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Abstract

This work presents three program packages implementing different methods for
nanoparticle analysis, focusing on the quantitative determination of particle size
distributions required in standardization of nanoparticle reference materials. In part one,
classical curve fitting is discussed. It finds optimal parameters of a scattering model
composed of analytical expressions. The classical curve fitting toolbox is represented by
SASfit: it is one of the mature programs for small-angle scattering data analysis and has
been available for many years. Improvements to the basic data processing and analysis
workflow are developed.  They include (i) advanced algorithms for reduction of
oversampled data sets, (ii) improved confidence assessment in the optimised model
parameters and (iii) a flexible plug-in system for custom user-provided models. A
scattering function of a mass fractal model of branched polymers in solution is provided
as an example for implementing a plug-in. Alternatively to classical curve fitting, part
two develops a user-friendly open-source Monte Carlo regression package (McSAS). It
structures the analysis of small-angle scattering (SAS) using uncorrelated scattering
contributions without any assumptions on the expected nanoparticle parameter
distribution. Most importantly, the form-free Monte Carlo nature of McSAS means, it is
not necessary to provide further restrictions on the mathematical form of the parameter
distribution; without prior knowledge, McSAS is able to extract complex multimodal or
odd-shaped parameter distributions from SAS data. Finally, part three adapts the Monte
Carlo regression method for analysing multiangle dynamic light scattering (DLS) data
and develops the program package McDLS to overcome limitations of existing methods
at reliably determining multimodal size distributions. The reliability of the method is
tested on simulated and experimentally measured DLS data of monomodal and

multimodal particle ensembles.
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Zusammenfassung

Diese Arbeit diskutiert drei Programmpakete, die verschiedene Verfahren zur Analyse
von Nanopartikel-Ensembles implementieren, mit besonderem Fokus auf die quantitative
Bestimmung von Groflenverteilungen von Nanopartikeln, die besonders bei der
Standardisierung von Referenzmaterialien von Interesse sind. Teil eines diskutiert die
klassische Kurvenanpassung, welche die optimalen Parameter eines Streumodells
bestimmt, das aus analytischen Ausdriicken zusammengesetzt ist. Die klassische Toolbox
zur Kurvenanpassung wird durch SASfit repriasentiert: Es ist eines der ausgereiften
Programme zur Analyse von Messdaten der Kleinwinkelstreuung und seit mehreren
Jahren verfiighar. Verbesserungen in der grundlegenden Datenverarbeitung und im
Arbeitsablauf der Datenanalyse wurden entwickelt. Sie umfassen (i) fortgeschrittene
Algorithmen zur Reduktion iiber-abgetasteter Datensétze, (ii) eine verbesserte
Beurteilung von Vertrauensbereichen optimierter Modellparameter und (iii) ein flexibles
Plug-in-System  fiir ~ benutzerdefinierte =~ Modelle. Eine Streufunktion eines
Massenfraktal-Modells fir verzweigte Polymere in Losung wird als Beispiel fir die
Implementierung eines Plug-ins vorgestellt. Alternativ zur klassischen Kurvenanpassung,
entwickelt Teil zwei ein benutzerfreundliches, quelloffenes Programmpaket fir die
Monte-Carlo-Regression (McSAS). Es strukturiert die Analyse von Kleinwinkelstreudaten
unter Verwendung unkorrelierter Streubeitrdige ohne weitere Annahmen iiber die
erwartete ~ Nanopartikel-Parameterverteilung. Insbesondere  das  formfreie
Monte-Carlo-Verfahren von McSAS bedeutet, dass es nicht notwendig ist, weitere
Bedingungen an die mathematische Form der Parameterverteilung zu stellen; ohne
weitere Vorinformationen ist McSAS in der Lage, komplexe multimodale oder seltsam
geformte Parameterverteilungen aus den SAS-Daten abzuleiten. Teil drei entwickelt
schlie8lich eine Monte-Carlo-Regressions-Methode zur Analyse von
mehrwinkel-Messungen mit dynamischer Lichtstreuung (DLS) und zielt mit dem
Programmpaket McDLS darauf ab, die Einschrankungen existierender Verfahren bei der
Bestimmung multimodaler Parameterverteilungen zu tiberwinden. Die Zuverlassigkeit des
Verfahrens wird mit simulierten und experimentell gemessenen Daten monomodaler sowie

multimodaler Partikel-Ensembles tiberpriift.

vii



viil



1

Introduction

1.1. Motivation

Quantification of nanoscale structures is set to become a requirement in industrial
preparation of materials (Potoc¢nik, 2011). In order to safeguard consumers and define
industry standards it is still a challenge how to determine sizes of nanoparticles precisely,
accurately and reliably while maintaining moderate costs. It is an open question for the
legislator, crossing multiple disciplines, such as physical chemistry, analytical chemistry
and nanotechnology. Therefore, a toolset is desired to obtain quantitative morphological
parameter distributions of (size-)disperse nanoparticle mixtures with minimal effort, high
flexibility, accuracy and high reliability.

There are many new methods as well as established methods which provide values for
nanoparticle sizes but most of them have to be taken as nominal values (Tiede et al., 2008),
because the specific numbers in nanometers are highly specific to the chosen methods and
the devices used. For nanoparticle samples consisting of a very narrow size distribution
approaching the Dirac delta function, various analysis methods often provide similar results
(Borchert et al., 2005). Real-world nanoparticles in products and materials, however, often
consist of a broad size distribution or even a multi-modal distribution (Mahl et al., 2011;
Tsuji et al., 2006). With increasing size distribution width, the obtained morphological
parameters are highly method-dependent. Especially determining size distributions of
nanoparticles with sizes below 10nm represent a major challenge (Dieckmann et al., 2009).

That non-uniform sizes of nanoparticles pose a serious challenge for analytics was
already formulated by Bragg in the 1960s (Bragg et al., 1960). Likewise, it was shown
rather early as well, that uniform nanoparticles can be characterized with good
consistency: For example, Ludox, a colloidal amorphous silicone dioxide, produced on a
large scale with a narrow size distribution was measured consistently by electron
microscopy and light scattering in the 1960s (Dezelié¢ et al., 1960).

It may also serve as an example to demonstrate the analytical problem of significantly
diverging mean values for various mean values obtained by different methods. Because of

its high availability and narrow size distribution, this particle was released in 2012 as



reference material ERM-FD304 (‘Silica Nanoparticles in Aqueous Solution’) by the
European Commission Joint Research Centre Institute for Reference Materials and
Measurement (IRMM) (Franks et al., 2012). Its certification report specifies the
‘equivalent spherical diameter of the suspended particles’ determined by dynamic light
scattering (DLS): The modal Stokes diameter is given by 33.0(15) nm and the harmonic
intensity-weighted arithmetic average particle diameter, as determined using the method
of cumulants is given by 42.1(3)nm (Franks et al., 2012). Other techniques, such as
electron microscopy (TEM/SEM), however, placed the number-based modal diameter at
27.80(75) nm.

Transmission electron microscopy (TEM) is one of the most commonly used technique
for nanostructural quantification. It is essential in determining the overall morphology of
the nanostructural features and can often be used to coarsely quantify their parameters.
Obtaining a statistically representative quantification of the nanostructure, however, is
reliant on the probing of large numbers of objects. To improve its representation of the
ensemble of the sample, it should preferably be performed through sampling from multiple
locations throughout a bulk-scale sample containing several thousand particles (Klein et al.,
2011; Meli et al., 2012).

As TEM has remained largely resilient to automation efforts, this continues to be a
tedious and labour-intensive task. Therefore, it might be beneficial to combine the localized
superior spacial resolution of microscopy with another technique more suited for ensemble
averaging nanostructural quantification such as small-angle scattering (SAS) (ISO, 2014;
Pauw, Pedersen, et al., 2013) or dynamic light scattering (DLS) (ISO, 1996).

1.2. Scattering techniques

Small-angle scattering

Small-angle scattering offers one reliable route to quantification of nanomaterials: it can
characterize the nanostructure of large amounts of material with a minimum of tedium,
for example, easily extracting size distributions and volume fractions. There are a variety
of approaches to obtain such structural parameters from the data, including model-free
analysis, model fitting and inversion methods, several of which have been implemented in
available software. A few well-established programs for model-based SAS data analysis
are actively maintained. IRFENA, for example, is suitable for a wide range of sample
types (Ilavsky and Jemian, 2009). Scatter is a program geared towards the analysis of
two-dimensional data from nano- and mesoscale oriented structures (Forster et al., 2010).
SasView evolved from a focus on small-angle neutron scattering (SANS) to a solution for
small-angle scattering (SAS) data analysis at large scattering facilities (Doucet et al., 2017).

Furthermore, there is the ATSAS project, consisting of a comprehensive set of sophisticated



tools primarily intended for biological systems encountered in protein analytics (Petoukhov
et al., 2012) as well as the ScAtter program (Rambo, 2017) with a similar focus. For this
special topic around protein analytics, please refer to other recent work by Trewhella (2016)
or Svergun, Koch, et al. (2013). Independent of the field of application, every data analysis
tool relies on the quality of the input data provided.

One of the biggest stumbling blocks in the application of SAS has been the data
correction and analysis. Although the discussion of data corrections is beyond the scope
of this work [see Jacques et al. (2012), Pauw, Pedersen, et al. (2013) and Kieffer and
Karkoulis (2013) for such discussions], it has to be stressed that correct analysis of data is
reliant on the quality thereof. There can be no good results without proper data which,
in turn, cannot be considered complete without reasonable uncertainty estimates on the

data values.

Dynamic light scattering

Dynamic light scattering (DLS), also named photon correlation spectroscopy (PCS) or
quasi-elastic light scattering (QELS), is a mature analytical technique for the determination
of hydrodynamic radii of nanoparticles (Schéartl, 2007), micro emulsions (Khan et al., 2016),
proteins (Gun’ko et al., 2003), polymers (W. Brown, 1993), etc.. The DLS method allows
for a statistically representative quantification of nanoparticles while offering a number
of advantages: short measurement times of less than a minute, easy-to-use instruments
and highly automated data evaluation software accompanying commercial instruments
and typically, the laser which illuminates the sample, is not accessible by the operator
which makes it safe for use by untrained staff. A recent short overview of the method
is given by Hassan et al. (2015) and a deeper insight is found in the classical work of
Finsy (1994). Another recent review focusing on DLS basics and applications in nano
pharmaceutics if given by Bhattacharjee (2016). Possible pitfalls of the method were
explained by Fischer and M. Schmidt (2016). In short, the analysis of particle sizes from
DLS is mathematically an ill-posed problem for which typically regularization techniques
are applied to get meaningful results at all (Nyeo and Ansari, 2015). The underlying
problem is generally found for exponential analysis of physical phenomena (Istratov and
Vyvenko, 1999).

Nevertheless, various methods have been established for DLS data analysis over the
years. Of utmost importance is the classical method of cumulants as derived by Koppel
(1972) which is standardized for small particles of a narrow size distribution (ISO, 1996).
It requires that the so-called polydispersity index, a measure for the broadness of the size
distribution, has to be smaller than 0.1 which is rarely fulfilled. Therefore, the standard is
often applied beyond its scope. For determination of broader and multimodal distributions,
the CONTIN program is most widely spread (Provencher, 1982b). CONTIN is based

3



on an inverse Laplace transformation and uses a regularized non-negative least squares
(NNLS) algorithm (Provencher, 1982a). Because the smoothness constraint in CONTIN
is problematic with multimodal and narrow distributions, an alternative NNLS algorithm
was proposed, employing a multiple-pass analysis of the same measurement (Morrison
et al., 1985). Further, solutions for the determination of particle size distributions are
based on the maximum entropy method (R. K. Bryan, 1990; Langowski and R. Bryan,
1991; Bryant and J. C. Thomas, 1995), singular value decomposition (Finsy, Groen, et al.,
1989), stochastic methods, such as neural networks (Gugliotta et al., 2009) or particle
swarm optimization (Zhu et al., 2011).

The main common drawbacks of the above stated methods are (a) a high sensitivity
to noise, (b) difficulties in identifying correct peak positions for multimodal distributions
with different intensities contributions of each particle class and (c) a lack of reasonable
estimates of the associated uncertainties of the results. Furthermore, no method considers

the variance from multiple measurements as given by a priori information.

1.3. Analysis methods

Classical curve fitting

After suitably corrected SAS data have been obtained, analysis thereof can be performed
through a classical approach used in SASfit: using a least-squares optimization to match
the measured data to a synthetic scattering pattern generated by a composition of models
for the form factor, size or parameter distribution and an optional structure factor. All of

which are defined by a handful of parameters (Pedersen, 1997).

Monte Carlo based curve fitting

The assumptions on both the scatterer shape and the mathematical form of the parameter
distribution(s) in model functions of the classical approach are often insufficiently flexible
to describe the morphology of many samples. Good agreement between the model function
and the measured data will then not be achieved, in particular for samples where the actual
dispersity does not adhere to the inherently assumed model parameter distribution form
(such as lognormal, Gaussian or Schultz-Zimm), or where such a distribution form is not
known or can not be assumed a priori.

Modern analysis methods are available for this class of samples which allow for the
retrieval of model parameter distributions without assumptions on the form of the
distribution. While the general shape of the scatterer still has to be defined in order to
arrive at a unique solution (see, for example, Rosalie and Pauw (2014)), the methods are
no longer restricted to a limited set of model parameter distribution forms. Such modern
methods include Titchmarsh (Fedorova and P. W. Schmidt, 1978; Botet and Cabane,

4



2012) or indirect Fourier transforms, based either on smoothness criteria (Glatter, 1977;
Svergun, 1991) maximum entropy optimization (Hansen and Pedersen, 1991) or Bayesian
hyperparameter estimation (Hansen, 2000). While these carry a certain mathematical
elegance, they can be challenging to implement, understand and apply. This
mathematical obscurity furthermore hinders thorough understanding of the failure
modes, which can lead to crucial errors in their application.

For determining model parameter distributions from small-angle scattering patterns a
conceptually straightforward Monte Carlo-based method was presented by Pauw,
Pedersen, et al. (2013). It has since been applied to explore the size distributions of a
variety of samples including metal alloys (Oba et al., 2015; Rosalie and Pauw, 2014),
novel oxygen reduction reaction catalysts (Schnepp et al., 2013), polymer fibres (Pauw,
Ohnuma, et al., 2013), plasmoids (Meir et al., 2013), iron oxide nanoparticles (Lak et al.,
2015) and quantum dots (Schindler et al., 2015; Abécassis et al., 2015). While these
results have been encouraging, the lack of user friendliness of the method has hindered its
adoption by a broader audience.

Through a multinational collaborative effort spanning several years, a drastic
improvement on the software usability was effected. It became useable for
non-programmers conducting scientific analysis on a multitude of measurements on a
daily basis. Additional functionality was added to cope with various levels of data quality
as well. These include basic data reduction mechanisms to crop and bin the data
(logarithmically) ahead of the analysis as well as providing comprehensive information on
the parameter distributions determined: number-, volume-, surface- or intensity-weighted
histograms on user-defined parameter ranges, to support a wide range of applications.
Last but not least, a structured approach was developed to store the results in a common
portable scientific data format (HDF5), together with their source data and the program
configuration leading to them, which is important to assure the quality and
reproducibility of scientific work. This was mostly accomplished through a comprehensive
rewrite of the implementation by the author of this work: following modern coding
standards and conventions by harnessing the potential of proven and mature program
libraries such as NumPy, SciPy and Matplotlib, utilizing a current framework for a
productive and self-descriptive user interface (Qt), employing a distributed version
control system (Git) and establishing a framework for regression testing of the integral

parts to maintain a consistent software quality (nose testing).

Consequently, it is of interest to see if this Monte Carlo method can analyse DLS
data equally well. Repeated DLS measurements provide uncertainties which can be used
for determining form-free size distributions accompanied with uncertainties for individual
sizes. This would enhance the information value offered by DLS measurements, as that

measurement uncertainties of DLS data are not yet commonly found in the literature.



The results of this work are structured in three parts: Chapter two presents the classical
curve fitting toolbox SASfit. The Monte Carlo-based approach implemented by the McSAS
program is detailed in chapter three while chapter four describes its transfer to DLS analysis

implemented in the program McDLS.



2

SASfit: Classical curve fitting of SAS data

SASfit is a program primarily for model-based analysis of SAS data, which contains over
200 models for fitting and can be extended by the user to include more. The fitting interface
also allows for the construction of compound models which can then be used to fit one or
more data sets. Examples of the application of this program include the traceable size
determination of gold nanoparticles (Meli et al., 2012), polymeric nanoparticles (Gleber
et al., 2010) and vesicles (Varga et al., 2014) as well as inter-laboratory comparison of
nanoparticle size distribution quantification (Pauw, Késtner, et al., 2017). Furthermore, it
was used for studying the mechanism of gold nanotriangle formation (Liebig et al., 2016),
characterizing ultra-small core-shell silver nanoparticles (Késtner and Thiinemann, 2016),
examining the asphaltene nanostructure using complementary SANS and SAXS scattering
(Eyssautier et al., 2011), analysing superparamagnetic iron oxide nanoparticles (SPION)
(Szczerba et al., 2017) and their stabilization by polyelectrolytes (Wozniak et al., 2017).

Moreover, the program was employed to characterise polymer blends (Kogikoski et al.,
2017), comb-shaped copolymers (Gelardi et al., 2017), star block copolymers (Herfurth
et al., 2016), the behaviour of dynamic covalent polymers (Fuhrmann et al., 2016) and
copolymer based micellar solutions (Nguyen-Kim et al., 2016).

In colloid and interface science, it is often utilized for studying micellar structures and
their behaviour, such as the self-assembly of lipopeptide in water (Soares et al., 2017),
self-assembled peptide nanotubes (Hamley et al., 2017; Castelletto et al., 2017), sodium
hyaluronate in oppositely charged surfactant solution (Buchold et al., 2017), spherical
micelles (Kirkham et al., 2016; Jin et al., 2016) and bicelles (Isabettini et al., 2016) as
well as analysing synthetic virions (Noble et al., 2016) and the assembly of nanoparticles-
polyelectrolyte complexes in nanofiber cellulose (Garusinghe et al., 2017).

Likewise, SASfit is applied to investigate the properties of emulsions, such as ‘the effect
of hydrostatic pressure on the structure of a bicontinuous microemulsion in the presence
of a solid interface’ (Berghaus et al., 2016) or for studying the flocculation process in
emulsions (Huck-Iriart et al., 2016). Also solids are regularly analysed, for example, in a
‘multiscale description of shale pore systems’ (Leu et al., 2016) and for developing Co-Re

alloys for ultra-high-temperature applications (Gilles et al., 2016).
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More exotic applications include the study of relaxation mechanisms in magnetic
colloids by stroboscopic spin-polarized SANS (Wiedenmann et al., 2011), detection of
toroidal supramolecular polymers using simultaneous SAXS and SANS analysis
(Hollamby et al., 2016), simultaneous fitting of up to 70 measurements from contrast
variation experiments (Kohlbrecher, Buitenhuis, et al., 2006; Vavrin et al., 2009) and
analysing the (model-free) integral structural parameters of 400 scattering curves for

creating local contrast in SANS by dynamic nuclear polarization (Brandt et al., 2007).

2.1. Data preparation

Before data fitting, it is wise to investigate the data plot and its uncertainty estimates
(‘errors’). At high ¢, the intensity tends to be low with a high degree of uncertainty.
Accordingly, high-q data of radially averaged one-dimensional data tend to contribute little
to the overall goodness of fit, defined by the reduced chi-squared (x?) value (Bevington
and Robinson, 2003):

2 1 ol -[exp(qi) - Imod(Qi) ?
Xr = (N _ M) Z

i=1 Texp(4i)

When observing high uncertainties on a large number of data points, a data averaging

2.1]

step should be performed on these data points to prevent instabilities and large calculation
times. For quick evaluation, however, it is an option to initially ignore a section of points
in the high-g region. Furthermore, it might be necessary to skip invalid data points, which
may originate from, for example, improper masking of the beam stop, edge effects in radial
integration or parasitic scattering contributions.

For these reasons, additional options are provided during data import, which allow the
user to specify the g range for each data file individually when merging data files. For final
data analysis it is recommended, however, to bin the data properly to reduce the number
of data points and to improve the data and the data statistics. The adaptive averaging
method presented here can be used for this purpose.

An important step in preparing data for analysis is to reduce the number of data points
of oversampled data sets. A reduced number of data points will increase fitting speed
proportionally and improve fitting stability.

SASfit supports three methods to reduce the number of data points of oversampled
data sets of which the author implemented the first and second method in the course of
this work:

Method one is a simple and straightforward thinning out of data points according to

Liedi = Law k(i) With k() = round(i/ratio). [2.2]
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Figure 2.1: Data reduction window, providing three different methods for reducing the number of data
points. Method one (leftmost figure) skips data points by a count ratio (see eqn. [2.2]). For fast data
fitting of 10% data points, a typical fraction of 0.1 is recommended. Method two (middle figure) is a fast
method for data with distinctive curve features (see eqn. [2.3]). Method three (right-hand figure) averages
data points adaptively according to intensity and q spread (see eqn. [2.6]).

The user specifies a ratio of the original data points to keep. For example, 90% of
the points can be omitted in the fit by specifying 0.1, as shown in the left-hand panel of
Fig. 2.1. This rough method is suitable when working with high-density SAXS data of
several thousand data points and when very fast fitting results are desired to get an initial
overview, for example during an experiment.

The second method preserves scattering curve characteristics better than the first.
It maintains a user-defined distance @, between data points by utilizing Pythagoras’
theorem in linear or logarithmic two-dimensional space and skips those points which are
less far away in accordance with

Ledi = Law k(i) With [51(2')2 + 5Q(i)2} s Ommin- [2.3]

In linear context, d;(i) and dg (i) are calculated by

51(2) — draw,k(i) — [raw,k(i—l)a

| 2.4]
5Q<Z) = Graw k(i) — Qraw,k(i—1);
and in logarithmic context by
5I(Z> = lOg Iraw,k(i)/[raw,k(i—l) ) [2 5]
5Q<Z) - lOg Qraw,k(i)/Qraw,k(ifl)’ .

The third, and most recommended, method for data reduction averages neighbouring

data points locally, on the basis of the difference in intensity and width in ¢ space (see



right-hand panel of Fig. 2.1). Each local interval (k;l] is determined adaptively so that it

contains all points n which fulfil the following condition:

"0l — oI,

The parameter D,,;, restricts the intensity difference within an interval proportional to

Vn € (k, ] < Din A < OGmax- [2.6]

the associated uncertainties. Additionally, the maximum width of an interval relative to
its position in ¢ space is scaled by the second parameter, d¢na.x. This results in a narrow
spacing between data points at low ¢ and a wide spacing at high ¢. Both conditions have
to be fulfilled by neighbouring data points to fall within an interval and thus to allow
calculation of an average. This last method retains information on sharp features, while
averaging data points. It is important to note that the original data are always stored
alongside the modified data, and are also stored for traceability in SASfit project files
along with the reduced data. Adjusting the data affects the copy of the data used for
numerical analysis only. The data selected for analysis can, therefore, be changed at any

time.

2.2. Model fitting

The main purpose of SASfit is to fit a model described by idealized scattering functions
to one or more data sets. By minimizing the goodness of fit criterion x? (see eqn. [2.1])
through adjustment of the model parameters, the model intensity I,0q4(¢) is matched with
the measured intensity o, (q). SASfit is designed to let the user configure every aspect of
I1n0a(q) defined as

Inod(q) = Z{ /P(q,x)f(fc) dx

The model intensity is based on the sum of the scattering intensity contributed by

S (Q)}- [2.7]

different scatterers in the analysed sample. Each scattering contribution ¢ consists of a
form factor P(q,z) determining the shape of a scatterer. Disperse aspects of shape-similar
contributions can be reflected by applying a parameter distribution f(z), in the range [a, b,
to an arbitrary form factor parameter x. Furthermore, SASfit allows defining a structure
factor S(q) for each contribution, reflecting attraction and repulsion of scatterers in the
sample. This model composed of several scattering contributions can be managed in the
graphical user interface of the program.

There are over 200 form factors available in SASfit. This list includes the commonly
used ‘Sphere’ and associated form factors, but also includes models that do not strictly
adhere to the form factor definition, such as the Beaucage unified fit model (Sztucki et al.,

2007) and several models for disordered structures. One typical starting model for fitting
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data would be the ‘Sphere’ model, coupled with a parameter distribution over the sphere
radius R. By starting with such a simple model, alternative and typically more complex
models can be assessed for their significance against the fit quality of the ‘Sphere’ model.

This example is given in Fig. 2.2 by using a Gaussian distribution.

7 ,52929n.sas, unknown.par Input Parameter, Analytical Form Factor E] @
File  Options ﬂetpl
contribution: 1 —4 Previous Next Add Remove B

V¥ apply [ subtract
chisqr.  226.16 red. chisqr: 057547 data points: 393 fit parameters: 0
R value:  0.0684428 w. R value:  0.0835911 0 factor: 1 variance of fit: ~ 2.74062e-005
size distiib. and formfactor | stucture factor | 2D detector calculation [under construction) |
Gaussian —l‘ Parame!erF!ange...I = Sphere —II Parame!erFlange...' =
parameter: fit parameter: distr  fit
N oo A V| ® C—Y S 4 R
- [ Al ¥ ® T alv|s &
xo- [ Al Y| F s - alys r |
oa— L 1 = co- [(To5ic0z 4| W] © T
[ Al ¥ T l Aly|e
Aly|lr P  Aly|s F
[ Aly|F l alv]e =
[ Aly[rm I Alv[s &
‘ max. iter: [10 Apply| Step | Fun fit|

wterReptr |

Figure 2.2: Basic model configuration, consisting of a form factor on the right (in this panel it is a
‘Sphere’ with the scattering contrast of gold nanoparticles ‘eta’ = 1.13 x 10'2) and a distribution of one
selected parameter (‘distr’ column) on the left (here a ‘Gaussian’ distribution of the radius which has a
concentration parameter of ‘N’ = 7.6 x 10739, a width parameter ‘s’ = 0.43 and the mean radius parameter
‘X0’ = 4.48 nm. A structure factor can be configured on the second tab. Different scattering contributions
can be managed by the top row of buttons.

Depending on the scientific field, either the Gaussian, lognormal or Schulz-Zimm
distributions are typical choices for describing the (poly)dispersity of monomodal shape
parameter distributions.

Each distribution consists of at least one parameter controlling the position of its
maximum and one parameter controlling its width or FWHM, which defines the degree of
polydispersity. The monodisperse distribution, being the exception to this, defines only a
single parameter value. Nontrivial parameter distributions are integrated by linear
subdivision of the integration range, whose extent and granularity are determined
adaptively on the basis of the user-provided distribution parameters. Finding a suitable

integration range depends on the distribution functions and cannot be handled in an
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efficient and numerically stable way for all possible functions. Therefore, a fixed set of
available parameter distributions is defined in SASfit, which cannot (yet) be extended by
the user.

Besides form factors and distribution functions, SASfit allows consideration of
interparticle scattering effects. There are several approximations implemented to allow
calculation of such a structure factor: (1) monodisperse approximation (see eqn. [2.7]),
(2) decoupling approach, (3) local monodisperse approach, (4) partial structure factor
and (5) scaling approximation of partial structure factor. It should be noted that some of
these structure factor approximations [specifically, numbers (2) and (5)] require
knowledge of the scattering amplitude of the form factor, as opposed to ‘just’ the
scattering intensity. SASfit might return an error if such a structure factor approximation
is attempted in combination with a form factor for which the scattering amplitude is not
known. Details on the exact formulae are given in the SASfit manual (Kohlbrecher and
BreBler, 2016).

Structure factors affect a scattering curve at low ¢ values owing to the larger lengths
they inherently cover. Here, the residuum of a fit would show oscillations if disregarded
particle interactions are significant. In order to assess the influence of a structure factor
on the fit of the model configuration and the experimental data, it can be selected and
configured in the second tab, ‘structure factor’, of the model configuration window shown
in Fig. 2.2. In many cases, a simple ‘Hard Sphere’ structure factor would suffice. In its
basic configuration, the repulsion radius is set slightly larger than the particle radius but
maintains the same order of magnitude, whereas its volume fraction is set to small values
such as 0.05 at the start of the fitting procedure.

Before moving on to the least-squares fitting procedure, it is recommended to constrain
the fit parameters algorithm to a physically feasible range of parameter values. They can
be defined by the ‘Parameter Range’ menu next to each model function for single data set
fitting. If no constraints are applied, the fitting procedure may result in no solution or an
unrealistic local minimum. Each parameter contains a brief explanation of its meaning,
which is shown in a tooltip and at the bottom of the window upon hovering the cursor

over the parameter.

2.3. The usual curve fitting workflow

It is recommended to adjust the fit parameters manually before starting the iterative least-
squares optimization, in order for the model intensity to approach or intersect with the data.
This helps to prevent instability during the initial iterations. Owing to the minimization
exhibiting many local minima it is strongly recommended to optimize the model parameters
stepwise. Otherwise, a minimization of all parameters in one step automatically either will

not reach the intended best fit or may provide a physically meaningless solution. Therefore,
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Figure 2.3: The recommended curve fitting workflow of SASfit consists of a three-step cycle.

the basic workflow for fitting small-angle scattering data consists of the following steps (as
illustrated in Fig. 2.3):

1. The first step of a fit procedure is to match the order of magnitude of the model
curve (red) and data intensity (black dots with blue error bars). This can be
accomplished by initially fitting the scaling parameter at the beginning of the curve
only. The distribution parameter N should be used for this purpose, which denotes
the number of scattering objects involved in the measurement. Applying ‘Run fit’

finds the optimal value of V.

2. The size of scattering objects is optimized in the second step of curve fitting. The
best results are obtained by limiting the fit to the central part of the data where, for

example, a first local minimum of the curve can be observed.

3. Fitting both the scaling parameter and the size parameter at the same time over the

first two-thirds of the data further improves the overall quality of the fit.

In a final step, some slight mismatch in the central part of the scattering curve can
be optimized by fitting the particle radius together with the distribution width parameter
‘s’ (width of the Gaussian distribution in the example). Steps 1-3 can be repeated, if
necessary, until a good overlap of the model curve and the data is obtained.

With increasing value of the size distribution width parameter, the model curve

becomes smoother since it represents a broader size range of scattering objects. Because
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of this smoothing, evidence supporting a particular shape reduces, making it increasingly
challenging to distinguish between different shapes coupled with large polydispersities (as
many will fit the data to a similar degree). Therefore, care has to be taken in
interpretation of broad size distributions which are larger than about 20% of the mean
value at o; external supporting evidence for a particular shape assumption should be

provided.

2.4. Example 1: disperse gold nanoparticles

To aid in the discussion of the remaining SASfit aspects, such as fit interpretation and
reliability, an application example will be shown first. By means of this example,
necessary considerations for retrieving reliable values for scatterer population from
absolute measurements and advice on the interpretation of uncertainties will be provided.
In order to demonstrate the reliability of SAS data analysis with SASfit a dispersion of
gold nanoparticles of the NIST reference material RM-8011 (De Temmerman et al., 2014;
Small and Watters, 2015) was chosen.

A straightforward example in which the presented fit procedure is applied is the
determination of the mean radius of spherical particles in solution, the width of their
radius distribution and the particle number concentration. RM-8011 was measured for 30
min with a SAXSess instrument from Anton Paar and the data was scaled to absolute
intensity using water as a primary standard as described by Orthaber et al. (2000). The
resulting data have been fitted to a model composed of spheres with a Gaussian size
distribution. The result is shown in Fig. 2.4. The obtained data set and a preconfigured
SASfit project file (GoldS2843.pdh and GoldS2843.sas) is provided in the supporting
information of the original work (Brefler et al., 2015).

The fit parameters in this example are values for the particle concentration N, the
mean particle radius Xy of the assumed Gaussian size distribution and the width of the
size distribution s. Note that numerous size distributions are provided, including the
frequently used Schulz-Zimm (Flory) and lognormal distributions. It is the users’ choice
to select the most appropriate one. It is recommended to commence with a Gaussian
size distribution if no evidence is available to support an alternative size distribution, for
example from other methods like electron microscopy or from physical considerations.

The best fit value for the mean radius in this example is X, = 4.48(5) nm and the
width of the size distribution is s = 0.44(5) nm. Here, the uncertainties merely denote
the standard errors as determined from the least-squares optimization method. These
uncertainties can be utilized to determine the combined standard uncertainties from all
input quantities (Meli et al., 2012); however, this can be a tedious procedure which is
beyond the scope of this example. As a rule of thumb, the uncertainty of the size parameters

from SASfit is of the same order of magnitude as the combined standard uncertainties.
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Figure 2.4: Curve fit (red solid curve) of a single data set (black dots) of gold nanoparticles of the NIST
reference material RM-8011 (De Temmerman et al., 2014; Small and Watters, 2015) using a model of
spheres with Gaussian size distribution and the initial parameters shown in Fig. 2.2. The uncertainties of
the measured intensity values are displayed as vertical blue lines. The mean radius is Xy = 4.48(5) nm and
the width of the size distribution is s = 0.44(5) nm. Right-hand figure: covariance matrix and confidence
intervals of fit parameters to assess (inter-)correlation of parameters.

Another common calculation, possible when the data have been scaled to absolute units,
is the determination of the concentration of scatterers in solution.

In order to convert the N value to a particle concentration (in number of particles per
cm?), the units used for absolute intensity, scattering vector and scattering length density

should be considered. Here, this conversion factor is 10*? as the corresponding units used

were cm~ !, nm~! and ecm ™2

_ [[exp] _ [Iexp] _ Cmil — Cm71 = 10420m_3 [2.8]

V] [Iwoa]  [a]6[An]2  nmfem—4  10~42cmbcm—4

Therefore, in this example, the N value of 7.68(28) x 107" corresponds to a particle
number concentration of 7.68(28) x 10"2c¢cm™ or a molar concentration of
1.28(5) x 107" moll™!. To double-check this value, it is recommended to convert the
particle number concentration to the mass (and volume) fraction ¢, (and ey,
respectively).

For a Gaussian size distribution the mass fraction is
Ym = No(V) = NoinX{ {1+3(5/X0)3}, where o is the density and (V) the mean
particle volume. Assuming that the gold particles in this example have the same density
as the bulk material (19.30gcm™2), a mass fraction of 57.37(209) ngg~! was calculated.
This value is in reasonable agreement with the value of 51.56(12)pgg™!
(2.67 x 10~*vol.%) provided by NIST, as determined by inductively coupled plasma
optical emission spectrometry (Small and Watters, 2015). It should be noted that the

uncertainty of the intensity measurements is of the order of 5%, which means that the
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uncertainty of N must be of the same order of magnitude, in other words larger than the
least-squares derived uncertainty (Orthaber et al., 2000). SASfit furthermore provides
several measures which can be used to assess the quality of the (local) optimization

minima found, which will be discussed in the next section.

2.5. Fit quality

The quality of a fit is mainly described by the relevance of the data with respect to the
model and its parameters: Would the combination of model and parameters provide the
same fit quality for another data set, possibly random data? To answer this question,
SASfit provides measures that serve as indicators of the fit quality (see Fig. 2.2). These
are the ‘reduced chisqr’, the ‘@ factor’ and the ‘R value’

Following the ‘R factor’ from crystallography (Hamilton, 1965) during the early stages
of this work, the author implemented a fit quality indicator to help users of the program
assessing the fit quality during daily analysis work when only the optimization criterion

24 was available:

Zij\i1 |[mod(qi) - [eXP(Qi”

R.q =100
'f\il |]exp(%>|

2.9]

relerr -

Z [Iinod (gi) — Lexp(4:)| 2.10]

T Hexp (@) — |oexp (ai)]

It provides a value for the relative observable similarity and deviation of the model
curve against the data points which often has to be judged by the human eye due to rare
circumstance of a perfect fit. In favour of the more widely known and accepted indicators
those values were superseded in the course of further development.

The ‘reduced chisqr’ value x%4 = x?/(N — M) (see eqn. [2.1]) provides a measure of
fit quality across data sets and model configurations, with N the number of data points
used for the fit and M the number of parameters of the fit model. x2, serves also as the
optimization parameter in the least-squares optimization procedure. This value depends
heavily on the quality of the data and how well the associated uncertainties were estimated.
When representative uncertainty estimates are provided, a value of x2,; = 1 indicates that
the data are described on average to within the uncertainties. However, if the uncertainties
are excessively small (underestimated), or excessively large (overestimated), this condition
no longer holds true. The value of the 2, measure, therefore, is dependent on the quality

of the uncertainty estimates.
The ‘@ factor’, defined as
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 (N=M 2\ [(N-—M N-M
Qfactor _Q< 9 72>_F< 92 72>/F( 2)

with I'la,x) = /t“’lexp(—t) dt, [2.11]

provides a second, independent measure of fit quality. It is the probability that a
random set of NV data points using the same model parameters would produce a x? value
equal to or higher than that obtained when using the real data set. For a fit of good
quality, Qfactor should be in the range of 0.01-0.5 (the smaller the better), with a x2 4 value
of approximately 1.

In analogy to the ‘R factor’ in crystallography (Hamilton, 1965), SASfit also provides

an ‘R value’ as quality criterion of a model in data analysis results:

Zij\il HIeXP(Qi)’ - umod(%')H
Zi]il |]eXp(qZ‘)|

A value of R ranging between 0 and about 0.1 indicates a good to acceptable fit, whereas

R= [2.12]

large values (up to infinity) denote a poor fit. It is especially important to realize that R
is only a measure of precision and that it is not able to measure accuracy. Cases of data
situations and model combinations that would be reported as false positives or negatives
by the value of R are conceivable. Since the function being minimized is weighted by the
uncertainties of the measured data (as can be seen in eqn. [2.13]), there is a weighted ‘R
value’, ‘wR value’, provided (Hamilton, 1965), which takes those uncertainty estimates

into account by

RW:{%[IAW(%)I [ Tmoa (4:) ] /N Loy (G }/2, [2.13]

i=1 Uexp Qz exp

By providing several fit quality scores such as the ) factor and the R value next to the
reduced chisqr value, SASfit assists the user in assessing the quality of each fit. Assessment
of the quality of a fit using these measures is dependent on the provision of good uncertainty
estimates. Recently, however, new goodness of fit tests were published to provide help for
defining SAS fit quality when uncertainty estimates are not available: noteworthy are the
‘correlation map’ approach by Franke et al. (2015) and more recently the ‘aGoFs’ indicator
by Henn (2016).

2.6. Confidence in fitted parameter values

In addition to the aforementioned fit quality estimators, SASfit provides confidence

intervals for the fitted parameters and outputs the internal covariance matrix to enable
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the identification of highly dependent parameters, as shown in Fig. 2.4. (The respective
menu ‘confidence intervals of fit parameters’ is accessible via the options menu of the
model configuration window.) In order to find optimal model parameters, SASfit uses the
Levenberg-Marquardt algorithm (Levenberg, 1944) to minimize the x? function [see
equation (1)]. Internally, this algorithm approximates the Hessian matrix of the function
subject to optimization.

The Hessian matrix provides a means to determine correlation coefficients of all pairs
of fit parameters. The inverse of the Hessian matrix is the approximated formal
covariance matrix C' for the fit. The square root of diagonal elements C’;j/ * gives the
standard deviation o = dp; of the best-fit parameter p;, which holds only under the
assumption that measurement errors are independent and normally distributed, and that
the parameters are not correlated to each other. Recent work indicates that these
assumptions are reasonably fulfilled (Franke et al., 2015). Note that SASfit provides the
standard deviation of the fit parameters, from which confidence intervals can be derived
according, for example, to the Guide to the Fxpression of Uncertainty in Measurements
(JCGM, 2008).

To assist the user in assessing the accuracy of the result, the author of this work
implemented a display of the correlation of fit parameters: the correlation coefficient rj;
of every pair of fit parameters is shown by SASfit (see Fig. 2.4) in the upper triangular
matrix in shades of red depending on their degree of correlation. For two parameters p;

and pj, being optimized, the correlation coefficient 7 is given by

rin = Cir(C1;C) " [2.14]

For uncorrelated parameters, r;; is expected to have a value close to zero, whereas for
strongly correlated parameters |r;;| approaches one. Within the matrix, there is one row
and one column associated with each parameter being optimized. They can be highlighted
by clicking on a parameter entry in the lower half of the window. By selecting the row
and column of two different fit parameters, their correlation coefficient r;, at the position
of their common matrix element is highlighted.

When two parameters are strongly correlated it can happen that they both converge
to unphysically large or small values during optimization. In this case, one has either to
rewrite the form factor with fewer parameters or to fix one parameter to a value ideally
determined using another technique.  Another strategy would be to enhance the
information content obtained from a SAS experiment, for example through contrast

variation, potentially allowing for decoupling of the two strongly correlated parameters.
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2.7. Batch processing

In many scientific applications series of measurements are performed on a large variety of
samples. In the early stages of analysis erroneous ones have to be identified and filtered
out. This can evolve into a very time consuming task given the constantly growing amount
of data generated at laboratory and large facility instruments.

To increase the evaluation throughput, the author developed an automated routine
for fitting many similar data sets: Once a model has been configured, it can be used
for processing a batch of data files under ‘Options’ — ‘run batch’, as shown in Fig. 2.5.
Hovering over the pattern input field reveals a short pop-up help text field on the pattern
syntax for file selection. SASfit allows filtering of data file names from a user-defined input

directory for model-dependent analysis.

batch processing - o] x|

select input directory: | Z: /sasfit_data/data

enter a file selection pattern: ;
90K.dat -
90K00101103.dat

2011-06-26 export test.sas

aamytest.sas

ABYVMED7_1_8x13_0326443F030.5as

bug_SD-integration_range-negative_RD.sas
copo3_01_10_0320546F020.dat

copo3_01_10_0320546F020.txt v
L' »

select output file: | Z: /sasfit_data/data/%s fitresult.csv

load next file | save fit result | reset data lilel Do alll

Figure 2.5: Panel for selection of data files for batch analysis and individual output file.

2.8. Custom model functions as plug-ins

In addition to the large library of existing model functions for form factors, structure
factors and size distributions, the author developed a flexible plug-in system in the course
of his work to allow for custom model functions: it provides everything to enable users to
write their own custom form factor and structure factor functions in the C programming
language. When users hit the point in their scientific work when none of the existing
models sufficiently represent their hypotheses or do not answer the questions at hand, the
plug-in system is a good starting point for developing custom models on top of a powerful

and proven classical curve fitting toolbox.

Plug-in concept

In SASfit, a ‘plug-in’ is a container for model functions. It may contain an arbitrary

number of form factors and structure factors. Both types are supported within a single
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plug-in at the same time, but it is recommended to use a plug-in for grouping model
functions of a similar kind. In this way, a common set of internal helper routines not
accessible publicly can be created and used for all model functions of a plug-in. SASfit
plug-ins can be exchanged freely between different SASfit installations even in binary form,
provided the PC platforms and architectures are compatible. To create new customized
plug-ins, it is strongly recommended to build SASfit from its source code first. In this way,
the build environment is verified to work correctly and the plug-in system compatibility is

thus assured.

Retrieving the source code

The latest source code of SASfit, including a history of all changes, can be obtained on the
code-hosting page of the project (http://sasfit.org). There are two options to get the
most recent source code: the recommended way is to use the distributed version control
system (DVCS) Git (https://git-scm.com) to ‘clone’ the project repository locally. This
requires a third-party client to be installed but it simplifies the effort of updating to a new
version. Compatible GUI (graphical user interface) Clients for Git are listed at https://
git-scm.com/downloads/guis. Alternatively, the complete source code of a given version
or ‘snapshot’ can be downloaded. The technical details on the required build environment
and the instructions for building the SASfit program on a specific platform can be found
in the documentation (http://docs.sasfit.org).

Creating a new plug-in

The first step in creating a new plug-in involves generating a new empty plug-in template
containing a directory structure of source code skeleton files. For this, SASfit has to be
run directly from the source code directory from which it was built and the plug-in guide
shown in Fig. 2.6 has to be started. It can be found under the main menu ‘Tools’ — ‘create
new plug-in’ and lets the user define the setup of a new plug-in function.

The user is required to define a unique plug-in name, and at least one function has
to be configured, including a descriptive name under which it can eventually be found in
the model selection menu. Additionally, the plug-in guide expects the required parameters
of each function to be defined. It is important to know the numerical implementation
of the desired model function beforehand to determine the specific parameters needed.
As existing model functions cannot be easily modified by the user, it is recommended to
replicate a plug-in when modifications are required.

When created, new plug-in templates already contain the configured model functions,
but lack any functionality and evaluate to zero. This ensures that the plug-in can be built
right from the beginning by issuing the previously used build commands again. This will

build only those source code files which are new or changed since the last run. In this
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Figure 2.6: User interface for creating a new plug-in template, consisting of user-defined model functions,
filled out according to the branched polymer example plug-in.

case it will build the newly created empty plug-in only and add its binary files to the
appropriate location automatically. To verify that the plug-in was built correctly SASfit
has to be restarted, after which the new plug-in will be listed in the appropriate model

selection list under ‘by plug-ins’

Branched polymer plug-in function example

Once the initial build of the new plug-in has been successful, it can be populated with the
desired model implementation. The following example implements a single-polymer form
factor for branched polymers formulated by Hammouda (2012). By using a (mass) fractal
model for the minimum path corresponding to the main chain backbone of the polymer,

the form factor is described by

1
Ps(Q) = Nolrmz/dx(l — )2 texp(—Upz®), [2.15]
with the normalization factor being defined by
1 2
Norm = QO/dx(l — )z = et 1) [2.16]
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and the scattering variable Ug is expressed in terms of the radii of gyration R,:

Up = Q*R2(20+ ¢)(2v 4 ¢+ 1) /6. [2.17]

With a change of variable in ¢t = Upz® and dt = 20Upz* ' dzx the integral Ps(Q)

evaluates to

1 1 ¢ 1 (c+1)
B = — — . 2.1
B(Q) Norm {'UUE/QU’Y (2’[}7 UB> ’UU](BC+1)/2v7 [ 2U 9 UB‘| } [ 8]

The remaining variables v for the excluded volume and ¢ for the scaling factor become

parameters of the model function next to the radii of gyration R,. This formulation of the

form factor can be translated into source code of the respective model function in a SASfit

plug-in.
I scalar sasfit ff hammouda branch(scalar g, sasfit param * param)
3 scalar ub, norm_inv;
1 scalar (*gamma) (scalar, scalar);
SASFIT_ASSERT_PTR(param); // assert pointer param is valid
// modify conditions to your needs
SASFIT CHECK COND1((g < 0.0), param, "g(%3lg) < 0", q);
10 SASFIT CHECK_COND1((RG < 0.0), param, "Rg(%lg) < 0", RG);
11 SASFIT CHECK COND1((VM < 0.0), param, "vm(%¥lg) < 0", VM);
1 SASFIT_CHECK COND1((C < 0.0), param, "c(%lg) < 0", C);
1
14 // insert your code here
15 ub = g*q * RG*RG * (2.*VM + C) * (2.%VM + C + 1.) / 6.;
1 norm_inv = .5 * (C*C + C);
17 gamma = gsl sf gamma inc P;
1 return ( gamma(.5% C /VM, ub) / (VM*pow(ub, .5*% C /VM) )
19 - gamma (.5*(C+1.)/VM, ub) / (VM*pow(ub, .5*(C+1.)/VM))
0 ) * norm_inv;
L}

Figure 2.7: Source code of the branched copolymer form factor function of a custom SASfit plug-in.

The updated code shown in Fig. 2.7 replaces the automatically generated template
source code of the function sasfit ff hammouda branch() in the file
sasfit_ff hammouda branch.c, which was generated by filling out the SASfit plug-in
guide as shown in Fig. 2.6.

The function signature in line 1 was created by the plug-in guide along with the
mandatory verification of input parameters in line 6. This function is evaluated for every
individual ) value of the scattering vector provided in the first argument scalar q.
Access to predefined input parameters of the model function is provided by automatically
generated variables in upper case, RG, VM and C, along with range checks on them in lines
9-12 which were adjusted to a reasonable domain. Each range check consists of different

parts. The first part is the condition which will raise an error; for example, in line 9 an
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error is to be raised if the scattering vector magnitude ¢ is smaller than zero. The next
part is the name of the common parameter, typically param. Subsequent parts of a check
define an error message to be forwarded to the user. All variables that will be used are
declared at the beginning of each model function. Line 3 in this example declares two
floating point variables which will be defined later, while line 4 declares a short-cut name
of a function which expects two input values. In line 17 this is set to a specific gamma
function provided by the GNU Scientific Library (GSL,
http://www.gnu.org/software/gsl/). The model function defined by the formula of
Hammouda for branched polymers itself is implemented on lines 15-20, with the
scattering variable Ug defined in line 15. The inversion of the normalization factor on line
16 replaces two divisions by multiplications in the final formula on line 20.

As demonstrated in the example, model functions in SASfit can make use of any function
in the GSL but may also use a large set of predefined mathematical functions provided
by SASfit directly. For example, a convenient wrapper sasfit_integrate() is available
which simplifies usage of GSL integration routines by managing workspace memory in the
background. Additionally, custom routines can make use of model functions defined in
other plug-ins by declaring to import them during configuration with the plug-in guide.
More information on plug-ins in SASfit, as well as an extensive guide on how to start
writing custom models for SASfit on the Windows, Linux or MacOS platform complete

with video guides, can be found online (http://docs.sasfit.org/0verview:_Plugins).

2.9. Example 2: characterization of a bimodal silica particle size

distribution

The interpretation of multimodal size distributions of nanoparticles is a demanding typical
SASfit application. The procedure is demonstrated here by interpreting the scattering
pattern of a bimodal size distribution of silica nanoparticles in aqueous solution. Recently,
a suitable particle mixture was released as a certified reference material denoted ERM-
FD102 (Kestens, Roebben, et al., 2016), which is commercially available as a European
reference material. The intended use of ERM-FD102 is the quality control and assessment
of performance of nanoparticle size analysis methods, including SAXS.

A sample volume of 20 pul was measured as received for 30 min on a commercial SAXS
instrument. Its scattering intensity was converted to absolute scale using water as primary
standard according to the procedure described by Orthaber et al. (2000) and was verified
using a measurement of bovine serum albumin (Mylonas and Svergun, 2007). The resultant
scattering curve with data in the range of ¢min = 0.057 1m ™! t0 ¢max = 3.0 nm~! is shown in
Fig. 2.8. The obtained data set and a preconfigured SASfit project file (SilicaS2929.pdh
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and SilicaS2929.sas) is provided in the supporting information of the original work
(BreBler et al., 2015).
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Figure 2.8: Upper left-hand figure: SAXS data of bimodal silica nanoparticles (European reference
material ERM-FD102) and a curve fitted using a model of spheres with Gaussian size distribution (black
dots and red solid curve, respectively). The uncertainties of the intensity values are displayed as vertical
blue lines. Upper right-hand figure: the scattering length density calculator provides a scattering length
density of 1.962 x 10! cm~2 for SiOy particles with a density of 2.29 gecm=3. Lower figures: panels of the
sphere form factor with Gaussian size distribution for the small particles (contribution 1, left-hand side)
and large particles (contribution 2, right-hand side).

In the first step of data evaluation the scattering contrast ‘eta’ between the silica
particles and the solvent is calculated. For this purpose the scattering length density
calculator, which is available under the ‘Tools’ menu entry of SASfit was used. The silica
particle scattering length density is 1.962 x 10* ecm~2 by the stoichiometry of silica SiOs,
the density of 2.29(1) gem ™ (Finsy, Moreels, et al., 1985) and the copper Ka X-ray energy
of 8.042 keV (see Fig. 2.8). In contrast to water, which has a scattering length density of
9.45 x 10'° cm~2, the sample scattering contrast is 1.017 x 10! cm—2.

Next, a sphere model for the particles’ form factor with a Gaussian size distribution
was chosen under the ‘Calc’ — ‘Single data set’” — ‘fit” menu entry. Therein the value of

the scattering contrast ‘eta’ was inserted as a fixed parameter for ‘contribution 1" and for
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Table 2.1: Parameters of silica nanoparticles ERM-FD102 fitted with a bimodal Gaussian size
distribution.

The population of small particles is labelled as ‘Particle class A’ and that of the large particles as
‘Particle class B’ in accordance with the ERM-FD102 certification report (Kestens and Roebben,
2014). Fit parameters are the particle number N, the mean radius Xy and the width of the size
distribution s. The values of the mass fraction of the particles ¢y, are given as derived from the
SASfit parameter N and calculated from the data given in the certification report.

Parameter Particle class A Particle class B
Contribution 1 Contribution 2

N (em™3, mol17Y) 1.02(1) x 10 6.51(148) x 101!
1.69(2) x 1076 1.08(25) x 107°

©m (SASfit) (mg g 1) 7.05(7) 0.38(9)

©m (certification report)* (mg g=!) 8.33 0.42

Mean radius X (SASfit) (nm) 8.52(4) 37.65(330)

Mean radius (certification report)! (nm) 9.1(4) 42.0(5)

Width of distribution s (nm) 2.00(3) 8.29(304)

Number ratio N1 /Ny 1567(371) (£ 24%)

Mass ratio ¢m 1/om,2 (SASfit) 18.5(46) (= 25%)

©m.1/¢m,z2 (certification report) 19.8

*Values were calculated from the information on the production data given in the certification
report of ERM-FD102 (Kestens and Roebben, 2014).

fNumber-weighted modal area-equivalent diameter as obtained by transmission and scanning
electron microscopy (Kestens and Roebben, 2014).

‘contribution 2’. Next, the fitting procedure described in the curve fitting workflow section
(see also Fig. 2.3) was carried out. The resultant best fit curve is shown together with
the data points in Fig. 2.8 (red solid curve and points, respectively). The corresponding
best fit values are displayed in the fit panels for the particle size contributions 1 and 2,
respectively (lower row of Fig. 2.8). The best fit values of the parameters and estimates
of their uncertainties are displayed when clicking the button ‘parameters of analytical size
distribution’.

The parameters of the ERM-FD102 sample are shown in Table 2.1. The estimate
for the mean radius of silica particle class A is Xy = 8.52(4) nm and that for class B is
37.65(330) nm. These values are in good agreement with the number-weighted modal area-
equivalent radii of 9.1(4) and 42.0(5) nm obtained by transmission and scanning electron
microscopy (Kestens, Roebben, et al., 2016): Comparing the measurement results with the
certified values according to the ‘ERM Application Note 17, gives an absolute difference
of Ay = (9.1 —8.52| = 0.58 nm with an expanded uncertainty of Uy = 2v/0.42 + 0.042 =
0.8 nm satisfying A, < U which shows agreement between the measurement result and
the certified value of class A. For class B, A, = |42 — 37.65| = 4.35nm with an expanded
uncertainty of Un = 2v/5.52 + 3.32 = 12.82nm indicates no significant difference between

the measurement result and the certified value as well.
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At first glance, it is surprising that the uncertainty of the mean radius is much larger for
the larger particles (class B) than for the smaller ones. However, the particle size of class
B is close to the instrumental limit of 7/, = 56 nm, making its accurate determination
more challenging, as also discussed by Pauw, Pedersen, et al. (2013). In contrast, the
radii of class A particles are far away from both the upper resolution limit and the low
resolution limit of 7/¢ma.x = 1nm. Accordingly, the uncertainty of the radii of class B
becomes relatively large in comparison to that of the particles of class A.

The widths of the size distributions of class A and B are 2.00(3) and 8.29(304) nm,
respectively, which are typical values for commercial silica particles. Also for s, the
uncertainty for class B is larger than for class A for the same reason as for Xy. It should
be noted that number-weighted size distributions are important for the characterization
of nanomaterials, which are defined by the European Commission as ‘a natural,
incidental or manufactured material containing particles, in an unbound state or as an
aggregate or as an agglomerate and where, for 50% or more of the particles in the number
size distribution, one or more external dimensions is in the size range 1-100 nm’
(Poto¢nik, 2011).

Here, SASfit provides direct access to an estimate of number-weighted size distributions
of nanoparticles. The implemented formula for curve fitting of spheres, Ispnere(q, R, An),

with Gaussian number-weighted size distribution, Gauss(R, N, 0, Ry), is
ISASﬁt(Q) - / GaUSS(R7 N; g, RO) Isphere<Q7 R7 Aﬁ) de {219]
0

where the Gaussian size distribution is defined as

1

Gauss(R, N,o, Ry) =N ((7r/2)1/20 {1 + erf [RO/(21/20)} }>_

—(R — Ry)?
X exXp lw [220]
and the scattering of a sphere is given by
: 2
4 _
[Sphere(Q7R7 An) — {BWR?)AU [3S1n(q7°) (qu?SCOS<qR)‘|} ) [221]

The approach to estimate the number-weighted distribution is only useful if the
distribution is relatively narrow, typically smaller than 20% relative width. Alternatively,
a very broad distribution has to be reasonably estimated by other means beforehand. In
contrast, the Monte Carlo approach for analysis of SAS data provides good estimates of
volume-weighted size distribution but is much less suited for number-weighted

determinations, owing to the lack of assumptions for the asymptotic behaviour of the

26



distributions (see section 3.3 and Pauw, Pedersen, et al. (2013)). SASfit calculates the
number density distribution internally as long as the form factor is expressed in terms of
a size, because it always contains the volume information. By default, the resulting
distribution is plotted volume weighted instead for convenience. However, a different
parametrization can be implemented if required; for example, a form factor of spheres can
be defined to use input parameters of volume, after which volume-weighted Gaussian
distribution parameters can be directly determined.

Following the procedure described in Example 1: disperse gold nanoparticles, the
fitted N values of class A and B particles were converted to particle number
concentrations of 1.02(1) x 10" and 6.51(148) x 10~ cm™3, respectively. The molar
concentrations were 1.69(2) x 1079 and 1.08(25) x 10~ mol1™". Therefore, the number
ratio of small to large particles Ny /Ny is 1567(371). The mass fractions were calculated
assuming that the silica particles in the example have a density of 2.29gcm™ (Finsy,
Moreels, et al, 1985), resulting in ¢, = 7.05(7)mgg ' for class A and
¢Yma = 0.38(9)mgg~" for class B. Using the composition data given in the certification
report of ERM-FD102 (Kestens, Roebben, et al., 2016) the mass fractions are

Vand oo = 0.42mgg~'. From these values, the mass ratio derived

Ym1 = 8.33mgg~
from SASfit pmi1/Pm2 = 18.5(46) is in good agreement with the values of
Om1/Pme = 19.8 derived from the certification report. It can be concluded that the
precision and accuracy of the SASfit parameters, and values derived thereof, are in good

agreement with the reported values for the silica reference material.
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3

McSAS: Monte Carlo fitting of SAS data

McSAS is a user-friendly open source Monte Carlo regression package, which structures
the analysis of SAS data using uncorrelated shape-similar particles (or scattering
contributions).  The underdetermined problem is solvable, provided that sufficient
external information is available. Based on this, the user picks a scatterer contribution
model (or ‘shape’) from a comprehensive library and defines variation intervals of its
model parameters. A multitude of scattering contribution models are included, such as
prolate and oblate nanoparticles, core-shell objects, several polymer models, and a model
for densely packed spheres. Most importantly, the form-free Monte Carlo nature of
McSAS means it is not necessary to provide further restrictions on the mathematical
form of the parameter distribution; without prior knowledge, McSAS is able to extract
complex multimodal or odd-shaped parameter distributions from SAS data. When
provided with data on an absolute scale with reasonable uncertainty estimates, the
software outputs model parameter distributions and provides the modes of the
distribution (e.g. mean, variance etc.). In addition to facilitating the evaluation of (series
of) SAS curves, McSAS also helps in assessing the significance of the results through the
addition of uncertainty estimates to the result. The McSAS software can be integrated as
part of an automated reduction and analysis procedure in laboratory instruments or at
synchrotron beamlines. By providing the package as open source, universal access is
granted and thus, allows it to be reviewed publicly as well as being adjusted by any user
to her specific needs.

The program has been used in a variety of works, such as for investigating particle
formation during nanoparticle synthesis by pulsed laser ablation in liquids (Letzel et al.,
2017), for analysing the evolution of aluminosilicate sol structures (Zhao et al., 2017),
characterising zinc phosphate cements and evaluating chemically-bonded ceramics using
SANS (Viani, Sotiriadis, Kumpovd, et al., 2017; Viani, Sotiriadis, Sasek, et al., 2016),
studying the effects of nanostructural evolution on the properties of alloys (Mamiya
et al., 2016), understanding iron(III) oxide nucleation (Scheck et al., 2016) and the
synthesis of ultra-small core-shell silver nanoparticles (Késtner and Thinemann, 2016),

analysing protein binding of colloidal aggregates related to drug discovery (Duan et al.,
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2017), investigate the intestinal mobility and cytotoxicity of nanoparticles (Lichtenstein,
Ebmeyer, Meyer, et al., 2016; Lichtenstein, Ebmeyer, Knappe, et al., 2015) as well as

studying light-responsive supramolecular polymers (Concellén et al., 2016).

3.1. Core concept

The McSAS method is a Monte Carlo rejection sampling approach for retrieving model
parameter distributions, such as size distributions, from scattering patterns (Pauw,
Pedersen, et al., 2013). Central to the method lies a set of independent non-interacting
contributions, each of which is an instance of the elementary scatterer model chosen by
the user. Depending on the chosen model, one or more parameters can be selected for
Monte Carlo optimization (hereafter, referred to as ‘fitting parameter’).

If the measured data are provided in absolute units, calculations can be performed
resulting in absolute volume fractions. In order for this to work, information on the
scattering length densities of the phases within the sample needs to be provided. For the
included two-phase models, only the differences of the scattering length density of the
scatterer and that of the matrix are necessary. These scattering length densities are
readily obtained from a variety of online tools (D. Brown and Kienzle, 2015).

The optimization procedure (shown in Fig. 3.1) progresses through replacement of
contributions in the set. At the end of the optimization procedure, the spread of fitting

parameter values of the contributions in this set defines the final parameter distribution.
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Figure 3.1: The main process of the McSAS software for parameter optimization. In each cycle, an
attempt is made to replace one of the model contributions in order to improve the agreement between the
model and measured data.

3.2. Optimization procedure

The method starts from a set of non-interacting scatterers of predefined shape, such as
spheres, rods or ellipsoids, but with random values chosen for the fitting parameters of
each contribution in the set. The total model scattering pattern is given by the weighted
sum of the scattering patterns of each scatterer in the set. The scattering patterns of the
individual contributions of the set are weighted with the inverse of their volume to obtain
a more evenly matched impact on the total (Porod, 1952). This process drastically reduces
the required number of contributions and improves fitting flexibility. For most practical
scattering patterns, about 200-300 contributions are sufficient to describe the scattering
patterns with a minimum of optimization iterations.

A goodness of fit criterion (x?, see eqn. [2.1]) is calculated from the model based on
the distance between the model and measured data, weighted by the measured data
uncertainty estimates (Pedersen, 1997). In order to obtain this goodness of fit measure,
the model intensity is matched to the measured data set through scaling and addition of
an optional flat background contribution. The scaling and background parameters are
obtained by least-squares minimization of x?. The goodness of fit thus indicates when the

model describes the data on average to within the data uncertainty (x? < 1). Thereby, a
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suitable cutoff criterion for optimization is provided, which generally prevents over-fitting
of the data and allows for the estimation of uncertainties on the resultant distribution.

Each iteration of the Monte Carlo (MC) procedure consists of replacing one of the
scattering objects in the set by another object of the same basic shape but with different,
randomly chosen values for its fitting parameter(s). This replacement is accepted if it
reduces x?, i.e. if the agreement of the resulting MC scattering pattern with the measured
pattern is improved. These iterations continue until the convergence criterion of y? <1 is
reached (the convergence criterion value can be adjusted by the user to support data with
over- or underestimated uncertainties). After completion, the model parameter distribution
is determined through grouping (binning) of the fitting parameter values in the set.

In addition to this, a ‘minimum observability limit’ is determined for each contribution
in the set, which specifies the minimum volume fraction of scatterers required to make
a measurable contribution to the scattering pattern (i.e. a contribution exceeding the
measurement uncertainty). More specifically, a minimum observability limit ¢min x (in units
of volume fraction) can be defined for any method where the total model intensity comprises
a set of quantized components, whose partial contributions are I;(q) for a given component

volume fraction ¢y, and where the measurement data uncertainty o(q) is available:

. o(Q)¢k
min .
qe(QmirHQmax) ]k(Q)

Its derivation and use is further explored elsewhere (Pauw, Pedersen, et al., 2013).

3.1]

Pmink =

Finally, the uncertainty on the resultant parameter distribution is determined through
analysis of the sample standard deviation of a multitude of independent MC solutions.
These uncertainty estimates and the observability limits are key values in the application
of the method. They provide information to distinguish between numerical noise and size
distribution components which are shown by the data and, moreover, allow for the
assessment of the statistical significance of differences in resultant size distributions. The
accuracy of such uncertainty estimates and observability limits in the McSAS result are,
however, directly reliant on the provision of reasonable uncertainty estimates on the
measured data.

With this procedure, McSAS is able to retrieve any form-free size distribution provided
a basic scatterer shape is given. A test of the retrievability of a wide range of unimodal
and multimodal size distributions has been demonstrated for a large variety of simulated
size distributions in the supplementary information given by Pauw, Pedersen, et al. (2013).
A comparison between size distributions of precipitates in alloys is also available, obtained
from electron microscopy and McSAS analysis of small-angle X-ray scattering (SAXS) data
(Rosalie and Pauw, 2014).
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3.3. MC method benefits and drawbacks

Benefits

McSAS has proven to be remarkably useful owing to its ability to work in absolute units
and the wide variety of available models. These models include spheres, isotropic cylinders
and ellipsoids, core-shell ellipsoids, and core-shell spheres.

For densely packed spheres, a model is included based on the local monodisperse
approximation (LMA), which is one of the few structure factors that can be directly
implemented given the internal design of the MC method, coupled with the
Percus-Yevick (PY) approximation (see 3.5.2) (Kinning and E. L. Thomas, 1984). This
particular model combination will, hereafter, be referred to as ‘LMA-PY". Furthermore,
two polymer chain models have been added by the author: Kholodenko worm
(Kholodenko, 1993) and Gaussian chain (Debye, 1947).

For additional flexibility in available models for analysis, the author implemented an
easy to use plug-in system which allows users to use their own scattering models. Since
program version 1.3, models written in the Python programming language can be provided
independently of the program package. Once they are copied to the models directory they
are loaded upon program start and can be selected from the pulldown menu of the ‘4.
Model” panel. Compatible models are searched for in subdirectories as well. The directory
name is used then for grouping models in the GUI. This can be exploited to structure
custom models of similar kind in groups.

McSAS can run with or without an user interface, enabling integration into existing
data processing procedures. Multiple data files can be provided on the command line for
batch fitting. The fitting procedure can then be automatically initiated, inheriting the
settings of the previous GUI instance.

Because of the high importance of different weightings for various scientific applications,
the author implemented graphical output and population statistics for a user-specified
number of parameter ranges (regions of interest). The distributions can be shown with the
(horizontal) parameter axes scaled logarithmically or linearly and the (vertical) parameter
axes weighted by fractions of volume, number, surface or intensity (which is volume-squared
for SAS). For all of the different weightings, estimated uncertainties are provided which
allows the user to evaluate the reliability of the chosen distribution immediately.

For broad distributions, however, volume-weighting is strongly recommended (see the
note in 3.3). The distributions shown include the minimum observability limit, i.e. the
minimum required amount for each contribution to be statistically significantly
contributing.

Lastly, population statistics of the solution are determined independently of the

histogramming procedure. For each selected parameter and range, the total value and the
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four distribution modes are provided: the mean, variance, skew and kurtosis. These are
number-, volume-, surface- or intensity-weighted depending on the user’s choice. Such
population statistics simplify the analysis of population trends for in situ experiments or

other inter-related data sets.

Drawbacks

Owing to its ‘brute force’, iterative nature, the method is not as fast as some of the
alternatives mentioned in the Introduction. Optimization speed is strongly dependent on
the accuracy of the data. Prior work has shown that reasonable data uncertainty may
be estimated as the maximum of the values given (a) by the standard error of the mean
(obtained during the averaging or binning procedure), (b) by propagating measurement
uncertainties through the data corrections and (c) by limiting the data uncertainty to be
no less than 1% of the data value (Pauw, Pedersen, et al., 2013; Rosalie and Pauw, 2014;
Schnepp et al., 2013). A data set with 1-2% uncertainty may require a few minutes on a
normal modern desktop computer. This is expected to improve in the near future through
implementation of multithreading.

Secondly, there is a risk of under-specifying the fitting model when more complex models
are chosen. For example, if a cylindrical scatterer model is chosen, and its length and radius
are allowed to span the same size range, the solution is no longer unique and a multitude
of valid solutions will be found. This manifests itself through excessive uncertainties in the
result, originating from large discrepancies between the independent McSAS repetitions.
Such ambiguity can be easily arrived at when using models such as core-shell objects
and anisotropic objects. For these complex shapes, the allowed size ranges for the shape
parameters may require the application of strict constraints before a unique solution is
obtained.

Two common failure modes of the McSAS method can occur. The first happens when
data are provided containing unrealistically low uncertainty estimates, which will lead to
an attempt by McSAS to describe ostensibly significant data variations as features in the
size distribution. This will lead either to a failure to reach convergence or to spurious
features in the resulting parameter distribution. To alleviate this problem somewhat, the
uncertainty is clipped to be at least 1% of the intensity value. Previously, this has been
found to be a practical limit from data correction considerations (Pauw, Pedersen, et al.,
2013) and is a value supported by experimental results (Hura et al., 2000). This lower
limit can be adapted or bypassed if better estimates can be guaranteed.

The second failure mode occurs when the fitting range is set too broad, i.e. beyond
the range supported by the data. It is recommended to keep size parameters within the
limits dictated by the ¢ range of the data, estimated as ™/gmax < R < T/gui. Exceeding
these limits may result in spurious features appearing beyond these limits, as explored in

the supplementary information given by Pauw, Pedersen, et al. (2013).
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Of further note is that small-angle scattering data represent a volume-weighted
distribution according to Porod (Porod, 1952). The implication of this is that
volume-weighted size distributions can be easily retrieved using a Monte Carlo approach,
as small to medium wvolume fractions of small-sized scatterers can be readily distinguished
in scattering patterns. Not so for small number fractions of small-sized scatterers in a
disperse mixture, for which exceedingly little evidence exists in most measured scattering
patterns and in particular for broad size distributions. Therefore, when broad size
distributions determined using McSAS are shown in their number-weighted form, the
values and uncertainties of the small-sized components can be seen to vary excessively,
with some values becoming untenably large. Such issues are usually not encountered
when using classical fitting methods.

Classical methods circumvent this issue, as the integral equation that is solved strictly
constrains the distribution probability at all sizes (e.g. the probability distribution typically
assumes a value of zero at its smallest size). These methods are, therefore, seemingly
capable of determining even small number fractions of small scatterers accurately. However,
the evidence for small numbers of small-sized scatterers may be very weak in the data. In
summary, the strict assumptions placed in classical methods on the number-weighted size
distribution shape may conceal the lack of evidence for the absence or presence of scatterers

at the small end of the distribution, thus implying accuracy where there is none.

3.4. Current implementation

The existing program code contained the core algorithm for command line usage within a
Python environment. Originally, the standard sphere model was the only particle
scattering model and an integral part of the optimization algorithm. To add flexibility
towards the actual scattering model being used for optimization and to allow for more
complex scattering models, the program code had to be redesigned by the author to be
more modular.

For practical use in analyses conducted by scientific users who are not programmers, it
was found necessary in the course of this work to add batch processing of a larger number
of measured data sets. This leads to the requirement of a structured storage of calculation
results and algorithm parameters alongside the original input data. As usually required in
scientific work, it ensures that all resulting data can be reproduced based on the original
input data at a later point in time.

With a focus on (size) distribution analysis, a flexible postprocessing framework was
developed. For each parameter population being subject to optimization, custom
histograms over partial ranges can be created without performing a new optimization

based on the final results. Additionally, various statistical properties are determined
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alongside each histogram. Thus, the additional statistical information help to quickly

assess the plausibility of the calculated distributions.

User interface features

The user interface is divided into several panels, each limited to a different aspect of the
process (see Fig. 3.2). These consist of a ‘1. Data Files’ panel, a ‘2. Data Settings’ panel,
a ‘3. Optimization’ panel, a ‘4. Model” panel and a ‘5. Post-fit Analysis’ panel and will be
discussed in order.

The ‘1. Data files’ panel shows data files loaded upon startup (as command-line
arguments) or files added through the right-click menu. All files will be treated
identically when the fit is run, though their order of processing can be changed as
desired. Available data are read from the input file, which is expected to consist of three
semicolon-separated columns of ¢(nm), I[(msr)~!] and the uncertainty estimate
o(1) [(m sr)~Y).

To help with determining reasonable limits of size parameters in particular, basic
analysis is performed when loading each data file. The minimum and maximum values of
the provided ¢ vector are used to estimate the maximum and minimum possible scatterer
size under the assumption of solid spherical scatterers. Those estimates are displayed
next to each data file and, by double-click, can be applied as optimization limits for
radius-type model parameters.

The ‘2. Data Settings’ panel offers detailed control over the preprocessing of data during
loading, before any optimization is carried out. A lower and upper limit may be specified,
for excluding erroneous or dispensable data points from the beginning and/or from the end
of the signal, which might improve the numerical stability of the solution or shorten the
optimization run time, respectively. Moreover, the number of data points can be reduced
effectively by a logarithmic rebinning procedure which maintains the information content
qualitatively. It helps to reduce oversampled data sets and improves the numerical stability
of the fitting procedure. A minimum uncertainty estimate implements a lower boundary
for the uncertainties of the data to avoid underestimating them, which may prevent the
algorithm to reach convergence. The last options of this panel allow to compensate for
smeared data, caused by the collimation system of the SAS instrument. The degree of
smearing of the modelled data can be specified in detail for appropriate comparison with
the measured data.

The ‘3. Optimization’ panel contains a subset of MC algorithm settings addressable by
the user (see Table 3.1). The most important of these is the chi-squared (convergence)
criterion. While this is per default set to 1, it may prevent reaching a state of convergence
(x? < 1) for data whose uncertainty estimates are insufficiently large or poorly estimated.
Increasing this value will allow the convergence condition to be reached, after which the

fit may be evaluated. This increase directly affects the uncertainties on the resultant
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1. Data Files

2. Data Settings
3. Optimization

4. Model

5. Post-fit Analysis

start

Log

McSAS: Software for the retrieval of model parameter .
distributions from scattering patterns. H
Output files of a Monte Carlo run are stored in a
directory named after the input file followed with a
timestamp to avoid overwriting existing results.

-

Figure 3.2: The main interface of the McSAS software upon startup, showing five configuration panels.
The ‘1. Data Files’ panel allows selection and input of the data of interest, the ‘2. Data Settings’ panel
allows configuration of the data sets by setting physically meaningful constraints, the ‘3. Optimization’
panel contains settings to adjust the optimization method behaviour, ‘4. Model’ contains all parameters and
settings relevant to the chosen morphology, and ‘5. Post-fit Analysis’ holds the settings for histogramming
and visualization of intensity-, volume-, surface- and/or number-weighted distributions.

distribution. Additionally, the number of shape contributions can be increased. While
the default setting of 300 is sufficiently large to reach the convergence criterion for most
scattering patterns, and small enough to reach it rapidly, there may be cases for which an
increased number is desired. A detailed discussion on determining the number of shape
contributions can be found in Pauw, Pedersen, et al. (2013) (§2.5). Likewise, the number
of repetitions can be changed. These independent repetitions are used to estimate the
uncertainties on the resultant size distribution, but a reduced number should suffice for
initial testing. Lastly, a selection can be made on whether a flat background contribution
is to be taken into account when matching the MC intensity to the detected signal.

The ‘4. Model’ panel contains all information on the model used to describe the scatterer
morphology. The pulldown menu offers a selection of models that can be used to define
the contributions’ scatterer shape. The associated parameters and options for the model
chosen will then be shown on the right-hand side. Parameters which are selected for fitting
require upper and lower bounds to be set.

The ‘5. Post-fit Analysis’ panel offers basic analysis capabilities for interpretation of the
MC result. When a range entry is added, the user can select which parameter to histogram,
what parameter range to consider (if they decide not to automatically follow the model

parameter range) and how many bins to use. Increasing the number of histogram bins
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will lead to increased detail in the resulting histogram at the cost of larger uncertainties
and evidence requirements wvia observability limits. Furthermore, a choice can be made
whether to use a linear or logarithmic parameter scale (useful for distributions spanning
several decades) and whether to plot volume-, number-, surface- or intensity-weighted size
distributions. When using absolute units, and if scattering contrast is provided, the volume-
weighted distribution will contain absolute values; the number-weighted distribution is
normalized to an area of one, for lack of information.

Finally, the ‘Start’” button launches the optimization, and the ‘log’ shows the output
of the program as it runs and is automatically stored in a file. During the optimization
process the current goodness of fit value x? is given along with the user-defined convergence
criterion which has to be reached for a successful fit. Additionally, to indicate the presence
of systematic errors the author of this work implemented an alternative goodness of fit
measure ‘aGoFs’ (Henn, 2016).
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Table 3.1:

Selected program parameters and their effects on the computation.

For the advanced settings and defaults that can be found in the

mcsasparameters. json file, only selected values are listed.

Location or Panel

Parameter name

Effect

GUI ‘Data Files’

GUI ‘Data Settings’

‘right click to load
files’

Lower/Upper ¢ cut off

Minimum uncertainty

estimate

Target number of bins

Apply smearing
correction
Slit-smeared data or

2D-averaged data

Number of smearing

points around each ¢

Variance (02) of

Gaussian beam profile

Loads multiple measurement files in ASCII format or PDH format, which is basically an ASCII file with

an header and trailing meta data.

Defines the range of data to use for evaluation. By default, all data values are used for fitting.

Implements a lower boundary for the uncertainties of the data by raising them to the given fraction of
the measured signal, if they are not greater than that already. It can be increased or reduced based on
a best guess estimate for minimum inter-related data point uncertainty. A value too low may prevent

reaching convergence. By default, it is set to 1% of the measured signal.

Sets the number of bins for logarithmic rebinning of the data. This reduces the number of data points
for evaluation efficiently, which results in faster optimization runs. Due to empty bins, the resulting
number of data points may be smaller than the given number of bins. A value of zero disables binning.
By default, it is set to 100 bins.

Activates smearing of the modelled data for comparison with the measured data which was smeared by
the collimation system of the SAS instrument. Deactivated by default.

Defines, which collimation system was used for measuring the data. 2D collimated systems (‘point focus’)
require a different smearing than line-collimated data.

Sets the level of detail of the simulated smearing. The default value of 25 evaluates the scattering model
at 24 additional positions for each g given by the data. Therefore, it increases the computation time
significantly.

Defines the full width at half maximum (FHWM) of the Gaussian beam profile for line-collimated

instruments. The profile is circularly averaged for 2D pinhole and rectangular collimated instruments.

(Continued on the next page)
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Location or Panel

Parameter name

Effect

GUI ‘Optimization’

Convergence criterion

Number of repetitions

Automatically close

result windows

Advanced Settings

Number of

contributions

Weighting
compensation

Find background level

Maximuimn iterations

Plot unsuccessful or

incomplete results

Calc. series statistics

The least-squares value (x?) at which the fit is considered a success. For data with realistic uncertainty
estimates, this can be set to 1. For a quick fit, it can be set to larger values. Values below 1 can be
used if the uncertainties are overestimated.

The number of independent optimizations to be run. Larger values will result in improved uncertainty

estimates on the result and a slightly smoother result, but calculation time increases proportionally.

If activated, it prevents cluttering the screen with many plot windows if data series are fitted. Deactivated
by default.

Provides expert users with more detailed options of the optimization procedure for an enhanced

investigation of their data.

The number of individual contributions whose weighted sum comprises the total model intensity. Too few
or too many will result in slow optimization times. Most patterns can be fitted using 300 contributions

quickly, but times can be optimized using the timing information shown in the result.

Adjusts internal weighting of scattering pattern contributions. Adjustment between 0.3 and 0.7 may lead

to slight speed increases for some samples. Set to 3/2 by default.

If selected, a flat background is fitted during matching of model and data. This speeds up the fit with
minimal effect on the result, as many scattering patterns contain a flat scattering component as well,

due to density variations or incoherent scattering. Enabled by default.

If convergence has not been reached within this number of iterations, the optimization attempt is aborted.
Larger values may allow complex calculations to finish successfully, but often non-convergence can
be traced back to poor initialization settings. Increasing this value increases the maximum possible
calculation time. The default value is 10°.

Activates plotting of incomplete results after an interrupted run or an optimization that did not reach

convergence. Disabled by default.

Activates a combined plot of the distribution mean for all data sets being optimized. Additionally, all

distribution moments are gathered in a common output file for convenient export. Disabled by default.

(Continued on the next page)



17

Location or Panel

Parameter name

Effect

GUI ‘Post-fit Analysis’

mcsasparameters. json
(file, advanced settings
and defaults)

Parameter

Lower & upper

Number of bins

X-axis scaling

Y -axis weighting

startFromMinimum

The parameter to show the distribution histogram of.

The distribution will be shown for this parameter range only. This can be used to cut off regions outside

the range of interest. Population statistics also apply only to this range.

The number of divisions to use in the distribution display. By increasing this number, more detail may be
visible provided one stays within the Shannon channel limit (Svergun and Pedersen, 1994) (indicated in
the ‘1. Data Files’ panel). An increase in the number of divisions will also negatively affect uncertainty

estimates and observability limits.

The Scaling (linear or logarithmic) of the parameter axis of the distribution. Logarithmic scaling is

recommended for wide parameter ranges.

The vertical axis can be shown in volume, number, intensity or surface distributions. Volume-weighted
distributions are recommended; number-weighted distributions can be used for samples with a narrow
dispersity; intensity-weighted distributions reflect the weighting of the measured signal; surface-

weighted distributions are relevant for applications concerning the overall particle surface.

Sets the initial guess of the Monte Carlo algorithm constant to 1/2 of the parameter fit range minimum,

rather than a uniform random distribution.




3.5. Experimental evaluation

3.5.1. Example 1: bimodal nanoparticle reference material

To test the ability of the program to retrieve bimodal size distributions, a reference
material was measured containing two fractions of silica nanoparticles: ERM-FD102
(Kestens, Roebben, et al., 2016). The first fraction consists of 0.36 vol.% nanoparticles
with a certified number-weighted modal area-equivalent radius of 9.1(4) nm obtained by
transmission and scanning electron microscopy. Correspondingly, the second fraction
consists of nanoparticles with a radius of 42.0(5) nm at a volume fraction of 0.018 vol.%.
This makes the volume ratios of the two components 95% and 5%, respectively.

The measurements were performed on an Anton Paar line-collimated instrument
utilizing mirror-monochromated copper K« radiation and modified to use a Dectris
Mythen detector. The data have been calibrated to absolute intensity using the methods
described by Orthaber et al. (2000), the scaling of which was verified using a
measurement of bovine serum albumin. The reference material, a water background and
an empty capillary background were measured for 30 min each, corrected and desmeared
using the software provided by Anton Paar. The data thus collected have been regrouped
and averaged over 50 intervals, logarithmically spaced in q. The uncertainty has been set
as the largest of (a) the propagated data uncertainty or (b) the standard error on the
mean. None of these uncertainty estimates are smaller than 1% of the intensity value.
The data span a ¢ range of 0.057 < ¢ < 2.88nm™!, corresponding to an estimated size
range of 1.09 < R < 55.4nm.

Analysis of the data using the McSAS program results in the fit shown in Fig. 3.3. To
achieve this, the standard settings have been used, except for the number of repetitions
(100) and the scattering length density difference (1.017 x 107°A~2).  The two
populations have been correctly resolved in the analysis (see Fig. 3.4), with the first
population 1.09nm < R < 25nm having a volume-weighted mean of 9.86(6) nm and a
volume fraction of 0.311(3) %. The second population 25nm < R < 55.4nm has a
volume-weighted mean of 45(2) nm and a volume fraction of 0.013(4) %.

Comparing the measurement results with the certified values (Table 2.1), gives an
absolute difference of Ay, =19.1 —9.86] = 0.76 nm with an expanded uncertainty of U =
21/0.42 4+ 0.062 = 0.81 nm for the first population which agrees to the certified value due to
satisfying A,, < Ux according to the ‘ERM Application Note 1. Whereas the measurement
of the second population shows an absolute difference of A, = [42 — 45| = 3nm which
is significantly smaller than the expanded uncertainty Ua = 21/0.552 4+ 22 = 4.15nm and
therefore, agrees with the certified value. Furthermore, as the large-sized component is
present at small volume fractions and close to the end of the measurement range, its

characterization is not as accurate as that of the small component.
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Fitting of data: S2843d_ed reBin_2015-03-25_11-47-23 Range 1.0923e-09 to 5.54174e-08, vol-weighted|

Q-range: 5.67e+07 to 2.88e+09 totalValue: 3.251e-03 + 1.487e-05
Active parameters: 1, ranges: 1 _mean: 1.140e-08 + 2.234e-10
Background level: 0.0595 + 0.0197 variance: 6.035e-17 + 9.212e-18

skew: 3.742e+00 + 1.462e-01

Timing: 100 repetitions of 2.48 + 0.148 seconds Kurtosis: 1.7770+01 + 1.6490+00
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Figure 3.3: McSAS graphical output showing Figure 3.4: McSAS graphical output showing the
the best fit obtained using the MC method to a  volume-weighted size distribution associated with
scattering pattern obtained from a mixture of dilute  the MC fit of dilute silica particles shown in Fig. 3.3.
particles with certified radii of 9.1(4) nm and 42.0(5)

nm silica particles. The particle volume ratio of

small to large particles is 19:1.

3.5.2. Example 2: densely packed nanoparticles

Dense systems add a degree of complexity to small-angle scattering and are, therefore,
interesting as a test case for MC methods. A suitable data set of densely packed, dry SiO,
spheres (with a stated radius of 75 nm) has been provided by Peter Hoghgj of Xenocs, as
part of a demonstration data set measured on their Xeuss SAXS instrument. The SiO,
spheres are packed in a randomly jammed fashion, implying that the volume fraction vy is
approximately 0.63 (Song et al., 2008).

A reasonable fit can be obtained using classical fitting methods implemented in SASfit
(BreBler et al., 2015), with a model of Gaussian distributed spheres and a structure factor
consisting of a PY hard-sphere interaction model assuming the local monodisperse
approximation, forming the aforementioned LMA-PY combination. This resulting fit is
shown in Fig. 3.5. Most of the intensity can be described well, apart from the region at
low gq.

A fit to within data uncertainty can be obtained using the same model in McSAS (see
Fig. 3.6), with the volume fraction v¢ set to 0.63. Note that the instrumental resolution
has not been considered in either the classical or the MC approach. The main feature in
the resultant size distribution (shown in Fig. 3.7) is indeed at the size indicated for the
sample [with a number-weighted mean radius of 76.1(2) nm]|, but a minor component is

visible at about half the radius of the main component.
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Figure 3.5: Best fit (solid line) using a classical model (implemented in SASfit) to a scattering pattern
obtained from packed silica spheres (symbols). Model uses a sphere form factor with a LMA-PY structure

factor and a Gaussian size distribution.

While the origin of the minor features cannot be established without further
investigation, a similar good fit can be obtained when other volume fractions are set
(possible between ~ 0.5 < vy < 0.7). Changing the volume fraction drastically affects the
size distribution and demonstrates that there are a multitude of solutions accessible
through adjustment of the volume fraction. This highlights once more that information
must be provided on the sample to allow SAS analyses to arrive at a unique solution.

However, the overall result is quite satisfactory and a clear improvement compared with

the classical approach.
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Fitting of data: Hoghoj_newrebin_2014-12-03_15-59-42
Q-range: 2.81e+07 to 3.5e+09
Active parameters: 1, ranges: 1
Background level: 0.00913 + 0.000569
Timing: 100 repetitions of 3.96 + 1.25 seconds
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Figure 3.6: The best fit obtained using the MC
method to a scattering pattern obtained from packed
silica spheres. Model using a sphere form factor with a
LMA-PY structure factor.

3.6. Conclusion

Range 1e-08 to 1.4e-07, vol-weighted
totalValue: 6.264e-01 + 1.765e-03
mean: 8.120e-08 + 3.104e-10
variance: 5.502e-16 + 1.500e-17
skew: -1.410e-01 + 4.766e-02
kurtosis: 3.735e+00 + 4.800e-02
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Figure 3.7: McSAS graphical output panel
showing volume-weighted size distribution
associated with the MC fit of Fig. 3.6.

The McSAS package provides the user with a comprehensive model library for advanced

SAS data analysis. In addition, it can be extended with additional models. The relatively

high computational effort increases with the complexity of new models, but should not be

a major concern given the increasing availability of computing power. Concerning the

significance of the resulting particle distributions, care must be taken that sufficient

external information is provided to ensure a unique solution. This is of particular

importance for complex models.
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4

McDLS: Monte Carlo fitting of DLS data

The aim of this work is a contribution to improve the shortcomings of currently available
DLS analysis methods discussed in section 1.2 and provide users with a Monte Carlo-based
curve fitting program for the analysis of relaxation functions (Istratov and Vyvenko, 1999)
in particular for reliable DLS data analysis. The program is provided as open source
software named McDLS in analogy to McSAS, which is dedicated to the analysis of small-

angle scattering data (section 3.1).

4.1. Modelling DLS data

DLS measures the intensity autocorrelation function Ga(7) of the light intensity I(¢), which

was scattered, for example, by nanoparticles as
[4.1]

where 7 is the decay time [see Finsy (1994) for details]. The G(7) is also called the second-
order correlation function as indicated by its index number. It is related to the normalized
electric field (or first order) autocorrelation function, g;(7), by the Siegert relation (Borsali
and Pecora, 2008) as

Go(7) =1+ B g (7). [4.2]

The meaning of g will be discussed in a separate section. In case of particles of uniform
size, i.e. Brownian objects moving with the translational diffusion coefficient, D, the first

order autocorrelation function simplifies to a mono-exponential decay
g1(7) = exp(—1I'T) [4.3]

with the characteristic decay rate I" = Dg?. The scattering vector is defined as ¢ =
4nA~1sin(0/2) with the refractive index of the solvent n, the wavelength of the laser light
A and the scattering angle #. Note that 6 is half the angle between incident and scattered

beam. For the general case of particles with an arbitrary size distribution, the Laplace
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transformation of the distribution function of the decay rates G(I") provides the electric

field correlation function
qi(r) = / TG exp(—Ir)dT [4.4]
0

The ‘normal’ way to reveal the particles” hydrodynamic radii distribution is to obtain
G(I') with an inverse Laplace transformation from g¢;(7). Hence, this problem is solved,
in principle. Unfortunately, the inversion is an ill posed problem (Istratov and Vyvenko,
1999) on which many efforts were spent for polydispersity analysis (Finsy, 1994). In
the case of DLS data interpretation, the inverse Laplace transformation requires first to
reveal g;(7) from Ga(7), a procedure that includes background subtraction from the data,
proper scaling and root finding. Afterwards, a numerical Laplace transformation of the
processed data must be performed. This approach often produces questionable results, for
one reason in particular: due to very different noise levels of the data. The whole situation
is very unsatisfactory for understanding how DLS data can be interpreted in terms of
hydrodynamic radii distributions.

A central aspect of this work is not to obtain the particles’ Ry distribution through
an inverse Laplace transformation. Instead, a distribution of hydrodynamic radii f(Rpy)
is guessed and compared to the corresponding calculated intensity correlation function
iteratively, until it cannot be distinguished from the measured data within the experimental
uncertainties. In the following, the proposed McDLS method is described and simulations

and practical examples are provided.

Calculation of the intensity correlation function

For an ensemble of N particles of an arbitrary size distribution, the discrete field

autocorrelation function is a weighted sum of exponential decay functions as

N
91(1) =Y ajexp(=I;7) [4.5]
j=1
with the constrained conditions
N
> a; <1 and a; >0, [4.6]
j=1

as explained, for example, by Zhu et al. (2011). An a; is the relative amplitude scattered
by the j™ particle with the decay constant I'j, representing the mean value of each interval
(I, I'j11] from the total number of intervals N. The I is related to the diffusion coefficient

D; of the j* class of particles with the hydrodynamic radius Ry ; by I'; = D;q*. Together
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with the Stokes-Einstein-equation (Einstein, 1905) D; = kgT/(67n Ry ;), the I'; values are

calculated by:
kgT

i 67T77RH7jq ’

[4.7]

where kg is the Boltzmann constant, 7" is the absolute temperature, 7 is the viscosity of
the solvent and ¢ is the scattering vector.

It can be seen from eqn. [4.7] that Ry ; is the only free variable in a given DLS
experiment while the other variables are constant. In consequence, a large fraction of
recurring calculations during regularly multiple Monte Carlo optimizations, can be
avoided by including
kT

with kDLS = —q [48]
H,j 67'("[7

kpLs

Fj:

Next, abbreviating Ry ; by R;, the scattering amplitude of a sphere is modelled as
a(R;) = V(R;)P(R;), [4.9]

where the volume of the sphere is V(R;) = %WR? and the scattering amplitude of a sphere

is

sin(qR;) — qR; cos(qR;)
(qR;)?

The field correlation function that guarantees the constraints in eqn. [4.6] is calculated by

B(R;) = 3 [4.10]

> al R, exp(—T;)
g(r) == : [4.11]

After inserting eqn. [4.8] and eqn. [4.9],

=

V()RR expl~ )
91(7') 7 | [4'12]
V(R;)2P(R;)?

o

1

J

The denominator guarantees normalization at g;(0) = 1. The aim of the McDLS tool
is to fit directly the Ry values using the experimentally determined Ga(7) — 1 curves.
Consequently, after inserting eqn. [4.12] in eqn. [4.2], one gets

2

N k
> V(R;)*®(R;)? exp(—Le)

i—1 H,j

GQ(T)—le—I—B J N
> V(R;)?P(R;)?

j=1

[4.13]
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The baseline A and the scaling B are automatically determined by least-square fitting
in each optimization step, right before comparing the calculated G moa(7) — 1 with the
measured Ga ex,(7) — 1 data.

At first glance, it is irritating that V(R;) is squared in the numerator of eqn. [4.13]
because that corresponds to R}Q terms in total. But on the second glance it becomes clear

that the denominator of Go(7)—1 in eqn. [4.13] ensures the normalization of G5(0)—1 = 1.

On the usage of the sphere form factor

The use of a sphere from factor for calculation of the scattering amplitude has the practical
reason that the hydrodynamic radius of a compact sphere is the same as its geometrical
radius. Furthermore, the volume of a sphere is well-defined, in contrast to a Gaussian
polymer coil, for example. Additional form factors can be implemented in McDLS by
the user, if needed. The g-dependency of the scattered light is small for particles in the
‘nano’-size range of 1 to 100 nm but becomes complicated for larger particles and needs to
be considered. The distinct minima of the sphere form factor can produce an unexpected
angular-dependency of the intensity correlation functions, for example, for multimodal
polymer latex particles, as discussed in detail by Shibayama et al. (2006). This is illustrated

by the scattering form factor of a sphere defined as

P(q, Rj) = 9(q, ;)
sin(qR;) — qR; cos(qR,;) 2 [4.14]
(qR;)?

P(Q7Rj) =3

Data in multiangle DLS are typically recorded in a scattering angle range of (20 <
20 < 150)°, which corresponds to a scattering vector range of (0.005 < ¢ < 0.025) nm™!
when using a laser emitting light with a wavelength of 632 nm. The scattering form factors
of spherical particles with radii of 5 nm, 50 nm and 500 nm are shown in Fig. 4.1 to
illustrate cases in which it becomes important to care about the particles’ form factor. It
can be seen that the scattering intensities at ¢ = 0.019nm™"! (a scattering angle of 90°)
decrease from 1 to 0.998 (5 nm), 0.838 (50 nm) and 0.01 (500 nm), compared to their
scattering at ¢ = 0. The scattering of compact nanoparticles with radii smaller than 50
nm decrease gradually but deep minima are present in the scattering of larger particles
as can be seen in the inset of Fig. 4.1. Therefore, the use of the scattering form factor of
spheres for modelling the intensity correlation function in eqn. [4.13] appears reasonable
for nanoparticles. But artefacts can be easily produced if the particles sizes are well beyond
the nanoscale. If the particles of interest show a strong intensity variation in the relevant
g-range, it is recommended to replace @(q, Ry ;) by expressions for the amplitude adapted
to the size and type of the particles. An example is given by Shibayama et al. (2006) for

latex particles, where an approximation was used to avoid artefacts due to minima in the
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scattering function. Otherwise, it is possible to take advantage of the strong dependency of
larger particles for improvement of multimodal particle size analysis with multiangle DLS
(Naiim et al., 2014).
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Figure 4.1: Scattering form factors of spherical particles with radii of 5 nm, 50 nm and 500 nm (dashed
blue, dotted green and solid red line, respectively). The vertical black line is at a scattering angle of 90°.
The inset shows a logarithmic presentation with deep minima in the form factor of the particles with a
radius of 500 nm.

Coherence factor and baseline

The 8 in eqn. [4.2] is called coherence factor and is determined largely by the ratio of
the detector area to the coherence area of the scattered light (Vanhoudt and Clauwaert,
1999). In practice, f3 is regarded as an unknown parameter to be fitted in the data analysis.

Experimentally, the intensity correlation function is typically provided in the form of
Go(t) —1= A+ Blg(1)), [4.15)]

where in ideal cases the A is close to 0 and B is close to 1. In the relevant international
standard on particle size analysis (ISO, 1996), these parameters have been recommended
to be in the ranges of 0 < A < 0.1 and 0.8 < B < 1 for practical purposes. When using
MeDLS, it is recommended that the experimental values of A and B are found within these
standard conform ranges. Caution is advised for interpretation of data for which A and
B are beyond these recommended ranges. The A and B are automatically determined in

MecDLS between distinct optimization steps by a least-square fit of the modelled correlation
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function to the measured correlation function. Typically, the value of the baseline A is
determined as

A= [Golr) — 1] (4.16]

T—00 °

At large correlation times it can be seen that Gy(7) — 1 fluctuates around a small value,
i.e. a linear fit with zero slope for the last third of the data values could be considered
to determine A. The topic of how to determine A properly is of vital importance if g;(7)
should be extracted correctly for further analysis since it biased the results, as discussed
by Finsy (1994) in detail. Since the McDLS approach avoids the necessity of extraction
of g1(7), the background finding has not the same importance as if an inverse Laplace
transformation is foreseen to reconstruct f(Ry). The value of B is determined, in practice,
as the value of Go(7) — 1 at the shortest meaningful experimental correlation time 7y,
i.e.

B = [G2(Tmim) — 1] — A. [4.17]

4.2. McDLS fitting procedure

The core optimization procedure is described by the flow chart in Fig. 4.2. It shows that,
generated. The user is encouraged to provide reasonable boundaries by adding the lowest
and highest meaningful value of the hydrodynamic radii Ry min and Rpmax, respectively.
The predefined number of Ry-values of N = 300 should be suitable for most cases but can
be decreased or increased by the user. The effect of the number of contributions in the
Monte Carlo method was discussed in detail by Pauw, Pedersen, et al. (2013) (§2.5). In a
second step, the radii contributions are used to calculate the first-order correlation function
91([Ru]). The third step compares the second-order correlation function Go([Ry]) — 1 =
Bgi([Ru;])* + A to the measured data by calculating the goodness of fit measure y2. If

the convergence criterion x?

< 1 is satisfied, the simulated intensity correlation function
cannot be distinguished from the measured one within the experimental uncertainties and
the set of radii [Ry] is considered a reasonable approximation of f(Rpy).

If the simulated intensity correlation function fails to match the measured one, the
next iteration of the optimization cycle is started by replacing a single particle radius Ry
by a randomly selected one Ry ey from the range Ry min < Rinew < R max. 10 clarify:
only one radius value is changed in the set. In the following step, the new second-order
intensity correlation function G yew is calculated from the old one by subtracting the field

correlation function of a single particle g;(Ry,;) from the first-order correlation function gy
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of the previous comparison and adding that of the new particle g1 (R new). Therefore, the

second-order correlation function of the updated particle ensemble appears to be
G?,new = B(.gl - gl<RH,j) + g1 (RH,neW))2 + A [418]

which is subsequently compared to the measured data by calculating the goodness of fit
measure ijnew. It presents an improvement over the previous test if the condition
X?,new < X2 is satisfied. If it fails, a new iteration is started by selecting another Ry pew
from the predefined range. If the test succeeds, the particle ensemble is updated by (a)
replacing the old radius Ry ; by the new one Ry pew, (b) replacing the modelled field
correlation function ¢; by ¢1 — ¢1(Ru;) + ¢1(Runew) and (c) updating the current
goodness of fit measure x7 by the most recent one x; ... The last step of an iteration
tests if the current goodness of fit reaches the convergence criterion: x? < 1. On failure,
the next iteration starts and on success, the modelled correlation function matches the
measured one within the experimental uncertainties and a solution for f(Ry) is found.
The optimization runs until a maximum number of iterations np., is reached or a
solution is found. The nyax has a predefined value of 10° but it can be chosen freely by
the user. One optimization run consists of hundreds or thousands of iteration cycles until
a convergence between simulation and experiment is found. But it finds only one of many
possible solutions for f(Ry) which are consistent with the experiment. Many repetitions
of the fitting procedure, each resulting in a different f(Ry), allowing to estimate the
uncertainties of the distribution, which are finally plotted as single histogram with error
bars. Typically, 50 of such repetitions are sufficient for reasonable error estimation but
the user can chose fewer repetitions for faster results or more repetitions for a more

accurate error estimation.

Averaging of data sets

Averaging of correlation curves is activated by default in McDLS and can be disabled
by unchecking the option ‘average each angle’ in the ‘Data Settings’ menu of McDLS. If
deactivated, no averaging and no outlier filtering is performed, resulting in a single data
set for each scattering angle and measurement number combination. For example, ten
measurements performed at eight angles, generate eighty data sets listed in the ‘Data
Files” menu.

With averaging enabled, all remaining correlation curves which satisfy the Z-Score
threshold Z are identified by index [ € L = {m : Z,, < Z}, where index m identifies an
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initially loaded correlation curve and Z,, the modified Z-Score of that curve, as defined in

eqn. [4.22]. The mean correlation curve is then calculated by
_
Go(r) — 1= 7 > (Gay(r) = 1), [4.19]
1

alongside its corrected sample standard deviation

1/
o(r) = <|L|1_1 (Gau(7) = 1= Galr) — 1 > [4.20]

Over the course of optimizing a model correlation curve against the averaged correlation
curve Go(7) — 1 by the goodness of fit criterion x? in eqn. [4.21], the o(7) of eqn. [4.20]
serves as an estimate for the measurement uncertainty.

Optimization

A goodness of fit criterion is minimized similar to eqn. [2.1]:

D — 2
1 i Gaexp(Ti) — 1 — Gomoa(T) — 1

X (N-1)F Oexp(Ti) 4.21]

and according to the procedure described in section 3.1.

Analogous to the intensity of small-angle scattering, McDLS optimizes the modelled
second order correlation curve G mod(7) — 1 to match the measured and averaged one, by
iteratively adjusting individual values of the parameter contributions of the hydrodynamic
radius Ry. The program flow of this procedure is shown by Fig. 4.2 where Ry j]vjef1,...,n
represents a set of N radii, used for calculating the modelled curve G 1moa(7) — 1 according
to eqn. [4.13].
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Figure 4.2: The main process of the McDLS software for optimization of hydrodynamic radii f(Ry).
The process starts with a randomly chosen set of N hydrodynamic radii [RHJ']V]‘G{L“" ~} which is used to
calculate the intensity correlation function Go Q[RH]) — 1. Subsequently, it is compared to the measured
data by calculating its goodness of fit value x7. If this value is larger than one and thus not satisfying
the convergence criterion, a new single radius Ry new is chosen randomly to replace Ry ; in the set [Ry].
In the following step, an updated correlation function Gg new is computed and compared to the data by
calculating x2. In each iteration, an attempt is made to replace one of the model contributions of the
field correlation functions g; (RHJ-) by g1(Ru, new) to improve the agreement between the calculated Gg
function and the measured data. This procedure is repeated until no significant difference is found between
the modelled and measured G5 data within the statistical uncertainties, 7.e. Xf <1.

4.3. Current implementation

Similar to McSAS (section 3.4), the user interface is composed of five panels, each designed
for specific tasks of the DLS data analysis as shown in Fig. 4.3. These panels are named
‘1. Data Files’, ‘2. Data Settings’, ‘3. Optimization’, ‘4. Model” and ‘5. Post-fit Analysis’
and it is recommended to run the program in their consecutive order when starting data
analysis. The scientific and technical conceptual aspects lying behind the structure of
MeDLS will be discussed in the following in its numbered order. A summarized description

of the program parameters and its effect on the analysis is given in Table 4.2.
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1. Data Files

2. Data Settings
3. Optimization
4. Model
5. Post-fit Analysis
start

Log

McDLS: Software for the retrieval of model parameter
distributions from dynamic light scattering data. :
Output files of a Monte Carlo run are stored in a directory
named after the input file followed with a timestamp to avoid
overwriting existing results.

Figure 4.3: The main interface of McDLS upon startup showing five configuration panels: The ‘1.
Data Files’ panel allows selection and input of the data of interest. The ‘2. Data Settings’ panel allows
configuration of the data sets by setting physically meaningful constraints. The ‘3. Optimization’ panel
provides basic and advanced settings options useful for orchestrating the simulation procedure. The ‘4.
Model” panel allows to define a range of physically meaningful hydrodynamic radii and decide if a form
factor should be taken into account for calculation. The ‘5. Post-fit Analysis’ lets the user configure
histogramming of intensity-, volume-, surface- and/or number-weighted distributions.

Panel ‘1. Data files’

The McDLS program reads in .ASC data files created by the hardware correlator ALV-7004
(ALV GmbH, Germany) and expects the signature ‘ALV-7004 CGS-8F Data, Single Run
Data’ being present in the header of the file. Moreover, the ASC files store general sample
and device properties which were either measured by the device automatically or previously
determined and entered by the operator ahead of a measurement. These properties include
the temperature, viscosity of the sample, refractive index of the solvent, wavelength of the
laser and the eight scattering angles of the multiangle DLS experiment. This information
is necessary for calculating the model intensity correlation function as can be seen from
eqn. [4.7]. Each data file contains the correlation curves of the eight scattering angles
(0a)acqr,...sy column-wise, preceded by a single column of the corresponding correlation
time 7. The original count rates as a function of measurement times for each of the
eight angles are contained in the data file as well. The count rate data can be used
for detecting and omitting erroneous measurements automatically. Possible reasons for
defective measurements are manifold such as dust in the path of light or remains of the
sample preparation. Moreover, the particle concentration in the sample being too high or
too low may cause erroneous measurements as well. McDLS is intended for data evaluation

of a broad range of instruments, i.e. not only for the ALV instrument used here. Therefore,
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users are encouraged to modify the data import herewith adapting to their instrumental

requirements.

Regrouping of data

Distribution analysis of DLS data is performed for each scattering angle individually
whereas a data file of a single measurement contains correlation curves of multiple
scattering angles. To cope with this obstacle, an initial preprocessing of data is provided
for grouping correlation curves of the same scattering angle and averaging all curves of
each angle of the same sample. This procedure estimates the measurement uncertainties
of the correlation curves which are required for calculating the goodness of fit criterion 2
of eqn. [4.21]. Individual outlier curves can be identified and excluded from analysis

either automatically or by the user.

Measurement indices

The program shows the measurement indices for each averaged data set of a given scattering
angle to make it comprehensible for the user which measurements were averaged and which
were left out (see Z-score at panel ‘2. Data Settings’). This is achieved by setting up the
data acquisition program to follow a specific file name pattern when storing the measured
data: The basic name, containing the unique experiment number and an arbitrary name
describing the sample, followed by a 4-digit index number of the measurement run or group
and a trailing 4-digit index number of the individual measurement as shown in Table 4.1.
Table 4.1: File names example of DLS measurements of the silver nanoparticles BAM-N008. Left column:
the abbreviated list of files generated by a first multiangle DLS measurement consisting of 6 individual

measurements. Mid and right column: File names generated by a second and third measurement run
consisting of another 6 individual data files each.

339 NO080000_0001.ASC 339 N0O080001_0001.ASC 339 N0080002_0001.ASC

[..] [..] [..]

339 NOO80000_0006.ASC 339 NO080001_0006.ASC 339 N0O080002_0006.ASC

MecDLS extracts the measurement index and group index from the file name and assigns
them to each correlation curve when reading in measurement files. The indices of all
involved curves are gathered and assigned to the averaged curve. The program groups
continuous sequences of indices within a measurement group for display in the GUI. For
example, if the first measurement of the first group was filtered as outlier, as well as the
second and sixth one of the third group and the third measurement of the fifth group,
MecDLS indicates the involved measurements as “0°2-6 2°1,3-5 4’1-2,4-6" (see listing
for angle 26° in Fig. 4.4).
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1. Data Files

Title Measurements #Data Angle Description

339 N008 0'2-6 2'1,3-54'1-2,4-6 181 26° N008 Ag@PAA verdiinnung 1/100 in NaOH 0.1M LCR-filtriert
339 N008 0'2-6 2'1-4,6 4'1-2,4-6 181 42° N008 Ag@PAA verdiinnung 1/100 in NaOH 0.1M LCR-filtriert
339 N008 0'1-6 2'1-3,6 4'1-6 181 58° N008 Ag@PAA verdiinnung 1/100 in NaOH 0.1M LCR-filtriert
339 N008 0'1-6 2'1-4,6 4'1-6 181 74° N008 Ag@PAA verdiinnung 1/100 in NaOH 0.1M LCR-filtriert
339 N008 0'1-6 2'1-6 4'1-6 181 90° N008 Ag@PAA verdiinnung 1/100 in NaOH 0.1M LCR-filtriert
339 N008 0'1-6 2'1-4,6 4'1-2,4-6 181 106° N008 Ag@PAA verdiinnung 1/100 in NaOH 0.1M LCR-filtriert
339 N008 0'1-6 2'1-6 4'1-2,4-6 181 122°  N008 Ag@PAA verdiinnung 1/100 in NaOH 0.1M LCR-filtriert
339 N008 0'1-62'1-64'1-2,4-6 181 138° N008 Ag@PAA verdiinnung 1/100 in NaOH 0.1M LCR-filtriert

2. Data Settings
3. Optimization
4. Model

5. Post-fit Analysis

start
Log @
2017-08-27 13:48:32 WARNING outliers for 26°: [(0, 1), (2, 2), (2, 6), (4, 3)]
2017-08-27 13:48:32 WARNING outliers for 42°: [(0, 1), (2, 5), (4, 3)]
2017-08-27 13:48:32 WARNING outliers for 58°: [(2, 4), (2, 5)]
2017-08-27 13:48:32 WARNING outliers for 74°: [(2, 5)] -
2017-08-27 13:48:32 WARNING outliers for 106°: [(2, 5), (4, 3)] '
2017-08-27 13:48:32 WARNING outliers for 122°: [(4, 3)]
2017-08-27 13:48:32 WARNING outliers for 138°: [(4, 3)] v

Figure 4.4: McDLS listing of regrouped, outlier filtered and averaged multiangle DLS measurement
data sets for 8 scattering angles. The ‘Measurements’ column indicates which data files were included in
averaging based on the indices derived from their file names. The log window lists the excluded data files
by unique pairs of their group and measurement index.

Panel ‘3. Optimization’

The third panel contains a subset of algorithm settings addressable by the user. The
‘convergence criterion’ is the goodness of fit criterion x?, as described in the model fitting
procedure. While this is per default set to 1, it may prevent reaching a state of convergence
x? < 1 for data whose uncertainty estimates are too large or too small. In such cases
the ‘convergence criterion’ value needs to be lower or higher than 1, respectively, until
the simulations fit the data sufficiently. It should be noted that a change affects the
uncertainty estimates of the resultant distribution of hydrodynamic radii. As an alternative
to x?, the program provides ‘Test goodness of fit variance?’ as optimization criterion.
If this checkbox is activated, the variance of goodness of fit values of the last twenty
successful improvements has to be reached for completion of an optimization repetition.
The results from many repetitions of successful optimization cycles are used to estimate
the uncertainties (error bars) of the resultant radii distribution. Its default value of 10
can be decreased (3 to 5) to get a quick result for testing, while it is recommended to be

increased to typically 50 to 100 for reliable estimates of the uncertainties. When activating
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‘Advanced Settings’ further default values of several parameters can be changed. The
‘number of contributions’ of Ry-values is 300 by default and was found sufficiently large
for most data. If the number is reduced, the analysis is faster on the cost of accuracy. If it
is increased the analysis is slower but with better accuracy. The ‘Find background level?’
option is activated by default, which means that the program determines the constant
A in eqn. [4.15] in accordance to eqn. [4.16]. A correctly determined background level
A improves the goodness of fit significantly. In some cases it might not be determined
correctly. In this case, its determination can be disabled by this option. The option ‘Fix
1% model point to data’ is not activated by default but can be activated as constraint by
forcing the program to pin the simulated curve at the first experimental value. The first
data point is often considered to be of highest relevance for comparing DLS data curves
(ISO, 1996). This option allows to evaluate the impact of that assumption on the data
evaluation at hand. The ‘maximum iterations’ option determines how many optimization
cycles in a repetition are performed without reaching the convergence criterion before a new
repetition starts. The default value of 10° can be reduced or increased. Activation of the
‘Plot unsuccessful/incomplete results’ option allows the user to investigate how simulation
and data deviate when the convergence criterion is not reached. The ‘Calc. series statistics’

option provides access to multiangle DLS data analysis.

Multiangle analysis

Size distributions determined by DLS data analysis often show scattering angle dependence,
even with already considered sphere form factor (Shibayama et al., 2006). However, McDLS
treats a measurement at a certain scattering angle ¢ as an individual data set, independent
of the other scattering angles. To provide an overview of the analysis results across multiple
scattering angles, the program supports cumulative series analysis of data sets.

To make use of series analysis, it has to be activated first by checking the box ‘Calc.
series statistics’ in the ‘Optimization’ menu. Next, one selects multiple entries in the ‘Data
Files’ menu. Each of them corresponds to a measurement at a certain scattering angle. The
overall optimization process is started by pressing the ‘start’ button in the main window
of the program. Subsequently, the previously configured model is fitted to the selected
data sets, one after another. During this process, the mean and its standard deviation of
the resulting distributions are collected and visualised afterwards in a single plot over the

selected scattering angles as shown in Fig. 4.5.

99



90 339 N0OO8
{ : : : : F radius[ 1, 20](nm) vol

8.5k --- , ....... R PREEE R R ERREEE Peeeneeeaes o<l I radius[ 1, 20](nm) surf |
F radius[ 1, 20](nm) num

8O-y | b radius [ 1, 20)(nm) int ||

7.5}----

7.0

mean (nm)

6.5

6.0

5.5

5.0 : : ; : : R
20 40 60 80 100 120 140 160

Scattering angle (°)

Figure 4.5: McDLS plot window of a multiangle analysis result: the volume-, surface-, number- and
intensity-weighted size distribution means along with their standard deviations as error bars of an averaged
set of 18 measurements at 16 scattering angles of silver nanoparticles BAM-NOO8 as discussed in section
4.4.1.

Panel ‘4. Model’

This panel contains all information on the implemented ‘Spheres (DLS)’ model, for which
the program is currently limited but open for adding further models. The ‘square the
amplitude’ is activated by default which means that the particle volume and form factor
are squared as in eqn. [4.12]. If deactivated, the amplitude of the field correlation function
is used non-squared for data interpretation. This option can be used to assess the effect
of the squared amplitude versus the non-squared amplitude. The ‘Hydrodynamic Radius
(nm)’ is activated by default and it is recommended to insert the lowest and the highest
expected hydrodynamic radius in the boxes. If the range of meaningful hydrodynamic
radii is unknown to the user, it is recommended to deactivate the range. Then the user
can explore the range of meaningful radii, by inserting single hydrodynamic radii and click
the start button. Now a plot appears with the corresponding intensity correlation function
of this single hydrodynamic radius. With some tests of different values the user is able to
provide meaningful estimates of the lower and upper bound of possible radii values. The
‘Include the SAS sphere form factor’ is activated by default and calculates ®(Ry ;) for
each radius and takes it into the calculation. Deactivation of this button sets @(Ry ;) = 1.
Comparison of simulation with activated and deactivated form factor allows to study how

strong the form factor influences the result.
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Panel ‘5. Post-fit Analysis’

The last panel offers basic analysis capabilities for interpretation of the result. The user can
chose different types of histograms for displaying the size distribution within the selected
range of hydrodynamic radii. The number of bins has a default value of 50 but can
be increased or decreased. A choice can be made whether number-, surface-, volume-
and/or intensity-weighted size distribution are calculated. Furthermore, a linear and/or
logarithmic scale of the radii axis can be selected. Finally, the ‘Start’ button starts the
simulation process, and the ‘log’ window shows the output of the program as it runs and
stores it in a file automatically. All results are stored in separated ASCII files along with

all plots in a PDF file in the directory where the data are located.
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Table 4.2: Selected program parameters and their effects on the simulation of intensity correlation functions and the corresponding distribution of the
hydrodynamic radii. Only parameters are listed which differ from those described for McSAS in Table 3.1.

Location or Panel

Parameter name

Effect

GUI ‘Data Files’

GUI ‘Data Settings’

‘right click to load files’

Mask G2(7) — 1 values of 0
Mask negative Go(7) — 1 values

Set uncertainties constant

Use relative uncertainties
o/|Ga(r) — 1]

Plot count rate

Average each angle

Outlier threshold

Loads multiple DLS measurement files in ASC format, regroups, filters, averages and lists them
in ascending order, sorted by the scattering angle. The options ‘average each angle’ and ‘outlier

threshold’ in the ‘Data Settings’ menu offer more control over data processing.

Ignores correlation curve values equal to zero during fitting and plotting. Disabled by default.
Ignores correlation curve values smaller than zero during fitting and plotting. Disabled by default.

Sets all uncertainties of the correlation curve to the same value. This option is mutually exclusive
with the relative uncertainty option below. Disabled by default.

Divides all uncertainties of the correlation curve by the corresponding data value to weigh it
relatively. This option is mutually exclusive with the constant uncertainties option above.
Disabled by default.

Plots the mean and median count rate with an error bar for the standard deviation of multiple
measurements. It appears behind the correlation plot with grey and pink lines. Enabled by
default.

When loading DLS data files, the correlation data of each angle is averaged if there are multiple
measurements with the same sample name. A single data object is created for each angle
which contains the correlation mean and its standard deviation, interpreted as measurement
uncertainty. If deactivated, the correlation curves are not averaged and a single data object will
be created for each combination of measurement and angle. Activated by default.

Decides which measurements are considered as outliers and thus are being excluded from averaging
and fitting. The value defines the maximum allowed modified Z-score which uses the median
absolute deviation of all measurements at the same angle. The measurement indices displayed

in the ‘1. Data Files’ panel indicate which measurements were excluded. Set to 3.5 by default.

(Continued on the next page)
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Location or Panel

Parameter name

Effect

GUI ‘Optimization’

GUI ‘Model’

Test goodness of fit variance?

Fix 1% model point of data?

Calc. series statistics

Sphere (DLS)

Square the amplitude

Hydrodynamic radius

Include the sphere form factor

Instead of trying to reach a given goodness of fit value (convergence criterion), the variance of the
last 20 goodness of fit values of successful improvements has to fall below the given value. For

experimentally measured DLS data, a value of 1076 is a good starting point.

Pins the first point of the simulated model data to the first point of the measured data during
fitting. Disabled by default.

Activates multiangle statistics by showing a combined plot of the mean values of all histograms
for all data sets being fitted. Additionally, all distribution moments are gathered in a common

output file for convenient export. Disabled by default.

The model of spherical scatterers whose hydrodynamic radii is optimized. The program is open
for addition of further models.

By default, the squared amplitude of the field correlation function is used for data interpretation.
If this option is deactivated, it allows to investigate the modelled data when not using the square

of the particle volume and form factor in the scattering model.

A physically meaningful range of hydrodynamic radii Ry min and Rumax should be given as
constraint. For example, radii in the range of 1 to 100 nm. The raised ‘Active’ button deactivates
the optimization and leaves a single input field for the Ry to compute the model curve of and
plot it with the data, once the ‘Start’ button is pressed.

The angular dependence of the scattering of particles is taken into account for calculation of the
intensity correlation function using the form factor of a sphere. The influence of the form factor

on the retrieved radii distribution can be investigated by deactivating this option.




Outlier filtering

Outliers of the correlation curves are a typical appearance in DLS, and need to be identified
and rejected from further data interpretation. The author of this work decided to make
use of the count rate CR(t) associated to the correlation curves. The modified Z-score
(Iglewicz and Hoaglin, 1993) of CR(t) is compared to the Z-score of count rates from
other measurements at the same scattering angle. The count rate quantifies the number
of photons detected in a time interval (usually in units of photons per second). The CR(t)
is stored in the ALV data file along with the correlation data of all angles measured. The

modified Z-score Z,, of measurement m out of M measurements is calculated by:

0.6745(x,, — T)

median(|x,, — Z|)

Zp = with @, = CR,(t). [4.22]

Where & denotes the median count rate of all measurements [T, )vmeqi,..a at a
certain scattering angle. A correlation curve is excluded from averaging, if its score
Zm > Z, with Z being a user configurable threshold, initially set to 3.5 as suggested by
Iglewicz and Hoaglin (1993). The value of 3.5 may not be suitable for all data and it is in
the responsibility of the user how strictly data are considered as outliers. Therefore, the
user has the possibility to adjust the Z-score values with respect to the DLS data under
investigation. Further discussion of Z-score thresholds can be found in Shiffler (1988) and
the reference therein. The Z-score is also used in the interlaboratory size comparison of
silica nanoparticles (Lamberty et al., 2011), with data sets being considered as outliers if
their Z-score is outside [-3,+3].

In McDLS, the median count rate is plotted in the background of the correlation curve
plot (pink line), along with the averaged count rate (grey line) and its sample standard
deviation as error bars. This can be disabled by unchecking the option ‘plot count rate’
in the ‘2. Data Settings’ panel of the GUI. Which measurements were rejected is not
only indicated by the data listing in the GUI but it is also written to the log window. For
example, a rejected fifth measurement of the third measurement group at a scattering angle
of 74°, results in the output ‘WARNING outliers for 74°: [(2, 5)]’. While a rejected
fourth and fifth measurement of the third measurement group at a scattering angle of 58°,
results in ‘WARNING outliers for 58°: [(2, 4), (2, 5)]’ (see Fig. 4.4).

4.4. Interpretation of experimental data and simulations

The usage of McDLS is demonstrated in the following by interpretation of typical examples
of experimental data. It is complemented by simulations of monomodal and bimodal

distributions of hydrodynamic radii.
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4.4.1. Monomodal Distributions: Polymer-stabilized silver nanoparticles

Silver nanoparticles are of scientific interest, but they are also widespread in consumer
products mostly because of their antibacterial properties (Walczak et al., 2012; Calderén-
Jiménez et al., 2017). DLS is a key method to determine their hydrodynamic radii. As
a representative example, monomodal polyacrylic acid stabilized silver nanoparticles used
as nano-catalyst (Késtner and Thiinemann, 2016) were employed. These particles are a
candidate of a nanoscale reference material (Stefaniak et al., 2013) labelled ‘BAM-N00S".
The original BAM-NO0O8 suspension was diluted with distilled water (adjusted to pH 10 with
NaOH) to a silver concentration of 3x 1072 g/L. Twenty DLS measurements of 60 s duration
were performed at 16 scattering angles of 26° < 20 < 146° (0.006 nm ! < ¢ < 0.0253nm™),
at a temperature of 19.827(4) °C.

For comparison, the Ry-values were determined first by following the standard ISO
13321 which is applicable for particles of narrow size distribution (ISO, 1996). This
standard is based on the methods of cumulants derived by Koppel (1972) and provides
estimates of an intensity-weighted hydrodynamic radius and a polydispersity index PI.
The PI is defined as the ratio of the variance of the relaxation rates (second cumulant =
1) to the square of the mean relaxation rate (first cumulant I"): PI = /12, The width of
the distribution of the hydrodynamic radii can be estimated as oy = Ry/PI/2, when
assuming a Gaussian distribution of relaxation rates (ISO, 1996). A plot of the
hydrodynamic radius and the PI of the particles as a function of the scattering vector is
shown in Fig. 4.6. The Ry values decrease slightly with decreasing g-values from 6.9 nm
at ¢ = 0.025nm™* (20 = 146°) to 6.2 nm at ¢ = 0.008nm~' (20 = 34°). A linear
extrapolation results in Ry(q = 0) = 6.0(2) nm. Note that the value of Ry = 56 nm at the
lowest g-value of ¢ = 0.005nm™! (20 = 26°), indicated by an arrow, is rejected as an
outlier. The PI values are strongly dependent on the angle of measurement. They are
below 0.05 for 0.025nm™~! < ¢ < 0.016 nm ™! but increase for the measurements at lower
g-values and display a maximum of PI = 0.18 at ¢ = 0.008 nm ™" (20 = 34°).

The angular dependency of the Ry-values determined by the method of cumulants is
small but significant. Such finding is typically interpreted as an indication of particle
interaction and an extrapolation to zero angle is commonly employed for revealing the
‘true’ Ryg-value (Xu, 2002). Here the difference is ARy = 0.9nm between the measured
value Ry (¢ = 0.0025nm™') and the extrapolated value Ry (g = 0). More striking than the
systematic changes of Ry is the increase of the PI value with decreasing measurement angle.
Low PI values mistakenly may lead to the conclusion of a very narrow size distribution when
measuring at large angles, typically for instruments that measure only at one high angle of
173°, for example. A considerable variability of PI values (Finsy, Jaeger, et al., 1992) and
the problems to derive size distribution widths thereof, have been reported in the literature

(Hanus and Ploehn, 1999). The second virial coefficient and therefore the PI are considered
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only meaningful by several authors if the corresponding scattering angle, normally 90°, is
provided (Koshkina et al., 2015). This indicates that PI values can not be compared when
they result from measurements at different angles. A Ry distribution apparently seems
to be narrower when DLS is performed at greater scattering angles, in contrast to smaller
ones. The reason for this has been discussed by Xu (2002) as follows: Because Ga(7) —1 is
a function of ¢, all cumulants are also a function of q. At small 7, for particulate systems
that have size distributions with PI < 0.3, the method of cumulants provides reasonable
good mean values of the first cumulant but the uncertainty of the second cumulant is
substantially higher (see also the original work on the method of cumulants by Koppel
(1972)). It is stated that the baseline values must be correctly determined better than
0.1% to avoid large errors in the PI value (Xu, 2002).
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Figure 4.6: Results of the classical cumulant fit for the hydrodynamic radii and polydispersity indices
(crosses and diamonds, respectively) of silver nanoparticles BAM-N008. The straight line is a linear fit of
the Ry-values for extrapolation to Rg(g¢ = 0) = 6.0(2) nm.

Based on the results from the method of cumulants, it is of interest to examine
whether McDLS is a more robust data evaluation procedure for these silver
nanoparticles. Obviously, the particles’ real size distribution should not change when
‘looking’ at the particles from different angles. Therefore, the same DLS data as
employed for the method of cumulants were reanalysed with McDLS.

The data was configured to omit the first two data points (panel ‘2. Data Settings’),
resulting in the correlation curve starting at 7 = 3 x 10~7 s. This is typically done for
excluding any boundary effect from the analysis, possibly caused by the type of hardware
correlator used here. The uncertainties based on the sample standard deviation of the
twenty correlation curves were limited to at least 1% of the correlation value. For
optimization (panel ‘3. Optimization’), the convergence criterion of the goodness of fit

value (x?, eqn. [4.21]) was set to 1 along with 50 repetitions for uncertainty estimates.
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The number of contributions was kept at the default value of 300. For the sphere model
(panel ‘4. Model’) the default settings were used as well, expect for the radius parameter
which was set to be fitted in the range 1 nm to 20 nm.

The resulting number-, volume- and intensity-weighted size distributions are shown
for ¢ = 0.02nm™' (20 = 90°) in the upper row of Fig. 4.7. The results for all angles
are summarized in the lower row of Fig. 4.7. The mean number-, volume- and intensity-
weighted Ry-values increase in the line 5.60(18) nm, 6.55(22) nm and 7.04(24) nm. The
corresponding size distribution widths are 1.58(6) nm, 1.08(4) nm and 1.02(4) nm, i.e. the
relative widths decrease in the line 0.28, 0.17 and 0.15. The determined order of sizes is
Rpum < Ryol < Rine and that of the relative widths is 0r pum < ORvol < OR,int @5 must be
expected. As a first conclusion, it can be stated that this McDLS derived size distribution

characteristics are angular-independent and seem to be physically meaningful.

Simulation of monomodal correlation data

Next, a simulation of the monomodal distributions could provide insights on possible
biasing artefacts of McDLS. Therefore, as a test of consistency of the upper results, the
distribution was fitted with a suitable analytical function. In the next step, this function
was used with the fitted parameters to generate 20 intensity correlation functions, each at
eight angles, for a set of N = 182 correlation times corresponding to those of the
instrumental ALV correlator used.

For producing reasonable sets of hydrodynamic radii, the lognormal size distribution
was employed. It is defined as

f1(Ry) [4.23]

N 1n<RH/Rmedian)2
V2mo Ry 202

Where o is the width parameter of the size distribution and Regian is the median radius.
Using these parameters, the mean radius is given as Rpean = Rumedian €Xp(02/2) and the
standard deviation of the width of the size distribution is
Owidth = Rmean\/exp(202) — exp(0?).

For simulation purposes, the correct weighting of the distribution needs to be

considered. If, for example, eqn. [4.23] is assumed to be the number-weighted size
distribution then the volume-weighted distribution scales with Rj and after area
normalization, it becomes

3

fo(Rut) = RSRI; exp(=902/2) f: (Ru). 4.24
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The intensity-weighted distribution, f; and scaled by RY, is

6

Fo(Bu) — RGRH exp(—1802) f (Rr). 14.95)
median

Contrary, if eqn. [4.23] is found to represent the intensity-weighted size distribution, then

the volume-weighted distribution, based on f; and scaled by Ry, becomes

3

Fu(Ba) = Rf;tfgan exp(—90/2) f1 (Re), 14.26]

and the number-weighted distribution, based on f; and scaled by Ry°, is

6

Fo(Bu) = nggan exp(—1802) f, (Ra). 14.97]

Equations [4.24] to [4.27] show that not only the conversion of the lognormal
distribution from number- via volume- to intensity-weighting is possible but also from
intensity-weighting via volume- to number-weighting. It must be noted, the second
scenario cannot be performed for a Gaussian distribution. It should also be mentioned
that the error propagation at the conversion of particle size distributions is currently
under discussion (Babick and Ullmann, 2016).

In DLS the intensity-weighting must be considered as the most reliable one (Hassan
et al., 2015) because DLS is intrinsically weighted by the intensity of the scattered light
(Kestens, Roebben, et al., 2016). Consequently, the parameters derived by fitting
eqn. [4.23] to the intensity-weighted distribution were wused, resulting in
Ruedian = 7.01(2)nm, width parameter ¢ = 0.128(2), Rupean = 7.07(2)nm and
Owiath = 0.91(2) nm as shown in the upper plot of Fig. 4.7 (black solid line). The fit curve
represents the experimentally determined size distribution within the experimentally
determined uncertainties. The course of the curves f; to f5 is shown in the left-hand
picture of Fig. 4.8. The determined fit parameters seem to be reasonable and thus were
used in the simulation by employing f5 of eqn. [4.27] to evaluate eqn. [4.13]. Herewith 20
synthetic data sets were produced, each for 182 correlation times at sixteen angles. An
example is shown in the right-hand picture of Fig. 4.8. These data sets were evaluated
with McDLS in the same way as the experimental data, resulting in size distributions
shown exemplarily for the 90° angle (see symbols of the upper graph of Fig. 4.7). It can
be seen, that number-, volume- and intensity-weighted size distributions are well
reproduced for the 90° example. Averaging the results from simulation of the data at the
eight angles, the mean number-, volume- and intensity-weighted Ry-values are found in
the line 5.72(1) nm, 6.60(1) nm and 7.00(1) nm. The corresponding size distribution
widths are 1.55(1) nm, 1.00(0) nm and 0.89(1) nm, i.e. the relative widths decrease in the
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Figure 4.7: Fitting results of the monomodal silver nanoparticles BAM-N008, using 50 repetitions of
the Monte Carlo algorithm to determine their number-, volume- and intensity-weighted distribution of
hydrodynamic radii. Upper row: resulting size distributions at an scattering angle of 90° with uncertainties.
The histograms with error bars are based on experimental data. The best fit curve of a lognormal f;
function according to eqn. [4.23] represents the intensity-weighted distribution (black solid line). The
symbols are distributions resulting from simulated G2 — 1 data derived from the parameters of the fit
curve. Lower row: mean hydrodynamic radii and mean widths for multiangle data analysis (large hollow
and solid symbols, respectively). The mean values of the means of the hydrodynamic radii and widths
are given as solid and dashed lines, respectively. The mean values of the simulations are given as small
symbols. All data are listed in Table 4.3.
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line 0.27, 0.15 and 0.13. These values are plotted as small symbols in the lower graph of
Fig. 4.7. A summary of these results is given in Table 4.3 from which it can be concluded
that the evaluation of the simulated data is in agreement with the evaluation of the

experimental data within the estimated uncertainties.
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Figure 4.8: Left-hand figure: functions f; to f5 according to eqn. [4.23] to [4.27] with the same lognormal
distribution parameters Rpedian = 7.01(2) nm and o = 0.128(2), which were derived from a curve fit of
the experimentally derived intensity-weighted radii distribution as shown in the most right graph of the
top row of Fig. 4.7. Right-hand figure: simulated intensity correlation function according to eqn. [4.13] for
eight angles employing function fs.

Table 4.3: Summary of the hydrodynamic radii values of silver nanoparticles BAM-NQ0S.

Number Volume Intensity
data R, (nm) oy (nm) R, (nm) oy (nm) R; (nm) o; (nm)
measurement 5.60(18) 1.58(6)  6.55(22) 1.08(4) 7.04(24) 1.02(4)
simulation 5.72(1) 1.55(1) 6.60(1) 1.00(0) 7.00(1) 0.89(1)
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4.4.2. Bimodal size distributions: Silicon dioxide particles

The bimodal silica certified reference material ERM-FD102 was used as described by
Kestens, Roebben, et al. (2016). An overview of the sample characteristics is also given
by Brefller et al. (2015) and listed for clarity in Table 2.1.

The DLS measurements were performed using a multi-angle ALV 7004 device from
ALV Langen, equipped with a He-Ne laser (wavelength: 632.8 nm). The ERM-FD102
samples were used as delivered without dilution and filtering to prevent changes of the
samples. Twenty DLS measurements of 60 s duration were performed at 8 scattering
angles of 260 € {26°,42° 58°,74°,90°, 106°, 122°,138°} at a temperature of 22.960(3) °C.

For evaluation with McDLS, the same parameters were utilised as for the analysis of
the monomodal silver nanoparticles, except for the convergence criterion: it was set to a
variance of 1079 of the last twenty successful improvements of the goodness of fit value
(X2, eqn. [4.21]) as stopping criterion. Instead of running the optimization until the given
goodness of fit value is reached, the algorithm stops once the last 20 accepted goodness
of fit values did not have a higher variance than the specified value. It also results in a
slightly different x? value finally reached, for each of the 50 repetitions calculated. The
radius parameter of the sphere model (panel ‘4. Model’) was set to be fitted in the range
1 nm to 70 nm.

The resulting number-, volume- and intensity-weighted size distributions are shown
exemplarily for ¢ = 0.02nm™! (20 = 90°) in the upper row of Fig. 4.9 and Fig. 4.10
for the large and small particle classes B and A, respectively. The results for all angles
are summarized in the lower rows of Fig. 4.9 and Fig. 4.10. For particle class B, the
mean number-, volume- and intensity-weighted Ry-values increase in the line 44.98(78) nm,
45.18(79) nm and 45.37(80) nm. The corresponding size distribution widths are 1.72(10)
nm, 1.74(10) nm and 1.72(10) nm with relative widths of 0.04. Accordingly, the mean
number-, volume- and intensity-weighted Ry-values of particle class A increase in the line
18.60(30) nm, 18.63(28) nm and 18.65(27) nm. The corresponding size distribution widths
are 0.38(11) nm, 0.37(10) nm and 0.36(10) nm with relative widths of 0.02. The determined
order of sizes is Ryym < Ryvol < Rin and that of the relative widths is og pum < OR.vol < OR,int
as must be expected.

Similar to the results of the monomodal analysis, the McDLS-derived size distribution
characteristics are found to be angular-independent and seem to be physically meaningful.
However, two distinct particle populations centered at 45.0(8) nm and 18.6(3) nm with a
volume ratio of approximately 7:1 were identified. While the large particles are found in
good agreement with the certified value of 41.7(6) nm for the number-weighted median
area-equivalent radii, the size of the small particles differs significantly from the certified

and expected values of 9.1(4) nm. Due to the smaller particles being found nearly twice
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in radius then expected, the determined volume ratio between both populations does not
match the expected volume ratio of 20:1 as well.

The discrepancy between the analysis results and the certified distribution
characteristics was investigated. To test the influence of the choice of the initial radius
contributions, the same McDLS evaluation was performed but with the
‘startFromMinimum’ option activated. This lets all initial contributions start with their
radii set to one half of the lower limit of the radius fitting range (0.5 nm). The resulting
volume-weighted size distribution at a scattering angle of 90° is shown in the lower row of
Fig. 4.12. The small particles are centered at 16.0(27) nm and the large particles at
41.7(3) nm. While the mean size of the large particles agrees slightly better to the
certified value, the sizes of the small particles are still much larger than expected and
broader distributed compared to the first evaluation. Qualitatively, the analysis result did
not change significantly when initialising all radius contributions with a constant small

value.

Simulation of bimodal correlation data

Possible systematic errors of the method can be revealed by a simulation of the bimodal
size distributions and an evaluation of synthetic photon correlation data generated thereof,
following the same procedure as for the monomodal silver nanoparticle.

For producing reasonable sets of hydrodynamic radii composed of two size classes, a
superposition of the lognormal size distribution of eqn. [4.23] was employed. It is defined

as

le(RHv N17 01, Rl,mediana N2> 02, R2,median) = fl(RHa Nla 01, Rl,median)

[4.28]
+ fl (RH> N27 02, RQ,median)

The constants N1, 01 and Ry median define the first class of particle sizes, while Nj, o, and
R median define the second class of particle sizes. Using these parameters, the mean radius
and the standard deviation of the width of the size distribution can be calculated in the
same way as stated for the simulation of monomodal distribution data.

Correspondingly, the correct weighting of the distribution is taken into account by
employing one of the following adjusted functions. If, for example, eqn. [4.28] is assumed
to be the number-weighted size distribution then the volume-weighted distribution scales
with R, and after area normalization, it becomes

(N1 + No) R,

Ry) = R 4.29
f22( H) NlRil)),median eXp<90%/2) + NQRg,median eXp(903/2) f12( H) [ ]
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The intensity-weighted distribution, fio and scaled by RS, is

(N1 + Ny)RY;

R — R 4.30
f32( H) NlR?,median eXp(lSO'%) + N2Rg,median exp(180%> f12( H) [ ]

However, if fi5 of eqn. [4.28] is found to represent the intensity-weighted size distribution,

then the volume-weighted distribution, based on fi, and scaled by Ry*, becomes

(N1 + No)Ry?

Ry) =
faz(Bn) N1 R cdian €XP(907/2) + No Ry 2 dian €xP(903/2)

f12(Rn) [4.31]

and the number-weighted distribution, based on fi, and scaled by Rp®, is

(N1 + Nz)Rﬁ6
N1 R fredian ©XP(1807) + No Ry cgian exp(1803)

fs2(Ru) = fi2(Ra). 4.32]

Following the considerations on simulating monomodal distributions, the parameters
were derived by fitting fio of eqn. [4.28] to the intensity-weighted distribution. Later on,
the parameters are used in the simulation by employing fs2 of eqn. [4.32] to evaluate
eqn. [4.13] at eight angles. For the large size «class, fitting fi» found
Riedian = 45.01(14) nm, width parameter o = 0.049(3), Rpean = 45.07(14)nm and
Owiath = 2.23(1)nm as shown in the upper right plot of Fig. 4.9 (black solid line).
Accordingly for the small size class, Rpedian = 18.80(14)nm, width parameter
o = 0.045(38), Rumean = 18.81(14) nm and oy;qn = 0.84(1) nm was found as shown in the
upper right plot of Fig. 4.10 (black solid line). The fit curve represents the
experimentally determined size distribution within the experimentally determined
uncertainties. In Fig. 4.11 the course of the curves fi5 to f5o is shown on the left and an
example of the simulated curves is shown on the right.

The simulated data sets were evaluated with McDLS in the same way as the
experimental data, resulting in size distributions shown exemplarily for the 90° angle by
symbols in the upper graph of Fig. 4.9 and Fig. 4.10. For the 90° example, it can be seen,
that the number-, volume- and intensity-weighted size distributions of the large size class
are shifted slightly towards smaller sizes while the small particle class is shifted towards
larger sizes. The same effect was observed with the size distributions obtained from
measured data. Averaging the results from simulation of the data at the eight angles, the
mean number-, volume- and intensity-weighted Ry-values for the large size class are
found to be in the line 43.14(35) nm, 43.52(31) nm and 43.84(34) nm. The corresponding
size distribution widths are 2.07(35) nm, 2.23(52) nm and 1.86(24) nm, i.e. the relative
widths are 0.05, 0.05 and 0.04. For the small size class, the mean number-, volume- and
intensity-weighted Ry-values are found to be in the line 20.43(30) nm, 20.45(30) nm and
20.48(30) nm. The corresponding size distribution widths are 0.44(11) nm, 0.41(9) nm
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and 0.40(8) nm and the relative widths are 0.02. These values are plotted as small
symbols in the lower graph of Fig. 4.9 and Fig. 4.10. A summary of these results is given
in Table 4.5.
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Figure 4.9: Fitting results of the large particle class B of bimodal silica nanoparticles ERM-FD102, using
50 repetitions of the Monte Carlo algorithm to determine their number-, volume- and intensity-weighted
distribution of hydrodynamic radii. Upper row: resulting size distributions at an scattering angle of 90°
with uncertainties. The histograms with error bars are based on experimental data. The best fit curve of a
lognormal f15 function according to eqn. [4.28] represents the intensity-weighted distribution (black solid
line). The symbols are distributions resulting from simulated G2 — 1 data derived from the parameters of
the fit curve. Lower row: mean hydrodynamic radii and mean widths for multiangle data analysis (large
hollow and solid symbols, respectively). The mean values of the means of the hydrodynamic radii and
widths are given as solid and dashed lines, respectively. The mean values of the simulations are given as
small symbols. All data are listed in Table 4.5.
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Figure 4.10: Fitting results of the small particle class A of bimodal silica nanoparticles ERM-FD102.
For a description, please see Fig. 4.9.

Table 4.5: Summary of the hydrodynamic radii values of silica nanoparticles ERM-FD102.

Number Volume Intensity
data R, (nm) oy, (nm) R, (nm) o, (nm) R; (nm) o; (nm)
class A measurement  18.60(30)  0.38(11)  18.63(28)  0.37(10)  18.65(27)  0.36(10)
class A simulation 20.43(30) 0.44(11) 20.45(30) 0.41(9) 20.48(30) 0.40(8)
class B measurement  44.98(78) 1.72(10) 45.18(79) 1.74(10) 45.37(80) 1.72(10)
class B simulation 43.14(35)  2.07(35)  43.52(31)  2.23(52)  43.84(34)  1.86(24)
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Figure 4.11: Left-hand figure: functions fi2 to fse according to eqn. [4.28] to [4.32] with the same
lognormal distribution parameters Redian = 45.01(14) nm and o = 0.049(3) for the large size class and
Riedian = 18.80(14) nm and o = 0.045(38) for the small size class. Those parameters were derived from
a curve fit of the experimentally derived intensity-weighted radii distribution as shown in the most right
graph of the top row of Fig. 4.9 and Fig. 4.10. Right-hand figure: simulated intensity correlation function
according to eqn. [4.13] at eight angles employing function fso of eqn. [4.32].
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Figure 4.12: Fitting results of the undiluted bimodal reference material ERM-FD102, using 100
repetitions of the Monte Carlo algorithm to determine a distribution of hydrodynamic radii. Upper row:
the fitting procedure started with an uniform random distribution of 150 hydrodynamic radii. Lower
row: the fitting results of a fitting procedure starting with a constant value of %Rmin = 0.5 nm for 150
hydrodynamic radii, using the same measurements. Left column: the determined model correlation curve
above the averaged curve of 20 measurements of the same sample with uncertainties (red solid line and black
dots with error bars, respectively). Mid column: the determined volume-weighted distribution histogram
of the small particle class with an expected mean radius of 9.1(4) nm. Right column: the determined
volume-weighted distribution histogram of the large particle class with an expected mean radius of 41.7(6)
nm.
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Consideration of noise

The consideration of noise for simulation of DLS data is very diverse in the literature.
Roger et al. (2016) added a noise term to the field correlation function, which is constant
in ¢ but varies with 7. They argued that this corresponds to the noise from their
correlator (Brookhaven BI-9000). The dependence of noise on the delay time in the
statistics of photon counting has also been discussed theoretically by Schétzel (1990) and
was experimentally studied by Harrison and Fisch (1996). An early study on the noise of
photon correlation functions and its effect on data reductions algorithms was provided by
R. Peters (W. Brown (1993) (§3)) but its relevance for modern photon correlators is
unclear. Recently, Mailer et al. (2015) tried to generate ‘realistic’ noise of modern photon
correlators for their simulated data by multiplying each value of the intensity correlation
function by a random number drawn from a Gaussian distribution of mean 1 and
standard deviation opee. They used opoise = 1073 for most of their analysis,
corresponding to an uncertainty of one part in a thousand at each data point. They also
looked at noisier data, up to oneise = 1072 but found this unrealistically high.

Since the literature does not agree on how to consider noise properly, the bimodal
silicium dioxide particle reference material ERM-FD102 was measured and the accuracy
of the intensity correlation curves as functions of scattering angle and correlation time was
determined. 20 data sets with different random noise were produced, allowing calculation
of the mean and standard deviation at each correlation time. Uncertainty estimates for
the values of the baseline A and the coherence factor B could be determined as well. The
result is presented in Fig. 4.13. The upper figure shows a relatively high absolute noise level
for low correlation times with values of about 1072 and decreases strongly towards high
correlation times, where it typically is around 10~*. Furthermore, the noise level decreases
slightly with increasing scattering angle, 7.e. the noise is largest at the lowest angle of 26°
and is smallest at the highest angle of 138°.

The author of this work believes that a simulation of a ‘realistic’ noise level for the
experiments at hand can be performed by multiplying each value of the coherence factor
by a random number drawn from a Gaussian distribution of mean 1 and standard deviation
Onoise a5 B = 1 4 Opoise,p and for the baseline as A = 0 4 0yoise,a. Here, for simulation a

Onoise. = 107° and opeisea = 1072 was applied.
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Figure 4.13: Upper figure: The typical mean of uncertainties derived from 20 G5(7) — 1 measurements
of the same bimodal silica ERM-FD102 sample at eight scattering angles. Lower figure: An example of
an averaged Go(7) — 1 function from twenty measurements of the undiluted ERM-FD102 bimodal silica
nanoparticles at a scattering angle of 90° (black dashed line) and the measurement uncertainties based on
the sample standard deviation o (red solid line). The ratio of ¢ to Ga(7) — 1 is approximately 0.01 or
smaller (symbols and blue solid line, respectively) for correlation times where Go(7) — 1 is greater than

10% of Ga(Tmin) — 1 (approx. down to 7 = 0.5 ms). For r-values larger than 3 s the o decreases below
A =10"" (green dotted line).
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4.5. Conclusion

The program package McDLS was developed with the goal to overcome limitations of
existing methods at reliably determining multimodal size distributions from multiangle
DLS data. It implements a Monte Carlo regression method which was adapted for the
specific requirements of evaluating DLS measurements with a spherical scatterer model.
To test the reliability of the method, simulated and experimentally measured DLS data of
monomodal and multimodal particle ensembles are analysed. The results were compared
with the expected and certified values, respectively.

Regarding monomodal particle ensembles, it can be concluded that McDLS
determined the size distribution of the experimentally measured silver nanoparticles
BAM-NOO8 as expected: the distribution characteristics are angular-independent and
seem to be physically meaningful. = Additionally, to verify the consistency of the
algorithm, DLS correlation data was simulated based on the previously determined size
distributions from measured data with the goal to obtain the same distribution again by
MeDLS evaluation. This consistency test showed that the evaluation of the simulated
data is in agreement with the evaluation of the experimental data within the estimated
uncertainties.

Given DLS measurements of bimodal particle ensembles, the McDLS program clearly
identifies separate size distributions qualitatively. The accuracy in determining the size
distribution of the larger particle ensemble is good compared to the certified and expected
characteristics. However, the method has difficulties with finding the expected size of
the smaller particle ensemble in presence of larger particles. Additionally, both resulting
particle size classes are slightly shifted towards each other. The smaller class more than
the larger one; nevertheless, the latter matches the distribution characteristics in good
agreement with the expected and certified values.

Considering that the method is designed to avoid any assumption on the
characteristics of the distribution sought after and given the difficulties with correctly
determining bimodal distributions, it has to be questioned whether the correlation data
used for the analysis of DLS measurements contains enough information required for
sufficiently retrieving multimodal distribution characteristics. This is supported by the
poor performance of existing methods at precisely determining multimodal size
distributions from DLS data.
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5

Summary and Outlook

5.1. Summary and Conclusions

The developments on three program packages were presented in this work with a focus on
the quantitative determination of particle size distributions. Two of them are designed to
analyse small-angle scattering (SAS) data: SASfit represents the classical curve fitting
toolbox which finds optimal parameters of a scattering model composed of analytical
expressions. McSAS implements an alternative approach by employing a Monte Carlo
regression technique for determining form-free parameter distributions of a scattering
model. Finally, McDLS was developed over the course of this work to employ the Monte
Carlo regression technique for analysing multiangle dynamic light scattering (DLS) data
and exploring its capabilities and limitations.

As a classical tool, SASfit was already employed in many scientific fields concerning
the analysis of scatterers from SAS data on a nanoscale. Several improvements of the
program were presented in this work which support the user and improve the quality of
analysis results. It was shown that SASfit is able to characterise a monomodal gold
nanoparticle reference material in reasonable agreement with the certified properties.
Additionally, the precision and accuracy of the parameters and associated values
determined from measurements of silica reference material ERM-FD102 are in good
agreement with the certified values. For assisting the user in finding optimal model
parameters, several data reduction algorithms, supplemented by advanced goodness of fit
measures and a detailed presentation of the confidence intervals for the fitted parameters
were developed and presented in this work. Moreover, the functionality of user provided
models as plug-ins was implemented and an example was given on how to create such a
custom model in the program which is of interest for advanced users with the need to
adjust an existing model or implement a new model for their specific research subject. As
a mature and comprehensive data analysis tool, SASfit defines the standard range of
functionality, competitive tools must provide. However, missing the concept of thorough
preparation of uncertainties along the analysis results, it encouraged the development of

an alternative analysis method providing the desired statistics.
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This work showed that McSAS is a reliable and versatile tool for nanoparticle
analysis, capable of determining particle size distributions with uncertainty estimates.
This was demonstrated by retrieving bimodal size distributions of the reference material
solution ERM-FD102 in agreement with the certified values. Additionally, a dry powder
of densely packed nanoparticles was characterised correctly as well. Moreover, McSAS
provides a comprehensive model library which can be extended with additional models by
the user. An increasing availability of computing power neutralises the relatively high
computational effort of the Monte Carlo method, especially with more complex custom
models. Limitations are induced by the information content provided by the SAS
measurement method: further information on the sample under investigation is always
required for choosing appropriate models and obtaining unique solutions for parameter
distributions. Overall, McSAS proved to be invaluable for quantitatively determining
particle size distributions of nanoparticles from SAS measurements.

With McDLS, an attempt was made to transfer the valuable properties of the Monte
Carlo approach to the analysis of nanoparticles from DLS measurements. The program was
derived from McSAS with all necessary modifications required for the evaluation of DLS
data. Thus, it offers many identical features which assist with the workflow of scientific
data analysis, such as selecting a data range, filtering outlier measurements, averaging
data, tweaking optimization parameters and flexible configuration of volume-, number-,
intensity- or surface-weighted output histograms over customizable parameter ranges. The
reliability of McDLS was verified by evaluating measurements and simulations of DLS data
of dispersed monomodal silver nanoparticles BAM-NOO8. It was shown that the determined
distributions are consistent with the expected characteristics. Tests with simulated data
are in agreement with the results from experimental data. Consecutively, the analysis
capabilities of the program were tested by evaluating measurements and simulations of
DLS data of bimodal particle ensembles. It was found that the larger class of particles
was characterised in agreement with the expected and certified values. Whereas the size of
the smaller class of particles was found larger than expected. That results in a diverging
volume ratio between both particle classes. Evaluations based on simulated data for the
same configuration of particles ensembles confirmed those results. It can be concluded
that McDLS correctly determines monomodal size distributions from DLS data, but only
characterises bimodal distributions qualitatively. The method has difficulties with finding
the expected size of the smaller particle ensemble in presence of larger particles. Based
on that, it can be argued, that the DLS correlation data used for the analysis might not
contain enough information for sufficiently retrieving multimodal distributions.

Three different tools for nanoparticle analysis were presented in this work. While each of
them can be used for basic evaluation of reference nanoparticles, they were developed with a
certain use case in mind, employing a specific method for handling it at the best. Together

with other analysis tools available for nanoparticle research, they will gain relevance and

82



attention in the future, due to a growing range of industrial applications for nanoparticles

and a concurrently growing need for control and regulation.

5.2. Outlook

Since the early versions of the SASfit program, the Levenberg-Marquardt algorithm
(Levenberg, 1944) has been used to find solutions for multi-dimensional nonlinear
optimization problems. Users often experience stability issues or sometimes even crashes
of the optimization routine of SASfit, in particular when optimizing several parameters of
a complex model at once. Those issues may be caused either by correlated parameters
within a model (though these are hard to predict) or by instabilities of the optimization
algorithm. Further development of the SASfit software will, therefore, provide alternative
optimization algorithms. These will include modern versions of the Levenberg-Marquardt
algorithm with improved numerical stability over the original implementation. Additional
options for parameter constraints will improve the overall fit stability, in contrast to the
current implementation which interrupts a fit if parameter values leave their defined
range. Better minimization routines may be able to automatically account for that as
well. This will improve the overall workflow and user experience with the SASfit analysis
program.

For McSAS, several structural improvements are conceivable with a gain in efficiency
and flexibility with scientific analyses. Comparing the program with other methods, the
computational expensive approach is a limitation which could be reduced significantly by
employing parallel processing capabilities of current computers.  With a steadily
increasing number of cores in current and upcoming processing units, it will be possible
to run sufficient multiple optimizations at once, resulting in meaningful statistics in the
same time which is required for a single optimization at the current state of the program.
Furthermore, since its release, there were several requests of users who want to integrate
McSAS in a larger, possibly server based, data analysis framework. Currently, that use
case does not work out, because the optimization routine requires some parts of the
graphical user interface. A modularization which divides the program into self-contained
modules, would enable further development and a wider spectrum of the aforementioned
applications. This modular approach would automatically lead to a standalone result
browser, capable of re-interpreting previously obtained results using different
visualisation options. More specifically, it would add new value to existing results by
allowing to generate new histograms over customizable ranges and thus exploring already
existing results from a new perspective without requiring to run the time consuming
Monte Carlo regression again.

Employing McDLS with the Monte Carlo approach on the analysis of DLS data proved

to be capable of resolving monomodal and to some degree bimodal parameter distributions.
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That makes it interesting to adapt it to other related data acquisition methods, such as
Fluorescence Correlation Spectroscopy (FCS) or X-ray Photon Correlation Spectroscopy
(XPCS). Based on a similar correlation curve, the same principle of data evaluation can
be applied. Being useful for a large range of measurement types stresses the importance
of investigating the limits of the method for multimodal distributions more in-depth. A
comparison with other established analysis tools, such as CONTIN, will shed more light
on the performance of McDLS and the general limitations for this kind of data.

84



6

Appendix

6.1. Availability, support and licensing

6.1.1. SASfit

All SASfit information, the source code repository and downloadable items, can be found
at http://sasfit.org. The most recent version of the comprehensive manual is in the
repository (http://sasfit.org/blob/master/doc/manual/sasfit.pdf) and additional
user guides on creating plug-ins for custom model functions can be found under http://
docs.sasfit.org. For core topics in using the SASfit program there are also video guides
available online (https://www.youtube.com/user/SASfitTeam). The latest packages are
available at the repository page (http://sasfit.org/releases).

The numerical part of SASfit is written in the C programming language and the user
interface in Tcl/Tk. Previous development efforts also included numerous measures to
make the program platform-independent. Standalone packages which do not require any
additional prerequisites are provided for three main desktop operating systems: Windows,
Linux and MacOS. The software is released under the open-source license GPLv3, allowing
for academic and commercial adoption given proper attribution. Users for whom the

software has been useful may refer to Brefler et al. (2015).

6.1.2. McSAS

All McSAS information, including instructions and downloadable items, are available
through http://mcsas.net. A reasonable degree of support is provided by the author
subject to the availability of time. Instructional videos are available to help the user get
started.

The software is written in the Python programming language and available as a Git
DVCSS repository. The interpreted code should run without issue on any desktop
computer running any operating system that supports Python 2.7. It has been tested on
the three main operating systems: Windows, Linux and MacOS. Standalone packages of

stable versions are also available for these operating systems, which do not require
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Python to be available on the host computer. The software is released under an
open-source license GPLv3, allowing for academic and commercial adoption given proper
attribution. Users for whom the software has been useful may refer to Bressler et al.
(2015).

6.1.3. McDLS

All McDLS information, including instructions and downloadable items, are available
through http://mcdls.net. As the software is based on McSAS, it shares the technical
basis and the points regarding availability, support and licensing mentioned above. Users
for whom the software has been useful may refer to an upcoming paper in preparation by
the author of this work.
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