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Chapter 1

Introduction and Literature

Survey

Hybrid systems arise from nontrivial interaction between discrete-event sub-

systems (usually modelled by finite automata) and continuous subsystems

(described by differential or difference equations). Therefore, neither meth-

ods from discrete-event systems theory nor methods from continuous sys-

tems theory alone can be used to adequately analyse and control systems

of this kind. An additional difficulty is that the restrictions imposed on the

system often refer to different aspects of the system dynamics and, hence,

cannot be addressed in a uniform way. There are two widely used approaches

aimed at overcoming this problem. The first one, called continuation, is

based on the conversion of a hybrid system into a purely continuous dy-

namical system (see, e.g., [14, 13]). This approach has several drawbacks,

among which is increased complexity of the resulting system dynamics (see

[12] for a detailed analysis). The second approach is to approximate contin-

uous dynamics by a discrete event system (see, e.g., [27, 58, 21, 65]). In this

way, the hybrid control problem is transformed into a purely discrete one.

In particular, in [78], Moor and Raisch proposed an approximation-based

approach set within Willems’ behavioural system theory framework. This

approach allows to approximate a hybrid system by a nondeterministic finite

automaton which can be effectively treated by the Ramadge-Wonham su-

pervisory control theory. As many other approximation-based approaches,

it also suffers from the “curse of complexity”. The state set of the ap-

proximating automata can grow enormously even for comparatively simple

systems. Hence, complexity becomes a key problem in control design for

hybrid systems.

A hierarchical control approach could be a way out of this problem.

Obviously, a decomposition of the controller into several levels can signif-
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icantly facilitate the design procedure. Moreover, it allows an engineer to

introduce some intuition into the control systems design. A theoretical basis

for the hierarchical control synthesis was developed within the behavioural

systems theory framework (see [97] and references therein). Unfortunately,

there are still only few practical applications of this approach. Moreover,

the conditions proposed in [97] are not always easy to check in practice.

The dissertation is intended to close this gap between theory and prac-

tice. Its main contribution consists in the following:

• A unified framework which allows for a constructive description and

analysis of all levels of a hierarchical control structure is proposed.

This framework is based on realising control systems by state ma-

chines. We show that most practically relevant classes of control sys-

tems can be described as input/output state machines and give a clas-

sification of such state machines.

• Developing the results obtained in [97], we formulate a set of construc-

tively verifiable conditions which guarantee a non-conflicting interac-

tion of all control levels.

• Two particularly useful classes of intermediate control layers are de-

scribed and analysed with respect to the non-conflictingness property.

• We consider two cases where the developed approach is applied to

practically relevant control problems. In the first case, we consider an

optimisation problem for a hybrid system under safety and liveness

conditions. It is shown that this problem can be efficiently solved in

a hierarchic way: the low-level controller enforces safety and liveness

constraints while the high-level controller performs optimisation. In

the second case, the low-level controller is designed to render the plant

monotone.

The thesis is arranged as follows: in this chapter, we give a review of dif-

ferent approaches to hierarchical control systems design and introduce some

concepts which will be extensively used in the sequel. Chapter 2 provides

all necessary information from behavioural systems theory as well as the no-

tion of supervisory control. In Chapter 2, we also consider the class of I/S/-

machines and analyse their properties. Furthermore, for the case of feed-

back interconnection of two dynamical systems we formulate two theorems

which will serve as the foundation for the subsequent results. In Chapter 3,

we consider both two-level and multi-level hierarchical control architectures.

Moreover, we define non-conflictingness conditions and analyse two particu-

larly important types of intermediate control layer. Chapter 4 is devoted to
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optimal control of a discrete-time hybrid automaton under safety and live-

ness constraints. Finally, in Chapter 5 we show how a hierarchical approach

can be used to simplify the system dynamics. It contains new results on

how to efficiently check and enforce monotonicity.

1.1 Hierarchical systems theory

The use of hierarchical concepts for the synthesis of control systems can be

traced back to the mid 50’s, when first results on cascade control systems

were published [35]. Cascade control can be seen as a precursor of hierarchi-

cal control. Indeed, while designing the outer feedback loops in a control cas-

cade, one assumes that the behaviour of the inner closed-loop subsystem can

be described by a fairly simple model. These ideas were further developed

in [32], where the basic principles of the hierarchical control architecture

were formulated (albeit not referring to the hierarchy as such). Later on,

during the 60’s, a vast body of theoretical research on the foundations of hi-

erarchical systems theory was done, which culminated in the seminal book

“Theory of Hierarchical, Multilevel Systems” [77], by Mesarović, Macko,

and Takahara, where the basic principles of multilevel hierarchical control

have been formulated. Simultaneously, the theory of multilayer hierarchical

control was developed. The difference between these two theories can be ex-

pressed in the following keywords: “decomposition” and “coordination” for

multilevel systems theory, and “aggregation” and “multiple time-scales” for

its multilayer counterpart. In this work, we develop an approach which is

based on the ideas from both multilevel and multilayer hierarchical control

theories. Below, we give a short description of these theories.

1.1.1 Multilevel hierarchical control

In multilevel control theory, the control system is assumed to be decompos-

able in a set of coupled subsystems. The decomposition can be done based

on the physical or logical system structure. Each subsystem is connected to

a local controller which solves a particular local control problem. In order

to achieve the overall control goal and to ensure consistent functioning of

all subsystems, a higher level controller is designed to coordinate the local

controllers by modifying their individual goals. In a two-level hierarchical

control system, shown in Fig. 1.1, the high-level controller (coordinator)

modifies the local goals by setting parameters γi, which are referred to as

coordination parameters. The high-level feedback variables ωi contain in-

formation about the performance of the local controllers Ci.

In [77], the basic notions of coordinability and consistency were defined.

A system is said to be coordinable if there exists a supremal coordination

3
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Plant

Coordinator

u1 u2 un

y1 y2 yn

P1 P2 Pn
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ω2

γ1 γ2 γn

ωnω1

Figure 1.1: A multilevel hierarchical control system

control (i.e., values of coordination parameters) such that a solution of all

local control problems exists. The consistency postulate says that whenever

the high-level and local controllers can solve their respective problems, an

overall solution exists. Furthermore, the notions of feasible and unfeasible

problem decompositions were introduced. The latter case refers to the fact

that while the coordinating parameters are determined using an iterative

optimisation procedure, only the final solution respects constraints imposed

on the system. For more details about these notions see [73] and references

therein.

The theoretical concepts developed by Mesarović and his coworkers were

put into a concrete dynamical systems framework by Singh [108], Findeisen

et al. [34], and Stoilov and Stoilova [112]. It is worth noting that multilevel

control ideas are mainly applied to the solution of complex optimisation

problems, both static and dynamic, where the overall optimisation problem

can be decomposed in a set of coupled subproblems which can be treated

(relatively) independently. The coordinator optimises an overall cost func-

tion while respecting restrictions imposed on the whole system.
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1.1.2 Multilayer hierarchical control

In contrast to multilevel structures, multilayer hierarchical control theory

is primarily concerned with different representations (models) of a complex

plant. In a multilayer structure the specification of control is split into algo-

rithms which operate on different time scales and take their decisions based

on models of different granularity. Note also that the high-“level” models

must take into account the low-“level” control algorithms, i.e., represent the

plant under low-“level” control. A symbolic representation of a multilayer

structure is shown in Fig. 1.2.
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e 
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Intermediate

Supervisory functions, adaptation

Optimisation, intermediate control

Short time horizon

Long time horizon
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(c

oa
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e)
(f

in
e)

(s
ho

rt
)

(l
on

g)

Figure 1.2: A multilayer hierarchical control system

Below, we briefly characterise the typical features of a multilayer hierar-

chical structure [34, 66, 109, 115]:

1. Functional hierarchies. A specific feature of a multilayer control

architecture is that different layers have a different functionality. Al-

though the allocation of tasks between different layers strongly de-

pends on the particular problem, we can formulate some general prin-

ciples. The controllers at the bottom of the hierarchy are designed

to keep the system at a prescribed operating point (regime). These

local controllers are designed to cope with disturbances, thereby allow-

ing higher layers to use a simplified system description when defining

their control objectives. The tasks of the intermediate layers may
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include, e.g., optimisation and setting the operation points for the ser-

vocontrollers. The top layer, in turn, is responsible for the long term

functioning of the system. It modifies the system structure to adapt

to changing external conditions. In manufacturing applications, the

highest layer is often in charge of the long term scheduling.

2. Time-scale decomposition. Different problems solved at the re-

spective layers require different time scales. The local controllers work

either in continuous time or in discrete time with rather high sampling

rates. They have to react immediately while having information over

a small time interval. The time window of intermediate controllers is

usually much larger. The highest layer, in turn, evolves in logical time

formed by a sequence of events produced by the lower layers.

3. Hierarchy of models. Each of the layers has a different model of the

controlled system; the model used at the top layer is least detailed. At

the same time, the models used by the higher layers must incorporate

the lower layers. The procedure of building appropriate models of the

process is called model approximation or model abstraction. These

issues are described in detail in Sec. 1.1.3.

The multilayer hierarchical control architecture has been used in a wide

variety of applications: intelligent control for unmanned aerial vehicles [11],

process control [28], robotic control [16], and water management [93], just

to mention a few. In [39], a hierarchical structure of the Intelligent Vehicle

Highway System (IVHS) was described. The proposed hierarchical control

architecture consists of the following layers: the network layer (at the top),

the link layer, the coordination layer, the regulation layer, and the physical

layer (plant).

In [62], Larsson and Skogestad consider a typical process control system

as a hierarchical structure with several layers. The layers are distinguished

according to their time-scales: scheduling (weeks), site-wide optimisation

(days), local optimisation (hours), supervisory/predictive control (minutes)

and regulatory control (seconds). It can be easily seen that these layers do

also differ with respect to the amount (and character) of information they

need for the fulfilment of their tasks.

1.1.3 Model approximation and abstraction

In this section, we discuss different approaches to a simplified description of

complex systems. This is a central problem in hierarchical control design

since each particular control layer requires a specific plant model. These

models can be more or less specialised depending on the control problem

6



solved by the layer. Below, we consider several concepts related to this

problem.

Approximation refers to a procedure which replaces a complex system

Σ with its simplified model Σapp, while retaining the main features of the

original system.

One particular case of approximation is called model reduction. In this

case we say that the system Σ is replaced by its reduced model Σr. There

are a number of features which (completely or partially) may characterise

the reduced model Σr:

• The dynamics of Σr is sufficiently close to the dynamics of the original

problem. To estimate the closeness of both dynamics an approxima-

tion error is calculated. The global error bound gives a quantitative

estimation for the precision of the approximation.

• Stability, controllability and further qualitative characteristics are pre-

served.

• The reduced model can be treated analytically in an easier way than

the original system.

There is a vast body of research devoted to the approximation/model

reduction of complex systems (see, e.g., [87, 3, 9]). Various methods exist

which allow to find a reduced model with respect to certain system charac-

teristics with a prescribed accuracy. The dynamics of the model Σr can be

kept rather close to the dynamics of the initial system. However, in many

safety-critical applications the designer wants to ensure that the approxima-

tion does indeed contain the whole set of trajectories of the initial system.

On the other hand, in many cases the approximation may not contain any

signals which are not compatible with the original system. To capture these

requirements the notions of over-approximation and under-approximation

have been introduced. In general, Σo is said to be an over-approximation of

Σ if any trajectory σ compatible with Σ is also compatible with Σo. An over-

approximation is often referred to as a conservative approximation. On the

other hand, the system Σu is said to be an under-approximation of Σ if any

trajectory σ compatible with Σu is also compatible with Σ. Fig. 1.3 gives a

schematic illustration of approximation, over- and under-approximation.

One particularly interesting approach is based on selecting some specific

properties of the system dynamics and analysing the system behaviour with

respect to these properties while neglecting remaining aspects. This proce-

dure is called aggregation. The idea of aggregation is intimately connected

with the notion of equivalence relation [10]. An equivalence relation is a

binary relation a ∼ b defined for any two elements of some set X. An equiv-

alence relation is reflexive, symmetric and transitive. The equivalence class

7



Σ

Σo

Σr

Σu

Figure 1.3: Reduced model, over- and under-approximation

of a under ∼, denoted [a], is defined as

[a] = {b ∈ X|a ∼ b}.

The set of all equivalence classes of X, denoted X/ ∼, is referred to as the

quotient set of X by ∼.

Let Ψ : X → Y be a surjective mapping from X onto Y . This mapping

also introduces an equivalence relation. We say that x′ and x′′ from X are

equivalent, i.e., x′ ∼ x′′, if Ψ(x′) = Ψ(x′′). Thus, one can define the quotient

set of X by Ψ, denoted X/Ψ. We say that the mapping Ψ aggregates the

set X by grouping the elements from one equivalence class.

Aggregation can also be applied to dynamical systems. Fig. 1.4 shows

a dynamical system Σ with input signal u ∈ U and output signal y(t) =

Ψ(x(t)), where x(t) is the state at time instant t. A dynamical system Σagg

is said to be an aggregated model of Σ if it possesses the same I/O dynamics

as Σ.

Σ

x

u y

Ψ

Figure 1.4: Model aggregation

We illustrate the notion of model aggregation for the case of a linear

time-invariant dynamical system [4, 60]

ẋ(t) = Ax(t) + Bu(t), (1.1)
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where x(t) ∈ X, u(t) ∈ U and X and U are vector spaces. Let S be a

linear subspace of X. It introduces an equivalence relation in the following

way: x′, x′′ ∈ X are said to be equivalent if x′′ − x′ ∈ S. The quotient

set X/S can be defined in a usual way. Moreover, we can define a vector

addition and scalar multiplication on X/S which turns X/S into a vector

space. Thus, the aggregation mapping Ψ reduces to a linear transformation

C : X → X/S:

y(t) = Cx(t). (1.2)

We want to represent the aggregated model of (1.1),(1.2) as a linear system

ẏ(t) = Fy(t) + Gu(t). (1.3)

The relationship between (1.1) and (1.3) can be described by the following

diagram:

X
A
−→ X

B
ր

U ↓ C ↓ C
G
ց

X/S
F
−→ X/S

(1.4)

We say that aggregation is perfect if the diagram (1.4) commutes, i.e., if

G = CB and FC = CA. Moreover, the initial states have to be consis-

tent: y(0) = Cx(0). Later, Kwong and Zheng [61] extended this approach

to nonlinear systems, but the obtained conditions for the existence of an

aggregated model turned out to be rather restrictive.

Recently, the concept of abstraction has drawn particular attention of

(hybrid) control theorists [90, 1, 114]. The abstraction of the system is de-

fined to be another system which preserves certain properties of the original

system while ignoring details. As a rule, the abstracted system has a state

space of less cardinality than that of the original system or is structurally

simpler (see Fig. 1.5 for illustration). The main advantage of using such

simplified models is that one can use well developed formal methods for

analysis and design of control mechanisms for complex systems [1, 46].

The abstraction procedure is so closely related to approximation and ag-

gregation that these terms are often used synonymously. At the same time,

there are some characteristic features for abstractions. Typically, the input

and output sets of an abstracted system have less cardinality than those of

the original one. This distinguishes abstraction from aggregation, since an

aggregated system normally has the same control inputs. Thus, one has to

establish the correspondence between the trajectories of the abstracted and

original system. This is done by an interface layer Σint whose functioning

is described in detail in Sec. 3.4. Furthermore, since the abstracted system

9



Implementation layer
Interface layer

Plant

z

v z

yu

Σint/

v

Σa

Σimp

Σ

Figure 1.5: A (feedback-based) abstraction

has a simpler structure/dynamics than the underlying complex system, its

I/O behaviour does not coincide with the I/O behaviour of the composite

system Σint[Σ]. An exact correspondence can be achieved only for discrete-

event systems or for systems with strongly restricted continuous dynamics

[118, 113]. This is referred to as bisimulation. For more complex dynam-

ical systems, one requires the I/O behaviour of the abstracted system to

over-approximate that of Σint[Σ]. It is said that the abstraction has to be

conservative.

There exist different abstraction techniques which can be classified ac-

cording to the class of the original/abstracted system. For instance, Asarin

et al. [6] propose to abstract complex dynamical systems by hybrid au-

tomata with simpler continuous dynamics. In [94, 30], abstractions of hy-

brid automata by timed automata were studied. One of the most widely

used abstraction technique is the abstraction of complex (hybrid) systems

by discrete-event systems, in particular by finite automata. The choice of

finite automata is due to the fact that the theory of discrete-event systems

provides a wide range of well-developed and computationally efficient meth-

ods for analysis, verification, and supervisory control design [20, 124].

During the last decade, there have been a number of results in this direc-

tion. In [27], continuous hybrid systems are over-approximated by a special

class of finite automata, namely Muller automata. The approximation pro-

cedure is based on the subsequent computation of forward and backward

reachable sets. In [22], Chutinan and Krogh proposed a method to compute

discrete abstraction for polyhedral invariant hybrid automata. State tran-

sitions of the abstracted system are determined by computing polyhedral

approximations to the reachable sets. Lunze and Schröder [69, 103] used

stochastic automata to approximate hybrid and continuous systems.
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As mentioned above, discrete abstractions have to provide an over-appro-

ximation of system’s behaviour. Therefore, it may happen that a solution

of a control problem cannot be found since this over-approximation may be

too coarse. To overcome this difficulty, the notion of ℓ-complete abstractions

has been proposed [98, 96]. This approach allows for computing a set of

abstractions ordered in the sense of approximation accuracy. Later, this idea

was extended by an iterative procedure alternating abstraction refinement

with trial controller synthesis [83].

One particularly fruitful approach, which has proved to be very useful

for different classes of systems is a feedback-based abstraction. In this ap-

proach, the system Σ with input and output signals (u, y), is abstracted by a

(simplified) model Σa, whose input and output (v, z) are not identical to the

I/O signals of the original system. Furthermore, an implementation layer

Σimp, enforcing the system to match the abstraction Σa is introduced. This

is illustrated in Fig. 1.5. The function of Σimp is twofold. First, it performs

the aggregation of the low-level signal: z = Ψ(y) (in some cases Ψ may be

chosen to be the identity). Second, it chooses the low-level control signal u

in such a way that the composite system Σimp[Σ] is externally equivalent to

the abstraction Σa. The control signal u is chosen as a function of both the

high-level input signal v and the low-level output y.

Below, we consider a couple of feedback-based abstraction techniques.

In [125], Zhong and Wonham proposed a hierarchical structure for the

supervisory control of discrete-event systems. The concept of hierarchical

consistency is proposed, which means that “the model of control available

at any given level of hierarchy can be utilised with assurance that the next

level down will respond as required or expected” [125]. Later, an abstraction

procedure, based on the state space aggregation, was proposed by Caines and

Wei [18] for finite automata and further extended to the case of continuous

systems [19]. This approach is based on the decomposition of the state space

of the system in a set of disjoined subsets (partition blocks): π = {Xi}i=1,|π|.

A pair (Xi, Xj) of partition elements1 is said to dynamically consistent if for

any x′ ∈ Xi there exists a low-level (feedback) control u, which steers the

state into Xj without visiting other blocks. Then, the initial system Σ can

be abstracted by a partition machine Σpm, where the high-level transitions

are defined for all dynamically consistent pairs (Xi, Xj). This structure is

illustrated in Fig. 1.6.

Further results on hybrid partition machines can be found in [64, 65]. It

should be noted, however, that the determination of a dynamically consistent

partition is a rather involved problem which can be solved successfully only

for particular classes of control problems.

1where the indices may be equal, i = j.
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Figure 1.6: A partition machine

Using methods from differential geometry, Pappas et al. developed the

theory of continuous abstractions of dynamical and control systems [90, 92,

91] (see also [76] for further details and examples). They introduced the

notion of Φ-related control systems (compare, e.g., with the notion of F -

related vector fields in [63, Ch. 4]) to establish a relation between the original

control system Σ and its continuous abstraction Σca. A distinctive feature of

this approach is that it establishes a relation between the vector fields of both

systems. Therefore, the system Σca cannot serve as an abstraction in the

proper sense since there is no rule which would establish a direct connection

between the trajectories of Σca and Σ. There can even be problems related

to well-posedness issues as was mentioned in [41]. However, this sort of

abstractions can be used for the reasoning about qualitative properties of

the underlying complex system such as, e.g., controllability [92].

Recently, Girard and Pappas [38] have proposed to use an interface which

forms the low-level control u in such a way that the original system Σ traces

Σca within some computable bounds. This puts the continuous approxima-

tions approach in the context of feedback-based approximation.

An example of feedback-based abstraction methods can be found in [42],

where the intermediate level was designed to make the underlying system

monotone. Then, the abstraction of the system behaviour can be easily

calculated while guaranteeing the conservativeness property. This will be

investigated in more detail in Ch. 5. Similar ideas were also used in [44, 37].
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1.2 Hybrid systems

Since the late 80’s, hybrid dynamic systems have become a very ”fashion-

able” topic of research within the control engineering community. The main

reason for this lies in the particular flexibility and expressiveness of hybrid

systems. Actually, there is rather a family of hybrid modelling concepts than

a unique one. However, there is one specific feature which is common for all

hybrid systems. They are characterised by a non-trivial interaction between

continuous and discrete dynamics. Because of this, hybrid dynamic systems

are very useful for modelling of complex technical systems which combine

both continuously operated plants and logic/discrete controllers. Moreover,

hybrid modelling formalism proved to be very useful for modelling these

systems at different levels of abstraction.

Here, we do not intend to give an extensive overview of the topic. A

good introduction to hybrid systems can be found in the lecture notes [104].

For a detailed description of the semantics and dynamics of hybrid systems

the reader is referred to a number of proceedings volumes, e.g., [15, 33, 74]

and to recent papers [40, 8, 51, 52, 70]. Very recently, a handbook of hybrid

systems control has been published [68].

There are many special classes of hybrid systems which differ in the type

of governing dynamical equations, in the structure of discrete transitions and

so on. These are piece-wise affine systems (PWA), switched systems, hybrid

automata (HA), and impulsive hybrid systems – just to mention a few.

Moreover, a hybrid system may communicate with its environment in two

different ways: synchronously and asynchronously. This important problem

is studied in details in Chapter 3, in particular in Sec. 3.4. Later on, we will

give a detailed description of particular classes of hybrid systems directly in

those sections where we will use them.
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Chapter 2

Ingredients from Behavioural

Systems Theory

Behavioural systems theory has been pioneered by Jan Willems in a series

of papers, e.g., [121, 122]. The main idea was to describe the behaviour of

a dynamical system as a set of all signals which the system can potentially

produce (or, in other words, which are compatible with the system). Be-

havioural systems theory allows one to study dynamical systems of different

nature (e.g., discrete-event, continuous- or discrete-time) in a uniform way

and, hence, can be used for the investigation of generic properties of these

systems.

In Section 2.1, we recall some basic concepts, which will be intensively

used in the sequel. Further, in Section 2.2, we give a definition of a special

class of dynamical systems, namely I/- systems (firstly introduced in [78]).

These systems can be seen as a generalisation of conventional input/output

systems. Section 2.3 is devoted to dynamical systems with a state space

structure. These systems can be constructively described as state machines.

In the following, we will widely use both behavioural and state space descrip-

tions of dynamical systems. In Section 2.4, we consider the interconnection

of two dynamical systems and study its properties. Finally, in Section 2.5,

we formulate a supervisory control problem within the behavioural frame-

work.

2.1 Dynamical systems, behaviours and their pro-

perties

In this section, we recall the notion of a dynamical system and its behaviour.

Further, we define and discuss some properties of behaviours which will be

used in the sequel. Most definitions are adopted from the papers [121, 122].

14



Definition 2.1.1 ([121]) A dynamical system Σ is defined as a triple

Σ = (T, W,B),

where T is the time axis, W is an abstract set, called the signal alphabet,

and B ⊆ W T is the behaviour.

We will follow a constructive approach and assume that system’s be-

haviour consists of all signals that satisfy a certain set of laws. These laws

can be described by difference, differential or algebraic equations (or inequal-

ities) and their combinations. These equations may also contain Boolean

expressions. We call these equations behavioural equations. Furthermore,

from now on we will use the terms “dynamical system” and “behaviour” in-

terchangeably. Obviously, a signal is compatible with the dynamical system

if it belongs to the system behaviour and vice versa. The statement that a

system possesses some property implies that its behaviour has this property

too.

To specify the class of problems we are dealing with we make several

assumptions:

A1. The time axis T is a linearly ordered additive semi-group (i.e.,

{t1, t2 ∈ T} ⇒ {t1 + t2 ∈ T}) with a minimal element (i.e., ∃τ ∈ T s.t. τ ≤

t ∀t ∈ T). The order relation ≤ is introduced in a natural way.

A2. The behavioural (dynamical) equations of the processes under inves-

tigation are time-invariant, i.e., they do not change under the transformation

t′ = t + ∆t, ∆t ∈ T.

Thus, there exists an initial time instant. This is a very natural assump-

tion. Moreover, due to the second assumption, the initial time instant can

be identified with zero. In the following, without loss of generality, we will

consider only two cases: T = R≥0 and T = N0. A more general case can be

easily addressed at the cost of increased notational complexity.

Let us now consider a simple example of electrical systems and their

associated behaviours.

Example 2.1.2 In Fig. 2.1a) a linear electrical circuit is shown. Let’s

assume that we are interested in voltage v(t) and current i(t), t ∈ R≥0. The

behavioural equations are























vR = R iR (Ohm′s equation)

vL = L d
dt iL (Inductance equation)

iL = iR = i (Kirchhoff ′s current law)

vL + vR = v (Kirchhoff ′s voltage law)
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Figure 2.1: Electrical circuits

After elimination of variables, we obtain a behavioural equation with

respect to the current i and the voltage v:

R i + L
d

dt
i = v.

Hence, the system behaviour is described as

Ba = {(i, v) ∈ (I × V )T | Ri + L
d

dt
i = v},

where I = V = R.

In the case of a nonlinear circuit (see Fig. 2.1b)) the behaviour is specified

by a combination of linear and Boolean equations:

Bb = {(i, v) ∈ (I × V )T | (i = k1v)[v ≥ 0] ∨ (i = k2v)[v < 0]}.

In the following, we consider several general properties of behaviours. As

in the case of conventional dynamical systems, we begin with the property

of time-invariance. This property can be easily defined in the framework of

behavioural systems. Note that time-invariance of a behaviour is in general

not equivalent to time-invariance of the system equations. We will address

the question of the interrelation of these two properties later, in Sec. 2.3.

Definition 2.1.3 (Time invariance, [121]) The dynamical system Σ =

(T, W,B) is said to be time-invariant if σtB ⊆ B for all t ∈ T, where σt

denotes the backward or left shift: (σtf)(t′) = f(t+ t′), σtB = {σtw |w ∈ B}

(see Fig. 2.2).

One important question is the relation of the behaviour and its con-

stituent signals. It turns out that in many cases it suffices to analyse only fi-

nite fragments of a signal to decide whether it belongs to a certain behaviour
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Figure 2.2: Backward shift

or not. Such behaviours are called complete. In practice, this means that

the equations determining the system behaviour do not involve integration

or summation over infinite intervals.

Definition 2.1.4 (Completeness, [121]) The dynamical system Σ =

(T, W,B) is said to be complete if

(w ∈ B) ⇔
(

w|[t1,t2] ∈ B|[t1,t2] ∀ t1, t2 ∈ T, t1 ≤ t2
)

,

where w|[t1,t2] is the restriction of signal w on the interval [t1, t2].

The next definition says that for some systems it is sufficient to consider

only fragments of fixed length ℓ. These systems are called ℓ-complete.

Definition 2.1.5 (ℓ-completeness, [121]) The dynamical system Σ =

(T, W,B) is said to be ℓ-complete if there exists ℓ ∈ T such that

(w ∈ B) ⇔
(

w|[t,t+ℓ] ∈ B|[t,t+ℓ] ∀ t ∈ T
)

.

If the system is 0-complete, it is called instantly specified (or memory-

less).

The obvious conclusion is that any ℓ-complete system is complete. In

certain cases the property of completeness can be proved formally. The

following lemma gives necessary and sufficient conditions for a linear discrete

time system to be complete.

Lemma 2.1.6 ([120], Prop. 4) Consider Σ = (T, Rq,B) with T = N0.

The system Σ is linear and complete iff B is a linear subspace of (Rq)T

which is closed in the topology of pointwise convergence.

Moreover, the behaviour of a complete time-invariant linear dynamical

system can always be described by a set of finite-dimensional linear equa-

tions.
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Theorem 2.1.7 ([120]) Let us consider the system Σ = (T, Rq,B) with

T = N0. Then there exists a polynomial matrix R with real coefficients such

that

B = {w : T → Rq|R(σ)w = 0}

iff Σ is linear, time-invariant, and complete, i.e. iff its behaviour B is lin-

ear, shift invariant (i.e., σB = B), and closed in the topology of pointwise

convergence in Rq.

Moreover, this theorem implies that any dynamical system described by

time-invariant linear difference equations is complete. Nonlinear dynamical

systems, in turn, do not have any uniform description, but we still can use

some ideas developed for linear systems. In particular, following the same

chain of thought as in the proof of Lemma 2.1.6 (see [120, Prop. 4]) one can

prove the following general result:

Lemma 2.1.8 Consider Σ = (T, Rq,B). The system Σ is complete if B is

closed in the topology of pointwise convergence.

Proof. Let w : T → Rq be such that w|[t1,t2] ∈ B|[t1,t2] for all t1, t2 ∈ T,

t1 ≤ t2. We have to show that w ∈ B. Let us consider two sequences: {τi}

such that τi ∈ T, i ∈ N which monotonically tends to the minimal element of

T as i → ∞, and {θk} such that θk ∈ T, k ∈ N and lim
k→∞

θk = ∞. Let t1 =

θ1 ∈ T. By assumption there exists wn ∈ B such that w|[τn,θn] = wn|[τn,θn].

The sequences wn converge pointwise to w as n → ∞. Since B is closed this

implies w ∈ B, as desired.

Note that this result applies to nonlinear systems evolving not only in

discrete, but also in continuous time. Furthermore, the result of Lemma

2.1.8 can be easily extended to the case of a final signal alphabet: W =

{w1, . . . }. This set can be equipped with the metric

ρ(x, y) =

{

0, x = y

1, x 6= y.

This metric induces a topology on the set W which is called discrete topology

[85]. Using these constructions one can easily define the notion of pointwise

convergence for signals defined on a finite set.

It should be noted, however, that Lemma 2.1.8 gives only a sufficient

condition for a nonlinear system to be complete. The following example

illustrates this.

Example 2.1.9 Let us consider Σ = (T, Rq,B) such that for some fixed

τ ∈ T

B = {w : T → Rq|w(t) ∈ S, w(τ) = 0, t 6= τ},
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where S in an open set in Rq. The behaviour B is not closed in the topology

of pointwise convergence though it is obviously 0-complete or memoryless.

Incompleteness is a rather rare phenomenon which appears only in par-

ticular cases. For instance, a system may be incomplete if its behavioural

equations involve operations over the whole time axis as illustrated in the

following example.

Example 2.1.10 Let us consider two behaviours: B1 = {w ∈ l2(N0, R
n) :

||w||2 < 1)} and B2 = {w ∈ l2(N0, R
n) : ||w||2 ≤ 1)}. Both are defined on

the Hilbert space of infinite sequences l2 equipped with the norm || · ||2 =
(

∞
∑

i=0
|w(i)|2

)
1

2

, where | · | is the standard Euclidean norm. The behaviour

B2 is complete whereas B1 is not. The latter follows from the fact that it is

always possible to find a sequence w̄ /∈ B1, ||w̄||2 = 1 which coincides with

sequence wk ∈ B1, ||wk||2 < 1, k = 1, . . . on the finite interval [0, k].

Another example will be considered in Sec. 2.3 in connection with the

full and external behaviour of a dynamical system.

Finally, we give a definition of a trim dynamical system.

Definition 2.1.11 (Trim system, [121]) The dynamical system Σ =

(T, W,B) is said to be trim if for all ω ∈ W there exists w ∈ B and t ∈ T

such that w(t) = ω.

In a trim system any symbol ω may occur. In most cases the system can

be rendered trim by a simple redefinition of the set W .

In the following, we will often need to perform operations on behaviours.

The standard set operations, such as union and intersection are defined

for behaviours in a usual way, since behaviours are sets. In addition, we

introduce two new operations:

• Concatenation. Let w1, w2 ∈ B and t ∈ T. We define concatenation

of w1 and w2 at t as

(w1 ∧t w2)(τ) =

{

w1(τ) τ < t

w2(τ) τ ≥ t.

The generalisation to concatenation of behaviours is straightforward:

B1 ∧t B2 = {w ∈ W T| w|[0,τ) ∈ B1|[0,τ) , w|[τ,∞) ∈ B2|[τ,∞)}.
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• Projection. Let B ⊆ (W1 × W2)
T. Projection PW1

B of B on the set

W1 is defined as follows:

PW1
B = {w1 ∈ W T

1 |∃w2 ∈ W T

2 , (w1, w2) ∈ B}.

Let B′ ⊆ W T
1 . The right inverse1 of the projection operator is defined

as

P−1
W1

B′ = {(w1, w2) ∈ (W1 × W2)
T|w1 ∈ B′}.

Often it is advantageous to consider signals as elements of a certain

functional space, especially if the signal space W = Rn. From now on, if

not stated otherwise, we assume that all discrete time signals w ∈ W N0 are

defined in the space ℓ∞(N0, W ) and all continuous signals w ∈ W R≥0 belong

to the set of locally integrable functions Lloc
1 (R≥0, W ). More details on the

development of behavioural concepts applied to specific classes of dynamical

systems can be found in [95].

2.2 Systems with inputs and outputs

Up to now, we assumed that there aren’t any distinctions among the single

components of the signal. However, in many dynamical systems there are

variables that can be freely assigned whereas the remaining ones cannot.

Hence, we need to define a specific class of variables, namely locally free

variables.

Definition 2.2.1 (Locally free variables, [121]) Let Σ = (T, W1×W2,B)

be a dynamical system. We say that the variable w1 is locally free if PW1
B

is trim and memoryless.

The following example illustrates the difference between these two types

of variables.

Example 2.2.2 Let us consider the discrete time dynamical system Σ =

(N0, W1×W2,B), W1 = W2 = R whose behaviour is defined in the following

way:

B = {(w1, w2) ∈ (R × R)N0 |w2(k + 1) = w2(k) · sin(w1(k)), k ∈ N0}.

Obviously, the signal w1 is locally free, i.e., PW1
B = W N0

1 , whereas the signal

w2 belongs to the set

W2 = {w2 ∈ W N0

2 : |w2(i + 1)| ≤ |w2(i)|, i ∈ N0} = PW2
B ⊂ W N0

2 .

1Note that PWP−1

W ≡ Id, whereas, in general, P−1

W PW 6≡ Id.
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The locally free variables can be considered now as natural candidates

for inputs. But it is still not sufficient for a system to have an input/output

structure. It has to be examined whether the outputs do not anticipate the

inputs.

Definition 2.2.3 (Non-anticipation, [121]) Consider Σ=(T, W1×W2,B).

We say that w2 does not anticipate w1 if

(

PW1
w̃|[0,τ ] = PW1

ŵ|[0,τ ]

)

⇒

⇒ (∃w ∈ B)
[

PW2
w|[0,τ ] = PW2

w̃|[0,τ ] and PW1
w = PW1

ŵ
]

for all w̃, ŵ ∈ B, τ ∈ T. Moreover, we say that w2 does strictly not anticipate

w1 if the premise in the above implication can be weakened to {PW1
w̃|[0,τ) =

PW1
ŵ|[0,τ)}.

In the following, we will consider dynamical systems satisfying both re-

quirements. They have free variables (which we call inputs) that are not

anticipated by the remaining variables (which, in turn, we call outputs).

The definition of such systems is given below.

Definition 2.2.4 (I/- system, [78]) The system Σ = (T, W1 × W2,B) is

said to be I/- w.r.t. (W1, W2) if:

1. w1 is locally free;

2. w2 does not anticipate w1.

Moreover, the system Σ is said to be strictly I/- w.r.t. (W1, W2) if the

following conditions hold:

1. w1 is locally free;

2. w2 does strictly not anticipate w1.

We will call W1 and W2 input and output sets and the signals w1 and w2

input and output, respectively.

Obviously, a strict I/- system is an I/- system.

From now on we will use the symbols U and u to denote the input set

and the input signal and the symbols Y and y to denote the output set and

the output signal. Sometimes, however, this may lead to some confusion,

especially in the case of interconnected systems where the output of one

system can be considered as the input of the other. In these cases, if it is

not clear from the context, we will explicitly say that the system is (strictly)

I/- with respect to (·, ·), where the first component refers to the input and

the second one to the output.
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One might notice that the definition of an I/- system is a slightly weak-

ened version of the definition of Willems’ I/O system. The difference is

that the former one does not require the output to process the input. This

requirement implies that there exists an operator F which maps the input

signal u to the output signal y (see [121, Th. 3.1]).

2.3 State systems

2.3.1 Dynamical systems in state space form

In the previous sections we implicitly assumed that the behaviour of a dy-

namical system consists of only those signals which can be immediately

observed, i.e. of external signals. However, it is often convenient to include

internal variables in behavioural description as well. The following example

illustrates this.

Example 2.3.1 Let us consider an electro-magnetic circuit consisting of a

coil with an iron core shown in Fig. 2.3a). The behavioural equation is

d

dt
Φ + Ri = v,

where the magnetic flux Φ depends on the magnetisation of the iron core, i.e.,

on the position of the working point on the hysteresis curve (see Fig. 2.3b).

Thus, in order to describe the behaviour of this electromagnetic system one

has to take into consideration the value of the internal variable Φ.

a) b)

∼

Φ

i

v i

Figure 2.3: Electro-magnetic circuit

We have seen that sometimes we have to consider not only those variables

through which the system “communicates” with its environment, but also

some internal variables (like the magnetic flux in the case of the electro-

magnetic circuit). These variables are called latent variables.
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Definition 2.3.2 (Latent variables, [121]) A dynamical system with la-

tent variables is a quadruple

Σa = (T, W, A,Ba),

where T is the time axis, W is the signal alphabet, A is the space of latent

variables and Ba ⊆ (W × A)T is the (extended) behaviour.

Moreover, there is one serious drawback which is typical for the in-

put/output behavioural description of dynamical systems: one has to ana-

lyse finite (but sometimes rather lengthy) fragments of the input/output

signals, which often appears to be very inefficient. Hence, one might ask

whether it is possible to find some quantities which would instantaneously

characterise the system. It is, indeed, possible to use latent variables for

this purpose if they satisfy the axiom of state.

Definition 2.3.3 (Dynamical system in state space form, [121]) Let

Σs = (T, W, X,Bs) be a dynamical system with latent variables x ∈ XT. We

will call Σs a dynamical system in state space form and X state space if the

following implication holds:

{(w1, x1), (w2, x2) ∈ Bs, x1(τ) = x2(τ), τ ∈ T} ⇒ {(w1, x1)∧τ (w2, x2) ∈ Bs}.

This implication is called the axiom of state. The state of the system

at time τ together with the future external signals completely characterises

the future evolution of the system and can be seen as a representative of the

entire interval (w, x)|[0,τ)∩T.

Any state system can be efficiently represented by a state machine. There

are different definitions of a state machine for discrete and continuous time,

but the difference is mainly in notation (cf. discrete and continuous time

evolution laws in [121, Sec. 1.5]):

Definition 2.3.4 (Discrete time state machine) A discrete time state

machine is a tuple Pd = (X, W, δ, X0), where W , X and X0 ⊆ X denote

the external signal space, the state space, and the set of initial conditions,

δ ⊆ X × W × X is the transition (next state) relation.

Definition 2.3.5 (Continuous time state machine) A continuous time

state machine is a tuple Pd = (X, W, δ, X0), where W is the external signal

space, X and X0 ⊆ X are the state space (differential manifold) and the set

of initial conditions, δ ⊆ TX × W is the transition (vector field) relation.

TX =
∐

x∈X

TxX denotes the tangent bundle of X, where
∐

x∈X

TxX is the

disjoint union of tangent spaces TxX to X at points x ∈ X.
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In the following, we will consider only the discrete time case to keep

our notation simple. However, most results that will be presented in the

sequel can be extended for the continuous time case at the cost of some

additional notations. One serious argument for this choice is the fact that the

continuous time case admits many particular cases whose consideration can

be rather tedious, whereas we want to keep the exposition as straightforward

as possible. Finally, notice that the discrete time is natural for all real

life (read ”digitally controlled”) applications and hence, does not lead to a

serious narrowing of the scope.

State machines can be classified with respect to their state space.

Definition 2.3.6 (Finite and hybrid state machines) A state machine

P = (W, X, δ, X0) is called finite if |X| < ∞. The state space of a hybrid

state machine is a product X = D × Rn, where 1 < |D| < ∞.

Finally, we have to establish an interrelation between behavioural and

state machine representations of a dynamical system. Given a state machine

P = (W, X, δ, X0), the behaviour

Bs = {(w, x) ∈ (W × X)N0 |(x(k), w(k), x(k + 1)) ∈ δ ∀k ∈ N0, x(0) ∈ X0)}

is referred to as the induced full behaviour, and Σs = (N0, W ×X,Bs) as the

induced state space system. The projection B = PWBs is called the external

behaviour of the system Σs. A state machine P ′ with external behaviour B′

is said to be a realisation of the dynamical system Σ′ = (N0, W,B′). This is

denoted by P ′ ≃ Σ′ [81].

The external behaviour can be found as a result of the state elimina-

tion procedure, which has been formalised for different classes of dynam-

ical systems, e.g., linear time-invariant differential systems [75, 123] and

differential-algebraic systems [31, 116]. For nonlinear systems, there is the

notion of external differential representation which seeks for a representation

of the nonlinear system as a set of high-order differential equations in the

inputs and outputs [86, Sec. 4.2].

In the converse case, the external behaviour B is given and one has to

find a state space representation Σs = (N0, W×X,Bs) (or its realisation P ≃

Σs) such that PWBs = B. This problem is called the realisation problem.

The realisation problem has been extensively studied for over 50 years, first

for finite automata (Myhill-Nerode theorem [56]) then for linear [100] and

nonlinear differential systems (generating series, in particular Fliess’ series

[117, 119]). Later, these results were generalised for hybrid systems [45].

For the classification of state maps within the behavioural systems theory

see the recent paper by Julius and van der Schaft [53].
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It is worth noting that the external behaviour does not always possess the

properties of the full behaviour. One important example is the completeness

property.

Example 2.3.7 Let us consider the discrete time state machine P whose

transition relation δ is described by the following equations

x(k + 1) = αx(k)

y(k) =

{

1, x(k) ≥ 1

0, x(k) < 1

X0 = X = R≥0, k ∈ N0, α ∈ (0, 1).

(2.1)

The induced full behaviour of P is Bs = {(x, y) ∈ (X × Y )N0 |(2.1) holds}.

The external behaviour B = PY Bs is - as follows from (2.1) - a set of

sequences of the form (1, . . . , 1, 0, . . . ), where the number of 1-elements is

finite (possibly zero). However, it can easily be seen that the sequence

(1, . . . , 1, . . . ) consisting only of 1-elements cannot be distinguished from

those belonging to B through the analysis of strings of finite length. For

any k ∈ N0 there exists x ∈ X0 such that the resulting sequence of output

symbols contains exactly k 1-elements. Hence, the external behaviour B is

not complete!

At the same time one can check that there does not exist any signal

(x, y) ∈ (X × Y )N0 which matches the induced full behaviour Bs on all fixed

length intervals but does not belong to Bs.

2.3.2 I/S/- machines

By analogy with the previous section, we can define a state dynamical system

equipped with an input/output structure. As in the previous section, we

consider a slightly weakened version of Willems’ I/S/O system, namely an

I/S/- system:

Definition 2.3.8 (I/S/- system, [78]) An I/S/- system is a tuple

ΣI/S/− = (N0, U, Y, X,BI/S/−),

where U is the input alphabet, Y is the output alphabet, X is the state set,

and BI/S/− ⊆ (U × Y × X)N0 is the system’s behaviour which satisfies the

following conditions:

i. BI/S/− satisfies the axiom of state, i.e.,

{(u1, y1, x1), (u2, y2, x2) ∈ BI/S/−, x1(τ) = x2(τ), τ ∈ N0} ⇒

⇒ {(u1, y1, x1) ∧τ (u2, y2, x2) ∈ BI/S/−};
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ii. u is locally free;

iii. in BI/S/−, u is strictly not anticipated by x and not anticipated by y.

As in the case of I/- systems, we do not require the state x and the

output y to process the input signal u.

An I/S/- dynamical system can be represented by a (slightly modified)

state machine. The main difference is that, as in the case of I/S/- be-

havioural systems, we distinguish between inputs and outputs.

Definition 2.3.9 (I/S/- machine) The tuple

PI/S/− = (U, Y, X, δ, X0)

where

• U, Y, X are the input, output, and state sets;

• X0 ⊆ X is the set of initial states;

• δ : X × U × Y × X is the transition relation,

is said to be an I/S/- machine if for each reachable state ξ ∈ X and for each

η ∈ U there exist ξ′ ∈ X and υ ∈ Y such that (ξ, η, υ, ξ′) ∈ δ.

The state ξ̃ ∈ X is said to be reachable if there exists an initial state

ξ0 ∈ X0, a constant κ ∈ N0, and sequences {ηi}i=0,κ−1, {υi}i=0,κ−1, and

{ξi}i=1,κ such that

(ξj , ηj , υj , ξj+1) ∈ δ ∀j = 0, κ − 1

and ξκ = ξ̃.

It should be noted that a state machine is, in principle, an untimed

model. Hence, we need to determine some rules which would allow us to

assign the input/output symbols to the respective points in time. We asso-

ciate the predecessor and the successor states with the time instants t = k

and t′ = k + 1, where k ∈ N0. When assigning the input/output symbols

one has to take into account the requirements of Def. 2.3.8. Therefore, we

associate both η and υ symbols in the transition relation δ with the time

t = k. Now we can define the induced full behaviour of the state machine

PI/S/− as

BP = {(u, y, x) ∈ (U × Y × X)N0 |

((x(k), u(k), y(k), x(k + 1)) ∈ δ ∀k ∈ N0, x(0) ∈ X0}.

It can be easily proved that the behaviour BP of the state machine PI/S/−

does indeed satisfy the axioms of Def. 2.3.8. The future evolution of a state
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machine depends only on the current state and the current + future values

of the input signal; the input is locally free and, finally, the input u is strictly

not anticipated by x and not anticipated by y.

The transition relation δ is not well suited for analysis. One often needs

a more convenient description. Therefore, we define a transition function

γ : X × U → 2Y ×X as

γ(ξ, η) = {(υ, ξ′) ∈ Y × X|(ξ, η, υ, ξ′) ∈ δ}.

Moreover, we assume that the successor state ξ′ and the output signal υ are

independent:

A3. The transition function γ(ξ, η) can be represented as

γ(ξ, η) = γy(ξ, η) × γx(ξ, η), (2.2)

where γy : X × U → 2Y and γx : X × U → 2X .

This assumption can be interpreted in two ways. On the one hand, we

require that the current output of the system does not depend on the future

evolution of the state, i.e., that y does not anticipate x. This is absolutely

natural. On the other hand, we assume that the state evolution does not

depend on the output y. This, again, turns out to be very natural, since the

evolution of the state is a composition of its internal and forced dynamics.

Neither of them is subjected to the influence of the system output, which

merely reflects them.

Finally, we are ready to write down the behavioural equations corre-

sponding to an I/S/- state machine:















x(k + 1) ∈ γx(x(k), u(k)),

y(k) ∈ γy(x(k), u(k)), k ∈ N0

x(0) ∈ X0.

(2.3)

Note that the functions γx(x(k), u(k)) and γy(x(k), u(k)) are defined for all

η ∈ U and for all reachable states ξ ∈ X. Furthermore, in virtue of Def.

2.3.9 for all η ∈ U and for all reachable states ξ ∈ X the sets γx(ξ, η) and

γy(ξ, η) are not empty.

We say that the behavioural equations are time-invariant if their right-

hand sides are invariant w.r.t. the transformation k′ = k + ∆k, ∆k ∈ N0.

This holds as time k does not appear as an argument in function γ. Fur-

thermore, the full induced behaviour of an I/S/- machine is time-invariant

if its behavioural equations are time invariant and X0 = X. It can be easily

shown that this is also true for the external behaviour.
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In an I/S/- machine the output y does not anticipate the input u. Let

us now consider one special case. Let the function γy depend only on the

first argument:

γy(ξ, η) = γ̃y(ξ) ∀η ∈ U, (2.4)

where γ̃y(ξ) : X → 2Y . In this case the output y strictly does not antici-

pate the input u. In the sequel we will call an I/S/- machine strictly non

anticipating if (2.4) holds.

The following observation is straightforward:

Lemma 2.3.10 The external behaviour B = P(U×Y )BP of a (strictly) non-

anticipating I/S/- machine P is a (strict) I/- behaviour.

In conclusion, we consider two classes of finite automata with inputs and

outputs.

Example 2.3.11 (Moore and Mealy automata) A finite I/S/- state

machine with behavioural equations (2.3) is called a (non-deterministic)

Mealy automaton. If, additionally, condition (2.4) is satisfied, the state

machine is said to be a (non-deterministic) Moore automaton. The corre-

sponding automata are called deterministic if the functions γx and γy are

single-valued, and the set X0 is a singleton.

In Fig. 2.4 an example of Moore and Mealy automata with U = {a, b, c},

Y = {α, β}, X = {0, 1, 2}, and X0 = {0} is shown. The formal definition

and further details can be found in [20, Sec. 2.2.5].

a. b.

a/β

a

c

a

b

3

1

00/α

1/β

3/α

a/α b/α

c/β

Figure 2.4: Moore (a.) and Mealy (b.) automata

2.4 Interconnection of dynamical systems

This section is devoted to the analysis of the interconnection of two dynam-

ical systems. We define the closed-loop behaviour of interconnected systems

and investigate its properties.

There are two ways to consider the interconnection of two dynamical

systems: a behavioural description and a constructive representation based
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on state models. In the following, we employ both of them since they form a

well established framework where the reasoning is based on the behavioural

description, and computations are carried out with the help of state models.

2.4.1 Behavioural description

Let us first consider the composition (interconnection) of two dynamical

systems with respect to their external behaviours as shown in Fig. 2.5. The

resulting system admits only those signals that satisfy the behavioural equa-

tions of both systems.

W

B1 ⊆ WN0

B2 ⊆ WN0

Figure 2.5: Interconnection of two dynamical systems

Definition 2.4.1 Let Σ1=(N0, W,B1 ⊆ W N0) and Σ2=(N0, W,B2 ⊆ W N0)

be two dynamical systems. The composition of Σ1 and Σ2 is defined as

Σ1 × Σ2 := (N0, W,B1 ∩ B2).

The interconnection of two dynamical systems corresponds to the inter-

section of their external behaviours. Furthermore, if these systems possess

an I/O structure, we need to specify a way in which the input and output of

one system are connected to the input and output of the other one. Thus,

we define a special case of composition operation: feedback interconnection.

Definition 2.4.2 Let Σ1 = (N0, U1, Y1,B1) and Σ2 = (N0, U2, Y2,B2) be two

I/- dynamical systems. Let U1 = Y2 and U2 = Y1. The composition of Σ1

and Σ2 presented in Fig. 2.6 is called feedback interconnection and denoted

by Σ1 × Σ2.
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Y1U1

U2 Y2

B2 ⊆ (U2 × Y2)N0

B1 ⊆ (U1 × Y1)N0

Figure 2.6: Feedback interconnection

Here and throughout, we consider the feedback interconnection of dy-

namical systems, i.e., the case where the output of one system is connected

to the input of the other one and vice versa.

In the following, we introduce a property which will play a crucial role in

the analysis of interconnected systems, namely, the notion of non-conflicting

behaviours.

Definition 2.4.3 ([78]) Two behaviours B1,B2 ⊆ (U ×Y )N0 are said to be

non-conflicting if

B1|[0,k]

⋂

B2|[0,k] = (B1 ∩ B2)|[0,k] for all k ∈ N0. (2.5)

In words, if a signal agrees with both B1 and B2 on the finite time interval

[0, k], it can be extended to the whole time axis such that the resulting

signal belongs to B1 ∩ B2. The opposite situation, where the signal “gets

stuck” at some time instant is called blocking. This happens if the equality

relation in the latter expression is replaced by the “proper subset” relation:

B1|[0,k]

⋂

B2|[0,k] ⊃ (B1 ∩ B2)|[0,k] for some k ∈ N0.

Non-conflictingness is the fundamental property which ensures the con-

sistency of the interconnection of two dynamical systems. We illustrate this

by a simple example.

Example 2.4.4 Let us consider the feedback interconnection of two dynam-

ical systems Σ1 and Σ2 represented by two Mealy automata P1 and P2 with
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X1,2 = {0, 1}, U1 = Y2 = {a, b}, and Y1 = U2 = {α, β}. The structure of P1

and P2 is shown in Fig. 2.7. The respective external behaviours are:

B1 =
(

(b/β) a/α (a/β) b/α
)

, B2 =
(

(β/b) α/a (α/a) β/b
)

,

where (a/α) is a (possibly infinite) concatenation of symbols a and α. We

assume that all elements of Bi, i = 1, 2 are infinite sequences. The inter-

sections of two behaviours B1 and B2 is

B1

⋂

PY2×U2
B2 =

(

(b)

(β)

)

,

where the signals u2 and y2 in the second behaviour B2 had been permuted

to ensure correctness of the intersection operation, i.e.,

PY2×U2
B2 = {(y2, u2) ∈ (Y2 × U2)

N0 |(u2, y2) ∈ B2}.

Now let us check the non-conflictingness condition (2.5) for k = 0:

(

B1

⋂

PY2×U2
B2

)∣

∣

∣

[0,0]
=

(

b

β

)

,

B1|[0,0]

⋂

PY2×U2
B2|[0,0] =

((

b

β

)

,

(

a

α

))

.

Hence, we can observe that

B1

⋂

PY2×U2
B2

∣

∣

∣

[0,0]
6= B1|[0,0]

⋂

PY2×U2
B2|[0,0]

and, therefore, the feedback interconnection of the two dynamical systems Σ1

and Σ2 is conflicting.

0 10 1

b/β

a/α

b/α

a/β β/b α/a

α/a

β/b

P1 : P2 :

Figure 2.7: Two Mealy automata

There is also one specific situation which sometimes occurs in practice.
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Definition 2.4.5 Two behaviours B1,B2 ⊆ (U ×Y )N0 are said to be incom-

patible if B1 ∩ B2 = ∅ and compatible otherwise.

Note that two incompatible behaviours are non-conflicting. The follow-

ing example illustrates this phenomenon.

Example 2.4.6 Two memoryless dynamical systems, whose dynamics are

described by equations:

Σ1 : y(k) = f(u(k))

Σ2 : u(k) = g(y(k)), k ∈ T

are incompatible if the fixed point problem y = f ◦ g(y) does not have any

solution.

Let us consider two simple systems: Σ1 : y(k) = 1
2u(k)+1, Σ2 : u(k) =

2y(k). Obviously, there does not exist any y which satisfies the equation

y = y + 1. Hence, Σ1 and Σ2 are incompatible.

Otherwise, if there is at least one solution of the fixed point problem, the

systems are compatible and non-conflicting. Notice that since both systems

are memoryless and time-invariant, one has to check the non-conflictingness

property only for k = 0.

We want to stress here that non-conflictingness as well as incompatibility

is always defined in terms of external behaviours. Even if we consider I/S/-

dynamical systems, only external signals matter. In the following, we will

say that two dynamical systems Σ1 and Σ2 are non-conflicting (incompati-

ble) if their external behaviours B1, B2 are non-conflicting (incompatible).

2.4.2 Interconnection of state space dynamical systems

The interconnection of two I/S/- dynamical systems can be characterised in

a similar way as in Def. 2.4.1:

Definition 2.4.7 Let Σ1=(N0, U1, Y1, X1,B1) and Σ2=(N0, U2, Y2, X2,B2)

be two I/S/- dynamical systems with U1 = Y2 and Y1 = U2. The composition

of Σ1 and Σ2 is defined as

Σ1 × Σ2 := (N0, U, Y, X,B),

where U = U1 = Y2, Y = U2 = Y1, X ⊆ X1 × X2, and B ⊆ (U × Y × X)N0

such that

PU×Y B = PU1×Y1
B1 ∩ PY2×U2

B2.

Note that Σ1 × Σ2 is not necessarily I/- w.r.t. (U, Y ).
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Assume that both dynamical systems are represented by I/S/- machines,

i.e., Σ1 ≃ P1=(U1, Y1, X1, δ1, X0,1), Σ2 ≃ P2=(U2, Y2, X2, δ2, X0,2). Then,

the behaviour of the composite system can be described as

B = {(u, y, x1, x2) ∈ (U × Y × X)N0 | (2.6) holds }















(x1(k), u(k), y(k), x1(k + 1)) ∈ δ1

(x2(k), y(k), u(k), x2(k + 1)) ∈ δ2

x1(0) ∈ X0,1, x2(0) ∈ X0,2 ,

(2.6)

where U and Y are defined as in Def. 2.4.7.

Now we are ready to describe requirements on dynamical systems to be

non-conflicting.

Theorem 2.4.8 Let Σ1 and Σ2 be two I/S/- dynamical systems with exter-

nal behaviours B1 and B2 which are represented by I/S/- machines P1 and

P2. Moreover, assume that P1 and P2 satisfy the requirement (2.2) of as-

sumption A3. Then, Σ1 and Σ2 are non-conflicting if either of the following

fixed point inclusions is satisfied for all reachable (ξ1, ξ2) ∈ (X1 × X2):

υ1 ∈ γy,1(ξ1, γy,2(ξ2, υ1))

υ2 ∈ γy,2(ξ2, γy,1(ξ1, υ2)).
(2.7)

Proof. To prove non-conflictingness we have to show that for any string

ϑk ∈ (U × Y )k+1, k ∈ N0 such that ϑk ∈ B1|[0,k] ∩ PU×Y B2|[0,k] there

exists a sequence (u, y) ∈ (U × Y )N0 such that ϑk = (u, y)|[0,k] and (u, y) ∈

(B1 ∩ PU×Y B2).

Let such a ϑk be given. Then, there exist two sequences ζ1 ∈ (U × Y ×

X1)
k+1 and ζ2 ∈ (U × Y × X2)

k+1 such that ζ1 = (u, y, x1) ∈ Bs(P1)|[0,k]

and ζ2 = (u, y, x2) ∈ PU×Y ×X2
Bs(P2)|[0,k], where Bs(Pi) is the full induced

behaviour of Pi, i = 1, 2. Moreover, P(U×Y )ζ1 = P(U×Y )ζ2 = ϑk.

It should be shown that ζ1 and ζ2 can be extended to ζ̃1 ∈ Bs(P1), ζ̃2 ∈

PU×Y ×X2
Bs(P2) such that P(U×Y )ζ̃1 = P(U×Y )ζ̃2.

The evolution of the interconnected system of the two state machines P1

and P2 is described by the following set of inclusions:







































x1(k + 1) ∈ γx,1(x1(k), u(k)),

y(k) ∈ γy,1(x1(k), u(k)),

x2(k + 1) ∈ γx,2(x2(k), y(k)),

u(k) ∈ γy,2(x2(k), y(k)), k ∈ N0

(x1(0), x2(0)) ∈ X0,1 × X0,2.

(2.8)
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Let ξ1 ∈ X1 be a reachable state of P1 and ξ2 ∈ X2 be a reachable state

of P2. The sets γx,1(ξ1, η) and γx,2(ξ2, υ) are not empty for all η ∈ U and

υ ∈ Y by virtue of Def. 2.3.9.

The values of input and output signals at time k + 1 have to satisfy the

following set of inclusions:

{

y(k + 1) ∈ γy,1(x1(k + 1), u(k + 1)),

u(k + 1) ∈ γy,2(x2(k + 1), y(k + 1)),

which are reciprocally related - the value of one function is the argument

for the other, and vice versa. Hence, we can rewrite them as fixed point

inclusions (2.7), which are in fact equivalent. If any of them is solvable for

all reachable states ξ1 ∈ X1 and ξ2 ∈ X2, there always exists a one-step

prolongation. Then, the obtained values for x1(k + 1), x2(k + 1), u(k + 1),

and y(k + 1) can be used to calculate the next step and so forth. �

The conditions of Theorem 2.4.8 can be checked for certain classes of

systems, for instance, for systems described by linear equations. To illustrate

this we consider a simple example which is devoted to a classical problem.

Example 2.4.9 Let us consider the case of feedback interconnection of two

linear discrete-time systems Σ1 and Σ2 whose dynamics is described by the

following time-invariant behavioural equations:

Σ1 :

{

x1(k + 1) = A1x1(k) + B1u(k)

y(k) = C1x1(k) + D1u(k)

Σ2 :

{

x2(k + 1) = A2x2(k) + B2y(k)

u(k) = C2x2(k) + D2y(k)

where x1(k), x2(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rl, k ∈ N0, (x1(0), x2(0)) ∈

X0 ⊆ (Rn × Rn), and Ai, Bi, Ci, Di, i = 1, 2 are matrices of appropriate

dimensions. The systems Σ1 and Σ2 are non-conflicting if matrix (I(l×l) −

D1D2) is non-singular, i.e., if

rank(I − D1D2) = l.

Otherwise, the corresponding behaviours are conflicting.

Note that the systems Σ1 and Σ2 become non-conflicting if at least one

of the two matrices D1 and D2 is set equal to zero. The system Σ̃i, modified

in this way, is strictly non-anticipating whereas the initial system Σi is just

non-anticipating.
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In practice, in most cases it is impossible to check whether the inclu-

sions (2.7) are solvable for all states. Therefore, we need a possibly more

restrictive but practically more useful condition. In the previous example,

we have seen that the property of a system to be non-anticipating or strictly

non-anticipating may play a crucial role. The following theorem justifies

this observation and gives a general, structural condition for two dynamical

systems to be non-conflicting.

Theorem 2.4.10 Let Σ1 and Σ2 be two trim I/S/- dynamical systems which

can be represented by I/S/- machines P1 and P2. Moreover, assume that P1

and P2 satisfy the requirement (2.2) of assumption A3. Then, Σ1 and Σ2

are non-conflicting if at least one of the two state machines P1 and P2 is

strictly non-anticipating (i.e., if condition (2.4) holds).

Proof. In this case the fixed point inclusions are transformed to trivial in-

clusions which are satisfied per definition. E.g., if the first system is strictly

non-anticipating, the second inclusion in (2.8) takes the form

y(k) ∈ γ̃y,1(x1(k))

and the corresponding fixed point inclusion looks as follows:

y2 ∈ γy,2(x2, γ̃y,1(x1)).

�

Note that the order in which we consider the behaviours is not important.

2.5 Supervisory control problem

Classical control theory considers the following question: “how to influence

a dynamical system (plant) to achieve the desired behaviour?” A solution of

this problem is usually represented in the form of another dynamical system

(the controller) which, when connected to the plant, ensures the fulfilment

of the requirements imposed on the closed-loop system. The supervisory

control approach, in turn, deals with a more general problem: “how to

restrict the behaviour of a dynamical system to the least extent in order

to satisfy a given set of constraints?” Note that this does not imply the

existence of a unique controller. The supervisory control system restricts

the plant behaviour by excluding solely those signals which violate the given

specification. Hence, in supervisory control we must operate with sets of

signals rather than with single ones.

Let us assume that there is a set of safety constraints given by the be-

haviour Bsp ⊆ (U × Y )N0 which contains all allowable signals, i.e., those
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signals that do not violate the constraints. The behaviour Bsp is called

specification. The supervisory control problem can be formulated as follows:

Definition 2.5.1 Let the plant be given as an I/- system Σpl = (N0, U, Y,Bpl)

with external behaviour Bpl and the specification be defined as Bsp ⊆ (U ×

Y )N0. The I/- system Σsup = (N0, Y, U,Bsup) is said to be a solution of the

supervisory control problem (Bpl,Bsp)cp if for the feedback interconnection

Σpl × Σsup = (N0, U × Y,Bpl ∩ Bsup) the following holds:

i. Bpl ∩ Bsup ⊆ Bsp,

ii. Σpl and Σsup are non-conflicting.

A solution of (Bpl,Bsp)cp is called a supervisor.

In the following, we will often identify the supervisory control problem

(Bpl,Bsp)cp and the set of all solutions to this problem. Hence, the expression

(Bpl,Bsp)cp = {∅} means that there are no solutions to (Bpl,Bsp)cp except

the trivial one, i.e., Bsup = ∅.

The set of all solutions of the supervisory control problem is often infinite

and includes the trivial case Σsup,∅ = (N0, Y, U, ∅). The following lemma

establishes the existence of the maximal element of this set which is called

a “maximally permissive” supervisor.

Lemma 2.5.2 ([78]) Let A be an index set and Σα = (N0, Y, U,Bα) be a

solution of (Bpl,Bsp)cp for all α ∈ A. Then, Σmax
sup = (N0, Y, U,

⋃

α∈A

Bα) is

also a solution of (Bpl,Bsp)cp.

Supervisor design is a highly nontrivial problem. Here, we just give an

outline of the design procedure. The first step consists in the definition

of the specification. In many cases we are given a set of safety constraints

like, e.g., “the temperature must belong to some interval”, “the output valve

must not be open while the tank is being filled”, or “the rate of change of the

input voltage must not exceed a certain value”. These constraints impose

restrictions on the system outputs, inputs, or both. Let us assume that

Bf ⊂ (U × Y )N0 consists of all signals which violate at least one constraint.

Then, the specification can be found as Bsp = (U × Y )N0\Bf . In many

practically relevant cases, when the cardinality of both U and Y is finite

one can describe the specification as a finite automaton (for details see [20,

Sec. 3.3.1]).

The next step is the design of the maximally permissive supervisor that

solves the supervisory control problem (Bpl,Bsp)cp [99].
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Chapter 3

Hierarchical Control

Now we are ready to introduce the key concept of the thesis, namely the

idea of hierarchical control architecture. Everybody who has ever had to

control a complex technical system knows that it is practically impossible to

solve the whole problem at once. There are two main challenges: the struc-

tural complexity of the plant and the intricate character of the specification.

But if we study the problem intently we may see that there is often some

inhomogeneity. The system dynamics can be decomposed into slow and fast

modes, the specification includes long and short term tasks as well as local

and global restrictions. Hence, it is advantageous to decompose the overall

problem into several sub-problems and solve them separately. In this way

there appears some natural hierarchy of the problems - at the higher level we

solve global, long term problems using abstract (e.g., discrete-event) models

whereas at lower levels we are mainly concerned with short term problems,

which have to be solved in order to fulfil the needs of the high-level controller.

Hierarchical decomposition is a hardly formalisable problem which re-

quires a very good qualitative knowledge of the system dynamics along with

a good piece of engineering intuition. But despite, or rather because of

this complexity it makes sense to develop some general framework for the

hierarchical systems design. Our main intention is to provide an engineer

with a set of instruments and concepts which can (potentially) be used for

the solution of complex technical problems. Note that hierarchical struc-

tures considered below are closely related to both multilevel and multilayer

hierarchies described in Sec. 1.1.2.

This chapter is structured as follows: in Sec. 3.1 we consider a two-level

hierarchical control problem and give the definition of a two-level hierarchical

solution to the supervisory control problem. Sec. 3.2 describes a bottom-

up approach to the design of hierarchical control schemes. Admissibility

conditions are discussed in Sec. 3.3. In Sec. 3.4 and 3.5, we analyse two

basic structures of the intermediate level. Finally, in Sec. 3.6, we generalise
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obtained results to the case of a multi-level control hierarchy.

This chapter develops the ideas proposed by J. Raisch and T. Moor (see

[82, 97] and references therein). The contribution of this chapter consists in

developing a constructive framework within which it is possible to describe

and analyse different hierarchical control structures in an efficient and uni-

form way. Moreover, we give a detailed description of several possible control

structures and analyse their properties with the methods developed in this

chapter.

Henceforth, if not otherwise stated, all dynamical systems are assumed

to evolve in discrete time, i.e., T = N0.

3.1 Two-level hierarchical control architecture

We start our investigation with the analysis of a two-level hierarchical control

problem. Despite its apparent simplicity, this problem is well suited to

illustrate all substantial features of the hierarchical control concept. First we

introduce basic notations and give the definition of a hierarchical supervisory

control problem.

Let us consider the two-level control architecture as shown in Fig. 3.1.

The plant Σpl with external behaviour BL
pl ⊆ (UL × YL)N0 is assumed to be

an I/S/- system w.r.t. (UL, YL). The intermediate layer Σim with external

behaviour Bim ⊆ (WL × WH)N0 , WL = UL × YL, WH = UH × YH “medi-

ates” between the plant and the high-level controller (supervisor) Σsup with

external behaviour BH
sup ⊆ (YH × UH)N0 , Σsup, in turn, is assumed to be

I/S/- w.r.t. (YH , UH). The indices L and H are introduced to show that the

respective behaviour is defined over the set of low-level (WL) or high-level

(WH) signals. The specification BL
sp ⊆ W N0

L is defined in the same way as

in Sec. 2.5.

The intermediate layer can implement many different tasks: it can per-

form spatial as well as temporal discretisation, switch between different

(low-level) local controllers in order to meet the requests of the high-level

supervisor or manipulate the plant dynamics in a certain way.

Up to now, we did not make any assumptions about the structure of the

intermediate level Σim. However, it is obvious that it must possess certain

internal structure to be compatible with both the plant and the high-level

supervisor. Hence, before we start to analyse the intermediate level in more

details we define the general framework, i.e., the generic class of systems

which can be considered as candidates for Σim. To denote this class we will

borrow a term from electrical engineering, namely we will call these systems

quadripoles.
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BH
im[BL

pl]

BL
im[BH

sup]

BH
sup: high-level supervisor

Bim: intermediate level

BL
pl: low-level plant model

uH yH

uL yL

Figure 3.1: Hierarchical control architecture

Definition 3.1.1 (Quadripole) A quadripole is a tuple

Σquad = (N0, UH , YH , UL, YL, X,Bquad),

where WH = (UH × YH) is the high-level signal space, WL = (UL × YL)

is the low-level signal space, X is the (hybrid) state space, and Bquad ⊆

(UH × YH × UL × YL × X)N0 is the system behaviour which satisfies the

following conditions:

i. Bquad satisfies the axiom of state, i.e.,

{(w1, x1), (w2, x2) ∈ Bquad, x1(τ) = x2(τ), τ ∈ N0} ⇒

{(w1, x1) ∧τ (w2, x2) ∈ Bquad},

where w = (wH , wL) ∈ (WH × WL)N0 ;

ii. uH is locally free;

iii. uH is strictly not anticipated by x and not anticipated by yH and uL;

iv. yL is locally free;

v. yL is strictly not anticipated by x and not anticipated by yH and uL.
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Henceforth, we will assume that the intermediate layer Σim is a quadripole.

In the following, we will often consider the restriction of the behaviour

Bim to a single high-level (low-level) signal. Thus, for wH ∈ W N0

H , we define

BL
im[wH ] as

BL
im[wH ] = {wL ∈ W N0

L |(wH , wL) ∈ Bim}.

The restriction BH
im[wL] is defined accordingly.

The above definition can be extended to include the restriction of Bim

to the sets BL
pl and BH

sup, denoted by BH
im[BL

pl] and BL
im[BH

sup], respectively.

From the perspective of the plant the intermediate layer and the high-level

supervisor form a composite (low-level) supervisor over WL with external

behaviour (see Fig. 3.1)

BL
im[BH

sup] = {wL ∈ W N0

L |(∃wH ∈ BH
sup)[(wH , wL) ∈ Bim]}.

If, in turn, we look “downwards” we find a similar picture. From the per-

spective of the high-level supervisor both the intermediate layer and the

plant form a composite (high-level) plant over WH with external behaviour

BH
im[BL

pl] = {wH ∈ W N0

H |(∃wL ∈ BL
pl)[(wH , wL) ∈ Bim]}.

It may happen that either (or both) of the restrictions BL
im[BH

sup] and

BH
im[BL

pl] do not exist. To prevent this situation, we have to extend Def.

2.4.3, describing the conditions for non-conflicting feedback interconnection

of two dynamical systems, to the feedback interconnection of a dynamical

system and a quadripole.

Definition 3.1.2 (Non-conflictingness) Let Σ be a dynamical system with

external behaviour BL ⊆ W N0

L (BH ⊆ W N0

H ) and Σim be a quadripole with

external behaviour Bim ⊆ (WH × WL)N0. The systems Σ and Σim are said

to be non-conflicting if for any ũH ∈ UN0

H there exists ỹH ∈ PYH
Bim (for

any ỹL ∈ Y N0

L there exists ũL ∈ PUL
Bim) such that the behaviours BL and

BL
im[(ũH , ỹH)]

(

BH and BH
im[(ỹL, ũL)]

)

are non-conflicting.

Now we can give a formal definition of a two-level hierarchical solution to

the supervisory control problem. This definition can be seen as an extension

to the standard supervisory control solution from Def. 2.5.1.

Definition 3.1.3 (cf. [82]) Let BL
pl be I/- w.r.t. (UL, YL), BH

sup be I/-

w.r.t. (YH , UH) and Bim be the external behaviour of a quadripole with input

(UH × YL) and output (YH × UL). We say that the pair (Bim,BH
sup)tl is a

two-level hierarchical solution to the supervisory control problem (BL
pl,B

L
sp)cp

if

i. BL
pl ∩ BL

im[BH
sup] ⊆ BL

sp,
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ii. Bim and BL
pl are non-conflicting,

iii. Bim and BH
sup are non-conflicting,

iv. BL
im[BH

sup] is I/- w.r.t. (YL, UL) and BL
im[BH

sup] and BL
pl are non-conflic-

ting, and

v. BH
im[BL

pl] is I/- w.r.t. (UH , YH) and BH
im[BL

pl] and BH
sup are non-conflic-

ting.

Here, the first condition guarantees that the hierarchical system does sat-

isfy the low-level specification BL
sp. The remaining four conditions guarantee

non-conflicting (non-blocking) functioning of all levels. Note that Definition

3.1.3 contains two more conditions than that in [82]. This is because of the

fact that in our work the non-conflicting property is a structural condition

formulated in terms of state machines. Hence, we have to ensure that the

composite systems BL
im[BH

sup] and BH
im[BL

pl] can be described as non-blocking

state machines which is guaranteed by the requirements ii.-iii. Later, in

Sec. 3.3, we will see that some of the conditions ii.–v. are redundant.

Comparing Def. 2.5.1 and Def. 3.1.3 we can formulate the following

statement, which demonstrates an inherent interrelation of hierarchical and

monolithic (single-level) supervisory control schemes.

Corollary 3.1.4 Let (Bim,BH
sup)tl be a two-level hierarchical solution to the

supervisory control problem (BL
pl,B

L
sp)cp. Then, BL

im[BH
sup] is a solution to the

supervisory control problem (BL
pl,B

L
sp)cp. Moreover, if we define

(Bim,BH
sup)

L
tl =

{

BL
im[BH

sup] ⊆ W N0

L

∣

∣(BL
im,BH

sup)tl ∈ (BL
pl,B

L
sp)cp

}

,

the following inclusion holds:

(Bim,BH
sup)

L
tl ⊆ (BL

pl,B
L
sp)cp.

Thus, hierarchical solution, as regarded, is a special solution to the su-

pervisory control problem. We will see that the hierarchical approach can

drastically simplify the control design procedure. This will be demonstrated

in the subsequent sections of this thesis.

3.2 Bottom-up design strategy

A two-level supervisory control problem consists of two sub-problems: the

intermediate level design and the high-level supervisor design. In this sec-

tion we will discuss different approaches to these problems and propose an
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abstraction based design strategy which substantially simplifies the overall

problem.

Suppose we have designed the intermediate layer Σim with external be-

haviour Bim. Then, we can reformulate the low-level specification BL
sp in

terms of high-level signals as

BH
sp = {wH |(∀wL ∈ BL

pl)[(wH , wL) ∈ Bim ⇒ wL ∈ BL
sp]}.

The high-level supervisor could be obtained as a solution to (BH
im[BL

pl],B
H
sp)cp.

This approach, however, has one serious drawback. Since the calculation of

both BH
im[BL

pl] and BH
sp involves operations with realisations for both plant

and specification, it becomes extremely computationally expensive. More-

over, a realisation for BH
im[BL

pl], i.e., for the plant under low-level control, is

in all likelihood even more complex than a realisation of the plant alone.

Fortunately, high-level supervisor design can be performed on the basis of

abstractions, hence it is possible to eliminate from the procedure of high-level

supervisor design any operations that directly involve the plant behaviour.

For this purpose, we define the behaviour BHL
sp , which describes the intended

relationship between high-level and low-level signals. This specification can

be considered from different viewpoints.

On the one hand, the behaviour BHL
sp specifies which information about

the low-level process is transmitted to the higher level. This information is

the output signal yH of the composite system plant plus intermediate layer.

Note that the system response may be non-deterministic. This means that

the system may produce a set of output signals yH as a reaction to one

specific high-level signal uH . This may be caused by different reasons: non-

determinism of the plant, restricted resources of local controllers, imprecise

information about plant dynamics and so on.

On the other hand, it describes the “allowable” (or “desirable”) reaction

of the plant to high-level command signals. This means that, given a high-

level input signal uH , the plant behaviour has to be restricted to be within

the set of allowable low-level signals associated to uH .

This is ensured by the intermediate layer Bim which is designed to im-

plement BHL
sp . It satisfies the following requirement:

Bim ∩ P−1
WL

BL
pl ⊆ BHL

sp . (3.1)

Here we face a typical trade-off. The goal of a designer is to balance

the freedom of the low-level and the high-level. Obviously, if we reduce the

freedom at the low-level too strongly, it may become impossible to realise

a suitable intermediate controller. On the other hand, if it is not restricted

sufficiently, we may be unable to find a solution to the high-level supervisory

control problem.
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Note that, if the design of Bim has been successful, BHL
sp can be seen as

an outer approximation of Bim when the latter is connected to the plant

BL
pl. Thus, we can use BHL

sp to “model” the plant plus intermediate layer.

The projection B̃H
pl = PWH

BHL
sp can now be used as an abstraction of the

high-level plant BH
im[BL

pl]. Moreover, we define the high-level specification as

B̃H
sp = {wH |(∀wL)[(wH , wL) ∈ BHL

sp ⇒ wL ∈ BL
sp]}. (3.2)

Finally, the following lemma states that the high-level supervisor ob-

tained as the solution to the supervisory control problem (B̃H
pl , B̃

H
sp)cp satisfies

requirement (i) in Definition 3.1.3.

Lemma 3.2.1 (cf. [80]) Let Bim satisfy (3.1). Then, for any high-level

nontrivial supervisor BH
sup that solves (B̃H

pl , B̃
H
sp)cp, the inclusion BL

pl∩B
L
im[BH

sup] ⊆

BL
sp is satisfied.

Proof. Pick any wL ∈ BL
pl ∩ BL

im[BH
sup]. By definition, there exists a wH ∈

BH
sup with (wH , wL) ∈ Bim. By Eq.(3.1), we have (wH , wL) ∈ BHL

sp and,

therefore, wH ∈ B̃H
pl . By virtue of Definition 2.5.1, wH ∈ B̃H

sp. Finally,

Eq.(3.2) implies wL ∈ BL
sp. �

In Algorithm 1, the hierarchical control design procedure is formulated

in the form of pseudocode algorithms. Here, the specification BHL
sp plays the

central role. We first describe how the composite system plant-intermediate

level should behave and then try to design an intermediate level controller

which will enforce BHL
sp .

Algorithm 1 Bottom-up hierarchical control design

Given: BL
pl, BL

sp

Required: Solve (BL
pl,B

L
sp)tl

1: Design the specification BHL
sp

2: Compute B̃H
pl and B̃H

sp

3: Solve (B̃H
pl , B̃

H
sp)cp

4: if (B̃H
pl , B̃

H
sp)cp 6= {∅}

5: goto 10

6: else

7: repeat

8: Reformulate the specification BHL
sp

9: until (B̃H
pl , B̃

H
sp)cp 6= {∅}

10: Design the intermediate level controller Bim such that

Bim ∩ P−1
WL

Bpl ⊆ BHL
sp
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holds

11: if there exists a Bim 6= ∅

12: Problem solved

13: else goto 7

14: end if

15: end if

Note that the intermediate controller has to satisfy the non-conflictingness

conditions of Def. 3.1.3.

In the following sections, we discuss several specific problems that may

appear when designing the specification BHL
sp .

3.2.1 Modelling issues

First we want to stress the different nature of the intermediate layer Bim

and the specification BHL
sp . The specification BHL

sp describes the “expected”

behaviour of the system intermediate layer plus plant. In some sense it de-

fines a frame within which this composite structure may evolve. Moreover,

since BHL
sp is used for the high-level supervisor design, it must be well struc-

tured, i.e., it must allow to pose and solve the high-level control problem

(B̃H
pl , B̃

H
sp)cp with some standard procedures.

In Chapter 4 we show how the specification BHL
sp can be represented by

an I/S/- machine. In [82], it was proposed to model BHL
sp by a linear hybrid

automaton. Obviously, proposed models cannot describe all possible hybrid

evolutions. So, one might need to use more complex models like, e.g., hybrid

I/O automata [71, 72] or behavioural automata [54] which, however, have

to be equipped with inputs and outputs.

At the same time, there is no general representation for the intermediate

layer. This reflects, in fact, the core idea of the proposed approach. When

designing the high-level supervisor, we are dealing with a standard although

rather coarse model while at the low-level we use a control system that is

designed and adjusted for the specific plant in such a way that the closed-

loop behaviour conforms with the desired model. Later, we will show some

particular control structures which can be used at the intermediate layer.

Note, however, that there are infinitely many possible control structures.

3.2.2 Qualitative behaviour shaping

In this section we consider one special approach to the design of specification

BHL
sp which has been shown to be particularly helpful in many applications.

Let us assume that the signal set of the plant UL can be represented as a
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Cartesian product UL = U1
L × U2

L. Now, we define the specification BHL
sp as

BHL
sp =























(uH , yH , uL, yL) ∈ (WH × WL)N0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(uH , yH) ∈ B̂H
sp

uL ∈ UL, PU1

L
uL = uH ,

yL ∈ Y N0

L ,

yH(t) = φ(yL(t)), t ∈ N0























,

(3.3)

where

• WH = UH × YH and WL = UL × YL are the high-level and low-level

signal sets, UH = U1
L,

• B̂H
sp is an I/- behaviour w.r.t. (UH , YH),

• UL ⊆ UN0

L is the set of admissible low-level signals such that PU1

L
UL =

(U1
L)N0 ,

• φ : YL → YH is an output function, which may be chosen to be the

identity.

An intermediate layer Bim, designed to satisfy the requirement (3.1),

functions in the following way: for any high-level signal uH it implements

low-level signals uL which, being applied to the plant BL
pl, result in that the

respective high-level output signals conform to B̂H
sp. Moreover, the fixing

of a particular high-level signal uH partially determines the choice of low-

level signals: uL ∈ UL(uH), where UL(uH) = {uL ∈ UL|PU1

L
uL = uH}.

In other words, we design low-level controller(s) which, given a high-level

signal uH = u1, uses available low-level signals u2 to ensure that the high-

level response of the composite system BH
im[BL

pl] belongs to B̂H
sp.

Hence, the abstraction of the high-level plant B̃H
pl is equal to B̂H

sp and the

high-level specification is defined as

B̃H
sp = {(uH , yH) ∈ W N0

H |BHL
sp [(uH , yH)] ⊆ BL

sp}.

In certain cases, the structure of the low-level specification can be ex-

ploited to simplify the design procedure of the low-level controller. In par-

ticular, the set of allowable low-level signals UL can be chosen to satisfy

the specification BL
sp or to facilitate the analysis of the closed-loop system

BH
im[BL

pl].

In general, we may notice that the approach described above closely re-

sembles the feedback-based abstraction technique presented in Sec. 1.1.3.

Actually, our approach can be seen as a feedback-based abstraction in be-

havioural form. To complete our presentation we show how the behaviour
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B̂H
sp can be used to specify certain qualitative properties of the closed-loop

system BH
im[BL

pl]. There are different properties that can be described in

this way, e.g., stability, boundedness, controllability, and so forth. Let us

consider the case of real-valued high-level signals: UH ⊆ Rm, YH ⊆ Rk.

For this case, we give definitions of ℓp input-output stable behaviours and

asymptotically stable behaviours.

Definition 3.2.2 (ℓp input-output stability, cf. [55, Def. 5.1]) The be-

haviour B ⊂ (U × Y )N0 is ℓp stable if there exist a monotonically increasing

function α : [0,∞) → [0,∞) and a non-negative constant β such that for

any pair (u, y) ∈ B

||y||ℓp
≤ α(||u||ℓp

) + β

holds.

It is finite-gain stable if there exist non-negative constants γ and β such

that for any pair (u, y) ∈ B

||y||ℓp
≤ γ||u||ℓp

+ β

holds.

The parameter p denotes a specific norm and can be chosen within

{1, . . . ,∞}. However, the most common cases are ℓ2 and ℓ∞.

Definition 3.2.3 (Asymptotic stability) The behaviour B ⊂ (U × Y )N0

is stable if for any pair (u, y) ∈ B there exists a function φ of class1 K such

that

(∃T ∈ N0 s.t. u(t) = 0, t ≥ T ) ⇒ (y(t) ≤ φ(‖y(T )‖), t ≥ T )

holds. The behaviour B ⊂ (U ×Y )N0 is asymptotically stable if, additionally,

∃T ∈ N0 s.t. u(t) = 0, t ≥ T ⇒ lim
t→∞

y(t) = 0.

holds.

Later, in Chapters 4 and 5, two applications will be presented. We will

show that the qualitative behaviour shaping technique can be efficiently

applied to both continuous and hybrid systems. Moreover, in Ch. 5 we will

demonstrate a novel approach based on the monotonisation of the system

behaviour.

1A real-valued function φ(x) belongs to class K if it is defined, continuous, and strictly

increasing on x ∈ [0,∞], and if it vanishes at x = 0, i.e., φ(0) = 0 (see [47]).
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3.3 Non-conflictingness conditions

In the previous section we presented the bottom-up design procedure which

allows us to design the hierarchical control system in a uniform way. We

have shown (see Lemma 3.2.1) that the designed hierarchical control scheme

respects the low-level specification and, hence, fulfils the first condition of

Def. 3.1.3. In this section, we consider different classes of low-level systems

and formulate conditions on the intermediate layer and the high-level super-

visor to meet the remaining conditions. Moreover, we will show that some

of conditions ii.–v. are superfluous. Hereby, we will set up the framework

for the design of hierarchical control systems.

The system Σim can be realised by an I/S/- state machine. We say that

the tuple

Pim = ((UH × YL), (YH × UL), Xim, δim, X0)

where

• UH and YH are high-level signal spaces, UL and YL are low-level signal

spaces, and Xim the state space;

• Xim,0 ⊆ Xim is the set of initial states;

• δim : Xim × UH × YH × UL × YL × Xim is the transition relation,

is a realisation of Σim if for each reachable state ξim ∈ Xim and for each

pair (ηH , υL) ∈ UH ×YL there exist ξ′ ∈ Xim and a pair (υH , ηL) ∈ YH ×UL

such that (ξ, ηH , υH , ηL, υL, ξ′) ∈ δim.

In analogy with Def. 2.3.9, one can define the transition function γim :

Xim × UH × YL → 2YH×UL×Xim as

γim(ξ, ηH , υL) = {(υH , ηL, ξ′) ∈ YH×UL×Xim|(ξ, ηH , υH , ηL, υL, ξ′) ∈ δim}.

Furthermore, we assume that the function γim(ξ, ηH , υL) satisfies As-

sumption A3:

γim(ξ, ηH , υL) = γim
y (ξ, ηH , υL) × γim

u (ξ, ηH , υL) × γim
x (ξ, ηH , υL),

where γim
y : Xim × UH × YL → 2YH , γim

u : Xim × UH × YL → 2UL and

γim
x : Xim × UH × YL → 2Xim . Now we can write down the behavioural

equations defining the evolution of Pim:


























xim(k + 1) ∈ γim
x (xim(k), uH(k), yL(k)),

yH(k) ∈ γim
y (xim(k), uH(k), yL(k)),

uL(k) ∈ γim
u (xim(k), uH(k), yL(k)), k ∈ N0

xim(0) ∈ Xim,0.

(3.4)
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Again, it can be seen that the behaviour defined by (3.4) does indeed satisfy

the conditions of Def. 3.1.1.

In the system Σim realised by Pim, yH does strictly not anticipate uH

(yL) if condition (3.5) (condition (3.6)) holds for all reachable ξ ∈ Xim and

for all ηH ∈ UH , υL ∈ YL:

γim
y (ξ, ηH , υL) = γ̂im

y (ξ, υL), (3.5)

γim
y (ξ, ηH , υL) = γ̃im

y (ξ, ηH). (3.6)

Similarly, uL does strictly not anticipate uH (yL) if condition (3.7) (con-

dition (3.8)) holds for all reachable ξ ∈ Xim and for all ηH ∈ UH , υL ∈ YL:

γim
u (ξ, ηH , υL) = γ̂im

u (ξ, υL), (3.7)

γim
u (ξ, ηH , υL) = γ̃im

u (ξ, ηH). (3.8)

Finally, yH (uL) does strictly not anticipate both uH and yL, if the

corresponding output function depends only on ξ ∈ Xim.

Now, we can formulate two lemmata that will play a central role in

the subsequent analysis of the non-conflictingness property of hierarchical

structures. They are formulated for the interconnection of Σpl and Σim, but

due to the symmetric structure of the intermediate level Σim, they can easily

be reformulated, mutatis mutandis, for the interconnection of Σsup and Σim.

Lemma 3.3.1 Let Σpl be an I/S/- dynamical system with external behaviour

BL
pl ⊆ W T

L and let Ppl be an I/S/- machine realising BL
pl. Furthermore, let

Σim be a quadripole with external behaviour Bim realised by a trim state ma-

chine Pim satisfying assumption A3. The feedback interconnection of Σpl

and Σim is non-conflicting if for the machine Pim the following condition

holds:

i. uL does strictly not anticipate yL, i.e., (3.8) holds.

Then, the behaviour BH
im[BL

pl] can be realised by an I/S/- machine. If,

additionally, the following conditions hold for Pim, the behaviour BH
im[BL

pl]

can be realised by a strictly non-anticipating state machine:

ii. yH does strictly not anticipate uH , i.e., (3.5) holds,

iiia. yH does strictly not anticipate yL, i.e., (3.6) holds,

or
iiib. uL does strictly not anticipate uH , i.e., (3.7) holds.
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Proof. The proof is similar to those of Theorems 2.4.8 and 2.4.10. We

can write down the behavioural equations of the composite system and show

that they are well-defined for all values of the high-level input uH . Let us

first consider the composite system Σim[Σpl] when the first condition holds:































xpl(k + 1) ∈ γpl
x

(

xpl(k), γ̃im
u (xim(k), uH(k))

)

,

xim(k + 1) ∈ γim
x

(

xim(k), uH(k), γpl
y (xpl(k), γ̃im

u (xim(k), uH(k)))
)

,

yH(k) ∈ γim
y

(

xim(k), uH(k), γpl
y (xpl(k), γ̃im

u (xim(k), uH(k)))
)

, k ∈ N0

xpl(0) ∈ Xpl,0, xim(0) ∈ Xim,0.

(3.9)

The expressions in the right-hand sides of (3.9) are defined for all uH(k) ∈

UH and for all reachable states xpl(k) ∈ Xpl and xim(k) ∈ Xim. Moreover,

the state (xpl, xim) does strictly non anticipate uH and yH does not anticipate

uH . Therefore, the behavioural equations (3.9) describe an I/S/- machine.

Herewith we have proved the first part.

Furthermore, from the analysis of the equation for yH we can directly

check the non-anticipation property of the composite system. Let us consider

two cases:

Case i+ii+iiia:

Condition iiia, together with ii, boils down to γim
y (x, uH , yL) = γ̄im

y (x).



























xpl(k + 1) ∈ γpl
x

(

xpl(k), γ̃im
u (xim(k), uH(k))

)

,

xim(k + 1) ∈ γim
x

(

xim(k), uH(k), γpl
y (xpl(k), γ̃im

u (xim(k), uH(k)))
)

,

yH(k) ∈ γ̄im
y (xim(k)), k ∈ N0

xpl(0) ∈ Xpl,0, xim(0) ∈ Xim,0.

Case i+ii+iiib:

Condition iiib, together with i, boils down to γim
u (x, uH , yL) = γ̄im

u (x).






























xpl(k + 1) ∈ γpl
x

(

xpl(k), γ̄im
u (xim(k))

)

,

xim(k + 1) ∈ γim
x

(

xim(k), uH(k), γpl
y (xpl(k), γim

u (xim(k)))
)

,

yH(k) ∈ γ̂im
y

(

xim(k), γpl
y (xpl(k), γ̄im

u (xim(k)))
)

, k ∈ N0

xpl(0) ∈ Xpl,0, xim(0) ∈ Xim,0.

Hence, both cases correspond to strictly non-anticipating I/S/- machines. �

Lemma 3.3.2 Let Σpl be an I/S/- dynamical system with external behaviour

BL
pl ⊆ W T

L which can be represented by a strictly non-anticipating state ma-

chine Ppl. Furthermore, let Σim be a quadripole with external behaviour
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Bim realised by a trim state machine Pim satisfying assumption A3. The

feedback interconnection of Σpl and Σim is non-conflicting.

The behaviour BH
im[Bpl] can be realised by a state machine. If, addi-

tionally, for Pim yH does strictly not anticipate uH , i.e., (3.5) holds, the

behaviour BH
im[Bpl] can be realised by a strictly non-anticipating state ma-

chine.

Proof. The fact that the behaviour BH
im[Bpl] can be realised by an I/S/-

machine follows from Lemma 3.3.1 as a strictly non-anticipating state ma-

chine Ppl is a special case of an I/S/- machine. The second part can be

proved in analogy with the proof of Lemma 3.3.1. The behavioural equations

of the composite system are































xpl(k + 1) ∈ γpl
x

(

xpl(k), γim
u (xim(k), uH(k), γ̄pl

y (xpl(k))
)

,

xim(k + 1) ∈ γim
x

(

xim(k), uH(k), γ̄pl
y (xpl(k))

)

,

yH(k) ∈ γ̂im
y

(

xim(k), γ̄pl
y (xpl(k))

)

, k ∈ N0

xpl(0) ∈ Xpl,0, xim(0) ∈ Xim,0.

�

The following theorem states that some of the non-conflictingness con-

ditions are superfluous.

Theorem 3.3.3 To check the non-conflictingness conditions for a two-level

hierarchical structure (conditions ii.–v. of Def. 3.1.3) it suffices to check two

conditions:

C1:
1. Bim and BL

pl are non-conflicting, and

2. BH
im[BL

pl] and BH
sup are non-conflicting.

This is equivalent to checking the following two conditions:

C2:
1. Bim and BH

sup are non-conflicting, and

2. BL
im[BH

sup] and BL
pl are non-conflicting.

Proof. A pair of conditions is satisfied if the systems Σpl, Σim and Σsup

possess certain structural properties which follow from Theorem 2.4.10 and

Lemmata 3.3.1 and 3.3.2. Below, we list all possible combinations for both

cases:
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C1:

Bpl Bim Bsup

n.a. (3.8) s.n.a.

n.a. (3.8), (3.5), (3.6) n.a.

n.a. (3.8), (3.5), (3.7) n.a.

s.n.a. (3.5) n.a

C2:

Bsup Bim Bpl

n.a. (3.5) s.n.a.

n.a. (3.5), (3.8), (3.6) n.a.

n.a. (3.5), (3.8), (3.7) n.a.

s.n.a. (3.8) n.a

where ’n.a.’ and ’s.n.a’ denote non-anticipating and strictly non-anticipa-

ting, respectively. These two sets of structural conditions are equivalent.

Therefore, the fulfilment of conditions C1 implies the fulfilment of conditions

C2 and vice versa. �

Given the plant BL
pl, the intermediate layer Bim, the high-level super-

visor BH
sup, and the state machines representing these behaviours, the non-

conflictingness conditions of Th. 3.3.3 can be checked using results of The-

orem 2.4.10 as well as the results of Lemmata 3.3.1 and 3.3.2.

Since the structure of the plant is given it is natural to check the non-

conflictingness conditions bottom-up, i.e., to check conditions C1. Note that

this is consistent with the bottom-up design strategy proposed above. Thus,

given the plant BL
pl and the respective state machine, both the intermediate

layer Bim and the high-level supervisor BH
sup must be chosen in such a way

that Bim and Bpl are non-conflicting, the composite system BH
im[BL

pl] is I/-

w.r.t. (UH , YH) and that BH
im[BL

pl] and the high-level supervisor BH
sup are

non-conflicting.

Below, we consider two rather general schemes which can be used for the

design of the intermediate layer and analyse their properties with regard to

the non-conflictingness requirement.

3.4 Interface layer

As was said in Sec. 1.1.2, a typical feature of the hierarchical control archi-

tecture is that the plant and the high-level supervisor (or the higher level

controller) ”live in different worlds”. Therefore, we need a layer which would

establish a communication between lower and higher layers. Following [59],

we will call this layer the interface layer, or simply the interface2. The

functions of an interface are threefold:

2Note that in [97] it was referred to as type II intermediate layer.
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1. synchronisation of the high-level and the low-level signals;

2. aggregation of the low-level information and translation of this infor-

mation in a form suitable for the high-level system;

3. implementation of the high-level signals as the low-level control ac-

tions.

Below, we consider these three functions in details and discuss the well-

posedness issue. In Sec. 3.4.2, the behavioural description of interface layer

is given. Finally, in Sec. 3.4.3 we describe the state machine representations

of an interface layer and discuss issues regarding the non-conflictingness

conditions.

3.4.1 Interface layer: functioning

The structure of a typical interface layer is shown in Fig. 3.2. In many

cases, high-level and low-level signals are defined on different time scales.

Typically, low-level signals are defined in continuous time or on a discrete

time axis provided by fast equidistant sampling. High-level signals, in turn,

are defined on a discrete time axis which may depend on the low-level signal.

There are two types of synchronisation between the high-level and the low-

level system: time-driven and event-driven (see [89, 57, 101, 102] for details).

aggregation
Zero−order hold

synchronisation Event generation/

uH

uL

yH

yL

Figure 3.2: An event generator

In the first case, the high-level time scale is equidistant with the sampling

time defined as a multiple of the low-level sampling time: τH = κτL, where

τH and τL are the high-level and low-level sampling times, and κ ∈ N is

the multiplier. This is the case of time-driven high-level dynamics and the

corresponding interface layer is said to work as a sampling unit.

In the second case, the high-level time axis is generated by low-level sig-

nals. This is referred to as event-driven high-level dynamics. The interface

is said to work as an event generator. Event-driven systems produce output

signals in response to the occurrence of asynchronous discrete events. These
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events are triggered if certain conditions are satisfied. This can be stated

formally:

Definition 3.4.1 We say that the event σ ∈ Σ occurs at time θi, i ≥ 1 if

θi = min
σ∈Σ

{θi,σ},

where

θi,σ = min{t | Cσ(yL(θi−1, t), θi−1, t) = true},

θ0 = 0, Cσ : YL × N0 × N0 → {true, false} is a logical predicate, and

YL = {yL(·) ∈ ℓ∞([t1, t2], YL), 0 ≤ t1 ≤ t2 < ∞} is a set of the segments

of the output signals on intervals [t1, t2] ⊂ N0. Each particular segment is

denoted by yL(t1, t2).

This means that starting at time θ0 = 0 the system evolves until some

predicate Cσ takes on the value “true” at time τ . At this time instant the

event σ occurs. Then, we define θ1 = τ and repeat the procedure. The

sequence T = {θ0, θ1, . . . } defines the high-level time axis.

In most cases, the definition of the set of events is based on the aggre-

gation of the signal space of the low-level system. Let YL be the low-level

output set and Y be a set with cardinality less than that of YL. A set-valued

map φ : YL → 2Y such that for every y ∈ Y there exists at least one yL ∈ YL

satisfying y ∈ φ(yL) is said to be an A/D map [29]. The map φ defines a

cover of YL, i.e., a set of subsets Ai ⊂ YL such that ∀i ∈ Y, YL ⊃ Ai = φ−1(i).

The sets Ai are called the cells of the cover.

If φ is a single-valued surjective function, it induces an equivalence re-

lation ∼φ and defines the corresponding quotient set YL/ ∼φ (for details,

see Sec. 1.1.3). The set of equivalence classes [j] ⊂ YL/ ∼φ, j ∈ Y form

a partition of the set YL (see Fig. 3.3 for the illustration of the difference

between a cover and a partition).

In the case of the output space partition, the event condition can be

defined as, e.g.,

Cjk(i) = [φ(yL(t)) 6= φ(yL(θi−1))]∧[φ(yL(θi−1)) = j]∧[φ(yL(t)) = k] , j, k ∈ Y.

The situation when the set of events is based on a cover of YL is more

involved since there are different ways to define event conditions, that is

to decide when a particular cell becomes active. This additional degree of

freedom can be exploited to achieve better robustness characteristics of the

system as was discussed in [50]. Further discussion on A/D maps can be

found in [29], where the relation between dynamic specifications and A/D

maps is studied and the notion of refining an A/D map is introduced.
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b)a)

YL YL

y6

y3

y4
y2

y1 y3

y4

y2

y1

y5

y3 ∨ y4

Figure 3.3: A partition a) and a cover b) of the set YL

There is also a number of approaches exploiting additional information

on the system structure. In particular, a special approach is described in

[111, 59], where the partition of the state space is designed based on the

natural invariants of the plant.

The high-level signal yH is produced by an aggregation device which

sends a symbol yH(k) ∈ YH each time an event occurs. The set of high-level

output symbols may be equal to the set of events: YH = Σ. An A/D map

can also be used to aggregate the low-level information, i.e., YH = Y. In this

case, the interface layer sends to the higher level the symbol corresponding

to the active cell.

High-level control signals uH , in turn, have to be mapped to low-level

control signals uL. In most cases this is done by implementing a zero-order

hold device triggered at the time instants θi.

3.4.2 Behavioural description

In this section, we give a formal definition of an interface layer in terms of

behaviours.

As we have said above, an interface layer generates the high-level time

axis. Obviously, this time axis has to be well defined. Therefore, we intro-

duce a definition of a time scale. To do this, we need to extend the notion

of causal maps:

Definition 3.4.2 (see, e.g., [55], Ch. 5.1) An operator H : UN0 → Y N0,

i.e. an operator mapping signals u to signals y, is called causal if
[

ũ|[0,k] = û|[0,k]

]

⇒
[

H(ũ)|[0,k] = H(û)|[0,k]

]

holds for all k ∈ N0, ũ, û ∈ UN0. The operator is said to be strictly causal if
[

ũ|[0,k) = û|[0,k)

]

⇒
[

H(ũ)|[0,k] = H(û)|[0,k]

]
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for all k ∈ N0, ũ, û ∈ UN0.

Definition 3.4.3 ([97]) Let T : Y N0

L → NN0

0 . The operator T is said to be

a dynamic time scale if T is causal and if the time transformation T (yL) :

N0 → N0 is surjective and monotonically increasing for all yL ∈ Y N0

L .

For a fixed low-level signal yL, the time transformation T (yL) maps low-

level time j ∈ N0 to high-level time k ∈ N0. By requiring that T is a causal

operator, we ensure that at any instant of time the transformation T (yL)

only depends on the past and current values of yL. Later, we will also use

the pseudo-inverse of the time transformation T (yL) defined as follows:

(T (yL))∗ : N0 → N0 s.t. (T (yL))∗(k) = min
T (yL)(j)=k

j, k ∈ N0.

This is a monotonically increasing but not surjective mapping. One can eas-

ily see that Im((T (yL))∗) is equal to the sequence of event times {θ0, θ1, . . . }

corresponding to the low-level signal yL.

Often, an additional condition on the dynamic time scale can be imposed.

In particular, we may require that the interval between two events cannot

exceed some fixed value.

Definition 3.4.4 Let δ ∈ N0 be a constant. A dynamic time scale is called

regular modulo δ if ∃δ > 0 such that

(T (yL))∗(i + 1) − (T (yL))∗(i) < δ

holds for all i ∈ N0 and for all yL ∈ Y N0

L .

The regularity requirement can be easily ensured if we define an event

σ̂ with the logical predicate Cσ̂(i) = {t − θi−1 ≥ δ}. Obviously, the event σ̂

will occur if no event has occurred during the time δ.

Now let us consider two particular structures of an intermediate layer

described in Sec. 3.4.1. In a sampling unit, the time scale is fixed and

independent of the low-level output signal yL, i.e., Tsu(yL) = T̃su. T̃su can

be defined as follows:

Tsu : N0 → N0 s.t. Tsu(k) =

⌊

k

τ

⌋

,

where τ ∈ N is a sampling interval, k ∈ N0. This is a surjective and mono-

tonic mapping and hence T̃su is a dynamic time scale.

In the case of an event generator, the operator T depends on yL. Let

yL ∈ Y N0

L be a low-level signal and {θi}i∈N0
be a corresponding sequence of

55



event times as described in Def. 3.4.1, the time scale Teg(yL) : N0 → N0 is

defined by

Teg(yL)(k) = i, k ∈ [θi, θi+1),

which is obviously surjective and monotonic.

From Def. 3.4.1 we see that the causality requirement holds, i.e., for any

ỹL, ŷL ∈ Y N0

L ,
[

ỹL|[0,k] = ŷL|[0,k]

]

⇒
[

Teg(ỹL)|[0,k] = Teg(ŷL)|[0,k]

]

.

Thus, an event generator defines a dynamic time scale.

Furthermore, we require the measurement aggregation operator F :

Y N0

L → Y N0

H to be causal with respect to a dynamic time scale:

Definition 3.4.5 The operator F : Y N0

L → Y N0

H is said to be causal w.r.t.

T if T is a dynamic time scale and if

ỹL|[0,j] = ŷL|[0,j] ⇒ F (ỹL)|[0,k] = F (ŷL)|[0,k]

for k = T (ỹL)(j) and all j ∈ N0, ỹL, ŷL ∈ Y N0

L .

In both cases mentioned above this requirement is fulfilled by construc-

tion.

We still have to link high-level control signals uH to low-level control

signals uL. This is done via a zero-order hold device that is triggered by

the time transformation T (yL), i.e. successive high-level control actions are

passed on to the lower level whenever an event is generated and fixed until

the next event occurs. Formally, this is expressed by uL = uH ◦ T (yL).

In summary, an interface layer Bint mediating between low-level and

high-level time is completely defined by a dynamic time scale T and a mea-

surement aggregation operator F that is causal w.r.t. T :

Bint = {(uH , yH , uL, yL)|yH = F (yL) and uL = uH ◦ T (yL)}. (3.10)

3.4.3 Non-conflictingness conditions

An interface layer is represented by an I/S/- machine

Pint = ((UH × YL), (YH × UL), Xint, γint, xint,0),

where UH and YL are the input sets, YH and UL are the output sets, and

Xint = UH is the state set. The initial state xint,0 ∈ Xint can be chosen

arbitrarily since, according to Def. 3.4.1, 0 ∈ T and hence, the right-hand

sides of (3.11) and (3.13) do not depend on xint(0). The transition function

γint(x(k), uH(k), yL(k)) = γint
x (xint(k), uH(k), yL(k))×

×γint
y (xint(k), uH(k), yL(k)) × γint

u (xint(k), uH(k), yL(k))
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is defined as follows

xint(k + 1) = γint
x (xint(k), uH(k)) =

{

uH(k), k ∈ T

xint(k), otherwise.
(3.11)

yH(k) = γint
y (yL(k)) =

{

φ(yL(k)), k ∈ T

ǫ, otherwise,
(3.12)

uL(k) = γint
u (xint(k), uH(k)) =

{

uH(k), k ∈ T

xint(k), otherwise,
(3.13)

where φ : YL → YH is an A/D map as described in Sec. 3.4.1.

Here, we use the shorthand notation k ∈ T to denote the fact that an

event is triggered at time k. We do not distinguish between the time-driven

and event-driven dynamics since this does not influence the properties of

the state machine. Recall that both triggering algorithms define a dynamic

time scale. At time k, the state of the interface layer as well as the values of

signals uL and yH change. At all remaining time instants both the state and

the low-level signal uL do not change. The value of the high-level output

signal yH is equal to ǫ, where ǫ is used to denote the “empty” symbol, i.e.,

the absence of an output symbol. Note that the use of the symbol ǫ allows

us to project the high-level signal on the low-level time axis. In this way,

the non-conflictingness condition can be checked without performing the

transformation betwen two time axes.

Non-conflictingness of the hierarchical control system consisting of BL
pl,

Bint, and BH
sup can be checked using methods described in Sec. 3.3. How-

ever, there is a specific feature. The plant Bpl and the interface layer Bint are

synchronised w.r.t. the fast time scale Tf = N0. At the same time, the inter-

face layer Bint (and, hence, the composite system BH
int[B

L
pl]) is synchronised

with the high-level supervisor BH
sup w.r.t. the different, “slow” time scale3

Tsl = N0 which is defined by T (yL). Therefore, while analysing structural

properties of the interface layer we need to check the non-anticipation prop-

erty w.r.t. (yL, uL) for all k ∈ Tf , whereas the non-anticipation property

w.r.t. (yL, yH), (uH , uL), and (uH , yH) have to be checked only at k ∈ T .

Thus, we can see that the state machine Pint possesses the following

properties: yH does strictly not anticipate uH and does not anticipate yL;

uL does strictly not anticipate yL and does not anticipate uH .

3we use different notations to stress the fact that these time scales do not coincide.
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3.5 Reconfigurable controller

Usually, the designer has a big set of “control instruments” that can be

applied to the particular plant and the intermediate layer can be seen as a

realisation of this “tool kit”.

We consider two possible setups for a reconfigurable controller. Most

reconfigurable controllers can be obtained as modifications of these two

schemes.

3.5.1 Multi-controller

A general structure is shown in Fig. 3.4. We assume that the intermediate

layer consists of the “bank” of local controllers and a switching mechanism

controlled by the high-level input signal. The state evolution of these con-

trollers is not continuous, they are even not required to be of the same

dimension. The only condition that must be fulfilled is that the dimensions

of input/output signal spaces must be equal for all controllers.

Controller 1

Controller 2

Controller

u2
Hu1

H yH

yLuL

ϑ

Nm

Figure 3.4: Reconfigurable controller with jumps in the state

Let the intermediate layer consist of Nm local controllers with dimensions

of state space equal to ni, i = 1, . . . , Nm. Then the dynamics of the system

can be described in the following way:
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xi(k + 1) = fi(xi(k), yL(k), u2
H(k)), i = 1, Nm

uL(k) = hu1

H
(k)(x(k)),

where xi(k) ∈ Xi ⊆ Rni is the state vector of the i-th controller, x =

[xT
1 , . . . , xT

Nm
]T is the state of the whole system, x(k) ∈ X ⊂ RN , N =

∑Nm

i=1 ni; fi : Xi × YL × U2
H → Xi is the vector function determining the

evolution of the corresponding controller, and hi : Xi → UL is the output

function of the i-th controller. All Nm controllers work simultaneously.

However, at each time instant k only one of them is connected to the plant

input uL. The active controller is determined by the high-level discrete

control u1
H(k) ∈ U1

H = {1, . . . , Nm}. Finally, ϑ : YL → YH is an aggregation

function.

This kind of intermediate layer can be described by an I/S/- machine

Pmc = ((UH × YL), (YH × UL), Xmc, γmc, Xmc,0),

where UH = (U1
H×U2

H) and YL are the input sets, YH and UL are the output

sets, and Xmc ⊂ RN is the state set. Xmc,0 ⊂ Xmc is the set of initial states

and the transition function

γmc(xmc(k), uH(k), yL(k)) = γmc
x (xmc(k), uH(k), yL(k))×

×γmc
y (xmc(k), uH(k), yL(k)) × γmc

u (xmc(k), uH(k), yL(k))

is defined as follows

xmc(k + 1) = γx(xmc(k), uH(k), yL(k)) = f(xmc(k), yL(k), u2
H(k)),

yH(k) = γy(yL(k)) = ϑ(yL(k)),

uL(k) = γu(xmc(k), uH(k)) = hu1

H
(k)(xmc(k)).

Hence, we may observe that the state machine representing a multi-

controller has the following properties: yH does strictly not anticipate uH

and does not anticipate yL; uL does strictly not anticipate yL and does not

anticipate uH .

An advantage of the multi-controller scheme is that it allows to combine

rather different local control laws. For instance, we may implement an

optimal control law for large transitions and a stabilisation law for the small

neighbourhood of the equilibrium point. At the same time, this structure

may have a number of drawbacks such as the saturation of the off-the-loop

state and control signals as well as discontinuities in the control signal [84].

It has also been shown [84] that in many cases the bank of controllers

can be realised by a single higher-order controller with a set of parameters.

Each particular controller is chosen by assigning certain values to these

parameters. This structure is called a reconfigurable controller with state

sharing.
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3.5.2 Reconfigurable controller with state sharing

The structure of a reconfigurable controller with continuous state evolution

is presented in Fig. 3.5. The dynamics of the controller can be described by

the following equations:

x(k + 1) = fu1

H
(k)(x(k), yL(k), u2

H(k))

uL(k) = h(x(k)),

where x(k) ∈ X ⊆ Rn, u1
H(k) ∈ U1

H = {1, . . . , Nm} is the discrete control

determining the current mode of operation for the continuous controller,

fi : X×YL×U2
H → X, i ∈ U1

H are the corresponding right-hand sides of the

controller equations, Nm is the number of modes, and ϑ is an aggregation

function. In this setup we assume that the output function h does not

depend on the mode of controller. This is natural, since we do not change

the structure of the controller, but only its dynamics.

Reconfigurable controller

u2
H

uL yL

yH

ϑ

u1
H

Figure 3.5: Reconfigurable controller with continuous state evolution

A reconfigurable controller with continuous state evolution can be de-

scribed by an I/S/- machine

Prc = ((UH × YL), (YH × UL), Xrc, γrc, Xrc,0),

where UH = (U1
H × U2

H) and YL are the input sets, YH and UL are the

output sets, and Xrc is the state set. Xrc,0 is the set of initial states and the

transition function

γrc(x(k), uH(k), yL(k)) = γrc
x (x(k), uH(k), yL(k))×

×γrc
y (x(k), uH(k), yL(k)) × γrc

u (x(k), uH(k), yL(k))
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is defined as follows

x(k + 1) = γx(x(k), uH(k), yL(k)) = fu1

H
(k)(x(k), yL(k), u2

H(k)),

yH(k) = γy(yL(k)) = ϑ(yL(k)),

uL(k) = γu(x(k)) = h(x(k)).

It is easy to see that the state machine Prc representing a reconfigurable

controller has slightly different properties compared to Pmc: yH does strictly

not anticipate uH and does not anticipate yL; uL does strictly not anticipate

yL and does strictly not anticipate uH .

3.6 Multi-level hierarchy: non-conflictingness

In most cases one has to combine at least two intermediate control layers

to implement the specification BHL
sp . Often it is advantageous to use several

intermediate layers since it can simplify the design procedure. One layer

can be responsible for the low-level control of the plant, whereas the second

one can establish a communication between the low-level controller(s) and

the high-level supervisor. On the other hand, as was shown in Sec. 3.2.2,

an intermediate layer can be used to shape the behaviour of the plant and

hence to simplify the implementation of the specification BHL
sp . Therefore,

we need to extend our results to the case of multi-level hierarchical control

structure.

In this section, we give a definition of a multi-level hierarchical control

structure. Further, we formulate non-conflictingness conditions for the case

of several intermediate layers and show how they can be proved in the most

efficient way.

Let Wi = Ui × Yi denote the signal space for the signals between the

(i−1)-th and the i-th levels, i = 1, Nℓ. Σ0
pl is the plant with external be-

haviour B0
pl ⊆ W N0

1 , Σi
im, i = 1, Nℓ−1 are the intermediate layers with

external behaviours Bi
im ⊆ (Wi ×Wi+1)

N0 , and ΣNℓ
sup is the high-level super-

visor with external behaviour BNℓ
sup ⊆ W N0

Nℓ
. B0

pl and BNℓ
sup are assumed to be

I/- w.r.t. (U1, Y1) and (YNℓ
, UNℓ

), respectively. The intermediate systems

Σi
im are assumed to have the structure of a quadripole.

The composite low-level plants obtained through the recursive compo-

sition of the plant Σ0
pl with intermediate layers are denoted by Σi

pl, i =

1, Nℓ−1. The index i means that the plant Σpl has been composed with in-

termediate controllers up to the i-th level inclusive. The external behaviour

Bi
pl ⊂ W T

i+1 of the system Σi
pl is defined as follows:

Bi
pl = {wi+1 ∈ W T

i+1|∃wi ∈ Bi−1
pl : (wi, wi+1) ∈ Bi

im}, i = 1, Nℓ−1.
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Nℓ−1
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Figure 3.6: Multi-level hierarchy

In the same way, we can define the composite supervisors Σi
sup, i = 1, Nℓ−1

with external behaviours Bi
sup ⊂ W T

i :

Bi
sup = {wi ∈ W T

i |∃wi+1 ∈ Bi+1
sup : (wi, wi+1) ∈ Bi

im}, i = 1, Nℓ−1.

Definition 3.6.1 The tuple (B1
im, . . . ,BNℓ−1

im ,BNℓ
sup)ml is said to be an Nℓ-

level hierarchical solution to the control problem (B0
pl,B

0
sp)cp if

i. B0
pl ∩ B1

sup ⊆ B0
sp,

ii. Bi
pl and Bi+1

im are non-conflicting for all i = 0, Nℓ−2,

iii. Bi
sup and Bi−1

im are non-conflicting for all i = 2, Nℓ,

iv. Bi
pl is I/- w.r.t. (Ui+1, Yi+1), Bi

sup is I/- w.r.t. (Yi, Ui) and Bi
pl and

Bi+1
sup are non-conflicting for all i = 0, Nℓ − 1.
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Requirements ii.–iv. of Def. 3.6.1 guarantee that all composition opera-

tions are well defined and there is no blocking at any level of the hierarchy.

To ensure this one has to check (3Nℓ − 2) conditions, which is very elabo-

rate. The following theorem show that the non-conflictingness property of

the multi-level hierarchical control system can be proved in Nℓ steps.

Theorem 3.6.2 To check non-conflictingness of the Nℓ-level hierarchical

solution to the control problem (B0
pl,B

0
sp)ml, it suffices to check the following

Nℓ conditions:

i. Bi
pl is I/- w.r.t. (Ui+1, Yi+1) and Bi

pl and Bi+1
im are non-conflicting for

all i = 0, Nℓ−2,

ii. BNℓ−1
pl is I/- w.r.t. (UNℓ

, YNℓ
) and BNℓ−1

pl and BNℓ
sup are non-conflicting.

Equivalently, one can check an alternative set of Nℓ conditions:

i. Bi
sup is I/- w.r.t. (Yi, Ui) and Bi

sup and Bi−1
im are non-conflicting for

all i = 2, Nℓ,

ii. B1
sup is I/- w.r.t. (Y1, U1) and B0

pl and B1
sup are non-conflicting.

Proof. We prove the first statement. The second one can be proved in the

same way. To shorten notation we will write B1 ⊲⊳ B2 to denote the fact that

B1 and B2 are non-conflicting and that both B1 and B2 are I/- with respect

to corresponding input/output signals.

Hence, we need to prove that the following implication holds:
{

Bi
pl ⊲⊳ Bi+1

im , i = 0, . . . , Nℓ − 2

BNℓ−1
pl ⊲⊳ BNℓ

sup

⇒

{

Bj
pl ⊲⊳ Bj+1

sup , j = 0, . . . , Nℓ − 2

Bk
im ⊲⊳ Bk+1

sup , k = 1, Nℓ − 1

1. Consider the case j = Nℓ − 2, k = Nℓ − 1 and the two-level hierar-

chy (BNℓ−2
pl ,BNℓ−1

im ,BNℓ
sup). We have the following relations: BNℓ−2

pl ⊲⊳

BNℓ−1
im and BNℓ−1

pl ⊲⊳ BNℓ
sup. Hence, we can apply Theorem 3.3.3 whence

BNℓ
sup ⊲⊳ BNℓ−1

im , (∗)

BNℓ−1
sup ⊲⊳ BNℓ−2

pl . (∗∗)

2. From Theorem 3.3.3 it follows that BNℓ−1
sup exists and is I/-. Hence,

we can consider the two-level hierarchy (BNℓ−3
pl ,BNℓ−2

im ,BNℓ−1
sup ). By

definition, we have BNℓ−3
pl ⊲⊳ BNℓ−2

im , (∗∗) gives the second condition.

Therefore, we can apply Theorem 3.3.3 again to obtain the next pair

of relations.
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3. This procedure can be iteratively repeated until we reach the lowest

level.

Herewith we have proved the above implications.

Note that the first set of conditions is more natural since the conditions

are checked bottom-up which coincides with design procedure. Moreover,

if there is an interface layer in the hierarchical control structure, the time

aggregation introduces a natural ordering of the control layers, namely from

those with the ”fine” time scale to those with the ”coarse” time scale.
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Chapter 4

Optimal Control of Hybrid

Automata under Safety and

Liveness Constraints

When designing control for complex systems one often needs to fulfil re-

quirements of a different nature. One typical problem statement for such

systems – especially in safety related applications – is to minimise a cost

function while respecting safety and liveness constraints. There are a num-

ber of abstraction-based control synthesis approaches that address safety

and liveness issues while largely ignoring performance optimisation aspects

[27, 103, 98, 78]. On the other hand, many interesting papers on the optimal

control of hybrid systems have been presented [23, 48, 36, 107, 105, 7], but

the proposed approaches are not able to handle “hard” safety constraints.

In this chapter we propose a hierarchical control structure for a low-

level plant Σpl modeled by a discrete-time hybrid automaton (DTHA) A.

This structure consists of two levels as shown in Fig. 4.1. The first level,

ΣDS , contains an approximation based discrete supervisor which guarantees

the fulfilment of safety and liveness constraints. We show that the action

of this supervisor can be interpreted as restricting invariants of the hybrid

automaton plant model. After the transformation, the composite system

Σ̃pl = ΣDS [Σpl] can be represented as a discrete-time hybrid automaton Am

with a modified set of invariants. This approach is based on the qualitative

behaviour shaping technique described in Sec. 3.2.2.

The second level, ΣOC , uses the remaining degrees of freedom to realise a

state feedback control strategy which minimises a given cost function. This

optimisation technique is based on the results on optimal control and stabil-

isation of switched systems [26] and hybrid automata [23, 24]. In these pub-

lications a method was presented to solve an infinite time horizon optimal
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ΣOC: optimal control
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Σpl: plant (hybrid automaton)

Figure 4.1: A hierarchical control architecture

control problem for a hybrid automaton with affine continuous dynamics,

when a quadratic performance index is considered. These results have been

generalised in order to cope with the particular structure of the plant:

(a) the existence of forbidden regions has been taken into account, assum-

ing that the invariant sets invi may be proper subsets of the state

space X, i.e., invi ( X;

(b) an infinite number of switches is allowed.

The resulting state feedback solution is defined on the basis of an appro-

priate state space partitioning. We show that this partition, which we call

a switching table, can be efficiently computed off-line.

All results presented in this chapter were obtained in cooperation with

the Automatic Control Group at the Department of Electrical and Elec-

tronic Engineering of the University of Cagliari, Italy. The fruitful collabo-

ration with Daniele Corona, Carla Seatzu, and Alessandro Giua is gratefully

acknowledged. The results have been published in conference proceedings

[25, 43] and as a journal paper [106]. The presentation in this chapter is

essentially based on [106].

The chapter is structured as follows. In Sec. 4.1, we recall some ba-

sic facts on hybrid automata, introduce the plant model and formalise the
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specifications. In Sec. 4.2, the safety and liveness requirements are addressed

using ℓ-complete abstraction of the continuous plant dynamics. In Sec. 4.3,

the remaining degrees of freedom are used to minimise a quadratic cost

function. A numerical example is provided in Sec. 4.4.

4.1 Plant Model and Specifications

In this section we first define the class of Hybrid Automata (HA) on which

we focus in the following. Then we formally describe the safety specifications

and the optimal control problem.

4.1.1 Hybrid Automata

Like a continuous-time hybrid automaton [5, 70], a discrete-time hybrid

automaton A consists of a finite automaton extended with a continuous

state. The latter, denoted by xL(k) ∈ Rn, evolves in discrete time k ∈ N0.

Note that there is one difference compared to the “standard” definition of

hybrid automata. Since an additional degree of freedom consists in the

choice of locations, we interpret them as (restricted) discrete inputs. The

hybrid automaton considered here is a structure

A = (UL, YL, XL, f, q, inv, E),

where

• UL = {u1
L, . . . , uα

L} is a finite set of discrete inputs (locations);

• YL ⊆ Rm is an output space;

• XL ⊆ Rn is a continuous state space;

• fi : XL → XL is the transition function associated with every input

symbol ui
L ∈ UL, i.e.

xL(k + 1) = fi(xL(k)) (4.1)

if uL(k) = ui
L;

• q : XL → YL is an output function;

• inv : UL → 2XL is a function that associates an invariant invi ⊆ XL

to each location ui
L ∈ UL.

• E ⊂ UL × 2XL × UL is a set of edges. An edge ei,j = (ui
L, gij , u

j
L) ∈ E

is an arc between locations ui
L and uj

L with associated guard region

gij . The set of edges describes restrictions on the sequence of control
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Figure 4.2: A graph describing an hybrid automaton.

symbols and can be interpreted as the discrete part of the overall

hybrid automaton (see Fig. 4.2). This is a directed graph with vertices

corresponding to the locations. The graph is assumed to be connected.

Starting from initial state xL(0) = x0 ∈ XL with input uL(0) = ui
L such

that x0 ∈ invi, the continuous state xL may evolve according to the cor-

responding discrete-time transition function fi, i.e., xL(k + 1) = fi(xL(k)),

until a switch to another location uj
L occurs. The new location uj

L has to

satisfy the guard constraint xL(k) ∈ gij and xL(k) ∈ invj . The future

evolution of the continuous state is now determined by the transition func-

tion fj , provided that the condition fj(xL(k)) ∈ invj holds. A switch is

enforced if the continuous state is about to leave the invariant invi, i.e.

fi(xL(k)) /∈ invi, k ∈ N0. However, the hybrid automaton may also switch

to a “new” location uj
L before being forced to leave its “old” location ui

L, if

the corresponding guard constraint and “new” invariant are satisfied. Thus,

the sequence uL(k) of discrete locations can be interpreted as a constrained

control input.

It may also happen that for some reachable state (xL(k)) the system

evolution cannot be extended to the interval [k + 1,∞). This situation is

referred to as blocking. The notion of liveness, in turn, corresponds to the

fact that the system evolution can always be extended to infinity. Here,

the liveness property of interest for the considered system is assumed to be

equivalent to nonblocking. A first goal of low-level control is to assure this

property along with safety specifications.
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4.1.2 The Plant Model

We assume that the uncontrolled plant is modeled as a specific discrete-time

hybrid automaton satisfying the following assumptions:

A4. The difference equation (4.1) is linear in xL and time-invariant, i.e.

xL(k + 1) = Ai xL(k) ∀ui
L ∈ UL, k ∈ N0; (4.2)

A5. invi = XL ∀ui
L ∈ UL;

A6. Transitions between any two locations ui
L, uj

L ∈ UL are allowed;

A7. gij = XL ∀ui
L, uj

L ∈ UL;

A8. The state vector xL is assumed to be trivially observable: YL = XL,

q = Id and, hence, yL(k) = xL(k) ∀k ∈ N0.

Note that assumption A6 does not reduce the generality of the approach,

since possible restrictions on discrete input signals can be considered as

specifications – this will be illustrated in Sec. 4.2.2. Under the assumptions

A4 - A7, the uncontrolled plant is a switched linear system with a free input

signal uL : N0 → UL.

Hence, the induced full behaviour of the discrete-time hybrid automa-

ton A is BL
pl,f ⊆ (UL × YL × XL)N0 . We can see that the system Σpl =

(N0, UL, YL, XL,BL
pl,f ) is an I/S/- system: input uL ∈ PUL

BL
pl,f = UN0

L is

locally free, the continuous state variable xL satisfies the axiom of state,

and, finally, uL is strictly not anticipated by xL and not anticipated by yL.

The discrete-time hybrid automaton A under the assumptions A4–A8

can therefore be represented as an I/S/- machine: Σpl ≃ Ppl. Note that the

assumptions A5–A7 are crucial and cannot be omitted. Moreover, since

the function q does not depend on uL, the state machine Ppl is strictly

non-anticipating.

4.1.3 Specifications and problem decomposition

The overall control problem can be formulated in the following way: first,

we define a set BL
sp ⊆ (UL × YL)N0 of “admissible” I/O signals. We will call

BL
sp safety specifications.

To formalise the safety specifications, the continuous plant output space

YL is partitioned w.r.t. the function qd : YL → Yd, where Yd is a finite

set of symbols. To express dynamic safety constraints, certain sequences of

input/output symbols are declared illegal or, in other words, the evolution of

the hybrid automaton needs to be restricted such that only legal (UL, Yd)-

sequences are generated. It is assumed that this set of sequences can be
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realised by a finite state machine Psp. The procedure of “building” such an

automaton is described in detail in Sec. 4.2.2.

In a second step, subject to plant model and safety constraints, we aim

at minimising the cost function

J =
∞
∑

k=0

yL(k)′QuL(k)yL(k), (uL, yL) ∈ BL
pl ∩ BL

sp, (4.3)

where, for each k ∈ N0 and uL(k) ∈ UL, QuL(k) is a positive semidefinite

real matrix.

This problem will now be approached using a two-level control hierar-

chy. To address the safety issue, we define the specification BHL
sp similar

to the one proposed in Sec. 3.2.2. The low-level controller must obey this

specification when connected to the plant. Moreover, the composite system

low-level controller plus plant must be non-blocking (i.e., must satisfy live-

ness requirements). This is described in Section 4.2. The remaining degrees

of freedom are used to minimise the cost function (4.3). This is described

in Sec. 4.3.

4.2 The low-level task

In Sec. 3.2 we argued that operations with realisations for plant and low-level

controller are extremely computationally expensive. However, the compu-

tational burden can be substantially reduced if both plant and specification

can be described (or overapproximated) by finite-dimensional models. We

show that the hybrid plant automaton can be efficiently approximated by

a finite state machine employing the ℓ-complete approximation approach

[98, 78]. Subsequently, Ramadge and Wonham’s supervisory control theory

[99] is used to synthesise a least restrictive supervisor. Note that, in gen-

eral, controller synthesis and approximation refinement are iterated until a

nontrivial supervisor guaranteeing liveness and safety for the approximation

can be computed or computational resources are exhausted. In the former

case, attaching the resulting supervisor to the hybrid plant model amounts

to introducing restricted invariants. The resulting hybrid automaton rep-

resents the plant under low-level control and can be guaranteed to respect

both safety and liveness constraints.

4.2.1 Ordered set of discrete abstractions

To formulate the problem within a discrete framework we need to discre-

tise the continuous output signal yL. For this purpose, we introduce the

discretised output mapping qd : YL → Yd:

yd(k) = qd(yL(k)), (4.4)
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where the set of output symbols, Yd, is assumed to be finite: Yd =

{y1
d, . . . , y

β
d }. Without loss of generality, the discretised output mapping

qd is supposed to be surjective (onto). It partitions the output space into a

set of disjoint subsets Y (i) ⊂ YL, i = 1, . . . , β, i.e.

β
⋃

i=1
Y (i) = YL,

Y (i) ∩ Y (j) = ∅ ∀i 6= j .

Hence, low-level control deals with a continuous system (4.2) with dis-

crete external signals. uL : N0 → UL is the discrete control input and

yd : N0 → Yd the discrete measurement signal.

To implement supervisory control theory, the hybrid plant model is ap-

proximated by a purely discrete one. This is done using the method of

ℓ-complete approximation [98, 78], which is described in the following para-

graphs.

Denote the external behaviour of the hybrid plant model by BL
pl, i.e.

BL
pl ⊆ (UL × Yd)

N0 is the set of all pairs of (discrete valued) input/output

signals w = (uL, yd) that (4.2) and (4.4) admit. Recall that BL
pl is time-

invariant. The crucial question here is whether BL
pl is ℓ-complete. We know

that for ℓ-complete systems we can decide whether a signal belongs to the

system behaviour by looking at intervals of length ℓ. An ℓ-complete system

can be represented by a difference equation in its external variables with

lag ℓ. Hence, an ℓ-complete system can be realised by a finite state ma-

chine. However, the hybrid plant model BL
pl is, except for trivial cases, not

ℓ-complete. For such systems, the notion of strongest ℓ-complete approxi-

mation has been introduced in [78]: a time-invariant dynamical system with

behaviour Bℓ is called strongest ℓ-complete approximation for BL
pl if

(i) Bℓ ⊇ BL
pl,

(ii) Bℓ is ℓ-complete,

(iii) Bℓ ⊆ B̃ℓ for any other ℓ-complete B̃ℓ ⊇ BL
pl,

i.e. if it is the “smallest” ℓ-complete behaviour containing BL
pl. Obviously,

Bℓ ⊇ Bℓ+1 ∀ℓ ∈ N, hence the proposed approximation procedure may gen-

erate an ordered set of abstractions. Clearly, w ∈ Bℓ ⇔ w|[0,ℓ] ∈ BL
pl|[0,ℓ].

For w|[0,ℓ] = (ui0
L , . . . , uiℓ

L , yk0

d , . . . , ykℓ

d ), where ij ∈ {1, . . . , α}, and kj ∈

{1, . . . , β} this is equivalent to

fiℓ−1

(

. . . fi1

(

fi0

(

q−1
d (yk0

d )
)

∩
(

q−1
d (yk1

d )
))

. . .
(

q−1
d (y

kℓ−1

d )
))

∩ q−1
d (ykℓ

d )

:= X(w|[0,ℓ]) 6= ∅.
(4.5)
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Note that for a given string w|[0,ℓ], X(w|[0,ℓ]) represents the set of possible

values for the continuous state variable1 xL(ℓ) if the system has responded

to the input string uL(0) = ui0
L , . . . , uL(ℓ − 1) = u

iℓ−1

L with the output

yd(0) = yk0

d , . . . , yd(ℓ) = ykℓ

d . Note also that (4.5) does not depend on uL(ℓ).

For linear and affine systems evolving in discrete time N0, (4.5) can be

checked exactly, since all involved sets are polyhedra.

As both input and output signal evolve on finite sets UL and Yd, Bℓ

can be realised by a (nondeterministic) finite automaton. In [98, 78], a

particularly intuitive realisation is suggested, where the approximation state

variable stores information on past values of uL and yd. More precisely, the

automaton state set can be defined as

Xd :=
ℓ−1
⋃

j=0

Xdj
, ℓ ≥ 1,

where Xd0
= Yd, and Xdj

is the set of all strings (ui0
L , . . . , u

ij−1

L , yk0

d , . . . , y
kj

d )

such that

(ui0
L , . . . , u

ij
L , yk0

d , . . . , y
kj

d ) ∈ B|[0,j].

The temporal evolution of the automaton can be illustrated as follows:

From initial state xd(0) ∈ Xd0, it evolves through states

xd(j) ∈ Xdj , 1 ≤ j ≤ ℓ − 1

while

xd(j) ∈ Xdℓ−1
, j ≥ ℓ − 1.

Hence, until time ℓ−1, the approximation automaton state is a complete

record of the system’s past and present, while from then onwards, it contains

only information on the “recent” past and present.

As the states xi
d ∈ Xd of the approximation realisation are strings of

input and output symbols, we can associate xi
d with a set of continuous

states, X(xi
d), in the same way as in (4.5).

Note that we can associate yr
d as the unique output for each discrete

state xd(r) = (u
ir−j

L , . . . , u
ir−1

L , y
kr−j

d , . . . , ykr

d ) ∈ Xd, j < ℓ. Thus, the out-

put is just the last symbol in the symbolic description of the state. It is

then a straightforward exercise to provide a transition function γx : Xd ×

UL → 2Xd such that the resulting (non-deterministic) Moore-automaton

Mℓ = (UL, Yd, Xd, γx, γy, Xd0
) with input set UL, output set Yd, state set

Xd, output function γy : Xd → Yd, and initial state set Xd0
is a realisa-

tion of Bℓ. Note that the state of Mℓ is instantly deducible from observed

variables [96].

1recall that the state xL is trivially observable and, hence, we can find q−1(q−1

d (yi
d)) =

Id(q−1

d (yi
d)) ⊂ Xd for any yi

d ∈ Yd.
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Figure 4.3: Moore-automaton a) and an equivalent automaton without out-

puts b). Note that yi
d = γy(x

i
d) ∈ Yd is the output symbol associated with

the discrete state xi
d.

To recover the framework of supervisory control theory [99] as closely

as possible, we finally convert Mℓ into an equivalent finite state machine

without input/output structure: Gℓ = (Σ, X̃d, γ̃x, X̃d0
), where Σ = UL ∪ Yd

represents the state set, UL represents the set of controllable events and Yd

the set of uncontrollable events.

Technically, this procedure is carried out according to the following

scheme (for an illustration, see Fig.4.3):

• Each state xj
d ∈ Xd is split into two states: xj

d and x̂j
d. Thus, the new

state set is formed as X̃d = Xd
⋃

X̂d. Initial states are replaced by

their complements, X̃d0
= X̂d0

.

• The new transition function γ̃x is defined as a union of two transition

functions with nonintersecting domains:

γ̃x(x̃i
d, σ

j) =















∽x̃i
d, x̃i

d ∈ X̂d, σj = γy(∽ x̃i
d) ∈ Yd,

∽ γx(x̃i
d, σ

j), x̃i
d ∈ Xd, σj ∈ UL,

undefined , otherwise,

where ∽ denotes an operation of taking the complementary state, i.e.

∽x̂i
d := xi

d and vice versa. Note that the first event always belongs

to the set Yd, and the following evolution consists of sequences where

events from UL and Yd alternate.

Since the function γy is scalar-valued, the set of feasible events for each

state x ∈ X̂d contains only one element. Thus, any two states x and ∽x

form a fixed pair, where the states X̂d are in some sense fictitious and play

an auxiliary role.
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4.2.2 Specifications and supervisor design

Specification BHL
sp

The specification BHL
sp is designed to restrict the plant behaviour BL

pl to

those signals which satisfy the safety requirements. However, we do not

restrict the signal spaces. Hence, the respective low-level and high-level

signal spaces are equal: UL = UH , YL = YH . The goal of the intermediate

level (low-level controller) is to restrict the control signals uH in such a way

that the resulting output signals yH satisfy the safety constraints.

The specification BHL
sp can be formally defined as follows:

BHL
sp =











(uL, yL, uH , yH) ∈ (UL × YL × UH × YH)N0

∣

∣

∣

∣

∣

∣

∣

PUL×YL
BHL

sp = BL
sp

uH ∈ UN0

H ,

yH = yL,











where BL
sp is the safety specification. It is assumed that the specification BL

sp

can be realised by a finite automaton as shown below.

Realisations for specifications

In the following, we consider specifications which consist of independent

specifications for the input and the output, respectively. The overall specifi-

cation can be realised by a state machine with inputs and outputs. However,

since we have chosen to design the low-level controller within the framework

of supervisory control theory [99], we will represent the safety specification

as a finite state machine (automaton) without input/output structure.

The specification on outputs expresses both static constraints (through

restricting the set of allowed outputs Y ∗
d ⊂ Yd) and dynamic constraints.

Dynamic constraints are usually represented as a set of forbidden strings

such as, e.g. strings where “the symbol yj
d follows immediately upon the

symbol yi
d ”, or “the symbol yi

d appears three times one after another without

any other symbol in between”. The set of all allowed sequences is then

realised as a finite automaton PY = (Yd, XY , γY , xY 0).

The specifications for inputs, in turn, reflect structural restrictions on

the allowed sequence of input symbols. They can be realised by a finite

automaton PU = (UL, XU , γU , xU0).

The last stage is the composition of input and output specifications to

obtain the overall specification Psp. Note that to be compatible with the

approximation automaton Gℓ, the overall specification has to have a special

transition structure, namely, it must generate only sequences of events that

consist of alternating symbols yd ∈ Yd and uL ∈ UL, where the first symbol
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must belong to the set Yd (see Fig. 4.3.b)). Thus, the resulting specification

automaton is obtained as an “ordered” product of PU and PY :

P = PY ∨ PU = (PY || PU ) × Ω = (Yd ∪ UL, Xsp, γsp, xsp,0), (4.6)

where the automaton Ω is given by (Yd ∪ UL, {0, 1}, γω, {0}),

γω(x, σ) =







1, x = 0, σ ∈ Yd,

0, x = 1, σ ∈ UL,

undefined , otherwise.

To characterise the resulting specification automata, we need the notion

of current-state observability [cf. 17, 88]:

Definition 4.2.1 A finite state machine A = (Σ, Q, φ) is said to be current-

state observable if there exists a nonnegative integer K such that for every

i ≥ K, for any (unknown) initial state q(0), and for any admissible sequence

of events σ(0) . . . σ(i − 1) the state q(i) can be uniquely determined. The

parameter K is referred to as the index of observability.

In the following, we assume that the automata PU and PY are current-

state observable with indices of observability KPU
and KPY

, respectively.

The notion of current-state observability can be extended to the overall

specification automaton. Its index of observability KPsp is given by

KPsp =

{

2KPY
− 1, KPY

> KPU
,

2KPU
, KPY

≤ KPU
.

(4.7)

Furthermore, to stay within the time-invariant framework we have to

restrict ourselves to specifications that can be realised by strongly current-

state observable automata:

Definition 4.2.2 A finite state machine A = (Σ, Q, φ) is said to be strongly

current-state observable if it is current-state observable with observability

index K and if for each state q ∈ Q there exists another state q′ ∈ Q

such that the state q can be reached from q′ by a sequence of K events, i.e.

∀q ∈ Q ∃q′ ∈ Q, s.t. q = φ(q′, s), s ∈ Σ∗, |s| = K, where Σ∗ is the Kleene

closure of Σ and φ the extension of the automaton transition function to

strings in Σ∗.

Note that each state of such an automaton can be deduced from the

string consisting of the past K events, independently from the initial state.
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Supervisor design

Given an approximating automaton Gℓ and a deterministic specification

automaton (4.6) with observability index KPsp , supervisory control theory

checks, whether there exists a nonblocking supervisor and, if the answer is

affirmative, provides a least restrictive supervisor SUP by “trimming” the

product of Gℓ and Psp. Hence the state set of the supervisor, XSUP , is a

subset of X̃d × Xsp.

The functioning of the resulting supervisor is very simple. At time k it

“receives” a measurement symbol which triggers a state transition. In its

new state xj
sup, it enables a subset Γ(xj

sup) ⊆ UL and waits for the next

feedback from the plant. As shown in [78], the supervisor will enforce the

specifications not only for the approximation, but also for the underlying

hybrid plant model.

In the following, we will be interested in the special case of quasi-static

specifications. To explain this notion, let PX̃d
: XSUP → X̃d denote the

projection of XSUP ⊆ X̃d×Xsp onto its first component. If PX̃d
is injective,

i.e. if

PX̃d
(x1) = PX̃d

(x2) ⇒ x1 = x2, ∀x1, x2 ∈ XSUP (4.8)

then the specification automaton is called quasi-static with respect to the

approximation automaton Gℓ.

Lemma 4.2.3 P is quasi-static with respect to Gℓ if

2ℓ − 1 ≥ KP . (4.9)

Proof. Let x1 and x2 be two states of the supervisor SUP . There are two

cases:

1. PX̃d
(x1),PX̃d

(x2) ∈ X̃dj
, 1 ≤ j < ℓ−1. Each element from X̃dj

stores

a record of the complete past and present of yd and uL. Since the spec-

ification automaton is assumed to be deterministic, this record unam-

biguously determines the current state of the specification automaton.

Thus, (4.8) holds.

2. PX̃d
(x1),PX̃d

(x2) ∈ X̃dℓ−1
. In this case an element from X̃dℓ−1

con-

tains information only on “recent” past values of yd and l. Precisely

speaking, it contains information about the last ℓ output symbols and

the last ℓ − 1 control symbols. Thus, the complete record has length

of 2ℓ − 1 symbols, which is sufficient to unambiguously determine the

current state of Psp.
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4.2.3 Low-level controller

The low-level controller is built on the basis of the designed supervisor SUP .

We need to extend its structure to include the high-level signals uH and

yH . The low-level controller is represented by the state machine Pim =

((UH × YL), (YH × UL), Xim, γim, Xim,0), where UH and YL are the input

sets, YH and UL are the output sets, and Xim is the state set. The set of

initial states Xim,0 = X̃d0 × xsp,0 and the transition function

γin(xim(k), uH(k), yL(k)) = γim
x (xim(k), uH(k), yL(k))×

×γim
y (xim(k), uH(k), yL(k)) × γim

u (xim(k), uH(k), yL(k)).

Here, the transition function γim
x (xim(k), yL(k)) is equivalent to the transi-

tion function of SUP and Xim = XSUP . The output functions γim
y and γim

u

are defined as follows:

yH(k) = γim
y (yL(k)) = yL(k),

uL(k) = γim
u (xim(k), uH(k)) =

{

uH(k), uH(k) ∈ Γ(xim(k)),

Γ(xim(k)), otherwise.

Hence, the state machine Pim possesses following properties: yH does

strictly not anticipate uH and does not anticipate yL; uL does strictly not

anticipate yL and does not anticipate uH . Moreover, according to Lemma

3.3.2 the composite system plant Σpl plus low-level controller ΣDS , Σpl[ΣDS ],

is non-conflicting and can be realised by a strictly non-anticipating state

machine.

4.2.4 Plant model under low-level control

For the case of quasi-static specifications, each supervisor state xi
sup corre-

sponds exactly to a state x̃i
d = PX̃d

(xi
sup) of the approximating automaton,

which, in turn, can be associated with a set X(x̃i
d) = X(PX̃d

(xi
sup)). It

turns out that if the overall specification is strongly current-state observ-

able, the composite system plant plus supervisor can be represented by a

hybrid automaton with modified invariants.

For k ≥ ℓ − 1, attaching the discrete supervisor to the plant model is

therefore equivalent to restricting the invariants for each location uj
L ∈ UL

according to

invj =
⋃

i, s.t. uj
L ∈ Γ(xi

sup)

PX̃d
(xi

sup) ∈ Xdℓ−1

X(PX̃d
(xi

sup))
⋃

fi(X(PX̃d
(xi

sup))). (4.10)
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Note that for the initial time segment, i.e. k < ℓ−1, (4.10) is more restrictive

than the discrete supervisor computed in Sec.4.2.2.

Hence the action of supervisory control is to restrict the invariants from

invj = X to invj given by (4.10) and, accordingly, to restrict the guards

from gij = X to gij = invi∩ invj where invi and invj are computed as given

in (4.10).

The union of all invariants invj , j = 1, . . . , α, forms the refined state

set that contains only safe points, i.e. points for which exists at least one

sequence of control symbols such that the resulting behaviour satisfies the

specifications.

The resulting hybrid automaton represents the plant model under low-

level control. As control system synthesis has been based on an ℓ-complete

approximation, it is guaranteed that the resulting hybrid automaton satis-

fies safety and liveness requirements. The remaining degrees of freedom in

choosing uL(k) can be used in a high-level controller addressing performance

issues.

4.3 The high-level task

The high-level task requires the solution of an optimal control problem of

the form (4.3).

The aim of this section is that of showing in detail that a state feedback

solution of (4.3) can be obtained by computing off-line appropriate partitions

of the state space, that we call switching regions, extending to the case at

hand previous results on the optimal control of switched systems [105], based

on dynamic programming arguments. In particular, we present the following

three main results.

• Firstly, we recall how one can extend the results of [105] to the case

of HA with invariants in order to compute an optimal state feedback

control law for the problem (4.3) when a finite number of switches N

is allowed.

• Then, we show how the proposed approach can be extended to the

case of an infinite number of allowed switches.

• Finally, we show how to deal with the case of hybrid systems whose

dynamics fi are all unstable.

For sake of simplicity we will deal with completely connected automata.

These results can be extended to the case of generic automata using the same

arguments as in [23], where continuous-time HA were taken into account.
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4.3.1 The optimal control problem with a finite number of
switches

Let us now consider an optimal control problem of the form:






























































V ∗
N (i0, yH,0) := min

I,K

{

F (I,K) :=
∞
∑

k=0

yH(k)′Qi(k)yH(k)

}

s.t. x(k + 1) = Ai(k)x(k)

yH(k) = x(k)

uH(k) = ir ∈ UH , for kr ≤ k < kr+1, r = 0, 1, . . . , N

x(k) ∈ invi(k), for k = 0, 1, . . . ,+∞

0 = k0 ≤ k1 ≤ . . . ≤ kN < kN+1 = +∞

(4.11)

where Qi are positive semi-definite matrices, yH(0) = yH,0 is the high-level

output at time k = 0 which is equal to the initial state x0, uH(0) = i0 is

the high-level input at k = 0, and N < +∞ is the maximum number of

allowed switches, that is given a priori. Note that since the state is trivially

observable we will consider the system state as output.

In this optimisation problem there are two types of decision variables:

• I := {i1, . . . , iN} is a finite sequence of high-level input symbols (lo-

cations);

• K := {k1, . . . , kN} is a finite sequence of switching time indices.

Problem (4.11) is well posed provided that the following hypothesis are

verified.

A9. The invariant sets invi, i ∈ UH , guarantee the liveness of the HA.

Note that Assumption A9. is generally not easy to verify. Nevertheless,

in the case at hand, its satisfaction is guaranteed a priori by the low-level

task, namely by the procedure used to construct the invariant sets.

Moreover, to ensure a finite optimal cost for any x0 ∈ Rn and any i0 ∈ UH

we assume the following:

A10. There exists at least one location i ∈ UH such that Ai is strictly

Hurwitz and invi = Rn.

Note that this condition is sufficient but usually not necessary to get a

finite optimal cost.

In [105] it was shown that under the assumption that invi = Rn for all

i ∈ UH , the optimal control law for the optimisation problem (4.11) takes

the form of a state-feedback, i.e., it is only necessary to look at the current

system state in order to determine if a switch from linear dynamics Aik−1

to Aik , should occur.
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For a given location i ∈ UH when r switches are still available, it is

possible to construct a table Ci
r that partitions the state space Rn into α

regions Rj ’s, j = 1, · · · , α = |UL|. Whenever iN−r = i we use table Ci
r to

determine if a switch should occur: as soon as the continuous state x reaches

a point in the region Rj for a certain j ∈ UH \ {i} we will switch to location

iN−r+1 = j; no switch will occur if the continuous system’s state x belongs

to Ri.

In [105] it was constructively shown how the tables Ci
r can be computed

off-line using a dynamic programming argument: first the tables Ci
1 (i ∈ UH)

for the last switch are determined, then, by induction the tables Ci
r can be

computed once the tables Ci
r−1 are known.

In order to provide a graphical representation of Ci
r we associate a differ-

ent colour to each dynamics Aj , j ∈ UH . The region Rj of Ci
r is represented

according to the defined colour mapping.

Note that when invi = Rn for all i ∈ UH , the regions Rj ’s are homoge-

neous, namely if ξ ∈ Rj then λξ ∈ Rj for all λ ∈ R. This implies that they

can be computed by simply discretising the unitary semisphere. Clearly,

this is no more valid when invi ( Rn for some i ∈ UH , as in our case where

a discretisation of all state space is necessary.

To show how the procedure of [105] can be extended to the case we are

considering here, let ξ ∈ Rn be a generic vector, and let D be an appropriate

set of points in the portion of the state space, which define the state space

discretisation grid considered. Moreover, given a discrete state i ∈ UH and

a continuous state ξ ∈ Rn, we define the set

succ(ξ) = {j ∈ UH | ξ ∈ invj}

which denotes the indices associated to the locations whose invariant set

includes ξ.

The procedure to compute the switching regions is based on dynamic

programming. Let us denote Tr(i, ξ) the optimal remaining cost when the

current continuous state is ξ, the current dynamics is Ai and r switches are

still available. Thus, when r = 0, i.e., when no more switch may occur,

T0(i, y) = ξ′Ziξ if Ai is Hurwitz and the system trajectory starting in ξ

and evolving with dynamics Ai until the origin is reached, always stays

within invi. The matrix Zi is the solution of the discrete Lyapunov equation

A′
iZi + ZiAi = −Qi. In all the other cases, T0(i, ξ) = +∞.

The optimal remaining cost Tr(i, ξ) for r = 1, . . . , N , is computed recur-

sively starting from r = 1 towards increasing values of r. More precisely, we

first choose a finite time horizon kmax that is large enough to approximate

the infinite time horizon. Then, for any r = 1, . . . , N , any ξ ∈ D and any

i ∈ UH , we compute the value of the cost to infinity when the initial state is
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(i, ξ), r switches are still available, the generic dynamics Ai is used for the

first k times sampling, then the system switches to dynamics Aj . This cost,

that we denote T (i, ξ, j, k, r), is the sum of the cost due to the evolution

with dynamics Ai for k times sampling, plus the optimal remaining cost

from the new state (j, Ak
i ξ) reached after the switch when r−1 switches are

still available, i.e.,

T (i, ξ, j, k, r) = ξ′

(

k
∑

h=0

(Ah
i )′Qi(A

h
i )

)

ξ + Tr−1(j, A
k
i ξ). (4.12)

The previous equation expresses the dynamic programming argument used

to efficiently compute the optimal switching law. When r switches are still

available, we consider a nominal trajectory starting from a discretisation grid

point ξ and evaluate its cost assuming we remain in the current dynamic

i for a time k; the cost remaining after the after the switch the switch is

evaluated on the basis of the table previously constructed for the r−1 switch.

Note that for a fixed value of i, ξ, j and r we only need to find the optimal

value of k with a one-dimensional search.

Note that only those evolutions that do not violate the invariant con-

straints should be taken into account. This means that if ζ = Ak
i ξ is the

generic continuous state reached from ξ evolving with dynamics Ai for k

steps, an evolution with dynamics Aj , j ∈ UH , should be considered if and

only if j ∈ succ(ζ).

Finally, we define the switching tables as mappings Ci
r : D → UH , and

the generic region Rj as

Rj = {ξ ∈ D | Ci
k(ξ) = j}.

The procedure to compute the switching regions is briefly summarised

in the following algorithm.

Algorithm 2. Tables construction

Input: Ai ∈ Rn×n, Qi ∈ Rn×n, invi ⊆ Rn(i ∈ UH), N, kmax,D.

Output: Ci
r, r = 0, 1, . . . , N, i ∈ UH .

Notation: Q̄i(k) =
∑k

h=0(A
h
i )′Qi(A

h
i ), Zi = lim

k→∞
Q̄i(k).

Initialisation:

r = 0 % remaining switches

for i = 1 : α

for all ξ ∈ D

do: Cost assignment:
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T0(i, ξ) =



























ξ′Ziξ if Ai is Hurwitz and the system trajectory

starting in ξ and evolving with dynamics

Ai until the origin is reached, always

stays within invi

+∞ otherwise

end for

end for

Computation of switching regions:

for r = 1 : N

for i = 1 : α

for all ξ ∈ D

Computation of the remaining cost:

set: k = 0, ∆ = ∅

while k ≤ kmax

ζ = Ak
i ξ

if ζ /∈ invi

for all j ∈ succ(ζ)

T (i, y, j, k, r) = ξ′Q̄i(k)ξ + Tr−1(j, k),

∆ = ∆ ∪ {(j, k)}

end for

k = kmax + 1

else

for all j ∈ succ(ζ) \ {i}

T (i, ξ, j, k, r) = ξ′Q̄i(k)ξ + Tr−1(j, k),

∆ = ∆ ∪ {(j, k)}

end for

k = k + 1

end if

end while

if i ∈ succ(ξ) and Ai is Hurwitz

T (i, ξ, i, kmax, r) = ξ′Ziξ,

∆ = ∆ ∪ {(i, kmax)}

end if

do: Cost assignment: Tr(i, ξ) = min
(j,k)∈∆

T (i, ξ, j, k, r)

do: Colour assignment: (j∗, k∗) = arg min
(j,k)∈∆

T (i, ξ, j, k, r),

Ci
r(ξ) =

{

j∗ if k∗ = 0

i otherwise

end for

end for
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end for

Algorithm 2 first computes the optimal remaining cost T0(i, ξ) when no

more switches are available. This is done for any i ∈ UH and any ξ ∈ D.

Then, the switching tables are computed backwards, starting from that cor-

responding to one available switch, until that corresponding to N available

switches (r = 1 : N). More precisely, for any r, any location i with dynam-

ics Ai and any sampling point ξ ∈ D, we compute the optimal remaining

cost starting from (i, ξ) when r switches are available. In order to do this

we compare all the costs that can be obtained starting from (i, ξ), evolving

with Ai for k sampling instants, then switching to any location Aj , and

up to then evolving with the optimal evolution from (j, ζ), ζ = Ak
j ξ, when

r−1 switches are available. Note that k may only take finite values, namely

k = 0, 1, . . . , kmax. This clearly does not affect the validity of the solution

provided that kmax is taken large enough. If the minimum cost is obtained

for k = k∗ = 0 and j = j∗, this means that when the current state is (i, ξ)

and r switches are still available, the cost is minimised if we immediately

switch to location Aj . Therefore, we assign the colour corresponding to Aj

to the point ξ in the table Ci
r. On the contrary, if k∗ > 0 it means that if

the state is (i, ξ) and r switches are available, it is convenient to continue

evolving with dynamics Ai. Therefore we assign the colour corresponding

to Ai to the point ξ in the table Ci
r.

The computational cost of the presented algorithm is of the order

O(qnNs2) where n is the dimension of the state space and q is the number

of samples in each direction (i.e., qn is the cardinality of D). Therefore, the

complexity is a quadratic function of the number of possible dynamics and

linear in the number of switches.

Two important cautions should be taken in order to ensure the unique-

ness of the tables and (as it will be discussed in the following) the absence of

the Zeno behaviour when the procedure is extended to the case of N = ∞.

The argument (j∗, k∗) that minimises the cost T (i, ξ, j, k, r) may be not

unique and this may cause ambiguity in the construction of the tables. To

this aim we introduce the following lexicographic ordering.

Let Γ = {(j, k) ∈ ∆ | (j, k) = arg minT (i, ξ, j, k)} be the set of solutions

of problem

Tr(i, ξ) = min
(j,k)∈∆

T (i, ξ, j, k, r), (4.13)

and assume that Γ has cardinality greater than one. Let (j′, k′) and (j′′, k′′)

be any two couples in Γ with j′ 6= j′′. We say that (j′, k′) ≺ (j′′, k′′) iff

j′ < j′′. Finally, if j′ = j′′ we say that (j′, k′) ≺ (j′′, k′′) iff k′′ < k′.

Choosing the minimal element in Γ with respect to ≺, the optimal solu-

tion of Problem (4.13) is unique.
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The second precaution that should be taken is the following. Consider

the case in which at a given value of the switching index k, the arguments

that minimise the remaining cost T (i, ξ, j, k) starting from point ξ in dy-

namics Ai are (j∗, k∗) with k∗ = 0. It may be the case that the system, once

entered in dynamics Aj∗ , requires an immediate switch to another dynam-

ics, say p causing the presence of 2 switches in zero time. This behaviour is

undesirable, because it leads to a potential risk of a Zeno behaviour when

the number of available switches goes to infinite.

To avoid this it is sufficient to take (p, k∗) instead of (j∗, k∗), or more

precisely, to consider (j∗, k∗) = arg min T (j∗, ξ, j, k) at the previous switch-

ing index r − 1. When this extra precaution is taken, we can ensure that a

spacing condition kr+1 − kr > 0 is always verified during an optimal evolu-

tion.

4.3.2 The optimal control problem with an infinite number
of switches

In [26] it was shown that under the assumption that invi = Rn for all i ∈ UH ,

the above procedure can be extended to the case of N = ∞, provided that

(i) for at least one i ∈ UH , Ai is Hurwitz, and (ii) for all i ∈ UH , Qi > 0.

Analogous results can be proved here under Assumptions A9 and A10,

and under the additional following hypothesis.

A11. For all i ∈ UH , Qi > 0.

Lemma 4.3.1 For any continuous initial state χ0, χ0 6= 0, and ∀ ε > 0,

∃ N̄ such that for all N > N̄ ,

V ∗
N (i, χ0) − V ∗

N̄
(j, χ0)

V ∗
N (i, χ0)

< ε,

for all i, j ∈ UH .

Proof. See [106].

According to the above result, one may use a given fixed relative toler-

ance ε to approximate two cost values, i.e.,

V ∗
N (i, χ) − V ∗

N ′ (j, χ)

V ∗
N (i, χ)

< ε =⇒ V ∗
N (i, χ) ∼= V ∗

N ′ (j, χ).

This result enables us to prove the following important theorem.

Theorem 4.3.2 Given a fixed relative tolerance ε, if N̄ is chosen as in

Lemma 4.3.1 then for all i, j ∈ UH it holds that Ci
N̄+1

= Cj
N̄+1

.
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Proof. It trivially follows from the fact that, by Lemma 4.3.1, V ∗
N̄+1

(i, χ0) =

V ∗
N̄+1

(j, χ0) for all i, j ∈ UH , and from the uniqueness of the optimal tables

as discussed above.

This result also allows one to conclude that

∀ i ∈ UH , C∞ = lim
N→∞

Ci
N ,

i.e., all tables converge to the same one.

To construct the table C∞ the value of N̄ is needed. We do not provide

so far any analytical way to compute N̄ , therefore our approach consists in

constructing tables until a convergence criterion is met.

Table C∞ can be used to compute the optimal feedback control law that

solves an optimal control problem of the form (4.11) with N = ∞. More

precisely, when an infinite number of switches is available, we only need to

keep track of the table C∞. If the current continuous state is χ and the

current location is Ai, on the basis of the knowledge of the colour of C∞ in

χ, we decide if it is better to still evolve with the current dynamics Ai or

switch to a different dynamics, that is univocally determined by the colour

of the table in χ.

Let us finally observe that table C∞ is Zeno-free, i.e., it guarantees that

no Zeno instability may occur when it is used to compute the optimal feed-

back control law. This property is guaranteed by the procedure used for

their construction as discussed in Sec. 4.3.1.

4.3.3 The optimal control of switched systems with unstable
dynamics

In this section we show that the above results still apply when Assump-

tion A10. is relaxed. To this aim, let us first introduce the following

definitions.

Definition 4.3.3 (Forbidden region) A forbidden region for the A is a

set Xf ⊂ X : Xf = X \
s
⋃

i=1

invi, where α is the number of locations.

Thus Xf is a region forbidden to all dynamics of the A.

Definition 4.3.4 (Augmented A and OP ) An augmented automaton

A = (UH , Y H , X, f, q, inv,E) of A = (UH , YH , X, f, q, inv, E) and the cor-

responding optimal control problem OP of OP (4.11), are related as follows:

(i) A includes a new Hurwitz dynamics Aα+1 and OP includes a corre-

sponding weight matrix Qα+1 = kQ̃α+1 (with rank(Q̃α+1) > 0, and

k > 0).
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Figure 4.4: Graph of the automaton A (continuous) and A (continuous and

dashed) described in the example.

(ii) A new invariant invα+1 = X is associated to the new dynamics.

(iii) The edges ei,α+1 ∈ E and eα+1,i ∈ E are defined ∀i ∈ UH .

�

Thus the augmented automaton A is the same as A except for an extra

input symbol (uα+1
H ) completely connected to all the locations in the A. Its

invariant set coincides with invα+1 = X and its dynamics is Aα+1. The

corresponding OP weights location (α + 1) with matrix Qα+1 > 0.

The following important result holds.

Lemma 4.3.5 Assume that there exists an exponentially stabilising switch-

ing law for problem OP (A). Then there also exists a sufficiently large

value of k > 0 in the OP (A), such that the table C∞, solution of OP (A),

i = 1, . . . , α + 1, contain the colour of Aα+1 at most in Xf .

Lemma 4.3.5 allows one to consider the solution of OP (A) equivalent to

the solution of OP (A). This follows from the fact that the dynamics Aα+1

does not influence at all any solution of the augmented problem. Therefore

it can be removed from the augmented automaton.

This result is formally proved in [26], in absence of state space con-

straints. As before this result can be trivially extended if the liveness of the

automaton is guaranteed (see Assumption A9.). In fact, by definition, it

holds that, for any initial state χ0 ∈ X \ Xf and input symbol i0 of the A,

the trajectory χ(k) corresponding to the the solution of OP (A), i(k), always

keeps within X \ Xf .

Let us finally observe that the convergence to a unique table C∞ is due

to the fact that we are dealing with strongly connected HA. If such were

not the case, then α different tables C
i
∞, i = 1, . . . , α, would be obtained as
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a solution of OP , and all of them should be used to compute the optimal

feedback control law.

4.3.4 Robustness of the procedure

The high-level procedure we suggest in this chapter provides a switching

table, i.e., a partition of the state space, that the controller consults on-line

in order to establish which is the current location that ensures the minimality

of the cost function. If no disturbance is acting on the system and no

numerical error affects the switching table construction, the optimality of

the solution, as well as the safeness and liveness of the closed-loop system,

are guaranteed.

In practice, two different problems may occur.

• The first one concerns disturbances acting on the continuous system

that may change its nominal trajectory. If the disturbance does not

bring the system inside the forbidden region Xf , this does not affect

the validity of the result: the controller continues taking its decisions

on the basis of the current continuous state, the minimality of the cost

is guaranteed, and the safety and liveness constraints are still satisfied.

On the contrary, the procedure obviously fails if the disturbance is

such that the trajectory enters the forbidden region Xf : in this case

the safety and liveness constraints cannot be satisfied any more.

• The second problem is related to the inevitable numerical errors that

affect the construction of the switching tables due to the state space

discretisation required by our approach. For each switch, the table is

computed for all points that belong to the discretisation grid. From

these points the nominal trajectories are studied piecewise using Eq.

(4.12): after the switching the remaining evolution may start from

a point that does not belong to the grid and the actual remaining

trajectory is an approximation of the nominal one.

The actual trajectories during the system evolution will be close to the

nominal ones used to compute the tables if the discretisation step is

sufficiently small. A numerical error in the computation of the tables

is not critical if the forbidden region is empty. In such a case, the

provided solution may be sub-optimal but it is still viable.

However, assume that the forbidden region is not-empty. If the forbid-

den regions constraints the optimal solution, it is likely that an optimal

nominal trajectory needs to pass as close as possible to the forbidden

region without entering it. However, an evolution that differs from a
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nominal one may graze or even hit the forbidden region. In this case,

the safety and liveness constraints cannot be satisfied any more.

A solution we suggest to overcome both problems is the following.

In the low level task we define a ”tolerance region” Xtr around the

forbidden state space set Xd, then we redefine the forbidden state space

set as X ′
d = Xd ∪ Xtr. This clearly implies a reduction of the invariant

sets of each location (inv′1, . . . , inv′α), and consequently, a wider forbidden

region X ′
f ⊃ Xf in the high level task.

The security region should be large enough to make sure that a trajectory

that differs from a nominal one – either because a disturbance is acting on

the system, or because of the numerical errors in the construction of the

tables – may pass within X ′
f but never reaches Xf .

In this way we improve the robustness of the procedure. We have to

pay a cost for this: the optimality of the solution with respect to the chosen

performance index is no more guaranteed, and the computed solution will

be suboptimal.

4.4 Numerical example

Let us consider a A with two locations, whose graph is depicted in Figure

4.4 (the part sketched with continuous lines). Moreover, let

A1 =

[

0.981 0.585

−0.065 0.981

]

, A2 =

[

0.981 0.065

−0.585 0.981

]

be the corresponding continuous dynamics, whose eigenvalues have unitary

norm. In particular, in both cases it holds λ1,2 = 0.9808 ± j0.1951. Two

generic trajectories relative to dynamics A1 and A2, respectively, are re-

ported in Figure 4.5.

Assume that

X = {x ∈ R2 | x2
1 + 9x2

2 ≤ 40 ∧ 9x2
1 + x2

2 ≤ 40},

where x2
1 + 9x2

2 ≤ 40 and x2
1 + x2

2 ≤ 40 are the equations of the trajectories

trough the point of coordinates x1 = x2 = 2 and evolving with dynamics A1

and A2, respectively.

Finally, assume that the safety constraint is given by the forbidden state

space set

Xd = {x ∈ R2|H ′x ≤ h}

where

H =

[

0 0 1 −1

1 −1 −1 −1

]

h =
[

0.8 −0.2 0 0
]

,

(4.14)
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Figure 4.5: Discrete time trajectories of dynamics A1 and A2, with eigen-

values along the unitary circle.

i.e., Xd is the trapezoid depicted in Fig. 4.6.

The set X \ Xd can be blocking, i.e., there exists some initial point in

X\Xd such that, regardless of the switching strategy, any trajectory starting

from these points always hit the set Xd.

In order to guarantee liveness, the previous setup is passed to the proce-

dure described in Section 4.2. In terms of safety specification it means that

we mark all output symbols yd ∈ Ŷd, where Ŷd = {yd ∈ Yd | q
−1
d (y

(i)
d )∩Xd 6=

∅}, as forbidden and require that the allowed sequences of output symbols

do not contain such forbidden symbols. Then, the obtained supervisor is

transformed into the appropriate invariant sets inv1 and inv2 to be asso-

ciated to the dynamics A1 and A2, respectively. A new forbidden region

Xf = X \ (inv1 ∪ inv2) ⊃ Xd is defined according to Definition 4.3.3.

The invariant sets of locations 1 and 2 are reported in Fig. 4.6.(a) and

(b), respectively, while the set Xf is sketched in figure (c).

Within the given constraints we want to solve an optimal control prob-

lem2 OP of the form (4.3), where Q1 = Q2 = I. For this purpose we consider

the augmented problem OP (A), with the following data:

A3 =

[

0.9838 0

0 0.9838

]

, Q3 = kQ1, inv3 ≡ X

where k = 103, and A3 is Hurwitz. The graph of the augmented automaton

is depicted in Fig. 4.4 (continuous and dashed part).

Given the symmetry of the two dynamics, it can be easily shown that

the solution of OP (A) when invi ≡ X, i = 1, 2, is to use dynamics A2 when

x1x2 > 0 and dynamics A1 when x1x2 < 0. This result is very intuitive if

we observe the trajectories of the given dynamics (Figure 4.5) and if we use

the identity matrices as weight matrices in problem (4.3).

2Note that neither A1 nor A2 are Hurwitz, hence an infinite number of switches is

necessary.
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Figure 4.6: Invariants (in white) of locations 1 (a) and 2 (b) and (c) the

forbidden region Xf = X \ (inv1
⋃

inv2) defined in Def. 4.3.3. The interior

of the blue trapezoid is the forbidden region Xd.

Note that the augmented problem OP (A) satisfies the conditions given

in Definition 4.3.4. The switching table procedure, applied to OP (A) for a

recursively increasing number of switches, converges after N = 15 switches.

Moreover the tables Ci
∞, i = 1, 2, 3 are coincident with a unique table C∞,

because the state graph of HA (Fig. 4.4) is strongly connected.
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Figure 4.7: Switching table of the problem OP (A) defined in the example.

The table C∞ is depicted in Figure 4.7 and some relevant considerations

can be immediately done.

(i) The colour of the augmented dynamics exactly covers the region Xf .

(ii) In inv1\Xf (inv2\Xf ) the col or is that relative to dynamics A2 (A1).
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Figure 4.8: Trajectories x(k) (a) and i(k) (b) of the optimal solution of

OP (A) obtained by using the table in Figure 4.7 for an initial point (i0 =

1, x0 = [−1 0]′).

(iii) Around the origin the solution of OP (HA) coincides with the solution

described above relative to the case of invi = X for i = 1, 2.

From the above table we deduce that there exists a finite optimal solution

for any initial state x0 ∈ X\Xf of the HA; moreover, if x0 ∈ Xf the optimal

solution of HA uses dynamics A3 for the minimum time required to leave

Xf ; from then on the optimal solution of HA is used. This can be viewed

by the simulations depicted in Figure 4.8(a). The optimal cost from the

point x0 = [−1 0]′ with i0 = 1 is J = 196.6. For completeness also the index

trajectory i(k) is reported in Figure 4.8(b).

The total computational time (Matlab 7, on an Intel Pentium 4 with 2

GHz and 256 Mb RAM) for constructing the table in Figure 4.7 is about

40 hours. This time is big, because a very dense space discretisation was

considered (approximately 2×103 points). It is important, however, to point

out that this computational effort is spent off-line. The on-line part of the

procedure consists in measuring the state x(k) and comparing its value with

the switching table to decide the optimal strategy.
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Chapter 5

Detecting and Enforcing

Monotonicity for Hybrid

Control Systems Synthesis

In the previous section, we presented an approach to hierarchical control

synthesis where a finite state machine was used to “replace” the continuous

plant dynamics. Different approaches to the discrete abstraction (or over-

approximation) of continuous dynamics have been proposed during the last

decade (see, e.g. [27, 58, 21, 65, 78]).

One key issue in designing such abstractions is to make sure that the be-

haviour of the abstraction covers (over-approximates) the behaviour of the

continuous dynamics on a suitable (discrete) external signal space. This, in

turn, boils down to computing guaranteed overapproximations for reacha-

bility sets in the continuous component’s state space. For general nonlinear

systems, this represents a highly nontrivial problem. However, if the system

under consideration is monotone (e.g. [110, 2]) with respect to a partial or-

der in its state space, an abstraction can be computed in a straightforward

way [79].

Unfortunately, in most cases the systems under consideration are not

monotone. Therefore, a question arises – whether it is possible to use low-

level control to enforce monotonicity. In this chapter we formulate this

problem within the framework developed in Sec. 3.2. We show how to check

for the existence of a suitable partial order and how to design the low-level

control to enforce monotonicity of the composite system plant plus low-level

controller.

The results presented in this chapter have been published as a conference

paper [42].

This chapter is organised as follows: in Section 5.1, we briefly review
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the notion of a partial order. Section 5.2 addresses the concept of mono-

tone, i.e., order preserving, dynamical systems, both for the autonomous and

the controlled case. This section contains new results on how to efficiently

check monotonicity (Lemmata 5.2.3 and 5.2.6). In Section 5.3, we briefly

outline how monotonicity can be used in the context of abstraction based

hybrid control synthesis. Finally, in Section 5.4.2, we formulate the problem

within the hierarchical control framework and investigate how appropriate

continuous feedback on a lower level of a hierarchical hybrid control scheme

can enforce monotonicity and hence facilitate the computation of discrete

abstractions for higher level control purposes.

5.1 Partial order relations

A partial order relation � on a Banach (or, more precisely, ordered metric)

space B is defined as an operation satisfying the following three properties:

1. x � x ∀x ∈ X,

2. (x � y) ∧ (y � z) ⇒ x � z ∀x, y, z ∈ X,

3. (x � y) ∧ (y � x) ⇒ x = y ∀x, y ∈ X.

We write x ≺ y if x � y and x 6= y. This relation is no longer reflexive

and is referred to as a strict order relation. Usually, to introduce an order

relation one uses an auxiliary set K ⊂ B, such that

1. αk ∈ K ∀k ∈ K, α ∈ R+,

2. k1 + k2 ∈ K ∀k1, k2 ∈ K,

3. k ∈ K ∧ −k ∈ K ⇒ k = 0.

Thus, K is a convex pointed cone. Given K, we define the relation x � y

if and only if y − x ∈ K.1 If K has nonempty interior intK then we define

x ≺≺ y iff y − x ∈ intK. It is stronger than ≺ or � as x ≺≺ y implies x ≺ y

and therefore x � y. In Euclidean space Rn, orthants can play the role

of cones. Each orthant Rn
δ ⊂ Rn is characterised by its signature, i.e. the

n-tuple δ = {δ1, . . . , δn} whose elements take values from the two-element

set {0, 1}. Rn
δ is defined as Rn

δ = {x ∈ Rn|(−1)δixi ≥ 0}. Hence, the zero

signature corresponds to the positive orthant. We use notation �δ (resp.,

≺δ and ≺≺δ) to show that the corresponding relation is defined with respect

to the orthant Rn
δ . Relation symbols without index refer to relations w.r.t.

the positive orthant.

1x ≺ y iff y − x ∈ K\{0}
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5.2 Monotone dynamical systems

A monotone dynamical system is a dynamical system on an ordered met-

ric space which has the property that ordered states remain ordered when

time progresses. In other words, monotone systems are order preserving

dynamical systems. In this section we give some conditions for an arbitrary

autonomous dynamical system to be monotone. Furthermore, these results

are extended to dynamical systems with inputs.

5.2.1 Autonomous systems

Consider the dynamical system:

ẋ(t) = f(x(t)), (5.1)

where x(t) ∈ X ⊂ Rn, f : X → Rn is a continuously differentiable vector

field. The solution of (5.1) that starts at the point x0 at t = 0 is defined

as φt(x0) and referred to as the flow of (5.1). To make an assertion about

qualitative properties of the above dynamical system we have to introduce

some classification.

Definition 5.2.1 A vector field f : X → Rn is said to be of type Kδ on an

open subset D ⊂ X if for each i ∈ {1, . . . , n}, (−1)δifi(a) ≤ (−1)δifi(b) for

any two points a and b in D satisfying a �δ b and ai = bi.

The following lemma ([110], Chapt. 3, Prop. 5.1) asserts that the type Kδ

condition is necessary and sufficient for the order preserving property to

hold.

Lemma 5.2.2 Let f be of type Kδ on D and x0, y0 ∈ D. If x0 �δ y0 (resp.,

x0 ≺δ y0 or x0 ≺≺δ y0), t > 0, and if φt(x0) and φt(y0) are defined and in

D, then φt(x0)�δ φt(y0) (resp., φt(x0)≺δ φt(y0) or φt(x0)≺≺δ φt(y0)).

The most natural way to decide whether a vector field f is of type Kδ is to

analyse the sign structure of the Jacobian matrix of f . More specifically, it

can be shown ([110]) that the vector field f(x) is of type Kδ on the convex

subset D if and only if

(−1)δi+δj
∂fi

∂xj
(x) ≥ 0, i 6= j, x ∈ D. (5.2)

Condition (5.2) can be checked in two steps:

Step 1: Check whether the off-diagonal elements of the Jacobian matrix

are sign-stable, i.e.
{

∂fi(x)

∂xj
≥ 0 ∀x ∈ D

}

∧

{

∂fi(x)

∂xj
≤ 0 ∀x ∈ D

}

(5.3)
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and sign-symmetric, i.e.

∂fi(x)

∂xj
·
∂fj(x)

∂xi
≥ 0 ∀x ∈ D (5.4)

for all i, j ∈ {1, . . . , n} such that i 6= j.

Step 2: If the tests in Step 1 are satisfied, we need to check whether

the (Boolean) equalities

δi ⊕ δj = sij , i < j (5.5)

hold, where ⊕ represents “exclusive OR” and the n(n − 1)/2 variables sij ,

i < j, j = 2, . . . , n are defined as follows:

sij =































0 if
∂fi(x)
∂xj

> 0 ∨

(

∂fi(x)
∂xj

= 0 ∧
∂fj(x)

∂xi
> 0

)

1 if
∂fi(x)
∂xj

< 0 ∨

(

∂fi(x)
∂xj

= 0 ∧
∂fj(x)

∂xi
< 0

)

arbitrary in{0, 1} if
∂fi(x)
∂xj

=
∂fj(x)

∂xi
= 0, ∀x ∈ D.

(5.6)

Often, one wants to check whether a given vector field is of type Kδ for

some (yet unknown) sign structure δ. Step 1 obviously remains the same,

but in Step 2 we need to decide whether (5.5) is solvable for the unknown

δ = {δ1, . . . , δn}. The following proposition presents an easy way to do this.

Moreover, it shows that if the answer is positive, the orthant signature can

be easily extracted from the sign structure of the Jacobian matrix.

Lemma 5.2.3 The system of Boolean equations (5.5) is solvable w.r.t. δi

if and only if the following condition is satisfied:

sij ⊕ sik = sjk, i < j, j < k, i, j, k ≤ n. (5.7)

Proof. (necessity) . Let us rewrite expression sij ⊕ sik using (5.5):

sij ⊕ sik = δi ⊕ δj ⊕ δi ⊕ δk.

By definition, a ⊕ b ≡ b ⊕ a, a ⊕ a ≡ 0 and a ⊕ 0 ≡ a. Thus, sij ⊕ sik =

δj ⊕0⊕ δk = δj ⊕ δk = sjk, and we have shown that (5.7) follows from (5.5).

(sufficiency). We now show that (5.7) implies that

δ = {0, s12, . . . , s1n} (5.8)

is a solution of (5.5). δ1⊕δj = 0⊕s1j = s1j holds trivially for j = {2, . . . , n},

and δi⊕δj = s1i⊕s1j = sij, i, j ∈ {2, n}, j > i, where the last equality follows

from (5.7).�
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Similarly, it can be shown that

δ̃ = {1, s12 ⊕ 1, . . . , s1n ⊕ 1} (5.9)

is also a solution of (5.5) if (5.7) holds. Furthermore, (5.8) and (5.9) repre-

sent the only solutions. This can be shown by considering a vector δ′ with

δ′i 6= δi (i.e. δ′i = δi ⊕ 1) for some i ∈ {1, . . . , n} and δ′j = δj for some j 6= i.

Hence,

δ′i ⊕ δ′j = δi ⊕ 1 ⊕ δj = sij ⊕ 1 6= sij ,

which shows that δ′ is not a solution of (5.5).

Note that (5.8) and (5.9) signify orthants that are symmetric w.r.t. the

origin.

For linear systems

ẋ(t) = Ax(t),

the Jacobian matrix is the A matrix, i.e. J(x, u) = A. Thus, the sign struc-

ture of the Jacobian is completely determined by the signs of the elements

aij . Obviously, they are sign-stable, so we need to check only conditions

(5.4) and (5.5). Condition (5.4) (sign-symmetry) holds if aijaji ≥ 0, i 6= j.

The second step is to check the corresponding Boolean equation (5.5) using

the method described in Lemma 5.2.3.

Example 5.2.4 Let us consider the Jacobian matrix with the following sign

structure

J =









∗ + 0 −

+ ∗ + 0

0 + ∗ 0

− 0 0 ∗









.

Here we use asterisks to stress the fact that diagonal elements do not affect

the monotonicity property. According to (5.6), we have {s12, s14, s23} =

{0, 1, 0} while s13, s24, and s34 are arbitrary. From Lemma 5.2.3 we can

deduce that (5.5) is solvable iff {s13, s24, s34} = {0, 1, 1}. The corresponding

signature is δ = {0, 0, 0, 1}.

5.2.2 Controlled systems

Some of the previous results can be extended to dynamical systems driven

by an exogenous input signal. A system

ẋ(t) = f(x(t), u(t)), (5.10)

where x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm, f : X × U → Rn, generates a flow

φt(x0, uτ ), uτ = u(τ), 0 ≤ τ ≤ t, which represents a solution of (5.10) with

initial condition x(0) = x0 and external input signal u.
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Definition 5.2.5 A controlled dynamical system (5.10) is monotone w.r.t.

the orthants Rn
δ and Rm

γ if the following implication holds for all t ≥ 0:

x1 �δ x2, u1(τ) �γ u2(τ), 0 ≤ τ ≤ t ⇒

φt(x1, u1τ ) �δ φt(x2, u2τ ).

In [2], a condition for the controlled system (5.10) to be monotone w.r.t. the

orthants Rn
δ and Rm

γ has been proposed.

Proof. ([2]) The system (5.10) is monotone w.r.t. the orthants Rn
δ and

Rm
γ if and only if the following properties hold for all x ∈ D and all u ∈ U :

(−1)δi+δj
∂fi

∂xj
(x, u) ≥ 0, i 6= j, i, j ≤ n

(−1)δi+γj
∂fi

∂uj
(x, u) ≥ 0, i ≤ n, j ≤ m.

The above conditions are, in fact, the extended variant of condition (5.2)

from the previous section. Hence, in addition to conditions (5.3), (5.4) and

(5.5), which are used to check (5.2), the following tests need to be performed:

First, the partial derivatives w.r.t. the control variables need to be sign

stable, i.e.

∂fi(x, u)

∂uj
≥ 0 or

∂fi(x, u)

∂uj
≤ 0, ∀x ∈ D,∀u ∈ U (5.11)

for all i ≤ n, j ≤ m. Moreover, the set of Boolean equations

δi ⊕ γj = qij , i ≤ n, j ≤ m, (5.12)

where

qij =



























0 if
∂fi(x)
∂uj

> 0,

1 if
∂fi(x)
∂uj

< 0,

arbitrary in {0, 1} if
∂fi(x)
∂uj

= 0,

(5.13)

needs to be solvable with respect to the vector γ = {γ1, . . . , γm}.

The following lemma gives a necessary and sufficient condition for equa-

tions (5.5) and (5.12) to be solvable.
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Lemma 5.2.6 The systems of Boolean equations (5.5) and (5.12) are solv-

able if and only if the following conditions are satisfied:

sij ⊕ sik = sjk, i < j, j < k, i, j, k ≤ n, (5.14)

qij ⊕ qkj = sik, i 6= k, i, k ≤ n, j ≤ m. (5.15)

Moreover,
δ = {0, s12, . . . , s1n},

γ = {q11, . . . , q1m}

is a solution.

Proof. Proof. The proof can be carried out according to the same scheme

as in Lemma 5.2.3.�

It can be shown that the solution is also defined up to inversion, i.e.

δ̃ = {1, s12 ⊕ 1, . . . , s1n ⊕ 1},

γ̃ = {q11 ⊕ 1, . . . , q1m ⊕ 1}

is the only other solution of (5.5), (5.12).

Condition (5.15) can be represented as

qk1 ⊕ ql1 = skl, k < l, k, l ≤ n,

col1(Q)
⊕
= colj(Q) ∀i, j ≤ m,

where Q = qij , i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, and
⊕
= denotes an equality up

to the inversion w.r.t. ⊕.

5.2.3 Special cases

In the following we point out two special cases of a controlled system (5.10)

where the simpler Lemma 5.2.3 suffices to check monotonicity.

a) If u(t) is entirely defined by the present state x(t), i.e. u(t) = u(x(t)),

the Jacobian of the closed loop system is

Jij(x) =
∂fi(x, u(x))

∂xj
+

m
∑

l=1

∂fi(x, u(x))

∂ul

∂ul(x)

∂xj
. (5.16)

and the procedure described in Lemma 5.2.3 can be applied to (5.16).

b) In a hybrid control context, the control vector often consists of two

components, i.e. u′(t) = [u′
1(t), u′

2(t)], where u1(t) ∈ Rk, k < m is de-

termined by continuous state feedback, i.e. u1(t) = u1(x(t)), and u2 is a

piecewise constant signal with finite range U ⊂ Rm−k, |U| = N ∈ N. In this
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case, the system can be treated separately on intervals, where u2 is constant,

i.e. u2(t) = uκ ∈ U t ∈ [tκ, tκ+1), and Lemma 5.2.3 can be applied again.

The value uκ is interpreted as a parameter, and the Jacobian is given by

Jκ
ij(x, uκ) =

∂fi(x, u1(x), uκ)

∂xj
+

k
∑

l=1

∂fi(x, u1(x), uκ)

∂u1l

∂u1l(x)

∂xj
∀κ ∈ N.

Note that in our hybrid systems context, monotonicity is only needed to

compute safe abstraction. Hence, having monotonicity w.r.t. different or-

thants for different values of κ will not pose any problems.

5.3 The role of monotonicity in abstraction based

control synthesis

To demonstrate the usefulness of the monotonicity property in control syn-

thesis, we will now briefly describe a specific hybrid system. Consider a

continuous system

ẋ(t) = gu2(t)(x(t)) (5.17)

where, as indicated before, u2 is a piecewise constant signal with finite range

U , |U| = N .

z(t) = h(x(t)) (5.18)

is a discrete-valued output signal with finite range, i.e. h : Rn → Z,

|Z| = M < ∞. Let us further assume that the system (5.17), (5.18) is

sampled, either on a regular sampling grid (“time-driven sampling”) or on

the sampling grid defined by the output signal z (“event-driven sampling”).

In the latter case, the input may only be switched at the time instances where

the output changes. In both cases, Equations (5.17), (5.18) and the con-

sidered sampling device form a continuous system (with state set X ⊂ Rn)

evolving in discrete time N0 on a discrete external signal space U × Z. Let

B ⊆ (U × Z)N0 denote its behaviour. For abstraction based control synthe-

sis, we need a discrete approximation, evolving on the same external signal

space and exhibiting behaviour Bab ⊇ B. In Sec. 4.2.1, strongest ℓ-complete

approximation was advocated as a particularly suitable abstraction.

From a computational point of view, determining the strongest ℓ-complete

approximation boils down to deciding whether a given string of input and

output symbols (ui0
2 , . . . , uiℓ

2 , zk0 , . . . , zkℓ) is an element in B|[0,ℓ]. To obtain

a precise answer, we would need to compute the evolution of the quanti-

sation cell h−1(zk0) under the flow φ
u

i0
2

associated with g
u

i0
2

, intersect the

result with h−1(zk1), track the evolution of the result under the flow φ
u

i1
2

associated with g
u

i1
2

etc. To obtain safe approximation, or abstraction, it is
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sufficient to compute outer approximations of the mappings of quantisation

cells and their intersections. Clearly, if gu2
is monotone w.r.t. the partial

order �, and quantisation cells are “boxes” w.r.t. �, then φui
2

(h−1(zk)) is

“trapped” within the the evolution of “external points”, i.e. a � h−1(zk) � b

implies

φui
2

(a) � φui
2

(h−1(zk)) � φui
2

(b).

It is then a straightforward exercise to compute the required outer ap-

proximations and hence the desired safe abstraction [79]. On the basis of

such an abstraction, one can compute a discrete non-blocking supervisor

enforcing a language-type specification. In Sec. 4.2 (see also [78]) it has

been shown that the resulting supervisor will also be non-blocking and en-

force the specification when connected to the underlying continuous model

(5.17), (5.18).

5.4 Monotonisation through feedback

5.4.1 Behavioural description

Let Σpl = (N0, UL, YL, X,BL
pl) be a dynamical system with state X ⊆ Rn and

continuous input and output sets, UL ⊆ Rm, YL ⊆ Rn. Moreover, assume

that the system state X is trivially observable: YL = X, PYL
w = PXw for

all w ∈ BL
pl.

Let us assume thatthe input space UL can be represented as a direct

product: UL = U1
L×U2

L. Inputs u1
L ∈ (U1

L)N0 will be used for monotonisation

of the plant. Furthermore, let us define a high-level input set as a finite

subset of U2
L: UH ⊂ U2

L, |UH | < ∞. Now we can formulate the specification

BHL
sp using the scheme proposed in Sec. 3.2.2:

BHL
sp =























(uH , yH , uL, yL) ∈ (WH × WL)N0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

yH ∈ Ym ⊂ Y N0

H

uL ∈ UN0

L , PU2

L
uL = uH ,

yL ∈ Y N0

L ,

yH(t) = yL(t), t ∈ N0























,

(5.19)

where WH = UH × YH and WL = UL × YL are the high-level and low-level

signal spaces, Ym is the set of high-level output signals such that for any

two signals y′H , y′′H ∈ Ym

(

y′H
∣

∣

t=0
� y′′H

∣

∣

t=0

)

⇒
(

y′H
∣

∣

t=τ
� y′′H

∣

∣

t=τ
, ∀τ ∈ N0

)

holds. If there exists a low-level controller such that the composite system

plant plus controller satisfies the specification BHL
sp , a conservative discrete
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approximation of this composite system can easily be computed. The next

subsection presents a procedure for the design of a monotonising low-level

controller.

5.4.2 Low-level controller design

We consider linear control systems
{

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)
(5.20)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl, B has full column rank and C

has full row rank. If the monotonicity test fails, we may still be able to

enforce monotonicity by appropriate feedback. For this purpose, we divide

the vector of control inputs, u′ = [u′
1, u′

2], where ′ means “transpose” and

u1(t) ∈ Rk, k < m, is the part of the control input devoted to enforce

monotonicity.

The system (5.20) then takes the form

ẋ(t) = Ax(x) + B1u1(t) + B2u2(t). (5.21)

Defining the control input u1(t) as a linear function of the current output,

u1(t) = Ky(t) = KCx(t), we change the Jacobian to J = A + B1KC and,

therefore, alter its sign structure accordingly. But we still do not have a clear

algorithm to solve this problem in general because of the large number of

degrees of freedom (recall that the number of orthants for an n-dimensional

system is equal to 2n−1).

The proposed semiformal algorithm uses an approach based on the suc-

cessive reduction of the number of available degrees of freedom.

1. If either i-th row of B1 or the j-th column of C is identical to zero,

the elements aij of the Jacobian remain unchanged.We can now check

these elements for consistency by investigating whether Conditions

(5.4) and (5.5) are satisfied. Clearly, if this is not the case, the mono-

tonicity condition cannot be enforced by feedback from y(t) to u1(t).

2. If the result in Step 1 is positive, we can deduce the signs of some other

elements of the Jacobian from (5.7). Note the following “extreme”

case: suppose, as above, that the i-th row of B1 (resp., the j-th column

of C) are zero and that all the elements in the corresponding row

(resp., column) of A are nonzero (apart possibly from the entry on

the diagonal). Then, the corresponding sik, k 6= i (resp., skj , k 6= j)

completely determine the required sign structure of J , as (see (5.7))

sk1k2
= sik1

⊕ sik2
, (5.22)
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resp.,

sk1k2
= sk1j ⊕ sk2j . (5.23)

If, on the other hand, elements in the corresponding row (resp., col-

umn) of A are zero, there may be several admittable orthants.

3. In the next step, we isolate the entries of the Jacobian exhibiting

inappropriate signs. We now need to determine a feedback matrix

K to adjust these elements without changing the signs of the other

entries. For this, the elements of the real [k × l]-matrix K have to

satisfy

(−1)sqp(aqp +
k
∑

i=1

l
∑

j=1

b1
qikijcjp) ≥ 0, q 6= p.

The extension of the proposed algorithm to the class of nonlinear con-

trol systems is not straightforward. Usually, an arbitrary nonlinear control

system admits monotonisation only in some subset of the state space, if it

does at all. Let’s denote by Xδ ⊂ X a subset of the state space X where

the system can be rendered monotone w.r.t. the orthant with signature δ.

It is quite common that some subspaces have nonempty intersection, i.e.

Xδ1 ∩ Xδ2 6= ∅. Then, one must choose between several orthants. In this

case, a decision can be made on the basis of heuristic considerations and can

hardly be formalised. However, in some special cases (e.g. positive systems)

the procedure can be successfully applied as is illustrated in the following

example.

5.4.3 Example

To illustrate the applicability of the developed approach we consider a

model of the biological processes in an activated sludge process, the so-

called IAWQ’s2 Activated Sludge Model No.1 (see [49, 67]). This model

describes the three following biological processes: removal of organic mat-

ter, nitrification, and denitrification. The considered process is an ideally

mixed bioreactor with three components, which can be described by the

following differential equations:

2International Association for Water Quality.
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dXb

dt
=

Qin

V
Xb,in −

Qout

V
Xb + µ(Ss)Xb − bXb

dSs

dt
=

Qin

V
Ss,in −

Qout

V
Ss −

1

Y
µ(Ss)Xb

dSo

dt
=

Qin

V
So,in −

Qout

V
So −

1−Y

Y
µ(Ss)Xb − bXb

(5.24)

where Xb, Ss and So represent the concentrations of biomass, soluble sub-

strate and dissolved oxygen in the reactor. Xb,in, Ss,in and So,in are the

influent concentrations of biomass, soluble substrate and dissolved oxygen.

µ(Ss) is the specific growth rate of the biomass. It is described by Monod’s

equation,

µ(Ss) =
µ̄Ss

Ks + Ss
,

where µ̄ is the maximum specific growth rate and Ks is the half-velocity

constant. The tank volume is denoted V , and the incoming and outgoing

flows are Qin and Qout, respectively. The growth yield is Y and b is the

decay rate. It is worth noting that all concentrations, input and output

variables as well as parameters, are positive. Moreover, the growth yield Y

is always less than one.

Using the conventional notation u := [Xb,in, Ss,in, So,in, Qin]′ and x :=

[Xb, Ss, So]
′ one can rewrite (5.24) as

ẋ1 =
u1 u4

V
−

Qout

V
x1 + µ(x2)x1 − bx1

ẋ2 =
u2u4

V
−

Qout

V
x2 −

1

Y
µ(x2)x1

ẋ3 =
u3u4

V
−

Qout

V
x3 −

1−Y

Y
µ(x2)x1 − bx1.

(5.25)

The Jacobian matrix has the following form

Df

Dx
=















∗ µ̄Ksx1

(Ks+x2)
2 0

− 1
Y

µ̄x2
Ks+x2

∗ 0

−1−Y
Y

µ̄x2
Ks+x2

− b −1−Y
Y

µ̄Ksx1
(Ks+x2)2

∗















. (5.26)

We see that the partial derivatives ∂f1

∂x2
and ∂f2

∂x1
do not satisfy the sign-

symmetry condition. Now one has to determine, which one has the “right”

sign. The remaining elements of the Jacobian matrix satisfy conditions (5.3)

and (5.4). The corresponding variables are s13 = 1, s23 = 1. Then, from

(5.23) s12 = 0. This means that both ∂f1

∂x2
and ∂f2

∂x1
must be nonnegative.

The easiest way to change the sign of ∂f2

∂x1
is to use the control u2, because
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it does not enter the remaining equations. Considering the control u2 as

a function of the state variables, u2 = u2(x), we can rewrite the Jacobian

(5.26) as:

Df

Dx
=















∗ µ̄Ksx1

(Ks+x2)
2 0

u4
V

∂u2(x)
∂x1

− 1
Y

µ̄x2
Ks+x2

∗ u4
V

∂u2(x)
∂x3

−1−Y
Y

µ̄x2
Ks+x2

− b −1−Y
Y

µ̄Ksx1

(Ks+x2)
2 ∗















Hence, the control u2(x) has to be chosen to satisfy the following condi-

tions:

∂u2

∂x1
(x) ≥

V

u4Y

µx2

Ks + x2
, (5.27)

∂u2

∂x3
(x) ≤ 0, (5.28)

∀x ∈ R3
≥0, u4 6= 0.

Conditions (5.27), (5.28) define a family of control laws. In particular, a

control law can be chosen as

u2(x) = c1x1,

where c1 =
V µ̄
u∗

4Y
, u∗

4 = minu4. Thus, the system can be rendered monotone

by a simple linear feedback.
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Chapter 6

Conclusion

This work proposes a systematic approach to design and implementation

of hierarchical control for complex control systems. We described a unified

framework which allows for a constructive description and analysis of all

levels of a hierarchical control structure. It was shown that most practically

relevant classes of control systems can be described as input/output state

machines. A classification of such state machines was given.

One particularly important question that arises in the hierarchical con-

trol context is to ensure that all elements of the hierarchy do not conflict.

Developing the results obtained in [97], we formulated a set of construc-

tively verifiable conditions which guarantee a non-conflicting interaction of

all control levels.

To put the obtained results in a practical context, we described two

particularly useful classes of intermediate control layers and analysed them

with respect to the non-conflictingness property.

In the last two chapters, we considered two cases where the developed

approach is applied to practically relevant control problems. In the first case,

we considered an optimisation problem for a hybrid system under safety and

liveness conditions. It was shown that this problem can be efficiently solved

in a hierarchic way: the low-level controller enforces safety and liveness

constraints while the high-level controller performs optimisation. We also

showed that the action of the low-level controller can be implemented by

restricting the invariants of the initial hybrid automaton. The high level

uses the degree of freedom left by the low level task to find the evolution

that minimises a given performance index.

In the second case, the low-level controller was designed to render the

plant monotone. We discussed the question how the concept of monotonicity

can be used in the context of hierarchical control. A simple and efficient

algorithm to check whether an arbitrary continuous system is monotone with

respect to some (a priori unknown) partial order relation was provided. This
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algorithm was extended to the case of control systems. It was also shown

how to enforce monotonicity with the help of feedback. The developed

approach was illustrated by an example: we considered a nonlinear model

of an ideally mixed bioreactor and showed that this system can be rendered

monotone by a very simple linear feedback.
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[103] J. Schröder. Modelling, State observation and Diagnosis of Quantised

Systems. Springer-Verlag, 2002.

[104] B. De Schutter and W.P.M.H. Heemels. Modelling and control of

hybrid systems. Lecture notes of the DISC Course, September 2004.

[105] C. Seatzu, D. Corona, A. Giua, and A. Bemporad. Optimal control

of continuous-time switched affine systems. IEEE Transactions on

Automatic Control, 51(5):726–741, 2006.

[106] C. Seatzu, D. Gromov, J. Raisch, D. Corona, and A. Giua. Optimal

control of discrete-time hybrid automata under safety and liveness

constraints. Nonlinear analysis, 65:1188–1210, 2006. Special issue on

hybrid systems and applications (5).

[107] M.S. Shaikh and P.E. Caines. On the hybrid optimal control problem:

Theory and algorithms. IEEE Transactions on Automatic Control, 52

(9):1587–1603, 2007.

[108] M.G. Singh. Dynamical hierarchical control. North-Holland, 2nd edi-

tion, 1980.

[109] M.G. Singh and K. Hindi. A multilevel multilayer framework for man-

ufacturing control. Journal of intelligent and robotic systems, 4:75–93,

1991.

[110] H.L. Smith. Monotone dynamical systems: an introduction to the the-

ory of competitive and cooperative systems, volume 41 of Mathematical

surveys and monographs. American Mathematical Society, Providence,

RI, 1995.

116



[111] J.A. Stiver, P.J. Antsaklis, and M.D. Lemmon. Interface and con-

troller design for hybrid control systems. In P.J. Antsaklis, W. Kohn,

A. Nerode, and S. Sastry, editors, Hybrid Systems II, volume 999 of

Lecture Notes in Computer Science, pages 462–492. Springer, 1995.

[112] T. Stoilov and K. Stoilova. Noniterative Coordination in Multilevel

Systems. Nonconvex Optimization and Its Applications. Kluwer Aca-

demic Publishers, 1999.

[113] P. Tabuada. Symbolic models for control systems. Acta Informatica,

43:477–500, 2007.

[114] P. Tabuada, G.J. Pappas, and P. Lima. Compositional abstractions

of hybrid control systems. Discrete Event Dynamic Systems, 14(2):

203–238, 2004.

[115] P. Tatjewski. Advanced control and on-line process optimization in

multilayer structures. Annual Reviews in Control, 32:71–85, 2008.

[116] M.A Temchin and D.J. Bell. A modified elimination procedure in non-

linear algebraic control theory. IMA Journal of Mathematical Control

and Information, 10(3):195–204, 1993.

[117] A.J. van der Schaft. On realization of nonlinear systems described by

higher-order differential equations. Mathematical systems theory, 19:

239–275, 1987.

[118] A.J. van der Schaft. Equivalence of dynamical systems by bysimu-

lation. IEEE Transactions on Automatic Control, 49(12):2160–2172,

2004.

[119] Y. Wang and E.D. Sontag. Generating series and nonlinear systems:

analytic aspects, local realizability, and I/O representations. Forum

Mathematicum, 4:299–322, 1992.

[120] J.C. Willems. Frome time series to linear system - Part I. Finite

dimensional linear time invariant systems. Automatica, 22(5):561–580,

1986.

[121] J.C. Willems. Models for dynamics. Dynamics Reported, 2:172–269,

1989.

[122] J.C. Willems. Paradigms and puzzles in the theory of dynamical sys-

tems. IEEE Transactions on Automatic Control, 36:258–294, 1991.

117



[123] J.C. Willems. Open dynamical systems and their control. In Docu-

menta Mathematica, pages 697–706. DMV, 1998. Extra Volume ICM

III.

[124] W.M. Wonham. Supervisory control of discrete-event systems. On-line

monograph, 2008.

[125] H. Zhong and W.M. Wonham. On the consistency of hierarchical su-

pervision in discrete-event systems. IEEE Transactions on Automatic

Control, 35(10):1125–1134, 1990.

118


