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Abstract 

We consider geometric instances of the Max- 

imum Weighted Matching Problem (MWMP) 

and the Maximum Traveling Salesman Problem 

(MTSP) with up to 3,000,000 vertices. Mak- 

ing use of a geometric duality between MWMP, 

MTSP, and the Fermat-Weber-Problem (FWP), 

we develop a heuristic approach that yields 

in near-linear time solutions as well as upper 

bounds. Using various computational tools, we 

get solutions within considerably less than 1% of 

the optimum. 

An interesting feature of our approach is that, 

even though an FWP is hard to compute in 

theory and Edmonds’ algorithm for maximum 

weighted matching yields a polynomial solution 

for the MWMP, the practical behavior is just the 

opposite, and we can solve the FWP with high 

accuracy in order to find a good heuristic solu- 

tion for the MWMP. 

1 Introduction 

Complexity in Theory and Practice. 

In the field of discrete algorithms, the classical 

way to distinguish “easy” and “hard” problems 
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is to study their worst-case behavior. Ever since 

Edmonds’ seminal work on maximum matchings 

(7, 8], the adjective “good” for an algorithm has 
become synonymous with a worst-case running 

time that is bounded by a polynomial in the in- 

put size. At the same time, Edmonds’ method 

for finding a maximum weight perfect matching 

in a complete graph with edge weights serves as 

a prime example for a sophisticated combinato- 

rial algorithm that solves a problem to optimal- 

ity. Furthermore, finding an optimal matching 

in a graph is used as a stepping stone for many 

heuristics for hard problems. 

The classical prototype of such a “hard” prob- 

lem is the Traveling Salesman Problem (TSP) 

of computing a shortest roundtrip through a 

set P of n cities. Being NP-hard, it is gen- 

erally assumed that there is no “good” algo- 

rithm in the above sense: Unless P=NP, there 

is no polynomial-time algorithm for the TSP. 

This motivates the performance analysis of po- 

lynomial-time heuristics for the TSP. Assum- 

ing triangle inequality, the best polynomial heu- 

ristic known to date uses the computation of 

an optimal weighted matching: Christofides’ 

method combines a Minimum Weight Spanning 

Tree (MWST) with a Minimum Weight Perfect 

Matching of the odd degree vertices, yielding a 

worst-case performance of 50% above the opti- 

mum. 

Geometric Instances 

Virtually all very large instances of graph opti- 

mization problems are geometric. It is easy to 

see why this should be the case for practical in-



stances. In addition, a geometric instance given 

by n vertices in IR? is described by only dn coor- 

dinates, while a distance matrix requires Q(n?) 

entries; even with today’s computing power, it is 

hopeless to store and use the distance matrix for 

instances with, say, n = 10°. 

The study of geometric instances has resulted 

in a number of powerful theoretical results. Most 

notably, Arora [2] and Mitchell [15] have devel- 

oped a general framework that results in polyno- 

mial time approximation schemes (PTAS’s) for 

many geometric versions of graph optimization 

problems: Given any constant ¢, there is a poly- 

nomial algorithm that yields a solution within 

a factor of (1 + €) of the optimum. However, 

these breakthrough results are of purely theoret- 

ical interest, since the necessary computations 

and data storage requirements are beyond any 

practical orders of magnitude. 

For a problem closely related to the TSP, there 

is a different way how geometry can be exploited. 

Trying to find a longest tour in a weighted 

graph is the so-called Mazimum Traveling Sales- 

man Problem (MTSP); it is easy to see that for 

graph instances, the MTSP is just as hard as 

the TSP. Making clever use of the special geom- 

etry of distances, Barvinok, Johnson, Woeginger, 

and Woodroofe [4] showed that for geometric in- 
stances in IR®, it is possible to solve the MTSP 

in polynomial time, provided that distances are 

measured by a polyhedral metric, which is de- 

scribed by a unit ball with a fixed number 2/f 

of facets. (For the case of Manhattan distances 

in the plane, we have f = 2, and the result- 

ing complexity is O(n?/-? log n) = O(n? log n).) 

By using a large enough number of facets to ap- 

proximate a unit sphere, this yields a PTAS for 

Buclidean distances. 

Both of these approaches, however, do not pro- 

vide practical methods for getting good solutions 

for very large geometric instances. And even 

though TSP and matching instances of consid- 

erable size have been solved to optimality (up 

to 13,000 cities with about 2 years of comput- 

ing time [1]), it should be stressed that for large 
enough instances, it seems quite difficult to come 

up with small gaps within a very short (i-e., near- 

linear in n) time. Moreover, the methods in- 

volved only use triangle inequality, and disregard 

the special properties of geometric instances. 

For the Minimum Weight Matching problem, 

Vaidya [18] showed that there is algorithm of 
complexity O(n? log‘ n) for planar geometric 

instances, which was improved by Varadara- 

jan [19] to O(n! log® n). Cook and Rohe [6] also 

made heavy use of geometry to solve instances 

with up to 5,000,000 points in the plane within 

about 1.5 days of computing time. However, all 

these approaches use specific properties of pla- 

nar nearest neighbors. Cook and Rohe reduce 

the number of edges that need to be considered 

to about 8,000,000, and solve the problem in this 

very sparse graph. These methods cannot be 

applied when trying to find a Mazimum Weight 

Matching. (In particular, a divide-and-conquer 

strategy seems unsuited for this type of prob- 

lem, since the structure of furthest neighbors is 

quite different from the well-behaved “clusters” 

formed by nearest neighbors.) 

Heuristic Solutions 

A standard approach when considering “hard” 

optimization problems is to solve a closely re- 

lated problem that is “easier”, and use this so- 

lution to construct one that is feasible for the 

original problem. In combinatorial optimiza- 

tion, finding an optimal perfect matching in an 

edge-weighted graph is a common choice for the 

easy problem. However, for practical instances 

of matching problems, the number n of vertices 

may be too large to find an exact optimum in 

reasonable time, since the best complexity of an 

exact algorithm is O(n(m-+nlogn)) [11] (where 

m is the number of edges)". 

We have already introduced the Traveling 

Salesman Problem, which is known to be NP- 

hard, even for geometric instances. A problem 

that is hard in a different theoretical sense is the 

following: For a given set P of n points in JR?, 

‘Quite recently, Mehlhorn and Schafer [14] have pre- 

sented an implementation of this algorithm; the largest 

dense graphs for which they report optimal results have 

4,000 nodes and 1,200,000 edges.



the Fermat-Weber Problem (FWP) is to mini- 

mize the size of a “Steiner star”, i.e., the total 

Euclidean distance S(P) = mincer Vpep A(c, p) 

of a point c to all points in P. It was shown in [3] 

that even for the case n = 5, solving this prob- 

lem requires finding zeroes of high-order poly- 

nomials, which cannot be achieved using only 

radicals. 

Solving the FWP and solving the geometric 

maximum weight matching problem (MWMP) 

are closely related: It is an easy consequence 

of the triangle inequality that MWMP(P) < 

FWP(P). For a natural geometric case of Eu- 

clidean distances in the plane, it was shown in 
FWP(P 

[10] that awe) < a ew 1.15. 

From a theoretical point of view, this may ap- 

pear to assign the roles of “easy” and “hard” 

to MWMP and FWP. However, from a practi- 

cal perspective, roles are reversed: While solv- 

ing large maximum weight matching problems 

to optimality seems like a hopeless task, finding 

an optimal Steiner center c only requires mini- 

mizing a convex function. Thus, the latter can 

be solved very fast numerically (e.g., by New- 

ton’s method) within any small «. The twist of 

this paper is to use that solution to construct 

a fast heuristic for maximum weight matchings 

— thereby solving a “hard” problem to approxi- 

mate an “easy” one. Similar ideas can be used 

for constructing a good heuristic for the MTSP. 

Summary of Results. 

It is the main objective of this paper to demon- 

strate that the special properties of geometric 

instances make them much easier in practice 

than general instances on weighted graphs. Us- 

ing these properties gives rise to heuristics that 

construct excellent solutions in near-linear time, 

with very small constants. Since the analytic 

worst-case ratio of FWP(P)/MWMP(P) is only 

2//3 = 1.15, it is certain that the difference to 

the optimum will never exceed 15%, but can be 

expected to be much less in practice. 

This is validated by a practical study on in- 

stances up to 3,000,000 points, which can be 

dealt with in less than three minutes of computa- 

tion time, resulting in error bounds of not more 

than about 3% for one type of instances, but 

only in the order of 0.1% for most others. The 

instances consist of the well-known TSPLIB, and 

random instances of two different random types, 

uniform random distribution and clustered ran- 

dom distribution. 

To evaluate the quality of our results for both 

MWMP and MTSP, we employ a number of ad- 

ditional methods, including the following: 

e An extensive local search by use of the 

chained Lin-Kernighan method yields only 

small improvements of our heuristic solu- 

tions. This provides experimental evidence 

that a large amount of computation time 

will only lead to marginal improvements of 

our heuristic solutions. 

e An improved upper bound (that is more 

time-consuming to compute) indicates that 

the remaining gap between the fast feasible 

solutions and the fast upper bounds is too 

pessimistic on the quality of the heuristic, 

since the gap seems to be mostly due to the 

difference between the optimum and the up- 

per bound. 

e A polyhedral result on the structure of opti- 

mal solutions to the MWMP allows the com- 

putation of the exact optimum by using a 

network simplex method, instead of employ- 

ing Edmonds’ blossom algorithm. This re- 

sult (stating that there is always an integral 

optimum of the standard LP relaxation for 

planar geometric instances of the MWMP) 

is interesting in its own right and was ob- 

served previously by Tamir and Mitchell 

[17]. A comparison for mid-sized instances 
with less than 10,000 nodes shows that the 

estimated gap for the feasible solutions com- 

puted by our fast heuristic is much larger 

than the real difference to the optimum of 

the MWMP, which turns out to be at most 

0.26%, even for clustered instances. More- 

over, twice the optimum solution for the 

MWMP is also an upper bound for the 

MTSP. For both problems, this provides



more evidence that additional computing 

time will almost entirely be used for low- 

ering the fast upper bound on the maxi- 

mization problem, while the feasible solu- 

tion changes only little. 

In addition, we provide a number of mathe- 

matical tools to make the results for the MWMP 

applicable to the MTSP. These results include: 

1. The worst-case estimate for the ratio be- 

tween MTSP(P) and FWP(P) is slightly 

worse than the one between MWMP(P) and 

FWP(P), since there are instances where we 

have FWP(P)/MWMP(P)= 2/(2 + V2) & 
0.586 > 0.577 & 1/3. However, we show 

that for large n, the asymptotic worst-case 

performance for the MTSP is the same as 

for the MWMP. This means that the worst- 

case gap for our heuristic is also bounded by 

15%, and not by 17%, as suggested by the 

above example. 

2. For a planar set of points that are sorted in 

convex position (i.e., the vertices of a poly- 

hedron in cyclic order), we can solve the 

MWMP and the MTSP in linear time. 

This theorem is used for an MTSP heuristic of 

similar quality as the one for the MWMP. 

2 Minimum Stars and Maxi- 

mum Matchings 

2.1 Background and Algorithm 

Consider a set P of points in JR? of even car- 

dinality n. The Fermat-Weber Problem (FWP) 

is given by minimizing the total Euclidean dis- 

tance FWP(P) = miner Vy,cp de, p) of a “me- 

dian” point c to all points in P. This problem 

cannot be solved to optimality by methods using 

only radicals, since it requires to find zeroes of 

high-order polynomials, even for instances that 

are symmetric to the y-axis; see [3]. 

the objective function is strictly convex, so it is 

possible to solve the problem numerically with 

However, 

any required amount of accuracy. A simple bi- 

nary search will do, but there are more specific 

approaches like the so-called Weiszfeld iteration 

[20, 12]. We achieved the best results by using 
Newton’s method. 

  

Figure 1: Angles and rays for a matching edge 

(Di, Pj)- 

Now we discuss the relationship to the MWMP 

on the same point set, where we assume that n is 

even. Any matching edge between two points p; 

and p; can be mapped to two “rays” (c,p;) and 

(c,p;) of the star, so it follows from triangle in- 

equality that MWMP(P) < FWP(P). Clearly, 

the ratio between the values MWMP(P) and 
FWP(P) depends on the amount of “shortcut- 

ting” that happens when replacing pairs of rays 

by matching edges; moreover, any lower bound 

for the angle ¢;; between the rays for a match- 

ing edge is mapped directly to a worst-case es- 

timate for the ratio, since it follows from ele- 

mentary trigonometry that d(c,p;) + d(c,pj) < 

\Vimesdy -d(pi,p;). See Figure 1. 

It was shown in [10] that there is always a 

matching such ¢;; > 27/3 for all angles ¢;; be- 

tween rays. This bound can be used to prove 

that MYM Py < a ~ 1.15. Moreover, if the 

lower bound on the angle can be improved, we 

get a better estimate for the value of the match- 

ing. This motivates the heuristic CROSS for 

large-scale MWMP instances that is shown in 

Figure 2. See Figure 3 for a heuristic solution 

for the TSPLIB instance dsj1000. 

Note that beyond a critical accuracy, the nu- 

merical method used in step 1 will not affect 

the value of the matching, since the latter only 

changes when the order type of the resulting cen- 

ter point c changes with respect to P. This 

means that spending more running time for this



  

Algorithm CROSS: 

Input: 

Output: 

  

Heuristic solution for MWMP 

A set of points P € IR’. 

A matching of P. 

1. Using a numerical method, find a point c that approximately 

minimizes the convex function min,- jp? °p,<p Ac, pi). 

2. Sort the set P by angular order around c. 

Assume the resulting order is pj,... 

3. Fori=1,...,n/2, match point p; with point Dita: 
»Pn-   

  

Figure 2: The heuristic CROSS. 

step will only lower the upper bound. We will en- 

counter more examples of this phenomenon be- 

low. 

  

Figure 3: A heuristic MWMP solution for the 

TSPLIB instance dsj1000 that is within 0.19% 

of the optimum. 

The class of examples in Figure 4 shows that 

the relative error estimate of about 15% is in- 

deed best possible, since the ratio between opti- 

mal and heuristic matching may get arbitrarily 

close to 2/./3. As we will see further down, this 

worst-case scenario is highly unlikely and the ac- 

tual error is much smaller. 

Furthermore, it is not hard to see that CROSS 

is optimal if the points are in convex position: 

Theorem 2.1 If the point set P is in conver 

position, then algorithm CROSS determines the 

unique optimum. 

  

— Maximum Matching, 

Value > 4k 
--» Heuristic Matching, 

Value (2k+4) 3       

  

Figure 4: A class of examples for which CROSS 

is 15% away from the optimum. 

For a proof, observe that any pair of matching 

edges must be crossing, otherwise we could get 

an improvement by performing a 2-exchange. 

2.2 Improving the Upper Bound 

When using the value FWP(P) as an upper 

bound for MWMP(P), we compare the match- 

ing edges with pairs of rays, with equality be- 

ing reached if the angle enclosed between rays is 

mT, ie., for points that are on opposite sides of 

the center point c. However, it may well be the 

case that there is no point opposite to a point 

p;. In that case, we have an upper bound on 

max; ¢jj, and we can lower the upper bound 

FWP(P) — see Figure 5: Replace d(c,p;) by 
qd — mini i(dlespi)tdlepi)— dpi Pi) 

Moreover, we can optimize over the possible 

location of point c. This lowers the value of the 

upper bound FWP(P), yielding the improved 

upper bound FWP’(P):



     
FWP uses d(c, p.) 
for upper bound ' 

FWP'(P) = 

minjzi(d(c, pi) + d(c, pj) — d(pi, pj) 5 . 

This yields a notable improvement, especially 

for clustered instances. However, the running 

time for computing this modified upper bound 

FWP’(P) is superquadratic. Therefore, this ap- 

proach is only useful for mid-sized instances, and 

when there is sufficient time. 

  

2.3. An Integrality Result 

A standard approach in combinatorial optimiza- 

tion is to model a problem as an integer pro- 

gram, then solve the linear programming relax- 

ation. As it turns out, this works particularly 

well for the MWMP: 

Theorem 2.2 Let «x be a set of nonnegative edge 

weights that is optimal for the standard linear 

programming relaxation of the MWMP, where all 

vertices are required to be incident to a total edge 

weight of 1. Then the weight of x is equal to an 

optimal integer solution of the MWMP. 

This theorem has been observed previously 

by Tamir and Mitchell [17]. The proof as- 
sumes the existence of two fractional odd cycles, 

then establishes the existence of an improving 2- 

exchange by a combination of parity arguments. 

This allows it to compute the exact optimum 

by solving a linear program. For the MWMP, 

this amounts to solving a network flow problem, 

which can be done by using a network simplex 

method. 

2.4 Computational Experiments 

Table 1 summarizes some of our results for the 

MWMP for three classes of instances: The first 

type are the instances from the TSPLIB bench- 

mark library. (For odd cardinality TSPLIB in- 

stances, we followed the custom of dropping 

the last point from the list.) The second type 

was constructed by choosing n points in a unit 

square uniformly at random. The third type 

uses n points that are chosen by selecting ran- 

dom points from a relatively small number of 

“cluster” areas; these are circles of radius 0.05 

(if points are in a unit square), and the average 

number of clusters per instance is 5. Within each 

circle, some almost uniform random distribution 

is used. 

The table shows a comparison of the Star up- 

per bound with different Matchings: In the first 

column the CROSS heuristic was used to com- 

pute the matching. 

report the corresponding computing times on a 

Pentium II 500Mhz (using C code with compiler 

gcc -O3 under Linux 2.2). The third column 

gives the result of combining the CROSS match- 

ing with one hour of local search by chained 

Lin-Kernighan [16]. The last column compares 
the optimum computed by a network simplex 

using Theorem 2.2 with the upper bound (for 

n < 10,000). 

In the second column we 

The reader will note that for uniform dis- 

tribution, the relative error rapidly converges 

to zero. This is to be expected: for uniform 

distribution, the expected angle Z (Di, C, Di+4) 

becomes arbitrarily close to 7. In more ex- 

plicit terms: Both values FWP/n and MWMP/n 
for random points in a unit square tend to 

tM John Ve + yddy © 0.3826. 
Note that for cluster instances, the relatively 

large error estimate is almost entirely due to lim- 

ited performance of the upper bound. The good 

quality of our fast heuristic for large problems is 

also illustrated by the fact that one hour of lo- 

cal search by Lin-Kernighan fails to provide any 

significant improvement.



  

  

  

Instance CROSS time CROSS + CROSS 

vs. Star lh Lin-Ker vs. OPT 

dsj1000 1.22% 0.05s 1.07% 0.19% 

nrw1378 0.05% 0.05s 0.04% 0.01% 

fnl4460 0.34% 0.13s 0.29% 0.05% 

usal3508 0.21% 0.645 0.19% - 

brd14050 0.67% 0.59s 0.61% - 

d18512 0.14% 0.79s 0.13% - 

pla85900 0.03% 3.878 0.03% - 

1000 0.03% 0.05s 0.02% 0.02% 

3000 0.01% 0.14s 0.01% 0.00% 

10000 0.00% 0.46s 0.00% - 

30000 0.00% 145s 0.00% - 

100000 0.00% 5.01s 0.00% - 

300000 0.00% 15.60 s 0.00% - 

1000000 0.00% 53.90 s 0.00% - 

3000000 0.00% 159.00s 0.00% - 

1000c 2.90% 0.05s 2.82% 0.11 % 

3000c 1.68% 0.158 1.59% 0.26 % 

10000c 3.27% 0.49s 3.24% - 

30000c 1.63% 1.69 s 1.61% - 

100000c 2.53% 5.518 2.52% - 

300000c 1.05% 17.51s 1.05% - 

Table 1: Maximum matching results for TSPLIB 

(top), uniform random (center), and clustered 

random instances (bottom) 

3 The Maximum TSP 

As we noted in the introduction, the geometric 

MTSP displays some peculiar properties when 

distances are measured according to some poly- 

hedral norm. In fact, it was shown by Fekete [9] 
that for the case of Manhattan distances in 

the plane, the MTSP can be solved in linear 

time. (The algorithm is based in part on the ob- 

servation that for planar Manhattan distances, 

FWP(P)=MWMP(P).) On the other hand, it 

was shown in the same paper that for Euclidean 

distances in JR? or on the surface of a sphere, the 

MTSP is NP-hard. The MTSP has also been 

conjectured to be NP-hard for the case of Eu- 

clidean distances in JR?. 

3.1 A Worst-Case Estimate 

Clearly, there are some observations for the 

MWMP that can be applied to the MTSP. In 

particular, we note that MTSP(P)< 2FWP(P). 

On the other hand, the lower-bound estimate of 

V/3/2*FWP(P) that holds for MWMP(P) does 
not imply a lower bound of /3FWP(P) for the 

MTSP(P), as can be seen from the example in 

Figure 6, showing that a relative error of 17% is 

possible. 

  

  

FWP(P) = 4 
MTSP(P) = 6.828        

Figure 6: An example for which the ratio be- 

tween MTSP and FWP is smaller than /3 ~ 

1.73. 

However, we can argue that asymptotically, 

the worst-case ratio FWP(P)/MTSP(P) is anal- 

ogous to the a for the MWMP, i-e., within 15% 

of 2: 

Theorem 3.1 For n — o, the worst-case ratio 

of FWP(P)/MTSP(P) converges to 1/V/3. 

Proof: The proof of the a bound for the 

MWMP in [10] establishes that any planar point 

set can be subdivided by six sectors of 1/3 

around one center point, such that opposite sec- 

tors have the same number of points. This al- 

lows a matching between opposite sectors, es- 

tablishing a lower bound of 27/3 for the angle 

between the corresponding rays. This means 

that we can simply choose three subtours, one 

for each pair of opposite sectors, and achieve the 

same worst-case ratio as for a matching. In or- 

der to merge these subtours, we only need three 

edges between adjacent sectors. If there more 

than n/2 points “far” from the center, i.e., at 

least Q(FWP(P)/n) away from the center, then 

the resulting error tends to 0 as n grows, and 

we get the same worst-case estimate as for the 

MWMP. 

This leaves the case that at least n/2 points 

are “close” to the center, i.e., only o FWP(P)/n) 

from the center. Then we can can collect all 

points far from the center individually from the 

cluster close to the center. Now it is not hard to 

see that for this case, the length of the resulting 

tour converges to FWP(P). 
  

     



3.2. A Modified Heuristic 

For an even number of points in convex po- 

sition, the choice of a maximum matching is 

rather straightforward. This leads to the CROSS 

heuristic described above. Similarly, it is easy 

to determine a maximum tour if we are dealing 

with an odd number of points in convex position: 

Each point p; gets connected to its two “cyclic 

furthest neighbors” p;,)2| and pj;p2)- However, 

the structure of an optimal tour is less clear for 

a point set of even cardinality, and therefore it 

is not obvious what permutations should be con- 

sidered for an analogue to the matching heuristic 

CROSS. For this we consider the local modifica- 

tion called 2-erchanges: One pair of (disjoint) 

tour edges (p;,p;) and (px, pe) gets replaced by 

the pair (p;,p,) and (p;,pe), and the sequence 

Pe,--+, pi iS reversed into p;,..., pe. 

Theorem 3.2 If the point set P is sorted in 

convex position, then there are at most n/2 

tours that are locally optimal with respect to 2- 

exchanges, and we can determine the best in lin- 

ear time. 

Proof: We claim that any tour that is locally 

optimal with respect to 2-exchanges must look 

like the one in Figure 8: It consists of two diago- 

nals (pj, pi4n) and (pj+1,Pi+1+2) (in the exam- 
ple, these are the edges (5,11) and (6,0)), while 

all other edges are near-diagonals, i.e., edges of 

the form (p;,p;42~-1). 

  

Figure 8: A locally optimal MTSP tour. 

First consider 2-exchanges that increase the 

tour length: It is an easy consequence of triangle 

inequality that a noncrossing disjoint “antipar- 

allel” pair of edges as eg and e; in Figure 9(a) 

allows a crossing 2-exchange that increases the 

overall tour length. In the following, we will will 

focus on identifying antiparallel noncrossing edge 

pairs. 

  

Figure 9: Discussing locally optimal tours. 

Now we show that all edges in a locally optimal 

tour must be diagonals or near-diagonals: Con- 

sider an edge eo = (pj, pj) with 0 <j-i< 9-2. 

Then there are at most 4 —3 points in the subset 

P, = [pi4i,---,pj—1], but at least $+ 1 points 

in the subset P2 = [pj41,-.-,pi-1]. This implies 

that there must be at least two edges (say, e1 

and e2) within the subset P,. If either of them 

is antiparallel to e9, we are done, so assume that 

both of them are parallel. Without loss of gener- 

ality assume that the head of e2 lies “between” 

the head of e; and the head p; of e9, as shown in 

Figure 9(b). Then the edge eg that is the succes- 

sor of e2 in the current tour is either antiparallel 

and noncrossing with e1, or with eo. 

Next consider a tour that consists only of diag- 

onals and near-diagonals. Since there is only one 

2-factor consisting of nothing but near-diagonals, 

assume without loss of generality that there is at 

least one diagonal, say (po, p2). Then the suc- 

cessor of p2 and the predecessor of pp cannot lie 

on the same side of eg, as shown in Figure 9. In 

that case, there must be an edge e3 within the 

set of points on the other side of eg. this edge 

is noncrossing with both eg and ej; either it is 

antiparallel to e9 or to e;, and we are done. 

This implies that the existence of a diagonal in 

the tour and one of two possible choices of near- 

diagonals as the edge succeeding the diagonal in 

the tour determines the rest of the tour. Now 

it is straightforward to check that the resulting 

tour must look as in Figure 8, concluding the 

proof. 
  

     



  

Algorithm CROSS’: 

Input: 

Output: 

Heuristic solution for MTSP 

A set of points P € RR’. 

A tour of P. 

1. Using a numerical method, find a point c that approximately 

minimizes the convex function min,- jp? °p,<p Ac, pi). 

2. Sort the set P by angular order around c. 

Assume the resulting order is pj,... 

3. Fori=1,...,n, connect point p; with point Pi+2-1- 

Compute the resulting total length L. 

4. Compute D = max/_,[d(pi, pi+2) + (pit, Pi4142) 

»Pn- 

  —d(pi, Pi+2—-1) — A(pi41, Pi+%))- 
Choose the tour of length L + D that arises by 

picking the two diagonals where the maximum in 4. is attained.   
  

Figure 7: The heuristic CROSS’ 

This motivates a heuristic analogous to the 

one for the MWMP. For simplicity, we call it 

CROSS’. See Figure 7. From Theorem 3.2 it is 

easy to see that the following holds: 

Corollary 3.1 If the point set P is in convex 

position, then algorithm CROSS’ determines the 

optimum. 

3.3. No Integrality 

As the example in Figure 10 shows, there may 

be fractional optima for the subtour relaxation of 

the MTSP. The fractional solution consists of all 

diagonals (with weight 1) and all near-diagonals 

(with weight 1/2). It is easy to check that this so- 
lution is indeed a vertex of the subtour polytope, 

and that it beats any integral solution. (See [5] 
on this matter.) This implies that there is no 

simple analogue to Theorem 2.2 for the MWMP, 

and we do not have a polynomial method that 

can be used for checking the optimal solution for 

small instances. 

3.4 Computational Results 

The results are of similar quality as for the 

MWMP. See Table 2. Here, we only give the 

  

Figure 10: A fractional optimum for the subtour 

relaxation of the MTSP. 

results for the seven most interesting TSPLIB 

instances. Since we do not have a comparison 

with the optimum for small instances, we give a 

comparison with the upper bound 2MAT, denot- 

ing twice the optimal solution for the MWMP. 

As before, this was computed by a network sim- 

plex method, eploiting the integrality result for 

planar MWMP. The results show that here, too, 

most of the remaining gap lies on the side of the 

upper bound. 
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Instance CROSS’ time CROSS’+ CROSS’ 

vs. Star 1h Lin-Ker vs. 2MAT 

dsj1000 1.36% 0.05s 1.10% 0.329% 

nrw1379 0.23% 0.01s 0.20% 0.194% 

fnl4461 0.34% 0.12s 0.31% 0.053% 

usal3509 0.21% 0.63s 0.19% - 

brd14051 0.67% 046s 0.64% - 

d18512 0.15% 0.79s 0.14% - 

pla85900 0.03% 3.878 0.03% - 
  

Table 2: Maximum TSP results for TSPLIB in- 

stances 

his paper [17]. 
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