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ABSTRACT

We present numerical results for the synchronization phenomena in a bilayer network of repulsively coupled 2D lattices of van der Pol
oscillators. We consider the cases when the network layers have either different or the same types of intra-layer coupling topology. When the
layers are uncoupled, the lattice of van der Pol oscillators with a repulsive interaction typically demonstrates a labyrinth-like pattern, while
the lattice with attractively coupled van der Pol oscillators shows a regular spiral wave structure. We reveal for the first time that repulsive
inter-layer coupling leads to anti-phase synchronization of spatiotemporal structures for all considered combinations of intra-layer coupling.
As a synchronization measure, we use the correlation coefficient between the symmetrical pairs of network nodes, which is always close to
—1 in the case of anti-phase synchronization. We also study how the form of synchronous structures depends on the intra-layer coupling

strengths when the repulsive inter-layer coupling is varied.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054770

Synchronous behavior in large and complex ensembles of oscilla-
tors is considered to be one of the basic mechanisms in stable and
proper functioning of real-world systems in many areas, ranging
from technology and engineering to biology, neuroscience, and
socio-economic systems.'~* Recently, in the framework of the con-
cept of multilayer networks,”'’ various scenarios of synchroniza-
tion have been intensively studied."'~** Since real-world systems
usually interact in different ways, special attention has been paid
to the impact of various types of the coupling topology on the net-
work dynamics and synchronization phenomena.'>?*-*"*0-** Most
of this research has focused on attractively coupled networks, and
only little literature covers the issue of repulsive coupling®~*' or
mixed networks,"”~*° which represent a combination of attractive
and repulsive elements. Moreover, a purely repulsive interaction
between layers in multiplex networks has not been explored at
all. Here, we investigate synchronization of a multiplex two-layer
network of 2D lattices of locally coupled van der Pol oscillators

with a repulsive interaction between the layers. We show for the
first time that the repulsive inter-layer coupling induces anti-
phase synchronization of spatiotemporal structures in the net-
work under study. This is independent of the type of intra-layer
coupling, which may be attractive, favoring spiral waves, or repul-
sive, favoring labyrinth-like patterns.”” Synchronous regimes are
quantified using the correlation coefficient between the corre-
sponding pairs of the network nodes. This measure is always close
to —1 for anti-phase synchronization. We also study how the syn-
chronous structures change when the intra-layer and inter-layer
coupling strengths are varied.

I. INTRODUCTION

Synchronization phenomena in interacting dynamical sys-
tems and networks are of great relevance with respect to both
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the fundamental knowledge in synergetics'™ and their broad
applications in technology and engineering,”'*"’ neuroscience,”~”
sociology,”* economics,” epidemiology, ™" etc. Synchronization is
essential to keep vital systems and processes staying stable and run-
ning smoothly, but sometimes it is also undesirable. A great deal
of research studies have been done to uncover the mechanisms of
synchronization with the aim to find the best way to achieve and
improve synchronization in complex systems and networks. =%

Recently, much attention of the researchers has been paid
to studying synchronization, which results from the interaction
between networks with complex topology.® Thus, the concept of
multilayer networks™'"*"** becomes widely used since real-world
systems are, as a rule, multi-components and characterized by
different coupling topologies both within layers and between them.

In the context of multilayer networks, different forms of syn-
chronization have been revealed and explored, such as cluster
synchronization,''* inter-layer and intra-layer synchronization,"*~'¢
explosive synchronization,'”~* generalized synchronization," forced
and mutual synchronization,”’~** relay synchronization,”* and
anti-phase synchronization.” Besides the local dynamics of indi-
vidual nodes that compose complex multilayer networks, synchro-
nization effects depend significantly on the types of connectivity
both within a layer and between coupled layers. Relay synchroniza-
tion was studied in multiplex networks with complex topologies
such as scale-free or Erdos-Renyi”” and random inhomogeneities
of a small-world type.”” Inter-layer synchronization was explored
under subsequent de-multiplexing of the structure when the links
between nodes and their corresponding replicas were removed ran-
domly or regularly.'*" Partial synchronization was studied in pop-
ulation networks with different kinds of fractal and hierarchical
connectivity.”»*~*° The impact of time-varying and time-delayed
coupling on synchronous behavior was analyzed in Refs. 26, 31,
32, and 67. Special attention was paid to synchronization in the
presence of adaptive coupling.”*>** In Ref. 34, it was shown that
inter-layer synchronization can be successfully controlled by noise-
modulated coupling between the interacting layers (multiplexing
noise).

Nevertheless, most of this research was addressed to attrac-
tively coupled dynamical elements and networks, and much less
attention was paid to networks of repulsive elements,™** or
mixed networks,”~**"" consisting of both attractive and repulsive
elements. However, studying networks with repulsive connectivity
undoubtedly deserves more attention and detailed analysis since,
for example, it is known that biological networks combine different
types of connections to improve synchronization and transmission
performance.”’~” Several studies have shown that the repulsive cou-
pling can play antagonistic roles in the network dynamics. On the
one hand, the repulsive coupling can lead to amplitude death.”~"
On the other hand, it can induce oscillations in excitable systems,
as well as regimes of traveling waves and partial synchronization.”*
In Ref. 42, it was shown that a small fraction of phase-repulsive links
can enhance synchronization in a complex network of non-identical
locally coupled Hodgkin-Huxley neurons. As was demonstrated in
Ref. 41, the dynamics of a complex network can change essentially
if the network layers are characterized by different intra-layer cou-
pling topologies (either attractive or repulsive). Transitions between
different synchronous states were analyzed in a network of phase
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oscillators with attractive and repulsive interactions.”® Recently, the
peculiarities of inter-layer synchronization were uncovered in a two-
layer lattice network of attractively and repulsively coupled van der
Pol oscillators with attractive inter-layer coupling.” It was also indi-
cated that introducing repulsive intra-layer coupling leads to the
formation of a complex spatiotemporal structure, which is con-
nected with the appearance of anti-phase oscillations of adjacent
nodes in the layers. However, the impact of purely repulsive inter-
layer coupling on synchronization of complex multiplex networks
has not been studied yet.

Here, we fill this gap and perform a detailed numerical study
of synchronization in a bilayer network of repulsively and bidirec-
tionally coupled 2D lattices of van der Pol oscillators. We consider
two configurations of the local intra-layer coupling in the interacting
lattices: (i) different topologies (repulsive-attractive) and (ii) iden-
tical topologies (either attractive-attractive or repulsive-repulsive).
The isolated network of repulsively coupled van der Pol oscillators
exhibits a labyrinth-like spatiotemporal pattern that was found and
described for the first time in Ref. 47. The uncoupled lattice of van
der Pol oscillators with an attractive interaction typically shows a
regular spiral wave structure. We reveal for the first time that in all
the considered cases, the repulsive inter-layer coupling induces anti-
phase synchronization of complex structures. This phenomenon is
diagnosed by using the correlation coefficient between the corre-
sponding pairs of nodes, which is always close or equal to —1 for
the anti-phase synchronization regime. We also analyze the compe-
tition between the labyrinth-like and the spiral wave pattern when
the intra- and inter-layer coupling strengths are varied.

Il. NETWORK EQUATIONS

In our numerical simulation, we consider a multiplex of two
layers each consisting of N x N nodes with N = 50. The model
under study is schematically drawn in Fig. 1. The interacting layers
are pairwise and bidirectionally coupled with each other; i.e., there
is a one-to-one correspondence between the nodes. Each layer rep-
resents a 2D lattice of locally coupled van der Pol oscillators. The
dynamics of the bilayer network is described by the following set of
equations:

o]
Xij = Vij»

. 2 o]
)’5,]' =e(l— (Xi,j) )J’g,j - wzxij +]la Z (yinl,nl _)’5,1') o

my,ny
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k=1

where xf» 7 yﬁ ; are dynamical variables and / labels the layer, [ = 1, 2.
Double subscripts (i, j), where i,j = 1, ..., N = 50, denote the posi-
tion on the two-dimensional lattice. The local dynamics of the
individual oscillator is controlled by the parameter ¢, which denotes
the nonlinearity level, and w is the natural frequency of linear oscil-
lations. We fix these parameters to the values ¢ = 2.0 and w = 2.0,
which ensure that the local dynamics of each node corresponds to
relaxation oscillations.
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FIG. 1. (a) Schematic representation of a bilayer multiplex network of coupled
2D lattices with a local intra-layer connection. Labels o4 and o, denote the
intra-layer coupling strengths in the first and second layer, respectively, and y
is the inter-layer coupling strength. (b) and (c) Schemes of the intra-layer coupling
topology in an isolated 2D lattice at the edges and corners in the case of no-flux
boundary conditions (2). Oscillators coupled with a selected yellow (i, j)th node
are colored in blue, and the remaining uncoupled nodes are shown in white.

The intra-layer coupling for each lattice is described by the
third term in the second equation of the network (1) and is deter-
mined by the intra-layer coupling strength o7 (k, I = 1,2). The intra-
layer coupling topology is defined by the parameter J; (I = 1,2),
which is set to —1 for the repulsive intra-layer coupling and +1 for
the attractive one.

In our simulation, the bidirectional coupling between the two
lattices is considered to be repulsive and is given by the fourth term
in the second equation of each lattice (1). The coefficient y denotes
the inter-layer coupling strength.

The quantity Q; in (1) counts all intra-layer links in both
directions for each node of the Ith layer and thus represents a com-
bination of all the links with the indices m; and n;, which satisfy the
following relations:

{max(l,i— 1) < my < min(N, i + 1), 2)

max(l,j —1) < m < min(N,j + 1).

Expressions (2) correspond to no-flux boundary conditions, which
are schematically pictured in Figs. 1(b) and 1(c) for an isolated lat-
tice with a local interaction and for different locations of a selected
oscillator in the middle of the right edge [Fig. 1(b)] and in the right
upper corner [Fig. 1(c)].

The initial conditions for all the dynamical variables of the net-
work (1) are chosen to be random and uniformly distributed within
the interval [—1,1].
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The network equation (1) is integrated using the Runge-Kutta
4th order method with the time step dt = 0.005. The transient time
is chosen to be Ti, = 10000 time units for all cases under study.

11l. DYNAMICAL REGIMES IN UNCOUPLED LAYERS

We start with exploring the dynamics of isolated 2D lattices
when there is no coupling between them, i.e., y = 0in (1).

The first lattice in (1) is characterized by the local repulsive
intra-layer coupling between the nodes [J; = —1 in the network
(1)]. This type of coupling can be realized, for instance, by an elec-
tronic circuit of elements interacting with linear negative differential
resistance. Our studies show that due to the repulsive intra-layer
coupling, various spatiotemporal patterns can be induced in the lat-
tice, and spiral waves cannot occur there for any initial conditions.
Figures 2(a)-2(c) exemplify a typical regime that can be observed in
the first isolated lattice of repulsively and locally coupled van der Pol
oscillators.

This spatiotemporal structure presents an alternation of
“strips,” each characterized by in-phase oscillations. However, the
oscillation phases of the nodes in adjacent strips are shifted by half
a period. This means that the oscillations are anti-phase, and this
is clearly seen from the time series plotted in Fig. 2(c) for two dif-
ferent oscillators belonging to adjacent strips. The strips that form
the spatiotemporal pattern in the first isolated layer [Fig. 2(a)] have
a different length and can be oriented both vertically and hori-
zontally. Similar spatiotemporal patterns have been discovered in
a lattice of strongly coupled van der Pol oscillators and described
in Ref. 29. These patterns have been called “labyrinth-like struc-
tures.” At the same time, despite a qualitative similarity between the
labyrinth-like patterns in these two lattices, there are significant dif-
ferences between them. In Ref. 29, such a structure is formed due
to the emergence of two coexisting chaotic attractors in the phase
space of individual oscillators, which are induced by strong cou-
pling. In contrast, no bistability arises in the lattice under study,
and the oscillations of the nodes in neighboring strips differ only
by the instantaneous phases [Fig. 2(a)]. The spatiotemporal dynam-
ics of the first isolated lattice of the network (1) is also illustrated
by the space-time plot for the j = 36th cross section shown in
Fig. 2(b). In the case of nonlocal coupling, the structures become
regular for long coupling ranges and represent an alternation of
strips or squares of oscillators with certain values of the instan-
taneous phases of oscillations.”” Nevertheless, the quantitative fea-
tures of the dynamical regimes that arise for both short and long
intra-layer coupling ranges remain very similar. This enables us to
assume that the same structure with different spatial topologies can
be observed within a wide interval of intra-layer coupling range
values.

We now turn to consider dynamical regimes, which can be
observed in the second isolated lattice with attractive intra-layer
coupling [J; = +1, I = 2, in (1)]. This topology corresponds to the
case when nodes in an electronic circuit interact through an Ohmic
resistance. Our numerical simulations show that only three types of
spatiotemporal patterns are typical for the second lattice dynam-
ics when the intra-layer coupling parameter o, is varied. The first
type of the spatiotemporal dynamics occurs for very weak intra-layer
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FIG. 2. (a)-(c) Labyrinth-like structure in the first isolated lattice with repulsive intra-layer coupling (J; = —1) and (d)—(f) a spiral wave in the second isolated layer with

attractive intra-layer coupling (J; = 1). Snapshots of the instantaneous states for the x' (a) and x? (d) variables; space-time plots of the cross sections for the first layer at
j = 31 (b) and for the second layer at j = 12 (e); time series for two selected elements (i = 31, j = 35) (red curve) and (i = 31, j = 36) (black curve) of the first lattice
(c)andfor (i = 31, j = 12) (red curve) and (i = 21, j = 12) (black curve) elements of the second lattice (f). Other parameters: 1 = 07 = 0.1,6 = 2, w = 2,and N = 50,

y =0.

coupling strength o5. In this case, the oscillators behave incoherently
with respect to each other, and thus, spatially incoherent dynamics
is observed in the second lattice.

Increasing o, leads to the formation of spiral wave structures.
A different number of spiral waves can coexist in the second lattice
for various sets of initial conditions. Spiral waves are observed only
for local and short nonlocal intra-layer coupling. It should be noted
that for a local interaction, the wave structure is formed within a
significantly wider range of the intra-layer coupling strength o, than
in the case of nonlocal coupling.

The third spatiotemporal regime distinguished in the second
lattice is partial or complete synchronization. It takes place when the
oscillators are locally coupled and the intra-layer coupling is essen-
tially strong or when the intra-layer coupling is nonlocal. Note that
in this case, spiral waves disappear.

In our calculations, we choose the case when a single spiral
wave is observed in the second lattice. As an example, spatiotempo-
ral characteristics of such a structure are depicted in Figs. 2(d)-2(f).
As can be seen from the space-time plot for the j = 12 cross section
passing through the wave center [Fig. 2(e)], the wave front rotates
around the wave center. Note that this spiral wave cannot be trans-
formed into a spiral wave chimera since the wave is destroyed when
the intra-layer coupling becomes nonlocal. The time series plotted

in Fig. 2(f) show that the lattice nodes located in the wave center and
outside it demonstrate almost anti-phase oscillations.

It should be noted that all the structures under study presented
in Fig. 2 are sufficiently robust and do not change qualitatively and
quantitatively when the intra-layer coupling strengths are varied
within the interval o, € [0.05,0.20]. These structures are chosen
to be the initial states in the first and second lattice. Besides, using
these initial states, we have obtained a set of initial conditions for
each value of the intra-layer coupling strength o, € [0.05,0.20]
and use them in studying synchronization effects in the multiplex
network (1).

IV. SYNCHRONIZATION MEASURE

As a quantitative measure of synchronization between the
interacting layers of the network (1), we use the correlation
coefficient’’ between the corresponding (i, j)th pairs of oscillators
of the first and second layer. This quantity is defined as follows:

~12 2 T
xil’j = xil‘j — x}j, 3)

where -~ means time-averaging over T,, = 10000 time units.
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The correlation measure (3) used for arbitrary oscillation
modes can attain both positive and negative values. In our numerical
studies, we deal with anti-phase synchronization for which R;; = —1
for all (4, j)th pairs of oscillators. Taking into account that the bilayer
network under study (1) is heterogeneous (the layers can differ
in their intra-layer coupling topology), only approximate effective
synchronization is found. Effective anti-phase synchronization is
assumed to occur if R;; < —0.95 for all (i, j)th pairs of the network
nodes (i,j =1,...,N). If Rj=-1 for all the network oscillators,
then anti-phase synchronization is complete.

V. ANTI-PHASE SYNCHRONIZATION IN MULTIPLEX
NETWORKS WITH REPULSIVE INTER-LAYER
COUPLING

A. Bilayer network of repulsively and attractively
coupled van der Pol oscillators

We first consider the case when the interacting layers of the
network (1) differ in the intra-layer coupling topology, i.e., the first
layer consists of repulsively coupled van der Pol oscillators, while the
second layer represents a 2D lattice of attractively coupled van der
Pol oscillators. The spatiotemporal structures depicted in Figs. 2(a)
and 2(d) are chosen as initial conditions for the layers.

Our numerical simulations indicate that introducing repulsive
inter-layer coupling between the layers in Eq. (1) gives rise to anti-
phase synchronization in a wide range of the inter-layer coupling
strength y. In this case, the correlation measure (3) becomes neg-
ative for all the oscillator pairs of the interacting lattices. It should
be noted that in the majority of cases, networks with attractive inter-
layer coupling demonstrate in-phase synchronization. At the same
time, anti-phase synchronization is a well-known phenomenon that
was discovered by Huygens in 1665 for pendulum clocks. More-
over, it was established that this type of synchronization is more
stable than in-phase synchronization.” Anti-phase synchronization
in a multilayer network with attractive inter-layer coupling has been
described in Ref. 29, where anti-phase relay synchronization has
been revealed and explored in a heterogeneous triplex network of
coupled 2D lattices. To describe and illustrate anti-phase synchro-
nization in detail, we fix the intra-layer coupling strengths oy = 0.1
and vary the second one within the range o, € [0.05,0.15] with a
sample step Ao, = 0.01 or fix 0, = 0.1 and vary oy € [0.05,0.15]
with a step Aoy = 0.01. The repulsive inter-layer coupling strength
y increases from 0 to 1 with a step size Ay = 0.01.

To have a full overview of the network (1) dynamics, we plot
two 2D diagrams of synchronous and desynchronized regimes in
the (03, y) parameter plane [for the fixed o7 = 0.1, Fig. 3(a)] and
in the (o3, y) parameter plane [for the fixed o, = 0.1, Fig. 3(b)] by
using the values of (R), where the angular brackets mean that the
values of the correlation coefficient (3) are globally averaged over
all the oscillator pairs (7,j). We count the number of synchronized
(in the sense of anti-phase synchronization condition R;; < —0.95)
oscillator pairs N; and then normalize it to the whole number of
nodes in each lattice N?. The color scheme in the diagrams (Fig. 3)
corresponds to the ratio N;/N°.

In order to get better insight into synchronization effects in
the network (1), three different regions are distinguished in the 2D
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diagrams in Fig. 3, namely, desynchronization region DS, where
the spatiotemporal behavior in both lattices is different (N,/N?
< 1), and two regions of anti-phase synchronization Sis and Sgw
for which N,/N? = 1. Within region S5, a spatiotemporal struc-
ture, which is similar to the initial state in the first lattice [Fig. 2(a)],
is observed in both layers, while anti-phase synchronization of the
initial spiral wave [Fig. 2(d)] occurs inside region Sgw. The bound-
aries between the indicated regimes are denoted by dotted curves.
It is clearly seen from Fig. 3 that inter-layer synchronization has a
strong and sufficiently complicated dependence on the relationship
between o7 and 0,. When the values of both intra-layer coupling
strengths are close to each other, inter-layer synchronization takes
place for a substantially stronger inter-layer coupling. As follows
from Fig. 3(a), when o, exceeds o; = 0.1, the threshold level for syn-
chronization in the parameter y decreases noticeably. In contrast,
the diagram in Fig. 3(b) shows that when o, 3> 0, = 0.1, the lattices
either become synchronized only at very large values of y or remain
desynchronized.

The dependence of the globally averaged correlation measure
(R) on the inter-layer coupling strength y plotted in Fig. 3(c) for
several values of the intra-layer coupling strength o, and for fixed
01 = 0.1 shows that effective anti-phase synchronization is observed
when 0, < 0. In this case, starting with y ~ 0.4, (R) becomes less
than —0.95 but never reaches —1. As is seen from the diagram
in Fig. 3(a), this type of synchronization is related to synchronous
labyrinth-like patterns (region Sis). The quantity (R) is almost
exactly equal to —1, which corresponds to complete anti-phase syn-
chronization, can be achieved only for o, > o7 when we enter region
Ssw inside which spiral wave structures are synchronized [Fig. 3(a)].
The same peculiarity of synchronization is observed when o, = 0.1
is fixed and o, is varied [Fig. 3(d)]. However, in this case, com-
plete anti-phase synchronization of spiral waves takes place when
01 < 0,. Besides, as follows from the plot (R)(y) [Fig. 3(d)], as
03 becomes larger than o, effective synchronization of labyrinth-
like patterns is gradually destroyed even for significantly strong
inter-layer coupling y.

Inside region DS in the 2D diagrams (Fig. 3), the spiral wave
in the second layer is destroyed even for small values of y, and
the labyrinth-like structure observed in the first lattice [Fig. 4(a)]
induces a new but very similar state in the second layer, which is
shown in Fig. 4(d). However, due to a weak inter-layer coupling
strength (y < 0.3), these two spatiotemporal structures are not syn-
chronized, which follows from the spatial distribution of the local
correlation coefficient R;; values plotted in Fig. 4(g). It is interest-
ing to note that the repulsive inter-layer interaction in the network
always leads to the anti-phase oscillatory regime. For this reason,
the synchronization measure R;; always attains negative values. This
phenomenon is observed for almost the whole ranges of y and 0,
under study. The anti-phase dynamics of the network (1) is well vis-
ible from the comparison of the snapshots for the first and second
layer, which are illustrated in Figs. 4(a) and 4(d), respectively. At the
same time, in region DS, only a minor part of the oscillator pairs is
synchronized (R;; ~ —1), while the main part of the network nodes
is characterized by the values of R;; > —1 [Fig. 4(g)]. This circum-
stance can be explained by the fact that the instantaneous phases of
the symmetric oscillators are shifted relative to each other by less
than half a period.
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FIG. 3. 2D diagrams of synchronous and desynchronized regimes in the network (1) in the (o7, y) parameter plane at o4 = 0.1 (a) and in the (o4, y) parameter plane at
o, = 0.1 (b). The color scale corresponds to the ratio of synchronized nodes N to the whole number of oscillator pairs N?. DS denotes the desynchronization region, and
Sis and Sgy are synchronization regions of the initial labyrinth-like structure [Fig. 2(a)] and the original spiral wave [Fig. 2(d)], respectively. The dotted curves indicate the
boundaries between the regions. Dependences of the globally averaged correlation coefficient (R) on y for several values of o3 at o4 = 0.1 (c) and of o1 at o5 = 0.1 (d).
The sections in (c) and (d) correspond to the blue dashed horizontal lines in (a) and (b). Parameters: J1 = —1,J, = 1,6 =2, @ = 2, and N = 50.

As the repulsive inter-layer coupling strength y grows, anti-
phase synchronization occurs in the network (1) and is observed
inside regions S;s and Sgw shaded light yellow in the 2D diagrams
(Fig. 3). Within region Sig, the spatiotemporal structures in the
lattices represent the combination of both initial regimes (Fig. 2).
The patterns observed in the first and second lattice for y = 0.45
are depicted in Figs. 4(b) and 4(e), respectively. These states now
combine the features of both the labyrinth-like structure and the
spiral wave. They are characterized by a complex spatial shape of
the labyrinth-like pattern and the presence of a spiral wave center.
As can be seen from the spatial distribution of the correlation mea-
sure R;; shown in Fig. 4(h), all the values of R;; are very close to each
other but are not strictly equal to —1. Therefore, we cannot conclude
complete anti-phase synchronization.

Significant changes in the network dynamics take place when
we pass from region Sis to region Sgy in the diagrams in Fig. 3.
The labyrinth-like structure in the first lattice is fully destroyed
and replaced with a spiral wave, which is induced by the second
layer. Snapshots of the resulting wave structures in the first and
second layer are presented in Figs. 4(c) and 4(f), respectively. It
is clearly seen that these waves are in anti-phase relative to each
other. Moreover, complete anti-phase synchronization is realized
within region Sgw. This fact is confirmed by the spatial distribution
of R;;, which is plotted in Fig. 4(i). All the (i,j)th oscillator pairs,
except a very small region around the wave center, are character-
ized by the correlation measure R;; = —1. It was earlier shown that
oscillators belonging to spiral wave centers cannot be completely
synchronized.”””®
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Thus, when studying the dynamics of the repulsively cou-
pled 2D lattices (1), two important facts can be highlighted:
(i) anti-phase synchronization takes place in the bilayer network
and (ii) the spiral wave regime in the second layer with attractive

intra-layer coupling is less stable than the labyrinth-like structure in
the first layer with repulsive intra-layer coupling. The spiral wave
can suppress the structure in the first lattice only when the intra-
layer coupling strength o, is larger than o;. In other cases, the
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labyrinth-like structure suppresses the spiral wave or both lattices
exhibit spatiotemporal regimes, which combine the peculiarities of
both structures.

B. Transformation of synchronized spatiotemporal
structures on the transition between dynamical
regimes

We now consider in detail how the synchronous spatiotem-
poral structures can change, while one moves from region S;s to
Ssw in the diagram in Fig. 3(a). To illustrate this process, we fix
the repulsive inter-layer coupling strength as y = 0.6 and the repul-
sive intra-layer coupling strength in the first layer as o; = 0.1 and
increase the attractive intra-layer coupling strength in the second
layer o,.

When o, = 0.1, identical synchronous labyrinth-like structures
(which are anti-phase with respect to each other) are observed in
both lattices. A typical snapshot of such a state is exemplified in
Fig. 5(a). It is seen that the spatiotemporal structure looks like
a labyrinth-like pattern but also includes certain peculiarities of
a spiral wave. The corresponding spatial distribution of correla-
tion measure R;; is given in Fig. 5(d) and indicates that most of
the R;; values belong to the interval [—1; —0.95]. According to the
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30| i
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synchronization criteria, this gives evidence that effective anti-phase
synchronization takes place.

The observed spatiotemporal structure begins to change sig-
nificantly when the coupling strength o increases and approaches
the boundary between regions S;s and Sgw shown in Fig. 3(a). The
snapshot of the modified pattern pictured in Fig. 5(b) corresponds
to the case when o, is very close to this boundary [when one moves
from left to right in the diagram in Fig. 3(a)]. This structure is now
characterized by the coexistence of two types of patterns, namely,
a “strip” with similar instantaneous phases and a “strip” in which
adjacent oscillators are generally in anti-phase to each other. At the
same time, the spatiotemporal structures in the interacting layers are
noticeably more synchronous than in the previous case. As can be
seen from the spatial distribution of R;; presented in Fig. 5(e), in this
case, R;j € [—1;—0.97].

Inside region Sgw in the diagram in Fig. 3(a), both layers are
synchronized in a spiral wave mode, which is illustrated by the snap-
shot shown in Fig. 5(c) for o, = 0.14. The synchronous structure
corresponds to a single spiral wave without any footprints from
a labyrinth-like structure. Moreover, the spatial distribution of R;;
plotted in Fig. 5(f) indicates that complete anti-phase synchroniza-
tion takes place in the network (1) since R;; = —1 for all network
nodes except a small region around the wave center.
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FIG. 5. Changes in synchronous spatiotemporal patterns when one moves from region S;s to Ssy in the 2D diagram [Fig. 3(a)]. Snapshots of the instantaneous values of
the x' variable (upper row) and spatial distributions of R;; (lower row) for (a) and (d) o = 0.1, (b) and (€) o, = 0.12, and (c) and (f) o, = 0.14. Other parameters: J; = —1,

h=101=01y=086¢=2 0=2andN=50.
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Our calculations have demonstrated that similar modifications
take place for the synchronous structures in the case when o, is
fixed and oy is varied within the range shown in the diagram in
Fig. 3(b). However, these transformations happen in the reverse
order as compared with those described above.

C. Bilayer network with identical topology of the
intra-layer coupling

We now address the case of bidirectionally and repulsively cou-
pled 2D lattices of van der Pol oscillators (1) when the layers are
characterized by the same topology of the intra-layer coupling. At
first, let the intra-layer couplings be attractive,ie., J = +1 (I = 1,2)
in Eq. (1) for both layers. In this case, similar spiral waves as shown
in Fig. 2(d) are observed in the uncoupled lattices. Our calcula-
tions demonstrate that the layers begin to synchronize even for very
weak repulsive inter-layer coupling y when both intra-layer cou-
pling strengths o, are varied within the range [0.05, 0.2]. However,
we can note that the initial structures can become unstable for cer-
tain values of y and o7, and transform to spiral waves with different
spatial topologies. The latter may correspond to either a different
location of wave centers or to a different number of coexisting spiral
waves. At the same time, our studies show that inter-layer synchro-
nization of wave patterns is complete and anti-phase for all the cases.
This fact is confirmed by the results for the correlation measure R;;
(3), which is strictly equal to —1 for all the network nodes except for
the wave center oscillators.

The synchronization effects appear to be more interesting when
the intra-layer coupling in both lattices is repulsive, ie., J; = —1,
I=1,2,1in (1). The layers exhibit very similar labyrinth-like struc-
tures as illustrated in Fig. 2(d) when there is no inter-layer coupling
between them. Moreover, these patterns are observed when the
intra-layer coupling strengths o, are varied within the interval
[0.05,0.2]. A 2D diagram of synchronous and asynchronous regimes
in the network (1) is plotted in the (o,,y) parameter plane for
fixed o, = 0.1 and presented in Fig. 6(a). As before, three differ-
ent regions are distinguished in the diagram and correspond to
desynchronized behavior (region DS) and complete and effective
inter-layer synchronization (regions CS and ES, respectively). As in
the previous case, inter-layer synchronization is also characterized
by a sufficiently low threshold level in the inter-layer coupling y
for the whole range of o, variation. The threshold value is minimal
(about zero) in the vicinity of ; = 0, = 0.1 and then monotoni-
cally increases when the difference between the intra-layer coupling
strengths grows.

As can be seen from the diagram [Fig. 6(a)], the synchroniza-
tion region (shaded light yellow) is divided by the dotted lines into
two different subregions with the CS and ES notations. Increasing
0 leads to a change in the synchronization type. When o is suffi-
ciently small, complete anti-phase synchronization of labyrinth-like
structures [region CS in Fig. 6(a)] takes place in the network. This
fact is confirmed by the dependences (R) on y calculated for sev-
eral values of 0, at the fixed o, = 0.1 and plotted in Fig. 6(b). It is
seen that complete synchronization ((R) = —1) is achieved in the
network starting already with an extremely weak inter-layer cou-
pling strength y when o, < 0. The spatial distribution of R;; shown
in Fig. 6(c) is homogeneous and corresponds exactly to R;; = —1
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FIG. 6. (a) 2D diagram of synchronous and desynchronized regimes in the net-
work (1) in the (o2, ) parameter plane when both layers have repulsive intra-layer
coupling. The color scale corresponds to the ratio of synchronized nodes Ns
to the whole number of oscillator pairs N?. DS denotes the desynchronization
region, and CS and ES regions correspond to complete synchronization and
effective synchronization, respectively. The dotted curve indicates the boundary
between the synchronization regions. (b) Dependences of the globally averaged
correlation coefficient (R) on y for several values of 0. (c) and (d) Spatial dis-
tributions of local correlation measure R;; values for y = 0.2 and (c) o, = 0.07
(region CS) and (d) o, = 0.17 (region ES). The sections in (b) correspond to the
blue dashed horizontal lines in (a). Other parameters: J; = J, = —1, oy = 0.1,
e =2,0=2and N = 50.

for all the network nodes. It it worth noting that the complete
synchronization (CS) region expands in the intra-layer coupling
strength o, (up to 0, = 0.15at y = 1) when the repulsive inter-layer
coupling becomes stronger [Fig. 6(a)]. When o, > 07, complete syn-
chronization is no longer observed and only effective anti-phase
synchronization [region ES in the diagram in Fig. 6(a)] takes place
between the layers within almost the whole range of inter-layer cou-
pling strength y variation. As follows from the dependences (R)(y)
[Fig. 6(b)] and the distribution, the local synchronization measure
R;; [Fig. 6(d)], in this case, —1 < (R) < —0.95and R;; = —0.955 for
all the (4, j)th oscillator pairs, satisfies the imposed synchronization
condition.

VI. CONCLUSION

We have studied numerically inter-layer synchronization in
a multiplex bilayer network of pairwise and bidirectionally cou-
pled 2D lattices of locally coupled van der Pol oscillators. We
have explored two types of the intra-layer interaction. In the first
case, the intra-layer connection in the first layer is repulsive and a
labyrinth-like structure is typical for the isolated layer. Oscillators of
the second layer are coupled attractively and demonstrate a spiral
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wave regime. In the second case, the intra-layer coupling in both
lattices has the same topology—repulsive or attractive. All the men-
tioned coupling types have a simple radiophysical interpretation,
namely, the interaction through an Ohmic resistance for the attrac-
tive connection and via an active element with a negative differential
resistance for the repulsive coupling.

It has been shown for the first time that mutual synchroniza-
tion of the two repulsively coupled layers can be achieved even when
the interacting lattices differ in their intra-layer coupling. We have
also revealed that the repulsive inter-layer interaction between the
layers always induces anti-phase synchronization of spatiotempo-
ral patterns. In our research, synchronous behavior is diagnosed
by calculating the local correlation coefficient between the sym-
metrical pairs of the network nodes. This synchronization measure
is always close to —1 in the case of effective anti-phase synchro-
nization and is exactly equal to —1 for the complete anti-phase
synchronization regime. We have found that due to the repul-
sive inter-layer coupling, the symmetrical elements of the interact-
ing layers demonstrate anti-phase oscillations with respect to each
other.

Our numerical simulations have shown that the synchroniza-
tion effects and the synchronous structures in the lattices signif-
icantly depend on the relationship between the intra-layer cou-
pling strengths o, /0,. In particular, the synchronization threshold
of the inter-layer coupling strength noticeably changes when this
ratio is varied. If the coupling strength o, is either less or equal
to o1, then complete synchronization takes place. If o7 > 03, the
synchronization can only be partially effective.

It has been established that the spiral wave pattern in the second
lattice is fully destroyed already for a sufficiently weak inter-layer
coupling, and the labyrinth-like structure is observed in this layer.
When the inter-layer interaction becomes stronger, the spatiotem-
poral regimes in the layers represent a combination of both initial
regimes. However, when o, > 01, a single spiral wave is observed
in both lattices starting from a certain threshold value of y. The lat-
ter significantly decreases as the ratio 0, /07 grows. Moreover, in this
case, the network under study demonstrates the most synchronous
oscillations.

Thus, the bidirectional repulsive inter-layer coupling induces
anti-phase synchronization in the network and the emergence of
structures, which cannot be obtained in the isolated lattices, i.e., the
spiral wave in the layer with repulsive elements and the labyrinth-
like structure in the lattice with attractive nodes. It should be noted
that the transition between the two synchronous regimes is notice-
ably different from the scenario, which occurs in the attractively
coupled two-layer network.” In the present case, the transition is
accompanied by the structural changes in the labyrinth-like pat-
tern. The lengths of “strips” with similar phases become significantly
shorter up to the case when most “strips” transform to “dots.” When
one crosses the boundary between the regimes, the labyrinth-like
structure fully disappears and anti-phase synchronized spiral waves
are observed in both layers.

In the framework of the present research, we have dealt with
2D lattices of locally coupled van der Pol oscillators. As an outlook,
in the future, it is planned to explore how the nonlocal intra-layer
coupling can affect the synchronization effects and the competitive
behavior between labyrinth-like and spiral wave patterns.
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