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Abstract
Principal component analysis (PCA) is known to be sensitive to outliers, so that various robust PCA variants were proposed
in the literature. A recent model, called reaper, aims to find the principal components by solving a convex optimization
problem. Usually the number of principal components must be determined in advance and the minimization is performed
over symmetric positive semi-definite matrices having the size of the data, although the number of principal components is
substantially smaller. This prohibits its use if the dimension of the data is large which is often the case in image processing.
In this paper, we propose a regularized version of reaper which enforces the sparsity of the number of principal components
by penalizing the nuclear norm of the corresponding orthogonal projector. If only an upper bound on the number of principal
components is available, our approach can be combined with the L-curve method to reconstruct the appropriate subspace.
Our second contribution is a matrix-free algorithm to find a minimizer of the regularized reaper which is also suited for
high-dimensional data. The algorithm couples a primal-dual minimization approach with a thick-restarted Lanczos process.
This appears to be the first efficient convex variational method for robust PCA that can handle high-dimensional data. As a
side result, we discuss the topic of the bias in robust PCA. Numerical examples demonstrate the performance of our algorithm.

Keywords Robust PCA · Regularized reaper · Matrix-free PCA · PCA offset · Thick-restarted Lanczos algorithm

Mathematics Subject Classification 58C05 · 62H25 · 65K10

1 Introduction

Principal component analysis (PCA) [37] realizes the dimen-
sionality reduction in data by projecting them onto those
affine subspace which minimizes the sum of the squared
Euclidean distances between the data points and their projec-
tions. Unfortunately, PCA is very sensitive to outliers, so that
various robust approaches were developed in robust statistics
[17,28,46] andnonlinear optimization. In this paper,we focus
on the second one.
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One possibility to make PCA robust consists in remov-
ing outliers before computing the principal components
which has the serious drawback that outliers are difficult to
identify and other data points are often falsely labeled as
outliers. Another approach assigns different weights to data
points based on their estimated relevance, to get a weighted
PCA [20] or repeatedly estimate the model parameters from
a random subset of data points until a satisfactory result indi-
cated by the number of data points within a certain error
threshold is obtained [11]. In a similar vein, least trimmed
squares PCAmodels [38,41] aim to exclude outliers from the
squared error function, but in a deterministic way. In [44],
a dual principal component pursuit is used for this purpose.
The variational model in [4] decomposes the data matrix
into a low rank and a sparse part. Related approaches such as
[7,32,51] separate the low-rank component from the column
sparse one using different norms in the variational model.
Another groupof robust PCAreplaces the squared L2 norm in
the PCAmodel by the L1 norm [18].Unfortunately, this norm
is not rotationally invariant, i.e., when rotating the centered
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data points, the minimizing subspace is not rotated in the
sameway. Replacing the squared Euclidean norm in the PCA
model by just the Euclidean one leads to a non-convex robust
PCAmodel with minimization over the Stiefel or Grassman-
nian manifold, see, e.g., [9,26,31,34]. Instead of the previous
model which minimizes over the sparse number of directions
spanning the low-dimensional subspace, it is also possible to
minimize over the orthogonal projectors onto the desired sub-
space. This has the advantage that the minimization can be
performed over symmetric positive semi-definite matrices,
e.g., using methods from semi-definite programming, and
the disadvantage that the dimension of the projectors is as
large as the data now. This prohibits this approach for many
applications in particular in image processing. The projec-
tor PCA model is still non-convex, and a convex relaxation,
called reaper, was recently proposed by Lerman et el. [27].
An extensive comparison of the benefits and drawbacks of the
different approaches in the rich literature of robust PCA as
well as of the related numerical algorithms can, for instance,
be found in [26].

In this paper, we build up on the advantages of the convex
reapermodel, but modify it in two important directions: (i)
by penalizing the nuclear norm of the approximated pro-
jectors, our model does only require an upper bound on
the dimension of the desired subspace. Having the same
effect as the sparsity promotion of the 1-norm, the nuclear
norm—the 1-norm of the eigenvalues—promotes low-rank
matrices or, equivalently, sparse eigenvalue decompositions;
(ii) by combining primal-dual minimization techniques with
a thick-restarted Lanczos process, we are able to handle high-
dimensional data. We call our new convex model rreaper.
We provide all computation steps leading to an efficient and a
provable convergent algorithm to the minimum of the objec-
tive function. A performance analysis following the lines of
[27] is given. The choice of the offset in robust PCA is an
interesting problem which is not fully discussed in the litera-
ture so far. Usually, the geometric median is used. We do not
provide a full solution of this issue, but show that under some
assumptions the affine hyperplane in Rd having the smallest
Euclidean distance to n > d given data points goes through
d + 1 of these points. We underline our theoretical findings
by numerical examples.

The outline of this paper is as follows: preliminaries from
linear algebra and convex analysis are given in Sect. 2. In
Sect. 3, we introduce our regularized reaper model. The
basic primal-dual algorithm for its minimization is discussed
in Sect. 4. The algorithm is formulated with respect to the
full projection matrix. The matrix-free version of the algo-
rithm is given in Sect. 5. It is based on the thick-restarted
Lanczos algorithm and is suited for high-dimensional data.
In Sect. 6, we examine the performance analysis of rreaper
along the lines of [27]. Some results on the offset in robust
PCA are proved in Sect. 7. The very good performance of

rreaper in particular for high-dimensional data is demon-
strated in Sect. 8. Further, the relation between the dimension
of the wanted subspace and the regularization parameter is
addressed via the L-curve method. Section 9 finishes the
paper with conclusions and directions of future research.

2 Notation and Preliminaries

Throughout this paper, wewill use the following notation and
basic facts from linear algebra and convex analysis which
can be found in detail in various monographs and overview
papers as [1,3,6,13,40].

Linear algebra By ‖ · ‖2 we denote the Euclidean vector
norm and by ‖ · ‖1 the norm which sums up the absolute
vector components. Recall that for any x ∈ R

n ,

1√
n
‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1. (1)

Let 1n resp. 0n be the vectors having n entries 1, resp., 0.
Analogously, we write 1n,d and 0n,d for the all-one and all-
zero matrix in Rn,d . Further, In is the n × n identity matrix.
Let tr A denote the trace of the quadratic matrix A ∈ R

n,n ,
i.e., the sum of its eigenvalues. OnRn,d the Hilbert–Schmidt
inner product is defined by

〈X,Y 〉 := tr(XTY) = tr(YXT), X,Y ∈ R
n,d ,

and the corresponding so-called Frobenius norm by

‖X‖2F = 〈X, X〉.

Let S (n) ⊂ R
n,n denote the linear subspace of symmetric

matrices. For two symmetric matrices A, B ∈ S (n), we
write A 	 B if B − A is positive semi-definite. Every A ∈
S (n) has a spectral decomposition

A = U diag(λA)UT,

where λA ∈ R
n denotes the vector containing the eigen-

values of A in descending order λ1 ≥ · · · ≥ λn and U is
the orthogonal matrix having the corresponding orthogonal
eigenvectors as columns. The nuclear norm (trace norm) of
A ∈ S (n) is given by

‖A‖tr :=
n∑

j=1

|λ j |.

The trace and Frobenius norm correspond to the Schatten 1-
norm and 2-norm, respectively, where the Schatten p-norm
with 1 ≤ p ≤ ∞ of a symmetric matrix A is defined by
|| A ||Sp := ||λA ||p. Recall that Π ∈ R

n,n is an orthogonal
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projector if Π ∈ S (n) and Π2 = Π. This is equivalent to
the statement that Π ∈ S (n) and has only eigenvalues in
{0, 1}. The nuclear norm is the unique norm such that

rank(Π) = ‖Π‖tr

for every orthogonal projector Π.
For a given norm ‖ · ‖ on Rn , the dual norm is defined by

‖x‖∗ := max‖ y‖≤1
〈x, y〉.

In particular, for a matrix X = (x1| . . . |xN ) ∈ R
n,N we will

be interested in the norm

||X ||2,1 :=
N∑

k=1

||xk ||2,

which can be considered as norm on R
nN by arranging the

columns of the matrix into a vector. Its dual norm is given by

||X ||2,1,∗ = ||X ||2,∞ := max
k=1,...,N

||xk ||2.

Convex analysis Let Γ0(R
n) denote the space of proper,

lower semi-continuous, convex functions mapping from R
n

into the extended real numbers (−∞,∞]. The indicator
function ιC of C ⊆ R

n is defined by

ιC (x) =
{
0 if x ∈ C ,

+∞ otherwise.

We have ιC ∈ Γ0(R
n) if and only if C is non-empty, convex

and closed.
For f ∈ Γ0(R

n), the proximal mapping is defined by

prox f (x) := argmin
y∈Rn

{
f ( y) + 1

2 ||x − y ||22
}

.

Indeed, theminimizer exists and is unique [40, Thm. 31.5]. If
C ⊂ R

n is a non-empty, closed, convex set, then the proximal
mapping of a multiple of ιC is just the orthogonal projection
onto C , i.e.,

proxσ ιC
(x) = projC (x), σ > 0.

In particular, the orthogonal projection onto the halfspace
H (a, β) := {x ∈ R

n : 〈a, x〉 ≤ β} with a ∈ R
n and β ∈ R

can be computed by

projH (a,β)(x) = x − (〈a, x〉 − β)+
‖a‖22

a,

where (y)+ := max{0, y}. Further, the orthogonal projection
onto the hypercube Q := [0, 1]n is given by

projQ(x) = (max
{
min{x j , 1}, 0

})n
j=1 . (2)

The Fenchel dual of f ∈ Γ0(R
n) is the function f ∗ ∈

Γ0(R
n) defined by

f ∗( p) := max
x∈Rn

〈 p, x〉 − f (x).

The dual function of a norm is just the indicator function of
the unit ball with respect to its dual norm. In particular, we
have for ‖ · ‖2,1 : Rn,N → R that

‖X‖∗
2,1 = ιB2,∞(X), (3)

where B2,∞ := {X ∈ R
n,N : ‖xk‖2 ≤ 1 for all

k = 1, . . . , N }.

3 Regularized REAPER

Given N data points x1, . . . , xN ∈ R
n , the classical PCA

finds a d-dimensional affine subspace {A t + b : t ∈ R
d},

1 ≤ d � n, by minimizing

N∑

k=1

min
t∈Rd

‖A t + b − xk‖22 =
N∑

k=1

‖(AAT − In)(b − xk)‖22

subject to ATA = Id
(4)

over b ∈ R
n and A ∈ R

n,d . It is not hard to check that the
affine subspace goes through the offset (bias)

b̄ := 1
N (x1 + . . . + xN ). (5)

Therefore, we can reduce our attention to data points xk − b̄,
k = 1, . . . , N , which we denote by xk again, and minimize
over the linear d-dimensional subspaces through the origin,
i.e.,

min
A∈Rn,d

N∑

k=1

‖(AAT − In)xk‖22 subject to ATA = Id ,

where X := (x1| . . . |xN ) ∈ R
n,N .

Unfortunately, the solution of this minimization problem
is sensitive to outliers. Therefore, several robust PCAvariants
were proposed in the literature. A straightforward approach
consists in just skipping the square in the Euclidean norm
leading to
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min
A∈Rn,d

N∑

k=1

‖(AAT − In)xk‖2 = ‖AATX − X‖2,1

subject to ATA = Id .

(6)

This is a non-convex model which requires the minimization
over matrices A in the so-called Stiefel manifold,

St(n, d) := {A ∈ R
n,d : ATA = Id},

see [9,26,34,35].
Another approach is based on the observation that Π :=

AAT is the orthogonal projector onto the linear subspace
spanned by the columns of A. Since the linear subspace is
d-dimensional, exactly d eigenvalues of Π have to be one.
Thus, problem (6) can be reformulated as

min
Π∈S (n)

‖ΠX − X‖2,1
subject to λΠ ∈ {0, 1}n, tr(Π) = d.

(7)

Having computedΠ, we can determine A by spectral decom-
position.Unfortunately, (7) is still a non-convexmodelwhich
is moreover NP hard to solve. Therefore, Lerman et al. [27]
suggested to replace it by a convex relaxation, called reaper,

min
P∈S (n)

‖PX−X‖2,1 subject to 0n,n 	 P	 In, tr(P)=d.

In order to deal with the non-differentiability of the objec-
tive function, Lerman et al. [27] iteratively solve a series of
positive semi-definite programs. In contrast to models min-
imizing directly over A ∈ R

n,d , algorithms for minimizing
reaper or rreaper seem to require the handling of a large
matrix P ∈ S (n) or,more precisely, the handling of its spec-
tral decomposition which makes the method not practicable
for high-dimensional data.

The above model requires the exact knowledge of the
dimension d of the linear subspace the data will be reduced
to. In this paper, we suggest to replace the strict trace con-
straint by a relaxed variant tr(Π) ≤ d and to add the nuclear
norm ofΠ as a regularizer which enforces the sparsity of the
rank of Π:

min
Π∈S (n)

‖ΠX − X‖2,1 + α‖Π‖tr
subject to λΠ ∈ {0, 1}n, tr(Π) ≤ d.

(8)

Here α > 0 is an appropriately fixed regularization parame-
ter.

Since (8) is again hard so solve, we use a relaxation for
the eigenvalues and call the new model regularized reaper

(rreaper):

min
P∈S (n)

‖PX − X‖2,1 + α‖P‖tr
subject to 0n,n 	 P 	 In, tr(P) ≤ d.

(9)

Finally, we project the solution of rreaper to the set of ortho-
projectors with rank not larger than d:

Od := {Π ∈ S (n) : λΠ ∈ Ed},

where

Ed := {λ ∈ R
n : λ ∈ {0, 1}n, 〈λ, 1n〉 ≤ d}.

In the following,wewill present a primal-dual approach to
solve (9) which uses only the sparse spectral decomposition
of P , but not the matrix itself within the computation steps.

4 Primal-Dual Algorithm

Rreaper is a convex optimization problem; so we may
choose from various convex solvers. Before choosing a spe-
cific method, we study the structure of rreaper in more
details. For this purpose, we define the forward operator

X : S (n) → R
n,N : P �→ PX

and rearrange (9) as

min
P∈S (n)

||X (P) − X ||2,1 + αR(P), (10)

where the regularizer R : S (n) → [0,+∞] is defined by

R(P) := || P ||tr + ιC (P),

C := {P ∈ S (n) : 0n,n 	 P 	 In, tr(P) ≤ d}. (11)

Since C is compact and convex, and since the norms || · ||2,1
and || · ||tr are continuous, rreaper has a global minimizer.
This minimizer is in general not unique. Concerning the
adjoint operator X ∗ : Rn,N → S (n), we observe

〈X (P),Y 〉 = 1
2

(〈PX,Y 〉 + 〈PTX,Y 〉)

= 1
2

(
tr(YTPX) + tr(XTPY)

)

= 1
2

〈
P, 1

2 (XYT + YXT)
〉
.

for all P ∈ S (n) and Y ∈ R
n,N , where we exploit the

symmetry of P by P = 1/2(P + PT). Thus, the adjoint is
just

X ∗(Y) = 1
2 (XYT + YXT).
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The operator norm ofX is given by the spectral norm of
X ∈ R

n,N , i.e.,

‖X ‖ = ‖X‖2.

In more detail, for P = ( p1| . . . | pn) ∈ S (n), we obtain

‖X ‖ = max
P∈S (n)

‖P‖F≤1

‖PX‖F = max
P∈S (n)

‖P‖F≤1

( n∑

j=k

‖XT pk‖22
) 1

2

≤ max
P∈S (n)

‖P‖F≤1

(
‖X‖22

n∑

k=1

‖ pk‖22
) 1

2 ≤ ‖X‖2.

Here the inequality becomes sharp for

P = U diag((1, 0, . . . , 0)T)UT,

where U arises from the singular value decomposition X =
U diag(σ X ) VT with descending ordered singular values
σ1 ≥ · · · ≥ σmin{n,N }.

More generally, rreaper is an optimization problem of
the form

minimize F(A (P)) + G(P), (12)

whose objective consists of two convex, lower semi-contin-
uous functions F = || · −X ||2,1 and G = αR and a linear
mappingA = X . Since both—data fidelity and regularizer
of rreaper—are non-differentiable, gradient decent meth-
ods as well as the forward-backward splitting or the fast
iterative shrinkage-thresholding algorithm (FISTA) cannot
be applied. In order to exploit the structure, various saddle-
point methods that do not require differentiability can be
used. Examples are the alternating directions method of mul-
tipliers (ADMM) which is related to the Douglas–Rachford
splitting or primal-dual algorithms, see for instance [6] and
references therein. Since the iteration variables with respect
to P in rreaper computed via ADMM usually have no
sparse spectral decomposition and cannot be handled for
high-dimensional instances, we prefer to choose the primal-
dual method of Chambolle and Pock [6] with extrapolation
of the primal variable to compute the minimizer of rreaper
(10).

For the general minimization problem (12), the primal-
dual method consists in the iteration

Y (r+1) := proxσ F∗
(
Y (r) + σ A ( P̄

(r)
)
)

P (r+1) := proxτG

(
P (r) − τA ∗(Y (r+1))

)

P̄
(r+1) := (1 + θ) P (r+1) − θ P (r)

with fixed parameters τ, σ > 0 and θ ∈ [0, 1]. The

extrapolation step consisting in the calculation of P̄
(r+1)

is here required to ensure the convergence whenever τσ <

1/||A ||2 and θ = 1, where ||A || denotes the operator norm
ofA . If the functions F andG possessesmore regularity like
strong convexity, the parameter θ may be varied to prove an
acceleration of the convergence and to guarantee certain con-
vergence rates [5,6]. For rreaper, the above iteration leads
us to the following numerical method.

Algorithm 1 (Primal-Dual Algorithm)
Input: X ∈ R

n,N d ∈ N, and σ, τ > 0 with στ < 1/‖X‖22,
and θ ∈ (0, 1].
Intialization: P (0) = P̄

(0) = 0n,n , Y (0) := 0n,N .
Iteration:

Y (r+1) := proxσ || · −X ||∗2,1
(
Y (r) + σX

(
P̄

(r)))
,

P (r+1) := proxταR

(
P (r) − τX ∗(Y (r+1))),

P̄
(r+1) := (1 + θ) P (r+1) − θ P (r)

More generally, Chambolle and Pock [6] have proven that
the sequence {P (r)}r∈N converges to a minimizer P̂ of (10)
and the sequence {Y (r)}r∈N to a minimizer of the dual prob-
lem

min
Y∈Rn,N

‖ · −X‖∗
2,1(Y) + (αR)∗(−X ∗(Y))

if the Lagrangian

L(P,Y) := −‖ · −X‖∗
2,1(Y) + αR(P) + 〈X (P),Y 〉 (13)

has a saddle-point which is, however, clear for rreaper.
The algorithm requires the computation of the proximal

mapping of the dual data fidelity and of the regularizer which
we consider next.

Proposition 1 (Proximalmappingof thedualdatafidelity)
For x ∈ R

n,N and σ > 0, we have

proxσ || · −X ||∗2,1 = projB2,∞(· − σ X).

Proof Using (3) and, since ( f (· − x0))∗ = f ∗ + 〈·, x0〉, we
obtain

proxσ || · −X ||∗2,1(Y)

= argmin
Z∈Rn,N

{ 1
2‖Z − Y‖2F + ιB2,∞(Z) + σ 〈Z, X〉}

= argmin
Z∈Rn,N

{ 1
2‖Z − (Y − σ X)‖2F + ιB2,∞(Z)

}

= projB2,∞(Y − σ X).
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For the maximal dimension d of the target subspace, we
henceforth use the half-space

H := H (1n, d) = {x ∈ R
n : 〈x, 1n〉 ≤ d}.

in order to bound the trace of the primal iteration variable
P (r). Then the proximal mapping of the regularizer is given
in the following proposition.

Proposition 2 (Proximal mapping of the regularizer) For
P ∈ S (n)with spectral decomposition P = U diag(λP )UT

and R in (11) it holds

proxταR(P) = U diag(projQ∩H (λP − τα1n))UT.

Proof A symmetric matrix P is in C if and only if λP∈
Q ∩ H . Hence, the regularizer can be written as

R(P) = 〈λP , 1n〉 + ιQ∩H (λP ).

and

proxταR(P)

= argmin
S∈S (n)

{ 1
2‖S − P‖2F

+ τα〈λS, 1n〉 + ιQ∩H (λS)
}
.

(14)

By the theorem of Hoffmann and Wielandt [16, Thm. 6.3.5],
we know that

‖S − P‖2F ≥ ‖λS − λP‖22
with equality if and only if S possesses the same eigenspaces
as P . Therefore, the minimizer in (14) has to be of the
form S = U diag(λS)UT, where the columns of U are the
eigenvectors of P . Incorporating this observation in (14), we
determine the eigenvalues λS by solving the minimization
problem

λS = argmin
λS∈Rn

{
1
2‖λS − λP‖22

+ τα〈λS, 1n〉 + ιQ∩H (λS)
}

= argmin
λS

{
1
2‖λS + τα1n − λP‖22 + ιQ∩H (λS)

}

= projQ∩H (λP − τα1n)).

��
Alternatively to the proof, we could argue with the so-

called spectral function related toR which is invariant under
permutations, see, e.g., [1].

By Proposition 2, the proximal mapping of the regularizer
requires the projection onto the truncated hypercube. The
following proposition can be found in [1, Ex. 6.32].

Proposition 3 (Projection onto the truncated hypercube)
For any λ ∈ R

n and any d ∈ (0, n], the projection to the
truncated hypercube is given by

projQ∩H (λ) =
{
projQ(λ) if 〈projQ(λ), 1n〉 ≤ d,

projQ(λ − t̂1n) otherwise,

where t̂ is the smallest root of the function

ϕ(t) := 〈projQ(λ − t1n), 1n〉 − d, t ≥ 0. (15)

Due to the projection to the hypercube, see (2), only the
positive components of λ influence its projection onto Q ∩
H . More precisely, we have

projQ∩H (λ) = projQ∩H (λ)+,

where the function (·)+ is employed componentwise.
To formulate a projection algorithm, in particular, to com-

pute the zero of ϕ, we study the properties of ϕ and derive an
explicit representation. Within a different setting, the reader
may also have a look at [30].

Lemma 1 (Properties of ϕ) For fixed λ ∈ R
n with

〈projQ(λ), 1n〉 > d, the function ϕ : [0,∞) → R defined in
(15) has the following properties:

(i) ϕ is Lipschitz continuous.
(ii) ϕ is monotone decreasing and piecewise linear. More

precisely, we can construct a sequence 0 = s0 < s1 <

s2 < . . . < sM with M ≤ 2n such that

ϕ(t) = ϕ(sl) − kl(t − sl),

for t ∈ [sl , sl+1), l = 0, . . . , M − 1, where

kl := |{ j ∈ {1, . . . , n} : (λ − sl1n) j ∈ (0, 1]}|.

Moreover, ϕ(t) = −d for t ≥ sM.
(iii) The smallest root t̂ of ϕ is given by

t̂ = sm + 1
km

ϕ(sm),

where m is the unique index such that ϕ(sm) > 0 and
ϕ(sm+1) ≤ 0.

Proof (i) Using the definition of ϕ, the Cauchy–Schwarz
inequality, and the non-expansiveness of the projection,
we get

|ϕ(t) − ϕ(s)|
= |〈projQ(λ − t1n), 1n〉 − 〈projQ(λ − s1n), 1n〉|

123



632 Journal of Mathematical Imaging and Vision (2021) 63:626–649

≤ √
n ‖ projQ(λ − t1n) − projQ(λ − s1n)‖2

≤ √
n ‖(s − t)1n‖2 = n |s − t |.

(ii) Starting with s0 = 0, we construct sl with l = 1, . . . , M
iteratively as follows: given sl , we set μ := λ− sl1n and
choose

sl+1 := sl + hl , hl := min{sleave, senter},

where

sleave := min
j

{μ j : μ j ∈ (0, 1]},
senter := min

j
{μ j − 1 : μ j > 1}.

Here we use the convention min ∅ = ∞. If both sets in
the definition of sleave and senter are empty, we stop the
construction since all components of μ are non-positive
implying projQ(μ) = 0n and thus ϕ(sM ) = −d as well
as ϕ(t) = −d for t ≥ sM , where M is the index of the
last computed point sl .
Considering the projection to the hypercube Q in (2),
we see that the index set { j ∈ {1, . . . , n} : (λ − t1n) j ∈
(0, 1]} does not change for t ∈ [sl , sl+1) and that a change
appears exactly in sl+1, where at least one component
enters or leaves the interval (0, 1]. Hence, we have

ϕ(t) = ϕ(sl) − kl(t − sl), t ∈ [sl , sl+1).

Let sM be the first value in this procedure, where all
components of μ become non-positive. Since each com-
ponent in λ− t1n can at most one times enter or leave the
interval (0, 1], we know that M < 2n. Further, kl ≥ 0
shows that ϕ is monotone decreasing.

(iii) Bydefinitionofϕ andby the assumption 〈projQ(λ), 1n〉 >

d, we have ϕ(0) > 0. On the other side, ϕ(sm) = −d
was shown above. Consequently, the smallest zero t̂ of ϕ

has to lie in the interval [sm, sm+1] with ϕ(sm) > 0 and
ϕ(sm+1) ≤ 0 and can be computed by solving

ϕ(t̂) = ϕ(sm) − km(t̂ − sm) = 0.

This results in t̂ = sm + 1
km

ϕ(sm) and finishes the proof.
��

Following Proposition 3 and the previous proof, we obtain
the following algorithm for the projection onto Q ∩ H .

Algorithm 2 (Projection onto truncated hypercube)
Input: λ ∈ R

n , d ∈ N.

(i) Compute μ := projQ(λ) by (2).
If 〈μ, 1n〉 ≤ d, then return λ̂ = μ;
otherwise set s := 0, ϕ := +∞ and μ = λ.

(ii) Repeat until ϕ ≤ 0:

(a) sold := s,
(b) sleave := min j {μ j : μ j ∈ (0, 1]},
(c) senter := min j {μ j − 1 : μ j > 1},
(d) s := s + min{sleave, senter},
(e) μ = λ − s1n ,
(f) ϕ = 〈projQ(μ), 1n〉 − d,

(iii) Compute

(a) k := |{ j ∈ {1, . . . , n} : (λ − sold1n) j ∈ (0, 1]}|,
(b) t̂ = sold + 1

kϕ(sold).

Output: λ̂ := projQ∩H (λ).

Based on the derived proximal mappings, the primal-dual
Algorithm 2 to solve rreaper (10) can be specified in matrix
form as follows.

Algorithm 3 (Primal-dual rREAPER)
Input: X ∈ R

n,N , d ∈ N, α > 0, and σ, τ > 0 with στ <

1/‖X‖22, and θ ∈ [0, 1).
Initiation: P (0) = P̄

(0) := 0n,n , Y (0) := 0n,N .
Iteration:

(i) Dual update:

Y (r+1) := projB2,∞
(
Y (r) + σ

(
X
(
P̄

(r))− X
))

.

(ii) Primal update:

(a) U diag(λ)UT := P (r) − τX ∗(Y (r+1)
)
,

(b) λ̂ := proj
Q ∩H (λ − τα1n) (Algorithm 2),

(c) P (r+1) := U diag(λ̂)U∗.

(iii) Extrapolation: P̄
(r+1) := (1 + θ) P (r+1) − θ P (r).

Output: P̂ (Solution of rreaper (10)).

5 Matrix-Free Realization

Solving rreaper with the primal-dual Algorithm 3 is possi-
ble if the dimension of the surrounding spaceRn is moderate
which is often not the case in image processing tasks. While
the dual variable Y ∈ R

n,N matches the dimension of the
data, the primal variable P is in S(n) instead ofRn,d , d � n.
How can the primal-dual iteration be realized in the case
n � d though the primal variable cannot be hold in memory
and the required eigenvalue decomposition cannot be com-
puted in a reasonable amount of time?

Here the nuclear norm in rreaper that promotes low-rank
matrices comes to our aid. Our main idea to derive a practical
implementation of the primal-dual iteration is thus based on
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the assumption that the iterates of the primal variable P (r)

possess the form

P (r) :=
dr∑

k=1

λ
(r)
k u(r)

k

(
u(r)
k

)T (16)

with small rank dr . In our simulations, we observed that the
rank is usually around the dimension d of the wanted low-
dimensional subspace.

In order to integrate the matrix-free representation (16)
into the primal-dual iteration efficiently, we further require
a fast method to compute the eigenvalue thresholding. For
this, we compute a partial eigenvalue decomposition using
the well-known Lanczos process [22]. Deriving matrix-free
versions of the forward operator X and its adjoint X ∗, we
finally introduce a complete matrix-free primal-dual imple-
mentation with respect to P (r).

5.1 The Thick-Restarted Lanczos Process

One of the most commonly used methods to extract a small
set of eigenvalues and their corresponding eigenvectors of a
large symmetric matrix is the Lanczos method [22], which
is based on theory of Krylov subspaces. The method builds
a partial orthogonal basis first and then uses a Rayleigh–Ritz
projection to extract the wanted eigenpairs approximately. If
the set of employed basis vectors is increased, the extracted
eigenpairs converge to the eigenpairs of the given matrix
[13]. Since the symmetric matrix whose partial eigenvalue
decomposition is required in the primal-dual method usually
is high-dimensional, we would like to chose the number kmax

of basis vectors within the Lanczos method as small as possi-
ble such that the convergence of the Krylov method does not
emerge. To calculate the dominant �fix eigenpairs with high-
accuracy nevertheless, the Lanczos method can be restarted
with the dominant �fix Ritz pairs. For our purpose, we use the
thick-restart scheme of Wu and Simon [50] in Algorithm 4,
whose details are discussed below.

Algorithm 4 (Thick-restartedLanczosprocess [50,Alg. 3])
Input: P ∈ S(n), kmax > �fix > 0, δ > 0.

(i) Choose a unit vector r0 ∈ R
n . Set � := 0.

(ii) Lanczos process:

1. Initiation:
(a) e�+1 := r�/|| r� ||2,
(b) q := Pe�+1,
(c) β�+1 := 〈q, e�+1〉,
(d) r�+1 := q − β�+1e�+1 −∑�

k=1 ρkek ,
(e) γ�+1 := || r�+1 ||.
2. Iteration (k = � + 2, . . . , kmax):
(a) ek := rk−1/γk−1,

(b) q := Pek ,
(c) βk := 〈q, ek〉,
(d) rk := q − βkek − γk−1ek−1,
(e) γk := || rk ||.

(iii) Compute the eigenvalue decomposition T = YΛYT of
T in (17). Set U := EY .

(iv) If γkmax | ykmax,k | ≤ δ|| P || for k = 1, . . . , �fix, then return
U := [u1| . . . |u�fix ] and Λ := diag(λ1, . . . , λ�fix). Oth-
erwise, set � := �fix, r� := rkmax , and continue with (ii).

Output: U ∈ R
n×�fix , Λ ∈ R

�fix×�fix with UTPU = Λ.

Remark 1 Although theLanczos process computes anorthog-
onal basis e1, . . . , ekmax , the orthogonality is usually lost
because of the floating-point arithmetic. In order to re-es-
tablish the orthogonality, we therefore have to orthogonalize
the newly computed ek with the previous basis vectors, which
can be achieved by the Gram–Schmidt procedure. More
sophisticated re-orthogonalization strategies are discussed in
[50].

Remark 2 During the Lanczos process, the norm of the resid-
ual γk could become zero. In this case, we can stop the
process, reduce kmax to the current k, and proceed with step
(iii) and (iv). Then the computed basis e1, . . . , ek spans an
invariant subspace of P such that the eigenpairs in U and Λ

become exact, see [13].

The heart of the Lanczos method in Algorithm 4 is the
construction of an orthogonal matrix E := [e1| . . . |ekmax ] ∈
R
n×kmax such that T := ETPE becomes tridiagonal, see

(17) with � = 0 below. Using the eigenvalue decomposition
T = YΛYT, we then compute the Ritz pairs (λk, uk), where
uk are the columns ofU := [u1| . . . |ukmax ] and λk the eigen-
values in Λ. In the next iteration, we chose �fix Ritz pairs
corresponding to the absolute leading Ritz values denoted
by (λ̆1, ŭ1), . . . , (λ̆�fix , ŭ�fix) and restart the Lanczos process.
Thereby, the chosen Ritz vectors are extended to an orthog-
onal basis E := [ŭ1| . . . |ŭ�fix |e�fix+1| . . . |ekmax ] fulfilling

E∗PE = T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ̆1 ρ1
. . .

...

λ̆� ρ�

ρ1 · · · ρ� β�+1 γ�+1

γ�+1 β�+1
. . .

. . .
. . . γkmax−1

γkmax−1 βkmax

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(17)

where ρk := γ̆kmax y̆kmax,k with γ̆kmax and y̆kmax,k originating
from the last iteration, see [50].
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The stopping criteria of the thick-restarted Lanczos pro-
cess is here deduced from the fact that the chosen Ritz pairs
fulfill the equation

P ŭk = λ̆k ŭk + y̆kmax,k r̆kmax ,

where r̆kmax is the last residuum vector of the previous itera-
tion [50]. Consequently, the absolute error of the chosen Ritz
pairs is given by

|| P ŭk − λ̆k ŭk ||2 = | y̆kmax,k | || r̆kmax ||2 = γ̆kmax | y̆kmax,k |.

Usually, the absolute value of the leading Ritz value is a
good approximation of the required spectral norm || P || to
estimate the current relative error.

Remark 3 (Power method) Besides the Krylov subspace
methods like the discussed Lanczos process with thick-
restarting, the required eigenpairs may be calculated using
the power method. Here the main idea is to start with
an orthogonal matrix U (0) := [u(0)

1 | . . . |u(0)
�fix

] ∈ R
n×�fix

representing an �fix-dimensional subspace U (0) and to suc-
cessively computeU (r) := P(U (r−1)) again represented by
an orthogonal matrix U (r). The convergence of the so-called
orthogonal iteration may be improved by constructing U (r)

using the eigenvalue decomposition of P restricted to U (r).
This approach goes back to [43] and consists in the iteration

E(r)R(r) = PU (r−1), (18)

E(r)TPE(r) = Y (r)Λ(r)Y (r)T (19)

U (r) := E(r)Y (r), (20)

where the first step consists in the QR decomposition of
PU (r−1) into an orthogonal matrix E(r) and an upper
triangular matrix R(r) and the second in the eigenvalue
decomposition of E(r)TPE(r).

If none of the columns of U (0) is orthogonal to the �fix
leading eigenvectors of P , and if the �fixleading eigenvalues
are well-defined—both in absolute value, then the columns
of U (r) and the eigenvalues in Λ(r) converge to the leading
eigenpairs of P , see [13,43].

Although there is no convergence guarantee for the
restarted Lanczos process, it usually enjoys much faster
convergence than the orthogonal iteration (18)–(20) for
high-dimensional problems. Moreover, the chosen restart-
ing technique can be easily adapted to compute the proximal
mapping of the regularizer as discussed in the next section.

5.2 Matrix-Free Primal Update

The thick-restarted Lanczosmethod allows us to compute the
leading absolute eigenvalues and their corresponding eigen-
vectors in a matrix-free manner using only the action of the

considered matrix. In our primal-dual method for rreaper,
we need the action of P (r)−τX ∗(Y (r+1)). Incorporating the
low-rank representation (16), we see that this can be rewritten
as

e ∈ R
n �→

{
dr∑

k=1

λ
(r)
k

〈
e, u(r)

k

〉
u(r)
k

}

− τ

2

{
Y (r+1) [XTe

]+ X
[(
Y (r+1))Te

]}
.

For the evaluation of the primal proximal mapping, we
first compute the eigenvalue decomposition of P (r) −
τX ∗(Y (r+1)), next shift the eigenvalues, and finally project
them to the truncated hypercube Q ∩ H , see Algorithm 3.
Since the projection ontoQ∩H is independent of negative
eigenvalues, see note after Proposition 3, it is thus sufficient
to compute only the eigenpairs with eigenvalue larger than
ατ .

For the numerical implementation, we compute the rel-
evant eigenpairs with the thick-restarted Lanczos method.
In the course of this, we are confronted with the issue
that we actually do not know how many eigenpairs has
to be computed. To reduce the overhead of Algorithm 4
as much as possible, the parameters �fix and kmax can be
easily adapted between the restarts. Further, the compu-
tation of strongly negative eigenvalues can be avoided by
an eigenvalue shift, i.e., actually compute the eigenpairs of
P (r) − τX ∗(Y (r+1)) + ν I with μ ≥ 0, where the required
action has the form

e ∈ R
n �→

{ dr∑

k=1

λ
(r)
k

〈
e, u(r)

k

〉
u(r)
k

}

− τ

2

{
Y (r+1) [XTe

]+ X
[(
Y (r+1))Te

]}+ ν e.

(21)

Essentially, we may thus implement the primal proximation
in the following manner.

Algorithm 5 (Matrix-free primal proximation)
Input: P (r) ∈ S (n), Y (r+1) ∈ R

n,N , d > 0, τ > 0, α > 0.

(i) Thick- restarted Lanczos method:
Settingν := 0,�fix := rank(P (r)), kmax := min{2�fix, n},
runAlgorithm4with action (21). Between restarts, check
convergence and update parameters:

(a) If γkmax | ykmax,k | ≤ δ || P (r) − τX ∗(Y (r+1)) + ν I ||
for k = 1, . . . ,m + 1, and if λ1 ≥ · · · ≥ λm ≥
ατ + ν > λm+1, then return U := [u1| . . . |um] and
Λ := diag(λ1 − ν, . . . , λm − ν).

(b) If λ�fix > ατ + ν, then increase �fix, kmax so that
�fix < kmax ≤ n.
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(c) Set ξ := max{[λ1]−, . . . , [λkmax ]−} and ν := ν + ξ .
Restart with (λk + ξ, uk), k = 1, . . . , �fix.

(ii) Projection ontoQ ∩ H :
Run Algorithm 2 on

λ := (λ1 − ατ, . . . , λm − ατ, 0, . . . , 0)T ∈ R
n

to get λ̂ := projQ∩H (λ).
(iii) New low- rank representation:

Determine dr+1 := max{k : λ̂k > 0} and return

P (r+1) :=
dr+1∑

k=1

λ̂k ukuTk .

Output: P (r+1) :=∑dr+1
k=1 λ

(r+1)
k u(r+1)

k

(
u(r+1)
k

)T.

Remark 4 If thematrix P (r)−τX ∗(Y (r+1))does not possess
any eigenvalues greater than ατ , then the Lanczos process
stops in step (i.a) with m = 0. Since the projection to the
truncated hypercube is then the zero vector again, the new
iteration P (r+1) can be represented by an empty low-rank
representation, i.e., dr+1 = 0.

5.3 Matrix-Free Dual Update

Compared with the primal update, the derivation of the
matrix-free dual update is more straightforward. First, the
matrix

Z := Y (r) + σ
[
X
(
(1 + θ) P (r) − θ P (r−1))− X

]

is computed, where the over-relaxation

P̄
(r) := (1 + θ) P (r) − θ P (r−1) is already plugged in.

The low-rank representations of P (r) and P (r−1) similar to
(16) can efficiently incorporated by calculating the matrix
Z := [z1| . . . |zN ] column by column. This way of handling
the forward operator X nicely matches with the projection
of the columns zk to the Euclidean unit ball in the second
step. Writing the matrix Y (r) := [ y(r)

1 | . . . | y(r)
N ] column by

column too, we obtain the following numerical method.

Algorithm 6 (Matrix-free dual proximation)
Input: Y (r) ∈ R

n,N , P (r) ∈ S(n), P (r−1) ∈ S(n), σ > 0,
θ ∈ (0, 1].

(i) For k = 1, . . . , N , compute

zk := y(r)
k + σ (1 + θ)

{ dr∑

�=1

λ
(r)
�

〈
xk, u

(r)
�

〉
u(r)

�

}

− σθ

{dr−1∑

�=1

λ
(r−1)
�

〈
xk, u

(r−1)
�

〉
u(r−1)

�

}
− σ xk .

(ii) For k = 1, . . . , N , compute zk := zk/(1 + [|| zk ||2 −
1]+).

(iii) Return Y (r+1) := [z1| . . . |zN ].

Output: Y (r+1)

5.4 Matrix-Free Projection onto the Orthoprojectors

With the matrix-free implementations of the primal and dual
proximal mappings, we are already able to solve rreaper (9)
numerically. Before summarizing the compound algorithm,
we briefly discuss the last needed component to tackle the
robust PCA problem (8). The final step is to project the solu-
tion P̂ of rreaper onto the set of orthoprojectors with rank
not larger than d:

Od := {Π ∈ S (n) : λΠ ∈ Ed},

where

Ed := {λ ∈ R
n : λ ∈ {0, 1}n, 〈λ, 1n〉 ≤ d}.

We may calculate the projection explicitly in the following
manner.

Proposition 4 (Projection onto the orthoprojectors) For
P ∈ S(n) with eigenvalue decomposition P = U diag(λP )

UT, and for every 1 ≤ p ≤ ∞, the projection onto Od with
respect to the Schatten p-norm is given by

projOd
(P) = U diag(projEd (λ))UT.

Proof The key ingredient to prove this statement is the the-
orem of Lidskii–Mirsky–Wielandt, see for instance [29].
Using this theorem to estimate the Schatten p-Norm, we
obtain

min
Π∈Od

‖P − Π‖Sp ≥ min
λΠ∈Ed

‖λP − λΠ‖p, (22)

where we have equality if Π has the same eigenvectors as
P . Recall that the eigenvalues in λP appear in descending
order. The right-hand side of (22) thus becomes minimal if
we choose the eigenvalues of Π for k = 1, . . . , d as

λ̂Π,k :=
{
1 if λP,k ≥ 1

2 ,

0 if λP,k < 1
2 ,

and set λ̂Π,k := 0 for k = d + 1, . . . , n. This is exactly the
projection onto Ed . ��

Because of the low-rank representation

P (r) =
dr∑

k=1

λk u
(r)
k (u(r)

k )T
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of the primal variable, the construction of the orthoprojector
Π̂ ∈ Od is here especially simple.

Algorithm 7 (Matrix-freeprojectionontoorthoprojectors)
Input: P =∑κ

k=1 λk ukuTk ∈ S (n), d ∈ N.

(i) Projection onto Od :
Determine s := max{k : λk ≥ 1/2, k ≤ min{d, κ}}.

(ii) Matrix- free presentation:
Return Π =∑s

k=1 uku
T
k .

Output: Π = projOd
(P).

5.5 Matrix-Free Robust PCA by RREAPER

Combining the matrix-free implementations of the primal
and dual proximal mappings, we finally obtain a primal-dual
method to solve rreaper (9) without evaluating the primal
variable P (r) representing the relaxed orthoprojector explic-
itly.

Algorithm 8 (Matrix-free robust PCA)
Input: X ∈ R

n,N , d ∈ N, α > 0, and σ, τ > 0 with στ <

1/‖X‖22, and θ ∈ (0, 1].
Initiation: P (0) = P̄

(0) := 0 ∈ R
n,n , Y (0) := 0 ∈ R

n,N .
Iteration:

(i) Dual update: Compute Y (r+1) with Algorithm 6.
(ii) Primal update: Compute P (r+1) with Algorithm 5.

Projection: Compute Π̂ with Algorithm 7.
Output: Π̂ (Orthoprojector onto recovered subspace).

Due to the convexity of rreaper, everyminimizer of (9) is
global. Thus, our proposed algorithmcannot get stuck in local
minima. Since the Lagrangian (13) has a saddle-point by [40,
Cor. 28.2.2], the convergence of the underlying primal-dual
method to a saddle-point ( P̂, Ŷ) is guaranteed for parameter
choices στ < 1/ ||X ||22 and θ = 1 as proven in [5, Thm. 1].
Finally, the primal variable P̂ minimizes rreaper by [40,
Thm. 28.3].

However, using the thick-restarted Lanczos process to
evaluate the proximal mapping of the regularizer in Proposi-
tion 2, we introduce a systematic error since the required
eigenvalue decompositions are only computed approxi-
mately. Fortunately, we may control this error by choosing
the accuracy δ inAlgorithm4appropriately small. If the accu-
racies becomes higher during the primal-dual iteration, we
will see that the underlying primal-dual iteration converges
nevertheless.

Theorem 1 (Convergence of Algorithm 8) Let

Q(r) := P (r−1) − τX ∗(Y (r)) = U diag(λ)UT

be the argument in the r th primal-dual iteration of Algo-

rithm 8, and Q̃
(r)

the computed low-rank approximation of
the leading positive eigenvalues greater than τα by the thick-
restarted Lanczos process. Define the approximation error by

Er := ||( Q̃(r) − τα In)�0 − (Q(r) − τα In)�0 ||F ,

where (·)�0 denotes the projection to the positive-definite
cone. Then, for στ < 1/||X ||22 and θ = 1, the primal-dual
iteration in Algorithm 8 converges to a global minimizer of
rreaper whenever

∑∞
r=0 E

1/2
r (|| Q(r) ||F + √

d)
1/2 < ∞.

Proof The key idea of the proof is to show that the approx-

imations P̃
(r) = proxταR( Q̃

(r)
) are so-called type-one

approximations of the proximal points P (r) in the second
step of Algorithm 1. For this, we have to compare the objec-
tive

F(P) := τα || P ||tr + ιC (P) + 1
2 || Q(r) − P ||2F

of proxταR at the points P̃
(r)

and P (r). By the triangle
inequality, we obtain

F( P̃
(r)

) − F(P (r))

= τα || P̃ (r) ||tr + 1
2 || Q(r) − P̃

(r) ||2F
− τα || P (r) ||tr − 1

2 || Q(r) − P (r) ||2F
≤ τα || P̃ (r) − P (r) ||tr

+ 1
2

(|| P̃ (r) − P (r) ||F + || Q(r) − P (r) ||F
)2

− 1
2 || Q(r) − P (r) ||2F

≤ τα || P̃ (r) − P (r) ||tr + 1
2 || P̃ (r) − P (r) ||2F

+ || P̃ (r) − P (r) ||F || Q(r) − P (r) ||F
≤ τα

√
n|| P̃ (r) − P (r) ||F + 1

2 || P̃ (r) − P (r) ||2F
+ || P̃ (r) − P (r) ||F || Q(r) − P (r) ||F .

Using

P (r) = proxταR(Q(r)) = projC (Q(r) − τα In)

= projC ((Q(r) − τα In)�0),

the non-expansiveness of the projection and assuming with-
out loss of generality that Er ≤ 1, we conclude

F( P̃
(r)

) − F(P (r))

≤ τα
√
nEr + 1

2 E2
r + Er (|| Q(r) ||F + || P (r) ||F )

≤ CEr (|| Q(r) ||F + √
d), C > 0.
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Thus, P̃
(r)

fulfills the definition of the type-one approxima-
tion with precision CEr (|| Q(r) ||F + √

d), see [39, p. 385].
Since the square roots of the precisions are summable, [39,
Thm. 2] ensures the convergence of the inexactly performed
primal-dual iteration to a saddle-point of the Lagrangian in
(13) and thus to a solution P̂ of rreaper. ��

6 Performance Analysis

Inspired by ideas of Lerman et al. [27], we examine the per-
formance analysis of rreaper. To this end,we assume that the
‘ideal’ subspace L of the given data xk ∈ R

n , k = 1, . . . , N
has dimension dL ≤ d. As in [27], we determine the best fit
of the data by two measures: the first one is the distance of
the data from the subspace

RL = RL(X) := ‖(In − ΠL)X‖2,1,

where ΠL denotes the orthogonal projector onto L . For the
second measure, we assume that the projected data {Πxk :
k = 1, . . . , N }, N ≥ dL , form a frame in L meaning that
there exist constants 0 < cL ≤ CL < ∞ such that

cL ≤
N∑

k=1

| 〈u,ΠL xk〉 |2 =
N∑

k=1

| 〈u, xk〉 |2 ≤ CL

for all u ∈ L with ‖u‖2 = 1. In order to recover the entire
subspace L , the data have obviously to cover each direction in
L with sufficiently many data points. This well-localization
of the data is measured by the permeance statistic

PL = PL(X) := min
u∈L||u ||=1

N∑

k=1

| 〈u, xk〉 | (23)

which can be seen as �1 counterpart of the lower framebound.
Clearly,PL becomes large if all direction in L are uniformly
covered by the data. The lower frame bound and the perme-
ance statistic come into the play in the following lemma,
compared with [27, Sect. A2.3].

Lemma 2 Let ΠL be the orthogonal projector onto a sub-
space L of Rn of dimension dL and xk ∈ R

n, k = 1, . . . , N,
N ≥ dL which form the columns of the matrix X . Then, for
any A ∈ R

n,n, the following relations hold true:

‖AΠLX‖2,2 ≥ cL‖AΠL‖F , (24)

and

‖AΠLX‖2,1 ≥ PL‖AΠL‖F ≥ 1√
dL
PL‖AΠL‖tr. (25)

Proof We restrict our attention to (25). The relation (24)
follows similar lines. Let AΠL have the singular value
decomposition AΠL = UΣVT, where the singular values
σk , k = 1, . . . , n are in descending order and σdL+1 = . . . =
σn = 0 and we can arrange V such that the transpose of the
first dL rows of V belong to L . Then it holds

‖AΠL‖2F =
dL∑

k=1

σ 2
k .

Using orthogonality of U and concavity of the square root
function, we obtain

‖AΠL X‖2,1 = ‖UΣVTX‖2,1 = ‖ΣVTX‖2,1

=
N∑

k=1

⎛

⎝
dL∑

j=1

σ 2
j 〈v j , xk〉2

⎞

⎠

1
2

= ‖AΠL‖F
N∑

k=1

⎛

⎝
dL∑

j=1

σ 2
j

‖AΠL‖2F
〈v j , xk〉2

⎞

⎠

1
2

≥ ‖AΠL‖F
N∑

k=1

dL∑

j=1

σ 2
j

‖AΠL‖2F
|〈v j , xk〉|

= ‖AΠL‖F
dL∑

j=1

σ 2
j

‖AΠL‖2F

N∑

k=1

|〈v j , xk〉|

≥ PL ‖AΠL‖F .

The second estimate in (25) follows by (1). ��
Nowwe can estimate the reconstruction error of rreaper.

Theorem 2 Let ΠL be the orthogonal projector onto a sub-
space L of Rn of dimension dL and xk ∈ R

n, k = 1, . . . , N,
N ≥ dL such that their projections onto L form a frame of
L. DefinePL by (23) and set γL := 1

2
√
2dL

PL . Let P̂ be the

solution of (9) and Π̂ the projection of P̂ ontoOd . Then, for
α ≤ 2γL and d ≥ dL , the reconstruction error is bounded
by

||Π̂−ΠL ||tr ≤ min

{
6RL

γL − |γL − α| ,
6RL + 2d|α − γL |

γL

}
.

(26)

Proof Since P̂ is a minimizer of (9), we obtain

0 ≤ ‖(In − ΠL)X‖2,1 − ‖(In − P̂)X‖2,1
+ α(‖ΠL‖tr − ‖ P̂‖tr) (27)

= RL − ‖(In − P̂)X‖2,1 + α(dL − ‖ P̂‖tr)
≤ RL + ‖(In − P̂)(In − ΠL)X‖2,1

123



638 Journal of Mathematical Imaging and Vision (2021) 63:626–649

− ‖(In − P̂)ΠLX‖2,1 + α(dL − ‖ P̂‖tr)
= RL + ‖(In − ( P̂ − ΠL)

)
(In − ΠL)X‖2,1

− ‖(In − P̂)ΠLX‖2,1 + α(dL − ‖ P̂‖tr)
≤ (1 + ‖In − ( P̂ − ΠL)‖2

)
RL − ‖(In − P̂)ΠLX‖2,1

+ α(dL − ‖ P̂‖tr) (28)

It remains to estimate

‖(In − P̂)ΠLX‖2,1 = ‖( P̂ − ΠL)ΠLX‖2,1

from below. To this end, we decompose Δ := P̂ − ΠL as

Δ = ΠLΔΠL︸ ︷︷ ︸
Δ1

+ (In − ΠL)ΔΠL︸ ︷︷ ︸
Δ2

+ΠLΔ(In − ΠL)︸ ︷︷ ︸
ΔT

2

+ (In − ΠL)Δ(In − ΠL)︸ ︷︷ ︸
Δ3

.

Since 0n,n 	 P̂ 	 In , we obtain be conjugation with ΠL ,
resp. In−ΠL thatΔ1 	 0n,n and0n,n 	 Δ3, so that‖Δ1‖tr =
− trΔ1 and ‖Δ3‖tr = trΔ3. Then we conclude

tr(Δ) = tr( P̂) − dL = trΔ1 + 2 trΔ2 + trΔ3

= trΔ1 + trΔ3 = ‖Δ3‖tr − ‖Δ1‖tr,

which implies

||Δ ||tr ≤ ||Δ1 ||tr + ||Δ2 ||tr + ||ΔT
2 ||tr + ||Δ3 ||tr

= 2||Δ1 ||tr + 2||Δ2 ||tr + tr( P̂) − dL .

Now we can estimate the last summand by (1) and Lemma 2
as

‖ΔΠLX‖2,1 = ‖ΠLΔΠLX + (In − ΠL)ΔΠLX‖2,1

=
N∑

k=1

(
‖Δ1xk‖22 + ‖Δ2xk‖22

) 1
2

≥ 1√
2

N∑

k=1

(‖Δ1xk‖2 + ‖Δ2xk‖2)

≥ 1√
2dL

PL (‖Δ1‖tr + ‖Δ2‖tr)

≥ 1

2
√
2dL

PL

(
‖Δ‖tr + dL − ‖ P̂‖tr

)
. (29)

By (28) and (29), we obtain

0 ≤ (1 + ‖In − ( P̂ − ΠL)‖2)RL

+ (α − γL)(dL − ‖ P̂‖tr) − γL‖ P̂ − ΠL‖tr
≤ (1 + ‖In − ( P̂ − ΠL)‖2)RL

+ |α − γL ||dL − ‖ P̂‖tr| − γL‖ P̂ − ΠL‖tr. (30)

Using the triangular inequality ‖ P̂ −ΠL‖tr ≥ |dL −‖ P̂‖tr|,
we get

0 ≤ (1 + ‖In − ( P̂ − ΠL)‖2)RL

+ (|α − γL | − γL) ‖ P̂ − ΠL‖tr.
(31)

We next employ the estimate

‖In − ( P̂ − ΠL)‖2 ≤ ‖In − P̂‖2 + ‖ΠL‖2 ≤ 2, (32)

which results in

‖ P̂ − ΠL‖tr ≤ 3RL

γL − |γL − α|
if α < 2γL . Alternatively, we apply (32) in (30) together
with |dL − ‖ P̂‖tr| ≤ d, since dL ≤ d, and obtain

‖ P̂ − ΠL‖tr ≤ 3RL + d|α − γL |
γL

.

The final assertion follows by

‖Π̂ − ΠL‖tr ≤ ‖Π̂ − P̂‖tr + ‖ P̂ − ΠL‖tr ≤ 2‖ P̂ − ΠL‖tr.

��
The error depends basically on the quotient of the distance

of the normalized data from the subspace and the permeance
statistics, where the normalization is indirectly contained in
the quotient. For α = γL , the terms of the minimum in (26)
are the same and both terms become small; the second term
is preferred for α near zero or 2γL . Compared to our experi-
mental results, the estimate is in general too pessimistic.

Remark 5 In [27], the following estimate was given for the
original reaper

||Π̂ − ΠL ||tr
≤ 16

√
dLRL(X in)/(

PL(X in) − 4
√
dLRL(X in)

− 4
√
dL ||Xout || ||((In − ΠL)Xout)

∼ ||
)

+, (33)

where the data points X = [X in|Xout] were divided into
inliers X in ∈ R

n,Nin and outliers Xout ∈ R
n,Nout and (·)∼

normalizes the columns of a matrix one. Following the lines
of the proof in those paper, we would obtain the estimate

||Π̂ − ΠL ||tr
≤
(
16
√
dLRL(X in) + 8αdL

√
dL
)

123



Journal of Mathematical Imaging and Vision (2021) 63:626–649 639

/(
PL(X in) − 4

√
dLRL(X in)

− 4
√
dL ||Xout || ||((In − ΠL)Xout)

∼ ||
)

+ (34)

for rreaper. Therefore, rreaper inherits the robustness from
reaper as well as the theoretical guarantees for certain data
models. However, in our numerical examples, we realized
that the above estimate is often not defined due to division
by zero, especially in the presents of already small inlier
noise, i.e., if the columns of X in are only near the subspace
L . Moreover, it is not clear how the division into in- and
outliers can be achieved for real data sets. In our estimate
(26), we do not distinguish between in- and outliers. Using
alternatively ‖In − ( P̂ − ΠL)‖2 ≤ 1+ ‖ P̂ − ΠL‖tr in (31),
we would obtain the estimate

‖Π̂ − ΠL‖tr ≤ 8
√
2dLRL(

PL − 2
√
2dLRL − |PL − 2

√
2dLα|)+

.

7 Incorporating the Offset

So far, we have assumed that the offset b in the robust
PCA problem is given, so that we can just search for a low-
dimensional linear subspace which represents the data well.
While in the classical PCA (4), the affine subspace always
passes through the mean value (5) of the data, it is not clear
which value b must be chosen in order to minimize

E(A, b) :=
N∑

i=1

‖(AAT − In)(b − xi )‖2

subject to ATA = Id .

(35)

Clearly, if ( Â, b̂) is a minimizer of E , then, for every b ∈
ran( Â), also ( Â, b̂ + b) is a minimizer.

A common choice for the offset is the geometric median
of the data points defined by

b̂ := argmin
b∈Rn

N∑

k=1

‖b − xk‖2,

which can be computed, e.g., by theWeiszfeld algorithm and
its generalizations, see, e.g., [2,36,42,49]. Other choices aris-
ing, e.g., from Tyler’s M-estimator or other robust statistical
approaches [19,24,26,33,47], were proposed in the literature.
However, they do in general not minimize (35) as the follow-
ing example from [35] shows: given three points inRn which
form a triangle with angles smaller than 120◦, the geometric
median is the point in the inner of the triangle from which
the points can be seen under an angle of 120◦. In contrast, the
line (d = 1) having smallest distance from the three points

is the one which passes through those two points with the
largest distance from each other.

In the following, we show that there always exists an
optimal hyperplane of dimension d = n − 1 in R

n deter-
mined by a minimizer of E in (35) that contains at least
n data points. Further, if the number N of data points is
odd, then every optimal hyperplane contains at least n data
points. Recall that the hyperplane spanned by the columns of
A = (a1| . . . |an−1) ∈ St(n, n − 1) with offset b is given by

{x = At + b : t ∈ R
n−1} = {x ∈ R

n : 〈a⊥, x〉 = β},

where a⊥ ⊥ ai , i = 1, . . . , n − 1 is a unit normal vector of
the hyperplane, which is uniquely determined up to its sign
and 〈a⊥, b〉 = −β.

The following lemma describe the placement of the data
points with respect to the halfspaces determined by a mini-
mizing hyperplane.

Lemma 3 Let xk ∈ R
n, k = 1, . . . , N. Let ( Â, b̂) be a mini-

mizer of E and N = M + M+ + M− with

M := |{xk : 〈â⊥
, xi 〉 = β̂}|,

M+ := |{xk : 〈â⊥
, xi 〉 > β̂}|,

M− := |{xk : 〈â⊥
, xi 〉 < β̂}|.

Then it holds |M+ − M−| ≤ M. In particular, it holds M ≥
1 if N is odd. Also for even N there exists a minimizing
hyperplane with b̂ = xk for some k ∈ {1, . . . , N }.
Proof W.l.o.g. assume that M+ ≥ M−. If M+ = 0, then
all data points are in the minimizing hyperplane and we are
done. Otherwise, the value

ε := min{〈â⊥
, xk〉 > 0 : k = 1, . . . , N }

is positive, and we consider the shifted hyperplane {x ∈ R
n :

〈a⊥, x〉 = β +ε}, which contains at least one data point. The
sum of the distances of the data points from this hyperplane
is

E( Â, b̂) − εM+ + ε(M + M−).

Since ( Â, b̂) is aminimizer of E , this implies thatM+ ≤ M+
M−. If M = 0, then M− = M+ and the shifted hyperplane
is also minimizing. However, this case cannot appear for odd
N so that M ≥ 1 for odd N . This finishes the proof. ��
Theorem 3 Let x� ∈ R

n, � = 1, . . . , N. Then there exists a
minimizer ( Â, b̂) of E such that the corresponding minimiz-
ing hyperplane contains at least n data points. If N is odd,
every minimizing hyperplane contains at least n data points.
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Proof By Lemma 3, there exists a data point x� such that
( Â, b̂) with b̂ = x� is a minimizer of E and for odd N every
minimizinghyperplane passes through adata point. Let â⊥ be
a unit vector orthogonal to the columns of Â. Set yk := xk −
x�, k = 1, . . . , N . Next, we show: if the subspace normal to
â⊥ containsM linearly independent vectors y1, . . . , yM with
0 ≤ M ≤ n − 2, then exactly one of the following situations
apply. (i) The remaining vectors yk with k = M + 1, . . . , N
are linearly dependent from the first M vectors and thus in
the same linear subspace span{ yk : k = 1, . . . , M}. (ii) We
find a further independent vector, say yM+1, contained in
the subspace normal to â⊥ such that we can increase M to
M + 1. Repeating this argumentation until M = n − 2, we
are done since yk + x�, k = 1, . . . , n − 1 and x� itself are in
the subspace corresponding to ( Â, b̂).

Because the vectors yk with k = 1, . . . , M are indepen-
dent and are contained in the subspace normal to â⊥ by
assumption, there exists a matrix

B := (u1| . . . |uM |uM+1| . . . |un−1) ∈ St(n, n − 1),

with ran(A) = ran(B), whose first columns have the same
span as y1, . . . , yM , i.e.,

span{uk : k = 1, . . . , M} = span{ yk : k = 1, . . . , M}.

This especially implies yk ⊥ u� for k = 1, . . . , M and
� = M + 1, . . . , n − 1. Note that the normal unit vector of
ran(B) is also â⊥, and that the objectives coincides, i.e.,

N∑

k=1

‖( Â Â
T − In) yk‖2 =

N∑

k=1

‖(BBT − In) yk‖2. (36)

Now, let the matrix-valued function

φB : [−π, π) → St(n, n − 1)

be defined by

φB(α) := QB R(α)C,

where the three building factors are given by

QB := (B|â⊥
),

R(α) :=
⎛

⎝
In−2 0n−2 0n−2

0Tn−2 cos(α) sin(α)

0Tn−2 − sin(α) cos(α)

⎞

⎠ ,

C :=
(
In−1

0Tn−1

)
.

Figuratively, the function φB takes the orthonormal columns
of B and rotates the last vector un−1 by the angle α in the

plane spanned by un−1 and â
⊥. Clearly, we haveφB(0) = B.

Due to (36), the function

F(α) =
N∑

k=1

‖(φB(α)φB(α)T − In) yk‖2 =
N∑

k=1

fk(α)

has moreover a minimum in α = 0. For the summands of F ,
we obtain

fk(α) = ‖(φB(α)φB(α)T − In) yk‖2
= ‖(QB R(α)C CT R(α)T QT

B − In) yk‖2
= ‖(C CT R(α)T QT

B − R(α)T QT
B) yk‖2

= ‖(C CT − In)R(α)T QT
B yk‖2

=
∣∣∣sin(α)〈un−1, yk〉 + cos(α)〈â⊥

, yk〉
∣∣∣ ,

since QB and R(α) are orthogonal by construction. Hence,
we get

F(α) =
N∑

k=M+1

∣∣∣sin(α)〈un−1, yk〉 + cos(α)〈â⊥
, yk〉

∣∣∣ .

Here the first M summands vanish because of the mentioned
orthogonality yk ⊥ un−1 and yk ⊥ â⊥ for k = 1, . . . , M .

If all remaining given points yk with k = M + 1, . . . , N
are in span{ y1, . . . , yM }, then the corresponding remaining
summands of F(α) become zero too, and the first situation
(i) applies; so we are done.

If this is not the case, consider only those yk with k =
M + 1, . . . , N that are linearly independent of the yk , k =
1, . . . , M . Let us denote the corresponding non-empty index
set by I . Assume that there exists a k ∈ I such that fk
is not differentiable in α = 0. This is only possible if the
argument of the absolute value vanishes implying

fk(0) = |〈â⊥
, yk〉 | = 0.

Thus, the vector yk is in the subspace spanned by the columns
of Â, andwe are done. Otherwise, if fk(0) �= 0 for all k ∈ I ,
then it is differentiable in α = 0 and, by straightforward
differentiation, we obtain

f ′′
k (0) = − fk(0) < 0.

But then α = 0 cannot be a minimizer of F which is a
contradiction. Hence, this case cannot occur and the proof is
complete. ��

If the target dimension d of the minimizing subspace is
strictly less than n − 1, then it does not have to contain any
data point as the following example shows.
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Counterexample 1 (Lower-dimensional subspace approxi-
mation) Initially, we consider the approximation of some
given points in R3 by an one-dimensional subspace—a line.
More precisely, for a fixed T � 1, we consider the six given
points

(cos(φ), sin(φ),±T )T with φ ∈ {0, 2π/3, 4π/3}.

We thus have two well-separated clusters around (0, 0, T )T

and (0, 0,−T )T.
Obviously, the optimal line has somehow to go through

each cluster. One possible candidate for the approximation
line is simply the axis {(0, 0, t) : t ∈ R}, whose distance
to the given points is by construction 6—for each cluster 3.
Now, assume that the line goes through one given point, say
(1, 0, T )T. If T is very large, then we can neglect the slope
of the line. Only considering the distances within the cluster
around (0, 0, T )T, we notice that the distance increases from
3 to approximately 2

√
3. Although the axis is maybe not

the optimal line, the distance to the given points is smaller
than for a line going through a data point. Therefore, we can
conclude that the optimal line has not to contain any given
point.

The same construction can be done for arbitrary subspaces
of dimension d < n−1. For example, consider just the points

(cos(φ), sin(φ)| ± T eTk )T

with

φ ∈ {0, 2π/3, 4π/3}, k = 1, . . . , d,

where ek is the kth unit vector. Using the same argumenta-
tion as above, the distance to the subspace span{±ek : k =
1, . . . , d} is smaller than to any d-dimensional subspace con-
taining at least one data point.

8 Numerical Examples

In this section, we demonstrate the performance of rreaper
bynumerical examples implemented inMATLAB® (R2019b,
64-bit) and calculated using an Intel© CoreTM i7-8700 CPU
(6×3.20GHz) and 32GiBmainmemory. For synthetic data,
we employ the so-called haystack model introduced by Ler-
man et al. in [27]. The idea is to generate a set of inliers
X in ∈ R

n,Nin lying near an dL -dimensional subspace—here
the subspace spanned by the first dL unit vectors—and a set
of outliers Xout ∈ R

n,Nout located somewhere in the sur-
rounding space. More precisely, the elements of the in- and

outliers are drawn form the Gaussians

(X in)�,k ∼
{
N (0, σ 2

in/dL) if � ≤ dL ,

N (0, σ 2
noise/(n − dL)) otherwise,

and

(Xout)�,k ∼ N (0, σ 2
out/n).

The complete data set then consists of the matrix

X = [X in|Xout].

Further,we compare the results of thematrix-free rreaper
with several other robust PCAmethods which can be applied
to high-dimensional images. More precisely, we consider the
following methods:

– PCA-L1 method [21] maximizes the L1 dispersion
|| PX ||1,1. The method is based on a greedy search algo-
rithm that determines the maximum P̂ by finding the
rank-one projections to the principal components. The
method finds a local maximum, but there is no guaran-
tee to compute the global one. Indeed, the results heavily
depends on the start value, which is the reason why we
restart the algorithm several times (actually 10 times).
Further, in contrast to the other three methods, this one
is not rotationally invariant due to the objective function
which often results in lower quality.

– Nested Weiszfeld algorithm [35] aims to approximate
the minimizer of ||(In − P)X ||2,1. The projection is
determined by a greedy-like method by computing the
principle components sequentially. In general, this does
not yield a (local) minimizer of ||(In − P)X ||2,1.

– R1-PCA [9,34], which minimizes again the data fidelity
||(In − P)X ||2,1. The minimization is performed by a
gradient descent method on the Grassmannian manifold
which is equivalent to a conditional gradient algorithm—
also known as Frank–Wolfe algorithm. Convergence to
a (local) minimizer is only guaranteed under certain
assumptions on the anchor set.

– Fast Median Subspace method (FMS) [25] is a heuristic
method to minimize the energy ||(In − P)X ||2,p :=∑N

k=1 ||(In − P)xk ||p2 with 0 < p < 2 iteratively. For
this, a sequence of subspaces is constructed on the basis
of weighted PCAs. FMS always converge to a stationary
point (or to a continuum of stationary points), which are
usually (local) minimizers of the energy functional.

– Geodesic Gradient Descent (GGD) [31] intends to mini-
mizes ||(In − P)X ||2,1 by a geodesic descent performed
on the Grassmannian. Under certain conditions on the
problem and starting value, this method linear converges
to the underlying unknown subspace.
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Fig. 1 Performance of rreaper with (2,1)-norm and Frobenius norm
in the data fidelity term, respectively. The first one appears to be more
robust against outliers

8.1 (2,1)-Norm versus Frobenius Norm

This example with simple synthetic data will show that the
(2,1)-norm in the data term is more robust against outliers
than the Frobenius norm

(
N∑

k=1

||(P − In) xk ||22
) 1

2

= || PX − X ||F .

For the Frobenius norm here abbreviated as F-norm,we have
only to replace the projection ontoB2,∞ with the projection
to the Frobenius norm ball

projBF
(Y) = Y

[||Y || − 1]+ + 1
.

We want to recover a line in the plane. Since this recovery
problem is invariant under rotations, we restrict ourselves
to span{(1, 0)T}. The data are generated randomly using the
haystack model and consist of 50 points near the consid-
ered axis—we added a small amount of noise in the second
coordinate—and of 10 outliers located somewhere in the
plane, see Fig. 1. Besides the data points, the recovered lines
using rreaperwith the (2,1)-norm (solid line) as data fidelity
and the Frobenius norm (dashed line) with parameters d = 1
and α = 5 are presented. In this toy example, rreaper yields
nearly a perfect result regardless of the outliers and is in par-
ticular more robust than the same model with the Frobenius
norm.

Fig. 2 Performance of rreaper for different upper dimension estima-
tors d = 10, 100 and regularization parameters α = 1/4, 1/2, 3/4, 1, 2
(top down for each d)

8.2 Nuclear Norm and Truncated Hypercube
Constraints

In this example, we are interested how the rank reduction
is influenced by the nuclear norm and the projection to
the truncated hypercube. In this synthetic experiment, we
approximate the given data xk ∈ R

100 by a 10-dimensional
subspace. The data are again generated randomly with
respect to the haystack model with σin = σout = 1 and
σnoise = 0.1, where 100 points lie near the subspace L
spanned by the first ten unit vectors and additional 25 out-
liers. In Fig. 2a, the data set is represented by the distance to
the subspace L and to the orthogonal complement L⊥.

We apply rreaper in Algorithm 8 with different parame-
ter combination. For the target dimension, we choose in our
first experiment d = 10, which is the wanted dimension,
and second one d = 100, which does not truncate the unit
hypercube at all. The influence of the regularization parame-
ter α on the rank of P (r) is shown in Fig. 2b, where the lines
from top to down correspond to the regularization parame-
ters α = 1/4, 1/2, 3/4, 1, 2. Since we start the iterationwith the
zero-rank matrix P (0) := 0, the first iterations for d = 10
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Table 1 Reconstruction error ||Π̂ − ΠL ||tr for different upper dimen-
sion estimators d = 10, 100 and regularization parameters α =
1/4, 1/2, 3/4, 1, 2

dim. d Regularization α

0.25 0.5 0.75 1 2

10 0.0648 0.0646 0.0645 0.0645 0.0646

100 25.0523 25.0523 24.0569 16.0576 0.0646

and d = 100 coincides up to the point, where the trace of P (r)

exceeds the value 10. The reconstruction errors are recorded
in Table 1.

Considering only the results for d = 100 (dashed lines),
we see that the nuclear norm reduces the rank of the iteration
variable P (r) with an increasing regularization parameter.
Further, the rank during the primal-dual algorithm is very
sensitive to the regularization parameter. For d = 10 (solid
lines), the situation changes dramatically. After the initial
stages, the rank of P (r) decreases nearly to the target dimen-
sion. Since the matrices P (r) are no orthogonal projections,
rank and trace do not coincide. Due to this fact, the rank is not
strictly bounded by the maximal trace of the truncated hyper-
cube. Nevertheless, the projection to the truncated hypercube
significantly reduces the rank.

For an optimal rank evolution during the matrix-free
primal-dual method, the projection to the truncated hyper-
cube by Algorithm 2 appears to be important. Moreover, the
projectionmakes the rank evolution less sensitive to the regu-
larization parameter α so that a wider range of regularization
parameters can be applied without losing the computational
benefits of the low rank. Thus, the truncated hypercube pro-
jection is an elementary key component of the algorithm.

Finally, we compare the performance of rreaper in this
experiment with the other robust PCA methods mentioned
above. For this, we repeat the experiment 100 times with ran-
dom data. For rreaper, we choose the parameters d = 10
and α = 0.75. The mean reconstruction errors and the mean
run times have been recorded in Table 2. In this experiment,
the PCA-L1 fail to approximate the true underlying sub-
space. Interestingly, rreaper here always yields a slightly
better approximation thanR1-PCA,FMS, andGGD.The rea-
son for this behavior is that the nuclear norm regularization
suppress the Gaussian noise within the computed principle
components.

8.3 Choosing the Parameters

In the last example, we have seen that the target dimension is
achieved by choosing either d or α appropriately. To under-
stand the relation between the parameters in more detail and
finally to get a clue how to choose α if d is just taken large
enough, we provide some additional experiments.

Table 2 Mean reconstruction error ||Π̂ − ΠL ||tr and mean run time
(in seconds) for different robust PCA methods

Mean error Mean time

rreaper 0.0651 0.5953

PCA-L1 3.4235 0.0490

Nested Weiszfeld 0.3583 0.1613

R1-PCA 0.0662 0.4856

FMS 0.0662 0.0230

GGD 0.0662 0.0149

Fig. 3 Mean reconstruction error ||Π̂ − ΠL ||tr for varying α and d.
For every parameter choice, the experiment has been repeated 25 times

First, we repeat the experiment in Sect. 8.2 sequentially 25
times and consider themean of the reconstruction error ||Π̂−
ΠL || of all 25 experiments, see Fig. 3. For each choice of α

and d, the experiment has been repeated with the same sets of
data. For this specific haystackmodel, the unknown subspace
is recovered by choosing either d = 10 or α ∈ [2.25, 6.75].
Hence, the first conclusion is that the reconstruction error is
much less sensitive to choice of α than to those of d.

Next, considering again the variational nature of rreaper
in (9), we recall that || PX − X ||2,1 describes the error
between the ‘projected data’ PX and the given data X , and
that the || P ||tr controls the rank of P . In order to find a
good subspace, both terms have to be small. Notice that
the data fidelity becomes small if the rank/trace becomes
large and vice versa. Consequently, α has to be chosen
such that both complementary aspects are balanced. One
approach coming from inverse problems is the so-called
L-curve, see for instance [14,15]. The L-curve is a usual
or a log-log plot of the data fidelity and the regularizer.
For the haystack data set, the corresponding L-curve—once
computed for the outcome P̂ of rreaper, and once for its
projection Π̂ = projO25

( P̂)—is shown in Fig. 4, where
d = 25. Notice that both L-curves have a singularity, espe-
cially in the log-log plot. For the sake of clarity, we also
plotted the data fidelity and the trace norm over α, see Fig. 5.
The corner of the L-curve for Π̂ corresponds to α = 9.2.
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Fig. 4 The L-curve for d = 25 of the data set in Sect. 8.2 consisting of
100 inliers (σin = 1) and 25 outliers (σout = 1) with noise σnoise = 0.1

Further, the L-curve slows down at the singularity and is
nearly constant for α ∈ [2.1, 9.2]. The interval corresponds
to the plateaus of the data fidelity and the trace norm in
dependence of the regularization parameter α, see Fig. 5.
At the interval, data fidelity and regularizer are balanced.
More importantly, for every α ∈ [2.1, 9.2], the determined
subspace has dimension 10 and thus coincides with the true
dimension.

We repeated this experiment around 500 times for ran-
dom chosen d, dL , Nin, Nout, and σnoise and observe the
same behavior of the L-curve meaning that the edge of the
curve has been clearly visible and corresponds to the true
subspace dimension. Therefore, it seems that the unknown
subspace dimension can be detected and that an appropriate
regularization parameter α may be chosen by studying the
L-curve of the given data set. Notice that the L-curve, also
well studied in the literature, is a heuristic parameter choice
rule. Finally let us mention that if the inlier noise is too large
or if the outliers hide the linear structure of the inliers, then
the L-curve loses its singularity.

Fig. 5 The two components of the L-curves in Fig. 4 in dependence of
the regularization parameter α

8.4 Face Approximation

The idea to use the principle components of face images—
the so-called eigenfaces—for recognition, classification and
reconstruction was considered in various paper and goes
probably back to [45]. In this experiment, we adopt this
idea to show that our matrix-free reaper can handle high-
dimensional data. Since the computation of an optimal offset
is non-trivial as discussed in Sect. 7, we choose just the geo-
metric median. For the experiment, we use the ‘Extended
Yale Face Data Set B’ [12,23] consisting of several series of
faces images under different lighting conditions but with the
same facial expression. The basis of our noisy data set are 64
images of size 640× 480 pixels with integer values between
0 and 255. We place some artifacts in the first four images
covering the right eye, the nose, the right ear and the mouth,
respectively, and serving as outliers. The complete employed
data set is shown in Fig. 6a.

It is well-known that such images can be well approxi-
mated by a subspace covering around five directions [10].
To remove the artifacts by unsupervised learning, we there-
fore approximate the full data set including the artificial
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Fig. 6 The used data set based
on the Extended Yale Face Data
Set B and its projections onto
the determined subspace using
matrix-free rreaper
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Fig. 7 Restoration of the first
sample by projecting to the
principle components
determined by several robust
PCA’s
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Fig. 8 Restoration of the
artifact in the first sample by
projecting to the principle
components determined by
several robust PCA’s

face images by a five-dimensional subspace (d = 5) using
rreaper and project the corrupted images to the computed
subspace. An typical effect of this procedure is that dark
regions are lightened, shadows are removed, and reflec-
tions at skin and eyes are cleared away. Besides this effects,
the major part of the unwanted artefacts is removed, see
Fig. 6b. Note that in this example the projection Π̂ corre-
sponds to a 307,200×307,200 matrix, which would require
703.125 GiB for double precision whereas the matrix-free
representation only requires around 14.063 MiB since the
rank of the primal variable has been bounded by six due to
the choice of α := 4.2 · 104. The primal-dual algorithm for
rreaper has converged after 30 iterations.

Next, we compare rreaper with the robust PCA methods
mentioned above. Figure 7 shows examples of the projection
of the first corrupted image to the computed subspace of the
four considered methods. The restoration of the artifact cov-
ering the right eye is shown in Fig. 8 in more details. Taking
a closer look in Fig. 8, we notice that PCA-L1, although very
fast, yields the worst result, which has also been reported
in [35]. The nested Weiszfeld algorithm and R1-PCA nearly
remove the artifact. The result of rreaper is comparable but
appears to be slightly smoother, which is an effect of the
additional regularization.

Comparing the required run times, we notice that PCA-L1
with 10 restarts is the fastestmethodwith 10.189 (in seconds)
due to its linear structure, followed by FMS with 12.313,
and the nested Weiszfeld algorithm with 18.875. R1-PCA,
rreaper andGGDbehave similarly with 43.441, 43.439 and
55.968, respectively. Note that the run times are only com-
parable to a limited extent due to the different nature of the
algorithms andhencedifferent stopping criteria. For instance,
GGD here requires a very small step size to stay numeri-
cally at the Grassmannian. We can clearly see that rreaper
is slower than the sequential or heuristic approaches. It seems
that the numerical effort of rreaper is however comparable
with the non-convex methods like R1-PCA. Rreaper con-
verges however to a global minimizer, where the non-convex
methods may be stuck in local minima, which here happens
for GGD.

9 Conclusion

Convex models are usually preferable over non-convex ones
due to their unique local minimum. While robust PCA
models that can handle high-dimensional data are usu-
ally non-convex, a convex relaxation was proposed by the
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reapermodel. Relying on the projector approach, it is how-
ever not applicable for high-dimensional data in its original
form. To manage such data, we have combined primal-dual
optimization techniques from convex analysis with sparse
factorization techniques from the Lanczos algorithm. More-
over, we extended the model by penalizing the nuclear norm
of the operator and called it rreaper. This results in the first
convex variational method for robust PCA that can handle
high-dimensional data since the requiredmemory is reduced
from O(nN + n2) to O(nN + nr), where r is the maxi-
mal rank during the primal-dual iteration and has usually the
same magnitude as d. The rreaper minimization algorithm
always converges to a global minimizer of the regularized
objective. Moreover, using the L-curve method an advan-
tage of the newmethod seems to be that the dimension of the
low-dimensional subspacemust not be known in advance, but
may be overestimated. We intend to further investigate this
direction from the point of view of multi-objective optimiza-
tion [8,48]. We addressed the problem of the bias in robust
PCA, butmore research in this directions appears to be neces-
sary. Further other sparsity promoting norms then the nuclear
norm could be involved. Our method can be enlarged to 3D
images as videos, 3D stacks of medical or material images,
where tensor-free methods will come into the play. Finally,
it may be interesting to couple PCA ideas with approaches
from deep learning to better understand the structure of both.
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