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Zusammenfassung (Summary)

Die Ozeane bedecken mehr als zwei Drittel der Erdoberfläche und bestimmen
maßgeblich die Umweltbedingungen für den Entwurf, die Installation und
den Betrieb maritimer Systeme. Die Strukturbelastungen werden allgemein
vom Seegang dominiert, wobei auch den Wirkungen von Wind, Strömung,
Eis und Erdbeben in Abhängigkeit des Einsatzgebietes eine große Bedeutung
zukommen kann. Die genaue Kenntnis der Hydrodynamik von Schwerewellen
sowie deren komplexe Wechselwirkung mit maritimen Systemen stellt eine
wesentliche Voraussetzung für den sicheren und wirtschaftlichen Betrieb dar.
Zunehmend interessieren Extremsituationen, bei denen sich außergewöhnlich
hohe Wellen im stochastischen Wellenfeld entwickeln.

In der vorliegenden Dissertation wird ein neues Verfahren zur computer-
gestützten Synthese nichtlinearer transienter Schwerewellen im stochastischen
Seegang vorgestellt. Das Ziel der Arbeit besteht darin, ein vielseitig einsetz-
bares Analyse- und Entwicklungswerkzeug bereitzustellen, um detaillierte ex-
perimentelle und numerische Untersuchungen von extremen Wellenereignis-
sen zu ermöglichen. Ausgehend von der potentialtheoretischen Beschreibung
des zweidimensionalen nichtlinearen Strömungsproblems werden hohe deter-
ministische Einzelwellen und Wellengruppen gezielt im stochastischen Wellen-
feld synthetisiert. Hierzu werden in einem zweistufigen Prozeß moderne Op-
timierungsalgorithmen der Nichtlinearen Programmierung angewendet.

Zur Bestimmung einer ersten Näherungslösung werden bei der potenti-
altheoretischen Beschreibung der Strömung die Oberflächenrandbedingungen
linearisiert. Dies erlaubt die analytische Darstellung des Wellenzugs durch
Superposition unabhängiger, harmonischer Elementarwellen. Insbesondere
kann die Berechnung der zeitlichen und räumlichen Ausbreitung durch Ver-
wendung der schnellen Fourier-Transformation effizient im Frequenzbereich
erfolgen. Für ein vorgegebenes Fourier-Spektrum werden die gewünschten
Eigenschaften des linearen Wellenzugs durch Anwendung der Sequentiellen
Quadratischen Programmierung erzeugt, die ein zufälliges Phasenspektrum
entsprechend modifiziert.



viii Zusammenfassung (Summary)

Zur Simulation der nichtlinearen Wellenausbreitung im numerischen Wel-
lenkanal wird ein Rechenprogramm entwickelt, dem die gemischte Euler-
Lagrange-Formulierung des Anfangs-Randwertproblems zugrunde liegt. Zur
Lösung der Laplace-Gleichung für Neumann- und Dirichlet-Randbedingungen
wird die Methode der finiten Elemente eingesetzt. Die Integration in der Zeit
erfolgt mit der klassischen Runge-Kutta-Methode vierter Ordnung. Störende
Reflexionen am Kanalende werden durch ein effizientes numerisches Absorp-
tionsverfahren vermieden. Die Berechnungsergebnisse werden systematisch
verifiziert und anhand von experimentellen Meßdaten validiert.

Eine deutliche qualitative Verbesserung der ersten Näherungslösung wird
durch die Anwendung eines modifizierten Simplex-Algorithmus unter Berück-
sichtigung der nichtlinearen Wellenausbreitung im numerischen Wellenkanal
erreicht. Hierbei wird gezielt der Ausschnitt der Wellenblattbewegung ver-
ändert, der für die Entwicklung der zu synthetisierenden Extremwellen im
stochastischen Wellenfeld verantwortlich ist. Zur Reduzierung des hohen
Rechenaufwandes wird die diskrete Wavelet-Transformierte der Wellenblatt-
bewegung bestimmt, die die Selektion einer geringen Anzahl von freien Va-
riablen ermöglicht.

Das neu entwickelte Verfahren zur Synthese nichtlinearer transienter
Schwerewellen im stochastischen Seegang wird exemplarisch anhand einer
Einzelwelle sowie einer Wellengruppe dargestellt. In beiden Fällen belegen
die Ergebnisse die exzellente Übereinstimmung der generierten Wellenzüge
mit den Zielvorgaben und damit die Wirksamkeit des Verfahrens.



Abstract

The oceans cover more than two thirds of the earth’s surface and present a
unique set of environmental conditions which govern the design, installation,
and operation of marine systems. In general, structural loads are dominated
by the wave field. Depending on the operating site, the effects of wind, cur-
rents, earthquakes or ice may be of great importance as well. The profound
knowledge of the hydrodynamics of gravity waves and their complex inter-
action with marine systems is a necessary prerequisite for safe and efficient
system operation. Attention is increasingly being paid to extreme environ-
mental conditions with unexpected large waves developing in the random
wave field.

In this dissertation, a new procedure is presented for computer-aided syn-
thesizing of nonlinear transient gravity waves in random seas. The aim of the
study is to provide a multi-purpose analysis and development tool for per-
forming detailed experimental and numerical investigations of extreme wave
events. Large deterministic single waves and wave groups are synthesized
into random seas with the two-dimensional nonlinear free surface flow prob-
lem described by potential theory. This is achieved by a two-stage procedure
applying modern optimization algorithms used in nonlinear programming.

To obtain a first approximation of the solution, the free surface bound-
ary conditions of the potential flow problem are linearized. This allows a
description of the wave train as the superposition of independent harmonic
component waves. In particular, the temporal and spatial evolution can be
calculated efficiently in the frequency domain by introducing the fast Fourier
transformation. For a given Fourier spectrum, the desired characteristics of
the linear wave train are generated by applying sequential quadratic pro-
gramming which modifies an initially random phase spectrum.

A computer program is developed to simulate the nonlinear wave evo-
lution in the numerical wave tank. The simulation procedure is based on
the mixed Eulerian-Lagrangian formulation of the nonlinear initial boundary
value problem. The Laplace equation is solved for Neumann and Dirichlet



x Abstract

boundary conditions by the finite element method. The solution is devel-
oped in time domain with the classical fourth-order Runge-Kutta formula.
Reflections at the end of the wave tank are avoided by an efficient absorp-
tion technique. Numerical results are verified systematically and validated
by laboratory data.

A significant improvement of the first approximation is achieved by apply-
ing a modified simplex method considering the nonlinear wave evolution in
the numerical wave tank. A particular part of the wave board motion, which
is responsible for the evolution of the extreme waves to be synthesized in the
stochastic wave field, is changed. To decrease the high computer costs, the
discrete wavelet transform of the wave board motion is determined, enabling
the selection of only a few free variables of the associated fitting problem.

The new procedure for synthesizing nonlinear transient waves in random
seas is presented exemplarily for a single wave and a wave group. In both
cases, the results confirm the excellent agreement of the generated wave trains
with the target parameters proving the effectiveness of the procedure.
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Chapter 1

Introduction

1.1 Background

The oceans cover more than two thirds of the earth’s surface and present a
unique set of environmental conditions which dominates the design, installa-
tion, and operation of marine structures.

An offshore system is subjected to several loads due to waves, wind, cur-
rents, earthquakes or ice. Wave-induced forces are most important for most
offshore environments currently being exploited and may constitute the pri-
mary cause of downtime and reduced operating efficiency. In certain conti-
nental shelf areas, seismic excitation and/or ice loading could be critical, but
hydrodynamic loading continues to be important for fatigue life assessment in
both the structure and the soil. Hence, it is necessary to obtain reliable infor-
mation on the wave environment at the site of interest. A vital consideration
is the day-to-day condition of the sea state which governs the installation
and operation phase. Particularly important is the determination of extreme
wave conditions which establish the characteristcs of individual design waves
or design sea states. Underestimation of sea severity may lead to the failure
of the structure, whereas overestimation results in unnecessary costs.

One of the main difficulties in selecting design wave conditions is the
short-term, as well as long-term, variability of the sea state. Waves may be
generated from different directions for any given storm and are affected by
refraction, diffraction, reflection and shoaling in shallow water. The selection
process is therefore very complicated and site specific. Ideally, decisions
should be based on long-term data acquisition at the location of interest,
preferably over a period of 15 to 20 years. However, these data are usually
not available, and theoretical probability methods must be applied to derive
appropriate design wave conditions.
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Ships need to withstand loads and motions in extreme wave environ-
ments, since weather routing does not safeguard them from encountering
such conditions. Leaving aside human errors in the navigation and operation
of ships, three basic hazards arise from rough weather: breaking-through
due to inadequate hull strength, flooding and foundering through poor wa-
tertight integrity, and capsizing due to insufficient roll stability. A survival
design approach suggested by Faulkner and Buckley (1997) strongly depends
on reliable predictions of environmental loads in case of extreme events.

Fig. 1.1 shows a long-crested and very steep wave just before breaking in
the Bay of Biscay, France (Nickerson, 1993). Another huge wave is shown in
Fig. 1.2, which is a remarkable photo taken by the captain of the British Wye
during a winter storm in the Western Atlantic Ocean south of Newfoundland
(Nickerson, 1993). Such waves impose severe impact loads on marine struc-
tures and may cause ships to capsize if encountered in a following sea.

The physical and numerical modeling of nonlinear transient waves in ran-
dom seas play a vital role in determining extreme environmental loads and
associated structure responses. The development of sophisticated methods
for generating nonlinear target wave regimes with predetermined characteris-
tics is a significant contribution to the analysis of many complex and highly
nonlinear engineering problems, such as TLP-ringing and springing, slam-
ming impacts, green water, and dynamic stability of ships.

1.2 Literature Review

Davis and Zarnick (1964) originally proposed transient waves for model tests.
The dispersion relationship is used to focus component waves at a nomi-
nated location resulting in a high crest elevation. This technique was further
developed by Takezawa and Takekawa (1976), as well as by Takezawa and
Hirayama (1976), to investigate ship motions in transient water waves. Linear
Gaussian wave packets, which can be predicted analytically, were introduced
by Clauss and Bergmann (1986) and further verified by Chakrabarti and
Libby (1988). The restriction to a Gaussian distribution of wave amplitudes
has been abandoned by introducing the fast Fourier transformation technique
which allows to select arbitrarily the shape of the wave spectrum (Clauss and
Kühnlein, 1995). This linear description enables the prediction of the wave
train at any instant and location in the wave tank and has proved to be an ef-
ficient technique for many marine applications. Clauss and Kühnlein (1997)
present an empirical technique for generating converging nonlinear transient
wave packets. Seakeeping model tests based on tailor-made transient wave
packets are described by Kühnlein (1997).
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Figure 1.1: Huge wave observed in the Bay of Biscay (Nickerson, 1993).

Extreme transient waves are rare but possible events in the stochastic
wave environment, which needs to be considered for realistic simulations.
The generation of appropriate design waves is highly complicated due to the
nonlinearity of the free surface. Stansberg (1990) empirically investigates
extreme waves in laboratory-generated irregular wave trains. Wave super-
position based on linear wave theory is used to simulate randomly occurring
large waves which are picked out for experimental study. An essentially lin-
ear, broad-banded wave theory for predicting the kinematics of large ocean
waves in uni-directional seas is presented by Tromans et al. (1991). The so-
called NewWave design wave is generated by linear superposition of all wave
components in a sea state defined by a given wave spectrum in such a way
that the most probable maximum crest is obtained. This approach is modi-
fied by Taylor (1992) for deep water waves to include second order nonlinear
free surface effects such as amplitude modulation and horizontal transport
of the short waves by the long waves. Baldock and Swan (1994) present a
description of a two-dimensional irregular sea state in which a large transient
wave is generated by focusing component waves. The numerical method is
based upon a Fourier series expansion in space and time, which is validated
by laboratory data. Taylor et al. (1995) describe a theory to constrain a
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Figure 1.2: Huge wave observed in the Western Atlantic Ocean south of
Newfoundland (Nickerson, 1993).

random time series for generating a large crest elevation of a given size at a
prescribed time. The technique is a linear process where the extreme surface
elevation is indistinguishable from a purely random occurrence of that par-
ticular crest. Hua and Ekman (1999) present a numerical procedure based
on a boundary element method to simulate irregular steep waves. The wave
height and particle velocities at the wave crest are investigated for three
severe wave conditions and compared with linear and second order wave
theories. They conclude that second order wave theory is not appropriate
for predicting extreme wave crests as well as the horizontal particle velocity
around these crests. Laboratory experiments were conducted by Kriebel and
Alsina (2000) to embed a large transient wave within a random sea. The
generation procedure assumes that the free surface can be represented as a
Fourier series where all components of the transient wave are in phase. The
energy distribution of extreme wave and random sea is controlled by split-
ting the wave spectrum into two parts. A method for generating a strongly
asymmetric wave in an irregular wave train is presented by Zou and Kim
(2000). A wave elevation time series with random phase is produced by a
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linear procedure. The largest crest elevation among the zero-downcrossing
waves is distorted by a method similar to Funke and Mansard (1982), from
which the complex amplitude spectrum is obtained. Clauss and Steinhagen
(2000) use a sequential quadratic programming method to optimize transient
design waves in random seas. For a given design variance spectrum, the de-
sired characteristics of the target wave train regarding wave height and crest
structure are generated by optimizing an initially random phase spectrum.
The solution is based on linear wave theory and compared to the simulation
of the nonlinear wave evolution with the finite element method, which is
validated by laboratory data by Clauss and Steinhagen (1999).

Kim et al. (1999) present a comprehensive review of recent progress in
numerical wave tank research and development. It focuses on ideal fluids and
includes typical formulations, numerical implementations, methods of wave
generation, wave damping and absorbing, wave-wave interaction, diffraction,
radiation and floating body motion. A comment is given on the simula-
tion of viscous flow based on the Reynolds averaged Navier-Stokes equations
(RANSE).

Wolfram et al. (1994) examine the time series of three severe storms
recorded at the Total Oil Marine North Alwyn platform in the northern
North Sea. The Fourier analysis of these series shows that the wave com-
ponents do not a have uniformly distributed random phase, which may be
attributable to bound waves. Further results from data collected during six
of the worst storms recorded at the Alwyn platform are presented by Linfoot
et al. (2000). They concentrate on individual wave characteristics such as
the joint probability of wave height and period, and the joint probability of
wave height and steepness, for which the suitability of various models has
been examined. The profiles and characteristics of the three largest waves in
each storm are presented and discussed. Haver and Andersen (2000) discuss
the possible existence of freak waves. They present some pieces of evidence
which seem to support the idea of a separate freak wave population which
deviates strongly from a Gaussian process.

Isaacson and Foschi (2000) deal with the selection of design wave condi-
tions. They highlight the difference between the largest expected individual
wave height in a sea state with a specified return period and the maximum
individual wave height with the same return period, which is found to be
considerably larger. They describe, for different situations, the calculation
of associated long-term distributions.
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1.3 Objectives

The primary objectives of this study are as follows:

i) To develop a procedure to synthesize linear transient waves and wave
groups with predetermined characteristics in random seas for given sea
state parameters.

ii) To investigate the evolution of linear transient waves and wave groups
in random seas.

iii) To develop a computer program to simulate the propagation of two-
dimensional nonlinear wave trains in the numerical wave tank.

iv) To verify the computer program and validate numerical results by lab-
oratory data.

v) To find an efficient representation of the wave board motion for identi-
fying relevant signal information.

vi) To develop a procedure to synthesize nonlinear transient waves and
wave groups with predetermined characteristics in random seas for
given sea state parameters.

vii) To investigate the evolution of nonlinear transient waves and wave
groups in random seas.

1.4 Organization

In Chapter 2, the nonlinear initial boundary value problem describing two-
dimensional gravity waves propagating in a numerical wave tank is formu-
lated in space-fixed cartesian coordinates. The Airy wave theory is intro-
duced and the analytical solution of the linearized free surface flow problem
is derived. The assumption of a linear wave model constitutes the basis for
linking the physics of free surface gravity waves with the variance spectrum.
The determination of confidence limits on a spectral estimate, as part of the
spectral or time series analysis in frequency domain, is described. Common
spectral parameters and empirical spectra shapes are presented.

In Chapter 3, the numerical simulation of two-dimensional nonlinear
gravity waves is described. The general procedure of the mixed Eulerian-
Lagrangian method is introduced and applied to solve the Laplace equation
as a nonlinear initial boundary value problem in time domain. The finite
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element method is derived and the mesh generation presented. The classical
fourth-order Runge-Kutta formula to develop the solution in time domain
is illustrated. A local filtering technique is described to suppress numerical
instabilities and artificially high frequency oscillations. The performance of
the numerical wave absorption scheme is investigated. Numerical results are
verified systematically and validated by laboratory data.

In Chapter 4, wavelet analysis is introduced. Based on the multiresolution
formulation to decompose signals in low and high frequency components
in order to extract information on different resolution scales, the discrete
wavelet transform is developed, which enables the implementation of efficient
decomposition algorithms. This technique is applied to the time-dependent
wave board motion to identify the scales which are most important for the
wave generation. The strong compression characteristics of the transform are
utilized to reduce considerably the number of free variables in the process of
fitting the nonlinear wave train to predetermined target parameters.

In Chapter 5, the general procedure to synthesize linear and nonlinear
transient waves and wave groups in random seas is outlined. Firstly, a lin-
ear approximation of the desired wave train is computed by optimizing the
wavelet representation of the wave board motion for equality and inequal-
ity constraints which correspond to the desired wave characteristics. The
free variables are the values of an initially random phase spectrum leaving
the energy distribution in terms of the variance spectrum unchanged in the
optimization. This initial linear guess is further improved by fitting the
nonlinear wave evolution simulated in a numerical wave tank to the target
characteristics. The free variables are now particular wavelet coefficients
which correspond to a certain resolution scale and time range of the wave
board motion responsible for the evolution of the target wave sequence. The
relevant minimization techniques are the sequential quadratic programming
method and the subplex method, which are described in detail.

In Chapter 6, the synthesis of nonlinear transient gravity waves in random
seas is illustrated by two examples. The first one addresses a single design
wave and the second one a tailored group of three successive waves embedded
in a random seaway. Appropriate objective functions and constraints for the
two-step generation procedure are derived from global and local target wave
characteristics. Results are presented for the linear and nonlinear wave evolu-
tion in time, space and frequency domain. The wave height, crest and period
structure are investigated by a zero-downcrossing analysis. The various wave
board motions and the associated wavelet transforms are compared.

In Chapter 7, the results are summarized and conclusions drawn. Further
extensions of this study are suggested.
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Chapter 2

Free Surface Gravity Waves

2.1 Introduction

Ocean waves are primarily generated by the interaction of wind and the
water surface. Wind energy is transmitted into wave energy through friction
between air and water, and local pressure fields associated with the wind
blowing over the wave surface. Water waves can also be caused by other
phenomena, such as high currents, landslides, explosions and earthquakes.
A wave is a traveling disturbance of the sea surface. Its velocity depends on
the wave period, or wave length, wave height and water depth, and differs
significantly from the velocity of the water particles which move in nearly
closed orbital loops with little net forward motion. The wave periods can
cover an extremely broad range, such as several months for planetary waves,
half a day for tides, several hours for storm surges, dozens of minutes for
tsunamis, a few seconds for swell and fractions of a second for capillary
waves. The low viscosity of water plays a minor role in many situations of
practical interest and is usually neglected.

The wave field of the open ocean is irregular, both in space and time.
However, the sea state may maintain a characteristic appearance over a fairly
wide area and often for a period of half an hour or more. Hence, for most
engineering problems, surface waves are regarded as a random, or stochastic,
process under short-term stationary conditions. The long-term or wave cli-
mate characteristics of the sea state highlight the variability of the sea state
at a particular location over periods ranging from weeks to decades. Varia-
tions on these time scales are caused by climate irregularity. The principal
elements of the wave climate are wave height and wave period parameters, as
well as wave direction. The height parameter is chosen to be the significant
wave height, defined as the average of the highest one third of waves. The
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period parameter is usually the peak period corresponding to the spectral
peak frequency.

Wave theories for modeling free surface waves are generally complicated
because kinematic and dynamic free surface boundary conditions are nonlin-
ear. Further difficulty is associated with the application of these conditions,
since the location of the free surface is not known in advance but part of the
solution sought. Some theories seek rational and nonlinear approximations
whose validity may not be universal. The simulation of nonlinear extreme
wave regimes requires sophisticated numerical methods based, for example,
on the finite element method or boundary element method.

Section 2.2 describes the nonlinear wave theory based on the assumptions
of potential flow. The analytical solution of the linearized free surface flow
problem is derived in the subsequent Section 2.3. The last section of this
chapter, Section 2.4, deals with spectral or time series analysis in the fre-
quency domain. Common spectral parameters and empirical spectra shapes
are presented.

2.2 Nonlinear Wave Theory

The numerical wave tank for simulating two-dimensional gravity waves in
time domain is illustrated in Fig. 2.1. The analysis of the nonlinear free sur-
face flow problem is based on the well-known potential flow theory (Trucken-
brodt, 1992). The entire flow field is described by a scalar function called
velocity potential φ(x, z, t), which satisfies the Laplace equation:

∇2 φ = 0 (2.1)

for Neumann and Dirichlet boundary conditions on a closed solution domain.
This elliptic partial differential equation states mass conservation where ∇
is the gradient operator vector. Potential flow theory requires the fluid to be
inviscid and incompressible, and the flow to be irrotational:

ν = 0,
Dρ

Dt
= 0, ∇×∇φ = 0 (2.2)

where ν is the kinematic viscosity and ρ the mass density. The atmospheric
pressure pa above the free surface ζ(x, t) is assumed to be constant, and
surface tension is neglected.

2.2.1 Boundary Conditions

Mass conservation requires that there be no flow through the boundary Γ of
the fluid domain Ω. Neumann boundary conditions are defined by the partial
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derivative ∂φ/∂n in the normal direction n pointing out of the fluid domain.
Dirichlet boundary conditions are given in terms of the velocity potential φ.
On fixed walls ΓW at the bottom and the end of the numerical wave tank,

Figure 2.1: Numerical wave tank.

the Neumann boundary conditions are:

∂φ

∂z
= 0 at z = −h

∂φ

∂x
= 0 at x = l. (2.3)

The horizontal motion of the wave board ΓB is described by xB(t) and the
associated Neumann boundary condition is given by its normal velocity ẋB(t):

∂φ

∂x
= ẋB(t) at x = xB(t). (2.4)

The kinematic and dynamic free surface boundary conditions are both non-
linear. Further difficulty is associated with the application of these boundary
conditions, since the location of the free surface is not initially known but is
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part of the solution sought. No flow through the free surface ΓS is forced by
the kinematic free surface boundary condition:

∂φ

∂z
=

∂ζ

∂t
+

∂φ

∂x

∂ζ

∂x
= 0 at z = ζ(x, t). (2.5)

Momentum is conserved by the Euler equation, which is the starting point
for deriving the dynamic free surface boundary condition:

Dv

Dt
=

∂v

∂t
+

(
v∇T

)
v = −1

ρ
∇p + f (2.6)

where f = (0,−g) represents the conservative body force per unit mass and g
the gravitational acceleration. With the assumptions of potential flow theory
v = ∇φ and ∇×∇φ = 0 the Euler equation can also be written as:

∇
(

∂φ

∂t
+

1

2
∇φ · ∇φ + g z +

p

ρ

)
= 0. (2.7)

Integrating this with respect to the space variables x and z gives the Bernoulli
equation:

∂φ

∂t
+

1

2
∇φ · ∇φ + g z +

p

ρ
= B(t). (2.8)

Assuming the atmospheric pressure pa to be constant at the free surface and
choosing B(t) = pa/ρ, which is permissible for long wave tanks, defines the
dynamic free surface boundary condition as:

∂φ

∂t
+

1

2
∇φ · ∇φ + g ζ = 0 at z = ζ(x, t). (2.9)

Introducing the substantial derivative of the velocity potential:

Dφ

Dt
=

∂φ

∂t
+∇φ · ∇φ (2.10)

enables us to establish the Lagrangian form of the free surface boundary
conditions:

Dx

Dt
=

∂φ

∂x
,

Dz

Dt
=

∂φ

∂z
, (2.11)

Dφ

Dt
=

1

2
∇φ · ∇φ− g ζ. (2.12)
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These conditions need to be modified for long time simulations in order to
avoid reflections at the end of the numerical wave tank. In this work, a
method described by Cointe et al. (1990) is applied, where damping terms
are added to the kinematic and dynamic free surface boundary conditions:

Dx

Dt
=

∂φ

∂x
− µ(xe)(x− xe), (2.13)

Dz

Dt
=

∂φ

∂z
− µ(xe)(z − ze), (2.14)

Dφ

Dt
=

1

2
∇φ · ∇φ− g ζ − µ(xe)(φ− φe). (2.15)

The damping coefficient µ(x) is defined as:

µ(x) =





ωbeach

(
x− (l − lbeach)

lbeach

)2

, for l − lbeach ≤ x ≤ l

0, for x < l − lbeach

(2.16)

where ωbeach controls the strength and lbeach the length of the numerical beach.
The reference values φe, xe and ze are obtained from the initial particle loca-
tions and their associated velocity potential at the beginning of the numerical
simulation, i.e. φe = 0 and ze = 0. The efficiency of this absorbing technique
is presented in Section 3.6.2.

2.2.2 Integral Parameters

The progressive wave field is described by the field variables and a num-
ber of useful integral parameters which relate to the conservation laws for
mass, momentum and energy. The definitions in Table 2.1 apply for the two-
dimensional wave field in the solution domain of the wave tank illustrated in
Fig. 2.1. The time-dependent parameters are given in terms of the specific
values per unit length of crest. The potential energy is measured with respect
to the Still Water Level (z = 0) as the horizontal datum.

2.3 Linear Wave Theory

Linear wave theory, or Airy wave theory, plays a central role in offshore and
coastal hydrodynamics. The relative simplicity provides immediate access to
the wave kinematics throughout the flow field. The mathematical linearity
of the theory facilitates its application in solving many ocean engineering
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Potential energy Epot(t) =

∫ ζ(x,t)

0

∫ l

xB(t)

ρ g z dx dz

Kinetic energy Ekin(t) =

∫ ζ(x,t)

−h

∫ l

xB(t)

1

2
ρ (∇φ)2 dx dz

Energy flux Ė(x, t) =

∫ ζ(x,t)

−h

ρ
∂φ

∂x

∂φ

∂t
dz

Mass flux ṁ(x, t) =

∫ ζ(x,t)

−h

ρ
∂φ

∂x
dz

Table 2.1: Integral parameters of the two-dimensional wave field.

problems. It enables the superposition of component waves and thus the
analysis of diffraction, refraction and real sea states in the frequency do-
main. It should be stressed that linear wave theory successfully predicts
general features of the wave environment but fails to describe some of the
details, especially for steeper waves in deep water and for almost all waves in
shallow water. These details are significant in many applications and require
a nonlinear theory for a more complete prediction.

The mathematical formulation is presented for two-dimensional periodic
surface gravity waves with a single period T in water of constant depth h
without current. The uniform wave train propagates horizontally in direc-
tion x with a constant wave length L and a constant wave height H. The
coordinate z is measured vertically upward from the Still Water Level, which
is also the reference datum for the surface elevation ζ(x, t). The formula-
tion is based on the assumptions of potential flow theory. The field equation
is the Laplace Eq. (2.1) requiring a closed solution domain with boundary
conditions all round the boundary.

2.3.1 Boundary Conditions

The bottom boundary condition requires that there be no flow through the
horizontal bed, which is expressed in terms of φ(x, z, t):

Dφ

Dz
= 0 at z = −h. (2.17)

The quadratic, and hence nonlinear, terms in the kinematic and dynamic free
surface boundary conditions, namely ∂φ/∂x·∂ζ/∂x in Eq. (2.5) and 1/2 ∇φ·
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∇φ in Eq. (2.9), are removed to achieve linearized boundary conditions.
Since nonlinearity is also associated with the application of these boundary
conditions at the initially unknown free surface ζ(x, t), further simplification
is achieved by applying these conditions at Still Water Level:

∂φ

∂z
=

∂ζ

∂t
,

∂φ

∂t
+ g ζ = 0 at z = 0. (2.18)

The formulation of the linearized gravity wave problem is completed by defin-
ing periodic lateral boundary conditions which are conveniently located at
adjacent crests or troughs:

φ(x, z, t) = φ(x + L, z, t) = φ(x, z, t + T ). (2.19)

2.3.2 Linear Solution

An analytical solution to the linearized gravity wave problem without current
is first presented by G.B. Airy in 1845 (reissued as Airy, 1849). The solution
is determined through the classical method of separating variables and can
easily be confirmed by direct back-substitution into the field equation and
the boundary conditions:

φ(x, z, t) =
ζa g

ω

cosh k(h + z)

cosh kh
sin(kx− ωt) (2.20)

where the wave amplitude is half the wave height ζa = H/2. The wave
number k = 2π/L and the wave frequency ω = 2π/T are related by:

ω2 = gk tanh kh (2.21)

which is called the dispersion relationship. The phase speed or wave celerity
C of a progressive wave depends particularly on k and h or ω and h:

C =
L

T
=

ω

k
=

g

ω
tanh kh =

(g

k
tanh kh

)1/2

. (2.22)

All field variables can easily be derived from the linear solution together
with the kinematic and dynamic free surface boundary conditions. The most
important are summarized in Table 2.2.

2.4 Spectral Analysis

B̊ath (1974) presents an excellent text on spectral or time series analysis in
the frequency domain. A continuous real-valued wave record ζ(t) may be
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Surface elevation ζ = ζa cos(kx− ωt)

Horizontal velocity u = ζa ω
cosh k(h + z)

sinh kh
cos(kx− ωt)

Vertical velocity w = ζa ω
sinh k(h + z)

sinh kh
sin(kx− ωt)

Horizontal acceleration
∂u

∂t
= ζa ω2 cosh k(h + z)

sinh kh
sin(kx− ωt)

Vertical acceleration
∂w

∂t
= − ζa ω2 sinh k(h + z)

sinh kh
cos(kx− ωt)

Dynamic pressure pd = ρ g ζa
cosh k(h + z)

cosh kh
cos(kx− ωt)

Pressure p = pd − ρ g z

Table 2.2: Predictive equations for linear progressive waves.

represented in the frequency domain by its complex Fourier transform F (ω):

F (ω) =

∫ +∞

−∞
ζ(t) e−iωt dt (2.23)

where t denotes the time and ω = 2πf the angular frequency. Applying the
inverse Fourier transformation restores the original record ζ(t):

ζ(t) =
1

2π

∫ +∞

−∞
F (ω) eiωt dω. (2.24)

In polar notation, the complex Fourier transform can be expressed by its
amplitude and phase spectrum:

F (ω) = |F (ω)| ei argF (ω) (2.25)

where i =
√−1 is the imaginary unit. In practice, it is necessary to adopt a

discrete and finite form of the Fourier transform pair described by Eqs. (2.23)
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and (2.24):

F (r∆ω) = ∆t

N−1∑

k=0

ζ(k∆t) e−i2πrk/N (2.26)

r = 0, 1, 2, . . . , N/2

ζ(k∆t) =
∆ω

2π

N/2∑
r=0

F (r∆ω) ei2πrk/N (2.27)

k = 0, 1, 2, . . . , (N − 1)

where the values ζ(k∆t) represent the available data points of the discrete
finite wave record with ∆t denoting the sampling rate and ∆ω = 2π/(N∆t)
the frequency resolution. The summation in Eqs. (2.26) and (2.27) can be
efficiently completed by the fast Fourier transform (FFT) and its inverse
algorithm (IFFT) (Brigham, 1974; Conte and De Boor, 1980). Note that
the record is sampled through a window w(t) in time of duration N∆t at
discrete points on a Dirac comb c(t). Hence the net Fourier transform is
(B̊ath, 1974):

F (ω)net =

∫ +∞

−∞
ζ(t) w(t) c(t) e−iωt dt (2.28)

=
F (ω) ∗ W (ω) ∗ C(ω)

4 π2
(2.29)

where W (ω) and C(ω) are the Fourier transforms of the window function
and the Dirac comb. The asterisk operator denotes convolution which corre-
sponds to a moving weighted average in the frequency domain. In this study,
the window function is chosen to be simply a rectangular box, which implies
some side band leakage to adjacent frequencies.

The Fourier transform F (ω) and the variance spectrum E(ω) are related
through Parseval’s theorem, which states for the single-sided discrete variance
spectrum:

E(r∆ω) =
1

π N ∆t
|F (r∆ω)|2. (2.30)

Jenkins and Watts (1968) showed that the confidence limits on a spectral

estimate Ê(ω) of the actual spectral ordinate E(ω) are:

Pr

{[
n

χ2
n,1−u/2

]
Ê(ω) ≤ E(ω) <

[
n

χ2
n,u/2

]
Ê(ω)

}
= 1 − u. (2.31)
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The dimensionless terms in the brackets define the lower and upper confi-
dence limits as a function of the chi-square χ2 distribution for n degrees of
freedom at confidence level u. Since the raw spectral estimate determined
directly from the FFT has n = 2 degrees of freedom, a moving average over
2Nn adjacent points in the frequency domain yields n = 2 (2Nn + 1) degrees
of freedom. In this work, the statistical variability at the 95% confidence
level is significantly reduced by selecting Nn = 5; compare Table 2.3.

n χ2
n,1−u/2 χ2

n,u/2 n/χ2
n,1−u/2 n/χ2

n,u/2

2 7.38 0.0506 0.27 39.5

22 36.8 11.0 0.60 2.0

100 129.6 74.2 0.77 1.35

Table 2.3: Confidence limits at the 95% level (u = 0.05).

It is important to note that the physical interpretation of wave spectra be-
comes difficult in the case of distinct nonlinear free surface effects. Amplitude
and phase information derived from the complex Fourier transform F (ω) are
then not clearly associated with independent monochromatic waves. Further
uncertainty in the analysis of wave spectra is related to the necessary trun-
cation of the discrete finite wave record, side band leakage and smoothing,
which may artificially distort the spectra shapes.

Read and Sobey (1987) point out that the phase spectrum is routinely
ignored on the assumption that the Gaussian random wave model is a suf-
ficiently complete description of a field record. They develop procedures for
unwrapping and detrending the phase spectrum to provide insight into the
potential identification of ordered structures, possibly wave groups, in the
phase spectrum.

2.4.1 Spectral Parameters

Spectral moments are commonly used to characterize variance spectra. The
nth spectral moment about zero frequency is defined as:

mn =

∫ ∞

0

ωn E(ω) dω (2.32)

where m0 is the variance σ2 of the sea state. The nth spectral moment about
the mean frequency ω̄ is similarly stated as:

µn =

∫ ∞

0

(ω − ω̄)n E(ω) dω (2.33)
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and it can be easily shown that there are explicit relationships among the
moments:

µ0 = m0 = σ2, µ1 = 0 and µ2 = m2 − m2
1

m0

. (2.34)

A number of theories require estimates of the m4 moment. Sobey (1999)
points out that this parameter is not reliable, since the erratic high frequency
spectral tail is greatly magnified by the ω4 factor. In discrete estimation, fur-
ther difficulty is associated with significant contributions beyond the Nyquist
frequency fNY = 1/(2∆t), which is the upper limit of frequency resolution.
Higher moments are even less reliable. Common characteristic frequencies
are the mean frequency:

ω̄ =
m1

m0

or f̄ =
1

2π

m1

m0

(2.35)

the root-mean-square frequency:

ωz =

(
m2

m0

)1/2

or fz =
1

2π

(
m2

m0

)1/2

(2.36)

which is is also known as the mean zero-crossing frequency, and the peak
frequency:

ωp =

∫ ∞

0

ω EP (ω) dω
∫ ∞

0

EP (ω) dω

(2.37)

where P is usually between 5 and 8 to weigh the result strongly toward the
visual peak of the spectrum (Sobey and Young, 1986; Mansard and Funke,
1988). For common wave spectra, ωp < ω̄ < ωz. Another useful parameter
is the spectral width defined by Longuet-Higgins (1975):

ν =

√
µ2

ω̄2 m0

=

√
m0 m2

m2
1

− 1 (2.38)

where ν is of order 0.5 for sea conditions and 0.15 for swell.

2.4.2 Empirical Sea Spectra

Universal spectral shapes of growing wind seas play a vital role in coastal
and ocean engineering. In deep water, the Pierson-Moskowitz spectrum is
defined as:

ω4
p E(q)

g2
= α q−5 e−1.25q−4

(2.39)
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where q = ω/ωp = f/fp represents the normalized frequency with respect
to the peak frequency fp = 1/Tp, g is the acceleration due to gravity and
E(q) = ωp E(ω). The Phillips coefficient α is a function of the wind shear
velocity at the air-water interface and the atmospheric pressure (Phillips,
1977). The Jonswap form, introduced by Hasselmann et al. (1973), more
accurately describes the spectrum shape in the North Sea:

ω4
p E(q)

g2
= α q−5 e−1.25q−4

γe−
r2

2 . (2.40)

The Jonswap peak enhancement factor γ is 3.3 for the mean spectrum form,
7 for the sharp form and 1 for the Pierson-Moskowitz spectrum. The spec-
tral width parameter σ∗ is set to 0.07 for q ≤ 1 and 0.09 for q > 1 with
r = (q − 1)/σ∗. The finite depth variant of the Jonswap spectrum is called
the TMA form (Bouws et al., 1985):

ω4
p E(q)

g2
= α q−5 tanh2(kh)

1 + 2kh/ sinh(2kh)
e−1.25q−4

γe−
r2

2 (2.41)

where h is the water depth. The frequency-dependent wave number k is
calculated from the linear dispersion relationship ω2 = gk tanh(kh). Since
the zeroth spectral moment:

m0 =

∫ ∞

0

E(ω) dω =

∫ ∞

0

E(q) dq = α

∫ ∞

0

E(q)

α
dq (2.42)

and the significant wave height are related by Hs = 4
√

mo, the Phillips
coefficient α may be determined from a given variance spectrum by:

α =
H2

s

16

∫ ∞

0

E(q)

α
dq

. (2.43)



Chapter 3

Numerical Simulation of
Nonlinear Waves

3.1 Introduction
The simulation of two-dimensional nonlinear waves in the numerical wave
tank shown in Fig. 2.1 is based on potential flow theory, which is described
in detail in Section 2.2. The mixed Eulerian-Lagrangian method introduced
by Longuet-Higgins and Cokelet (1976) is applied to solve the Laplace equa-
tion as a nonlinear initial boundary value problem in the time domain. The
general procedure is illustrated in Fig. 3.1. The computer program has been
developed by the author in Fortran 90 and starts by reading the time depen-
dent wave board motion and certain input parameters defining mesh size,
time step, termination time and desired output. At each time step the veloc-
ity potential is calculated for the current boundary conditions in the entire
fluid domain with the finite element method presented by Wu and Eatock
Taylor (1994, 1995). From this solution the velocities at the free surface are
determined by second-order differences. The new surface elevation, the asso-
ciated velocity potential and the position of the wave board are updated. To
develop the solution in the time domain, the classical fourth-order Runge-
Kutta formula is applied. At each time step a new boundary-fitted mesh
is created. The procedure is repeated until the desired termination time is
reached, or the waves become unstable and break.

The finite element method and the mesh generation are described in the
next two sections. The explicit fourth-order Runge-Kutta formula is pre-
sented in Section 3.4. A local filtering technique suppressing artificial high
frequency oscillations is introduced in Section 3.5. As part of the numerical
verification, the influence of the spatial and temporal resolution is investi-
gated in Section 3.6.1, and the performance of the numerical wave absorption
in 3.6.2. Finally, numerical results are validated by experimental data in Sec-
tion 3.6.3.
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Figure 3.1: Flowchart of the computer program to simulate the propagation
of two-dimensional nonlinear wave trains in the numerical wave tank.
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3.2 Finite Element Method

The finite element method used in this work is presented by Wu and Eatock
Taylor (1994, 1995). At each time step the Laplace equation is solved for
Neumann and Dirichlet boundary conditions on a closed solution domain
defining the numerical wave tank (Fig. 2.1). The fluid domain Ω is divided
into triangular finite elements with a total of m nodes. The velocity potential
φ is described in terms of nodal values of the potential φj and linear shape
functions Nj(x, z):

φ(x, z) =
m∑

j=1

φjNj(x, z). (3.1)

According to the Galerkin method, the weighing functions are chosen to be
the shape functions themselves, making the residual orthogonal to the space
of the shape functions: ∫

Ω

∇2φNi dΩ = 0. (3.2)

Since:

∇
(
∇φNi

)
= ∇2φNi + ∇φ∇Ni (3.3)

it follows that: ∫

Ω

(
∇

(
∇φNi

)
− ∇φ∇Ni

)
dΩ = 0. (3.4)

Application of the Gauss theorem yields:

∫

Γ

Ni
∂φ

∂n
dΓ−

∫

Ω

∇Ni

m∑
j=1

φj∇Nj dΩ = 0 (3.5)

where Γ is the boundary and n the normal direction pointing out of the fluid
domain Ω. The substitution of the boundary conditions defined in Fig. 2.1
and Table 3.1 together with Eq. (3.1) into Eq. (3.5) results in:




∫

Ω

∇Ni

m∑
j=1

φj∇Nj dΩ




j /∈ΓS

= −
∫

ΓB

Ni ẋB(t) dΓ

−



∫

Ω

∇Ni

m∑
j=1

φj∇Nj dΩ




j ∈ΓS

(i /∈ ΓS). (3.6)
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Free surface ΓS : φ(x, z, t) at z = ζ(x, t)

Wave board ΓB :
∂φ

∂n
= −ẋB(t) at x = xB(t)

Wall ΓW :
∂φ

∂n
= 0 at x = l and z = −h

Table 3.1: Dirichlet and Neumann boundary conditions of the finite element
method.

The horizontal velocity ẋB(t) is easily determined from the wave board mo-
tion xB(t). The boundary integral along the free surface:

∫

ΓS

Ni
∂φ

∂n
dΓ = 0 (i /∈ ΓS) (3.7)

is omitted in Eq. (3.6) because the shape functions Ni are zero for nodes
i /∈ ΓS. Eq. (3.6) can be written in matrix form:

Aφ = B (3.8)

with coefficients:

A(i, j) =

∫

Ω

∇Ni ∇Ni dΩ (i, j /∈ ΓS), (3.9)

B(i) = −
∫

ΓB

Ni ẋB(t) dΓ−
∫

Ω

∇Ni

m∑
j=1

φj∇Nj dΩ

(i /∈ ΓS, j ∈ ΓS). (3.10)

Since the derivatives of the linear shape functions with respect to x and
z are constant, the matrix A is calculated conveniently from the areas of
the triangles. The bandwidth of the symmetric, positive definite matrix A
is reduced to a minimum by appropriate numbering of the nodes. Thus,
only the upper band has to be stored, which reduces the required memory
significantly. Eq. (3.8) is solved by Cholesky decomposition.

3.3 Mesh Generation

The mesh generation is kept simple to reduce the computational burden and
is based on an analytical expression. The entire domain of the numerical wave
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tank is divided in the x-direction by NX +1 vertical lines whose positions xi

depend on the nodes at the free surface ζi which are treated as particles in
the mixed Eulerian-Lagrangian method. The locations of these nodes change
with time and are calculated by Eqs. (2.11). In the z-direction the NZ + 1
nodes are exponentially distributed:

zi,j = − (h + ζi)
1− exp

(
αz (h + ζi) (NZ + 1− j)/NZ

)

1− exp
(
αz (h + ζi)

) + ζi

(i = 1, 2, . . . , NX + 1; j = 1, 2, . . . , NZ + 1) (3.11)

where h represents the water depth. The parameter αz determines the nar-
rowness of the mesh near the free surface and is set to 2.0. The total number
of nodes is (NX + 1) (NZ + 1) and the number of triangular elements is
2 ·NX ·NZ. Fig. 3.2 shows a typical mesh.

Figure 3.2: Finite element mesh.

At the beginning of the numerical simulation, the free surface nodes are
uniformly distributed in the x-direction with a surface elevation of zero. Since
the x-coordinate of the first node at the free surface is set to the position of
the wave board, the horizontal gap to the second node increases in time due
to the Lagrangian motion characteristic. If the gap between any two nodes is
greater than twice the initial horizontal grid spacing, an additional node will
be inserted automatically by linear interpolation of coordinates and potential
values of the adjacent nodes.
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To determine the particle velocities, the physical plane with independent
variables x and z will be transformed to the computational plane with vari-
ables ξ and η. The mapping for the boundary-fitted coordinate system is
given by:

ξ = x, (3.12)

η =
h + z

h + ζ(x)
. (3.13)

Applying the chain rule of differential calculus:

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
(3.14)

∂

∂z
=

∂

∂ξ

∂ξ

∂z
+

∂

∂η

∂η

∂z
(3.15)

yields the derivatives:

∂

∂x
=

∂

∂ξ
− ∂

∂η

h + z(
h + ζ(x)

)2

∂ζ(x)

∂x
, (3.16)

∂

∂z
=

∂

∂η

1

h + ζ(x)
. (3.17)

The velocities are calculated in the computational plane as second-order dif-
ferences of the potential φ with respect to ξ and η and then transformed by
Eqs. (3.16) and (3.17).

3.4 Runge-Kutta Formula

The numerical solution is developed in time domain by applying the classical
fourth-order Runge-Kutta formula to the nodes at the free surface and the
associated velocity potential. The current state at time step k is described
by the matrix:

Sk = (xk, zk, φk)
T (3.18)

with the vector entries defining the elevation and potential along the nodes
of the free surface:

xk = (x1, x2, . . . , xNX+1)
T
k

zk = (z1, z2, . . . , zNX+1)
T
k

φk = (φ1, φ2, . . . , φNX+1)
T
k . (3.19)
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The time-derivative of the matrix:

DSk

Dt
=

(
Dxk

Dt
,

Dzk

Dt
,

Dφk

Dt

)T

= F (tk, Sk) (3.20)

corresponds to the nonlinear free surface boundary conditions stated in Eqs.
(2.11) to (2.15) of Section 2.2.1 and is calculated from the known field of the
velocity potential at time step k. The explicit Runge-Kutta scheme requires
four evaluations of the right-hand side per time step ∆t:

S1 = ∆t F (tk, Sk)

S2 = ∆t F (tk + ∆t/2, Sk + S1/2)

S3 = ∆t F (tk + ∆t/2, Sk + S2/2)

S4 = ∆t F (tk + ∆t, Sk + S3)

Sk+1 = Sk +
S1

6
+

S2

3
+

S3

3
+

S4

6
(3.21)

in order to determine the new surface elevation with the associated velocity
potential at time step k + 1. These conditions together with the updated
location and velocity of the wave board define the new boundary conditions
for computing the velocity potential in the entire flow field with the finite
element method. A detailed investigation of various methods for solving
ordinary differential equations is presented by Schwarz (1993).

3.5 Local Filtering

Numerical instabilities and artificial high frequency oscillations are common
phenomena in numerical integration. Filtering techniques are well established
to cope with these problems in numerically simulating free surface flows.
Global multi-point filtering techniques perform smoothing on all grid nodes
at a given time (Longuet-Higgins and Cokelet, 1976). This is in general a
shortcoming since smoothing might not be necessary for all grid points. In
addition, numerical dissipation is introduced and the dispersion relationship
violated.

In this study, a local three-point filtering technique introduced by Sheng
et al. (1978) is applied to the free surface elevation and associated velocity
potential:

ζi =
1

n

(
ζi+1 + (n− 2) ζi + ζi−1

)
(3.22)

φi =
1

n

(
φi+1 + (n− 2) φi + φi−1

)
(3.23)
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with the weighting factor n ≥ 4 controlling the filtering efficiency. The
smoothing operation will only be performed at grid node i either if:

condition 1:





|ζi+1 − ζi| + |ζi − ζi−1| ≥ n

n− 2
|ζi+1 − ζi−1|

and

(ζi+2 − 2 ζi+1 + ζi) (ζi+1 − 2 ζi + ζi−1) < 0

(3.24)

or if:

condition 2:





|ζi+1 − ζi| + |ζi − ζi−1| ≥ n

n− 2
|ζi+1 − ζi−1|

and

(ζi−2 − 2 ζi−1 + ζi) (ζi+1 − 2 ζi + ζi−1) < 0

(3.25)

is satisfied. The first part of the conditions checks for jumps of the free
surface between nodes i−1 and i+1, and the second part for sign changes in
the curvature at the adjacent nodes. In the present work another condition
is introduced in terms of the Courant number which is defined in Eq. (3.27):

condition 3: Cn ≥ 0.2 (3.26)

since only steep waves close to breaking need to be smoothed. The weighting
factor is set to n = 10.

3.6 Numerical Verification

3.6.1 Spatial and Temporal Resolution

A Neumann stability analysis for the fourth-order Runge-Kutta scheme with
linearized free surface boundary conditions yields the stability condition in
terms of the Courant number:

Cn =
π g

8

∆t2

∆x
≤ 1 =⇒ ∆t2 ≤ 8 ∆x

π g
(3.27)

where ∆t is the time step and ∆x the local grid spacing (Dommermuth
and Yue, 1987). This result suggests that, for a fixed time step, numerical
instabilities of the nonlinear simulation may be encountered in the case of
very small grid spacings which are related to the concentration of Lagrangian
points on the free surface. This critical particle concentration is typical for
breaking waves, which are beyond the scope of this study.

The influence of the spatial and temporal resolution on the numerical
solution is illustrated for a regular wave with height H = 0.86 m, length
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L = 14.26 m and period T = 3 s, propagating in a l = 250 m long wave tank
with water depth of h = 5 m.

For a constant time step ∆t = T/30, Fig. 3.3 shows the convergence of the
solution with decreasing grid spacing ∆x. The number of grid nodes in the
horizontal direction is determined by NX +1 ≈ l/∆x+1, and the number in
the vertical direction by NZ +1 ≈ h/∆x+3. Note that the initially uniform
horizontal distribution of the nodes adapts to the motion of the Lagrangian
points at the free surface, and that the nodes are exponentially distributed
in the vertical direction. As can be seen from the figure, a reasonable spatial
resolution is 30 nodes per wave length, which corresponds to NX = 520 and
NZ = 12. For this particular spatial discretization, the convergence of the
solution with decreasing time step ∆t is presented in Fig. 3.4. The time step
of ∆t = T/15 is found to be acceptable; however, ∆t = T/30 resolves the
energy flux more accurately.

In case of irregular waves, the temporal and spatial resolution is chosen
to correlate with characteristic measures of the variance spectrum in terms
of the mean period T̄ and its associated wave length L̄ which is determined
by the dispersion relationship. Both measures are discretized with approxi-
mately 30 points in the numerical simulation.

3.6.2 Numerical Wave Absorption

The numerical absorption method stated in Eqs. (2.13) - (2.16) of Section
2.2.1 has proven to efficiently absorb nonlinear regular waves (Cointe et al.,
1990; Tanizawa, 1996). The performance of this technique in case of irregu-
lar waves has been studied systematically and is presented exemplarily for a
transient wave packet. Free surface elevations, total energy and energy flux
are investigated. The length and strength of the numerical beach are de-
fined in terms of the mean wave length and mean frequency as characteristic
measures of the variance spectrum:

lbeach = 2 L̄ and ωbeach = ω̄ / 2. (3.28)

The spectral and numerical parameters used in the simulation of the transient
wave packet are compiled in Table 3.2. The point of focus is x/l = 0.50 and
t/Tp = 21.35 with maximum wave height Hmax/h = 0.28. As shown in
Fig. 3.5, the total energy of the wave packet is significantly reduced by the
application of this absorption technique. Less than 1 % of the energy remains
at t/Tp = 37.5 in the wave tank. Fig. 3.6 shows the energy flux which
provides information about the direction of the energy transport at a fixed
location. A positive sign indicates wave propagation toward the numerical
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beach and a negative one toward the wave generator. No energy is visibly
passing the location x/l = 0.6 in the case of wave absorption. Snap shots of
the surface elevation presented in the same figure reveal that a long wave of
low amplitude is still present in the wave tank at t/Tp = 37.5.

Variance m0 = 0.006 m2

Significant wave height Hs = 4
√

m0 = 0.31 m
Peak period Tp = 4.80 s
Mean period T̄ = 4.15 s
Mean frequency ω̄ = 1.51 rad/s
Mean wave length L̄ = 21.96 m
Tank length l = 250.00 m
Water depth h = 4.00 m
Spatial resolution ∆x = L̄/30 = 0.73 m
Temporal resolution ∆t = T̄ /30 = 0.14 s
Number of horizontal grid nodes NX + 1 ≈ l/∆x + 1 = 344
Number of vertical grid nodes NZ + 1 ≈ h/∆x + 3 = 9
Length of numerical beach lbeach = 2 L̄ = 43.92 m
Strength of numerical beach ωbeach = ω̄/2 = 0.76 rad/s

Table 3.2: Parameters for verification of numerical wave absorption.

3.6.3 Experimental Validation

The numerical results are validated by experimental investigations conducted
at the Large Wave Tank (GWK) Hannover (324 m×5 m×7 m) with a piston-
type wave generator. For different test signals, the wave elevations were
measured by stationary wave gauges at fixed positions.

Results are presented for an irregular wave train characterized by the
spectral parameters given in Table 3.3. The mean period T̄ and the related
mean wave length L̄ are used to determine the temporal and spatial resolution
for the numerical simulation of the nonlinear wave evolution. Length and
strength of the numerical beach are also defined in terms of these spectral
characteristics.

Figs. 3.7 and 3.8 show the excellent agreement of numerical results and
experimental measurements. High frequency oscillations may be filtered due
to limited spatial and temporal resolution. The evolution of the wave field is
very complex due to nonlinear free surface effects such as amplitude modula-
tion and horizontal transport of the short waves by the long waves. The crest
profile of the largest waves is sharpened and the trough profile is flattened
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Variance m0 = 0.038 m2

Significant wave height Hs = 4
√

m0 = 0.78 m
Peak period Tp = 4.62 s
Mean period T̄ = 3.76 s
Mean frequency ω̄ = 1.67 rad/s
Mean wave length L̄ = 19.17 m
Tank length l = 300.00 m
Water depth h = 4.00 m
Spatial resolution ∆x = L̄/30 = 0.65 m
Temporal resolution ∆t = T̄ /30 = 0.13 s
Number of horizontal grid nodes NX + 1 ≈ l/∆x + 1 = 471
Number of vertical grid nodes NZ + 1 ≈ h/∆x + 3 = 9
Length of numerical beach lbeach = 2 L̄ = 38.34 m
Strength of numerical beach ωbeach = ω̄/2 = 0.84 rad/s

Table 3.3: Parameters for experimental validation of irregular wave train.

compared to the linear wave profile. Note that the propagation speed for
the wave profile and the energy is different in deep and intermediate water
depth.
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Figure 3.3: Convergence of the solution with decreasing grid spacing ∆x
(NX ≈ l/∆x, NZ ≈ h/∆x + 2, ∆t = T/30).
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Figure 3.5: (I) Verification of numerical wave absorption.
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Figure 3.7: (I) Validation of numerical results by laboratory measurements.
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Chapter 4

Wavelet Analysis

4.1 Introduction

Wavelet analysis is a new mathematical tool which is now broadly applied
in many different disciplines, including signal processing, data and image
compression, solutions of partial differential equations, modeling of multiscale
phenomena, and statistics. It provides a systematic way to represent and
analyze multiscale structures prevalent in nature and engineering.

Wavelet theory originates from the theory of signals. Goupillaud et
al. (1984) present a new transformation method for investigating signals in
the frequency domain. This wavelet transform has been developed to cope
with the shortcomings of the Fourier transform and its short-time variant.
Modern wavelet research is aimed at creating a set of basis, or more general,
expansion functions to efficiently localize the characteristics of a function
or signal in both time and frequency or scale simultaneously. The concept
of multiresolution is developed by Mallat (1989a, 1989b) and Meyer (1992),
where the signal decomposed in terms of resolution of detail has proved to be
a powerful and flexible tool in digital signal processing. Wavelet analysis is
covered in many excellent texts, including Chui (1992), Burrus et al. (1998),
Resnikoff and Wells (1998) and Louis et al. (1998).

A square integrable function ψ(t) ∈ L2(R) with its Fourier transform
Ψ(ω) satisfying the admission condition:

0 < cψ := 2 π

∫

R

|Ψ(ω)|2
|ω| dω < ∞ (4.1)

is called a wavelet. It implies that the Fourier transform vanishes at zero
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frequency and that the time-average of the wavelet ψ(t) is zero:

0 = Ψ(0) =
1√
2π

∫

R
ψ(t) dt. (4.2)

For this reason the function ψ(t) describes an oscillation with a band-pass-like
spectrum and is named wavelet. The continuous wavelet transform (CWT)
maps the one-dimensional function f(t) into a two-dimensional representa-
tion Lψ(a, b) in the time-frequency or time-scale plane:

Lψ(a, b) =
1√
cψ

1√
|a|

∫

R
f(t) ψ

(t− b

a

)
dt (4.3)

with a ∈ R\{0}, b ∈ R. The parameter b translates the wavelet to focus on
local information of f around t = b, and parameter a controls the sphere of
influence of the wavelet. The inverse wavelet transform is given by:

f(t) =

∫

R

∫

R

1√
cψ

1√
|a| Lψ(a, b) ψ

(t− b

a

) da db

a2
. (4.4)

Additional conditions are imposed on the wavelet functions to make the
wavelet transform decrease quickly with decreasing frequency. A wavelet of
order N ∈ N has N − 1 vanishing moments:

∫

R
tk ψ(t) dt = 0, 0 ≤ k ≤ N − 1 (4.5)

where the N th moment is finite and non zero:∫

R
tN ψ(t) dt 6= 0. (4.6)

It can be shown that the wavelet transform based on a wavelet of order N
approximates function derivatives of the same order f (N)(t).

Note that the location of the signal f(t) in the time-frequency plane is
to some extent uncertain; this is expressed by the Heisenberg uncertainty
relation: ∫

R
(t− t0)

2 |f(t)|2 dt

∫

R
(ω − ω0)

2 |F (ω)|2 dω ≥ 1

4
(4.7)

with t0, ω0 ∈ R and F (ω) denoting the Fourier transform of f(t).
The concept of multiresolution analysis and the discrete wavelet trans-

form play a vital role in this study and are described in detail in the next
two sections.
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4.2 Multiresolution Analysis

The multiresolution formulation is designed to decompose signals in low and
high frequency components to extract information on different resolution
scales. The basic concept of multiresolution analysis (MRA) was developed
by Mallat (1989a, 1989b) and Meyer (1992).

A scaling function ϕ(t) ∈ ÃL2(R) is introduced, which spans the subspace
V0 ⊂ L2(R) by its integer translates:

V0 = span {ϕ(t− k) | k ∈ Z}. (4.8)

The over-bar denotes closure. The basic requirement of multiresolution anal-
ysis is a nesting of the spanned spaces Vm ⊂ L2(R) as:

{0} ⊂ · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · ⊂ L2(R)

with:
⋃

m∈Z
Vm = L2(R), (4.9)

⋂

m∈Z
Vm = {0}, (4.10)

f(t) ∈ Vm ⇐⇒ f(2m t) ∈ V0. (4.11)

The size of the subspace spanned can be increased by changing the time scale
of the scaling function. A two-dimensional function set is generated from the
basic scaling function by scaling and translation:{

ϕm,k(t) = 2−m/2 ϕ(2−m t− k) | m, k ∈ Z
}

(4.12)

with the subspace Vm being defined as:

Vm = span {ϕm,k | k ∈ Z}. (4.13)

Fundamental to the theory of the scaling functions is the recursive dilation
equation:

ϕ(t) =
√

2
∑

k∈Z
hk ϕ(2 t− k) (4.14)

allowing the generation of orthogonal wavelet basis systems and the imple-
mentation of fast algorithms. It can be shown that the wavelet ψ ∈ V−1 can
be expressed in terms of the scaling function ϕ ∈ V0:

ψ(t) =
√

2
∑

k∈Z
gk ϕ(2 t− k) (4.15)

gk = (−1)k h1−k (4.16)

where hk are the scaling function coefficients.
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4.3 Discrete Wavelet Transform

The discrete wavelet transform (DWT) is based on the concept of multireso-
lution analysis, which enables the implementation of efficient decomposition
algorithms. A function f(t) ∈ V0 can be expressed in terms of integer trans-
lates of the scaling function ϕ(t) by:

f(t) =
∑

k∈Z
c0
k ϕ(t− k) (4.17)

c0 = {c0
k | k ∈ Z} (4.18)

where c0 are real expansion coefficients. The important features of function
f(t) can be better described by using a set of wavelet functions ψm,k(t):{

ψm,k(t) = 2−m/2 ψ(2−m t− k) | m, k ∈ Z
}

(4.19)

which span the differences between the spaces spanned by the set of scaling
functions ϕm,k(t) defined in Eq. (4.12). This family of wavelet functions
defines an orthonormal basis of L2(R).

The coefficients of the discrete wavelet transform Lψ are calculated from
the scalar products of the function f and the wavelets ψm,k:

√
cψ Lψ(2m, 2mk) = 〈f, ψm,k〉, m ∈ N0, k ∈ Z (4.20)

which can also be written in terms of the scaling functions using Eqs. (4.14)
and (4.15) as:

cm
k = 〈f, ϕm,k〉 =

∑

n∈Z
hn 〈f, ϕm−1,2k+n〉 =

∑

l∈Z
hl−2k cm−1

l (4.21)

dm
k = 〈f, ψm,k〉 =

∑

n∈Z
gn 〈f, ϕm−1,2k+n〉 =

∑

l∈Z
gl−2k cm−1

l (4.22)

with l = 2k +n. Starting with c0, the scaling and wavelet coefficients cm and
dm are recursively obtained by convolving the expansion coefficients at scale
m − 1 with the time-reversed lowpass and highpass filter coefficients hl−2k

and gl−2k and then down-sampling by a factor of two. The symbol ∗2 is used
to indicate this procedure. By introducing the reduction operators H and G:

Hc = c ∗2 h∗ =
{

(Hc)k =
∑

l∈Z
hl−2k cl

}
(4.23)

Gc = c ∗2 g∗ =
{

(Gc)k =
∑

l∈Z
gl−2k cl

}
(4.24)

the scheme of calculating a M -scale discrete wavelet transform can be illus-
trated as follows (Louis et al., 1998):
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with cm = Hcm−1 and dm = Gcm−1 for m = 1, 2, . . . , M , each being half the
length of cm−1. The original expansion coefficients c0 are reconstructed by
the inverse algorithm:

with cm−1 = H∗cm + G∗dm and the inverse operators H∗ and G∗:
H∗c =

{
(H∗c)k =

∑

l∈Z
hk−2l cl

}
, (4.25)

G∗c =
{

(G∗c)k =
∑

l∈Z
gk−2l cl

}
. (4.26)

In this work, least-asymmetric wavelets called symlets are used, which are
developed by Daubechies (1988, 1993) . The lowpass and highpass analy-
sis and synthesis filters with 16 coefficients and the associated scaling and
wavelet function are presented in Fig. 4.1. Note the band-pass structure of
the wavelet Fourier spectrum. Time scaling of the wavelet function corre-
sponds to stretching and shifting of the Fourier spectrum:

ψ(at) ⇐⇒ 1

|a| Ψ
(ω

a

)
(4.27)

with a ∈ R\{0}. Hence the finite spectrum of the signal to be analyzed
will be covered by a sum of stretched wavelet spectra that are touching
each other, together with the spectrum of scaling function at the largest
scale coding the remaining low frequency characteristics. Fig. 4.2 illustrates
the decomposition procedure of the 3-scale discrete wavelet transform using
symlets shown in Fig. 4.1. It can be observed that most information of the
signal is captured in the third level approximation coefficients c3 and detail
coefficients d3. This sparse representation is a typical feature of the discrete
wavelet transform and is largely utilized in data compression.
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Figure 4.1: Symlets analysis and synthesis lowpass and highpass filters with
associated scaling and wavelet function.
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Chapter 5

Synthesizing Transient Waves
in Random Seas

5.1 Introduction

The general procedure for synthesizing transient waves and wave groups in
a random sea is outlined in Fig. 5.1. At first, the target wave train needs to
be defined by global parameters as the water depth and variance spectrum
in terms of significant wave height and peak period. In addition, local char-
acteristics of the wave pattern and extreme waves are of great interest. They
are defined in terms of wave and crest height as well as period of individual
waves of a particular wave sequence.

A first approximation of the desired wave train is based on linear wave
theory and determined by an optimization technique. In linear wave theory
the wave train can be regarded as the superposition of independent harmonic
waves with particular amplitude, frequency and phase. For a given design
variance spectrum the phase spectrum is responsible for all local wave char-
acteristics. For this reason, an initially random phase spectrum is modified
by the sequential quadratic programming (SQP) method to generate the de-
sired wave train. The associated optimization problem is stated, in a general
form, as:

minimize
�∈<n

f(β) =

K/2∑

k=1

(
d1

k

)2
+

K/4∑

k=1

(
d2

k

)2
+ . . . +

K/2M∑

k=1

(
dM

k

)2
=

K/2∑

k=1

〈xB(t), ψ(t)1,k〉2 +

K/4∑

k=1

〈xB(t), ψ(t)2,k〉2 + . . . +

K/2M∑

k=1

〈xB(t), ψ(t)M,k〉2

(5.1)
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subject to gj = Υj −Υj, target = 0, j = 1, . . . , me

gme+1 = max
{
|xB(t)|

}
− xmax ≤ 0,

gme+2 = max
{
|ẋB(t)|

}
− umax ≤ 0,

gme+3 = max
{
|ẍB(t)|

}
− amax ≤ 0,

gme+3+j = −π − βj ≤ 0, j = 1, . . . , n

gme+3+n+j = −π + βj ≤ 0, j = 1, . . . , n (5.2)

where β is the vector of the free variables, which are the initially random
phase values. K is the number of data points describing the wave board
motion xB(t), and M is the decomposition level of the discrete wavelet trans-
form. Minimizing the objective function f(β) improves the representation
of the wave board motion xB(t) in terms of wavelet coefficients, which are
reduced in the higher frequency range. This compression is useful in the
subsequent fitting procedure of the nonlinear wave train with the subplex
method developed by Rowan (1990). The calculation of the discrete wavelet
transform is described in detail in Chapter 4.3. All local target wave char-
acteristics Υj, target are expressed as equality constraints which actually force
the SQP method to converge to the desired solution. The maximum stroke
xmax, velocity umax and acceleration amax of the wave board motion define
inequality constraints to be taken into consideration.

The motion of the wave board is determined from the solution and used
to derive boundary conditions for the subsequent numerical simulation of
the nonlinear wave evolution in time domain with the finite element method.
If necessary, the degree of conformity of the nonlinear wave train with the
target characteristics is further improved by applying another minimization
technique to the nonlinear fee surface flow problem. The SQP method can-
not be used in this case, since possible wave breaking is associated with
infeasible parameter sets resulting in noisy objective functions where the
gradient is difficult to be calculated. Hence the subplex method for uncon-
strained minimization is selected, since it requires only function evaluations,
not derivatives. The objective function and the constraints are restated as:

minimize
c∈<m

f(c) =
me∑
j

(
Υj −Υj, target

Υj, target

)2

+

(
σ
(
xB(t)

)− σ
(
xB(t)initial

)

σ
(
xB(t)initial

)
)2

(5.3)
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subject to g1 = max
{
|xB(t)|

}
− xmax ≤ 0,

g2 = max
{
|ẋB(t)|

}
− umax ≤ 0,

g3 = max
{
|ẍB(t)|

}
− amax ≤ 0, (5.4)

where c is the vector of the free variables, which are a small number of
selected approximation coefficients of the discrete wavelet transform. The
standard deviation of the wave board motion σ

(
xB(t)

)
has been included to

control the total energy input into the wave tank.
Fig. 5.2 shows the general procedure for fitting nonlinear wave trains to

target characteristics using the Subplex method and discrete wavelet trans-
form. The target wave characteristics are usually the same as those defined
in the preceding SQP optimization, which produced a qualified initial guess
of the wave board motion. The discrete wavelet transform of this wave board
motion is calculated, and the free variables in terms of wavelet coefficients
are selected. This particular set of wavelet coefficients corresponds to a cer-
tain resolution scale and time range, which is responsible for the evolution
of the target wave sequence in the random sea. It allows us to considerably
reduce the number of free variables in the fitting problem and the associated
computational costs. In each iteration, the wave board motion is determined
by calculating the inverse discrete wavelet transform, and then checked for
its permissibility. Either a new set of wavelet coefficients is determined or
the nonlinear free surface evolution is numerically simulated in time domain
with the finite element method. The value of the objective function and the
constraints are determined, and a new set of wavelet coefficients is calculated
by the subplex method until the desired termination criteria are reached. In
case of wave breaking, a high value is assigned to the objective function
indicating an infeasible parameter set.

General introductions to nonlinear programming for solving constrained
optimization problems are widely available (Fletcher, 1980; Bazaraa et al.,
1993; Nash and Sofer, 1996). The sequential quadratic programming method
and the subplex method are described in Sections 5.2 and 5.3. Due to the
multi-modal nature of the minimization problems, both methods may only
converge to local minima which depend on the initial conditions. This is, in
general, not a disadvantage, since the random structure of the wave train is
a desired feature. Further details of the entire procedure are illustrated in
the next chapter for a single wave and wave group synthesized in a random
sea.
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Figure 5.1: General procedure for synthesizing transient waves and wave
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5.2 Sequential Quadratic Programming

Sequential quadratic programming (SQP) is a popular and successful tech-
nique for solving optimization problems with nonlinear constraints. The main
idea is to transform the problem into an easier subproblem with a quadratic
objective function and linear constraints that can be solved and used as the
basis of an iterative process. This approach is a generalization of the Newton
method for unconstrained minimization. The SQP method concept based on
the Lagrangian function was first used by Wilson (1963). Quasi-Newton ap-
proximations to the Hessian matrix of the Lagrangian function have been
suggested by Han (1976) and Powell (1978) and are widely used in nonlin-
ear optimization methods. An overview of SQP is found in Fletcher (1980),
Bazaraa et al. (1993), and Nash and Sofer (1996).

A general optimization problem with equality and inequality constraints
is stated as: minimize

x∈Rn
f(x) (5.5)

subject to gi(x) = 0, i = 1, . . . , me

gi(x) ≤ 0, i = me + 1, . . . , m

xl ≤ x ≤ xu

where x is the vector of the design parameters, f(x) is the objective func-
tion to be minimized and g(x) is the vector of the equality and inequality
constraints. The lower and upper parameter bounds are xl and xu. The ob-
jective and constraint functions are assumed to be twice differentiable. Many
modern optimization methods including SQP introduce the Lagrangian func-
tion:

L(x, λ) = f(x) +
m∑

i =1

λi gi(x) (5.6)

where λi are the Lagrangian multipliers that indicate the sensitivity of the
optimal objective value to variations in the constraint functions. Here the
bound constraints are expressed as inequality constraints. The Lagrangian
function can be approximated by the second order Taylor series expansion
near the point (xk,λk):

L(x,λ) = L(xk, λk) +

(
pk

νk

)T

∇L(xk,λk) +
1

2

(
pk

νk

)T

∇2L(xk, λk)

(
pk

νk

)

where ∇2L(xk, λk) is the Hessian matrix of the Lagrangian function and

(
pk

νk

)
=

(
x

λ

)
−

(
xk

λk

)
.
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Applying Newton’s method to the first order necessary condition for a local
minimizer (x∗,λ∗) of the Lagrangian function:

∇L(x∗,λ∗) = ∇L(xk,λk) +∇2L(xk,λk)

(
pk

νk

)
= 0

which corresponds to solving the Karush-Kuhn-Tucker equations for the gen-
eral problem with nonlinear constraints:

∇x L(x∗,λ∗) = ∇f(x∗) +
m∑

i =1

λ∗i ∇gi(x
∗) = 0 (5.7)

λ∗i gi(x
∗) = 0, i = me + 1, . . . , m

λ∗i ≥ 0, i = me + 1, . . . , m

yields a linear system for the descent search directions (pk, νk):

(∇2
xxL(xk, λk) ∇g(xk)
∇g(xk)

T 0

)(
pk

νk

)
= −

(∇xL(xk,λk)

g(xk)

)
. (5.8)

In a quasi-Newton approach the Hessian ∇2
xxL(xk, λk) is approximated by

another matrix Hk that can be found using first derivative information only.
Hence the search direction can be computed by fewer operations leading to
efficient numerical algorithms. The system of equations stated in Eq. (5.8)
represents the first order optimality conditions for the quadratic subproblem
with linear constraints:

minimize
p∈<n

1

2
pT Hk p + pT ∇xL(xk, λk) (5.9)

subject to ∇gi(xk)
T p + gi(xk) = 0, i = 1, . . . , me

∇gi(xk)
T p + gi(xk) ≤ 0, i = me + 1, . . . , m.

The solution is used to form a new iterate:
(

xk+1

λk+1

)
=

(
xk

λk

)
+ αk

(
pk

νk

)
.

The step length parameter αk is determined by a line search procedure so
that a sufficient decrease in a merit function is achieved, which provides a
measure of the optimization progress. This auxiliary function is a sum of
terms that include the objective function and the amount of infeasibility of
the constraints. The value of the merit function will decrease if the new
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solution point reduces the objective function and the infeasibility. In this
work the merit function defined by Han (1975) and Powell (1978) is used:

M(x) = f(x) +
me∑
i =1

ri gi(x) +
m∑

i = me+1

ri max
{

0, gi(x)
}

. (5.10)

Powell recommends setting the penalty parameter ri to be:

ri = (rk+1)i = max
i

{
λi,

1

2

(
(rk)i + λi

)}
, i = 1, . . . , m (5.11)

which allows us to take positive contributions from constraints into account
that are inactive at the solution but were recently active. Initially the penalty
parameter is set to:

(ri)start =
‖∇f(x) ‖
‖∇gi(x) ‖

where ‖ · ‖ represents the Euclidean norm. The Hessian matrix is updated
for the next iteration by applying the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) formula, which is considered to be most effective:

Hk+1 = Hk − (Hksk)(Hksk)
T

sT
k Hksk

+
qkq

T
k

qT
k sk

(5.12)

sk = xk+1 − xk

qk = ∇f(xk+1) + λT
k+1∇g(xk+1) −

(
∇f(xk) + λT

k ∇g(xk)
)
.

It can be shown that the approximation of the Hessian matrix Hk is main-
tained positive definite by providing qT

k sk > 0.

5.3 Subplex Method

The subplex method was developed by Rowan (1990) and is a generaliza-
tion of the popular Nelder-Mead simplex (NMS) method (1965) for uncon-
strained minimization, which requires only function evaluations, not deriva-
tives. A high dimensional problem is decomposed into low dimensional sub-
spaces which are easily handled by NMS. The subplex method retains the
advantages of NMS on noisy functions and is able to handle constraints by
rejection of infeasible points, since a permanent collapse into a subspace is
avoided by automatic restarts. This feature is especially important for opti-
mizing steep nonlinear waves which might become unstable. In the case of
breaking, the numerical simulation based on potential flow theory will stop,
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and no function value can be determined. Hence, the associated parameter
set is infeasible and a high value is assigned to the objective function.

The downhill simplex method due to Nelder and Mead (1965)is a function
comparison method for unconstrained optimization. A simplex is a convex
hull of n + 1 vertices and moves through the n-dimensional domain space of
the objective function. During the minimization the simplex changes shape
and size, and shrinks automatically when enveloping a minimum.

The initial simplex is defined by a starting point x0 and by setting the
remaining vertices to:

xi = x0 + µi ei, i = 1, 2, . . . , n (5.13)

where µi are the characteristic length scales of the problem. ei are the unit
vectors of the domain space. Fig. 5.3 illustrates the basic steps taken by the
NMS method for the case n = 2. Reflection corresponds to moving the point
xh of the simplex where the objective function is largest through the center
of the remaining points. If this point xr is the best in the new simplex then
an expansion of this vertex in the same direction is tried, yielding xe. The
reflected point xr replaces xh if xr is neither the best nor the worst point
of the new simplex. If the reflected point xr is the worst point then xr or
xh will be discarded depending on the function value. The simplex is then
contracted to look for an intermediate lower point denoted by xc or x∗c . If
this operation still generates the worst point of the new simplex then both
xh and xs are contracted simultaneously; this is called massive contraction
or shrinkage. The choice of the four NMS parameters define the solution
strategy and are usually set to αs = 1, βs = 0.5, γs = 2 and δs = 0.5.

The NMS method is well suited for minimizing noisy functions with low
dimensional domain space, e.g. n ≤ 5. The performance of the method
decreases rapidly when n becomes much larger (Box, 1966). Another short-
coming is that NMS cannot handle constraints by rejecting infeasible points,
since a simplex may collapse into a subspace (Rowan, 1990).

The subplex method retains the positive features of the simplex method
regarding noisy functions. The inefficiency of NMS at high dimensional prob-
lems is removed by decomposing the problem into low dimensional subspaces
that can easily be handled by NMS. The subplex method generalizes meth-
ods that determine, at each iteration, an improved set of search directions
and perform line searches along those directions.

The n-dimensional domain space of the objective function is decomposed
in ns mutually orthogonal subspaces nsi:

ns∑
i =1

nsi = n, nsmin ≤ nsi ≤ nsmax (5.14)
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with the direction of progress lying approximately in the first subspace. The
minimum and maximum subspace dimensions are defined by nsmin and nsmax

with:
1 ≤ nsmin ≤ nsmax ≤ n and nsmindn/nsmaxe ≤ n. (5.15)

The number of subspaces and the subspace dimensions control which, and
how many, components of the design parameters x are selected for the inner
minimization by the simplex method. To determine the subspaces the vector
of progress ∆x = (∆x1, . . . , ∆xn)T , which measures the difference of succes-
sive iterates, is sorted by decreasing magnitude. This new vector is denoted
by ∆̃x = (∆̃x1, . . . , ∆̃xn)T with |∆̃xi| ≥ |∆̃xi+1| for i = 1, . . . , n − 1. The
first subspace dimension ns1 is the value m that maximizes the function:

F(m) =





‖∆̃x‖1

m
− ‖∆̃x‖1

n−m
, for m < n

‖∆̃x‖1

n
, for m = n

(5.16)

subject to:

nsmin ≤ m ≤ nsmax and nsmind(n−m)/nsmaxe ≤ n−m (5.17)

where ‖ · ‖1 represents the 1-norm:

‖x‖1 =
n∑

i =1

|xi|.

The inequalities (5.17) guarantee that the remaining vector (∆̃xm+1, . . . , ∆̃xn)T

can be partitioned again to obtain the other subspaces ns2, ns3, . . . in an it-
erative process.

At each iteration of the outer loop, the new vertices of the initial simplices
for the inner NMS minimizations are determined by:

xi = xl + µi ei, i = 1, 2, . . . , n (5.18)

where xl is current best point and µ = (µ1, . . . , µn)T are the rescaled stepsizes
of the previous iteration:

µ ←−




min
{

max
(‖∆x‖1

‖µ‖1

, ωs

)
,

1

ωs

}
· µ, for ns > 1

ψs · µ, for ns = 1.
(5.19)
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If more than one subspace exists, the degree of modifying the stepsize is
controlled by the coefficient ωs. Small values of ωs force the subplex method
to converge rapidly to a local minimum, whereas high values lead to a more
thorough search, which may find another minimum with a lower function
value. The coefficient ψs controls the accuracy of the subspace searches
within the simplex method. The inner minimization terminates when the
size of the simplex has been sufficiently reduced:

dist(xl, xh)stop ≤ ψs · dist(xl,xh)start (5.20)

If only one subspace exists, the stepsize is set appropriately to resume min-
imization where it stopped in the previous iteration. The orientation of
the initial simplices is determined from favorable directions in the vector of
progress ∆x:

µi ←−
{

sign(∆xi) · |µi|, for ∆xi 6= 0

−µi, for ∆xi = 0.
(5.21)

The subplex strategy is defined by the coefficients given in Table 5.1 where
the first four parameters αs, βs, γs and δs are the same as those used in the
NMS method. The termination test for the outer loop of the subplex method

Reflection αs = 1 (αs > 0)
Contraction βs = 0.5 (0 < βs < 1)
Expansion γs = 2 (γs > 1)
Shrinkage δs = 0.5 (0 < δs < 1)
Simplex reduction ψs = 0.25 (0 < ψs < 1)
Step reduction ωs = 0.1 (0 < ωs < 1)
Minimum subspace dimension nsmin = min(2, n)
Maximum subspace dimension nsmax = min(5, n)

Table 5.1: Coefficients of the subplex strategy.

includes information on both ∆x and µ:

max
(
‖∆x‖∞, ψs · ‖µ‖∞

)

max
(
‖x‖∞, 1

) ≤ tol (5.22)

since a small value of ‖∆x‖∞ may indicate that the stepsizes µ are too large
to achieve further progress. ‖ · ‖∞ represents the ∞-norm:

‖x‖∞ = max
i

{
|xi|

}
, i = 1, 2, . . . , n.
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Figure 5.3: Basic steps of the Nelder and Mead simplex method (adapted
from Rowan, 1990).



Chapter 6

Examples and Discussion

6.1 Introduction

The synthesis of nonlinear transient gravity waves in random seas is illus-
trated by two examples. The first one addresses a single design wave and
the second one a tailored group of three successive waves embedded in a ran-
dom seaway. The general procedure to generate the desired wave regimes is
described in Section 5.1.

In this investigation, the selected design variance spectrum is the finite
depth TMA spectrum. The water depth and sea state parameters are equal
in both examples and are defined in Table 6.1. The discretization and wave
absorption parameters used in the numerical simulation of the nonlinear wave
evolution are derived from the sea state parameters and are summarized
in Table 6.2. The maximum stroke, velocity and acceleration of the wave
board motion are taken into account in the optimization procedure to enable
experimental investigations in a physical wave tank. The values of these
constraints are shown in Table 6.3.

The discrete wavelet transform of the wave board motion plays a central
role in the time consuming subplex fitting. The decomposition scale is always
M = 3 in this study.

The SQP optimization of the linear wave train terminates if the magni-
tude of the directional derivative in search direction is less than 1.0 · 10−3

and the constraint violation is less than 1.0 · 10−2. The subplex fitting of the
nonlinear wave train terminates if the value of the objective function is less
than 1.0 · 10−4 in the first example and 5.0 · 10−3 in the second one.

The next two sections describe target wave characteristics, objective func-
tions, constraints and associated results for the single transient wave and the
wave group synthesized in a random sea.
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Water depth h = 5.00 m
Variance of TMA spectrum m0 = 0.011 m2

Significant wave height Hs = 0.425 m
Peak period Tp = 3.13 s
Mean period T̄ = 2.54 s
Mean frequency ω̄ = 2.48 rad/s
Mean wave length L̄ = 10.00 m

Table 6.1: Parameters of the model sea state.

Tank length l = 250.00 m
Spatial resolution ∆x = L̄/30 = 0.33 m
Temporal resolution ∆t = T̄ /30 = 0.085 s
Number of horizontal grid nodes NX + 1 ≈ l/∆x + 1 = 751
Number of vertical grid nodes NZ + 1 ≈ h/∆x + 3 = 18
Length of numerical beach lbeach = 2 L̄ = 20.00 m
Strength of numerical beach ωbeach = ω̄/2 = 1.24 rad/s

Table 6.2: Parameters of the nonlinear numerical simulation.

Maximum stroke xmax = 2.00 m
Maximum velocity umax = 1.70 m/s
Maximum acceleration amax = 2.20 m/s2

Table 6.3: Constraints on the wave board motion.

6.2 Synthesized Wave in Random Sea

A single transient wave is synthesized in a random sea which is defined in
Table 6.1. The global parameters are the significant wave height Hs, the peak
period Tp and the water depth h. The target characteristics of the transient
wave define an extreme wave event at a particular time and location in the
wave tank. The desired wave height is twice the significant wave height and
the associated crest elevation is set to 60 % of the wave height. The wave
period is selected to be the peak period. All local parameters are determined
by the zero-downcrossing method and are summarized in Table 6.4.

Firstly, a linear approximation of the desired wave train is computed by
optimizing the wavelet representation of the wave board motion for equal-
ity and inequality constraints which correspond to the desired wave char-
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acteristics. The free variables are the values of an initially random phase
spectrum, leaving the energy distribution, in terms of the variance spec-
trum, unchanged during the optimization. This linear initial guess is further
improved by fitting the nonlinear wave evolution simulated in a numerical
wave tank to the target characteristics. The free variables are now particular
wavelet coefficients which correspond to a certain resolution scale and time
range responsible for the evolution of the target wave.

Space domain

Target location xtarget = 20 h = 100.00 m

Time domain

Target wave height Htarget = 2 Hs = 0.85 m
Target wave period Ttarget = Tp = 3.13 s
Target crest height ζc, target = 0.6 Htarget = 0.51 m
Target crest location tζc, target = 26 Tp = 81.39 s

Table 6.4: Target parameters of the synthesized wave.

6.2.1 Generation of Linear Target Wave Train

As long as linear wave theory is applied, the sea state can be regarded as
the superposition of independent harmonic waves, each having a particular
direction, amplitude, frequency and phase. For a given design variance spec-
trum of an unidirectional wave train, the phase spectrum is responsible for
the local characteristics, e.g. the wave height and period distribution as well
as the location of the highest wave crest in space and time. For this rea-
son, an initially random phase spectrum arg F (ω) is systematically modified
by the SQP method to generate the desired target wave train with speci-
fied local properties. The phase values β = (β1, β2, . . . βn)T are bounded by
−π ≤ βj ≤ π and are initially determined from βj = 2π(Rj − 0.5) where Rj

are random numbers in the interval 0 to 1.
The motion of the wave board xB(t) is determined by transforming the

linear wave train at x = xtarget in terms of the complex Fourier transform
Ftarget(ω) to the location of the wave generator at x = 0 and applying the
complex hydrodynamic transfer function Fhydro(ω), which relates wave board
motion to surface elevation close to the wave generator:

xB(t) = IFFT

[
Ftarget(ω) · Ftrans(ω) · Fhydro(ω)

]
(6.1)
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where Ftrans(ωj) = exp(i kj xtarget), and ωj and kj are related by the disper-
sion equation (2.21).

The objective function of the SQP optimization problem is formulated
such that the energy of the wave board motion is reduced in the higher
frequency range which correlates with the detail wavelet coefficients dm

k at
scales m = 1, 2 and 3; compare Eq. (4.22). Hence, the best part of the rel-
evant signal information is focused to the 3-level approximation coefficients
c3. The target zero-downcrossing wave characteristics define equality con-
straints. The maximum stroke xmax, velocity umax and acceleration amax of
the wave board motion xB(t) define inequality constraints to be taken into
account. The complete SQP optimization problem is stated as:

minimize
�∈<n

f(β) =

K/2∑

k=1

(
d1

k

)2
+

K/4∑

k=1

(
d2

k

)2
+

K/8∑

k=1

(
d3

k

)2
=

K/2∑

k=1

〈xB(t), ψ(t)1,k〉2 +

K/4∑

k=1

〈xB(t), ψ(t)2,k〉2 +

K/8∑

k=1

〈xB(t), ψ(t)3,k〉2 (6.2)

subject to g1 = Hi −Htarget = 0,

g2 = Ti − Ttarget = 0,

g3 = ζc, i − ζc, target = 0,

g4 = tζc, i − tζc, target = 0,

g5 = max
{
|xB(t)|

}
− xmax ≤ 0,

g6 = max
{
|ẋB(t)|

}
− umax ≤ 0,

g7 = max
{
|ẍB(t)|

}
− amax ≤ 0,

g7+j = −π − βj ≤ 0, j = 1, . . . , n

g7+n+j = −π + βj ≤ 0, j = 1, . . . , n (6.3)

where f(β) is the objective function to be minimized. Both the wave board
motion and the linear surface elevation are described by K = N = 1024 data
points with a time step of ∆t = 0.1 s resulting in a time window of 102.3 s.
The design variance spectrum remains unchanged and n = 99 components
in the frequency range of ω/ωp = 0.5 to ω/ωp = 3.5 are considered.

Fig. 6.1 shows ten different solutions to the optimization problem defined
in Eqs. (6.2) and (6.3) for different initial phase distributions. The target
parameters are always met, since they are part of the constraints. Fig. 6.1
further indicates that only local minima may be found by the SQP optimiza-
tion and that the resulting wave train is still random.
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Figure 6.1: Ten solutions to the optimization problem stated in Eqs. (6.2)
and (6.3) resulting from ten different initially random phase distributions.

One of the above wave regimes is analyzed in more detail. Fig. 6.2 shows
the minimization of the objective function f(β) stated in Eq. (6.2). The
optimization terminates successfully at f(β) = 0.16 after 2223 function eval-
uations. The magnitude of the directional derivative in search direction is
3.1 · 10−4 and the maximum constraint violation is 2.3 · 10−5.
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The wave board motions derived from the initially random and optimized
phase spectrum are compared in Fig. 6.3. Using a linear wave model implies
that the high target wave can only be generated at a particular location by
disperse focusing of several wave components. The wave group evolving to
the target wave can be easily identified in the optimized wave board motion.
The detail wavelet coefficients are especially reduced in the third decompo-
sition level d3, which correlates in Fig. 6.3 to the coefficients in the range of
128 to 255. This improved compression is an advantage for the subsequent
fitting procedure, since the interesting part of the wave board motion can be
modified very efficiently by only a few approximation coefficients.

Fig. 6.4 shows the associated linear wave train at the target location,
which is represented in frequency domain by Fourier and phase spectrum.
The latter is one possible solution found by the SQP optimization. It can be
observed that all global and local target wave characteristics defined in Table
6.4 are met. The zero-downcrossing method is applied to the wave train and
47 individual waves are identified. The associated height, crest and period
structure are presented.

Linear wave theory is not appropriate for describing extreme waves, since
nonlinear free surface effects significantly influence the wave evolution. How-
ever, the linear description of the wave train allows us to determine an initial
guess of the wave board motion, i.e. time-dependent boundary conditions
required for simulating the nonlinear wave train in the numerical wave tank.
The parameters used in the numerical calculation are summarized in Table
6.2. Fig. 6.5 shows that the deviations between linear and nonlinear wave
evolution increase with the distance from the wave generator. The details
of the surface elevation at the target location of x/h = 20 reveal that the
nonlinear wave is faster and higher than the linear one which corresponds
to the target parameters. The Fourier and phase spectrum, as well as wave
height, crest and period structure of the nonlinear wave train, are presented
in Fig. 6.6. The asymmetry and period are significantly lower than desired.
Note that the Fourier spectrum of the nonlinear wave train depends on the
location in the wave tank, since wave energy might be shifted with frequency
due to nonlinear modulation effects. The precise values of the deviations are
summarized in Table 6.5. The largest one is the wave height with 17.8 %.
These deviations are reduced considerably by applying another optimization
method directly to the nonlinear wave evolution.
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Figure 6.2: Example 1: Minimization of objective function defined in Eq.
(6.2) with SQP method.
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Figure 6.3: Example 1: Initial and SQP-optimized wave board motion with
associated discrete wavelet transforms.
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Figure 6.4: Example 1: Characteristics of linear wave train with synthesized
wave.
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Figure 6.5: Example 1: Comparison of linear and nonlinear evolution of
synthesized wave. Wave board motion used in nonlinear simulation generated
with SQP method.
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Figure 6.6: Example 1: Further characteristics of nonlinear wave train with
synthesized wave. Wave board motion used in nonlinear simulation generated
with SQP method.
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6.2.2 Generation of Nonlinear Target Wave Train

The linear initial guess is further improved by fitting the nonlinear wave
evolution simulated in a numerical wave tank to the target characteristics.
The starting point is the discrete wavelet transform of the SQP-optimized
wave board motion shown in Fig. 6.3. Most of the signal energy is focused
to the 3-level approximation coefficients c3 = {c0, c1, . . . , c127}. The free
variables are selected to be the n = 51 coefficients c = (c38, c39, . . . , c88)

T ,
which correspond to the time window between t/Tp = 9.6 and t/Tp = 22.4.
This part of the wave board motion is responsible for the evolution of the
transient target wave. The fitting problem, to be solved with the subplex
method, is formulated as:

minimize
c∈<n

f(c) =

(
Hi −Htarget

Htarget

)2

+

(
Ti − Ttarget

Ttarget

)2

+ (6.4)

(
ζc, i − ζc, target

ζc, target

)2

+

(
tζc, i − tζc, target

tζc, target

)2

+

(
σ
(
xB(t)

)− σ
(
xB(t)initial

)

σ
(
xB(t)initial

)
)2

subject to g1 = max
{
|xB(t)|

}
− xmax ≤ 0,

g2 = max
{
|ẋB(t)|

}
− umax ≤ 0,

g3 = max
{
|ẍB(t)|

}
− amax ≤ 0, (6.5)

where σ
(
xB(t)

)
is the standard deviation of the wave board motion. The

inclusion of σ
(
xB(t)

)
is necessary to control the total energy input which

corresponds to the significant wave height Hs as a global target parameter.
Fig. 6.7 shows the minimization of the objective function f(c) with the

straight vertical lines indicating infeasible points due to wave breaking or
constraint violation. The subplex fitting terminates successfully at f(c) =
9.9 · 10−5 after 1350 function evaluations.

The improved wave board motion is compared in Fig. 6.8 to the linear
initial guess. It can be observed that the highest elevations are reduced
by the fitting procedure to decrease the height of the transient target wave.
Further details of the nonlinear wave evolution are illustrated in Fig. 6.9. The
asymmetry and the peak period of the target wave are increased compared
to the nonlinear wave that originates from the first initial guess of the wave
board motion. The zero-downcrossing characteristics of the improved wave
train are presented in Fig. 6.10. The properties of the desired transient
wave are very close to the target values with a maximum deviation of 0.6 %;
compare Table 6.5.
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H / Hs T / Tp ζc /H tζc / Tp

Target value 2.000 1.000 0.600 26.000

SQP value 2.356 0.931 0.544 25.849
Deviation in % 17.8 −6.9 −9.3 −0.6

Subplex value 1.998 0.994 0.597 25.862
Deviation in % −0.1 −0.6 −0.5 −0.5

Table 6.5: Conformity of the nonlinear synthesized wave with target param-
eters.

The smoothed variance spectra at different locations in the wave tank are
presented in Fig. 6.11. Ten adjacent points have been used for moving average
filtering the raw FFT-spectra in frequency domain. At a 95% confidence level,
the lower confidence limit is 0.6 and the upper limit is 2.0 of the spectral
estimate. Note that a perfect correlation between the spectra can not be
expected due to the several uncertainties related to the fast Fourier transform
and the filtering process. At target location x/h = 20, the zeroth spectral
moment m0 = 0.099 and the peak period Tp = 3.17 s differ slightly from the
target values, since they have not been considered explicitly in the fitting
procedure.

Fig. 6.12 shows the energy flux at the same locations. As can be observed,
the energy flux is strongly focused on the target time t/Tp = 26 where the
crest of the transient design wave is located. The evolution of the subplex-
fitted nonlinear transient wave in space and time is illustrated in Fig. 6.13.
It shows that the energy is propagated at a distinctly slower speed than the
wave crests and troughs; this is a typical feature of gravity waves in deep
and intermediate water. At t/Tp = 26 the steepness of the target wave is
H/L = 0.043. The associated distributions of the horizontal particle velocity,
acceleration and dynamic pressure are shown in Fig. 6.14. The high transient
wave has an effect on the flow field down to the bottom of the wave tank,
but the magnitude of velocity, acceleration and dynamic pressure decreases
exponentially with water depth. The maximum zero-upcrossing crest and
wave height, as well as wave steepness, are presented in Fig. 6.15. The entire
wave tank is analyzed to obtain these values. Hence they do not correlate
to a particular wave which is traced in time. Occasionally steep waves are
observed.

Much more information on the flow details is available from the numerical
simulation, such as the complete energy fields or particle tracks as a function
of time.
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Figure 6.7: Example 1: Minimization of objective function defined in Eq.
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Figure 6.8: Example 1: Comparison of wave board motions generated with
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Figure 6.9: Example 1: Comparison of nonlinear evolution of synthesized
waves. Wave board motion used in nonlinear simulations generated with
SQP and Subplex method.
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Figure 6.10: Example 1: Further characteristics of nonlinear wave train with
synthesized wave. Wave board motion used in nonlinear simulation generated
with Subplex method.
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Figure 6.11: Example 1: Variance spectra of linear and nonlinear wave trains
at different locations.
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Figure 6.12: Example 1: Energy flux of linear and nonlinear wave trains at
different locations.
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Figure 6.13: Example 1: Evolution of nonlinear synthesized wave in space
and time domain. Wave board motion used in nonlinear simulation generated
with Subplex method.
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Figure 6.14: Example 1: Particle velocity, acceleration, and dynamic pressure
field of nonlinear wave train with synthesized wave at t/Tp = 26. Wave board
motion used in nonlinear simulation generated with Subplex method.
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Figure 6.15: Example 1: Zero-upcrossing characteristics of nonlinear wave
train with synthesized wave. Wave board motion used in nonlinear simulation
generated with Subplex method.
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6.3 Synthesized Wave Group in Random Sea

In the second example, a wave group of three successive waves is synthesized
in a random sea. The global sea state parameters are the same as in the
previous example and are defined in Table 6.1. The target wave height of the
transient wave in the center of the group is twice the significant wave height
Hs, which is twice the height of both adjacent waves. The target elevation
of the center wave is set to 60 % of its height, and the target periods of all
three waves are set to the peak period Tp. Further local parameters are the
locations in space and time domain, which are defined in Table 6.6. The next
sections describe the procedure to generate the linear and nonlinear target
wave train in detail.

Space domain

Target location xtarget = 20 h = 100.00 m

Time domain

Wave 1:
Target wave height H1, target = Hs = 0.425 m
Target wave period T1, target = Tp = 3.13 s

Wave 2:
Target wave height H2, target = 2 Hs = 0.85 m
Target wave period T2, target = Tp = 3.13 s
Target crest height ζc, target = 0.6 H2, target = 0.51 m
Target crest location tζc, target = 26 Tp = 81.39 s

Wave 3:
Target wave height H3, target = Hs = 0.425 m
Target wave period T3, target = Tp = 3.13 s

Table 6.6: Target parameters of the synthesized wave group.

6.3.1 Generation of Linear Target Wave Train

The procedure for optimizing the linear wave train is exactly the same as
the one described in Section 6.2.1. Only the equality constraints of the
optimization problem, which define the target characteristics of the wave
group, need to be adjusted. Hence the optimization problem is stated as:
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minimize
�∈<n

f(β) =

K/2∑

k=1

(
d1

k

)2
+

K/4∑

k=1

(
d2

k

)2
+

K/8∑

k=1

(
d3

k

)2
=

K/2∑

k=1

〈xB(t), ψ(t)1,k〉2 +

K/4∑

k=1

〈xB(t), ψ(t)2,k〉2 +

K/8∑

k=1

〈xB(t), ψ(t)3,k〉2 (6.6)

subject to g1 = Hi−1 −H1, target = 0,

g2 = Ti−1 − T1, target = 0,

g3 = Hi −H2, target = 0,

g4 = Ti − T2, target = 0,

g5 = ζc, i − ζc, target = 0,

g6 = tζc, i − tζc, target = 0,

g7 = Hi+1 −H3, target = 0,

g8 = Ti+1 − T3, target = 0,

g9 = max
{
|xB(t)|

}
− xmax ≤ 0,

g10 = max
{
|ẋB(t)|

}
− umax ≤ 0,

g11 = max
{
|ẍB(t)|

}
− amax ≤ 0,

g11+j = −π − βj ≤ 0, j = 1, . . . , n

g11+n+j = −π + βj ≤ 0, j = 1, . . . , n (6.7)

where f(β) is the objective function to be minimized. The superscripts of
the detail wavelet coefficients d1

k, d2
k and d3

k denote the approximation level of
the discrete wavelet transform. The subscripts i−1, i, i+1 refer to the three
successive waves of the target group determined by the zero-downcrossing
method. The wave board motion and the linear surface elevation are de-
scribed by K = N = 1024 data points with a time step of ∆t = 0.1 s
resulting in a time window of 102.3 s. The design variance spectrum remains
unchanged and n = 99 components in the frequency range of ω/ωp = 0.5 to
ω/ωp = 3.5 are considered.

Fig. 6.16 shows the optimization progress in terms of the objective func-
tion f(β) defined in Eq. (6.6). The optimization terminates successfully at
f(β) = 0.16 after 4137 function evaluations. The magnitude of the direc-
tional derivative in search direction is 3.8 · 10−4 and the maximum constraint
violation is 1.1 · 10−4. The detail wavelet coefficients of the third level d3 are
reduced as shown in Fig. 6.17. Identifying the target group in the optimized
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wave board motion is difficult, though it is known from the previous example
that the relevant time window is approximately 10 ≤ t/Tp ≤ 20. Fig. 6.18
presents the linear wave train generated by the SQP method. All three waves
of the target group show the desired zero-downcrossing characteristics sum-
marized in Table 6.6. The wave height, crest and period structure of the 39
individual waves are shown as well.

The wave board motion derived from the linear wave train is used to
simulate the nonlinear wave evolution in the numerical wave tank. Linear and
nonlinear wave trains are compared in Fig. 6.19. The details of the surface
elevation at the target location of x/h = 20 show that the characteristics of
nonlinear wave group deviate significantly from the target parameters. In
particular, the height of the third wave is only 42.6 % of the desired value;
compare Table 6.7. Further details of the nonlinear wave train regarding the
frequency representation as well as the height, crest and period structure are
illustrated in Fig. 6.20. Note that the Fourier spectrum varies for nonlinear
wave trains with the measurement location in the wave tank.
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Figure 6.16: Example 2: Minimization of objective function defined in Eq.
(6.6) with SQP method.
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associated discrete wavelet transforms.
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Figure 6.20: Example 2: Further characteristics of nonlinear wave train with
synthesized wave group. Wave board motion used in nonlinear simulation
generated with SQP method.
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6.3.2 Generation of Nonlinear Target Wave Train

The characteristics of the nonlinear wave train are improved with the subplex
method. As in the first example, the free variables in the optimization are
selected to be the n = 51 wavelet coefficients c = (c38, c39, . . . , c88)

T , which
correspond to the time window between t/Tp = 9.6 and t/Tp = 22.4 of the
wave board motion. The fitting problem is defined for the wave group as:

minimize
c∈<n

f(c) =

(
Hi−1 −H1, target

H1, target

)2

+

(
Ti−1 − T1, target

T1, target

)2

+

(
Hi −H2, target

H2, target

)2

+

(
Ti − T2, target

T2, target

)2

+

(
ζc, i − ζc, target

ζc, target

)2

+

(
tζc, i − tζc, target

tζc, target

)2

+

(
Hi+1 −H3, target

H3, target

)2

+

(
Ti+1 − T3, target

T3, target

)2

+

(
σ
(
xB(t)

)− σ
(
xB(t)initial

)

σ
(
xB(t)initial

)
)2

(6.8)

subject to g1 = max
{
|xB(t)|

}
− xmax ≤ 0,

g2 = max
{
|ẋB(t)|

}
− umax ≤ 0,

g3 = max
{
|ẍB(t)|

}
− amax ≤ 0. (6.9)

The minimization of the objective function f(c) is shown in Fig. 6.21.
The straight vertical lines indicate infeasible points due to wave breaking or
constraint violation. The subplex fitting terminates successfully at 4.9 · 10−3

after 2034 function evaluations.
The improved wave board motion and the associated nonlinear wave evo-

lution are presented in Figs. 6.22 and 6.23. The final wave train now cor-
relates much better to the target parameters; particularly the height of the
third wave is considerably increased. As shown in Table 6.7, the maximum
deviation is 3.7 % for the asymmetry ζc /H of the high transient wave in the
center of the group. Fig. 6.24 presents the Fourier and phase spectrum as well
as wave height, crest and period structure determined by a zero-downcrossing
analysis.

The smoothed variance spectra are shown in Fig. 6.25 for different loca-
tions in the wave tank. The zeroth spectral moment m0 = 0.0109 and the
peak period Tp = 3.01 s differ slightly from the target values at the target lo-
cation x/h = 20. Fig. 6.26 shows that the energy flux is mostly focused at the
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Wave 1: H / Hs T / Tp

Target value 1.000 1.000

SQP value 1.107 1.087
Deviation in % 10.7 8.7

Subplex value 0.996 1.029
Deviation in % −0.4 2.9

Wave 2: H / Hs T / Tp ζc / H tζc / Tp

Target value 2.000 1.000 0.600 26.000

SQP value 1.874 0.898 0.520 25.832
Deviation in % −6.3 −10.2 −13.3 −0.7

Subplex value 2.048 0.983 0.578 25.810
Deviation in % 2.4 −1.7 −3.7 −0.7

Wave 3: H / Hs T / Tp

Target value 1.000 1.000

SQP value 0.574 1.096
Deviation in % −42.6 9.6

Subplex value 0.997 1.008
Deviation in % −0.3 0.8

Table 6.7: Conformity of the nonlinear synthesized wave group with target
parameters.

target location in space and time. The evolution of the subplex-fitted nonlin-
ear transient wave in space and time is presented in Fig. 6.27. At t/Tp = 26
the steepness of the three target waves is H1/L1 = 0.026, H2/L2 = 0.050
and H3/L3 = 0.046. Note that zero-downcrossing waves in time domain
correspond to zero-upcrossing waves in space domain and vice versa. The
associated distributions of the horizontal particle velocity, acceleration and
dynamic pressure are shown in Fig. 6.28. The long waves dominate the flow
field down to the bottom of the wave tank, but the magnitude of velocity,
acceleration and dynamic pressure decreases exponentially with water depth.
The maximum zero-upcrossing crest and wave height, as well as wave steep-
ness, are presented in Fig. 6.29. The entire wave tank is analyzed to obtain
these values. Hence they do not correlate to a particular wave which is traced
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in time. Occasionally steep waves are observed.
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Figure 6.21: Example 2: Minimization of objective function defined in Eq.
(6.8) with Subplex method.
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Figure 6.22: Example 2: Comparison of wave board motions generated with
SQP and Subplex method.
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Figure 6.23: Example 2: Comparison of nonlinear evolution of synthesized
wave groups. Wave board motion used in nonlinear simulations generated
with SQP and Subplex method.
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Figure 6.24: Example 2: Further characteristics of nonlinear wave train with
synthesized wave group. Wave board motion used in nonlinear simulation
generated with Subplex method.
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Figure 6.25: Example 2: Variance spectra of linear and nonlinear wave trains
at different locations.
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Figure 6.26: Example 2: Energy flux of linear and nonlinear wave trains at
different locations.
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Figure 6.27: Example 2: Evolution of nonlinear synthesized wave group in
space and time domain. Wave board motion used in nonlinear simulation
generated with Subplex method.
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Figure 6.28: Example 2: Particle velocity, acceleration, and dynamic pressure
field of nonlinear wave train with synthesized wave group at t/Tp = 26. Wave
board motion used in nonlinear simulation generated with Subplex method.
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Figure 6.29: Example 2: Zero-upcrossing characteristics of nonlinear wave
train with synthesized wave group. Wave board motion used in nonlinear
simulation generated with Subplex method.



Chapter 7

Conclusions

This thesis presents a new procedure for the computer-aided synthesizing
of nonlinear transient waves in random seas. Modern numerical techniques
of computational fluid dynamics, nonlinear programming and digital signal
processing are successfully combined to synthesize extreme single waves and
wave groups with the stochastic wave field for global and local target char-
acteristics. The examples presented demonstarte the high quality of the
generated wave trains and hence the effectiveness of this new approach.

Basically, the procedure is based on two steps where first linear wave
theory is applied to derive a qualified initial guess for the subsequent fit-
ting of the nonlinear wave evolution. Due to the multi-modal nature of the
associated constrained minimization problems, both optimization methods
involved may only converge to local minima which depend on the initial
conditions.

In some cases it may be sufficient to optimize only the linear wave train,
determine the wave board motion and numerically simulate the nonlinear
wave train, which deviates to some extent from the target characteristics.
This approach is much faster, since the values of the objective function and
the constraints are easy to calculate in the case of linear wave theory.

To decrease the high computer costs associated with the fitting of the non-
linear wave train, the number of free variables in the minimization problem is
significantly reduced by introducing the discrete wavelet transform. Future
extensions of this study may include research on other signal decomposition
techniques to further decrease the domain space of the fitting problem.

The computer program for simulating the nonlinear wave evolution in the
numerical wave tank is based on the mixed Euler-Lagrange formulation of
the nonlinear initial boundary value problem, where the Laplace equation
is solved for Neumann and Dirichlet boundary conditions by the finite ele-
ment method. It can easily be substituted by other programs based on the
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boundary element method or finite volume method. If wave breaking needs
to be considered, it might be interesting to couple these methods with proce-
dures for solving the Reynolds averaged Navier-Stokes equations (RANSE)
to account for the viscosity of the fluid.

The time-consuming fitting procedure is well-suited for parallelization on
multi-processor systems, since many numerical simulations can run indepen-
dently at the same time. The parallelization would speed up the solution
process considerably and is a necessary prerequisite for optimizing nonlin-
ear wave trains with breaking waves, as well as three-dimensional nonlinear
wave fields, to account for the influence of wave direction on the evolution of
extreme waves.

The standard deviation of the wave board motion is part of the objective
function in the fitting procedure. Hence, only the total energy input into
the numerical wave tank is controlled but not the shape of the variance
spectrum itself. It would be desirable, in the future, to consider all global
target characteristics of the sea spectrum as well.

The new procedure is a very usable multi-purpose analysis and develop-
ment tool for performing detailed experimental and numerical investigations
of extreme wave events in random seas. The optimized wave trains can be
utilized, for instance, to derive appropriate design wave conditions for many
different marine structures.



Nomenclature

A Positive definite coefficient matrix

B m2/s Vector of the forcing terms

B(t) m2/s2 Bernoulli constant

C m/s Wave celerity

Cn Courant number Cn = (πg∆t2)/(8∆x)

E(ω) m2 s Variance spectrum E(ω) = E(f)/(2π) = E(q)/ωp

Ė(x, t) N/s Energy flux per unit length of crest

Ekin(t) N Kinetic energy per unit length of crest

Epot(t) N Potential energy per unit length of crest

Etotal(t) N Total energy per unit length of crest

F m/s, m2/s2 Time-derivative of the free surface state matrix

F (ω) ms Fourier transform

Fhydro(ω) ms Fourier transform of hydrodynamic transfer function

Ftarget(ω) ms Fourier transform of linear target wave train

Ftrans(ω) ms Fourier transform of spatial translates

G Lowpass reduction operator

G∗ Lowpass reconstruction operator

H Hessian matrix of the Lagrangian function

H m Wave height

Hs m Significant wave height Hs = 4
√

m0

H Highpass reduction operator

H∗ Highpass reconstruction operator

K Number of discrete data points of the wave board motion

L m Wave length

Lψ(a, b) m Wavelet transform

L(x,λ) Lagrangian function

M Scale of discrete wavelet transform

M(x) Merit function
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N Number of discrete data points of the wave train

Ni Shape function

NX + 1 Number of horizontal grid nodes

NZ + 1 Number of vertical grid nodes

N Set of natural numbers

R Set of real numbers

S m, m2/s Free surface state matrix

T s Wave period

T̄ s Mean period

Tp s Peak period

Tz s Zero-crossing period

Vn m nth subspace

a Wavelet scaling coefficient

amax m/s2 Maximum acceleration of the wave board

b s Wavelet translation coefficient

c Vector of scaling function expansion coefficients

c Scaling function expansion coefficients

cψ m2s2 Wavelet admission coefficient

d Wavelet function expansion coefficients

e Unit vector of the domain space

f m/s2 Vector of the body force per unit mass

f 1/s Frequency

f̄ 1/s Mean frequency

fp 1/s Peak frequency

fz 1/s Zero-crossing frequency

fNY 1/s Nyquist frequency fNY = 1/(2∆t)

f(x) Objective function

g(x) Vector of the constraints

g m/s2 Gravitational acceleration

g∗ Highpass filter coefficients

h m Water depth

h∗ Lowpass filter coefficients

k 1/m Wave number

l m Tank length

lbeach m Length of numerical beach

ṁ(x, t) kg/s Mass flux
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mn m2/sn nth spectral moment about zero frequency

m0 m2 Variance m0 = σ2

n Degree of freedom

ns Number of subspaces

nsmin Minimum subspace dimension

nsmax Maximum subspace dimension

p(x, z, t) N/m2 Absolute pressure

pa N/m2 Atmospheric pressure

pd(x, z, t) N/m2 Dynamic pressure

q Normalized frequency q = ω/ωp = f/fp

r Vector of the penalty parameters

t s Time

u Confidence level

∆t s Time step

umax m/s Maximum velocity of the wave board

u(x, z, t) m/s Horizontal velocity

v(x, z, t) m/s Velocity vector

w(x, z, t) m/s Vertical velocity

x Vector of the design parameters

xl Vector of the lower parameter bounds

xu Vector of the upper parameter bounds

x m Cartesian coordinate in the physical plane

xB(t) m Horizontal wave board motion

ẋB(t) m/s Horizontal wave board velocity

xmax m Maximum stroke of the wave board

∆x m Horizontal grid spacing

∆̃x Vector of progress in subplex optimization

z m Cartesian coordinate in the physical plane

∆z m Vertical grid spacing

Ω Fluid domain

Γ Boundary of the fluid domain

ΓB Boundary defined by the wave board

ΓS Boundary defined by the free surface

ΓW Boundary defined by the fixed tank walls

α Spectral Phillips coefficient
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αs Reflection coefficient in simplex optimization

αz Exponential vertical narrowness of the gird nodes

β Vector of phase values to be optimized

β Phase value

βs Contraction coefficient in simplex optimization

γ Jonswap peak enhancement factor

γs Expansion coefficient in simplex optimization

δs Shrinkage coefficient in simplex optimization

ζ(x, t) m Free surface elevation

ζa m Wave amplitude

ζc m Wave crest height

η m Cartesian coordinate in the computational plane

λ Vector of the Lagrangian multipliers

µ Vector of the stepsizes in subplex optimization

µ(x) 1/s Damping coefficient

µn m2/sn nth spectral moment about mean frequency

ν m2/s Kinematic viscosity

ξ m Cartesian coordinate in the computational plane

ρ kg/m3 Mass density

σ m Standard deviation

σ∗ m Spectral width parameter

φ m2/s Vector of the potential values at the grid nodes

φ(x, z, t) m2/s Velocity potential

ψs Simplex reduction coefficient in subplex optimization

ψ(t) m Wavelet function

Ψ(ω) ms Fourier spectrum of wavelet function

ϕ(t) m Scaling function

ω rad/s Frequency ω = 2πf

ω̄ rad/s Mean frequency ω̄ = m1/m0

ωp rad/s Peak frequency ωp = (
∫

ω EP (ω) dω)/(
∫

EP (ω) dω)

ωs Step reduction coefficient in subplex optimization

ωz rad/s Zero-crossing frequency ωz = (m2/m0)
1/2

ωbeach rad/s Strength of numerical beach

∆ω rad/s Frequency resolution

∇ Gradient operator vector

‖ · ‖n n-norm
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Garcia Galán. Uvi−Wave 3.0 is free software for use with MATLAB1 and is
distributed under the terms of the GNU General Public License as published
by the Free Software Foundation.

A routine of the MATLAB optimization toolbox is applied to optimize
the linear wave train with the sequential quadratic programming method.
The subplex fitting of the nonlinear wave train is based on a software pack-
age developed in Fortran 77 by Thomas Harvey Rowan as part of his doctoral
thesis at the University of Texas at Austin. In this work, the MATLAB ver-
sion is applied, which was coded by Bruce Lowekamp, Mathematical Sciences
Section at Oak Ridge National Laboratory.

1MATLAB r© Numeric Computing Environment, Version 5, Registered Trademark of
The Math Works, Inc., Natick, USA



106 Acknowledgements



Bibliography

Airy, G. (1849). Tides and waves. In Anon (Ed.), Encyclopaedia Metropoli-
tania, pp. 241–396. J.J. Griffin, London. Re-issue, initially published in
1845.

B̊ath, M. (1974). Spectral Analysis in Geophysics. Elsevier, Amsterdam.

Baldock, T. and Swan, C. (1994). Numerical calculations of large transient
water waves. Applied Ocean Research, 16(2):101–112.

Bazaraa, M., Sherali, H. and Shetty, C. (1993). Nonlinear Programming:
Theory and Algorithms. John Wiley & Sons, New York.

Bouws, E., Günther, H., Rosenthal, W. and Vincent, C. (1985). Similarity of
the wind wave spectrum in finite depth water – 1. Spectral form. Journal
of Geophysical Research, 90(C1):975–986.

Box, M. (1966). A comparison of several current optimization methods, and
the use of transformations in constrained problems. Computer Journal,
9:67–77.

Brigham, E. (1974). The Fast Fourier Transform. Prentice-Hall, Englewood
Cliffs.

Burrus, C., Gopinath, R. and Guo, H. (1998). Introduction to wavelets and
wavelet transforms: A primer. Prentice-Hall, New Jersey.

Chakrabarti, S. and Libby, A. (1988). Further verification of gaussian wave
packets. Applied Ocean Research, 10(2):106–108.

Chui, C. (1992). An Introduction to Wavelets. Academic Press, San Diego.

Clauss, G. and Bergmann, J. (1986). Gaussian wave packets – A new ap-
proach to seakeeping tests of ocean structures. Applied Ocean Research,
10(2):190–206.
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