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ABSTRACT
Reducing fuel consumption of aero engines and stationary gas turbines
currently requires breakthrough technologies able to offer radical
improvements in efficiency. One such approach involves the
substitution of conventional constant-pressure combustion with
processes delivering an increase in pressure. The so-called pressure gain
combustion (PGC) provides higher thermal efficiency, however at the
cost of unsteady fuel burning. This modification challenges the adjacent
turbomachinery components, introducing additional unsteadiness into
the turbine and compressor.

This thesis contributes to better understanding the effects of PGC
upstream of the combustor, namely in the compressor system. More
specifically, unsteady aerodynamics and aeroelasticity numerical
investigations were employed to assess the fluid dynamics and solid
mechanics responses of two high pressure compressors subjected to PGC
disturbances. An analytical formulation was proposed to model the
change in amplitude of the disturbance waves propagating through the
engine. When applied to the case studies, this metric, termed here
“unsteady damping”, identified an amplification of the PGC for low
disturbance frequencies. The depreciation in performance was assessed
for multirow setups, as a function of the form, frequency and amplitude
of PGC disturbances. Data-driven methods, including proper
orthogonal and dynamic mode decompositions, revealed a spread of
energy and coherence into high-order modes, as well as the subsuming
of baseline flow features in the PGC-disturbed scenario. These methods
also helped expound which flow phenomena could be directly linked to
the observed increase in stage losses. The forced response investigations
indicated a substantial increase in vibration and stress levels on rotor
blades when subjected to PGC disturbances. The augmented structural
loading was also examined considering the interaction of unsteady
forcing, data-driven decompositions and modal analyses.

Keywords:
Unsteady aerodynamics, aeroelasticity, high pressure compressor,
data-driven decomposition, pressure gain combustion





KURZFASSUNG
Um den Treibstoffverbrauch von Luftfahrtantrieben und stationären
Gasturbinen weiter zu reduzieren, sind neuartige Technologien
erforderlich, die eine erhebliche Wirkungsgradsteigerung ermöglichen.
Einer dieser Ansätze besteht darin, die herkömmliche
Gleichdruckverbrennung durch eine Verbrennung mit Drucksteigerung
(engl. pressure gain combustion, PGC) zu ersetzen. Die sogenannte
druckerhöhende Verbrennung erzielt einen höheren thermischen
Wirkungsgrad, allerdings mit dem Nachteil eines höchst instationären
Verbrennungsprozesses. Dieses Verfahren stellt eine Herausforderung
für die angrenzenden Turbomaschinenkomponenten dar, da dabei
zusätzliche Druck- und Geschwindigkeitsschwankungen in Verdichter
und Turbine induziert werden.

Die vorliegende Arbeit leistet einen Beitrag zum besseren
Verständnis über die Auswirkungen der PGC auf den stomaufliegenden
Verdichter. Zu diesem Zweck wurden numerische Untersuchungen zur
instationären Aerodynamik und Aeroelastik durchgeführt, um die
strömungs- und strukturmechanischen Reaktionen von zwei
Hochdruckverdichtern zu bewerten, die den Störungen der PGC
ausgesetzt sind. Es wurde eine analytische Formulierung entwickelt,
um die Änderung der Amplitude der sich durch das Triebwerk
ausbreitenden Störwellen zu modellieren. Dieser Ansatz ermöglichte es,
eine Anfachung der Amplitude der PGC-Störungen bei niedrigen
Verbrennungsfrequenzen zu identifizieren. Die Einbußen in der
Verdichterleistung für vielstufige Konfigurationen wurde in
Abhängigkeit der Frequenz, Amplitude und Gestalt der PGC-Störung
bewertet. Datenbasierte Ansätze, einschließlich der proper orthogonal
decomposition und der dynamic mode decomposition, zeigten eine
Streuung von Energie und Kohärenz in höhere Modenordnungen sowie
Unterschiede von spezifischen Strömungsmerkmalen zwischen dem
stationär durchströmten Verdichter und dem Vergleichsfall mit PGC.
Darüber hinaus konnte festgestellt werden, welche
Strömungsphänomene unmittelbar mit dem identifizierten Anstieg der
Stufenverluste zusammenhängen. Die Untersuchungen zu
erzwungenen Schwingungen zeigten einen signifikanten Anstieg des
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Schwingungs- und Spannungsniveaus an den Rotorschaufeln, wenn
diese den PGC-Störungen ausgesetzt sind. Die erhöhte strukturelle
Belastung wurde auch unter Einsatz der Kombination von instationärer
Anregung, datengesteuerter Zerlegungen und der Modalanalyse
untersucht.

Schlagworte:
Instationäre Aerodynamik, Aeroelastik, Hochdruckverdichter,
Datengesteuerte Zerlegung, Druckerhöhende Verbrennung
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INTRODUCTION



2 1. Introduction

Alarming scientific reports have been published in the last
decades by international and intergovernmental groups
concerning the dire consequences of global warming, especially
in the Global South. These macro-scale changes are directly
linked to anthropogenic greenhouse gas (GHG) emissions [1].

On the one hand, concrete efforts are being made to curb overall
GHG emissions from all sectors, including power generation and
aviation. On the other hand, political and technical challenges
prevent their swift decarbonization.

This is particularly the case for civil aviation. Ramping
globalization signals steady increase in GHG emissions from air
transport. While in 2016 aviation was responsible for 3.6% of the
European GHG emissions, a larger percentage is expected in the
next years, despite decarbonization initiatives. Namely, the
European Environment Agency predicts an increase in CO2

emissions from air transport in Europe of at least 21% by 2040 [2].
As shown in Fig. 1.1, this trend is global, with 4.1% compound
annual growth rate in revenue passenger-kilometer until 2045, as
forecast by the International Civil Aviation Organization [3].
Although these assessments were made prior to the COVID-19
pandemic, the trend is expected to resume in the next years.

Figure 1.1: Forecast of growth in the air transport sector, according to
the International Civil Aviation Organization [3]. CAGR stands for the
compound annual growth rate.
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In response to these predictions, challenging goals are being set
by policymakers, such as a 75% reduction in aviation emissions
in 2050 compared to 2000 [4]. To achieve such ambitious targets,
strategic transport policies and a decrease in its overall volume
are urgent. Additionally, marginal improvement in traditional
technology will not suffice. This is especially true for gas turbines
used in power generation and air transport: former improvements
in efficiency have reached a saturation plateau. Instead, novel,
radical concepts are necessary to tackle the issue.

Among several emerging approaches, pressure gain
combustion (PGC) promises to substantially increase the thermal
efficiency of gas turbines. However, such fuel burning processes
come with the price of additional flow unsteadiness, which must
be endured by turbomachinery components adjacent to the
combustion chamber. In other words, PGC is expected to
adversely influence aerodynamics and performance of the
compressor and turbine, at the same time aeroelastically
challenging the blading structure.

Therefore, the application of PGC into gas turbines is directly
dependent on its successful integration with the upstream and
downstream components. Considering the turbomachinery, two
key conditions must be independently met:

• additional performance losses from PGC should be limited,
so as not to hinder the overall thermodynamic gain;

• the structure is not allowed to fail.

This thesis addresses these aspects in depth. More specifically,
unsteady aerodynamic and aeroelastic effects from PGC on high
pressure compressors will be numerically assessed. The
simulations are based on the state-of-the-art research on PGC and
aim at shedding light on the fundamental fluid dynamics and
solid mechanics response of compressor blades and vanes to
novel PGC approaches.



4 1. Introduction

1.0 Thesis scope

This work is articulated in the following manner. Chapter 2
presents the fundamentals of aeroelasticity in turbomachinery.
The main concepts necessary to understand the aeroelastic
phenomena investigated are introduced and discussed.

Subsequently, chapter 3 provides the theory and numerical
methods employed in this thesis. The necessary equations to
model the solid and fluid domain, as well as their interaction, are
described. The numerical approach schemes to solve each domain
are outlined. Finally, the data-driven decompositions applied to
thoroughly analyze the unsteady flow are introduced.

Chapter 4 develops the PGC framework described above in
more detail. Although combustion modeling is not the main focus
of this thesis, it is crucial to understand the interaction of novel
PGC concepts with turbomachinery components.

Selected results are then delivered in chapter 5. Analytical
considerations about the propagation of PGC waves through
turbomachinery are followed by two case studies employing
modern high pressure compressors. Unsteady aerodynamic and
aeroelastic assessments are presented. The interrelation between
fluid dynamics and solid mechanics assessments is also
discussed.

At this point, the fundamental unsteady effects of PGC on
turbomachinery performance and aeroelastic response will be
summarized in chapter 6, along with a brief outlook for future
work.



2
AEROELASTICITY IN

TURBOMACHINES
This chapter presents the main concepts and methods employed in the
aeroelastic analyses
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2.1 Background

Gas turbines and aero engines are designed to operate under
rigorous safety criteria. However, efficiency and costs are also
main development drivers, which tighten the safety margins of
every component, often aiming at saving mass and space. The
proper tuning of engine efficiency, operation safety and
maintenance executability constraints is one of the biggest design
challenges.

One of the most decisive determiners of design constraints is the
transdisciplinary field of aeroelasticity. Before diving deeper into
its physical description, it is important to mention the potential
consequences of underestimating its relevance. To briefly cite
a recent case, in 2018 a CFM International CFM56-7B turbofan
engine experienced a structural failure, prompting an emergency
landing of a Boeing 737-7H4 in Philadelphia, USA. One fatality
occurred, when the window next to passenger Jennifer R. was
destroyed by a cowl fragment. Additionally, eight people were
injured. Detailed root-cause analysis [5] indicated that fatigue led
to a blade-off event and consequentially engine total loss (Fig. 2.1).
Several other accidents may be traced back to turbomachinery
vibration issues [6–9].

Indeed, among other failure modes, fatigue alone is responsible
for more than 75% of turbine blade failures, according to [10].
Specifically concerning high-cycle fatigue (HCF), besides being
the largest cause of failure, it is mostly concentrated on blades,
followed by vanes [11]. Ref. [12] indicates that, although more
than 90% of HCF potential issues may be exposed during testing,
the remaining part is accountable for up to 30% of development
costs. When assessing heavy-duty and aeroderivative gas
turbines, [13] showed that the percentual damage costs related to
blading HCF amounts respectively to 24% and 9.5%.
Furthermore, [14] inform that between 40% and 50% of
land-based gas turbines outages occur due to blade fatigue.

In essence, excessive vibration leading to structural failure are
of utmost importance in the development and maintenance of
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(a) Engine damaged by blade-off event

(b) Fatigue crack close to the fan’s blade dovetail

Figure 2.1: Representative aeroelasticity (fatigue) failure [5].

gas turbines and aero engines. Not only lives may be directly
at stake, but secondarily the reliable generation of energy, the
trustworthiness of air transport, the execution of several industrial
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processes and high component costs.

Other causes of blade failure are also worth researching, such
as sucking of foreign object damage, corrosion, erosion or creep.
The frequency and severity of these phenomena depend directly
on the type of component, operation and maintenance regimes.
Although they are not within the scope of the present work, it
is relevant to notice that these failure modes oftentimes occur
concurrently, so that multidisciplinary analyses may be required.

2.2 Main concepts

The field of aeroelasticity comprises a highly complex set of
phenomena which span over multiple disciplines. One classic
description of aeroelasticity was originally proposed by [15] as
the interaction between three types of forces, namely
aerodynamic, elastic and inertia. It became known as the Collar
triangle. A more recent reading of these field interactions is
depicted in Fig. 2.2, where the three vertices of the triangle now
stand for the disciplines of fluid mechanics, dynamics and
structural mechanics. The main phenomena arising from the
interaction of these subjects are also shown inside the triangle,
and will be discussed in detail in the next sections.

STRUCTURAL MECHANICSDYNAMICS

FLUID MECHANICS

Structural dynamics

Forced response
Flu�er

Non-synchronous vibra�on

Dynamic aeroelas�city

Fl
ig

ht
 m

ec
ha

ni
cs

Sta�c aeroelas�city

Figure 2.2: Simplified aeroelasticity triangle, based on [15].
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Other denominations and phenomena are also found in the
general aeroelasticity literature, including static divergence,
buffeting, galloping, reversal control, gusts etc. They will not be
discussed in detail here, since the main focus lies on
turbomachinery vibration. Additionally, thermal and control
effects may also be considered, giving rise to the respective fields
of aerothermoelasticity and aeroservoelasticity.

2.2.1 Aeroelastic parameters

Before describing aeroelastic phenomena, it is important to
define some parameters that will be used throughout this work.
The list is not exhaustive, and the reader is encouraged to consult
aeroelastic texts for further relevant parameters.

2.2.1.1 Interblade phase angle (IBPA) and nodal diameter (ND)

These related concepts describe how a substructure (or sector)
of a rotationally periodic structure dynamically behaves with
respect to another substructure. Figure 2.3 shows a sample
compressor rotor, where each of the blades (substructures)
vibrates in the first bending mode with the same frequency but at
different phase. The dashed lines represent the NDs,
corresponding to inflexion lines, where no infinitesimal
movement takes place (directly related to regions with null
displacement in a modal decomposition). While Fig. 2.3(a)
depicts a case with a single ND (corresponding IBPA of π/7), in
Fig. 2.3(b) every blade is completely out of phase with the
adjacent blades (i.e., IBPA of π).

The maximum number of NDs, here represented by dm, for
rotationally periodic structures with odd and even number of
substructure is given by Eq. (2.1)

dm,max = bN/2c, (2.1)

where the symbol b · c stands for the floor function. That is, bφc
computes the highest integer lower than or equal to φ.
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(b) 7 NDs

Figure 2.3: Color representation of the interblade phase angle in a
compressor rotor with blades vibrating in the first bending mode. The
dashed lines indicate the nodal diameters.

The IBPA can be understood either spatially or temporally, due
to its unsteady manifestation in substructures. For a rotationally
periodic structure with N identical substructures (say, blades), the
IBPA, here represented by σ, is directly related to dm as described
in Eq. (2.2)

σforward =
2π dm
N

, (2.2a)

σbackward =
2π (N − dm)

N
, (2.2b)

where σforward and σbackward are usual conventions for forward
and backward traveling waves. The use of the term traveling
indicates that the ND pattern can be thought of as rotating in the
circumferential direction. The existence of two σ for each dm is
due to the fact that the NDs can be regarded as rotating in both
directions on the axial plane. Although each of the substructures
vibrate with the same frequency, the angular velocity of each of
these traveling modes is not the same, but higher for lower dm.
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In fact, every pair of forward and backward traveling modes
can be understood as a complex mode, so that the wave motion is
obtained by varying the phase angle of the complex variable (see,
e.g., [16]). In other words, these two modes consist in a
degenerate orthogonal pair of eigenvectors with the same
eigenfrequency. Two special cases are not perceived as a traveling
wave: (i) dm = 0⇒ σ = 0, where the substructures vibrate in
perfect phase; (ii) dm = N/2⇒ σ = π, where every substructure
is exactly out of phase with the adjacent sector.

In general, axisymmetrical structures present not only ND as
inflexion lines, but also nodal circles. These are less relevant than
NDs in practical turbomachinery and will not be discussed in this
work.

2.2.1.2 Reduced frequency and Strouhal number

The reduced frequency is defined here as a nondimensional
quantity representing the unsteadiness of an oscillating airfoil or
blade. On a chord basis, it is given by Eq. (2.3)

k ,
ω c

U∞
=

2πf c

U∞
, (2.3)

where c stands for the airfoil chord, U∞ for the free stream velocity
and ω = 2πf for the angular oscillation speed, with f being the
ordinary oscillation frequency (e.g. one of the natural frequencies
of the structure under analysis). Sometimes the reduced frequency
is given on a half-chord basis.

One simple way to interpret the reduced frequency is as a
metric proportional to the ratio between the time a fluid particle
takes to travel the chord length to the time it takes for the
structure to undergo one vibration cycle. Lower k values indicate
a quasi-steady flow while higher values magnify the importance
of unsteady phenomena.

The Strouhal number is another nondimensional quantity
involving frequency, historically linked to vortex shedding [17]. It
is defined here by Eq. (2.4)
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St ,
f L

U∞
, (2.4)

where L is a representative length in the system (e.g. diameter,
chord) and f usually represents a frequency unrelated to the
structure eigenfrequencies, such as vortex shedding or general
external excitation.

Although historically the reduced frequency and the Strouhal
number emerged separately to explain different phenomena, they
are both nondimensional frequencies1. When employed in this
text, all nondimensional quantities will be explicitly defined.

2.2.1.3 Mass ratio

This nondimensional parameter relates the mass of the airfoil
or blade to the mass of a virtual fluid cylinder surrounding it, as
given by Eq. (2.5)

µ ,
mblade

mfluid
=

4ms

πc2ρf
, (2.5)

where ρf stands for the fluid density and ms stands for the airfoil
mass per unit length in a 2D case.

Usually µ is much higher in solid turbomachinery blades than
composite blades or wings. This implies that solid
turbomachinery blades (such as the ones analyzed in this work)
tend to exhibit aeroelastic phenomena such as flutter linked to a
single natural mode. That is, typical bending-torsion coupling
present in wing flutter is not expected to occur here [19].
Additionally, a high µ value hints that aerodynamic forces acting
on the structure are not expected to change its vibration pattern
significantly; in other words, the influence of the fluid on the
structure – for example when determining the natural modes –
can be considered negligible [20, 21].

1Some authors use both quantities as synonyms (see, e.g., [18]).
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2.2.1.4 Damping parameters
In the solid dynamics context, damping describes how the

oscillations of a system decrease in time, so that the motion
energy dissipates into other forms such as heat generation. It is a
key concept in aeroelasticity, since the energy exchange between
fluid flow and solid motion directly determines the structure’s
displacement levels, and whether or not a dangerous power
imbalance takes place.

Although detailed solid mechanics equations for multiple
degrees of freedom will be presented in section 3.2.1, a brief
mention of single-degree-of-freedom (SDOF) oscillation systems
is insightful. These represent the dynamics of a body in time
domain as given by Eq. (2.6)

mü+ cu̇+ ku = f, (2.6)

where m, c and k stand respectively for the mass, (viscous)
damping coefficient and stiffness coefficient. The body’s
displacement is given by u. External time-dependent forcing is
represented by f . If f = 0 the system is denominated unforced;
otherwise it is a forced oscillator. The overdot notation indicates
time derivative (u̇ , ∂u/∂t, ü , ∂2u/∂t2 and so on).

At this point, it is enough to mention that the damping
coefficient c is the sole parameter on the left hand side of Eq. (2.6)
responsible for changing the displacement amplitude in time. If
c > 0, the displacement amplitude decreases with time, while if
c < 0, it increases indefinitely. c = 0 defines the threshold where
no amplification or attenuation occur: the system is then
considered an undamped oscillator.

The parameters m and k are related to physical properties of
solids, such as density, elastic modulus and poisson ratio. They
determine the natural frequency ω0 with which the system
oscillates, namely at ω0 =

√
k/m for the undamped oscillator. In

the case when c 6= 0, the effective oscillation frequency becomes
ω =

√
ω2

0 − c2/(4m2), which is always less than ω0.
Even in the case of c < 0, no real system oscillates with

unbounded energy, due to inherent physical limitations.
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However, negative damping, or even enough time in a regime
with small positive damping may already be enough to cause
destructive vibration in structures. These are key concepts in
flutter and forced response, respectively, and will be further
discussed in detail.

Damping is not only described by the damping coefficient c,
but also by related parameters. Some of the most common
nondimensional damping quantities are the critical damping ratio
ζ, the loss factor η, the logarithmic decrement δ and the quality factor
Q, which, for small damping values, are related to each other
according to Eq. (2.7)

ζ =
c

2mω0
=
η

2
=

δ

2π
=

1

2Q
. (2.7)

These parameters describe damping in general, and may be
employed in experimental and numerical analyses. The types of
damping according to their source will be outlined in section 2.4.

2.2.1.5 Resonance frequency
Another relevant concept to be mentioned from the SDOF

oscillator is the resonance frequency ωr. It exists only in forced
systems (f 6= 0), and corresponds to the forcing frequency at
which the maximum power is externally supplied to the
oscillator [22]. Interestingly, in the damped case, the resonance
frequency is not the frequency that provides the maximum
displacement – that being ω0

√
1− 2ζ2. For undamped oscillators,

the resonance frequency indeed equals the natural frequency, that
is, ωr = ω0.

This fact motivates the need to keep the forcing frequencies far
enough from natural frequencies to prevent high supply of power
to the oscillator, which will be discussed in detail in section 2.3.
Finally, models with multiple degrees of freedom have
correspondingly multiple resonance frequencies (while
continuous systems have infinite frequencies). However, not all
of these resonance frequencies present actual danger, which is
usually restricted to the smallest frequencies or the ones directly
related to forcing elements.
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2.3 Forced response

This section presents the fundamentals of forced response in
turbomachinery, including the most useful diagrams. The
numerical workflow employed here to compute forced response
will be presented in depth in section 3.2.3.

Referring to Eq. (2.6) without loss of generality for multiple
degrees of freedom, forced response corresponds to dynamics
where f 6= 0 on the RHS2. That is, one or more external, motion-
independent phenomena play an important role in determining
the structure response, in addition to the parameters on the LHS
of Eq. (2.6). Examples of external forcing in a turbomachinery
context are the presence of adjacent blade or vane rows, struts,
inlet distortions or unsteady combustion excitation.

Since turbomachinery components consist in an alternating
series of rotating and stationary elements, unsteady excitation is
often directly related to the rotational velocity of the axis (or axes)
in the engine. The excitation frequency is usually presented in
a nondimensional form, as a multiple of the engine order (EO),
which corresponds to the engine’s rotational velocity.

2.3.1 Campbell diagram

One of the most helpful representations assisting
turbomachinery mechanical design is the Campbell diagram,
originally introduced by [25]. A sample depiction is shown in
Fig. 2.4, where the horizontal axis depicts the rotor speed and the
vertical axis depicts frequencies of both natural modes and
relevant aeroelastic phenomena. The first three natural modes are
shown with continuous red lines. The straight dashed black lines
starting from the origin are the EO lines, which simply
correspond to multiples of the fundamental rotor frequency.

2This is the classic description of forced response for structural mechanics. From
the aeroelastic perspective, this forcing may be presented as motion-dependent
and motion-independent, respectively fmd and fmi, with f = fmd + fmi. If
the forcing on the RHS of Eq. (2.6) is directly and solely dependent on the
body’s motion, i.e., f = fmd(u, u̇, ü), it may be brought to the LHS, as in a
typical flutter analysis [23, 24]. This section considers cases where fmi 6= 0.
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Figure 2.4: Sample Campbell diagram, depicting three main aeroelasticity
phenomena: forced response, flutter and non-synchronous vibration
(NSV). Natural modes are depicted by the red curves, while engine order
lines are represented with black dashes.

Three of the main aeroelasticity mechanisms are indicated in
Fig. 2.4. Forced response takes place in general at the crossing
of EO lines with the structure natural modes (e.g. in Fig. 2.4,
mode 3 with EO 4). Design attention is drawn particularly to
crossings which occur close to operating speeds, where the engine
stays for relative longer periods (such as cruise or idle states).
Additionally, crossings corresponding to vane or strut passing
frequencies (and a few higher harmonics) should also be avoided
in the final design.

Although the other aeroelasticity phenomena depicted in
Fig. 2.4 will be discussed in further sections, a brief word on the
difference between flutter and non-synchronous vibration (NSV)
may be insightful. Flutter is usually presented within a stability
framework, describing self-excited vibrations which halt in the
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absence of blade motion. NSV, in turn, describes a phase locking
between a blade natural mode and pressure fluctuations due to
one or more aerodynamic phenomena [26]. It is important to
remark that Fig. 2.4 is not an exhaustive depiction of
aeroelasticity issues that may occur in turbomachinery, exposing
only the most predominant ones.

Also portrayed in Fig. 2.4 is the change in the natural
frequencies as a function of the rotational speed. This occurs in
fast-spinning turbomachinery mainly due to the so-called
centrifugal stiffening effect. The increase in the perceived
stiffness of the blades is in general modeled with the Southwell
coefficient [27]. This effect is usually more pronounced for modes
with bending predominance [28]. Sometimes, a decrease in the
natural frequencies at high rotational speeds occurs in high
pressure turbines, due to the direct increase in the material
temperature and therefore decline in stiffness [29].

2.3.2 Interference diagram

Although the Campbell diagram consists of a highly helpful
tool when searching for potential forced response issues, it is
only a necessary – but not sufficient – condition for resonance in
rotationally periodic structures. In fact, the Campbell diagram
is able to show when exactly the external forcing frequency and
the natural frequency of a blade match and resonance becomes
possible. However, matching of forcing shape is also necessary to
induce forced response.

Therefore, in addition to the Campbell, the interference diagram
is necessary to assess forced response issues in turbomachinery. It
has been originally proposed by [30], and is also known as SAFE
or Zig-Zag diagram. An interference diagram is presented in
Fig. 2.5 for a representative blisk. The diagram displays in the
horizontal axis the ND count, and in the vertical axis frequency
or engine order. In fact, both the Campbell and the interference
diagrams are 2D cuts of a 3D general diagram relating rotor speed,
nodal diameters and natural modes. For the purposes of the
current work, 2D visualization provides enough clarity.
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Figure 2.5: Interference diagram for a simulated blisk, showing the first
10 mode families and a representative speed line. Forward and backward
traveling waves are shown according to the convention from Eq. (2.2).

A few comments are meaningful with respect to the interference
diagram. The modal families shown in Fig. 2.5 are the outcome
of the modal analysis of a blisk (section 3.2.1.2). Since for blisks
the blades and the disk consist of a single part, every eigenmode
may, in the general case, contain both disk and blade participation.
The denomination “family” corresponds to the aggregation of
eigenvectors linked to the same blade natural mode. For example,
mode family 1 in Fig. 2.5 comprises all eigenvectors whose blade
displacement are the first bending mode.

The speed line shown in Fig. 2.5 is constructed by linking all
the nodal diameter which are susceptible to a particular
combination of excitable and excitation units (e.g. rotor blades
and stator vanes respectively). No detailed explanation on how
to graphically construct an interference diagram will be provided
here, the reader being referred to, e.g., [31] for an in-depth
analysis.

The fundamental relation conveyed by the speed line in the
interference diagram is given by Eq. (2.8)

dm = |nNs −Nb(nNs + bN/2c) /Nc| , (2.8)
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where, as usual, dm and N are the number of nodal diameters
and blade count. Ns stands for the number of excitation units (for
example, the stator vane count or combustor modules), while n is
a positive integer. Equation (2.8) is a closed-form relation
determining the exact nodal diameter that will be excited by any
combination of N , Ns and n. Figure 2.6 depicts a sample
interference diagram for a case with N = 13 rotor blades, with
two curves for different numbers of stator vanes Ns. One notices
firstly that the interference diagram is periodic, repeating itself
every N harmonics, since dn(n+N) = dn(n). Secondly, for each
period N , the lines are symmetric at the axis N/2.

0 1 2 3 4 5 6

Nodal diameter d
m

0

5

10

15

20

25

n 11
12

N
s

Figure 2.6: Illustrative interference diagram for a case withN = 13 blades,
with curves for two stator configurations with different vane count Ns.
The forcing engine order is given by n.

Another common way Eq. (2.8) is portrayed is given by

nNs ± dm
N

= integer. (2.9)

This condition requiring shape matching is nothing more than
an aliasing phenomenon. That is, although the forcing may have
arbitrarily high angular frequency (conveyed here by nNs), a
reduction in sampling occurs from the rotor perspective, due to
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a limitation of N rotor blades. Therefore, even for high forcing
frequencies, only NDs up to dm,max (Eq. (2.1)) are excitable. This
aliasing phenomena is a manifestation of the Nyquist-Shannon-
Kotelnikov theorem [31]. Lastly, although the denomination for
rotor and stator has been respectively employed for N and Ns,
they are generally interchangeable for frames rotating with respect
to each other.

2.4 Flutter
This work will focus on the dynamic nature of flutter (see

Fig. 2.2) in the turbomachinery context, the reader being referred
to [18, 28] for a broader overview on other flutter modes. This
section presents the fundamentals of flutter in turbomachinery,
including the main equations, types of damping and occurrence
in a compressor map. The numerical approaches to compute
flutter stability will be presented in section 3.2.2.3.

Referring back to Eq. (2.6), flutter generally occurs
independently from the (strictly external) forcing f on the RHS
(see footnote 2 in section 2.3). Common definitions consider
flutter a self-excitation or instability phenomenon. For practical
purposes, instability is interpreted here as a trajectory in a
dynamical system which changes significantly (even becoming
unbound) under small perturbations. For the SDOF system
described in Eq. (2.6), instability takes place when the damping
parameter c becomes strictly negative. In fact, the name damping
even loses meaning, since for c < 0 the amplitude of the
displacement u only increases in time, and the larger the value of
|c|, the higher the amplification in u will be.

Therefore, there is high interest in determining the existing
damping in a system, not only to assess whether or not instabilities
are expected, but also to estimate the maximum level of forced
response, as discussed in section 2.3.

In the turbomachinery context (here restricted to blades and
vanes), the main sources of damping are the structural,
aerodynamic and material damping. Other damping mechanisms
may be implemented, such as piezoelectric elements, eddy
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current, air film etc. Only the main sources will be discussed here.
In the general case, all these mechanisms may add up nonlinearly,
turning the analysis of each one independently into a very
complex task.

2.4.1 Material damping

The material damping is a physical property of the blading
material. It is determined experimentally by measuring the energy
dissipated during cyclic stressing of homogeneous samples. Since
these cycles are in fact hysteresis loops, the material damping is
also known as hysteretic damping. It is related to the vibration
energy internally dissipated into heat.

For typical turbomachinery materials and specifically the ones
employed in this work, the material damping is usually
negligible in comparison to other damping sources [12, 14, 32].
For example, [33] reports for titanium and stainless steel
(materials often employed in HPC) values of loss factor η in the
order of 10-4. Similar values of η ≈ 0.0003 were reported by [32]
for a titanium alloy used in turbomachinery. These figures are
one to three orders of magnitude smaller than aerodynamic or
structural damping, and can be safely disregarded here.

For completeness, a representative relation for the loss factor
linked to material damping is given in Eq. (2.10)

η =
1

2π

Ed
Es

, (2.10)

where Ed and Es stand respectively for the dissipated energy
and the maximum strain energy during one hysteresis vibration
cycle [32].

2.4.2 Structural damping

This type of damping, sometimes referred to as friction
damping, is related to the complex interaction between each
blade and the adjacent structures it comes in contact with (disk,
shroud and other blades, in case snubbers are present). A
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common practice is the addition of a third metal element between
platforms or shrouds of adjacent blades, introducing rubbing and
therefore dissipating vibration energy. The structural damping is,
therefore, intrinsically linked to the friction taking place at these
metal-to-metal interfaces. Naturally, platform-blade friction
damping is absent in one-piece blisk designs.

The structural damping is a highly nonlinear interaction,
mostly due to the intermittent contact between surfaces (e.g.
stick-slip behavior). It is also dependent on the normal pressure
experienced by contact surfaces, rotational speed, friction
coefficient, mode shape, presence of external damping elements
among other factors.

Analytical models for friction damping have been developed
based on Coulomb’s law of friction, making use for example of
a harmonic balance numerical approach [34, 35]. Numerically
modeling the structure and external dampers explicitly is also a
possibility, having been extensively explored for wedge, seal wire
and strip dampers by [36]. However, the practical prediction of
structural damping still relies heavily on experiments.

It is out of the scope of this work to research or model friction
damping in detail. Except for the blisk case (where no contact
friction is present), the structural damping will be estimated based
on literature estimates, as common practice (see, e.g., [37–39]).
Detailed reviews on structural damping can be found, for instance,
in [40, 41].

2.4.3 Aerodynamic damping

This type of damping is directly related to the interaction
between the structure and the fluid surrounding it. The higher
the aerodynamic damping, the more energy is transferred from
the structure motion to the flow. By convention, a positive
aerodynamic damping implies that the vibration experienced by
the structure loses energy and eventually dampens out.
Conversely, a negative value means that energy is transferred
from the flow to the structure motion, provoking an increase in
displacement with potentially drastic consequences.
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This reasoning has been initially implemented by [42], in the
well-established energy method for flutter prediction. The key
idea is conveyed by the aerodynamic work Waero, given by

Waero =

∫ t+T

t

∫
`

p v · n̂ d` dt, (2.11)

where p is the static pressure, v the wall velocity vector and n̂ the
normal unit vector pointing outwards from the wall. The surface
integral takes place along the blade walls `. The aerodynamic
power is integrated in time t during one period T , yielding Waero.
For Waero < 0, energy is being fed from the blade motion to the
fluid stream, in a stable fashion; for Waero > 0, energy is being
transferred from the fluid to the structure, indicating instability.

The modal damping ratio ζmodal is related to the aerodynamic
work according to Eq. (2.12)

ζmodal =
−Waero

2π ω2 q2
, (2.12)

where ω = 2πf is the angular vibration frequency of the blade
(obtained from a pre-stressed modal analysis), and q is the scaling
factor of the natural mode shape for the computational fluid
dynamics (CFD) simulation (including the modal scaling, in case
mode shapes are obtained as mass normalized). Relation (2.12) is
valid for lightly damped systems, which is a good approximation
for typical turbomachinery blades [24]. More details about modal
analysis will be given in section 3.2.1.2.

Furthermore, the energy method just described has been
extended to a traveling wave mode (TWM) formulation
(see [24, 43]). In this approach, all the blades in the row vibrate
with the same frequency and mode shape, but with an interblade
phase angle, as described in section 2.2.1.1. The same Eq. (2.11) is
employed to determine flutter stability.

In addition to the TWM formulation, another way to determine
aeroelastic (in)stability is the so-called aerodynamic influence
coefficient method (ICM). This time-linearized frequency domain
approach can be traced back to the work of [44], and in the
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turbomachinery context is presented as follows: only a single
blade (termed reference blade) oscillates, and the unsteady
forcing on the other blades is measured and transformed into
aerodynamic influence coefficients. Afterwards, a generalized
eigenvalue problem is solved and stability is determined by
assessing each eigenvalue. An insightful interpretation of the
ICM is that each coefficient obtained represents the forcing on
one blade due to the motion of another ([45] having shown that
the reference being self-damped is a necessary but not sufficient
condition for cascade stability). Differently from the TWM
approach, a single experiment or computation is enough to
determine the aeroelastic stability of the system.

Indeed, both formulations, TWM and ICM, have shown to be
equivalent when representing the aeroelastic system [24]. They
are simply different function bases for the modal coordinates
representing the blade displacement. While the ICM uses the
typical solid mechanics modal base, which facilitates the inclusion
of, e.g., mistuning, the TWM employs a function base dictated
by the IBPA shape functions. Other function bases have been
described in the aeroelastic literature (see [24, 46] for an overview).

2.4.4 Occurrence of flutter

Self-excitation in turbomachinery is usually confined to fans,
front and middle compressor blades and low pressure turbines. It
is however a highly complex phenomenon, which motivated the
search for nondimensional parameters that hint where flutter
occurrence might be expected. One of them is the reduced
frequency k (section 2.2.1.2), which empirically indicates flutter
occurrence: for bending modes k < 0.8 and for torsion modes
0.8 < k < 1.4, according to [20]. Sometimes, even lower reduced
frequencies, namely k < 0.4 for bending modes, are required to
incur flutter [47]3. A broader occurrence range is suggested
by [48], namely between 0.1 ≤ k ≤ 1 for turbomachinery blades.

3The definition of reduced frequency employed by [20, 47] makes use of half the
chord. In this work, the reduced frequency will always be converted to the
definition from Eq. (2.3), considering the entire chord.
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On a similar note, blades with rather reduced mass ratios
(2.2.1.3) would be in higher risk of flutter [29] (however without
broad, precise values known in the turbomachinery literature).
This is directly related to the fact that low mass ratios increase the
aeroelastic coupling in the system.

Flutter occurrence in a compressor map is depicted in Fig 2.7.
Typical flutter boundaries are shown, according to numerous
experimental reports in the turbomachinery history. They will
not be discussed in detail in this work, with in-depth information
made available by [29, 49].

Figure 2.7: Occurrence of flutter in a compressor showing several stability
boundaries [29].

A representative operating line is also displayed in Fig 2.7,
crossing into the unstable boundary for high corrected mass flow.
The goal of an aeroelastically properly designed component is
to keep all possible operation states within stable regions, that
is, flutter free. Differently from forced response, where during
acceleration a “brief” period close to a resonance frequency may
be endured, flutter may very fast lead to destructive vibration
issues. Therefore, an adequate aeroelastic design should keep the
system as far as practicable from these unstable zones. That means
securing large flutter margins for the entire operating range.
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2.5 Non-synchronous vibrations

Besides the traditional forced response and flutter phenomena
usually considered as main aeroelastic issues in turbomachinery,
non-synchronous vibrations (NSV) have also been reported in
the recent literature4. Differently from separated flow vibrations,
which manifest as an instability with a broad spectrum, NSV take
usually form with a dominant frequency [51]. Typically, a lock-in
between a flow phenomenon and a blade natural mode occurs.

100%

50%

reinforced
pressure
fluctuation

impingement

excitation

Figure 2.8: Representation of non-synchronous vibration caused by
rotating instabilities [26].

4Strictly speaking, NSV would correspond to any vibration issue which is not
directly traceable to the fundamental engine rotational frequency, possibly
including flutter (see [50] for a broad overview). However, NSV is typically
reported in the literature excluding flutter issues, as presented in this work.
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Flow behavior leading to NSV may include unsteady tip
clearance flow, vortex shedding, rotating stall, among other flow
instabilities. The main frequency of these phenomena is not a
priori related to integral multiples of the rotational speed of the
rotor, therefore the name NSV.

As a representative case, rotating instabilities with a periodicity
of approximately half the rotor speed have induced NSV in a
transonic compressor blisk [26]. The flow instability arose from
high pressure fluctuations due to enlarged tip gaps, and is
sketched in Fig. 2.8. Further experiments with non-uniform
casing eccentricity yielded an amplitude reduction in NSV, at the
expense of a potential increase in synchronous vibration (forced
response) [52]. This trade-off hints that taking all aeroelasticity
issues into account is often a technically challenging task.

2.6 Mistuning

Up to now, no consideration has been made about how each
turbomachinery element may differ from one another. This
situation is referred to as mistuning. Up to now, all blades or
vanes have been assumed to be equal for a specific row,
concerning geometric and material properties. This is in fact not
the case in a real machine, due to variability in manufacturing
and finishing tolerances but also operation and (usually random)
wear reasons.

The effects of structural mistuning on aeroelasticity
phenomena vary. For flutter, an increase in mistuning usually
promotes more aeroelastic stability, whereas for forced response,
typically higher [20, 29, 53–55] but sometimes lower [56, 57]
vibration amplitudes occur. The groundwork in turbomachinery
mistuning was laid by [58, 59], who investigated, among other
topics, the actual change in vibration amplitude. In fact, [59] has
provided an analytical upper bound for vibration amplification
due to mistuning, namely, of 1

2 (1 +
√
N) for a rotor with N

blades. It was however recognized that this limit is rarely reached
in real cases (see [60] for further analytical considerations).
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For forced response, mistuning may lead to mode localization.
This happens when the propagation of energy externally injected
in the vibrating system does not occur freely, leading to energy
confinement close to the forcing source and possibly excessive
stresses. Additionally, the splitting of single modes into closely-
spaced multiple eigenfrequencies due to mistuning makes the
task of measuring and modeling the structure vibration much
more challenging [61].

Since the increase in forced response amplitude occurs
nonlinearly [62], researchers have sought optimal mistuning
levels and patterns. Ref. [63] have shown that the sensibility of a
rotor to random mistuning can be decreased in the presence of
intentional mistuning. Direct mistuning optimization has been
successfully employed by [64], with an approach specially
designed to be used with large finite element models. Other
attempts at reducing forced vibration with premeditated
mistuning have considered grouping or packeting of shrouded
blades [65] and implementation of alternating patterns of
strongly and weakly mistuned blades [66].

Exploiting intentional mistuning has also been sought to
enhance flutter stability. For example, [45] employed constrained
optimization to find ideal intentional mistuning patterns,
obtaining increase in stability margin with an “almost alternate”
pattern. A linearized asymptotic mistuning model was proposed
by [67], enabling increase in flutter stability for unstable low
pressure turbine rotors.

In essence, structural mistuning makes solid mechanics
analyses more complex. However, although vibration levels may
indeed change in the presence of mistuning, it is usually not
included in preliminary assessments. Mistuning can then be
added to workflows once they have been proven to adequately
represent virtually tuned systems and particularly to
circumstances where substantial inhomogeneity is present (e.g.
end-of-life components) or high-precision estimations are
necessary.
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2.7 Failure criteria

Once the static and dynamic stresses caused by the aeroelastic
phenomena described until now have been measured or
estimated, the next question is how to assess whether or not the
loads are tolerable or excessive. Since gas turbine components are
constantly subjected to steady and unsteady loads, simple static
criteria such as yield limits are not enough to ensure fatigue-free
operation. Therefore, adequate failure criteria should be chosen,
according to the desired factor of safety (here denoted by n). The
considerations in this section are valid for ductile metals
(representing most alloys employed in gas turbines), while brittle
materials require different approaches (see, e.g., [68]).

A typical fatigue failure diagram (also known as
Goodman-Haigh) employed for metals is shown in Fig. 2.9. The
diagram depicts both mean and alternating stresses, respectively
given by σm and σa. It is here restricted to tensile mean stresses
(by convention positive). This representation, originally proposed
by [69], is valid for a single material (specimen) at a specific
temperature.

Mean stress 
m

                                                           

A
lte

rn
at

in
g 

st
re

ss
 

a
   

   
   

   
   

 

Se

Sut

Goodman line

Gerber line

Sy

Sy

Yield line

Stable

Figure 2.9: Representative failure diagram for fatigue depicting a stable
region and typical failure criteria.
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In practice, failure criteria are computed from a few solid
mechanics properties empirically determined. Several failure
thresholds have been historically suggested, whereas discussing
all formulations in detail is out of the scope of this work. Three of
the most common failure criteria are depicted in Fig. 2.9:

• Yield (Langer) line: it is constructed simply by joining the
yield strength Sy for both mean and alternating stresses. It
is described by the relation

σm + σa =
Sy
n

(2.13)

• (Modified) Goodman line: it is constructed by joining the
endurance strength Se (obtained from infinite-life tests) to
the ultimate tensile strength Sut. It is given by the relation

σm
Sut

+
σa
Se

=
1

n
(2.14)

• Gerber line: it is a parabola given by the relation

(
nσm
Sut

)2

+
nσa
Se

= 1 (2.15)

A stable area (ideally free of fatigue failure) is also depicted in
Fig. 2.9, roofed by the yield and the Goodman lines. It allows the
designer to estimate the trade-off between mean and alternating
stresses for a component. It is important to notice that this stability
area is not strictly deterministic, due to the variability intrinsic
to empirical methods. It provides, nevertheless, an effective and
simple basis to judge for failure expectation, being constructed
from readily available material properties. Detailed information
about failure criteria is given, e.g., by [68].



3
THEORY AND METHODS

This chapter develops some of the fundamental concepts from chapter 2,
their numerical implementation and additional methods employed in
this work
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3.1 Physical description

This section will present the general physical formulation and
main equations for the solid and fluid domains. These theories
derived from continuum mechanics are the basis for every
aeroelastic model, since the interaction between flow and
structure can only be adequately modeled once the independent
formulations for each domain are precisely defined.

Some fundamental concepts have already been mentioned in
Chapter 2. A formal and general approach will be provided
here for both solid and fluid domains. It will be precise enough
to understand the numerical methods in section 3.2, however
confined to the necessary applied concepts used throughout the
work. All equations will be presented in Cartesian coordinates for
simplicity, while cylindrical or spherical coordinates are readily
available in the accompanying literature suggestions.

3.1.1 Solid domain

The solid domain is modeled in this work as a continuous
elastodynamic medium. The main equations governing the model
will be described, while a more theoretical and rich approach may
be found, e.g., in [70, 71].

Three simplifying hypothesis will be employed when deriving
the solid domain equations: isotropic medium, generalized
Hooke’s law and relatively small deformation gradients. In this
work, the elastodynamic equations will be described in the
Lagrangian, or “material reference frame”. That is, the observer
follows each material particle located in the initial configuration
at coordinates X = (X,Y, Z)1.

The unknowns to be determined are the displacements
u = u(X, t), the Cauchy stresses σ = σ(X, t) and the
deformations ε = ε(X, t). These variables are defined for a
particle located at material coordinates X ∈ Ω for an instant
t ∈ [0,∞). The spatial domain Ω ⊂ IRn (n = 1, 2, 3) has as

1Uppercase spatial coordinates (X,Y, Z) indicate the material reference frame,
whereas lowercase coordinates (x, y, z) indicate the spatial reference frame.
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boundaries the set Γ ⊂ IRn-1, with Γ = Γ1 ∪ Γ2. Γ1 stands for
Dirichlet boundary conditions (first type or essential) and Γ2

stands for Neumann boundary conditions (second type, or
natural), and Γ1 ∩ Γ2 = ∅. A weighted combination of Dirichlet
and Neumann bounds is known as Robin boundary condition.

Starting with the mass continuity equation, it assumes a very
simple form when described in the Lagrangian reference frame,
namely given by Eq. (3.1)

ρ|J | = ρ0, (3.1)

where ρ is the particle density, with value ρ0 at time t0. |J | stands
for the absolute value of the Jacobian J , which is the determinant
of the deformation gradient tensor. Since for positive masses
J > 0, the absolute operator is often dropped. For any
deformation gradient, the change in density is automatically
determined by Eq. (3.1). Therefore, density itself does not appear
as an unknown in the solid domain equations, when written in
the Lagrangian reference frame.

The conservation of linear momentum in the differential form
is given by Eq. (3.2)

ρ
∂2u
∂t2

= ρb + ∇ ·σ, (3.2)

where b are domain forces per unit mass (e.g., gravitational force),
and σ the Cauchy stress tensor. The del or nabla operator is
defined as ∇ , ( ∂

∂x ,
∂
∂y ,

∂
∂z ) for a 3D Cartesian case. Accordingly,

the gradient, divergence and curl of a generic field f are given
respectively by ∇f, ∇ · f and ∇× f.

Using the isotropic and Hooke’s hypotheses, the Cauchy stress
tensor can be written as in Eq. (3.3) (also known as Hooke’s law)

σ = λ tr(ε) δ + 2µ ε, (3.3)

where δ stands for the Kronecker delta tensor and the trace
operator is given by tr(ε) = εxx + εyy + εzz . Indeed, Eq. (3.3) is a
linear constitutive relation between forces and displacements, or
more precisely in this case, between tensions and deformations
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respectively. The scalars λ and µ are the Lamé parameters, which
specific to each solid material. They relate to more commonly
known material properties, namely the modulus of elasticity E
and the Poisson coefficient ν, according to Eqs. (3.4)

λ =
E ν

(1 + ν)(1− 2ν)
, (3.4a)

µ =
E

2(1 + ν)
. (3.4b)

The relation between deformation and displacement is given
by Eq. (3.5)

ε =
1

2

(
∇u + ∇uT

)
. (3.5)

To obtain the Navier-Cauchy equations, we substitute Eq. (3.5)
in Eq. (3.3) and then the result in Eq. (3.2), obtaining Eq. (3.6)

ρ
∂2u
∂t2

= ρb + (λ+ µ)∇(∇ · u) + µ∇2u, (3.6)

where the Laplace operator is given by ∇2 = ∇ ·∇ (divergence of
the gradient). The Navier-Cauchy equations can also be rewritten
as

∂2u
∂t2

= b +
(
c2d − c2s

)
∇(∇ · u) + c2s∇

2u, (3.7)

where the dilatational cd and shear wave cs speeds are given
as a function of the Lamé parameters or material properties by
Eqs. (3.8)

c2d =
λ+ 2µ

ρ
=

E (1− ν)

ρ (1 + ν) (1− 2ν)
, (3.8a)

c2s =
µ

ρ
=

E

2ρ (1− ν)
. (3.8b)
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A viscous damping force proportional to the particle velocity is
usually included in the momentum equation. It is here given by
ξ ∂u
∂t , where ξ is the viscous damping coefficient. Then, the final

form of the momentum conservation is given by Eq. (3.9)

∂2u
∂t2

=
ξ

ρ

∂u
∂t

+ b +
(
c2d − c2s

)
∇(∇ · u) + c2s∇

2u. (3.9)

Finally, the balance of energy can also be written for solid
domains in the Lagrangian reference frame. It becomes
particularly relevant to describe system changes in the presence
of nonmechanical effects, such as substantial heat flux,
viscoelastic or plastic deformations. The balance of internal
energy is given by Eq. (3.10)

ρ0
∂e

∂t
= −∇ · q + P :d, (3.10)

where e is the internal energy per unit mass and q is the heat
flux vector (e.g., related to temperature gradients). P stands for
the Piola–Kirchhoff stress tensor and d for the symmetric part of
the velocity gradient, i.e., d = 1

2

(
∇v + ∇vT

)
, v being the particle

velocity. The double contraction represented by P :d is known as
stress power (per unit volume). Other therms such as radiation
energy may also be included in Eq. (3.10), according to modeling
requirements.

3.1.2 Fluid domain

The fluid domain modeled in this work is restricted to
monophasic, newtonian and isotropic descriptions. These
assumptions are very accurate for the type of fluid present in
turbomachinery components of gas turbines. Additionally, no
chemical reaction mechanisms are implemented, since computing
combustion is not in the scope of this work. Also for the fluid
domain, only the main equations will be shown, while the reader
can refer, e.g., to [71–73] for detailed discussions.
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Differently from the typical Lagrangian description of solid
domains, now an Eulerian approach is employed. That means
that the observer does not follow each fluid particle, but obtains
data from fixed points in space, where different fluid particles
travel through. These stationary points are located at coordinates
x = (x, y, z). This idea of obtaining and computing data for a fixed
location in space traversed by different fluid elements is conveyed
by the material (or total) derivative, given for a generic (scalar or
vector) field f by Eq. (3.11)

Df
Dt

=
∂f
∂t

+ v ·∇f. (3.11)

The first term on the RHS of Eq. (3.11) accounts for the classic
partial derivative with respect to time for a single particle, while
the second term includes the convection effect due to the velocity
field v. The nonlinear relation given by Eq. (3.11) actually links
the Lagrangian and Eulerian descriptions of continuum media.

The unknowns to be determined now are the fluid velocity
v = v(x, t), density ρ = ρ(x, t), pressure p = p(x, t) and
temperature T = T (x, t). Other variables such as the internal
energy e may be derived from the previous quantities. These
variables are defined for a particle located at spatial coordinates
x ∈ Ω for an instant t ∈ [0,∞). The spatial domain Ω ⊂ IRn

(n = 1, 2, 3) has as boundaries the set Γ ⊂ IRn-1, with Γ = Γ1 ∪ Γ2.
Γ1 stands for Dirichlet boundary conditions (first type or
essential) while Γ2 stands for Neumann boundary conditions
(second type, or natural), and Γ1 ∩ Γ2 = ∅. Typical boundary
conditions are the flow velocity and thermodynamic state, but
more complex and mixed combinations may arise for involved
problems.

The starting point is the mass continuity equation (analogous
to Eq. (3.1)), now written in the Eulerian description in Eq. (3.12)

Dρ

Dt
+ ρ∇ · v = 0. (3.12)

Subsequently, analogously to Eq. (3.2), the Cauchy equation for
conservation of linear momentum is given by Eq. (3.13)
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ρ
Dv
Dt

= ρb + ∇ · τ , (3.13)

where b are body forces and τ the stress tensor on the fluid
particles. For isotropic media, the stress tensor can be written as

τ = −pδ + µ
(
∇v + ∇vT

)
+

(
µν −

2

3
µ

)
(∇ · v) δ, (3.14)

where µ and µν stand respectively for the dynamic and
volumetric fluid viscosities. The first term on the RHS of
Eq. (3.14) corresponds to the inviscid stresses, directly related to
the thermodynamic pressure. The last two terms are the viscid
components, related respectively to the symmetric part of the
velocity gradient tensor and the volumetric strain rate (∇ · v).
Analogously to Eq. (3.3) for the solid domain, Eq. (3.14) is the
constitutive equation for the fluid medium. That is, it relates
stresses with deformation rates of fluid particles.

Plugging the constitutive relation Eq. (3.14) into the Cauchy
equation Eq. (3.13), we obtain the conservation of linear
momentum for a Newtonian fluid, commonly known as
Navier-Stokes equations

ρ
Dv
Dt

= −∇p+ρb+∇ ·
[
µ
(
∇v + ∇vT

)
+

(
µν −

2

3
µ

)
(∇ · v) δ

]
.

(3.15)
The conservation of energy is also needed to describe

compressible flows, being directly derived from the first law of
thermodynamics. One way to write it is given by Eq. (3.16)

De

Dt
= −p D

Dt

(
1

ρ

)
+

1

ρ
σ :d− 1

ρ
∇ · q, (3.16)

where e is the internal energy per unit mass and q is the heat
flux vector2. The symmetric part of the velocity gradient tensor is

2The heat flux is usually expanded by the Fourier’s law as q = −k∇T , for heat
conductivity k and temperature T .
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given by d = 1
2

(
∇v + ∇vT

)
. The double contraction represented

by σ :d is known as stress power (per unit volume), and is directly
related to the kinetic energy dissipation per unit mass, given by
ε = 1

ρσ :d.
The kinetic energy dissipation ε also appears in the entropy

equation. It is derived from Eq. (3.16) and is given here for
completeness by Eq. (3.17)

Ds

Dt
= − 1

ρT
∇ · q+

ε

T
=

1

ρ
∇ ·

(
k

T
∇T

)
+

k

ρT 2
(∇T )

2
+
ε

T
, (3.17)

where s and T stand respectively for the fluid entropy and
temperature. It is clear from Eq. (3.17) that an increase in entropy
is directly related to heat transfer and how much kinetic energy is
dissipated, including by viscous means.

The second law of thermodynamics does not have to be
explicitly included in computations, since requiring the heat
conductivity k, the dynamic viscosity µ and the volumetric
viscosity µν to be non-negative suffices to ensure that the entropy
given by Eq. (3.17) never decreases (for a closed system).

Additionally, a state equation relating pressure and density is
also necessary for closure. A typical model is the ideal gas relation,
given by Eq. (3.18)

p = ρRT, (3.18)

where R is the specific gas constant. With the mass, momentum
and energy conservation equations (Eqs. (3.12), (3.15) and (3.16)),
and a state equation (Eq. (3.18)), closure is obtained, and all fluid
variables can be (theoretically) computed, in the presence of
suitable boundary conditions.

3.1.2.1 Special forms of equations
A couple of special cases are worth mentioning briefly. In case

of low flow velocities (usually taken as Ma < 0.3), the flow is
said to be incompressible. In this case, the fluid density does not
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change with pressure3, that is,

Dρ

Dt
= 0⇒∇ · v = 0. (3.19)

The last result was obtained by plugging the incompressibility
relation into the mass continuity Eq. (3.12). That is, for
incompressible flows, no infinitesimal compression or expansion
of fluid particles takes place. Indeed, it is not possible to
determine an absolute pressure for incompressible fluids, only its
gradients. Plugging Eq. (3.19) into the Navier-Stokes Eq. (3.15),
we obtain their incompressible version

ρ
Dv
Dt

= −∇p+ ρb + ∇ ·
(
µ
(
∇v + ∇vT

))
. (3.20)

Finally, when viscous effects are negligible, the Navier-Stokes
Eq. (3.15) reduces to the Euler Eq. (3.21)

ρ
Dv
Dt

= −∇p+ ρb. (3.21)

In fact, under the conditions leading to Eq. (3.21), there is no
further need to solve the conservation of energy. This happens
because for inviscid, incompressible flows, the internal energy
is constant along every flow line, making the computation less
expensive than compressible, viscid cases.

3.1.2.2 Acoustics
Another relevant fluid dynamics domain is the field of acoustics.

Only a couple of comments will be made about it in this section.
The main relation representing the propagation of acoustic

waves in a medium can be derived by a linearization of the mass
(Eq. (3.12)) and Euler (Eq. (3.21)) equations. The final result is the
wave equation of second order, given by Eq. (3.22)

∇2p′ −
(

1

c2

)
∂2p′

∂t2
= 0, (3.22)

3That does not necessarily mean that ρ = constant in the entire spatial domain
(which would still be a particular but not the general solution of Dρ

Dt
= 0).
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where p′ represent pressure fluctuations around a reference
pressure value. The constant c is the wave propagation speed
(termed speed of sound), obtained by Eq. (3.23)

c2 =

(
∂p

∂ρ

)
s

, (3.23)

where the subscript s indicates an isentropic process.
Equation (3.22) is a hyperbolic equation on the pressure
fluctuations p′, meaning that, if a disturbance is introduced in the
system, not all points in space experience it at the same time.
Indeed, the disturbances propagate with fixed speed given by
Eq. (3.23).

Note that for incompressible flows, (Eqs. (3.19) and (3.20)), the
density does not vary with changes in pressure; according to
Eq. (3.23), that implies a speed of sound tending to infinity. Finally,
although not shown here, acoustic damping may be included in
the wave equation, usually proportional to variations of pressure
in time, i.e., ∂p

′

∂t .

3.1.2.3 Turbulence
Up to now, no consideration of turbulence has been made

when deriving the fluid domain equations. They are indeed valid
for laminar and turbulent flows, and if solved with enough
discretization precision, no turbulence modeling would be
necessary. The main issue is the computational cost needed to
solve all relevant spatial and temporal scales, which rapidly
exceeds modern processing power for most practical problems.

The study of turbulence is a highly complex field in itself,
being out of the present scope to theoretically discuss it in depth.
However, since almost all macroscopic flows in nature are
turbulent, the development and use of adequate models are
highly important. Some comments will be made about turbulent
phenomena in general, and how they relate to the equations
derived until now. Section 3.2.2.4 will present the numerical
implementation of turbulence models, particularly those suitable
for turbomachinery. For a broader overview, see e.g. [74, 75].
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Turbulence is in general associated with high enough Reynolds
numbers. Fluid flows are called laminar due to the fact the flow
layers do not mix with each other and are well organized. Once
the Reynolds number reaches a so-called transition range,
complex eddy behavior ensues, and further increase in the
Reynolds number implies a fully-turbulent regime.

According to [72], in contrast to laminar flows, the main
characteristics of turbulent regimes are: (i) the presence of
fluctuations (even when boundary conditions are steady); (ii)
nonlinearity; (iii) constant change in vorticity (∇× v), manifested
in identifiable coherent structures, called eddies; (iv) dissipation
of kinetic energy through viscosity, vortex stretching being
responsible for the energy and vorticity transfer from higher to
smaller spatial scales; (v) high diffusivity of species, momentum
and heat, yielding large mixing rates.

Employing statistical tools, turbulence is typically modeled by
computing mean state variables and their respective deviations.
For example, a time-dependent, fluctuating pressure p is
decomposed as p = p̄+ p′, where p̄ stands for the mean pressure,
and p′ represents the unsteady pressure variation (with zero
mean). Performing the same decomposition for other flow
variables and then plugging them into the instantaneous
conservation equations derived in section 3.1.2, and finally
averaging, a new system of equations for mean quantities arises.
This process is known as “Reynolds averaging”.

The most relevant difference between the instantaneous and
the Reynolds averaged equations is the presence of the so-called
Reynolds stresses, given by τR , ρv′ ⊗ v′. This correlation tensor
consists in a new set of unknowns, not present in the original
instantaneous equations. The challenge now becomes solving the
problem including these second order correlations. Each of the
second order correlation components would theoretically have
its own conservation equation, involving third order correlations.
Each of the third order correlation components would then require
fourth order correlations, and so on. This is known as the closure
problem in turbulence.
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One approach to deal with this issue is the Reynolds-averaged
Navier–Stokes (RANS) closure modeling. It works by stopping
this endless equation cascade at some point and employing
numerical and experimental models to determine the Reynolds
stresses. These approximating models, although consciously
neglecting some of the spatial scales of the problem, have
produced fairly reliable results when compared with experiments
for most engineering applications.

Another approach would be to directly solve the
time-dependent conservation equations in very fine spatial and
temporal scales and only afterwards perform the Reynolds
averaging. This computationally expensive technique is known
as direct numerical simulation. Other approaches falling between
RANS modeling and direct numerical simulation exist, such as
large eddy simulations, which explicitly solves the flow field up
to certain physical scales and models the smallest eddies with
sub-grid scale models.

3.1.3 Fluid-structure interaction

The equations modeling the solid and fluid domains have been
described in detail in sections 3.1.1 and 3.1.2. The key question
for aeroelastic analyses is how these media interplay, in the field
known as fluid-structure interaction (FSI).

The interface between fluid and solid domains must obey two
compatibility conditions, namely

i. Kinematic constraint:

v =
∂u
∂t

(3.24)

ii. Dynamic constraint:

σf · n = σs · n (3.25)

where, as usual, v stands for the fluid velocity and u for the solid
displacement. The stress tensors σf and σs are given respectively
by Eqs. (3.14) and (3.3). n is the vector normal to the FSI interface.
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The kinematic constraint given by Eq. (3.24) corresponds to the
Dirichlet type of boundary conditions previously discussed (Γ1

in section 3.1.1). It ensures that no slip and no penetration takes
place between domains. That is, both independent boundaries
should produce the same displacements and velocities at all times.

The dynamic constraint given by Eq. (3.25) on the other hand
corresponds to the Neumann type of boundary conditions (Γ2

in section 3.1.1). It ensures that the fluid and solid forces match
at the common interface, with opposite sign. Both pressure and
viscous forces are contained in the fluid stress tensor σs.

When considering domains described in different reference
frames (such as in the current case, with Lagrangian solid and
Eulerian fluid descriptions), mixed formulations are employed to
match the equations. For example, in the Arbitrary Lagrangian-
Eulerian (ALE) approach, both the observer and the reference
frame can move arbitrarily [76]. To illustrate this effect on the
equations, the total time derivative described by Eq. (3.11) in the
Eulerian frame can be written in the ALE referential as

Df
Dt

=
∂f
∂t

+ (v− vg) ·∇f =
∂f
∂t

+ vc ·∇f, (3.26)

where vg stands for the grid velocity and vc = v− vg for the
convective velocity. Note that if vg = 0, Eq. (3.11) is recovered for
an Eulerian approach; conversely, if vc = 0, the simple
Lagrangian frame derivative is obtained. All transport equations
may be written in the ALE formulation, when boundary motion
is relevant for the problem.

More comments about how to model coupled fluid and solid
domains numerically and the challenges that arise from it will be
given in section 3.2.3.
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3.2 Numerical approach

This section will provide the numerical models employed in
this work to solve the solid and fluid domains. These models
represent the state of the art for turbomachinery simulation and
bear wide acceptance in industry and academia. This does not
mean that these methods are universally optimal for all problems,
while other existing numerical approaches may be more or less
suitable from case to case.

The general numerical models will be initially described,
followed by specific analysis approaches in computational solid
mechanics and fluid dynamics.

3.2.1 Computational solid mechanics

As mentioned in section 3.1.1, the structure is modeled here
in the Lagrangian reference frame. Additionally, a variational
formulation is employed, minimizing an error functional with the
help of weight functions. Several approaches may be obtained
with a variational technique, but the one employed in this work is
the finite element method (FEM), more specifically in its Galerkin
formulation. Mathematical descriptions of the FEM are given in
detail by, e.g., [77], while a solid mechanics approach is presented
by [78, 79]. The solver employed for the structural computations
and solid meshing is Ansys Mechanical version 19.2 [80].

The FEM approach starts from the Cauchy relation given by
Eq. (3.2) with viscous damping included

ρ
∂2u
∂t2

+ ξ
∂u
∂t
− ρb = ∇ ·σ. (3.27)

Subsequently, to obtain the weak form of Eq. (3.27), we multiply
it by a weight function w = w(X) and integrate over the spatial
domain Ω. Then, employing Green’s first identity, we obtain∫

Ω

σ :∇w dΩ +

∫
Ω

(
ρ
∂2u
∂t2

+ ξ
∂u
∂t
− ρb

)
· w dΩ =

∫
Γ2

τn · w dΓ,

(3.28)
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where both domain (Ω) and boundary (Γ) integrals are present.
τn = σ · n are the traction forces normal to the boundary. One
notices that only Γ2 is present as a boundary integral in Eq. (3.28),
since, by construction of the Galerkin FEM, the residuals w vanish
on Dirichlet boundaries (Γ1). If all terms in Eq. (3.28) are sent
to the LHS, we obtain the typical averaged weighted-residual
Galerkin form.

The solution candidates for u are approximated as linear
combinations of shape (or basis) functions N = N(X) as in
Eq. (3.29)4

u(X, t) ≈ N(X)TU(t), (3.29)

where the vector U contains the temporal coefficients multiplying
the shape functions N. Additionally, the Galerkin approach
employs the same expressions to compute both the weight and
trial functions (respectively the arrays N and U). Plugging the
approximation from Eq. (3.29) into the weighted residuals
Eq. (3.28) and reorganizing the terms, we obtain the system
dynamics equation, written in matrix form as:

MÜ + CU̇ + KU = F. (3.30)

Here, M, C and K stand respectively for the mass, damping and
stiffness matrices. The vector F stands for the forcing, while the
dots over the displacement U indicate time derivative in
Newton’s notation (U̇ , ∂U/∂t, Ü , ∂2U/∂t2 and so on). Note
the direct similarity with the dynamics equation for the SDOF
system (Eq. (2.6) in chapter 2).

4Since this and the following equations in this section are directly implementable
in a numerical code, they are written in classic matrix multiplication notation.
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The matrices displayed in Eq. (3.30) are given by

M =
⋃
e

∫
Ωe

N ρNT dΩ, (3.31a)

C =
⋃
e

∫
Ωe

N ξ NT dΩ, (3.31b)

K =
⋃
e

∫
Ωe

B D BT dΩ, (3.31c)

F =
⋃
e

(∫
Γe

N τn dΓ +

∫
Ωe

ρN b dΩ

)
, (3.31d)

where B stands for the deformation matrix and D for the
elasticity matrix. The symbol

⋃
e indicates the assembly

procedure, where matrices constructed for each finite element are
clustered in the global system. These integrals are in general
performed numerically, so that even complex, high-order
analytical expressions for the shape functions are easily
computed. General information about the assembly process can
be found, e.g., at [78, 81].

The shape functions contained in matrix N are organized as

NT =

 N1 0 0 N2 0 0 · · · NJ 0 0

0 N1 0 0 N2 0 · · · 0 NJ 0

0 0 N1 0 0 N2 · · · 0 0 NJ

 ,
(3.32)

for a 3D finite element with J nodes. The functions Nj ,
j = 1, · · · , J are constructed as linearly independent from each
other. The deformation matrix B is obtained by operating with
derivatives on the shape functions according to
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BT =



∂/∂x 0 0

0 ∂/∂y 0

0 0 ∂/∂z

0 ∂/∂z ∂/∂y

∂/∂z 0 ∂/∂x

∂/∂y ∂/∂x 0


N. (3.33)

Finally, the elasticity matrix D relating stresses and strains for
an isotropic material is given (in Voigt notation) by Eq. (3.34)

D =
E

d



(1− ν) ν ν 0 0 0

ν (1− ν) ν 0 0 0

ν ν (1− ν) 0 0 0

0 0 0
(1− 2ν)

2
0 0

0 0 0 0
(1− 2ν)

2
0

0 0 0 0 0
(1− 2ν)

2


,

(3.34)
where d = (1 + ν)(1− 2ν). Then, we have

σ = D ε⇒



σxx
σyy
σzz
τxy
τyz
τzx


= D



εxx
εyy
εzz
γxy
γyz
γzx


, (3.35)

where σ stands for normal stress and τ for shear stress. Similarly,
normal strain is given by ε and shear strain by γ.

Figure 3.1 shows a sample rotor blade modeled with finite
elements. Although only one type of element was employed
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(namely 10-node tetrahedron), combinations are possible, with
adequate treatment on boundaries between different types of
elements. Additionally, high-order elements may include more
internal nodes to accommodate more complex shape functions,
demanding naturally more memory and computation time.

Figure 3.1: Sample rotor blade modeled with finite elements. Top left:
elements outer surface; bottom left: selected 3D elements; bottom right:
zoom on blade tip; Top right: diagram of a 10-node tetrahedron element.

3.2.1.1 Static analysis
Static analyses do not take transient or unsteady phenomena in

consideration. Referring back to Eq. (3.30), it simplifies to

KU = F. (3.36)
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Several different types of load may be included in the RHS of
Eq. (3.36), such as gravity, pressure or thermal. In turbomachinery
applications, typical static analyses take into account mean flow
loads and centrifugal loads (such as rotational velocity for rotors).

The results obtained from static analyses correspond to the static
loads in failure assessments. For example, in Fig. 2.9, the static
stresses would be indicated in the horizontal axis. Even when
static loads in a component are far enough from static limits, the
presence of alternating loads actually reduces the safety margins
considerably. That is, for the aeroelastic designer, high static loads
decreases the tolerable dynamic load range. However, the static
loads usually stem from aerodynamic design, with modern trends
towards high mean pressure and rotational speed.

3.2.1.2 Modal analysis
Modal analyses are key to determine inherent characteristics

of dynamic systems, including natural frequencies and modes.
The multiple-degree-of-freedom system in the time domain is
transformed into the frequency domain by assuming that the
whole structure vibrates harmonically with a constant angular
frequency ω for each mode. This is accomplished by considering,
without loss of generality, that

U = φ eiωt, (3.37)

where the vector φ contains the so-called mode shapes or natural
modes of the structure. The result obtained by plugging Eq. (3.37)
into the unforced and undamped5 version of Eq. (3.30), ignoring
trivial solutions, is given by(

K− ω2M
)
φ = 0. (3.38)

This turns out to be a generalized eigenvalue problem, with
eigenvalue ω2 and eigenvector φ. As will be showed later, these

5This procedure generates the so-called undamped eigenvectors. If damping
is retained, it is still possible to find eigenvalues, which in the general case
becomes complex variables. The dynamic system becomes then coupled. The
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eigenvectors may also be used to reduce the order of the system,
both in harmonic and transient analysis (sections 3.2.1.3 and
3.2.1.4).

As an illustration, the modal displacement of the first three
natural modes of a rotor blade is shown in Fig. 3.2. Mode 1 is
a typical bending mode, while mode 2 indicates blade torsion.
For high-order modes such as number 3, and especially for 3D
blade designs, mixed patterns often occur, where a clear mode
designation becomes impractical.

Displacement

Min

Max

Mode 1 Mode 2 Mode 3

Figure 3.2: Sample rotor natural modes from modal analyses.

Since Eq. (3.38) can always be multiplied by a real constant
without changes in the eigenvalue, every multiple of an
eigenvector φ is also an eigenvector. Therefore, there is no unique
way to present mode shapes of a structure. A typical way they
are exhibited is normalized by the mass matrix, so that

φT Mφ = 1. (3.39)

As previously discussed in section 2.2.1.1, when solving the
eigenvalue problem for rotationally periodic structures, paired or
repeated eigenvalues/eigenvectors arise. They represent the
same spatial form, but with a phase difference. Therefore, two
paired modes may also be understood as a complex mode with
amplitude and phase. This leads to the concept of traveling
waves discussed beforehand, which consist in nothing more than
a pair of eigenvectors with the same eigenvalue. Algorithms to
efficiently compute the eigenvalue decomposition of a
rotationally periodic structure are readily available, and are not

two main models when computing eigenvectors including damping are the
viscous and the structural [82]. They will not be discussed in detail here.
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discussed in detail here (see, e.g., [83]). A modal analysis
example for a structure with rotational periodicity is contained in
the interference diagram for a blisk in Fig. 2.5, where the mode
families refer to eigenvectors linked to the same blade mode
shape.

3.2.1.3 Harmonic analysis
A harmonic analysis is a linear frequency-domain approach, in

which all loads and displacements of a structure vary at the same
known frequency, but not necessarily in phase. It starts from an
assumption similar to Eq. (3.37), now including a phase angle θ
for the displacement, such as

U =
(
umax eiθ

)
eiωt, (3.40)

where umax is the maximum displacement (amplitude) vector. A
corresponding relation is given for the load vector, with the same
temporal frequency ω, however with a different phase angle ψ, so
that

F =
(
F̌ eiψ

)
eiωt, (3.41)

where F̌ is the vector of force modal amplitudes. Plugging
Eqs. (3.40) and (3.41) into the dynamics Eq. (3.30) and
simplifying, we obtain

(
−ω2M + iωC + K

)
φ eiθ = F̌ eiψ. (3.42)

Equation (3.42) is indeed a complex system (due to the phase
angles), which can also be subdivided into real and imaginary
parts. Since in general the maximum amplitude and stresses are
sought, a phase sweep on θ (or ψ) is common practice.
Additionally, the phase angle at which the load lags the response
is φ− ψ.

A typical and very convenient approach in harmonic analyses
is to reduce the model order by employing only a subset of the
available natural modes. In this context, reduced order means
that instead of directly solving the large system conveyed by
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Eq. (3.42), only a few equations are considered. This is
accomplished by properly selecting some of the natural modes φ
previously obtained in the eigenvalue decomposition.
Subsequently, a linear combination of the individual contribution
of each of the selected modes provides the final displacement,
velocity and so forth. This procedure is named here
mode-superposition analysis. In general, the lower frequencies
contain most of the vibration energy and represent the most
relevant dynamics. That is, employing only the first natural
modes is usually enough for precise results with considerably
less computational resources. Additionally, several algorithms to
extract a subset of eigenvalues optimally are available (see,
e.g., [84]).

The number of modes to choose to span the solution space
should ensure that frequencies relevant to the problem are present.
Typically, one should include natural frequencies of at least one
and a half times the maximum external forcing frequency [80].
Additional indexes may also be employed, such as the modal
participation factor or the cumulative mass fraction. They will not
be discussed in detail here, but have been duly considered in the
computations to ensure reliable and accurate results.

3.2.1.4 Transient analysis
It is also possible to solve the dynamic system posed by

Eq. (3.30) directly in the time domain. Indeed, Eq. (3.30) is
numerically constructed for a single time step, here denoted6

with a superscript n, so that

MÜ
n

+ CU̇
n

+ KUn = Fn. (3.43)

The next step is to choose an adequate time march, which
approximates the time derivatives in Eq. (3.43). Since transient
analysis modeling is not the primary focus of this work, no
involved description of time discretization schemes will be

6Employing a superscript as time step notation is typical in solid mechanics. The
superscript n does not indicate the nth power of a matrix when referring to
transient analyses.
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presented, but only a few comments, which will also be valuable
for section 3.2.2. To illustrate, the central difference method
employs the finite difference approximations

Ü
n ≈ 1

∆t2
(
Un−1 − 2Un + Un+1

)
, (3.44a)

U̇
n ≈ 1

2∆t

(
−Un−1 + Un+1

)
, (3.44b)

where ∆t = tn − tn−1 is the time step employed. Plugging these
approximations into Eq. (3.43), we obtain the recursive numerical
form

M̂Un+1 = F̂
n
, (3.45)

with effective mass matrix M̂ and effective load vector F̂ given by

M̂ =

(
1

∆t2
M +

1

2∆t
C
)
, (3.46a)

F̂
n

= Fn +

(
2

∆t2
M−K

)
Un −

(
1

∆t2
M− 1

2∆t
C
)

Un−1.

(3.46b)

Equation (3.45) allows computing the displacement Un+1

considering only the information already available from the last
time steps Un, Un−1 and Fn. Time marches may be classified into
explicit and implicit according to how the effective mass matrix
M̂ is constructed. Explicit time marches are the ones where the
stiffness matrix K is not present on the LHS of the recursive form
(Eq. (3.45)), so that the effective mass matrix can be made
diagonal by condensing the terms properly. This diagonalization
decouples all degrees of freedom, so that no full inversion of M̂ is
needed to advance the time steps. However, explicit time
marches are in general conditionally stable, meaning that a large
enough ∆t makes the solution unstable (blow up) and invalid7.

7For completeness, the central difference method illustrated here is stable when
the time step is chosen so that ∆t < ∆tcrit = 2/ωmax, where ωmax is the
maximum natural frequency of all finite elements present in the mesh [78].
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On the other hand, implicit time marches can be constructed as
being unconditionally stable, that is, feasible irrespective of the ∆t

choice. This is a great advantage for the general user, who does not
have to worry about numerical instability (at least due to the time
discretization). Implicit marches require, however, at least one full
matrix inversion at every time step. Some of the most common
implicit integration techniques employed in elastodynamics are
the Newmark [85] and the generalized alpha [86] methods. More
complex approaches aiming at optimally reduce undesired (often
termed “spurious”) numerical oscillations are also available, both
in explicit and implicit forms (see, e.g., [87]).

Discretization schemes also possess an accuracy order, in both
time and space. It is related to the precision with which the
discretization solves the equations. If a scheme is said to be of
order O(∆tp) accurate in time, it means that changes in the
numerical error vary with power p of the time step ∆t. For
example, for O(∆t2), halving the time step produces errors
which are four times smaller.

In summary, transient analyses make no a priori linear
approximation to the dynamics problem and are able to model
complex unsteady phenomena. However, they come with their
own hurdles, such as high processing and memory costs,
initialization challenges and the possible presence of numerical,
non-physical oscillations. Just like for harmonic analyses
(section 3.2.1.3), transient computations can also be carried out in
a subspace spanned by the structure eigenvectors. Mode
superposition may then be a good strategy to perform unsteady
simulations in feasible computation time. Nonetheless, the
computational resources needed are still much higher than when
performing harmonic analyses.

3.2.2 Computational fluid dynamics

The discretization employed for the fluid domain is the finite
volume method. It is based on the integral form of the transport
equations presented in section 3.1.2, which are enforced on a local
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level, namely on finite volumes. Simply described, these units
consider averaged values of the solution within each local cell.
Additionally, finite-element shape functions are also used when
approximating the solution at integration points and calculating
gradients. The solver employed for the fluid dynamics
computations is Ansys CFX version 19.2 [80].

Each of the terms present in the transport equations (advection,
diffusion, gradients, transient) requires specific discretization
techniques. Their mathematical description will not be shown
here in detail, except for a couple of practical comments. The
main types of CFD simulations employed in this work will be
described in the following sections.

3.2.2.1 Steady state

Steady state solutions are desired when transient phenomena
are unimportant. In turbomachinery, they are often used to obtain
performance maps, as well as mean state quantities, such as flow
profiles or pressure distributions. They are also employed as
initial conditions for transient simulations.

The discretization of the advection terms (v ·∇f) in the
conservation equations is solved with a blended scheme. This
approach combines the robustness of the first-order upwind
scheme close to steep gradients, with second-order accuracy of
the central difference scheme in other regions (see, e.g., [88]).
With that, the blending scheme avoids artificial diffusion and
non-physical oscillations in the solution.

Although steady state solutions have no time dependency, they
are typically solved with a pseudo time march, so to accelerate
convergence. All steady state computations in this work are
performed so that high numerical accuracy is obtained. That
means specifically double machine precision, imbalances of at
most 5 · 10-6 for the conservation equations and root-mean-square
residuals always less than 10-5.

The software employed in this work to obtain the
turbomachinery grids is AutoGrid5 version 13.1, developed by
Numeca [89]. Multi-block, structured hexaedra meshes are
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Figure 3.3: Sample CFD grid with rotor and stator, with surface of finite
volumes visible.

generated, with blade-to-blade topology O4H. A sample mesh for
a stage is shown in Fig. 3.3, where edges of the finite volumes on
solid surfaces are drawn with black lines.

A relevant aspect when simulating viscid flow is the modeling
of boundary layers. Although other types of boundary layers exist
(such as thermal or species concentration), we will concentrate
the analyses on the velocity field. Due to high velocity gradients
close to walls, adequate treatment of flow quantities and grid
generation in these areas is critical. Following Fig. 3.4, multiple
experiments, mostly based on Couette flows, have assessed the
relation between the normalized velocity parallel to smooth walls
(U+) and its normal distance to the wall (y+).

Three specific regions in Fig. 3.4 are of interest: (i) the viscous
sublayer, where y+ < 5 and the shear stress is approximately
constant; (ii) a transition or buffer layer, roughly for 5 < y+ < 30;
(iii) the log-law layer, for y+ > 30, where the following empirical
relation is generally employed
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U+ =
1

κ
ln(E y+), (3.47)

where the von-Kármán coefficient κ ≈ 0.4 and E ≈ 9.8 are
constants for turbulent flows past smooth walls [90].

Customarily in CFD, two approaches are employed concerning
boundary layer flow. The first one requires no detailed grid
modeling of the boundary layer, the velocity close to the walls
being bridged with functions such as Eq. (3.47). For that, the first
grid cell should be located in the log-law layer; placing it in the
buffer layer hinders the solution’s quality, since no reliable model
is available for this region. It is clear that this strategy saves
memory and processing resources by reducing the size and
complexity of the numerical domain.

In the second approach, the boundary layer is solved in detail
and no direct correction must be applied. It comes, however, with
higher computational efforts and meshing requirements such as

Figure 3.4: Turbulent boundary layer and models for flows close to
smooth walls. U+ and y+ are respectively the normalized velocity
parallel to the wall and the normal distance to the wall. Here, U+ = U/uτ
and y+ = yρuτ/µ, with the wall friction velocity given by uτ =

√
τw/ρ,

for wall shear stress τw [90].
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an adequate amount of near-wall cells, a small expansion ratio
etc. Here, the first cell should be located in the viscous sublayer,
with a good-practice nondimensional wall distance of y+ ≈ 2 or
less. All simulations performed in this work model all boundary
layers in detail, in order to obtain high-quality results especially
when extracting wall loads for aeroelastic analyses.

3.2.2.2 Transient analysis

The time march employed in the fluid solver is a combination
of second and first order backward Euler methods. Both schemes
are implicit, unconditionally stable and conservative in time.
That means that no discretization parameter (such as the CFL
number [91]) must be explicitly constrained to ensure stability.
Second order backwards Euler is employed most of the time for
higher accuracy. However, since it is not monotonic, variables
that must remain bounded, such as turbulent quantities, are
solved with the first order discretization.

Similarly to the discussion leading to the recursive form for
time marches in the solid domain, an analogous relation to
Eq. (3.45) is obtained for the fluid, based on the transient
conservation equations derived in section 3.1.2. This relation is
encapsulated by

AX = b, (3.48)

where X contains the fluid independent state variables, A is the
coefficient matrix and b a load vector. The solver employed in this
work is a coupled solver, meaning that Eq. (3.48) is directly solved
employing matrix factorization techniques. This direct approach
contrasts with segregated solvers, which initially solve, e.g., the
momentum equations with a guessed pressure, whose value is
then corrected in a second computation step. Segregated solvers
require substantially more iterations to achieve final convergence
than coupled methods.
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3.2.2.3 Fourier transformation and nonlinear harmonic balance
When a specific known frequency is present in a

turbomachinery problem (such as blade passing or vibration), the
Fourier transformation8 and the nonlinear harmonic balance
(NHB) methods may be employed to reduce computational
efforts significantly. They allow not only the modeling of fewer
passages (sometimes only two, instead of the whole annulus), but
also a substantial reduction in convergence time.

The Fourier transformation “time-domain” approach for
turbomachinery employed in this work is based on the method
proposed by [92]. It assumes a harmonic variation of the flow
quantities on the periodic boundaries of the modeled blade/vane
sector. Afterwards, an update procedure is carried out at every
time step, until Fourier convergence in these periodic boundaries
is achieved. Extensions of the technique for multiple disturbances
with uncorrelated frequencies were presented by [93, 94], among
others.

Differently from the Fourier transformation, the NHB works in
the frequency domain. [95] developed the first application of the
NHB method for oscillating blades, decomposing the flow as

X = X̄ + X′, (3.49)

where the vector with independent variables X is split into a
time-averaged part X̄ and a small-perturbation part X′. After this
approximation is substituted into the conservation equations, and
the time average is taken, new terms appear (similar to the
Reynolds stresses v′ ⊗ v′ described in section 3.1.2.3, for RANS
turbulence models). These new terms, named “unsteady” or
“deterministic stresses” [96], are evaluated by solving the system
of equations for the perturbations X′, assuming that the
perturbations themselves vary harmonically.

8What is meant by “Fourier transformation” in this section is not simply a Fourier
transform of the transient solution. It indeed employs Fourier transforms,
however in a more involved way, which will not be detailed in this work.
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This NHB approach solves the closely-coupled time-averaged
and perturbation equations simultaneously. This is achieved by
employing typical pseudo time marches readily available in
steady state CFD codes. That is, through the NHB, a single
system of unsteady flow equations is broken down into several
“steady state” systems, which are then solved until the desired
convergence criteria. The number of systems to be solved is
related to the number of harmonics chosen. More specifically, if
Nh harmonics are desired, the total number of “steady state”
systems in the corresponding NHB computation will be 2Nh + 1.
This increases memory requirements but decreases the processing
time substantially.

Finally, the NHB formulation employed here was implemented
following the framework from [97]. In comparison to the method
from [95], the cross coupling terms between different
perturbation harmonics are retained. This approach not only
increases the accuracy of the solution by considering high-order
coupling effects, but also makes the evaluation of turbulence
transport equations easier.

For both the Fourier transformation and the NHB methods,
proper convergence must be achieved. In the Fourier
transformation case, periodic convergence criteria similar to
transient analyses are employed. For the NHB case, since it
consists of parallel steady state computations, corresponding
residuals and imbalances are adequately controlled. In both cases,
independence studies are performed to make sure the
discretizations are good enough.

More specifically for aerodynamic work computations, similar
assessments must be conducted regarding the chosen blade
displacement level in the CFD simulations. On the one hand, no
excessive, unfeasible mesh deformation should occur, which
would lead to negative-volume cells and invalid results. On the
other hand, for modal normalization, the mesh displacement
scaling factor must fall within the quadratic range (given by q in
Eq. (2.12)). Therefore, care was also taken when selecting the
mesh displacement scaling factor.
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3.2.2.4 Turbulence modeling
Section 3.1.2.3 has provided the general characteristics of

turbulence and delineated the major numerical approaches of
dealing with turbulent flows. This section briefly presents a
couple of turbulent models relevant for turbomachinery flows.
This list is far from exhaustive, with new models and
improvements on existing ones being constantly published in the
turbulence research community. It is out of the scope of this work
to discuss all turbulence models and their equations in depth,
with valuable references given in section 3.1.2.3.

Some of the turbulence models most commonly employed for
turbomachinery are based on the Boussinesq assumption for the
eddy viscosity [98]. It states that the Reynolds stress tensor τR is
linearly related to the traceless strain rate tensor, that is,

τR = µt

(
∇v + ∇vT − 2

3
(∇ · v) δ

)
− 2

3
ρkδ, (3.50)

where the linear constant µt stands for the turbulent eddy
viscosity.

The Spalart-Allmaras model, originally proposed by [99] for
wall-bounded flows, computes one extra transport equation to
account for the eddy viscosity µt. Its implementation simplicity
and good performance makes it a very popular model in
aerospace and turbomachinery applications.

Other models employ two equations concerning the turbulence
transport. The k-ε model from [100] casts one transport equation
for the turbulent kinetic energy k and another for its dissipation
rate ε. This approach attempts to improve on mixing-length
models, working well for planar shear layer flows. However,
areas with large adverse pressure gradients are not accurately
modeled.

The k-ω model also computes the turbulent kinetic energy k,
but employs the specific rate of dissipation ω as the second
transport equation, which corresponds to the frequency of the
large eddies [101]. This model has good predicting capabilities
for large adverse pressure gradients and separated flow.
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An attempt to achieve “the best of both worlds” was the
development of the shear stress transport (SST) model by [102]. It
combines the good capabilities of the k-ε model, for flows far
from the walls, with the advantages of the k-ω model, for
low-Reynolds areas close to walls and separating flow. The shear
stress transport model is used throughout this work, due to its
flexibility when modeling complex unsteady flow, and wide
acceptance in the turbomachinery community (see,
e.g., [103–108]).

More involved closure models avoiding the eddy-viscosity
assumption given by Eq. (3.50) compute all components of the
Reynolds stress tensor with dedicated transport equations. These
models are termed Reynolds stress models and are able to
include turbulence anisotropy. However, they require much more
computational resources and are in general still dependent on
(empirical) closure constants.

Finally, models demanding even more computational resources,
such as large eddy simulation (LES), slowly find their way into
the turbomachinery research community. They employ a filtered
version of the Navier-Stokes equations, consequently selecting
specific large spatial scales to be numerically solved, while the
small scales and eddies are modeled. The Smagorinsky–Lilly
subgrid-scale approach [109, 110] is a common choice, where the
grid length itself is used to construct the filters. Hybrid setups
combining RANS and LES seem to be a feasible strategy to avoid
the high costs of LES in high Reynolds regimes (e.g. [111]).

3.2.3 Computational fluid-structure interaction

The underlying equations connecting the fluid and solid
domains were presented in section 3.1.3. Namely, two constraints
are necessary for domain compatibility: kinematics, matching the
interface displacements/velocities and dynamics, matching the
interface forces. Focusing specifically on aeroelastic phenomena
in turbomachinery, chapter 2 also mentioned how the structural
dynamics are affected by the flow field (and potentially
vice-versa).
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From the computational modeling point of view, different
approaches to dealing with unsteady multiple domains are
possible. They vary in the physical interpretation of the problem
and implementation complexity, with the availability of
computational resources playing a decisive role. A couple of
terms regarding the classification of FSI problems will be initially
clarified. In general, these terms describe strict time-domain FSI
techniques.

A FSI setup is called monolithic9 when the discretization
method is the same for both fluid and solid domains [112]. In this
approach, both domains are solved simultaneously, in a single
global equation system. One the one hand, the solver
implementation is simplified and stability is enhanced by
marching all domains in time simultaneously [113]. On the other
hand, the global system matrix becomes often ill-conditioned,
due to the different order of magnitude stiffness present in both
domains [114]. Typically, the structure requires smaller time steps
than the fluid, since the wave propagation velocities for the solid
(Eqs. (3.8)) are higher than for the fluid domain (Eq. (3.23)).
Employing different time steps (subcycling) is also not
convenient for monolithic setups. Finally, memory requirements
may be higher, since both systems’ unknowns must be
simultaneously stored.

In contrast, FSI partitioned10 schemes aim at combining the
advantages of structural and fluid solvers in the same simulation.
Due to the availability of optimized methods tuned for each of
the domains, a partitioned approach seeks “the best of both
worlds” by flexibly solving each domain separately and then
employing fixed-point iteration at each time step to ensure
numerical convergence [19]. Temporal subcycling may be then
straightforwardly employed. Additionally, the mesh for each
domain can be independently generated, suiting as best as
possible the physics and numerics of each media.

9Sometimes termed direct or simultaneous.
10Also known as iterative, staggered, segregated or time-lagged.
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Partitioned schemes are further characterized as loose or tight,
or conversely weak or strong. When two domains are solved
staggered, there is no a priori guarantee that the initial guess
(within a single time step) for the solution on the boundary
between fluid and solid is indeed the correct guess. A FSI scheme
is termed loose/weak when there is no procedure guaranteeing
that these predicted values are indeed correct at every time step.
Loose schemes may accumulate errors and should be used with
care to prevent instabilities [115]. In contrast, tight/strong
approaches usually implement after the “prediction” step a
“correction” loop within every time step to guarantee, up to a
predetermined convergence level, that the solved values in the
common boundaries match [116, 117]. The discussed FSI
denominations may vary in the literature, especially when
explicit/implicit descriptors are taken into account.

Regarding FSI in turbomachinery environments, monolithic
approaches are rarely employed. Furthermore, the use of
partitioned, strongly coupled schemes is still notably restricted to
selected research endeavors, still far from the established design
practices in the industry. A much more common approach is the
so-called one-way coupling, which consists in a special case of
loosely coupled schemes. One-way FSI assumes that the solution
for one of the domains (e.g., the solid) is affected by the other (the
fluid), but not vice-versa. In contrast, a two-way coupling
constantly considers the boundary interaction between both
domains.

3.2.3.1 Harmonic forced response

A specific approach to deal with the interactions between fluid
and solid in turbomachinery environments will be delineated in
this section. It is called here harmonic forced response, although
it may assume different denominations in the literature. Focus is
given to this setup since it will be employed in this work to assess
the aeroelastic effects of PGC on the compressor blades.

Differently from the two-way, strongly-coupled FSI techniques
described above, the fluid and solid domains are modeled
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separately, employing both time- and frequency-domain
methods. Figure 3.5 shows the harmonic forced response
workflow employed in this work.
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Figure 3.5: Harmonic forced response workflow employed in this work.

Methods from both CSM and CFD are employed at different
steps. Once adequate geometries and operating conditions are
available, the starting point are static analyses (section 3.2.1.1),
which include mean flow loads and centrifugal forces from
rotation. The results are then transferred to (pre-stressed) modal
analyses (section 3.2.1.2), which provide the natural frequencies
and modes for the simulated case, commonly presented in
Campbell and interference diagrams (sections 2.3.1 and 2.3.2).

The natural frequencies and modes are then used as input to
perform Fourier transformation and nonlinear harmonic balance
computations (section 3.2.2.3). Here, the blades are set in periodic
motion matching specific natural modes. For these computations,
it is assumed that the fluid exerts no unsteady influence in
changing the blade eigenfrequencies, which is a typical
hypothesis for solid metal blades (as the ones modeled in this
work), possessing much higher stiffness than the surrounding
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fluid [118]. This step estimates the aerodynamic work (Eq. (2.11)),
and with it the aerodynamic damping.

In parallel, steady state CFD simulations (section 3.2.2.1) are
followed by unsteady runs (section 3.2.2.2), which generate the
transient loads on the blade surface. The blades are treated here
as rigid bodies, not being displaced by the fluid loads. The
unsteady loads are then cast in the frequency domain by using
Fourier transforms. Here, the unsteady performance of the
turbomachinery component and the unsteady damping (to be
discussed in section 5.1) are also evaluated. The unsteady data
may also be interpreted in detail with data-driven
decompositions (presented in sections 3.3.2 and 3.3.3).

At this point, harmonic response analyses (section 3.2.1.3) can
be performed. They need three inputs from the previous steps: (i)
the natural modes, so that mode-superposition can be used to
reduce the model order; (ii) aerodynamic damping in the form of
modal damping ratio (Eq. (2.12)); (iii) loads in the frequency
domain from unsteady CFD. Additionally, when present,
mechanical damping (sections 2.4.1 and 2.4.2) may also be
included in the total damping.

As results from harmonic response analyses, we obtain the
displacements, strains and stresses experienced by the blade
subject to the simulated operating conditions, damping and
unsteady loads. Usually, the maximum values obtained by phase
sweeps are the most relevant quantities.

Finally, following failure criteria considerations (section 2.7),
Goodman and similar relations enable an estimate of the blade
life in operation, particularly under the unsteady loads simulated.
The results presented in this work, however, do not focus on
failure criteria. Ultimately, crack estimation, among other
methods, can be performed numerically and experimentally to
aid in optimally operating and maintaining the engine. Of course,
if fatigue issues arise, which are not tolerable in operation,
redesign of the system or loads may be necessary.

Since one of the goals of this work is to assess how PGC
influences the unsteady operation and aeroelastic behavior of
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turbomachinery, its implementation is indicated in green in
Fig. 3.5. Specifically, PGC disturbances are introduced as
boundary conditions into the unsteady CFD computations,
changing performance results, but also the loads for harmonic
response analyses. Along this work, unsteady results at
undisturbed (or baseline) and PGC-disturbed conditions will be
constantly contrasted.

The methodology described here and summarized in Fig. 3.5
employs most of the mathematical and numerical models
described more extensively in the previous chapters and sections.
Although well established when estimating forced response in
turbomachinery, this approach is not the only one available.
Another one is the energy method for forced response, developed
by [39, 119]. This method assumes a linear scaling of the forcing
work (performed by the fluid on the blade) with vibration
amplitude and a quadratic scaling of the damping work at
resonance. Once these two quantities are computed, an
equilibrium may be found, which yields the final vibration
amplitude of the blade. The energy method for forced response
has been validated with satisfactory results (see, for instance,
[21, 120, 121]).



68 3. Theory and methods

3.3 Data-driven decompositions

3.3.1 Fourier analysis

Fourier analyses are employed in several phases in this work.
Not only they play an elemental role in more involved techniques
(such as the Fourier transformation and the harmonic balance
techniques shown in section 3.2.2.3), they also are used to obtain
the harmonic loads of unsteady force distributions for harmonic
forced response (section 3.2.3.1). Additionally, Fourier analyses
are indispensable whenever the frequency signature of a time-
domain signal is necessary.

For a function f(t), where the variable t is often but not
necessarily the time, its continuous, direct Fourier transform f̂ is
customarily defined by

f̂(ω) ,
∫ ∞

-∞
f(t) e-iωt dt, (3.51)

where ω is the angular frequency. The inverse Fourier transform
recovers the original function, and is given by

f(t) =
1

2π

∫ ∞
-∞

f̂(ω) eiωt dω. (3.52)

For numerical data, a discrete version of the Fourier transform
is utilized, where the integrals in Eqs. (3.51) and (3.52) are
substituted by finite sums over limited periodic intervals. Several
methods able to efficiently perform discrete Fourier transforms
are available. They are known as fast Fourier transform (FFT)
algorithms (see, e.g., [122]), and are always employed in this
work when Fourier transforms are executed.

Since Fourier analyses are commonplace in most engineering
workflows, no exhaustive discussion will take place here.
Mathematical aspects such as existence, properties and aliasing
considerations are given, e.g., by [123].
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3.3.2 Proper orthogonal decomposition

The proper orthogonal decomposition (POD) optimally
extracts spatially orthogonal modes from a field. The data can
stem either from experiments or simulations. POD was
introduced in different research areas and times independently,
and is also known as principal component analysis in statistics,
Karhunen-Loève decomposition, singular system analysis,
empirical orthogonal functions, among several other
denominations [124–129]. It was specifically engaged in assessing
turbulence and coherent structures by [130], whereas the reader is
referred to [131, 132] for comprehensive theoretical aspects.

The POD algorithm implemented in this work starts with the
construction of a snapshot matrix X ∈ Cm×n for a specific state
variable (e.g., pressure p, velocity v or vorticity ∇× v). If desired,
the temporal mean flow can be subtracted from each row of X ,
to work only with the field fluctuations. Differently from the
transient notation given in section 3.2.1.4, the time step index
is written in this section as a subscript. That is, each column
Xj contains the field X arranged as a vector11, at time step (or
snapshot) j, so that

X ,

X1 · · · Xj · · · Xn

 , (3.53)

where j = 1, . . . , n and n is the total number of time steps in the
analyzed data batch. The amount of rows m corresponds to the
number of discrete spatial points in the field. In sequence, a
singular value decomposition (SVD) of X is performed as

X = UΣV∗, (3.54)

where the left singular vectors U ∈ Cm×m are the POD spatial
modes (topos), Σ ∈ Cm×n the singular values in diagonal form
and the right singular vectors V ∈ Cn×n the temporal structures
11For vectorial state variables (e.g. velocity), each of their components may be

subsequentially allocated in the same vector X.
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(chronos) [133]. The superscript ∗ indicates conjugate transpose. If
the mean is not subtracted, the first row of U contains the average
flow of the analyzed data, corresponding to the largest singular
value of Σ, which is customarily at least one order of magnitude
higher than the other singular values. The matrices U and V are
unitary, that is,

U∗ = U-1, V∗ = V-1. (3.55)

In some situations, the method of snapshots [134] is preferred.
For that, first we construct the correlation matrix X TX and then
an eigenvalue problem is solved, obtaining as eigenvectors the
same matrix V and eigenvalues λj = Σ2

jj . Conversely with the
“classic method”, an eigendecomposition of XX T yields as
eigenvectors U, sharing the same eigenvalues λj . Since in most
cases the number of spatial points is much higher than the
number of snapshots (i.e., m� n), X TX is usually much smaller
than XX T , favoring the use of the snapshot method over the
classic12.

Employing either the SVD or correlation matrices approach, it
is in general possible to obtain a reduced number of singular
values (and therefore a subset of eigenvectors). In the SVD case,
this concept is called economy-sized SVD. This not only makes the
computation of the POD modes substantially faster, but also
enables a reconstruction of the original field in a lower rank
manifold. The reconstructed (or approximated, if a lower rank
n′ < n is adopted) field X ∈ Cm×n is obtained by

X = U
(
U∗X

)
= U C, (3.56)

where C , U∗X ∈ Cn′×n is the time coefficient matrix,
multiplying the (low-rank) POD modes U ∈ Cm×n′ . Note that
n′ = n⇒ X = X and U = U. The formulation given by Eq. (3.56)
encapsulates the straightforward field reconstruction idea behind
the POD. Additionally, the orthogonality of the spatial modes is
very attractive for Galerkin approximations (see, e.g., [135]).

12The double j in Σjj refers simply to matrix indexing, specifically the terms in the
diagonal of Σ. That is, this expression implies no repeated-index summation.
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The denomination “data-driven” arises from the fact that the
POD is applied in a post-processing fashion, independently on
how the original data was measured or computed. That is, no
prior knowledge of the system operator is needed as input.
Among all possible low-rank approximations, the POD is the
linear decomposition that retains the most energy as possible in
the generated subspace (i.e., it is optimal in the L2 sense [131]).

Indeed, if X represents a turbulent velocity field, λj
corresponds to twice the average kinetic energy of mode j. If X is
the vorticity field, then ranked enstrophy is obtained, shedding
light into energy cascades in large-scale turbulence and the
transfer of vorticity intensity among wavenumbers [136]. The
POD L2 optimality can be harvested to identify relevant flow
structures, which are in general discernible in the first (highly
energetic) POD modes.

Although velocity and vorticity fields are typically
decomposed (due to their direct relation to intuitive physical
functionals), assessing other fields such as pressure, mass flow or
helicity enables us to enhance our understanding of important
flow features described by diverse state variables, and with
which energetic intensity these features “decay” in a POD.

In summary, obtaining a reduced number of singular values
(and corresponding modes) sorted by magnitude – which is
straightforward with modern subspace decomposition
techniques – promotes a deep understanding of the most
significant flow features; it also enables reconstructing the
unsteady flow retaining the most energy as possible from all
linear decompositions.

3.3.3 Dynamic mode decomposition

Like the POD, the dynamic mode decomposition (DMD) is also
a data-driven decomposition, often employed to analyze
unsteady fluid dynamics. It may be understood as a
numerically-oriented development of the Koopman spectral
theory [137]. It was initially defined as an algorithm by [138],
whereas the connection to the Koopman operator under certain
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conditions was provided by [139]. Rich theoretical and numerical
discussions about the DMD are presented by [132, 140, 141].

The “standard” definition of the DMD will be provided here,
whereas a more comprehensive framework has been suggested
by [141]. Referring back to the POD snapshot matrix from
Eq. (3.53), the DMD requires the assembling of two similar
matrices, shifted by one time step. They are given here by

Y ,

X1 · · · Xj · · · Xn-1

 , (3.57a)

Z ,

X2 · · · Xj · · · Xn

 . (3.57b)

Observe that the matrix Y ∈ Cm×(n-1) is defined here simply as
the POD snapshot matrix X (Eq. (3.53)) lacking the last column Xn.
Similarly, Z ∈ Cm×(n-1) corresponds to X with the first column
X1 removed.

The relation between Y and Z is conveyed by a “time-shift
operator” A ∈ Cm×m, which in the linear time-invariant case
represents a tangent approximation, so that

Xj+1 = A Xj or Z = AY . (3.58)

Indeed, the DMD can be defined (see [141]) as computing the
best-fit linear operator A for Eqs. (3.58), equivalently to

A = Z Y+, (3.59)

where the superscript + represents the Moore-Penrose inverse,
a generalization of matrix inversion [142]. What is meant by
best fit is that the operator A given by Eq. (3.59) is the optimal
solution when minimizing the error ||Z −AY ||F in the Frobenius
norm [143].
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Two procedures to obtain the DMD modes will be mentioned:

(i) QR-decomposition: the DMD construction originally given
by [138] defines the full snapshot matrix X as a Krylov
sequence [144], which can be written as
X =

[
X1,AX1,A2X1, . . . ,An-1X1

]
. This relation is based on

the assumption of a constant mapping A between snapshots
Xj . Additionally, increasing the number of snapshots
(columns of X ) will improve the dynamic characterization
of the system up to a certain “saturation point”, when the
vectors Xj become linearly dependent. However, before
they become linearly dependent, a residual r vector can be
according to the expression

Z = AY = YS + r eTn-1, (3.60)

where en-1 is the unit vector. S is a companion matrix
containing the linear dependency coefficients relating the
last snapshot to all previous snapshots. Subsequentially, we
cast the snapshot matrix in the form Y = QR and then
perform a QR decomposition as AQ ≈ QH, with
H = RSR-1. Now we can obtain the companion matrix
S = R-1QTQR = R-1QTY , and then compute its
eigendecomposition. The main idea is that the eigenvalues
(Ritz values) of S approximate some of the eigenvalues of A.
The eigenvectors of S, given here by W, are projected into
the snapshot matrix Y to obtain the DMD modes Φ from

Φ = Y W. (3.61)

(ii) SVD: this approach aims at improving potential
ill-conditioning arising from the QR-decomposition (i). We
start by employing an economy-sized SVD (Eq. (3.54))13 to
the snapshot matrix Y , i.e., Y = UΣV∗. Substituting this
expression in Eq. (3.60) we obtain

Z = AUΣV∗, (3.62)

13The overbar for low-rank matrices (see Eq. (3.56)) will be dropped for simplicity.
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which can be premultiplied by U∗ and postmultiplied by
VΣ-1. Due to the orthogonality of U and V (Eqs. (3.55)) and
the fact that ΣΣ-1 = δ, we obtain

U∗AU = U∗ZVΣ-1 , S̃, (3.63)

where the newly defined matrix S̃ ∈ Cn′×n′ is related to A
and S via similarity transformations14. This is the key idea
behind this similarity transformation, which allows us to
work with a low-dimensional matrix S̃ instead of the high-
dimensional original operator A.

Additionally, Eq. (3.63) allow us to understand S̃ as the
correlation between the POD spatial modes U with their
time-shifted counterpart AU. Thus, the intrinsic properties
of S̃ directly characterize the system dynamics.

Similarly to the procedure with the companion matrix S, an
eigendecomposition of S̃ is performed, obtaining
eigenvalues λj (diagonal entries of Λ) and eigenvectors w̃j

(columns of W̃). Finally, the so-called projected DMD modes
are given by

Φ = U W̃. (3.64)

The SVD formulation to obtain the DMD modes has been
employed in this work, to improve robustness. However,
computing the residual r from the QR-decomposition
(Eq. (3.60)) is also helpful when determining how
converged or “saturated” the dynamic system is, and
whether or not more snapshots may be necessary15.

14Matrices related by similarity transformations share the same eigenvalues
and eigenvectors (although the eigenvectors are given in different coordinate
systems). Note that the main advantage of employing an economy-sized SVD
with n′ � n is elegantly reflected in the reduced size of S̃, which will then
represent the system dynamics instead of A.

15A supplementary definition provided by [141], known as exact DMD modes, is
given by φj = λ-1

j ZVΣ-1w̃j , valid only for λj 6= 0. Although it may be more
flexible for some special types of input, it produces the same DMD modes as
Eq. (3.64) when the column spaces of Y and Z coincide.
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Once the DMD modes have been obtained by Eq. (3.64),
relevant information about the dynamics of the system is also
available. The discrete-system eigenvalues of S̃, organized in the
diagonal matrix Λ, indicate the stability of the dynamical system.
They are complex variables, and if |λj | > 1, the corresponding
DMD mode φj = Yw̃j is termed unstable, i.e., its amplitude
grows in time. Conversely, stability is expected if |λj | < 1. The
neutrally stable case when |λj | = 1 refers to so-called “saturated”
modes, which cluster around the unit disk, indicating that the
nonlinear process manifested in the analyzed data converges
towards a linear representation [145].

The DMD discrete system can also be cast in a corresponding
continuous counterpart. For that, the continuous-system
eigenvalues µj correlate to the discrete-system eigenvalues λj as

µj =
log(λj)

∆t
. (3.65)

When employing continuous-system eigenvalues, the stability
criteria change accordingly. Stability is achieved if their real part
is negative, i.e., <(µj) < 0. Conversely, instability is presumed for
<(µj) > 0. The liminal case becomes <(µj) = 0. Additionally, the
linear frequency fj (e.g. in Hz) of DMD mode j is extracted from
the imaginary part of the continuous-system eigenvalues as

fj =
=(µj)

2π
. (3.66)

Equation (3.66) indicates that each DMD mode has one single
frequency fj . That is, the spatial structure φj linked to the mode j
oscillates (with a decay or growth rate) with a specific periodicity.
This is a special feature of the DMD, contrasting with the POD
modes U which, although orthogonal in space, oft accommodate
mixed frequencies in their spectra.
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To illustrate these properties, sample continuous- and
discrete-system eigenvalues are depicted in Fig. 3.6, for a
decomposition of a representative turbomachinery unsteady CFD
case. Since both representations are equivalent, from now on only
the continuous-system eigenvalues will be displayed. Each DMD
mode is represented by a sphere, whose position indicate the
frequency and level of dynamic (in)stability. More specifically, in
the continuous case (left plot), the more towards the left, the
higher the stability; in the discrete case (right plot), stability
increases towards the origin of the unit circle. The symmetry in
the imaginary plane is due to the fact that the snapshot data itself
is real [138]. Additionally, according to Eq. (3.66), the imaginary
part of the continuous-system eigenvalues can be also
understood (or plotted) as the DMD mode frequency.
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Figure 3.6: DMD eigenvalues depicted on the complex plane for
a representative turbomachinery unsteady CFD computation. Left:
continuous-system eigenvalues λ. Right: discrete-system eigenvalues µ.
The coherence metric is computed as the projection of each DMD mode
into the POD spatial modes.

The color and size of each DMD mode in Fig. 3.6 depict the
modal coherence metric. Spatiotemporal coherent structures are
(usually large-scale) flow features that persist long enough to be
statistically measured, and typically contain high energy. They
reveal relevant information arising for instance from turbulent
behavior, flow instabilities or stable eddies (see, e.g., [131] for a
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rich discussion). The DMD modal coherence metric employed in
this work is computed for mode j as ||φTj U||, that is, the DMD
modes φ are projected into the POD spatial modes U, and the
norm is taken [138]. The coherence absolute magnitude will not
be shown in the results, since the most significant information is
the relative value between the DMD modes.

For completeness, just like the POD, the DMD also allows field
reconstruction with the obtained modes. This is achieved with
the discrete data as

Xj ≈
n′∑
k=1

φkλ
j-1
k bk = ΦΛj-1b, (3.67)

where b is a vector with initial coefficients (i.e., initial coordinates
of X), which is computed as b = Φ+X1. The exponentiation
matrix of the DMD eigenvalues Λj-1 is known as the
Vandermonde matrix. Note that the summation stops at the
desired reduced order rank n′, with n′ ≤ n.

Analogously to Eq. (3.67), it is possible to write a continuous
form of the DMD reconstruction as

X(t) ≈
n′∑
k=1

φke
µktbk = Φe(µt)b, (3.68)

which allows the computation of the best-fit linear dynamics
Xj+1 = A Xj for arbitrary time t. Equation (3.68) is indeed the
general solution for the continuous flow map dx/dt = A x, for a
linear operator A.





4
PRESSURE GAIN

COMBUSTION
This chapter presents the state of the art in pressure gain combustion
and considerations about its integration with gas turbines
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4.1 Background

The conventional thermodynamic model of a gas turbine or
aero engine includes a steady constant-pressure (isobaric) heat
addition process, encompassed by the Brayton (or Joule) ideal
cycle. In reality, the stagnation pressure losses observed in actual
operation of combustion chambers show that the real heat
addition is rather a pressure-loss process (approximately 4% to
7% of the total stagnation pressure [146]), decreasing the overall
efficiency of the engine.

These losses linked to the combustion process are
acknowledged by [147] to be the main exergy destruction source
for long-range turbofans. That is, an improvement potential even
higher than diminishing losses in the core exhaust or bypass flow
can be achieved by enhancing the efficiency of heat addition.

Therefore, the replacement of typical pressure-loss combustion
by approaches increasing the total pressure has regained much
attention recently. In this work, these methods will be broadly
termed pressure gain combustion (PGC). Although the concept has
long been present in the gas turbine development (as in the
pioneer Holzwarth “explosion” engine [148]), several new
research initiatives have been recently established to dominate
PGC and develop technological applications.

A working definition for PGC has been given by [149] and
further adapted as

[a] fundamentally unsteady process whereby gas
expansion by heat release is constrained, causing a rise
in stagnation pressure and allowing work extraction
by expansion to the initial pressure [150].

One of the two key aspects in this definition is the spatial
constraint during the heat release process. It can be ideally
achieved by either fixing the expansion volume (isochoric
combustion) or accelerating the process so intensely so that not
enough time for gas expansion is available (e.g., with detonation
waves) [151].
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Before presenting some of the contemporary PGC-specific
approaches in section 4.2, some introductory qualitative remarks
about their thermodynamic efficiency are fruitful. As a
motivation, we start by comparing the standard thermodynamic
ideal cycle for gas turbines with novel PGC methods. Figure 4.1
presents, beyond the classic Joule, the Humphrey and the
Zeldovich/von Neumann/Döring (ZND) cycles in a T-s diagram.
These surrogate respectively an isochoric and a detonation
combustion.

The Humphrey cycle, due to the isochoric heat addition,
increases the effective divergence rate between the heat addition
(states 3 to 4) and heat removal (states 10 to 0) curves. This
change amplifies the area contained within the state lines,
increasing work extraction. When modeling PGC with the ZND
model, even higher efficiencies may be achieved, due to lower
entropy production during the combustion process.

s

T ZND
Humphrey
Joule

0

3

3a

4
4

4

10
10

10

5

Figure 4.1: Thermodynamic cycles modeling gas turbine operation in
a temperature-entropy (T-s) diagram, including PGC. Numbering of
thermodynamic states based on [152].

The second critical aspect of the previously presented PGC
definition [150] is its unsteadiness. To date, all practical attempts
to achieve a pressure gain in combustion employed unsteady
mechanisms, in contrast to steady combustion with constant
injection of fuel in traditional gas turbines. Unsteady combustion,
however, brings several challenges. Not only from the
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aerodynamic, but also from the aeroelastic point of view, since
the whole engine structure must withstand the arising vibrations.
Furthermore, the safe operation of all engine components must
be ensured under these novel unsteady combustion regimes.

4.2 State of the art
Four selected PGC genres, more intensively pursued by

researches in the last decades, will be outlined in the next
sections: pulse detonation combustion, rotating detonation
combustion, shockless explosion combustion and wave rotor
combustion.

4.2.1 Pulse detonation combustion

Before properly linking the use of detonation combustion
concepts with gas turbines, it is important to mention the classic
pulse detonation engine (PDE) as a thrust propulsion system
itself. In contrast to conventional aeronautical engines such as
turbojets or turbofans, which employ a deflagration combustion
process, the PDE is characterized by a detonation mechanism. A
detonation (as opposed to deflagration1) generates supersonic
shock waves that propagate through a reactive mixture with a
velocity ranging from 1 km/s to 4 km/s [153]. Indeed, the energy
that maintains the shock wave is obtained from the highly
exothermic chemical reactions. As a second main characteristic,
PDEs are inherently unsteady; in fact, [154] have shown that
trying to stabilize a detonation as a stationary wave is not
practicably feasible for propulsion.

An introductory description of the pulse detonation cycle is
given here, whilst further details can be found on referenced
work. Figure 4.2 depicts the three main phases of a descriptive
detonation cycle: fill, fire and purge. In the first phase, a fuel-air
mixture is laded into the tube (the combustion chamber); the
duration of this process depends on the volume of the tube, inlet

1The PDE differs from the well-known pulsejet engine, in the sense that the
pulsejet employs a deflagration combustion process, although still unsteady.
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pressure, among other parameters. The second phase can be split
into four sub-phases: ignition, deflagration to detonation
transition (DDT), detonation and blow down; now, fuel
characteristics and the DDT mechanism are the major
determiners of time scales. Finally, the purge phase follows,
acting as an exhaust step in the cycle.

1.Mix Fuel/Air and Fill Chamber

2.Ignition

3.Deflagration to Detonation Transition

4.Detonation

5.Blow Down

6.Purge

Figure 4.2: General description of a pulse detonation cycle [155].

A broad review on the PDC propulsion topic and its historical
and technological evolution is given by [156], including physical
and chemical descriptions. Considerations are given for gaseous
and heterogeneous detonations, DDT achievement, detonability
limits and nonideal cycle losses, including supporting
experimental studies performed so far. Several design concepts
have been proposed, among which valved and valveless, with
predetonator, multitube and resonator, but also some unusual
configurations, such as pulse-blasting, stratified charge and dual
fuel. [156] also highlight some of the challenges still to be
overcome by the PDC for propulsion purposes, for instance:
detonation initiation with low-energy sources, proper mixing
enhancement of the fuel with the oxidizer, control mechanisms,
cooling methods and integration of the combustor with inlets and
nozzles. Particularly, the authors point out the potential
structural complications that arise from high-frequency loading,
including combustion disturbances that might travel upstream to
the inlet of the PDC. Among the experimental results with
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unsteady combustion listed, the frequency per tube ranges from
less than 1 Hz up to the kHz order [157].

[158] provides a general review of detonation waves employed
in propulsion applications, ranging from the early 1940s research
studies that started to link detonation with propulsion, until
more recent achievements, such as laser-supported detonations,
oblique detonation wave engines and the PDE itself. It is also
mentioned by [158] that issues such as heat transfer, noise and
vibrations have to be properly addressed to grant feasibility to
propulsive detonation technology. In a following work, [159]
highlights recent progress in PDC development for both
airbreathing and rocket applications, remarking however that
inlets and nozzles are still challenges to be overcome. Other
practical difficulties faced by PDCs are the achievement of a
smooth DDT without the use of very long tubes, noise reduction
and damping of high amplitude vibrations.

In a similar fashion, [160] presents an extensive summary on
the PDC topic with both experimental and numerical
considerations. Some practical issues regarding detonation
initiation, wave propagation and heat transfer are discussed.

A comprehensive review considering several R&D applications
besides power generation and propulsion is provided by [161].
In addition to presenting pulse combustion analytical models,
fuel sensibility and mechanical aspects such as the suitability of
different valves are addressed.

A myriad of studies have corroborated the potential
thermodynamic gains of PDC in comparison to the Joule cycle.
The seminal work of [152] provides a concise analytical
description of pressure-gain processes, determining the PDC
ideal efficiency and contrasting it with the Joule and Humphrey
cycles. The heat addition in the pulsed detonation cycle is
modeled by [152] with a normal detonation (ZND) wave with
Chapman–Jouguet constraints. Loss considerations are also taken
into account for the three compared cycles, concluding that the
PDC nonideal cycle efficiency clearly exceeds the Joule and
Humphrey efficiencies for flight Ma < 3.
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With an exergetic approach, cycle assessments were performed
by [147]. Employing the pioneer exergy metric from [162], based
on the first and second laws of thermodynamics, three radically
improved aircraft engine designs were analyzed, namely: open
rotor, intercooled recuperated and pulse detonation core setups.
In all configurations, the combustor played the larger roll on
exergy destruction, indicating the pulse detonation core as a very
interesting approach to reduce specific fuel consumption (SFC)
for future propulsion power plants. Overall, a 18% reduction on
SFC was reported for the PDC operation (together with
intercooling and recuperation) in comparison to the conventional
turbofan engine setup expected in 2050. More recent studies from
the same group analyzed similar performance designs, such as
non-precooled, intercooled and intercooled-aftercooled PDC
integration [163]. Once again, reduction in uninstalled fuel
consumption and improvements in thermal efficiency were
obtained by both a one-dimensional performance model and
CFD results.

Further results modeling the pressure-gain process with a
Fickett-Jacobs cycle were obtained by [164]. Also here the PDC
outperformed the isobaric and isochoric counterparts. The
numerical values differ slightly from [152], since the specific heat
ratio employed by [164] was lower, in order to represent the
combustion products more accurately. Concerning the specific
modeling of gas turbines with PDC, [165] also employed the
Fickett-Jacobs cycle, yielding a higher efficiency than the
corresponding Joule, for both ideal and nonideal cases.

Several other analytical, numerical and experimental studies
underline the efficiency increase obtained with PDC [163, 166–
171], not only focused on propulsion applications, but also on
power generation or marine transport. It is relevant to mention
that the increase in efficiency is directly linked to the complexity
of the cycle (e.g., intercooling, pre-heating) but also to project
constraints (e.g., weight, material limits).
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Even though a gain in thermodynamic efficiency is expected
with the implementation of PDC in gas turbines, concerns about
its integration with other engine components can be traced back
to its recasting as a candidate to performance improvement. For
instance, the early work of [172] already forewarned about
unwanted pressure pulsations and backflow from the so-called
“pulse combustor”.

Since then, several researchers tried to shed light on the
adverse impacts of PDC unsteadiness in the adjacent
components, especially the downstream turbine. Considering
linear cascades, [173] conducted unsteady experimental and
numerical studies in a row of stationary turbine blades. As
depicted in Fig. 4.3, both shadowgraph and CFD images showed
strong reflected shocks upstream the turbine and weak shocks
transmitted downstream the blade cascade.

(a) Detonation wave on shadowgraph (b) CFD prediction of shock wave

Figure 4.3: Experimental and numerical results of a 2D cascade impinged
by a PGC shock wave [173].

Many studies coupled PDC with radial turbines, particularly
from turbochargers. For instance, [174] drove a turbine from a
Garrett T3 turbocharger with a self-aspirated PDE with two tubes
firing simultaneously. Subsequent work from [175] span the
turbocharger at 130,000 rpm with operating combustion
frequencies from 20 Hz to 40 Hz, reporting high turbine losses
but also attenuation in the detonation shock waves.
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In a similar track, [176] have employed a single detonation tube
to drive an automotive turbocharger using a Shchelkin spiral.
Later research from [177] added a second detonation tube out of
phase achieving a combined firing frequency of 80 Hz, though
with lower thermal efficiency than the single-tube setup.

[178] report the use of a turbocharger radial flow turbine with a
PDC tube firing between 1 Hz and 10 Hz, employing liquid C8H16

as fuel. After more than 12,000 detonations there was no visible
sign of pitting or discoloration on the turbine. The peak pressure
reported at the PDC exit roamed between 2 MPa and 3 MPa.

Also employing a radial turbine, [155] coupled a Garret
automotive turbocharger with a PDE fueled with hydrogen. Up
to 30% increase in average specific work was obtained for firing
frequencies between 10 Hz and 25 Hz. Temporary reverse flow in
the turbine inlet was reported. Subsequent studies from [179]
with a similar PDC-turbocharger configuration considered
temporary mass accumulation in the efficiency computation. This
time, firing frequencies ranged between 20 Hz and 30 Hz.
Performance was improved for higher PDC frequencies.

As a last PDC application with turbochargers, [180] discharged
the flow of a PDC firing at low-frequencies into a single-stage
radial turbine. Once the PDC operation was initiated with air
from a dedicated high-pressure reservoir, the outflow from the
turbocharger compressor was the sole air supply to the turbine.
With that, a complete coupling between compressor, PDC and
turbine was achieved. The thrust produced exceeds the Joule
cycle counterpart. Backward-propagating waves reached
pressure peaks of 6 bar, which amount to 30% of the
corresponding pressure downstream of the combustor. Valves
located further upstream attenuated these pressure peaks to
0.3 bar, a value which represents the fluctuations to which the
upstream-positioned compressor was subjected. However, the
presence of long channels between the compressor and PDC inlet
together with the turbocharger’s off-design condition hint that a
higher variability in PDC-upstream conditions is to be expected,
when considering its integration with gas turbines.
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Axial turbines have also been simulated with PDC
configurations. A parametric performance study was conducted
by [181] using the Numerical Propulsion Systems Simulation
code for a hybrid PDE cycle, which coupled a high-thrust class
turbofan with a detonation tube. This engine setup increased the
thrust by 2% and lowered the SFC by up to 10% at cruising
conditions, compared to normal operation.

Another group of researchers [182] have set up a test rig with
an axial turbine rated for 90 hp and 60,400 rpm output, coupled
to a six-tube PDC burning ethylene with oxygen. The firing
frequency was 20 Hz. This preliminary study analyzed the
pressure reduction after the detonation wave travels through the
turbine blades, with and without bypass air. Focusing on acoustic
attenuation of detonation waves by turbines, further studies
by [183] indicated that the reduction of wave peak pressure is
highly dependent on the initial strength of the wave. This
strength variation could be achieved by interchangeably varying
the fill fraction, equivalence ratio or nitrogen dilution.

Subsequent experiments with the same test rig assessed the
performance of the multitube PDC [184]. The main conclusion
was that the efficiency of the integrated PDC-turbine system was
quantitatively comparable to the efficiency of a steady-burner
driven turbine. This was observed across the turbine operating
map from low load up to approximately 67% of its nominal
capacity. A rich summary of the major results obtained by this
work group was organized by [185].

Subsequently, [186] conducted experiments with a power
generation turbine subject to both cold and combustion pulsating
flow, with four different frequencies (ranging from 5 Hz to 20 Hz)
and three operating points. Mass-average and work-averaged
efficiencies presented very similar values, both being acceptable
for the unsteady computations. Finally, pressure perturbations
due to firing of adjacent tubes were measured, indicating a
harmonic dependence on the number of combustion units.

As one of a series of published results, [187] set up a PDC with
eight tubes in a can-annular display, firing into single-stage axial
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turbine from a locomotive-scale turbocharger. The system is
depicted in Fig. 4.4. The firing frequencies per tube reached 30 Hz
and different firing patterns were employed. Secondary air
controlled independently was supplied by external compressors
to be mixed with the PDC exhaust gases, in order to cool the
tubes. Further experiments were conducted in the same test rig
by [188], this time with twelve high-temperature strain gauges
mounted on the stators, in the interest of assessing vane
deflections. The reported pressure rise at the combustor inlet
reached 18 bar, at 20 Hz firing frequency. Probes located in the
upstream plenum measured a peak pressure of approximately
5 bar. The measured strain reached only 8% of the stator material
yielding point. Furthermore, different tube firing patterns were
experimented, namely: single tube, all tubes simultaneously,
counter and co-rotating ignition sequences; the simultaneous
firing produced the highest strain, while the single tube mode
yielded the lowest value.

44th AIAA Aerospace Sciences Meeting and ExhibitAIAA                                                                           2006-1234 
9-12 January 2006, Reno, NV 

 
American Institute of Aeronautics and Astronautics 

 

7

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1: PDC-turbine hybrid engine a) solid model  b) cross-section  

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Definition of Firing Patterns  
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Figure 4.4: 8-tube PDC-turbine setup from [188].

Following the experimental setup from [187], further results
were provided by [189]. This time, no valve was used to control
the air inflow. Transducers installed upstream of the detonation
tubes indicate a variation in the peak pressure of approximately
5 bar and 2.4 bar for simultaneous and sequential firing,
respectively. Such upstream pressure measurements, although
still scarce in the literature, are insightful when evaluating in
which way the PDC disturbances propagate throughout the
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compressor. [189] also addressed the interaction of pressure
waves among adjacent tubes and its effect on optimum engine
operation. Misfiring was reported, particularly for the sequential
firing mode, leading to the hypothesis of intensive pressure wave
interplay between adjacent detonation tubes and reverse flow
conditions, imparting instability to the system.

Acoustic attenuation results from the same working group have
been reported. [190] measured a 20 dB peak pressure attenuation
and 10 dB attenuation over a broadband acoustic spectrum, using
a similar turbine setup as [187, 188]. It was argued by [190] that
noise issues should not be a critical barrier for the integration of
PDC with gas turbines.

Higher PDC firing frequencies have been reached in the last
years. Although for a setup with small dimensions, [157] was
able to achieve stable operation at almost 2 kHz with a single
PDC tube. Another research group focusing on rocket propulsion
experimented with hypergolic propellants, sustaining PDC with
pressure oscillations between 200 Hz and 700 Hz [191].

Specifically from the numerical front, [192] have simulated the
attenuation and reflection effect of a PDC pulse on an axial
turbine, with a 3D viscous code in the time domain. The
numerical domain consisted in 1/8th annulus with a unitary
pitch ratio. No chemical kinetics were modeled, but instead 1D
gas dynamics simulated the pressure and temperature
distribution of the detonation. An average pressure attenuation
of approximately 15 dB was observed. Temporary reverse flow
occurred in a region right upstream of the vanes.

Numerical computations were also carried out by [193], in
which a conceptual PDE discharges on an axial turbine stator row.
The model includes 1D irreversible single-step chemical kinetics
calculations in the detonation tubes, coupled to a 3D fluid
domain surrounding the combustor and stators. The detonation
frequency simulated corresponds to 50% of the turbine rotation
frequency. Once again, the pressure perturbations caused by the
PDC are reported to be substantially reduced with the presence
of the zero-turning axial cascade.
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Among the few existing investigations on PGC waves
propagating upstream through the compressor, research
conducted at the Chair for Aero Engines at Technische
Universität Berlin is worth mentioning. A low-speed annular test
rig was built including a rotating choking disk designed to
generate PGC-like aerodynamic disturbances [194]. This disk is
located downstream of the compressor stator vanes as depicted
in Fig. 4.5. The periodic throttling of the compressor is therefore
achieved according to the disk geometry design, choice of
rotational speed and direction.

(a) Test section showing choking disk
and stator vanes
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(b) Choking disk marked in red,
located downstream of the stator row

Figure 4.5: Low-speed test rig at the Chair for Aero Engines designed to
simulate PGC disturbances in an axial compressor stage [195].

Various assessments at the annular test rig characterized the
stator flow in the presence of upstream-propagating disturbances
generated by the choking disk. Additionally, active flow control
was implemented to reduce or mitigate the adverse effects of flow
unsteadiness on the compressor aerodynamics [194–196]. It was
shown by [196] that lower disturbance frequencies generated by
the choking disk had a larger impact on the vane suction side
flow dynamics than higher ones. Forthcoming experiments
including rotor blades (designed by [197]) are expected to shed
light into the complex interaction between choking disk, stator
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and rotor rows. Numerical simulations as shown in Fig. 4.6
disclose the clear spectral signature due to the choking disk on
the rotor blade pressure distribution, much stronger than the
vane passing excitation. Such outcome indicates that not only
unsteady aerodynamic, but also potential aeroelastic challenges
are associated with the integration of PGC within gas turbines.
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Figure 4.6: CFD sample result from the low-speed annular test rig at the
Chair for Aero Engines. Left: numerical setup comprising the compressor
stage and a four-sector choking disk simulating PGC aerodynamics.
Right: spectrum of mean pressure on the rotor blade.

4.2.2 Rotating detonation combustion

The rotating detonation combustion (RDC) working principle
differs from the typical PDE mainly in the following aspects: the
detonation wave now travels circumferentially in an annular
rotating chamber and the unsteady frequency is much higher (in
the kHz order). Figure 4.7 depicts a concept rotor in which a
detonation wave propagates circumferentially. In the RDC, the
filling and purging phases occur at the same time, however at
different locations. Some of the potential advantages of RDC in
contrast to the PDE are the “lighter” unsteadiness (due to the
higher frequencies), higher power density, self-sustained
operation and no DDT challenges. Some of the drawbacks
include the stability and control of a rotating detonation wave, as
well as proper cooling capacity of the rotor [198, 199].
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Figure 4.7: Rotating detonation combustion concept from [200].

Increase in thermodynamic efficiency with RDC has been
predicted, e.g., by [201–203]. From several research initiatives, a
couple are worth mentioning. Building on pioneer RDC research,
[204] summarizes the progress in the chemistry understanding of
the so-called “continuous spin detonation”, including the
successful application of hydrogen and hydrocarbon fuels.

A large body of results by another group investigating RDC
was compiled by [205]. Variation in combustion and geometry
parameters was thoroughly assessed, both for annular and hollow
setups. Different RDC operating modes were also identified. The
plenum-combustor coupling is expected to play a crucial role in
RDC performance and stability.

Further endeavors analyzed in detail the behavior of RDC
waves [206]. Single- and counter-rotating patterns have been
experimentally characterized [207], considering different injection
schemes. Later studies applied dynamic mode decomposition to
better assess the unsteadiness of these phenomena [208],
concluding that this data-based technique was a powerful tool to
identify and reconstruct flow dynamics specific to RDC.
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The interaction of the RDC with adjacent components has also
been pondered by several researchers. A hypothetical integration
with a gas turbine is depicted in Fig. 4.8, where the RDC radius
coincides with the adjacent components size. However, it may
also be the case that several smaller RDC units take the place of
typical can-type combustors distributed around the annulus.

Figure 4.8: Hypothetical integration of RDC with a gas turbine [203].

Specific design and operation parameters play a critical part
when estimating the perturbations expected in the compressor
and turbine. For instance, [209] obtained high fluctuation values
of the pressure feedback into the RDC mixture plenum, warning
about the potential impact on the compressor located upstream.

The unsteady effects downstream the RDC have also been
underscored. Guide vanes aft the combustor were analyzed
experimentally by [210]. Further numerical assessments
by [211–213] quantified the impact of blade setting angle, solidity
and profile on the aerodynamic losses in the presence of RDC.
Wave amplitude damping through the guide vanes was reported.

4.2.3 Shockless explosion combustion

In order to overcome the main challenges related to PDC, a
new mechanism was proposed by [214], namely the shockless
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explosion combustion (SEC). The concept addresses two
difficulties related to PDC: high pressure peaks due to shock
waves and DDT losses. In order to tackle these challenges,
properly tuned smooth resonant pressure waves in a tube handle
the fuel recharging process, analogously to a pulsejet combustor2.
Figure 4.9 illustrates the SEC cycle. The reflection of PGC waves
leaving the combustion tube creates a pressure gradient, which in
turn is responsible for sucking in fresh air and exhausting the
burnt gases. In the sequence, fuel is injected into the fresh air to
provide a homogeneous charge compression ignition process,
which theoretically boosts the combustion efficiency. More details
about the chemistry, operation and mechanical design are given
by [151, 214, 217].

layered fuel-air mixture

filling of inert
buffer volume

quasi-homogeneous self ignition

suction wave

exhaustgas

pressure wave

pressure wavesuction wave

Figure 4.9: Shockless explosion combustion cycle as proposed by [214].

Thermodynamic efficiency gain with SEC has been shown
by [218], where SEC exceeded the Joule cycle by a few percentage
points. More involved gas turbine topologies were accessed
by [219], with focus on steam injection in the Humphrey cycle.
Not all configurations resulted in realistic lengths for the
isochoric combustor. Further studies by [220] included a
recuperator in the Humphrey cycle, yielding up to five
percentage points increase in efficiency.

2The pulsejet was actually considered a “conceptual precursor” of the SEC [215].
However, the pulsejet operation is assumed to provide enough time for
expansion of the burned gases, therefore not effectively achieving isochoric
combustion [216].
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Further encouraging results with SEC have been obtained.
[215] have simulated the chemical kinetics and showed its
theoretical feasibility without the onset of detonations. With
respect to ignition delay control, [216] have developed a discrete
extremum seeking controller in an atmospheric test rig; although
working with a rather low firing frequency of 4

3 Hz, the proposed
methodology showed to be promising for further tests with
higher frequency and pressure levels. Additional results were
obtained by [217] with a more instrumented setup and validate
the previously developed controller.

The SEC concept, however, carries also some implementation
obstacles, mostly related to the ignition onset. First, proper fine
mixing should be achieved in order to profit from the high
efficiency of a homogeneous charge compression ignition process.
Secondly, the control of ignition delay with respect to residence
time is critical to ensure an homogeneous autoignition.
Furthermore, the hot surfaces of the walls and exhaust gases
must not be in contact with the fuel-air mixture to prevent
ignition at an inappropriate moment; therefore the necessity of
inert air volumes. The misfiring issue pointed out for
multiple-tube PDC is also found in SEC. Lastly, extremely fast
valves must be employed to guarantee correct filling of the tube
with hot gas and at high frequency, regime which is so far not
tolerated by current mechanical valve systems; fluidic valves
could be a good alternative [214].

While the novel concept of SEC builds upon homogeneous
combustion (as from internal combustion engines), another
approach seeking isochoric combustion has also been considered
in the last years. This older concept, commonly known as
pulsejet, is also termed resonant pulse combustion (RPC).

Measured total pressure gain of 3.5% was reported by [221],
employing an off-the-shelf pulsejet working at 220 Hz. The
temperature ratio was approximately 2.3, similar to gas turbine
values. Additionally, thrust was successfully produced and
quantified with the test rig.
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A subsequent step was the introduction of a turbocharger in
the experimental setup [222]. The compressor discharge was
connected to the pulsejet inlet and the turbine to the pulsejet outlet
(see Fig. 4.10). That is, except for the bypassing air, a complete
coupling turbocharger-pulsejet was obtained. Short but stable
operation was reported, with approximately 20 dB attenuation
in noise by the turbine. The rapid failure of reed valves was one
of the main mechanical issues. To address this problem, other
valve concepts such as poppet have been recently proposed and
assessed [223].
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Figure 4.10: Resonant pulse combustor coupled to a turbocharger [222].

Other research groups are also active in the research of RPC
(see for instance [224, 225]). Further investigation is still needed
to fully understand the combustion fundamentals within RPC, as
well as effective and safe integration into gas turbines.

4.2.4 Wave rotor combustion

Another attempt to harness the thermodynamic efficiency
increase of isochoric combustion is the wave rotor combustion
(WRC). Indeed, two main applications of wave rotors coupled
with gas turbines have been recently proposed: using the rotor as
a topping spool to increase cycle efficiency or using the rotor as
an isochoric combustion chamber itself.

In the topping spool approach, the wave rotor is employed as a
supercharger for the Joule cycle, without modifying the
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combustion process itself. Here, after leaving the compressor, the
air flows twice through the wave rotor before reaching the
turbine. Figure 4.11 depicts a conceptual wave rotor and a burner
for this type of application. The air leaving the compressor is
further compressed inside the wave rotor (first passing); then, it
is energized at the combustion chamber; it subsequently expands
inside the wave rotor (second passing) before arriving at the
turbine. The efficiency gain expected is due to the fact that the
gases arrive at the turbine at the same temperature they would
arrive if the wave rotor was not present (thus not requiring
stronger heat-resistant turbine material), but at a slightly higher
pressure. Thus, the thermal efficiency and the output power are
increased. Ongoing design and testing of wave rotor as a topping
spool are reported, e.g., by [226, 227].

Figure 4.11: Wave rotor as a pressure-exchange system, adapted
from [228].

The second application of the wave rotor discussed here aims
at modifying the isobaric combustion regime to an isochoric
process. Figure 4.12 depicts such a wave rotor combustor. It
consists of a rotating drum in which the circumferentially
distributed channels now function as multiple small combustion
chambers. Two stationary endplates are located at the inlet and
outlet of the rotor and act as passive controllers of fluid flow
through the channels. The compression and expansion of the
fuel-air mixture is achieved by the closing and opening of the
rotating channel with the ports, coupled with a continuous
ignition system. In principle, quick deflagration has been
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considered when using WRC with gas turbines; however, larger
engines could make use of detonation to reduce the cycle period
and minimize weight. Two propagation regimes could be
designed, based on the igniter location: in the "forward" mode,
the flame travels from the inlet to the outlet end of the channel
(thus the igniter is mounted in the inlet section), while in the
"backward" mode, the flame travels from the outlet to the inlet
end of the channel (igniter located in the outlet section) [228].

Stator End Plate

Expansion Wave

Inlet
(air & fuel)

Shock wave generated by closure of
outflow compresses incoming charge

Reaction Fronts

Outflow Manifold

Ignitor

Figure 4.12: Wave rotor combustion setup from [229].

Preliminary validation of WRC against experiments has shown
promising results [229, 230]. At the same time, novel design
approaches are being proposed, such as rotors with non-axial
channels [231].

One of the potential advantages of the WRC among PGC
concepts is that a high number of channels would grant a
semi-steady combustion process, at least as perceived by the
upstream and downstream turbomachinery components.
Additionally, enough cooling should be automatically provided
by the periodic exchange of hot and cold gases within each cycle,
for every channel. Some of the drawbacks of the system include
proper fuel provision for rotating combustion chambers, rapid
ignition methods and overall control of the combustion
process [228, 229].
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The impact of WRC on adjacent components is expected to be
less pronounced than other PGC approaches, such as PDC. This
is mostly related to the high rotational frequency perceived by
the compressor and turbine. However, it comes at the price of
spatial non-uniformity, due to the way the endplates are
positioned circumferentially.

4.3 Summary

Although combustion modeling is out of the scope of this
work, the previous sections briefly introduced some of the
recently pursued PGC approaches. The work of a few research
groups towards the implementation of PGC in gas turbines was
also presented. This review is definitely not exhaustive, with new
studies being constantly presented to the scientific communities.

Additionally, no attention was given to other PGC concepts,
such as the composite (piston) topping cycle [232, 233], the radial
wave engine [234] or the nutating disk [235]. All these approaches
promise to deliver higher thermodynamic efficiency, and therefore
lower fuel consumption of present (and future) gas turbines. Even
though several features are shared, the differences among the
PGC approaches will be responsible for selecting the ones most
suitable for integration with turbomachinery in large scale.

What all the aforementioned devices clearly have in common is
their fundamental unsteadiness. That is, the steady state
combustion found it traditional gas turbines should make way
for (or be combined with) novel approaches imparting
fluctuations to the flow. These additional flow variations will be
termed “disturbances” throughout this work3. They impose new
technical challenges, especially when considering the integration
of PGC with gas turbines.

Aerodynamic and performance issues on both compressor and
turbine have been acknowledged by numerous researchers
working on this integration [158, 159, 169, 209, 212, 236–242].
There are also plentiful comments and warnings about potential

3Not to be confused with the meaning of “disturbance” in control theory.
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structural damage linked to turbomachinery vibration caused by
PGC unsteadiness [170, 198, 212, 237, 243–245].

A key aspect determining the main features of the PGC
disturbances are the plena (or accumulators), located between the
combustor and adjacent components. Although recognized as
crucial when estimating the unsteadiness strength expected by
the compressor or turbine, very few studies tackle this topic in
depth [209, 246, 247]. Part of this unpredictability is related to the
fact that such a plenum geometry is deeply associated with the
PGC and the gas turbine specifications, including mass flow rates,
spatial and time scales, combustion residence time etc. Since no
fully-integrated prototypes are yet available, further
development regarding PGC-gas turbine integration is crucial to
assess the impact the disturbances will have on the efficient and
safe operation of turbomachinery components. Useful data
should include the operating characteristics of PGC disturbances,
their amplitude, frequency, circumferential distribution, as well
as transient profiles.

In spite of this uncertainty, the simulations performed in this
work deal with PGC disturbance primarily from the
turbomachinery perspective (more specifically, from the
compressor side). Although the physical characteristics and
scales of PGC waves are based on the aforementioned references,
they are cast according to parameters relevant for
turbomachinery. For example, combustion frequencies are
normalized by figures such as the Strouhal number or the blade
passing frequency; disturbance amplitudes are standardized to
mean state variables at chosen axial stations. This approach
allows the direct comparison of simulations with diverse PGC
excitation patterns employing different engine geometries. More
details about the modeling of PGC will be given in dedicated
sections in chapter 5.





5
SELECTED RESULTS AND

DISCUSSION
In this chapter, the most important results obtained with the methods
described in chapters 2 and 3 are presented and discussed. First,
section 5.1 provides analytical formulations for the general problem of
PGC waves traveling axially. Subsequently, unsteady aerodynamics
and aeroelastic assessments of two high pressure compressors subjected
to PGC oscillations are given in sections 5.2 and 5.3
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5.1 Unsteady damping formulation

The computations performed in this work simulate the fluid
dynamics and aeroelastic effects of pressure gain combustion
(PGC) in gas turbine axial compressors. As presented in detail in
chapter 4, the key idea behind PGC is to increase the
thermodynamic efficiency of gas turbine cycles by substituting
the classic constant-pressure (or rather pressure-loss) combustion
with an unsteady process that yields total pressure gain. This
fundamental change in the combustion mechanism has explicit
effects on the compressor.

Particularly, the boundary conditions downstream the
compressor’s last stage – generally assumed constant in the
design phase – experience continuous change in the presence of
PGC. The exact way the boundary conditions change is strictly
dependent on the particular gas turbine-PGC design (processes
of filling, burning, purging etc.) and on the integrating volumes
between turbomachinery components and combustor (plena).

Not only the flow conditions at the very outlet of the
compressor are important, but also how these changes caused by
PGC unsteadiness propagate further upstream. From the
turbomachinery viewpoint, the main open questions are: how
exactly do the PGC disturbances affect the flow for each
row/stage? How many rows are in practice subjected to these
PGC disturbances? How are the losses and efficiencies affected?
How does the structure react to these additional aeroelastic
loads? What changes with respect to compressor stability?

This section aims at answering one of these questions, namely
how the PGC disturbances travel further upstream in the
compressor. Consider a representative stage as shown in Fig. 5.1,
where the main flow goes from left to right, while the PGC
disturbances travel upstream from right to left. The rotor blades
move from the bottom upwards in Fig. 5.1(a). Also depicted are
axial planes (APs), ranging from AP A to AP E. The APs have a
fixed axial coordinate with varying radius and the
circumferential coordinates.
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Figure 5.1: Representative compressor stage showing axial planes (APs)
employed for unsteady analyses. APs A, B and C are located in the
rotor numerical domain, while APs D and E are located in the stator
numerical domain. A PGC device would be positioned farther on the
right, downstream of the stage.

An integrated PGC combustor (with an adequate plenum
geometry) would be located right downstream the stage shown
in Fig. 5.1. Suppose that, due to PGC, arbitrary fluctuations occur
in the outlet boundary conditions, say on plane AP E. A
reasonable question is whether or not these fluctuations will be
perceived on the other APs located upstream. For that, the
single-domain and cumulative unsteady damping will be now
defined.
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5.1.1 Single-domain unsteady damping

Consider the unsteady fluctuation of a generic variable φ (e.g.
pressure, temperature), properly averaged in space. Sample
variation scenarios for this quantity are shown in Fig. 5.2. The
disturbance travels in this illustrative case from station 2 to
station 1 (e.g. through the rotor domain from AP C to AP B in
Fig. 5.1). Attenuation of the signal occurs in Fig. 5.2(a) (wave
amplitudes goes from 10 to 5), whereas amplification takes place
in Fig. 5.2(b) (amplitude goes from 10 to 20).

Time
-20

-10

0  

10 

20 

1,min

1,max

2,min

2,max

2

1

(a) Attenuation behavior (ε2,1 = 0.5)
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(b) Amplification behavior (ε2,1 = -1.0)

Figure 5.2: Sample fluctuation of generic variable φ for two axial positions,
considering a wave traveling from station 2 to 1. The unsteady damping
ε is computed for each case.

In order to numerically determine the magnitude of this change
in wave amplitude, we define here the single-domain unsteady
damping ε2,1 as

∆φ ,
φmax − φmin

φmean
, (5.1a)

ε2,1 ,
∆φ2 −∆φ1

∆φ2
. (5.1b)

Per construction, −∞ < ε2,1 ≤ 1. Equation (5.1a) represents the
nondimensional variation in the wave amplitude for one single
station, normalized by its mean1. Equation (5.1b) then computes

1Note that the mean value φmean should be nonzero. In Fig. 5.2, the fluctuations
of the generic variable φ occur around a “reference zero” for visualization
simplicity, which is equivalent to setting φmean as unitary.
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the unsteady damping between two arbitrary stations 2 and 1.
These stations can be any two axial planes, located between rows,
stages, cavities etc. This concept has been presented, e.g., by [248]
when assessing the unsteady performance of an axial turbine to
flow fluctuations.

Notice that, according to the definitions from Eqs. (5.1),
amplitude attenuation or damping from station 2 to 1 implies
ε2,1 > 0 (see Fig. 5.2(a)); conversely, amplitude increase yields
ε2,1 < 0 (see Fig. 5.2(b)). Finally, perfect attenuation entails
ε2,1 = 1, meaning that no flow fluctuation is perceived at station 1
(i.e., the curve for φ1 becomes flat).

5.1.2 Cumulative unsteady damping

This work contributes further to the unsteady damping concept
by introducing the cumulative unsteady damping. Specifically, it
consists in an extended version of Eq. (5.1b) for multiple domains2

sequentially stacked (e.g., several row or stages). That is, we assess
how the unsteady damping ε behaves cumulatively for n stations.

For clarity, the following notation with left superscript will be
employed here: between stations 2 and 1, we define ε2,1 , 1ε.
Likewise, between stations n+ 1 and n, we have εn+1,n , nε. In
the general case, the left superscript ik on ikε lies in the range
i1, . . . , ik ∈ {1, . . . , n}, where k ≤ n (the positive integer k is
simply a summation index).

Now consider that the wave travels initially one more domain,
namely located between stations 3 and 2. Similarly to Eq. (5.1b) for
1ε, we may compute another single-domain unsteady damping as

2ε , ε3,2 =
∆φ3 −∆φ2

∆φ3
. (5.2)

We may then construct the cumulative damping between stations
3 and 1 as

ε3,1 =
∆φ3 −∆φ1

∆φ3
. (5.3)

2What is meant by domain in this context is a wave-carrying fluid medium
between two axial stations.
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Isolating ∆φ1 from Eq. (5.1b) and ∆φ3 from Eq. (5.2), and then
substituting their values into Eq. (5.3), we obtain

ε3,1 = 1ε+ 2ε− 1ε 2ε = 1− (1− ε2,1) (1− ε3,2)

= 1−
(
1− 1ε

) (
1− 2ε

)
, (5.4)

which relates ε3,1 directly and only to 1ε and 2ε. Proceeding in the
same manner for n stations, the closed formula for the cumulative
damping εn+1,1 (between stations n+ 1 and 1) is given by

εn+1,1 =

n∑
k=1

∑
i1,...,ik∈{1,...,n}

i1<···<ik

(−1)k+1
k∏
j=1

ijε (5.5a)

=1−
n∏
k=1

(1− kε). (5.5b)

Equation (5.5a) is a sum of unsteady damping products3,
including all the stations between 1ε and nε. It represents a
nonlinear relation between all single-domain unsteady damping
values in the system. The equivalence between Eqs. (5.5a) and
(5.5b) is formally derived in appendix A.2.

5.1.2.1 Homogeneous unsteady damping
The cumulative unsteady damping given by Eqs. (5.5) is

complex to treat analytically due to the intricate nonlinear
relation between all single-domain unsteady damping values.
Therefore, a special case may be worth analyzing to better
understand how ε behaves for practical values.

Suppose that 1ε = 2ε = · · · = nε , ε̂, i.e., there is a
homogeneous unsteady damping ε̂ for all domains. Accordingly,
Eqs. (5.5) assume a simpler binomial form, given by Eqs. (5.6)

3Note that the strict inequalities in the second summation (i1 < · · · < ik) in
Eq. (5.5a) imply that the products of ikε do not contain repeated indexes ik .
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(note that the right superscript indicates as usual an exponent,
not a domain).

εn+1,1 =

n∑
k=1

(−1)k+1

(
n

k

)
ε̂ k (5.6a)

=1− (1− ε̂)n (5.6b)

To exemplify the analytical computation of the cumulative
unsteady damping, Tab. 5.1 shows the expressions for both the
general case (Eqs. (5.5)) and the homogeneous case (Eqs. (5.6)),
for the first n = 5 domains. We notice that the cumulative
unsteady damping is a polynomial of order n equal to the
number of staggered domains. Additionally, the terms with odd
powers of ε̂ always contribute to the cumulative unsteady
damping proportionally to the sign of ε̂, whereas the terms with
even powers, negatively.

A visual representation of the last column from Tab. 5.1 is
given in Fig. 5.3. It depicts namely the cumulative unsteady
damping as a function of the single-domain homogeneous value
ε̂. The number of domains vary from n = 1, . . . , 10, i.e., 2 to 11
stations. This situation could represent a multistage compressor
or turbine whose single-domain (for example, one stage)
unsteady damping values do not change significantly among
each other. For example, we can estimate from Eqs. (5.6) that if
ε̂ = 0.75 for one row, three rows are already enough to produce a
cumulative unsteady damping of ε4,1 = 0.98, practically
imperceptible by upstream domains. On the other hand, if
ε̂ = −0.26, a slightly negative value, three rows yield a twofold
increase in wave amplitude for the unsteady variable φ, i.e.,
ε4,1 = −1.0 ⇒ ∆φ4 = 2∆φ1. This large sensitivity in the range
ε̂ < 0 is related to the negative sign terms multiplying even
powers in Eqs. (5.6).
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Table 5.1: Analytical expressions for the cumulative unsteady damping εn+1,1. Shown for first n = 5 domains.

Number of
domains, n

Number of
stations, n+ 1

Cumulative ε
εn+1,1

General cumulative case
Eqs. (5.5)

Homogeneous case
Eqs. (5.6)

1 2 ε2,1
1ε ε̂

2 3 ε3,1
1ε+ 2ε− 1ε 2ε 2ε̂− ε̂2

3 4 ε4,1

1ε+ 2ε+ 3ε− 1ε 2ε
−1ε 3ε− 2ε 3ε+ 1ε 2ε 3ε

3ε̂− 3ε̂2 + ε̂3

4 5 ε5,1

1ε+ 2ε+ 3ε+ 4ε− 1ε 2ε− 1ε 3ε
−1ε 4ε− 2ε 3ε− 2ε 4ε− 3ε 4ε
+1ε 2ε 3ε+ 1ε 2ε 4ε+ 1ε 3ε 4ε

+2ε 3ε 4ε− 1ε 2ε 3ε4ε

4ε̂− 6ε̂2 + 4ε̂3 − ε̂4

5 6 ε6,1

1ε+ 2ε+ 3ε+ 4ε+ 5ε− 1ε2ε− 1ε3ε
−1ε4ε− 1ε5ε− 2ε3ε− 2ε4ε− 2ε5ε
−3ε4ε− 3ε5ε− 4ε5ε+ 1ε2ε3ε+ 1ε2ε4ε

+1ε2ε5ε+ 1ε3ε4ε+ 1ε3ε5ε+ 1ε4ε5ε
+2ε3ε4ε+ 2ε3ε5ε+ 2ε4ε5ε+ 3ε4ε5ε
−1ε2ε3ε4ε− 1ε2ε3ε5ε− 1ε2ε4ε5ε
−1ε3ε4ε5ε− 2ε3ε4ε5ε+1ε2ε3ε4ε5ε

5ε̂− 10ε̂2

+10ε̂3 − 5ε̂4 + ε̂5
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Figure 5.3: Cumulative unsteady damping εn+1,1 (Eqs. (5.6)), as a
function of the homogeneous single-domain ε̂. Several numbers of
domains n are shown.

It is also interesting to investigate the sensitivity of the
cumulative unsteady damping εn+1,1 with respect to the number
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of stations n. This can be done by computing the partial
derivative with respect to n, as in Eq. (5.7)4

∂(εn+1,1)

∂n
= (εn+1,1 − 1) · ln (1− ε̂) = −(1− ε̂)n · ln (1− ε̂) .

(5.7)
Figure 5.4 shows the corresponding plot for Eq. (5.7). Focusing
on the first quadrant (ε̂ ≥ 0), which is the case of interest for
attenuation purposes, Fig. 5.4(b) shows that all values of the
derivative are positive. This means that the addition of further
rows/stages for a homogeneous ε̂ > 0 will always enhance the
cumulative unsteady damping. Increase in the number of
domains n flattens the curve towards complete attenuation.

Additionally, the loci of maxima is also shown in Fig. 5.4, whose
analytical coordinates are given by(

ε̂max ,
∂(εn+1,1)max

∂n

)
=

(
1− 1

en
,

1

n e

)
. (5.8)

From Eq. (5.8), ε̂max has its upper limit at n = 1 (namely with a
value of approximately 0.6321), considering only integer
numbers of domains. That is, the maximum sensitivity in
attenuation gain always decreases with the stacking of further
domains, approaching zero monotonically as n→∞.

5.1.2.2 Alternating unsteady damping
The homogeneous unsteady damping discussed in

section 5.1.2.1 can be quite restrictive by assuming the same value
for all domains. A more flexible approach would be to have
alternating unsteady damping for every other domain. As an
example suitable for turbomachinery multirow setups, an
alternating pattern may arise if the rotor rows are expected to
provide more/less damping than the stator rows in a uniform
manner.

4Equation (5.7) is strictly defined only for ε̂ < 1. This is almost always the case
from the definition range of ε, except for the trivial case ε̂ = 1.
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Figure 5.4: Sensitivity of cumulative unsteady damping εn+1,1 (Eq. (5.7)),
as a function of the homogeneous single-domain ε̂. Several numbers of
domains n are shown.

Now we define the unsteady damping for domains with odd
and even indexes respectively as ODDε and EV ENε. Then, Eq. (5.5b)
becomes
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εn+1,1 =1− [(1− ODDε) (1− EV ENε)]
n−1
2 (1− ODDε) for n odd

(5.9a)

εn+1,1 =1− [(1− ODDε) (1− EV ENε)]
n−1
2 for n even

(5.9b)

The effect of alternating pattern on the cumulative unsteady
damping can be seen in Fig. 5.5, where only 1 to 3 domains are
shown for clarity. The ratio between the odd and even unsteady
damping values is given by the factor f = ODDε/EV ENε. This
formulation might be useful when the designer has a better idea of
how the disturbances change in amplitude along specific domains.
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Figure 5.5: Cumulative unsteady damping εn+1,1 for alternating case.
Odd and even single-domain unsteady damping are given respectively
by ODDε and EV ENε.
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5.1.3 Conclusions

This section provided a rather simple analytical model to
quantitatively assess how waves traveling axially through fluid
domains experience changes in their amplitude. The introduction
of the “unsteady damping” in section 5.1.1 as described by
Eqs. (5.1) enables the empirical determination of whether the
amplitude of a periodically varying quantity (such as pressure)
remains constant, increases or decreases as the wave travels
axially through a fluid domain (row, stage etc.) in a
turbomachine.

Moreover, the formulation for a single domain was extended to
multiple instances in section 5.1.2. For that, the cumulative
unsteady damping has been derived, as given by Eqs. (5.5).
These general expressions apply to cases with arbitrary values of
unsteady damping at each domain, which are then combined into
a final figure representing all the analyzed domains as one single
instance.

Two special cases have been derived from the general
cumulative unsteady damping formulation. Firstly, the
homogeneous unsteady damping was presented in section 5.1.2.1,
considering a fixed value for the single-domain unsteady
damping. This procedure results in the simple expressions given
by Eqs. (5.6), illustrated in Fig. 5.3. This simplification is
advantageous e.g. in the preliminary design phase of
turbomachinery components which shall be subject to PGC
disturbances, especially if no detailed information on flow
response to combustion unsteadiness is available. Unsteady
damping records from other experiments and numerical
estimations (such as the ones presented in this work) may serve
as ballpark figures for the aerodynamics and aeroelastic
designers.

A second special case of the cumulative damping relaxes the
homogeneous assumption by considering an alternating pattern.
This is conveyed by Eqs. (5.9) and shown in Fig. 5.5. Such a
situation could represent turbomachinery components such as
multistage compressors and turbines, which are predominantly
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arranged with successive alternating rotor and stator rows.
Additionally, some aerodynamic designs employ very similar
blade profiles for adjacent stages, while slightly rescaling the
geometries to account for constant mass flow. If empirically
observed or numerically estimated that each type of domain
produces rather uniform values along the machine, the
alternating formulation comes in handy for initial assessments.

Other modeling strategies are of course possible, apart from
the homogeneous and alternating unsteady damping approaches.
Once more simulations and empirical results are available in the
literature regarding unsteady fluid dynamics in turbomachinery,
a road map to more detailed and precise modeling may be drawn
expanding the understanding of the effects of flow fluctuations
originated from PGC on compressors and turbines. The present
work starts this inquiry by numerically applying the unsteady
damping concepts presented in this section to two high pressure
compressors subjected to PGC disturbances in sections 5.2 and
5.3.
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5.2 Case study 1

5.2.1 Case description

This work aims at numerically analyzing how PGC
disturbances affect turbomachinery components (more
specifically the HPC) with respect to unsteady fluid dynamics
and aeroelastic aspects. So as to assess these effects as reliably as
practicable with the information existing in this day and age, we
have chosen to simulate modern industrial (aero) engines.

The first case study presented here employs a research highly-
loaded core compressor developed for modern aero engines. It
was designed focusing on the future generation of medium thrust
range engines. The first six stages feature titanium blisks, while
the last three comprise conventional bladed disk arrangements.
Figure 5.6 shows a reference engine integrated with case study 1
core compressor.

Figure 5.6: Hypothetical integration of case study 1 core compressor into
a reference aero engine [249].

For the simulations, pre-validated operating conditions from
cruise altitude have been chosen, delivering large overall pressure
ratio and high efficiency. Additionally, since we focus on the
aeroelastic behavior subject to PGC, the last blisk stage has been
selected for the analyses (although more rows have been also
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modeled, as discussed later). This is justified by the fact that
blisk rotors lack platform-blade friction damping (as reviewed in
section 2.4.2). Since material (hysteretic) damping is considered
negligible for titanium parts, the only damping source left is the
aerodynamic.

5.2.2 Numerical aspects

The case study 1 configurations simulated here are shown in
Tab. 5.3. Not only the last blisk rotor (R6) is modeled, but also
the entire sixth stage (R6-S6) and also a last configuration with
one more stage downstream (R6-S6-R7-S7). This is important to
compare the significance of PGC disturbances traveling upstream
with the unsteadiness already present in the system due to rotor-
stator interactions. Comments about the number of passages
modeled and cells will be provided later.

Table 5.3: Domain configurations for case study 1 numerical model.
Configuration Rows Modeled passages Millions of cells
R6 1 1 0.8
R6-S6 2 7 4.8
R6-S6-R7-S7 4 9 6.2

Grid independence studies have been performed to ensure
reliable numerical results. Two main criteria have been employed
to determine when a mesh is coarse/fine enough when
representing the model. They are: (i) quantitative comparison of
scalar quantities representing the whole flow; (ii) the grid
convergence index (GCI) [250], whose detailed methodology is
presented in appendix A.1.

Numerous grids with different spatial discretizations were
generated for case study 1 last stages (for general meshing details,
see section 3.2.2.1). The change in the number of cells among
meshes was conducted as uniformly as possible, however
keeping approximately 30 cells close to all walls to fully resolve
the boundary layers. For succinctness, remarks will be made only
regarding the configuration R6-S6, which can be extended for the
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other setups. For steady state simulations performed
independently for rotor and stator, Fig. 5.7 shows normalized
values of isentropic efficiency and mass flow for several grids
modeling R6 and S6.
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Figure 5.7: Normalized scalars representing flow in the sixth stage of case
study 1, showing grids with different spatial discretizations.

The first criteria to confirm grid trustworthiness is to compare
the relative error between the quantities shown in each of the
plots in Figure 5.7 for different meshes. For example, we notice in
Fig. 5.7(a) that the relative change in isentropic efficiency between
all rotor grids shown is less than 1%, which is deemed precise
enough for the desired analyses. To further improve the local
depiction of fine-scale phenomena and pressure distribution on
the surfaces, grid R-B has been chosen for modeling the R6
passage. This choice implies a good trade-off between precision
and computational requirements. With respect to the second
convergence criteria, namely the GCI, the index between the
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medium (B) and fine (C) grids in Fig. 5.7 is GCIBC = 0.24%. The
apparent convergence order was 1.94, which matches well with
the theoretical second order schemes employed.

Similar considerations are applied for the choice of the stator
mesh. Grid S-B is deemed precise enough to model the S6
passage, even though the coarser mesh S-A also produced
acceptable results. Grids R-B and S-B for the sixth stage are
assembled together and depicted in Fig. (5.8). The displayed
scale of this and all other figures in this section is different from
the true original geometries for privacy reasons.

Figure 5.8: Meshes for the sixth stage (R6 at the front and S6 in the back),
chosen according to grid independence study. Assembly showing R-B
and S-B from Fig. 5.7. Geometries rescaled.

Analogously to the spatial discretization study just described,
the precision with respect to the time domain was investigated.
Initially, undisturbed unsteady computations were conducted
until periodic convergence was obtained. More specifically, when
the relative difference between two consecutive periods for some
globally integrated parameter (such as compression ratio or
efficiency) or pressure probe falls below 0.05%.

The choice of time step size depends on the time scales of the
relevant phenomena occurring in the system. Typical events
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include the blade or vane passing frequencies (BPF and VPF),
flow instabilities and vortex shedding, and in our specific case
the periodicity of the PGC processes. The number of time steps
per rotor passing period (TSRPP) has been varied, with transient
results for probes located between the R6 and S6 domains shown
in Fig. 5.9. The probes are not located at the exact boundary, but
inside the domains, next to each respective blade/vane, so that
the normalization period in the horizontal axis matches each
corresponding frame of reference. We notice that, beyond 50
TSRPP, further refinement in the time discretization incurs no
significant change in the pressure coefficient for the probes. A
slightly higher value of 55 has been chosen to carry the unsteady
analyses.

0 0.5 1 1.5 2
Period fraction t/T

c p

(a) Probe downstream of R6 blade
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c p 20
30
40
50
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70
80
100

(b) Probe upstream of S6 vane

Figure 5.9: Periodically-converged pressure coefficient cp for point probes.
Values represent the number of time steps per rotor passing period.

Additionally, to make sure that global scalars are also
accurately represented by this time discretization, an extra
simulation with halved time step (110 TSRPP) was conducted, for
an extra full rotor revolution. In comparison with the 55 TSRPP
setup, a relative difference of 0.09% and 0.005% respectively for
isentropic efficiency and compression ratio was obtained. Other
quantities such as unsteady damping and modal forcing yielded
similar minimal changes. Therefore, the time resolution of 55
TSRPP was presumed precise enough for the unsteady runs with
case study 1, taking also into account the PGC disturbance
frequencies to be modeled.
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It is relevant to mention that the case study 1 core compressor
has not been specifically developed to be integrated with PGC
systems, but rather to be installed right upstream of typical
combustors working with constant deflagration. Therefore, we
investigate how configurations such as case study 1, designed
regarding conventional combustion constraints, would
potentially react to novel unsteady combustion processes such as
PGC.

Following the discussion in chapter 4, PGC is designed to work
with periodic events occurring at high frequencies. Therefore, the
most insightful boundary conditions to implement initially are
harmonic fluctuations at the HPC outlet. Generally, static
pressure and sometimes mass flow are employed as outlet
boundary conditions for turbomachinery models. We favor here
the static pressure over mass flow, since it promotes good
numerical stability and may be more easily related to values
obtained experimentally. Accordingly, the outlet boundary
conditions, modeling PGC disturbance waves propagating
upstream, are computed in the current section as

p(x, t) = p(x) [1 +Ad · sin(2π fd t)] , (5.10)

whereAd and fd are the wave amplitude and frequency describing
the harmonic change in the profile p(x, t). In the entire work, the
disturbance frequency fd will be given nondimensionally either
as a multiple of the BPF or the St number (section 2.2.1.2). The
simulated frequencies fd are chosen far enough from the natural
frequencies of the blades, motivated by the fact that a reasonable
engine design would not have the PGC firing frequency matching
the high-energy eigenvalues of the turbomachinery structure.

Furthermore, since the original boundary conditions are given
as radial profiles, we implement for case study 1 the variations
described by Eq. (5.10) as a function of the radius r, that is,
p(x, t) = p(r, t). This approach presumes that the number of
blades and vanes is considerably larger than the number of
combustion units downstream (e.g. detonation tubes). That is, no
disturbance wave circumferential interaction among combustor



5.2. Case study 1 123

units is initially modeled. More comments about this and other
types of outlet conditions will be given later.

Referring back to Fig. 3.5 for an overview, this section is
embedded within the CFD branch. More specifically, departing
from steady state into the unsteady analyses. With the
implementation of PGC disturbances (such as Eq. (5.10)) the
simulations will deliver unsteady fluid dynamics and
performance results, which will be compared with the
undisturbed case. Additionally, the outcome will be then
employed in the CSM assessments in order to obtain the
aeroelastic results given in section 5.2.4.

5.2.3 Performance

We present initially the effects of PGC on case study 1 core
compressor from the performance point of view. This is
particularly relevant since, although these new combustion
approaches promise significant increase in overall efficiency,
potential component losses may be introduced, which could
hinder the expected gains. Indeed, the establishment of PGC
technologies integrated into gas turbines depends critically on the
synergy between the combustion and turbomachinery systems.

The performance results will be presented sequentially for the
different configurations given in Tab. 5.3. The outcome in the
presence of PGC disturbances will be constantly contrasted with
the so-called baseline case, which consists in an unsteady
computation with constant boundary conditions (conversely,
Ad = 0 in Eq. (5.10)).

5.2.3.1 R6
The most simple row setup from the analyzed configurations

comprises only the rotor R6. Since just a single row is modeled,
no rotor-stator interaction occurs, and we are able to understand
how the PGC disturbances would directly affect the flow through
the rotor blades only.
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Total pressure loss
The total pressure loss ω for the R6 configuration is shown in

Figure. 5.10, as a function of disturbance frequency given as a
multiple of the BPF and the Strouhal number St. Values are shown
for two different disturbance amplitudes Ad. As already stated,
the normalization for the PGC-disturbed case is done with respect
to the mean value for the undisturbed unsteady reference.
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Figure 5.10: Normalized total pressure loss ωR6 for configuration R6, as a
function of disturbance frequency fd and amplitude Ad (see Eq. (5.10)).

Initially, we observe that lower disturbance frequencies incur
higher losses in the system. For fd = 0.125 BPF, an increase of
almost 40% in loss occurs, for a disturbance amplitude Ad = 20%.
For Ad = 10%, the increase in ωR6 was approximately 10% or less
for all disturbance frequencies analyzed. Finally, for frequencies
close to or higher than the BPF, no significant increment in ωR6 is
observed.

These results can be explained by the duration of the
interaction between the disturbance wave and the flow dynamics
in the blade row. Indeed, the disturbance wave alters the mass
flow periodically, offsetting the rotor from its baseline design
condition. When the high-pressure half of the PGC wave
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approaches the rotor trailing edge, an increase in the incidence
angle occurs, provoking temporary separation on the suction side
of the blade; the flow reattaches before the next PGC wave comes.
Subsequentially, when the low-pressure half of the PGC wave
approaches the trailing edge, small negative incidence angles
occur, in a temporary behavior resembling choking. Both these
departures from the design point explain the observed increase in
total pressure loss. However, the necessary time for the blade to
reestablish its “design-point flow” is shorter for the
high-frequency disturbances, which explains the distribution in
Fig. 5.10.

Unsteady damping
The unsteady damping presented in section 5.1 has been

computed for all simulated configurations. According to its
definition (Eqs. (5.1)), two planes are needed to define a domain.
In the R6 case, the domain represents the blade passage, while
planes 1 and 2 (or conversely AP B and AP C in Fig. 5.1) are
located right upstream the leading edge and downstream the
trailing edge, respectively. That is, the planes do not correspond
to the inlet and outlet of the CFD domain, since at these locations
some state variables are fixed a priori, and would not vary
according to the system dynamics. Choosing planes close to the
blade’s leading and trailing edge allows the computation of the
flow fluctuations without undesired interference of prescribed
boundary conditions or numerical artifacts. This reasoning is
applied for all configurations in this work.

The R6 unsteady damping will be denoted here, for simplicity,
as εR6, considering that for all cases the PGC wave travels
upstream, and the station position is clearly stated. The results
for εR6 are shown in Fig. 5.11 as a function of the disturbance
frequency, for static pressure and temperature. Again,
disturbance amplitudes of Ad = 10% and Ad = 20% are depicted.
The outcome for total pressure and total temperature are very
similar, and will not be shown here for brevity.
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Figure 5.11: Unsteady damping for configuration R6, depicting static
pressure and temperature.

Considering frequency values of fd < 0.5 BPF, a significant
drop in εR6 takes place, becoming even negative for
fd = 0.125 BPF. This implies that the rotor only was not capable
of effectively chopping the disturbance wave, whose amplitude
even increased. To the best of our knowledge, this situation had
not been yet reported in the literature for such upstream
propagating disturbances. This outcome advocates the
importance of evaluating how farther these waves propagate,
and motivates the assessment of multistage setups, as presented
in the following sections.
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5.2.3.2 R6-S6
Including the sixth stator in the computations allows us to

understand how the presence of another row changes the way
the PGC wave interacts with the rotor flow. It also makes the
assessments more complex, since now rotor-stator interaction also
occurs additionally to the PGC unsteadiness.

In order to prevent phasing and frequency errors inherent from
non-unitary pitch ratios and approximated rotor-stator
interfacing methods, the number of passages for the
configuration R6-S6 has been slightly adjusted. Although
simulating more passages implies higher computation costs, no
scaling or time-lagging between domains must be employed. In
the present case, the main advantage of unitary pitch ratio is
preserving the real frequency content – from the R6-S6 interaction
and the PGC.

Isentropic efficiency
The isentropic efficiency is essential when assessing how

efficiently a compressor stage increases the fluid density without
incurring excessive losses. Figure 5.12 shows the change in
isentropic efficiency ∆ηR6−S6 as a function of the disturbance
frequency.

A substantial drop in efficiency of almost 25% takes place for
fd = 0.25 BPF. As discussed in section 5.2.3.1, the period when
the row/stage remains far from its design point is directly linked
to the increase in losses and corresponding decrease in efficiency.
With respect to the frequencies shown in Figure 5.12, we notice
that the drop in efficiency is greater for fd = 0.25 BPF than
fd = 0.125 BPF. This is due to the fact that for the lowest
frequency there is enough time for the flow around the blade to
reestablish itself, back from partial separation, before the next
PGC wave arrives. Since this interval is too short for
fd = 0.25 BPF, the system remains constantly disrupted from its
design point, diminishing its isentropic efficiency. Figure 5.13
shows instantaneous flow snapshots for a cross section with
entropy contours, for the undisturbed case and a disturbed
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Figure 5.12: Normalized isentropic efficiency variation ∆ηR6−S6 for
configuration R6-S6, as a function of disturbance frequency fd and
amplitude Ad (see Eq. (5.10)).

scenario. The temporary recirculation zones just discussed are
clearly seen close to the suction side, accompanied by high
entropy regions.

A representation similar to Fig. 5.12, however with a higher
density of computed disturbance amplitudes, is given in Fig. 5.14.
This map is a function of the disturbance frequency and amplitude,
and can be readily employed when assessing how particular PGC
conditions shall affect the efficiency of a compressor stage. Darker
regions at the top left corner indicate the higher drop in isentropic
efficiency for low fd and high Ad. The decrease in efficiency as a
function of disturbance amplitude yielded a square dependency,
with a coefficient of determination R2 > 0.98.

Unsteady damping
Figure. 5.15 shows the unsteady damping for the R6-S6

configuration for static pressure and temperature. In this stage
case, station 2 is located right downstream of S6, while station 1
right upstream of R6 (or respectively AP E and AP B in Fig. 5.1).
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Min Max
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Figure 5.13: Selected instantaneous contours for static entropy and
surface streamlines for rotor blade R6, cross section at 40% span.
Simulated for configuration R6-S6, with fd = 0.25 BPF and Ad = 20%.
The recirculation zones are clearly visible in the disturbed case.
Geometries rescaled.

A distribution similar to the R6 configuration (Fig. 5.11) occurs.
The lowest disturbance frequency shown, fd = 0.125 BPF,
produces a negative εR6−S6 for static pressure with wave
amplitude of Ad = 10%, i.e., an increase along its journey. The
unsteady damping for the static temperature is on the verge of
crossing the border from attenuation to amplification; that is, the
wave amplitude for he temperature virtually does not change
along the stage.

We notice that, for this HPC, the presence of a stage dampens
out the PGC waves for high disturbance frequencies, but was not
capable of doing so for low PGC disturbance frequencies.
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Figure 5.14: Isentropic efficiency η map, function of PGC disturbance
frequency fd and amplitude Ad (see Eq. (5.10)). The color shows the
percentual variation in η.

5.2.3.3 R6-S6-R7-S7
In addition to the single-row and stage configurations, a

multistage setup was simulated within the same PGC
disturbance range. The seventh stage was modeled downstream,
through which the PGC wave first travels before reaching the
sixth stage. The results for performance, unsteady damping and
also modal forcing (to be presented later) may be compared to the
previous section outcome in order to understand how the
addition of two more rows would influence the aerodynamic and
aeroelastic response of one specific stage. Since in this case
maintaining a unitary pitch ratio would be computationally
prohibitive due to the specific blade count, the added stage
comprises one passage per row, so that phase errors in the
seventh stage may occur.

Isentropic efficiency
The variation in normalized isentropic efficiency is depicted in

Fig. 5.16, separately for the sixth and seventh stages. Both plots
have the same scale to ease the comparison.
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Figure 5.15: Unsteady damping for configuration R6-S6, for static
pressure and temperature.

According to Fig. 5.16(b), there is an evident strong drop in
efficiency for the seventh stage, namely of ∆ηR7−S7 = −25.4%

for a disturbance frequency of fd = 0.125 BPF and amplitude
Ad = 20%. For all simulated frequencies at Ad = 20%, the drop in
∆ηR7−S7 always surpassed 10%. The decrease in η is more
pronounced for the seventh in comparison to the sixth stage since
the PGC wave first meets the most downstream rows before
propagating further.
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(a) Stage 6
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Figure 5.16: Normalized isentropic efficiency variations ∆ηR6−S6 and
∆ηR7−S7 for configuration R6-S6-R7-S7, as a function of disturbance
frequency fd and amplitude Ad (see Eq. (5.10)).
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Referring to Fig. 5.16(a), we notice that the efficiency reduction
is mostly restricted to values less than 5%. The only exception
is the case with fd = 0.125 BPF and Ad = 20%. The previously
observed trend of higher losses for low disturbance frequencies is
also kept for the R6-S6-R7-S7 configuration.

The worst outcome shown in Fig. 5.16(b) indicates that order of
magnitude of the efficiency decrease is definitely not negligible
from the performance point of view. However, the comparatively
reduced values from Fig. 5.16(a) for stage 6 (especially in contrast
with Fig. 5.12) hint that the presence of an extra stage downstream
is directly responsible for attenuating the efficiency drop in the
upstream rows.

Unsteady damping
The unsteady damping for this multistage setup is shown for

the entire domain in Fig. 5.17. Similarly to previous results, high
disturbance frequencies were strongly damped along the two
stages, with εR6−S6−R7−S7 ≈ 1 for fd ≥ 0.5 BPF. However,
visible decrease occurs for low disturbance frequencies, reaching
εR6−S6−R7−S7 < 0 for fd = 0.125 BPF for all variables shown.

The temporal development of a specific case is depicted in
Fig. 5.18. The static pressure is normalized by the mean value at
the R6 inlet and is shown after periodic convergence has been
reached. Fig. 5.18 can be interpreted analogously to Fig. 5.2(b),
where the initial wave amplitude is increased after traveling
through the domain.

The concept of cumulative unsteady damping developed in
section 5.1.2 is numerically portrayed in Tab. 5.4. Values are
shown for the sixth and seventh stages separately and also for
the whole R6-S6-R7-S7 domain. It is straightforward to verify
that Eqs. (5.5) fully hold, more specifically in the two-stage form
εR6S6R7S7 = [1− (1− εR6S6) (1− εR7S7)].
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Figure 5.17: Unsteady damping for configuration R6-S6-R7-S7, for static
pressure and temperature. The time-domain behavior for the case shown
with a star is depicted in Fig. 5.18.
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Figure 5.18: Static pressure variation used to compute the unsteady
damping. The configuration is the R6-S6-R7-S7, with fd = 0.125 BPF
and Ad = 20% (shown with a star in Fig. 5.17). The unsteady damping is
-0.322, indicating amplification of the PGC wave.
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Table 5.4: Unsteady damping values for static pressure in the R6-S6-R7-S7
setup, disturbance amplitude Ad = 20%. Stage and cumulative results
for several disturbance frequencies.

Frequency Stage 6 Stage 7 Stages 6 and 7
fd (BPF) εR6−S6 εR7−S7 εR6−S6−R7−S7

0.125 -0.167 -0.133 -0.322
0.250 0.516 0.403 0.711
0.500 0.831 0.881 0.980
0.750 0.784 0.920 0.983
1.000 0.959 0.858 0.994

5.2.4 Aeroelasticity

The aeroelastic results presented in this section will be guided
by the workflow described in section 3.2.3.1, summarized in
Fig. 3.5. Therefore, the reader is invited to refer back to the
previous discussion for details about the methodology.

The CSM analyses start with the working solid blade geometry
(including disk), which through static analysis (section 3.2.1.1) is
pre-stressed with mean loads and centrifugal forces. The mean
loads are obtained by averaging the time-dependent results from
the baseline unsteady case. The centrifugal forces are
implemented according to the HPC rotational velocity at the
chosen working conditions. The focus will be given here to the
blade geometry, being sufficient to add that the disk displacement
is fixed at the bore. That implies that shaft flexibility is ignored,
as a standard practice in blisk assessments [251, 252]. The solid
material is a typical industrial titanium alloy.

Similarly to the grid independence studies for the CFD model
(presented in section 5.2.2), several meshes for the solid domain
have been analyzed. They were generated in Ansys Mechanical,
employing cyclic symmetry for a blade sector (see section 3.2.1.2
for more details). The unstructured grids were spawned by
always keeping a high density of elements close to
high-curvature regions, and particularly in areas with expected
and empirically detected stress concentration. High-order
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tetrahedra have been employed instead of hexaedra, wedges or
pyramids. Although hexaedra could simplify the mapping
between fluid and solid meshes, tetrahedra finite elements were
shown to better model the problem’s physics, particularly
granting regions with high stress gradients a better meshing. The
grids were then made coarser/finer as uniformly as practicable.
The results for the static analyses differed so little among each
other with the generated meshes (relative error less than 0.2%), so
that a further study with the results from the modal analyses is
justified.

After the static computations, pre-stressed modal analysis were
conducted for all generated grids. The grid independence study
for two selected natural modes is shown in Fig. 5.19, where the
eigenfrequencies are normalized by the finest grid. Very similar
behavior was obtained for the first 20 mode shapes, not shown
here for brevity.

0 0.1 0.2
Millions of cells

1

1.0002

1.0004

1.0006

1.0008

N
at

ur
al

 fr
eq

ue
nc

y 
no

rm
al

iz
ed

Blisk-E

Blisk-A

Blisk-B

Blisk-C

Blisk-D

(a) Mode 2

0 0.05 0.1 0.15 0.2
Millions of cells

1

1.005

1.01

1.015

1.02

1.025

N
at

ur
al

 fr
eq

ue
nc

y 
no

rm
al

iz
ed

Blisk-E

Blisk-A

Blisk-C

Blisk-D

Blisk-B

(b) Mode 4

Figure 5.19: Natural frequencies for the analyzed rotor, with different
spatial discretizations. Normalization with respect to finest grid.
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Displacement

Min Max

Figure 5.20: Solid mesh Blisk-D for the analyzed rotor. Full-annulus
expansion for the first torsion mode displacement. Geometries rescaled.

Even the coarsest grid shown in Fig. 5.19 is able to model the
natural modes with frequencies and shapes very close to the
finest mesh. To guarantee good mapping between solid and fluid
domains in the coming analyses, grid Blisk-D was chosen. One
blade sector contains 96322 nodes and 70099 finite elements. The
grid is shown for several sectors in Fig. 5.20, where the contours
depict the second natural mode displacement in a specific nodal
diameter count.

As discussed in sections 3.2.1.2 and 2.3.2, the natural modes
of blisks are often depicted in interference diagrams. A sample
diagram for the current rotor was shown in Fig. 2.5, with the
first 10 mode families indicated. The blade-dominated modes
are located on the right side, for higher nodal diameters, when
the frequency of each mode family curve stabilizes; the disk-
dominated are found on the left side, for lower nodal diameters.

The number of eigenvalues and eigenvectors computed should
span over at least one and a half times the maximum external
forcing frequency to be employed in the forced response analyses
(section 5.2.4.2). This criteria is fulfilled for the present case by
employing 117 mode shapes. Simulations with more modes have
provided no significant change in the results. Thus, this number
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of modes has been chosen to save computational resources.
Additionally, modal participation factor and cumulative mass
fraction were also controlled to make sure that the extracted
modes properly represent the blade structure with respect to
excitation in different directions.

5.2.4.1 Aerodynamic damping
Once the pre-stressed modal analyses are performed, the blade

mode shapes are available so that the aerodynamic damping may
be computed. For details on the numerical approach with the
energy method, see section 3.2.2.3.

In this section, the NHB was employed to save computational
resources when simulating the whole nodal diameter range.
Discretization independence studies showed that 20 pseudo time
steps per blade oscillation period were enough to guarantee
convergence. Similarly, the blade displacement magnitude was
varied, yielding reliable results for a maximum tip displacement
of approximately 0.5% of the blade height.

Figure 5.21 shows an example of an aerodynamic damping
computation with the NHB method. The contours depict the
absolute value of the wall power density, which indicates with
which magnitude the local displacement of infinitesimal surface
element contributes to the integral yielding the aerodynamic work
(Eq.(2.11)). The case shown corresponds to the first torsion mode,
with an IBPA of approximately 177◦. The CFD surface grid is also
depicted. Comparing Fig. 5.20 for the solid domain and Fig. 5.21
for the fluid domain (both representing the same IBPA), a very
good agreement between the interpolated results into the two
meshes is observed.

Performing the same computation for different IBPA and for
the first three mode shapes, we obtain the aerodynamic damping
results shown in Fig. 5.22. The ζ values are normalized by the
smallest result along the entire nodal diameter (or conversely
IBPA) range.

No negative aerodynamic damping was obtained, implying,
according to the energy method (see section 2.4.3), that no flutter
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Absolute wall power density

Min Max

Figure 5.21: Absolute wall power density contours on rotor blades for the
aerodynamic damping simulation. Vectors show the surface velocity for
the first torsion mode (see Fig. 5.20). The blade displacement is magnified
for visualization purposes, and the geometries are rescaled.

for this rotor and these modes is expected in this operating
condition. We observe a relatively smooth harmonic behavior at
the first oscillation order. This sinusoidal-like result can be
related to the influence coefficient theory with traveling
waves [24, 29, 48], with the vibrating blade exerting substantial
more influence on the adjacent blades and much less on the
far-located ones.

The aerodynamic damping corresponding to zero nodal
diameter will be employed in the forced response computations
in section 5.2.4.2. This damping value is located very near the
minimum for the simulated modes, especially the first and the
third. Additionally, it matches the implemented PGC excitation
pattern and consists in a slightly conservative approach for the
structural analyses.

5.2.4.2 Forced response
Referring back to the workflow in Fig. 3.5, at this point the

modal decomposition, the aerodynamic modal damping and the
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Mode 1 Mode 2 Mode 3

(a) Displacement of first blade-dominated mode shapes. Geometries rescaled.
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Figure 5.22: Aerodynamic damping results for first blade mode shapes.

unsteady forcing from the CFD simulations are available. The
mode-superposition harmonic response analyses can therefore be
conducted for the baseline and PGC-disturbed cases. Indeed, the
disturbed results will be always compared to the undisturbed, to
give an idea of how the structural response of the HPC changes
in the presence of PGC.

The CSM results shown in this work always refer to the design
point rotational speed, that is, no part-speed state will be
presented. Therefore, the inclination of the speed line in the
interference diagram is fixed.

The unsteady CFD computations producing the dynamic loads
for the forced response analyses have been carefully
post-processed. This step is crucial to ensure that the transient
signal adequately represents the excitation frequencies. For that,
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the sampling rate and simulated interval must be adjusted to
satisfy the Nyquist criterion in the Fourier decomposition. Initial
convergence noise has been disregarded. Care was also taken
with non-periodic data, by either choosing proper periodic
intervals (generally encompassing multiple frequencies) or by
employing windowing techniques.

As discussed in section 2.7, failure criteria are most often a
function of mean and alternating stresses, which in turn are
directly related to the minimum and maximum stresses.
Therefore, we focus the presentation of CSM results on the limit
values of the dynamic stresses. One particular scalar representing
a general multi-axial stress state is the von-Mises (or equivalent)
stress σvm, given by

σ2
vm =

1

2

[
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2

+ 6(τ2
xy + τ2

yz + τ2
xz)
]
, (5.11)

where each of the terms correspond to normal and shear stress
components in specific directions (see Eq. (3.35)). The von-Mises
stress is related to one of the invariants of the deviatoric part of
the Cauchy stress tensor (Eq. (3.2)). This means that the value
of σvm is independent of coordinate system rotations, satisfying
the principle of material frame indifference [253]. Generally, the
von-Mises stress is a criterion employed for ductile materials by
considering a critical value above which yield is expected to occur.

To illustrate how the stress distribution varies for a rotor blade
in the forced response computations, Fig. 5.23 shows results for an
undisturbed and a disturbed (with fd = 0.125 BPF and Ad = 20%)
case. A single circumferential sector is shown, with the maximum
stress obtained after a phase sweep (see section 3.2.1.3).

Much higher stresses occur for the disturbed case in
comparison to the undisturbed, especially close to the leading
edge root, above the fillet. For this load, the most excited mode is
the first bending. Proceeding in a similar manner, we can
compute the forced response for several disturbance frequencies
in the undisturbed and the PGC-disturbed cases.
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Von-Mises (equivalent) stress σvm

Min Max

(a) Undisturbed (b) Disturbed

Figure 5.23: Von-Mises stress on rotor blade for setup R6-S6, for
undisturbed and disturbed (Eq. (5.10) with fd = 0.125 BPF and
Ad = 20%) cases. Maximum value over entire vibration cycle. Geometry
rescaled.

5.2.4.3 R6
Figure 5.24 shows the forced response results for configuration

R6 from Tab. 5.3. Two PGC disturbance amplitudes Ad are
depicted. The normalization is conducted with respect to the
stress value of the computation fd = 1 BPF and Ad = 20%.

The maximum equivalent stress reaches a level more than 150
times larger for fd = 0.25 BPF in comparison to the disturbed case
at fd = 1 BPF. We also notice from Fig. 5.24 that an increase in the
disturbance amplitude Ad from 10% to 20% amplifies the absolute
stress observed on the blade, as expected.

It is possible to notice a qualitative correspondence between
the von-Mises stress and performance indicator for the R6 setup.
The total pressure losses (Fig. 5.10) are much higher for the lower
disturbance frequencies than for the higher ones.

Interestingly, the unsteady damping presented for the R6
configuration in section 5.2.3.1 also depicted substantial change
for low values of fd. By the construction of the unsteady
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Figure 5.24: Maximum von-Mises stresses on R6 blade, for R6
configuration. Normalization conducted with respect to fd = 1 BPF
and Ad = 20% results (marked with N).

damping parameter, this result implies that the PGC wave
“survives” longer as it travels axially, being able to excite the rotor
blade with higher amplitudes than the high-frequency
counterpart. In the present case, even though the unsteady
damping value is lower for fd = 0.125 BPF than fd = 0.25 BPF
(see Fig. 5.11), the latter excitation frequency is slightly closer to
an eigenvalue (but still far from resonance ranges), explaining the
higher stresses observed.

5.2.4.4 R6-S6
Similarly to configuration R6, Fig. 5.25 depicts the equivalent

stresses for configuration R6-S6, subject to the same disturbance
amplitudes Ad of 10% and 20%. Differently from section 5.2.4.3,
in this setup the stator S6 is the first row affected by the upstream
traveling PGC disturbances, followed by the structurally analyzed
R6 blade.

An outcome similar to configuration R6 is obtained, with higher
stresses for lower PGC frequencies. This behavior matches again
well with the performance results from section 5.2.3.2. Compare
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Figure 5.25: Maximum von-Mises stresses on R6 blade, for R6-S6
configuration. Normalization conducted with respect to fd = 1 BPF
and Ad = 20% results (marked with N).

for example Fig. 5.25 to Fig. 5.12, which also yields the highest
decrease in isentropic efficiency for fd = 0.25 BPF. Once more,
the unsteady damping for R6-S6 (Fig. 5.15) also relates well to the
stresses obtained in the forced response analyses.

When the normalization is conducted with respect to the von-
Mises stresses obtained at the same forced response frequency
in the baseline (undisturbed) simulation, the amplitude is much
higher. This is shown in Fig. 5.26.

The distribution is quite similar to Fig. 5.25. However, the
order of magnitude is three times higher. Although at the
simulated frequencies the maximum von-Mises stress in the
baseline case are quite small, posing no risk to the structure, a
substantial amplification occurs with the PGC disturbances. This
result quantitatively highlights the potential of PGC disturbances
in enhancing aeroelastic response, serving as an alert to the
structural designer.
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Figure 5.26: Maximum von-Mises stresses on R6 blade, for R6-S6
configuration. Normalization conducted concerning each respective
baseline (undisturbed) result.

5.2.4.5 R6-S6-R7-S7
The maximum von-Mises stresses from the forced response

analyses with the R6-S6-R7-S7 setup are shown in Fig. 5.27.
We see now a relative increase in the equivalent stress for the

low frequencies even higher than for configurations R6 and R6-S6.
More specifically, σvm is almost 250 times larger for fd = 0.25 BPF
than for fd = 1 BPF, for a disturbance amplitude of Ad = 20%.
Again, the increase is more pronounced for the higher value of Ad
shown.

There is also correspondence between the performance and
forced response results for this configuration. That is, not only the
equivalent stress (Fig. 5.27), but also the efficiency drop (Fig. 5.16)
and unsteady damping (Fig. 5.17) yield much different values for
the lowest two frequencies in comparison to fd ≥ 0.5 BPF.

When comparing the disturbed with the undisturbed case,
relative increase occurs for all cases, as shown in Fig. 5.28.

This relative change varies from almost 4000 times higher
stresses with PGC disturbances for fd = 0.125 BPF, to simply 4
times in the fd = 1 BPF case. The increment is definitely lower
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Figure 5.27: Maximum von-Mises stresses on R6 blade, for R6-S6-R7-S7
configuration. Normalization conducted with respect to fd = 1 BPF and
Ad = 20% results (marked with N).

than the values observed for configuration R6-S6 (Fig. 5.26), but
still relevant. This happens because the undisturbed stresses are
already higher for the R6-S6-R7-S7 in comparison to the
undisturbed stresses for R6-S6, most likely due to the more
complex dynamics brought by the presence of one further stage
downstream.

The different stress distributions shown in Figs. 5.27 and 5.28
are directly related to how the amplitude of the unsteady loads
acts on the blade. To get an idea of how the pressure distribution
acts on each one of the blades and vanes in the R6-S6-R7-S7
configuration, Fig. 5.29 shows the probability density of the static
pressure distribution harmonic corresponding to the
fd = 0.25 BPF and Ad = 20 % disturbed case. These values are
obtained by initially performing a Fourier decomposition of the
surface pressure on each blade/vane and then fitting a normal
distribution function into the data.

The goal of Fig. 5.29 is not to show a best fit for how the
pressure varies for the node in the mesh, but rather to depict how
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Figure 5.28: Maximum von-Mises stresses on R6 blade, for R6-S6-R7-
S7 configuration. Normalization conducted concerning each respective
baseline (undisturbed) result.

the pressure magnitude varies for each row. The downstream
rows present a higher mean pressure for this harmonic, while the
analyzed blade R6 perceives a comparatively lower mean
pressure load but with a smaller variance. The monotonic
decrease in the mean pressure from S7 to R6 (from right to left in
Fig. 5.29) also matches with the unsteady damping results for this
configuration (Fig. 5.17), which conveys a decrease in the PGC
wave amplitude for fd = 0.25 BPF and Ad = 20 %. Similar results
are obtained for other values of fd, not shown here for brevity.

5.2.5 Conclusions

This section numerically assessed a high pressure compressor
subjected to boundary conditions representing PGC. Both
unsteady performance and aeroelasticity analyses have been
presented. Additionally, the concept of unsteady damping
developed in section 5.1 was directly applied to the numerical
results. Three model configurations were considered: a single
rotor row (R6), a single stage (R6-S6) and two adjacent stages
(R6-S6-R7-S7). The unsteady simulations presented in this section



148 5. Selected results and discussion

0 2 4 6 8 10 12
x 10

4

0

1

2

3

4

5

6x 10
−5

Amplitude of static pressure harmonic [Pa]

P
ro

ba
bi

lit
y 

de
ns

ity

 

 

R6

S6

R7

S7

Figure 5.29: Probability density distribution of the static pressure
harmonic of PGC-disturbed computation with fd = 0.25 BPF and
Ad = 20 % (see Eq. (5.10)). Values are depicted for blades and vanes
of the R6-S6-R7-S7 configuration.

considered PGC disturbances as changes in the outlet pressure
following Eq. (5.10), with different disturbance amplitudes Ad
and frequencies fd.

Regarding the HPC performance subjected to PGC, a couple of
results are worth mentioning. First, the amplitude Ad of the PGC
wave was the most relevant factor when determining the total
number of rows to be modeled. This outcome is conveyed in
Figs. 5.10, 5.12 and 5.16, which respectively depict how an
increase in total pressure loss and a decrease in isentropic
efficiency are effectively minimized by the presence of additional
rows between the PGC device and the analyzed domain. For
disturbance amplitudes less than or equal to Ad = 10% of the
mean outlet pressure, a rather small decrease in isentropic
efficiency was noticed (less than 3%, as shown in Fig. 5.14). Once
comparatively larger PGC amplitudes are present, such as
Ad = 20%, a reduction of up to 25% in the stage isentropic
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efficiency took place. A square dependency of efficiency drop as a
function of disturbance amplitude was obtained. Finally, the
appearance and strengthening of temporary recirculation areas
close to the blade surface have been detected (see Fig. 5.13),
especially for lower values of fd; this behavior is linked to the
increase in the adverse pressure gradient downstream of the
stage, due to the approach of the PGC wave. The time scale taken
by the passage flow to reestablish itself after a PGC wave goes
through turned out to be a relevant aspect, especially when
directly contrasted with the period of a PGC wave itself.

The unsteady damping was computed for all configurations, so
to assess how the wave amplitude varies as it axially travels
along the HPC. For all row setups, a larger damping (attenuation)
of the PGC wave followed for high fd values. However, an
amplification of the PGC wave occurred for a disturbance
frequency of fd = 0.125 BPF (see Figs. 5.11, 5.15 and 5.17). This
large drop in the unsteady damping occurred independently of
the disturbance amplitude. This behavior highlights the
importance of quantitatively assessing the propagation
persistence of PGC waves in turbomachinery components. Up to
our knowledge, such an outcome had not yet been reported in
the literature considering upstream-propagating waves.

With respect to the aeroelasticity results, no negative
aerodynamic damping was obtained for the first rotor natural
modes, under the simulated operating conditions. This is
summarized in Fig. 5.22. Since the considered design consists of a
blisk, no additional damping is considered. According to the
energy method, this outcome implies that no flutter behavior is
expected for the analyzed rotor in the selected operating point.

The damping ratio obtained in the flutter analyses was then
employed in the computations considering PGC forced response.
A substantial increase in the displacements and stresses on the
rotor blade occurred in the presence of PGC disturbances. A
much higher impact on the structure was seen for lower
disturbance frequencies. For instance, the equivalent stress was
almost 250 times larger for the case with fd = 0.25 BPF in
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comparison to fd = 1 BPF, for the same disturbance amplitude
(see Fig. 5.27). Additionally, comparing the disturbed with the
unsteady baseline results for each single frequency, a similar
distribution with respect to fd occurs, however with a much
larger amplification (see Figs. 5.26 and 5.28). On the one hand,
this is expected since the stresses in the baseline case are
comparatively very small. On the other hand, the larger
amplification shows the latent danger of ignoring the structural
excitation potential of PGC disturbances within turbomachinery.

The forced response trend with respect to fd was similar to the
unsteady damping results, clearly producing a higher impact for
lower frequencies. This good qualitative agreement between the
unsteady damping (obtained solely with CFD computations) and
the forced response outcome (which requires a more involved
workflow) indicates that the former may be used as a preliminary
design predictor for structural response whenever axially
traveling disturbances should be present in the system. Certainly,
detailed computational mechanics assessments should be carried
out for critical operating ranges or when precise stress values are
sought.
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5.3 Case study 2

5.3.1 Case description

The second case study employed in this work stems from the
Energy Efficient Engine (EEE) program, covered by the
comprehensive Aircraft Energy Efficiency scheme. A diagram
representing the engine is shown in Fig. 5.30. This initiative,
coordinated by the National Aeronautics and Space
Administration (NASA), took place in the late 1970s and 1980s,
aiming at developing new technology standards for turbofans
employed in commercial aviation in the decades to come.
Pragmatic goals with respect to existing representative figures
were set, such as a 12% reduction in installed specific fuel
consumption, when compared to a CF6-50C engine at maximum
cruise thrust. Decrease in performance deterioration by 50% as
well as meeting noise and emission standards were also
covered [254]. The four main parts of the NASA EEE program
were: (i) propulsion system analysis, design and integration; (ii)
component analysis, design, and integration; (iii) core test and
(iv) integrated core/low spool test.

Figure 5.30: NASA Energy Efficient Engine representation [254].
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Figure 5.31: Modern application of the NASA EEE core engine [258].

Contracts for development and production were awarded to
General Electric and Pratt & Whitney. The data used in this work
is extracted from the GE HPC design from [255], with corrected
geometries provided by [256]. The EEE core was employed in
later models such as GE90 and GEnx engines (see Fig. 5.31). An
overview about the whole EEE program is given by [257].

The main operation requirements for the NASA EEE core
compressor were the development of a pressure ratio of 23 within
10 stages while providing adiabatic and polytropic efficiencies of
86.1% and 90.5% respectively. The corrected mass flow at cruise is
53.5 kg/s.

Differently from case study 1, the NASA EEE comprises no
rotor blisk. Therefore, the last stage, namely the tenth, has been
chosen for the analyses in this section, due to its direct adjacency
to the combustion system. The last rotor is named here R10, while
the outlet guide vane, or last stator, is termed S10.

5.3.2 Numerical aspects

Similarly to the grid independence studies for the case study 1
(section 5.2.2), we start by ensuring that the generated meshes
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properly represent the model. The details about meshing
parameters will not be repeated in this section, since the process
of generating the grids is alike for both case studies. It is
sufficient to mention that the boundary layers have been
modeled for all walls, including tip gaps and fillets.

Figure 5.32 shows the grid independence study for the EEE
HPC tenth stage. The scalar values shown are normalized by the
finest grid displayed.
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Figure 5.32: Normalized scalars representing flow in the EEE HPC tenth
stage, showing grids with different spatial discretizations.

The grid convergence index (see Appendix A.1) obtained for the
loss coefficient, considering the finest and medium meshes (B and
C), was GCIBC = 1.64 % with apparent convergence order of 1.937.
It is relevant to say that the GCI and the apparent convergence
order may vary substantially when considering different globally
integrated parameters. But in any case, the relative difference
between the scalars considered was below 0.8% (and often much
smaller) for all cases. This threshold has been deemed sufficient
for the desired precision for this work.
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Figure 5.33: Pressure coefficient cp for a rotor cross section at 50 % span.
Same grids as in Fig. 5.32(a) (A: coarse; B: medium; C: fine).

To further investigate each of the generated grids, Fig. 5.33
depicts the pressure coefficient cp on the R10 blade, for a cross
section at half span.

Minimal discrepancies occur in the pressure distribution, which
are considered insignificant for the desired numerical precision.
Similar results are obtained for the stator vanes, not shown here
for brevity. The medium grids (R10-B and S10-B) are chosen for
further unsteady simulations. These are depicted in Fig. 5.34.

In order to obtain a unitary pitch ratio for the tenth stage
numerical model, the number of rotor blades is slightly altered
from 140 to 141 (0.7% change) and the number of stator vanes
from 96 to 94 (2%). With that, modeling two rotor and three vane
passages yields the same circumferential length. This
modification did not imply substantial change in the design point
and avoids frequency and phase errors when analyzing the
unsteady PGC disturbances (similar discussion in section 5.2.3.2).
The rotor domain in this setup has 3.5 million nodes, while the
stator domain has 4.2 million, in a total of 7.7 million nodes for
the simulated stage.



5.3. Case study 2 155

Figure 5.34: Grids for the analyzed tenth stage assembled together (R10-B
and S10-B from Fig. 5.32).

A time discretization study was also conducted, to make sure
the size of the time step is suitable for the expected simulations.
Figure 5.35 shows pressure probes located in both R10 and S10
domains, between the rotors and vanes, for different time
discretizations.
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(a) Probe downstream of R10 blade
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Figure 5.35: Periodically-converged pressure coefficient cp for point
probes. Values represent the number of time steps per rotor passing
period.
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All the PGC frequencies simulated for the NASA EEE are
lower than or equal to the BPF, making sure that the rotor-stator
interaction is sufficiently discretized in time. According to the
behavior shown in Fig. 5.35 and the confirmation of
quasi-periodic convergence of global scalars (such as
compression ratio or isentropic efficiency), the value of 70 time
steps per rotor passing period was chosen. With that, adequate
time discretization is expected while keeping the computational
demand under a reasonable limit, considering the fine spatial
discretization.

The setup just described (named here standard) does not
contemplate the effective modeling of PGC waves varying in the
circumferential direction θ. This would be the case, for example,
when several PGC units are distributed around the whole
annulus. However, the firing of a single PGC device may also
generate higher wave harmonics that propagate around the
annulus (see, e.g., [208] for similar spatial patterns with RDC).
Such a situation is illustrated in Fig. 5.36, considering the fourth
annulus harmonic (circumferential order) propagating in the
opposite direction of the blade rotation.
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Figure 5.36: Boundary condition at the stage outlet for a PGC wave
propagating circumferentially. The pressure pattern shows the fourth
annulus harmonic (circumferential order nc) rotating in the opposite
direction of the rotor.
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Consider a pressure wave with circumferential order nc
propagating at the speed of sound c in an annulus with mean
radius r̄. In this case, for a frame of reference traveling with the
wave, no change in amplitude with time is considered, but rather
its propagation in the circumferential direction θ. The blades
rotate with linear frequency fr. The pressure at the outlet can be
then modeled as

p(r, θ, t) = p(r)

[
1 +Ad · sin

(
c t

r̄
− nc θ

)]
. (5.12)

That is, a radial pressure profile p(r) rotates around the annulus
with the amplitude varying harmonically with magnitude Ad.
The effective excitation frequency f̂r perceived by a blade rotating
with linear frequency fr will therefore be

f̂r =
(
ncfr −

c

2πr̄

)
. (5.13)

Note that, for consistency, PGC waves traveling in the opposite
direction of the rotor have a negative c value (thus increasing f̂r).

To model these PGC waves traveling circumferentially, a
second mesh setup is also implemented in this work. Since many
more passages must be modeled, the computational resources
would be prohibitive for transient simulations considering all
rotor and stator passages. Therefore, only a quarter of the whole
annulus was modeled. Of course, fluctuations with wavelength
larger than a quarter of the annulus perimeter cannot be properly
implemented with this mesh. However, the likely presence of
more combustion units justifies higher nc values, adequately
captured by the quarter-annulus setup. For that, 24 rotor and 35
stator passages are meshed. Due to this large number of passages
and unsteady requirements, the coarser grids from Fig. 5.32 were
selected, enabling feasible computational time with reasonable
accuracy. Whenever referred to in this work, this setup will be
termed quarter-annulus.
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5.3.3 Performance

For brevity, we draw upon the discussion about PGC and
performance already presented in section 5.2.3. The results
presented in the current section shed light on how the
performance of the last stage of the HPC from the NASA EEE
would react to PGC disturbances traveling upstream. Again,
comparisons with the baseline, unsteady case will be conducted.

To compensate instantaneous fluctuations in mass flow in the
inlet and outlet of the domain, an adapted definition for unsteady
performance quantities is presented. This approach takes into
account the implementation of boundary conditions which vary
in time. It starts by weighting spatially-integrated quantities in
each time step by the mass flow ṁ(t) which traverses each axial
plane (revisit Fig. 5.1). In that way, fluxes associated with higher
mass flow bear more relative influence than fluxes with lower
mass flow.

Consider a generic state variable φ(t) (pressure, temperature
etc.), possibly fluctuating in time. The mass-flow-weighted time
average φ̂ is defined in Eq. (5.14), for a single axial plane.

φ̂ ,

1

T

∫ t+T

t

ṁ(t)φ(t) dt

1

T

∫ t+T

t

ṁ(t) dt

=

∫ t+T

t

ṁ(t)φ(t) dt∫ t+T

t

ṁ(t) dt

, (5.14)

where T is the desired integration period, comprising at least
both the blade passing and the disturbances periods. In the
middle equality of Eq. (5.14), the denominator stands for a simple
time-averaged mass flow at the chosen axial plane. Observe that
φ̂ is not a spatial average (which must be conducted beforehand),
but instead a time average weighted by the mass flow. The
circumflex symbol will be dropped for derived quantities, since
all unsteady performance parameters in this section will be
computed employing this definition.
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5.3.3.1 Standard setup
Initially, the PGC disturbances will be implemented as

harmonic fluctuations as in the previously presented Eq. (5.10).
The performance results to be presented in section 5.3.3 allow
immediate comparison with the results from case study 1.

Subsequently, thorough analyses will be performed with the
data-driven decompositions in section 5.3.4. For that, in addition
to the harmonic fluctuations prescribed by Eq. (5.10), another set
of boundary conditions is also implemented, namely a pressure
pulse. This elementary rapid variation in pressure simulates the
opening of a PGC valve which allows compressed air from the
HPC to enter the combustion chamber. For most part of a classic
PGC cycle, more specifically during the ignition, burning and
purge phases, no mass flows into the combustion chamber [155].
For a sector of the HPC, that implies a long time with “constant”
outlet boundary conditions, followed by a drop in pressure when
the PGC inlet valve opens. Such a transient behavior in the outlet
pressure p(x, t) is modeled here with an inverted Gaussian
function g(t) and an activation function a(t) as

p(x, t) = p(x) [1− a(t)g(t)] , (5.15)

with

g(t) =Ap e

−(t− ts)2

2σ2 ,

a(t) =1/2 [1 + tanh (a1 t− a2)] ,

where Ap is the pulse relative amplitude (corresponding to the
trough depth shown in Fig. 5.37), σ the standard deviation and
ts a time delay. The constants a1 and a2 simply modulate the
activation function dynamics, avoiding nonphysical numerical
discontinuity when applying the boundary conditions. The use of
a narrow (Gaussian) pulse is valuable when seeking to understand
how the turbomachinery reacts to a single, sudden change in the
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Figure 5.37: Representation of an inverted Gaussian pulse (Eq. (5.15)),
employed as boundary condition to simulate the opening of a PGC valve.

outlet conditions, which is also convected upstream. Additionally,
in contrast to single-frequency PGC disturbances, the frequency
spectrum of a Gaussian function is also a Gaussian, meaning that
a broad range of frequencies is excited simultaneously.

Total pressure loss
The loss for both the R10 and the S10 domains is depicted in

Fig. 5.38, as a function of the harmonic disturbance frequency
fd, for an amplitude of Ad = 10%. The loss is calculated at each
respective frame of reference.

One notices a relative increase in the total pressure loss of up to
80% for S10 when comparing the PGC-disturbed with the
baseline case. More specifically, the losses in the stator vane, the
first row affected by the PGC waves, increase for higher
disturbance frequencies fd. For the R10 blade however, higher
losses take place for lower fd, reaching approximately 70% for
fd = 0.125 BPF. Similarly to the results observed in the case
study 1 (section 5.2.3), the PGC wave is capable of traveling
further upstream for lower frequencies. In this concrete case, it
implies higher losses for the R10 row at low fd values, when
temporary flow separation occurs.
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Figure 5.38: Normalized total pressure loss for rotor and stator, as a
function of the disturbance frequency fd and amplitude Ad = 10% (see
Eq. (5.10)). Normalization with respect to the undisturbed case.

Unsteady damping
To assess how far and with which amplitude the PGC wave

travels upstream, the unsteady damping for the tenth stage is
depicted in Fig. 5.39. Values are shown for mass flow, static
pressure and temperature for a disturbance amplitude Ad = 10%.

Higher attenuation is obtained for higher disturbance
frequencies, close to full damping for fd > 0.5 BPF. Much lower
attenuation occurs for lower fd, reaching even ε < 0 for
fd = 0.125 BPF, considering the static pressure and mass flow.
This implies an increase in the wave amplitude. To illustrate how
the wave behaves in an amplification case, Fig. 5.40 shows the
variation of static pressure for fd = 0.125 BPF (marked with a star
in Fig. 5.39).

These results are indeed very similar to the ones from case
study 1 (see Figs. 5.11, 5.15 and 5.17). For both case studies, the
PGC wave amplitude increased for fd = 0.125 BPF as it traversed
the system. Low-frequency PGC waves are able to travel further
downstream, be it for setups with relatively lower or higher mass
flow, respectively portrayed by case studies 1 and 2.
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Figure 5.39: Unsteady damping for the tenth stage, with disturbance
amplitude of Ad = 10 %. The time-domain behavior for the case shown
with a star is depicted in Fig. 5.40.
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Figure 5.40: Static pressure variation at two stations to compute the
unsteady damping. The disturbance parameters are fd = 0.125 BPF and
Ad = 10% (marked with a star in Fig. 5.39). The unsteady damping value
is -0.046, indicating amplification of the PGC wave.

Isentropic efficiency
Finally, the variation in the isentropic efficiency comparing the

undisturbed and the disturbed cases is shown in Fig. 5.41, for
Ad = 10 %.

The drop in efficiency is limited to less than 7% for this setup.
This magnitude is of the same order of the results shown for case
study 1 in Fig. 5.12, however with less variation with respect
to the disturbance frequency. This outcome allows the designer
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Figure 5.41: Variation in mass-flow-weighted isentropic efficiency as a
function of disturbance frequency fd, with Ad = 10 % (see Eq. (5.10)).

to weight the potential gains obtained with the implementation
of PGC against the decrease in stage efficiency occurring in the
compressor last stages.

Since the mass-flow-weighted total pressure rise remains
approximately unchanged in the presence of PGC disturbances,
no results are shown here.

5.3.3.2 Quarter-annulus setup
Similarly to the standard setup, the unsteady performance and

unsteady damping have been considered for the quarter-annulus
setup. The mass-flow-weighted time average given by Eq. (5.14)
is also employed here.

For the quarter-annulus setup, besides the undisturbed case,
three values of circumferential order (nc in Eq. (5.12)) have been
considered: 4, 8 and 12. They all rotate in the opposite direction
(counter-rotation) of the rotor so as to increase the relative
excitation frequency perceived by the blades. Co-rotating cases
with similar nc values would promote effective excitation
frequencies f̂r (see Eq. (5.13)) so low that a quasi-steady flow
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analysis would be instead justified. Additionally, the
computation of a much longer time span would be necessary to
obtain a stabilized flow behavior.

Total pressure loss
Figure 5.42 shows the total pressure loss for the rotor and stator

domains with the quarter-annulus setup. Similarly to the standard
setup (Fig. 5.38), an increase of up to 80% in relative losses occurs.
The change pattern is also alike: higher losses in the S10 domain
take place for higher circumferential order nc (higher effective
excitation frequency f̂r), while higher losses in the R10 domain
occur for lower nc. However, the two plots differ in that the losses
for the rotor domain in the quarter-annulus setup do not increase
by more than 20%, while in the standard setup they reach almost
70%.
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Figure 5.42: Total pressure loss for rotor and stator in quarter-annulus
setup, as a function of the circumferential order nc, for amplitude
Ad = 10% (see Eq. (5.12)). Normalization with respect to the undisturbed
case.

Unsteady damping
The attenuation or amplification of the PGC waves as they

propagate axially can also be analyzed for the quarter-annulus
case. Figure 5.43 depicts the unsteady damping for the same
variables assessed with the standard setup (see Fig. 5.39). Once
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again, a monotonic increase in ε proportional to nc occurs for
almost all cases. That is, fluctuations with larger circumferential
wavelength (lower nc) persisted longer than cases with lower
wavelength.
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Figure 5.43: Unsteady damping for quarter-annulus setup, as a function
of the circumferential order nc (Eq. (5.12) with Ad = 10 %).

A reasonable amount of damping takes place for the
circumferentially rotating waves, as they traveled axially through
the stage. The fact that more damping followed from higher nc
advocates for the implementation of more combustion units, if
the goal is reducing fluctuations effectively.

Isentropic efficiency
The drop in isentropic efficiency for the quarter-annulus case as

a function of the circumferential order nc is shown in Fig. 5.44(a).
The order of magnitude is the same as in the standard case
(compare with Fig. 5.41). Here, a slightly lower but still relevant
decrease in η occurred, limited to less than 4%, for Ad = 10%.

Substantial decrease in isentropic efficiency occurred by
increasing the disturbance amplitude Ad, as shown in Fig. 5.44(b)
for nc = 8. Up to 15% drop took place for Ad = 20%. These
changes are similar to the values obtained with case study 1 with
the same disturbance amplitude. They show, also in the
quarter-annulus case, the extent with which PGC is able to affect
the baseline performance values for the HPC.
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(b) Varying Ad for fixed nc = 8

Figure 5.44: Variation in isentropic efficiency η for quarter-annulus setup,
as a function of disturbance amplitude Ad and circumferential order nc
(see Eq. (5.12)).

5.3.4 Data-driven decompositions

The methods presented in section 3.3 will be employed in this
section to analyze the flow in the tenth stage of the NASA EEE
high pressure compressor in detail. The main idea is to identify
relevant flow phenomena, coherent structures and which specific
dynamic features influence the flow (and consequently the
structure) most strongly. As usual, the unsteady baseline and the
PGC-disturbed results will be compared.

From the three data-driven methods presented in section 3.3,
only the Fourier decomposition has been employed up to this
point, since it is a part of the aeroelastic workflow (Fig. 3.5). This
section will focus on the other two methods, namely POD and
DMD, however still relating to Fourier decompositions and phase
averaging when relevant.

Three types of domains will be employed here for the POD and
DMD investigations. The first is the axial plane already presented
in Fig. 5.1. It corresponds simply to a cross section in the axial
direction, perpendicular to the mainstream flow. The second type
is the streamwise surface, which consists in a blade-to-blade cross
section, i.e., a surface which varies in the circumferential and axial
directions but has a single radius value. The third is the rotor
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blade surface. Before presenting the results for these types of
domains, some considerations will be made about the numerical
discretization.

5.3.4.1 Numerical aspects
Analogously to the independence studies about time

discretization previously conducted, we start by assessing
whether the chosen time step and the total number of time
samples (snapshots) provide reliable results. To illustrate how the
POD singular values (Σ in Eq. (3.54)) behave, we consider
initially a disturbed case in which complex flow dynamics at
different frequencies occur. Namely, we perform a POD at the AP
D (plane located between R10 and S10, see Fig. 5.1) for a
harmonic disturbance of fd = 0.125 BPF and Ad = 10%. The
singular value distribution for the POD of the velocity and
vorticity magnitudes is depicted in Fig. 5.45, for the first nine
unsteady modes5. The bar height represents the singular value
normalized magnitude: in the velocity case in Fig. 5.45(a), twice
the average kinetic energy; in the vorticity case in Fig. 5.45(b), the
enstrophy. The colors for each bar represent the time step
employed in the decomposition, normalized by the unsteady
CFD value (70 time steps per rotor passing period).

As expected, we notice a monotonic decrease in the POD
singular value for higher modes. Additionally, the decrease in the
time step size (i.e., going from right to left for each POD mode)
reaches a point where no significant change in the singular value
occurs. More specifically, the relative change in the singular value
is less than 0.5% for normalized time steps up to 3. Although this
discretization could be chosen for the coming POD results, we
employ the same time step from the CFD unsteady runs, since the
processing time for these computations is not a critical resource.
Similar orders of magnitude were found for other state variables,
not shown here for the sake of brevity.

5As discussed in section 3.3.2, the first singular value, corresponding to the mean
flow, is much larger than the following modes representing the unsteady flow.
Therefore, when comparing magnitudes in Figs. 5.45 and 5.46, the singular
value of POD mode 1 is omitted for scaling clarity.
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Figure 5.45: Singular values from POD of disturbed flow (Eq. (5.10)
with fd = 0.125 BPF and Ad = 10%) at station AP D (see Fig. 5.1). Time
discretizations are shown normalized by the unsteady CFD time step.

To illustrate how the POD behaves for other axial positions,
Fig. 5.46 shows the POD decomposition for the same fields of
Fig. 5.45 now at AP A (see Fig. 5.1). It is clear that a faster decay
in the singular value with increase in mode number occurs in
Fig. 5.46 in comparison to Fig. 5.45. This happens with AP A
because, although it still perceives the PGC wave fluctuation,
it does not experience the complex dynamics of AP D, which
includes not only the PGC wave but also rotor-stator interaction
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phenomena. This faster decay means that fewer POD modes are
necessary to convey most of the flow energy or to reconstruct the
flow field in a reduced order model. Finally, the variation in the
singular value with time discretization (height of bars) for AP A is
also smaller than for AP D, meaning that simpler flow dynamics
also demand lower snapshot sampling rate. However, the high
sampling rate (conversely smaller time step) is still retained for
all APs, to ensure quality in the POD and facilitate comparisons.

A similar study is performed with the total number of
snapshots included in the analyses. This quantity (columns of
matrix X in Eq. (3.53)) was varied, with and without retaining an
integer number of disturbance/blade passing periods. To ensure
comparability between results with different fd, the choice was
made to always use an integer number of disturbance periods in
the POD. This time, a threshold of less than 1% in the relative
change in the first singular values has been employed. This
requires the inclusion of 4 to 8 disturbance periods. Finally, no
relevant changes in the singular values occurred by choosing
different initial snapshots in the time series.

The most energetic POD modes themselves vary very little
even when including less snapshots or for coarser time
discretization; i.e., considering mostly the singular values as a
verification criterion is a rather conservative but fast approach.
The procedures just described for the time discretization in the
POD were also conducted for the DMD analyses, including
assessments of the decomposition residual. They will not be
repeated here for the sake of brevity. In the following, axial
planes, streamwise surfaces and finally blade surface will be
assessed, for different flow variables.
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Figure 5.46: Singular values from POD of disturbed flow (Eq. (5.10)
with fd = 0.125 BPF and Ad = 10%) at station AP A (see Fig. 5.1). Time
discretizations are shown normalized by the unsteady CFD time step.

5.3.4.2 Axial planes
Mass flow

As an initial overview on how the flow varies axially, we
analyze the baseline, undisturbed case. The POD for mass flow ṁ

is shown for different APs in Fig. 5.47. Units are not depicted,
due to the fact that the magnitude of each mode is already
contained in the temporal coefficients matrix (V in Eq. (3.54)). In
all POD depictions in this work, the superscript ‘Energy’ refers to
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the ratio of the mode’s singular value to the total decomposition
energy (i.e., the sum of all singular values). Additionally, black
dots are shown in the figures to symbolize the blades and vanes
located close to the APs, which however do not intersect the cross
sections (see again Fig. 5.1).

Mode 1
Energy 99.98%

(a) AP A

Mode 1
Energy 91.30%

(b) AP C (aft R10)

Mode 1
Energy 84.42%

��
��

(c) AP E (aft S10)

Figure 5.47: POD mode 1 for mass flow, at different axial planes (see
Fig. 5.1), for the undisturbed case. Horizontal: radial direction, vertical:
circumferential direction. Although the APs do not intersect blades or
vanes, their projection with black dots is shown for reference.

From the given energy levels shown in Fig. 5.47, we notice that,
for all APs, the first POD mode (mean flow field) contains most of
the decomposition energy. This outcome is recurrent in
undisturbed cases. The mass flow modes are directly related to
the blockage intensity at each axial position. The inlet radially
uniform mass flow distribution (Fig. 5.47(a)) changes
downstream each row, with specific flow phenomena clearly
marking the mean flow. More specifically, the blade and vane
wake is noticed by the horizontal lines close to the black dots.
Areas of high blockage close to the walls occur: at the R10 hub, a
corner vortex unrolls (shown with a rectangle in Fig. 5.47(b)); the
vane tip clearance vortex is also depicted in the S10 domain
(circle in Fig. 5.47(c)). Additionally, the modal energy linked to
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the mean flow decreases from 99.98% for AP A to 84.42% for AP
E, implying that traversing downstream and taking into account
the flow phenomena developing in this stage promote a shift in
the POD energy towards high-order modes. That is, analyzing
further unsteady modes is necessary for a better understanding
of the flow.

Still for the undisturbed case, the high-order POD modes 2–9
for the mass flow at AP D are shown in Fig. 5.48. Every two
consecutive modes are paired and carry roughly the same energy,
which is typical for the POD of periodic signals. This behavior is
analogous to a decomposition into sines and cosines, functions
which represent the same physical information, however phased
by 90◦. Indeed, the SVD is not efficient when representing
translational invariance [140]. That is, whenever periodic
traveling structures are present in the flow, the retainment of
more POD modes is necessary, if flow reconstruction is pursued.

The main feature seen in Fig. 5.48 is the rotor wake convected
downstream into the S10 domain. POD modes 2 and 3 (the first
pair) show the exact R10 blade count. The following pairs depict
the higher wake harmonics. To confirm this fact, the frequency
spectrum (enclosed in matrix V, from Eq. (3.56)) for this POD is
exhibited in Fig. 5.49. The horizontal axis shows the frequency
normalized by the BPF.

We observe clear frequency peaks at the BPF for the
corresponding POD modes from Fig. 5.48. The paired modes, as
predicted, have virtually the same frequency content. It is
however not always the case in POD analyses that modes are
linked to a single frequency. For example, pair modes 14 and 15
for the same run are shown in Fig. 5.50, whose spectrum is also
depicted in Fig. 5.49. A frequency mixing is observed, which in
the general case is inherent to the POD. The coherent structure
shown in Fig. 5.50 originates from the R10 corner vortex as it
convects downstream through the stator domain, and can be
directly related to the marked area in Fig. 5.47(b). For this
computation, other high-order modes also have their spatial
support close to the vane tip, suggesting that, for AP D, most of
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Figure 5.48: POD modes 2–9 for mass flow at AP D (see Fig. 5.1), for the
undisturbed case. Every two consecutive modes are paired, with a 90◦

shift. Each pair represents successive harmonics, with corresponding
frequency content given in Fig. 5.49.
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Figure 5.49: Frequency content of POD modes shown in Figs. 5.48 and
5.50. Frequencies are normalized by the BPF.

the POD energy and mass flow dynamics (related to axial
velocity and blockage) are concentrated in this region.

Since in this work the mean flow is not subtracted before
performing the POD, the first mode conveys the predominant
energy share in a much higher proportion than a POD having the
mean deducted. Therefore, the high-order modes display here a
comparatively lower energy content. But even considering this
fact, some high-order modes (such as the ones from Fig. 5.50) still
contain a very small budget of the decomposition energy. If the
focus were the implementation of a reduced order model, these
high-order modes with low energy content would most likely be
left out of a flow reconstruction. However, since this work aims
at understanding the unsteady flow in the presence of PGC, some
relevant high-order modes are still considered, as they may also
convey relevant coherence information. For instance, it is
insightful to understand which flow features become significant
in a disturbed flow in comparison to the baseline state. The
analysis of POD modes with higher index helps delimiting the
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Mode 14
Energy 0.37%

Mode 15
Energy 0.37%

Figure 5.50: POD modes 14 and 15 for mass flow at AP D (see Fig. 5.1),
for the undisturbed case. Coherent structure linked to the R10 corner
vortex are observable close to the S10 vane tip. The frequency content for
these modes is given in Fig. 5.49.

spatial support of these coherent structures and their relative
energy content with respect to the low-order modes. This
reasoning is also valid for later assessments with other state
variables and decomposition domains.

Regarding the DMD results for the same computation, Fig. 5.51
depicts the continuous-system eigenvalues. Horizontal lines were
added at the BPF and its high harmonics (more details about
interpreting this type of figure were given in section 3.3.3).

High values for the coherence metric, depicted as color and
size of each DMD mode in Fig. 5.51, hint the modes representing
the most relevant flow features in the decomposition. Indeed,
the DMD mode with highest coherence occurs at the BPF (label
B). The high-coherence modes that follow occur at the higher
harmonics of the BPF (labels C to E). The modes with very high
frequency do not indicate the presence of long-lasting structures,
yielding low coherence values.
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Figure 5.51: DMD continuous-system eigenvalues for mass flow at AP D
(see Fig. 5.1), for the undisturbed case. The horizontal lines correspond
to the BPF and its higher harmonics, for reference. Label A represents
the mean flow while the others correspond to the POD from Fig. 5.48
as: B with 2–3; C with 4–5, D with 6–7; E with 8–9. Label F represents a
spurious DMD mode with high frequency, shown in Fig. 5.53.
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Indeed, the DMD may identify similar flow structures as the
POD, especially for convective flows (see [145]). To assess this
relationship, consider a DMD mode given by Φ (complex by
construction, with phase Θ and amplitude α) and a pair of real
POD modes given by Xa and Xb. These can be written as

<(Φ) + i=(Φ) = αeiΘ = Φ, (5.17a)

Xa + i Xb = AeiP = X̂a,b, (5.17b)

where the equivalent “complex” POD mode X̂a,b has amplitude

A =
√

X2
a + X2

b and phase P = arg (Xa + iXb). If the DMD and
POD modes depict the same information, their amplitudes are
expected to be equal, i.e., α = A. To illustrate this similarity, the
DMD mode labeled as B in Fig. 5.51(b) is shown in Fig. 5.52.
Notice that the information contained in the real and imaginary
parts of Φ is virtually the same as depicted in the POD modes 2
and 3 shown in Fig. 5.48, up to a phase shift. Additionally, the
DMD mode amplitude α clearly indicates the areas with higher
unsteady flow activity for the analyzed mode. It is however not
always the case that POD and DMD provide the same information,
since by construction they are different methods.

For completeness, a low-coherence DMD mode is shown in
Fig. 5.53, for a very high frequency of approximately 17.4 times
the BPF. Although large flow features may be partially observed
in the real part of Φ, most of the oscillations represent spurious
phenomena, which are not directly linked to relevant or large-
scale physical phenomena. This outcome is linked both to the way
the DMD concentrates most large flow structures in a couple of
high-coherence modes and to numerical artifacts inherent to the
limited discretization in space and time.

Up to this point, the POD and DMD results were shown only
for the mass flow field. Other variables behave similarly, such
as stagnation enthalpy (related to the energy change per unit
mass), flow velocity (related to the turbulent kinetic energy), total
pressure (related to entropy increase and passage losses), entropy
and temperature – figures not shown.
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<(Φ) =(Φ) α
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0

Figure 5.52: DMD mode Φ for mass flow at AP D (see Fig. 5.1), for
the undisturbed case. From left to right: real part, imaginary part
and amplitude of Φ. Mode labeled as B in Fig. 5.51(b), with frequency
corresponding to the R10 BPF.

<(Φ) =(Φ) α

Max

0

Figure 5.53: DMD mode Φ for mass flow at AP D (see Fig. 5.1), for
the undisturbed case. From left to right: real part, imaginary part and
amplitude of Φ. Mode labeled as F in Fig. 5.51(a), with frequency of
approximately 17.4 BPF.
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Vorticity magnitude
Assessing the vorticity allows the identification of areas with

high flow spinning and their development in time. This allows
the analysis of how dynamic vortical structures already present
in the baseline case are then affected by PGC disturbances.

The undisturbed results for the vorticity magnitude are shown
downstream of S10 (AP E from Fig. 5.1), for a selected area close
to the vane tip. Employing just a part of the spatial domain is a
straightforward approach with the POD and DMD methods,
allowing the identification of phenomena occurring locally
without frequency-mixing effects from other regions. The
selected domain chosen here is seen in Fig. 5.54(a). The phase
average for the snapshot sequence employed is depicted in
Fig. 5.54(b), considering a blade passing as the averaging period.
POD modes 4 and 5 followed by their time dynamics are shown
in Figs. 5.54(c) and 5.54(d). Although the absolute range for the
vorticity is different in each plot, in all cases the same percentile
interval6 is chosen in order to keep the images comparable
regarding pattern identification.

The vorticity phase average, shown in Fig. 5.54(b), indicates
diffuse circular patterns close to the vane gap. However, it does
not show the vortices as explicitly as the POD modes 4 and 5
from Fig. 5.54(c), from which the vortex center and its size can be
extracted. This structure is originated from the convection of the
R10 wakes into the S10 domain. There, the wakes encounter the
vane tip clearance vortex, yielding periodic changes in vorticity
(and, due to high convection velocities, helicity). The vane tip
clearance vortex increases slightly in size as the stator diffuses the
flow, producing the vorticity behavior observed in Fig. 5.54(c).

To confirm this fact, a detailed 3D view is shown in Fig. 5.55(a),
with streamlines starting at one of the vane’s tip, close to the
leading edge. The pink surface corresponds to a constant, negative
value of the λ2 criterion, directly indicating the presence of the tip

6That is, extreme values are excluded in the same proportion for all figures. For
example, the color legend ignores the smallest and highest 5% values, showing
only the 90% range in between.
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Figure 5.54: Phase average and POD for vorticity at part of AP E (see
Fig. 5.1), for the undisturbed case. Labels a at f ≈ 0.35 BPF and b at
f ≈ 0.63 BPF indicate the most pronounced modal frequencies.
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(a) Vane tip streamlines and λ2 surface

Max

Min

(b) Vorticity and velocity vectors

Figure 5.55: S10 vanes and part of AP E (see Fig. 5.54(a)) colored with
the vorticity for a specific snapshot from the undisturbed case. Vane
tip streamlines and velocity vectors are shown in green. Pink surface
represents a negative λ2 value for vortex identification.

clearance vortex7. The velocity vectors in Fig. 5.55(b) clearly show
the tip clearance vortex, which rotates in the opposite direction of
the rotor. The streamlines and λ2 surface starting from the vane
tip testify the origin of the patch with high vorticity.

The main frequencies linked to the POD modes shown in
Fig. 5.54(d) are labeled with a at f ≈ 0.35 BPF and b at
f ≈ 0.63 BPF. A smaller local peak also occurs at f ≈ 2 BPF,
related to the second harmonic of the R10 wake. However, it
represents no relevant coherent structure in this case.

7The λ2 vortex criterion is locally computed as the second smallest eigenvalue
of the tensor

[
1
2

(∇v + ∇vT )
]2

+
[
1
2

(∇v−∇vT )
]2, i.e., the sum of half the

squares of the symmetric and antisymmetric parts of the velocity gradient
tensor. Vortex cores are expected when λ2 < 0, incurring from the Navier-
Stokes equations a local minimum in pressure [259].
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The DMD results for the same undisturbed case are shown
in Fig. 5.56. The continuous-system eigenvalues displayed in
Fig. 5.56(a) indicate that the frequencies of high coherence modes
are the BPF and its higher harmonics. The real part and amplitude
of DMD modes labeled A and B in Fig. 5.56(a) are displayed
in Figs. 5.56(b) and 5.56(c), respectively. These modes capture
basically the same phenomena portrayed in POD modes 4 and
5 (see Fig. 5.54), with good agreement on the vortex frequencies
(less than 3% in relative error).

As discussed before, POD modes 4 and 5 contain mixed
frequencies (see spectrum in Fig. 5.54(d)). Each DMD mode, on
the other hand, is always linked to a single frequency (which is
indicated in Fig. 5.56). While mode A represents the
‘fundamental’ vane tip clearance vortex shape (convected onto
AP E), mode B shows some traces of a higher-order vortical
structure. This can be seen, e.g., in the DMD mode amplitude α
in Fig. 5.56(c), where a more complex spiral pattern occurs, in
comparison to Fig. 5.56(b). However, mode B is not the exact
second harmonic of mode A, as the frequency ratio between them
is not an integer.

To compare the undisturbed results with a disturbed case,
Fig. 5.57 depicts the phase average and POD results for the
disturbed case with fd = 0.125 BPF and Ad = 10 %.

The phase average is similar to the undisturbed case
(Fig. 5.54(b)), again not being able to explicitly represent coherent
structures, except for a diffuse vortex pattern close to the vane tip.
POD mode 2, shown in Fig. 5.57(b), contains the highest
(unsteady) decomposition energy; the mode discloses, in addition
to the vane tip clearance vortex, another structure at mid span,
namely a high-vorticity volume which originates at the leading
edge of S10. As this volume convects downstream in the passage,
it detaches itself from the pressure side and produces a
plume-like pattern. This flow event occurs specifically at the
low-pressure part of the PGC wave, that is, in a condition
resembling throttling, from the stage perspective.
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(a) DMD continuous-system eigenvalues. Right: zoom on rectangle

<(Φ) α
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(b) Mode A: f = 0.36 BPF

<(Φ) α
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(c) Mode B: f = 0.62 BPF

Figure 5.56: DMD for vorticity at part of AP E (see Fig. 5.54(a)), for the
undisturbed case. The real part <(Φ) and amplitude α are shown for
DMD modes labeled A and B.

To make this plume structure more evident, a snapshot is shown
in Fig. 5.58. This time, two streamlines are shown: one originating
from the vane tip and another from the leading edge, around
mid span. This last streamline bundle curves away from the vane
pressure side, indicating flow detachment. It then traverses AP E
in the middle of the high-vorticity region. The velocity vectors in
Fig. 5.58(b) indicate two flow circulation areas in the plume lobes.
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(c) Time dynamics for POD mode 2

Figure 5.57: Phase average and POD for vorticity at part of AP E (see
Fig. 5.1), for the disturbed case (Eq. (5.10) with fd = 0.125 BPF and
Ad = 10 %). Label a indicates the most pronounced modal frequency.

For this disturbed case, the DMD results are shown in Fig. 5.59.
Differently from the eigenvalue distribution in the undisturbed
case (Fig. 5.56(a)), where substantial dispersion occurs, here the
eigenvalues are much more concentrated in the dominant
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(a) Vane tip streamlines and λ2 surface

Max

Min

(b) Vorticity and velocity vectors

Figure 5.58: S10 vanes and AP E (see Fig. 5.1) colored with the vorticity for
a specific snapshot from disturbed case (Eq. (5.10) with fd = 0.125 BPF
and Ad = 10 %). Vane tip streamlines and velocity vectors are shown
in green. Pink surface represents a negative λ2 value for vortex
identification.

frequencies (fd and the BPF). Again, high coherence is linked to
modes matching the disturbance frequency and its harmonics,
while the remaining modes yield very low coherence values (see
Fig. 5.59(a)) and do not represent relevant flow features.

The real and imaginary parts, as well as the amplitude of the
DMD mode labeled A in Fig. 5.59(a) are shown in Fig. 5.59(b).
The DMD frequency matches fd, that is, the main disturbance
introduced by the PGC. The plume flow feature captured by the
POD is also clearly observable in <(Φ) and α. Although diffuse,
the vane tip clearance vortex is also present in <(Φ), however
with a different sign in when compared to the plume region. This
indicates that, for this specific DMD mode, these two structures
occur out of phase with respect to each other, as a snapshot
investigation shows.
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Figure 5.59: DMD for vorticity at AP E (see Fig. 5.1), for the disturbed
case (Eq. (5.10) with fd = 0.125 BPF and Ad = 10 %). The real part <(Φ),
imaginary part =(Φ) and amplitude α are shown for DMD mode A.

In order to understand how a variation in the disturbance
amplitude Ad influences the flow, its value was changed while
maintaining the same disturbance frequencies fd presented up to
now. Figure 5.60 shows the POD mode 3 for the disturbed flow
with fd = 0.25 BPF, with two different disturbance amplitudes.
This POD mode is chosen since it represents a structure similar to
the one shown in Fig. 5.57. The phase-average plot is not shown,
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Figure 5.60: POD mode 3 for vorticity at part of AP E (see Fig. 5.1), for the
disturbed case fd = 0.25 BPF with different disturbance amplitudes Ad
(see Eq. (5.10)). Label a indicates the most pronounced modal frequency.

since it does not reveal relevant flow structures nor adds insight
to the analysis.

Initially, we notice from Figs. 5.60(a) and 5.60(b) that the
separation plume detaching from the pressure side of S10 is
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present in the POD mode 3 for both Ad values shown. Its size is
however smaller for Ad = 5% than for Ad = 10%. Turning
towards Fig. 5.60(c), the time dynamics for both cases are similar,
where the highest spectrum value, labeled a, matches fd. Finally,
the vane tip clearance vortex is not so strong as in the
fd = 0.125 BPF case depicted in Fig. 5.57.

Relevant information can also be extracted with other types
of disturbances. Employing the inverted Gaussian pulse given
by Eq. (5.15), coherent structures are obtained with POD and
DMD which often relate to the flow features observed in the
single-frequency cases. These structures may occur, however, in
different frequency bands.

Figure 5.61 shows an insightful snapshot for the vorticity
magnitude, for the inverted Gaussian pulse case8. This figure
captures a moment after the low-pressure pulse has traversed the
S10 domain upstream, which caused the temporary flow
separation on the vane pressure side.

Focusing on the plume-like, high-vorticity region, we notice a
similarity between this simulation and Figs. 5.57 to 5.59 (disturbed
case with fd = 0.125 BPF and Ad = 10 %). This region was also
seen, with a different dimension, at the DMD results shown in
Fig. 5.60 (disturbed case with fd = 0.25 BPF). However, due to the
significant amplitude of the inverted Gaussian pulse, the plume
height fills virtually the entire passage pitch. A similar behavior
occurs for the entropy and velocity magnitude fields.

A selected result for the DMD for the inverted Gaussian pulse is
depicted in Fig. 5.62, for a mode with f = 0.11 BPF. Both the vane
tip clearance vortex identified in the undisturbed case (Figs. 5.54
to 5.56) and the pressure side temporary separation are portrayed.
Indeed, this smaller separation bubble observed adjacent to the
vane in the real part of the DMD mode shown in Fig. 5.62 persists
for the entire analyzed period, long after the large plume shown
in Fig. 5.61 dissipates.

8The value of Ap in Eq. (5.15), for short-duration pulses, did not have a pivotal
effect on the different coherent structures obtained with the data-driven
decompositions. In this work, it was set to approximately 0.9.
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(a) Vane tip streamlines and λ2 surface
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(b) Vorticity and velocity vectors

Figure 5.61: S10 vanes and AP E (see Fig. 5.1) colored with the vorticity
for a specific snapshot from the inverted Gaussian pulse case (Eq. (5.15)).
Vane tip streamlines and velocity vectors are shown in green. The pink
surface represents a negative λ2 value for vortex identification.
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Figure 5.62: DMD for vorticity at AP E (see Fig. 5.1), for the inverted
Gaussian pulse case (Eq. (5.15)). The real part <(Φ), imaginary part =(Φ)
and amplitude α are shown for DMD mode with f = 0.11 BPF.
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Density gradient magnitude
We consider now changes in the decomposition of the density

gradient magnitude field, contrasting the baseline with
PGC-disturbed scenarios. As Figs. 5.45 and 5.46 previously
hinted, an energy spread occurs in the presence of PGC
disturbances, linked to a loss in coherence. Figure 5.63 depicts
POD modes at AP C for the density gradient magnitude |∇ρ|
(emulating classic Schlieren images, indicating however no shock
waves here).

For the undisturbed case shown in Fig. 5.63(a), the R10 wake
and corner vortex are evident in modes 2 and 3 respectively. In
contrast, these structures appear spatially ‘diffused’ in the
disturbed case shown in Fig. 5.63(b). Moreover for these
disturbed case, the energy content is further shifted towards
higher modes in comparison to the undisturbed computation.

Helicity
The spread of energy into high-order modes is also observed

by analyzing the helicity. This scalar is an invariant in the Euler
equations [260], which represent inviscid flows. Although the
computations here include viscosity, the helicity still sheds light
into how vortical structures unwound out when subjected to
traveling disturbance waves. The helicity H is defined locally as
the dot product between the velocity and its curl (or vorticity), i.e.,
H = v · (∇× v).

Figure 5.64 shows POD modes for the helicity field at AP D9.
Although from Fig. 5.64(a) the first POD mode (mean flow) does
not disclose large coherent structures, the high-order modes 3,
7 and 13 depict periodic flow dynamics close to hub and tip.
When comparing these unsteady modes for baseline case with the
disturbed results from Fig. 5.64(b), again a spread in coherence is
observed. The conform periodic patterns, once restricted to areas
adjacent to the walls, are broken and dispersed throughout the
entire plane in the presence of PGC disturbances.

9From now on, just one of two paired POD modes will be shown for the sake of
brevity. For instance, if modes 2 and 3 are paired, only mode 3 will be shown.
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(a) Undisturbed case
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(b) Disturbed case (Eq. (5.10) with fd = 0.25 BPF and Ad = 10 %)

Figure 5.63: POD modes 1–3 for density gradient magnitude at AP C (see
Fig. 5.1).
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(a) Undisturbed case
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(b) Disturbed case (Eq. (5.10) with fd = 1 BPF and Ad = 10 %)

Figure 5.64: POD modes 1–3 for helicity at AP D (see Fig. 5.1).

To contrast the POD with the DMD method, we analyze a more
involved case, in regard to frequency content. More specifically,
the disturbance frequency is set to fd = e-1/π BPF ≈ 0.727 BPF,
which is neither a multiple nor submultiple of the BPF10.
Figure 5.65 shows POD mode 6 for the helicity field, with
Ad = 10%. The time coefficient linked to the POD mode is also
presented, with its corresponding frequency spectrum.

10The total number of time steps for this computation comprises 16 blade passing
periods to possibly accommodate nonlinear frequency interactions between
the BPF and fd.
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Figure 5.65: POD mode 6 for helicity at AP D (see Fig. 5.1). Disturbed
case (Eq. (5.10) with fd = e-1/π BPF ≈ 0.727 BPF and Ad = 10 %). Labels
a, b and c indicate the most pronounced modal frequencies.

The POD mode shown in Fig. 5.65 has mixed frequencies, with
the most pronounced spectrum values labeled in Fig. 5.65(b) in a
descending fashion from a to c. Figure 5.65(a) also indicates that
flow phenomena in different spatial scales occur simultaneously
in the same POD mode. Namely, a long circumferential wake line
(vertical in Fig. 5.65(a)) is observed on the left, close to the vane
tip. The same mode shows however smaller periodic vortical
structures on the right, close to the vane root.

Now we contrast the POD with the DMD results for the same
disturbed case shown above. Figure 5.66 shows the continuous-
system eigenvalues for this computation. A closer view is shown
in Fig. 5.66(b), where it is clear that both the BPF, the disturbance
frequency fd as well as cross-interactions are relevant for this flow.
Most high-coherence modes occur with frequencies less than 3fd.

The DMD modes labeled with A, B and C in Fig. 5.66(b) are
depicted in Fig. 5.67. Only the real part is shown for simplicity.
The frequency of each DMD mode is given as a function of the
BPF and fd. These three modes were specifically chosen because
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Figure 5.66: DMD continuous-system eigenvalues for helicity at
AP D (see Fig. 5.1), for the disturbed case (Eq. (5.10) with
fd = e-1/π BPF ≈ 0.727 BPF and Ad = 10 %). The horizontal lines
indicate the BPF, fd and their higher harmonics. Modes labeled A, B
and C shown in Fig. 5.67.

their DMD frequency coincide with the three peaks shown in the
spectrum of POD mode 6 (labeled correspondingly with a, b and
c in Fig. 5.65(b)).
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<(Φ)

(a) A: f = fd

<(Φ)

(b) B: f = 2 BPF− fd

<(Φ)

(c) C: f = 2(BPF− fd)

Figure 5.67: Real part of DMD mode Φ for helicity at AP D (see Fig. 5.1)
for the disturbed case (Eq. (5.10) with fd = e-1/π BPF ≈ 0.727 BPF and
Ad = 10 %). Labels A, B and C from Fig. 5.66(b). For each mode, the
respective DMD frequencies are shown, as a function of disturbance and
blade passing frequencies, respectively fd and BPF.

The mode linked to the fundamental disturbance frequency
(label A, Fig. 5.67(a)) portraits dynamic behavior as a
circumferential white stripe (vertical in this view) close to the
vane tip, with weaker influence close to the vane hub. This
feature was also recognized in the corresponding POD mode 6
(Fig. 5.65(a)), and is linked to how the R10 corner vortex is
periodically chopped by the upstream-traveling PGC wave.
However, differently from the POD, the DMD shows no flow
structures between this wake stripe and the hub (far left border).

Furthermore, the DMD mode with frequency f = 2 BPF− fd
(label B, Fig. 5.67(b)) conveys the interaction between the BPF
and the PGC disturbance. It manages to capture the small-scale
structures close to the walls much more clearly than the POD
mode 6. Indeed, the two phenomena close to the vane tip which
were mixed in the POD mode 6 are well separated in the DMD.
This is a useful feature of the DMD method, enabling the
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identification of coherent structures at a specific, single frequency,
which is often proportional to the resulting spatial scales.

For completeness, the DMD mode labeled C in Fig. 5.67(b) and
frequency f = 2(BPF− fd) is shown in Fig. 5.67(c). From the
three DMD modes linked to most pronounced frequencies of POD
mode 6, this one has the least coherence, and is associated with
the smallest labeled peak (c in Fig. 5.65(b)).

5.3.4.3 Streamwise surfaces
Following the results presented for axial planes in

section 5.3.4.2, we now show decomposition assessments for
streamwise surfaces. These are blade-to-blade (alternatively,
cylindrical) cuts at different radial positions. That is, the free
variables are now the axial coordinate and the circumferential
angle, for fixed span values. The mainstream flow goes from left
to right.

Entropy
Initially, the POD results for entropy are shown in Fig. 5.68,

for the undisturbed case at a mid-span cross section in the S10
domain. Paired modes are not shown for brevity.

POD modes 3, 5, 7, 9 and 15 portray the R10 wake, as it
convects downstream through the S10 domain. They represent
the ascending BPF harmonics, with a regular spectrum similar to
the one depicted in Fig. 5.49. The number of alternating low and
high entropy stripes present in each mode increases in direct
proportion to the BPF harmonic. For example, POD mode 3
contains four stripes along the vane, POD mode 5 contains eight
stripes, and so on.

The first unsteady instances containing structures not directly
affiliated with the BPF are POD modes 11 and 13, already with a
very low energy content. These modes are linked to flow
separation on the pressure side, with a frequency peak of 0.37
BPF and 0.61 BPF, respectively. Note that, for the first 16 POD
modes, this is the only high-coherence phenomenon occurring at
frequencies lower than the BPF. Furthermore, these frequencies
match with the POD and DMD results obtained for the vorticity
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Mode 1
Energy 98.01%

Mode 3
Energy 0.34%

Mode 5
Energy 0.19%

Mode 7
Energy 0.11%

Mode 9
Energy 0.06%

Mode 11
Energy 0.04%

Mode 13
Energy 0.03%

Mode 15
Energy 0.02%

Figure 5.68: POD modes 1–15 for entropy on the mid-span streamwise
surface in the S10 domain, for the undisturbed case. Horizontal: axial
direction, vertical: circumferential direction. Paired modes not shown.

magnitude at AP E, shown in Figs. 5.54 and 5.56. Although the
decomposition region employed in the vorticity results does not
intersect the mid-span cut shown in Fig. 5.68, the radial influence
of the vane tip clearance vortex is also observed in the entropy
POD, when considering the frequency content.

Now we consider for the same mid-span surface a disturbed
case with fd = 0.75 BPF and Ad = 10 %. Figure 5.69 depicts the
same POD mode indexes shown for the undisturbed case. This
time, each of the POD modes contains mixed frequencies. For
example, the BPF and its harmonics are observed in the spectrum
of several modes. Indeed, the first instance portraying the R10
wake convection partially clearly is the POD mode 9, however
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Mode 1
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Energy 0.47%

Mode 5
Energy 0.30%

Mode 7
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Mode 11
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Energy 0.18%
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Energy 0.14%

Figure 5.69: POD modes 1–15 for entropy on the mid-span streamwise
surface in the S10 domain, for the disturbed case (Eq. (5.10) with
fd = 0.75 BPF and Ad = 10 %). Paired modes not shown.

certainly not as evident as in Fig. 5.68. All unsteady modes
represent flow features mainly linked to temporary separation on
the pressure side and its corresponding vortex street.

The POD is able, in this case, to directly rank physical
phenomena according to their importance in reconstructing the
unsteady flow. Relevant change in entropy in the undisturbed
case was linked to wake convection, while in the presence of PGC
disturbances, pressure side temporary separation plays a much
more significant role. Also relevant is the fact that the modal
energy decays more slowly for the disturbed case, revealing that
important flow information is distributed among more modes in
comparison to the undisturbed case.
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Another remark about Fig. 5.69 is that modes linked to higher
frequency phenomena (“fast mode”) do not necessarily have a
lower energy than modes depicting large-scale coherent
structures associated with lower frequencies (“slow mode”). For
example, mode 3 (with frequency peak at fd = 0.75 BPF) has a
larger singular value than mode 5 (peak at 0.5 BPF) and mode 7
(peak at 0.25 BPF).

Finally, the mean flow depicted in POD mode 1 contains
decidedly the largest energy share and provides the spatial
support of the pressure side separation area. This region is much
larger for the disturbed case in contrast with the baseline flow.
This outcome substantiates the increase in total pressure loss in
the S10 domain, displayed in Fig. 5.38. The connection between
the increase in entropy and loss in total pressure is obtained by
the Gibbs equation11, given in the rotor frame by

pt2
pt1

= e−∆s/R, (5.18)

where pt2 and pt1 are the total pressure values at states 2 and 1,
∆s = s2 − s1 the entropy change, and R the specific gas constant.
That is, for an adiabatic flow with losses, the total pressure always
decreases, since the entropy change must be positive.

After traveling the S10 domain, the disturbance wave reaches
the R10 blades. However, before turning towards the disturbed
cases, the undisturbed results for the rotor domain are shown for
reference in Fig. 5.70. The blade wake oscillates minimally in the
circumferential direction, producing a pattern similar to a Kármán
vortex street for flow around a cylinder (e.g., [135, 141, 261]) or an
airfoil (e.g., [262]). The POD of this oscillating wake produces the
alternating lobe structures shown in Fig. 5.70. An increase in lobe
count occurs for higher harmonics.

Similarly to the analyses in the S10 domain, we compare the
undisturbed with the same disturbed case (fd = 0.75 BPF and
Ad = 10 %), whose POD is depicted in Fig. 5.71. This time, in

11The Gibbs relation merges the first and second laws of thermodynamics. It is
given in the differential form by Tds = de+ pd(1/ρ).
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Mode 4
Energy 0.044%

Mode 12
Energy 0.003%

Mode 18
Energy 0.001%

Figure 5.70: POD modes 4, 12 and 18 for entropy on the mid-span
streamwise surface in the R10 domain, for the undisturbed case.

addition to the R10 wake downstream the trailing edge, small
vortices originated at the leading edge travel adjacently to the
blade pressure side. These vortices leave a footprint in all modes
shown, specifically in the form of alternating stretched entropy
spots. We seek to compare how this specific mode varies for
different disturbance frequencies. For that, Fig. 5.72 contrasts
the POD mode 4 between undisturbed and disturbed cases, for
several values of fd, with Ad = 10%.

The thickness of the area linked to periodic entropy fluctuation
on the pressure side clearly increases from the undisturbed case
(Fig. 5.72(a)) towards the lowest disturbance frequency
(Fig. 5.72(f)). This behavior, for the different disturbance
frequencies simulated, matches qualitatively with and justifies
the increase in total pressure loss in the R10 domain shown in
Fig. 5.38. Finally, the relative energy associated with POD mode 4
also increases towards lower values of fd (from 0.044% to 0.65%),
once again indicating that, in the presence of PGC-disturbances,
higher-order modes convey more relevance regarding unsteady
phenomena.
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Mode 4
Energy 0.27%

Mode 12
Energy 0.07%

Mode 18
Energy 0.02%

Figure 5.71: POD modes 4, 12 and 18 for entropy on the mid-span
streamwise surface in the R10 domain, for the disturbed case (Eq. (5.10)
with fd = 0.75 BPF and Ad = 10 %).

The entropy distribution at the R10 blade tip shows an
interesting pattern. For a streamwise surface at the tip gap (99%
span), a representative snapshot is shown in Fig. 5.73(a), where
the pink surface indicates the λ2 vortex criterion. The projection
of the R10 camber line at the blade tip is represented in orange, to
ease visualization.

The streamlines originate at the tip gap, close to the leading
edge of exactly one of the blades. They form a straight vortex tube
which does not intersect with the adjacent (here, lower) blade
projection. Although a couple of single streamlines do traverse
towards the next blade and join its tip clearance vortex, their bulk
remain intertwined in the main vortex body.

Fig. 5.73(b) depicts the two most energetic unsteady POD
modes, for the undisturbed case. The alternating high and low
entropy areas are directly linked to the downstream presence of
the stator vanes (which is confirmed by the POD frequency
spectrum, restricted simply to the vane passing frequency (VPF)).
As will be shown in section 5.3.4.4, the pressure distribution on
the rotor blade relates to the potential field from the downstream
vanes with the same alternating pattern depicted here.
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Energy 0.044%

(a) Undisturbed

Energy 0.076%

(b) fd = 1 BPF

Energy 0.27%

(c) fd = 0.75 BPF

Energy 0.32%

(d) fd = 0.5 BPF

Energy 0.36%

(e) fd = 0.25 BPF

Energy 0.65%

(f) fd = 0.125 BPF

Figure 5.72: POD mode 4 for entropy on the mid-span streamwise surface
in the R10 domain, for the undisturbed and disturbed cases, for different
disturbance frequencies fd with amplitude Ad = 10% (see Eq. (5.10)).

The DMD eigenvalue distribution for this case is also shown in
Fig. 5.73(c). The frequency of the most coherent DMD mode
matches the VPF. It is labeled A, with real and imaginary parts
corresponding respectively to POD modes 2 and 3 from
Fig. 5.73(b).
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Figure 5.73: Representative snapshot and data-driven decompositions for
entropy at the R10 tip gap (99% span), for the undisturbed case. The pink
surface represents a negative λ2 value for vortex identification, while
the blade camber line is projected in orange for clarity. The POD modes
correspond to the real and imaginary parts of the most coherent DMD
mode, labeled A.

Additionally, the tip clearance vortex influence area, manifested
here in the entropy distribution, can be readily obtained from the
POD/DMD modes. Its upstream boundary starts from the leading
edge and extends almost up to the trailing edge of the adjacent



204 5. Selected results and discussion

Time
p

min

p
max

S
ta

tic
 p

re
ss

ur
e R10 downstream

Stage outlet

a

b

c

Figure 5.74: Static pressure averaged spatially, downstream R10 (at AP
C, see Fig. 5.1) and at the stage outlet, for the disturbed case with
fd = 0.125 BPF and Ad = 10 % (see Eq. (5.10)). Snapshots labeled a, b
and c shown in Fig. 5.75.

blade’s pressure side, in an impingement-like fashion (since this
surface does not intersect the blade walls, no true impingement
occurs).

To further investigate the tip gap behavior of entropy for the
disturbed case, transient data is collected on the same streamwise
surface (R10 tip gap at 99% span), for a run with fd = 0.125 BPF
and Ad = 10 %. Representative snapshots were selected within
one disturbance cycle. They were extracted at the instants labeled
a, b and c in Fig. 5.74, which shows the static pressure averaged
on a plane downstream R10 (AP C, see Fig. 5.1) and at the stage
outlet. For the current purposes, AP C can be understood as a
surrogate to the R10 outlet; indeed, the flow dynamics in the rotor
domain are vastly dependent on the pressure value at AP C, i.e.,
the R10 back pressure.

The selected snapshots are depicted in Fig. 5.75, portraying
next to the entropy the static pressure field, hinting the back
pressure value from the rotor perspective. Snapshot a
(Fig. 5.75(a)) is termed12 here ”negative stall phase”. This is
justified by the fact that, for lower back pressure, lower incidence
angles develop in the rotor, increasing the risk of flow separation
on the pressure side. Additionally, a higher inlet Mach number
occurs. Especially downstream the mid chord on the suction side,
the helical streamlines embody a rather thin and uniform conical

12The nomenclature employed here draws from the seminal work with cascade
flow from [263].
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surface around the tip clearance vortex. Its core rests
approximately in a straight line. Another set of streamlines
remains close to the R10 pressure side, substantiating the
low-incidence angles typical from the negative stall phase.
Although for a very brief time interval, they disclose the presence
of a pressure side vortex of short length. From this second
streamline set, a couple of lines “cross” into the suction side and
merge with the first set.

Moving towards the “unstalled phase”, snapshot b
(Fig. 5.75(b)), we notice no occurrence of low-incidence
streamlines on the pressure side. Furthermore, the tip clearance
vortex identified by the curved streamlines and the λ2 surface
increases in diameter, whose core loses the straight-line character
from snapshot a. Differently from the negative stall case, some
streamlines reach the adjacent blade, crossing towards the suction
side and merging with its tip clearance vortex. Finally, the vortex
angle (with respect to the axial direction) does not change
significantly from the negative stall to the unstalled phase.

The last snapshot shown, labeled c (Fig. 5.75(c)), corresponds
to the “positive stall phase”. It is characterized by high-incidence
angles and a tendency towards flow separation on the suction side.
Initially, the incidence angle at the beginning of the vortex core
line increases (i.e., the λ2 surface leans towards the lower blade).
Then, the tip clearance vortex swirls downstream, where the flow
behaves much more irregularly than in snapshots a and b. This
core precession behavior is typical of spiral vortices [264]. The
increase in the incidence angle with higher back pressure is even
enough to provoke flow spillage at the blade leading edge. This
is clear from the streamlines located right upstream the camber
line, which are indeed perpendicular to the axial direction. Even
though this spillage does not last long, it shows to which extent
the PGC disturbances are able to alter the design operation and
produce new flow phenomena.

In classic steady state assessments in turbomachinery, flow
regimes linked to negative and positive stalls are directly related
to higher losses in comparison to the design point performance.
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Entropy

Min Max

Static pressure

Min Max

(a) Snapshot a: negative stall phase

(b) Snapshot b: unstalled phase

(c) Snapshot c: positive stall phase

Figure 5.75: Snapshots of entropy and static pressure at the R10 tip gap
(99% span), for instants labeled as a, b and c in Fig. 5.74. Disturbed case
with fd = 0.125 BPF and Ad = 10 % (see Eq. (5.10)). The pink surface
represents a negative λ2 value for vortex identification. The blade camber
line is projected in orange for clarity.
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Although here the whole transition from negative to positive
stall regimes is contained within a single transient case, the high-
and low-incidence losses explain the performance results from
section 5.3.3 in a detailed manner. More specifically, the lower
values of fd imply that the rotor (and also for that matter the stator)
domain remain for a longer period “off design”. As exposed in
Fig. 5.75, this departure from the design point incurs local increase
in entropy and therefore decrease in isentropic efficiency.

5.3.4.4 Blade surface
The last type of domain employed in the data-driven analyses

is the blade surface. The manner the flow interacts with the solid
walls is a key aspect of turbomachinery design. It determines not
only how the fluid is “guided” through the engine (producing,
e.g., thrust), but also directly relates to the aeroelastic response of
each component (see section 3.1.3).

Initially, we compare the data-driven techniques for the
baseline, undisturbed case. Figure 5.76 shows the Fourier
decomposition (real part of mode with f = VPF), the POD and
DMD (imaginary part of mode with f = VPF) for the R10 blade
surface. There is no substantial difference between the
decompositions.

An alternating pressure pattern occurs on the suction side,
especially close to the blade tip. This periodic disposition is
explained by the combination of two features: the tip leakage
from the pressure to the suction side and rotor-stator interaction.
Although mass flows continuously (but not uniformly) through
the gap due to the pressure difference between each side of the
blade, the potential field from the vanes downstream varies
periodically, “pushing” and “pulling” the tip gap flow in the axial
direction. This recurring behavior is translated into the
data-driven decompositions as the alternating patches observed
in the upper part of Fig. 5.76.

This behavior can also be observed for other state variables.
For instance, the POD of entropy at the tip gap (see Fig. 5.73(b))
also indicated this wavering pattern, with the same number of
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Figure 5.76: Data-driven decompositions for the pressure on the R10
blade, for the undisturbed case. Top: suction side; bottom: pressure side.

alternating lobes at the rotor tip depicted in Fig. 5.76. The tip gap
streamwise entropy distribution from Fig. 5.73(b) also indicates
that this pattern with small alternating patches linked to the VPF
is not present on the pressure side. This is again confirmed by
analyzing the lower part of Fig. 5.76, where pressure variations
occur rather at larger spatial scales.

The reason why all decompositions from Fig. 5.76 show
virtually the same pattern is that this case not only has a single
principal periodic event (the vane passing), but also the number
of snapshots employed in the decomposition is very high,
nearing periodic saturation (refer back to Eq. (3.60) for details in
the DMD framework). In other words, adding more snapshots to
the decomposition should not disclose insightful information.

This fact is confirmed in Fig. 5.77, comparing the DMD
continuous-system eigenvalues for two data sets with different
numbers of total snapshots. Although many more low-coherence
DMD modes are present in the case with 80 rotor passing periods,
the few high-coherence ones remain almost unchanged (both
with respect to the empirical frequency and the spatial shape).
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Figure 5.77: DMD continuous-system eigenvalues for pressure on the R10
blade surface. Undisturbed case shown for two different numbers of total
snapshots. High-coherence modes labeled A and B depicted respectively
in Figs. 5.76(c) and 5.78.

For instance, the DMD mode matching the VPF (labeled A and
shown in Fig. 5.76(c)) remains the most coherent in both cases.

Similarly, the low-frequency DMD mode labeled B in
Fig. 5.77(b) is the third most coherent, regardless of the total
number of snapshots considered here. As shown in Fig. 5.78, it
identifies the R10 corner vortex upstream the trailing edge.
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Figure 5.78: DMD mode with f = 0.119 BPF for pressure on the R10
blade for the undisturbed case, labeled as B in Fig. 5.77(b). Top: suction
side; bottom: pressure side.

Among the flow structures with frequency lower than the VPF,
this is the most relevant for this case, as conveyed by the DMD
coherence metric (this outcome could also be seen at the mass
flow decomposition presented in Fig. 5.47(b)). As illustrated for
the present case case, the DMD allows easy extraction of
low-frequency phenomena, clearly indicating its periodicity and
spatial support.

These flow structures change considerably in the presence of
PGC disturbances. Indeed, phenomena like the corner vortex
(Fig. 5.78) identified in the undisturbed case are subsumed. For
all disturbed cases with single PGC frequency fd, the
predominant flow features on the blade surface were directly
linked to the periodic traveling waves. The main spatial length,
however, differed among the cases inversely proportional to the
fd values. This can be seen in Fig. 5.79, which shows POD mode 2
for three different disturbance frequencies. Indeed, the higher the
value of fd, the shorter the spatial wavelength of the pressure
pattern on the blade surface. This outcome is particularly evident
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on the suction side. The time dynamics of POD mode 2
(Fig. 5.79(d)) also indicate the strong predominance of fd in the
respective spectrum for each setup.

The DMD sheds additional light into the relative importance
of phenomena at specific frequencies for disturbed cases. The
DMD continuous-system eigenvalues are shown in Fig. 5.80 for
the disturbed case with fd = 0.125 BPF and Ad = 10 %.

It is evident that one set of modes, with relative higher
coherence, lies close to the stability line, with the real part of the
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Figure 5.79: POD mode 2 for pressure on the R10 blade surface, for
disturbed cases with Ad = 10% and different disturbance frequencies fd
(see Eq. (5.10)). For spatial modes, top: suction side; bottom: pressure
side.
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Figure 5.80: DMD continuous-system eigenvalues for pressure on the R10
blade surface, for the disturbed case with fd = 0.125 BPF and Ad = 10 %
(see Eq. (5.10)).

eigenvalue in the range |<(µ)| ≤ 100. This indicates that the
depicted phenomena are well characterized, with further
addition of snapshots bringing the decomposition closer to
dynamic saturation. The other set comprises DMD modes mostly
with <(µ) < −4000. That is, with a really strong and fast
transient decay, not playing a relevant role when reconstructing
the original, quasi-periodic flow.

It is also helpful to consider the effect of the inverted Gaussian
pulse (Eq. (5.15)) in the pressure distribution on the R10 blade.
Differently from the constant-frequency excitation with fd, the
pulse excites a continuous frequency range simultaneously. This
brings up the question whether new flow features arise, which
may dominate the flow dynamics (and consequently the
data-driven decompositions). The DMD continuous-system
eigenvalues for this case are shown in Fig. 5.81(a). This time a
spread of coherence occurs among several DMD modes with
frequency lower than the VPF.

Indeed, the dynamic information contained in these
high-coherence modes is quite similar to the spatial patterns
obtained with single-frequency excitation (Fig. 5.79). To avoid
repetition, Figs. 5.81(b) to 5.81(d) depict, instead of the real and
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imaginary parts, the DMD phase angle Θ (see Eq. (5.17)) of the
modes labeled A, B and C in Fig. 5.81(a). The repetition of the
alternating pressure pattern from the PGC wave is evident from
its phase angle distribution. Again, the higher the frequency, the
smaller the spatial periodicity.

The DMD modes adjacent to the ones shown in Figs. 5.81(b) to
5.81(d) contain similar spatial information, however with slightly
varying spatial length. These results indicate that no novel
phenomena occurs on the R10 blade pressure distribution, whose
pattern varies significantly from the information obtained with
the single-frequency simulations. A similar conclusion can be
drawn when simulating with linear and exponential sweeps
(chirp) as outlet boundary condition, not shown here for brevity.
That is, not only the Gaussian pulse, but also sine sweeps may be
employed as representative inputs when searching for relevant
flow excitation structures in the presence of PGC disturbances.

In summary, the pressure distribution on the R10 surface is
directly linked in space and spectrum to the upstream traveling
waves from the PGC. The frequency content of the aeroelastic
excitation is dominated by the main disturbance frequency fd
and its multiples. More specifically, regarding the pressure
distribution on the rotor blade, no novel unexpected phenomena
occurred in the cases considered in this work.

Finally for completeness, the pressure distribution linked to the
VPF for the undisturbed case may also be recovered from the
inverted Gaussian pulse run. This is shown in Fig. 5.82, which
compares the DMD mode (imaginary part) at f = VPF from the
undisturbed with the disturbed run. The similarity of the
structures is strong, indicating once again that the decomposition
of the inverted Gaussian pulse not only contains the main
“disturbed” flow features, but also retains the baseline flow
dynamics.
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Figure 5.81: DMD for pressure on the R10 blade surface, for the disturbed
case with inverted Gaussian pulse (Eq. (5.15)). Bottom: DMD phase angle
Θ on pressure side for modes labeled A, B and C.

5.3.5 Aeroelasticity

In this section, the R10 blade from the NASA EEE high
pressure compressor will be aeroelastically assessed. The
analyses presented here follow the workflow from section 3.2.3.1
(see also Fig. 3.5). Additionally, many numerical considerations
about the methods have already been presented in the case study
1 in section 5.2. Therefore, only the main practical matters will be
examined here, for the sake of brevity.

Grids have been generated with specifications similar to the
ones from section 5.2, however without a blisk geometry.



5.3. Case study 2 215

LE

LE

Tip

Tip

Root

(a) Undisturbed

TE

TE

Tip

Tip

Root

(b) Inverted Gaussian pulse

Figure 5.82: Imaginary part of DMD mode with f = VPF, for different
cases. Top: suction side; bottom: pressure side.

Differently from case study 1, the NASA EEE high pressure
compressor comprises traditional bladed disks. The detailed root
geometry has not been modeled in this work, but rather a fixed
platform underneath the rotor blade. Although this simplification
would indeed produce results slightly different from the real
eigenfrequencies and stresses, the present aeroelastic focus on
directly comparing the PGC-disturbed case with the undisturbed
justifies this modeling approach. Details about damping in this
bladed disk setup will be given later. Unstructured meshes with
tetrahedra elements were spawned, with higher node density
next to high-curvature areas. For the grid independence study,
scalars for three representative discretizations are shown in
Fig. 5.83, ranging from coarse (R-A) to fine (R-C).

From Fig. 5.83(a), the natural frequency for the first two modes
changes minimally among the employed discretizations, namely
less than 0.03%. Values of the same order occur for higher modes.
In principle, all grids could be deemed precise enough for the
simulations. To make sure other types of analyses also express
grid-independence, Figs. 5.83(b) and 5.83(c) portray the results
for static and forced response analyses. For all meshes, variations
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Figure 5.83: Grid independence study for R10 solid domain, for different
types of mechanical analyses. Normalization with respect to finest grid.

of less than 2% occur. When comparing the middle with the fine
discretizations, a relative change of less than 0.5% is obtained.
This value is judged precise enough for the desired computations.
Thus, grid R-B is selected for the CSM studies, consisting of 387767
nodes and 239612 elements. One blade sector is shown in Fig. 5.84.

LE TE

Figure 5.84: Sector of grid R-B for the R10 blade solid domain, chosen
after independence study for the CSM analyses. Suction side shown.
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5.3.5.1 Damping
The aerodynamic damping computation makes use of the first

mode shapes of the rotor blade. These came from a pre-stressed
modal analysis, performed with enough eigenvectors so that the
highest eigenvalue is a couple of times higher than the expected
maximum excitation frequency. In the current case, retaining
the first 86 mode shapes in the eigenvalue decomposition was
sufficient, covering more than 8 times the VPF but still enabling
computations with feasible processing time.

Once the mode shapes are available, we proceed towards the
aerodynamic damping computations. The numerical method
employed in this section was the Fourier transformation13. This
approach is based on the energy method, and was described
in section 3.2.2.3. The periodic displacement magnitude at the
blade tip was kept below 0.1% of the blade height. Lastly, after
appropriate time independence assessments, the number of time
steps per vibration period was set to 100.

The aerodynamic damping results for the R10 blade are
depicted in Fig. 5.85. While the blade displacements for the first
three mode shapes are shown in Fig. 5.85(a), the damping ratio is
displayed in Fig. 5.85(b), for the whole nodal diameter range.

No negative damping ratio was obtained, indicating, according
to the energy method, no flutter behavior, independently of the
mechanical damping present (considered always positive). The
smallest reduced frequency is f = 1.4 for the first bending mode.
As discussed in section 2.4.4, published values for critical
reduced frequency in axial compressors often focus on the first
stages. The present results refer to the last stage of a HPC and
should be compared with caution. In any case, the current
reduced frequency is relatively larger than the upper flutter
bounds indicated by [20, 47, 48], indicating at least a preliminary
agreement with the critical flutter ranges from the mentioned
literature.

13The nonlinear harmonic balance, employed in the aerodynamic damping
calculations for case study 1, was not used in this section since it produced
oscillatory solutions. That did not occur with the Fourier transformation
method, which however demands higher computational resources.
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Figure 5.85: Aerodynamic damping results for first blade mode shapes of
the R10 blade.

From Fig. 5.85(b), the smallest damping ratio ζ occurred for the
first mode shape, with nodal diameter -1, with ζ = 0.093%. Some
values of ζ were computed for higher modes, with frequencies
close to the VPF. The damping ratio range obtained was similar
to that of mode 3. Therefore, in a slightly conservative approach,
the minimum value shown in Fig. 5.85 was chosen as the
representative aerodynamic damping figure.

As discussed in section 2.4, in addition to the aerodynamic, the
material and structural parts also contribute towards the total
damping in traditional bladed disks. The material damping is
negligible for the material employed. The mechanical damping
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was not simulated, but rather set according to typical values from
the literature (see, e.g., [12, 38, 39, 265]). The three cases
employed in this section are shown in Tab. 5.6. Case A ignores
any mechanical damping, being comparable to a modern blisk
geometry lacking friction damping. Cases B and C include lower
and higher levels of structural damping, respectively.

Table 5.6: Total damping ratio ζ employed in the forced response
computations, considering aerodynamic and structural shares.

Case name Total damping
ratio ζ

A Only aerodynamic damping 0.093%

B With low mechanical damping 1.1 %

C With high mechanical damping 3.0 %

5.3.5.2 Forced response
After the unsteady forces, pre-stressed modes and total

damping have been obtained, we proceed to the forced response
computations. Here, a single value is provided as excitation and
vibration frequency at a time, appropriately matching the
previously employed fd. Special attention is given to the VPF,
which often represents the strongest excitation source for rotor
blades.

This is indeed the situation in the baseline (undisturbed) case,
which exhibited maximum dynamic stresses at the frequency
matching the vane excitation. That is conveyed by Fig. 5.86. More
specifically, Fig. 5.86(a) depicts the von-Mises (equivalent) stress
at R10 for a chosen vibration temporal phase angle14. This
depiction artificially reconstructs the harmonic motion in time,
clearly showing the periodic deformation of the blade surface
(here exaggerated for clarity). The damping ratio corresponds to
the more critical case (A from Tab. 5.6). The maximum stress
occurs at the tip, slightly upstream of the trailing edge.

14The phase angle linked with time corresponds to ωt in Eq. (3.40) (derived for
the displacement, with an analogous form for the equivalent stress).
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Von-Mises stress

Min Max

(a) Stress at temporal phase of 120◦ (b) Maximum over vibration cycle

Figure 5.86: Von-Mises stresses on rotor blade suction side for baseline
case, at f = VPF. Exaggerated deformation for clarity.

While Fig. 5.86(a) shows the value of the von-Mises stress at a
specific temporal phase angle ωt, Fig. 5.86(b) depicts the
maximum stress for each finite element15. This approach ensures
the acquisition of the highest stress over the vibration period.

The VPF excitation lies between the blade natural frequencies 8
and 9. This is asserted by Fig. 5.87, which shows the maximum
displacement over the vibration cycle next to blade mode shapes
8 and 9. It is clear that the resulting displacement in Fig. 5.87(a)
consists in a linear combination of (mainly) modes 8 and 9.
Furthermore, the excitation effectiveness from the patterns shown
in Fig. 5.76 is made clearer: the alternating pressure arrangements
have a similar wavelength to mode shape 8 and act precisely
close to the trailing edge tip, where the highest displacement
occurs.

To understand how the stresses vary for different query
frequencies16, Fig. 5.88(a) displays the maximum von-Mises

15This maximum value corresponds to the quantity in parenthesis in Eq. (3.40)
(derived for the displacement, with an analogous form for the equivalent
stress).

16For the undisturbed case, Ad = 0% in Eq. (5.10) and the query frequencies
shown are chosen to match fd from the disturbed runs, enabling direct
comparison.
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Displacement

Min Max

(a) Maximum over cycle (b) Mode shape 8 (c) Mode shape 9

Figure 5.87: Displacement of rotor blade suction side for baseline
case, at f = VPF. The VPF is located between the natural frequency
corresponding to the eigenmodes shown.

stresses for the undisturbed case, normalized by the value at
f = VPF = 1.5 BPF and ζ = 0.093%. This value is marked with N
and corresponds to the σvm spatial distribution from Fig. 5.86.

As anticipated for the undisturbed case, the vane presence
incurs the highest stresses, followed by the case with
f = 0.125 BPF. The latter behavior is directly linked to the
unsteady fluid forcing, more specifically, to the suction side
corner vortex. To investigate that, the previous DMD provides
valuable assistance. Referring back to Fig. 5.77(b), the second
most coherent DMD mode (labeled B) has a frequency of
fcv = 0.119 BPF, less than 5% off from the simulated value of
f = 0.125 BPF. This mode was shown in Fig. 5.78, identifying
flow dynamics linked to the corner vortex.

The variation in the pressure amplitude at fcv is reflected in
the Fourier decomposition. Indeed, for the undisturbed case
the pressure load for f = 0.125 BPF is two orders of magnitude
higher than for 0.25 BPF ≤ f ≤ 1 BPF, ramping up again towards
the VPF. This is confirmed by Fig. 5.89, which shows the spectral
content of the mean pressure on the rotor blade, employed as
load in the forced response workflow. The nonlinear interactions
between the VPF, fcv and their harmonics are clearly depicted.
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Figure 5.88: Maximum von-Mises stresses on rotor blade as a function
of excitation frequencies (fd in Eq. (5.10)), for different damping ratios
ζ. The undisturbed case has no excitation, while for the disturbed case,
Ad = 10%. Normalization conducted with respect to the undisturbed
case at f = VPF and ζ = 0.093% (marked with N).

Regarding the disturbed cases, Fig. 5.88(b) shows the
equivalent stresses for simulations at different disturbance
frequencies fd. The stresses are normalized by the same
undisturbed value marked with N in Fig. 5.88(a), for comparison.
For most fd instances, an increase of up to 50 times occurs, in
comparison to the maximum stress due to the vane passing. A
steady decrease in amplitude occurs for larger damping ratios,
however not changing the order of magnitude.
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Figure 5.89: Pressure spectrum (spacial average) on R10 as a function of
engine order (EO) and blade passing frequency (BPF), used as load for
the undisturbed case. The corner vortex fundamental frequency and the
vane passing frequency are labeled fcv and VPF respectively.

The single case with substantially higher equivalent stress
corresponds to the fd = 0.75 BPF excitation. Up to almost
120-fold amplification occurred, with a steeper decrease in stress
for higher damping than for other fd instances. This behavior is
typical of points located close to resonance frequencies. Indeed,
mode shape 4 vibrates with a frequency of approximately
14.7 kHz, which is less than 2% apart from 0.75 BPF. This
proximity is confirmed by the Bode stress amplitude diagram
shown in Fig. 5.90. The von-Mises stress distribution as a
function of frequency for the undisturbed case intersects with the
query frequency f = 0.75 BPF very close to a resonance point.
This crossing, labeled A, explains the large forced response at
fd = 0.75 BPF17. The fact that a similar increase in the stresses
does not occur for the undisturbed case at f = 0.75 BPF (even
though it is close to a natural frequency, as label B shows) is
directly related to the very low forcing level (two orders of
magnitude lower than for 0.125 BPF or VPF, as previously
described).

17A reasonable aeroelastic design considering PGC would actively avoid setting
the combustion frequency close to the first blade eigenvalues; therefore,
aeroelastic results linked to fd = 0.75 BPF will not receive further structural
attention in this section.
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Figure 5.90: Bode magnitude plot for von-Mises stress on the R10 blade.
Undisturbed case with VPF forcing; disturbed case with fd = 0.75 BPF
and Ad = 10% (Eq. (5.10)). Eigenfrequencies marked from 1 to 9. Labels
A and B indicate crossings of the harmonic response with f = 0.75 BPF.

One further result from Fig. 5.88(b) deserves attention, namely
the fd = 0.25 BPF case. It has the highest relative stresses from
the simulated cases (apart from the discarded fd = 0.75 BPF, as
discussed before). A tip view with (exaggerated) displacement
within a vibration cycle of R10 is shown in Fig. 5.91(a). The phase
angle goes through a complete cycle (360◦) in a period of exactly
1/(0.25 BPF). In this interval, two main vibration modes are
observed: bending (e.g. at opposite phases 90◦ and 270◦) and
torsion (e.g. at phases 0◦ and 180◦). Referring back to Fig. 5.85(a),
these shapes correspond the first and second natural modes,
which indeed neighbor the excitation frequency fd = 0.25 BPF, as
clearly depicted by the Bode magnitude plot from Fig. 5.90. The
maximum displacement over the entire cycle is shown in
Fig. 5.91(b), combining the bending and torsion modes.

To understand the vibration relative amplification for the
fd = 0.25 BPF case, POD modes 2 and 3 for the pressure are
shown in Fig. 5.91(c). The decomposition of the pressure field is
of high aeroelastic importance, since it is directly related to the
effective forcing experienced by the rotor blade. In the current
case, the two most energetic unsteady POD modes indicate a
pressure load whose wavelength has the same order of
magnitude as the displacement pattern wavelength of the mode
shapes most prone to be excited. Remember that POD modes 2
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and 3 describe the PGC wave traveling upstream and contain the
same information up to a 90◦ phase offset (paired, traveling
modes). The matching between forcing and displacement on the
upper part of the blade is especially clear when comparing the
torsion mode with POD mode 3.

Displacement

Min Max

0◦ 45◦ 90◦

135◦ 180◦ 225◦

270◦ 315◦ 360◦

(a) Displacement within a vibration period (tip view)

(b) Maximum displacement

Mode 2 Mode 3

(c) Pressure POD

Figure 5.91: Harmonic analysis for displacement and POD for pressure
on rotor blade for the disturbed case with fd = 0.25 BPF and Ad = 10%
(see Eq. (5.10)). Bottom: suction side view.

Indeed, similar wavelength matching between forcing and
adjacently-excitable mode shapes occurs for other fd values (see
Figs. 5.79 and 5.81). The exception is natural mode 6 (not shown
here), whose chord, especially for large span, does not vibrate
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with a pattern similar to the pressure load distribution. This is
then reflected in the lower equivalent stresses obtained for the
disturbed case with fd = 1 BPF shown in Fig. 5.88(b).

Turning towards the quarter-annulus case described in
section 5.3.2, Fig. 5.92 shows the R10 pressure spectrum (spatial
average) employed as excitation in the forced response
assessments18. For a fixed disturbance amplitude of Ad = 10%,
Fig. 5.92(a) shows how the forcing in the frequency domain is
distributed for the undisturbed case and for different values of
circumferential order nc. Indeed, the empirical peak matches the
effective excitation frequency f̂r described by Eq. (5.13), for each
respective nc. The maximum value in the disturbed cases is
definitely much larger than the peak for the undisturbed case,
located at the VPF. Additional local peaks are related to nonlinear
combinations of f̂r and the VPF, but no relevant flow phenomena
in other frequencies occurred.

For the quarter-annulus setup, the equivalent stresses on the
R10 blade as a function of the circumferential order nc are shown
in Fig. 5.93, considering a normalization to the undisturbed case
at f = VPF and ζ = 0.093%. The undisturbed stresses from
Fig. 5.93(a) are negligible, bounded to less than 1% of the VPF
maximum stress. This happens because the corresponding
effective excitation frequencies for the analyzed cases are rather
far from the first eigenfrequency (analogously to the bottom,
leftmost part of the undisturbed response from Fig. 5.90).

The disturbed counterpart shown in Fig. 5.93(b) indicates
von-Mises stresses between 20 and 35 times the undisturbed VPF
response. These values match indeed with the low-frequency
stresses from the standard case (see response magnitude at
fd = 0.125 BPF in Fig. 5.88(b)).

Finally, the stresses normalized by each respective undisturbed
value are shown in Fig. 5.94. Amplifications of almost 6000 times

18The variation in the spectrum and Fourier modes among blades in different
circumferential positions in the quarter-annulus setup was negligible for the
undisturbed and all disturbed cases simulated. Therefore, just a single result
representing the R10 blades is considered here.
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Figure 5.92: Pressure spectrum (spacial average) at R10 as a function
of engine order (EO) in the quarter-annulus setup. Disturbed cases
with different circumferential orders nc and disturbance amplitude Ad
(see Eq. 5.12). The vane passing frequency and the effective excitation
frequency (see Eq. (5.13)) are labeled respectively VPF and f̂r .

occur. Although it is true that the stresses for the undisturbed
case are rather low at these query frequencies (explaining the high
amplification), it is relevant to point out that substantial increase
in relative response occurs in the presence of PGC. That is, even for
large safety margins, this augment in vibration could potentially
exceed materials limits if not taken into account during design.
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Figure 5.93: Maximum von-Mises stresses on rotor blade as a function
of circumferential order nc, for different damping ratios ζ in the quarter-
annulus setup. The undisturbed case has no excitation, while for the
disturbed case, Ad = 10% (see Eq. (5.12)). Normalization conducted with
respect to the undisturbed case at f = VPF and ζ = 0.093%.

The maximum stress over the vibration cycle in the disturbed
case nc = 8 in the damping case A (ζ = 0.093%) is shown in
Fig. 5.95. The areas with highest equivalent stress are located at
the hub fillet. They indeed justify the denser mesh discretization
in this high stress gradient surface. In this case, the forcing with
spatial pattern similar to the first (bending) mode shape is
partially effective in exciting the blade tip (with higher absolute
displacement). As a consequence, stresses increase close to the
hub, comparably to a classic cantilever case, clamped at one end.
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Figure 5.94: Maximum von-Mises stresses on rotor blade as a function
of circumferential order nc, for different damping ratios ζ in the quarter-
annulus setup. The disturbance amplitude is Ad = 10% (see Eq. (5.12)).
Normalization conducted concerning each respective undisturbed case.
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Figure 5.95: Von-Mises stresses on rotor blade in the quarter-annulus
setup for the disturbed case with nc = 8 and Ad = 10% (see Eq. (5.12)).
The damping ratio is ζ = 0.093%. Maximum value over cycle shown.

5.3.6 Conclusions

The present section numerically analyzed the effects of PGC on
a high pressure compressor from a large-scale turbofan, namely
the NASA EEE. This engine is an open test case, well established
in the turbomachinery literature. More specifically, the
investigations in this section were concentrated on the last (tenth)
HPC stage. As with case study 1 (section 5.2), single-frequency
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PGC disturbances were initially considered (as in Eq. (5.10));
subsequently, boundary conditions simulating a valve-opening
event (in the form of an inverted Gaussian pulse) were also
implemented (according to Eq. (5.15)).

Regarding the number of passages modeled, two different stage
setups were explored: the standard, which contains only a few
rotor and stator passages; and the quarter-annulus, which models
one quarter of the circumference. In the latter case, the PGC
disturbances were implemented according to Eq. (5.12) (see also
Fig. 5.36). Both standard and quarter-annulus numerical setups
yield a unitary pitch ratio, so to prevent frequency errors as the
PGC waves traverse the stage.

The stage performance under PGC disturbances showed a clear
depreciation in comparison to the baseline unsteady reference.
Considering the standard setup, the total pressure loss was up to
80% larger than the undisturbed counterpart (see Fig. 5.38 for the
rotor and stator domains). The drop in the stage isentropic
efficiency was restricted to less than 7% (see Fig. 5.41). This value
is similar to the ranges obtained with case study 1, when
considering the same disturbance amplitude of Ad = 10% of the
mean outlet pressure.

The quarter-annulus setup considered PGC waves which travel
not only axially but also in the circumferential direction. The
performance deterioration, considering total pressure loss and
efficiency drop, was in the same order of magnitude of the
standard setup, for the simulated circumferential orders. This
outcome is depicted in Figs. 5.42 and 5.44. Once again, an
increase in the disturbance amplitude Ad induced a relative sharp
drop in the isentropic efficiency, as shown in Fig. 5.44(b).

Also for the present case study the unsteady damping
formulated in section 5.1 was computed. In the standard setup
for the low disturbance frequency of fd = 0.125 BPF, the PGC
wave amplitude increased as it moved axially upstream (see
Fig. 5.39). This range matches very well with the unsteady
damping obtained for case study 1, which also produced negative
values for the same disturbance frequency fd (compare Fig. 5.39
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with Figs. 5.11, 5.15 and 5.17). In contrast, the quarter-annulus
setup produced strictly positive unsteady damping values for the
simulated circumferential orders (see Fig. 5.43). This indicates
that the PGC waves which also travel circumferentially have a
lower amplification potential. However, further investigations
with other circumferential orders and amplitude variation
patterns should be carried out for a more general understanding.

The data-driven decompositions applied to the unsteady
results provided relevant insights into the undisturbed and
PGC-disturbed flows, not obtained with classic techniques such
as Fourier decomposition or phase averaging. The performance
losses could be directly linked to specific flow phenomena,
including blade wake, tip and corner vortices, as well as
temporary separation zones (see, for instance, Figs. 5.47 to 5.50
and 5.68 to 5.72 for decompositions of the mass flow and entropy
fields). These phenomena were not only exposed, but also ranked
according to the energetic and coherence content of each spatial
mode. Furthermore, a spread of coherence into high-order modes
was observed in the presence of PGC disturbances (see, e.g.,
Figs. 5.63 and 5.64 for the density gradient and helicity fields).

The relative energetic importance of distinct flow phenomena
could be clearly determined from the POD and DMD analyses,
when comparing the baseline with the disturbed cases. For
instance, the unsteady flow feature containing more energy in the
stator domain in the absence of PGC waves was the vane tip
clearance vortex (as shown in Figs. 5.54 to 5.56 for the vorticity
field). In the presence of PGC disturbances, an energetic and
coherence shift occurs, namely from the vane tip clearance vortex
towards temporary pressure side separation, which then
produces a plume-like flow structure covering almost the entire
passage (as depicted in Figs. 5.57 to 5.61).

A detailed assessment of the entropy field at the rotor tip
clearance was able to link local flow structures with the
performance losses obtained for the stage. More specifically, the
well-behaved tip clearance vortex in the baseline case
(characterized in Fig. 5.73) experiences intense periodic change
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when subject to PGC waves. This behavior is conveyed in
Fig. 5.75, indicating an increase in the vortex diameter
accompanied by an irregular precession of its core. Additionally,
a short-lived, negative-incidence vortex, as well as flow spillage
at the leading edge, occur periodically. The “off-design” unsteady
phases portrayed in Fig. 5.75 are traced back to the change in
back pressure promoted by the PGC wave and, when
accumulated within the disturbance cycle, justify the
performance depreciation previously obtained.

The unsteady pressure distribution on the rotor blade was also
investigated in detail with the aid of data-driven decompositions.
Three main results are worth mentioning. First, the
decompositions of the undisturbed case indicated clear
preponderance of the vane passing frequency, manifested in the
presence of alternating lobes on the suction side (see Fig. 5.76);
indeed, this result matches the entropy decomposition of
streamwise surfaces at the rotor blade tip clearance (see
Fig. 5.73(b)). Second, the presence of PGC disturbances
dominated the blade pressure decomposition, for all frequencies
considered. That is, flow features linked to the undisturbed case,
such as the vane passing, were wholly energetically
overshadowed by behavior directly related to the PGC waves
(see Fig. 5.79 for wavelength and spectra matching the fd and
Fig. 5.80 for the clustering of modes around fd and its multiples).
Third, employing a single pulse (or sine sweeps) as a PGC
excitation function was also successful to obtain the main flow
features present in the unsteady flow (refer to Figs. 5.81 and 5.82).
These patterns had also been independently acquired when
running several computations with different fd values. This
pulse approach (with adequate parameters) turns out to be very
effective when considering general PGC disturbances since it
excites a broad frequency range, therefore avoiding the execution
of multiple unsteady runs.

The aerodynamic damping computed for the rotor blade’s first
modes yielded no negative values (see Fig. 5.85), indicating
flutter stability for the simulated operating point. The first mode



5.3. Case study 2 233

(bending) showed the lowest absolute value of aerodynamic
work. Additionally, to compute the total damping, two different
shares of mechanical damping are considered, termed in this
work “low” and “high” (see Tab. 5.6). The total damping was
then employed in the subsequent forced response analyses.

The displacement and stresses on the rotor blade were
obtained employing the forced response workflow given in
section 3.2.3.1 (see also Fig. 3.5). As expected for the undisturbed
case, the stator vane consists in the strongest forcing source for
the rotor, with natural modes 8 and 9 being the most excited (see
Fig. 5.87). Indeed, these modes present larger displacement at the
rotor tip, with a pattern and wavelength similar to the pressure
decompositions previously obtained, shown in Fig. 5.76. This
pattern matching between the excitable areas (antinodes from
natural modes) and the forcing decompositions (POD and DMD
of pressure field), justify the high stresses obtained for the VPF in
the forced response analysis (see Fig. 5.88(a)). The
decompositions also helped explain the second largest stresses
experienced by the rotor blade. In short, they occur at
fd = 0.125 BPF, which is 5% close to the low-frequency DMD
mode with large coherence, portraying the corner vortex
upstream the trailing edge (labeled B in Fig. 5.77(b) and shown in
Fig. 5.78).

For the standard setup, the maximum stresses in the presence
of PGC waves exceeded the undisturbed case for all simulated
frequencies. This behavior is depicted in Fig. 5.88(b), with up
to 50 times amplification in stresses in comparison to the largest
(VPF) excitation at baseline operation. The disturbance frequency
of fd = 0.75 BPF produces even higher stress levels, specifically
due to its proximity to a blade natural frequency (see Fig. 5.90).

Considering from Fig. 5.88(b) the largest stresses not
neighboring a natural mode (fd = 0.25 BPF), a situation similar to
the undisturbed case occurs. The mode shapes subject to the
strongest excitation are the first bending and first torsion (1 and 2
in Fig. 5.90). Additionally, the pressure load obtained from the
POD decomposition at f = 0.25 BPF, depicted in Fig. 5.91(c),
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matches the natural modes with a very similar spatial pattern.
This situation explains the amplification in equivalent stresses
observed in this PGC-disturbed case.

The quarter-annulus setup produced forced response levels in
a very similar range to the standard setup (see Fig. 5.93(b)). This
outcome is justified by the effective excitation frequencies
obtained with the simulated circumferential orders nc, which are
rather low in comparison to the first blade natural modes. When
normalizing the disturbed results with respect to their
corresponding undisturbed counterpart (as in Fig. 5.94), large
amplification factors are obtained, up to almost 6000-fold. This
indicates, also for the quarter-annulus case, that PGC
disturbances are capable of influencing the aeroelastic response
drastically. Generally, these results call for (i) detail assessments
of the mode shapes most likely to be excited by specific PGC
disturbance frequencies; (ii) a broad estimation of the damping
mechanisms at the blade; and (iii) thorough analyses of the PGC
forcing patterns, possibly with the help of data-driven
decompositions.



6
CONCLUSIONS AND

OUTLOOK



236 6. Conclusions and outlook

Reducing fuel consumption in aero engines and gas turbines is
indispensable in the contemporary transition from societies
grounded on fossil fuel to new realities bearing more
environmental and social responsibility. To do so, not only a
drastic curtail in demand is unavoidable, but also the
development of novel technology able to radically improve the
overall efficiency of turbomachines. One of these emerging
approaches is pressure gain combustion (PGC). It aims at
improving the engine’s thermal efficiency by substituting the
(ideally) constant-pressure with a pressure-gain combustion
process. However, this modification comes at the price of
unsteady combustion, with potentially severe consequences for
turbomachinery components.

This thesis attempted to throw light on the effects of PGC on
axial compressors with numerical methods, more explicitly,
unsteady fluid dynamics and solid mechanics computations.
First, a generic analytical model was presented, able to
quantitatively assess the amplification or damping of waves
traveling axially through (multiple) fluid domains. Afterwards,
PGC waves varying in form, frequency and amplitude were
implemented as unsteady boundary conditions for numerical
simulations, considering two case studies. Finally, time- and
frequency-domain methods, along with data-driven
decompositions, delivered relevant insight into the repercussions
of PGC on unsteady aerodynamic and aeroelastic behavior of a
few stages of the two high pressure compressors investigated.

The introduced analytical model defined the “unsteady
damping” as a scalar describing the spatial extent to which
potentially harmful PGC waves traverse turbomachinery
components. This flexible metric can be employed to any fluid
state variable fluctuating in time, although here the focus was
placed on pressure, temperature and mass flow. In this work, the
single-domain unsteady damping formulation was extended to
the generic cumulative case, which becomes suitable when
several rows or stages are involved. Two special instances were
derived from the generic cumulative form, the homogeneous and
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the alternating models. In the PGC context, the unsteady
damping becomes a valuable tool when estimating, either from
experiments or simulations, how many rows should be affected
by axially traveling waves. With it, aerodynamics and
aeroelasticity designers are able to evaluate to which degree PGC
disturbances impact the flow and possibly the mechanical
response of blades and vanes.

When applied to the unsteady fluid dynamic results, the
unsteady damping metric produced similar scenarios for both
case studies considered here. In the presence of PGC
disturbances with rather high frequencies – equal to or larger
than half the rotor blade passing frequency (BPF) –, a strong
damping of the wave amplitude occurred. However, for lower
disturbance frequencies, such as 0.125 BPF, an amplification of
the PGC wave ensued, during its upstream journey through the
high pressure compressor. Such an outcome appears to be new in
the turbomachinery literature considering upstream-traveling
pressure waves. The results clearly draw attention to the
potential risks of neglecting PGC unsteady effects and to the
importance of modeling enough rows according to the expected
disturbance frequencies. The quarter-annulus setup, which
considered PGC waves moving also in the circumferential
direction, produced a less alarming scenario. Now, also the
low-frequency waves were reasonably damped, preliminarily
indicating that this type of wave propagation could have a lower
amplification potential.

Another relevant aspect concerning the integration of PGC into
turbomachines is the depreciation of performance caused by the
combustion unsteadiness. In both case studies assessed, a
considerable increase in component losses ensued due to PGC
waves. A mapping of isentropic efficiency decrease as a function
of the disturbance amplitude and frequency was assembled from
numerical results. For instance, a stage subjected to a PGC wave
amplitude of 20% of the mean outlet pressure experienced up to
25% decrease in isentropic efficiency. When exposed to
amplitudes equal to or lower than 10%, the drop in efficiency was
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restricted to 7% or less, for all disturbance frequencies considered.
The increase in total pressure loss per row was also evaluated: up
to 80% higher values were reported due to the disturbance waves.
This deterioration in performance in the presence of PGC should
be diligently estimated for each specific design since, for a
successful integration of novel combustion devices into gas
turbines, the thermodynamic improvement must definitely not
be hindered by local component losses.

Data-driven decompositions of the unsteady flow cast light
into the most relevant coherent structures identifiable in the
absence and presence of PGC. More specifically, proper
orthogonal decomposition and dynamic mode decomposition
were insightful approaches to disclose flow structures not
accessible with conventional techniques such as Fourier
decomposition or phase averaging. Specific unsteady phenomena
such as wakes, tip and corner vortices, but also temporary
separation, could be efficiently ranked according to their energy
and coherence content. Furthermore, the identified flow
structures were directly linked to stage losses from previous
analyses, providing physical justifications for the performance
deterioration. For instance, the analysis of the entropy field at the
rotor blade tip gap was able to clearly identify temporary
“negative-” and “positive-stall” phases experience by a stage, as a
function of the back pressure variation promoted by the PGC
waves. The accumulation of these off-design phases within the
disturbance cycle explains the efficiency drop outcome.

Moreover, the data-driven decompositions showed that, in the
presence of PGC disturbances, a spread of coherence into high-
order modes ensued, confirmed by the decomposition of several
state variables at different spatial locations. Additionally, specific
flow features dominating the baseline unsteady flow subsumed in
the PGC-disturbed scenario. For instance, the vane tip clearance
vortex in the stator domain of case study 2, bearing the highest
decomposition energy content, was overshadowed by periodic
flow separation on the vane pressure side, followed by a plume-
like detached volume covering the entire passage.
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This dynamics domination by PGC-induced phenomena was
also observed in the pressure decompositions on the rotor blade.
That occurred for all frequencies simulated and was distinctly
corroborated by the clustering of dynamic modes at the
disturbance frequency and its multiples. Indeed, the pressure
decomposition produced alternating patterns on the blade
precisely related to the respective PGC disturbance wavelength.
Employing as boundary conditions functions such as the inverted
Gaussian pulse (simulating the opening of a PGC valve) or sine
sweeps was also effective in disclosing the same pressure
patterns obtained with several single-frequency simulations.

The aeroelasticity assessments predicted no flutter for both
case studies, following the energy method. The forced response
analyses indicated a substantial increase in displacement and
stresses in the PGC-disturbed response, when contrasted with the
baseline operation. For instance, the dynamic stress due to PGC
for case study 2 was 50 times larger than the maximum stresses in
the baseline case (due to rotor-stator interaction), even when
relatively far from the blade natural frequencies. When regarding
the ratio of PGC-disturbed stresses to the baseline case for the
same query frequency, the amplification becomes thousandfold.
Although this large rise is partially explained by the very small
absolute stresses in the baseline case, such a major relative
increase should not be understated. These results circumstantiate
the relevance of precisely estimating the forced response for the
main PGC frequencies and amplitudes expected to reach the
turbomachinery components.

The harmonic response results for the rotor blade of case study
2 could also be interpreted with the aid of data-driven
decompositions and modal analyses. Both for undisturbed and
disturbed scenarios, particularly higher stresses ensued on the
rotor when the forcing function spatial pattern matched the blade
mode shapes. That is, whenever the pressure distribution of
high-energy modes coincides in space with the blade natural
modes displacement, for frequencies close to the PGC excitation,
more intense blade vibration followed.
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Finally, qualitative agreement was observed between the
unsteady damping metric and the stresses on the rotor blades
subject to PGC disturbances. For both case studies, the PGC
waves produced a higher impact for lower frequencies, meaning
that the strength of axially traveling waves persisted even after
traversing some rows. Since the unsteady damping computation
requires solely CFD runs (in comparison to a more involved
workflow for forced response), it is recommended as a
exploratory predictor of the potential impact of PGC disturbances
in turbomachinery.

The contributions from this thesis should encourage further
research concerning the integration of PGC into gas turbines. For
instance, other combustion disturbances profiles could be
employed, preferably based on PGC experimental data
specifically contemplating turbomachinery integration. Further
investigations of PGC disturbances with diverse circumferential
patterns, including the cross-interaction of multiple combustors,
should enhance the understanding on the potentially hazardous
effects of PGC on compressors and turbines. Clarifications on
plena located between combustor and adjacent components is
also required. Among other additional challenges, only after the
performance depreciation is precisely estimated (and remains
limited to small values) and structural risks are out of the way,
PGC may be successfully incorporated into gas turbines so to
effectively improve their overall efficiency and reduce fuel
consumption.
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A.1 Grid independence index

The grid independence index (GCI) is an attempt to provide a
single scalar which quantitatively conveys the convergence of a
set of different numerical discretizations. It is based on the
Richardson extrapolation method, and presented here oriented
towards direct implementation, according to the framework
of [250].

The GCI computation starts by defining a representative
discretization metric h (e.g., average numerical cell length, cubic
root of the average cell volume). This metric should be computed
for all grids analyzed, ordered here from finer to coarser such that
h1 < h2 < h3 for three meshes, ideally systematically
refined/coarsed. Define the ratio r between two adjacent
discretizations as

r21 = h2/h1, (A.1a)

r32 = h3/h2. (A.1b)

Subsequently, extract from the solution with each discretization
a scalar θ, which represents a relevant quantity in the targeted
analysis. Compute the finite variation ∆θ between adjacent
discretizations as

∆θ21 = θ2 − θ1, (A.2a)

∆θ32 = θ3 − θ2. (A.2b)

The apparent order p is then evaluated as

p =
1

ln(r21)
|ln |∆θ32/∆θ21|+ q(p)| , (A.3)

where
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q(p) = ln

(
rp21 − s
rp32 − s

)
, (A.4a)

s = sgn (∆θ32/∆θ21) . (A.4b)

Negative values of s indicate oscillatory convergence. Note that
Eqs. (A.3) and (A.4) must be computed recursively (e.g., by fixed-
point iteration). If the apparent order p obtained consistently
matches the numerical scheme discretization order, the values
and discretizations are understood to be in the asymptotic regime.

The extrapolated scalar θ̌ may then be computed as

θ̌21 =
rp21θ1 − θ2

rp21 − 1
, (A.5a)

θ̌32 =
rp32θ1 − θ2

rp32 − 1
. (A.5b)

The approximate relative error between discretizations 2 and 1
is computed as

e21 =

∣∣∣∣θ1 − θ2

θ1

∣∣∣∣ . (A.6)

Finally, the GCI between discretizations 2 and 1 (fine) is
computed as

GCI21 =
n e21

rp21 − 1
, (A.7)

where n is a safety factor (usually assuming the value of 1.25).
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A.2 Cumulative unsteady damping

The identity between Eqs. (5.5a) and (5.5b) for the cumulative
unsteady damping from section 5.1.2 can be demonstrated by an
inductive argument. The case with n = 1 is trivially satisfied.
Supposing the identity is true for n and expanding Eq. (5.5b) for
n+ 1:

1−
n+1∏
k=1

(1− kε)

= 1− (1− n+1ε)

n∏
k=1

(1− kε)

= 1−
n∏
k=1

(1− kε) + n+1ε

n∏
k=1

(1− kε)

=

n∑
k=1

∑
i1,...,ik∈{1,...,n}

i1<···<ik

(−1)k+1
k∏
j=1

ijε+ n+1ε

n∏
k=1

(1− kε) (A.8)

Note that the strict inequalities in the second sum (i1 < · · · < ik)
in Eq. (A.8) imply that the products of ikε do not have repeated
indexes ik. Applying again the inductive hypothesis, the last term
in (A.8) is expanded as
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n+1ε

n∏
k=1

(1− kε)

= n+1ε

1−
n∑
k=1

∑
i1,...,ik∈{1,...,n}

i1<···<ik

(−1)k+1
k∏
j=1

ijε


= n+1ε−

n∑
k=1

∑
i1,...,ik∈{1,...,n}

i1<···<ik

(−1)k+1
k∏
j=1

ijε n+1ε

= n+1ε−
n∑
k=1

∑
i1,...,ik∈{1,...,n}

ik+1=n+1
i1<···<ik

(−1)k+1
k+1∏
j=1

ijε

= n+1ε−
n+1∑
k=2

∑
i1,...,ik−1∈{1,...,n}

ik=n+1
i1<···<ik−1

(−1)k
k∏
j=1

ijε

= n+1ε+

n+1∑
k=2

∑
i1,...,ik−1∈{1,...,n}

ik=n+1
i1<···<ik−1

(−1)k+1
k∏
j=1

ijε

=

n+1∑
k=1

∑
i1,...,ik−1∈{1,...,n}

ik=n+1
i1<···<ik−1

(−1)k+1
k∏
j=1

ijε (A.9)

Substituting this term in expression (A.8), we obtain
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1−
n+1∏
k=1

(1− kε) =

n∑
k=1

∑
i1,...,ik∈{1,...,n}

i1<···<ik

(−1)k+1
k∏
j=1

ijε

+

n+1∑
k=1

∑
i1,...,ik−1∈{1,...,n}

ik=n+1
i1<···<ik−1

(−1)k+1
k∏
j=1

ijε

=

n+1∑
k=1

∑
i1,...,ik∈{1,...,n+1}

i1<···<ik

(−1)k+1
k∏
j=1

ijε (A.10)

completing the proof.
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