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Abstract
The implementation of static artificial magnetic fields in ultracold atomic systems has become a
powerful tool, e.g. for simulating quantum-Hall physics with charge-neutral atoms. Taking an
interacting bosonic flux ladder as a minimal model, we investigate protocols for adiabatic state
preparation via magnetic flux ramps. Considering the fact that it is actually the artificial vector
potential (in the form of Peierls phases) that can be experimentally engineered in optical lattices,
rather than the magnetic field, we find that the time required for adiabatic state preparation
dramatically depends on which pattern of Peierls phases is used. This can be understood intuitively
by noting that different patterns of time-dependent Peierls phases that all give rise to the same
magnetic field ramp, generally lead to different artificial electric fields during the ramp. As an
intriguing result, we find that an optimal choice allows for preparing the ground state almost
instantaneously in the non-interacting system, which can be related to the concept of
counterdiabatic driving. Remarkably, we find extremely short preparation times also in the
strongly-interacting regime. Our findings open new possibilities for robust state preparation in
atomic quantum simulators.

1. Introduction

The engineering of artificial magnetic fields for charge-neutral atoms in optical lattices has been a powerful
tool to simulate lattice models with exotic phases including quantum Hall states and topological insulators
[1–7]. More precisely, in these experiments a static artificial gauge potential (in the form of Peierls phases)
is engineered in a particular choice of gauge (relative to the plain lattice without magnetic field). Typically,
this choice is made based on experimental convenience. For a dynamic process, however, where these
artificial gauge potentials are varied in time, this choice does not simply correspond to a gauge freedom
anymore. This is because their temporal change generates an artificial electric field. After initial
confirmation in a trapped quantum gas [8], such artificial electric forces were observed also in optical
lattices [9, 10] and predicted to lead to ‘gauge-dependent’ time-of-flight images of Bose Einstein
condensates [11–13]. More recently, theoretical investigations showed that the engineering of
time-dependent artificial gauge potentials can be employed for quantized charge pumping along tailored
paths in two dimensional (fractional) Chern insulators [14, 15] and for determining the dynamics of a wave
packet in synthetic dimensions [16] and nonlinear systems [17]. With the recent advances in quantum gas
microscope techniques [18–25], it becomes more and more important to explore the possibilities of
controlling artificial gauge potentials in both space and time. In this paper, we show that this technique can
be exploited for the optimization of adiabatic state preparation. Robust adiabatic state preparation is a
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Figure 1. Bose–Hubbard ladder, with interaction parameter U, tunneling amplitudes J (J⊥) along the legs (rungs) as well as
Peierls phases θ��′ either along rungs (a) or legs (b). θ��′ are symbolized by arrows and describe a uniform plaquette flux φ.
(c) Phase diagram for non-interacting system. Upper inset shows the lowest Bloch band with single minimum in the MP, for
J⊥ = 2 and Peierls phases θ‖

�′�(φ = π/2, η) with η = 0 (solid orange line) and η = π/2 (dashed green line). Lower inset shows
double minima of the lowest band in the vortex phase with φ = 4π/5 and η = 0. The horizontal arrows indicate the paths for
our state preparation via ramping artificial magnetic flux.

prerequisite for the experimental investigation (quantum simulation) of interesting states of matter with
atomic quantum gases.

As minimal lattice systems with artificial magnetic fields, flux ladders have recently drawn tremendous
attention, including the experimental observation of chiral edge currents [25–30], the theoretical
exploration of rich phase diagrams [31–54], the investigation of Laughlin-like states [55–60], the study of
Hall effect [61–65] and other aspects [66–72]. In this work, we investigate the adiabatic preparation of the
ground state in such ladder systems via continuously ramping up the corresponding Peierls phases.
Comparing results for different patterns of Peierls phases, all giving rise to the same magnetic flux, we find
that the degree of adiabaticity dramatically depends on this choice. As an intriguing result, the optimal
choice of Peierls phases allows for an almost instantaneous preparation of the ground state. We show that
for vanishing interactions, this effect can be related to counterdiabatic driving [73–78]. However,
remarkably our approach works also for very strong interactions, where a simple explanation in terms of
counterdiabatic driving is not possible.

2. Model

We consider interacting bosons in a two-leg ladder described by the Bose Hubbard model

Ĥ = −
∑
〈�,�′〉

J�′� ei θ�′� â†�′ â� +
U

2

∑
�

n̂�(n̂� − 1), (1)

with bosonic creation operator â†� and number operator n̂� = â†� â� on site �. The nearest-neighbor tunneling
amplitude J�′� equals J along legs and J⊥ along rungs, and it is accompanied by the Peierls phase θ�′�. U is
the on-site repulsive interaction energy. In the following, we use J, �/J and lattice constant a as units for
energy, time and lengths, respectively.

Due to the complex tunneling matrix elements, the accumulated net phase around one lattice plaquette
is analogous to the Aharonov–Bohm phase experienced by a charged particle in a real magnetic field. Thus
the Peierls phase θ�′� plays the role of a vector potential, and each set of time-independent Peierls phases
{θ�′�} that gives the same plaquette flux reflects a gauge choice. A uniform flux φ can be realized, for

instance, by using gauge potentials along rungs, θ⊥�′�(φ) (figure 1(a)), or along legs, θ‖�′�(φ, η) (figure 1(b)),
with the phase η describing a continuous family of Peierls phases. However, when φ and η vary in time,

θ⊥�′�(φ) and θ
‖
�′�(φ, η) no longer describe gauge choices, but different artificial electric fields.

3. Non-interacting case

Let us start with the non-interacting limit (U = 0), for which the phase diagram is shown in figure 1(c). For
weak magnetic flux, the dispersion relation of the lowest band possesses a unique minimum and the ground
state exhibits currents along the leg, resembling the screening currents of the Meissner phase (MP) of a
superconductor. Increasing the flux beyond the phase boundary defined by J⊥ = 2 sin(φ/2)tan(φ/2), the
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Figure 2. (a) Fidelity, (b) scaled chiral current and (c) excitation energy as functions of total ramping time τ for different choices
of Peierls phase configurations. The legends in (a) and (b) are the same as those in (c). (d) The overlap Ok(φ) for different values
of φ for η = 0. (e) Ground state overlap O(π/2) and minimal ramping time τ ∗ required to reach F = 0.9 as a function of η for
open (solid) and periodic (dashed) boundary conditions. Distributions of spatial density and local currents of (f) the target state,
and the evolved states for (g) θ⊥

�′�(φ), τ = 15, (h) θ‖
�′�(φ, η = π/4), τ = 200 and (i) θ‖

�′�(φ, η = 0), τ = 1. The darker color
indicate higher densities and the size of the orange arrows along the bonds is proportional to the amplitude of probability
currents. The dashed arrows F indicate directions of the average artificial electric forces.

minimum of the dispersion relation splits into two minima and rung-currents appear in the ground state
allowing the formation of vortices analogous to the vortex phase of a type-II superconductor [30, 36].

In order to study adiabatic state preparation, we take our initial state and target state as the ground
states of the Hamiltonian with flux φ = 0 and φ = π/2, denoted as |ψ0〉 and

∣∣ψπ/2

〉
, respectively. The

tunneling amplitude along rungs is fixed at J⊥ = 2 so that the target state lies in the MP, as is marked by the
star in figure 1(c). By linearly ramping the Peierls phases from zero to final values given by either θ⊥�′�(φ) or

θ
‖
�′�(φ, η), the flux is continuously increased from 0 to π/2 within the ramping time τ . The evolved state
|ψ(τ)〉 is obtained by numerically solving the Schrödinger equation of the Hamiltonian for a finite system
with M = 24 rungs under open boundary condition.

To quantify the degree of adiabaticity, we define the fidelity as the squared overlap between the evolved

state and the target state, F =
∣∣〈ψπ/2|ψ(τ)

〉∣∣2
. Figure 2(a) shows the fidelities calculated by choosing

artificial gauge potentials θ⊥�′�(φ) and θ
‖
�′�(φ, η) with η = {0,π/4, 3π/4} (cf legend in figure 2(c)). For gauge

potentials on the rungs, we find fidelities close to 1 for ramping times on the order of τ = 300. For gauge
potentials on the legs, this time scale strongly depends on η. Remarkably, it vanishes in the limit of η = 0,
so that the ground state can be prepared by switching on the gauge potentials abruptly. This picture is
confirmed also by looking at two other quantities characterizing the evolved state. One is the chiral current
jc(τ) scaled by its target value jtarget

c (figure 2(b)), which can be readily measured in experiment [28–30] and
which plays a key role in charactering different phases in a ladder system [30, 36, 37, 39, 40, 79]. The other
is the excitation energy ΔE (figure 2(c)), defined as ΔE = |〈ψ(τ)|Ĥ|ψ(τ)〉| − Eg, where Eg is the ground
state energy for the final Hamiltonian. Both measures reflect the degree of adiabaticity observed in the
fidelity.

The ultrafast adiabatic state preparation can be explained by the fact that the ground state does not

depend on the flux for the choice θ‖�′�(φ, η = 0). For the translationally invariant ladder, the single-particle
Hamiltonian for quasimomentum k reads H(k) = h0(k) + h(k) × σ with h0(k) = −2J cos(φ/2)cos(k + η),
hx(k) = −J⊥, hy(k) = 0, hz(k) = −2J sin(φ/2)sin(k + η), where the vector of Pauli matrices σ acts on the
sublattice degree of freedom given by the upper and lower leg. The Bloch states |ψ±(k; η,φ)〉 of both bands
E±(k) = h0(k) ± |h(k)| are described by k dependent vectors ±h(k)/|h(k)| on the Bloch sphere. In the MP
the ground state lies at k = −η/a with hz = 0. We define the overlap Ok(φ) = |〈ψ−(k; 0, 0)|ψ−(k; η,φ)〉|2 to
quantify the similarity between lowest-band eigenstates with and without magnetic flux φ. Remarkably, in
the case of η = 0, the ground state wave function (k = 0) does not depend on the magnetic flux φ, as
hz = hy = 0 for all φ so that Ok=0(φ) = 1 (figure 2(d)). For a system of M rungs with periodic boundary
condition, the quasimomentum k takes discrete values given by integer multiples of 2π/M. As the spectrum

is shifted by η, the squared overlap O
(
π/2

)
=

∣∣〈ψπ/2|ψ0

〉∣∣2
between the initial and the target states drops

suddenly from 1 to 0 when the shift η becomes larger than π/M, as shown by the dashed line in figure 2(e).
Since k is not a good quantum number anymore in the finite system with open boundary conditions, we
observe a smooth decay of O(π/2) as a function of η, starting from a value close to 1 for η = 0
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[O(π/2) = 0.995 for M = 24 rungs]. This behavior explains that the minimal ramping time τ ∗ required to
reach F = 0.9 approaches zero when η drops to zero.

4. Comparison with counterdiabatic driving

The idea of choosing an optimal vector potential for adiabatic state preparation can be related to the
concept of counterdiabatic driving [73–78]. To be general, let Hp be a Hamiltonian depending on a
parameter p and |ψp〉 the corresponding ground state. Starting from the ground state at p = 0, we wish to
rapidly prepare the ground state of the target Hamiltonian Hp=f. The idea of counterdiabatic driving is to
consider a family of unitaries Up labeled by p, so that the evolved state exactly follows |ψp(t)〉 for a new

Hamiltonian H(t) = Hp(t) + i(dtUp(t))U†
p(t), where the second term corresponds to the so-called

counterdiabatic driving that could be realized via some external forces [73, 74]. Our approach, in turn,
corresponds to directly working in the rotated frame of reference with instantaneous eigenstate
|ψ′

p〉 = U†
p |ψp〉 governed by the Hamiltonian H′

p = U†
p HpUp. For an ideal choice of Up (e.g. the optimal

choice of Peierls phases with η = 0 in this work), one can find a p-independent ground state |ψ′
p〉 = |ψ0〉,

and thus it allows for the parameter ramp within arbitrarily short time. The advantage of our approach is
that there will be no need for applying external terms to the system. Meanwhile, our protocol can be easily
extended to the many-body system, as will be demonstrated in sections 5 and 6.

The optimal choice (η = 0) of Peierls phases can also be understood intuitively by noting that the
artificial electric fields generated during the ramp correspond to Faraday’s law of induction, as portrayed in
figure 2(i). In turn, for non-optimal choices with η �= 0, additional electric fields are created as well during
the ramp (causing the drift shown in figures 2(g) and (h)) that are not related to the time-dependence of
the magnetic field via Faraday’s law of induction. These non-Faraday electric fields could be compensated
by a time-dependent scalar potential. This freedom of choosing η is a consequence of the fact that the
experimentalist directly engineers the artificial gauge potential (via Peierls phases) rather than the artificial
magnetic field. The counterdiabatic driving terms required for rapid state preparation for the non-optimal
choices of Peierls phases would simply correspond to time-dependent scalar potentials subtracting the
non-Faraday forces generated by η(t) �= 0. Note, however, that the choice of η = 0 and the absence of
non-Faraday forces is not always optimal, as will be seen in section 6 when discussing parameter ramps
leaving the MP.

5. Role of interactions

Now we simulate the interacting system at filling n = 1/2 per site by using the TeNPy library [80–83] and a
matrix product operator based time evolution method (tMPO) [84, 85]. The ground state overlap O(π/2)
as a function of interaction strength U is plotted in figure 3(a). In the case of η = 0, the overlap O(π/2)
exhibits non-monotonous behavior, reflecting a complex competition between many-body interactions and
artificial magnetic flux. While the system features a Meissner-like superfluid ground state for weak
interactions [86], (in the thermodynamic limit) it undergoes a Berezinskii–Kosterlitz–Thouless (BKT)
transition to a Mott-insulator state with single particles localised on the rungs as U is increased [33, 39, 87].
The critical parameter is found to be Uc1 ≈ 4.2 for φ = π/2 and Uc2 ≈ 10.4 for φ = 0 [86], which
determines three regions (I: U < Uc1, II: Uc1 < U < Uc2, and III: Uc2 < U) shown in figure 3(a), where we
plot the overlap O(π/2) (blue dots connected by dashed line). In the weakly interacting region I, the
overlap first decreases rapidly, before it slightly increases again. This behavior is qualitatively reproduced by
Bogoliubov theory (red dashed line) [86]. It can be related to the fact that the interaction-induced
population of finite momentum modes initially happens much faster in the presence of magnetic flux
(giving rise to an enlarged effective mass). However, for even stronger interactions the resulting momentum
mismatch becomes smaller again [86]. For Uc1 < U < Uc2, while the ground state with zero flux remains
superfluid, the ground state with flux φ = π/2 already becomes a Mott insulator [86], and therefore the
overlap decreases once more. After U > Uc2, the fact that both ground states present Mott-insulating phase
gives rise to an increase again. Despite this non-monotonous behavior, O(π/2) takes comparably large
values for η = 0. This leads to rather short adiabatic preparation times also in the strongly interacting
regime. In figures 3(d) and (e), we plot the fidelity F versus the ramping time for U = 5 and the hard-core
limit U →∞, respectively. Remarkably, for hard-core bosons (and η = 0), we find fidelities close to one
already for very short ramping times on the order of 1 (in units of the tunneling time). The fact that such
rapid state preparation found for the strongly interacting system cannot be explained by the single-particle
analysis presented in the previous sections. This short ramping time may be related to the fact that the
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Figure 3. (a) Squared overlap of initial state |ψ0 and target state
∣∣ψπ/2

〉
as a function of U for different values of η. The two

vertical dashed lines Uc1 = 4.2 and Uc2 = 10.4 locate the BKT-transition points for φ = π/2 and φ = 0 respectively.
Quasimomentum distribution for (b) U = 1 and (c) U = 10. In the legend different η refer to φ = π/2. Fidelity as a function of
total ramping time τ with interaction (d) U/J = 5 and (e) hard-core limit. The simulations in (a)–(e) are performed in the
system with the number of rungs M = 24. (f) Single-particle fidelity F 1/N as a function of total ramping time τ for different
numbers of rungs M at η = 0 and U = 20. (g) Minimal ramping time τ ′ required to reach F 1/N = 0.995 as a function of M at
η = 0. For all cases we use J⊥ = 2 at 1/2 filling. (Dashed lines are guides to the eye.)

larger overlap of quasimomentum distribution occurs for stronger interaction, as indicated in figures 3(b)
and (c).

In figures 3(f) and (g), we investigate the finite size effect for the optimal choice of η = 0. The fact that a
many-body fidelity drops with the system size can be attributed to two effects. On the one hand, a finite-size
gap (as present in the superfluid regime) separating the ground state from the first excited state decreases
with ladder length M, leading to a reduction of adiabaticity. On the other hand, a decrease of the
many-body fidelity with system size is expected already from the very fact that (at least for product states)
the N-particle fidelity is given by the Nth power of the single-particle fidelity. In order to compensate for the
latter effect, when comparing results for different system sizes, we use the single-particle fidelity F1/N . In
figure 3(f), we plot F1/N versus the ramping time τ for η = 0 and U = 20 for different ladder length M. In
figure 3(g), we extract the ramping time τ ′ above which a fidelity F1/N � 0.995 is achieved and plot it
versus M for various interaction strengths U. Remarkably, we find that the ramping time increases very
slowly both in the superfluid and the Mott-insulating regions (i.e. I and III). A noticeable increase is only
visible in regime II, where the Mott transition occurs during the ramp.

For finite values of η, taking η = π/4, 3π/4 as examples shown in figure 3(a), O(π/2) takes small values
until deep in the Mott regime, where the correlations between individual rungs are suppressed by
interactions for both φ = 0 and φ = π/2. This can also be understood from the quasi-momentum
distribution defined by nk =

1
M

∑
n=0,1

∑
m,m′ eik(m−m′)〈â†m′,nâm,n〉. From figures 3(b) and (c) we can see that

the distribution is centered around k = 0 for the initial state (φ = 0), and at k = −η for the target state
(φ = π/2). Although the shift of quasi-momentum (for η �= 0) causes difficulties in state preparations, the
increase of interaction broadens the quasimomentum distributions, which results in gradually increasing
overlap and a shorter adiabatic ramping time as indicated in figures 3(d) and (e).

6. Leaving the Meissner regime

So far, we considered parameter ramps within the MP. Increasing φ further gives rise to various phases
[37, 39, 40, 44], including the biased ladder phase (BLP) in the weakly and intermediately interacting
regime [37, 39–43], which is characterized by vanishing rung currents and the spontaneous Z2 reflection
symmetry breaking in the form of a density imbalance between both legs. In the following, we show that
starting from the MP, the BLP can be efficiently prepared by choosing proper Peierls phase patterns
(determined by η). Let us start with the non-interaction limit, where beyond a critical flux φc, the system
enters the vortex phase and the dispersion relation develops two degenerate minima. Since each minimum
predominantly corresponds to the occupation of one of the legs, the degeneracy can be lifted by introducing
a small bias potential (0.01J) between both legs, so that the ground state resembles that of the BLP. Despite
the fact that the small bias softens the sharp transition at φc ≈ 0.667π into a narrow crossover, we observe a
sudden drop of the fidelity at φc when linearly ramping up the Peierls phases with η = 0 (figure 4(c)). Here
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Figure 4. (a) Spectrum of the non-interacting ladder with θ
‖
�′ �(η = 0) at J⊥ = 3. (b) Spectrum of the non-interacting ladder

with θ
‖
�′�(η = η̃), where η̃ shifts the spectrum so that the right minimum is always located at k = 0. (c) The fidelity as a function

of time-dependent flux φ(t) at U = 0. The flux is ramped from φi = 0.5π to φf = 0.8π within a ramping time τ = 30 in a
ladder with M = 50 rungs at J⊥ = 3. The inset depicts η̃ as a function of φ, where the blue dots come from maximizing the
ground state overlap O(φ) and the red dashed line is the analytical results. (d) The total fidelity as a function of φ(t) at
U = 2.0, J⊥ = 3 with particle number of N = 40 in the ladder with M = 25 rungs. The flux is ramped from φ′

i = 0.68π to
φ′

f = 0.82π within time τ = 40 and 100. The inset depicts η̃′ as a function of φ which maximizes the ground state overlap.

the dashed line represents the fidelity between the evolved state and the instantaneous eigenstate. As a
remedy, one can vary η during the ramp in such a fashion that the overlap O(φ) remains maximal during
the ramp. (For an infinitely large system without bias, this can be achieved by choosing
η̃(t) = arccos

√
J2
⊥/4 cot2(φ/2) + cos2(φ/2) for φ > φc, so that the right minimum of the dispersion

relation always remains at k = 0 (figure 4(b)).) In this case, the evolved state successfully follows the
instantaneous eigenstate even after the critical point, as indicated by the horizontal blue line in figure 4(c).
Thus, different from the previously discussed case, now the optimal choice of Peierls phases does not
correspond to the situation where all the non-Faraday forces were absent during the ramp. Instead, the
forces induced by η �= 0 are actively employed for state preparation, as they induce shifts in
quasimomentum that keep the system state at the minimum of the dispersion relation.

The scheme can also be applied to the interacting system. For instance, the transition to the BLP occurs
at critical flux φ′

c ≈ 0.8π for a 0.8-filling ladder at U = 2.0, J⊥ = 3 [39]. As shown by the dashed lines in
figure 4(d), using η = 0 leads to an essentially vanishing fidelity after the critical point, as the BLP has
imbalanced distribution between positive and negative quasimomenta due to the broken reflection
symmetry [40, 41]. To compensate the quasimomentum differences between initial and final states during
the ramp, the protocol η̃′(t) (shown in the inset of figure 4(d)) can be determined by maximizing the
ground state overlap, and the corresponding F assumes rather large values as shown by solid lines in
figure 4(d). Note that the finite value F = 0.78 found for τ = 100 indicates a near unity single-particle
fidelity (0.78 ≈ 0.994N) for the system with number of particle N = 40 considered here. Higher fidelities
can be achieved for longer ramping times.

7. Conclusion and outlook

We have proposed to design the time-dependent artificial vector potentials in the form of Peierls phases for
rapid adiabatic state preparation in optical lattice systems. Our approach is based on the fact that in such
systems the experimentalist directly controls the vector potential rather than magnetic fields. We
demonstrated that for a ladder with flux, this approach allows for an almost immediate state preparation for
non-interacting bosons. Remarkably, we find very short ramping times also for strongly interacting bosons.

While the abrupt adiabatic preparation in the ladder is an extreme example, it highlights that tunning
Peierls phases can be a very powerful tool for state preparation. Specifically, choosing optimal gauge
potentials to maximize the overlap between the instantaneous eigenstate and the initial state helps to reduce
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adiabatic ramping time. It is an interesting open question for future research in how far this approach can
be used for the preparation of strongly correlated states of matter, such as fractional Chern insulators.
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acknowledges support from the Royal Society under the Newton International Fellowship.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Appendix A.

A.1. Dynamics during the ramp
Each point in figures 2(a)–(c) in main text corresponds to the result at the end of a parameter ramp. To
interpret the oscillation behavior, we plot the fidelity F = |〈ψφ|ψ(t)〉|2 and center of mass 〈X〉 during a
single ramping process in figure 5. It shows that while the center of mass gets closer to the middle of the
ladder, the fidelity always has a large value. Thus the oscillation of F is related to the Bloch oscillations of
the atomic cloud, which are triggered by the non-Faraday synthetic electric fields that are generated during
the ramp for non-zero η.

A.2. Meissner-like phases
The ground state chiral current can be used to characterize different phases in a ladder system, like the
Meissner or vortex phase. Based on the continuity relation, the local current operators on legs and rungs are
respectively defined as [36, 39, 72, 79],

ĵ‖m,n = iJ
(

e−i(φ(1/2−n)−η) â†m,nâm+1,n − h.c.
)

, (A1)

ĵ⊥m = iJ⊥
(

â†m,0âm,1 − h.c.
)

, (A2)

which gives the global chiral current jc =
1
M

∑M−2
m=0

〈̂
j‖m,0 − ĵ‖m,1

〉
. At small fluxes, probability currents exist

only along the legs and behave like screening currents, thus the low-flux phase is identified as a MP, in
analogy to that in a type-II superconductor. For large values of the flux, the system enters into a vortex
phase, where finite rung currents emerge and form vortex structures. From figure 6 we can see that for
J⊥/J = 2,φ = π/2, the system with finite size assumes a Meissner-like phase for various values of U.

A.3. Bogoliubov theory
The Hamiltonian can be written as

Ĥ = ĤS + ĤI (A3)

ĤS = −J
∑

r

(
eiθ1 â†1,r+1â1,r + eiθ2 â†2,r+1 â2,r + h.c.

)
− J⊥

∑
r

(
â†2,râ1,r + â†1,râ2,r

)
(A4)

ĤI =
U

2

∑
r

(
â†1,râ

†
1,râ1,râ1,r + â†2,râ

†
2,r â2,râ2,r

)
. (A5)

Here â†1,r (â1,r) and â†2,r (â2,r) are the creation (annihilation) operators on the rung r in the lower and upper
leg respectively, J denotes the amplitude of nearest-neighbor tunneling along the legs, with θ1,2 = −η ± φ/2
being the corresponding Peierls phases, so that the flux in each plaquette is φ and we consider φ = π/2
here.
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Figure 5. Fidelity F (upper panel) and center of mass 〈X〉 (lower panel) as a function of time within (a) τ = 200 and
(b) τ = 700. The origin 〈X〉 = 0 is defined to lie at the middle of the ladder. (c) Spatial density and probability current
distributions at t/τ = 0.6 with τ = 200. A-C correspond to η/φ = 0, 0.5, 1.5 respectively. It shows that the closer of
center-of-mass to the middle of ladder, the larger fidelity is obtained. Other parameters are chosen as
U = 0, J⊥ = 2,φ(t) = (π/2)t/τ and M.

For a two-leg ladder with M rungs, under periodic boundary conditions along the legs, the
quasimomentum takes discrete value k = 2π

Ma m with m = 0,±1,±2, . . . ,±M/2 and a being the lattice
constant. By performing the Fourier transformation

âl,r =
1√
M

∑
k

eikarâl,k, l = 1, 2 (A6)

the above Hamiltonians can be expressed in quasi-momentum representation as

ĤS =
∑

k

(
ε1,kâ†1,kâ1,k + ε2,kâ†2,kâ2,k

)
− J⊥

∑
k

(
â†2,kâ1,k + â†1,kâ2,k

)
(A7)

ĤI =
U

2M

∑
{ki}

(
â†1,k1

â†1,k2
â1,k3 â1,k4 + â†2,k1

â†2,k2
â2,k3 â2,k4

)
× δ̃k1+k2,k3+k4 (A8)

with

ε1,k = −2J cos
(
ka + η − φ/2

)
(A9)

ε2,k = −2J cos
(
ka + η + φ/2

)
, (A10)

and periodic Kronecker symbol δ̃k,q vanishing unless k = q modulo reciprocal lattice constants 2π/a.

A.3.1. Diagonal basis

The single-particle Hamiltonian (8) can be diagonalized by choosing a different basis, i.e.(
â1,k

â2,k

)
=

(
uk −vk

vk uk

)(
b̂1,k

b̂2,k

)
. (A11)

The canonical commutation
[

âk, â†k′
]
= δk,k′ requires that

u2
k + v2

k = 1. (A12)
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Figure 6. Probability current patterns for different U at J⊥ = 2,φ = π/2, n = 1/2, M = 24. The arrow size is proportional to
the expectations values of the local currents.

Substituting equations (A11) to (A7), and imposing all the off-diagonal terms to vanish, the single particle
Hamiltonian is diagonalized as

ĤS = E+b̂†1,kb̂1,k + E−b̂†2,kb̂2,k, (A13)

with

E+ =
1

2

(
ε1,k + ε2,k +

√
4J2

⊥ +
(
ε1,k − ε2,k

)2
)

(A14)

E− =
1

2

(
ε1,k + ε2,k −

√
4J2

⊥ +
(
ε1,k − ε2,k

)2
)

(A15)

u2
k =

1

2

⎛⎝1 − ε2,k − ε1,k√
4J2

⊥ +
(
ε1,k − ε2,k

)2

⎞⎠ . (A16)

A.3.2. Truncation to the lowest band

The terms related to b̂2,k (b̂1,k) correspond to the lower (upper) band. Since the system possesses a large
band gap for the parameters used (J⊥ = 2J), for weak interaction we are allowed to truncate our
Hamiltonian to the lowest band. To do this we substitute equation (A11) into the Hamiltonian and neglect
the b̂1,k terms. In this case, the full Hamiltonian is truncated to the lowest band [41],

Ĥ =
∑

k

E− (k) b̂†kb̂k +
U

2M

∑
{ki}

Γk1,k2,k3,k4 b̂†k1
b̂†k2

b̂k3 b̂k4 δ̃k1+k2,k3+k4 , (A17)

where b̂k = b̂2,k and we have defined Γk1,k2,k3,k4 = vk1vk2vk3vk4 + uk1uk2 uk3 uk4 .

A.3.3. Bogoliubov approximation

For weak interactions and at low temperature, the number N0 of particles occupying the single-particle
ground state with quasi momentum k0 remains of the order of total particle number N in a system of finite
extent. Thus one can make the approximation

N̂0 = b̂†k0
b̂k0  N̂0 + 1 = b̂k0 b̂†k0

(A18)

which leads to

b̂k0  b̂†k0
=

√
N0 (A19)

b̂k =
√

N0δk,k0 + b̂k

(
1 − δk,k0

)
. (A20)
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Keeping all the terms up to second order in b̂k �=k0 , the Hamiltonian (18) becomes

Ĥ = E− (k0) N0 +
U

2M
Γ0UN2

0 +
∑
k �=0

E− (k + k0) b̂†kb̂k

+
UN0

2M

∑
k �=0

[
Γ1

(
b̂kb̂−k + b̂†kb̂†−k

)
+ 4Γ2b̂†kb̂k

]
, (A21)

with the coefficients

Γ0 = v4
k0
+ u4

k0
= 1/2 (A22)

Γ1 =
(
vk+k0vk0−k + uk+k0 uk0−k

)
/2 (A23)

Γ2 = v2
k0
v2

k+k0
+ u2

k0
u2

k+k0
= 1/2, (A24)

where we have used v2
k0
= 1/2 = u2

k0
according to equations (A9), (11) and (17).

Substituting N0 = N −
∑

k �=0 b̂†kb̂k and keeping the terms up to second order in b̂k, we arrive at

Ĥ = E0 −
∑
k>0

C−k +
∑
k>0

Ĥk

Ĥk =
(

b̂†k b̂−k

)(
Ck 2Dk

2Dk C−k

)(
b̂k

b̂†−k

)
, (A25)

with

E0 = (E− (k0) + UnΓ0) N (A26)

Ck = E− (k + k0) − E− (k0) + Un (4Γ2 − 2Γ0) (A27)

Dk = UnΓ1 = D−k ≡ D. (A28)

Here we have introduced the total particle number per site n = N
2M , and the additional term −

∑
k>0 C−k

comes from the commutation relation b̂†−kb̂−k = b̂−kb̂†−k − 1.

A.3.4. Diagonalization

To diagonalize the Hamiltonian (26), we perform the Bogoliubov transformation(
b̂k

b̂†−k

)
=

(
μ ν
ν μ

)(
ρ̂k

ρ̂†−k

)
, (A29)

with quasiparticle annihilation (creation) operators ρ̂k (ρ̂†k). Requiring bosonic commutation relations for
the quasiparticle operators, we have

μ2 − ν2 = 1. (A30)

To get the expressions for μ, ν, we plug equations (A29) into (26) and impose that

Ĥk =
(
ρ̂†k ρ̂−k

)(
γ1 0
0 γ2

)(
ρ̂k

ρ̂†−k

)
. (A31)

Thus we have (
γ1 0
0 γ2

)
=

(
μ ν

ν μ

)(
Ck 2Dk

2Dk C−k

)(
μ ν

ν μ

)
(A32)

which leads to the solutions:

γ1 =
1

2

(
Ck − C−k +

√
(C−k + Ck)2 − 16D2

)
(A33)

γ2 =
1

2

(
−Ck + C−k +

√
(C−k + Ck)2 − 16D2

)
(A34)

μ2 =
1

2

(
1 +

C−k + Ck√
(C−k + Ck)2 − 16D2

)
. (A35)

10



New J. Phys. 23 (2021) 063017 B Wang et al

A.3.5. Bogoliubov ground state

In the following, we follow reference [88] and construct the Bogoliubov ground state
∣∣ΨB

0

〉
, which is defined

as the state with no quasi-particle, i.e.

ρ̂k

∣∣ΨB
0

〉
= 0, ∀ k �= k0. (A36)

As the Bogoliubov transformation (30) connects the states with k and −k, the Bogoliubov ground state can
be expressed as the states where nk particles are present in k states and n−k particles are in the −k states [88],
i.e. ∣∣ΨB

0

〉
=

∏
k

∑
n,n−k

Ck
nk ,n−k

(b̂†k)nk

√
nk!

(b̂†−k)n−k

√
n−k!

|0〉, (A37)

where |0〉 denotes the vacuum state. Substituting equations (A37) into (37) and using the expression of
ρ̂k = μb̂k − νb̂†−k according to equation (A29), we have

∏
k

∞∑
nk ,n−k=0

(
Ck

nk+1,n−k
μ
√

nk + 1+Ck
nk ,n−k−1 − ν

√
n−k |nk, n−k〉

)
= 0, (A38)

where we define Ck
nk ,−1 = 0. Since the basis {|nk, n−k〉} are orthogonal, we get

√
nk + 1Ck

nk+1,n−k
+ αk

√
n−kCk

nk ,n−k−1 = 0 (A39)

with αk = −ν/μ for short.
By setting n−k = 0 in the above equation equation (A39), we have Ck

nk+1,0 = 0 (nk � 0). The similar

procedure for b̂1,−k

∣∣ΨB
0

〉
= 0 gives us Ck

0,n−k+1 = 0 (n−k � 0). Based on these observations, it turns out that

all the ‘off-diagonal’ components vanish, i.e. Ck
nk+1,n−k

= 0 (n−k �= nk + 1). In the case of n−k = nk + 1,
equation (A39) gives us the following expression of the diagonal terms

Ck
nk ,nk

= (−αk)nk Ck
0,0, (A40)

where Ck
0,0 is determined from the normalization of the wave-function. Therefore, the Bogoliubov ground

state is a state where pairs of particles with wave vector k and −k are excited.
We denote |n1,n2, . . .〉 as a state with n pairs of particles with non-zero quasi-momentum k and −k, and

|ψ0〉 as the state with k = 0. In this case the Bogoliubov ground state takes the following form∣∣ΨB
0

〉
= Z

∑
n1,n2

[(
−αk1

)n1
(
−αk2

)n2 . . .
]
|n1, n2, . . .〉 |ψ0〉 , (A41)

where Z =
∏

k>0

√
1 − α2

k is the normalization factor.

The state |ψ0〉 for k = 0 is a coherent state b̂0 |ψ0〉 = ψ0 |ψ0〉 and reads

|ψ0〉 = Z0

∑
n0

ψn0
0√
n0!

|n0〉 , (A42)

where we have defined the vacuum state |vac〉 for the real particles operators b̂k, i.e. b̂k |vac〉 = 0. The

normalization factor is Z0 = exp
(
−|ψ0|2/2

)
.

According to equation (A41) we have the overlap of two ground states

O =
〈
Ψ′B

0

∣∣ΨB
0

〉
= ZZ′ 〈ψ′

0|ψ0〉
∏
k>0

1

1 − α′
kαk

. (A43)

The overlap of coherent states Ocoh ≡ 〈ψ′
0|ψ0〉 is obtained by using equation (A42),

Ocoh = e
(
−|ψ′

0|2−|ψ0|2+2ψ′
0ψ0

)
/2

, (A44)

which reads Ocoh  1 under Bogoliubov approximation ψ′
0 =

√
N ′

0/2 
√

N/2  ψ0.
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Figure 7. (a) Semi-log plot of ground state overlaps O(π/2) from Bogoliubov theory as a function of interaction U, for different
number of rungs M. (b) Semi-log plot of O(π/2) as a function of M for different U. (c) and (d) Same plot as (a)and (b), but for
DMRG simulations. Both (b) and (d) shows exponentially decay of the overlap with respect to M. (e) Scaling quasimomentum
peak nkM−3/4 as a function of U for different M. The crossing corresponds to BKT-transition points, which can be further
confirmed by the mass gap shown in the inset.

Figure 8. (a) Number of particles with non-zero quasi-momentum for φ = 0 (solid line) and φ = π/2 (dashed line), scaled
with total particle number N. (b) Difference of non-zero k mode occupation between φ = π/2 and φ = 0. Here we choose the
number of rungs M = 60, number of particles N = 60, and J⊥ = 2.

A.3.6. Occupation of finite momentum states

In the Bogoliubov ground state
∣∣ΨB

0

〉
, pairs of bosons are virtually excited to state with k and −k. The

average number of virtually excited bosons with wave vector k is obtained from the Bogoliubov
transformation (30) and the definition of Bogoliubov ground state (37),

nk =
〈
ΨB

0

∣∣ b̂†kb̂k

∣∣ΨB
0

〉
= |ν|2. (A45)

We denote Nk �=0 as the number of virtually excited particles, i.e. the number of particles in the state |k �= 0〉,

Nk �=0 = 2
∑
k>0

nk = 2
∑
k>0

|ν|2. (A46)

A.3.7. Results

Now we apply the above expressions in our ladder system at 1/2 filling with J⊥ = 2. We plot the analytic
result for the overlap equation (A43) for M-rung ladder with periodic boundary condition in figure 7(a),
which shows qualitative agreement with the dip behavior in the weakly interacting regime from the DMRG
simulations of finite system with open boundary conditions (figure 7(c)). Note that the DMRG results for
the interacting regime have been divided into three regions. The beginning and the end of the gray shaded
region are given by the BKT transition from a superfluid to a Mott insulator for φ = π/2 and φ = 0,
respectively. By extracting from the finite-size scaling of peaks in quasimomentum distribution nmax

k M−3/4
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[33, 39, 87], the crossing determines the BKT-transition points at Uc1 ≈ 10.4 for φ = 0 and Uc2 ≈ 4.2 for
φ = π/2 (figures 7(e) and (f)). Overall, both the analytic and numerical results show that the overlaps
decay exponentially with the system size for finite U, and approach 1 for the non-interacting case
(figures 7(b) and (d)).

To understand the dip in the weakly interacting regime, we plot the average number of particles with
non-zero quasi momentum Nk�=0 according to equation (A46), and the relative difference in the occupation

of non-zero k-modes Δnk =
nk(π/2)−nk(0)
nk(π/2)+nk(0) between φ = π/2 and φ = 0 in figures 8(a) and (b), respectively.

We can observe that when switching on the interactions, the excited quasi momentum modes become
occupied much faster in the presence of magnetic flux. This is related to the fact that the single-particle
dispersion relation E−(k) acquires a larger effective mass with increasing flux (see figure 4(a) in the main
text). As a result, the momentum modes become occupied rather differently for both fluxes when U is
switched on, as can be seen from figure 8(b). The slight increase of the overlap for even larger U can then be
explained by the fact that the relative differences in the momentum distributions for both fluxes become
smaller again.
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