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Abstract

Automating the generation of object-oriented unit tests for structural testing techniques
has been challenging many researchers due to the benefits it promises in terms of cost
saving and test quality improvement. It requires test sequences to be generated, each
of which models a particular scenario in which the class under test is examined. The
generation process aims at obtaining a preferably compact set of test sequences which
attains a high degree of structural coverage. The degree of achieved structural coverage
indicates the adequacy of the tests and hence the test quality in general.

Existing approaches to automatic test generation for object-oriented software mainly
rely either on symbolic execution and constraint solving, or on a particular search
technique. However, these approaches suffer from various limitations which negatively
affect both their applicability in terms of classes for which they are feasible, and their
effectiveness in terms of achievable structural coverage. The approaches based on
symbolic execution and constraint solving inherit the limitations of these techniques,
which are, for instance, issues with scalability and problems with loops, arrays, and
complex predicates. The search-based approaches encounter problems in the presence of
complex predicates and complex method call dependences. In addition, existing work
addresses neither testing non-public methods without breaking data encapsulation, nor
the occurrence of runtime exceptions during test generation. Yet, data encapsulation,
non-public methods, and exception handling are fundamental concepts of object-oriented
software and require also particular consideration for testing.

This thesis proposes a new approach to automating the generation of object-oriented
unit tests. It employs genetic programming, a recent meta-heuristic optimization
technique, which allows formulating the task of test sequence generation as a search
problem more suitably than the search techniques applied by the existing approaches.
The approach enables testing non-public methods and accounts for runtime exceptions
by appropriately designing the objective functions that are used to guide the genetic
programming search.

The value of the approach is shown by a case study with real-world classes that involve
non-public methods and runtime exceptions. The structural coverage achieved by the
approach is contrasted with that achieved by a random approach and two commercial
test sequence generators. In most of the cases, the approach of this thesis outperformed
the other methods.
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Zusammenfassung

Die Automatisierung der Testfallermittlung für den struktur-orientierten Unit-Test
objektorientierter Software verspricht enorme Kostenreduktion und Qualitätssteigerung
für ein Softwareentwicklungsprojekt. Die Herausforderung besteht darin, automatisch
Testsequenzen zu generieren, die eine hohe Überdeckung des Quellcodes der zu testenden
Klasse erreichen. Diese Testsequenzen modellieren bestimmte Szenarien, in denen die zu
testende Klasse geprüft wird. Der Grad an erzielter Code-Überdeckung ist ein Maß für
die Testabdeckung und damit der Testqualität generell.

Die existierenden Automatisierungsansätze beruhen hauptsächlich auf entweder sym-
bolischer Ausführung und Constraint-Lösung oder auf einem Suchverfahren. Sie haben
jedoch verschiedene Begrenzungen, die sowohl ihre Anwendbarkeit für unterschiedliche
zu testende Klassen als auch ihre Effektivität im Hinblick auf die erreichbare Code-Über-
deckung einschränken.

Die Ansätze basierend auf symbolischer Ausführung und Constraint-Lösung weisen
die Beschränkungen dieser Techniken auf. Dies sind beispielsweise Einschränkungen
hinsichtlich der Skalierbarkeit und bei der Verwendung bestimmter Programmierkon-
strukte wie Schleifen, Felder und komplexer Prädikate. Die suchbasierten Ansätze
haben Schwierigkeiten bei komplexen Prädikaten und komplexen Methodenaufrufab-
hängigkeiten. Die Ansätze adressieren weder den Test nicht-öffentlicher Methoden, ohne
die Objektkapselung zu verletzen, noch die Behandlung von Laufzeitausnahmen während
der Testgenerierung. Objektkapselung, nicht-öffentliche Methoden und Laufzeitausnah-
men sind jedoch grundlegende Konzepte objektorientierter Software, die besonderes
Augenmerk während des Tests erfordern.

Die vorliegende Dissertation schlägt einen neuen Ansatz zur automatischen Generierung
objektorientierter Unit-Tests vor. Dieser Ansatz verwendet Genetische Programmierung,
ein neuartiges meta-heuristisches Optimierungsverfahren. Dadurch kann die Testsequenz-
Generierung geeigneter als Suchproblem formuliert werden als es die existierenden
Ansätze gestatten. Effektivere Suchen nach Testsequenzen zur Erreichung von hoher
Code-Überdeckung werden so ermöglicht. Der Ansatz umfasst außerdem den Test nicht-
öffentlicher Methoden ohne Kapselungsbruch und berücksichtigt Laufzeitausnahmen,
indem er die für die Suche verwendeten Zielfunktionen adequat definiert.

Eine umfangreiche Fallstudie demonstriert die Effektivität des Ansatzes. Die dabei
verwendeten Klassen besitzen nicht-öffentliche Methoden und führen in zahlreichen Fällen
zu Laufzeitausnahmen während der Testgenerierung. Die erreichten Code-Überdeckungen
werden den Ergebnissen eines Zufallsgenerators sowie zweier kommerzieller Testsequenz-
Generatoren gegenübergestellt. In der Mehrheit der Fälle übertraf der hier vorgeschlagene
Ansatz die alternativen Generatoren.
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1 Introduction

Creating relevant test cases is the most critical activity during software testing. The set
of test cases with which the software under test will be examined must not only possess
a good ability to reveal faults, but also be a representative and maintainable subset of
all possible input situations. Both quality and significance of the overall test are directly
affected by the set of test cases used during testing.

With object-orientation, testing on the unit level – the most elementary level – focuses
on the examination of a single class. Classes are the atoms which, assembled together,
constitute an object-oriented application. A test case for unit testing a class includes
the information as to how to create an instance of the class under test, how to create
other instances that are needed during the test (for instance to serve as arguments for
operations), and which object states and results are expected when particular operations
of the class under test are executed. This information is represented by a test sequence –
a sequence of method calls which involve creating objects, putting the objects into proper
states, and invoking the operations to be examined – and a test evaluation, consisting of
one or several checks of the final state and the outputs.

Various techniques to derive relevant tests from different types of development artifacts
have been proposed. One important category of testing techniques is structure-oriented
testing. A structure-oriented testing technique utilizes the implementation (the source
code) of the software under test to identify relevant tests. This type of testing technique
is often applied to complement a function-oriented testing technique, which focuses on
the coverage of the requirements. Since both types of testing techniques have different
failure models in mind, their combination increases the quality of the overall test.

A structure-oriented testing technique employs a code coverage criterion to guide
the identification of relevant tests. For instance, statement testing utilizes the criterion
statement coverage and focuses on the statements of the software under test: tests are
to be generated that lead to the execution of all (or a high number of) statements of the
software under test. Faults related to the statements of the unit under test are expected
to be exhibited by the tests generated this way. Other important criteria are branch
coverage and condition coverage. Industrial quality standards demand that the tests
applied to software of a particular application domain exceed a predefined code coverage
rate. For instance, the avionics standard RTCA DO-178B (RTCA Inc., 1992) requires
that for airborne software belonging to a high risk level the corresponding test cases
satisfy decision coverage. Another example is the automotive standard ISO/WD 26262
(ISO, 2005). Depending on the risk level ASIL (automotive safety integrity level) to be
attained, statement coverage, decision coverage, path coverage, condition coverage, or
modified condition decision coverage must be maximized. The standard demands for
full coverage, meaning that 100% code coverage must be achieved. However, it allows
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deviating from full coverage in justified situations.
Although initially developed for testing procedural software, such as C or Ada modules,

structure-oriented testing techniques are also effectively applied to testing object-oriented
software. Recent investigations have shown that they are well-suited to create relevant
tests for object-oriented class testing, and are advised to be applied in conjunction with
other object-oriented testing techniques (Kim, Clark and McDermid, 1999; Kim, Clark
and McDermid, 2000).

Software testing consumes up to half of the budget of a software development project
(Beizer, 1990). A survey carried out by DaimlerChrysler confirms the findings of other
companies: while 50% of the costs for a development project are spent for implementation
activities, the remaining 50% are spent for testing purposes (Grochtmann, 2000). Unit
testing and integration testing need 30% of the total budget. The process of creating
relevant tests consumes significant resources in terms of time, human capacity, and thus
costs. When done manually, it is also tedious and error-prone.

Several approaches exist that automate the creation of test sequences for object-
oriented unit testing in order to benefit from reductions in time, labor, and budget.
The structure-oriented approaches, which will be considered in this work, rely on either
symbolic execution and constraint solving (King, 1976; Tsang, 1993), or on concrete
execution and a search strategy. The former will be referred to as static approaches,
while the latter will be referred to as dynamic approaches. More recent approaches
combine aspects of the two categories. The common idea is to divide the source code to
be covered by tests into individual components, referred to as test goals in the following.
For instance, in the case of branch testing, each branch of the control flow graphs of the
methods of the class under test is considered a test goal. An attempt is made to create a
test sequence for each test goal. The static approaches apply symbolic execution, which
emulates the actual execution of the software under test using symbolic inputs instead of
concrete ones. Path conditions are thereby collected which formulate the requirements
to be satisfied by the participating objects in order for the execution to cover the
targeted test goal. Constraint solving then tries to compute a concrete accumulation of
object states from the path conditions. In contrast, the dynamic approaches execute the
software under test using concrete objects and inputs. A search strategy is employed to
search the space of all possible test sequences for a covering one.

However, the existing approaches possess several limitations which diminish their value:
symbolic execution suffers from the problem of state space explosion if the software
under test is complex. When a huge set of symbolic states results from the structure of
the software under test, memory and computation power may not suffice to maintain
and examine these states with a practical performance. For instance, loops in the
source code will result in an infinite set of symbolic states, if not appropriately bounded.
Symbolic execution is also limited in the presence of polymorphism due to its static
nature. Constraint solving suffers from the problem of non-linear and sometimes too
complex constraints: today’s constraint solvers are not able to compute a solution for
any given collection of path constraints, in particular if the constraints contain severe
non-linearities. Furthermore, most static approaches do not create the desired test
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sequences, but rather in-memory representations of the objects participating in the tests.
Such a representation must be transformed to a proper test sequence in order to be
maintainable and insusceptible to class refactorings. However, the respective works
do not propose an algorithm realizes such a transformation. Additionally, some static
approaches are only applicable to classes whose methods have exclusively primitive
argument types.

The dynamic approaches have deficiencies concerning both the effectiveness and
efficiency of the search: (1) the incorporated search strategy may fail to find a test
sequence which covers a test goal that is dependent on a complex condition, (2) the
search is inefficient since it allows the generation of inexecutable test sequences, (3) the
search requires detailed additional problem-specific, user-provided information to be
effective. Furthermore, the dynamic approaches are limited in the presence of runtime
exceptions: due to the random nature of the search of these approaches, implicit method
preconditions might be violated, causing a runtime exception to be raised during a
search. In this case, the search just terminates and does not deliver a result.

Many approaches also break the encapsulation of the classes under test. The generated
tests are formulated so that the encapsulated data is accessed during test execution
in order to put the objects into proper states. Doing so is critical since object states
can be achieved which violate class invariants and hence contradict the specification
of the classes. Using test sequences obtained by breaking the encapsulation questions
the expressiveness of the overall test. No existing approach addresses directly testing
non-public methods without breaking encapsulation.

1.1 Aims and Objectives

This thesis suggests a new approach to automatic test sequence generation for object-
oriented class testing. Its main objective is to tackle the following limitations of the
existing automation techniques in order to allow for broader applicability and improved
effectiveness:

1. limitations of symbolic execution and constraint solving in general

2. limited applicability due to limited support for class type arguments

3. limited maintainability and usability of the generated results

4. inefficiency due to inexecutable test sequences

5. weaknesses in the presence of complex predicates

6. insufficient treatment of runtime exceptions

7. insufficient support of testing non-public methods

These limitations will be addressed by developing a new search-based automation ap-
proach which follows the ideas of evolutionary structural testing. Evolutionary structural
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testing is a dynamic test generation technique that has been developed for testing
procedural software. It employs evolutionary algorithms for the search for test data that
maximize the code coverage of a procedure. Applying evolutionary algorithms eliminates
the need to perform symbolic execution and constraint solving and hence overcomes the
limitations inherent to both techniques (limitation 1).

An objective of this thesis is to enable the generation of test sequences that can create
arbitrary objects that serve as arguments for succeeding method calls. This further
allows the application of automatic test generation to classes that do not only possess
method with primitive argument types (limitation 2).

An evolutionary algorithm requires both a suitable representation of candidate solutions
(points in the search space) and an objective function that guides the search to be defined.
An objective of this thesis is to develop a representation of test sequences that (a) relies
on the public class interfaces only, and (b) defines a search space that contains preferably
executable test sequences only in order to cope with both limitations 3 and 4.

Another objective is to design the objective functions used for the search so that they
provide sufficient guidance also (a) in the presence of complex predicates controlling
the test goal to be attained, (b) in the presence of undesired runtime exceptions which
prematurely terminate the evaluation of a test sequence, and (c) in the case of a test goal
that belongs to a non-public method. The strategy for objective function construction
aims at treating limitations 5, 6, and 7.

The thesis exemplifies the automation of a particular type of decision testing. However,
the approach is supposed to be also applicable to other structure-oriented techniques
without great modification. The object-oriented concepts of the Java programming
language (Gosling, Joy and Steele, 2005) are considered; the examples discussed in this
thesis are classes and methods written in Java. Yet, the ideas of this thesis are expected to
be applicable to testing software written in other object-oriented programming languages,
albeit additional adaptation might be required.

1.2 Contributions

The contributions of this work are the following:

1. The investigation in the peculiarities of class testing, with particular regard to
automatic test sequence generation;

2. The analysis of the state of the art of automatic test generation for class testing,
along with the identification of deficiencies of current approaches;

3. The proposal of an approach to automatic test generation for class testing based
on genetic programming, which consists of

• the proposal of a representation of test sequences based on method call trees,
which enables the use of an off-the-shelf genetic programming system for test
sequence generation, and
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• the proposal of a strategy for objective function design for decision testing
which copes with complex predicates, runtime exceptions, and non-public
methods;

4. The demonstration of the effectiveness of the approach in terms of achieved code
coverage;

5. The proposal of two strategies to improve the guidance to the evolutionary search
in the presence of Boolean predicates;

6. The demonstration of the effectiveness of these two strategies.

1.3 Structure

This thesis is organized as follows:

Chapter 2 – Background and Related Work lays the foundation of this work. It
starts with an introduction to object-oriented class testing, including a short summary
of the principles of object-orientation and the description of structure-oriented testing
techniques. Afterwards, automatic test generation for class testing is discussed. Finally,
evolutionary algorithms are detailed. Particular emphasis is given to genetic programming
which is the key ingredient of the new approach.

Chapter 3 – Evolutionary Class Testing describes the new approach to automatic
test generation for class testing in detail. First, it discusses the structure of test sequences
in general. Then, two different representations of test sequences are suggested. The
second representation is an extension of the first and simplifies the applied search
algorithm significantly. Following this, the strategy for designing a suitable objective
function for a given test goal is detailed. This includes a discussion of how to cope with
runtime exceptions and non-public methods. An approach to handling non-instantiable
classes is explained. Finally, the chapter discusses two strategies for improving the
landscape of the objective functions in the presence of function-assigned flags, a frequently
used code construct which sometimes hinders the evolutionary search.

Chapter 4 – Experiments reports on the results of three case studies which were
performed to empirically assess the effectiveness of the approach. The first case study
aims at demonstrating the effectiveness of the approach in terms of achieved code
coverage in general. The coverage results obtained by the evolutionary class testing
approach are contrasted with the results achieved by a random test sequence generator
and two commercial generators. The second case study investigates the value of the
objective functions for test goals belonging to non-public methods. It contrasts the
results obtained by using the extended objective functions with the results obtained
without using the extensions. The third case study evaluates one of the two strategies
for objective landscape improvement.
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Chapter 5 – Conclusion and Future Work summarizes the achievements of the
thesis, points out the restrictions and limitations of the new approach, and gives directions
for future research.



2 Background and Related Work

This chapter introduces structure-oriented unit testing of object-oriented software in
Section 2.1 and reviews work in the field of automatic test generation in Section 2.2 on
page 14. Evolutionary algorithms, the search technique on which this thesis builds, are
presented in Section 2.3 on page 35. The basic concepts discussed here are key to the
remainder of this thesis.

2.1 Structure-Oriented Class Testing

This section introduces structure-oriented unit testing of object-oriented software. It
describes the technical scope of this thesis. First, Section 2.1.1 highlights the concepts
of object-orientation. Next, Section 2.1.2 on page 9 gives an introduction to software
testing in general, while Section 2.1.3 on page 10 elaborates on testing object-oriented
software on the unit level in particular. Finally, Section 2.1.4 on page 11 discusses
structure-oriented testing techniques in depth.

2.1.1 Principles of Object-Oriented Software

According to Stroustrup (1988), a programming language is object-oriented if it provides
full support for data abstraction, encapsulation, inheritance, polymorphism, and self-
recursion. For example, C++ (Stroustrup, 2000) and Java (Gosling et al., 2005) are
object-oriented programming languages. In contrast, the language C (ISO/IEC 9899,
1990), whose primary abstraction is a module control flow, is a procedural programming
language (Binder, 1999). In the following, the mentioned object-oriented concepts will
be explained in more detail, along with the description of the basic terminology.

Data Abstraction (Classes, Objects, and Interfaces)

An object-oriented application is a composition of interacting objects that communicate
with each other by issuing function calls. An object is an instance of a class. At runtime
of an application, more than on instance of the same class can exist. A class is an
abstract data type. It assembles attributes and methods. Both attributes and methods
are called class members. The attributes are variables that represent the state of an
object. An attribute may be of primitive type, such as integer or float, or of a class
or interface type. The methods are procedures that typically operate on the attributes.
An interface is an abstract data type that consists of method declarations only; no
implementations are assigned to the method declarations. A class can implement an
interface by providing a method implementation for each method declaration of the
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respective interface. An abstract class is a class, some or all of whose methods are not
implemented, or that is explicitly declared as being abstract, respectively. An abstract
class cannot be instantiated.

Encapsulation

The attributes and methods of a class can be marked to be visible in certain contexts only.
Visible means that, in case of an attribute, the value of the attribute can be read and
written, and in case of a method that it can be invoked. Typically, an object-oriented
programming language offers the visibility modifiers public, protected, and private (Java
also offers the modifier package). A class member marked public is visible to all objects
of the application, regardless which class declares it. A class member marked protected
is only visible to objects of the class that declares it and objects of all subclasses of the
declaring class (see Section 2.1.1 for subclassing; in some programming languages, for
instance in Java, protected members are also visible to classes belonging to the same
package). A class member marked private is only visible to objects of the class that
declares it. A class member marked package is visible to the objects of all classes that
belong to the same package. A package is a particular collection of classes.

Visibility is enforced by the compiler for the programming language. A programmer
cannot write and compile code that accesses a private member from outside the class
that declares that private member – the compiler denies compiling. However, some
programming languages, such as Java, allow one to circumvent the visibility control
mechanism, and thus to break encapsulation by providing an additional programming
interface. Via this interface (in case of Java it is the Reflection API) non-public members
can be accessed freely. Section 2.2.4 on page 33 discusses the implications of breaking
encapsulation for software testing in more detail.

Inheritance

Subclasses can be derived from a given class. A subclass possesses all members of the
super class (the class from which it is derived) without the need to define these members
itself. This mechanism is called inheritance. Usually, inheritance is used to realize
some specialization of a class. A subclass may specify additional members and also may
override inherited methods, if they are accessible. Overriding means to redefine the
implementation of the method, hence possibly changing the behavior of that method.

Polymorphism

Different kinds of polymorphism are integrated in a programming language. Polymor-
phism of object identifiers (variables) is the most significant kind for an object-oriented
programming language. This polymorphism is the concept that allows a variable, which
is declared to be of a particular class type, to refer to an object of a subclass of that
class type. Whenever a member is accessed via the variable, the access is made on the
actual class, which is not necessarily the declared class. The actual method to invoke
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is identified at runtime. The mechanism of detecting the actual method to call during
runtime is called dynamic binding. Polymorphism is usually restricted by inheritance,
meaning that it applies to classes that belong to the same inheritance hierarchy. Other
kinds of polymorphism are, for instance, the template concept in C++ or the overloading
of operators.

Self-Recursion

Self-Recursion is the ability of an object to refer to its own identity. This means, for
instance, that a method of an object can call another method on the same object.

2.1.2 Software Testing in General

Testing is an important analytical quality assurance means in the area of software
development. It is an integral part of the established process models for software
development, such as the spiral model (Boehm, 1988). Its systematic application
is required by industrial standards, e.g. ISO WD 26262. The primary intention of
testing is to find faults in the software under test and to gain confidence in the correct
implementation of the functionality if no faults are found. Testing is an execution-based
technique meaning that the software under test will be executed. Thereby, the behavior
of the system under test will be observed and evaluated.

A comprehensive and complete test requires the tested software to run in each possible
scenario with any possible input. Since this is practically impossible (due to the
combinatorial explosion caused by the typically huge input value ranges), testing also
includes a sampling activity that selects relevant test inputs with which the test will be
performed. This sampling activity, called test case generation or simply test generation,
is crucial to software testing since it directly affects the quality of the overall test. Either
the selection of the sample tests is poor, possibly involving redundancy or leaving gaps,
in which case the overall test quality is also poor. Or the selection of tests covers a wide
range of possible behaviors of the system under test, in which case the significance of
the overall test as well as the fault-revealing potential is high.

Various approaches exist to guide the process of test generation. In general, one
distinguishes between approaches based on the specification of the system under test
(function-oriented testing, also called specification-based testing, or black-box testing),
and approaches based on the implementation of the system under test (structure-oriented
testing, also called implementation-based testing, or white-box testing). While function-
oriented approaches guide the process of test generation by the semantics (the software
specification), structure-oriented approaches guide it by the syntax (structural aspects
of the implementation). As described in Chapter 1 on page 1, function-oriented and
structure-oriented techniques complement one another since they are based on different
fault models.

Testing takes place at different aggregation levels of the software. Unit testing is
considered to be the most elementary level of testing. It addresses the examination of the
“atoms” of the software under test. With regard to the paradigm of object-orientation,
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these atoms are the classes, the instances of which the overall application is composed.
Therefore, unit testing of object-oriented software is also referred to as class-level testing,
or simply class testing. Integration testing applies to the level of compositions of atoms.
Different combinations of these compositions are examined on this level. The focus is
on the interaction of the elements of a composition. For the integration test of object-
oriented systems, the single classes are integrated step by step in order to finally realize
the intended application. At the system level, system testing examines the behavior of
the overall application in conjunction with all peripheral components.

2.1.3 Class Testing

Class testing focuses on the examination of a single class. Due to the data dependencies
among the methods (several methods access the same attributes) and data encapsulation,
often a single method cannot be tested in isolation, rather the interplay of several
methods is examined. For instance, a class test is intended to examine the correctness of
method equals of class C; however, at the same time the constructor of class C, which
is involved in the test since it creates an object for which to invoke method equals,
is also tested. The method on which a class test focuses will be referred to as method
under test.

Testing a particular class often involves other classes. For instance, the constructor
of class C might require an instance of class D to be passed as an argument. Other
methods might require instances of other classes as arguments. The entirety of classes
needed to test a particular class C will be referred to as test cluster for C. The test
cluster of C includes C. Attempts are made to minimize the “negative impacts” of the
additional classes on the tests by using surrogate classes, for instance mock classes (Beck,
2003). A surrogate class is a replacement for a genuine class; while it possesses the same
public interface, it might have completely different implementations of the methods. For
instance, a complex class which requires particular resources to be available (such as
database content or network resources) is often replaced by a mock class which mimics the
behavior of the surrogated class but does not require its resources. Instead of delivering
real database content, the methods of the mock class may return fixed, user-adjustable
values. Another reason for using mock classes is to avoid a failure caused by an object of
an associated class propagating to a failure of the primarily tested instance, thus making
the localization of the fault difficult. In general, it is not reasonable to replace each
class of the test cluster by a mock class. Therefore, unit testing is sometimes already
integration testing.

An object-oriented unit test consists of a sequence of method calls that model a
particular test scenario, and a sequence of assertions that checks whether or not the test
is passed. The sequence of method calls will be referred to as test sequence, the sequence
of assertion statements will be referred to as test evaluation.

A test sequence normally does not involve branching statements, such as if statements
or switch statements, because a test sequence considers one particular scenario and
does not allow alternatives: either the scenario is run through as expected, then the
test passes, or the scenario is not run through as expected, then the test fails. This
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thesis also assumes that a test sequence does not involve loop statements, such as while.
However, a test sequence can formulate a loop as the repetition of a subsequence (that
is, as an unrolled loop).

The test sequence shown in Listing 2.1 focuses on testing method equals of class
IntegerRange (its source code is shown in Listing A.2). However, it indirectly tests
the constructor and method clone, too. Statements 1 to 4 create the instances needed,
whereas statement 5 calls the method under test.

Listing 2.1: Test sequence examining method equals of class IntegerRange
1 // t e s t sequence
2 I n t eg e r i 1 = new In t eg e r ( 0 ) ;
3 I n t eg e r i 2 = new In t eg e r ( 100000 ) ;
4 IntegerRange i r 1 = new IntegerRange ( i1 , i 2 ) ;
5 IntegerRange i r 2 = i r 1 . c l one ( ) ;
6 boolean r e s u l t = i r 1 . equa l s ( i r 2 ) ;
7

8 // t e s t eva lua t i on
9 a s s e r t ( r e s u l t == true ) ;

Basically, a test sequence creates the objects necessary to execute the method under
test by calling object-creating methods and puts the created objects into particular
states by calling instance methods on them. The test sequence in Listing 2.1 does not
include state-changing methods; the initial states of the objects already accommodate
the objective of the test. In the example, at first two instances of class Integer are
created. These instances are then passed on to the constructor of the class under test
IntegerRange. Afterwards, method clone is called to create a copy of the IntegerRange
instance. Finally, the equality of the genuine and the copy is checked. According to the
test evaluation, the test only passes if the check delivers the true result.

2.1.4 Structure-Oriented Testing Techniques

Structure-oriented testing techniques derive relevant tests from the implementation,
that is the source code, of the unit under test. Various categories of structure-oriented
testing techniques exist, such as control-flow-oriented techniques or data-flow-oriented
techniques. This work focuses on control-flow-oriented techniques. Their characteristic
is that they derive relevant tests from the control flow graph (Hecht, 1977) of the unit
under test. The control flow graph is a graphical representation of all control flows
that can occur in a function (procedural programming) or method (object-oriented
programming). To simplify matters, both functions and methods will be referred to as
functions in the following.

Definition 2.1.1. The control flow graph G of function f is a directed graph, defined
by the tuple (N,E, s, x) where N is the set of nodes, each of which represents a basic block
of function f , E ⊆ (N ×N) is the set of edges (branches), each of which represents a
possible transfer of control between two basic blocks, s ∈ N is the starting node, and x ∈ N
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is the exit node. Additionally, the following two restrictions hold: ∀n ∈ N : (n, s) /∈ E,
and ∀n ∈ N : (x, n) /∈ E.

Figure 2.1 shows the control flow graph of function func from Listing 2.3. The

s

x

Figure 2.1: Example control flow graph

start node is labeled “s”, while the exit node is labeled “x”. A branching node (a node
from which two branches originate) represents a conditional statement, while a normal
node represents a basic block, that is, a series of sequentially executed statements. A
conditional statement refers to a predicate which can be composed of several atomic
conditions. Each conditional statement represents a decision.

The control flow graph of a function is the basis for various testing techniques. For
instance, branch testing drives the generation of tests by the question which branches of
the control flow graph are traversed during the execution of the tests. The technique
generates tests with the intention of maximizing the number of traversed branches.
Branch coverage, the ratio between the number of branches already covered by tests and
the total number of branches, is an indicator for the adequacy and completeness of a
given set of tests. Beizer (1990) discusses the various testing techniques in greater detail.

The following list gives a selection of common structure-oriented testing techniques
along with both the underlying fault model and the related coverage criteria:

• Statement testing assumes that each statement of the unit under test may contain
a fault. When executing each statement during testing the occurring failures
reveal the faults related to the statements of the code (presuming that a fault
actually propagates to an observable failure). Therefore, statement testing aims at
maximizing the number of statements executed during testing. Statement coverage
(also referred to as C0 coverage) indicates test adequacy and completeness for
statement testing. It is defined as the ratio between the number of all statements
executed during the execution of all tests and the number of all statements of the
software under test.

• Branch testing assumes that each branch of the control flow graph of the unit
under test may contain a fault. When traversing each branch during testing the
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occurring failures reveal the faults related to the transfer of control of the code
(presuming that a fault actually propagates to an observable failure). Therefore,
branch testing aims at maximizing the number of branches traversed during testing.
Branch coverage (also referred to as C1 coverage) indicates test adequacy and
completeness for branch testing. It is defined as the ratio between the number
of branches traversed during the execution of all tests and the total number of
branches of the respective control flow graph.

• Decision testing is very similar to branch testing. The only difference is that
decision testing takes only those branches of the control flow graph into account
that start at branching nodes. Other branches, such as those connecting the start
node with the first basic block node, are not considered.

• Path testing assumes that each path through the control flow graph of the unit
under test may contain a fault. When traversing each path during testing the
occurring failures reveal the faults related to the control flow paths (presuming
that a fault actually propagates to an observable failure). Therefore, path testing
aims at maximizing the number of program paths traversed during testing. Path
coverage indicates test adequacy and completeness for path testing. It is defined
as the ratio between the number of paths traversed during the execution of all
tests and the total number of paths of the respective control flow graph.

• Condition testing assumes that each predicate of the unit under test may contain
faults. When evaluating various combinations of the atomic conditions of a
predicate during testing, the occurring failures reveal the faults related to the
predicates in the code under test. Several versions of condition testing exist, each
of which focuses on different combinations of the atomic conditions of a predicate.
An important version is modified condition/decision testing.

Although the code-coverage-based testing techniques were originally designed for
testing procedural software, their applicability to testing object-oriented software is
widely accepted. Thorough investigations into the suitability of these techniques to
object-oriented testing, such as Kim, Clark and McDermid (2001) or Kim et al. (2000),
suggest their effectiveness and advise their use in combination with other, specifically
object-oriented, techniques.

The code coverage criteria listed above apply to a single function and not to a whole
class. In order to allow one to make statements concerning code coverage on the class
level, this thesis suggests the application of the metric method/decision coverage, which
has been developed during the research of this thesis. It combines the techniques of
decision testing and method testing. Method testing assumes that each method of the
class under test may contain a fault. When executing each method during testing, the
occurring failures reveal the faults in the methods. Therefore, method testing aims at
maximizing the number of methods called during testing. Method coverage indicates
test adequacy and completeness for method testing. It is defined as the ratio between
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the number of methods executed during the tests and the total number of methods
(both public and non-public).

Method/decision coverage is defined as follows:

Definition 2.1.2. Let dc be the number of decisions that occur in the source code of
class c. Additionally, let sc be the number of methods of c whose implementation is free
of decisions, meaning that it consists of a sequence of statements only. Furthermore, let
S be the set of test cases that are executed during testing. Let dtrue

c,S be the number of
decisions evaluated to true during test case execution at least once, and dfalse

c,S be the
number of decisions evaluated to false during test case execution at least once. Finally,
let sc,S be the number of decision-free methods entered during the execution of the test
cases in S. Then, method/decision coverage D+(c, S) for class c achieved by test
suite S is defined as follows:

D+(c, S) =
dtrue

c,S + dfalse
c,S + sc,S

2dc + sc
(2.1)

Method/decision coverage accumulates the decision coverage of the single methods
of a class. However, in addition it also accounts for methods that do not possess any
predicates. It combines the fault models behind both decision coverage and method
coverage.

2.2 Automatic Test Generation

When accomplished manually, the process of test generation is tedious, error-prone and
costly. The literature states that between 30% and 70% of a software project’s budget is
spent on testing (for instance, Beizer (1990) reports that 50% of the costs are typically
spent for testing). Furthermore, extensive testing can only be accomplished by effective
test automation (Staknis, 1990). The benefits of test automation are reductions in time,
manual labor, and cost.

Various approaches to automatic test sequence generation for structure-oriented class
testing have been proposed. They aim at generating a set of test sequences that achieve
high structural coverage of the source code of the class under test. They usually build
on the traditional test automation techniques for procedural software and extend them
to the field of object-oriented software. The approaches are either static or dynamic.
Static approaches do not execute the unit under test for test generation; rather, they
compute suitable tests from the program logic using symbolic execution and constraint
solving. Section 2.2.1 on the next page describes the static approaches to automatic test
generation for class testing, including a short explanation of symbolic execution and
constraint solving. Dynamic approaches execute the unit under test for test generation.
They transform the task of test generation to a set of search problems where the search
space is the set of all possible tests. A search strategy is then applied to find covering
tests. The unit under test is executed with a usually large set of tests before a covering
test will be encountered. Section 2.2.2 on page 20 describes the dynamic approaches in
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more detail. Section 2.2.3 on page 29 presents three commercial test generators. Due to
the lack of information as to which technology they rely on, a categorization according to
static or dynamic appeared not to be definitively justifiable. Therefore, this extra section
is introduced. Section 2.2.4 on page 31 generalizes the limitations of the approaches and
gives a summary.

2.2.1 Static Test Generation

The static approaches do not execute any test sequence for obtaining a covering one;
rather, they try to compute it. In order to do so, symbolic execution – a form of abstract
interpretation – together with constraint solving is applied. Since all static approaches
rely on symbolic execution and constraint solving, these techniques will be described
first, followed by the description of the individual static approaches.

Symbolic Execution and Constraint Solving

Symbolic execution is a static analysis technique. Its application to software testing was
pioneered by King (1976). The main idea of symbolic execution of a given program is
to exercise the program with abstract (symbolic) inputs rather than concrete ones. All
computations of the program affecting the inputs are not resolved to concrete results,
but are rather kept on an abstract level by using symbolic expressions. This implies the
program under consideration is not actually executed, its execution is rather “simulated”
step by step. After each step, the program is in a new symbolic state. If a branching
statement is encountered, each of the possible branches is visited according to the chosen
strategy (depth-first, breadth-first, or others). Typically two new symbolic states result
from a branching statement. A symbolic state represents a concrete statement along
with a concrete path to that statement. For each symbolic state, symbolic execution
delivers a set of constraints (referred to as the constraint system) which a concrete input
must satisfy in order for the path to the statement, represented by the symbolic state,
to be traversed.

The symbolic execution of a program can be visualized using a symbolic execution
tree. The nodes of the tree represent symbolic states while the links between the nodes
represent possible transitions. A symbolic state consists of the relevant symbolic inputs,
a path condition (PC), and a program counter, respectively. The path condition is
a Boolean expression applicable to the relevant symbolic inputs. It accumulates the
constraints that must be satisfied in order for the symbolic state to be reached. The
program counter is the reference to the statement to be executed next. The following
example shall clarify the working of symbolic execution. It is taken from Khurshid,
Păsăreanu and Visser (2003). Listing 2.2 shows the source code of a function that sorts
the inputs x and y; it ensures that, after the execution of it, x is smaller than y (overflows
should be neglected). Figure 2.2 on page 17 shows the corresponding symbolic execution
tree. The root node of the tree is the initial symbolic state (denoted state 1). It shows
that x and y are assigned the symbolic values X and Y, respectively. The path condition
is initially true meaning that this state is reachable without any constraints. Since the
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Listing 2.2: Simple function sorting two integers
void s o r t ( i n t x , i n t y )
{

i f ( x > y )
{
x = x + y ;
y = x − y ;
x = x − y ;
i f ( x − y > 0 )

a s s e r t ( f a l s e ) ;
}

}

first statement of function sort is a decision, two distinct subsequent symbolic states
are achievable (states 2 and 3). Either, the true branch of the decision is followed (state
2); then the predicate of the condition is incorporated into the path condition as shown
in the left child of the root node. Or, the execution follows the false branch (state 3);
then, the inversion of the predicate is added to the path condition as shown in the right
child of the root node. In the former case, symbolic execution considers the subsequent
assignment statements (states 4 to 6). While the path conditions remain unchanged
during the assignments, the symbolic values for x and y are adapted accordingly. The
final decision leads to a branch in the symbolic execution tree and the corresponding
new symbolic states (states 7 and 8) with the accumulated path conditions. Note that
during constraint solving, which might occur simultaneously or after symbolic execution,
it would turn out that the symbolic state 7 is infeasible due to the contradictory path
condition that evaluates to false.

Once the constraint systems are acquired for each relevant program element to cover,
a constraint solver tries to obtain the concrete inputs for each of the paths in order to
generate a test set with high code coverage.

Automated Testing of Classes

Buy, Orso and Pezze (2000) suggest an approach to generating test sequences based
on symbolic execution and automated deduction. Their work is concerned with the
data-flow-oriented coverage criterion all def-use pairs. This criterion demands that the
test sequences involve the assignment of each program variable (the def ), followed by
a reference to the respective variable (the use) without an intermediate reassignment.
The approach consists of 3 steps:

Step 1: Data flow analysis. This analysis aims at collecting all def-use pairs present
in the code of the class under test. A def-use pair is a pair of statements that relate to
each other in that the one statement defines a particular variable (writes the value of
it), while the other uses the same variable (reads the value of it); no redefinition of the
variable is allowed to occur between the considered definition and the use. Since the
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x: X, y: Y

PC: true

x: Y, y: X

PC: X>Y & Y-X>0

x: Y, y: X

PC: X>Y & Y-X<=0

x: Y, y: X

PC: X>Y

x: X+Y, y: X

PC: X>Y

x: X+Y, y: Y

PC: X>Y

x: X, y: Y

PC: X>Y

x: X, y: Y

PC: X<=Y

State 1

State 2 State 3

State 4

State 5

State 6

State 7 State 8

Figure 2.2: Example symbolic execution tree

analysis is applied to the whole class, a def-use pair can relate to statements that belong
to different methods.

Step 2: Symbolic execution. This step obtains the possible paths through the methods
of the class under test, including the predicates to be satisfied for a particular path to
be taken during execution. For each path, symbolic execution analyzes the relations
between the inputs and the outputs in an abstract (symbolic) fashion. These relations
are interpreted as method preconditions and postconditions.

Step 3: Automated deduction. During this step, test sequences are incrementally built
in order to execute the methods of the class under test so that a particular def-use pair is
covered without violating the requirement that a definition-clear path is taken between
the two code points. Automated deduction starts with method mu that contains the
statement involving the use of a particular variable and puts this method as initial
element into the test sequence to be built (resulting in < mu >). Then, all methods
satisfying the preconditions of mu are considered. If there are none, the def-use pair is
deemed to be infeasible. If there are multiple candidate methods, the approach starts
building a tree of method sequences. Tree building finishes once a constructor is inserted
or a predefined size limit is reached. In the first case, a feasible covering test sequence
has been found.
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The authors consider primitive instance variables only; they do not define what a
definition and a use of a class-type variable is. The example provided in their paper
involves methods with empty formal parameter lists only. Furthermore, the approach
addresses public methods only. The authors state that both symbolic execution and
automated deduction involve complex computation, making the approach expensive and
not scale well.

Concolic Testing

Sen, Marinov and Agha (2005) propose a test generation technique that combines
symbolic execution with concrete execution. They call this strategy concolic testing
(concolic = concrete + symbolic). Their early works are on concolic testing of procedural
software, while the later works also deal with object-oriented programs, in particular
with Java classes (Sen and Agha, 2006). It is classified as a static approach in this thesis,
because it primarily involves symbolic execution and constraint solving. However, it also
incorporates aspects of dynamic test generation.

The motivation behind concolic testing is that in practice, the path conditions of
the symbolic states can grow very complex, hence being not solvable by contemporary
constraint solvers. Therefore, the method under test is primarily executed using concrete
input values. These inputs are generated randomly or are provided by the user. During
concrete execution, the symbolic path conditions are collected for the traversed path.
Then, by systematically modifying the (symbolic) path conditions (e.g. by negating part
of the conjuncts) and solving the resulting constraints, new concrete input values are
obtained. These new inputs are likely to take an alternative path through the program.
By doing so repeatedly, eventually a high number of possible paths might be detected
for which the corresponding concrete input values are identified simultaneously. Also, if
the symbolic path constraints become too complex during concrete execution, parts of it
are replaced by the current concrete values.

For pointer variables, memory graphs are used that represent dynamic data structures
(such as objects) including their associations. Path constraints referring to pointer
variables are maintained separately from those referring to primitive variables. Logical
input maps are used to keep memory addresses abstract (logical) and to allow for
symbolic execution of pointer accesses.

A limitation of the concolic testing approach is that the constraint solver might still
be not powerful enough (Sen and Agha, 2006). Therefore, a requirement for the class to
be tested is that the number and lengths of the paths through a method is finite (which
practically means that neither loops nor recursion may be involved). The description of
the approach lacks an algorithm that transforms an obtained memory graph satisfying an
obtained constraint system to a method call sequence. This means the publications do
not describe how to construct the concrete objects that satisfy the symbolic constraints
via the public interfaces of the involved classes. Rather, the approach seems to presume
that all object attributes can be freely accessed, hence neglecting data encapsulation.
The work does not discuss how legality of the instances is ensured. It does not address
testing non-public methods either.
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Java PathFinder

Visser, Păsăreanu and Khurshid (2004) present a testing framework based on a Java
model checker called Java PathFinder. They transform the task of creating a test that
leads to the coverage of a particular code element to a model checking task. Model
checking in this context is essentially equivalent to symbolic execution and constraint
solving. Thereby, it is formulated as a model property that the code element in question
is not reachable. Then the model checker tries to provide a counterexample by trying to
reach the symbolic state representing the code element to cover. If the symbolic state is
reached, the corresponding constraint system defines an adequate, covering test as an
object graph (not as a method call sequence). The authors do not discuss how to obtain
a method call sequence; rather, they consider single methods which they model check.

The authors introduce the notion of lazy initialization which means that the constraint
system does not necessarily refer to a complete instance of a class: constraints do not
necessarily exist for all object attributes. Later in the process, new constraints may
refer to unreferenced attributes, making the consideration of these attributes necessary,
especially when the attribute at hand has a class type. For the symbolic initialization of
newly accessed class-type attributes, the authors suggest a heuristic based on random
choice: either, the attribute is initialized to null, or it is initialized to a new instance
of the class with uninitialized attributes, or a reference to an already created object is
reused. This heuristic is intended to systematically tread pointer aliasing.

Additionally, the work deals with a facility for symbolically executing method pre-
conditions in order to restrict object instantiations to legal ones. When solving the
constraint system for a particular path, optionally provided method preconditions are
executed symbolically in order to initialize the instances with reasonable attribute values.

The work does not include an algorithm to translate the obtained object graph to a test
sequence which creates the required instances satisfying all the constraints (Xie, Marinov,
Schulte and Notkin, 2005) of the associated constraint system. Data encapsulation is
broken since all attributes are written and read freely, regardless of whether or not they
are public. However, this is not critical presuming that formal class invariants are also
provided by the user. In experiments, the authors found that the approach does not
scale well and is not good in achieving high structural coverage.

Symstra

Xie et al. (2005) propose a testing framework called Symstra. It is based on exhaustive
method sequence exploration and symbolic execution. All conceivable method sequences
derived from the class under test are explored up to a predefined length. In order
to acquire concrete primitive arguments for the methods of a sequence that covers a
particular code element, symbolic execution of that method sequence is carried out.
Once a path to the symbolic state representing the code element in question is detected,
a constraint solver is employed to find suitable concrete primitive argument values.

The approach can handle public methods that take primitive arguments. As the
authors state, the approach cannot directly transform non-primitive arguments into
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symbolic variables of primitive type. The legality of the considered method call sequences
is ensured using additionally provided formal specifications (method preconditions and
postconditions). However, the exhaustive exploration of the space of all method sequences
is an expensive process.

2.2.2 Dynamic Test Generation

In contrast to the static approaches, where the methods of the class under test are
not actually executed but only symbolically, the dynamic approaches involve concrete
execution of candidate test sequences in order to obtain a covering one. A solution is
not systematically constructed, but sought using a search technique.

The idea of dynamic test input generation dates back to the work of Miller and
Spooner (1976) which deals with the dynamic generation of floating point test data.
Later, Korel (1990) used the alternating variable search technique to obtain test data for
structure-oriented testing of procedural software in general, not only for floating point
inputs. The main motivation for dynamic test generation is to overcome the limitations
of symbolic execution and constraint solving Korel (1990).

The next section recapitulates the history of dynamic test generation. The development
of dynamic test generation techniques culminates in evolutionary structural testing,
a highly developed approach to dynamic test generation that applies evolutionary
algorithms as a search technique (cf. Section 2.3 on page 35). The section presents state
of the art evolutionary structural testing of procedural software, before the next sections
describe the dynamic approaches to automatic test generation for class testing.

Evolutionary Structural Testing

In 1990, Korel (1990) suggested the dynamic approach to automatic software test data
generation in order to cope with the limitations of the existing static approaches based
on symbolic execution and constraint solving. The main idea of Korel’s approach is to
transform the task of creating a set of test inputs which achieve high path coverage to a
set of search problems. For each path to be covered, a concrete test input is searched: the
input space of the function under test, defined by the data type ranges of its arguments
and possible other inputs, is heuristically explored by a trial-and-error strategy. Korel
starts with a randomly created input. The function under test is executed with the input
and the execution is monitored. For monitoring, the tested function is instrumented,
meaning that additional trace statements are inserted which allow the comprehension of
the details of the execution. A cost function (that is, an objective function) expresses to
what extent the execution path taken by the input deviates from the targeted program
path. Then, a new – and hopefully more suitable – input is created via the alternating
variable method. By iteratively applying this method, finally a covering test input is
supposed to be found.

Other researcher adopted Korel’s approach to address other structure-oriented testing
techniques, such as branch testing. Furthermore, other search strategies, such as genetic
algorithms, were applied instead of the alternating variable method. For instance,
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Sthamer (1996) and Jones, Sthamer and Eyres (1996) apply genetic algorithms to find
test inputs that cover a given program path. A genetic algorithm is a meta-heuristic
optimization technique; it is described in detail in Section 2.3 on page 35. It performs
parallel searches that are guided by an objective function. This function assigns a
quantitative rating to each candidate solution which expresses the fitness of the solution.
Tracey, Clark, Mander and McDermid (1998b) modify the approach of Jones et al.
(1996) by introducing additional distance functions for conditions which involve logical
operators, such as AND, OR, and NOT in order to yield better objective functions;
furthermore, they apply simulated annealing (Kirkpatrick, Gellat and Vecchi, 1983),
another heuristic search technique. Wegener, Baresel and Sthamer (2001) extend the
dynamic approach further in order to attack the limitation of the previous approaches
that a particular program path must be selected which leads to the code element to
cover. They suggest an objective function which is composed of two distance metrics.
This objective function guides the search for covering test inputs irrespective of the
path to be taken to the targeted code element. Genetic algorithms are used to carry
out the searches. Their approach, which can be considered as the state of the art of
evolutionary structural testing for procedural software, will be described in more detail
in the following.Worthy of mention as other pioneering works in the area of evolutionary
structural testing are those of Xanthakis, Skourlas and LeGall (1992), Pargas, Harrold
and Peck (1999), and Michael, McGraw and Schatz (2001).

The application of an evolutionary algorithm as a search technique requires the
definition of the search space and what a point in this search space is. With evolutionary
structural testing, such a point is a test input used to execute the function under test.
The representation defines how a concrete test input is encoded by a data structure
that an evolutionary algorithm is able to operate on. In addition, an objective function
is required to apply an evolutionary algorithm. This function assesses a generated
candidate solution according to its ability to cover a given code element. Section 2.3
on page 35 provides details on the terminology and concepts of representations and
objective functions.

The phenotype search space Φ is the space of all value vectors that comply with the
interface of the function under test.

Listing 2.3: Simple C function
1 i n t func ( i n t a , i n t b , double c )
2 {
3 i n t l o c a l ;
4 i f ( a == 0 )
5 {
6 l o c a l = read_integer ( ) ;
7 i f ( l o c a l == b )
8 re turn round ( c ) ;
9 e l s e

10 re turn −round ( c ) ;
11 }
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12 e l s e
13 re turn round ( a∗c ) ;
14 }

For instance, for the function shown in Listing 2.3, Φ = Dint ×Dint ×Ddouble ×Dint

where Dint is the value range of type integer and Ddouble is the value range of type
double. These value ranges correspond to the four input variables of the function (note
the input variable in line 6). In order to limit the search to semantically reasonable
inputs only, the user can provide more restrictive value ranges. With evolutionary
structural testing, phenotype search space and genotype search space are conceptually
identical. This is possible since suitable variation operators exist for each primitive data
type of a procedural programming language such as C. Structured data, for example
structs and unions, are decomposed into their building blocks. The task of the decoder
(cf. Section 2.3.1 on page 36) is then to construct the respective data structures from a
sequence of primitive values.

The overall task to obtain a set of test data which maximizes the given coverage
criterion is divided into subtasks. For instance, with branch coverage, each branch
becomes a test goal for which an individual evolutionary search is carried out. Hence,
each test goal requires an individual objective function to be defined that is particularly
tailored to the test goal. However, the construction of the objective functions for
the test goals of the function under test can be automated. Different types of code
coverage criteria require different strategies when considering how to construct a suitable
objective function. Baresel, Sthamer and Schmidt (2002) describes the strategies for
various control-flow-oriented criteria, such as branch coverage, and data-flow-oriented
criteria. In the following, the strategy for branch coverage is described since it is
similar to the criterion method/decision coverage for which this work will later exemplify
evolutionary class testing in Chapter 3 on page 53.

An objective function, as suggested by Wegener et al. (2001), consists of two distance
metrics which express how close the execution of the function under test with a concrete
input is to reaching the targeted test goal. These two distance metrics are approximation
level and branch distance. The former will be referred to as control dependence distance
in this work for reasons of consistency (the “approximation” is in fact a distance). Before
defining these two metrics, the concepts of critical branches and critical nodes must be
introduced.

Definition 2.2.1. A branch c of the control flow graph of the function under test is
called critical branch with respect to a particular branch t if no path exists between
c and t. Node p(c) is called a critical node, where function p assigns each branch its
source node (from which the branch starts).

In other words, this means that, once a critical branch is taken during execution, it is
not possible to reach the target branch any more.

Definition 2.2.2. Let t be the targeted branch and c the first critical branch that
execution diverged down. Then np = p(c) is called problem node. Let Pnp,t be the
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set of all paths from problem node np to target branch t. Additionally, let χ(π) be the
number of critical nodes of path π. Then, the control dependence distance dC is the
minimum number of critical nodes that lay on a path between the problem node and the
target:

dC = min({χ(π)|π ∈ Pnp,t}) (2.2)

Figure 2.3 shows on the left a control flow graph of the function from Listing 2.3,
including the path provoked by an example input (depicted by the nodes in gray and
the dotted branches). Whereas on the right, the control flow graph of the same function
but with a different path, provoked by another input, is shown. Neither of the inputs

c

t

c

c

t

c

Figure 2.3: Two execution flows of the function from Listing 2.3

leads to the coverage of target branch t. The value of dC for the left execution flow is 1,
which is the minimum number of critical nodes of all paths from the problem node (the
double-line node) to branch t. In the case of the right execution flow, dC = 0 as there is
no critical node on the way from the problem node to the target.

The other metric, branch distance, is relevant if two different inputs yield the same
execution path. In this case, the values of dC are the same. However, one of the inputs
might be closer to reaching the target in terms of the predicate assigned to the problem
node. For instance, assume that two test inputs, input A and input B, lead to the
execution path shown on the left in Figure 2.3. Additionally, assume input A leads to
the concrete predicate ( 1 == 0 ) at the problem node, and input B leads to the concrete
predicate ( 100 == 0 ). Intuitively, input A is “closer” to evaluating the first condition
so that the true branch will be traversed, which is favorable when targeting branch
t. The metric branch distance formalizes the distance of the execution in terms of the
predicate assigned to the problem node.

Definition 2.2.3. Let P be the set of all predicates and B = {true, false}. Branch
distance dB(p, b), where p ∈ P is the predicate in question and b ∈ B is the desired
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outcome (desired with respect to the target), is defined as follows:

dB(p, b) =
{

0 if E(d) = b
dp otherwise

(2.3)

where E(p) with E : P → B is the evaluated outcome of decision p, and dp is the
relation-specific distance function for p.

For each relational operator, such as <, >, a specific distance function dp is defined
which expresses how distant the evaluation of the predicate p was to being evaluated
to the alternative outcome. For instance, in the case of the predicate ( a == 0 ), the
distance function is da==0 = |a− 0|, mapped into the interval [0, 1). Hence, the distance
for an input which leads to a small value of a (and is thus closer to satisfying the
condition than a large value of a), is also small. The mapping into the interval [0, 1)
ensures that the greatest possible distance is smaller than the smallest possible value of
the control dependence distance.

Table 2.1 shows the generic distance functions that are typically applied.The value
range of all distance functions is [0, 1). The table shows in the first column the names of

true desired false desired

dx==y 1− (1 + ε)−|x−y| dx 6=y

dx<y 1− (1 + ε)y−x(1− κ) dx≥y

dx≤y 1− (1 + ε)y−x dx>y

dx>y dy<x dx≤y

dx≥y dy≤x dx<y

dx 6=y 1 dx==y

de1∧e2 max(de1 , de2)
de1)+de2

2

de1∨e2

de1+de2
2 max(de1 , de2)

d¬e (de, false) (de, true)

Table 2.1: Distance functions

the distance functions for the relational and logical operators. In the second column, it
shows the definition of the respective distance function, if the desired outcome of the
predicate is true. Analogously, the third column shows the definition of the respective
distance function, if the desired outcome of the predicate is false. Which outcome
is desired depends on the location of the target branch. ε ∈ (0, 1) is a configurable
parameter, and κ refers to the smallest possible value of the operands’ data types. The
definitions of the last row mean that the distance function for the opposite outcome is
to be applied.

In conclusion, the objective function ωt(i) for a test goal t and the individual (=input)
i is defined as follows:

ωt(i) = dC + dB (2.4)
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where dC and dB are the metrics control dependence distance and branch distance with
respect to the problem node caused by the execution of input i. In the case of the
example function above, the metric values for test input A, leading to the concrete
predicate ( 1 == 0 ) and consequently to a miss of the target branch t, are dC = 1 and
dB ≈ 0.005 (with ε = 0.005). Then, the objective value ωt(A) = 1.005.

The following sections describe the search-based approaches in the field of automatic
test generation for class testing. While the first approach relies on a binary search
strategy, the latter two apply genetic algorithms.

BINTEST

Beydeda and Gruhn (2003) propose a test generation approach based on a binary search
strategy which they call BINTEST. The authors modified the test data generation
approach of Korel (1990) by replacing the alternating variable search with a binary
search. They consider the attributes of the class under test to be additional inputs to
the method under test besides its regular arguments. Hence, they do not generate test
sequences, but an input which includes the arguments for the method under test along
with the attribute values of the instance under test.

Following the strategy of Korel, BINTEST tries to iteratively satisfy the predicates
that occur along a particular path in the control flow graph of the method under test
by incrementally modifying a concrete user-provided candidate input. In addition to
the concrete input, BINTEST makes use of user-provided domain intervals which are
iteratively bisected on a per-variable basis if the input does not satisfy some path
predicate. The middle element of one of the bisected intervals becomes the variable
value at the considered position of the input. The assumed monotony of the expressions
of the condition to be evaluated favorably is exploited to select the interval to continue
with after bisecting.

For class-type arguments, the state of the input objects is modified using a particular
midValue method that each participating class must implement. This method creates
an object that is the middle element of a given interval.

BINTEST requires that a total ordering exists for the domain of each input variable.
Additionally, the path predicates must exhibit monotone behavior in order for the
search to be effective and efficient. However, especially for objects, usually no (intuitive)
total ordering exists. For instance, when thinking of a class Person that models the
properties of a human, specifying an adequate ordering relation is hard or even impossible.
Consequently, it is hard or impossible to implement the midValue method for such a
class. Another consequence of this is that the monotony of the predicates cannot be
exploited and hence no direction is provided to the binary search. Even if a total ordering
can be specified for a particular class, the midValue method artificially introduces data
dependence among the attributes of this class, possibly preventing relevant object states
from being explored during the binary search.

Since Beydeda and Gruhn consider the attributes of an object as additional inputs,
they implicitly break the encapsulation of the object. The legality of a test input must
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be ensured by the user who is responsible for providing correct input domain intervals
and proper implementations of the midValue methods for all relevant classes.

As the authors state, BINTEST suffers from the problem of combinatorial explosion
when the input domains have to be divided into multiple intervals. Since each combination
of intervals will be considered, a large number of binary searches are carried out in the
worst case, thus making the approach inefficient. Furthermore, complex statements of
the method under test must be decomposed into atomic ones in order for the framework
to work. The authors argue that this decomposition could be automated. However, they
do not offer a specific technique for doing so. Their work does not address non-public
methods.

eToC

Tonella (2004) uses a genetic algorithm for the generation of test sequences. He pro-
poses a representation of test sequences using a source-code-like structure. Effectively,
Tonella makes no distinction between phenotype search space and genotype search space.
Tonella’s GA applies four special mutation operators and one crossover operator for the
incremental evolution of the candidate solutions: mutation of a primitive input value,
constructor change (substitution of a constructor by an alternative constructor of the
same class), insertion of a method invocation, removal of a method invocation, and one-
point crossover (cutting two sequences at randomly defined parts and reassembling the
obtained fragments). Tonella’s objective functions follow the distance-oriented approach,
meaning that they incorporate a distance metric which expresses how close the execution
of a test sequence is to covering the desired code element. As the distance metric, he
uses the number of control dependences covered during test sequence execution, as
suggested by Pargas et al. (1999). In initial experiments, Tonella’s approach was able
to automatically create tests for six classes from the Java standard class library that
achieved a relatively high percentage of branch coverage.

McMinn (2004b) argues that using solely the number of covered control dependences
as objective value creates a search space containing plateaus which degenerate the
evolutionary search to a random search if the algorithm reaches such a plateau. Hence,
the search may be unsuccessful in the presence of non-trivial predicates. Tonella’s
approach does not address the coverage of non-public methods. Furthermore, the
mutation operators insertion of a method invocation, constructor change, and the
crossover operator one-point crossover do not inherently preserve the feasibility of the
test sequences they operate on. Consider the example application of the crossover
operator as shown in Figure 2.4 on the facing page. At the top, the figure shows the
two parent method sequences to be crossed over (using Tonella’s notation: constructor
calls are abbreviated, and primitive values are separated from the calls and located
at the end of the sequence after the ’@’ sign, the assignment with the null reference
includes the actual type). The crossover operator (cut-points indicated by the lines
in the parent individuals) produces two offspring individuals that are shown in the
middle of Figure 2.4 on the next page. The right offspring individual represents an
infeasible method sequence since there is no parameter object available for the call
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$a = Integer(int);

$b = Integer(int);

$c = IntegerRange($a, $b);

$d = Integer(int);

$e = Integer(int);

$f = IntegerRange($d, $e);

$c.equals($f);

@

0,1,15,100

$a = Integer(int);

$b = Integer(int);

$c = IntegerRange($a, $b);

$d = IntegerRange#null

$c.equals($d);

@

33,48

$a = Integer(int);

$b = Integer(int);

$c = IntegerRange($a, $b);

$d = Integer(int);

$e = Integer(int);

$c.equals($d);

@

33,48

$a = Integer(int);

$b = Integer(int);

$c = IntegerRange($a, $b);

$d = IntegerRange#null

$f = IntegerRange($d, $e);

$c.equals($f);

@

0,1,15,100

$a = Integer(int);

$b = Integer(int);

$c = IntegerRange($a, $b);

$d = Integer(int);

$e = Integer(int);

$c.equals($d);

@

33,48, 5

$a = Integer(int);

$b = Integer(int);

$c = IntegerRange($a, $b);

$d = IntegerRange#null

$d = Integer(int);

$e = Integer(int);

$f = IntegerRange($d, $e);

$c.equals($f);

@

0,1,15,100

fixing fixing

Figure 2.4: Example application of Tonella’s crossover operator
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of constructor IntegerRange. Additionally, the offspring individuals contain useless
method calls. To deal with these anomalies, the crossover operator also includes a fixing
phase in which constructors for the missing objects are randomly inserted before the
method that requires them (in the figure, the boxed statements are the inserted ones).
This can be a recursive procedure if some classes have no parameter-less constructor.
Furthermore, unnecessary method calls are removed and the primitive arguments are
adapted (the boxed value has been inserted). The resulting offspring individuals (shown
at the bottom of Figure 2.4 on the preceding page) represent feasible method sequences.
The mutation operators insertion of method invocation and constructor change also
exhibit the issue of missing and unnecessary method calls and therefore include a fixing
phase, too. Applying fixing to the variegated individuals is not problematic; however, it
reduces the performance of the search. The approach has also problems if a candidate
test sequence causes an uncaught runtime exception (which, for instance, occurs if a
randomly generated parameter violates a method precondition).

ETOOS

Wappler (2004) elaborates on an extension of the sequence testing approach of Baresel,
Pohlheim and Sadeghipour (2003) in order to apply it to object-orientated software
(ETOOS = evolutionary testing of object-oriented software). It considers a method
sequence as being composed of the three elements methods, their respective object
assignments and primitive parameter values. For instance, the method sequence shown
in Listing 2.1 can be considered as the composition of the elements shown in Figure 2.5.
The methods identify which methods are to be called, the object assignments specify

Integer(int)

Integer(int)

IntegerRange(Integer,Integer)

IntegerRange.clone()

IntegerRange.equals(Object)

methods

-

-

1@Integer, 2@Integer

1@IntegerRange

1@IntegerRange,

  2@IntegerRange

object assignments

0

100000

-

-

-

basic-type params

Figure 2.5: Decomposition of a test sequence

which instances to be used for the individual method calls, and the basic type parameters
specify the primitive argument values for the method calls. Composing a test sequence in
this way allows for a representation based on integers and reals. In turn, this allows using
off-the-shelf genetic algorithms for test sequence search. The methods are represented
using a vector of integers. For evaluation, the integer values of a genotype individual
are mapped to the actual methods using a method lookup table. Thereby, an integer
serves as a key for the table entries. The object assignments are also represented by
a vector of integers. The candidate instances which are potentially available for the
particular method calls are serially numbered. As shown in Figure 2.5, for each class, a
pool of available instances is maintained. The genotype integers are then used to identify
the instances to be used from the appropriate instance pool for the respective method
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calls. Wappler applies a two-level evolutionary algorithm: on the first level, method
integer sequences are optimized, whereas on the second level, the respective object
assignments and basic type parameters derived from a concrete method integer sequence
are optimized. Performing a two-level optimization allows the genotype specification for
the second level to be exactly tailored to the candidate method sequence from the first
level.

However, when optimizing the method integer vectors, infeasible individuals can also
be generated. For instance, the first integer might be mapped to a call of a non-static
method. This method cannot be executed since, initially no target objects are available.
Therefore, Wappler uses different penalty functions in order to guide the evolutionary
search to regions in the search space that contain feasible solutions. Nevertheless, the
generation of infeasible individuals makes the approach inefficient since, in some cases,
many generations are necessary to encounter a feasible solution. Furthermore, the
search may suffer from a loss of diversity if the search space contains only relatively
few feasible individuals and the regions containing them are not closely related to each
other. As the search then concentrates on one of those regions, the approach may fail if
the ideal solution can only be found in another region. The approach of Wappler does
not address non-public methods. Similar to the approach of Tonella, the approach of
Wappler has problems if a candidate test sequence causes an uncaught runtime exception.
Furthermore, the user must specify the maximum length of the test sequences.

Other Dynamic Approaches

Liu, Wang and Liu (2005b) combine ant colony optimization (ACO) with a multi-
agent genetic algorithm (MAGA). While the former is applied to construct method call
sequences, the latter is employed to optimize the corresponding primitive arguments.
The description of the approach and its validation are very preliminary.

Oster (2007) applies multi-objective search strategies to create data-flow-oriented test
suites. The specialty of this approach is that a candidate solution is a complete set of
tests rather than a single test. One criterion to optimize is the number of tests in the set
of tests, another criterion is the number of covered code elements. The multi-objective
search then attempts to find a set of tests with a trade-off between the number of
individual tests and achieved code coverage. By doing so, however, the achievable
coverage might be not maximal.

2.2.3 Commercial Test Generators

Today’s market for software testing tools offers a great variety of different products to
support the testing process. Among these, three test sequence generators are found
which are capable of automatically creating structure-oriented class tests. Since they
are commercial, the vendors do not reveal much of their internal functioning. Therefore,
the following descriptions assemble information taken from technical whitepapers and
published investigations which attempted to disclose their underlying principles.
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Agitator

The testing tool Agitator is provided by Agitar Software, Inc. Besides other features that
support the test process, it includes a facility to generate test sequences for a given class
automatically. Agitator accomplishes a static analysis which Boshernitsan, Doong and
Savoia (2006), the vendors of the tool, characterize as a heuristics-driven path analysis
intended to identify input value constraints. Various constraint solvers are involved in
order to find suitable input values. In order to cope with complexity and performance
issues, Agitator uses multiple shortcuts and approximations. For instance, constraint
solving occurs only for part of the desired execution path. Also, specialized and generic
constraint solvers are applied. For instance, for string objects, a special string constraint
solver is used. The static analysis is combined with a set of heuristics. For instance,
for an integer value occurring as an input value, the values −1, 0, and 1 are tried in
addition to each constant found in the source code. Each of the encountered constants is
additionally tried with an increment and decrement of 1, respectively. For string values,
random text and arbitrary combinations of alpha, numeric, and alphanumeric elements
are tried. String constants found in the source code under test are also considered.

It appears that Agitator performs this analysis for the method of interest only. The
creation of the required instances is accomplished by using either an arbitrary available
constructor, or a user-provided instance factory. In order to provoke state transitions of
the involved objects, the instance methods are called with auto-generated arguments.
Agitator breaks the encapsulation of the tested objects by directly accessing the class
internals. The tool comprises an additional reflection framework. Methods referring to
this framework are part of the generated test sequences.

CodePro

CodePro is a testing tool provided by Instantiations, Inc. Like the other commercial
tools, beside a lot of other features it offers a mechanism to automatically generate
unit test sequences. CodePro attempts to maximize line coverage, which is very similar
to statement coverage. The generation algorithm is based on a set of heuristics for
primitive input generation and object instantiation: at first, it performs some kind of
static analysis in order to identify relevant values for primitive and string parameters.
For instance, in the case of a switch statement, each value appearing in a non-empty
case label is considered interesting. In the case of a class-type parameter, it tries to
instantiate the class using zero-argument static methods. If this fails, it tries to create an
instance using constructors that require arguments, by recursively creating the necessary
parameter values. Once interesting parameters are obtained, CodePro examines various
combinations of them. Since the number of all possible combinations of parameter values
for a given method can be impractically huge, additional heuristics are applied in order
to focus on promising combinations only.

CodePro’s test-case-generating algorithm is deterministic, meaning that the application
of the heuristics occurs in a predefined manner and without any randomness. Thus, it
always generates the same test sequences for a given test object.
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CodePro takes public class members into consideration only while non-public class
elements are ignored. However, in contrast to many other related approaches, the test
sequences that CodePro generates exclusively refer to the public interface of the classes
without breaking object encapsulation.

Jtest

Jtest is a testing tool provided by Parasoft, Inc. The main purpose of Jtest is to generate
test sequences at random which provoke uncaught runtime exceptions. At the same
time, it tries to maximize statement coverage or branch coverage, depending on the
configuration by the user. The vendors state that some kind of random generation takes
place which, however, involves static analysis information. Csallner and Smaragdakis
(2004) make the observation that Jtest uses chains of method sequences where constructor
calls are recursively chained up to a chain length of 3. The authors also assume that
Jtest heuristically applies values that are known to usually cause problems (such as null
references).

Xie et al. (2005), whose approach is built on top of Jtest, state that Jtest uses smart
random generation. These authors suggest – with respect to Jtest – that random tools
often generate the same test sequences and obtain no test sequences that achieve full
coverage. They also observe that Jtest creates many redundant test sequences. Jtest
also attacks non-public methods. However, it breaks encapsulation meaning that the
resulting test sequences involve calls to the Jtest framework in order to intrusively create
objects in needed states and to directly call non-public methods.

2.2.4 Limitations of the Existing Approaches

Table 2.2 recapitulates the existing approaches. Column originator names the originators

originator name type criterion

Buy et al. (2000) ATOC academic def-use pairs
Xie et al. (2005) Symstra academic branch
Visser et al. (2004) PathFinder academic branch

Tonella (2004) eToC academic decision
Wappler (2004) ETOOS academic decision
Beydeda and Gruhn (2003) BinTest academic path

Sen et al. (2005) jCUTE academic path
Boshernitsan et al. (2006) Agitator commercial decision
Parasoft, Inc. (n.d.) Jtest commercial decision
Instantiations, Inc. (2007) CodePro commercial line

Table 2.2: Related approaches

of the approach. Column name gives the name of the approach assigned by its originator.
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A name in italic indicates that it was not assigned by the originator but is only used
in the context of this thesis for the purpose of better reference. Column type indicates
whether the approach is mainly academic or commercial. In the former case, publications
including a technical description of the underlying algorithms is available, as opposed to
the latter case. Column criterion gives the most advanced coverage criterion that the
respective approach supports (some approaches support multiple criteria, such as Jtest
which allows choosing between statement coverage and branch coverage). Most of the
approaches are academic. Nearly all approaches support control-flow-oriented coverage
criteria; the only approach supporting a data-flow-oriented coverage criterion is that of
Buy et al. (2000).

In the following, the limitations that have already been pointed out in the individual
descriptions of the approaches are systematically elaborated, discussed in more detail
and finally summarized.

Limitations of Symbolic Execution and Constraint Solving

Mainly the usage of loops, arrays, and dynamic data structures hinders the application
of symbolic execution. When loops, or recursive function calls, appear in the code, these
constructs must be expanded in order to make a comprehensive exploration of the state
space possible. In the case of unbounded loops, where the loop counter is not bounded by
a constant, as well as in the case of recursion, the expansion might result in a very high
or even infinite number of symbolic states (Tillmann and Schulte, 2006; Michael et al.,
2001; Tracey, Clark and Mander, 1998a). Also, in the case of a large number of branching
statements, the number of symbolic states may grow impractically huge. These issues are
known as state space explosion. Problems are also encountered when arrays are accessed
using non-constant variables as indices (Michael et al., 2001). Then, array element
determination might be infeasible (Korel, 1990). Also, the presence of pointers causes
symbolic execution to run into difficulties (Michael et al., 2001). It may also struggle if
the involved statements of the program are not purely mathematical. Constraint solving,
which is applied to simplify the path conditions and to obtain concrete input values,
can be difficult if the path conditions are complex; then, the constraint systems might
not be solvable. In particular, solving constraints including pointers is an undecidable
problem (Sen et al., 2005).

An approach to automatic test generation that applies symbolic execution and con-
straint solving automatically inherits the limitations immanent to these techniques.
However, some of the related approaches use approximations and heuristics to address
these issues.

Limited Support of Class Type Arguments

Object-oriented real-world applications make use of classes whose methods possess not
only primitive argument types, such as integer or char, but also classes, interfaces,
and arrays. Therefore, testing a class by examining its methods involves the creation of
parameter objects. For the coverage of some code elements during testing, the parameter
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objects must be in particular states. Consequently, a class test involves the creation of
an instance of the class under test along with the creation of needed parameter objects.
Additionally, the test calls methods on the instances in order to provoke state changes.

Demanding that the class under test possesses methods with primitive arguments
only does not require test sequences that create parameter objects. Assuming that an
instance of the class under test can easily be created, this requirement even enables
the application of conventional test generation techniques for procedural software. An
object-oriented test generation approach that demands that solely primitive arguments
are required is applicable to a very limited range of classes only.

Limited Maintainability and Usability of the Results

Some researchers suggest violating the principle of encapsulation in order to facilitate
the setup of a test and to increase observability. For instance, some suggest accessing
the non-public attributes of a class via additional methods that are added to the class
during testing. Then, the states of the objects participating in the test can be set
easily. Additionally, the states can easily be inspected, enabling the formulation of more
detailed assertions. An alternative to inserting additional methods is using the reflection
mechanisms provided by the runtime system, if such is available.

However, breaking encapsulation is considered bad practice by other researchers
(Binder, 1999) for several reasons. One reason is that inserting special testing methods
potentially introduces faults, hence making the localization of the causes of erroneous
behavior during test execution more difficult. Another reason, possibly the most impor-
tant one, is that by directly setting the state of an object, states may be achieved that
contradict the specification, meaning that they do not comply with the class invariant.
For instance, imagine a public setter method that sets the value of a private attribute.
Assume that it checks the value passed to it: if it satisfies a particular condition, the
attribute will actually be set to that value, otherwise the value will be rejected. When
directly accessing that attribute via reflection or an artificially inserted setter method, it
is possible to set the attribute value to any arbitrary value, regardless of whether or not
it would have passed the check by the original setter. As a result, the tests may examine
behaviors of the tested class that cannot occur in reality when the class is integrated
into an application. Furthermore, tests that directly refer to the non-public members of
the class under test are easily broken by refactorings. For instance, if a private method
is renamed, the tests that refer to that method must be reworked.

Search Spaces with Inexecutable Tests

The nature of the dynamic approaches is that they search the space of all possible
test sequences to find a sequence that attains the targeted test goal. It depends on
the definition of the search space as to whether or not it contains only executable test
sequences. For instance, the representation used by Wappler (2004) defines the search
space in such a manner that inexecutable test sequences can occur during the search.
Although finally an executable test sequence will be delivered as the result of a search
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(presuming it is successful), the search must also deal with inexecutable sequences that
intermediately occur. However, searching through regions of the search space that
contain inexecutable test sequences incurs extra time and cost as a result of the high
number of objective function evaluations. This tends to lower the efficiency of the search
in general. In the presence of complex method call dependences, for instance if the test
cluster classes do not possess default constructors that do not need any argument to
be called, the regions with inexecutable sequences are relatively large. As a result, the
evolutionary search must first discover regions with executable test sequences before
exploring them in depth to find a covering one.

Limited Effectiveness for Complex Predicates

A predicate is complex if it is composed of several conditions whose satisfaction is not
trivial. A condition is trivial if the majority of input situations (parameters of method
calls and object states) satisfies it. Only a test that meets all the prerequisites to satisfy
the conditions by detecting appropriate method arguments and setting up the object
states suitably is able to cover a test goal depending on a complex predicate. However,
complex predicates are a challenge to both static and dynamic test generation approaches.
With the static approaches, a complex predicate becomes part of the path constraint
when symbolically executing the class under test with the intention to encounter a path
to the test goal at hand. The constraint solver must calculate a solution to the constraint
system which includes the complex predicate. This might require great computational
power or is even not possible with today’s constraint solvers (Sen and Agha, 2006). With
the dynamic approaches, the search is not guided sufficiently if the objective function
used does not account for the single conditions of which the predicate is composed. In
this case, the objective function landscape contains plateaus which do not provide great
help to the search, since they do not indicate any direction in which better solutions are
expected to be found. For instance, the objective functions that Tonella (2004) uses do
not account for the single conditions and hence degenerate the evolutionary search to a
random search in the presence of complex predicates.

Limited Treatment of Runtime Exceptions

Runtime exceptions pose a problem especially to the dynamic test generation approaches.
Section 3.5.5 on page 80 elaborates on the concept of runtime exceptions in more detail.
They occur for instance, if a method is called with unsuitable arguments, meaning that
the arguments violate implicit method preconditions. In an optimal case, the search
space that a dynamic approach explores does not contain test sequences that contain
method calls with improper arguments. However, since the source code usually does
not indicate which arguments are valid and which are not via static analysis without
formally specified preconditions, the search space is typically defined so that also test
sequences violating method preconditions can be encountered. If this happens and such
a test sequence is evaluated, very often a runtime exception occurs that terminates the
execution of the test sequence. The existing dynamic approaches have problems in this
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case; they simply abort the current search and proceed with the next test goal to do, if
they do not break down completely.

Limited Support for Non-Public Methods

Achieving high code coverage of the class under test demands that non-public methods are
also addressed during test generation. Thoroughly testing a non-public method requires
that a public method that calls the non-public method is invoked with appropriate
arguments and the instance under test is in a proper state. However, the existing
approaches do not address the generation of tests for non-public methods. As a result,
the achievable code coverage is suboptimal. Although an extension of symbolic execution
to non-public methods as well as the distance calculation with respect to test goals
belonging to non-public methods might be feasible, no existing work is able to handle
the problems of recursion and polymorphic method calls in this context.

Need of Additional User Input

Some approaches require the user to provide additional input to the test generator apart
from the source code of the class under test. For instance, BINTEST (Beydeda and
Gruhn, 2003) depends on a user-provided test to start with and user-provided domain
intervals. Furthermore, the classes involved in the test must implement a particular
framework method.

Demanding additional user input, such as the implementation of framework methods
or formally specified method preconditions, postconditions, and class invariants, is not
considered a substantial limitation. It is therefore not listed in Section 1.1 on page 3.
However, the usability of an approach is considered limited in the case if the provision
of the respective input is not straightforward but requires intensive labor on part of the
user.

Summary

Table 2.3 on the following page gives an overview of the limitations of the existing
approaches. An “x” in a cell indicates that the column property applies to the respective
approach. A “ ‘*” indicates that the approach is likely to possess the respective limitations.
For instance, the approaches relying on constraint solving typically have problems with
complex predicates. However, this depends on the type of constraint solver and whether
constraint solving is combined with a heuristic, as Agitator does this for instance. A “?”
indicates that it is not known whether or not the approach has the respective limitation
due to the lack of description in the literature.

2.3 Evolutionary Algorithms

Search-based solutions to problems become particularly interesting when analytical
techniques are either too expensive or not appropriate. For instance, NP-hard problems
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(NP = Nondeterministic Polynomial-time) are such problems (Garey and Johnson, 1979),
for the solution of which an analytical, deterministic algorithm may be known but might
not be practicable due to its complexity. It might require a computer to calculate for
thousands of years in order to provide a final solution.

Evolutionary algorithms represent an optimization technique that has been shown
to be effective for attacking NP-hard problems, and, in general, for handling problems
for which classical techniques are not feasible. They do not require the derivation of
the function to be optimized nor gradient information, not even a mathematical model
of the problem such as differential equations. They have turned out to be extremely
powerful when being applied to problems that are related to non-linear, multi-modal,
and discontinuous search spaces. Search-based software test generation involves problems
of this type. Evolutionary algorithms suggest themselves as the optimization technique
of choice for search-based testing since the respective search spaces typically exhibit
characteristics with which traditional optimization techniques struggle.

This section describes the principles of evolutionary algorithms to enable a better
understanding of the principles of evolutionary structural testing. Section 2.3.1 presents
the foundational mechanisms of evolutionary algorithms in general. Genetic algorithms
and genetic programming, both of which are particular types of evolutionary algorithms,
are focused on in Section 2.3.2 on page 44 and Section 2.3.3 on page 46, respectively.
Particular emphasis is given to these two types since they are important ingredients for
the evolutionary class testing approach described in Chapter 3 on page 53.

2.3.1 Evolutionary Algorithm Principles

An evolutionary algorithm is a stochastic, metaheuristic optimization technique, or
search strategy, respectively. It is based on the fundamental mechanisms of selection
and variation in analogy with the Darwinian theory of biological evolution (Darwin,
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1859). This theory postulates the survival of the fittest as one of its main principles.
Since research in the field of evolutionary algorithms has started in the 1940s (Eiben

and Smith, 2003), many different types of evolutionary algorithms have been developed.
While in the beginning various researchers worked independently, using their own
terminology and mechanisms, today the field of evolutionary computation tries to unify
the terminology and to abstract from particular implementations. As a consequence,

Evolutionary Algorithms

Genetic Algorithms

Genetic Programming Evolutionary Programming

Evolution Strategies

Figure 2.6: Classification of evolutionary algorithms according to Eiben and Smith (2003)

the term evolutionary algorithm is widely used to denote the abstract concept of a
bio-inspired algorithm, hence constituting a particular class of optimization algorithms.
Elements of this class are again classes of algorithms that have evolved independently.
Figure 2.3.1 shows a common classification of evolutionary algorithms according to
Eiben and Smith (2003). Pioneers of the four types of evolutionary algorithms are the
following:

• genetic algorithms: Holland (1975)

• genetic programming: Koza (1992)

• evolution strategies: Rechenberg (1971)

• evolutionary programming: Fogel, Owens and Walsh (1965)

The most prominent distinguishing features of the different types are both the repre-
sentation of a potential solution to the search problem under consideration and the
specific variation and selection mechanisms which each type characteristically uses. The
principles of evolutionary algorithms in general will be detailed in the following. The
subsequent two sections are dedicated to genetic algorithms and genetic programming,
respectively. Both evolution strategies and evolutionary programming are not addressed
since they are not applied in this thesis.

An evolutionary algorithm works on a set of candidate solutions, the so-called popula-
tion (denoted by P in the following). The candidate solutions are also called individuals.
The individuals represent potential solutions to the optimization problem to be solved.
An individual consists of one or more genes, each of which models an independent
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aspect of the solution. The parallel nature of the search by working on a population of
individuals is intended to avoid getting stuck in local optima as optimization techniques
working on a single candidate solution only may, such as hill climbing (Russell and
Norvig, 1995). An evolutionary algorithm requires the notion of fitness which expresses
how well an individual is suited to solve the optimization problem at hand in relation
to the other individuals. Based on the information about the fitness of the individuals,
an evolutionary algorithm iteratively selects promising individuals and creates new
individuals from them using crossover and mutation (which, together, constitute the
variation mechanism). An iteration of selection and variation is called a generation. The
algorithm terminates if a sufficiently good solution has been found or another termination
criterion applies.

Figure 2.7 shows how an evolutionary algorithm is employed. On the left, the figure
shows the evolutionary algorithm as an agent. In order to generate reasonable individuals,

World of Evolutionary Computation World of Application Domain

Evolutionary

Algorithm

Decoder

Objective

Function

genotype

individuals

objective

values

phenotype

individuals

Problem

Specification

Figure 2.7: Evolutionary algorithm context

the algorithm needs a problem specification which describes how a candidate solution
must look like and which constraints it must satisfy. This specification defines the
representation of the candidate solutions, also called encoding. A representation defines
how a candidate solution of the phenotype search space Φ is encoded as a candidate
solution in the genotype search space Γ. The phenotype search space is the set of all
possible candidate solutions to the given optimization problem. The genotype search
space is the set of all instances of the representation used. For instance, when optimizing
the design of an airplane wing, all conceivable wing designs constitute the phenotype
search space; a phenotype individual is one particular wing design. A particular wing
design can uniquely be described by several design parameters. Thus, the genotype
individual corresponding to a particular wing design is the set of the respective concrete
design parameter values. The evolutionary algorithm does not work on wing designs, but
rather on the parameters describing a wing design. The mapping of genotype individuals
to phenotype individuals is performed by the decoder as shown in Figure 2.7. The task
of the decoder is to interpret a genotype individual as a solution to the optimization
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problem. The decoder can be modeled as a function δ in the following way:

δ : Γ → Φ (2.5)

An evolutionary algorithm requires an objective function ω to be provided. The fitness
of an individual is based on the objective value that the objective function returns.
In analogy to the Darwinian theory of evolution, the objective function defines the
environment in which the individuals must prove their value. The objective value of an
individual expresses how well this individual is suited to solve the given optimization
problem in general. Poor individuals receive bad objective values while promising
individuals receive good objective values. The objective function can be modeled as a
mapping of the individuals to a particular rating value which is typically a real value.
In the case of a multi-objective optimization, the objective value consists of multiple
real values of which the evolutionary algorithm tries to obtain the best trade-off. In the
case of single-objective optimization, as applied in this thesis, the objective function is
defined as follows:

ω : Φ → R (2.6)

where R is the set of real numbers. An evolutionary algorithm aims at either minimizing
or maximizing the objective value. For many optimization problems the ideal (theoretic)
objective value is known; then, it is tried to approach this value as close as possible.

Figure 2.8 shows the major steps of an evolutionary algorithm including the evo-
lutionary loop. These steps apply to the genotype individuals, not to the phenotype
individuals. In the following, these steps are described in short. Afterwards, a more
detailed description follows, including various common strategies for these steps.

Mutation

Crossover
Fitness 

Assignment

Selection

Replacement
Offspring

Evaluation
Evaluation

Initialization

Termination?

Figure 2.8: Principle procedure of an evolutionary algorithm

First, the algorithm creates the initial population (Initialization). Typically, the initial
population consists of randomly generated individuals. Then, the algorithm evaluates
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the individuals by calculating the objective value for each (Evaluation; thereby, the
individuals are decoded to phenotype individuals to which the objective function is then
applied). Thereby, it may turn out that a sufficiently good solution has already been
found (Termination, where the user specified in advance what “sufficiently good” is). In
this case, the algorithm terminates and delivers this solution. Otherwise, the algorithm
enters the evolutionary loop. Before carrying out the selection of parent individuals that
are to produce offspring (i.e. new candidate solutions), it assigns a fitness value to each
individual (Fitness Assignment). The fitness values are based on the objective values of
the individuals. Afterwards, the algorithm selects a subset of the current population
based on the fitnesses of the individuals. This subset undergoes crossover where several
individuals are recombined, thereby creating new individuals (Crossover). The new
offspring individuals are then mutated meaning that some of their parts are slightly
modified (Mutation). The mutated individuals are evaluated to obtain their objective
values (Offspring Evaluation). The algorithm updates the current population according
to the chosen update strategy (Replacement). Possibly, it discards existing individuals
and inserts some of the offspring individuals. Finally, the algorithm checks whether any
termination criterion applies in which case the algorithm exits the evolutionary loop and
delivers the best individual found (Termination).

In the following, the steps are described in more depth. Various strategies to implement
these steps are presented and discussed. The selection of the strategies to be described
was driven by the question of whether they will be applied by the evolutionary class
testing approach described in Chapter 3 on page 53. However, in order to provide a
general overview of the field, additionally, popular strategies are pointed out for some of
the steps.

Initialization

During initialization, the evolutionary algorithm creates the initial population P0. It
creates random individuals that are equally distributed within the search space. However,
if good solutions are already known – e.g. from a previous run of the optimization – then
the algorithm can include these solutions. This strategy is called seeding. Also, problem-
specific knowledge can be used to create initial individuals that represent promising
candidate solutions, thus accelerating the evolutionary search.

Evaluation

Evaluation means that the algorithm calculates the objective value of each individual.
For doing so, it hands the set of relevant individuals over to the objective function
that in turn delivers the objective values. The objective function is not necessarily a
mathematical function. More generally, it can be imagined as a black box that accepts
a set of candidate solutions and delivers the objective values of these solutions by
performing any kind of computation.
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Fitness Assignment

The purpose of fitness assignment is to assign a fitness value to each individual in
order to enable the directed selection of parent individuals. In general, the fitness of an
individual directly depends on its objective value. Note that, while the objective value
of an individual is an absolute value, the fitness of an individual is a value relative to all
current other “competing” individuals. Two categories of fitness assignment strategies
exist: ranking, and fitness-proportional assignment.

Ranking (Baker, 1985) exploits the ordering of the individuals defined by their objective
values: it simply sorts the individuals according to their objective values. Thus, the
amount of the objective value becomes essentially irrelevant; rather the position (rank)
in the sorted list of individuals L = (i1, i2, . . . , in) will be decisive.

Linear ranking, as proposed by Baker (1985), defines a linear correlation between the
fitness and the rank of an individual:

f(i) = 2− psel + 2(psel − 1)
pL(i)− 1
|P | − 1

, |P | > 1 (2.7)

where pL(i) is the index of the individual within the sorted list L, psel is the selection
pressure, and |P | is the size of the current population. Selection pressure is an adjustable
parameter controlling the preference of individuals in terms of the objective value. The
higher it is, the more individuals at good ranks will be favored.

Non-linear ranking (Pohlheim, 1995) is a modification of linear ranking intended to
allow a higher selection pressure than linear ranking does. Non-linear ranking assigns
the fitness according to the following formula:

f(i) =
|P | ·XpL(i)−1∑|P |

j=1 Xj−1
(2.8)

where X is the solution to the polynomial 0 = (psel − 1)X |P |−1 + pselX
|P |−2 + · · · +

pselX + psel.
Fitness-proportional assignment (Goldberg, 1989), an alternative category of fitness

assignment strategies, establishes a direct correlation between the objective value and
the fitness of an individual. Goldberg (1989) suggests the following scaling for fitness
assignment:

linear : f(i) = aω(i) + b (2.9)
linear − dynamic : f(i) = aω(i) + bg (2.10)

logarithmic : f(i) = b− log(ω(i)) (2.11)
exponential : f(i) = (aω(i) + b)k (2.12)

where a, b, k are problem-specific scaling parameters and g is the number of performed
evolutionary cycles (generations).

However, since fitness-proportional assignment suffers from the issues of premature
convergence (loss of diversity of the population, convergence to a local optimum) and
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stagnation (extremely small differences of the fitness values that lead to an effectively
random selection), ranking strategies have shown to be superior to fitness-proportional
assignment (Pohlheim, 1999).

Selection

Selection is conducted in order to choose the individuals that will produce offspring
via crossover. A common requirement posed on a selection strategy is that it must
not select the fittest individuals only – which decreases the ability of the algorithm to
escape local optima – but also selects individuals with poor fitness with a particular
(low) probability. In the following, the selection strategies stochastic universal sampling,
tournament selection, and truncation selection will be explained.

Stochastic universal sampling (Baker, 1987) is a popular selection strategy that exhibits
optimal characteristics concerning the resulting set of selected individuals (Pohlheim,
1999). Figure 2.9 illustrates how stochastic universal sampling works. Each individual

Figure 2.9: Stochastic universal sampling

of the current generation is assigned to a segment of a circle where the segment size
correlates to the fitness of the individual: the higher the fitness is, the larger the segment
will be. The segments are sorted according to their sizes. A pointer wheel is then placed
at the circle where the angle between two pointers is equal for each two neighboring
pointers. The number of pointers is equal to the number of individuals to be selected.
When positioning the wheel, it is ensured that at least one pointer points at the individual
with the best fitness (at the largest segment). Finally, all those individuals are selected
at which at least one pointer points.

Tournament selection (Goldberg and Deb, 1991) performs individual competitions –
so-called tournaments – among the individuals. For each individual to be selected, a
single tournament will be carried out. A tournament consists of a random preselection
of sT individuals where sT is the (user-defined) tournament size. The individual with
the best fitness wins the tournament and will be added to the set of selected individuals.
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In contrast to both stochastic universal sampling and tournament selection, which
are rather natural strategies, truncation selection (Muehlenbein and Schliekamp-Voosen,
1993) is a rather artificial one. It simply selects the m best individuals of the population.
The parameter truncation threshold T implies how many individuals will be selected:
m = |P |T . Truncation selection defines the resulting set of selected individuals IS as
follows:

IS = {i ∈ P |p(i) ≤ |P |T}, 0 ≤ T ≤ 1 (2.13)

Crossover and Mutation

Crossover and mutation realize variation of the population meaning that they create
new individuals. New individuals relate to unexplored points in the search space; hence,
crossover and mutation are key steps of the evolutionary algorithm.

Crossover recombines multiple individuals (usually 2) that have been previously
selected by a selection strategy. Typically, it generates as many offspring individuals as
parent individuals are involved. The intention of crossover is to assemble those building
blocks of the existing individuals that highly contribute to a good objective value to
form new individuals that are even better suited to solve the search problem at hand.
This idea is also known as the building block hypothesis (Goldberg, 1989).

While crossover applies to multiple individuals, mutation operates on exactly one
individual. It slightly modifies an offspring individual by varying a gene of it with a
relatively small probability. In case of an integer-valued gene, a mutation could be
adding a small value ∆v to the current value. Mutation is intended to explore the
environment of a point in the search space where the size of the environment depends
on the extend of the possible mutation step.

For both crossover and mutation, various strategies exist that depend on the underlying
encoding. Both Section 2.3.2 on the next page and Section 2.3.3 on page 46 present
crossover and mutation operators that are common in the field of genetic algorithms
and genetic programming, respectively.

Population Update (Replacement)

Population update aims at creating the next generation of individuals, thus establishing
the new population. Population update is also called reinsertion or replacement, re-
spectively. The following parameters define the behavior of the population update: the
reinsertion rate specifies to which extend the individuals of the current population are
to be discarded, while generation gap specifies the ratio of the number of individuals of
the current population to the number of offspring individuals to be inserted into the new
population. For example, a reinsertion rate of 1.0 indicates that the current population
is to be completely replaced by the offspring individuals. Particular configurations of
the two parameters have led to the definition of distinct population update strategies
which have practically proven of value. Some of these will be explained in the following.

Pure reinsertion denotes the strategy where the number of offspring individuals is
equal to the size of the current population; all individuals of the current population are
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replaced by the offspring individuals.
Uniform and elitist reinsertion require the number of offspring individuals to be

smaller than the size of the population. While uniform reinsertion replaces individuals
of the current population uniformly randomly, elitist reinsertion replaces the unfittest
individuals by offspring individuals.

Reinsertion with offspring selection does not insert the entirety of the offspring
individuals, but selects among them based on their objective values. Typically, it applies
truncation selection.

Termination Criteria

An evolutionary algorithm terminates if a predefined termination criterion applies. The
algorithm can be instructed to observe multiple criteria simultaneously; if at least one
of them is satisfied, the evolutionary algorithm terminates. One distinguishes between
direct termination criteria and indirect termination criteria. Direct termination criteria
relate to a single property of the state of the evolutionary algorithm, whereas indirect
termination criteria take other aspects, such as the history of the evolutionary loops,
into account. Direct criteria are for instance: the predefined number of generations is
reached, a sufficiently good solution has been found, or a timer has expired. Indirect
criteria are for instance: the standard deviation of the objective values of the whole
population declines beyond a predefined threshold, the difference of the average value of
the best objective values of the last k generations and the current best objective value
declines beyond a predefined threshold, or the difference of the best and worst objective
value of the current generation declines beyond a predefined threshold.

Taken individually, some of the mentioned criteria do not guarantee that the evolu-
tionary algorithm terminates at all. Hence, in practice a combination of multiple criteria
is usual where at least one criterion guarantees that the algorithm terminates after a
practically relevant amount of time. For instance, the criterion imposing a maximum
number of generations gives this guarantee.

2.3.2 Genetic Algorithms

Genetic algorithms constitute a particular type of evolutionary algorithms. It was
Holland (1975) who pioneered its research. Originally, genetic algorithms were designed
to operate on bitstrings (meaning that the genotype individuals were concrete bitstrings),
providing crossover and mutation operators that reassemble bitstring and flip bits
randomly in order to create offspring individuals. In the context of this thesis, the
term genetic algorithm shall denote any evolutionary algorithm which is defined on a
representation that allows encoding data structures of fixed size, meaning that each
individual has the same length (the same number of genes). Typically, the underlying
representation of a genetic algorithm is a vector of real values which, for instance, model
particular design parameters. This representation requires accurate, representation-
specific variation operators for crossover and mutation, while the evolutionary operators
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for fitness assignment, selection, population update, and termination, described in
Section 2.3.1 on page 36 can be applied (since they are representation-independent).

In the following, the strategies for individual initialization, the crossover operators
and mutation operators used by genetic algorithms are described. Since there is a great
number of different strategies, only those are included that are relevant for this thesis.

Individual Initialization

The initial population of a genetic algorithm is created randomly, unless existing good
solutions are known. To this end, for each gene Gi of an individual, a value is selected
from the (user-provided) value range Di with equally distributed probability. If the
number of seeded individuals (known solutions) is smaller than the desired population
size, the remaining individuals are created randomly as described above. If the number
of seeded individuals is greater than the size of the population, a bigger initial population
is allowed whose size is then adjusted after the first evaluation.

Crossover Strategies

Discrete recombination creates a new individual by randomly assembling the genes of
the parent individuals. A random variable bi decides from which parent the gene at
position i is to be copied to the offspring individual. The following formula describes
this procedure:

GOffspring
i =

{
GParentA

i if bi = 1
GParentB

i otherwise
(2.14)

where bi ∈ {0, 1} is a Boolean variable with an equally distributed random value.

Mutation Strategies

Mutation of real values and integer values applies to real and integer values. The
treatment of integer values is essentially the same as that of real values, except that the
values are rounded after mutation and that the smallest mutation step is 1 (However,
the actual mutation step may be a real value nevertheless.)

This mutation strategy incorporates multiple adjustable parameters. Mutation rate is
the probability of occurrence of a mutation (i.e. if the mutation strategy is to be applied
to a single gene). Mutation step defines the maximum possible extent of a mutation
in terms of the “delta” of a gene’s value. Muehlenbein and Schliekamp-Voosen (1993)
suggest the following relation between the genuine individual, being composed of the
genes GGenuine

i , and the mutated one, being composed of the genes GMutant
i :

GMutant
i = GGenuine

i + siriai (2.15)

where i denotes the randomly selected position of the gene to be mutated, si ∈ {−1, +1}
is the sign of the mutation value, ri = rDi where r is the mutation range and Di the
value range of the gene i, and ai = 2−uik is the proportion of the maximum step where
ui ∈ [0, 1] and k is the mutation precision. The values of both si and ui are chosen
uniformly randomly.
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2.3.3 Genetic Programming

Genetic programming is a particular type of an evolutionary algorithm intended to
evolve computer programs that fulfill a given task. As opposed to genetic algorithms,
where a candidate solution consists of a fixed-size data structure representing a number
of parameters, genetic programming basically allows generating and evolving data
structures of variable size that represent program statements or computational operators,
respectively.

Though dating back to the early 1980s, genetic programming has been intensively
researched during the 1990s. The theoretical foundations and description of the principles
of genetic programming are mainly due to Koza (1992).

Historically, genetic programming emerged from a machine learning background: given
a training set of inputs and expected outputs, a computer program was sought that
maps the given inputs to the outputs correctly, hence enabling to obtain the probable,
so far unknown, outputs from new inputs. Multiple candidate computer programs were
considered and iteratively modified in order to reduce the difference of the expected
outputs and the actual outputs for all of the training inputs. The objective function
was defined as follows:

ω(i) =
∑
s∈S

(i(s)− t(s))2 (2.16)

where i ∈ Φ is a computer program (Φ is the space of all computer programs), S is the
set of inputs (samples), and t(s) is the expected output for the input s. For variation,
crossover and mutation of computer programs were applied.

The most common representation that genetic programming uses is the tree represen-
tation. Thereby, a candidate solution is a program tree assembling multiple functions
together and defining the sequence of execution. Alternative representations, which
are not considered further in this work, are linear structures and graph structures. A
description of these representations is given by Banzhaf, Nordin, Keller and Francone
(1998). In the following, the tree representation is described in more detail since it is an
essential component of the approach described in this thesis.

A program tree is a directed graph that consists of nodes, each of which represents a
particular function, a variable or a constant, respectively. The children of a node are
considered to deliver the arguments for the function that the node represents. Figure 2.10
on the facing page shows a simple program tree representing the mathematical expression
−7x + 3. This expression might be a candidate solution for a particular optimization
problem. The tree was constructed by randomly selecting functions, variables, and
constants from a user-defined repertoire, referred to as the function set. Functions in
this repertoire with at least one argument are referred to as non-terminals, whereas
variables, constants, and functions with no arguments, are referred to as terminals. A
constant, such as −7, is referred to as ephemeral random constant (ERC).

Originally, the arguments of the functions of the function set were not typed. This
implies that the return value of any function as well as the type of any variable and
constant must be able to be passed as an argument at each argument position of any
function. This restriction is known as the closure property of the function set. While this
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+

3*

x-7

Figure 2.10: Simple program tree

restriction is easily fulfilled by function sets used in a purely mathematical context (e.g.
when considering operations in real space R), it imposes, however, an impractical hurdle
to the formulation of optimization problems of other application domains. Therefore,
Montana (1995) extends genetic programming by introducing types and the notion of
strong typing. Montana’s extension requires an additional, user-defined, type set to
be specified. Both the return values and the parameter values of the functions of the
function set are then typed, using a type from the type set. The evolutionary operators
for initialization, crossover, and mutation care about the types and create individuals
which satisfy all type constraints. Additionally, the tree itself is assigned a particular
type τ , allowing only functions returning values of that type τ to appear as root node.
Consider the function set shown in Table 2.4 Note that function “/” returns a real

function name return type argument types

+ Z Z, Z
- Z Z, Z
* Z Z, Z
/ R Z, Z

Table 2.4: Typed function set

value while all functions require integer values as arguments. Consequently, a genetic
programming algorithm is not able to create a tree that contains the “/” function since
it cannot appear as a child due to the type mismatch (presumed that the type of the
tree is Z). In conclusion, strong typing means that the functions of the function set are
formulated using types which are then respected during the evolutionary search.

Haynes, Schoenefeld and Wainwright (1996) extend the idea of strong typing by
introducing type inheritance which enables the inclusion of polymorphic functions in
the function set. A polymorphic function is a function that is declared to accept an
argument of a particular type T , but is capable of being executed with arguments of
any subtype of T .

In the following, the tree-based genetic programming operators for initialization of the
initial population and for variation are described. Most of the strategies are applicable to
both untyped genetic programming and to strongly-typed genetic programming. Where
appropriate, the different implementations of the operators tailored to untyped and
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strongly-typed genetic programming are pointed out.

Individual Initialization

In order to set up the initial population of a genetic programming algorithm, the strategies
GROW (Koza, 1992), HALF (Koza, 1992), and Uniform (Böhm and Geyer-Schulz, 1996)
have proven of particular value. Uniform is a relevant strategy in the context of strong
typing.

GROW (Koza, 1992) requires a maximum tree depth to be specified in advance. The
depth of a tree is defined as the number of nodes that occur along the longest path
from the root node to a terminal node. GROW starts by selecting a function from the
function set randomly. This function becomes the root node. Then, GROW iteratively
adds child nodes to the root by randomly selecting from both the non-terminals and the
terminals. This procedure continues until all nodes possess their required children or the
tree depth prior to the maximum tree depth is reached. Then, in order to satisfy the
remaining unsatisfied child relations, GROW exclusively selects from the set of terminals.
GROW does not necessarily build trees that have the specified maximum tree depth,
since all child relations might be satisfied by terminals before reaching the tree depth.
GROW requires that a terminal exists for each type.

The FULL strategy (Koza, 1992) is very similar to GROW. The only difference is
that FULL does not select from both the non-terminals and the terminals, but only
from the non-terminals unless the maximum tree depth is reached. Once, this depth is
reached, it chooses nodes from the terminals only. Consequently, all branches of a tree
created by FULL have the specified maximum depth. Like GROW, FULL requires a
terminal to be present for each type.

Uniform (Böhm and Geyer-Schulz, 1996) is a tree building strategy intended to allow
random tree creation with a uniform probability distribution of all program trees that
are conceivable with respect to the given non-terminals and terminals. When using
GROW or FULL, the probability distributions are not uniform since the probability
of generating a tree with a particular depth decreases significantly as the desired tree
depth increases (Böhm and Geyer-Schulz, 1996): for all conceivable trees with a valid
depth (valid according to the desired maximum tree depth), the probability of being
created during initialization is not equally distributed (in general, smaller trees have
higher probabilities than bigger ones). Another restriction that Uniform deals with is
that GROW and FULL require terminals to be present for each relevant type, since
GROW and FULL must be able to add a terminal that returns a particular type when
the maximum tree depth is being approached. This limits the applicability of GROW
and FULL for some practical problems. Uniform precalculates the number of subtrees
that are possible when considering the types that are used by the functions in the
function set. For instance, for a type that is returned by exactly one function without
any argument, exactly one subtree is possible (consisting of that function only). In the
case that multiple functions return a value of the considered type, the number of subtrees
is recursively accumulated over these functions. Once the subtree counts are calculated,
Uniform generates trees taking the subtree counts into account. It also requires the
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specification of a maximum tree depth. Details of the procedure can be found in Böhm
and Geyer-Schulz (1996).

Crossover Strategy

In general, one basic crossover strategy exists for tree-based genetic programming:
subtree crossover. Thereby, randomly selected subtrees of the parent individuals are
exchanged. Various ways have been suggested to select the subtrees. In the following,
the initial, rather “naive” but very common version of subtree crossover, including its
subtree selection strategy, is described.

Subtree crossover is applied to copies of the parent individuals. Figure 2.11 illustrates
the procedure of subtree crossover. At first, it selects a subtree of each parent by random.

Parent A Parent B

Offspring BOffspring A

Figure 2.11: Subtree crossover

In the case of strongly-typed genetic programming, the selection of subtrees accounts
for the types of the subtrees (i.e. the return types of the functions represented by
the root nodes of the subtrees) and ensures that only subtrees with the same type are
selected. Once two subtrees are selected, they are exchanged between the two individuals,
resulting in two new program trees. If at least one of the new trees exceeds the predefined
tree depths, the process will be repeated if appropriately configured. Subtree crossover
returns the unchanged copies of the parents if it fails to select subtrees that would result
in program trees of legal size.
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Mutation Strategies

ERC mutation applies to the ephemeral random constants. Figure 2.12 depicts how
ERC mutation works. At first, it randomly selects a subtree of the individual to be

ERC

ERC

ERC

ERC

Genuine Mutant

Figure 2.12: ERC mutation

mutated. Then, it identifies all ERC leaf nodes of the selected subtree and applies a
type-specific mutation operator to each of the ERCs. For instance, in the case of an
integer ERC, integer mutation as described in Section 2.3.2 on page 45 is applied. Note
that an ERC itself represents a subtree and can potentially be selected. In contrast, as
an extreme case, also the root node of the tree might be selected which results in the
mutation of all ERCs of the individual.

Demotion mutation (Chellapilla, 1998) inserts a new function node into the individual
to be mutated. Figure 2.13 illustrates the process. Initially, a subtree is selected randomly.

Genuine Mutant

Figure 2.13: Demotion mutation.

Then, a new function randomly chosen from the function set is inserted between the
parent of the selected subtree and the subtree itself. The new function becomes the new
parent of the subtree, while the new function becomes a child of the former parent of
the selected subtree. If the new function requires further children, randomly generated
subtrees will be added to the new function. In the case of strongly-typed genetic
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programming, the selection of subtrees is restricted to those exhibiting the following
characteristics: at least one function exists in the function set which (1) has a return
type that is compatible with the child type expected by the parent node of the subtree,
and (2) expects at least one child of the type of the root node of the subtree. If the
maximum tree depth is exceeded after the mutation, the offspring individual will be
discarded and the procedure will be repeated until a tree with legal size is attained. If
this fails after a predefined number of tries, the unchanged copy of the parent will be
returned.

While demotion adds additional nodes to an existing tree, promotion mutation removes
nodes. It can be seen as the inversion operation of demotion mutation. Figure 2.14
shows how promotion mutation is accomplished. At first, a subtree is selected randomly.

Genuine Mutant

Figure 2.14: Promotion mutation.

Then, this subtree is replaced with a randomly selected child of the root node. In the
case of strongly-typed genetic programming, the selection of subtrees and the selection
of the child that becomes the new root of the subtree take the type constraints into
account.

2.4 Summary

This section introduced the field of automatic test generation for object-oriented unit
testing. At first, Section 2.1 on page 7 explained structure-oriented testing techniques.
Structure-oriented testing techniques rely on fault models related to the source code of
the unit under test. Various types of code elements, such as statements or branches of
the respective control flow graph, are supposed to reveal faults when being executed or
traversed, respectively. Each structure-oriented testing technique aims at generating a
set of tests that maximize the number of covered code elements. Code coverage criteria,
such as branch coverage, indicate the adequacy of a given set of tests and hence the
quality of the overall test.

The existing approaches to automating various structure-oriented testing techniques
for class testing were described in Section 2.2 on page 14. Two categories of approaches
exist: static test generation and dynamic test generation. Static test generation relies
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on symbolic execution and constraint solving in order to compute a test that covers a
particular code element. Dynamic test generation interprets the task of generating a
covering test for a given code element as a search problem. It applies a search strategy
in order to obtain a covering test. The prominence of evolutionary structural testing
as a dynamic test generation approach was also pointed out. It applies evolutionary
algorithms, which are meta-heuristic optimization techniques, dealt with in detail in
Section 2.3 on page 35. The existing approaches were investigated and their limitations
were analyzed in Section 2.2.4 on page 31. The analysis identified a set of seven limitations
that this thesis will address in the following chapter.
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This chapter proposes evolutionary class testing, a new approach to the automatic
generation of object-oriented unit tests. The approach has been developed in order
to address the limitations studied in Section 2.2.4 on page 31. It is a dynamic test
generation approach that uses genetic programming for the automatic generation of
test sequences. The effectiveness of the approach will later be empirically assessed in
Chapter 4 on page 103.

3.1 Overview

The major idea of evolutionary class testing is to transform the task of generating covering
test sequences for the class under test to a set of optimization problems which a genetic
programming algorithm then tries to solve. Figure 3.1 illustrates the basic concept
of evolutionary class testing. All steps can be accomplished completely automatically
without the need of human interaction. Initially, the set of test goals will be defined

Definition of the set of test goals for the source

code of the class under test

For each test goal of the set:

- Definition of the search space

- Definition of the objective function

- Execution of the evolutionary search

- Storage of the result if the search was

  successful

Provision of the set of test sequences to the

user

Figure 3.1: Basic concept of evolutionary class testing

based on the source code of the class under test. In the case of branch testing, each
branch of the control flow graphs of the methods becomes a test goal. Other testing
techniques lead to different definitions of test goals. Once the set of test goals is defined,
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the following steps will be performed for each test goal: first, the search space will be
defined, that is the space of all conceivable test sequences referring to the test goal. The
definition of the search space is accomplished by specifying both the function set and
the type set to be used by a genetic programming algorithm. Second, the objective
function will be defined with respect to the test goal. Third, an evolutionary search will
be carried out using a genetic programming algorithm that attempts to optimize the
objective function. Finally, if the search was successful, the found test sequence will be
stored. After all test goals have been processed in this way, the stored test sequences
will be provided to the user.

The definition of the search space will be discussed in the following three sections
(Section 3.2, Section 3.3 on page 56, and Section 3.4 on page 72). The first of these
sections reconsiders test sequences more formally in order to better understand the
phenotype search space Φ and the ideas of the two representations discussed in the
following sections. The second section describes the representation of test sequences
based on method call trees and number sequences, while the third section extends this
representation. These representations implicitly define the search space.

The definition of the objective function for a test goal will be discussed in Section 3.5
on page 76. The various situations that may occur when evaluating a candidate test
sequence will be studied in detail. Several distance metrics and penalties used to define
the objective function will be explained.

Afterwards, Section 3.6 on page 85 pays attention to the definition of the test cluster
in the presence of uninstantiable types, such as interfaces or abstract classes. Arrays
will also be treated in this section.

Before assessing the evolutionary class testing approach with respect to the attacked
limitations in Section 3.8 on page 98, objective function definition will be revisited in
Section 3.7 on page 88. The section suggests two strategies to improve the objective
functions for test goals that depend on function-assigned flags.

3.2 A Formal Consideration of Test Sequences

In general, a test sequence is a sequence of method calls when assuming that no control
structures, such as if statements or loops, are present (cf. Section 2.1.3 on page 10).
Before defining test sequences, the definitions of both test cluster and set of candidate
methods are necessary:

Definition 3.2.1. Let C be the set of all classes and . be the class association relation
so that ci . cj with ci, cj ∈ C means that class ci is either a superclass of class cj, or ci is
associated to cj by a general association relation. Furthermore, let .+ be the transitive
closure of the class association relation .. Then,

C = {ci|ci .+ ct} (3.1)

where ci, ct ∈ C is the test cluster C of the class under test ct.
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Definition 3.2.2. Let Mc be the set of public methods of class c. The set of candidate
methods MC for test cluster C is the union set

MC =
⋃
c∈C

Mc (3.2)

Now a test sequence can be defined as follows:

Definition 3.2.3. A test sequence T = (m1,m2,m3, ...,mn) is an ordered set of
methods where mi ∈ MC , i = 1, 2, ..., n, and MC be the set of candidate methods of the
considered test cluster C. The test sequence space ΘC is the space of all test sequences
from test cluster C.

Since a test sequence finally focuses on the examination of a particular method, at
least one method call mt ∈ T must refer to that method. In general, mt is the last
element of the sequence.

An arbitrary sequence of method calls is not necessarily executable. For instance, if
the first method of a method call sequence is a non-static method, it cannot be executed
since no target object exists for that method. Therefore, it is necessary to distinguish
between feasible test sequences, that are, test sequences that can be executed, and
infeasible test sequences, that are, test sequences that cannot be executed.

Feasible test sequences exhibit the properties of both formal feasibility and dynamic
feasibility. Infeasible test sequences do not exhibit the property of dynamic feasibility.
While dynamic feasibility is a sufficient property, formal feasibility is a necessary property
for a test sequence to be executable. These properties are discussed and defined in the
following.

Given an arbitrary test sequence, a static analysis can decide whether it is not
executable, for instance, due to contained instance methods for which no preceding
object-creating methods are present. This decision is based on the satisfaction of method
call dependences and can be made without the need to attempt executing the sequence.
The property exploited for the decision is the formal feasibility, which is defined as
follows:

Definition 3.2.4. Let r : MC → C ∪ {⊗} (where ⊗ is the “no class” element) be a
function which assigns each method its return type (where a method returning no value
(void) or a primitive value is assigned ⊗). Furthermore, let p : M → P(C) (where P(C)
is the power set of C) be a function which assigns each method the set of required class
parameter types. Finally, let t : M → C ∪⊗ be a function which assigns each method its
declaring class if it is an instance method, or ⊗, if it is a static method or a constructor.
Test sequence T = (m1,m2, ...,mj) is formally feasible if

∀i ∈ 1, 2, ..., j : ∀c ∈ {t(mi)} \ {⊗} : ∃k < i : c = r(mk) (3.3)

otherwise, it is formally infeasible. The space of formally feasible test sequences
for test cluster C is ΘFf

C . The space of formally infeasible test sequences for test
cluster C is ΘIf

C . It holds ΘFf

C ⊆ ΘC , ΘIf

C ⊆ ΘC , and ΘFf

C ∩ΘIf

C = {}.
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A formally feasible test sequence is not necessarily executable. Formal feasibility
assumes that each method which is declared to return an instance of a particular class,
actually returns an instance and does not return the null reference. It cannot be
statically decided whether or not a method returns an instance of the type that it
declares. To account for this, the property of dynamic feasibility is defined as follows:

Definition 3.2.5. Let MC , t, and p be defined as in Definition 3.2.4. Furthermore, let
ι : MC → C ∪⊗ be a function that assigns each method of a test sequence either the class
of the returned instance, if it returns an instance during execution, or the ⊗ element,
if it returns the null reference during execution. Test sequence T = (m1,m2, ...,mj) is
dynamically feasible if

∀i ∈ 1, 2, ..., j : ∀c ∈ {t(mi)} \ {⊗} : ∃k < i : c = ι(mk) (3.4)

If it is formally feasible but not dynamically feasible, it is dynamically infeasible.
The space of dynamically feasible test sequences for test cluster C is ΘFd

C . The
space of dynamically infeasible test sequences for test cluster C is ΘId

C . It holds
ΘFd

C ⊆ ΘFf

C , ΘId
C ⊆ ΘFf

C , and ΘFd
C ∩ΘId

C = {}.

This thesis makes the assumption that only test sequences which are dynamically fea-
sible are actually executable. Sequences that are not dynamically feasible are considered
to be not executable.

The definitions of test sequence feasibility refer to syntactical properties and not to
semantical properties. To distinguish test sequences that respect all method preconditions
and therefore comply with the specification of the involved classes from those that violate
some method preconditions, the notion of legality is used.

A representation of test sequences can refer to static properties of test sequences only.
Therefore, formal feasibility will be considered for representation design in the following,
while dynamic feasibility will be considered for objective function design later. The term
feasibility refers to formal feasibility in the following two sections.

3.3 Representation by Method Call Trees and Number
Sequences

Wappler (2004) elaborates on a representation of test sequences by number sequences
(cf. Section 2.2.2 on page 28). A drawback of this representation is that it allows
the generation of infeasible test sequences, because it encodes the whole space of test
sequences: Φ = ΘC . The reason that infeasible test sequences can be generated when
using the representation of number sequences is that the call dependences which exist
among the methods of the test cluster classes are not taken into account by neither
this representation nor the evolutionary operators working on it. To cope with this
shortcoming, Wappler integrates additional penalty functions into the definition of the
objective functions. Some of the suggested penalty functions are indirectly based on the
number of disregarded call dependences. Although the objective function is defined for
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all points in the genotype search space due to the inclusion of a penalty function, the
evolutionary search is not efficient since the search space contains regions of infeasible
individuals, the number and size of which depend on the number of call dependences of
the methods of the test cluster classes. As a result, the evolutionary search must first
discover the regions containing feasible test sequences before it can focus on exploring
these regions in more depth in order to find a covering test sequence. Even worse,
the evolutionary operators for mutating and crossing over number sequences imply
a neighborhood structure of the phenotype search space where a slight change of a
genotype individual might suddenly change the feasibility of the decoded test sequence
(the phenotype individual), hence resulting in a significant change of the objective value.
For instance, assume that one candidate test sequence is a constructor call of class c,
followed by method calls that are applicable to c (that is, they require an instance of
class c). Suppose that this sequence achieves a relatively good objective value since it
approaches the test goal relatively close. Now it may happen that during mutation, the
number representing the constructor call (the first sequence element) is changed so that
the decoded sequence has as first element whatever non-constructor call. Then, the new
test sequence is infeasible, requiring the penalty function to be applied which results
in a relatively bad objective value. This means in conclusion, that two neighboring
individuals (where neighborhood is defined in terms of the mutation operator) may be
assigned very unequal objective values. As a result, the objective function landscape
for the search contains many discontinuities, making the search inefficient, and even
ineffective if it does not succeed in exploring the right search space regions before one of
the specified termination criteria applies.

It can be learned from the work of Wappler that, in order to effectively cope with test
sequence infeasibility and consequently allow an efficient evolutionary search, the under-
lying representation must be designed so as to the call dependences are accounted for,
thereby preventing infeasible test sequences from being generated or at least minimizing
the probability of their generation. Consequently, the desire is to define genotype space
Γ so that δ(Γ) = ΘF .

Before designing a representation, it is necessary to understand the call dependences
and how they affect test sequence feasibility. The next section deals with these call
dependences and introduces a graphical representation: the method call dependence
graph.

3.3.1 The Method Call Dependence Graph

Calling an instance method of class c requires that an instance of class c is available.
This thesis refers to this fundamental principle as call dependence among the methods
of a set of classes.

Definition 3.3.1. Let MC be the set of candidate methods of test cluster C. Furthermore,
let r, t, and p be defined as in Definition 3.2.4. Method mi ∈ MC is call-dependent
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on method mj ∈ MC , denoted by mi
d→ mj, iff

mi
d→ mj ⇔ r(mj) ∈ {t(mi)} ∪ p(mi) (3.5)

This means, mi
d→ mj if the return type of mj is compatible to either the target

object type of mi or to one of the parameter types of mi. The case r(mj) = ⊗ is
excluded. Compatible return type means compatible in terms of polymorphism. Note
that, according to this definition a method can be call-dependent on itself. Usually,
a method is call-dependent on more than one method, depending on the number and
types of its parameters. Also note that the definition of call dependence is very strict
with respect to the parameter types; a call dependence of a method does not only refer
to methods that can provide a target object, but also refers to methods that can provide
parameter objects.

It is also reasonable to define call dependence of methods on classes:

Definition 3.3.2. Let MC be the set of candidate methods of test cluster C. Furthermore,
let both t and p be defined as in Definition 3.2.4. Method m ∈ MC is call-dependent
on class c ∈ C, denoted by m

d→ c,

m
d→ c ⇔ c ∈ {t(mi)} ∪ p(mi) (3.6)

This means, method m requires an instance of class c when being called. A method can
be call-dependent on the same class more than once (one dependence for each required
instance of the class).

Additionally, the notion of call contribution is needed in order to formally define
method call dependence graphs later. Both methods and classes can be call-contributing.

Definition 3.3.3. Let MC be the set of candidate methods of test cluster C. Method
mi ∈ MC is call-contributing to method mj ∈ MC , denoted by mi

c→ mj, iff
mj

d→ mi.

Hence, call contribution with respect to methods is the inversion of call dependence;
it holds:

mi
c→ mj ⇔ mj

d→ mi (3.7)

Call contribution of classes to methods is to be defined as well:

Definition 3.3.4. Let MC be the set of candidate methods of test cluster C. Class
c ∈ C is call-contributing to method m ∈ MC , denoted by c

c→ m, iff m
d→ c.

Hence, call contribution with respect to classes is the inversion of call dependence
with respect to classes; it holds:

m
d→ c ⇔ c

c→ m (3.8)

The method call dependence graph for the set of candidate methods MC of test cluster
C is defined as follows:
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Definition 3.3.5. The method call dependence graph Gd
MC

is the tuple (NM , NC , ENM→NC
, ENC→NM

),
which defines a bipartite, directed graph with two types of nodes: the method nodes
NM = {nm1 , nm2 , ..., nmo}, each of which represents a method m ∈ MC , and the type
nodes NC = {nc1 , nc2 , ..., ncp}, each of which represents a class c ∈ C. The edges
ENM→NC

⊆ M × C (those starting at a method node and going to a type node) and
ENC→NM

⊆ C ×M (those starting at a type node and going to a method node) have
different semantics:

Two nodes ni ∈ NM and nj ∈ NC are connected by an edge e ∈ ENM→NC
, iff the

method represented by ni is call-dependent on the type represented by nj. Two nodes
nk ∈ NC and nl ∈ NM are connected by an edge e ∈ ENM→NC

, iff the method represented
by nl is call-contributing to the class represented by nk.

It holds:

(ni, nj) ∈ ENM→NC
⊆ MC × C ∧ (nk, nl) ∈ ENC→NM

⊆ C ×MC ⇔ µ(mi)
d→ µ(ml)

(3.9)
where µ : NM → MC is a function which assigns each method node the method that it
represents.

The method call dependence graph has the following implications:

1. If the method represented by the method node ni is to be invoked, at least one
instance of each class represented by a node which is connected by an edge to ni,
must be available. (One can accept unsatisfied call dependences for the parameter
objects if the null reference is feasible.) This implication corresponds to formal
test sequence feasibility as defined in Section 2.1.3 on page 10. The edges starting
at method nodes have an AND semantic.

2. An instance of the type represented by node nj can be obtained by calling one of
the methods which are represented by a node which is connected by an edge to nj .
Hence, the edges starting at type nodes have an XOR semantic.

Figure 3.2 on the following page shows the method call dependence graph for the test
cluster C = {Object, Integer, IntegerRange}. (The source code of the classes is shown
in Listing A.1, and Listing A.2, respectively.) If a method is call-dependent on a class
more than once, only one dependence edge is shown, along with a number that indicates
the number of call dependences. The method call dependence graph for a given test
cluster can be constructed completely automatically.

The method call dependence graph Gd for a test cluster gives exact information as
to which methods are relevant for a particular method call to become feasible. This
means, if for instance method IntegerRange.growUp() should be invoked, the graph
tells which other methods must be invoked first for this method to become callable.
For the example, this is either IntegerRange.combine(IntegerRange,IntegerRange),
or IntegerRange(Integer,Integer) (which requires further methods to be called in
advance). The graph explicitly models the call dependences among the methods of the
test cluster classes.
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Legend:
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Figure 3.2: Method call dependence graph
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From a test sequence generation point of view, the method call dependence graph
enables the creation of feasible test sequences. Generating a feasible test sequence can be
accomplished by traversing the graph in a particular way. Assume that a test sequence
is to be found that covers a test goal that belongs to method mi. Then, the graph
traversal starts at the method node ni which represents method mi. Now all edges
must be explored in order to make the preparations that mi can be called. For instance,
by a depth-first traversal algorithm, all edges that start at ni and go to class nodes
nj , nk, ..., nl must be visited. Note that all edges must be explored; there is no choice
as to the selection of the edges (recall the AND semantics of these edges), but only on
the order of their selection. When class node nj is visited, exactly one edge must be
traversed that starts at nj and goes to method node np. Note that there is a degree
of freedom concerning the choice of the edge and consequently the method node np

(recall the XOR semantics of these edges). Also note that one such edge resolves the
call dependence, it suffices to traverse one edge, even though the traversal of several of
such edges would not affect the feasibility of the resulting test sequence (however, this
sequence would contain more elements than needed). Graph traversal stops once the
exploration of all branches has reached nodes which do not possess consecutive edges
(these nodes represent constructors or static methods, respectively). During traversal,
all method nodes encountered are put into a list. After traversal, the method nodes
are replaced by the methods they represent. By doing so, a feasible test sequence is
obtained.

The algorithm just described has to deal with two degrees of freedom: the first is the
order of the selection of edges going to class nodes to be visited next, and the second
is the selection of an edge going to a method node when a class node is visited. It is
assumed to be reasonable to deal with the former by applying a deterministic selection
strategy, such as depth-first, since the influence of the ordering on the semantics of the
resulting test sequence is supposed to be low: the ordering implies at which position a
subsequence appears. However, for the latter the influence on the resulting test sequence
is supposed to be very high since the selection implies which concrete methods will appear
in the sequence. There are several ways to deal with this second degree of freedom:
for instance, exhaustive search can be applied, meaning that all possible selections are
regarded which will result in a high number of graph traversals and consequently in a
high number of considered test sequences. Yet, this thesis will follow a heuristic way.

A decision made concerning the edge to be followed from a class node to a method
node strongly impacts all subsequent decisions. For instance, imagine a class node from
which two edges go to two different method nodes. One of these two method nodes has
no outgoing edges, while the other method node has an outgoing edge. This edge goes
to a class node which again has two outgoing edges to method nodes. If during traversal
the algorithm decides to select the edge going to the first method node, no subsequent
decision is to be made. In contrast, if the decision is made in favor of the edge going to
the second method node, an additional decision will be required when selecting the edge
to follow from the subsequent class node. As a result, each decision strongly affects all
subsequent decisions.
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From a representation-designing point of view, the method call dependence graph
implicitly defines part of the overall test sequence search space (the phenotype search
space). Note that the method call dependence graph accounts for object-creating
methods only, additional methods that may change the state of an object are not (yet)
dealt with. A candidate solution, which is a point in this search space, can be represented
by the accumulation of all decisions made concerning the class edges to follow. Such an
accumulation possesses strong internal dependencies, due to the impact of a decision on
the subsequent decision as just described. Also, the number of decisions typically varies
for different traversals. The question to be answered is how to encode the mechanism of
decision making and which evolutionary operators to use for mutation and crossover
that work on such an encoding. The idea of this work is to represent the information of
the decisions made by method call trees.

3.3.2 Method Call Trees

A method call tree consists of method nodes, each of which represents a method which
will later appear in the decoded test sequence. In formal terms, a method call tree is
an acyclic subgraph of the method call dependence graph. It is rooted; the root node
represents the method under test.

Definition 3.3.6. A method call tree Ψ, defined by the tuple (NM , E), is an acyclic
directed graph, where NM is the set of nodes representing the test cluster methods, and
E ⊆ NM ×NM is the set of the edges connecting the method nodes.

Each edge of a method call tree represents a decision made in favor of a particular
call-contributing method (if no decision is to be made since only one call-contributing
method is present, the edge to this only method represents the inevitable “decision”).

The method call tree shown in Figure 3.3 represents a (incomplete) test sequence
relating to the method call dependence tree from Figure 3.2 on page 60. The tree

IntegerRange.equals(Object)

IntegerRange(Integer, Integer)

Integer() Integer(int)

Integer(int)

Figure 3.3: Method call tree

explicitly shows the decisions made when traversing the method call dependence tree.
The root node represents the method under test, in this case method equals(Object) of
class IntegerRange. In terms of the method call dependence graph, two call-dependence



3.3 Representation by Method Call Trees and Number Sequences 63

edges start at the node representing the equals method which must be followed. The
first edge goes to class node IntegerRange, modeling the dependence on the target
object for the call. From that class node, two edges go to the method node representing
the constructor of class IntegerRange and to the method node representing the only
static method of that class. The tree shows that the decision was made in favor of the
constructor (left subtree). In turn, two call-dependence edges start from that constructor
node which must be satisfied. Both go to class node Integer. This implies that two
decisions are required to choose between the default constructor of class Integer and the
constructor requiring an int argument. The tree shows that for the first parameter of
the constructor IntegerRange(Integer,Integer) the default constructor was chosen
while for the second parameter, the alternative constructor was chosen. No further
decisions are to be made concerning the left subtree – graph traversal has reached nodes
from which no further call dependence edges start. The call dependence edge starting
at method node IntegerRange.equals(Object) and going to class node Object must
also be traversed. Several call-contributing edges start at Object; as the tree shows, the
one going to method node Integer(int) was chosen.

By this interpretation, a particular method call tree represents a particular set of
decisions made with respect to the call-contributing nodes of the corresponding method
call dependence tree. Building method call trees in this way ensures that the test
sequences, which are obtained by linearizing the trees using in-order tree linearization,
satisfy the call dependences among the methods, meaning that the required instances
are created for all methods of the sequence to become executable.

By doing so, test sequences including object-creating methods can be obtained only.
However, some test goals require the participating instances to be in particular states.
Therefore, it must be possible to also include state-setting methods into the method
call trees. Since the signature of a method does not indicate whether it changes the
state of the target object, all instance methods (non-static methods) are assumed to be
potentially state-changing and will be considered in the following.

Factoring state-changing methods into the method call trees is accomplished by
factoring them into the corresponding method call dependence graph, leaving the
algorithm to derive method call trees from the graph unchanged. This is simply possible
by realizing the convention that each instance method of class c is call-contributing to c.
This means that each instance method of a class implicitly returns an instance of that
class. This convention is reasonable since each instance method, once it has been called,
can “pass” the target object it used by itself to subsequent instance method calls.

The convention does not change the definition of the method call dependence graph;
rather, it implies additional call-contributing edges. Figure 3.4 on the next page shows the
method call dependence graph from Figure 3.2 on page 60, extended by the appropriate
additional edges. For instance, the graph now tells that method Integer.intValue()
is call-contributing to class Integer, meaning that it can be used to acquire an instance
of class Integer. This statement is correct because when traversing the graph further
from node Integer.intValue(), inevitably a method that creates an instance of class
Integer will be encountered eventually. Therefore, method Integer.intValue() is at
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Legend:

Integer

IntegerRange

Integer()

Integer(int)

Integer.negate()

IntegerRange(Integer,

Integer)

IntegerRange.combine(Integ

erRange, IntegerRange)

IntegerRange.size()

IntegerRange.emptyRange()

Integer.intValue()

IntegerRange.equals(Object)

Object

IntegerRange.growLow()

IntegerRange.growUp()

Object()

2

2

Method Node

Class Node

M C

M C

M C

M is call-dependent on C

M is call-contributing to C

M is both call-dependent on

C and call-contributing to C

Figure 3.4: Method call dependence graph with additional call-contributing edges
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least indirectly call-contributing to class Integer.
An example of a method call tree derived from the method call dependence tree with

the additional edges is shown in Figure 3.5. In the figure, the edges are labeled with

IntegerRange.equals(Object)

IntegerRange(Integer, Integer)

Integer()

Integer(int)

Integer(int)

target object

ir1

parameter

i3

parameter

i2

parameter

i1

Integer.intValue()

IntegerRange.growLow()

target object

i1

target object

ir1

Figure 3.5: Method call tree containing state-changing methods; with annotated instances
and their roles

identifiers for the instances that can be imagined to be passed among the methods
represented by the nodes of the tree. Thereby, an instance can be used in the role of
either the target object or a parameter object. The tree reads best when starting from the
leftmost leave node: method Integer() creates instance i1 of the Integer type. This
instance is then used as the target object for method Integer.intValue(). Note that
the implementation logic of this method does not actually change the state of the passed
target object; however, it basically may. Then, the same instance i1 (in a potentially
new state) is passed on to the constructor IntegerRange(Integer,Integer) as the
first parameter object. The second parameter object i2 is obtained by the constructor
Integer(int). Note that at this point, primitive arguments are not yet dealt with.
The instance ir1, created by constructor IntegerRange(Integer,Integer), is then
passed to method IntegerRange.growLow(), which actually changes the state of the
instance. Finally, this instance is further passed on to the actual method under test,
IntegerRange.equals(Object), to be used as the target object. The formally required
parameter is obtained by method Integer(int), which delivers instance i3.

Listing 3.1 shows the linearization of the method call tree from Figure 3.5 where the
appropriate instance identifiers are used. Primitive arguments and primitive return
values are not accounted for by the method call dependence graph, which leads to test
sequences that may be incomplete, as it is the case in Listing 3.1. There, the sequence
lacks two concrete integer values in line 3 and line 6, respectively, which are required as
arguments for the constructors. Primitive arguments will be dealt with in the following
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Listing 3.1: Linearized method call tree
1 I n t eg e r i 1 = new In t eg e r ( ) ;
2 i 1 . intValue ( ) ;
3 I n t eg e r i 2 = new In t eg e r ( i n t ) ;
4 IntegerRange i r 1 = new IntegerRange ( i1 , i 2 ) ;
5 i r 1 . growLow ( ) ;
6 I n t eg e r i r 3 = new In t eg e r ( i n t ) ;
7 i r 1 . equa l s ( i r 3 ) ;

in conjunction with the issue of object reuse.
To summarize the concepts of the method call dependence graph and the method call

trees it can be said that these notions define a genotype search space which encodes
fragmental test sequences – test sequence fragments – which are test sequences with
undefined primitive arguments. Due to the tree structure of the points in this search
space, evolutionary operators for exploring this space can easily be defined as will be
discussed in Section 3.3.4 on page 69. In turn, an evolutionary algorithm – more precisely,
a genetic programming algorithm – searching the space of test sequence fragments can
be defined for each test cluster by considering the corresponding method call dependence
graph. Thereby, the well-established genetic programming operators for tree building,
tree crossover, and tree mutation, as described in Section 2.3.3 on page 46 can be applied
to the evolution of method call trees. The appropriate configuration of the search
algorithm is described in Section 3.3.4 on page 69. The variation operators used ensure
that only feasible test sequence fragments are explored.

3.3.3 Primitive Arguments and Parameter Object Selectors

In an early phase of the research on which this thesis reports it was considered reasonable
to formulate the search for a covering test sequence by recognizing two “dimensions”
of a test sequence: the first dimension is the method call sequence, and the second
are the corresponding arguments. (As will be shown later, this view increases the
complexity of the search significantly, which might result in an inefficient and even
ineffective overall evolutionary search). Consequently, a hybrid evolutionary algorithm is
to be constructed which primarily searches the space of fragmental test sequences, and
for each test sequence fragment encountered, it searches the corresponding parameter
space, defined by the concrete test sequence fragment. Given the method call tree from
Figure 3.5 on the preceding page (which is equivalent to the test sequence fragment from
Listing 3.1), the parameter space is defined by the two integer arguments. Therefore,
an evolutionary search exploring this two-dimensional parameter space is carried out.
For each explored point, the test sequence fragment is completed by inserting the
integer arguments appropriately. Then, the objective value is calculated by assessing
the execution of the completed test sequence.

However, it is beneficial to define the parameter space not only in terms of the missing
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primitive arguments, but also by the (already present) non-primitive arguments. The
benefit of this is due to the support of object reuse which would not be possible otherwise.
Object reuse in this context means that one instance can be passed to multiple methods
as an argument, or multiple times to the same method as arguments. The method
call dependence graph, as defined in Definition 3.3.5, does not allow for object reuse.
For instance, generating a test sequence that evaluates the first decision of method
equals(Object) of class IntegerRange to true, is not possible when strictly adhering
to the method call dependence graph. Figure 3.5 on page 65 exposes this deficiency:
it is not possible to pass the same object as both target object and parameter object
to this method in order to make the address comparison of the first decision evaluate
to true. Therefore, the strictness of the edges concerning the instances passed must
be loosened. Two alternative approaches suggest themselves for this loosening: (1)
the definition of the method call trees and the traversal algorithm of the method call
dependence graph is changed so that it allows creating edges to method nodes which
are already part of the tree, or (2) additional informational items are introduced which
make it possible to change the assignment of the instances to the formal parameters
of the methods. The former approach appears attractive at first view. However, when
studying the consequences with respect to the evolutionary operators for mutation and
crossover, the idea turns out to make the implementation of these operators – and in
turn the evolutionary search – much more complicated. For instance, imagine that the
method call tree generation algorithm allows creating the tree shown in Figure 3.6. This
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parameter
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target object

ir1

Figure 3.6: Method call tree, generated by loosened tree creation algorithm

tree differs from that of Figure 3.5 on page 65 in that it reuses instance ir1 as the
parameter object when calling method IntegerRange.equals(Object). Now imagine
that crossover should occur. Recall that crossover of trees means to exchange randomly
selected subtrees. It would be problematic to exchange the subtree rooted by the method
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node IntegerRange.growLow() with an arbitrary subtree from another tree individual.
All edges would be required to be considered and to be relocated, involving additional
decisions to be made as to how to connect the existing edges to nodes of the new subtree.

In order to avoid the reformulation of the well-established evolutionary operators and
to keep the representation and in turn the evolutionary algorithm simple, the second idea
based on additional informational items will be further considered. This idea does not
accomplish a loosening of the interpretation of the edges of a method call tree, but rather
a loosening of the parameter object assignments during (or even after) tree linearization.
Reconsider the test sequence from Listing 3.1. Parameter objects occur in lines 4 and
7. It would now be possible to change the instances that appear as method arguments
in order to obtain a new, different test sequence. For instance, for the method call in
line 7 (IntegerRange.equals(i3)), it can be said which other objects may serve as a
parameter object. These are all instances that are created so far and are of the formally
required parameter type (which is Object in this case). Instances i1, i2, i3, and ir1
might appear as the parameter object for the method call. Consequently, an additional
degree of freedom can be introduced into the sequence by allowing the variation of the
parameter objects to be actually passed when calling a particular method. The selection
of which instance to be passed can be modeled by an additional variable that will be
referred to as parameter object selector in the following. For the example sequence, there
are three points at which an additional variation of the parameter objects is possible:
the two parameter objects in line 4, and the parameter object in line 7. While in line 7,
all available instances would be candidates, in line 4, only the instances i1 and i2 are
candidates since only these are present at the moment of the call and match the required
formal parameter type Integer. For each of these points, a parameter object selector is
defined, leading to three additional variables to be part of the parameter search space.
Listing 3.2 demonstrates the idea from an implementation point of view. It shows a
modified version of Listing 3.1.

Listing 3.2: Test sequence, augmented by framework methods
1 I n t eg e r i 1 = new In t eg e r ( ) ;
2 ObjectPool . addInstance ( i 1 ) ;
3 i 1 . intValue ( ) ;
4 I n t eg e r i 2 = new In t eg e r ( i n t ) ;
5 ObjectPool . addInstance ( i 2 ) ;
6 IntegerRange i r 1 = new IntegerRange (
7 ObjectPool . g e t In s tance ( In t eg e r . c l a s s , i n t ) ,
8 ObjectPool . g e t In s tance ( In t eg e r . c l a s s , i n t )
9 ) ;

10 ObjectPool . addInstance ( i r 1 ) ;
11 i r 1 . growLow ( ) ;
12 I n t eg e r i r 3 = new In t eg e r ( i n t ) ;
13 i r 1 . equa l s ( ObjectPool . g e t In s tance ( Object . c l a s s , i n t ) ) ;

Note the additional framework method calls referring to class ObjectPool. This class
maintains all instances that are created during the execution of the test sequence.
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Additionally, this pool is consulted if a parameter object is required for a method call.
Instead of directly passing a concrete object, the parameter object selector serves as an
index for the object pool to identify the actual instance among all available instances of
the required type. By doing so, the mechanism of assigning instances to the parameters
of the method calls is transformed to the search for suitable object pool indices, that is,
for integers. The value ranges of a selector directly depend on the number of elements
in the object pool. For instance, the object pool for the parameter object selector for
line 7 would include the 4 instances mentioned above, leading to a value range of [1, 4].
Since the number of instances potentially available for each class at any point in the
test sequence can be obtained via a static analysis, the value ranges for the search for
appropriate index values can be accurately defined, leading to valid selector values only
in most cases.

Introducing object selectors also allows for easy handling of null references as parame-
ter objects: the value range of a selector is defined as [0, |objectpool|], where |objectpool|
is the size of the appropriate object pool. Then, the value 0 identifies the null reference
by convention.

In summary, the parameter space for a given test sequence fragment is defined by both
the primitive method arguments and the parameter objects selectors for all non-primitive
method arguments. A point in this space is a vector of numerical values. As a result,
the search in this space can be carried out by a genetic algorithm that works on vectors
of numerical values as presented in Section 2.3.2 on page 44. Note again that each
candidate test sequence fragment defines its own parameter space.

In the following section, the searches with regards to the two dimensions – sequence
space and parameter space – are put together, resulting in the definition of the hybrid
evolutionary algorithm TCGen1.

3.3.4 Test-Sequence-Generating Algorithm TCGen1

Listing A.6 sketches the test-sequence-generating hybrid evolutionary algorithm referred
to as TCGen1. The algorithm hybridizes a genetic programming algorithm, evolving
test sequence fragments, and a genetic algorithm, evolving the required parameter
information. While the configuration of the latter is straightforward and occurs in
accordance with Section 2.3.2 on page 44, the configuration of the genetic programming
algorithm demands a closer look.

As described in Section 2.3.3 on page 46, a strongly-typed genetic programming
algorithm requires both the type set and the function set to be specified. Using a
strongly-typed algorithm allows easily reflecting the polymorphic relationships of the
classes of the test cluster. Both the type set and the function set can be defined completely
automatically based on the method call dependence graph. The type set is directly
derived from the class nodes that belong to the method call dependence graph of the
test cluster at hand: each class becomes a type of the type set, the inheritance relations
are expressed by the appropriate formulation mechanism of the genetic programming
algorithm used. For instance, in the case of the genetic programming system ECJ (Wilson,
McIntyre and Heywood, 2004), the inheritance relations are specified by defining set
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types. Table 3.1 shows the type set derived from the method call dependence graph from
Figure 3.4 on page 64. The function set is derived from the method call dependence

type name compatible types

IntegerRange -
Integer -
Object IntegerRange, Integer

Table 3.1: Example type set

graph, too. A function in genetic programming terms requires specifying a function
name, the parameter types, and the return type. The following strategy is applied in
order to obtain the functions that constitute the function set. All call-contributing edges
are considered. Each method represented by a method node at which such an edge
starts, becomes a function. The name of the method is directly used as the name of
the function. The type associated with the class node to which the edge goes becomes
the return type of the function. The types associated with the class nodes that are
connected to the method node via call-dependence edges, become the parameter types
of the function. Note that by doing so, multiple functions can be derived from one
method. Also note that redundancy might occur concerning polymorphism. For instance,
constructor Integer() would be inserted twice, once with return type Object, and once
with return type Integer. If the underlying genetic programming algorithm already
cares for polymorphism, the former function is superfluous and can be eliminated from
the function set. Table 3.2 shows the function set derived from Figure 3.4 on page 64.
As the table shows, primitive arguments and return types are completely ignored. It

function name parameter types return type

Object() - Object
Integer() - Integer
Integer(int) - Integer
Integer.intValue() Integer Integer
Integer.negate() Integer Integer
IntegerRange(Integer,Integer) Integer, Integer IntegerRange
IntegerRange.equals(Object) IntegerRange, Object IntegerRange
IntegerRange.growLow() IntegerRange IntegerRange
IntegerRange.growHigh() IntegerRange IntegerRange
IntegerRange.emptyRange() IntegerRange IntegerRange
IntegerRange.size() IntegerRange IntegerRange
IntegerRange.size() Integer IntegerRange
IntegerRange.equals(Object) IntegerRange, Object MUT

Table 3.2: Example function set
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can also be seen that each instance method requires an additional parameter; the passed
instance will be used as the target object for the method call, as described above. The
last function is a modified duplicate of method IntegerRange.equals(Object). It is
defined using the particular return type MUT. Recall that this method contains the test
goal at hand for this discussion. When instructing the genetic programming algorithm
to create trees with the return type of the root node being MUT, it is ensured that the
method under test appears at least once in all generated test sequences. Otherwise it
may happen that a generated test sequence does not issue a call to the method under
test which does not allow calculating the objective value reasonably.

Concerning the evolutionary operators for crossover and mutation, the operators
described in Section 2.3.3 on page 46 can be applied, which are subtree crossover,
demotion, and mutation. ERC mutation is not applicable since the method call trees do
not involve ERCs. The application of the operators preserve formal feasibility, defined
in Section 3.2 on page 54. The semantical impact of each operator on the test sequences
is well-defined. For instance, demotion of a method call tree corresponds to the insertion
of a new method call into the test sequence, including the potential insertion of method
calls to create the arguments for this newly inserted method call. Promotion corresponds
to the removal of a method, including the removal of all depending method calls. Subtree
crossover of two method call trees corresponds to the exchange of subsequences, where
each subsequence does not have any direct dependence on other parts of the remaining
sequence. Rather, the subsequences are isolated parts of the overall test sequence,
intended to create an object in a particular state.

In experiments with four test objects of rather lower complexity, TCGen1 succeeded
in creating test suites that achieve full method/decision coverage. However, as already
remarked in Section 3.3.3 on page 66, working with two separate search spaces implies a
particular complexity of the evolutionary search. Since for each test sequence fragment
an individual parameter search is carried out, the worst-case effort E (in terms of fitness
function evaluations) for optimizing a test sequence is

E = nIS
· nGS

× nIP
· nGP

(3.10)

where nIG
is the maximum number of generations for the sequence space search, nIS

is the number of individuals per generation of the sequence space search, nGP
is the

number of generations for the parameter search, and nIP
is the number of individuals

per generation of the parameter search. This means that potentially a high number of
objective function evaluations will occur. A more crucial drawback of the algorithm
is that good parameter values will be discarded after the parameter search for a test
sequence fragment, requiring to search again from scratch when completing the next
test sequence fragment which might be similar to that one just assessed.

Due to these drawbacks, the desire arises to simplify the evolutionary search. Since
the workflow of the algorithm directly depends on the underlying representation, the
next section discusses an improvement of the representation.
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3.4 Representation by Extended Method Call Trees

The previous section finished by pointing out the drawbacks of the test-sequence-gene-
rating algorithm TCGen1 caused by the separation of sequence space and parameter
space. This separation necessitates two different representations, one for test sequence
fragments and one for the parameters. These two different representations, in turn,
require different evolutionary operators for crossover and mutation and consequently a
hybrid search algorithm. This section elaborates on an improved representation which
unifies sequence space and parameter space, hence implying a much simpler – and in
turn, more efficient – search algorithm.

Without the separation of sequence space and parameter space, all information
describing a complete test sequence must be put into one individual. It appears natural
to simply have the primitive parameters included in the functions of the function
set and let the genetic programming algorithm also evolve them using type-specific
mutation operators. However, the parameter information concerning the parameter
object assignments must also be encoded in order to deal with the issue of object reuse
(as described in Section 3.3.3 on page 66). In the following, at first primitive arguments
are dealt with, afterwards, an approach to incorporating the evolution of the parameter
object assignments into the genetic programming search is suggested.

3.4.1 Incorporating Parameter Space into Sequence Space

So far, the data types of the primitive method arguments are not regarded as classes,
thus they do not appear in the method call dependence graph of a test cluster. One
way to incorporate primitive arguments into the test sequences based on a concrete
method call dependence graph is to incorporate the primitive types into the method
call dependence graph. Then, the definition of call dependence also involves primitive
types. Figure 3.7 on the next page shows the method call dependence graph from
Figure 3.4 on page 64, augmented by the additional type int. Method Integer(int)
is now call-dependent on class int. Actually, the graph should also include a method
which is call-contributing to class int. However, since primitive values can easily be
created randomly without the need to call a test cluster method, there is not need for an
int-constructing method in the graph. One can think of an additional call-dependence
edge going from each primitive type node to a framework method which can generate a
value of the corresponding type.

In order to deal with the parameter object assignments, a new, artificial type is
introduced: the selector. Actually, a selector value is an integer value as discussed in
Section 3.3.3 on page 66, the value of which is used to decide which parameter object will
be passed as the parameter object if multiple parameter object candidates are available.
The new type is used to make the particular interpretation of the integer value of a selector
more explicit. An additional call dependence on a selector is established in the method call
dependence graph from a method to type selector for each class-type parameter of the
method. In Figure 3.7 on the facing page, methods IntegerRange(Integer,Integer),
IntegerRange.combine(IntegerRange,IntegerRange), and IntegerRange.equals(-
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Figure 3.7: Method call dependence graph, augmented by primitive types
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Object) exhibit this additional dependence for each of its formal class-type parameters.
With the selector type introduced in this way, the test sequences based on the method

call dependence graph are now complete, meaning that they include both the values for
primitive arguments as well as the parameter object selector values to address the issue
of object reuse. Therefore, no need exists to further explore an additional parameter
space since all parameter information is already present. Consequently, a one-level
search algorithm can be applied instead of a two-level hybrid search algorithm, as will
be shown in the next section. However, a new issue to deal with is the definition of the
value ranges for the parameter object selectors. The hybrid evolutionary algorithm is
able to derive the value ranges based on the given test sequence fragment. Now, the
definition of the value ranges must occur more general, suitable for all test sequences,
since no information is initially available as to how many candidates will exist for a
particular method call. Several approaches are conceivable to deal with the absence of
this information. The next section includes a description of one approach. The section
describes the one-level test-sequence-generating evolutionary algorithm TCGen2.

3.4.2 Test-Sequence-Generating Algorithm TCGen2

Listing A.7 sketches out the test-sequence-generating evolutionary algorithm referred to
as TCGen2. It consists of one overall search loop, as opposed to TCGen1 which included
a nested search for the appropriate parameters.

The definition of both the type set and the function set occurs in accordance with
TCGen1. However, due to the additional class nodes of the method call dependence
graph, the functions now have additional parameter types, as can be seen in Table 3.3
on the next page, which shows the function set derived from the method call dependence
graph from Figure 3.7 on the preceding page. Note that each class-type parameter of
the functions is followed by a selector parameter. Since the actual value range of such
a selector parameter cannot be defined accurately (as pointed out in Section 3.4.1 on
page 72), it is reasonable to allow a sufficiently large range which can be unambiguously
mapped to the actual range later when linearizing the method call trees. A suitable
mapping can be accomplished by applying a modulo operator to the actual selector
value, as will be shown next.

Figure 3.8 on the facing page shows a method call tree that TCGen2 could have
produced. It is similar to the tree in Figure 3.3 on page 62; in addition to that, it also
comprises the parameter information (shown by the dark nodes). When linearizing this
tree, the selector values are used to decide which actual parameter objects to be passed
as arguments. For instance, when method node IntegerRange(Integer,Integer) is
being processed, the value 54 is used to decide which parameter object from the list of
candidate objects (the object pool) to pass. However, at that moment only one instance
is available, namely that created by the preceding call to Integer(). Therefore, the
value 54 will be mapped to the range [0, 1] using modulo 2, where the value 0 represents
the null reference and the value 1 the instance produced when Integer() was called.
In the case of 54, the null reference would be chosen (54 mod 2 = 0). When considering
the second parameter of IntegerRange(Integer,Integer), the selector value of 34 is
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function name parameter types return type

Object() - Object
Integer() - Integer
Integer(int) - Integer, int
Integer.intValue() Integer Integer
Integer.negate() Integer Integer
IntegerRange(Integer,Integer) Integer, selector, Inte-

ger, selector
IntegerRange

IntegerRange.equals(Object) IntegerRange, Object,
selector

IntegerRange

IntegerRange.growLow() IntegerRange IntegerRange
IntegerRange.growHigh() IntegerRange IntegerRange
IntegerRange.emptyRange() IntegerRange IntegerRange
IntegerRange.size() IntegerRange IntegerRange
IntegerRange.size() Integer IntegerRange
IntegerRange.equals(Object) IntegerRange, Object,

selector
MUT

Table 3.3: Extended type set

IntegerRange.equals(Object)

IntegerRange(Integer, Integer)

Integer()

Integer(int)Integer.intValue()

IntegerRange.growLow() Integer(int)

-23

435

54 34

7

Figure 3.8: Method call tree including parameter information
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Listing 3.3: Linearized method call tree
1 I n t eg e r i 1 = new In t eg e r ( ) ;
2 i 1 . intValue ( ) ;
3 I n t eg e r i 2 = new In t eg e r ( −23 ) ;
4 IntegerRange i r 1 = new IntegerRange ( nu l l , i 1 ) ;
5 i r 1 . growLow ( ) ;
6 I n t eg e r i 3 = new In t eg e r ( 435 ) ;
7 i r 1 . equa l s ( i r 1 ) ;

used to select among the set of candidates, which are the instances produced by both
Integer() and Integer(-23), and the null reference. As a result, 34 modulo 3, which
is 1, selects the instance produced by Integer() to be passed as the second argument.
Finally, the test sequence shown in Listing 3.3 will be obtained. The example shows,
however, that sequences created in this way might contain method calls that do not
contribute to achieving the test goal at hand. For instance, both objects i2 and i3
are never used. An additional post-processing phase is required in order to make the
resulting test sequences more compact by eliminating unneeded method calls. This
post-processing is not addressed by this thesis but is an item of future work.

In conclusion, the integration of both primitive types and the selector type into
the method call dependence graph allows defining a representation that encodes all
information necessary to completely describe a test sequence. The suggested encoding
by means of extended method call trees defines the genotype search space Γ so that
δ(Γ) = ΘF , meaning that each point in the search space represents a formally feasible
test sequence. Both method calls and the corresponding parameters are encoded in one
individual. The encoding allows for the application of a genetic programming algorithm
with well-established genetic operators.

3.5 Objective Function Construction

This section discusses the definition of objective functions for the search for a test
sequence that covers a particular branch. The strategy of objective function design for
evolutionary structural testing of procedural software is not sufficient for object-oriented
software. This is due to runtime exceptions that can occur during test sequence execution.
If such an exception occurs, the method under test might not be called, hence preventing
the traditional distance metrics control dependence distance and branch distance from
being computable with respect to the test goal. To cope with this, an additional distance
metric will be introduced. Additionally, other peculiarities of object-oriented software,
such as non-public methods, will be dealt with in this section.

At first, Section 3.5.1 on the facing page elaborates on the situations that can arise
during test sequence execution. It presents a classification of the possible scenarios.
Afterwards, Section 3.5.2 on page 78 to Section 3.5.6 on page 83 address these scenarios
in detail and describe an approach to objective function design in the respective cases.
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Finally, Section 3.5.7 on page 84 puts the objective functions for the different situations
together.

3.5.1 Classification of Execution Flows

In order to obtain the objective value for a candidate test sequence, this test sequence is
executed using an instrumented version of the source code. The execution process is
monitored and the distance between the path taken during execution and the desired
test goal is quantified. When trying to execute a candidate test sequence, different
situations may arise which require particular treatment on the part of the objective
function. For instance, a runtime exception could abort the evaluation of a candidate
test sequence, as just described above. Figure 3.9 classifies the possible situations; they

test sequence execution

dynamically feasible (A) dynamically infeasible (B)

test goal reached (C) critical branch taken (D) premature abort (E)

subtarget reached (I) subtarget missed (J)

not terminating (F)

subtarget present (H)no subtarget present (G)

Figure 3.9: Classification of test sequence executions

will be considered in more depth in the next sections. The classification refers to the
space of formally feasible test sequences ΘF . Due to the variety of situations it is not
possible to give one overall “formula” for a general objective function.

The execution of a test sequence can be dynamically feasible (case A) or dynamically
infeasible (case B). An infeasible test sequence cannot be executed, since not all call
dependences are satisfied. The representations discussed in both Section 3.3 on page 56
and Section 3.4 on page 72 guarantee that the generated test sequences are formally
feasible; however, in some cases methods intended to return an object of a particular type
return the null reference instead, thus failing to provide an instance to be used as the
target object for a following method call. Then, although the test sequence is formally
feasible, it is dynamically infeasible. Section 3.5.2 on the next page deals with this case.
A feasible test sequence either reaches the desired test goal (case C), or the execution
diverged down a critical branch (case D), or the test sequence execution was prematurely
aborted before reaching the method under test due to a runtime exception (case E), or
in some rare cases the execution does not terminate (case F) due to an endless loop.
While case C is perfect and does not require further consideration, cases D, E, and F
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demand a closer look. Thereby, case F, caused by an endless loop, indicates either a
severe programming error, or (more likely) an unsuitable configuration of a mock object
that participates in the test (mock objects are discussed in Section 3.6.1 on page 86).
A special penalty applies to test sequences leading to endless loops, as described in
Section 3.5.3. The most interesting cases are those that miss the test goal due to a
critical branch taken (case D), and those that do not execute the method containing
the test goal due to a runtime exception. Section 3.5.4 on the facing page deals with
unfavorably evaluated conditions (case D); this case is very similar to conventional
evolutionary structural testing of procedural software. Both cases G and H further
distinguish between the situation where a subtarget is to be reached (case H), and where
no subtarget is to be reached (case G). Section 3.5.6 on page 83 discusses the notion of
subtargets in the context of non-public methods. Section 3.5.5 on page 80 discusses the
evaluation of runtime exceptions that may either prematurely terminate test sequence
execution (case E), or cause a critical branch to be taken (case D).

3.5.2 Dynamic Test Sequence Infeasibility

Both representations of test sequences described in Section 3.3 on page 56 and Section 3.4
on page 72, respectively, ensure that the generated test sequences are formally feasible.
However, when being executed, a formally feasible test sequence may turn out to be not
completely executable, due to missing target objects for method calls that appear in the
sequence. Consider Listing 3.4 which shows a formally feasible test sequence.

Listing 3.4: Statically feasible but dynamically infeasible test sequence
1 IntegerRange range = IntegerRangeFactory . g e t In s tance ( ) ;
2 I n t eg e r i = range . g e tS i z e ( ) ;

However, method IntegerRangeFactory.getInstance() – supposed to provide an
instance to be used for the following method call – might return the null reference.
In this case, the method call to IntegerRange.getSize() cannot be performed; the
sequence is dynamically infeasible.

Dynamic test sequence infeasibility can be dealt with by several approaches. For
instance, the number of successfully executed method calls can be considered, in analogy
to the penalty functions suggested by Wappler (2004); another penalty metric might be
the number of methods that cannot be executed due to the missing instance. However,
in this thesis the simple approach is implemented which introduces a constant penalty
pdyn for dynamically infeasible test sequences:

∀T ∈ ΘId : ω = pdyn (3.11)

3.5.3 Endless Loops

An endless loop occurring during test sequence execution must be detected in order to
interrupt it, for instance after a timer has expired or another termination criterion applies.
Otherwise, the objective function would never return, causing the search algorithm to run
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forever. Critical is the formulation of the termination criterion, which must distinguish
between test sequences that are so complex that they involve a huge number of (sub-)
method calls and require thus a particularly long time, and those which actually cause
an endless loop. A mock object can be set up unfavorably in such a manner that an
endless loop occurs. An example is a mock class that inherits from type Enumeration.
Assuming a naive mocking concept, it allows freely configuring the return value of
method hasNext(). In unfavorable cases, the test sequence configures it to always
return true, causing a loop that incorporates the return value of hasNext() into its
termination condition to run endlessly.

A heuristic way to detect endless loops is to examine the execution path produced by
the test sequence in question. A large number of repetitions of the same path fragment
suggests the presence of an endless loop. However, more pragmatically and easier to
realize is the definition of an upper bound on the allowed length of the execution path.
Then, if that bound is reached, the objective function assumes that an endless loop,
or at least some abnormal behavior, occurs, and terminates the execution of the test
sequence. It penalizes the sequence using a constant penalty ploop.

∀T ∈ ΘL : ω = ploop (3.12)

where ΘL is the space of test sequences implying endless loops.

3.5.4 Unfavorably Evaluated Conditions

Section 2.2.2 on page 20 explains how the two distance metrics control dependence
distance and branch distance are used to guide the evolutionary search for test data in
the context of procedural software testing. The same metrics are applied for measuring
the distance between the execution path produced by a candidate test sequence and the
targeted test goal. However, this requires that the method containing the test goal is
actually invoked by the test sequence. Then the control flow graph of this method as
well as its predicates are used to calculate the respective distances.

For object-oriented software, a modification is required concerning the control node
distance: potentially, each statement of a method can throw an exception (Section 3.5.5
on the following page deals with exceptions in more detail); as a result, each node of
the control flow graph of the method possesses an additional exceptional branch. This
branch is connected to either the suitable catch block – if one is present – or is not
yet connected since it is not known in which context the method will be called when
it is used in a program. Figure 3.10 on the next page shows the control flow graph
of method testCase1 of class Stack, the code of which is shown in Listing A.4. The
graph shows the additional exceptional branches (indicated by dashed edges). The first
exceptional branch, originating from node n1, accounts for an exception that may occur
when calling the constructor of class Stack. When considering this class in isolation, it
is not clear to which node to connect this branch. Later, when the class is integrated
into an application, it might be connected to a higher-level catch block or to the exit
node of the complete program. The second exceptional branch, originating from node
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Figure 3.10: Control flow graph including exceptional branches

n2, is connected to the first statement of the catch block. Control of execution will
be transferred to this statement if the declared exception occurs. Note that also an
exceptional branch originates from node n3 since during exception handling a new
exception might occur or the caught exception might be propagated to the caller of
method testCase1 via a throw statement. These additional branches, which are critical
branches in most cases, affect the calculation of the control node distance. Recall that
the metric refers to the number of critical nodes on the shortest path from the problem
node to the test goal. With the exceptional branches, nearly each node of the control
flow graph is a critical node.

The distance functions for calculating the metric branch distance must also be recon-
sidered. Table 2.1 on page 24 lists the distance functions for the various relational and
logical operators. However, object-oriented programming languages usually provide ad-
ditional, object-orientation-specific operators, such as instanceof. For these operators,
the distance function used for a Boolean predicate can be applied. For instance, the
predicate (s instanceof String) can be regarded as ((s instanceof String)==true), allowing
to apply the Boolean distance function. However, in some cases the guidance by these
distance functions is not sufficient. Ideas for defining improved distance functions are
outlined in Section 5.3 on page 136.

The definition of the objective function in the case the target has been missed will be
provided in the next section after the discussion of runtime exceptions.

3.5.5 Runtime Exceptions

Recent object-oriented programming languages, such as Java or C#, support integrated
exception handling. Methods can be declared as throwing a particular type of exception.
For instance, a method connecting to a network resource might be declared as throwing
an exception in the case that the connection cannot be established. The caller of a
method having an exception declared must provide additional code that is activated when
an exception actually occurs. Listing A.4 shows the source code of class Stack which
realizes a simple stack that manages instances of class Object. Method Stack.top()
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is declared as throwing an Exception if the method is called on an empty stack. In
consequence, each caller of that method must ensure that a catch block, compatible to
the declared exception, is present which will handle an occurring exception.

However, there are also exceptions which need not be declared because each method is
potentially able to throw it. For instance, NullPointerException needs not be declared
but may be thrown – explicitly or implicitly. Explicitly means that in the code of
the method, a new exception instance is created and thrown. Implicitly means that
the runtime system generates the exception itself when an inconsistent situation is
encountered. In Listing A.4, method top() might throw a NullPointerException if
the class member elements would not have been initialized to a valid instance. Then,
during the evaluation of the array access, an exception would be thrown by the runtime
system.

Undeclared runtime exceptions usually indicate programming errors or situations that
have not been foreseen. Thereby, a programming error is, for instance, when a method is
called with arguments that are not valid for the method (the arguments violate implicit
method preconditions). For instance, the exception type IllegalArgumentException is
used to indicate that a method has been called with unsuitable arguments. With respect
to evolutionary test sequence generation, where argument values are created by random,
it happens that the randomly generated arguments are not accurate for a method call;
an argument may violate a method precondition. For instance, in the case of method
elementAt(int) of class Stack shown in Listing A.4, negative integers would lead to an
implicitly thrown ArrayIndexOutOfBoundsException. However, if an exception occurs
before all methods of a test sequence are completely executed and presuming that the
test goal has not been achieved yet, test sequence execution must terminate. Because it
is not clear whether or not the system is still in a consistent state now, it is not advisable
to continue execution of the test sequence. As a result, it might happen that the method
that contains the current test goal has not yet been called. This means in turn that
no execution path information is available on which the conventional distance metrics
control node distance and branch distance can be calculated.

Nevertheless, the objective function must – irrespective of an exception – provide an
objective value which sufficiently guides the evolutionary search in such a way that test
sequences emerge which lead to the execution of the method containing the test goal.
For doing so, this work suggests that the objective function incorporates the additional
distance metric method call distance dM . This metric corresponds to the number of
method calls of the test sequence which could not be executed due to a runtime exception.
It applies only if the method containing the test goal has not been executed. It is defined
as follows:

Definition 3.5.1. Let T = (m1,m2, ...,me, ...,mn) be a test sequence where the call of
me produces an exception. Then, the number of not executed methods n−e is the method
call distance for T .

Listing 3.5 shows a test sequence intended to cover a code element of method
IntegerRange.equals(Object).
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Listing 3.5: Exceptional test sequence
1 I n t eg e r i 1 = new In t eg e r ( 0 ) ;
2 I n t eg e r i 2 = new In t eg e r (−33);
3 IntegerRange i r 1 = new IntegerRange ( i1 , i 2 ) ;
4 IntegerRange i r 2 = i r 1 . c l one ( ) ;
5 i r 1 . equa l s ( i r 2 ) ;

This sequence raises a runtime exception in line 3 where unsuitable arguments are passed
to the constructor of class IntegerRange. In this case, dM = 2, since two method calls
could not be executed because of an exception.

One could think of a normalization of the method call distance, as it occurs with
the branch distance (which is normalized to [0, 1)). So it appears to be intuitively
reasonable to divide the number of unexecuted methods by the total number of method
calls present. However, this normalization has severe drawbacks. Imagine that instead
of the two Integer instances created by the test sequence in Listing 3.5, some more
Integer instances are created. In turn, the exception would occur later, leading to a
lower normalized value of dM . However, the situation is actually the same – this extended
test sequence fails to reach the final method call in equal measure. The evolutionary
algorithm would learn that the objective value of a test sequence can be improved by
prepending (unnecessary) method calls. At the same time, the algorithm would learn
that it is beneficial to remove all the method calls after the method that produced
the exception. However, this would be profoundly counterproductive. Therefore, the
absolute number of properly executed methods is used, multiplied by an additional
weight constant as will be explained next.

In the case that an exception occurred in a method that does not contain the test
goal, both metrics control dependence distance and branch distance are calculated
with respect to the exit node of the control flow graph of the method which produced
the exception. For the test sequence in Listing 3.5 this method is the constructor
IntegerRange(Integer,Integer). The first condition of this method, which checks
whether the first Integer value is lower than the second, would be identified as the
problematic condition. Branch distance would be calculated with respect to this condition.
This strategy works well for explicit exceptions (since they are usually control-dependent
on a predicate for which a distance function can be applied). However, in the case of
implicit exceptions, such as a NullPointerException, no gradual distance metric can
be applied. Then, branch distance is by convention 1, which is the maximum value. To
further distinguish an exceptional branch distance from an unexceptional one (if the
exception occurred in the last method of the test sequence), an additional weight λC

is introduced so as to allow for consistent integration of the two distance metrics: the
elementary objective function wt for test goal t is then defined as follows:

wt(T ) = λC · dC(T, t) + dB(p) (3.13)

where T is the test sequence under evaluation, and p is the problem node. Branch
distance dB is either the conventional branch distance (in the case that either no
exception occurred at all or, if an exception occurred, it did not occur at the problem



3.5 Objective Function Construction 83

node), or dB = λC − 1 + dE (in the case that an exception occurred at the problem
node), where dE is the exception-specific distance. For instance, in the case of an
ArrayIndexOutOfBoundsException, dE is the distance of the invalid index (due to
which the exception was raised) to the closest valid one, normalized into the range
[0, 1). Both the factor λC as well as term λC − 1 are required in order to distinguish
between situations where no exception occurred at the problem node and those where
an exception occurred. Without this factor, it would not be clear whether the effective
“branch distance” refers to the conventional branch distance, or to the distance related to
the exception. An exception occurring at the problem node is considered “worse” than
execution diverging down the critical branch at the problem node.

Note that this objective function guides the evolutionary search to avoid runtime
exceptions. From a testing point of view this strategy appears to be problematic since
exceptions indicate situations of particular interest for the tester. But in fact it is not:
each evolutionary search addresses an individual test goal with the primary aim to find
a covering test sequence, and not test sequences that raise exceptions. Such sequences
could be found easily, most of which are, however, not interesting since they violate
implicit method preconditions. Finding interesting test sequences that raise particular
types of exceptions is the focus of robustness testing (Csallner and Smaragdakis, 2004)
and is not primarily dealt with during structural testing. However, test sequences which
raise interesting exceptions can be stored and provided later to the tester. They are a
byproduct of the evolutionary class testing approach.

When the code under test contains catch blocks, test sequences will be sought which
cover the code elements of these catch blocks. To this end, the evolutionary search must
evolve test sequences that raise a type of exception which is compatible to the type
declared to be caught by the catch block under consideration. The objective function
must answer the question as to how far a candidate test sequence is away from producing
a particular exception. Since in most cases this question cannot be answered accurately,
the objective function calculates the metric control dependence distance with respect
to the last encountered control node of the try block. Branch distance is then 1 by
convention.

The objective function for test sequence T that causes a runtime exception in a directly
called method which does not contain the test goal is defined as follows:

ωt(T ) = λdM + we(T ) (3.14)

where e is the exit node of the method in which the exception occurred.

3.5.6 Non-Public Methods

Non-public methods (private and protected ones) cannot be directly called, hence calls
to them cannot appear in a test sequence. Non-public methods are usually called by the
public methods of the class. The basic mechanism for objective function construction
for a test goal that belongs to a non-public method is that test sequences that do not
indirectly call the non-public method in question are penalized, as opposed to those that
include a call.
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Before the evolutionary search, a static analysis is carried out which identifies all
statements that involve a call to the desired non-public method. These statements will
be referred to as call points in the following. Sometimes a non-public method m1 is only
called by another non-public method m2. Then, in order to provoke a call to m1, a call
to m2 must be attained first. In this case, chains of call points result.

An individual objective function is constructed for each call point (or chain of call
points, respectively). A separate evolutionary search is carried out for each objective
function unless a covering test sequence is found or all call points have been tackled
without success.

Each call point is considered a subtarget of the search. If the test sequence under
evaluation misses the subtarget (that is, the non-public method in question is not called),
the distance metrics are calculated with respect to that subtarget (that is, the call point).
Otherwise, if the subtarget is reached, the distance metrics are calculated with respect
to the actual test goal. In the former case, a constant penalty ps will be added to the
objective value.

3.5.7 Putting it all Together

Figure 3.11 shows the classification of possible scenarios that may occur when attempting
to execute a test sequence, annotated with the objective functions that apply in the

test sequence execution
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Figure 3.11: Objective functions for the different situations

cases. The overall objective function ωt(T ) for test goal t, where T is the test sequence
to evaluate, refers to the elementary objective function w in some cases (w is defined in
Equation 3.13). Note that in case E, w refers to the exit node e of the function in which
the exception occurred, whereas in case J, w refers to the subtarget s (the call point).

The general definition of the objective function ωt involves a number of constants which
represent either penalty values or weights. Even though constant λ is problem-specific
(it must ensure that the method call distance weighs more than control node distance
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and branch distance together; the maximum value of these two depends on the number
of control nodes of the method with the largest control flow graph), all constants can be
globally adjusted without the need to incorporate static or dynamic knowledge of the
software under test. However, the following relations must be satisfied in order for the
objective function not to be misleading:

λC > 1 (3.15)
λ > max(w) (3.16)

pdyn > max(λdM + w + ps) (3.17)
ploop > max(λdM + w + ps) (3.18)

ps > max(λdM + w) (3.19)

where max(x) is the maximum possible value occurring for x.

3.6 Test Cluster Definition

In most cases, an object-oriented class is not standalone, rather, it is associated to other
classes whose services are drawn upon. Hence, generating test sequences for a given class
under test dynamically involves the creation and manipulation of the associated classes
– or of surrogates of them. The set of all classes relevant for testing a particular class
c is referred to as test cluster Cc of c, as introduced in Section 2.1.3 on page 10. The
test cluster for class c can be obtained by performing a transitive static analysis of the
signatures of the public methods of this class. Each type (class or interface) encountered
during this analysis is added to the test cluster. After all methods of the class under
test have been considered, the analysis continues by analyzing all public methods of the
test cluster types which have not yet been considered. Once all method signatures have
been analyzed in this manner, the test cluster contains all relevant types.

However, the test cluster created via static analysis is not necessarily accurate for test
sequence generation due to the following reasons:

• The test cluster may contain abstract classes and interfaces, respectively. However,
neither abstract classes nor interfaces can be instantiated. Therefore, concrete
classes are required that replace these types within the test cluster.

• For the purpose of isolation, it might be desired to replace some of the test
cluster classes by dummy classes (or mock classes) which possess a much simpler
implementation and are known to contain no errors.

• The test cluster does not account for arrays since no explicit array classes exist
that can be included.

Consequently, the definition of the test cluster requires further consideration. The
following sections will address these issues. At first, Section 3.6.1 on the following page
introduces mock classes which are suited to serve as a surrogate to complex application
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classes. At the same time, they can be used to replace interfaces and abstract classes
within the test cluster. This will be dealt with in Section 3.6.2 on the next page. Finally,
Section 3.6.3 on page 88 elaborates on arrays.

3.6.1 Mock Classes

For the purpose of testing, it is sometimes advisable to replace particular test cluster
classes by artificial, mock classes (Beck, 2003). Then, during test execution instances
of the mock classes are used instead of instances of the genuine classes. A mock class
exhibits the same interface as the class that it replaces. However, the implementation of
the method and thus the behavior of a mock object might be completely different from
that of the replaced instance. Mock objects are used when the genuine class possesses
behavior which is hard to reproduce (for example provoking a network error), when it
is very complex and slow (for instance waiting for certain timers), when it requires a
particular environment to work properly (for instance depending on a database that
must contain data sets of a particular scheme).

Different approaches exist to automatically create a mock class from a given genuine
class, for example Mock Objects (2006). Typically, the generated mock class possesses
additional methods that allow configuring the mock object appropriately with respect to
the intended test scenario. This configuration comprises for instance the definition of fixed
return values of the public methods. Listing 3.6 shows part of class DatabaseAdapter
which allows establishing a connection to a database and querying data items.

Listing 3.6: DatabaseAdapter class to be replaced
1 c l a s s DatabaseAdapter
2 {
3 pub l i c DatabaseAdapter ( ) { . . . }
4 pub l i c boolean connect ( S t r ing address ,
5 St r ing user ,
6 St r ing pwd)
7 { . . . }
8 pub l i c Object query ( S t r ing query ) { . . . }
9 }

If the class under test depends on class DatabaseAdapter, a database must be present
and set up appropriately in order to realize a particular scenario during testing. However,
testing will be much simpler if class DatabaseAdapter is replaced by a mock class which
does not require a concrete database to be present but exhibits the behavior that class
DatabaseAdapter would. Listing 3.7 shows the mock version of class DatabaseAdapter.

Listing 3.7: DatabaseAdapter mock class
1 c l a s s DatabaseAdapter
2 {
3 pr i va t e Vector retVals__connect = new Vector ( ) ;
4 pr i va t e Vector retVals__query = new Vector ( ) ;
5 pr i va t e i n t retVal__connect = 0 ;
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6 pr i va t e i n t retVal__query = 0 ;
7

8 pub l i c DatabaseAdapter ( ) { }
9

10 pub l i c boolean connect ( S t r ing address ,
11 St r ing user ,
12 St r ing pwd) {
13 re turn ( ( boolean ) returnValues__connect . get (
14 retVal__connect++ \%
15 retVals__connect . s i z e ( ) ) ) . boolValue ( ) ) ;
16 }
17

18 pub l i c void addRetVal__connect ( boolean bool ) {
19 retVals__connect . add ( new Boolean ( bool ) ) ;
20 }
21

22 pub l i c Object query ( S t r ing query ) {
23 re turn retVals__query . get (
24 retVals__query++ \% retVals__query . s i z e ( ) ) ;
25 }
26

27 pub l i c void addRetVal__query ( Object o ) {
28 retVals__query . add ( o ) ;
29 }
30 }

Note that the mocking concept behind the shown mock is very simple and naive. The
mock class possesses very simple method implementations which rely on data structures
that contain the return values. For instance, method connect() returns a Boolean value
that indicates whether or not the connection has been successfully established. The
value to be returned can be configured using method addRetVal__connect(boolean). The
mock supports the definition of multiple return values for a method. On each call, the
index for the return value vector is incremented. When reaching the end of the vector of
predefined return values, it is again started with the first element. The mock class does
not demand an underlying database. However, it requires a suitable configuration of
the return values of its methods. Note that the mocking concept discussed is only one
approach to replacing a complex or non-instantiable class.

In terms of the evolutionary search, the configuration of a mock object is part of
the search process since the mock configuration methods can appear in a test sequence.
Suitable configurations of the participating mock objects are searched which enable the
attainment of the test goal at hand.

3.6.2 Interface Implementers and Abstract Class Implementers

Mock classes, as previously described, can be used to replace interfaces and abstract
classes within the test cluster. From both interfaces and abstract classes no instances
can be created. However, when using a mock class instead of an interface or an abstract
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class, instances complying with a particular interface or abstract class can be obtained.
Therefore, all interfaces of the test cluster are replaced by appropriate mock classes. All
abstract classes of the test cluster are replaced by mock classes which implement either
all methods – thereby replacing already existing ones – or only the abstract methods,
thus preserving the original implementations of the non-abstract methods.

3.6.3 Array Generators

Arrays of arbitrary dimensions can also be part of the test cluster, since they can appear
in the signature of a public method. It must be enabled that arrays can be constructed
from any subset of objects and values available at the moment of calling a test sequence
method which expects an array-type argument. In order to allow for a high flexibility
of array constructions, for each array type of the test cluster, an array generator is
added to the test cluster which enables the creation of arbitrary arrays. For instance, in
the case of a one-dimensional array of the Integer type, the array generator shown in
Listing 3.8 is used.

Listing 3.8: Array generator for class Integer
1 c l a s s ArrayGenerator_Integer
2 {
3 pr i va t e Vector e lements = new Vector ( ) ;
4

5 pub l i c void addElement ( In t eg e r i ) {
6 e lements . add ( i ) ;
7 }
8

9 pub l i c In t eg e r [ ] getArray ( ) {
10 re turn ( In t eg e r [ ] ) e lements . toArray (
11 new In t eg e r [ e lements . s i z e ( ) ] ) ;
12 }
13 }

This array generator maintains an internal vector of Integer instances. Elements can
be added to this vector using the addElement method. An array is retrieved by calling
method getArray() which constructs an array from the elements currently present in
the internal vector.

In analogy to the configuration of the mock objects, the setup of the array generators
as well as the retrieval of array instances are part of the test sequence and will be evolved
during the evolutionary search.

3.7 Function-Assigned Flags

The objective function for a given test goal is essentially composed of the three metrics
method call distance, control dependence distance, and branch distance, as described in
Section 3.5 on page 76 (besides the various constants). In many cases, the combination
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of these metrics leads to a smooth objective function landscape. This landscape is a multi-
dimensional visual representation of the objective function: each point in the phenotype
search space is assigned its objective value in an additional dimension. The entirety
of the objective values forms a landscape possibly containing ascents, descents, peaks,
ridges, and plateaus. Note that the neighborhood relation of two points in the phenotype
search space is indirectly defined by the variation operators of the evolutionary search
in the genotype search space. An objective function is particularly suited to effectively
guide the evolutionary search if the corresponding landscape is smooth, meaning that
from each point it can be obtained whether or not a neighboring point improves the
objective value. If plateaus are present in the landscape, this information cannot be
obtained easily by exploring the close neighborhood of a point. As a result, plateaus
hinder the evolutionary search, in grave cases even causing it to fail.

In the field of evolutionary testing, sometimes suboptimal objective functions implying
landscapes with plateaus occur: in the case a Boolean predicate must be satisfied for
a particular path to be traversed during test sequence execution, the metric branch
distance is a binary function, returning either 0 (if the condition is satisfied as desired) or
1 (otherwise). This binary characteristic of the metric results in plateaus in the objective
function landscape.

In the literature, this issue is known as the flag problem. Several approaches to
the flag problem have been suggested, all of which address procedural programming
languages only. However, in the area of object-oriented programming, a particular type
of flag occurs relatively frequently which is not dealt with by the suggested approaches:
function-assigned flags. This section deals with function-assigned flags in particular in
order to enable more efficient evolutionary searches in their presence.

A function-assigned flag is a Boolean variable which is assigned the return value of a
Boolean-returning method; in addition, the flag value is used by a predicate.

Listing 3.9: Example of function-assigned flag
1 // fragment A
2 i f ( s tack . i s F u l l ( ) )
3 // ta r g e t

Listing 3.9 shows a code fragment with a function-assigned flag. Variable stack, supposed
to be of type IStack (shown in Listing 3.11), is referenced in the condition to call the
isFull method, whose return value controls the outcome of the condition. Hence,
the predicate represents a function-assigned flag, leading to a plateau in the objective
function landscape: for all cases where the stack is not full, the same objective value
occurs.

The following section discusses how the existing approaches to the flag problem
(neither one addresses function-assigned flag explicitly) deal with function-assigned flags.
Afterwards, two new approaches which particularly address function-assigned flags, but
are applicable to other flag problem as well, will be presented: the first, referred to
as method substitution, relies on the substitution of particular method calls, while the
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second, referred to as Boolean variable substitution, relies on a more complex substitution
of Boolean variables. Both approaches apply code transformations which create modified
versions of the original software under test. These modified versions are used during the
process of test sequence generation only; afterwards they become useless and will be
discarded.

3.7.1 Existing Approaches to Flag Removal

The flag removal algorithm of Harman, Hu, Hierons, Baresel and Sthamer (2002b)
relies on a code transformation that substitutes the flag within a condition by the
flag-defining expression. This code transformation is, however, not beneficial in the case
of function-assigned flags: the flag-defining expression is a function call itself; its usage
instead of the flag variable does not change the objective function landscape. Moreover,
the transformation might even change the application logic of the implementation which
could lead to inconsistent states of the system under test.

Listing 3.10: Problematic flag transformation
/∗ o r i g i n a l v e r s i on ∗/
boolean connected = database . connect ( ) ;
i f ( connected ) . . .
e l s e . . .

/∗ transformed ve r s i on ∗/
boolean connected = database . connect ( ) ;
i f ( /∗ r ep laced f l a g :∗/ database . connect ( ) ) . . .
e l s e . . .

Listing 3.10 shows the original implementation with a flag at the top and the modified
version, transformed according to the approach of Harman et al. at the bottom. In the
transformed version, the connect() method is called twice which might be a problem,
depending on the implementation of the database logic.

Bottaci (2002) describes the general idea of using the distance of the conditions that
control a flag assignment as a replacement distance for the distance of the condition that
involves the flag. He introduces additional variables storing these intermediate distance
values. However, he does not discuss how the idea would extend to function-assigned
flags.

Baresel and Sthamer (2003) perform a static analysis in order to classify all occurring
flag assignments into the categories desired and undesired. They include the conditions
controlling the assignments into the fitness calculation: the negated conditions controlling
the undesired assignments are added to the flag condition which is used to calculate the
branch distance. However, in the presence of function-assigned flags the static analysis
is limited in that it cannot decide whether a flag definition is desired or undesired – this
depends on the actual return value of the flag-assigning function at runtime.

Baresel, Binkley, Harman and Korel (2004) deal with the issue of loop-assigned flags.
They also classify the flag assignments according to desired and undesired. Additionally,
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they introduce local fitness functions and additional local variables. They reformulate
the flag condition using the additional variables. The approach is equally limited in the
presence of function-assigned flags as the approach of Baresel and Sthamer (2003).

Liu, Liu, Wang, Chen and Cai (2005a) introduce a fitness variable for each flag variable,
the value of which is calculated with the help of aggregation rules. They also classify
the flag assignments according to desired and undesired. Whenever a flag condition is
to be satisfied, the fitness value of the additionally introduced fitness variables is used.
Again, due to the classification into the categories desired and undesired, the approach
is limited in the presence of function-assigned flags.

McMinn and Holcombe (2006) combine the idea of chaining (Ferguson and Korel,
1996) and evolutionary testing to cope with the problem of internal variables and internal
states, including the flag problem. A transitive static analysis identifies all statements
that manipulate the variables controlling a flag assignment. Chains of such definitions
are considered systematically to define the objective function that then rewards the
execution of definition statements so as to eventually enable the desired flag assignment.
However, the approach of McMinn and Holcombe (2006) is not sufficient in the presence
of dynamic method binding. Reconsider the flag example in Listing 3.9 and also consider
the different stack types in Listing 3.11.

Listing 3.11: Polymorphic stack types
1 i n t e r f a c e IStack {
2 // standard stack ope ra t i on s
3 }
4

5 c l a s s SimpleStack implements IStack {
6 . . .
7 boolean i s F u l l ( ) {
8 i f ( e lements . s i z e ( ) == MAX_SIZE )
9 re turn true ;

10 e l s e re turn f a l s e ;
11 }
12 }
13

14 c l a s s ExtendedStack implements IStack {
15 . . .
16 boolean i s F u l l ( ) {
17 i f ( keepInLimit ( ) )
18 i f ( e lements . s i z e ( ) == MAX_SIZE )
19 re turn true ;
20 e l s e re turn f a l s e ;
21 e l s e re turn f a l s e ;
22 }
23 }

The static analysis performed by McMinn and Holcombe must statically decide what
the definition of the return value of method isFull is. However, multiple candidates
are available to be included in the calculation of the objective value. The first class,
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SimpleStack, compares the number of currently stored elements to a maximum size
bound in order to calculate the return value of method isFull. The second class,
ExtendedStack, allows exceeding the maximum size unless it is configured to keep the
size within the limit. With respect to code fragment A, it depends on the runtime type
of variable stack – which is supposed to be either SimpleStack or ExtendedStack –
which predicates must be incorporated into the flag fitness calculation: in the first case,
the predicate (elements. size()==MAX_SIZE) is relevant, whereas in the latter case, both
predicates (keepInLimit()) and (elements. size()==MAX_SIZE) are relevant. The right
choice concerning the class to be considered can be made at runtime only when the
effective method binding will be detected, meaning when it is clear of which type variable
stack actually is. Additionally, the chaining approach does not know about various
instances of the same type. Executing a definition statement for an arbitrary instance
might not be helpful; rather, the elements of a chain must include the information as to
which instance a definition must occur for.

In general, most of the previous approaches incorporate the knowledge of what a
desired and what an undesired flag assignment is into a code transformation or calculation
rule. They also require the conditions controlling the calculation of a flag value to be
present in the context of the considered function meaning that the information as to
which condition controls a flag assignment is statically accessible. As shown by an
example, this requirement cannot be satisfied in the presence of dynamic method binding
and instantiation, which are fundamental features of object-oriented software.

3.7.2 Method Substitution

Method substitution is a code transformation which applies to “well-known” methods
returning Boolean values or having very small return value ranges. Object.equals(-
Object) and Comparable.compareTo(Comparable) are examples of such well-known
methods. A call to such a method in the source code of a test cluster class will be
replaced by a call to an alternative implementation provided by the testing framework.
In contrast to the method it replaces, the framework method does not have a Boolean
return types, but a numeric one. Consider the code fragment in Listing 3.12.

Listing 3.12: Original predicate
1 pub l i c void m( In t eg e r i1 , I n t e g e r i 2 ) {
2 i f ( i 1 . equa l s ( i 2 ) )
3 // do something
4 . . .
5 }

It shows method m which takes two Integer arguments. The predicate i1.equals(i2)
is a Boolean predicate (a function-assigned flag) since method equals returns a Boolean.
In this case, the branch distance would be 0 if i1 equals i2, and 1 otherwise. However,
this branch distance would not give any hint as to how close the condition is to be
satisfied (or not).
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To cope with this kind of predicates, the well-known equals method of type Integer
is replaced by a method which returns a more meaningful value: the absolute difference
of the two integers. Additionally, the condition must be adapted to ensure that the
expression evaluates to a Boolean. The modified version of the method is shown in
Listing 3.13.

Listing 3.13: Modified predicate
1 pub l i c void m( In t eg e r i1 , I n t eg e r i 2 ) {
2 i f ( INTEGER. abs ( i1 , i 2 ) == 0 )
3 // do something
4 . . .
5 }

The framework method INTEGER.abs is used instead of the original equals method.
Its return value is compared to 0. This reformulation is semantically equivalent to the
original equality-checking condition; however, it implies a smoother objective function
landscape due to the non-Boolean distance function that is applied now (the distance
function of the equality operator for integers).

The strategy of method replacement can be applied to various well-known types and
methods. In the case of class String, the framework method for equals implements a
similarity metric for strings which indicates how equal two strings are. For instance, the
metrics discussed by Alshraideh and Bottaci (2005) can be employed.

3.7.3 Boolean Variable Substitution

Another approach to improving the objective function landscape in the presence of
function-assigned flags is the substitution of Boolean variables. The general idea is to
replace the Boolean type of the Boolean variables in the code by a more meaningful type,
such as double. Then, presuming a suitable convention, the value of such a “Boolean”
variable indicates whether it is actually true or false, and also how far it is away from
being the opposite value (false or true, respectively).

In the following, the Boolean variable code transformation will be detailed. It consists
of three steps, referred to as tactics. These tactics will be described using a running
example. This example refers to the methods func1 and func2 of a class, whose complete
definition is not relevant here.

Tactic 1: Branch Completion

This tactic completes the “invisible” else branches of all conditions and adds tautological
flag assignments. Table 3.4 on the following page shows a sample program on the left.
On the right, it shows the same program after tactic 1 has been applied. All branches
have been completed and tautological assignments of the flag in question have been
inserted (lines 6 and 7). The intention of this tactic is to make a flag assignment occur
irrespective of the path taken during execution of the function. This tactic along with
tactic 3 ensures that a guiding distance value can always be calculated. The scope of this
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original program: tactic 1 applied:

1 void func1 ( i n t a , i n t b)
2 {
3 boolean f l a g = f a l s e ;
4 i f ( a == 0 )
5 f l a g = func2 (b ) ;
6

7

8

9 i f ( f l a g )
10 // ta r g e t
11 }
12

13 i n t func2 ( i n t b)
14 {
15 i f ( b==0 )
16 re turn true ;
17 e l s e
18 re turn f a l s e ;
19 }

void func1 ( i n t a , i n t b)
{

i n t f l a g = 0 ;
i f ( a == 0 )

f l a g = func2 (b ) ;
e l s e

f l a g = f l a g ;

i f ( f l a g )
// ta r g e t

}

i n t func2 ( i n t b)
{

i f ( b==0 )
re turn true ;

e l s e
re turn f a l s e ;

}

Table 3.4: Tactic 1

tactic are all conditions that control a flag assignment. If there are nested conditions,
all parent conditions are also considered and their respective alternative branches are
also expanded.

Tactic 2: Data Type Substitution

This tactic substitutes the data type Boolean with the data type double in all flag
declarations. This comprises not only local variable declarations but also the return
type of functions that are supposed to return a Boolean value.

The data type substitution is the most essential tactic of the overall code transformation.
Positive values indicate that the flag is true whereas negative values indicate that it
is false. It assumes the value 1.0 to be “maximum true” and the value −1.0 to be
“maximum false”. By convention, 0 is a (unused) neutral value. The flag value’s amount
expresses how far it is away from being the opposite value. For example, a flag value of
−0.5 indicates that the flag is false and is 0.5 “away” from being true. The distance
that the flag value represents is later used during the evolutionary search to calculate
the objective value. The gradual values (that substitute true and false, respectively)
produce a smooth objective function landscape which provides better guidance to the
evolutionary search than the objective landscape for the untransformed source code.

The data type substitution also requires that all conditions involving the flag are mod-
ified. When the flag value is compared to true, e.g. ( flag == true), the predicate will be
changed to ( flag > 0). The modified predicate makes use of a relational operator defined
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for real values instead of the equality operator defined for Boolean values. Analogously,
a comparison to false would be changed to ( flag < 0). Short-hand predicates, such as
(flag) would be completed to (flag == true) first before applying the transformation.

The tactic also demands a special treatment of the negation operator. All occurrences
of it are replaced by the − operator (the negation operator for real values). For instance,
a condition if ( ! flag ) would then be modified to if ( −flag > 0 ).

tactic 1 applied: + tactic 2 applied:

1 void func1 ( i n t a , i n t b)
2 {
3 i n t f l a g = f a l s e ;
4 i f ( a == 0 )
5 f l a g = func2 (b ) ;
6 e l s e
7 f l a g = f l a g ;
8

9 i f ( f l a g )
10 // ta r g e t
11 }
12

13 i n t func2 ( i n t b)
14 {
15 i f ( b==0 )
16 re turn true ;
17 e l s e
18 re turn f a l s e ;
19 }

void func1 ( i n t a , i n t b)
{

double f l a g = −1;
i f ( a == 0 )

f l a g = func2 (b ) ;
e l s e

f l a g = f l a g ;

i f ( f l a g > 0 )
// ta r g e t

}

double func2 ( i n t b)
{

i f ( b==0 )
re turn 1 ;

e l s e
re turn −1;

}

Table 3.5: Tactic 2

Tactic 3: Local Instrumentation

The local instrumentation assigns gradual distance values to the flag variables. Therefore,
each right-hand operator of a flag assignment will be instrumented meaning that the
actual right-hand expression is replaced by a call to a distance function. In Table 3.6 on
the next page, the constants have been replaced by calls to function dist which returns
the distance for the expression passed to it. The angle brackets used for the second
argument passed to the dist function shall mean that the formal expression as well
as the actual values of the concerned variables are passed. The call to func2 has been
replaced by a call to function map. The following listing shows the pseudo-code of the
dist function.

1 double d i s t ( double ass ignedValue , exp r e s s i on exp ,
2 i n t ne s t i ngLeve l ) {
3 double d i s t anc e = branch_dist ( exp ) ;
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tactic 2 applied: + tactic 3 applied:

1 void func1 ( i n t a , i n t b)
2 {
3 double f l a g = −1;
4 i f ( a == 0 )
5 f l a g = func2 (b ) ;
6

7

8 e l s e
9 f l a g = f l a g ;

10

11

12 i f ( f l a g > 0 )
13 // ta r g e t
14 }
15

16 double func2 ( i n t b)
17 {
18 i f ( b==0 )
19 re turn 1 ;
20

21 e l s e
22 re turn −1;
23

24 }

void func1 ( i n t a , i n t b)
{

double f l a g = −1;
i f ( a == 0 )

f l a g = map(
func2 (b ) ,
2 ) ;

e l s e
f l a g = d i s t ( f l ag ,

<a==0>, 1 ) ;

i f ( f l a g > 0 )
// ta r g e t

}

double func2 ( i n t b)
{

i f ( b==0 )
re turn d i s t (1 ,

<b==0>,1);
e l s e

re turn d i s t (−1 ,
<b==0>,1);

}

Table 3.6: Tactic 3
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4 d i s t anc e = map( d i s tance , n e s t i ngLeve l ) ;
5

6 i f ( ass ignedValue < 0 )
7 d i s t anc e = −d i s t anc e ;
8 re turn d i s t anc e ;
9 }

Initially, the conventional branch distance will be calculated based on the passed
expression. This calculation depends on the applied relational operator; for each
operator, a particular distance function is defined, as described in Section 2.2.2 on
page 20. Then, the distance is mapped to a particular range using the map function. This
function realizes the idea of interval bisection which can be regarded as the inversion of
the control dependence distance approach. Interval bisection allows the integration of
several pieces of information into one real value. Here, this information consists of the
actual branch distance of the condition that controls the flag assignment and the nesting
level. The nesting level of a statement corresponds to the number of conditions that
control this statement; this number is used instead of the control dependence distance
since the latter cannot be calculated by the local objective function unambiguously using
static analysis. This is due to the dynamic function binding as mentioned above. The
number of nesting levels may differ from function call to function call depending on how
many levels the called function possesses.

Equation 3.20 shows the relationship between the original distance (dorig) and the
resulting mapped distance (dmapped) where l is the nesting level. The map function
implements this formula.

dmapped = sign(dorig) ·
1 + |dorig|

2l
(3.20)

An example shall demonstrate the idea behind the map function.
The argument for calling func1 is a pair (a, b) of integers. Table 3.7 shows the

nesting level (column n/l), the branch distance (column b/d, the flag value, and a
graphical representation of the absolute amount of the flag value (called interval)
that the arguments (1, 1), (1, 0), (0, 1), and (0, 0) would achieve when being passed as
arguments to func1. Pair (1, 1) and (1, 0) do not satisfy the first condition of func1,

(a,b) n/l b/d flag value interval

(1,1) 1 0.0005 -0.5002 0 10.5002

(1,0) 1 0.0005 -0.5002 0 10.5002

(0,1) 2 0.0005 -0.3751 0 10.3751

(0,0) 2 0.0005 +0.3750 0 10.3750

Table 3.7: Arguments for func1 and the resulting flag values

hence leading to the traversal of the alternative branch and achieving nesting level



98 3 Evolutionary Class Testing

1. The branch distance 0.0005 indicates how close execution was to evaluating the
first condition to true. This value originates from the corresponding distance function
(d==). The flag value is negative in these cases, indicating a false flag outcome. The
corresponding intervals in Table 3.7 on the preceding page show a solid lower half which
can be regarded as a reserved area for higher nesting levels. The branch distance of
0.0005 has been mapped to the upper half, resulting in the absolute flag value 0.5002.
Pair (0, 1) satisfies the first condition of function func1 and leads to the traversal of the
alternative branch of the decision in function func2, hence achieving a nesting level of
2. The miss of the true branch of this condition has been taken into account by the
branch distance of 0.0005. As the interval shows in this case, the lower part is bisected
as compared to the first two intervals, and the branch distance is mapped into the upper
one of these new halves. Finally, pair (0, 0) satisfies both conditions and leads to an
assignment of true to the flag variable. Therefore, the sign of the flag value is positive,
indicating the true value. The absolute value of the flag indicates how close execution
was to avoiding the true outcome.

3.8 Summary

The chapter presented the evolutionary class testing approach based on genetic program-
ming. At first, formal definitions relating to test sequences and their feasibility were given.
These definitions built the basis for the subsequent considerations on two representations
of test sequences. The aim when designing the representations was to restrict the space
of test sequences searched by an evolutionary algorithm to executable ones. The first
representation relies on a tree representation of test sequences, where the trees encode
the method calls only and the parameters for the single calls are not encoded. Such
tree is said to represent a test sequence fragment. Test sequence fragments are evolved
via genetic programming which applies selection operators and variation operators on
trees. The required parameters are represented using vectors of primitive values, such as
integers and doubles. For each test sequence fragment, a second evolutionary search via
a genetic algorithm working on vectors of primitives is carried out. The definition of the
vector (its size and its elements’ data types) depends on the test sequence fragment for
which the parameters are sought. Put together, a test sequence fragment along with a
corresponding concrete parameter vector build an executable test sequence. In order to
simplify this expensive two-level approach – which is due to the search space separation
into the subspaces sequence space and parameter space – the second representation relies
exclusively on trees. Both method call information and parameter information is encoded
in one tree. The genetic operators of the genetic programming algorithm that evolves
the trees are applicable to both the method information and the parameter information.
The two representations do not require the definition of new genetic operators, neither
for crossover, nor for mutation. Well-researched and well-established operators can be
applied for test sequence generation. The representations focus the search on exploring
executable test sequences only, formally infeasible sequences are not part of the search
space. However, it is not possible to prevent the search from encountering dynamically
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infeasible test sequences.
A strategy for objective function construction was discussed. It integrates the two

conventional distance metrics branch distance and control dependence distance into
a comprehensive objective function framework that can handle all possible situations
that may arise during the execution of a test sequence. Runtime exceptions are coped
with by introducing the additional distance metric method call distance. The concept of
call points was introduced in order to cope with non-public methods. A call point is a
statement which involves a call to the targeted non-public method. When a test goal
belonging to a non-public method is addressed, the evolutionary search consists of two
phases: in the first phase, the call point is tackled, meaning the search aims at finding
a test sequence which indirectly invokes the method in question. Then, in the second
phase, test sequences involving a call to the non-public method are further evolved as to
finally find a test sequence which covers the targeted test goal within the non-public
method. The objective functions defined by the approach effectively handle runtime
exceptions and non-public methods, as will be demonstrated in Section 4.2 on page 106.

For the discussion of both the representations and the objective function it was assumed
that the underlying test cluster consists of classes which can be instantiated. However,
since this is not generally the case, approaches to replacing non-instantiable types by
instantiable types were suggested. Mock classes were introduced to replace interfaces,
abstract classes, and user-selected classes, respectively. In addition, array generators
were introduced in order to allow the evolution of array-type method arguments.

The last part of this chapter revisited objective function design. Boolean predicates,
often relying on the Boolean return value of a method, imply plateaus in the objective
function landscape, hence hampering the evolutionary search. Two strategies to cope with
function-assigned flags, a particular type of Boolean predicates, were suggested: method
substitution and Boolean variable substitution. The former relies on the replacement of
well-known methods returning Boolean values by framework methods returning more
meaningful values, such as integers. The latter relies on the replacement of the data
type Boolean when used as return type of a method. This replacement requires further
modifications of the source code, for instance the insertion of local objective functions.
Both strategies replace Boolean values by more gradual values with a larger value range
that allow for the application of better distance functions and consequently lead to
better objective functions. The improvement will be empirically demonstrated in the
following chapter.

With regards to the limitations of automatic test generation approaches identified
in Section 2.2.4 on page 31, the evolutionary class testing approach has the properties
shown in Table 3.8 on the next page.

Evolutionary class testing is a dynamic, search-based approach to automating the
generation of test sequences. It does not apply symbolic execution and constraint
solving. It transforms the task of test generation to a set of search problems. For each
search problem, both the search space and the respective objective function are defined
automatically. Points in such a search space are test sequences that include the creation
and configuration of parameter objects. Therefore, the approach is applicable to testing
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Limitation Evolutionary class testing

Symbolic execution and
constraint solving

Search-based approach not involving symbolic
execution and constraint solving

Support of Class-Type
Parameters

Generation of test sequences that include the
creation and setup of parameter objects

Maintainability and Us-
age

Generation of test sequences that call only public
methods

Inexecutable test
sequences

Usage of a tree-based representation which sig-
nificantly reduces the probability of occurrence
of inexecutable test sequences during the search

Complex predicates Application of distance functions for the various
relational and logical operators that a predicate
can make use of

Runtime exceptions Incorporation of an additional distance metric
that accounts for runtime exceptions during the
search

Non-public methods Incorporation of an additional penalty mecha-
nism that accounts for non-public methods

Additional user input No need; yet, the specification of irrelevant classes
and methods is beneficial

Table 3.8: Properties of evolutionary class testing with respect to the limitations
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classes with methods having class-type arguments. In addition, the encapsulation of the
objects is not broken since a test sequence includes calls to public methods only.

A novelty of evolutionary class testing is that it relies on a tree-based representation
of test sequences. This representation accounts for the call dependences that exist
among the methods of the test cluster. As a result, the probability of occurrence of
inexecutable test sequences, from which other search-based approaches suffer, can be
reduced significantly.

The approach to constructing the objective function builds on the distance-based
approach to objective function design in the area of procedural evolutionary structural
testing. Distance functions tailored to the relational and logical operators occurring in a
predicate are used, which enables effective evolutionary searches for relatively complex
predicates also. The idea for handling runtime exceptions is that the objective functions
include a special metric that refers to the number of unexecuted method calls of the
candidate test sequence. This metric ensures that sufficient guidance is provided to the
evolutionary search so as to overcome the exception and finally reach the test goal.

Test goals belonging to non-public methods are dealt with by incorporating a particular
penalty mechanism into the objective functions. A penalty applies if the non-public
method has not indirectly been called. In this case, the evolutionary search is guided so
that test sequences are encountered which call the non-public method and finally reach
the test goal.

Apart from the source code of the class under test and optionally the source codes
of the other involved classes, the evolutionary class testing approach does not require
additional user input. The configuration of the genetic programming algorithm can be
globally defined once and needs not be changed for every new process. Yet, an additional
specification of which classes are not relevant and which methods might be omitted
during the search can be beneficial with respect to search space reduction and hence the
performance of the approach (cf. Section 5.2 on page 134).
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4 Experiments

This chapter reports on the experiments performed with test sequence generating
algorithm TCGen2, described in Section 3.4.2 on page 74. This algorithm is implemented
by the test sequence generator EvoUnit. EvoUnit is presented in short in Section 4.1.
The general intention of the experiments was to empirically investigate the effectiveness
of the evolutionary class testing approach with respect to the elaborated limitations.
Therefore, a case study consisting of 34 real-world Java classes, taken from 5 different
open-source development projects, was carried out. The results were contrasted with
the results from a random testing approach as well as with the results from the two
commercial test sequence generators CodePro (described in Section 2.2.3 on page 30)
and Jtest (described in Section 2.2.3 on page 31). These experiments, including the setup
of the test sequence generators and the achieved results, are described in Section 4.2
on page 106. The effectiveness of the approach to testing non-public methods was
studied in particular. The results of experiments demonstrating the effectiveness of
the evolutionary class testing approach with respect to generating tests for non-public
methods are summarized in Section 4.3 on page 125. Section 4.4 on page 127 reports
on the results of the case study that analyzes the effectiveness of the strategy Boolean
variable substitution, described in Section 3.7.3 on page 93. Finally, a summary of the
experiments concludes this chapter in Section 4.5 on page 130.

4.1 Implementation of EvoUnit

The architecture of EvoUnit is depicted in Figure 4.1 on the following page. The input
to the system is a text file that specifies the properties of the test sequence generation
process. These properties for instance include the name of the class under test, the
settings for the evolutionary search, and the classes to be replaced by mock classes. It
can also be specified which classes are to be used as a replacement for interfaces and
abstract classes. Additionally, reduction patterns which filter out some of the methods
when defining the function set can be specified for each class. This helps reducing the
search space size. The output of EvoUnit is a JUnit class that implements a test case
method for each generated test sequence.

Three major components can be identified in the figure: Runner, Optimizer, and Class
Loader. Runner is the component that controls the overall process. It uses Class Loader
to acquire all relevant classes in Java byte format. Optimizer is employed to carry out
the evolutionary searches for the individual test goals. These components and the main
flow will be explained in more detail below.

Runner initializes the system by reading in the user-specified property file. Depending



104 4 Experiments

Instrumenting Class Loader

Test Specification JUnit Test Class

Method TableTest Goals

Parameter File

Generator

Implementor Generator

ECJParameter File

Evaluator

Execution Trace

Metrics

Calculator

Test Sequences

Java Compiler

Instrumented

Source Code

Instrumented

Source Code

Instrumented

Byte Code

Instrumented

Byte Code

Implementor

Source Code

Original

Source Code

Original

Byte Code

Original

Byte Code

R

R

Class Control

Flow Graph

Class Control

Flow Graph

R

R

Instrumenter

Runner

Test Goal

Manager
R

R

R

Call PointsCall Points
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on the specified class under test and the specification of other classes, it creates a method
table that contains all classes and their methods that are considered relevant for testing
the class under test. Creating the method table requires the classes in question to be
loaded. This happens via a particular class loader. This class loader behaves like the
standard system class loader except that it instruments the classes that it should load
on-the-fly. This necessitates that the source code of the class to be loaded is available.
If it is, the instrumentation process starts. Otherwise, the standard class loader is used,
loading the uninstrumented byte code.

The instrumentator parses the source code using the OpenJava parser (Tatsubori,
Chiba, Killijian and Itano, 2000). Trace statements are inserted into the methods that
will create an execution trace when the methods are executed later. Simultaneously,
Instrumentor also constructs the control flow graphs of the methods of the class being
loaded. The control flow graphs of all classes are stored in a global repository. Once
the source code of a class is instrumented, the Java compiler translates it to byte code.
The resulting byte code is then loaded by the instrumenting class loader. Both the
instrumented class and the control flow graphs are stored persistently, allowing skipping
instrumentation and construction of the control flow graphs if the system can find them
in the repository. It may happen that Runner instructs to load an abstract class or
an interface when creating the method table. In this case, Implementor Generator
automatically creates an implementing mock class and returns the corresponding byte
code instead of the requested interface or abstract class, respectively. This ensures that
the method table contains methods of concrete types only.

Once the method table is created, it is the task of Test Goal Manager to create and
maintain the list of test goals (that is, all decisions/branches of the control flow graphs
of the methods of the class under test). Afterwards, Runner iterates over the list of
test goals via Test Goal Manager. For each test goal to do, the following procedure is
performed:

First, the method table is modified according to the current test goal. This involves
the specification of the method under test, that is, the method which contains the current
test goal. Parameter File Generator compiles a parameter file to be used by ECJ (Wilson
et al., 2004). This parameter file contains the specification of both the type set and the
function set. Elements of the type set are extracted from the signatures of the methods
of the method table, whereas the methods of the method table become elements of the
function set. Then, the optimization process is started by invoking ECJ. It carries out
the evolutionary search by using Evaluator as a callback for acquiring the objective
value of a given individual. Evaluator executes the test sequence represented by the
given individual; by doing so, an execution trace is created. Metrics calculator, which
implements the algorithms for computing the distance metrics mentioned in Section 3.5
on page 76, calculates the objective value based on the execution trace and the control
flow graph information. Once a covering test sequence is found, Runner inserts this
sequence into the global list of relevant test sequences. Finally, if all test goals have
been done, the JUnit class is created based on the set of stored test sequences.

EvoUnit does not only return the JUnit class file. Information about the test genera-
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tion process including the development of the objective values and the corresponding
individuals are collected during the run and returned afterwards as well. This allows com-
prehending the test generation process even after its termination, which is particularly
useful when there are unachieved test goals.

4.2 General Effectiveness Case Study

In order to empirically examine the effectiveness of the evolutionary class testing
approach, a case study with 34 classes was conducted. These classes were taken from
five different Java development projects to consider a broad spectrum of types of test
objects. Section 4.2.1 describes the class selection criteria and the resulting assortment
of classes.

The degree of method/decision coverage (cf. Section 2.1.4 on page 11) achieved by
the set of test sequences for each class was taken as the main criterion for effectiveness
assessment. Since the degree of coverage achieved is not suggestive of effectiveness when
considered without any reference, the coverages were contrasted to the coverages achieved
by a random approach. In addition, the coverage results were also contrasted to the
coverage results achieved by the two commercial test sequence generators CodePro and
Jtest. Achieving higher coverages than the random approach would suggest the value of
the evolutionary class testing approach in general, and achieving higher coverages than
the commercial generators would suggest even greater value.

The setup of the experimental framework, including the setup of the generators, is
described in Section 4.2.2 on page 111. The results obtained and their analysis is given
in Section 4.2.3 on page 116.

4.2.1 Test Objects

Selection Criteria

The following criteria were applied for the selection of the projects from which to choose
test objects as well as for the selection of the individual classes to be tested:

• Availability. The source code of the classes must be freely available in order to
ensure reproducibility of the experiments. Additionally, the source code must be
available and accessible easily.

• Relevance and Popularity. The projects must also possess a particular relevance and
popularity, respectively. Relevance is defined by the importance of the originating
party while popularity is defined in terms of references.

• Complexity. The projects and classes must not be too simple, meaning that
covering the code of a particular class must not be trivial but rather require an
effort. (The results of the random approach suggest the triviality of a class.)

• Dependencies. The candidate project must not depend on too many other projects
that require an extensive configuration of the system on which the test sequence
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generator runs. Note that performing dynamic test generation includes that the
class under test will be instantiated, requiring all code dependencies on other
classes to be resolved.

• Type. Projects with a primary focus on graphical components (such as GUI
libraries) are considered to be not relevant. This is due to the fact that GUI classes
require special treatment when they are tested.

• Usage of string literals. Projects and classes that make strong use of strings are
excluded. For instance, all XML-related projects are not considered since the test
sequence generation would need to create string inputs that correspond to the
XML tag names of a particular XML schema.

• Usage of remote resources. Projects that are intended to primarily work on network
resources or local file system resources such as file packagers are no good candidates
since they would require extensive stubbing and the creation of valid resource
identifiers, such as file names.

Selected Test Objects

The following projects were selected to provide test objects in accordance with the
selection criteria from above:

• J2SDK, version 1.4.2_08, the Java 2 Standard Development Kit,
http://java.sun.com/j2se/1.4.2/download.html

• Quilt, version 0.6a5, a code coverage measurement tool working on Java byte code
level,
http://quilt.sourceforge.net

• JFreeChart, version 1.0.1, in conjunction with JCommons, version 1.0.4, a library
for chart drawing,
http://www.jfree.org/jfreechart

• Colt, version 1.2.0, a library for high performance and technical computing devel-
oped in the context of CERN (European organization for nuclear research),
http://dsd.lbl.gov/˜hoschek/colt

• Apache Commons Math, version 1.1, a library providing various data structures
and algorithms for mathematical computing,
http://jakarta.apache.org/commons/math

Table 4.1 on the following page lists the classes taken from the selected projects. The
names of the classes are shown in the first column of the table. The other columns show
the values of the following complexity metrics: ELOC is the number of executable lines
of code which corresponds to the size of the class in terms of the source code. NOM
means number of methods, while NOA means number of attributes. DIT is the depth of
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Test object ELOC NOM NOA DIT NBD CYC

java.security.CodeSource 236 11 3 1 5 27
java.util.BitSet 486 32 2 1 3 33
java.util.HashMap 504 35 6 3 4 8
java.util.LinkedList 317 30 2 4 4 6
java.util.Stack 34 6 0 4 2 2
java.util.StringTokenizer 108 12 8 1 2 8
java.util.TreeSet 108 22 2 3 3 8

org.quilt.cover.stmt.Ephemera 48 6 3 1 2 6
org.quilt.framework.QuiltTest 194 50 22 1 3 6
org.quilt.graph.Directed 137 14 7 1 3 5
org.quilt.graph.Edge 74 9 2 1 2 6
org.quilt.graph.Entry 34 6 0 2 2 2
org.quilt.graph.Exit 30 6 0 2 2 2
org.quilt.graph.UnaryConnector 22 5 1 2 2 2
org.quilt.graph.Vertex 90 15 4 1 3 5
org.quilt.graph.Walker 96 4 6 1 5 12
org.quilt.reg.Registry 83 11 1 1 3 7
org.quilt.report.Msg 68 10 7 1 2 2

org.jfree.chart.JFreeChart 834 65 15 5 4 16
org.jfree.chart.axis.AxisSpace 186 19 4 1 3 9
org.jfree.chart.axis.NumberAxis 720 34 6 3 6 16
org.jfree.data.DefaultKeyedValues 150 18 1 1 4 9
org.jfree.data.DefaultKeyedValues2D 234 23 4 1 5 13
org.jfree.data.Range 144 11 2 1 3 4
org.jfree.data.time.TimeSeries 415 44 6 2 4 12
org.jfree.ui.RectangleInsets 255 28 5 1 2 8
org.jfree.util.ObjectTable 200 20 5 1 4 9

cern.colt.bitvector.BitMatrix 196 29 3 2 6 24
cern.colt.bitvector.BitVector 316 34 2 2 6 21
cern.colt.buffer.DoubleBuffer 35 5 5 2 2 2
cern.colt.matrix.impl.SparseDoubleMatrix1D 72 15 1 5 2 3

org.apache.commons.math.analysis.BrentSolver 105 3 0 2 4 16
org.apache.commons.math.analysis.SecantSolver 72 3 0 2 4 9
org.apache.commons.math.complex.Complex 141 14 2 1 4 10

Table 4.1: Test objects; general complexity metrics
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inheritance tree and indicates how many super classes the class possesses. NBD is the
nested block depth. CYC is McCabe’s cyclomatic complexity (McCabe, 1976). Note that
the table shows the maximum values for both NBD and CYC since each method of the
class implies a value for these metrics.

Table 4.2 shows the aspects of the selected classes that relate to the limitations from
Section 1.1 on page 3. Column Loops gives the number of loops occurring in the source

Test object Loops Arrays Class Args Cmplx Preds. Non-Public Abstr.

CodeSource 9 9 7/11 43 4/11 2
BitSet 22 73 7/39 129 11/39 0
HashMap 20 16 21/40 41 8/40 4
LinkedList 14 4 17/30 31 5/30 0
Stack 0 0 2/6 2 0/6 2
StringTokenizer 4 0 4/12 13 3/12 0
TreeSet 1 0 13/22 3 3/22 4

Ephemera 0 0 2/6 4 0/6
QuiltTest 4 0 14/50 13 0/50 0
Directed 1 0 9/16 7 3/16 1
Edge 0 0 6/10 6 0/10
Entry 0 0 2/6 2 0/6 1
Exit 0 0 2/6 1 1 1
UnaryConnector 0 0 2/5 1 0/5 1
Vertex 1 0 5/16 6 1/16 1
Walker 2 0 3/4 9 2/4 2
Registry 1 2 5/11 6 0/11 0
Msg 1 0 8/10 1 0/10 0

JFreeChart 7 4 36/66 63 6/66 5
AxisSpace 0 0 7/19 24 0/19 0
NumberAxis 2 0 20/38 54 11/38 2
DefaultKeyedValues 0 0 3/7 1 0/7 0
DefaultKeyedValues2D 6 0 10/24 23 0/24 2
Range 0 0 6/17 12 1/17 0
TimeSeries 8 0 23/44 47 0/44 2
RectangleInsets 0 0 8/28 22 0/28 0
ObjectTable 8 16 7/22 30 11/22 0

BitMatrix 7 2 9/29 32 4/29 1
BitVector 20 18 10/35 64 4/35 1
DoubleBuffer 0 1 2/5 3 0/5
SparseDoubleMatrix1D 0 0 4/15 2 4/15 9

BrentSolver 1 0 1/3 13 0/3 1
SecantSolver 1 0 1/2 8 0/2 1
Complex 0 0 5/14 19 0/14 0

Table 4.2: Test objects; properties related to limitations

code (for, while, and do-while). Column Arrays gives the number of array accesses
that occur in the source code. Column Class args gives the number of methods that
possess at least one non-primitive argument type (in relation to the total number of
methods). Column Cmplx Preds. gives the number of complex predicates. A predicate
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is considered complex if it is composed using the AND or OR operator, or if it is a method
call. Column Non-Public gives the number of non-public methods, in relation to the
total number of methods. Finally, column Abstr. gives the number of interfaces or
abstract classes that the class under test involves (directly or indirectly).

Table 4.3 shows the characteristics of the selected test objects that refer to the
evolutionary search and are suggestive of the complexity of the search. It shows the

Test object Branches Types Functions IMPL AG

CodeSource 40/0/70 19 62 2 2
BitSet 157/0/91 7 36 0 0
HashMap 47/0/9 18 145 4 1
LinkedList 57/0/11 12 59 0 1
Stack 8/0/0 16 118 2 1
StringTokenizer 12/0/17 8 20 0 0
TreeSet 24/0/3 17 144 4 1

Ephemera 13/0/0 8 16 0 0
QuiltTest 64/0/0 17 90 0 0
Directed 20/5/0 18 77 1 0
Edge 19/0/0 18 77 1 0
Entry 8/0/0 18 101 1 0
Exit 6/1/0 18 100 1 0
UnaryConnector 6/0/0 19 84 1 0
Vertex 22/1/0 18 77 1 0
Walker 30/0/0 21 87 2 0
Registry 18/0/0 11 30 0 1
Msg 14/0/0 10 23 0 0

JFreeChart 157/26/16 55 177 5 1
AxisSpace 63/0/0 10 41 0 0
NumberAxis 83/72/0 44 212 2 0
DefaultKeyedValues 44/0/0 15 43 0 0
DefaultKeyedValues2D 72/0/0 14 57 2 0
Range 38/0/4 7 22 0 0
TimeSeries 135/0/0 24 94 2 0
RectangleInsets 70/0/0 12 58 0 0
ObjectTable 36/21/8 8 20 0 0

BitMatrix 78/7/0 10 38 1 0
BitVector 129/6/0 12 50 1 1
DoubleBuffer 8/0/0 24 136 4 2
SparseDoubleMatrix1D 14/7/0 39 286 9 3

BrentSolver 27/0/0 7 24 1 0
SecantSolver 17/0/0 7 24 1 0
Complex 51/0/0 5 28 0 0

Table 4.3: Test objects; properties related to the evolutionary search

following metrics: Branches shows the number of branches to cover according to the
method/decision coverage criterion (cf. Section 2.1.4 on page 11). This number estimates
the number of individual optimizations that must be carried out by the test sequence
generator. The number of branches is split up into the branches that belong to (a)
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public methods, (b) protected methods, and (c) private methods. Types shows the
number of types used by the genetic programming algorithm, while Functions shows the
number of function set entries (cf. Section 2.3.3 on page 46). IMPL shows how many
abstract classes and interfaces are involved, hence requiring the test sequence generator
to automatically create implementers for them (cf. Section 3.6.2 on page 87). Finally,
AG shows the number of array generators (cf. Section 3.6.3 on page 88) that the test
sequence generator uses.

4.2.2 Setup and Realization

The experimental framework for the general effectiveness case study comprises several
tools and configurations. It was used to accomplish the following steps:

1. EvoUnit was used in optimizing mode to obtain JUnit test classes for the 34 test
objects.

2. EvoUnit was used in random mode to obtain JUnit test classes for the 34 test
objects.

3. CodePro was used to obtain JUnit test classes for the 34 test objects.

4. Jtest was used to obtain JUnit test classes for the 34 test objects.

EvoUnit creates coverage reports based on method/decision coverage. Therefore, the
comparison between the evolutionary class testing approach and the random approach is
based on the degree of achieved method/decision coverage. However, both CodePro and
Jtest have particular implementations of coverage measurement. None of them measures
method/decision coverage. Therefore, the independent coverage measurement tool clover
(Cenqua Pty. Ltd., 2007) was used in order to generate comparable coverage reports.
Clover measures method coverage (the relative amount of methods tested), statement
coverage, conditional coverage (that is, decision coverage, but not method/decision
coverage), and an accumulated coverage, referred to as Clover coverage in this thesis.
Clover coverage TC is defined as follows:

TC =
BT + BF + SC + MC

2 ·B + S + M
(4.1)

where BT is the number of branches that evaluated to true at least once, BF is the
number of branches that evaluated to false at least once, SC is the number of statements
covered, MC is the number of methods entered, B is the total number of branches, S is
the total number of statements, and M is the total number of methods. Clover coverage
was used as the decisive coverage criterion for the comparison of the approaches.

EvoUnit Setup and Realization

Optimizing Mode In general, the default settings of ECJ – the genetic programming
system that EvoUnit uses – were kept unchanged for the experiments. While the ECJ
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documentation (Luke, 2007) provides the detailed general settings, Table 4.4 summarizes
the specific major parameters (refer to Section 2.3 on page 35 for an explanation of the
parameters). Figure 4.2 shows the evolutionary pipeline that ECJ uses. The figure is

Parameter Value

individuals 50 in 1 global population
max. generations 200
tree generation strategy Uniform
max. tree size 17
selection strategy tournament selection
tournament size 7
crossover strategy subtree crossover
mutation strategies ERC mutation, demotion, promotion
population update strategy pure reinsertion

Table 4.4: Settings of the genetic programming system ECJ

ERC Mutation

Demotion Mutation

Promotion Mutation

Subtree Crossover

Subtree Crossover

Subtree Crossover

Tournament Selection

Tournament Selection

Tournament Selection

Tournament Selection

Tournament Selection

Tournament Selection

0.4

0.3

0.3

Figure 4.2: Experimental ECJ pipeline

best read from right to left: a new individual is obtained by using either ERC mutation,
demotion mutation, or promotion mutation, respectively. The numbers at the edges
indicate the probability of the choice of the corresponding mutation operator. These
probabilities were chosen arbitrarily. ERC mutation was favored (value of 0.4) in order
to explore the dimension of primitive values more intensively than the dimension of
method calls. The “input” for the selected mutation operator is provided by the crossover
operator. Note that although the crossover operator creates two offspring individuals,
only one of them survives. The crossover operator acquires the parent individuals by
using tournament selection.

A set of parameter-tuning experiments was carried out in order to find accurate values
for the parameters population size, and tournament size, since these parameters appeared
to have significant impact on the efficiency of the evolutionary search. Figure 4.3 shows
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the summary of experiments performed with class State1 (Listing A.3) for finding an
accurate population size. Population sizes ranging from 10 to 150 individuals were tried.
The task was to find a covering test sequence for the true branch of method test (line
24). Each run was carried out 50 times. Tournament size was set to 7 (ECJ’s default).
The figure shows the average number of objective function evaluations that indicate the
efficiency of the search. The figure also shows the standard deviation achieved by the 50
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Figure 4.3: Results for parameter number of individuals

runs. The population size of 50 individuals achieved the best results in terms of required
function evaluations and standard deviation. The results of experiments with varying
tournament size are depicted in Figure 4.4 on the following page. Again, test object
State1 was used in 50 repeated runs. Population size was adjusted to 50. Tournament
sizes were varied from 1 (which implies random selection) to 10. The chart shows the
average number of objective function evaluations including the standard deviation. It
is worth mentioning that the best tournament size 7 obtained from the experiments
equals the default tournament size of ECJ. Although one parameter-setting experiment
does not allow drawing general conclusions, the found parameters were used as starting
points for the experiments.

Random Mode The random mode of EvoUnit was realized by switching off selection
and variation. A new generation is then created by generating fresh individuals from
scratch. The Uniform initializer is supposed to ensure that the probabilities of occurrence
of the candidate test sequences is distributed equally.

General Settings Table 4.5 on the next page shows the settings for the various ERC
types. Except for the types integer and long, the default data type ranges were used.
The ranges of the two mentioned types were restricted in order to boost the evolutionary



114 4 Experiments

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 F
un

ct
io

n 
E

va
lu

at
io

ns

Tournament Size

de.dcaiti.State1

Figure 4.4: Results for parameter tournament size

ERC type min. value max. value

byte -128 127
char 0 255
short -32768 32767
integer -100000 100000
long -100000 100000
float -3.4028235e+38f 3.4028235e+38f
double -1.7976931348623157e+308 1.7976931348623157e+308

Table 4.5: ERC value ranges
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search. These restrictions turned out to be convenient since the selected test objects do
not require particular values beyond the specified ranges.

The execution times were also measured during the experiments. The test system was
a PC with an Intel Pentium P4 CPU with 2.8 GHz and 2GB main memory. This PC ran
Windows XP Professional 2002, Service Pack 2. Apart from the test sequence generator
and the standard operating system maintenance processes no other applications were
active on it.

EvoUnit was configured to run each test sequence generation process 50 times and
report the results on each run. For some test objects, manual assignments of concrete
classes to interfaces and to abstract classes were provided, along with method filters
that prevent some of the classes’ methods to be transformed to functions of the function
set in order to keep the resulting function sets compact.

CodePro Setup and Realization

The Eclipse plugin of CodePro Analytix, version 4.6.1, was used. CodePro allows
adjusting several parameters. The only parameter which appears to have an impact
on the degree of code coverage is the maximum allowed number of test sequences to
generate per method of the class under test. By default, this value is set to 30, meaning
that CodePro would generate at most 30 test sequences for a single method of the class
under test if required. According to CodePro’s documentation, a value of 0 should
indicate that no such maximum limit exists, allowing CodePro to generate an unlimited
number of test sequences. However, setting the value to 0 delivered empty test classes
without any test method in preceding experiments. Preceding experiments also showed
that the coverage of a sample class could be improved by increasing the parameter value
from 30 to a 200. The value was set to 200 since the focus is primarily on code coverage
and not on the number of test cases. Thereby, 200 appeared to be sufficiently high.
Since the test-case-generating algorithm of CodePro is deterministic, exactly one run
was performed.

Jtest Setup and Realization

The Eclipse plugin of Jtest, version 8.0.122, was used. Similar to CodePro, Jtest allows
specifying several parameters. However, the default settings were left unchanged except
for the configuration of methods for which Jtest should generate test sequences: by
default, private methods are not addressed; thus, the settings were adapted in order to
make Jtest address them, too.

Jtest generated the same number of test sequences for a test object in repeated runs in
preceding experiments with the test objects taken from the J2SDK project. Furthermore,
the test sequences generated during different runs of Jtest led to exactly the same degrees
of code coverages. Therefore, only one run was performed for each test object.
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4.2.3 Results

At first, the results achieved by EvoUnit in optimizing mode are presented, followed by
the results achieved by EvoUnit in random mode. Afterwards, the results of CodePro
and Jtest are discussed.

EvoUnit Results

The results achieved by EvoUnit in optimizing mode are shown in Table 4.6 on the
facing page. The values are averaged over the 50 runs (except the standard deviations in
parentheses). Column Test object lists the names of the test objects. Column D+-COV
shows the achieved method/decision coverage. Column σc gives the standard deviation
of the coverage. Both D+-COV and σc give values in percent. Column Evals shows the
average number of objective function evaluations. Column σe shows the corresponding
standard deviation. Column Time shows the time needed on average in the format
minutes:seconds. Column σt shows the corresponding standard deviation in seconds.
When required, values were rounded according to the standard rounding rules.

The results demonstrate that EvoUnit was able to generate test sequences that lead
to high code coverages in most cases. Note that the coverage relates to all methods
of the classes, not only to the public ones. Relatively high coverages were obtained,
ranging from 65.7% (Edge) to 100% (Stack, Entry, Exit, Registry, Msg, SecantSolver).
On average, 91.6% were achieved. The relatively small standard deviations suggest the
stability of the results and hence the stability of the approach in general. The number
of objective function evaluations ranges from 10 (Exit) to 390,146 (BitVector). A higher
number indicates a greater difficulty of the test goals associated with a test object. The
execution times range from one second (Registry, Msg), suggesting that the search was
trivial, to 201 minutes (NumberAxis). However, the execution times do not always
correlate to the number of objective function executions (longer execution times do not
necessarily indicate higher numbers of evaluations). This is due to the fact that the
execution time of one evaluation differs from test goal to test goal and is different for
each test object. For instance, test objects with a large number of attributes that require
intensive memory management, such as in the case of class BitSet, one evaluation takes
a relatively long time.

An analysis of the results suggests the following reasons for uncovered test goals:
In many cases, the classes possess private serializing methods (readObject and

writeObject) for which no call points exist since the methods are called by the Java
serialization framework. The presence of these methods that sometimes include several
decisions, decreases the achievable degree of coverage.

Some classes possess protected methods that they do not call themselves. These
methods are provided to subclasses to allow access to some internals (for example, in
the case of ObjectTable). Test goals that belong to such protected methods could not
be covered since no call points exist.

Predicates are present primarily in the mathematical test objects that involve exact
comparisons of floating point values of double precision. Finding an exactly matching
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Test object D+-COV σc Evals σe Time σt

CodeSource 87.0 (1.3) 152853 (13457) 31:38 (284)
BitSet 98.5 (0.5) 56673 (12723) 26:35 (707)
HashMap 89.1 (1.1) 102593 (9685) 09:42 (140)
LinkedList 98.3 (0.6) 27398 (4936) 01:23 (45)
Stack 100.0 (0.0) 946 (967) 00:02 (2)
StringTokenizer 93.7 (2.4) 23299 (8423) 01:38 (34)
TreeSet 92.7 (0.7) 19803 (1124) 01:02 (13)

JFreeChart 92.9 (0.3) 141911 (5213) 47:58 (337)
AxisSpace 98.4 (0.0) 10041 (17) 00:18 (2)
NumberAxis 95.4 (2.2) 73983 (2512) 201:00 (913)
DefaultKeyedValues 92.6 (2.0) 35868 (7472) 01:24 (19)
DefaultKeyedValues2D 86.4 (3.3) 99162 (22724) 03:04 (43)
Range 97.6 (0.0) 10006 (5) 00:26 (9)
TimeSeries 89.7 (1.0) 119658 (10150) 06:07 (41)
RectangleInsets 99.4 (0.9) 13918 (6508) 01:44 (36)
ObjectTable 80.0 (0.0) 120000 (1) 03:10 (6)

Ephemera 92.3 (0.0) 10096 (33) 00:17 (1)
QuiltTest 96.9 (0.0) 21511 (663) 01:42 (7)
Directed 82.0 (3.3) 45558 (7329) 02:45 (19)
Edge 65.7 (3.7) 67223 (5894) 03:46 (17)
Entry 100.0 (0.0) 13 (6) 00:00 (1)
Exit 100.0 (0.0) 10 (6) 00:00 (1)
UnaryConnector 83.3 (0.0) 10288 (395) 00:23 (1)
Vertex 87.0 (0.0) 30000 (0) 00:52 (6)
Walker 70.7 (1.4) 87800 (4185) 03:17 (10)
Registry 100.0 (0.0) 226 (72) 00:01 (1)
Msg 100.0 (0.0) 31 (13) 00:01 (1)

DoubleBuffer 99.8 (1.8) 4843 (2839) 02:03 (74)
BitVector 71.1 (0.0) 390146 (145) 11:44 (9)
BitMatrix 97.2 (0.7) 33735 (5701) 01:06 (12)
SparseDoubleMatrix1D 90.5 (0.0) 20000 (0) 33:15 (210)

BrentSolver 96.3 (0.0) 10190 (213) 01:36 (4)
SecantSolver 100.0 (0.0) 1208 (1120) 00:05 (6)
Complex 90.2 (0.3) 50013 (665) 02:56 (59)

Average 91.6 (0.8) 52677 (3976) 11:51 (90)

Table 4.6: Results from EvoUnit (optimizing mode)
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Test object D+-COV σc Evals σe Times σt

CodeSource 69.5 (0.8) 347248 (10191) 05:25 (17)
BitSet 93.4 (0.8) 198155 (16276) 53:15 (303)
HashMap 76.2 (1.8) 237531 (15906) 04:59 (23)
LinkedList 90.6 (1.0) 83901 (7082) 08:08 (18)
Stack 100.0 (0.0) 1291 (1174) 00:03 (2)
StringTokenizer 96.2 (1.0) 16122 (3307) 01:01 (14)
TreeSet 91.6 (1.7) 25509 (4150) 01:20 (14)

JFreeChart 71.3 (1.3) 141911 (5213) 44:24 (205)
AxisSpace 98.4 (0.0) 10056 (23) 00:12 (0)
NumberAxis 79.8 (0.7) 314713 (10245) 338:48 (438)
DefaultKeyedValues 83.9 (1.4) 66910 (5190) 01:40 (9)
DefaultKeyedValues2D 62.5 (1.3) 267017 (8405) 06:44 (17)
Range 97.0 (1.2) 18426 (4892) 00:24 (7)
TimeSeries 66.4 (1.5) 378990 (15192) 13:21 (32)
RectangleInsets 76.1 (1.9) 168503 (13440) 01:13 (6)
ObjectTable 78.5 (1.1) 132252 (5642) 01:47 (9)

Ephemera 92.3 (0.0) 11442 (1168) 00:17 (2)
QuiltTest 89.7 (1.1) 73340 (5273) 01:46 (5)
Directed 83.3 (3.4) 44425 (6481) 01:38 (6)
Edge 72.3 (4.2) 75733 (7390) 00:23 (3)
Entry 100.0 (0.0) 12 (6) 00:00 (1)
Exit 100.0 (0.0) 9 (4) 00:00 (0)
UnaryConnector 89.3 (8.1) 7984 (3320) 00:06 (2)
Vertex 82.9 (3.2) 40828 (7265) 00:19 (4)
Walker 67.5 (2.0) 97400 (5997) 02:52 (7)
Registry 100.0 (0.0) 738 (433) 00:02 (1)
Msg 100.0 (0.0) 31 (11) 00:15 (61)

DoubleBuffer 89.0 (4.8) 11804 (2688) 03:17 (41)
BitVector 69.0 (0.5) 419129 (6273) 12:35 (15)
BitMatrix 80.0 (1.9) 154294 (13992) 04:41 (26)
SparseDoubleMatrix1D 90.5 ( 0.0) 20000 (0) 189:55 (260)

BrentSolver 37.3 (24.0) 171402 (63373) 06:28 (143)
SecantSolver 29.8 (18.0) 120559 (28888) 05:33 (66)
Complex 90.2 (0.0) 50080 (63) 01:43 (11)

Average 82.2 (2.6) 109051 (8205) 21:02 (52)

Table 4.7: Results from EvoUnit (random mode)
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double input is an extremely hard task due to the huge search space in the case of double
parameters and the mutation precision. This parameter indirectly specifies the smallest
mutation step of a double value during the evolutionary search. However, all practical
precision values do not allow the smallest possible mutation step size that might be
required to evolve a particular double value. This issue is also known in the area of
evolutionary structural testing of procedural software.

Additionally, some of the test goals are infeasible, meaning that no test sequence exists
that attains it. Infeasible test goals can have several reasons. Often, they are caused by
logical programming errors or “double checks”; for instance: a setter method of a class
checks whether the passed argument is the null reference. If it is, it declines setting the
attribute; otherwise it sets the attribute value. Another method that uses the attribute
value checks again for a null value regardless of that the value cannot be null due to
the previous check of the setter method. This case occurs, for instance, in class Range.

Finally, some predicates were either too complex or the corresponding distance
functions were not helpful in guiding the evolutionary search. Since many address
comparisons are involved in the decisions of the test objects, the resulting objective
function contains plateaus due to the binary character of the assigned distance function
for address comparisons. Furthermore, several conditions require some objects – either
the object under test or needed parameter objects – to be in a particular state that
is very hard to attain. In these cases the approach did not succeed in setting up the
required states of the instances.

Table 4.7 on the preceding page shows the results from EvoUnit running in random
mode. The table has the same structure as Table 4.6 on page 117. On average, 9.4% less
coverage was achieved by the random mode. This suggests that evolutionary optimization
actually occurred and contributed to the attainment of some test goals. However, the
relatively high coverage achieved by the random mode suggests that many test goals
are trivial and random testing is also able to produce relatively good results. Both the
average number of objective function evaluation and the average execution time are
about the double of those of the optimizing mode. The number of evaluations ranges
from 9 (Exit) to 419,129 (BitVector). The execution time ranges from under 1 second
(Entry and Exit) to 338 minutes and 48 seconds (NumberAxis).

The following figures contrast the coverages achieved by both EvoUnit running in
optimizing mode (labeled “EVO” in the figures) and EvoUnit running in random mode
(labeled “RND” in the figures): Figure 4.5 on the next page shows the coverages for
the test objects of the J2SDK project, Figure 4.6 on the following page shows the
coverages for the test objects of the Quilt project, Figure 4.7 on page 121 shows the
coverages for the test objects of the JFreeChart project, and Figure 4.8 on page 121
shows the coverages for the test objects of the Colt project and the Apache Math project.

The figures also show the result of the t-test by two stars, one star, or no star
respectively, above each test object: two stars indicate that the assumption that the
approach which achieved a higher coverage during the 50 runs in fact outperforms the
other approach is accurate with a probability of 99.9% (statistically highly significant).
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One star indicates that the same assumption is accurate with a probability of 99.5%
(statistically significant). No star indicates that the probability of the accuracy is lower
than 99.5%. The results suggest that the evolutionary approach outperforms the random
approach in general. As can be seen in the figures, in most of the cases the differences
between the two approaches are highly statistically significant. The significance indicates
the stability of the results: another repetition of a run is very likely to produce the same
result. Yet, the results also indicate that random testing performs relatively well, too.

However, there are test objects for which the same results are achieved and also
for which the random approach was even better than the evolutionary approach (4
test objects). The latter finding is surprising in particular. Harman and McMinn
(2007) also observe that random testing outperforms evolutionary testing in rare cases.
An investigation into the 5 test goals of the 4 affected test objects found that the
objective functions are deceptive in these cases, preventing the evolutionary search from
exploring search space regions containing covering test sequences. These test objects
are: StringTokenizer, Directed, Edge, an UnaryConnector. The affected test goals are
state-dependent, meaning that the instances must be in particular states. However,
attaining the states requires method calls that potentially throw runtime exceptions.
However, a simple test sequence will be rewarded in these cases while test sequences
that include many calls to state-changing methods tend to be penalized due to greater
distance values caused by runtime exceptions. It is assumed that the chaining approach
(McMinn, 2004a) will help in these situations since it addresses state-dependent test
goals. However, this approach must be adapted to object-oriented software since it was
developed for procedural software only.

CodePro Results

Table 4.8 on the next page contrasts the coverages achieved by both EvoUnit and
CodePro. The coverages were reported by the Clover tool when (1) executing that
test class generated by EvoUnit, whose achieved method/decision coverage occurred
most frequently during the 50 runs, and (2) executing the only test class generated by
CodePro.

The differences between the method/decision coverage from Table 4.6 on page 117
and the Clover conditional coverage are due to the different definitions of the metrics
and the fact that the former does not account for “short-hand” conditionals, such as
x = (a==0?1:−1). Column Test object shows the names of the test objects. Columns #
show the number of generated test sequences. Columns MC show the achieved method
coverage. Columns SC show the achieved statement coverage. Columns CC show the
achieved conditional coverage. Columns TC show the achieved total Clover coverage.

As the table shows, EvoUnit reached 30.5% higher Clover coverage than CodePro on
average. Note that in three cases, CodePro was not able to generate any test sequence
due to a runtime exception in the tool: for Registry, NumberAxis, and Complex. When
excluding these test objects, EvoUnit reached 19.6% higher Clover coverage than CodePro
on average. The table also shows that although CodePro generated one test sequence for
class BrentSolver and for class SecantSolver, respectively, these test sequences do not
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Test object EvoUnit CodePro
# MC SC CC TC # MC SC CC TC

CodeSource 112 81.8 65.8 74.4 70.7 19 63.6 26.0 23.6 26.6
BitSet 254 97.4 98.2 98.5 98.3 96 82.1 41.9 31.3 40.1
HashMap 90 95.0 86.4 86.5 87.4 279 92.5 55.0 35.4 53.9
LinkedList 69 93.3 90.4 92.4 91.4 102 93.3 52.5 30.3 51.3
Stack 8 100.0 100.0 100.0 100.0 8 100.0 75.0 50.0 76.9
StringTokenizer 29 100.0 100.0 96.4 99.0 46 100.0 98.4 89.3 96.2
TreeSet 27 90.9 75.0 30.0 73.8 119 90.9 60.4 10.0 62.5

BitMatrix 85 96.6 98.4 97.3 97.8 1610 100.0 74.4 50.0 69.7
BitVector 135 100.0 84.0 70.5 80.6 869 100.0 66.7 56.8 66.0
DoubleBuffer 8 100.0 100.0 100.0 100.0 20 100.0 82.4 50.0 78.6
SparseDoubleMatrix1D 21 86.7 78.8 60.0 77.6 115 60.0 63.6 60.0 62.1

Ephemera 13 100.0 94.7 87.5 93.9 8 100.0 52.6 12.5 51.5
QuiltTest 64 100.0 97.1 93.3 97.3 213 100.0 85.7 43.3 82.7
Directed 25 100.0 66.7 64.3 72.8 47 100.0 76.5 42.9 75.3
Edge 19 70.0 63.6 64.3 64.9 17 100.0 97.0 100.0 98.2
Entry 8 100.0 100.0 100.0 100.0 1 16.7 13.3 25.0 16.0
Exit 7 100.0 100.0 100.0 100.0 8 100.0 91.7 50.0 90.0
UnaryConnector 6 80.0 85.7 100.0 85.7 1 20.0 28.6 50.0 28.6
Vertex 23 100 84.8 75.0 86.9 205 100.0 78.8 58.3 80.3
Walker 30 100.0 76.3 50.0 68.8 7 100.0 74.6 46.7 66.7
Registry 18 100.0 100.0 100.0 100.0 0 0.0 0.0 0.0 0.0
Msg 14 100 100.0 100.0 100.0 493 100.0 100.0 100.0 100.0

AxisSpace 64 100.0 98.8 98.0 98.7 1132 100.0 86.9 74.0 84.3
NumberAxis 151 97.4 81.4 90.2 84.0 0 0.0 0.0 0.0 0.0
JFreeChart 179 93.9 85.3 81.5 85.2 3555 97.0 81.0 64.8 78.3
DefaultKeyedValues2D 71 100.0 95.2 85.5 92.9 1083 100.0 85.6 75.8 84.3
DefaultKeyedValues 41 100.0 98.6 88.9 96.1 677 100.0 94.6 77.8 90.6
Range 42 100.0 100.0 97.1 99.1 291 100.0 76.9 67.6 77.6
TimeSeries 111 100.0 93.0 84.4 91.5 2058 97.7 44.7 33.3 48.2
RectangleInsets 70 100.0 100.0 98.4 99.6 848 100.0 81.6 71.9 81.1
ObjectTable 60 60.0 51.5 46.4 50.8 135 85.0 62.4 48.3 60.3

BrentSolver 27 100.0 98.6 92.3 97.0 1 0.0 0.0 0.0 0.0
SecantSolver 17 100.0 97.7 93.8 96.8 1 0.0 0.0 0.0 0.0
Complex 51 100.0 92.5 86.8 91.6 0 0.0 0.0 0.0 0.0

Average 57 95.4 89.4 84.8 89.1 414 76.4 59.1 45.0 58.2

Table 4.8: Clover results for EvoUnit and CodePro



124 4 Experiments

increase code coverage since they both provoke a runtime exception in the constructors
of the super classes of the respective classes.

Jtest Results

Table 4.9 contrasts the coverages achieved by both EvoUnit and Jtest. The coverages
were reported by the Clover tool when (1) executing that test class generated by EvoUnit,
whose achieved method/decision coverage occurred most frequently during the 50 runs,
and (2) executing the only test class generated by Jtest. In general the test sequences

Test object EvoUnit Jtest
# MC SC CC TC # MC SC CC TC

CodeSource 112 81.8 65.8 74.4 70.7 43 100.0 64.4 57.5 63.1
BitSet 254 97.4 98.2 98.5 98.3 112 100.0 80.8 70.9 78.1
HashMap 90 90.0 72.7 68.8 73.6 101 97.5 70.0 46.9 66.9
LinkedList 69 93.3 90.4 92.4 91.4 67 100.0 74.3 56.1 72.4
Stack 8 100.0 100.0 100.0 100.0 10 100.0 100.0 100.0 100.9
StringTokenizer 29 100.0 100.0 96.4 99.0 25 100.0 92.2 78.6 89.4
TreeSet 27 90.9 75.0 30.0 73.8 51 100.0 95.8 50.0 91.3

BitMatrix 85 96.6 98.4 97.3 97.8 49 100.0 49.8 38.4 50.0
BitVector 135 100.0 84.0 70.5 80.6 61 100.0 60.0 36.5 57.5
DoubleBuffer 8 100.0 100.0 100.0 100.0 9 100.0 82.4 66.7 82.1
SparseDoubleMatrix1D 21 86.7 78.8 60.0 77.6 38 100.0 100.0 100.0 100.0

Ephemera 13 100.0 94.7 87.5 93.9 10 100.0 89.5 75.0 87.9
QuiltTest 64 100.0 97.1 93.3 97.3 79 100.0 96.2 86.7 95.7
Directed 25 100.0 66.7 64.3 72.8 5 62.5 41.2 14.3 40.7
Edge 19 70.0 63.6 64.3 64.9 19 50.0 51.5 50.0 50.9
Entry 8 100.0 100.0 100.0 100.0 2 50.0 60.0 50.0 56.0
Exit 7 100.0 100.0 100.0 100.0 2 50.0 50.7 0.0 45.0
UnaryConnector 6 80.0 85.7 100.0 85.7 1 20.0 28.5 50.0 28.6
Vertex 23 100 84.8 75.0 86.9 4 31.2 24.2 16.7 24.6
Walker 30 100.0 76.3 50.0 68.8 4 100.0 37.3 13.3 32.3
Registry 18 100.0 100.0 100.0 100.0 22 100.0 100.0 100.0 100.0
Msg 14 100 100.0 100.0 100.0 11 100.0 100.0 60.0 91.3

AxisSpace 64 100.0 98.8 98.0 98.7 30 100.0 79.8 58.0 75.2
NumberAxis 151 97.4 81.4 90.2 84.0 35 57.9 30.1 25.4 30.9
JFreeChart 179 93.9 85.3 81.5 85.2 35 100.0 76.4 66.7 76.4
DefaultKeyedValues2D 71 100.0 95.2 85.5 92.9 59 100.0 85.6 72.6 83.3
DefaultKeyedValues 41 100.0 98.6 88.9 96.1 32 100.0 74.3 50.0 71.1
Range 42 100.0 100.0 97.1 99.1 21 94.1 78.5 73.5 79.3
TimeSeries 111 100.0 93.0 84.4 91.5 103 100.0 83.7 77.1 83.9
RectangleInsets 70 100.0 100.0 98.4 99.6 42 100.0 64.7 48.4 64.5
ObjectTable 60 60.0 51.5 46.4 50.8 57 100.0 92.1 79.3 88.8

BrentSolver 27 100.0 98.6 92.3 97.0 5 100.0 17.1 3.8 16.2
SecantSolver 17 100.0 97.7 93.8 96.8 5 100.0 22.7 6.2 22.2
Complex 51 100.0 92.5 86.8 91.6 31 100.0 74.6 57.9 72.3

Average 57 95.2 89.0 84.3 88.7 32 88.6 68.5 54.0 66.7

Table 4.9: Clover results for EvoUnit and Jtest

generated by EvoUnit achieved higher coverages than those of Jtest. More precisely,
on average, EvoUnit’s test sequences cover 22% more of the code in terms of Clover
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coverage than Jtest’s test sequences do. For 29 out of 34 test objects EvoUnit was more
effective, whereas for 2 out of 34 test objects, Jtest was more effective.

Summary

The case study with 34 test objects demonstrated the effectiveness of the evolutionary
class testing approach, implemented in the test sequence generator EvoUnit. In compar-
ison with random testing, evolutionary class testing achieved higher code coverages on
average. In comparison with the two commercial test sequence generators CodePro and
Jtest, EvoUnit achieved higher code coverages on average. Figures 4.9 to 4.12 summarize
the coverage results of the three generators. It must, however, be noted that no

 0

 20

 40

 60

 80

 100

CodeSource

BitSet

HashM
ap

LinkedList

Stack
StringTokenizer

TreeSet

C
lo

ve
r 

C
ov

er
ag

e 
(%

)

EvoUnit
CodePro
Jtest

Figure 4.9: Coverage achieved by all generators; J2SDK test objects

expert knowledge was available for the application of the two commercial tools. Their
configuration occurred based on the available documentation and preliminary tests with
various parameter values.

4.3 Non-Public Method Coverage Case Study

This section reports on the results of an investigation into the coverage of non-public
methods. The investigation should provide insight as to the effectiveness of the concept
to address test goals belonging to non-public methods, as described in Section 3.5.6 on
page 83.

An additional series of experiments was carried out for a subset of the test objects
from Table 4.1 on page 108. All considered test objects possess non-public methods. For
the accomplishment of the experiments, EvoUnit was used in a mode where it ignored
test goals belonging to non-public methods. The results should reveal if the coverage of
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Figure 4.10: Coverage achieved by all generators; Quilt test objects

the non-public methods achieved by EvoUnit actually require the additional concept of
the call points, or if non-public methods are covered in the process anyway.

Section 4.3.1 lists the test objects used for the case study. Section 4.3.2 describes
the setup and the realization of the experiments, whereas Section 4.3.3 discusses the
achieved findings.

4.3.1 Test Objects

From the selection of the 34 test objects used for the general effectiveness case study,
the classes with non-public methods were selected: CodeSource, BitSet, StringTokenizer,
LinkedList, TreeSet, Directed, Exit, Vertex, Range, BitVector, and BitMatrix. Table 4.3
on page 110 shows the number of test goals belonging to non-public methods for each of
them.

4.3.2 Setup and Realization

The configuration of EvoUnit described in Section 4.2.2 on page 111 was used to run
the experiments. Each run was carried out 50 times.

4.3.3 Results

The results of the comparison are shown in Figure 4.13 on page 129. The figure shows
the relative degree of method/decision coverage achieved for the non-public methods.
Full coverage (100%) means that all decisions of all non-public methods were covered
and each non-public method has been entered at least once during test execution. As the
figure shows, EvoUnit achieved higher coverages or equal coverages when it was run with
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Figure 4.11: Coverage achieved by all generators; JFreeChart test objects

the support for non-public methods activated. Equal coverages were achieved for the
three test objects Exit, Vertex, and Range. This indicates that the non-public methods
can be tested in the process while testing the public methods. As expected, no case
exists in which the coverage achieved without the support of non-public methods was
better than with this support. In general, the results suggest that the integration of the
concept of call points and the respective extension of the objective functions effectively
contribute to the attainment of higher code coverages in the presence of non-public
methods.

4.4 Function-Assigned Flag Case Study

This section describes the case study which was performed in order to assess the
effectiveness of the Boolean variable substitution, suggested in Section 3.7.3 on page 93.
The case study consists of two series of experiments performed with class Stack (shown
in Listing A.4: at first, EvoUnit used the original version of the code to create high
coverage test sequences; then, EvoUnit used the modified version.

Section 4.4.1 introduces the Stack class and points out the problems that the evolu-
tionary class testing approach would have with the original source code. Section 4.4.2
on page 129 summarizes the setup of the experiments. Finally, Section 4.4.3 on page 129
discusses the results of the case study.

4.4.1 Test Object

Listing A.4 shows the source code of class Stack. This class realizes a simple stack
which is able to hold MAX_ELEMENTS elements. Initially, the capacity is adjusted to
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Figure 4.12: Coverage achieved by all generators; both Colt and Math test objects

10, meaning that 10 elements can be pushed onto a stack object at most. The internal
implementation maintains both an array which actually contains the stack elements and
a stack pointer which points to the next free index within this array. Method add adds
an element to the stack if it is not already full. If it is called on a full stack, it throws an
exception. Method removeTop removes the top element from the stack and returns it. If
it is called on an empty stack, it throws an exception. Method isFull indicates whether
the maximum capacity has been reached, while method isEmpty indicates whether the
stack is empty.

The critical branch for which test sequence generation is hard is the true branch of
the first condition of method add (line 11). This is due to the information loss caused
by the method call isFull: the Boolean return value, which depends on the size of the
array and the current pointer value to the next free element, implies a plateau in the
objective function landscape, hindering the evolutionary search. A similar code construct
is present at the first condition of method removeTop (the same kind of information loss
occurs); however, since a new stack instance represents initially an empty stack, the
condition can easily be satisfied as desired.

Listing A.5 shows the transformed version of the source code of class Stack (class
StackT). The transformation modified the code in that it replaced the Boolean return
type of both methods isFull and isEmpty with type double. Accordingly, it replaced
the Boolean constants originally returned by these methods with the local objective
values. Finally, it adapted the conditions which incorporate calls to these two methods.
Note that for local objective value calculation, the code uses a shorthand notation: the
expression in angle brackets is thought to abbreviate the respective operator-specific
distance function.
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4.4.2 Setup and Realization

EvoUnit was used to run two series of experiments: 10 times the original code version
was used, while 10 times the transformed version was used. EvoUnit was configured to
only search for a test sequence which covers the true branch of the first condition of
method add. The configuration of the genetic programming algorithm is the same as
that of the effectiveness case study, described in Section 4.2.2 on page 111.

4.4.3 Results

EvoUnit did not succeed in creating a covering test sequence for the targeted branch in
any of the 10 runs when using the original code version (number of objective function
evaluations: 10000, standard deviation: 0). In contrast, when it used the modified
version it always found a covering test sequence (number of objective funcion evaluations:
1261, standard deviation: 786).

Figure 4.14 on the next page shows the development of the objective values during
the 10 evolutionary searches with the transformed version. The thick graph represent
the best objective value averaged over the 10 runs. It can be observed that the objective
values incrementally improved which indicates that an optimization process took place.
However, the initial objective value improvements are very small (due to the calculations
of the map function) and cannot easily be seen in the figure. The final jumps of each
graph of the single runs are due to the change of the sign of the “flag value”: once the
relevant condition is satisfied, the sign of the flag value is inverted. Consequently, the
distance function of the > operator returns the distance value 0, causing the best fitness
to immediately change to 0.
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4.5 Summary

This chapter presented three case studies for the empirical investigation into (1) the
effectiveness of the evolutionary class testing approach in general, (2) the effectiveness
of the approach in addressing the test of non-public methods, and (3) the effectiveness
of objective function landscape smoothing, as described in Section 3.7 on page 88.

In the experiments for general effectiveness assessment, the evolutionary class testing
approach implemented by the test sequence generator EvoUnit, successfully generated
high coverage test sequences for the 34 real-world test objects taken from five different
open-source development projects. Full code coverage was easily achieved in case the
test objects were of low complexity. In many cases, full coverage was not possible due to
infeasible branches and non-public methods for which no call points exist. On average,
EvoUnit achieved higher code coverages when compared to a random testing approach.
The same is true when comparing the results of EvoUnit with the results delivered by
the two commercial test sequence generators CodePro and Jtest.

The second case study analyzing the coverage of non-public methods in particular
indicated that the extension of the objective functions as suggested in Section 3.5.6
on page 83 is effective: without the extension, the coverage of the non-public methods
achieved for 10 test objects was lower than with the extension being active. This suggests
the value of the extension in general.

The case study investigating the effectiveness of the Boolean variable substitution
method for smoothing the objective function landscape suggests that the method is
suited to improving the evolutionary search in the presence of function-assigned flags.
However, since the case study considered one problem case only, more experimentation
is required to draw general conclusions.
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The settings of the genetic programming algorithms used, such as the population size
or the probability of mutation, were kept unchanged throughout the case studies. It is
expected that the efficiency of the approach can be increased for some test objects if the
settings are adapted individually.
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5 Conclusion and Future Work

This chapter concludes this thesis by summarizing the achievements of this work in
Section 5.1, discussing the restrictions and limitations of the evolutionary class testing
approach in Section 5.2 on the next page, and finally giving directions for future work in
Section 5.3 on page 136.

5.1 Summary of Achievements

The major objective of this thesis was the development of an approach to automatically
generating object-oriented unit tests. The motivation for a new approach arose from the
limitations of the existing work in this area. These limitations impact the applicability
of the respective approach (meaning that only particular types of classes can be handled
effectively) the achievable code coverage (meaning that the degree of coverage is subop-
timal), and the maintainability of the results. This thesis suggested the evolutionary
class testing approach to address the limitations outlined in Section 1.1 on page 3.

Evolutionary class testing is a dynamic and search-based approach that does not
apply symbolic execution and constraint solving. Hence, it does not suffer from the
limitations of these techniques. It generates test sequences that include the creation of
class type arguments for method calls. The generated test sequences include calls to the
public methods of the concerned classes only and do not involve breaking encapsulation
by accessing non-public class members. As a result, the generated tests are better
maintainable: they do not require the reflection mechanisms provided by a particular
testing framework, nor will they be broken if refactorings involving non-public members
are performed. Using the public class interfaces only ensures that the tests exclusively
use objects in states that comply with their class invariants.

The representations used to encode test sequences to allow for evolutionary searches
are defined in such a way that inexecutable test sequences rarely occur. Test sequences
are encoded as method call trees which regard the call dependences among the methods
(cf. Section 3.3 on page 56 and Section 3.4 on page 72). In general, the representations
ensure that the genetic operators for crossover and mutation preserve the executability
of the test sequences. As a result, no repair mechanisms are required and penalties are
needed only in infrequent cases.

The objective function for a particular test goal is defined so that it implies a smooth
landscape for even complex predicates in many cases (cf. Section 3.5 on page 76). This
allows for an effective evolutionary search if the test goal is control-dependent on complex
predicates. Furthermore, the objective function involves a distance metric that effectively
deals with runtime exceptions (cf. Section 3.5.5 on page 80). As opposed to previous
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search-based approaches that generally fail if randomly generated method arguments
cause a runtime exception, the search is guided by this additional metric to explore
regions of the search space with valid method arguments. In addition, objective functions
are also defined for test goals that belong to non-public methods by introducing an
additional penalty and distinguishing appropriately between test sequences that involve
a call to the non-public method in question and those that do not (cf. Section 3.5.6 on
page 83).

Another achievement is that the suggested approach enables the application of well-
studied and well-proven genetic programming algorithms. The representation of test
sequences by method call trees enables the use of off-the-shelf genetic programming
toolboxes, thus facilitating the implementation of an evolutionary test sequence generator
enormously. At the same time, since the approach is not dependent on a particular
genetic programming algorithm, it can benefit from further improvements and ideas in
the field of evolutionary computation.

Furthermore, another achievement of this thesis is an improvement of the objective
functions in the presence of function-assigned flags. Function-assigned flags occur when
the Boolean return value of a method appears in a predicate. Two strategies to cope
with function-assigned flags were suggested. They are intended to smooth the landscape
of the objective function and hence improve the guidance to the evolutionary search.

An empirical investigation in the effectiveness of the approach showed that it can
outperform random testing when being allocated the same resources. In comparison
with two commercial test sequence generators, the approach has been shown to be
competitive and even outperformed the two commercial tools in terms of achieved code
coverage. The effectiveness of the strategies in dealing with non-public methods and
Boolean predicates could also be demonstrated empirically in a case study.

From a very general test-automation-point-of-view, a significant contribution of this
thesis is the suggestion of an approach to generating arbitrary test sequences with high
feasibility for a given set of classes. Test sequences are interesting in the context of
various testing techniques, not only structure-oriented testing. For instance, random
testing or robustness testing of classes also requires the generation of test sequences.
The strength of the presented approach is that it allows the simple realization of a test
sequence generator by means of an arbitrary off-the-self genetic programming system; the
only requirement for the genetic programming system to build upon is that it supports
strong typing.

5.2 Restrictions and Limitations

In particular circumstances, the evolutionary class testing approach has the following
limitations:

1. If the test cluster is large and the number of public methods of the test cluster
classes is large, the approach struggles due to the huge size of the function set of
the genetic programming algorithm. The approach may become inefficient or even
fail in severe cases.
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2. The approach encounters difficulties if some classes of the test cluster have one or
more of the following characteristics: they are GUI elements or involve GUI user
interaction, they make use of concurrency concepts such as threads, they posses
predicates which involve exact string matching, such as XML-processing classes,
their source code is not available.

3. In the case of predicates involving pointer comparisons and type checks, the
approach might be ineffective due to the binary distance functions applied in these
cases.

4. If the class under test possesses protected methods which are not used by the class
itself, the approach encounters problems finding covering test sequences for these
methods.

5. If the states some objects must be in in order for a particular test goal to be
attained and the number of functions in the function set is high, the approach
may fail to find a test sequence that sets the proper states.

6. The test sequences generated by the suggested approach might include unnecessary
method calls.

If the test cluster consists of many classes, the function set derived from the public
methods of the test cluster classes can be relatively large. This also happens if few
classes possess a high number of public methods. Then the function set might consist
of thousands of functions. With an increasing size of the function set – and hence an
increasing size of the search space – the probability that the “right” methods appear in
a candidate test sequence decreases. At the same time, the efficiency of the evolutionary
search decreases as well. For example, a large function set occurs if the class under test
uses the String class. Then, the static analysis also adds the Locale class to the test
cluster, causing all its method to be added to the function set. However, in most cases,
these methods are not relevant for the test of a class that makes use of strings.

If the class under test belongs to the graphical user interface of an application, the
search for reasonable test sequences is relatively hard. This is due to the concepts
of event handling and notifications that build the basis for the GUI elements. The
evolutionary search would need to evolve reasonable events, which is hard due to the
unrestrictedness of the search: no semantical dependencies are regarded during test
sequence evolution, for instance that a particular method can only be called if another
method has been called in advance. This issue relates to the class’ modality (Binder,
1999); the approach does not account for those modalities.

Threads and other related concepts can cause problems for the approach. For instance,
if an object created by a candidate test sequence is put into a state where it blocks the
execution of the thread that currently executes the test sequence, the overall search
might be blocked as well, and hence fail.

Strings can cause problems for the approach for several reasons: either, exactly
matching string parameters must be evolved in order to pass equality-checking conditions;
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or, string parameters identifying valid resources must be evolved, for instance if a method
interprets the string as a file name. In the case of string matching, the approach works
but, depending on the length of the string to match, it might become inefficient, meaning
that the search might take very long. In the worst case, a termination criterion applies
before the string to match has been evolved; then the approach fails. In the case of
evolving valid resource identifiers the approach tends to fail generally.

The use of library classes can lower the effectiveness of the approach. For instance, if
a method of the class under test uses the contains method of the library class Vector,
the distance function is purely binary. This causes plateaus in the objective function
landscape, hampering the evolutionary search. The smoothing strategies, which were
also discussed in this thesis, cannot be applied in these cases since the source code of
the involved library classes is usually not accessible. The code transformation cannot be
carried out. This generally applies for classes for which the binary code is available only.

The distance functions for predicates involving pointer address comparisons and type
checks are binary functions, causing plateaus in the objective function landscape. The
smoothing strategies do not help in these cases; the plateaus cannot be transformed
away by them.

Protected methods are often used as a means for allowing a subclass to overwrite some
of the behavior of the base class. However, such a protected method might be called
by the base class only. In this case, the static analysis carried out by the evolutionary
class testing approach with the intention of identifying the call points of the non-public
methods ends up with no result since it analyzes the code of the class under test only.
As a result, no test sequences will be generated for the protected method at hand.

Some test goals can only be achieved if some instances participating in the test are
in particular states. Therefore, the search space to search for a covering test sequence
includes all test sequences that call all conceivable combinations of methods. The
search might experience troubles in finding a covering test sequence when the number of
methods that can potentially appear in a test sequence is relatively high. This is also
due to the lack of sufficient guidance provided by the objective function in this case.

Sometimes, the generated test sequences contain object creations and method calls
which are not relevant for the test. This phenomenon is due to the concept of parameter
object selectors. Figure 3.8 on page 75 shows an example of it: the middle child of the
root node, supposed to provide the argument for the call to equals, creates an instance
of class Integer which is never used because the parameter object value of 7 (right child
of the root node) causes object ir1 to be passed as the parameter object to the method
call.

5.3 Summary of Future Work

Two main areas of future work can be identified: (1) dealing with the limitations
of the evolutionary class testing approach, and (2) investigating new directions that
further enhance the technical concept of the approach and fortify it by more theoretical
investigations. While Section 5.3.1 on the facing page points out some ideas addressing
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some of the limitations, Section 5.3.2 on the next page suggests other directions of future
research.

5.3.1 Addressing the Limitations

Large function sets that result from large test clusters with classes that possess many
methods can be attacked by several approaches: (1) the user can name classes whose
methods shall not be transformed to functions of the function set, (2) a heuristic can be
applied that prevents the methods from those test cluster classes that are associated
to the class under test via several other classes from being transformed to functions
of the function set, (3) a static analysis can eliminate all function in the function set
that correspond to methods which are neither object-creating nor state-changing, and
(4) a combination of these ideas. The first idea tries to exploit the user’s knowledge of
the class under test. All methods which are not constructors can be disregarded from
classes that the user indicates to be not relevant. The second idea tries to automate the
elimination of irrelevant methods. This can be accomplished by a heuristic based on the
“distance” of a test cluster class to the class under test. This distance can be defined in
terms of the number of associations to be traversed from the class under test to the class
in question in the class diagram. The partial class diagram in Figure 5.1 shows class

ClassUnderTest String Locale

Integer

Figure 5.1: Example class diagram

ClassUnderTest and some associated classes. The distance to class Locale, defined by
the number of intermediate associations, is 2. The heuristic could be defined so that
it eliminates all methods that require instances of classes that have distance 2 from
the class under test. In turn, the classes that are no longer required can be removed
from the test cluster. By doing so, the size of the function set can be reduced. The
third idea requires a thorough static analysis of the methods of the test cluster classes,
aiming at the identification of methods that neither create instances nor affect the state
of instances. These methods can possibly be ignored when defining the function set.

The issue of library classes can be dealt with by creating a pre-instrumented version
of these classes, including the application of the suggested code transformations. In the
case of Java this possibly also requires a modified version of the JVM. Then, the test
sequence generator can use the primed runtime environment for test sequence evaluation
and receives better guidance to the search.

Pointer-comparing predicates can be addressed by defining distance functions that
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rely on an artificially introduced total ordering of the objects created by a test sequence.
Listing 5.1 shows a pointer-comparing predicate in line 2 where the address of the object
passed to method equals of class IntegerRange is compared to the null reference.

Listing 5.1: Example pointer-comparing predicate
1 pub l i c boolean equa l s ( Object obj ) {
2 i f ( obj == nu l l )
3 // t e s t goa l
4 e l s e
5 . . .
6 }

Consider the test sequence shown in Listing 3.2. The parameter object selector (the
integer argument) in line 13 defines which instance to be passed from the pool of available
instances. The distance function for pointer comparisons can exploit the ordering of the
instances within an object pool. For instance, the null reference is passed when the
parameter object selector has the value 0. Now if the parameter object selector of the
candidate test sequence has a value different from 0, the difference between the actual
value and 0 indicates how close the test sequence is to pass the null reference to the
equals method, hence satisfying the predicate in line 2 and attaining the test goal.

Protected methods, called by the base class only, can be dealt with by extending the
static analysis of the call points to the base classes of the class under test.

McMinn (2004a) elaborates on the state problem for evolutionary structural testing
of procedural software. The evolutionary class testing approach can benefit from the
findings and ideas of this work. However, the approach of McMinn does not support
objects and does not distinguish between object identities. Therefore, the approach
must be extended; then, it can provide enormous support in the case of test goals that
require objects to be in particular states.

Unnecessary method calls, caused by the concept of the parameter object selectors,
can be tackled by analyzing the extended method call trees during linearization. All
subtrees that do not create instances which are used by relevant method calls can be
ignored and not transformed to the linearized test sequence.

5.3.2 Other directions

The following topics and directions for possible future research are conceivable:

• theoretical investigation into evolutionary class testing

• investigation into parameter setting

• search space reduction

• application of grammatical evolution

• usage of formal specifications for test oracle construction
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• application in the context of robustness testing

• application in the context of mutation testing

A theoretical investigation can reveal why and when evolutionary class testing is an
effective approach. Findings can help predict the effort of evolutionary class testing
and indicate when an alternative approach is better. An intensive investigation into the
empirical results with particular regard to the test goals for which no test sequence was
found can give insight for further improvements.

Parameter setting is an important topic in the area of evolutionary computation. A
study of the impact of different settings of the genetic programming algorithms used
can provide valuable insight as to the accurate adjustment of the parameters for a given
class under test.

Search space reduction aims at accelerating the search since it reduces the number of
points to be potentially visited. The VADA approach exists (Harman, Fox, Hierons, Hu,
Danicic and Wegener, 2002a) for evolutionary structural testing of procedural software.
It identifies those input variables of the function under test which do not affect any
computation related to the attainment of the test goal at hand. For instance, if the
function under test possesses multiple predicates and if a parameter value is used by the
last predicate only, the attainment of the test goals related to all predicates but the last
is not dependent on this parameter value. Candidate test inputs need to comprise values
for the remaining parameters only; one dimension of the search space can be eliminated.
This speeds up the evolutionary search. Currently there is ongoing research on ideas for
search space reduction for evolutionary class testing at King’s College, London, UK (M.
Harman, F. Islam) with particular consideration of aspect-oriented software.

Grammatical evolution (Ryan, Collins and O’Neill, 1998) is a relatively new type
of evolutionary algorithm which might be an alternative to the genetic programming
algorithm used in this thesis. Its application could enable the formulation of more
complex and more compact code constructs used by a test sequence.

Formal specifications such as the design-by-contract annotations in the source code
formulated in the Java Modeling Language (Leavens, Baker and Ruby, 1999) can pro-
vide the basis to automatically generating the test assertions for a given test sequence.
Additionally, they can be used to distinguish between test sequences that violate implicit
method preconditions (and are therefore illegal) and those which respect these precondi-
tions. For instance, the approach of Visser et al. (2004) uses this kind of specification
for this purpose.

Robustness testing penetrates the unit under test by executing it in a very large
number of scenarios. The definition of the test oracle is simple: if the system crashes in
one of such scenarios, a fault-revealing test has been found. The ideas of the evolutionary
class testing approach can fertilize an approach to automatic robustness testing. JCrasher
(Csallner and Smaragdakis, 2004), a robustness checker for Java, randomly explores part
of the parameter space of the methods of the class under test in order to cause a system
crash. However, JCrasher does not account for state-changing methods, meaning that
the parameter objects are usually in initial states. In contrast, method call trees as used
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in this thesis also account for state-changing method calls, enabling the creation of a
greater variety of robustness tests. These might detect more crash-causing faults in the
unit under test.

Mutation testing (King and Offutt, 1991) is a technique to both obtaining tests that
have a high potential to reveal common programming mistakes and assessing the quality
of a given set of tests. The software under test is slightly modified – mutated – and a test
is sought which kills the mutant (that is, exposes the modification). Such a modification
typically affects a single statement, such as a conditional statement. However, a mutant
can only be killed if the modified statement is actually executed. Consequently, in the
area of object-oriented mutation testing, test sequences are sought which lead to the
execution of mutated code. Evolutionary class testing may help in that it facilitates the
generation of test sequences that execute the mutated statement, allowing killing the
mutant.
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A Source Codes and Algorithms

A.1 Source Listings

Listing A.1: Class Integer
1 c l a s s In t eg e r
2 {
3 pr i va t e f i n a l i n t va lue ;
4

5 pub l i c In t eg e r ( )
6 {
7 t h i s ( 0 ) ;
8 }
9

10 pub l i c In t eg e r ( i n t va lue )
11 {
12 t h i s . va lue = value ;
13 }
14

15 pub l i c i n t intValue ( )
16 {
17 re turn value ;
18 }
19

20 pub l i c In t eg e r negate ( )
21 {
22 re turn new In t eg e r (−value ) ;
23 }
24 }

Listing A.2: Class IntegerRange
1 c l a s s IntegerRange
2 {
3 pr i va t e f i n a l I n t eg e r lower , upper ;
4

5 s t a t i c IntegerRange combine ( IntegerRange ,
6 IntegerRange )
7 throws Exception
8

9 pub l i c IntegerRange ( In t eg e r lower , I n t eg e r upper )
10 {
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11 i f ( lower > upper )
12 handleInval idRange ( lower , upper ) ;
13 t h i s . lower = lower ;
14 t h i s . upper = upper ;
15 }
16

17 pub l i c boolean equa l s ( Object obj )
18 {
19 i f ( obj == th i s ) re turn true ;
20 i f ( ! ( obj i n s t an c e o f IntegerRange ) ) re turn f a l s e ;
21

22 IntegerRange that = ( IntegerRange ) obj ;
23 i f ( t h i s . lower . intValue ( ) != that . lower . intValue ( ) )
24 re turn f a l s e ;
25 i f ( t h i s . upper . intValue ( ) != that . upper . intValue ( ) )
26 re turn f a l s e ;
27

28 re turn true ;
29 }
30

31 pub l i c void growUp ( ) throws Exception
32 {
33 i f ( upper . intValue ( ) == In t eg e r .MAX_VALUE )
34 handleOverf low ( ) ;
35 e l s e
36 upper = new In t eg e r ( upper . intValue +1);
37 }
38

39 pub l i c void growLow ( )
40 {
41 i f ( lower . intValue ( ) == In t eg e r .MIN_VALUE )
42 handleUnderf low ( ) ;
43 e l s e
44 lower = new In t eg e r ( lower . intValue −1);
45 }
46

47 pub l i c In t eg e r s i z e ( )
48 {
49 i f ( emptyRange )
50 re turn new In t eg e r ( ) ;
51 e l s e
52 re turn new In t eg e r (
53 upper . intValue ()− lower . intValue ( ) ) ;
54 }
55

56 pub l i c boolean emptyRange ( )
57 {
58 i f ( lower . intValue ( ) == upper . intValue ( ) )
59 re turn true ;
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60 e l s e
61 re turn f a l s e ;
62 }
63

64 pr i va t e void handleOverf low ( )
65 {
66 throw new I l l e g a l S t a t eEx c ep t i o n (
67 "Range a l r eady at max bound . " ) ;
68 }
69

70 pr i va t e void handleUnderf low ( )
71 {
72 throw new I l l e g a l S t a t eEx c ep t i o n (
73 "Range a l r eady at min bound . " ) ;
74 }
75

76 pr i va t e void handleInval idRange ( In t eg e r lower ,
77 I n t eg e r upper )
78 {
79 throw new I l l ega lArgumentExcept ion (
80 " Sp e c i f i e d ’ lower ’ bound must be lower"+
81 " than ’ upper ’ bound . " ) ;
82 }
83 }
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Listing A.3: Class State1
1 pub l i c c l a s s State1
2 {
3 pr i va t e i n t s t a t e ;
4

5 pub l i c State1 ( )
6 {
7 s t a t e = 0 ;
8 }
9

10 // dummy methods to i n c r e a s e search space s i z e
11 pub l i c void m1( ) {}
12 pub l i c void m2( ) {}
13 pub l i c void m3( ) {}
14 pub l i c void m4( ) {}
15 pub l i c void m5( ) {}
16

17 pub l i c void next ( )
18 {
19 s t a t e = ( s t a t e +1) % 10 ;
20 }
21

22 pub l i c boolean t e s t ( )
23 {
24 i f ( s t a t e == 9 )
25 re turn true ;
26 e l s e
27 re turn f a l s e ;
28 }
29 }

Listing A.4: Class Stack
1 pub l i c c l a s s Stack {
2 pr i va t e s t a t i c i n t MAX_ELEMENTS = 10 ;
3 pr i va t e Object [ ] e lements ;
4 pr i va t e i n t f r e e Index ;
5

6 pub l i c Stack ( ) {
7 e lements = new Object [MAX_ELEMENTS] ;
8 f r e e Index = 0 ;
9 }

10

11 pub l i c void add ( Object element ) {
12 i f ( i s F u l l ( ) ) throw new Exception ( ) ;
13 e lements [ f r e e Index++] = element ;
14 }
15

16 pub l i c Object removeTop ( ) {
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17 i f ( isEmpty ( ) ) throw new Exception ( ) ;
18 re turn e lements [−− f r e e Index ] ;
19 }
20

21 pub l i c boolean i s F u l l ( ) {
22 i f ( f r e e Index >= MAX_ELEMENTS )
23 re turn true ;
24 e l s e re turn f a l s e ;
25 }
26

27 pub l i c boolean isEmpty ( ) {
28 i f ( f r e e Index == 0 )
29 re turn true ;
30 e l s e re turn f a l s e ;
31 }
32

33 pub l i c Object top ( ) throws Exception {
34 i f ( isEmpty ( ) )
35 throw new Exception ( ’ ’ Stack i s empty . ’ ’ ) ;
36 e l s e
37 re turn e lements [ f r ee Index −1] ;
38 }
39

40 pub l i c Object elementAt ( i n t index )
41 {
42 re turn e lements [ index ] ;
43 }
44

45 pub l i c s t a t i c void tes tCase1 ( ) throws Exception
46 {
47 Stack s = new Stack ( ) ;
48 t ry
49 {
50 Object o = s . top ( ) ;
51 }
52 catch ( Exception e )
53 {
54 throw e ;
55 }
56 }

Listing A.5: Class StackT
1 pub l i c c l a s s StackT {
2 pr i va t e s t a t i c i n t MAX_ELEMENTS = 10 ;
3 pr i va t e Object [ ] e lements ;
4 pr i va t e i n t f r e e Index ;
5

6 pub l i c void add ( Object element ) {



152 A Source Codes and Algorithms

7 i f ( i s F u l l ( ) > 0 ) throw new Exception ( ) ;
8 e lements [ f r e e Index++] = element ;
9 }

10 pub l i c Object removeTop ( ) {
11 i f ( isEmpty ( ) > 0 ) throw new Exception ( ) ;
12 re turn e lements [−− f r e e Index ] ;
13 }
14 pub l i c double i s F u l l ( ) {
15 i f ( f r e e Index >= MAX_ELEMENTS )
16 re turn T. d i s t ( T.TRUE,
17 <free Index>=MAX_ELEMENTS>, 1 ) ;
18 e l s e re turn T. d i s t ( T.FALSE,
19 <free Index>=MAX_ELEMENTS>, 1 ) ;
20 }
21 pub l i c double isEmpty ( ) {
22 i f ( f r e e Index == 0 )
23 re turn T. d i s t ( T.TRUE,
24 <fre e Index==0>, 1 ) ;
25 e l s e re turn T. d i s t ( T.FALSE,
26 <fre e Index==0>, 1 ) ;
27 }
28 }

A.2 Algorithms

Listing A.6: Test-sequence-generating algorithm TCGen1
1 begin a lgor i thm TCGen1
2 in : c l a s s to be t e s t ed c
3 out : s e t o f t e s t ca s e s T
4

5 i d e n t i f y t e s t c l u s t e r C f o r c
6 instrument source codes o f C
7 c o l l e c t t e s t goa l s G from c
8 generate func t i on s e t f o r C
9 generate type s e t f o r C

10

11 f o r each t e s t goa l g in G
12 modify func t i on s e t f o r g
13 c r e a t e i n i t i a l t r e e i n d i v i d u a l s I
14 eva luate t r e e i n d i v i d u a l s I :
15 f o r each t r e e i nd i v i dua l i in I
16 s p e c i f y parameter space genotype f o r i nd i v i dua l i
17 perform parameter search f o r i :
18 c r e a t e i n i t i a l vec to r i n d i v i d u a l s J
19 eva luate the vec tor i n d i v i d u a l s J :
20 f o r each vec tor i nd i v i dua l j in J
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21 c r e a t e a t e s t program from the t r e e
22 i n d i v i dua l i and the vec to r i nd i v i dua l j
23 execute the t e s t program , thereby
24 monitor execut ion f low
25 c a l c u l a t e f i t n e s s based on d i s t anc e
26 end f o r
27 whi le te rminat ion c r i t e r i o n not met :
28 recombine and mutate i n d i v i d u a l s
29 eva luate o f f s p r i n g
30 end whi l e
31 re turn f i t n e s s o f bes t j as f i t n e s s o f i
32 end f o r
33 whi le te rminat ion c r i t e r i o n not met :
34 recombine t r e e i n d i v i d u a l s
35 mutate t r e e i n d i v i d u a l s
36 eva luate t r e e i n d i v i d u a l s
37 end whi l e
38 i n s e r t t e s t sequence in to T i f g covered
39 end f o r
40 end algor i thm

A.2.1 TCGen2

Listing A.7: Test-sequence-generating algorithm TCGen2
1 begin a lgor i thm TCGen2
2 in : c l a s s to be t e s t ed c
3 out : s e t o f t e s t ca s e s T
4

5 i d e n t i f y t e s t c l u s t e r C f o r c
6 instrument source codes o f C
7 c o l l e c t t e s t goa l s G from c
8 generate func t i on s e t f o r C
9 generate type s e t f o r C

10

11 f o r each t e s t goa l g in G
12 modify func t i on s e t f o r g
13 c r e a t e i n i t i a l t r e e i n d i v i d u a l s I
14 eva luate t r e e i n d i v i d u a l s I :
15 f o r each t r e e i nd i v i dua l i in I
16 c r e a t e a t e s t program from the t r e e
17 i n d i v i dua l i and the vec to r i nd i v i dua l j
18 execute the t e s t program , thereby
19 monitor execut ion f low
20 c a l c u l a t e f i t n e s s based on d i s t anc e
21 end f o r
22 whi le te rminat ion c r i t e r i o n not met :
23 recombine t r e e i n d i v i d u a l s
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24 mutate t r e e i n d i v i d u a l s
25 eva luate t r e e i n d i v i d u a l s
26 end whi l e
27 i n s e r t t e s t sequence in to T i f g covered
28 end f o r
29 end algor i thm


