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Abstract

The dichromatic number →χ D( ) of a digraph D is the

smallest k for which it admits a k‐coloring where every
color class induces an acyclic subgraph. Inspired by

Hadwiger's conjecture for undirected graphs, several

groups of authors have recently studied the contain-

ment of complete directed minors in digraphs with a

given dichromatic number. In this note we exhibit a

relation of these problems to Hadwiger's conjecture.

Exploiting this relation, we show that every directed

graph excluding the complete digraph
↔
Kt of order t as a

strong minor or as a butterfly minor is O t t( (log log ) )6 ‐
colorable. This answers a question by Axenovich,

Girão, Snyder, and Weber, who proved an upper

bound of t4t for the same problem. A further

consequence of our results is that every digraph of

dichromatic number n22 contains a subdivision of

every n‐vertex subcubic digraph, which makes progress

on a set of problems raised by Aboulker, Cohen, Havet,

Lochet, Moura, and Thomassé.
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1 | INTRODUCTION

For a given integer ≥t 1 let m t( )χ be the smallest integer for which it is true that every graph
with chromatic number at leastm t( )χ contains a Kt‐minor. Hadwiger's conjecture [8], which is
one of the most important open problems in graph theory, states that m t t( ) =χ for all ≥t 1.
The conjecture remains unsolved for ≥t 7. For many years the best general upper bound
on m t( )χ was due to Kostochka [13,14] and Thomason [27], who independently proved that

every graph of average degree at least O t t( log ) contains a Kt‐minor, implying that

m t O t t( ) = ( log )χ . Recently, however, there has been progress. First, Norin, Postle, and Song

[22] showed that m t O t t( ) = ( (log ) )χ
β (for any β > 1

4
), which was then further improved by

Postle [23] to m t O t t( ) = ( (log log ) )χ
6 . For more details about Hadwiger's conjecture the

interested reader may consult the recent survey by Seymour [26].
This famous conjecture has influenced many researchers and different variations of it have

been studied in various frameworks, one of which is directed graphs.
The chromatic number of a digraph was introduced by Neumann‐Lara [21] in 1982

as the smallest number of acyclic subsets that cover the vertex set of the digraph. The
dichromatic number has received increasing attention since 2000 and has been an
extremely active research topic in recent years, we refer to [3,4,9,10] as examples of
important results on the topic.

In the case of digraphs there are multiple ways to define a minor. Here we consider
three popular variants: strong minors, butterfly minors, and topological minors. The
containment of these different minors in dense digraphs as well as their relation to the
dichromatic number has already been studied in several previous works, see, for example,
[2,12,15] for strong minors, [5,11,16,20] for butterfly minors, and [1,6,7,17–19,25] for
topological minors. Given digraphs D and H , we say that D is a strong H ‐minor model if
V D( ) can be partitioned into nonempty sets ∈X v V H{ : ( )}v (called branch sets) such that
the digraph induced by Xv is strongly connected for all ∈v V H( ), and for every arc u v( , ) in
H there is an arc in D from Xu to Xv. More generally, we also say that D contains H as a
strong minor and write ≽D Hs if a subdigraph of D is a strong H ‐minor model. Pause to note
that strong minor containment defines a transitive relation on digraphs, that is, if ≽D Ds1 2

and ≽D Ds2 3 for digraphs D D D, ,1 2 3, then ≽D Ds1 3.
At some places in the manuscript, we will use the following notation: If D is a strong

H ‐minor model witnessed by the partition ∈X v V H{ : ( )}v into branch sets, for an arc
∈e u u A H= ( , ) ( )1 2 we denote by v e u( , )1 and v e u( , )2 the endpoints of an arc in D which

connects Xu1 to Xu2, where v e u( , )1 is the tail of the arc in Xu1 and v e u( , )2 is the head of the arc
in Xu2.

Given an undirected graphG we denote by
↔
G the directed graph on the same vertex set where

for every edge ∈uv E G( ) the vertices u and v are connected in
↔
G by an arc in each direction.

We are particularly interested in forcing strong
↔
Kt‐minors, as those also yield a strong H ‐minor for

every digraph H on at most t vertices. Analogously to the undirected case, one can ask how large

the dichromatic number of a digraph should be to guarantee that it contains a strong
↔
Kt‐minor.

More precisely, we consider the function →sm t( )χ , which is the smallest integer for which it is true

that every digraph D with→ ≥ →χ D sm t( ) ( )χ satisfies ≽
↔

D Ks t. In a recent work, Axenovich, Girão,
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Snyder, and Weber [2] investigated the function →sm t( )χ . They showed that →sm t( )χ exists for every
≥t 2 and proved the bounds

≤ ≤→t sm t t+ 1 ( ) 4 .χ
t

They then raised the problem of improving in particular the upper bound and expressed
that they think that →sm t( )χ should be much closer to the lower than to the upper bound. Here
we confirm this belief by improving their upper bound substantially as follows.

Theorem 1. For every ≥t 1 we have

≤→sm t m t O t t( ) 2 ( ) − 1 = ( (log log ) ).χ χ
6

Now let us turn to butterfly minors. Given a digraph D and an arc ∈u v A D( , ) ( ), this arc is
called (butterfly‐)contractible if v is the only out‐neighbor of u or if u is the only in‐neighbor
of v in D. Given such a contractible arc e, the digraph ∕D e is obtained from D by merging u and
v into a new vertex and joining their in‐ and out‐neighborhoods, ignoring parallel arcs. A
butterfly minor of a digraph D is any digraph that can be obtained by repeatedly deleting arcs,
deleting vertices or contracting arcs.

In [20], inspired by Hadwiger's conjecture, Millani, Steiner, and Wiederrecht raised the
following question: For a given integer ≥k 1, what is the largest butterfly minor‐closed classk

of k‐colorable digraphs? They gave a precise characterization of 2 as the noneven digraphs.
The question concerning a characterization of k for ≥k 3 is closely related to the question of
forcing complete butterfly minors in digraphs. For an integer ≥t 1, let us define →bm t( )χ as the

smallest integer such that every digraph D with → ≥ →χ D bm t( ) ( )χ contains
↔
Kt as a butterfly

minor, and put

≔ ≥ ≤→b x t bm t x( ) max{ 1 ( ) }χ

for the integer inverse function of ⋅→bm ( )χ . Let us further denote by t the class of all digraphs

with no
↔
Kt as a butterfly minor. Then, on the one hand, every digraph excluding

↔
Kb k( +1) as

a butterfly minor is colorable with ≤→bm b k k( ( + 1)) − 1χ colors. On the other hand, every

digraph in k must exclude
↔
Kk+1 as a butterfly minor, since its dichromatic number exceeds k.

Therefore, for every k we have

  ⊆ ⊆ .b k k k( +1) +1

To see how tight the above inclusions are one needs to obtain good lower bounds on b k( + 1),
or equivalently good upper bounds on →bm t( )χ . In this direction, as an application of Theorem 1
we prove the following corollary. The previously best‐known upper bound on →bm t( )χ mentioned
in [20] was t4 ( − 1) + 1t t−2 and followed from the work of Aboulker et al. [1].

Corollary 1. For ≥t 1 we have ≤→bm t m t O t t( ) 2 (2 ) − 1 = ( (log log ) )χ χ
6 .
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For the sake of completeness we remark that a lower bound of ≤ →t bm t+ 1 ( )χ follows by

taking
↔

D G= where G is the complete graph on t + 2 vertices with a 5‐cycle removed. It is a

simple exercise to verify that ↔χ D t( ) = and that it contains no butterfly
↔
Kt‐minor.

Finally, we consider topological minors. Given a digraph H , a subdivision of H

is any digraph obtained by replacing every arc ∈u v A H( , ) ( ) by a directed path from u to v,
such that subdivision paths of different arcs are internally vertex‐disjoint. Then H is
said to be a topological minor of some digraph D if D contains a subdivision of H as a
subgraph.

Aboulker, Cohen, Havet, Lochet, Moura, and Thomassé [1] initiated the study of the
existence of various subdivisions in digraphs of large dichromatic number. For a digraph H

they introduced the parameter → Hmader ( )χ , the dichromatic Mader number of H , as the

smallest integer such that any digraph D with→ ≥ →χ D H( ) mader ( )χ contains a subdivision of H .
In their main result they proved that if H is a digraph with n vertices and m arcs, then

≤ ≤→n H nmader ( ) 4 ( − 1) + 1.χ
m

Gishboliner, Steiner, and Szabó [6] conjectured that
↔

≤→ K Ctmader ( )χ t
2 for some absolute

constant C. However, it seems surprisingly hard to find a polynomial upper bound even
for quite simple digraphs H . An indication for this increased difficulty compared with the

undirected case could be that for digraphs it is not even possible to force a
↔
K3‐subdivision by

means of large minimum out‐ and in‐degree (compare Mader [17]).

Gishboliner et al. [6] still managed to identify a wide class of graphs, called octus
graphs,1 for which the lower bound above is tight. Their result means that given a digraph
D with → ≥χ D n( ) it contains the subdivision of every octus graph on at most n vertices.

Here, along the same line of thinking, as a corollary of Theorem 1 we prove a similar result
for another class of digraphs. By slightly abusing the terminology, we call a digraph D subcubic
if D is an orientation of a graph with maximum degree at most three such that the in‐ and out‐
degree of any vertex is at most two.

Corollary 2. For ≥n 1 if D is a digraph with→ ≥χ D n( ) 22 then it contains a subdivision
of every subcubic digraph on at most n vertices.

1.1 | Notation

For a digraph D and a set ⊆S V D( ) we denote by D S[ ] the subdigraph spanned by the vertices
in S. The set S is called acyclic if D S[ ] is an acyclic digraph. We call D strongly connected if for
every ordered pair u v, of vertices in D there is a directed path in D from u to v. An in‐/out‐
arborescence is a rooted directed tree where every arc is directed towards/away from the root.
For the starting/ending point of an arc we will also use the names tail/head.

1We note that this class, in particular, includes orientations of cactus graphs (and hence orientations of cycles), as well
as bioriented forests.

626 | MÉSZÁROS AND STEINER



A (proper) coloring of an undirected graph G with colors in a set A is a map →f V G A: ( )
where neighboring vertices are mapped to different colors, or equivalently f a( )−1 is an independent
set for every ∈a A. If  A k= then f is called a k‐coloring. Analogously, an (acyclic) k‐coloring
of a digraph D is a map →f V D A: ( ) with  A k= where f a( )−1 is an acyclic set for every ∈a A.
The minimum k for which a k‐coloring exists is the chromatic (resp., dichromatic) number of the
undirected graph G (resp., digraph D), which we shall denote by χ G( ) (resp.,→χ D( )).

2 | PROOFS

2.1 | Strong minors

The proof of Theorem 1 will be based on the following result.

Theorem 2. For every digraph D there is an undirected graph G such that

(i) D is a strong
↔
G ‐minor model, and

(ii) → ≤χ D χ G( ) 2 ( ).

Proof. To start with, let us first fix a partition X X X, , …, m1 2 of V D( ) such that for every
∈i m{1, 2, …, } the set Xi is an inclusionwise maximal subset of ⧹ ∪ ⋯∪V D X X( ) ( )i1 −1

with D X[ ]i strongly connected and → ≤χ D X( [ ]) 2i . Note that the Xi's are well defined
since the one vertex‐digraph is strongly connected and 2‐colorable. Now we define G to
be the undirected simple graph with vertex set X X{ , …, }m1 and ∈X X E G( )i j if and only if
there are arcs in both directions between Xi and Xj in D. Then, by definition, D is a strong
↔
G ‐minor model, as one can simply take X X X, , …, m1 2 as the branch sets.

Therefore, what remains to prove is property (ii). For this let us assume that χ G k( ) =

and fix a proper coloring →f V G c c c: ( ) { , , …, }G k1 2 of G. Now, for every ≤i m take an
arbitrary acyclic two‐coloring of D X[ ]i (which exists by assumption) with colors c c{ ′, ″}i i .

The rest of the proof is about showing that by putting these colorings together we obtain
an acyclic coloring fD of D with the k2 colors c c c c c c{ ′, ″, ′, ″, …, ′, ″}k k1 1 2 2 .

Assume for contradiction that this is not the case, and there is a directed cycle C
in D which is monochromatic. We may, without loss of generality, assume that C
is a shortest such cycle, in particular, it is an induced cycle. Let i0 be the
smallest index for which C contains a vertex from Xi0. Note that, in particular,

⊆ ⧹ ∪ ⋯∪V C V D X X( ) ( ) ( )i1 −10
and, as fD is a proper coloring on D X[ ]i0 , the cycle C

cannot be fully contained in Xi0. Hence, C contains a subsequence u w w v, , …, ,1 ℓ of
consecutive vertices on C with ∈u w w w w v A C( , ), ( , ), …, ( , ) ( )1 1 2 ℓ , such that ∈u v X, i0

(possibly u v= ), ∈ ∪ ⋯∪w w X X, …, i m1 ℓ +10
, and ℓ > 0.

Let ∈s {1, …, ℓ} be the smallest index such that ws has an out‐neighbor in Xi0, and
denote this out‐neighbor by ∈x Xi0. Note that s is well defined, since ∈w v A D( , ) ( )ℓ and
∈v Xi0. We claim that ws has no in‐neighbor in D that is contained in Xi0. Suppose

towards a contradiction that there exists ∈y Xi0 such that ∈y w A D( , ) ( )s . Let j i> 0 be
such that ∈w Xs j. Then, because of the arcs ∈y w w x A D( , ), ( , ) ( )s s , we have

∈X X E G( )i j0
and hence ≠f X f X( ) ( )G i G j0

. This in turn implies that ≠f u f w( ) ( )D D s and
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≠f v f w( ) ( )D D s which contradicts the monochromaticity of C. Hence, we may assume
that ws has no in‐neighbor contained in Xi0. In particular, this implies ≥s 2. Let us now
consider the set

∪ ⊆ ⧹ ∪ ⋯∪X X w w V D X X= { , …, } ( ) ( ).i s i1 1 −10 0

It is clearly strongly connected, as Xi0 is so and u w w x, , …, ,s1 induce a directed path
(or cycle in case u x= ) starting and ending in Xi0. Moreover, any extension of an acyclic
{1, 2}‐coloring of D X[ ]i0 to a {1, 2}‐coloring of D X[ ] where w w, …, s1 −1 receive color 1 and
ws receives color 2 is acyclic. Indeed, by the definition of s, there are no arcs starting in
w w{ , …, }s1 −1 and ending in Xi0, and by the inducedness of C there are no arcs spanned
between nonconsecutive vertices inside w w{ , …, }s1 −1 . Adding the fact that ws has no in‐
neighbors in Xi0, these imply that any directed cycle in D X[ ] is either fully contained in
D X[ ]i0 , or contains both ws and at least one vertex in w w{ , …, }s1 −1 . In any case, it is not
monochromatic. However, the existence of the set X then contradicts with the
maximality of Xi0, which finishes the proof. □

Now we can easily deduce Theorem 1 from Theorem 2.

Proof of Theorem 1. Let D be a digraph with→ ≥χ D m t( ) 2 ( ) − 1χ . By Theorem 2 there

exists an undirected graph G such that → ≤χ D χ G( ) 2 ( ) and ≽
↔

D Gs . This implies that

≥χ G m t( ) ( )χ , and hence G contains a Kt‐minor. Taking the same branch sets in
↔
G

which give a Kt‐minor in G shows that
↔
≽
↔

G Ks t, and by transitivity ≽
↔

D Ks t. Since D was
arbitrarily chosen such that → ≥χ D m t( ) 2 ( ) − 1χ , this proves that ≤→sm t m t( ) 2 ( ) − 1χ χ ,
as required. □

We would like to remark that the above proof of Theorem 2 actually yields a slightly
stronger conclusion: Let the partition X X, …, m1 of V D( ) and the graph G be defined as in the
proof of Theorem 2. We then claim that for every edge ∈X X E G( )i j with i j< there are at least
two arcs in D which go from Xi to Xj, and at least two arcs which go from Xj to Xi.

To see this, note that by the definition of G there are edges in both directions spanned
between Xi and Xj, which implies that ∪D X X[ ]i j is also a strongly connected digraph. Then
suppose that contrary to our claim, there would be at most one edge from Xi to Xj (or at most
one edge from Xj to Xi) in D. Let ∈e A D( ) be such an edge, and note that removing e from

∪D X X[ ]i j destroys the strong connectivity and creates the two strong components Xi and Xj of
∪D X X e[ ] −i j . By choice of X X, …, m1 , we know that there exists an acyclic 2‐coloring
→f X: {1, 2}i i of D X[ ]i and an acyclic 2‐coloring →f X: {1, 2}j j of D X[ ]j . Possibly after

swapping colors 1 and 2 in f j, we may assume that the vertices ∈u Xi and ∈v Xj which form

the endpoints of e satisfy ≠f u f v( ) ( )i j . Now the common extension of fi and f j to ∪D X X[ ]i j

forms an acyclic 2‐coloring, since every directed cycle in ∪D X X[ ]i j intersecting both Xi and Xj
must use the edge e and can therefore not be monochromatic. This however means that ∪X Xi j

induces a strongly connected and 2‐colorable subgraph of D which properly contains Xi and is
disjoint from ∪ ⋯∪X Xi1 −1. Finally, this contradicts the maximality of Xi in our choice of
the partition ofV D( ), and proves our above claim. This stronger conclusion can then be used in
the proof of Theorem 1 to yield the stronger conclusion that every digraph of dichromatic
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number at least m t2 ( ) − 1χ in fact contains a strong
↔
Kt‐minor model in which between every

pair of branch sets, at least two arcs are spanned in each direction.

2.2 | Butterfly minors

Corollary 1 follows directly from Theorem 1 and the following proposition.

Proposition 1. Every strong
↔
K t2 ‐minor model contains

↔
Kt as a butterfly minor.

Proof. Let D be a strong
↔
K t2 ‐minor model and let X X X X{ , , …, , }t t1

+
1
− + − be a corresponding

partition ofV D( ) into t2 branch sets. In particular, for every ∈i t{1, …, } there exist ∈r Xi i
+ +

and ∈r Xi i
− − such that ∈r r A D( , ) ( )i i

− + . Since D X[ ]i
− and D X[ ]i

+ are strongly connected

digraphs, there exist2 oriented spanning trees ⊆T D X[ ]i i
− − and ⊆T D X[ ]i i

+ + such that Ti
− is

an in‐arborescence rooted at ri
− and Ti

+ is an out‐arborescence rooted at ri
+. Let us consider

the spanning subdigraph D′ of D consisting of the arcs contained in

≔ ∪ ∪ ( ){ }( ) ( ) ( )T r r A T A T, ,
i

t

i i i i
=1

− + + −

as well as all arcs of D starting in Xi
+ and ending in X j

− for ≠i j. Then every arc of D′
contained in T is either the unique arc in D′ emanating from its tail or the unique arc in
D′ entering its head. It follows that all arcs in T are butterfly‐contractible. Note that the
contraction of an arc does not affect the butterfly‐contractibility of other arcs, hence the
digraph ∕D T′ , obtained from D′ by successively contracting all arcs in T , is a butterfly
minor of D. The vertices of ∕D T′ can be labeled v v, …, t1 , where vi denotes the vertex
corresponding to the contraction of the (weakly) connected component of D′ inside

∪X Xi i
+ −. As D is a strong

↔
K t2 ‐minor model, by definition of D′ for every ∈i j k( , ) {1, …, }2

with ≠i j, there exists an arc in D′ starting in Xi
+ and ending in X j

−. Therefore, ∕D T′ is a

butterfly minor of D isomorphic to
↔
Kt, concluding the proof. □

2.3 | Topological minors

Finally, we prove Corollary 2.

Proof of Corollary 2. As a first step note that given ∈n , every undirected graph G

with a minimum degree at least ⋅n n n10.5 > + 6.291
3

2
contains every n‐vertex subcubic

graph as a minor. This follows directly from a result of Reed and Wood [24], who proved
that every graph with an average degree at least n m+ 6.291 contains every graph with
n vertices and m edges as a minor.

2Such trees can easily be obtained by considering a breadth‐first in‐search (resp., out‐search) starting from ri
− (resp., ri

+).
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Let now D be any digraph with→ ≥χ D n( ) 22 , F a subcubic digraph on ≥n 2 vertices
and H its underlying undirected subcubic graph. By Theorem 2 there exists an

undirected graph G such that D is a strong
↔
G ‐minor model and ≥χ G n( ) 11 . In

particular, G contains a subgraph of minimum degree at least n n11 − 1 > 10.5 and

hence, by our earlier remark, an H ‐minor. This implies that
↔
G contains a strong

↔
H ‐

minor and hence D does so. However, as ⊆
↔

F H , it also follows that D contains a strong
F ‐minor, that is, a subdigraph D′ which is a strong F ‐minor model. Let ∈X f V F{ : ( )}f

be a branch set partition of V D( ′) witnessing this. Recall that, by definition, for every arc
∈e u u A F= ( , ) ( )1 2 there exist vertices ∈v e u X( , ) u1 1

and ∈v e u X( , ) u2 2
such that

∈ ⊆v e u v e u A D A D( ( , ), ( , )) ( ′) ( )1 2 .
Let next ∈u V F( ) be an arbitrary vertex with total degree ∈d d u= ( ) {0, 1, 2, 3} and

let us denote the arcs incident to u by e e, …, d1 . Furthermore, for i d= 1, …, we put
≔v v e u( , )i i . We claim that there exists a vertex ∈b u X( ) u and for every i d= 1, …, a

directed path Pi
u in D X[ ]u such that

• P P, …,u
d
u

1 only intersect at b u( );
• if u is the tail of ei, then Pi

u is a directed path from b u( ) to vi;
• if u is the head of ei, then Pi

u is a directed path from vi to b u( ).

This claim holds trivially if d = 0, and if d = 1 then we can simply put b u v( ) = 1 and let
Pu1 be the trivial one‐vertex path consisting of v1.

If d = 2 then, without loss of generality, by the symmetry of reversing all arcs in D and
F , we may assume that u is the head of e1. We then can put ≔b u v( ) 2, let Pu1 be any
directed path in D X[ ]u from v1 to v2, and take Pu2 to be the trivial one‐vertex path
consisting only of v2.

Finally suppose d = 3. Since F is subcubic, u either has in‐degree one and out‐degree two,
or vice versa. As before, without loss of generality, by symmetry we may assume that the first
case occurs, and it is e1 that enters u and e2 and e3 that emanate from it. Take now P12 and P13
to be directed paths in D X[ ]u starting at v1 and ending at v2 and v3, respectively. We define
now b u( ) as the first vertex inV P( )12 that we meet when traversing P13 backwards (starting at
v3), Pu1 as the subpath of P12 directed from v1 to b u( ), Pu2 as the subpath of P12 directed from
b u( ) to v2, and Pu3 as the subpath of P13 directed from b u( ) to v3. It follows by definition that
P P P, ,1 2 3 are internally vertex‐disjoint, and hence the claim follows.

To finish the proof, let ⊆S D be a subdigraph with vertex set

≔
∈

 

  


( )V S V P( ) ,

u V F i

d u

i
u

( ) =1

( )

and arcs

≔ ∈ ∪
∈

 

  


  





( )A S v e u v e u e u u A F A P( ) {( ( , ), ( , )) = ( , ) ( )} .

u V F i

d u

i
u

1 2 1 2
( ) =1

( )

S is a digraph isomorphic to a subdivision of F in which a vertex ∈u V F( ) is represented
by the branch‐vertex b u( ). This concludes the proof. □
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3 | CONCLUDING REMARKS

In this note we showed that ≤→sm t m t( ) 2 ( ) − 1χ χ and ≤→bm t m t( ) 2 (2 ) − 1χ χ for any ≥t 1. As
far as lower bounds are concerned, it is not hard to see that ≤ → →m t sm t bm t( ) min{ ( ), ( )}χ χ χ for

every ≥t 1. Indeed, for any graph G with ≥ → →χ G sm t bm t( ) min{ ( ), ( )}χ χ , as→
↔

χ G χ G( ) = ( ), by

definition
↔
G contains

↔
Kt either as a strong minor or as a butterfly minor, each of which implies

thatG contains a Kt‐minor. Therefore, our results reduce the question about the asymptotics of
→sm t( )χ and →bm t( )χ to the well‐studied undirected version of the problem. Also, as Hadwiger's

conjecture is known to be true for small values, for ≤ ≤t3 6 we have

≤ ≤ ≤ ≤→ →t sm t t t bm t t+ 1 ( ) 2 − 1 and + 1 ( ) 4 − 1.χ χ

We believe that the upper bounds should not be tight. To support this intuition, recall from
our remark after the proof of Theorem 1 that a more careful analysis of the proof yields the

stronger statement that any digraph D with → ≥χ D m t( ) 2 ( ) − 1χ contains a strong
↔
Kt‐minor

model in which between any two branch sets, there are at least two arcs spanned in both
directions. Under the assumption that Hadwiger's conjecture is true, the bound t2 − 1 for this

stronger property would be sharp, as shown by
↔
K t2 −2. This indicates that our proof should not

be expected to give a tight bound for the problem of forcing a strong
↔
Kt‐minor. Instead it seems

plausible that →sm t t( ) = + 1χ (and maybe →bm t t( ) = + 1χ ) for any ≥t 3.

Problem 1. Does every digraph D with → ≥χ D t( ) + 1 contain
↔
Kt as a strong minor

(butterfly minor)?
Already resolving the first open case t = 3 would be quite interesting.
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