frequency, the lower the cell impedance. The impedance 
change due to the cell DoD change is most noticeable at the lowest frequency of 1 Hz.
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Table 4.2 shows the standard deviation of cell impedance at each frequency to compare how much 
the impedance measured at each moment deviates from the average impedance.

Fig. 4.2 shows the cell impedance and cell voltage while the cell is being charged according to the 
conditions in Table 4.3.

Table 4.2 Standard deviation of measured cell impedance at five different frequencies.

Frequency (Hz) Standard deviation (mΩ)

1 2.6320 (5.47 %)
10 0.7728 (1.56 %)
20 0.6896 (1.41 %)

100 0.5966 (1.29 %)
250 0.5368 (1.29 %)

Table 4.3 Experimental conditions for measuring cell impedance during charging.
Parameter Value

Charge range From 2.8 V to 4.2 V
DC bias 2.6 A (1 C)

Amplitude 260 mA (0.1 C)
Test frequency 1, 10, 20, 100, 250 Hz

Cell SoH 100% (cell #4)
Initial temperature 22°C

Figure 4.2 Cell voltage and impedance at 1, 10, 20, 100, and 250 Hz during CC charge.

In Fig. 4.2, a change in cell impedance during charging is greater than that during discharging, and at 
10, 20, 100, and 250 Hz, the higher the frequency the lower the cell impedance.
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Table 4.4 shows the standard deviations of impedance at each frequency during charging. 

 

Table 4.4 Standard deviation of measured cell impedance at each frequency during charging. 

Frequency (Hz) Standard deviation (mΩ) 

1 3.6633 (7.29 %) 

10 2.6548 (5.22 %) 

20 2.3084 (4.61 %) 

100 1.6674 (3.52 %) 

250 1.1875 (2.81 %) 

 

The impedance deviation during charging is larger than that during discharging, and the higher the 

frequency, the lower the standard deviation of impedance (i.e., the lower the frequency, the less 

affected by DoD). 

4.1.1 Cell impedance at different SoHs 

As shown earlier, the effect of cell SoC and cell temperature on cell impedance decreases as the 

frequency increases. This subsection compares the cell average impedance at 250 Hz while the cell is 

gradually deteriorating. 

 

The experimental conditions are shown in Table 4.5. Fig. 4.3 shows the average of 250 Hz cell 

impedance measured at different SoHs, the relationship between cell SoH and cell impedance is fitted 

as shown in Eq. 4.1 through linear regression and is drawn as a dotted line. Here,  

R2 is 0.993. 

 

Table 4.5 Experimental conditions for measuring cell impedance at different SoHs. 

Parameter Value 

Discharge range From 4.2 V to 2.8 V 

DC bias 2.6 A (1 C) 

Amplitude 260 mA (0.1 C) 

Test frequency 250 Hz 

Cell SoH 100% to 73% (cell #4) 

Temperature 22 °C 

 

As the cell degrades, the cell 250 Hz impedance increases linearly, which can be used for cell SoH 

(𝑦𝑆𝑜𝐻) estimation. 

 

𝑦𝑆𝑜𝐻 =  𝑎𝑥 + 𝑏 (4.1) 

 

where 𝑎 = -0.1064 and 𝑏 = 54.8584. 
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Figure 4.3 Mean values of cell impedance at different cell SoHs (circle) and fitted line (dotted line). 

 

4.1.2 Measurement time required for SoH estimation 

Battery cell SoH estimations from different initial SoCs are simulated in this subsection. The battery 

cell is discharged for 10 minutes and then has a relaxation time of 60 minutes. Discharge and relaxation 

of the cell are repeated until the cell voltage reaches 2.8V.  

Cell impedance of 1 Hz and 250 Hz are compared here. The experimental conditions are shown in 

Table 4.6, and the results are shown in Fig. 4.4.  

 

Table 4.6 Experimental conditions for impedance measurements from different initial SoCs. 

Parameter Value 

DC bias 2.6 A (1C) 

Test frequency 1, 250 Hz 

Amplitude 260 mA (0.1 C) 

Relaxation time 60 minutes (each) 

Discharge time 10 minutes (each) 

Cell SoH 73% (cell #4) 

Temperature 22 °C 
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Figure 4.4 Cell charge curve and cell impedances at 1, 10, 20, 100, and 250 Hz.

During relaxation, the cell voltage rises, and when the discharge starts again, the recovered voltage 
drops rapidly. The 1Hz impedance changes more than the 250Hz impedance during relaxation and 
discharge.

The factors that greatly change the cell 1Hz impedance are cell SoC and cell temperature. As DoD 
increases, impedance increases. 1 Hz impedance, which increased at the start of measurement after 
each relaxation, gradually decreases during discharge because the cell temperature decreases during 
the relaxation and increases during discharge. This change in impedance reduces the accuracy of SoH 
estimation and makes the time required for SoH estimation longer in situations when the cell SoC and 
cell temperature are unknown.

Fig. 4.5 shows the temperature change of the battery cell discharged at 1C.

Figure 4.5 Increasing cell temperature during 1C discharge.

A moving average is used to reduce the noise of the measured impedance. The effect of the time 
required for the moving average on the error of the measured cell impedance is compared at different 
frequencies.
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Table 4.7 shows the measurement time required to reach a 98% confidence level. 

 

Table 4.7 Measurement time required for moving average to reach 98% confidence level. 

Frequency (Hz) 
Measurement time (sec) 

Discharge Charge 

1 1408 1052 

10 242 833 

20 240 792 

100 66 718 

250 4 623 

 

The higher the frequency, the shorter the required measurement time, and it takes longer to measure 

while charging than to measure while discharging. The measurement time represents the time 

required for the measured cell impedance to reach the target value.  

 

As mentioned above, the measurement time is not only affected by noise, but also by changes in cell 

impedance due to SoC and temperature changes. When cell impedance is measured at 250 Hz for 4 

seconds during discharging, the confidence level reaches 98% and ca. 10 minutes is required during 

charging. 
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4.2  Impedance Measurement in Another Type of Cell 

Samsung's LCO cells are used in the experiments in the previous sections. In this section, cell 

impedance at different SoHs in the other type of LIB cell is compared. The NMC cell of the Bexel is used 

(cell #7), and the specifications of the cell used are shown in Table 4.8. 

 

Table 4.8 Specifications of another type of LIB cell. 

Item Description 

Product name Bexel INR 18650-2600 SP01 

Battery system Li-ion (NMC) 

Rated capacity 2.6 Ah (0.2 C) 

Nominal voltage 3.7 V 

 

Fig. 4.6 shows the impedance of the cell at different SoHs measured using Ametek's EIS analyzer. 

Table 4.9 shows the conditions used for EIS measurement. The temperature chamber is not used in 

this measurement. 

 

Table 4.9 Conditions for EIS analysis of Bexel cells. 

Item Description 

EIS method Galvanostatic 

Min. frequency 200 mHz 

Max. frequency 2 kHz 

DC bias 0 A 

AC amplitude 100 mA 

SoC 100 % 

 

 
Figure 4.6 Nyquist plot showing impedance in different SoHs. 

 

Fig. 4.7 shows the continuous 1 kHz impedance of the cell during discharge at different SoHs, and 

Table 4.10 shows the measurement conditions. 
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Table 4.10 Experimental conditions for measuring cell impedance at different SoHs (cell #7). 

Parameter Value 

Discharge range From 4.2 V to 2.75 V 

DC bias 2.6 A (1 C) 

Amplitude 40 mA (each) 

Test frequency 1 Hz, 250 Hz and 1 kHz 

Cell SoH 100% to 70% 

 

 
Figure 4.7 1 kHz impedance during cell discharge at different SoHs. 

 

The continuous impedance of the discharging cell is higher as the cell SoH is lower. 

 

Fig. 4.8 shows the impedance at 1 Hz, 250 Hz, and 1 kHz of the cell being discharged. 

 

 
Figure 4.8 1 Hz, 250 Hz, and 1 kHz impedance in different SoHs. 

 

The lower the frequency or cell SoH, the higher the impedance. Using the same method as the LCO 

type cells, the continuous impedance of operating cells of NMC type cells could be used to estimate 

cell SoH. Please note that Bexel's NMC cell is used only in this section. Measurements in all other 

sections of this thesis are made with Samsung's LCO cells with specifications shown in Table 3.2. 
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5 SoC Monitoring of LIB Cells Using Frequency Excitation

In this chapter, the frequency is used to estimate the SOC of the lithium-ion battery cell. For accurate 
SOC estimation, the cell SOH estimated in Chapter 3 is considered along with the cell temperature. By 
applying two frequencies simultaneously, the cell SOH and SOC can be monitored simultaneously. The 
measurement time required to estimate the cell SOC and the resulting accuracy are shown. The 
investigations and results presented in this chapter have been published in [11].

5.1 Multi-sine EIS

In general, EIS analyzers have a disadvantage in that it takes a long time to measure impedance in a 
wide frequency range because a single sine signal is applied by the so-called step sine method or 
frequency sweep method. This drawback can be overcome by multi-sine EIS, which is already used in 
fields such as biomedical applications [201, 202], material characterization [203], and battery 
measurements [91, 95], while measuring multiple frequencies at the same time.

In general, multi-sine EIS requires the cells to be separated from the application circuit to measure 
impedance, such as a single-sine EIS, but in this thesis, cells are not separated from the circuit for cell 
state monitoring and continuous impedance is measured by applying a test signal including multiple 
frequencies to the cell operating current. As a multi-sine signal is applied to the cell operating current, 
the cell SoH and SoC are monitored simultaneously with the impedance measured at each frequency. 

The measurement system described in Chapter 3 is used to measure cell impedance, and the overall
process of cell state estimation is shown in Fig. 5.1 as a flow chart.

Figure 5.1 A flow chart showing the cell state estimation process.

Cell 1Hz impedance is adjusted and normalized for proper use for SoC monitoring because it depends 
on the cell SoH and temperature as well as the cell SoC.
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5.1.1 Selection of test frequencies for estimating cell SoH and SoC 

In Chapter 4, it is shown that cells with low SoH have high impedance. In addition, impedance changes 

at different SoCs and different temperatures are greater at lower frequencies. When the frequency is 

high enough, the impedance is relatively constant even with SoC or temperature changes. 

Therefore, impedance at a higher frequency is used for the SoH estimation of a cell, and impedance 

at a lower frequency should be used in consideration of SoH and temperature for the SoC estimation 

of a cell. Subsection 3.3.2 describes the limitation of the use of test frequencies that are too low or too 

high in terms of the measurement system. However, also from the perspective of the battery operation 

process, the use of impedance at lower or higher frequencies is not always better for SoH and SoC 

estimation. 

To be specific, the impedance at the high frequency in Fig. 2.4 is suitable to use for cell SoH estimation, 

and the impedance at the mid-high and low frequencies is suitable for SoC estimation. 

- Frequency Selection for SoH Estimation 

As described in Section 2.2, the SoH in the LIB cell is closely related to the SEI film and the ohmic 

resistance. The impedance of the SEI film in the LIB cell affects the impedance at high frequency and 

Ohmic resistance is related to impedance at ca. 1 kHz in which the imaginary part of the impedance 

becomes 0. 

For the cell SoH estimation, the impedance in the high frequency range is used in this thesis, especially 

250 Hz or 1 kHz. However, they are used as examples, and the frequency for SoH estimation is not 

limited to these frequencies. The appropriate frequency to be used depends on the system 

requirements of the battery application. 

- Frequency selection for SoC estimation 

The 1 Hz frequency is used for SoC estimation. Again, the appropriate test frequency is dependent on 

the system requirement and is not limited to the use of 1 Hz frequency impedance. For the used cell, 

1 Hz is located between the low frequency range and the mid-high frequency range.  

 

Impedance in the low frequency range (< 1 Hz) is affected by temperature and SoC. Mass transfer 

(including diffusion) becomes faster as the temperature is higher and the Li-ion concentration is higher 

(=SoC is higher = DoD is lower). Faster transfer speed can be interpreted as lower impedance. On the 

other hand, this transfer becomes slower as the temperature is lower and the Li-ion concentration is 

lower (=SoC is lower = DoD is higher). And it results in a higher impedance. 

 

Impedance in the mid-high frequency range, where the effect of charge transfer is dominant, is also 

affected by SoC. Impedance in cathodes consisting of layered structures with active materials is not 

significantly affected by SoC. However, in the anode composed of graphite, the reduction reaction 

increases as SoC increases, and the conductivity increases due to the combination of lithium-ion and 

graphite, and the impedance decreases [204]. 
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5.2  Continuous cell impedance measured with multiple frequencies 

A multi-frequency test signal is applied as the sum of the two frequencies so that the impedance at 

both frequencies is measured simultaneously. Amplitude of 65 mA is used at each of 1 Hz and 1 kHz, 

and a total amplitude of 130 mA is used. This ensures that the output voltage amplitude is less than 10 

mV so that the measurement does not violate pseudo-linearity. Table 5.1 shows the experimental 

conditions. 

 

Table 5.1 Experimental conditions for measuring cell impedance during discharge. 

Parameter Description 

Chamber temperature 25 °C 

Depth of discharge From 0 to 100 % 

DC bias 2600 mA (1 C) 

Test frequency 1 Hz, 1 kHz 

Amplitude 65 mA (each) 

Cell SoH From 100 to 80 % (cell #5) 

Measurement interval Every second 

 

Fig. 5.2 shows continuous 1 Hz and 1 kHz impedance during discharging of cells with different SoHs. 

 

 
Figure 5.2 Continuous 1 Hz and 1 kHz impedance during discharging of cells with different SoHs (Solid line: 1 

Hz impedance, dotted line: 1 kHz impedance).  

 

The lower the cell SoH, the higher the overall cell impedance. And during cell discharge, the 1 Hz 

impedance changes significantly while the 1 kHz impedance is relatively constant. The increased rate 

of the highest impedance from the lowest impedance at 1 kHz frequency is 3.74%. At the same time, 

the increased rate of the highest impedance from the lowest impedance between DoD 5% and 95% at 

a frequency of 1 Hz is 10.16%. The smaller increased rate of 1 kHz impedance means that it is less 

dependent on cell SoC and is suitable for SoH estimation of cells with unknown cell SoC. In contrast, at 

1 Hz impedance, the increased rate is higher. This means that 1 Hz impedance is more suitable for cell 

SoC estimation. 
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5.2.1 Effect of polarization

If the full range of DoD is considered in Fig 5.2, the increased rate of 1 Hz impedance becomes much
higher, but only between 5% and 95% of DoD should be considered. This is because the 1Hz impedance 
at the beginning and end of the cell discharge cannot be accurately measured and thus cannot be used 
for cell SoC estimation.

The cell discharge process causes overpotential, which is a voltage loss due to polarization, which 
occurs when the electrode potential in equilibrium is excessive or insufficient. The charge transfer rate 
of each reaction process of the battery cell is not the same, and a specific process having a relatively 
slow rate limits the rate at the overall reaction of the cell. The cell voltage is measured below the 
equilibrium potential when the cell is discharged and the current flows between two terminals, and 
the difference between the voltage and the equilibrium voltage, which indicates the degree of 
polarization, is called an overpotential. During the discharge process of LIB cells, polarization can be 
classified into three categories; activation polarization, concentration polarization, and ohmic 
polarization. Fig. 5.3 shows these three polarization regions in the discharge curve [199].

Figure 5.3 Typical discharge curve of a battery cell, showing three different regions of polarization.

Ohmic polarization is also called ohmic loss, and at this region, the discharge curve has a linear slope, 
enabling the most accurate cell impedance measurement. Since the ohmic loss is proportional to the 
current density, the voltage drop increases in proportion to the internal resistance of the cell. 
Meanwhile, the cell output voltage of the activation and concentration polarization regions has 
nonlinearity. Activation polarization has a dominant effect on the voltage drop at the beginning of cell 
discharge due to various inherent delay factors in the dynamics of electrochemical reactions, such as 
work function, in which ions must overcome in the junction between electrodes and electrolytes. In 
the concentration polarization region, a voltage drop is revealed due to a decrease in the mass transfer 
rate at which ions move across the electrolyte from one electrode to another when the cell charge is 
low. These two polarizations, based on processes with relatively slow transfer rates in battery cells, 
are more evident at impedance at lower frequencies. Therefore, in Fig 5.2, the effects of activation and 
concentration polarization at 1 Hz frequency are more pronounced than 1 kHz.
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5.3  Consideration of cell temperature 

Changes in the temperature of battery cells during discharge are affected by discharge rate, discharge 

time, relaxation time, and ambient temperature [205]. Fig. 5.4 shows the cell temperature rise while 

the cell is discharged at 25°C. 

 

 
Figure 5.4 The temperature change of the battery cell during discharging with 1C current. 

 

The battery cell impedance measured at different temperatures of 20, 25, 30, and 35°C is shown in 

Fig. 5.5 with a Nyquist plot and a bode diagram. The measurement conditions are shown in Table 5.2. 

 

Table 5.2 Parameters for EIS measurement (Galvanostatic). 

Parameter Description 

Cell temperature 20, 25, 30, 35 °C 

SoH 80 % (cell #5) 

SoC 50 % 

DC bias 0 mA 

Frequency range 0.2 to 2 kHz 

AC amplitude 100 mA 
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(a) 

 
(b) 

Figure 5.5 Cell impedance at each frequency at 20, 25, 30, and 35 °C. (a) Nyquist plot (O: 1 Hz, X: 1 kHz). (b) 
Bode diagram. 

 

The higher the cell temperature, the lower the cell impedance, and 1Hz impedance is more affected 

by temperature than 1kHz impedance.  

 

Fig. 5.6 shows a curve that fits the impedance of 1 Hz at each temperature into a quadratic equation. 

 

 
Figure 5.6 1 Hz impedance measured at 20, 25, 30 and 35 °C (dotted line) and fitted curve (solid line). 
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The fitted quadratic equation has an R2 of 1.00 and a root-mean-square error (RMSE) of 0.19 mOhm 

and is expressed by Eq. 5.1. 

 

Z(T)fitted =  −0.03717 ∙ T2 − 3.217 ∙ T + 133.3 (5.1) 

 

where T is the cell temperature and Z(T)fitted is the impedance obtained through the equation at 

the cell temperature T. 

 

The 1Hz impedance measured at various cell temperatures is adjusted to the impedance at 25°C using 

Eq. 5.2. 

 

Z(T)adjusted =  Z(T)measured − (Z(T)fitted − Z(25)fitted) (5.2) 

 

where Z(T)adjusted is the adjusted impedance to 25 °C and Z(T)measured is the measured impedance 

at temperature T. 

 

The temperature-adjusted result using Eq. 5.2 for the 1Hz impedance in Fig. 5.2 is shown in Fig. 5.7. 

 

 
Figure 5.7 1 Hz impedance adjusted to 25 °C. 

 

Temperature-adjusted 1Hz impedance increases as the cell discharges. The cell temperature 

increases with the discharge time as Fig. 5.4, and the cell impedance decreases with increasing cell 

temperature as Fig. 5.5. Fig. 5.7 shows 1 Hz impedance adjusted to 25°C, which is a lower temperature 

than the actual cell temperature, thus it shows a higher impedance than the 1 Hz impedance in Fig. 

5.2. 
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5.4  Consideration of cell SoH 

Cell SoH obtained by Eq. 4.1 is used for temperature-adjusted 1 Hz impedance normalization. 

 

The measured cell 1Hz impedance (Zmeasured) is normalized to Znorm by Eq. 5.3. 

 

Znorm = (Zmeasured  −  Zmin)/(Zmax − Zmin)  ×  100 (5.3) 

 

where Zmax and Zmin represent the maximum and minimum values of the impedance between DoD 

10% and 90% and can be obtained by Eq. 5.4 and Eq. 5.5 respectively.  

 

Zmax =  −0.00593 ∙ SoH2 + 0.79922 SoH + 63.09 
(5.4) 

Zmin =  −0.2969 ∙ SoH + 103.1 
(5.5) 

 

In Eq. 5.4, R2 is 1.00 and RMSE is 0.12 mΩ, and in Eq. 5.5, R2 is 1.00 and RMSE is 0.26 mΩ. 

 

The result of applying Eq. 5.3 to the 1 Hz impedance in Fig. 5.7 is shown in Fig. 5.8. 

Due to the cell nonlinear response mentioned in Subsection 5.2.1, SoC estimation using 1 Hz 

impedance is made between 10% and 90% of DoD. 

 
Figure 5.8 Normalized 1 Hz impedance and fitted curve of cells with different SoHs. 

 

The average of the normalized impedance at each SoH is fitted with a cubic equation and plotted as 

a curve in Fig. 5.8. This fitted curve is expressed by Eq. 5.6 and has an R2 of 1.00 and an RMSE of 1.51. 

 

Znorm =  −0.00014 ∙ SoC3 + 0.032 ∙ SoC2 − 0.85 ∙ SoC + 7.58 (5.6) 

 

Table 5.3 shows each R2 and RMSE when Eq. 5.6 is applied to cells with different SoHs. 
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Table 5.3 Accuracy of SoC estimation in cells with different SoHs. 

SoH 𝐑𝟐 RMSE 

100 % 0.99 2.42 

95 % 0.99 2.66 

90 % 0.99 2.02 

85 % 0.99 2.51 

80 % 0.98 3.85 

Average 0.99 2.69 

 

Table 5.4 shows the time for the estimated SoC to reach 95% and 98% confidence levels, respectively. 

 

Table 5.4 Time for SoC estimation in cells of different SoHs to reach 95% and 98% confidence levels. 

SoH 95% confidence level 98% confidence level 

100 % 179 sec 187 sec 

95 % 290 sec 291 sec 

90 % 219 sec 225 sec 

85 % 229 sec 384 sec 

80 % 249 sec 249 sec 

Average 233.2 sec 267.2 sec 

 

As a result, it takes 233.2 seconds to reach the 95% confidence level and 267.2 seconds to reach the 

98% confidence level to estimate the SoC of cells of different SoHs. 
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5.5  SoC Monitoring at Different Initial SoCs 

Battery cells are not always operated in 100% SoC, thus this subsection emulates impedance 

measurements during cell discharge at different initial SoCs. 

  

Discharge for 10 minutes and relaxation for 60 minutes are repeated until the cell is completely 

discharged, and measurements after each relaxation indicate cells that are discharged at different 

initial SoCs. Cell impedance is measured every second while the cell is discharged. The experimental 

conditions are shown in Table 5.5. 

 

Table 5.5 Experimental conditions for SoC estimation of cells that start operating at different SoCs. 

Parameter Description 

SoH 80 % (cell #5) 

Chamber temperature 25 °C 

Discharge time 10 min (each) 

Relaxation time 60 min (each) 

Depth of discharge From 0 to 100 % 

DC bias 2.6 A (1 C) 

Test frequency 1, 1000 Hz 

Amplitude 65 mA (each) 

 

Fig. 5.9 (a) shows the cell voltage and cell temperature for the cell DoD, and Fig. 5.9 (b) shows the 1 

Hz and 1 kHz impedances. 
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(a) 

 
(b) 

Figure 5.9 (a) Cell voltage (solid line) and cell temperature (dotted line), and (b) 1Hz impedance (solid line) 
and 1 kHz impedance (dotted line) while the cell is being discharged 

 

In Fig. 5.9 (a), the cell voltage drops while discharging, and temporarily recovers when relaxed. The 

cell temperature increases during discharge of the cell and decreases during relaxation. Fig. 5.9 (b) 

shows that cell 1Hz impedance is more affected by SoC and temperature than 1kHz impedance.  

 

The DoD range in which the 1Hz impedance cannot be accurately measured is indicated as a gray area, 

each for ca. 267 seconds, and the range from 95% DoD is added. However, it should be noted that in 

most cell operations in which the cell is not completely discharged, this range in which the cell 

impedance cannot be accurately measured appears only once at the start of the cell discharge. The 

reason why five or six gray ranges are shown in Fig. 5.9 (b) is that the cell impedance when discharged 

at five different initial SoCs is shown as one figure. 
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The 1 Hz impedance in Fig. 5.9 (b) after being adjusted to a temperature of 25 °C is shown in Fig. 5.10 

(a). The result of normalizing the temperature-adjusted 1 Hz impedance to cell SoH is indicated by a 

dotted line in Fig. 5.10 (b). Eq. 5.6 is used to normalize the temperature adjustment impedance for cell 

SoH. The solid line in Fig. 5.10 (b) is the result of Eq. 5.6, and when compared to the dotted line, R2 is 

0.99, and RMSE is 3.07 mΩ. Cell impedance in the gray range is excluded for the calculation of R2 and 

RMSE. 

 

 
(a) 

 
(b) 

Figure 5.10 (a) 1 Hz impedance adjusted to cell temperature and (b) Temperature-adjusted 1 Hz impedance 
normalized to cell SoH (dotted line) and expected value (solid line) while the cell is being discharged. 
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6 Modeling of LIB Cells for State Monitoring 

The purpose of this chapter is to propose a LIB cell model for simulation and optimization of cell state 

monitoring algorithms using frequency excitation. As shown so far, the battery cell impedance can be 

used to estimate the cell SoH and SoC. 

 

However, it takes a long time for the cells in each state to be prepared and for the cell voltage reaction 

to be measured during charging and discharging under each condition. E.g., charging, discharging, and 

relaxation for one cell test can take several hours, and it can take several weeks to set the cell to the 

target SoH. Accurate cell simulation models significantly reduce experimental costs. In addition to the 

cost of purchasing experimental devices and cells, the time cost for setting each cell state can be saved. 

Results of cell state estimation algorithms under different conditions can be simulated and compared 

within a short time before being measured by experiments. This is because simulation results are 

quickly displayed simply by entering parameters representing the state of the battery cell into the 

model. 

 

There are factors that make it difficult to make accurate battery cell models. As described in Chapter 

2, the degradation mechanism of LIB cells is dependent on the operating profile and is complicated 

and difficult to understand clearly. The physical state of the battery cell depends on various parameters 

such as electrolyte concentration, conductivity, and crystal structure of the electrode material, and 

most of these parameters depend on the geometric position of the device. Moreover, chemical 

additives are used in most cell manufacturing, but information on these additives is often not disclosed 

to BMS engineers. Nevertheless, it is not necessary that every mechanism of the battery cell be fully 

modeled to obtain useful simulation results. A mechanism that does not affect the simulation results 

does not need to be modeled, and a model representing the battery behavior required for the target 

application is sufficient. Because in most electrochemical systems, model parameters vary nonlinearly 

depending on cell temperature, SoH, SoC, cell potential, current rate, etc., parameterization becomes 

one of the main challenges to create a simulation model [29, 78, 79, 93].  

 

Section 6.1 presents the state of the art of LIB cell modeling methods in the literature, and Section 

6.2 shows the proposed MATLAB/Simulink model and explains considerations for selecting model 

parameters as well as details of each simulation block. Each element value of the ECM is determined 

by EIS measured in different cell SoCs. In Section 6.3, the model is verified as a simulation result under 

various conditions compared to the measurement. The developed model outputs continuous cell 

impedance considering cell SoC, SoH, temperature, and C-rate through voltage prediction of a cell 

while being discharged. 

 

The investigations and results presented in this chapter have been published in [12]. 
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6.1  State of the Art 

Increasing the complexity of the model to obtain accuracy increases computational effort and 

increases computational time. Therefore, an appropriate modeling method for the target application 

should be selected. Battery models presented in the literature can be classified into physics-based 

electrochemical models, electrical ECMs, and data-driven models. 

- Physics-based electrochemical models [206–208]. 

Because the electrochemical model of the battery is structurally based on the electrochemical 

processes and reactions inside the cell, the physical and chemical processes inside the battery cell can 

be explained in more detail than other models. Specifically, the electrochemical model can be used to 

describe macroscopic quantities such as cell current and voltage and local distribution, as well as cell 

concentration, potential, current, and temperature on the microscopic scale [209, 210]. The 

application of these models requires parameters including the electrode thickness, the initial salt 

concentration of electrolyte, the total heat capacity, etc., and since the calculation includes nonlinear 

differential equations, the longest time for simulation is required. 

 

As an alternative to the physics-based modeling method, a gray box model represented by an 

electrically equivalent circuit model and a black box model including an empirical model are used. 

- Data-driven models 

The data-driven model belongs to the black-box model, which does not require an understanding of 

the reaction mechanisms and characteristics inside the battery cell, so it is advantageous for estimating 

systems that are unknown, highly uncertain, cannot be modeled by empirical equations, or are not 

suitable for analysis [211]. Fuzzy logic controllers [212], SVM [213], GA [214], and NN algorithms [215], 

etc. are used in black-box models, and estimation accuracy depends heavily on training datasets and 

training methods. 

- Electrical ECMs 

ECM is widely applied to BMS and automotive energy management systems [216–220]. ECM belongs 

to the gray box model, which can reduce complexity compared to the physics-based electrochemical 

model. ECM provides fast and accurate simulations suitable for system dynamic and frequency 

response estimation, even if the internal electrochemical state of the battery cell cannot be clearly 

explained. Linear passive elements including internal ohmic resistance, polarization resistance, 

polarization capacitance, inductance, normal elements, etc. of the battery cell are used here [221].  

ECM has a variety of models depending on the balance between the required accuracy and calculation 

time. Depending on the shape of the measured cell impedance spectrum, serial ohmic resistance, 

Warburg diffusion elements, and several RC elements can be included [222–224], and if the standard 

RC network is not suitable for simulating battery characteristics over the entire frequency range, a 

constant phase element (CPE) can be used instead of the capacitor of the RC network [225–227].  
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Table 6.1 Different equivalent elements in ECMs. 

Impedance spectrum Equivalent element Impedance expression 
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When these circuit elements are considered comprehensively, they exhibit characteristics similar to 

those of the battery cell operating process, but individual physical characteristics cannot be explained 

in detail. Therefore, parameter values cannot be measured by laboratory test methods separating 

specific physical characteristics, but instead, the values of each element can be fitted so that 

predictions in the model are similar to those measured through an optimization process called system 

identification. 

The measured complex impedance data is used to fit the equivalent circuit, which represents the 

physical process that occurs in the system through complex nonlinear least squares (CNLS) regression, 

and the fit accuracy is used to determine whether the impedance model and fit parameters are suitable 

for the purpose. 
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6.2  A LIB Cell Simulation Model for Monitoring SoH and SoC via Cell 

Impedance 

Fig. 6.1 shows the overall appearance of the Matlab/Simulink model. The input current (Currentin) 

is a signal obtained by adding two frequency signals (Test Freq. 1, Test Freq. 2) to the DC offset, and 

the SoC model provides a real-time SoC to the cell model. The initial SoC is given as SoCinit, and the 

real-time SoC is output as SoCout. The SoC correction model is used to consider the rate-capacity effect. 

The cell model receives a real-time SoC and current and outputs a real-time cell voltage (Vcell). The 

output voltage Vcell is Fourier transformed to calculate the cell impedance at each test frequency, and 

cell impedance calculations take into account cell SoH and cell temperature. The details of each 

subsystem are described in the following subsections. 

 

 
Figure 6.1 Overall view of the proposed simulation model. 

 

6.2.1 SoC model 

The cell SoC is represented by Eq. 6.1 in this model. The output of this subsystem is a real-time SoC 

(SoCout). 

 

SoCout = SoCinit − ∫
Currentin × 100

Q × 3600
dt (6.1) 

 

The cell SoC is calculated based on the available cell capacity depending on the operating current in 

consideration of the rate-capacity effect [228, 229]. Fig. 6.2 shows the voltage curves of the LIB cell 

discharged at different C-rates. The same type of cell is used for modeling as in the experiments above 

(cell #6 which has 95 % SoH). 
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Figure 6.2 Voltage curves of the LIB cell discharged at different C-rates. 

 

Table 6.2 shows the relative capacity of the cells discharged at different C-rates. The higher the C-

rate, the less the total amount of energy (Wh) that can be released from the cell. While the available 

capacity of the cell at 0.125 C is 100%, the available relative capacity at 1.5 C is 92%. It is implemented 

in the SoC correction model using a 2D lookup table that receives SoCk and Currentin as inputs. The 

SoC output corrected by the discharge current is expressed as SoCc. 

 

Table 6.2 Relative capacities of a LIB cell discharged at different C-rates. 

C-rate Relative capacity 

1.5 0.92 

1 0.92 

0.5 0.94 

0.25 0.97 

0.125 1 
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6.2.2 LIB cell model

The impedance between frequency 1Hz and 1 kHz is considered especially for estimating the SoC and 
SoH of battery cells used in the model. The equivalent circuit in Fig. 6.3 is used considering the accuracy 
of fit and complexity of the model in the corresponding frequency range.

Figure 6.3 Cell equivalent circuit used in the model.

The ECM adopted in this model consists of a DC voltage source, an inductor, a series resistor, and four 
RC parallel networks. The DC voltage source is used to represent the OCV of the cell, the series resistor 
(R0) is used to represent the internal DC resistance, and the RC parallel network (R1, C1, R2, C2, R3, 
C3, R4 and C4) is used to characterize the transient response of voltage. L, which represents the 
inductive behavior of the cell, increases the accuracy of the impedance fit at frequencies above ca. 1 
kHz.

In the ECM represented by Fig. 6.3, the cell output voltage (Vcell) is calculated by Eq. 6.2.

Vcell = OCV − VL − VR0 − ∑ VPn

4

n=1

(6.2)

where VL is the inductor voltage, VR0 is the series resistance voltage, and VPn is the n-th RC parallel 
network voltage.

- Measurement of the battery cell OCV

OCV is the voltage of the battery cell at equilibrium. And the value of OCV depends on the SoC. For 
this model, cell OCV is measured through the following procedure:

1) CC charge: The cell is charged with a 1C current until an upper limit cut-off voltage (4.2 V) is reached.
2) CV charge: When the cell reaches a voltage of 4.2 V, the charging current is reduced to maintain 

the voltage. Charging is terminated when the current becomes 1/10 C.
3) 90 minutes of relaxation is given to the cell. Cell relaxation is performed with disconnection from 

the load. This step completes setting cell SoC to 100%.
4) 1C discharge for 5 minutes and the relaxation for 10 minutes are repeated.
5) When the cell voltage reaches a lower limit cut-off voltage (2.8 V), the discharge is terminated and 

a final relaxation time of 10 minutes is given. At this step, the SoC of the cell becomes 0%.
6) Cell OCV should not be changed depending on the relaxation time. Cell OCV should be collected 

after sufficient relaxation time. The cell voltage after each 10-minute relaxation is collected as an OCV 
voltage. In Fig. 6.4, the measured OCV is shown as a black dot marker.

This series of procedures is performed in the temperature chamber set at 25°C.
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Figure 6.4 OCV of the battery cell used for modeling. 

 

Cell OCV is applied to the model as a lookup table that receives SoCc as input. 

- System identification and prediction of cell voltage 

The elements of the equivalent circuit in Fig. 6.3 depend on the cell SoC. The cell impedance measured 

at different SoCs in Fig. 3.2 is fitted to each element of the cell equivalent circuit. For the fitting of 

equivalent circuit elements, an algorithm to find the minimum χ2  value is used. χ2  calculates the 

distance between measured and simulated data, defined as Eq. 6.3. 

 

χ2 =  ∑|Zmeas(i) − Zsimul(fi, element)|2

n

i=1

 

=  ∑ {
(Re(Zsimul) − Re(Zmeas))

2

(Re(Zmeas))
2 +

(Im(Zsimul) − Im(Zmeas))
2

(Im(Zmeas))
2 } 

(6.3) 

 

where, Zmeas(i) is the measured impedance at the fi frequency, Zsimul is a function of the chosen 

model, fi is the frequency i, and element is the model element. 

 

A lower χ2 indicates a higher fit accuracy and thus this should be minimized. χ2/N with N points is 

the normalized expression of χ2, whose value is independent of the number of points and represents 

the error. Table 6.3 shows the fitted equivalent circuit element values and the error χ2/N in each SoC. 

Fig. 6.5 shows the measured cell impedance and fitted results for each SoC as a Nyquist plot. 
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Table 6.3 Fitted element values for each SoC and χ2/N representing the fitting error. 

SoC 

(%) 
𝛘𝟐/𝐍 L (H) R0 (Ω) R1 (Ω) C1 (F) R2 (Ω) C2 (F) R3 (Ω) C3 (F) R4 (Ω) C4 (F) 

100 
1.77    

E-03 

3.41    

E-07 

3.82    

E-02 

1.81    

E-03 

1.75    

E+01 

5.53    

E-03 

5.38    

E-01 

5.23    

E-03 

7.82    

E-02 

3.01    

E-03 

2.16    

E+02 

90 
1.98    

E-03 

3.38    

E-07 

3.83    

E-02 

2.24    

E-03 

1.67    

E+01 

5.12    

E-03 

6.10    

E-01 

4.98    

E-03 

8.36    

E-02 

4.30    

E-03 

1.55    

E+02 

80 
2.12    

E-03 

3.36    

E-07 

3.85    

E-02 

2.32    

E-03 

1.57    

E+01 

5.06    

E-03 

6.22    

E-01 

5.02    

E-03 

8.33    

E-02 

4.41    

E-03 

1.48    

E+02 

70 
2.06    

E-03 

3.33    

E-07 

3.88    

E-02 

2.17    

E-03 

1.57    

E+01 

5.23    

E-03 

5.92    

E-01 

5.03    

E-03 

8.09    

E-02 

3.69    

E-03 

1.88    

E+02 

60 
2.05    

E-03 

3.27    

E-07 

3.95    

E-02 

1.81    

E-03 

1.67    

E+01 

5.70    

E-03 

5.47    

E-01 

5.19    

E-03 

7.78    

E-02 

2.20    

E-03 

3.24    

E+02 

50 
2.37    

E-03 

3.25    

E-07 

4.03    

E-02 

3.17    

E-03 

8.79    

E+00 

6.58    

E-03 

4.80    

E-01 

5.38    

E-03 

7.00    

E-02 

3.02    

E-03 

2.05    

E+02 

40 
2.32    

E-03 

3.20    

E-07 

4.07    

E-02 

4.25    

E-03 

7.03    

E+00 

6.96    

E-03 

4.82    

E-01 

5.62    

E-03 

6.80    

E-02 

3.93    

E-03 

1.54    

E+02 

30 
3.02    

E-03 

3.48    

E-07 

4.07    

E-02 

6.30    

E-03 

5.42    

E+00 

7.59    

E-03 

4.27    

E-01 

5.72    

E-03 

5.75    

E-02 

5.76    

E-03 

9.97    

E+01 

20 
2.41    

E-03 

3.05    

E-07 

4.14    

E-02 

9.32    

E-03 

4.39    

E+00 

7.39    

E-03 

4.80    

E-01 

5.99    

E-03 

6.52    

E-02 

1.11    

E-02 

4.73    

E+01 

10 
2.37    

E-03 

3.01    

E-07 

4.16    

E-02 

1.12    

E-02 

4.01    

E+00 

7.64    

E-03 

4.75    

E-01 

6.10    

E-03 

6.46    

E-02 

1.59    

E-02 

3.32    

E+01 

0 
2.45    

E-03 

2.99    

E-07 

4.19    

E-02 

1.35    

E-02 

3.51    

E+00 

8.50    

E-03 

4.46    

E-01 

6.16    

E-03 

6.26    

E-02 

2.81    

E-02 

1.98    

E+01 
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Figure 6.5 Nyquist plots of measured cell impedance and fitted results.
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The fitted equivalent circuit element values in each SoC are respectively applied to the cell model as 

a lookup table. 

 

The series inductor voltage (VL) is expressed as Eq. 6.4 when the s-domain is used. 

 

VL = L
di

dt
= sLI (6.4) 

 

The series resistance voltage (VR0) of the equivalent circuit is expressed by Eq. 6.5. 

 

VR0 = I × R0 (6.5) 

 

By using s-domain, the voltage of n-th RC parallel network (𝑉𝑃𝑛) can be expressed as Eq. 6.6. 

 

VPn = (
1

s
) [

I

C
−

V

RC
] (6.6) 

 

When Eq. 6.4, Eq. 6.5, and Eq. 6.6 are used with the measured OCV, the cell voltage (VCell) can be 

calculated by Eq. 6.2. 
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6.2.3 The output of continuous cell impedance at multiple frequencies 

The cell voltage output (VCell) from the cell model is Fourier transformed in a callback function called 

StopFcn to obtain the amplitude of the output voltage at each test frequency.  

If amplitudes at frequencies up to 1 kHz are to be measured, a sampling rate of at least 2 kHz should 

be used to satisfy the Nyquist-Shannon sampling theory. And the number of data for the Fourier 

transform must be the n-th power of 2. In the simulation, a sampling rate of 2048 Hz is used, which 

samples 2048 (211) voltage data every second. The sample time of each test frequency generation 

model is set to 1/sampling rate. The step size in the model solver should also be an expression related 

to the sampling rate. 1/sampling rate is used for the max step size.  

 

Fig. 6.6 (a) shows the input current (Currentin) for 1 second, and Fig. 6.6 (b) shows the output voltage 

for 1 second (Voltageout). If the voltage data in the time domain of Fig. 6.6 (b) is Fourier transformed, 

it can be expressed in the frequency domain as shown in Fig. 6.6 (c). 
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(a) 

 
(b) 

 
(c) 

Figure 6.6 (a) Input current and (b) output voltage expressed in the time domain, and (c) the output voltage 
expressed in the frequency domain as a result of the simulation model. 
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The output voltage amplitudes at 1 Hz and 250 Hz obtained in Fig. 6.6 (c) are used to calculate the 

impedance at each frequency by Eq. 2.9. 

 

Fig. 6.7 shows the impedance simulation results at four different frequencies of the cell during 

discharge. While the cell is discharged, the lower the frequency, the more impedance changes. Table 

6.4 shows the increased rate in impedance as cell DoD increases. The increased rate of cell impedance 

at 10 Hz, 100 Hz, and 1 kHz is calculated over the entire DoD range, but at 1 Hz, it is calculated in the 

1% to 96% DoD range. This is to exclude impedance that is not properly measured as explained in 

Subsection 5.2.1. 

 

 
Figure 6.7 Simulation result of 1, 10, 100, and 1000 Hz impedance in the entire DoD range of the discharged 

cell. 

 

Table 6.4 Increased rates in impedance at each frequency. 

Frequency Increased rate 

1 Hz 113.15 % 

10 Hz 107.29 % 

100 Hz 104.73 % 

1 kHz 104.32 % 
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6.2.4 Cell temperature model 

At lower frequencies, impedance is more affected by cell temperature and cell SoC. Fig. 6.8 shows 

the temperature change of the battery cells discharged at each different C-rate in a temperature 

chamber set to 25°C. Cell temperature is related to discharge current and discharge time. The 

temperature model is implemented as a 2D lookup table that receives the discharge current and 

discharge time as inputs, as shown in Fig. 6.1. 

 

 
Figure 6.8 Temperature changes of cells discharging at different C-rates. 

 

The equation between cell temperature and cell impedance can be obtained from the empirical 

relationship through EIS measurement, which can be used to estimate impedance changes due to 

temperature changes. The output of the temperature model  Tcell is used to adjust the impedance 

considering the temperature. The 1Hz impedance is adjusted to the cell temperature with Eq. 5.2. 
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6.3  Simulation Result and Validation 

This section shows the simulation results of the developed battery cell model. The accuracy of the 

simulation results is shown in comparison with the measurement results. 

6.3.1 Simulation of continuous cell impedance 

- 1Hz impedance during discharge 

Table 6.5 shows the parameters used for measurements and simulations. The 1 Hz impedance of a 

cell discharging at different C-rates is shown in Fig. 6.9 (a). The measured impedance is represented by 

dotted lines and the simulation results by solid lines. Fig. 6.9 (b) shows the percentage error between 

the measured impedance and the simulation results. 

 

Table 6.5 Conditions for both simulation and measurement of the impedance of the cell during discharge. 

Parameter Description 

DC offset 1.5 C, 1 C, 0.5 C, 0.25 C and 0.125 C 

Cell SoC From 100% to 0 % 

Cell SoH 95 % (cell #6) 

Test frequency 1 Hz, 250 Hz 

Amplitude 50 mA (each) 
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(a)

(b)
Figure 6.9 (a) Simulated and measured 1 Hz impedance of cells discharged at different C-rates (dashed line: 
measured impedance, solid line: simulated impedance). (b) Percentage errors of the estimated impedance 

compared to the measured impedance at different C-rates.

Table 6.6 shows the mean of percentage errors at each C-rate.

Table 6.6 Average values of each percent error at different C-rates.
C-rate Percent error (%)

1.5 2.28
1 2.36

0.5 1.32
0.25 0.76

0.125 0.56
Total 1.46
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- 250 Hz impedance at each cell SoH 

When cell impedance is used for cell SoH estimation, it is recommended to use a higher frequency to 

be less influenced by SoC. Eq 4.1 for impedance adjustment according to SoH is applied to 250 Hz 

impedance in the simulation model. 

 

The result is shown in Fig. 6.10, and the percentage errors compared to those measured in cells at 

each SoH are shown in Table 6.7. 

 

 

 
Figure 6.10 Continuous 250 Hz impedance at each SoH (dashed line: measured impedance, solid line: 

simulated impedance). 

 

Table 6.7 Average values of percent errors of the estimated impedance relative to the measured impedance at 
different SoHs. 

SoH (%) Percent error (%) 

100 0.43 

95 0.33 

90 0.75 

85 0.55 

80 0.45 

75 0.35 

Average 0.48 
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6.3.2 Simulation of cell impedance discharging from different initial SoCs 

In the preceding subsections, the simulation results are represented until the fully charged cell is 

completely discharged. However, the cell does not always discharge to 100% SoC. Here, simulation 

results when cells are discharged at different initial SoCs are compared with measurement results. The 

experimental conditions are shown in Table 6.8. The cell is discharged for 10 minutes after a relaxation 

of 60 minutes. Then, 10 minutes of cell discharge and 60 minutes of cell relaxation are repeated until 

the cell is completely discharged. The cell impedance is measured every second while the cell is 

discharged. 

 

Table 6.8 Conditions for simulation and measurement of cell impedance discharged from different initial SoCs. 

Parameter Description 

Test frequency 1 Hz 

Amplitude 50 mA 

DC bias 2.6 A (1 C) 

Depth of discharge From 0 to 100 % 

Discharge time 10 min. (each) 

Relaxation time 60 min. (each) 

Cell SoH 95 % (cell #6) 

Initial temperature 25 °C 

 

Fig. 6.11 (a) shows the measured cell voltage (dotted line) and the model output voltage (solid line), 

and Fig. 6.11 (b) shows the percentage error between the measured voltage and the simulation result. 

The average of percent errors in the total DoD range is 0.42%. 

   



6 Modeling of LIB Cells for State Monitoring

75

(a)

(b)
Figure 6.11 (a) Discharge curve of a cell in which 10 minutes of discharge and 60 minutes of relaxation are 

repeated (dashed line: measured voltage, solid line: simulated voltage). (b) Percentage error of simulated cell 
voltage compared to the measured voltage.
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Fig. 6.12 (a) shows the output of the cell temperature model. The cell temperature rises every 10 

minutes of discharge, and after every 60 minutes of relaxation, the cell temperature drops to 25 °C. 

Fig. 6.12 (b) shows the measured 1 Hz impedance (blue dotted line), simulated 1 Hz impedance (red 

solid line), and simulated 1 Hz cell impedance after being adjusted to temperature (green solid line). 

Fig. 6.12 (c) shows the percentage error between the measured 1Hz impedance and the simulated 1Hz 

impedance adjusted to the temperature. The average percent error in the overall DoD is 2.59%, and 

the average percent error in DoD 0% to 95% is 1.16%. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6.12 (a) Output of the cell temperature model when discharging for 10 minutes and relaxation for 60 
minutes are repeated. (b) Measured continuous 1 Hz impedance and simulated results (red line: before 
adjusting to temperature; green line: after adjusting to temperature). (c) Percent error of simulated 1Hz 

impedance considering the cell temperature compared to the measured impedance. 
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6.3.3 Simulation results at different diagnostic parameters 

As mentioned earlier, one of the advantages of this simulation model is that it shortens the time 

required for experiments. As examples of this model being used, the following subsections compare 

simulation results of continuous cell impedance at different diagnostic parameters. 

- Simulation of continuous cell impedance from 1 to 100 Hz 

Fig. 6.13 (a) shows the cell impedance from 1 Hz to 100 Hz of cells discharging from DoD 0% to 100%. 

Fig. 6.13 (b) shows the increased rate of impedance in the range between 1% and 95% of DoD at each 

frequency. The impedance at each frequency is simulated at 1 Hz intervals. The simulation conditions 

are shown in Table 6.9. 

 

Table 6.9 Simulation conditions for comparing cell impedance from 1 Hz to 100 Hz. 

Parameter Description 

Test frequency 1 Hz to 100 Hz 

Depth of discharge From 0 to 100 % 

Cell SoH 95 % (cell #6) 

DC bias 1.3 A (0.5 C) 

Sampling rate 2048 Hz 

Amplitude 50 mA (each) 
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(a)

(b)
Figure 6.13 (a) Continuous cell impedance from 1 Hz to 100 Hz simulated in the entire DoD range. (b) The 

increased rate of impedance at each frequency.

Both Fig. 6.13 (a) and Fig. 6.13 (b) show that the higher the frequency, the fewer impedance changes 
due to DoD changes. For this simulation to be measured as an experiment, it would take ca. 550 hours 
(ca. 23 days), assuming that the required time for temperature setting is excluded and cell SoH is not 
changed even in charging/discharging cycles (ca. 120 minutes for CC-CV charging + 90 minutes for 
relaxation + ca. 120 minutes for 0.5C discharge) *100 times).
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- Simulation of continuous cell impedance at different sampling rates

Fig. 6.14 (a) shows the simulation results of cell impedance during discharge at different sampling 
rates. Fig. 6.14 (b) shows the percentage error of simulation results at sampling rate 2048 Hz and from 
16 Hz to 1024 Hz. Table 6.10 shows the simulation conditions.

(a)

(b)
Figure 6.14 (a) Continuous cell impedance in the entire DoD range simulated at different sampling rates. (b)

Percentage errors of the simulation results between the sampling rate of 2048 Hz and each sampling rate of 16 
Hz to 1024 Hz.
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Table 6.10 Simulation conditions for comparing continuous 1 Hz impedance at different sampling rates. 

Parameter Description 

Sampling rate 16 Hz to 2048 Hz 

Test frequency 1 Hz 

Depth of discharge From 0 to 100 % 

Cell SoH 95 % (cell #6) 

DC bias 1.3 A (0.5 C) 

Amplitude 50 mA (each) 

 

Fig. 6.14 (a) shows that the lower the sampling rate, the lower the output impedance. This does not 

mean that the cell impedance actually decreased, but that the measurement error increased. In 

Fourier transformations, the lower sampling rate results in fewer samples collected in one cycle of 

signals in the time domain, resulting in a greater error due to the failure of the signal to restore 

properly in the frequency domain. Table 6.11 shows the average of the percent errors at each sampling 

rate in Fig. 6.14 (b). 

 

Table 6.11 Percent errors of the mean of the impedance simulated at a sampling rate of 2048 Hz and the mean 
of the impedance simulated at each different sampling rate. 

Sampling rate Percent error 

16 Hz 1.63 % 

32 Hz 0.48 % 

64 Hz 0.16 % 

128 Hz 0.06 % 

256 Hz 0.026 % 

512 Hz 0.01 % 

1024 Hz 0.00 % 

 

As shown in Table 6.11, when a sampling rate of 16 Hz is used, an average error of 1.63% occurs 

compared to when 2048 Hz is used. Meanwhile, the simulation result when a sampling rate of 1024 Hz 

is used do not reveal the difference from when 2048 Hz is used. Such information can be used to select 

diagnostic parameters and hardware performance for optimized cell monitoring. 
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7 Frequency Excitation to the Battery Pack

Up to Chapter 6, the impedance of single LIB cells is measured to estimate the state. However, in 
most applications, cells are connected in series to reach the required voltage level and connected in 
parallel to provide sufficient capacity and used as a battery pack or module. However, it is more likely 
to fail in a battery pack connected to multiple cells than in a single battery cell. The probability of failure
of the battery pack of n cells exceeds n times the probability of failure of a single cell.

While parallel-connected battery cells always have the same voltage, the serial-connected cells 
experience a non-uniform load even if the same current flows, such that a voltage deviation occurs 
between the cells shown as Fig. 7.1. In this case, even if the battery pack voltage is in a normal range, 
some cells may be over-discharged or overcharged, which may cause a fatal failure, such as thermal 
runaway [230, 231], from an unstable state in the battery pack [232]. Thus, management of serial-
connected battery packs is particularly important, and this chapter deals with battery packs in which 
cells are series-connected. I.e., The battery diagnostic device using the frequency response may be 
attached to a bundle of battery cells connected in series or attached to each cell.

(a) (b)
Figure 7.1 (a) Series-connected cells having a uniform voltage and (b) having a non-uniform voltage

Fig. 7.2 shows the results of simulating the impedance of a battery pack consisting of series-
connected cells. Table 7.1 shows the simulation conditions.

Table 7.1 Conditions for simulating 1 Hz and 250 Hz impedance of a battery pack consisting of series-connected 
cells.

Parameter Description

DC offset 2.6 A (1 C)
Cell SoC From 100% to 0 %

Test frequency 1 Hz, 250 Hz
Amplitude 260 mA (each)
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Figure 7.2 Results of 1 Hz and 250 Hz impedance simulation of a battery pack consisting of series-connected 

cells. 

 

According to the simulation result in Fig. 7.2, it is shown that the impedance of a battery pack in which 

cells are connected in series is the sum of the impedance of each cell. Depending on the degradation 

state or amount of charge of each cell, the impedance of the battery pack will change, and it seems 

that it can be used for SoH and SoC estimation as covered in Chapters 4 and Chapter 5. However, this 

is a simulation in an ideal situation where all the chemical properties of the connected cells remain the 

same, and the impedance in the actual battery pack is not as simple as this simulation result. 

 

This chapter deals with a study on the frequency response when frequencies are applied to battery 

packs in which battery cells are connected in series. In particular, it is considered that the voltages of 

the cells in series-connected battery packs are not properly balanced. I.e., it is not enough to simply 

consider the relationship between the impedance and the SoH or SoC of the battery pack, and different 

states of the connected cells should be considered. 

 

The investigations and results presented in this chapter have been published in [13]. 
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7.1  Cell Balancing 

Since not all battery cells are manufactured identically, individual cells do not contribute equally to 

the system. Even if each cell is made of the same chemistry with the same physical size, shape, and 

weight, it has different capacities, different self-discharge rates, different internal resistance, different 

SoHs, etc  [233–235]. Therefore, cell balancing must be carried out during the charging or discharging 

of the battery pack [236]. Otherwise, the cells in the battery pack are charged and discharged at 

different rates, and the difference in individual cell voltages increases over time [237–240], and as a 

result, energy loss and heat generation increase [241, 242], charging amount decreases, energy 

efficiency decreases, and performance degradation accelerates [243], and the battery pack cannot 

operate efficiently [244]. When the cells are overcharged or over-discharged, the pack capacity is lost 

over time, the cycle life of the battery pack is reduced, and a safety risk may be caused [245, 246]. 

Eventually, if one cell with an error in the battery pack is not replaced immediately, fatal consequences 

may occur. However, even if a cell with an error in the battery pack is replaced, the same problem 

occurs because the new cell has different chemical properties from the cells already used. 

 

The cell balancing system minimizes cell-to-cell voltage and SoC deviation [246, 247]. As a result, 

voltage stress of individual cells is reduced [247, 248], overall reliability and safety of individual cells 

are increased [240, 241, 249, 250], the effect of cell aging due to capacity loss is minimized [251–253], 

and battery life is extended [244, 254–257]. Additionally, cell balancing not only maximizes the energy 

transferred to the cell during the charging process but also maximizes the energy emitted from the cell 

during the discharging process [238, 258–261].  
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7.2  Causes of Cell Imbalance 

The cells in a battery pack have different chemical reactions due to different manufacturing processes, 

internal resistance, self-discharge rate, degradation and temperature for each cell [213, 262, 263]. 

Factors affecting cell imbalance can be divided into intrinsic and extrinsic factors [264, 265]. Intrinsic 

factors are related to the manufacturing process, including differences in capacity, impedance, amount 

of active material, self-discharge rate, etc [266]. Extrinsic factors include the connection method of 

cells, charge/discharge current, heat dissipation, etc [267]. Temperature deviation of cells in the 

battery pack affects cell characteristics, including self-discharge rate, and causes performance 

deviation [268]. And the external circuit connected for cell management exacerbates the imbalance of 

each cell by consuming different power. 

 

Cell SoC imbalance is an important issue for BMS to solve [269]. Even if cells are produced of the same 

type by the same manufacturer, there is uncertainty in the battery parameter, and the accuracy of SoC 

estimation varies from cell to cell [270]. In addition, in SoC estimation performed based on a battery 

model, an SoC estimation error occurs due to model uncertainty that cannot represent a physical 

system under various operating conditions without error [271, 272]. 

 

Cell capacity imbalance is an important issue to be solved as well. The battery cell capacity varies due 

to factors such as average cell discharge current, discharge time, internal cell temperature, end of 

discharge (EoD) voltage value, self-discharge, aging, etc [273]. Manufacturers generally guarantee a 

difference in cell capacity of ±5% [238], and serial-connected cells are often imbalanced. An imbalance 

in battery cells connected in parallel is caused by a difference in the net current of each cell, which is 

caused by a deviation in the internal resistance of the cell, which is a factor in different discharge and 

aging performance [274, 275]. 
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7.3  Problems Due to Battery Cell Imbalance 

If one weak cell is overcharged or over-discharged due to the voltage difference of the cells connected 

in series, it causes the battery to fail or shorten the cycle life, reduce the available capacity due to the 

early termination of charging and discharging, and cause the safety problem of explosion [260, 276, 

277]. In order to extend the cycle life of the battery pack, each cell needs to be utilized to maintain the 

SoC balance [278]. 

 

Cell balancing prevents the risk caused by an excessive increase in cell voltage. LIBs have very high 

electrical energy, which can pose a serious safety risk due to cell imbalance [245, 276]. If the cell 

voltage exceeds the limit, the cathode is decomposed and heat is generated, and a short circuit is 

caused by the deposition of metallic lithium on the anode surface [279]. As a result, active components 

react with each other and with electrolytes, resulting in fire and explosion [280, 281]. When one cell 

is damaged, degradation accelerates sequentially to other cells in the pack due to imbalance. 

 

The cell with the lowest or highest SoC limits overall battery performance. When the battery cell is 

over-discharged, irreversible chemical reactions reduce the available cell capacity and cause the cell 

to explode [282, 283]. To prevent over-discharge, the BMS terminates the discharge of the battery 

pack even if one cell reaches a low voltage threshold, and thus the available capacity is reduced [276, 

280, 284, 285]. Due to the early cut-off of the battery discharge, there is residual energy that cannot 

be used in the battery pack.  

Similar problems occur during the charging process as well [284]. If one cell has less capacity than the 

other cells serially connected in the pack, an imbalance occurs even if all cells have the same initial SoC 

[286]. BMS terminates the charging process when one cell with the highest SoC reaches the upper limit 

of the voltage, which wastes the energy and capacity remaining in the other cell. 

 

Therefore, in order to effectively utilize the battery pack, it is desirable to reduce the imbalance of 

each cell during charging and discharging. 
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7.4  Detection of an Over-discharged Cell in a Battery Pack Using THD 

THD is also called the distortion factor, which is defined as the ratio of the sum of the powers of every 

harmonic component to the power of the fundamental frequency. When the sinusoidal frequency ω 

signal passes through a nonlinear device, nω components, which are multiples of input frequencies 

called harmonics, occur. THD can be used to indicate the degree of nonlinearity of the system by 

representing the proportion of components at the added harmonic frequency to the component at 

the input frequency. To clarify, THD used in this thesis refers to THD+N, which is more commonly used 

in devices. THD+N means adding noise to THD and is represented by Eq. 7.1. 

 

THD + N =  
√∑ Vn

2 + ∑ Noise2

√V1
2

 × 100 (%) (7.1) 

where Vn is the RMS value of the n-th harmonic voltage and V1 is the RMS value of the fundamental 

component. 

 

THD analysis is a non-invasive method that uses frequency responses for system analysis and has the 

advantage of being able to measure behavior due to the nonlinear dynamics of the LIB, which is not 

possible for EIS analysis. As described in Section 2.5, better performance and safe operation of the LIB 

requires an understanding of electrochemical and physical processes, and EIS is a well-known non-

destructive measurement technique used for this purpose. However, despite the non-linear processes 

involved in the operation of LIB cells, a type of electrochemical cell, EIS cannot analyze them because 

EIS analysis is only possible in linear systems and requires pseudo-linearity of electrochemical systems. 

 

Among the nonlinear dynamic analysis methods applied to various research fields, THD is commonly 

used in acoustic studies for noise detection [287]. THD can be applied as a quality criterion for linearity 

evaluation and is also used to detect nonlinearity that reduces the reliability of EIS measurements [288, 

289]. In reference [290–295], nonlinear analysis using THD is used for the electrochemical 

characterization of fuel cells. In addition, in reference [296], harmonic impedance is applied to 

characterize the electrode material and electrochemical reaction of the redox system. In addition, in 

reference [297], distortion of the current response to the sinusoidal excitation voltage is measured to 

estimate the SoC of the lead-acid battery. 

 

As shown in Fig. 5.2, cell 1Hz impedance cannot be measured at the beginning of the cell discharge 

and at the deep DoD. The reason is that cell impedance can only be obtained from linear systems. As 

shown in Fig. 5.3, even if the battery cell is discharged with a constant current, the cell voltage is 

nonlinearly lowered due to activation polarization and concentration polarization. In these areas, the 

occurrence of un-inputted harmonic and noise components reduces the output voltage component at 

the input frequency of 1 Hz, resulting in a higher THD. At the beginning of the cell discharge and when 

the DoD is discharged beyond a certain limit, the cell does not exhibit a linear voltage output, resulting 

in an increased THD. I.e., over-discharge of the battery cell can be detected with THD, which indicates 

distortion of the response due to system nonlinearity.  

 

As mentioned in the previous section, over-discharging of LIB cells reduces the available capacity by 

irreversible chemical reactions, resulting in serious safety risks such as explosions. Even if only one 
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over-discharged cell exists in the battery pack, it accelerates the decomposition of other cells. 

Nevertheless, if only the battery pack voltage is measured, the presence of one over-discharge cell 

cannot be detected because it cannot be distinguished whether the voltage of each cell is uniformly 

lowered or only the voltage of one cell is exceptionally over-discharged. When the voltage of every cell 

in the battery pack needs to be measured in order to detect one over-discharged cell, complexity and 

cost increase according to the number of cells to be measured. However, when the THD of the battery 

pack is measured, the presence of one over-discharged cell can be detected through a voltage 

response at only two terminals of the battery pack even if the voltage of every cell is not measured. 

7.4.1 THD simulation of a cell during discharge 

A simulation model developed in Chapter 6 is used for THD simulation of a battery cell. Table 7.2 

shows the simulation conditions and Fig. 7.3 shows the simulated cell voltage, 1 Hz impedance, and 

THD while the cell is fully discharged. 

 

Table 7.2 Conditions for THD simulation of a battery cell that is discharged. 

Parameter Description 

Test frequency 1 Hz 

Initial SoC 100 % 

SoH 100 % 

DC bias 2.6 A (1 C) 

Sampling rate 1024 Hz 

Amplitude 26 mA 

Lower cut-off voltage 2.8 V 

 

 

 

Figure 7.3 Simulated cell voltage, 1 Hz impedance, and THD while the cell is discharged. 
 

As shown in Fig. 7.3, at the beginning and end of the discharge, the 1 Hz impedance cannot be 

correctly estimated and shows a low value, while the THD, which indicates the degree of distortion of 

the input signal, increases. 
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Fig. 7.4 and Fig. 7.5 show simulated voltage and frequency responses in cell SoC 50% and 2%, 

respectively. 

 

(a) 

 

(b) 

Figure 7.4 (a) Simulated voltage response and (b) frequency response for 1 second at 50% SoC. 

 

In Fig. 7.4 (a), the cell voltage at 50% SoC, which is the middle of the cell discharge, shows a sine wave 

of 1 Hz, which is hardly distorted. In the frequency domain of Fig. 7.4 (b), few components other than 

the input 1 Hz component appear. Here, THD simulated at 50% cell SoC is 2.59%. 
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(a) 

 

(b) 

Figure 7.5 (a) Simulated voltage response and (b) frequency response for 1 second at 2% SoC. 

 

In Fig. 7.5 (a), the cell voltage at 2% SoC, just before the complete discharge of the cell, shows a 

severely distorted 1 Hz sine wave. In the frequency domain of Fig. 7.5 (b), added components other 

than the input 1 Hz component are shown. These added frequency components are caused by system 

nonlinearity and cause THD to increase. Here, THD simulated in cell SoC 2% is 73.49%. 

As a result, when THD is measured in the frequency response of the battery cell, a cell discharged 

beyond a certain limit can be detected. 
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7.4.2 THD measurement of a cell during over-discharge 

The voltage and THD during the discharge of one battery cell are measured by the measurement 

system introduced in Chapter 3. Fig. 7.6 shows a device that connects three LIB cells in series. In this 

device, the bonding part of the battery socket is formed in the form of a pin, which not only reduces 

the contact resistance, but also provides a constant contact part, so that it has a constant contact 

resistance. 

 

 
Figure 7.6 A photo of a device that connect three LIB cells in series. 

 

The voltage of each cell is measured at V1, V2, and V3, the total voltage of the connected cells is 

measured at V4 , and Cout  is used to control the current passing through the battery cells using 

electronic loads. 

 

Table 7.3 shows the experimental conditions for measuring THD during over-discharge of a LIB cell, 

and Fig. 7.7 shows the measured cell voltage and THD. The lower cut-off voltage of the cell defined by 

the manufacturer is 2.8 V, but the cell is over-discharged up to 2.5 V for the experiment. 

 

Table 7.3 Experimental conditions for THD measurement until a cell is over-discharged. 

Parameter Description 

Test frequency 1 Hz 

Initial SoC 100 % 

Cell SoH 90 % 

DC bias 2.6 A (1 C) 

Amplitude 26 mA 

Lower cut-off voltage 2.5 V 
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Figure 7.7 Cell voltage and THD measured until the cell is over-discharged. 

 

Fig. 7.7 shows that THD increases when a cell is discharged below a certain voltage, as shown in the 

simulation result in Fig. 7.3. Table 7.4 shows THD values at different cell voltages. 

 

Table 7.4 THD values at different cell voltages. 

Cell voltage (V) THD (%) 

3.0 13.29 

2.9 25.5 

2.8 46.31 

2.7 86.87 

2.6 311.74 

2.5 538.78 

 

Table 7.4 shows that the THD increases significantly as the cell voltage decreases while the cell is 

over-discharged. THD increases even before the cell over-discharge begins, thus it can be used to 

predict and prevent cell over-discharge. 
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7.4.3 THD measurement of the battery pack during over-discharge 

THD is measured in voltage response during over-discharge of a battery pack in which three cells are 

connected in series. 

 

Table 7.5 shows the experimental conditions for measuring the THD of the battery pack while one 

cell is over-discharged, and Fig. 7.8 shows the voltage and THD of the battery pack while one cell is 

over-discharged. The battery pack is over-discharged until one cell voltage reaches 2.5 V. 

 

Table 7.5 Experimental conditions for measuring THD of a battery pack while one cell is over-discharged. 

Parameter Description 

Test frequency 1 Hz 

Initial SoC 100 % 

Cell SoH 90, 85 and 70 % 

DC bias 2.6 A (1 C) 

Amplitude 26 mA 

Lower cut-off voltage 2.5 V 

 

 

Figure 7.8 Voltage and THD of the battery pack while one cell is over-discharged. 

 

As shown in Fig. 7.8, the battery pack voltage is 8.62 V when one cell is over-discharged to 2.50 V, 

which does not reach the lower limit voltage of 8.40 V. Only by measuring a decrease in the battery 

pack voltage, it is not possible to distinguish whether every cell voltage is uniformly lowered, or one 

cell is over-discharged. Nevertheless, since one cell is over-discharged, it is shown that THD measured 

by the voltage response of the battery pack significantly increases. 

 

Fig. 7.9 shows the THD of the battery pack and the voltages of each cell. 
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Figure 7.9 THD of the battery pack and voltages of each cell while one cell is over-discharged. 

 

Fig. 7.9 shows that THD begins to increase as one cell begins to discharge below a specific voltage. 

Although the charge of the other cells still remains, the THD is remarkably increased due to the over-

discharge of one cell. 

 

Table 7.6 shows increased rates of THD of the battery pack at different cell voltages while a cell with 

70% SoH is over-discharged. 

 

Table 7.6 THDs at different cell voltages of a cell with 70% SoH. 

Voltage of cell with 70% SoH (V) THD (%) 

3.0 14.37 

2.9 14.70 

2.8 18.57 

2.7 27.14 

2.6 36.62 

2.5 49.72 

 

Table 7.6 shows that the THD of the battery pack increases as only one cell is over-discharged.  

 

THD measured while one cell is over-discharged in a battery pack to which three cells are connected 

(Table 7.6) shows a lower value than THD measured while only one cell is over-discharged (Table 7.4). 

Nevertheless, it is shown that THD can be used to detect one cell over-discharge in the battery pack. 

As the over-discharge of the cell intensifies, THD increases significantly.  
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7.4.4 THD simulation in different numbers of serial-connected cells 

It is simulated that as the number of serial-connected cells increases, the degree of increase in THD 

due to the over-discharge of one cell decreases. In simulations in this subsection, when the other cells 

begin to discharge at 100% SoC, one cell begins to discharge at 50% initial SoC. The one cell discharged 

at 50% initial SoC, called a weak cell, reaches EoD earlier than the other cells. The number of cells 

connected in series is simulated from 2 to 32, and Table 7.7 shows the simulation conditions. 

 

Table 7.7 Conditions for THD simulation in different numbers of series-connected cells. 

Parameter Description 

DC offset 1 C 

Lower cut-off voltage 2.8 V 

Test frequency 1 Hz 

Amplitude 260 mA 

Number of series-connected cells 2 to 32 

 

Fig. 7.10 illustrates the simulation result of the voltage of a battery pack consisting of 15 cells and one 

normal cell voltage while one weak cell reaches EoD as an example. 

 

 
Figure 7.10 Battery pack voltage and normal cell voltage while one weak cell reaches EoD. 

 

In Fig. 7.10, the solid black line represents the total voltage of the 15 cells connected in series and 

shows the voltage value on the left y-axis. The solid red line shows a weak cell voltage, and the solid 

blue line shows the voltage of one normal cell, and their voltage values are indicated on the right y-

axis. It can be seen that, even though one weak cell reaches EoD and may be over-discharged, the 

battery pack voltage does not significantly decrease. 

 

Fig. 7.11 illustrates the THD of the simulated battery pack voltage at different numbers of cells while 

the voltage of the weak cell reaches the lower cut-off. In this simulation result, the number of 

connected cells ranges from 2 to 32, and the darker the color of the line, the more cells it has. The x-

axis indicates the voltage of the weak cell, and the y-axis indicates the THD of the battery pack voltage. 
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Figure 7.11 THD for weak cell voltages in different numbers of series-connected cells.
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The THD of the battery pack increases as the voltage of one weak cell decreases. As the number of 

connected cells increases, the degree to which THD increases decreases.  

 

Fig. 7.12 and Table 7.8 show the increased rate of THD when the weak cell voltage is 2.8 V compared 

to 3.4 V in different cell numbers. 

 

 

Figure 7.12 THD increased rate in the different number of series-connected cells. 
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Table 7.8 THD increased rate in the different number of series-connected cells. 

Number of cells THD at 3.4 V (%) THD at 2.8 V (%) THD increased rate (%) 

2 15.97 1074.77 6630.49 

3 12.52 246.86 1872.26 

4 10.11 108.19 970.44 

5 8.44 61.09 624.16 

6 7.23 39.52 446.88 

7 6.31 27.83 340.69 

8 5.61 20.77 270.51 

9 5.04 16.16 220.89 

10 4.57 12.99 184.04 

11 4.19 10.71 155.65 

12 3.86 9.03 133.88 

13 3.58 7.72 115.41 

14 3.34 6.69 100.14 

15 3.13 5.86 87.31 

16 2.94 5.19 76.37 

17 2.78 4.64 66.95 

18 2.63 4.18 58.74 

19 2.50 3.78 51.53 

20 2.38 3.45 45.16 

21 2.17 2.91 34.37 

22 2.08 2.70 29.77 

23 1.99 2.50 25.60 

24 1.92 2.33 21.81 

25 1.84 2.18 18.33 

26 1.78 2.05 15.15 

27 1.72 1.93 12.22 

28 1.66 1.82 9.51 

29 1.60 1.72 6.99 

30 1.55 1.63 4.66 

31 1.51 1.54 2.48 

32 1.46 1.47 0.45 

 

The higher the number of cells connected in series, the lower the rate of increase in THD. When 32 

cells are connected, the increased rate of THD at 2.8V is close to 0%. In other words, as the number of 

connected cells increases, the increase rate of THD of the battery pack decreases, and according to the 

simulation, when ca. 32 cells are connected, the THD cannot be used to detect that one cell has 

reached EoD. However, in actual measurements, it is expected that over-discharge can be detected 

even if more than 32 cells are connected. In the simulation results in Fig. 7.11, THD decreases as the 

cell voltage approaches 2.8V. Meanwhile, according to the actual measurement results in Fig. 7.7 and 

Fig. 7.8, the THD value increases more significantly during the cell is actually over-discharged. Note 

that the voltage response during over-discharge cannot be simulated because the behavior of a cell 

over-discharge with less than 0% SoC is not considered in the development of this battery model.  
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8 Conclusion and Future Work 

This thesis deals with the LIB state monitoring method via frequency excitation. Not only single cells 

but also battery packs with connected cells are dealt with. Cell impedance at two frequencies is used 

to estimate each cell SoH and SoC, and a model for predicting cell impedance for optimization and 

simulation of the proposed algorithm is presented. In addition, an over-discharged cell in the battery 

pack can be detected as a method of measuring the frequency distortion rate. 

 

The LIB state monitoring method proposed in this thesis can be summarized as follows: 

• It can be used to estimate the battery state during operation by measuring the frequency response. 

• It is a kind of simplified EIS analysis method with a specific purpose. 

• It targets a specific system, not general system, thus excessive performance is not required. 

• It has a fast measurement speed. Since it uses two preselected frequencies, not a wide frequency 

range. 

• It is rather advantageous for estimating the state of LIB cells having a flat plateau in the discharge 

curve, which makes it difficult to measure the state. 

• It can also analyze the nonlinear processes of the battery system from frequency responses, unlike 

EIS measurements, which are only valid for linear systems. 

 

In Chapter 4, the cell SoH is estimated by impedance while charging or discharging a LIB cell of which 

SoC and temperature are unknown. Cell impedance at different frequencies is compared at different 

cell SoHs, SoCs, and temperatures. The lower the cell SoH, DoD, and temperature, the higher the cell 

impedance, and the greater the difference in impedance at the lower frequency. During charging, the 

cell impedance changes more, and a longer measurement time for cell SoH estimation is required than 

during discharging. In conclusion, the cell SoH is estimated by using the cell impedance that increases 

linearly as the cell degrades. When 250Hz impedance is used for cell SoH estimation, it takes about 4 

seconds while discharging and about 10 minutes while charging to reach a 98% confidence level. 

 

In Chapter 5, cell SoH estimated in Chapter 4 and the measured cell temperature are used to monitor 

the SoC of the LIB cells being discharged. Here, two frequencies are applied simultaneously to estimate 

each cell SoH and SoC. 1Hz impedance measured for cell SoC monitoring takes into account the effect 

of temperature and SoH. As a result, the proposed cell SoC monitoring method enables simultaneous 

estimation of the cell SoH and SoC whose initial value is unknown. In cells with 100% to 80% SoH, it 

takes 233 seconds for the cell SoC estimation to reach a 95% confidence level and 267 seconds to reach 

a 98% confidence level. 

 

Chapter 6 presents a LIB cell model used to optimize and simulate state monitoring algorithms using 

frequency excitation. A multi-frequency signal is applied to the DC bias of a cell being discharged, and 

thus, the real-time cell voltage and continuous cell impedance are predicted. The continuous cell 

impedance prediction takes into account the effect of cell SoC, SoH, temperature and C-rate, and even 

when cells are discharged at different initial SoCs, cell impedance is successfully predicted. While a 
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fully charged cell is discharged, a prediction result of 1Hz impedance shows an average error of 1.46%, 

compared to the measured cell impedance, and 2.59% when discharged at different initial SoCs. In 

addition, the prediction result of 250 Hz impedance shows an average error of 0.48%.  

The use of the proposed simulation model can save time for verification and optimization of 

diagnostic algorithms as well as cost for experimental devices. Simulation results are displayed in a 

short period of time with a simple input of each battery cell state parameter, so it is possible to 

determine the optimal state estimation parameters for the diagnostic algorithm and predict the results 

before performing a time-consuming cell test. 

 

Chapter 7 introduces a method of detecting an over-discharged cell in a battery pack in which battery 

cells are connected in series. Even if every cell voltage is not measured, the presence of one over-

discharged cell can be detected with THD measured in the voltage response of the battery pack. The 

proposed algorithm is verified through simulations and measurements. THD increases even before cell 

over-discharge begins and increases significantly as cell voltage decreases, which can be used as an 

effective factor to prevent over-discharge. 

As the number of connected cells increases, the increased rate of THD due to the over-discharge of 

one cell decreases. And as a result of the simulation, if 32 cells are connected in series, it cannot be 

detected using THD that one cell has reached EoD. Nevertheless, the measurement results show that 

the THD value increases more significantly when the cell is actually over-discharged. In the 

development of the battery model used, the behavior of cells over-discharged with less than 0% SoC 

is not considered, thus the voltage response during over-discharging cannot be simulated. Therefore, 

as future work, the difference in the increased rate of THD due to the over-discharge of one cell in 

different numbers of cells will be compared by measurement. In addition, the simulation model will 

be reinforced to take into account the behavior during the over-discharge of the cell. 

 

In this thesis, 250 Hz or 1 kHz is used for SoH estimation, and 1 Hz is used for SoC estimation. 

Nonetheless, the use of frequencies is not limited to them. Considerations for selecting the appropriate 

test frequency and test amplitude are covered in Subsection 3.2.1 and Subsection 5.1.1. 

 

Note that in the experiments in this thesis, cell SoH is set by repetitive cycles under the same 

controlled conditions. Estimation accuracy for cases where cells deteriorate due to exceptional 

conditions such as physical shock or extreme temperature is not verified in this thesis. 

 

DC bias has a nonlinear effect on cell impedance [298, 299], which results in a difference between 

the cell impedance measured by EIS and the continuous cell impedance measured during cell operation. 

Measurement errors increase in applications where the operating current continues to change, thus 

e.g., during the CV charging or during the acceleration of an EV, the cell impedance cannot be 

accurately measured. Nevertheless, the impedance measurement is possible during the CC charging 

and when the EV stops driving. 

 

Estimating SoC using 1Hz cell impedance is possible after discharging for 267 seconds, and is not 

possible below ca. 10% SoC. This is due to the characteristics inherent in LIB cells, as covered in 

Subsection 5.2.1. However, THD is significantly increased in these areas, which can be used to prevent 

over-discharge, and the cell voltage measurement method can be used as an auxiliary for SoC 

estimation. In addition, in these areas where 1Hz impedance cannot be accurately measured, the cell 

voltage change is remarkable, and thus cell SoC estimation using the cell voltage is advantageous for 
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use. Contrariwise, the cell voltage seems to be almost flat in the intermediate SoC range. This range, 

the so-called flat plateau in the discharge curve of LIB cells, is particularly notorious in LFP type cells, 

and makes it difficult to estimate SoC using cell voltage. Nevertheless, in this flat plateau, the voltage 

response of the cell is the most linear, thus the cell impedance can be measured more accurately, 

which is rather advantageous for SoC estimation using impedance. I.e., the method of using impedance 

for cell SoC estimation and the method of using cell voltage have complementary effects. Since the cell 

voltage is already measured to obtain cell impedance, SoC estimation using the cell voltage can be 

used without any additional device. 

 

To apply test frequency signals to an operating current and to measure the frequency response, 

additional devices to incur additional costs are required to the existing BMS. However, the proposed 

LIB state monitoring method does not have to be applied to every battery application. The cost of 

applying this method is included in the battery management cost and should be considered whether 

it can provide practical benefits. E.g., battery management is considered much more important in 

critical missions and large-capacity battery packs. Failure of critical missions or frequent replacement 

of expensive battery packs should be avoided, and large-capacity battery packs have a high risk of 

explosion due to management failures. In these cases, the damage caused by the failure of battery 

management can far exceed the cost of maintenance. 

 

This study only shows the experimental results of LCO and NMC type cells. However, since the 

proposed method is based on EIS technology already validated in various types of battery cells in a lot 

of literature, it is expected that it can be applied to other types of battery cells. In the future, it would 

be better if this proposed method is applied to other types of cells and the results are compared. 

 

Lastly, even though the cell state monitoring method proposed in this thesis has the advantages of 

considering cell temperature, cell tests are performed only between 20°C and 35°C, which are 

considered to be in the room temperature range. In the future, it would be better to analyze cell 

impedance at a wider range of temperatures for this method to be applied in a wider range. 
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10 Appendix 

In this thesis, a total of seven cells are used for measurement. Table 10.1 shows which cells are used 

in which figure and which cell SoH. 

 

Table 10.1 Cells used in the measurements and the SoH at the time. 

Cell number Product name SoH (%) (used figure) 

Cell #1 Samsung ICR 18650-26F 100 (3.1, 3.2, 3.3) 

Cell #2 Samsung ICR 18650-26F 90 (3.1), 85 (7.6, 7.7) 

Cell #3 Samsung ICR 18650-26F 80 (3.1), 70 (7.6, 7.7) 

Cell #4 Samsung ICR 18650-26F 100 (4.1, 4.2), 100 to 73 (4.3), 73 (4.4, 4.5) 

Cell #5 Samsung ICR 18650-26F 100 to 80 (5.2, 5.7, 5.8), 80 (5.4, 5.5, 5.6, 5.9, 5.10) 

Cell #6 
Samsung ICR 18650-26F 

95 (6.2, 6.4, 6.5, 6.8, 6.9, 6.10, 6.11, 6.12),  

90 (7.5, 7.6, 7.7) 

Cell #7 Bexel INR 18650-2600 SP01 100 to 70 (4.6, 4.7, 4.8) 
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