
CCFL

A C oncurrent C onstraint Functional Language

Petra Hofstedt
ph@cs.tu-berlin.de

Technischer Bericht 2008-08
ISSN 1436-9915

Contents

1 The language CCFL 9
1.1 Programming with CCFL . 9

1.1.1 Functional programming . 9
1.1.2 Free variables . 9
1.1.3 Constraint abstractions . 10

1.2 Syntax . 13
1.2.1 CCFL programs . 13
1.2.2 Expressions . 14
1.2.3 Abstract syntax . 16
1.2.4 Implementation . 17

1.3 Semantics . 20

2 Context conditions and type checking 21
2.1 Context conditions . 21
2.2 Scopes . 22
2.3 Types . 23

2.3.1 Data types . 23
2.3.2 Functions and constraints . 26

2.4 Implementation . 29

3 The target language LMNtal 31
3.1 A very brief introduction to LMNtal . 31
3.2 The abstract syntax of LMNtal . 32
3.3 CCFL variables and logical links in LMNtal 32

3.3.1 Functional CCFL programs and the copying of structures 32
3.3.2 Reaching full CCFL . 34

4 Compiling CCFL into LMNtal – a naive approach 35
4.1 The compilation scheme for functional CCFL 35

4.1.1 Function definitions . 36
4.1.2 Functional expressions . 37
4.1.3 The prelude . 42

4.2 Higher-order functions . 42
4.3 η-enrichment . 43
4.4 Partial applications . 44
4.5 Renamings . 46
4.6 Representing CCFL variables by LMNtal links 47

4.6.1 New variables in CCFL rule bodies . 47
4.6.2 Copying LMNtal links and structures 49

4.7 Evaluation strategies . 50
4.7.1 Call-by-value evaluation . 50
4.7.2 Call-by-name evaluation . 54

3

4.8 Implementation . 54

5 A heap as CCFL runtime environment 59
5.1 The representation of the heap . 59

5.1.1 CCFL variables . 59
5.1.2 Non-variable terms . 60

5.2 Functional CCFL with heap . 60
5.2.1 Adaptions to the compilation scheme 61
5.2.2 Lazy evaluation . 65

5.3 Full CCFL with heap . 66
5.3.1 The compilation of constraint and guarded expressions 66

5.4 Implementation . 68

6 Extending CCFL by new constraint domains 69
6.1 Two ways of constraint integration . 69
6.2 External tell -constraints . 69
6.3 External ask -constraints . 71
6.4 Finding concrete solutions . 72
6.5 Handling external constraints in LMNtal . 73

7 Conclusion 75
7.1 Related work . 75
7.2 LMNtal as target language of the CCFL compiler 76
7.3 Future work . 77

4

List of Figures

2.1 Scoping rules for function definitions, function declarations, and type definitions 22
2.2 Scoping rules for local definitions . 23
2.3 Scoping rules for case-expressions . 24
2.4 Scoping rule for the with-construct . 24
2.5 Scoping rules for alternatives of guarded expressions 25
2.6 Scoping rule for infix operator applications 25
2.7 Built-in data types of ccfl . 25
2.8 Types of predefined functions and built-in constraints 26
2.9 Typing rule for function definitions . 27
2.10 Typing rule for function applications . 27
2.11 Typing rules for local definitions . 27
2.12 Typing rules for case-expressions . 28
2.13 Typing rules for constraint expressions . 28
2.14 Typing rule for guarded expressions . 29

4.1 Overview of the ccfl compiler . 36
4.2 Abstract representation of function applications 40
4.3 A computation sequence using an unsatisfactory strategy 51
4.4 A computation sequence using an unsatisfactory strategy (continued) 52
4.5 A call-by-value computation sequence . 53
4.6 A call-by-name evaluation . 56

5.1 The representation of variables in the ccfl heap 60
5.2 The representation of a non-variable term in the ccfl heap 61
5.3 Visualisation of the generalised app rule . 65

6.1 Tasks and durations, ordered from left to right 70

5

6

This report describes the design and implementation of the Concurrent Constraint Func-
tional Language ccfl.

ccfl combines concepts from the functional and the constraint paradigms and allows the
description of systems of concurrent processes, whose communication and synchronization is
based on the concurrent constraint programming (CCP) model [SR90]. A compiler for the
language has been implemented in haskell which translates ccfl programs into lmntal
code. The language lmntal (pronounced ”elemental”) [UK02, UK05, UKHM06, LMN07]
has been designed and developed by Kazunori Ueda and his group at Waseda University in
Tokyo. It is a new concurrent language model based on rewriting hierarchical graphs. One
of its major aims is to unify various paradigms of computation resp. computational models.
Thus, lmntal lends itself as base model and target language for the compilation of ccfl
programs.

This report is structured as follows: Chapter 1 introduces ccfl by examples and discusses
the formal representation. Chapter 2 deals with context conditions and type checking. We
give a brief introduction to the compiler target language lmntal in Chapter 3, where we
also discuss restrictions on lmntal links which caused different approaches for the code
generation. Chapter 4 presents a naive approach to code generation for a functional sub-
language of ccfl, while Chapter 5 shows an extended compilation scheme for full ccfl.
Chapter 6 is dedicated to the extension of ccfl by new constraint domains. Finally we
conclude and discuss related and future work in Chapter 7.

7

8

Chapter 1

The language CCFL

The first chapter introduces the Concurrent Constraint Functional Language ccfl. We
start with an informal presentation of structure and usage of ccfl by means of examples
in Section 1.1. Section 1.2 deals with the formal description of the syntax of CCFL and
Section 1.3 sketches on the language semantics.

1.1 Programming with CCFL

ccfl is a declarative language combining the functional and constraint paradigms which
allows for concurrent computation.

A ccfl program is a sequence of data type definitions, functional and constraint abstrac-
tions. Functional abstractions resp. functions are used to express deterministic computa-
tions. Constraint abstractions resp. user-defined constraints are used to describe cooperating
processes and non-deterministic behaviour. Constraint abstractions represent a number of
possible computations, that is, relations resp. constraints over their arguments.

1.1.1 Functional programming

The functional sub-language partially inherits notions and concepts from the functional lan-
guages haskell and opal (see e.g. [Bir98, Hud00, PH06]). A functional ccfl program
consists of data type definitions and functional abstractions resp. functions. A function
consists of a function definition and a function type declaration. Function definitions al-
low typical constructs such as case-expressions, let-expressions, function application and
some predefined infix operation applications, constants, variables and constructor terms. A
function call1 evokes a computation by reduction.

Program 1.1.1 and the function append in Program 1.1.2 are typical examples of func-
tional abstractions in ccfl. Program 1.1.2 moreover shows the user-defined data type
List a.

1.1.2 Free variables

Free variables are one of the main characteristics of constraints. However, in ccfl ex-
pressions in general are allowed to contain free variables. This also applies to function
applications.

Thus, function applications are evaluated using the residuation principle [Smo93]. This
means, functions calls are suspended until variables are bound to values or terms such that
a deterministic reduction is possible. For example a function call (4 + x) with free variable
x will suspend.

1without free variables (see Section 1.1.2)

9

Program 1.1.1 A naive implementation of the Fibonacci function

1 fun f i b o n a c c i : : Int −> Int
2 def f i b o n a c c i n =
3 case n of 0 −> 0 ;
4 1 −> 1 ;
5 m −> l e t f 1 = f i b o n a c c i (m−1);
6 f 2 = f i b o n a c c i (m−2)
7 in f 1 + f 2

Program 1.1.2 List append

data L i s t a = Ni l | Cons a (L i s t a)

fun append : : L i s t a −> L i s t a −> L i s t a
def append l 1 l 2 =

case l 1 of Ni l −> l 2 ;
Cons x xs −> Cons x (append xs l 2)

fun main : : L i s t Int
def main =

with y : : Int
in append (Cons 1 Ni l) (Cons y Ni l)

Consider in contrast Program 1.1.2. Function main introduces the free variable y of type
Int using the with-construct. Here a concrete binding of y is not necessary to proceed with
the computation of main. The result of main is thus Cons 1 (Cons y Nil).

1.1.3 Constraint abstractions

A ccfl program usually describes a combination of functional and constraint abstractions.
A constraint abstraction consists of a head and a body which may contain the same

elements as a functional abstraction. Additionally, the body can be defined by several
alternatives the choice of which is decided by guards. A constraint abstraction is allowed to
introduce free variables and each body alternative is a conjunction of constraint atoms. A
constraint abstraction has result type C.

Examples of constraint abstractions are game, dice, and isIn in Program 1.1.3 and
produce, consume, and main in Program 1.1.4 which we will discuss in detail in the following.

Ask- and tell-constraints

The atoms of the guard of an alternative are called ask -constraints (see also [SR90]). If a
guard of a rule with matching left-hand side is entailed, the concerning rule alternative may
be chosen for further derivation. In case the guard fails or cannot be decided (yet), this rule
alternative is suspended. If all matching rule alternatives suspend, the computation waits
(possibly infinitely) for a sufficient instantiation of the concerning variables.

For ask -constraints, we distinguish between bound-constraints (bound x) check-
ing whether a variable x is bound to a non-variable term and match-constraints
(x =:= c x 1 ... x n) which test for a concrete matching of the root symbol of a term
bound to the variable x with a certain constructor c.

Constraints in the body of a rule are called tell -constraints [SR90] and they generate
bindings. Tell -constraints include applications (f fexpr 1 ... fexpr n) of user-defined con-

10

Program 1.1.3 A simple game of dice

fun game : : Int −> Int −> Int −> C
def game x y n =

case n of 0 −> x =:= 0 & y =:= 0 ;
m −> with x1 : : Int , y1 : : Int , x2 : : Int , y2 : : Int

in d i c e x1 & d i c e y1 &
x =:= add x1 x2 & y =:= add y1 y2 &
game x2 y2 (m−1)

fun add : : Int −> Int −> Int
def add x y = x + y

fun d i c e : : Int −> C
def d i c e x =

i s I n (Cons 1 (Cons 2 (Cons 3 (Cons 4 (Cons 5 (Cons 6 Ni l)))))) x

fun i s I n : : L i s t a −> a −> C
def i s I n l x =

l =:= Cons y ys −> x =:= y |
l =:= Cons y ys −> case ys of Ni l −> x =:= y ;

Cons z z s −> i s I n ys x

straints and equality constraints (x =:= fexpr) on a variable x and a functional expression
fexpr. While a satisfiable equality constraint produces a binding and terminates with result
value Success, a unsatisfiable equality is reduced to the value Fail representing an unsuc-
cessful computation.

Example 1.1.1 Presuppose the user-defined data type List a from Program 1.1.2. The
body of the constraint abstraction failList consists of a conjunction of two conflicting
equality constraints.

fun f a i l L i s t : : C
def f a i l L i s t = with x : : L i s t Int in x =:= Ni l & x =:= Cons 1 Ni l

The derivation of the constraint failList yields Fail. The arrow stands for a compu-
tation step, where we may annote computed bindings for free variables.

failList (x =:= Nil) & (x =:= Cons 1 Nil) {x/Nil} (x =:= Cons 1 Nil) Fail

Non-deterministic computations

Constraint abstractions resp. user-defined constraints can be used to describe non-
deterministic computations.

Consider Program 1.1.3 as an example. It shows a game between two players throwing
the dice n times. The user-defined constraint game uses both kinds of tell -constraints: The
constraint applications dice x1 and dice y1 non-deterministically produce values which are
consumed by the applications of the function add in the equality constraints x =:= add x1 x2
and y =:= add y1 y2 resp. These function applications suspend until their arguments are
sufficiently instantiated, that is, completely instantiated for addition in this example. The
constraint abstraction isIn chooses a value from a list. Since the match-constraints of the
guards of both alternatives are the same, i.e. (l =:= Cons y ys), the alternatives are chosen
non-deterministically.

The following trace shows a non-deterministic computation with n = 2. The arrows ...

and ?
... stand for one or some computation steps resp.

11

Program 1.1.4 A producer and a consumer communicating over a buffer

fun produce : : L i s t a −> C
def produce bu f =

with buf1 : : L i s t a , i tem : : a
in −− p r o d u c e i t e m h e r e

. . .
−− t h e n p u t i t i n t o t h e b u f f e r a n d c o n t i n u e

bu f =:= Cons item buf1 & produce buf1

fun consume : : L i s t a −> C
def consume buf =

bu f =:= Cons f i r s t buf1 −>
−− c o n s u m e f i r s t h e r e

. . .
−− a n d c o n t i n u e

consume buf1

fun main : : C
def main =

with bu f : : L i s t a
in produce bu f & consume buf

game a b 2
 ... dice a1 & dice b1 & a =:= add a1 a2 & b =:= add b1 b2 & game a2 a2 1
 ?

{a1/2,b1/1} a =:= add 2 a2 & b =:= add 1 b2 & game a2 b2 1

 ... a =:= add 2 a2 & b =:= add 1 b2 &
dice a3 & dice b3 & a2 =:= add a3 a4 & b2 =:= add b3 b4 & game a4 b4 0

 ?
{...,a3/4,b3/6} a =:= add 2 a2 & b =:= add 1 b2 &

a2 =:= add 4 a4 & b2 =:= add 6 b4 & game a4 b4 0
 {...,a4/0,b4/0} a =:= add 2 a2 & b =:= add 1 b2 & a2 =:= add 4 0 & b2 =:= add 6 0
 ?

{...,a2/4,b2/6} a =:= add 2 4 & b =:= add 1 6

 ?
{...,a/6,b/7} Success

Concurrent processes

Constraint abstractions also allow to describe the computation of concurrent processes. For
example, in Program 1.1.3 both computations of dice values, i.e. dice x1 and dice y1 which
are independent, could have been computed concurrently. There is no required order of the
players in this game. However, the computation of the sum by x =:= add x1 x2 depends on
the computation of the dice values which must have been processed before.

In general, constraint applications enable the description of computations by means of
cooperating and communicating processes. Program 1.1.4 shows an example of a consumer
and a producer cooperating over a common buffer.

While the consume process must wait until the buffer has been filled with at least one
element first , the produce process is not restricted to synchronise with the consumer.

However, one may e.g. restrict the buffer to force the producer to take the behaviour of
the consumer into account. Consider Program 1.1.5. The main abstraction initialises the
buffer with two element. The produce process is allowed to proceed as long as there are free
elements in the buffer which it binds to values. In contrast, the consume process consumes
the values but puts new free slots into the buffer. In this way, producer and consumer
communicate and synchronise over the bounded buffer.

12

Program 1.1.5 A bounded buffer holding at most two elements

fun produce : : L i s t a −> C
def produce bu f =

bu f =:= Cons f i r s t buf1 −>
−− c o m p u t e a v a l u e v f o r f i r s t h e r e

. . .
−− t h e n b i n d i t t o f i r s t a n d c o n t i n u e

f i r s t =:= v & produce buf1

fun consume : : L i s t a −> C
def consume buf =

bu f =:= Cons v buf1 & bound v −>
with a : : a , b : : a , buf2 : : L i s t a
in −− c o n s u m e v a l u e v h e r e

. . .
−− t h e n r e − i n i t i a l i s e t h e b u f f e r a n d c o n t i n u e

buf1 =:= Cons a (Cons b buf2) & consume buf1

fun main : : C
def main =

with a : : a , b : : a , bu f : : L i s t a , buf1 : : L i s t a
in −− c a l l p r o d u c e r a n d c o n s u m e r . . .

−− w i t h b u f f e r b u f o f tw o u n b o u n d e l e m e n t s

produce bu f & consume buf & bu f =:= Cons a (Cons b buf1)

1.2 Syntax

This section presents the formal syntax of ccfl.

1.2.1 CCFL programs

A ccfl program consists of data type definitions and declarations and definitions of functions
and user-defined constraints. In the following we use the notion function for both, i.e. we
consider user-defined constraints as functions of result type C.

A data type definition starts with the keyword data. We (currently) do not allow
functions to appear in user-defined data types.

A function declaration is marked with the keyword fun, a function definition with the
keyword def.

Prog → Def +

Def → TDef | FDecl | FDef

FDef → def FName Var ? = Expr
FDecl → fun FName :: Type
TDef → data TypeName TypeVar ? = CType (|CType) ?

CType → Constructor SType ?

SType → TypeVar | (CType) | Int | Float | Bool
Type → SType | Type − > Type | C

Names consist of alphanumerical symbols; data type names and constructors start with
an upper letter while identifiers of variables and functions resp. user-defined constraints
start with a lower letter.

13

Program 1.2.1 shows a definition of a data type (Tree a) containing the empty tree Nil
and trees consisting of nodes Node with a value of (the polymorphic) type a and a left and
a right sub-tree. Furthermore, it declares and defines an arithmetic function foo with two
arguments.

Program 1.2.1 A data type definition for trees and a simple function definition on floats

data Tree a = Node (Tree a) a (Tree a) | Ni l

fun foo : : Float −> Float −> Float
def foo x y = y +. (x / . y)

1.2.2 Expressions

We distinguish functional, constraint and guarded expressions.

Expr → FExpr | CExpr | GExpr

Functional expressions

A functional expression is either a function application, a (optionally parenthesised) basic
infix operator application, a case-expression or a let-expression.

FExpr → Appl | Infix | CaseExpr | LetExpr

A function application consists of a (optional) functional expression and a simple ex-
pression, like a variable, a constant, a parenthesised functional expression or a constructor
(expression). Signed numbers must be enclosed within parentheses.

Appl → SExpr | FExpr SExpr
SExpr → Var | Constant | (FExpr) | Constructor
Constant → Float | Int | Bool

A number of basic binary arithmetic and Boolean operations and relations can be used in
infix notation. Operations on floating point numbers are followed by a dot ”.”, comparison
operations on Booleans by a colon ”:”.

Infix → FExpr BinOp FExpr
BinOp → ArithOp | RelOp | BoolOp
ArithOp → + | - | * | / | +. | -. | *. | /.
RelOp → == | <= | < | > | >= |˜= | ==: |˜=:

| == . | <= . | < . | > . | >= . |˜= .
BoolOp → && | ||

Case-expressions use the keywords case and of and the different branches are separated
by semicolon ”;”. Different cases are distinguished by their top constructor symbols, where
the following variables must match the arity of the constructor. We allow to branch on
natural numbers and Booleans by considering them as (0-ary) constructors. An otherwise-
branch can be defined for case alternatives on natural numbers as shown for the naive
implementation of the function fibonacci in Program 1.1.1 in line 5.

An if-construct is realised as function using the case-construct of basic ccfl as shown
in Program 1.2.2. Function depth calculates the depth of a tree of type Tree a as defined in

14

Program 1.2.2 if-alternatives are realised using the case-construct

fun i f : : Bool −> a −> a −> a
def i f c t e = case c of True −> t ;

False −> e

fun depth : : Tree a −> Int
def depth t r e e =

case t r e e of
Ni l −> 0 ;
Node l e f t v a l u e r i g h t −>

l e t l d e p t h = depth l e f t ;
rdepth = depth r i g h t

in i f (l d e p t h >= rdepth) (l d e p t h + 1) (rdepth + 1)

Program 1.2.3 A function foo using local definitions

fun foo : : Int −> Int −> Int

def foo a b = a + (l e t a = b ;
b = a + 2

in (l e t a = a + b
in b + a))

−− o r s e m a n t i c a l l y e q u i v a l e n t :

def foo a b = a + (l e t a0 = b ;
b1 = a0 + 2

in (l e t a2 = a0 + b1
in b1 + a2))

Program 1.2.1.

CaseExpr → case FExpr of Branch (;Branch) ?

Branch → Constructor Var ? − > CExpr
| Var − > CExpr (? otherwise-branch ?)

Local definitions are introduced by let-expressions. They are allowed to refer to previ-
ously defined let-elements; thus, their order is crucial.2

Program 1.2.3 show two semantically equivalent versions of a function foo illustrating
the effect of shadowing variables.

LetExpr → let Binding (;Binding) ? in CExpr
Binding → Var = FExpr

Constraint expressions

The second form of expressions are constraint expressions. These may introduce new logical
variables (annotated with their type) using the with-construct and consist in general of a
conjunction of atoms. An atom is either a tell -equality or a functional expression (including

2Alternatively (and which is as well implemented), one could put all local let-bindings on the same level
such that they do not refer to each other. In this case, it is unproblematic to change their order.

15

applications of user-defined constraints).

CExpr → With | Conj
With → with (Var :: CType) + in Conj
Conj → Atom (& Atom) ?

Atom → Var =:= FExpr (? tell-equality ?)
| FExpr (? functional expression ?)

Guarded expressions

Finally, there are guarded expressions: They consist of a disjunction of constraint expres-
sions, each preceded by a guard which is a conjunction of constraint primitives. While
constraint expressions may be looked at as tell -constraints, guard atoms represent ask -
constraints [SR90]. They include a test bound x of a variable x to be bound to a non-variable
term and a match-constraint x =:= c x 1 ... x n of a variable x to be bound to a term with
constructor root symbol c and fresh variables x 1 ... x n as its arguments.

GExpr → GAlt (|GAlt) ?

GAlt → Guard → CExpr
Guard → CPrim (& CPrim) ?

CPrim → bound Var | Var =:= CTerm
CTerm → Constructor Var ?

The producer and the consumer processes of Program 1.1.4 are defined using constraint
and guarded expressions.

Constants, constructors, variable and function names and numbers as used above are
defined by the grammar below.

Bool → True | False
Int → ([Sign]Digit +) | Digit +

Float → ([Sign] Digit + . Digit + [Ext])
| Digit + . Digit + [Ext]

Ext → (e | E)[Sign]Digit +

Var → LowerId
TypeVar → LowerId
FName → LowerId
Constructor → UpperId
TypeName → UpperId

LowerId → LAlpha (Alpha | Digit) ?

UpperId → UAlpha (Alpha | Digit) ?

Alpha → UAlpha | LAlpha
LAlpha → a | ... | z
UAlpha → A | ... | Z
Digit → 0 | ... | 9
Sign → + | −

1.2.3 Abstract syntax

We show the structure of the abstract syntax of ccfl programs of our implementation. The
abstract syntax strongly reflects the descriptions in Sections 1.2.1 and 1.2.2.

Programs are lists of function definitions, function declarations, and data type definitions.
These are represented by the data type Def and distinguishing constructors as given in

16

Program 1.2.4 Programs

type Prog = [Def]

data Def = FDef { fName : : String ,
fPars : : [Var] ,
fBody : : Expr }

| FTDef { ftName : : String ,
f tType : : Type }

| TDef { tName : : String ,
tPars : : [String] ,
tBody : : [TElem] }

data TElem = TElem { tConstr : : String ,
eTypes : : [Type] }

data Type = TConstr String [Type]
| TVar String
| TInt
| TFloat
| TBool
| TFun Type Type
| TConstraint

Program 1.2.5 Expressions

data Expr = FExpr FExpr
| CExpr CExpr
| GExpr GExpr

Program 1.2.4.
Expressions are again distinguished into functional, constraint, and guarded expressions

(see data type Expr, Program 1.2.5).
Functional expressions (Program 1.2.6) are separated into case-expressions, let-

expressions, basic infix operations, applications, constants, identifiers (function or variable
names) and constructor expressions.

Constraint expressions (Program 1.2.7) may introduce new logical variables and consist
furthermore just of a conjunction of atoms. Atoms are tell -equality-constraints or functional
expressions.

Finally, there remain guarded expressions as lists of alternatives, each consisting of a
conjunction of guard atoms (bound or match constraints) and a constraint expression as
shown in Program 1.2.8.

Example

An example of a data type definition for lists and a function computing the length of lists
in ccfl together with their abstract representations is given in Program 1.2.9.

1.2.4 Implementation

The files Syntax.hs and Parser.hs implement the abstract syntax and the ccfl parser, resp.
The parser relies on the monadic parser combinator library Parsec [Lei01].

17

Program 1.2.6 Functional expressions

data FExpr = Case { caseFExpr : : FExpr ,
branches : : [Branch] }

| Op { opName : : String ,
opFE1 : : FExpr ,
opFE2 : : FExpr }

| Apply { appFE1 : : FExpr ,
appFE2 : : FExpr }

| Let { l e t B d g s : : [Binding] ,
letCE : : CExpr }

| Const { cons tant : : Constant }
| FunVar { v a r i a b l e : : Var }
| Constr { f e C o n s t r u c t o r : : String }

data Var = Var { varName : : String }

data Constant = Float Double
| I n t Integer
| Bool Bool

data Branch = CBranch { constrName : : String ,
constrArgs : : [Var] ,
cConsequence : : CExpr }

| BBranch { bAl t : : Bool ,
bConsequence : : CExpr }

| NBranch { nAlt : : Integer ,
nConsequence : : CExpr }

| OBranch { oAlt : : Var ,
oConsequence : : CExpr }

data Binding = Bind { bindVar : : Var ,
bindFe : : FExpr }

Program 1.2.7 Constraint expressions

data CExpr = With { l o g i c a l V a r s : : [Var] ,
withCe : : CExpr }

| Conj [Atom]

data Atom = Tel lEq { t e l l V a r : : Var ,
t e l l F e : : FExpr }

| CFExpr { cFe : : FExpr }

18

Program 1.2.8 Guarded expressions

type GExpr = [GAlt]

data GAlt = GAlt { guards : : [Guard] ,
gCe : : CExpr }

data Guard = Bound { boundVar : : Var }
| Match { matchVar : : Var ,

matchT : : CTerm }

data CTerm = GConst { gcons tant : : Constant }
| GVar Var
| GConstr { cTConstr : : String ,

cTArgs : : [Var] }

Program 1.2.9 Definitions and declaration and their abstract representations

data L i s t a = Ni l | Cons a (L i s t a)

fun l e n g t h : : L i s t a −> Int
def l e n g t h l i s t =

case l i s t of Ni l −> 0 ;
Cons elem r e s t −> 1 + l e n g t h r e s t

[TDef "List"
["a"]
[TElem "Nil" [] ,
TElem "Cons" [TVar "a" ,

TConstr "List" [TVar "a"]]] ,

FTDef "length"
(TFun (TConstr "List" [TVar "a"]) TInt) ,

FDef "length" [Var "list"]
(FExpr

(Case (FunVar (Var "list"))
[CBranch "Nil" []

(Conj [CFExpr (Const (Int 0))]) ,
CBranch "Cons" [Var "elem" , Var "rest"]

(Conj [CFExpr
(Op "+"

(Const (Int 1))
(Apply (FunVar (Var "length"))

(FunVar (Var "rest"))))
])]))]

19

1.3 Semantics

ccfl was intended to realise a lazy evaluation strategy. However, we examine the evaluation
of functional ccfl using a call-by-value and a call-by-name strategy in Section 4.7 as well.

Since we allow free variables in general and, thus, also for function applications, these are
evaluated using the residuation principle [Smo93]. That means, functions calls are suspended
until variables are bound to values or terms such that a deterministic reduction is possible.

Tell -equality-constraints are interpreted as strict [HAB+06]. That is, the constraint
x =:= fexpr is satisfied, if both expressions can be reduced to the same ground data term.

We discuss these issues in the Sections 4.7, 5.2.2, and 5.3.1 in combination with the
compilation scheme.

20

Chapter 2

Context conditions and type
checking

In this chapter we discuss the context conditions checked by the compiler, variable scopes,
and the type checking algorithm.

2.1 Context conditions

Context conditions checked by the ccfl compiler include amongst others . . .

• checks on multiple declarations and definitions of functions (including predefined func-
tions), multiply defined data types, and multiply declared data constructors;

• checks to ensure that variable and function names have been introduced before they
are used;

• checks on and renaming of re-declared (shadowing) variable names in

– nested let-expressions and

– with-expressions for logical variables;

• checks on multiple declarations of variable names within

– the parameters of a function definition,

– the sequence of logical variables introduced by a with-construct,

– the variables x i , i ∈ {1, . . . , n} in a match-constraint x =:= c x 1 ... x n of a
guard, and

– constructor pattern variables of a case-expression;

• checks to ensure that placeholder variables in

– otherwise-branches,

– constructor patterns in case-expressions, and

– match-constraints

have not been declared before, i.e. they must be fresh;

• a test to ensure that at most one otherwise-branch appears per case-construct (match-
ing on natural numbers).

21

2.2 Scopes

In the following we show visibility rules for variable and function names by means of envi-
ronments. An environment E of a certain point in the program contains all names which
are valid resp. known there.

Function definitions, function declarations, and type definitions. The names of
all function definitions and declarations and of all type definitions are visible for each other.
This includes also all predefined/built-in functions and data-types. This allows functions to
be defined on top of other functions and function declarations and data type definitions to
use other types.

Prog: E

Def1: E1
name1 . . .

. . . Defn: En
namen . . .

Ei = E ∪ {name1, . . . , namen}

FDef : E

name par1, . . . , parn expr: Ee

Ee = E ∪ {par1, . . . , parn}

FTDef : E

name type: Etype

Etype = E ∪ tvars

TDef : E

name tvar1, . . . , tvarn elem1, . . . , elemn: Eelem

Eelem = E ∪ {tvar1, . . . , varn}

Figure 2.1: Scoping rules for function definitions, function declarations, and type definitions

Function declarations FTDef can use predefined and user-defined data types and arbi-
trary type variables tvar. Type definitions introduce a type name and type variables which
can be used to define the types of the elements of the data type. The concerning rules are
presented in Figure 2.1.

Local definitions. Using the keyword let local definitions introduce new variable names.
Since they are allowed to be used in following local definitions, their order is essential. All
newly introduced variable names are finally known in the expression following the keyword
in (see Figure 2.2).

Note that the new variable names may shadow previously declared variable names. Thus
the program analysis performs a renaming of shadowing variables.

Case-expressions. According to Program 1.2.6 we distinguish four kinds of branch alter-
natives in case-expressions (see Figure 2.3):

• CBranch for alternative constructor patterns of user-defined data types,

22

Let: E

Binding1

var1 e1: E1

. . . Bindingn

varn en: En

cexpr: Ece

E1 = E ,
Ei = Ei−1 ∪ {vari−1}, i ∈ {2, . . . , n},
Ece = En ∪ {varn}

Figure 2.2: Scoping rules for local definitions

• BBranch to decide for a program branch on Booleans,

• NBranch to decide on natural numbers, and

• OBranch as default (otherwise-branch) for natural numbers.

For case-expressions on natural numbers it is possible to use an otherwise-branch OBranch
to represent a default alternative for all remaining cases. Per case-expression one OBranch
may occur; this is optional, thus, represented in gray color in Figure 2.3.

Concerning names we need to consider here in particular variables in constructor pattens
and placeholder variables of otherwise-branches because both introduce fresh variables.

Constraint expressions. Using the with-construct the programmer may introduce new
logical variables in constraint expressions. These may shadow previously introduced vari-
ables. Figure 2.4 shows the scoping rule for the with-construct.

Guarded Expressions. Constraints in guards reside all on the same level, thus, they
may exchange their order arbitrarily.

In guarded expressions match-constraints are the interesting point wrt. the aspect of
scoping because they may introduce new variables. While a variable x on the left-hand
side of a match-constraint x =:= c x 1 ... x n must have been introduced previously, the
variables x 1 ... x n on the right-hand side are fresh. The concerning rules are shown in
Figure 2.5.

Further constructs. All other program constructs take over the environments of their
parent nodes, as it is shown in Figure 2.6 for infix operation applications as an example.

2.3 Types

This section considers the type system of ccfl.

2.3.1 Data types

ccfl has four built-in data types as shown in Figure 2.7. Additionally, the user may define
algebraic data types using the keyword data as shown e.g. in the Programs 1.1.2 and 1.2.1.
For data type definitions the compiler checks the following properties:

• All types in function declarations and in declarations of logical variables in with-
constructs are type variables, built-in types, or have been defined in the users program.

• In the definition of data type elements

– all type variables must have been declared before,

23

Case: E

fexpr: Efe
CBranch1: E1

name1 var1,1 . . . var1,m1 cexpr1: Ece,1

. . . CBranchn: En

namen varn,1 . . . varn,mn cexprn: Ece,n

Ei = E , i ∈ {fe, 1, . . . , n},
Ece,i = Ei ∪ {vari,j}, i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}

Case: E

fexpr: Efe BBranch1: E1

bool1 cexpr1: Ece,1

BBranch2: E2

bool2 cexpr2: Ece,2

Ei = Ece,j = E , i ∈ {fe, 1, 2}, j ∈ {1, 2}

Case: E

fexpr: Efe NBranch1: E1

int1 cexpr1: Ece,1

. . . NBranchn: En

intn cexprn: Ece,n

OBranch: Eo

ovar ocexpr: Ece,o

Ei = Ece,j = E , i ∈ {fe, 1, . . . , n, o}, j ∈ {1, . . . , n},
Ece,o = E ∪ {ovar}

Figure 2.3: Scoping rules for case-expressions

With: E

var1, . . . , varn cexpr: Ece

Ece = E ∪ {var1, . . . , varn}

Figure 2.4: Scoping rule for the with-construct

24

GAlt: E

guard1: E1 . . . Matchj : Ej

varj c varj,1 . . . varj,nj
: Ematch,j

. . . guardn: En cexpr: Ece

Ece =
⋃

i∈{1,...,n} Ei,
varj ∈ E and Ej = Ematch,j = E ∪ {varj,1, . . . , varj,nj} for all match-constraints

Figure 2.5: Scoping rules for alternatives of guarded expressions

Op: E

opName fexpr1: Efe,1 fexpr2: Efe,2

Efe,1 = Efe,2 = E ,
opName ∈ E

Figure 2.6: Scoping rule for infix operator applications

Int Integer numbers −2147483648, . . . ,−1, 0, 1, . . . , 2147483647
Float Floating point numbers
Bool Booleans True and False
C Success and Fail

Figure 2.7: Built-in data types of ccfl

25

– all data types must have been defined in the user program (or are predefined),

– all data types are used with correct arity, and

– data type C and functional types do not appear.

2.3.2 Functions and constraints

A ccfl program must contain a declaration for every function (and constraint) definition.
Furthermore, for all logical variables declared in with-constructs a type declaration must be
given.

Figure 2.8 shows the types of all predefined functions and built-in constraints in ccfl-
like notation, where we allow more than one function name per declaration (separated by
spaces) unlike in the language itself.

fun + − ∗ / : : Int −> Int −> Int
fun +. −. ∗ . / . : : Float −> Float −> Float
fun ˜= <= >= < > == : : Int −> Int −> Bool
fun ˜=. <=. >=. <. >. ==. : : Float −> Float −> Bool
fun ˜=: ==: && | | : : Bool −> Bool −> Bool
fun not : : Bool −> Bool

fun =:= : : a −> a −> C
fun & : : C −> C −> C
fun bound : : a −> C

Figure 2.8: Types of predefined functions and built-in constraints

The type check algorithm traverses the abstract syntax tree (AST in the following) of
each defined function twice. In the first traversal it mainly collects type equations from the
tree structure. Then the algorithm computes a most general unifier from the equations and
applies it in the second tree traversal to build an updated AST.

Additional checks are performed during the type checking of functions including

• a test to ensure that the number of parameters of a function is less than or equal to
the number specified by its type

• tests for partial application of constructors in case branches and in match-constraints
which are disallowed in both cases.

In the following we show typing rules resp. type equalities for ccfl constructs by anno-
tated syntax trees.

Functions. The type of a function definition is, in general, a function type. The types of
its arguments are the parameter types and the result type is the type of the body expression
(see Figure 2.9).

Type checking of Expr nodes just lifts type checking of their potential sub-nodes FExpr,
CExpr, and GExpr. We consider rules for these alternatives in the following.

Functional expressions. Here, we left out infix operation applications, constants, con-
structors, and variables because their typing rules are straightforward. Instead we consider
applications, local definitions, and case expressions. The rules are illustrated in the Figures
2.10 – 2.12.

26

FDef : τ

name : τ0 par1 : τ1, . . . , parn : τn expr : τ ′

τ = τ0 = τ1 → . . .→ τn → τ ′

Figure 2.9: Typing rule for function definitions

Apply: τ

fexpr1: τ1 fexpr2: τ2

τ1 = τ2 → τ

Figure 2.10: Typing rule for function applications

The type of an application is the result type of its first functional expression. The
argument type of this must match the type of the second functional expression.

The type of a local definition, i.e. a let-expression, is the type of its constraint expression.
The types of the local variables must be the same like their defining expressions.

Let: τ

Binding1

var1: τ1 e1: τ ′1

. . . Bindingn

varn: τn en: τ ′n

cexpr: τ ′

τ = τ ′,
τi = τ ′i for i ∈ {1, . . . , n}

Figure 2.11: Typing rules for local definitions

The type τ of a case-expression is equal to the types τi of its branches. Each of these
has the type τce,i of the constraint expression defining it. The functional expression which
determines the choice of a particular alternative is of the same type τfe like the expressions
namei vari,1 . . . vari,mi matching it.

Since OBranch is optional, it is represented in gray color in Figure 2.12 again.

Constraint expressions. A constraint expression may (thus, represented in gray in Fig-
ure 2.13) be proceeded by the introduction of new logical variables using the keyword with.
These variables can be used within the atoms of the constraint expression.

The type τ ′ of a with-expression is the same as that of its conjunction of atoms. We need
to consider two cases here: Either, we have an actual conjunction of two or more atoms. In
this case, the atoms are constraints of type C. Or, we have exactly one atom. Then this
atom may be a functional expression of a type different from C. The given equations take
both cases into consideration.

An atom may be an equality constraint (of type C) or a functional expression. The
typing rules are straightforward (see also Figure 2.8).

27

Case: τ

fexpr: τfe
CBranch1: τ1

name1: τc,1

var1,1: τ1,1 . . . var1,m1 : τ1,m1

cexpr1: τce,1

. . . CBranchn: τn

namen: τc,n

varn,1: τn,1 . . . varn,mn
: τn,mn

cexprn: τce,n

τ = τi = τce,i, i ∈ {1, . . . , n},
τc,i = τi,1 → . . .→ τi,mi

→ τfe, i ∈ {1, . . . , n}

Case: τ

fexpr: τfe BBranch1: τ1

bool1: τb,1 cexpr1: τce,1

BBranch2: τ2

bool2: τb,2 cexpr2: τce,2

τ = τ1 = τ2 = τce,1 = τce,2

τfe = τb,1 = τb,2 = Bool

Case: τ

fexpr: τfe NBranch1: τ1

int1: τint,1

cexpr1: τce,1

. . . NBranchn: τn

intn: τint,n

cexprn: τce,n

OBranch: τo

ovar: τvar,o

ocexpr: τce,o

τ = τi = τce,i, i ∈ {1, . . . , n, o},
τfe = τint,j = τvar,o = Int, j ∈ {1, . . . , n}

Figure 2.12: Typing rules for case-expressions

With: τ ′

var1: τv,1 . . . varn: τv,n Conj: τ

atom1: τ1 . . . atomm: τm

τ = τ ′,
τi = τi+1 = τ for all i ∈ {1, . . . ,m− 1},
τi = C for i > 1

Figure 2.13: Typing rules for constraint expressions

28

Guarded expressions. Guarded alternatives, their guards and constraint expressions are
all of type C (Figure 2.14). For the types of ask -constraints see Figure 2.8.

GAlt: C

guard1: C . . . guardn: C cexpr: C

Figure 2.14: Typing rule for guarded expressions

2.4 Implementation

The checking of context conditions and the renaming of shadowing variables as discussed
in Sections 2.1 and 2.2 are implemented in the program file Checker.hs. The module
TypeCheck.hs realises type checking for ccfl programs as presented in Section 2.3.

29

30

Chapter 3

The target language LMNtal

In this chapter, we briefly introduce the target language lmntal of the ccfl compiler, sketch
on the abstract syntax representation of lmntal code used in our implementation and discuss
the lmntal language concept of links in detail which turned out to strongly influence our
implementation.

3.1 A very brief introduction to LMNtal

lmntal [UK02, UK05, UKHM06, LMN07] is a concurrent graph rewriting language. Pro-
grams of this language describe processes which are multisets of atoms, cells, and rules.
Atoms are one of the basic ingredients. They may be interconnected by logical links and
build graphs in this way. Rules are used to describe the rewriting of graphs. A cell encloses
a process, i.e. atoms, rules, and cells within a membrane and may encapsulate computations
and express hierarchies. Besides atoms, links may interconnect as well cells and atoms with
cells.

Program 3.1.1 shows two simple lmntal rules for list concatenation and an atom
append ([1,2],[4], R) to be reduced. lmntal uses a prolog like syntax but there are funda-
mental differences. One important thing concerns logical links: What a prolog programmer
may hold for logical variables in Program 3.1.1 are actually logical links. In lmntal, links
are restricted to occur exactly twice in a rule. This holds for Program 3.1.1, but of course
not in general for prolog programs. Furthermore, there are other differences, e.g. lmntal
allows on the left-hand side of rules multisets of atoms, even cells including rules. This is ex-
pressed by patterns, so called process templates. lmntal is a concurrent language and inherits
properties from concurrent logic languages, for example guards and a non-deterministic rule
choice. More complex examples of lmntal programs are shown in Chapters 4 and 5, e.g. in
the Programs 4.7.3, 4.7.4, and 5.2.1.

For a detailed description of lmntal we refer to [UK02, UK05, UKHM06, LMN07]. We
presuppose basic knowledge of lmntal in the following. However, in Section 3.3, we will
discuss aspects of logical links in lmntal which are crucial to our implementation.

Program 3.1.1 List append in lmntal

append ([] , Y, Z) :− Y = Z .
append ([XH|XR] ,Y, Z) :− Z = [XH|ZR] , append (XR,Y,ZR) .

append ([1 , 2] , [4] ,R)

31

3.2 The abstract syntax of LMNtal

Program 3.2.1 shows the data types for the abstract representation of lmntal programs as
it is implemented in the file LMNtalSyntax.hs. Actually, we do not aim to represent every
possible lmntal program but instead just the subset which is potentially generated from
ccfl programs.

An lmntal program describes a process which is a multiset of atoms, cells, rules, and
modules. We use modules to encapsulate rules to structure the generated programs. A rule
consists of a rule head, a body, and a guard which is a multiset of so called type constraints.
Rule heads and bodies are process templates describing a set of processes by patterns. Cells,
in their most general form, encapsulate a process template. Additionally they may hold
incoming and outgoing links. We use a so-called stable flag for the implementation of
evaluation strategies. Atoms consist of a name and sub-atoms, mainly links represented
by (AVar linkname) in our case. There are particular special atoms like connectors and
operations.

3.3 CCFL variables and logical links in LMNtal

This section considers one concept of the language lmntal more detailed: logical links. We
discuss the correspondence and differences between variables in ccfl and links in lmntal
and the consequences for the code generation.

Program 3.1.1 illustrates that there is a narrow correspondence between lmntal links
and variables in declarative languages. Thus, it seems an obvious idea at first, to represent
ccfl variables by lmntal links. However, this point of view may become problematic. The
reason is that links have a different intended meaning than variables.

ccfl uses declarative variables in the usual meaning, i.e. they stand for particular ex-
pressions resp. values. Once bound, ccfl variables stay bound throughout the computation
and are indistinguishable from their value. lmntal links as well connect to a structure or
value. However, in general, they are used to interconnect two atoms, two cells, or an atom
and a cell and they have, thus, (at most) two occurrences. In rules, logical links must occur
exactly twice1 [UK02, UK05]. Furthermore, link connections may change.

In our implementation, we examined two approaches to deal with the representation of
ccfl variables in lmntal. We discuss the general ideas in the following sections and consider
the resulting compiler schemes in Chapters 4 and 5.

3.3.1 Functional CCFL programs and the copying of structures

The first approach is to persist in the viewpoint that links are just variables with certain
restrictions. However, this means to accept a number of restrictions to ccfl.

lmntal links establish connections. Thus, in a rule they must appear exactly twice. If
there occurs a link once in the rule head and once in the body, then one can interpret it as
variable which binding – a structure in the rule head – changes in a rewrite step into a new
structure in the rule body. Since, moreover, lmntal allows to copy (and delete) links in the
body of a rule, if they occur once in the rule head, we can try to implement ccfl variables
by means of lmntal links.

In lmntal, a structure without membranes, which is lmntal-ground, i.e. it is a connected
graph with exactly one free link, can be copied or deleted using the guard ground. Copying
a structure containing links, however means, that the links are copied as well but they are
not any more interconnected.

Example 3.3.1 Consider the following lmntal process.
1Links may appear twice in the head and twice in the body [UK02], but this just ”recycles” the link

name and does not create ”further entry points” into a link connection.

32

Program 3.2.1 Abstract representation of lmntal programs

data Process =
Process { atoms : : [LMNtalAtom] ,

r u l e s : : [Rule] ,
c e l l s : : [C e l l] ,
modules : : [Module] }

data Module =
Module { moduleName : : String ,

moduleCtns : : [Process] }

data Rule =
Rule { ruleHead : : ProcessTemplate ,

ruleGuard : : [LMNtalGuard] ,
ruleBody : : ProcessTemplate }

data ProcessTemplate =
Template { templateAtoms : : [LMNtalAtom] ,

ru l e Ctx : : [String] ,
procCtx : : [ProcCtx] ,
t e m p l a t e C e l l s : : [C e l l] ,
t emp la teRu les : : [Rule] }

data C e l l =
C e l l { t emp la te : : ProcessTemplate ,

inLinks : : [InLink] ,
outLinks : : [OutLink] ,
s t a b l e T a g : : Bool }

data InLink = InLink String
data OutLink = OutLink String

data LMNtalGuard =
OpRelGuard { ogname : : String ,

ogargs : : [LMNtalAtom] }
| EqGuard { eqgarg1 : : LMNtalAtom ,

eqgarg2 : : LMNtalAtom }
| Ground String
| GInt String
| GFloat String
| . . .

data ProcCtx =
ProcCtx { name : : String ,

l i n k s : : [String] }

data LMNtalAtom =
LMNtalAtom { aname : : String ,

aargs : : [LMNtalAtom] }
| Connector { arg1 : : LMNtalAtom ,

arg2 : : LMNtalAtom }
| Operation { oname : : String ,

oargs : : [LMNtalAtom] }
| AVar String
| AInt Integer
| AFloat Double
| . . .

33

f (A) :− ground (A) | g (A,A) .
f (1) , f (h (B))

The atoms reduce into the following.

g (1 , 1) , g (h (B) , h (B))

While this looks fine for our purposes at the first sight, actually, lmntal completely copies
the concerning structures including the link B. That is, there are finally two different links
with name B in the atom g(h(B),h(B)).

Consider the following simple lmntal program:

f (A) :− ground (A) | g (A) , g (A) , g (A) .
g (A) :− A = 1 .
g (A) :− A = 2 .
f (B)

The atom f(B) may e.g. reduce into the atoms B=1, B=2, B=1 (or others depending on the
rule choice), which more clearly demonstrates the generation of link copies.

What follows is, that it is only safe to copy structures which are ground in the usual
meaning of functional languages, i.e. structures which do not contain variables resp. free
links. Thus, using the approach to represent variables by links, we may transform functional
ccfl programs into lmntal.

Note, that, in lmntal, using the ground guard for copying is only possible for structures
without membranes. To copy structures containing membranes lmntal provides an API
nlmem.copy which however is much more intricate and expensive and must be applied as
many times as copies are needed.

We discuss the implementation of functional ccfl with the approach to represent ccfl
variables by lmntal links in Chapter 4.

3.3.2 Reaching full CCFL

Representing ccfl variables by lmntal links limits us to functional ccfl programs. The
restriction that links must occur exactly twice in a rule, yields to the necessity of copying
which finally results in the situation that we can only deal with structures which are ground
in the sense of functional languages.

This prevents not only the usage of free variables which are needed to implement ccfl
constraint and guarded expressions, but also the realisation of a lazy evaluation strategy for
functional ccfl since this demands a sharing (in contrast of copying) of structures.

Thus, to implement full ccfl we need a more sophisticated representation of variables by
means of heap graph structures which are connected by links to the variable representations.
We consider the implementation of ccfl based on this approach in Chapter 5.

34

Chapter 4

Compiling CCFL into LMNtal –
a naive approach

The general structure of our ccfl compiler is shown in Figure 4.1, where we annotated the
according sections of this report in parentheses. We sketched on the syntactic analysis which
partitions the program into its elements, like keywords, variables, operators, numbers etc.,
and builds from these an abstract syntax tree (AST) representing the semantic components
of the program in Section 1.2. In Chapter 2, we discussed the semantic analysis which
verifies resp. computes context conditions and type information and augments in this way
the AST.

While the syntactic and symbolic analyses build the so-called front-end, the generation
of lmntal code constitutes the compiler back-end. In a first step, we generate basic lmntal
code from the AST subtrees for the semantic program components, where we map ccfl
functions to lmntal rules, function applications, data terms, and guards to lmntal atoms
and guards and so on. Furthermore, we generate an additional rule set per function to realise
the handling of higher-order functions and partial applications. ccfl variables are directly
translated into lmntal links. We discuss the transformations which are partially based on
translation techniques [Nai91, Nai96, War82, CvER90] for functional into logic languages
and the resulting code for a functional sub-language of ccfl in Sections 4.1–4.6. Since
lmntal does not fix a priori a particular evaluation strategy the generated lmntal programs
are evaluated non-deterministically.

In Section 4.7 we describe additional transformations on the generated lmntal ASTs
which allow the realisation of a call-by-value and a call-by-name evaluation strategy for
ccfl programs by encapsulating computations in membranes.

By means of an alternative transformation scheme (discussed in Chapter 5) we finally
allow the compilation of programs encompassing the complete functionality of ccfl includ-
ing free variables, constraints and lazy evaluation. This is realised by a representation of
ccfl variables by links on structures of a heap as runtime environment.

4.1 The compilation scheme for functional CCFL

Our naive approach for the transformation of ccfl programs into lmntal code only applies
to the functional sub-language of ccfl including all elements of functional expressions but
excluding guarded and constraint expressions. This is caused by the representation of ccfl
variables by lmntal links and the restrictions on logical links in the target language lmntal
(as discussed in Section 3.3.1).

35

ccfl program

syntactical analysis (1.2)

AST

checking of scopes and types (2)

AST

code generation (4.1–4.6)

basic lmntal (nd)

transformations (4.7) transformations (5)

lmntal for functional ccfl (cbv/cbn) full lmntal (lazy)

Figure 4.1: Overview of the ccfl compiler

4.1.1 Function definitions

A program is translated by considering each of its function definitions. Data type definitions
and function declarations are used for type and context checking only (see Chapter 2). A
ccfl function definition is translated into a set of lmntal rules.

The transformation is implemented by means of a function transform. This function
takes a ccfl AST (i.e. an element of type class Transform), a string to represent the link to
access the functions result, and an already generated lmntal rule. It computes, in general,
a set of lmntal rules.

The implementation of the function transform is monadic; it has an internal state (hidden
within the monad TR) consisting of a map of all function and constructor declarations (i.e.
the global environment) and a map associating every currently known variable with its
lmntal counterpart. Additionally, this state allows the generation of fresh links.

class Transform a where
transform : : a −> String −> Rule −> TR [Rule]

The following problems are not considered in this section, but they are dealt with in
proceeding and subsequent subsections resp.:

• higher-order functions, η-enrichment, and partial applications (Sections 4.2, 4.3, and
4.4),

• predefined functions (Section 4.1.3) and renamings (Section 4.5),

• restrictions on link occurrences in lmntal (Sections 3.3 and 4.6), and

• evaluation strategies (Section 4.7).

Concerning the third item, lmntal restricts links to occur exactly twice in a rule. While
this may be natural for the representation of graphs in lmntal, it complicates our trans-
formations. However, initially we will consider lmntal links just like variables (without
occurrence restrictions) and use them to represent ccfl variables. This is also reflected by

36

the abstract representation of links as ”variables” (AVar linkname) in Program 3.2.1. We
discussed the link restrictions, their effects, and how to solve these problems in Section 3.3.

In the following we sketch on the ccfl to lmntal transformation and show finally gen-
erated code by means of examples.

A function definition itself has no result and, thus, its translation is called with an empty
result link.

1 transform (FDef name pars expr) r u l e =
2 do −− b u i l d new r e s u l t l i n k

3 r e s u l t <− . . .
4 −− b u i l d r u l e ” name (p a r s , r e s u l t) :− | . ”

5 l e t newRule = . . . r u l e pars r e s u l t . . .
6 −− c o m p u t e r u l e s e t f r o m e x p r , r e s u l t , a n d n e w R u l e

7 r u l e s <− transform expr r e s u l t newRule
8 return r u l e s

An lmntal rule for a function definition needs an additional link result (line 3) in the
head to link to the result of the function. Since the initial call of transform on a function
definition comes with an empty rule, the guard and the body of the rule are empty too
(line 5). They are computed in the next step from the ccfl rule body expression (line 7).

Example 4.1.1 The transformation of a ccfl function filter with

fun f i l t e r : : (a −> Bool) −> (L i s t a) −> (L i s t a)
def f i l t e r pred l i s t = >>expr<<

yields a set of rules computed by (transform expr V 0 newRule), where V 0 is the new result
link and the lmntal rule newRule looks currently like this:

f i l t e r (Pred , Lis t , V 0) :− | .

4.1.2 Functional expressions

For functional ccfl we need to consider functional expressions only. Constraint expressions
and guarded expressions are discussed in Section 5.3, where we reach a translation for full
ccfl.

• Basic infix operations are handled straightforward (the code is given below): First
the sub-expressions are transformed yielding new lmntal rule sets (lines 5 and 6).
Then we build an atom expressing the basic infix operation in lmntal (line 9), add it
to the current rule body (line 10) and return the computed rule set (line 12).

In a set of generated rules always the first rule carries the current function transforma-
tion information. Thus the transformation of fexpr2 (line 6) is done on top of the first
result rule ruleFe1 of the transformation of fexpr1. Likewise the new lmntal atom is
added to the first rule ruleFe2 originating from the translation of fexpr2 (line 10).

1 transform (Op opName f e x p r 1 f e x p r 2) r e s u l t r u l e =
2 do . . .
3 −− g e n e r a t e r u l e s e t s f r o m f e x p r 1 a n d f e x p r 2

4 −− w i t h new r e s u l t l i n k s l i n k F e 1 a n d l i n k F e 2

5 (ru leFe1 : ru lesFe1) <− transform f e x p r 1 l inkFe1 r u l e
6 (ru leFe2 : ru lesFe2) <− transform f e x p r 2 l inkFe2 ruleFe1
7 −− e x t e n d r u l e b o d y by

8 −− a t om ” r e s u l t = l i n k F e 1 opName l i n k F e 2 ”

9 bodyAtom = . . .

37

10 i n f i x R u l e <− addAtomToRuleBody bodyAtom ruleFe2
11 −− r e t u r n g e n e r a t e d r u l e s

12 return (i n f i x R u l e : (ru lesFe1 ++ ru lesFe2))

Example 4.1.2 The arithmetic function succ

fun succ : : Int −> Int
def succ a = a + 1

compiles into the following rule, where the first atom of the right hand side results
from the infix operator application a + 1.

succ (A, V 0) :−
V 0 = V 1 + V 2 ,
V 2 = 1 ,
V 1 = A .

• Constants, variables, and constructors just generate connector atoms in lmntal,
an example is given by the second and third body atoms of the generated rule in
Example 4.1.2.

1 transform (Const (Int i)) r e s u l t r u l e =
2 do −− b u i l d an a t om ” r e s u l t = i ”

3 l e t bodyAtom = Connector (AVar r e s u l t) (AInt i)
4 −− e x t e n d r u l e b o d y by b odyA t om

5 l e t newRule = addAtomToRuleBody bodyAtom r u l e
6 −− r e t u r n g e n e r a t e d r u l e

7 return [newRule]
8
9 transform (FunVar (Var vName)) r e s u l t r u l e =

10 do −− b u i l d a c o n n e c t o r a t om ” r e s u l t = vName ”

11 −− a n d e x t e n d r u l e b o d y by t h i s a t om

12 . . .
13
14 transform (Constr c) r e s u l t r u l e =
15 do −− b u i l d a c o n n e c t o r a t om ” r e s u l t = c ”

16 −− a n d e x t e n d r u l e b o d y by t h i s a t om

17 . . .

• Function applications are translated by the treatment of their sub-expressions, the
results of which are combined again.1

1 transform (Apply f e x p r 1 f e x p r 2) r e s u l t r u l e =
2 do −− f l a t t e n A p p l y t r e e i n t o u n c u r r i e d LMNta l s t y l e

3 l e t (FlatApplyTree f e x p r args) =
4 f l a t t e n A p p l y (Apply f e x p r 1 f e x p r 2)
5 . . .
6 −− b u i l d an a t om ” a p p (n a m e L i n k , a r g L i n k s , r e s u l t) ”

7 −− w i t h new l i n k s n a m e L i n k a nd a r g L i n k s f o r name

8 −− a n d a r g u m e n t s a n d a dd i t t o t h e c u r r e n t r u l e

9 l e t applyAtom = . . .
10 l e t newRule = addAtomToRuleBody applyAtom r u l e
11 . . .

1For the application we use an atom name app , such that the underbar ” ” distinguishes it from valid
function names.

38

12 −− g e n e r a t e r u l e s f r o m f e x p r a n d a r g s

13 (f eRu le : f e R u l e s) <− transform f e x p r nameLink newRule
14 app lyRules <−
15 foldM . . . transform . . . args argLinks feRule . . .
16 . . .
17 −− r e t u r n g e n e r a t e d r u l e s

18 return (app lyRules ++ f e R u l e s)

Example 4.1.3 Consider the definition of the ccfl function foo.

fun foo : : Int −> Int −> Int
def foo a b =

bar a 2 3 (baz 4 b)

Its body expression is represented by the abstract syntax tree of Figure 4.2(a). The
long chains of Apply nodes result from the currying of functions in ccfl. Since atoms
in lmntal are not curried, we flatten the chains of Apply nodes when generating lmntal
code from a ccfl AST (line 4). This yields the tree given in Figure 4.2(b) for our
example. Finally, we receive the following resulting lmntal code.

foo (A,B , V 0) :−
V 7 = B ,
V 6 = 4 ,
V 8 = baz ,
app (V 8 , V 6 , V 7 , V 4) ,
V 3 = 3 ,
V 2 = 2 ,
V 1 = A,
V 5 = bar ,
app (V 5 , V 1 , V 2 , V 3 , V 4 , V 0) .

• Let-expressions (let var = fexpr in cexpr) are transformed into lmntal atoms. We
show this just by a simple example.

Example 4.1.4 The ccfl function flet with

fun f l e t : : Int −> Int
def f l e t a =

l e t b = (a + 9)
in b ∗ 2

compiles into the lmntal rule

f l e t (A, V 0) :−
V 0 = V 3 ∗ V 4 ,
V 4 = 2 ,
V 3 = B ,
B = V 1 + V 2 ,
V 2 = 9 ,
V 1 = A .

• Case-expressions (case fexpr of ...) are split up into distinct rules for each alter-
native. First, we transform the functional expression fexpr on which the appropriate
alternative is chosen (line 4). In a second step, we build rules for each alternative
(lines 11–14). Finally, an atom which matches the rule heads of these rules is added
to the current rule (line 17).

39

. . .

Apply

Apply

Apply

Apply

. . .

”bar”

. . .

”a”

. . .

2

. . .

3

Apply

Apply

. . .

”baz”

. . .

4

. . .

”b”

(a) Chain of Apply nodes as ccfl AST ...

FlatApplyTree

. . .

”bar”

. . .

2[”A”, , 3 ,FlatApplyTree]

. . .

”baz”

. . .

[4 , ”B”]

(b) ... and its (intermediate) representation in lmntal

Figure 4.2: Abstract representation of function applications

40

1 transform (Case f e x p r branches) r e s u l t r u l e =
2 do . . .
3 −− g e n e r a t e r u l e s f r o m f e x p r a n d a new l i n k f e x p r L i n k

4 (f exprRu le : f e x p r R u l e s) <− transform f e x p r f e x p r L i n k r u l e
5 −− b u i l d a t om

6 −− ” c a s e r u l e N a m e (c a s e L i n k , a l l K n o w n L i n k s , r e s u l t) ” . . .

7 c a s e C a l l = . . .
8 −− a n d a new r u l e ” c a s e C a l l :− | .

9 newRule = addAtomToRuleHead c a s e C a l l emptyRule
10 −− g e n e r a t e l i s t o f r u l e s f r o m b r a n c h e s a n d n e w R u l e

11 branchRules <− . . .
12 mapM
13 (\ branch −> transform branch r e s u l t newRule)
14 branches
15 . . .
16 −− a d d c a s e C a l l t o c u r r e n t r u l e b o d y

17 l e t caseRule = addAtomToRuleBody c a s e C a l l f exprRu le
18 −− r e t u r n new r u l e s e t

19 return (caseRule : (f e x p r R u l e s ++ branchRules))

This is again best illustrated by means of an example.

Example 4.1.5 The ccfl function flist takes a list and returns parts of it depending
on the list structure.

fun f l i s t : : L i s t a −> L i s t a
def f l i s t a =

case a of Ni l −> a ;
Cons b d −> case d of Ni l −> a ;

Cons e f −> d

This function is compiled into a number of rules. The initial rule just rewrites an
atom flist (A,V 0) into an atom case flist (V 1,A,V 0) (the caseCall, line 7). Its
first link V 1 represents the expression, i.e. the variable a, on which the appropriate
case-alternative is chosen. This gets obvious by the heads of the second and third rules
which perform a matching on V 1 and whose bodies contain code generated from the
different alternatives.

Additionally, the example illustrates a nested case-expression. Here we see, why we
need to pass over all known variables resp. links in a ”caseCall” (line 7). E.g. in the
second case alternative of the ccfl function flist (and the fourth rule in the generated
lmntal code) the result is a (resp. A) which is not used in the distinguishing functional
expression of this case-expression directly but instead known from before.

f l i s t (A, V 0) :−
c a s e f l i s t (V 1 ,A, V 0) ,
V 1 = A .

c a s e f l i s t (V 1 ,A, V 0) ,
n i l (V 1) :−

V 0 = A .

c a s e f l i s t (V 1 ,A, V 0) ,
cons (B ,D, V 1) :−

c a s e c a s e f l i s t (V 2 ,A,B ,D, V 0) ,
V 2 = D .

41

c a s e c a s e f l i s t (V 2 ,A,B ,D, V 0) ,
n i l (V 2) :−

V 0 = A .

c a s e c a s e f l i s t (V 2 ,A,B ,D, V 0) ,
cons (E , F , V 2) :−

V 0 = D .

The compilation of a case-expression which alternatives are distinguished by natural
numbers (i.e. NBranch alternatives) is realised by adding corresponding guards instead
of head atoms to the lmntal rules. Example 4.6.3 in Section 4.6 shows the compilation
result for the fibonacci function definition of Program 1.1.1.

4.1.3 The prelude

Besides the actual program rules, we generate a prelude which provides rules for handling
ccfl built-in functions (mainly based on lmntal built-in operations).

4.2 Higher-order functions

To allow the usage of higher-order functions in ccfl we use a transformation scheme
from [War82]. For every ccfl function (f x1 ... xn = expr) we generate a rewrite rule
(app (f ,x1 ,..., xn) :− f(x1 ,..., xn)).

Example 4.2.1 Given the following ccfl program . . .

fun goo : : Int −> Int
def goo x = x + 2

fun foo : : (Int −> Int) −> Int −> Int
def foo f u n c t i o n v a l u e = f u n c t i o n (v a l u e + 1)

. . . we obtain the lmntal rules:

goo (X, V 5) :−
V 5 = V 6 + V 7 ,
V 7 = 2 ,
V 6 = X .

foo (Function , Value , V 8) :−
V 9 = V 11 + V 12 ,
V 12 = 1 ,
V 11 = Value ,
V 10 = Function ,
app (V 10 , V 9 , V 8) .

app (goo , V 9 , V 10) :−
goo (V 9 , V 10) .

app (foo , V 15 , V 16 , V 17) :−
foo (V 15 , V 16 , V 17) .

42

Notice, that the atom app (V 10,V 9,V 8) in the last line of the foo rule has al-
ready been generated from the ccfl AST node (Apply ...) of the function application
(function (value + 1)).

We show a derivation of the functional expression foo goo 3 and a corresponding deriva-
tion of the according lmntal atom foo(goo ,3,Z).2

A ccfl derivation:
foo goo 3 → goo (3+1) → goo 4 → 4 + 2 → 6

A corresponding lmntal derivation:
foo(goo ,3,Z) app (goo,3+1,Z) goo(3+1,Z) goo(4,Z) Z = 4+2 Z = 6

To show a more complex example, we add a function soo to the ccfl program which
takes three arguments: a function hof which is a higher-order function itself, a function f
and a value v and just applies hof on f and v.

fun soo : :
((a −> a) −> a −> a) −> (a −> a) −> a −> a

def soo hof f v = hof f v

Function soo is translated into lmntal code according to the scheme given in the Sections
4.1.1 and 4.1.2.

soo (Hof , F ,V, V 0) :−
V 2 = V,
V 1 = F ,
V 3 = Hof ,
app (V 3 , V 1 , V 2 , V 0) .

Derivation sequences for the functional expression soo foo goo 3 and the corresponding
lmntal atom soo(foo ,goo ,3,Z) demonstrate again the use of higher-order functions:

A ccfl derivation:
soo foo goo 3 → foo goo 3 → ... (as above)

A corresponding lmntal derivation:
soo(foo ,goo ,3,Z) app (foo ,goo ,3,Z) foo(goo ,3,Z) ... (as above)

4.3 η-enrichment

To simplify the generation of rules for the partial applications of functions, the ccfl compiler
performs an η-enrichment of functions. This just means that additional arguments are
appended to the left-hand sides and to the right-hand sides of function definitions according
to the function type declaration.

Example 4.3.1 Consider the ccfl function addOne. According to its type declaration, it
takes one argument of type Int which is, however, left out in the function definition.

fun addOne : : Int −> Int
def addOne = add 1

The η-enrichment of this function within the compiler yields (internally) the following
definition which is used in the subsequent compilation process.

def addOne x = (add 1) x

2Currently no evaluation strategy is fixed; we just consider one possible derivation here. The encoding
of evaluation strategies is discussed in Section 4.7.

43

4.4 Partial applications

The partial application of functions is realised by a number of additional lmntal rules per
ccfl function, where we apply a transformation given in [Nai91]. We start with an example.

Example 4.4.1 Let add and addOne be functions, where the latter is defined by a partial
application of the former.

fun add : : Int −> Int −> Int
def add a b = a + b

fun addOne : : Int −> Int
def addOne = l e t x = add 1 in x

Function addOne is transformed by η-enrichment into

def addOne y = (l e t x = add 1 in x) y

A ccfl derivation sequence is the following:

addOne 2 → (add 1) 2 → 1 + 2 → 3

The functions add and addOne are translated to lmntal rules using our translation
scheme. In the next step, we generate additional rules for each function for all possible cases
of its partial application. These rules just generate constructor terms of the function name
and allow in this way to keep the data and to suspend the computation until the function
can be fully applied.3

add (A,B , V 0) :−
V 0 = A + B .

addOne (V 3 , V 4) :−
app (add , 1 ,X) ,
app (X, V 3 , V 4) .

/ ∗ h a n d l i n g a d d r e s p . (V 5 = add) ∗ /

app (add , V 5) :− add (V 5) .
/ ∗ h a n d l i n g (a d d V 0) r e s p . (V 1 = add V 0) ∗ /

app (add , V 0 , V 1) :− add (V 0 , V 1) .
/ ∗ h a n d l i n g ((a d d V 2) V 3) r e s p . (V 4 = (a dd V 2) V 3) ∗ /

app (add (V 2) , V 3 , V 4) :− add (V 2 , V 3 , V 4) .
/ ∗ h a n d l i n g a d d a s h o f ∗ /

app (add , V 6 , V 7 , V 8) :− add (V 6 , V 7 , V 8) .

/ ∗ h a n d l i n g a d dOn e r e s p . (V 1 1 = addOn e) ∗ /

app (addOne , V 11) :− addOne (V 11) .
/ ∗ h a n d l i n g a d dOn e a s h o f ∗ /

app (addOne , V 9 , V 10) :− addOne (V 9 , V 10) .

Using these lmntal rules we rewrite the atom addOne(2,R) which corresponds to the
ccfl expression addOne 2:

addOne(2,R)
 app (add,1,X), app (X,2,R)
 add(1,X), app (X,2,R) ≡ app (add(1),2,R)
 add(1,2,R)

3For better readability we inline link bindings here.

44

Program 4.4.1 General scheme for the generation of rules for n-ary ccfl functions for the
handling of partial applications and higher-order functions

Given the ccfl function f, where a 6= C, with

fun f : : a 1 −> . . . −> a n −> a
def f x 1 . . . x n = expr

we generate the following lmntal rules:

app (f ,X 1) :− f(X 1). (1)
app (f ,X 1,X 2) :− f(X 1,X 2). (2)
... ...
app (f ,X 1 ,..., X n) :− f(X 1 ,..., X n). (n)
app (f(X 1),X 2,X 3) :− f(X 1,X 2,X 3). (n+ 1)
... ...
app (f(X 1),..., X n) :− f(X 1 ,..., X n). (n+ (n− 2))
app (f(X 1),..., X n,R) :− f(X 1 ,..., X n,R). (n+ (n− 1))
app (f(X 1,X 2),X 3,X 4) :− f(X 1,X 2,X 3,X 4). (n+ (n− 1) + 1)
... ...
app (f(X 1,X 2),..., X n,R) :− f(X 1 ,..., X n,R). (n+ (n− 1) + (n− 2))
... ...
app (f(X 1 ,..., X n−1),X n,R) :− f(X 1,...,X n−1,X n,R). (n×(n+1)

2)

 R = 1+2
 R = 3

The general scheme for rule generation to enable the partial application of functions
(including the handling of higher-order functions) generates n×(n+1)

2 rules for every n-ary
function. Program 4.4.1 shows the generation scheme.

The following example is a bit more complex and contains also higher-order functions.

Example 4.4.2 Consider the functions add and addOne from Example 4.4.1 and the two
functions defined as below:

fun foo : :
(a −> b) −> (b −> b −> c) −> a −> a −> c

def foo f g x y = g (f x) (f y)

fun bar : : Int −> Int −> Int
def bar = foo addOne add

We show two example derivations using a call-by-value evaluation strategy for ccfl.

bar 2 3
→ foo addOne add 2 3
→ add (addOne 2) (addOne 3)
→? add 3 4
→? 7

bar 1
→ foo addOne add 1

We compile the functions foo and bar according to our scheme including the rules of
Program 4.4.1 and receive amongst others the following rules:

45

foo (F ,G,X,Y, V 9) :−
app (F ,Y, V 11) ,
app (F ,X, V 10) ,
app (G, V 10 , V 11 , V 9) .

bar (V 17 , V 18 , V 19) :−
app (foo , addOne , add , V 22) ,
app (V 22 , V 17 , V 18 , V 19) .

app (foo , X 1 , X 2 , X 3) :− foo (X 1 , X 2 , X 3) .
app (foo (X 1 , X 2) , X 3 , X 4 ,R) :− foo (X 1 , X 2 , X 3 , X 4 ,R) .
. . .
app (bar , X 1 , X 2) :− bar (X 1 , X 2) .
. . .

The following lmntal derivations reflect the functional call-by-value ccfl derivations as
given above, where the bold lines represent the intermediate results of the ccfl derivation
steps. However note, that without a certain fixed evaluation strategy it is not necessarily
the case that we always reach corresponding states within an lmntal derivation.

bar (2,3,X)
 app (foo ,addOne,add,V 22), app (V 22,2,3,X)
 foo(addOne,add,V 22), app (V 22,2,3,X)
≡ app (foo(addOne,add),2,3,X)

 foo(addOne,add,2,3,X)
 app (addOne,3,V 11), app (addOne,2,V 10), app (add,V 10,V 11,V 9)
≡ app (add,app (addOne,2),app (addOne,3),X)

 app (add,app (addOne,2),addOne(3),X)
 app (add,addOne(2),addOne(3),X)
 add(addOne(2),addOne(3),X)
 add(addOne(2),app (app (add,1),3),X)
 add(addOne(2),app (add(1),3),X)
 add(addOne(2),add(1,3),X)
 add(addOne(2),1+3,X)
 add(addOne(2),4,X)
 ? add(3,4,X)
 X = 3 + 4
 X = 7

app (bar ,1,Y)
 bar(1,Y) (the derivation suspends)

4.5 Renamings

The compiler performs a number of renamings according to the syntactical restrictions of
ccfl and lmntal.

Variables in ccfl start with a lower letter as typical for functional languages. Since
we represent variables currently by links which start with an upper letter in lmntal, the
compiler performs an according renaming.

46

Similarly, data constructors from ccfl must be renamed since they start with an upper
letter here while they are represented by atom names in lmntal starting with a lower letter.

4.6 Representing CCFL variables by LMNtal links

Up to now, we represented ccfl variables just by lmntal links regardless of their occur-
rence restrictions. In the implementation, however, they must, of course, be taken into
consideration.

In lmntal, links must occur exactly twice in a rule which is currently not the case in
general for the code generated by our scheme. However, the language allows to copy and
delete links (resp. their connected structures) if the concerning links have been introduced
by the rule head. In the following, we briefly point out that this property is always ensured
for functional ccfl and show how copying of links is realised then in our implementation.

4.6.1 New variables in CCFL rule bodies

For functional ccfl we only need to consider functional expressions in rule bodies. Thus,
the variables on their right-hand sides are always introduced by the function heads except
for two language constructs, namely let expressions and constructor branches and otherwise-
branches in case expressions. However, they are actually unproblematic too.

A let-expression (let x = fexpr in cexpr) introduces a fresh variable x. Since x can
be used multiple times in the expression cexpr following the keyword in, we do not meet the
link occurrence restrictions in lmntal. This problem can be solved, however, by generating
intermediate rules as illustrated by the following example.

Example 4.6.1 Consider the arithmetic function foo.

fun foo : : Int −> Int
def foo n =

l e t a = n ∗ n ;
b = a + n / 2

in a ∗ (a − 1) + b

A naive compilation would yield a ccfl rule with four occurrences of link A on its right-hand
side which is non-conform with the restrictions on links in lmntal.

foo (N, V 0) :−
A = N ∗ N,
B = A + N / 2 ,
V 0 = A ∗ (A − 1) + B .

Thus, we generate intermediate lmntal rules such that each rule just contains exactly one
equation originating from one local definition and a call to a continuing rule. This ensures
that every newly introduced link is used exactly twice per rule. We gain the following lmntal
program:

foo (N, V 0) :−
A = N ∗ N,
l e t f o o (A,N, V 0) .

l e t f o o (A,N, V 0) :−
B = A + N / 2 ,
l e t l e t f o o (B ,A,N, V 0) .

l e t l e t f o o (B ,A,N, V 0) :−

47

V 0 = (A ∗ (A − 1)) + B .

Case-expressions are the second type of construct which may introduce fresh variables
on the right-hand side of ccfl rules. This concerns variables in constructor patterns and
the pattern variable of otherwise-branches. However, again this is unproblematic as demon-
strated by the Examples 4.6.2 and 4.6.3.

Example 4.6.2 The ccfl function area computes areas of different geometric shapes. The
particular formula is selected by means of a case-expression using constructor patterns for
the alternatives Circle, Rectangle, and Square.

data Shape = C i r c l e Float
| Rectang le Float Float
| Square Float

fun area : : Shape −> Float
def area shape =

case shape of
C i r c l e r a d i u s −>

3 .14 ∗ . r a d i u s ∗ . r a d i u s ;
Rectang le x y −>

x ∗ . y ;
Square x −>

x ∗ . x

This is compiled into the following lmntal rules:

area (Shape , V 0) :−
c a s e a r e a (V 1 , Shape , V 0) ,
V 1 = Shape .

c a s e a r e a (V 1 , Shape , V 0) ,
c i r c l e (Radius , V 1) :−

V 0 = 3.14 ∗ . Radius ∗ . Radius .

c a s e a r e a (V 1 , Shape , V 0) ,
r e c t a n g l e (X,Y, V 1) :−

V 0 = X ∗ . Y .

c a s e a r e a (V 1 , Shape , V 0) ,
square (X, V 1) :−

V 0 = X ∗ . X .

A case-expression on constructor patterns, like (case shape of Circle radius ...) in-
troduces one new rule per alternative. Each rule has two atoms on the left-hand side: the
atom case area (V 1,Shape,V 0) which is the entry point into the case-expression and an
atom to represent the matching on the constructor pattern, e.g. circle (Radius,V 1). They
are connected via the link V 1 which always exactly occurs twice and, thus, satisfies the
lmntal link restrictions.

Furthermore, the atoms for pattern matching, like circle (Radius,V 1) may introduce
fresh links, but they are introduced on the left-hand sides of the rules and occur there
exactly once which is guaranteed by the ccfl syntax of case-expressions.

The second example concerns the introduction of new variables by otherwise-branches.
Recall, that otherwise-branches are only allowed in case-expressions whose alternatives are
distinguished by natural numbers.

48

Example 4.6.3 Consider the fibonacci function as defined in Program 1.1.1. The pattern
variable m in the otherwise-branch just binds the remaining possible alternative values and
takes them over into the right-hand side of the rule. Since lmntal does not fix a certain
rule choice strategy, we add guards which exclude the cases which are already handled by
alternative rules. Thus, the link M appears only once in the rule head (and possibly multiply
in the rule body).

f i b o n a c c i (N, V 0) :−
c a s e f i b o n a c c i (V 1 ,N, V 0) ,
V 1 = N .

c a s e f i b o n a c c i (V 1 ,N, V 0) :−
V 1 =:= 0 |

V 0 = 0 .

c a s e f i b o n a c c i (V 1 ,N, V 0) :−
V 1 =:= 1 |

V 0 = 1 .

c a s e f i b o n a c c i (M,N, V 0) :−
M =\= 1 ,
M =\= 0 |

l e t c a s e f i b o n a c c i (F1 ,M,N, V 0) ,
app (f i b o n a c c i ,M−1,F1) .

. . .

4.6.2 Copying LMNtal links and structures

While in lmntal links must occur exactly twice in a rule, for the presented code generation
scheme this property is quiet often not satisfied. However, adding a ground guard for the
concerning links to the rule, lmntal allows to copy or delete the attached structures. This
is possible provided that the link was introduced by the rule head before. We discussed the
satisfaction of this condition in the previous section.

The following example shows, how to add ground guards to lmntal rules generated by
our scheme to obtain valid lmntal code.

Example 4.6.4 The addition of ground guards to the lmntal rules of Example 4.6.1 yields
valid lmntal code.

foo (N, V 0) :−
ground (N) |

A = N ∗ N,
l e t f o o (A,N, V 0) .

l e t f o o (A,N, V 0) :−
ground (A) , ground (N) |

B = A + N / 2 ,
l e t l e t f o o (B ,A,N, V 0) .

l e t l e t f o o (B ,A,N, V 0) :−
ground (A) , ground (N) |

V 0 = (A ∗ (A − 1)) + B .

49

Program 4.7.1 A ccfl program: foo , goo, hoo

fun foo : : Int −> Int −> Int
def foo a b = a + b
fun goo : : Int −> Int
def goo a = a + 3
fun hoo : : Int −> Int
def hoo a = goo (goo a)

Program 4.7.2 The program foo , goo, hoo compiled into lmntal

foo (A,B , Z) :− Z = A + B .
goo (A, Z) :− Z = A + 3 .
hoo (A, Z) :− goo (A,R) , goo (R, Z) .

hoo (2 ,Y) , goo (1 ,X) , foo (X,Y, Z)

4.7 Evaluation strategies

Since lmntal does not a priori support certain redex selection strategies, these must be
encoded in the generated lmntal rules.

4.7.1 Call-by-value evaluation

A call-by-value evaluation strategy for (functional) ccfl programs can be incorporated into
the generated lmntal program by a subtle mechanism using membranes and the stable flag
”/” (see below). The main idea is to delay computations by holding the atoms representing
outer calls apart from the rules in extra membranes as long as there are inner reducible
expressions (inner redexes in the following).

Consider the ccfl Program 4.7.1 and a functional expression foo (goo 1) (hoo 2). Since
we want to allow a concurrent reduction of independent sub-expressions, there are several
possible derivation sequences using the call-by-value evaluation principle. We show two
possible sequences and underline, at this, the inner redexes.

foo (goo 1) (hoo 2)
→ foo (1 + 3) (hoo 2)
→ foo 4 (hoo 2)
→ foo 4 (goo (goo 2))
→2 foo 4 (goo 5)
→2 foo 4 8
→2 12

foo (goo 1) (hoo 2)
→ foo (goo 1) (goo (goo 2))
→2 foo (goo 1) (goo 5)
→2 foo 4 (goo 5)
→2 foo 4 8
→2 12

We translate the ccfl program and the function call into lmntal (see Program 4.7.2)
according to our scheme. At this, we partially evaluated app atoms for better understanding
the principle idea.

50

The destructuring of the function call foo (goo 1) (hoo 2) and of the functional expres-
sions on the right-hand sides of the rules by introducing connecting links between the sub-
expressions supports the control of the computation as we need it here: On the one hand, it
is possible to express dependencies between sub-expressions in this way, on the other hand,
the computations can be held apart from each other.

The idea is now to delay the outer calls by holding them apart from the rules until the
computation of the inner redexes they depend on is finished. In lmntal one can annotate
a membrane template on the left-hand side of a rule with the so-called stable flag, such
that it can match only with a cell containing no applicable rules. However, this stability
property of cells refers only to rules within the cell. Thus, we need to hold the rules together
with the inner redexes within one membrane to allow to check, whether they have been
reduced completely. To enable on the other hand a concurrent computation of independent
expressions, we must assign each atom a separate membrane (including a copy of the rules).
Example 4.7.1 illustrates again, why this complex organisation is necessary.

Example 4.7.1 A first (but not satisfying) idea is, just to hold all inner redexes within one
membrane together with the rule set. Outer calls are hold within a second membrane which
”protects” them against rule application. They are lifted, in case that the computation of
the inner nodes is finished. However, this does not allow a full concurrency of the evaluation
of sub-expressions.

Consider e.g. Figure 4.3 which visualises an according computation of
hoo(2,Y), goo(1,X), foo(X,Y,Z). Membranes are represented as enclosing ellipses.
All atoms are held within separate membranes for organisational reasons. Dependencies of
atoms in the order of the evaluation are represented by arrows. In the initial state the atoms
hoo(2,Y) and goo(1,X) are inner redexes to be reduced first. We mark these by a light-gray
color. The atom foo(X,Y,Z) represents an outer call to be delayed until the computation
of its sub-expressions has been finished. Thus, we put it into a protecting membrane. The
overall computation performs within an enclosing membrane which contains furthermore
the lmntal rules @rules generated from the ccfl program.

foo(X,Y,Z)hoo(2,Y) goo(1,X) @rules

foo(X,Y,Z)goo(R,Y)goo(2,R) goo(1,X) @rules

foo(X,Y,Z)goo(R,Y)R = 5 goo(1,X) @rules

Figure 4.3: A computation sequence using an unsatisfactory strategy

Assume that in the first step the atom hoo(2,Y) is chosen for rewriting (concurrently a
reduction of goo(1,X) would have been possible). This yields the second state, with the new
inner redex goo(2,R) and the new outer redex goo(R,Y) which is delayed by an enclosing
membrane. In the next step we chose goo(2,R) for reduction which yields an irreducible
atom R = 5.

Now we would like to allow a concurrent computation of the independent atoms goo(1,X)
and (goo(R,Y), R = 5). However, since the stability property of cells only refers to the

51

rules within a cell, the computation of (goo(R,Y), R = 5) is delayed until the derivation of
goo(1,X) has been finished. Figure 4.4 shows a subsequent computation.

· · ·

foo(X,Y,Z)goo(R,Y)R = 5 X = 4 @rules

foo(X,Y,Z)goo(5,Y) X = 4 @rules

foo(X,Y,Z)Y = 8 X = 4 @rules

foo(4,8,Z) @rules

Z = 12 @rules

Figure 4.4: A computation sequence using an unsatisfactory strategy (continued)

To allow an actual concurrent computation of independent sub-expressions, we need to
hold a copy of the rule set with each inner redex.

Figure 4.5 shows how this looks like for our example and the first computation steps. In
the third sub-expression, now a concurrent computation of the independent atoms goo(1,X)
and goo(5,Y) is enabled.

In Program 4.7.3 we display the lmntal rules generated from Program 4.7.1 with mem-
branes and further organisational elements for emulating a call-by-value strategy with con-
current evaluation of independent sub-expressions. The atoms inner (i) and outer (o) are
used to distribute the rules into the membranes with inner redexes. The links between the
membrane cells are used to explicitly express dependencies between sub-expressions.4 The
guards ground(V) for every ”argument” link is necessary, because lmntal does not allow
to ”look into a membrane” for matching. This is possible only, when the arguments are
lmntal-ground atoms. This is ensured here, because all links are bound to values when a
rule is applied because of the call-by-value redex selection. The atoms preludeCBV.use and
rules .use load the prelude rule set and the generated rules from module(rules) into the
membranes of the initial call.

Program 4.7.4 shows the lmntal program which controls our call-by-value strategy. The
rules cbv1 and cbv2 organise the lifting of outer calls when the inner redexes they depend
on have been completely reduced. The unpack rules are responsible for the distribution of

4This information is implicitly existent as well in the links of the atoms in many cases, but this does not
apply in all cases; thus, we use extra links here.

52

foo(X,Y,Z)hoo(2,Y) goo(1,X) @rules@rules

foo(X,Y,Z)goo(R,Y)goo(2,R) goo(1,X)@rules @rules

foo(X,Y,Z)goo(5,Y) goo(1,X) @rules@rules

· · ·
Figure 4.5: A call-by-value computation sequence

Program 4.7.3 An lmntal program generated from the ccfl Program 4.7.1 for a call-by-
value evaluation

{ module(r u l e s) .

{ foo (A,B , Z) , $p } :−
ground (A) , ground (B) |
{ Z = A + B , $p } .

{ goo (A, Z) , $p } :−
ground (A) |
{ Z = A + 3 , $p } .

{ hoo (A, Z) , i n L i n k s (N) , $p } :−
ground (A) , ground (N) |
{ o u t e r (1) , i n n e r (1) ,
{ goo (A,R) , i n L i n k s (0) , +L } ,
{ { goo (R, Z) , i n L i n k s (N+1) , −L , $p } }

} .
} .

{{ hoo (2 ,Y) , i n L i n k s (0) , +L1 } , r u l e s . use , preludeCBV . use } ,
{{ goo (1 ,X) , i n L i n k s (0) , +L2 } , r u l e s . use , preludeCBV . use } ,
{{ foo (X,Y, Z) , i n L i n k s (2) , −L1 , −L2 }}

53

the program rules into membranes of atoms resulting from the application of the rules of
module(rules).
Note: While the usage of membranes allows to implement evaluation strategies, it causes a consid-

erable slow-down of the computation performance.

4.7.2 Call-by-name evaluation

A call-by-name evaluation strategy can be implemented in a similar way like the call-by-
name reduction. However, there are three main differences to take into consideration.

Reordering of calls. A call-by-name evaluation strategy privileges the evaluation of outer
redexes. Thus, we now need to hold inner calls within extra membranes to protect them
against evaluation. Accordingly we receive a (nearly) inverse link structure for the destruc-
tured expressions in the rule bodies and the initial call.

It is no more necessary to explicitly compute with the number of expressions the eval-
uation of an expression depends on (as done for the call-by-value reduction using the
inLinks (N) atoms) because an expression can have one outer enclosing expression at most.

Unsuspendig inner redexes. As is well known, in certain cases it is necessary to evaluate
an inner redex one or more steps to proceed with the evaluation of the enclosing outer
expression, e.g. to chose between alternative cases or to compute an arithmetic expression.
We implemented this by making available the program rules to the concerning sub-expression
for exactly one computation step and protecting the newly received expressions afterwards
again within membranes. This scheme already provides for the concurrent evaluation of
sub-expressions, such that there is no need manage copies of the program rules here.

Figure 4.6 shows a visualisation of the computation of the lmntal atoms
hoo(2,Y), goo(1,X), foo(X,Y,Z) wrt. Program 4.7.2 using the described mechanisms to em-
ulate a call-by-name evaluation. One step in the figure represents one evaluation step and
the lifting of a next inner redex to the evaluation level. The derivation shows that at every
point only one function call can be evaluated, thus we do not need to copy the program rules.
Moreover, one can see, that it is possible to alternate between the evaluation of independent
sub-expressions to express concurrency, e.g. done here for the evaluation of hoo(2,Y) and
goo(1,X).

Copying of structures. The main drawback in contrast to the call-by-value evaluation
implementation is the necessity to copy graphs including membranes now: As it is well
known, using a call-by-name strategy, function arguments are re-evaluated when they are
used several times. This yields to the need to copy the concerning structures which may
contain membranes in general.

lmntal allows to copy structures without membranes simply (and as many times as
needed) using the ground guard. To copy structures with membranes as it is necessary here,
the language provides an API nlmem.copy which must be used as many times as copies are
needed and which usage complicates and slows down again the performance of the program.

4.8 Implementation

The basic compilation scheme for functional ccfl programs with non-deterministic eval-
uation strategy is implemented in the file Transform.hs. Its main compilation function is
compileF :: String −> IO ().

If the user has defined a function main with constant type to enclose the initial func-
tion call, then the compiler additionally generates an initial lmntal atom main to run the

54

Program 4.7.4 An lmntal program to emulate a call-by-value evaluation strategy

cbv1@@
{ @rules ,
{$procs1 , +L , i n L i n k s (0)} }/ ,

{ {$procs2 , −L , i n L i n k s (N)} } :−
N =:= 1 |
{ @rules ,
{$procs1 , $procs2 , i n L i n k s (0)}

} .

cbv2@@
{ @rules ,
{$procs1 , +L , i n L i n k s (0)} }/ ,

{ {$procs2 , −L , i n L i n k s (N)} } :−
N > 1 |
{ { $procs2 , i n L i n k s (N−1) , $procs1 } } .

unpack1@@
{ @rules ,
{ o u t e r (N) , $procs1 ,
{ { $procs2 } }

}
} :− ground (N) |
{ @rules , { $procs1 , o u t e r (N−1) } } , { { $procs2 } } .

unpack2@@
{ @rules ,
{ o u t e r (0) , i n n e r (N) , {$proc1 } , $procs1 }

} :− N > 1 |
{ @rules , { $proc1 } } ,
{ @rules , { o u t e r (0) , i n n e r (N−1) , $procs1 } } .

unpack3@@
{ @rules ,
{ o u t e r (0) , i n n e r (1) , {$proc1} }

} :−
{ @rules , { $proc1 }} .

55

foo(X,Y,Z)hoo(2,Y) goo(1,X) @rules

+(X,Y,Z)hoo(2,Y) goo(1,X) @rules

+(X,Y,Z)goo(R,Y)goo(2,R) goo(1,X) @rules

+(4,Y,Z)goo(R,Y)goo(2,R) @rules

+(4,Y,Z)+(R,3,Y)goo(2,R) @rules

+(4,Y,Z)+(5,3,Y) @rules

Z = 12 @rules

Figure 4.6: A call-by-name evaluation

56

program.

Functional ccfl programs for evaluation under a call-by-value strategy with concurrent
computation of independent processes as described in Section 4.7.1 are translated into lmntal
code using the function compileFcbv :: String −> IO (). The compiler functionality is
implemented in TransformFpCbv.hs.

As for the non-deterministic case, the compiler produces a main-call, if the user has
defined a constant function main in the program. This call, however, is now enclosed by a
membrane and organisational structures (for explanations cf. Program 4.7.3) to initiate a
call-by-value evaluation:

{ rules .use, preludeCBV.use, {main (Result), inLinks (0)}}

A prelude for functional programs to be evaluated non-deterministically resp. with
a call-by-value strategy can be generated by the functions prelude :: IO () and
preludeCBV :: IO () which are implemented in the file CCFLPrelude.hs.

The file LMNtalPrettyPrint.hs provides a pretty printer to generate lmntal code from
lmntal ASTs.

The usage of membranes and the API nlmem.copy to implement evaluation strategies as
described in this chapter cause a considerable slow-down of the computation performance
of the programs with the current lmntal version (see Section 7.2).

57

58

Chapter 5

A heap as CCFL runtime
environment

In Chapter 4 we discussed a naive approach for the compilation of ccfl into lmntal. The
basic idea was to represent ccfl variables as lmntal links which, however, yield strong
restrictions for our language.

Links are one-to-one connections. Using links to represent ccfl variables we could
transfer their bindings between atoms in rules. However, it was not possible to reuse bind-
ings in different places. This was realised using lmntal constructs for copying structures.
However, there remained two main problems which could not be handled in this way: (1)
sharing of structures and (2) using unbound variables. Restriction (1) excluded the realisa-
tion of a lazy evaluation strategy. Limitation (2) restricted us to functional programming
and prevented the usage of constraints because these typically contain unbound variables.
The representation of ccfl variables by lmntal links, thus, constrained the compilation of
ccfl to a functional sub-language with call-by-value or call-by-name evaluation strategies
(Section 4.7).

To overcome these limitations we implemented a heap as ccfl runtime environment.
Links, cells, and lmntal atoms are used to represent heap structures and variables can be
bound to them using links again.

This chapter is structured as follows: We consider the representation of structures in
the heap in Section 5.1. Section 5.2 discusses new options and consequences from the
introduction of a heap for functional ccfl. Using matching of heap structures now the
compilation of ccfl guards becomes possible. We implemented a unification algorithm for
heap structures in lmntal. Using unification allows the realisation of ccfl tell -equality-
constraints such that we finally reach the full power of ccfl (see Section 5.3).

5.1 The representation of the heap

We distinguish two kinds of data represented in the heap: variables and structures. For
both we use an lmntal atom with name el whose arguments are the name of the variable
resp. the structure head symbol and links onto and from the element.1

5.1.1 CCFL variables

A variable representation consists of an atom el (var(N),O,I) with a link N to the name(s)
of the variable, a link O to a cell {+O,...} which connects to the structure the variable
is (possibly) bound to and a link I from a cell {on(I),...} which manages links onto the
variable.

1For the heap representation see also Section 7.2.

59

Links onto some element are marked by the atom on which is 0-ary in the case of an
unbound variable. A variable atom may stand for a number of variables, in case they have
been unified. Thus, we manage the multiple names again by a common enclosing membrane.

Figure 5.1(a) shows the representation of the free ccfl variable a. The two links +A1
and +A2 are links from some heap structures onto it, i.e. the variable a is shared between
two other structures here. Figure 5.1(b) represents a variable b which has been unified with
a variable c. It links by L onto some other structure.

name(a,NameL)

{+NameL,+N} {on(I),+A1,+A2}

el (var(N),O,I)

{+O,on}

(a) A free variable a

name(b,NameL1) name(c,NameL2)

{+NameL1,+NameL2,+N} {on(I),...}

el (var(N),O,I)

{+O,on(L)}

(b) A bound variable b

Figure 5.1: The representation of variables in the ccfl heap

5.1.2 Non-variable terms

Non-variable ccfl terms or structures are represented by an atom el (cons(F),OL,I), where
F is the root symbol of the term, OL is a list of links to cells connecting to the structures of
the arguments and I is a link from a cell {on(I),...} which manages links onto the term.

As an example consider the functional expression mult x x and assume that x has been
bound before to the term succ 2. That is, we consider the term mult (succ 2) (succ 2),
where (succ 2) is a shared element. Figure 5.2(a) shows an according graph structure as
illustration. Figure 5.2(b) shows the according heap structure. The links L1 and L2 connect
into the same cell and realise sharing in this way.

5.2 Functional CCFL with heap

In this section we discuss the effects for functional ccfl using a heap for the representation
of data.

60

mult

succ

2

(a) A graph structure

el(cons(mult),[L1,L2],Result)

{+L1,+L2,on(L3)}

el(cons(succ),[L4],L3)

{+L4,on(L5)}

el(cons(2),[],L5)

(b) A heap structure

Figure 5.2: The representation of a non-variable term in the ccfl heap

5.2.1 Adaptions to the compilation scheme

The integration of heap structures into the ccfl compiler is realised by a transformation
(heap transformation in the following) of the lmntal AST generated by the scheme of Sec-
tion 4.1. The main idea is to translate the atoms of the rule heads and rule bodies into heap
structures and to transform the guards into matching expressions on heap elements resp.
again into lmntal guards.

The compilation of functions

Starting from an AST representing an lmntal program generated using the scheme of Sec-
tion 4.1, we transform each rule. For simplification, we mainly suspend the handling of
multiple link occurrences and discuss this in detail on page 64.

The head of a rule generated from a ccfl function by our general compilation scheme
is a process template consisting of one lmntal atom resp. two lmntal atoms resulting from
case-expressions. Rule heads are used to chose a rewrite rule by matching against an atom.
Thus, we just need to translate a rule head into atoms and cells representing the according
heap structures.

It is important to copy data representations from the head into the body, because we
need to maintain the heap for further computations.

Example 5.2.1 Consider the generated lmntal rules from the ccfl function flist from
Example 4.1.5.

/ ∗ r e s u l t o f t h e g e n e r a l c o m p i l a t i o n s c h e m e : ∗ /

f l i s t (A, V 0) :− . . .

c a s e f l i s t (V 1 ,A, V 0) ,
n i l (V 1) :− . . .

c a s e f l i s t (V 1 ,A, V 0) ,
cons (B ,D, V 1) :− . . .

The heap transformation yields the following rule heads for the first three rules.

/ ∗ r e s u l t o f t h e h e a p t r a n s f o r m a t i o n ∗ /

61

e l (cons (f l i s t) , [A] , V 0) :− . . .

e l (cons (c a s e f l i s t) , [V 1 ,A] , V 0) ,
e l (cons (n i l) , [] , V 1) ,
{on (V 1) , $pV 1 ,+V 1} :−

/ / m a i n t a i n t h e h e a p d a t a

e l (cons (n i l) , [] , V 1) ,
{on (V 1) , $pV 1 } ,
/ / t h e r u l e b o d y t r a n s f o r m a t i o n f o l l o w s

. . .

e l (cons (c a s e f l i s t) , [V 1 ,A] , V 0) ,
e l (cons (cons) , [B ,D] , V 1) ,
{on (V 1) , $pV 1 ,+V 1} :−

/ / m a i n t a i n t h e h e a p d a t a

e l (cons (cons) , [B ,D] , V 1) ,
{on (V 1) , $pV 1 } ,
/ / t h e r u l e b o d y t r a n s f o r m a t i o n f o l l o w s

. . .

The atoms are translated according to the representation discussed in Section 5.1. The
link V 0 of each rules connects to the result of the rewrite process and remains, thus,
unchanged. The arguments A, V 1, B, and D are links to some heap structures and remain
unchanged. However, V 1 links onto a heap element which is used for matching in the second
and third rule. This part of the heap structure must be rebuild in the rule body, while the
connecting link V 1 disappears. The process context $pV 1 stands for further potentially
existing links to el (cons (nil),[], V 1) resp. el (cons (cons),[B,D],V 1) in the heap.

The body of a rule generated from a ccfl function by our scheme is a process template
consisting of lmntal atoms and connector atoms. The heap transformation just translates
them into atoms, cells, and links building valid heap structures.

Example 5.2.2 Consider the third lmntal rule generated from the ccfl function flist of
Example 4.1.5 again.

/ ∗ r e s u l t o f t h e g e n e r a l c o m p i l a t i o n s c h e m e : ∗ /

c a s e f l i s t (V 1 ,A, V 0) ,
cons (B ,D, V 1) :−

c a s e c a s e f l i s t (V 2 ,A,B ,D, V 0) ,
V 2 = D .

/ ∗ r e s u l t o f t h e h e a p t r a n s f o r m a t i o n ∗ /

e l (cons (c a s e f l i s t) , [V 1 ,A] , V 0) ,
e l (cons (cons) , [B ,D] , V 1) ,
{on (V 1) , $pV 1 ,+V 1} ,
{$pB,+B} ,
{$pD,+D} :−

/ / m a i n t a i n t h e h e a p d a t a

e l (cons (cons) , [B ,D] , V 1) ,
{on (V 1) , $pV 1 } ,
/ / r u l e b o d y t r a n s f o r m a t i o n

e l (cons (c a s e c a s e f l i s t) , [V 2 ,A, B 1 , D 1] , V 0) ,

62

V 2 = D 2 ,
{$pB,+B,+B 1 } ,
{$pD,+D,+D 1 ,+D 2} .

Again links connecting to rewrite results, like V 0 and V 2 remain unchanged. One
point which is considered in more detail later are multiple occurrences of links, like D and
B. This is handled now by multiple links into cells containing also links to the according
heap elements. For example, the links +B and +B 1 originate both from B and are, thus,
hold in the cell {$pB,+B,+B 1} which connects to the same heap element.

The guard of an LMNtal rule generated from a functional ccfl program can only
originate from case expressions on natural numbers, like in Example 4.6.3. The heap trans-
formation translates equality and disequality guards on natural numbers into guards for the
according heap structures. This is again best illustrated by means of an example.

Example 5.2.3 Consider the heads and guards of the third and fourth lmntal rules gen-
erated from the fibonacci function in Example 4.6.3. The heap transformation generates
heap representations and respective guards as follows.

/ ∗ r e s u l t o f t h e g e n e r a l c o m p i l a t i o n s c h e m e : ∗ /

c a s e f i b o n a c c i (V 1 ,N, V 0) :−
V 1 =:= 1 |

. . .

c a s e f i b o n a c c i (M,N, V 0) :−
M =\= 1 ,
M =\= 0 |

. . .

/ ∗ r e s u l t o f t h e h e a p t r a n s f o r m a t i o n ∗ /

e l (cons (c a s e f i b o n a c c i) , [V 1 ,N] , V 0) ,
e l (cons (V 1 V) , [] , V 1) ,
{on (V 1) , $pV 1 ,+V 1} :−
V 1 V =:= 1 |

/ / m a i n t a i n t h e h e a p d a t a

e l (cons (V 1 V) , [] , V 1) ,
{on (V 1) , $pV 1 } ,
/ / t h e r u l e b o d y t r a n s f o r m a t i o n f o l l o w s

. . .

e l (cons (c a s e f i b o n a c c i) , [M,N] , V 0) ,
e l (cons (M V) , [] , M) ,
{on (M) ,$pM,+M} :−
M V =\= 1 ,
M V =\= 0 |

/ / m a i n t a i n t h e h e a p d a t a

e l (cons (M V) , [] , M) ,
{on (M) ,$pM} ,
/ / t h e r u l e b o d y t r a n s f o r m a t i o n f o l l o w s

. . .

63

Multiple link occurrences again

One reason for the introduction of the heap was the need to accordingly handle multiple
occurrences of variables in ccfl programs resp. of links in generated lmntal rules. Using
the heap as ccfl runtime environment now allows the sharing of structures such that the
need to copy data vanishes.

Links representing multiple occurrences of variables must be renamed and connected to
a common cell which contains one link onto the common structure. Examples for this have
already been given in Example 5.2.2 and in Figure 5.1.

Example 5.2.4 Consider the simple ccfl program building a list of three elements and its
(simplified)2 transformation.

/ ∗ t h e CCFL p r o g r a m ∗ /

fun p : : a −> a −> L i s t a
def p a b =

Cons a (Cons a (Cons b Ni l))

/ ∗ r e s u l t o f t h e h e a p t r a n s f o r m a t i o n : ∗ /

e l (cons (p) , [A,B] , V 0) ,
{$pA,+A} :−

e l (cons (n i l) , [] , V 8) ,
V 7 = B ,
e l (cons (cons) , [V 7 , V 8] , V 5) ,
V 4 = A L 1 ,
e l (cons (cons) , [V 4 , V 5] , V 2) ,
V 1 = A L 2 ,
e l (cons (cons) , [V 1 , V 2] , V 0) ,
{on (V 8) ,+V 8} ,
{on (V 5) ,+V 5} ,
{on (V 2) ,+V 2} ,
{$pA,+A L 1 ,+A L 2} .

The three occurrences of the variable a in the ccfl function are represented by the links
A in the rule head and A L 1 and A L 2 in the rule body, both linking into a common
cell {$pA,+A L 1,+A L 2}. This cell contains furthermore the process context $pA which
contains a link to the structure the variable a is bound to.

Higher-order functions and partial applications

Since the heap elements for non-variable terms are represented in a uniform way by atoms
el (cons(F),OL,I), we can abstract the app rules from Program 4.4.1 for higher-order func-
tions and partial applications of functions within one lmntal rule as given in Program 5.2.1.

A rewrite rule for duplicatePointer duplicates a list of links on argument structures
twice; conc is used to concatenate two lists of links into one.

The rule of Program 5.2.1 replaces a heap structure representing the call

app (f(B1 ,..., Bm),A1,...,An,Z)

by the two new structures

f(B11 ,..., Bm1,A1,...,An,Z) and f(B12 ,..., Bm2,LF).

2We left out the generation of app nodes.

64

Program 5.2.1 A common rule for handling partial application and higher-order functions
in ccfl programs with heap management

e l (cons (app) , [FN | ArgList] , Z) , {on (Z) , $ l z } ,
{+FN, on (LF) , $ l f } , e l (cons (F) , FArgList , LF) :−

ground (F) |
{on (Z) , $ l z } , {on (LF) , $ l f } ,
e l (cons (F) , conc (FArgList1 , ArgList) ,Z) ,
e l (cons (F) , FArgList2 , LF) ,
d u p l i c a t e P o i n t e r (FArgList , [FArgList1 , FArgList2]) .

The first structure is the result of the application of the partial call f(B1 ,..., Bm) on the
further arguments A1, . . ., An. The second structure must be maintained for the case that
a partial application is reused itself.

Figure 5.3 visualises the rule of Program 5.2.1 including the copying of links to the
arguments. At this, the link connections from A1 ,..., An and F to other heap elements were
left out to improve readability.

{on(Z),$lz}

el (cons(app),[FN|[A1 ,..., An]],Z)

{+FN,on(LF),$lf}

el (cons(F),[B1 ,..., Bm],LF)

{+B1,$pB1} ... {+Bm,$pBm}

rewrites into

{on(Z),$lz}

el (cons(F),[B11 ,..., Bm1,A1,...,An],Z)

{on(LF),$lf}

el (cons(F),[B12 ,..., Bm2],LF)

{+B11,+B12,$pB1} ... {+Bm1,+Bm2,$pBm}

Figure 5.3: Visualisation of the generalised app rule

5.2.2 Lazy evaluation

The newly introduced heap as ccfl runtime environment realises the sharing of common
data by different expressions. Combining the heap transformation and the translation
scheme for a call-by-name evaluation as sketched in Section 4.7.2 implements lazy evalu-
ation for ccfl.

65

Program 5.3.1 The introduction of a new ”nameless” variable

e l (cons (produce) , . . .) :−
e l (var (NoNameBuf1) , OnBuf1 , InBuf1) ,
{on ,+OnBuf1} , {+NoNameBuf1} , {on (InBuf1) , . . . } ,
. . .

5.3 Full CCFL with heap

The representation of data in a heap, in particular the sharing of common data by different
structures, the storage of possibly unbound variables, and a unification mechanism for heap
data allows the compilation of ccfl guards and the realisation of tell -constraints such that
we finally reach the full power of ccfl.

5.3.1 The compilation of constraint and guarded expressions

Considering the ccfl syntax there are four concepts which extend functional ccfl to full
ccfl: the computation with free variables, guards for a non-deterministic, but conditional,
rule choice, equality-constraints on functional expressions, and user-defined constraints. We
consider these items in the following.

Free variables

A characteristic property of constraints is the presence of free variables in expressions. Valid
bindings resp. sets or intervals of these for free variables are computed at runtime and – in
case of ccfl – by possibly concurrent communicating processes.

As an example consider Program 1.1.3, where the two processes (dice x1) and (dice y1)
throw a dice and communicate the result value via free variables to processes summing these
up. Another example is Program 1.1.4, where free variables are used to represent a buffer
which is filled by a producer and read by a consumer.

In ccfl free variables are introduced by the with construct. Their representation in
the heap has been described in Section 5.1.1. Free variables in rules (except for the main
rule as initial call), however, are represented in the heap without a name. Since rules may
be applied several times, we would get variables with different meaning but the same name
otherwise. Anyway, this in no problem, because variables introduced by rules are local such
that their names are never needed.

Consider Program 5.3.1 which results from the translation of the produce function resp.
user-defined constraint of Program 1.1.4. It introduces the free variable buf1. The trans-
formation yields a ”nameless” variable representation in the heap. By links into the cell
{on (InBuf1),...} one can refer to this variable.

Guards

Guards are used for a conditional choice of alternatives within the definition of a user-defined
constraint. For different matching guards the choice of the alternative to be applied is non-
deterministic. If none of the guards of a rule is satisfied, the computation suspends, either
infinitely or until another concurrent process provides a satisfying binding.

While alternatives of guarded expressions are simply translated each into one according
lmntal rule, the translation of the guard atoms resp. ask -constraints is a more interesting
point. Guard atoms in ccfl are a bound-constraints and match-constraints.

Bound-constraints are used to check whether a variable is bound to a non-variable con-
structor term or value.

66

A guard bound x, where x is of user-defined type or of type Bool, is realised by an addi-
tional lmntal atom in the head of the generated rule to implement an according matching of
heap structures. For variables x of type Int or Float we directly use the respective lmntal
guards.

A match-constraint x =:= expr checks on the binding of a variable x to a concrete
constructor or value. Match-constraints are implemented by additional lmntal atoms in the
rule heads matching for the according heap structures.

Example 5.3.1 The user-defined constraint isIn of Example 1.1.3 non-deterministically
chooses values from a given list. We either take the first element as result value or initiate
a further computation on the rest of the list.

fun i s I n : : L i s t a −> a −> C
def i s I n l x =

l =:= Cons y ys −> x =:= y |
l =:= Cons y ys −> case ys of Ni l −> x =:= y ;

Cons z z s −> i s I n ys x

The compilation yields identical rule heads as given below for both alternatives, such that
the rule choice is finally non-deterministically decided at runtime by the lmntal system.

e l (cons (i s I n) , [L ,X] , VC 0) ,
e l (cons (cons) , [Y, Ys] , L) ,
{on (L) , $pL ,+L} :−

. . .

Equality-constraints on functional expressions

Tell -constraints x =:= fexpr introduce an equality between the expression bound to the
variable x and the functional expression fexpr. Since both are functional expressions (of
base type) their evaluation is deterministic.

The constraint x =:= fexpr is satisfied, if both expressions can be reduced to the same
ground data term. This interpretation of equality is called strict equality [HAB+06]. Thus,
the implementation must perform an evaluation of both expressions to data terms and
then perform a unification of the resulting heap expressions. The call-by-value strategy
conforms nicely to strict equality. For the lazy strategy the evaluation to constructor terms
is interleaved with unification.

The transformation of a ccfl equality-constraint into concerning lmntal code is simple.
We just produce a unify atom on both heap structures which initiates a unification procedure
for heap structures of data terms implemented in lmntal.

Example 5.3.2 Consider again the producer of the producer-consumer example in Pro-
gram 1.1.4. The constraint buf =:= Cons item buf1 just generates a concerning unify atom.

e l (cons (produce) , [Buf] , VC 0) :−
/ / g e n e r a t e f r e s h v a r i a b l e b u f 1

e l (var (NoNameBuf1) , OnBuf1 , InBuf1) ,
{on ,+OnBuf1} , {+NoNameBuf1} , {on (InBuf1) ,+ Buf1 } ,
/ / g e n e r a t e s t r u c t u r e f o r i t e m

. . .
/ / g e n e r a t e e x p r e s s i o n (C o n s i t e m b u f 1)

e l (cons (cons) , [Item , Buf1] , VC 2) ,
{on (VC 2) ,+VC 2} ,
/ / u n i f y c a l l : b u f =:= Con s i t e m b u f 1

67

u n i f y (Buf , VC 2 , VC 0) ,
. . .

User-defined constraints

User-defined constraints correspond to functions but are of type C and may contain guards,
free variables and tell -constraints.

The compilation of a user-defined constraint is composed of the compilation of its sub-
elements. At this, it is important to note, that a user-defined constraint also needs a ”result”
link on its heap representation, even if constraints are only checked for their satisfiability (in
contrast to a function which actually computes a result). The reason for this is, that ccfl
is intended to support the partial application of user-defined constraints and their usage as
arguments of higher-order functions.3

Example 5.3.3 The link VC 0 in the head and body of the program rule of Example 5.3.2
connects to the heap structure of a user-defined constraint resp. of the result of an equality-
constraint.

5.4 Implementation

The compilation of ccfl constructs according to the general transformation scheme is
implemented in the file Transform.hs. In a second step, the thereby generated lmntal
AST is transformed into a new lmntal AST taking the heap representations into con-
sideration; this is implemented in the file TransformCp.hs. The compilation function is
compileCCFL :: String −> IO ().

The compiler generates a main-call, if the user has defined a constant function main in
the program. This call is again enriched by organisational structures:

{ rules .use, preludeHeap.use, app.use, unify .use, structure (main ,[], Result)}

The atom rules .use loads the rules generated from the ccfl user program into the mem-
brane. The atoms preludeHeap.use, app.use, and unify .use supply a prelude with predefined
functions and constraints, the handling of partial applications and higher-order functions,
and the unification of heap structures, resp. The main call structure (main ,[], Result) gen-
erates an according initial heap representation.

The prelude mentioned above for built-in functions realising the residuation strategy for
arithmetic functions is provided in the file preludeHeap.lmn. The unification of heap data
has been implemented in the file unify . lmn. Furthermore, there is a module show.lmn which
allows to gain a user-friendly representation of the heap structure of the final result of a
computation.

Note, that the representation of the heap using membranes as discussed in this chapter
causes a slow-down in the performance which is typical for lmntal programs with membranes
for the current lmntal version (see Section 7.2).

3Currently, we use these links only for the reduction of app nodes resulting from the application of
user-defined constraints (generated as for function applications, see Section 4.1.2).

68

Chapter 6

Extending CCFL by new
constraint domains

ccfl provides ask -constraints in the guard of rules and tell -constraints in the rule bod-
ies. While all ask -constraints check on the binding of variables to constructor terms, tell -
constraints are either itself applications of user-defined constraints or are equality constraints
on functional expressions. An extension of ccfl by new constraint domains (and solvers)
as it is implemented in many declarative languages [FHGSP03, CHS+03, Lux01, Moz06] is
desirable.

In this chapter, we sketch on ideas for the introduction of new constraint domains into
ccfl (and lmntal).

6.1 Two ways of constraint integration

The extension of ccfl by new constraint domains and solvers can be realised in two ways.
On the one hand one may integrate constraints whose solving mechanisms can be im-

plemented directly using the target language lmntal of the ccfl compiler. The approach
fits well for domains which can be realised in a natural way in lmntal itself, for example
set-constraints [Aik94, PP97]. We also followed this approach when providing tell -equality-
constraints for ccfl. We implemented a unification algorithm for terms in lmntal as runtime
environment for ccfl, where unify-calls are incorporated into the compilation result. Even
the arithmetic built-in functions can be considered as representatives of this first approach
in its simplest case, because they as well base on their equivalents in lmntal.

The second approach is to integrate external constraints and solvers into both languages
lmntal and ccfl. However, this demands an extension of syntax and semantics of both lan-
guages. We sketch on this approach with an arithmetic domain as example in the following
sections.

6.2 External tell-constraints

The first step is to allow external constraints in the body of user-defined constraints in ccfl
programs.

We consider an example inspired by [Lux01]. Program 6.2.1 combines external arithmetic
constraints and user-defined constraints in ccfl. The constraint symbols of the external
domain are annotated with ”#”. For better understanding we use the list syntax from
haskell (currently not supported by ccfl) and simplify the declaration of logical variables
in function main.

69

Program 6.2.1 Computation of a schedule

fun main : : C
def main =

with a , b , c , d , e , f , end : : Int
in s c h e d u l e a b c d e f end

fun s c h e d u l e : : Int −> Int −> Int −> Int −> Int −> Int −> Int −> C
def s c h e d u l e a b c d e f end =

with maxEnd : : Int
in

a+3 #<= b & a+3 #<=c & a+3 #<= d & b+1 #<=e &
c+3 #<=e & c+3 #<=f & d+2 #<= f & e+1 #<=end &
f+3 #<=end & a #=0 & end #<= maxEnd &
maxEnd =:= sum ([3 , 1 , 3 , 2 , 1 , 3]) &
farm (#elem [0 , . . . , maxEnd]) ([a , b , c , d , e , f , end])

fun farm : : (a −> C) −> L i s t a −> C
def farm c (head : r e s t) =

case r e s t of [] −> c head ;
(rh : rr) −> c head & farm c r e s t

The user-defined constraint schedule takes the variables a, b, c, d, e, f , and end which
represent the starting times of according tasks to be scheduled. The tasks must be performed
in the left-to-right order given in Figure 6.1, each task taking a certain time as given. Task
a starts at time point 0.

The user-defined constraint farm takes a constraint, here the partial application
(#elem [0,..., maxEnd]) :: a −> C of an external constraint and applies it to a list of vari-
ables. The equality constraint maxEnd =:= sum ([3,1,3,2,1,3]) determines an upper bound
for the final time of the schedule by summing up the task durations.

a/3

b/1

c/3

e/1

d/2 f/3

end

Figure 6.1: Tasks and durations, ordered from left to right

We show a derivation for the goal main, where an additional constraint store C holds
the information of the external solver.

main
 schedule a b c d e f end

with store C = {}
 a+3 #<= b & a+3 #<=c & a+3 #<= d & b+1 #<=e & c+3 #<=e & c+3 #<=f &

d+2 #<= f & e+1 #<=end & f+3 #<=end & a #=0 & end #<= maxEnd &
maxEnd =:= sum ([3,1,3,2,1,3]) & farm (#elem [0,...,maxEnd]) ([a,b,c,d,e, f ,end])
with store C = {}

 ? maxEnd =:= sum ([3,1,3,2,1,3]) & farm (#elem [0,...,maxEnd]) ([a,b,c,d,e, f ,end])

70

with store C = { 3 <= b, 3 <= c, 3 <= d, b + 1 <= e, c + 3 <= e, c + 3 <= f ,
d + 2 <= f , e + 1 <= end, f + 3 <= end, a = 0, end <=
maxEnd}

 ? farm (#elem [0,...,13]) ([a,b,c,d,e, f ,end])
with store C = { 3 <= b, 3 <= c, 3 <= d, b + 1 <= e, c + 3 <= e, c + 3 <= f ,

d+ 2 <= f , e+ 1 <= end, f + 3 <= end, a = 0, end <= 13, ...}
 ? a #elem [0,...,13] & ... & end #elem [0,...,13]

with store C = { 3 <= b, 3 <= c, 3 <= d, b + 1 <= e, c + 3 <= e, c + 3 <= f ,
d+ 2 <= f , e+ 1 <= end, f + 3 <= end, a = 0, end <= 13, ...}

 ? Success
with store C = { 3 <= b, 3 <= c, 3 <= d, b + 1 <= e, c + 3 <= e, c + 3 <= f ,

d+ 2 <= f , e+ 1 <= end, f + 3 <= end, a = 0, b ∈ {3, ..., 11},
c ∈ {3, ..., 7}, d ∈ {3, ..., 8}, e ∈ {6, ..., 12}, f ∈ {6, ..., 10}, end ∈
{9, ..., 13}, ...}

The derivation mainly underlines two things: First, the external constraint store C must
exchange information with the ccfl program about restrictions on the bindings of the
variables of common sorts. And second, currently, we just check the satisfiability of the
constraints and narrow the solution sets of the variables. However, we do not provide actual
solutions (as far as there is not exactly one unique solution).

Problems with similar structure are, e.g. the well-known send-more-money problem or
the 8-queens problem.

6.3 External ask-constraints

The second extension by external constraints concerns the ccfl guards. Currently, match-
and bound-constraints allow to perform an entailment test of constraints on the structure
of (potentially incompletely bound) terms. An extension of the guards by arithmetic con-
straints realises similar tests on numbers which can as well be used for the coordination of
processes.

Program 6.3.1 allows the sorting of lists with potentially unbound variables of type Int.
For these, however, there must be sufficient information to decide about their position within
the resulting ordered list. The constraint abstraction filter is defined by four alternatives
with exclusive guards. Again, we mark external constraint symbols by ”#”. The function
concat concatenates a list of lists into one list. Since the new arithmetic ask -constraints are
able to deal with unbound variables (in contrast to the similarly looking guard atoms in
lmntal), filter is able to deal with unbound variables.

We consider two traces of representative derivations for illustration:

quicksort [7, a ,2] r

 filter 7 [7, a ,2] (Triple [] [] []) (Triple l e g) &
quicksort l resl & quicksort g resg & r =:= concat [resl , e, resg]

 filter 7 [a ,2] (Triple [] [7] []) (Triple l e g) &
quicksort l resl & quicksort g resg & r =:= concat [resl , e, resg]

 (the computation suspends)

quicksort [7, a ,2] r & a #> 8

 filter 7 [7, a ,2] (Triple [] [] []) (Triple l e g) &
quicksort l resl & quicksort g resg & r =:= concat [resl , e, resg] & a #> 8

 filter 7 [a ,2] (Triple [] [7] []) (Triple l e g) &
quicksort l resl & quicksort g resg & r =:= concat [resl , e, resg] & a #> 8

 filter 7 [a ,2] (Triple [] [7] []) (Triple l e g) &
quicksort l resl & quicksort g resg & r =:= concat [resl , e, resg]

71

Program 6.3.1 Quicksort with arithmetic ask -constraints

data T r i p l e a = T r i p l e (L i s t a) (L i s t a) (L i s t a)

fun q u i c k s o r t : : L i s t Int −> L i s t Int −> C
def q u i c k s o r t i o =

with g , e , l , r e s l , r e s g
in case i of

Ni l −> o =:= Ni l ;
x : xs −>

f i l t e r x i (T r i p l e [] [] []) (T r i p l e l e g) &
q u i c k s o r t l r e s l &
q u i c k s o r t g r e s g &
o =:= concat r e s l : (e : (r e s g : []))

fun f i l t e r : : Int −> L i s t Int −> T r i p l e Int −> T r i p l e Int −> C
def f i l t e r x l i s t (T r i p l e a b c) r e s u l t =

l i s t =:= [] −>
r e s u l t =:= T r i p l e a b c |

l i s t =:= y : ys & x #> y −>
f i l t e r x ys (T r i p l e (y : a) b c) r e s u l t |

l i s t =:= y : ys & x #= y −>
f i l t e r x ys (T r i p l e a (y : b) c) r e s u l t |

l i s t =:= y : ys & x #< y −>
f i l t e r x ys (T r i p l e a b (y : c)) r e s u l t

with store C = {a > 8}
 filter 7 [2] (Triple [] [7] [a]) (Triple l e g) &

quicksort l resl & quicksort g resg & o =:= concat [resl , e, resg]
with store C = {a > 8}

 ? filter a [a] (Triple [] [] []) (Triple l ’ e’ g ’) & ...
with store C = {a > 8, ...}

 ? Success
with store C = {a > 8, r = [2, 7, a], ...}

6.4 Finding concrete solutions

The integration of external constraints as sketched above, allows to use constraints for the
process coordination and to check the satisfiability of sets of constraint. At this, free variables
are assigned sets of values representing possible solutions.

However, as already discussed in the scheduling example in Section 6.2, the programmer is
often not only interested in the general satisfiability of a problem expressed by constraints but
also in finding a concrete solution or in labeling all solutions. Depending on the constraint
domain, often a computation of a minimum or a maximum wrt. a certain goal function is
desired.

There are certain approaches to be considered for this purpose including encapsulated
search [HAB+06], monads [Lux01], or the introduction of particular higher-order constraints.

72

6.5 Handling external constraints in LMNtal

The integration of external constraints into ccfl demands an extension of the compila-
tion scheme and of the target language lmntal. lmntal allows to use processes in rule
bodies which build on inline code [LMN07]. Thus an implementation of external ccfl tell -
constraints based on this option seems possible. However, ask -constraints may require an
actual extension of the lmntal compiler.

An external solver to be integrated needs a constraint propagation function for the
tell -constraints, (preferably) an entailment test (otherwise implemented on top of the prop-
agation function) for the ask -constraints and functions to handle the constraint store. Ap-
propriate solvers are e.g. the choco constraint solver [Cho08] on finite-domain constraints
written in java or gecode [GeC07] for finite-domain constraints and finite-set constraints
implemented in c++ (with bindings to several languages).

73

74

Chapter 7

Conclusion

This report discusses the design and implementation of the Concurrent Constraint Func-
tional Language ccfl which combines concepts from the functional and the constraint
paradigms and allows for concurrent computation of processes.

We presented a compiler for ccfl programs written in haskell which generates lmntal
code. We implemented three schemes for code generation caused by different approaches for
the presentation of ccfl variables by lmntal links. The first and second versions persist in
the viewpoint that links are just variables with certain restrictions. However, this constrains
the compilation of ccfl to a functional sub-language and disallows lazy evaluation. To
overcome these limitations we implemented a heap in lmntal as ccfl runtime environment
such that we finally reached the full power of ccfl. The current version of our ccfl compiler
consists of about 10000 lines of Haskell code and 1500 lines of lmntal code realising the
runtime environment.

Our implementation based on lmntal demonstrates the embedding of the concurrent
functional paradigm into the lmntal language model which allowed to equip ccfl with ad-
vanced language features, like constraints for communication and synchronisation of process
systems, and to express non-deterministic computation.

7.1 Related work

The language design of ccfl lends from a diploma thesis [Lor06] supervised by the author
in the run-up and as preparatory work for the development of ccfl. ccfl is an extension
of the therein proposed language fatom which compiled into code for an abstract machine
ataf. The syntax of ccfl borrows from the (sequential) functional languages haskell and
opal (see e.g. [Bir98, Hud00, PH06]).

Functional languages allowing for concurrent computation of processes are e.g. eden
[LOMP05] and erlang [AVWW07], both using explicit notions for the generation of pro-
cesses and their communication or concurrent haskell [PGF96] which supports threads
via the IO monad. The constraint functional language goffin [CGKL98] strongly separates
the functional sub-language from the constraint part which is used as coordination language.

curry [HAB+06] is a functional-logic language combining the functional and the logic
paradigms and builds on the evaluation principle narrowing in contrast to residuation and
non-deterministic choice in ccfl. A language similar to curry is toy [FHGSP03] for which
the integration of different arithmetic constraint domains has been examined over the recent
years.

The ccfl coordination of concurrent processes is based on the concurrent constraint pro-
gramming (CCP) model [SR90], where we also lend the notions of ask - and tell -constraints
from.

75

7.2 LMNtal as target language of the CCFL compiler

The language lmntal developed by Kazunori Ueda and his group at Waseda University in
Tokyo is the target language for the ccfl compiler. The ccfl compiler builds on the lmntal
version 1.00.20071019.

The ability of lmntal to unify and to model computation paradigms proved to be very
useful for our compiler implementation. ccfl allows to combine functional and constraint
programming and to express concurrent and non-deterministic computations. Our imple-
mentation shows, that modelling combined language paradigms in lmntal is possible in a
convenient way and by means of clear transformations.

There have been some drawbacks in lmntal wrt. our implementation which, however, are
mainly under consideration for the current lmntal implementation and conceptual work.

One problem is, that the usage of cells enclosed by membranes, like it was necessary
for the implementation of evaluation strategies and to represent heap structures, causes a
considerable slow-down in the computation performance. The currently ongoing work on
the SLIM lmntal system aims to improve this situation.

Secondly, as discussed in Section 3.3 and others, the restrictions on logical links in lmntal
constrains our implementation very strongly. This was also the reason for the multiple
approaches to the code generation scheme. According to a conversation with Kazunori Ueda,
an introduction of multiple links is currently under consideration for lmntal. Depending
on its realisation, this could significantly simplify the representation of ccfl variables by
means of links in the generated lmntal code, maybe even up to getting rid of an explicit
heap representation.

A third thing which turned out to be hindering is that the rule choice in lmntal is
completely based on pattern matching of the rule head (plus the application of guards).

The heap representation as presented in Chapter 5 was actually a simplification; for
the following reasons: Links to arguments of terms may connect to the same or as well
to different heap elements. The necessity to match such heap structures with a rule head
forces us to either to provide an in general exponential number of rule copies (depending on
the number and types of arguments) or to introduce additional indirections into the heap
representation (which is the more general and thus, better, solution but slows down the
performance again).

Consider the term (foo a b) resp. its representation (el (cons (foo) [A,B],R)). The
links A and B may connect onto the same or different heap structures. To match on this
term, we need two according rules (or the above mentioned indirections) as shown below.
The links of the head of the first rule connect into different membranes, while the links in
the second rule head connect in one common membrane.

e l (cons (foo) [A,B] ,R) ,
{$pA,+A} ,
{$pB,+B} :−

. . .

e l (cons (foo) [A,B] ,R) ,
{$pA,+A,+B} :−

. . .

A possible solution (which is, of course, very rough at the moment and needs a deeper
consideration) may lead into the direction of additional guard atoms which ”compute” on
links and membranes resp. cells but do without pattern matching. At this, ACell and BCell
may stand now for the same cell.

e l (cons (foo) [A,B] ,R) :−
l i n k i n c e l l (A, ACell) , l i n k i n c e l l (B , BCell) ,
ACell ’ = ACell \ {+A,+B} ,

76

BCell ’ = BCell \ {+A,+B} |
. . .

Finally, it turned out that programming without a type system yields to many avoidable
but often hard to find programming mistakes.

7.3 Future work

There remain a number of tasks to consider in the future:
At first, there are many things to improve and to polish in the language design of ccfl

and the compiler implementation which is currently just a simple prototype. Moreover, it
will be interesting to consider the transfer of the implementation onto the new SLIM lmntal
system as compiler target. An extension of lmntal by multiple links as mentioned above
may yield a number of changes and simplifications for our compilation scheme.

Another source of important work in the future is the integration of new constraint
solvers as sketched on in Chapter 6 either by the implementation of constraint solvers in
lmntal itself or by extending lmntal by external solvers.

The ability to express a migration of rules within a process system to control the program
evaluation has proved to be an interesting feature of lmntal. We used this opportunity on
the one hand when implementing evaluation strategies for ccfl. On the other hand we
applied this method in the lmntal module show.lmn (mentioned in Section 5.4) to ensure
that the actual ccfl computation has been completely finished when the computation of
user-readable representations from the result heap structure starts. We think that this
feature of lmntal could also be used to implement other extended language concepts like
e.g. such from aspect-oriented programming.

Acknowledgement

The work presented in this report has been supported by a postdoctoral fellowship
No. PE 07542 from the Japan Society for the Promotion of Science (JSPS) and my host
professor Kazunori Ueda, Waseda University, Tokyo.

77

78

Bibliography

[Aik94] Alexander Aiken. Set Constraints: Results, Applications, and Future Direc-
tions. In Alan Borning, editor, Principles and Practice of Constraint Program-
ming, pages 326–335, 1994.

[AVWW07] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams. Concur-
rent Programming in Erlang. Prentice Hall, 2nd edition, 2007.

[Bir98] Richard Bird. Introduction to Functional Programming using Haskell. Prentice
Hall, 2nd edition, 1998.

[CGKL98] Manuel M.T. Chakravarty, Yike Guo, Martin Köhler, and Hendrik C. R. Lock.
Goffin: Higher-Order Functions Meet Concurrent Constraints. Science of
Computer Programming, 30(1-2):157–199, 1998.

[Cho08] Choco: A Java Library for Constraint Satisfaction Problems, Con-
straint Programming and explanation-based Constraint Solving.
http://sourceforge.net/projects/choco, 2008. last visited 07 March
2008.

[CHS+03] A.M. Cheadle, W. Harvey, A.J. Sadler, J. Schimpf, K. Shen, and M.G. Wal-
lace. ECLiPSe – An Introduction. Technical Report IC-PARC-03-1, IC-PARC,
Imperial College London, 2003.

[CvER90] Mantis H. M. Cheng, Maarten H. van Emden, and B. E. Richards. On War-
ren’s Method for Functional Programming in Logic. In Peter Szeredi David
H. D. Warren, editor, Logic Programming, Proceedings of the Seventh Interna-
tional Conference, Jerusalem, Israel, ICLP 1990, pages 546–560. MIT Press,
1990.

[FHGSP03] A.J. Fernández, T. Hortalá-Gonzáles, and F. Sáenz-Perez. Solving Combina-
torial Problems with a Constraint Functional Logic Language. In Verónica
Dahl and Philip Wadler, editors, Practical Aspects of Declarative Languages,
5th International Symposium – PADL, volume 2562 of LNCS, pages 320–338.
Springer, 2003.

[GeC07] Gecode – Generic Constraint Development Environment. http://www.gecode.
org/, 2007. last visited 07 March 2008.

[HAB+06] Michael Hanus, Sergio Antoy, Bernd Braßel, Herbert Kuchen, Francisco J.
Lopez-Fraguas, Wolfgang Lux, Juan Jose Moreno Navarro, and Frank Steiner.
Curry: An Integrated Functional Logic Language. Technical report, 2006. Ver-
sion 0.8.2 of March 28, 2006.

[Hud00] Paul Hudak. The Haskell School of Expression. Cambridge University Press,
2000.

79

[Lei01] Daan Leijen. Parsec, a fast Combinator Parser, 4 Oct 2001.
http://legacy.cs.uu.nl/daan/parsec.html, last visited 07 March 2008.

[LMN07] LMNtal PukiWiki. http://www.ueda.info.waseda.ac.jp/lmntal/, 2007.
last visited 07 March 2008.

[LOMP05] Rita Loogen, Yolanda Ortega-Mallén, and Ricardo Peña. Parallel Functional
Programming in Eden. Journal of Functional Programming, 15(3):431–475,
2005.

[Lor06] Florian Lorenzen. Eine abstrakte Maschine für eine nebenläufige (und parallele)
Constraint-funktionale Programmiersprache, 2006. Diplomarbeit. Technische
Universität Berlin.

[Lux01] Wolfgang Lux. Adding Linear Constraints over Real Numbers to Curry. In
Herbert Kuchen and Kazunori Ueda, editors, Functional and Logic Program-
ming, 5th International Symposium, FLOPS 2001, Tokyo, Japan, March 2001,
Proceedings, volume 2024 of LNCS, pages 185–200. Springer, 2001.

[Moz06] The Mozart Programming System. http://www.mozart-oz.org/, 2006. last
visited 07 March 2008.

[Nai91] Lee Naish. Adding equations to NU-Prolog. In Programming Language Imple-
mentation and Logic Programming, 3rd International Symposium, PLILP’91,
volume 528 of Lecture Notes in Computer Science, pages 15–26. Springer, 1991.

[Nai96] Lee Naish. Higher-order logic programming in Prolog. Technical Report 96/2,
Department of Computer Science, University of Melbourne, 1996.

[PGF96] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell.
In 23rd ACM Symposium on Principles of Programming Languages, pages 295–
308, 1996.

[PH06] Peter Pepper and Petra Hofstedt. Funktionale Programmierung. Sprachdesign
und Programmiertechnik. Springer, 2006.

[PP97] Leszek Pacholski and Andreas Podelski. Set Constraints: A Pearl in Research
on Constraints. In Gert Smolka, editor, Principles and Practice of Constraint
Programming, volume 1330 of Lecture Notes in Computer Science, pages 549–
562. Springer, 1997.

[Smo93] Gert Smolka. Residuation and Guarded Rules for Constraint Logic Program-
ming. In Frédéric Benhamou and Alain Colmerauer, editors, Constraint Logic
Programming. Selected Research, pages 405–419. The MIT Press, 1993.

[SR90] Vijay A. Saraswat and Martin C. Rinard. Concurrent Constraint Programming.
In 17th ACM Symposium on Principles of Programming Languages – POPL,
pages 232–245, 1990.

[UK02] Kazunori Ueda and Norio Kato. Programming with Logical Links: Design
of the LMNtal Language. In Proceedings of the Third Asian Workshop on
Programming Languages and Systems (APLAS 2002), pages 115–126, 2002.

[UK05] Kazunori Ueda and Norio Kato. LMNtal: a Language Model with Links and
Membranes. In Proceedings of the Fifth International Workshop on Membrane
Computing (WMC 2004), volume 3365 of LNCS, pages 110–125. Springer, 2005.

80

[UKHM06] Kazunori Ueda, Norio Kato, Koji Hara, and Ken Mizuno. LMNtal as a Uni-
fying Declarative Language. In Tom Schrijvers and Thom Frühwirth, editors,
Proceedings of the Third Workshop on Constraint Handling Rules, Technical
Report CW 452, pages 1–15. Katholieke Universiteit Leuven, 2006.

[War82] D.H.D. Warren. Higher-order extensions to PROLOG: Are they needed? Ma-
chine Intelligence, 10:441–454, 1982.

81

82

