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Zusammenfassung

Mehrantennensysteme werden in zukünftigen Mobilfunksystemen der dritten und
vierten Generation eingesetzt werden, um die spektrale Effizienz, die Zuverlässigkeit
und die Qualität der drahtlosen Übertragung zu verbessern. In der Theorie wurde
bewiesen, dass die Kanalkapazität dieser Mehrantennensysteme linear steigt mit
der Anzahl der verwendeten Sende- und Empfangsantennen. Eine andere wichtige
Kenngröße neben der Kanalkapazität ist der mittlere quadratische Fehler, wenn der
optimale lineare Empfänger eingesetzt wird. Beide Kenngrößen variieren mit den
Eigenschaften des Mehrantennen-Kanals und des betrachteten Systems, z.Bsp. mit
der Art der Kanalinformation am Sender und Empfänger. Sogar partielle Kanal-
information am Sender erhöht die Leistungsfähigkeit des Mehrantennensystems
beträchtlich. In dieser Arbeit werden die Eigenschaften von Mehrantennensystemen
mit einem oder mit mehreren Benutzern in einem zellularen Kontext analysiert und
neue optimale Sendestrategien entworfen, die die statistischen Eigenschaften des
räumlichen Kanals und die Art der Kanalinformation am Sender berücksichtigen.

Im Szenario mit einem Teilnehmer wird die mittlere Leistungsfähigkeit des Mehran-
tennensystems unter dem Einfluss von einem räumlich korreliertem Schwundkanal
und mit verschiedenen Arten von Kanalinformationen am Sender und mit perfekter
Kanalkenntnis am Empfänger analysiert. Zuerst wird ein mathematisches Maß
für die räumliche Korrelation basierend auf der Majorisierungstheorie definiert.
Dadurch wird es möglich, die mittlere Performanz als Funktion der sende- und
empfangsseitigen Korrelation im Kontext von Schur-konvexen und Schur-konkaven
Funktionen zu beschreiben. Ausserdem stellt man fest, dass die Performanz-Maße
zu einer allgemeinen Klasse von Funktionen gehören, die als Spur einer matrix-
monotonen Funktion darstellbar sind. Wir verwenden Löwners Darstellung von
operator-monotonen Funktionen, um auf einer abstrakten Ebene die optimalen
Sendestrategien und den Einfluss der Korrelation auf die Performanz zu charak-
terisieren. Die optimale Sendestrategie ohne Kanalkenntnis am Sender ist eine
Leistungsgleichverteilung in alle Richtungen. Dieses Ergebnis wird für räumlich
korrelierte Kanäle bewiesen, indem die robusteste Sendestragie gegen die schlecht-
este Korrelation berechnet wird. Die mittlere Performanz ohne Kanalinformation
am Sender ist eine Schur-konkave Funktione bezüglich Korrelation am Sender oder
Empfänger. Desweiteren, wird die optimale Sendestrategie für den Fall hergeleitet,
in dem der Sender die Langzeitstatistik des Kanals kennt. Ein iterativer Algorith-
mus löst das Problem der optimalen Leistungsverteilung. Die sogenannte Beam-
forming-Region ist der SNR Bereich, in dem ein einziger räumlicher Datenstrom die
maximale mittlere Leistung erreicht. Dieser SNR Bereich ist relevant, da hier eine
sehr einfache Emfängerstruktur und eine gut verstandene Kanalkodierung einge-
setzt werden können. Schließlich leiten wir die generalisierte Waterfilling Lösung
als optimale Sendestratgie für perfekte Kanalkenntnis am Sender und Empfänger
her und charakterisiern die Eigenschaften dieses Verfahrens.

In einem zellularen Mobilfunksystem greifen mehrere Teilnehmer zur gleichen Zeit
auf derselben Frequenz auf eine gemeinsame Basisstation zu oder eine Basisstation
sendet gleichzeitig Daten für mehrere Teilnehmer. Die Interzell- und Intrazellinter-
ferenz in einem solchen System erzeugt räumlich gefärbtes Rauschen auf einer
einzelnen Mobilfunkstrecke. Daher kann als erster Ansatz ein Mehrantennensys-
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tem mit einem Teilnehmer und gefärbtem Rauschen betrachtet werden. Wir leiten
die Performanz unter dem schlechtesten möglichen Rauschen und unter verschiede-
nen Annahmen bezüglich des Rauschens her, um Einsichten in die erreichbare
Performanz des Mehrantennensystems im zellularen Kontext mit Inter- und In-
trazellinterferenz zu erhalten. Durch bestimmte Rauschfärbung kann sowohl die
Kanalkenntnis als auch die Kooperationsfähigkeit an den Sendeantennen verloren
gehen. Der nächste Schritt besteht darin, die Sendestrategien aller Teilnehmer einer
Zelle zu berücksichtigen. Im letzten Abschnitt der Arbeit wird die augenblickliche
Summen-Performanz des Mehrantennen Mehrfachzugriffskanals und des Mehran-
tennen Broadcast-Kanals unter individuellen oder Summenleistungsbeschränkungen
maximiert. Als Summen-Performanz wird entweder die Summenkapazität mit sukzes-
siver Interferenz-auslöschung im Uplink oder mit Costa-Vorkodierung im Down-
link, sowie der normierte mittelere quadratische Summenfehler eingesetzt, falls ein
Mehrbenutzer-MMSE Empfänger verwendet wird. Die gemeinsame Kovarianzma-
trixoptimierung kann unter Verwendung der Karush-Kuhn-Tucker Optimalitätsbe-
dingungen in eine abwechselnde Leistungsoptimierung und normierte Kovarianzma-
trixoptimierung zerlegt werden. Letztere wiederum zerfällt in eine Art modifizierte
Einbenutzer Kovarianzmatrixoptimierung mit gefärbtem Rauschen. Die konkrete
Struktur dieser Einbenutzer Optimierung hängt von der konkreten Performanz-
Metrik ab. Der vorschlagene iterative Algorithmus löst das Summen-Performanz
Optimierungsproblem auf effiziente Weise.
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Abstract

Multiple-input multiple-output (MIMO) systems will be applied in wireless com-
munications in order to increase the performance, spectral efficiency, and reliability.
Theoretically, the channel capacity of those systems grows linearly with the num-
ber of transmit and receive antennas. An important performance metric beneath
capacity is the normalised mean square error (MSE) under the assumption of opti-
mal linear reception. Clearly, both performance measures depend on the properties
of the MIMO channel as well as on the considered system approach, e.g. on the
type of channel state information which is available at the transmitter. It has been
shown that even partial CSI at the transmitter can increase the performance. In
this thesis, we analyse the performance and design optimal transmit strategies of
single- and multiuser MIMO systems with respect to the statistical properties of
the fading channel and under different types of CSI at the transmit side.

In the single-user scenario, we study the average performance of the system under
spatial correlated fading and with different types of CSI at the transmitter and with
perfect CSI at the receiver. First, we introduce a measure of correlation which is
based on Majorization. As a result, the average performance is analysed as a func-
tion of correlation in the context of Schur-convexity and Schur-concavity. Further-
more, we observe that the performance metrics belong to a general class of functions
which are the trace of a matrix-monotone function. We use Löwner’s representa-
tion of operator monotone functions in order to derive the optimum transmission
strategies and to characterise the impact of correlation on the average performance.
The optimal transmit strategy without CSI at transmitter is equal power alloca-
tion. We prove this result for spatial correlated channels by analysing the most
robust transmit strategy under worst case correlation. The average performance
without CSI is a Schur-concave function with respect to transmit and receive cor-
relation. In addition to this, we derive the optimal transmission strategy with
long-term statistics knowledge at the transmitter and propose an iterative algo-
rithm. The beamforming-range is the SNR range in which only one data stream
spatially multiplexed achieves the maximum average performance. This range is
important, because of its simple receiver structure and well known channel coding.
Finally, we derive the generalised water-filling transmit strategy for perfect CSI and
characterise its properties.

If the single-user MIMO link is placed into a cellular system in which multiple users
at the same time on the same frequency access one common base station or in which
one base station transmits to multiple users, the interference colours the noise. This
means, we can continue to study a single-user link now with coloured noise as a first
approach. In order to gain insights into the performance under interference condi-
tions, we derive the worst case noise performance for three different noise scenarios.
We show that the cooperation and the CSI at the transmitter get lost if some type
of worst case noise is applied. If all transmit strategies of all participating users are
incooperated into the analysis, we arrive at the multi-user MIMO system. Finally,
we maximise the instantaneous sum performance of MIMO multiple access chan-
nels (MAC) or broadcast channels (BC) under individual or sum power constraints.
The sum performance is either the sum capacity if SIC is applied in the uplink
or if Costa Precoding is applied in the downlink, or the normalised sum MSE if a
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multiuser MMSE receiver is applied at the base. Using the Karush-Kuhn-Tucker
optimality conditions, we show that the mutual covariance matrix optimisation can
be decomposed into power allocation and covariance matrix optimisation under
individual power constraints, which can be decomposed into a kind of modified
single-user covariance matrix optimisation treating the other users as noise. The
concrete structure of the single-user program depends on the performance metric.
The proposed algorithms efficiently solve the multi-user MIMO sum performance
optimisation problem.
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1 Introduction

1.1 Motivation

In mobile communication networks, the properties of the underlying physical chan-
nel have great impact on the performance and reliability of the system. The fading
channel varies in time, frequency, and space. From a traditional point of view, these
fluctuations are the limiting factor of wireless communication. From an information
theoretic point of view, these fluctuations can be exploited. They provide the possi-
bility to communicate even more reliable and secure. Recently, the spatial dimension
was found to increase the performance and spectral efficiency of a wireless system
by simply adding more transmit and receive antennas [FG98, Tel99] under idealistic
assumptions. Since those papers were published, multiple antenna techniques have
developed to the most active area in research in wireless communications.

As a result, the industry and standardisation bodies considered multiple-input
multiple-output (MIMO) systems as a promising approach in order to obtain re-
liable high transmission rates which are required to satisfy the users needs. It is
certain that the technology needs to deliver higher data rates to the consumer at a
lower cost per data bit. One technology that has been proposed is the use of mul-
tiple antennas at both the cellular side and handsets. Other important considered
techniques beneath MIMO are adaptive modulation and coding, hybrid ARQ, and
fast cell selection [3gp01, 3gp02].

Dual-antenna diversity is already used on WLAN PC cards, access points, and
personal digital cellular handsets in Japan. However, the antenna diversity is used
only by antenna selection. Most major antenna infrastructure manufacturers offer
smart antenna systems.

Theoretically, multiple antennas have been shown to enable major increase in the
data capacity, peak data rate, performance, and reliability. However, the actual
achievable performance depends on the properties of the radio signal propagation
environment. Furthermore, the performance of MIMO systems depend on the type
and amount of channel state information (CSI) at the receiver and transmitter side.
In contrast to the spectral dimension which comes without the cost of interference
between orthogonal subcarriers, the signals in space are multiplexed and interfere
with each other. By using sophisticated transmit strategies with perfect or partial
CSI at the transmitter, it is possible to fully exploit the spatial dimension. Inter-
estingly, depending on the type of CSI, the properties of the channel have different
impact on the optimal transmit algorithms and on the achievable performance. Be-
cause of the wide range of possible MIMO techniques, it is important to better
understand the theoretical limits of MIMO channels and the right techniques which
are able to achieve these limits. One important property of MIMO channels is the
correlation at the transmit and receive antenna array [GBGP02, CTK02].

This thesis provides an analysis of the maximal achievable reliable transmission rate
of single-user and multi-user MIMO systems. The first half is devoted to single-user
MIMO systems and their average performance under different types of CSI and
under transmit and receive correlation. The second half analyses multi-user MIMO
systems in terms of worst case noise analysis and sum performance optimisation
under individual and sum power constraints.
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1 Introduction

1.2 Notation

Vectors are denoted in bold letters x. Matrices are written in bold capital letters
H. Transpose is [·]T , the conjugate transpose is [·]H . The matrix (pseudo) inverse is
denoted by [·]−1. tr(A) denotes the trace of the matrix A, i.e. tr(A) =

∑n
k=1 Ak,k.

λi(A) is the ith eigenvalue of the matrix A. λmax(A) is the largest eigenvalue of
the matrix A. R(x) denotes the real part of the complex variable x. C

n
+ denotes the

set of positive semidefinite matrices. ||a|| is the l1-norm, i.e. ||a|| =
∑n

i=1 |ai|. The
partial order for vectors is denoted by a ≻ b and means vector a majorizes vector b.
The order for matrices is denoted by A ≻ B and means that the difference A − B

is positive definite. The expectation operator is EX and means expectation with
respect to the random variable X. diag(A) is the vector with diagonal entries of A

and Diag(a) is a matrix with entries of the vector a on the diagonal.

1.3 Performance metrics and preliminaries

In this section, we give an informal overview over the performance metrics for single-
and multiuser wireless transmission systems which are analysed in the following
chapters of this thesis. The complete signal model follows in chapter 2 and chapter
3. All results in this thesis regard the performance metrics introduced in this section.

1.3.1 Single-user systems: Mutual information and related average

performance metrics

The first part of this thesis deals with single-user MIMO systems. In order to
characterise the general capacity and performance gain of multiple antenna systems
the information theoretic channel capacity and related metrics are of great inter-
est. They provide upper bounds on the transmission rate for which information
can be transmitted over the fading channel with arbitrary small probability of er-
ror [CT91]. These useful metrics are the average mutual information, the ergodic
channel capacity, and the average normalised mean-square error. We will introduce
these metrics on an informal basis and point out the connections and differences
between those quantities.

In his seminal work [Sha48], Shannon introduced the notion of mutual information,
which measures the amount of information which is contained in some observed
variable y about the random variable x. The Mutual information for the two
random variables x and y is defined as

I(x; y) = h(y) − h(y|x) = h(x) − h(x|y) (1.1)

with the differential entropy h(y) and the conditional differential entropy h(y|x).
The differential entropy of a continuous random variable, e.g. of the random vector
y is given by [CT91, Chapter 9]

h(y) = −E log fy = −
∫

y∈Sy

fy(y) log fy(y)dy

with the probability density function fy(y). Sy is the support of fy(y). In this thesis,
all logarithms log(x) are binary logarithms. The conditional differential entropy of
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1.3 Performance metrics and preliminaries

a random variable y under x is given by

h(y|x) = −
∫

x∈Sx
y∈Sy

f(x, y) log f(x|y)dxdy

with joint density function f(x, y) and f(x|y) = f(x,y)
f(y) and support Sx × Sy of

f(x, y).

The block-flat fading single-user MIMO system is characterised by a flat-fading
channel matrix H of size nR×nT , which changes independently from block to block
and the additive noise vector n at the receiver. Figure (1.1) shows the corresponding
block diagram.

Figure 1.1: Block flat-fading MIMO system.

In figure (1.1), the transmitted vector x is multiplied by the flat-fading channel
matrix H and then the noise vector is added. The received signal is given by1

y = Hx + n. (1.2)

In this model, the channel matrix H as well as the noise n is a random entity.
The input dimension of the MIMO system equals the number of transmit antennas
and is given by nT . The number of output dimensions of the MIMO systems
equals the number of receive antennas and is given by nR

2. The model depends on
the propagation scenario, i.e. on the distribution of H. Well established models
are the Rayleigh channel, i.e. the multipath environment without a line of sight
(LOS) component in which H is modelled as zero-mean independent identically
distributed (iid) complex Gaussian, i.e. H ∼ CN(0, I) or the Rice channel with
a LOS component H ∼ CN(K, I) with constant LOS matrix K. The mutual
coupling between the transmit and receive antennas can be modeled by correlation
matrices [GBGP02, Mol04]. Possible singularities within the channel, are described
as ’key-holes’ [CFGV02]. All quantities in (1.2) the transmit vector x, the received
vector y, the noise vector n, and the channel matrix H are random variables with
proper probability density functions (pdf).

The mutual information between y and x under the assumption that the receiver
side knows the channel realization H is given by

I(y; x|H) = h(y|H) − h(y|H,x)

= h(y|H) − h(n). (1.3)

Throughout the whole thesis, the receiver is assumed to know the channel state
H perfectly. CSI at the receiver is achieved either by channel estimation using
pilot signals or by blind channel estimation. The differential entropy of the noise
vector n in (1.3) depends on the pdf of the random variable n. Thermal receiver

1In order to keep notation simple, we omit the block index.
2The signal model for flat-fading MIMO channels in (1.2) can be easily extended to frequency-

selective channels by increasing the input and output dimensions of the MIMO system.
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1 Introduction

noise is modelled as a zero-mean complex Gaussian variable, i.e. n ∼ CN(0, σ2
nI).

Therefore, the entropy of the random noise vector is given by [CT91, Theorem
9.6.5]3

h(n) = log
(
(2πe)nRdet

(
σ2

nI
))
. (1.4)

The entropy of the received vector y in (1.3) depends on the pdf of the input vector
x. The transmitter chooses the pdf of x in order to maximise the mutual informa-
tion. The largest entropy is achieved for zero-mean complex Gaussian distributed
random variables. Therefore, the transmitter chooses x ∼ CN(0,Q) with transmit
covariance matrix Q. Note that the random variables x and n are independent.
As a result, the received vector for fixed channel realization H is zero-mean com-
plex Gaussian distributed with receive covariance matrix W = σ2

nI + HQHH .
This follows from the fact that a linear combination of Gaussian random variables
stays Gaussian and that the sum of independent zero-mean Gaussian variables is
Gaussian distributed with zero-mean and covariance matrix which is the sum of the
individual covariance matrices. Therefore, the conditional entropy of the received
vector y is given by

h(y|H) = log ((2πe)nRdetW )

= log
(

(2πe)nRdet
(

σ2
nI + HQHH

))

. (1.5)

Finally, from the entropy in (1.4) and the conditional entropy in (1.5) follows the
instantaneous mutual information of the MIMO system in (1.2) with ρ = 1

σ2
n

f(Q,H , ρ) = I(y; x|H) = log det
(

I + ρHQHH
)

. (1.6)

The instantaneous mutual information is a function of the transmit covariance ma-
trix Q, the channel realization H, and the inverse noise variance ρ. Often, we will
normalise the transmit power to one, i.e. tr Q = P = 1. Then, ρ corresponds di-
rectly to the signal-to-noise-ratio (SNR). The mutual information in (1.6) depends
on the channel realization H and is therefore a random entity.

The instantaneous mutual information has been derived and analysed in the sem-
inal work of Telatar [Tel99] and Foschini and Gans [FG98]. The equation (1.6)
corresponds exactly to the result of the alternative derivation in [Tel99, Section 3.2]
and to the derivation in the appendix of [FG98].

Finally, the expression in (1.6) can be maximised with respect to Q under a sum
power constraint in order to get the instantaneous channel capacity of the MIMO
system, i.e.

c(ρ,H) = max
Q: tr Q≤P

f(Q,H, ρ). (1.7)

The channel capacity gives the upper bound of information which can be transmit-
ted over the MIMO channel with arbitrary small probability of error if the channel
is in state H. The instantaneous mutual information in (1.6) as well as the instan-
taneous channel capacity in (1.7) are random variables because they depend directly
on the channel realization H. In order to get an average expression about the mu-
tual information and the channel capacity which can be achieved, the expectation

3Note, that the factor 1/2 in front of the differential entropy in [CT91] vanishes if complex random
variables are considered.
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1.3 Performance metrics and preliminaries

with respect to H is computed in order to obtain the average mutual information

F (Q, ρ) = EH log det
(

I + ρHQHH
)

(1.8)

and to obtain the average channel capacity

C(ρ) = EH max
Q: tr Q≤P

f(Q,H , ρ). (1.9)

If the random fading process H fulfils the ergodic property, the quantity C(ρ) in
(1.9) is the ergodic channel capacity of the MIMO system.

Interestingly, another performance metric is closely related to the average mutual
information and to the channel capacity of the MIMO system: the mean square error
(MSE). For computing these upper bounds on the achievable transmission rate with
arbitrary small probability of error, the receiver applies the optimum detector and
decoder. The optimum receiver algorithm is either the maximum likelihood (ML)
or maximum a-posteriori (MAP) algorithm. However, capacity also can be achieved
by decision feedback minimum mean square error (MMSE) detection [VG97]. The
linear MMSE receiver reduces the computational complexity at the receiver side.
If we apply the linear MMSE receiver, the performance metric changes from the
average mutual information to the normalised MSE [VAT99]. The linear MMSE
receiver weights the received signal vector y by the Wiener filter

x̂ = ρHH
[

I + ρHQHH
]−1

y. (1.10)

The covariance matrix of the estimation error Kǫ is given by

Kǫ = EH

[

(x̂ − x) (x̂ − x)
H
]

(1.11)

The normalised MSE is defined as the trace of the normalised covariance matrix of
the estimation error in (1.11) [HB03, JB03d]

mse(σ2
n,Q,H) = tr

(

Q−1/2KǫQ
−1/2

)

= nT − tr

(

ρHQHH
[

I + ρHQHH
]−1
)

(1.12)

and its average over channel realizations is called normalised average MSE. It is
given by

MSE(σ2
n,Q) = nT − EH tr

(

HQHH
[

σ2
nI + HQHH

]−1
)

(1.13)

1.3.2 Multiuser systems: Sum performance metrics

The instantaneous performance metrics from the single-user analysis can be directly
transfered to the multiuser case. However, in multiuser systems, the transmission
from one user is disturbed by interference from the other users. In general, there
are two possible multiuser scenarios: In the uplink, multiple users want to transmit
their data to one common base station. The uplink is called the multiple access
channel (MAC). In the downlink, the base transmits data to multiple users. This is
called the broadcast channel (BC). The communication channel between each user
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1 Introduction

and the base is assumed to be block-flat fading.

Multiple access channel

In the MAC, K users transmit their data simultaneously to the base station. All
mobiles have nT transmit antennas4. The received vector is given by

y =

K∑

k=1

Hkxk + n.

The mutual information for user k according to the definition in section 1.3.1 under
the assumption that the receiver knows the channel realization Hk is given by

I(y; xk|Hk) = log det

(

I + ρ

K∑

l=1

H lQlH
H
l

)

− log det



I + ρ

K∑

l=1,l 6=k

H lQlH
H
l



 (1.14)

with SNR ρ and transmit covariance matrices Qk. The transmit signals of the
users are assumed to be zero-mean independent complex Gaussian distributed with
covariance matrix Qk. This pdf maximises the individual mutual information of
each user. Obviously, the individual mutual information of user k depends on the
multiuser interference and noise, i.e. it is a function of all transmission channels
Hk between the users and the base, the SNR ρ and the transmit strategies Qk of
all users

Rk(Q,H, ρ) = log det

(

I + ρ
∑K

l=1 H lQlH
H
l

I + ρ
∑K

l=1,l 6=k H lQlH
H
l

)

(1.15)

with the set of covariance matrices Q and the set of channel realisations H

Q = {Q1,Q2, ...,QK} and H = {H1,H2, ...,HK}.

The achievable rate of user k is denoted by Rk. It is possible, that the receiver first
detects the signals of a set of users and subtracts them from the received signal
before detecting user k. As long as the users transmit at a rate smaller than or
equal to their mutual information, their signals are detected with arbitrary small
probability of error and therefore correctly subtracted. Let us assume that the
signals of users 1 to k − 1 are correctly subtracted, then the individual mutual
information of user k is given by

RSIC
k (Q,H, ρ) = log det

(

I + ρ
∑K

l=1 H lQlH
H
l

I + ρ
∑K

l=k+1 H lQlH
H
l

)

. (1.16)

The receiver starts with user one, detects his data, and subtracts it from the received
signal. The received signal for user one is interfered by all other users. Then the
second user is detected and subtracted. The second user gets interference from all
but the first user. This procedure continues until the last user is detected without
any interference. This approach is called successive interference cancellation (SIC).

4It is easy to generalize the results to the general case in which each mobile has a different number
of transmit antennas.
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1.3 Performance metrics and preliminaries

Usually, one assumes that the data of all users is detected without errors because
the users transmit with rate below their capacity.

If we assume that the receiver detects the user signals in a linear fashion, the opti-
mal choice is the linear multiuser MMSE receiver. The corresponding performance
metric is the individual normalised MSE of user k which is given by

MSEk = nT − tr



ρHkQkHH
k

(

ρ

K∑

l=1

H lQlH
H
l + I

)−1


 . (1.17)

In contrast to the capacity, it is not possible to perform SIC without error propaga-
tion, because the argument with the error free reception is missing. Therefore, each
user k experiences interference from all other users. The achievable MSE region is
given by all MSE tuples (m1, ...,mK) for which (m1 ≥ MSE1, ...,mK ≥ MSEK)
applies.

Using the individual rate or the individual MSE, each user can require its quality-
of-service (QoS) by giving a minimum rate rk or a maximum MSE mk which has
to be achieved. The problem of the fulfilment of service requirements consists of
computing a transmit strategy which ensures for all 1 ≤ k ≤ K that Rk ≥ rk
or MSEk ≤ mk by minimising the individual pk ≤ Pk or sum transmit power
∑K

k=1 pk ≤ P .

Another performance metric is the sum of the individual performance metrics. The
sum capacity is simply defined as the sum of the individual capacities

K∑

k=1

RSIC
k (Q,H, ρ) ,

i.e. with SIC, we obtain

C(Q,H, ρ) = log det

(

I + ρ
K∑

k=1

HkQkHH
k

)

. (1.18)

The normalised sum MSE is defined in the same manner, i.e. MSE =
K∑

k=1

MSEk

and it is given by

MSE(Q,H, ρ) = KnT − nR + tr





[

ρ

nT∑

k=1

HkQkHH
k + I

]−1


 . (1.19)

The sum capacity and the sum MSE describe the performance of the complete
MAC. The system throughput can be measured by the sum capacity in (1.18) or
by the sum MSE (1.19).

Broadcast channel

In the MIMO BC scenario, we study the downlink transmission from the base station
to the mobiles. The transmission channels between the base and the mobiles are
reused from the MAC and by reciprocity5 we obtain the received vector at mobile

5The author in [Tel99] calls reciprocity the fact that the capacity is unchanged if the role of
transmitter and receiver is interchanges in a MIMO point-to-point link. In our context, we
assume that the uplink and downlink channels are reciprocal because the same frequency is
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terminal k as

yk =
K∑

l=1

HH
k xl + nk. (1.20)

The achievable rate for user k under the assumption that the transmit signals in-
tended for all users are zero-mean complex Gaussian distributed with covariance
matrix Qk is given by

Sk(Q,H, ρ) = log det

(

I + ρ
∑K

l=1 HkQlH
H
k

I + ρ
∑K

l=1,l 6=k HkQlH
H
k

)

. (1.21)

The counterpart to SIC at the base station in the MAC, is Costa-Precoding [Cos83].
It is possible, to subtract the already coded data for users 1 to k−1 before encoding
the data intended for user k without power increase. Therefore, user k receives only
interference from users k + 1 to K. The achievable rate with Costa-Precoding for
user k is given by

SCST
k (Q,H, ρ) = log det

(

I + ρ
∑K

l=1 HkQlH
H
k

I + ρ
∑K

l=k+1 HkQlH
H
k

)

. (1.22)

Achieving rate SCST
k means that the base station performs Costa-Precoding, the

transmit signals are all independent zero-mean complex Gaussian distributed, and
the mobile performs optimal detection and decoding.

The achievable sum rate of the MIMO BC with Costa-Precoding equals the sum
capacity of the MIMO MAC. Furthermore, it can be shown by Sato’s bound [Sat78],
that the achievable sum rate of the MIMO BC is the sum capacity itself. There-
fore, the sum capacity of the MIMO BC with Costa-Precoding can be achieved by
solving the MIMO MAC sum capacity problem and then transforming the transmit
covariance matrices as described in [VJG02b]. This simplifies the analysis of the
sum performance in terms of the sum capacity, because up- and downlink can be
treated together.

The same transformation of transmit covariance matrices from MAC to the BC
can be applied for sum MSE minimisation. Therefore, by solving the sum MSE
minimisation problem for the uplink, the corresponding downlink problem is solved,
too.

This concludes the informal introduction of the performance metrics for the single-
user and multi-user MIMO system. In the next section, the contribution of this
thesis is summarised and the structure is presented.

1.4 Outline of the thesis

The contributions of this thesis are summarised in the following: The contribution
of 2nd chapter consists of the following points: First, we present related work and
classify our work. In section 2.2.1 we introduce our channel model. Another ingre-
dient is a rigorous mathematical measure of correlation which is defined in section
2.2.2. We observe that the average performance of the single-user MIMO system can
be written as the average trace of an arbitrary matrix-monotone function [Bha97].

used, e.g. in TDD modus.
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1.4 Outline of the thesis

This observation allows us to analyse different performance metrics as represen-
tatives of a much larger class of performance functions. The complete analysis is
performed on this meta layer. All results of the average mutual information and the
average MSE follow as corollaries. This observation is presented in section 2.3.1.
Then, the following results are proven:

• Optimum transmission strategies: In section 2.3.2, we justify the intuitive
belief that equal power allocation is optimal without CSI at the transmitter
even if the transmit antennas and receive antennas are correlated. This is done
by considering the worst case transmit and receive correlation and showing
that equal power allocation is most robust against that.

For the case when the transmitter knows the transmit and receive correlation
matrix6, we show that the average performance is optimised by transmitting
along the eigenvectors of the transmit correlation matrix. In addition to this,
we characterise the optimum power allocation for the covariance feedback
case and develop an iterative algorithm which solves the power allocation
optimisation problem. At low SNR values only one eigenvalue is supported, i.e.
the transmitter performs beamforming. The SNR range in which beamforming
is optimal is characterised for arbitrary transmit and receive correlation and
arbitrary average performance function.

With perfect CSI at the transmitter, the transmit strategy is adapted to each
channel realization. The MIMO channel is decomposed according to the singu-
lar value decomposition first, then optimal power across the parallel Gaussian
channels is allocated. We derive the generalised water-filling solution. At low
SNR, the beamforming range bases on a instantaneous channel realization is
derived.

• Impact of correlation on the ergodic capacity: In section 2.3.3, for an
arbitrary number of transmit and receive antennas and for arbitrary SNR val-
ues we show that uncorrelated MIMO channels yield higher capacities than
correlated channels with uninformed transmitter and a receiver which has
perfect CSI. We show that the average performance of an open-loop MIMO
system is a Schur-concave function with respect to transmit and receive cor-
relation. In addition to this, the difference between the ergodic capacity of
fully correlated and completely uncorrelated MIMO channels is studied and a
tight lower bound is developed.

For the case in which the transmitter knows the transmit correlation matrix,
we show that the average performance can be either Schur-convex or Schur-
concave or nothing with respect to transmit correlation depending on the
SNR. For small SNR, beamforming is optimal. If beamforming is optimal,
the average performance is Schur-convex with respect to transmit correlation.
With respect to receive correlation, we show that the covariance feedback
MIMO ergodic channel capacity is a Schur-concave function.

The closed-loop MIMO average performance is shown to be Schur-convex with
respect to transmit and receive correlation for small SNR values and Schur-
concave at high SNR values.

• Comparison to MISO results: In section 2.3.4, the differences between
MIMO and MISO channels are analysed. The general structure of the op-
timum transmission strategies for the different types of CSI between MISO

6This case is called ’covariance feedback’, because the knowledge at the transmitter about the two
covariance matrices can be achieved by channel estimation at the receiver and slow feedback
to the transmitter.
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and MIMO systems corresponds well. However, the impact of correlation
on MISO and MIMO systems substantially differs. In MISO systems much
stronger results can be proven. The average MISO covariance feedback per-
formance is Schur-convex with respect to transmit correlation. The average
closed-loop MISO performance is Schur-concave with respect to transmit cor-
relation. As a result, the average performance for the complete set of types
of CSI is analysed. In a clearly arranged table, we give a complete summary
of all theoretical results.

• Illustration and discussion of average performance results: In sec-
tion 2.3.6, the theoretical results from the last sections, are summarised by
illustrative numerical simulations. The properties of the different average per-
formance metrics under correlation and under the different types of CSI can
be read off.

In chapter 3, multi-user multiple-antenna systems and their respective performance
metrics are studied. We start with a point-to-point link which experiences noise,
inter-cell interference and intra-cell interference. We incooperate these three frac-
tions into the noise with specific noise covariance matrix. We compute the worst
case noise performance of the MIMO link in three different noise scenarios. The
contributions of the worst case noise analysis in section 3.2 are:

• The performance of a MIMO closed-loop system, i.e. perfect CSI at the
transmitter, with worst case noise under a trace constraint (or worst case
interference) equals the performance of a MIMO open-loop system, i.e. no CSI
at the transmitter with white noise, i.e. without interference. The structure of
the equivalent system is a single-user MIMO system with uncorrelated noise
and without CSI at the transmitter. We do a complete characterisation of the
solution of the corresponding minimax expression.

• The worst case noise directions correspond with the left eigenvectors of the
channel matrix H. The optimal transmit directions correspond with the right
eigenvectors of the channel matrix H. Both are independent of each other.
Therefore, the minimax problem fulfils the saddle point property. The power
allocation then is the well-known waterfilling solution.

• The worst case coloured noise decomposes the closed-loop MIMO system into
a SIMO MAC with amplified white noise. The transmitter cooperation goes
loose and the noise is amplified by a factor equal to the number of receive
antennas.

Furthermore, in section 3.3, we explicitly incooperate all transmit strategies into
the optimisation of the sum performance of the multiuser MIMO system. The sum
performance can be the sum capacity of the MIMO MAC if SIC is applied or the
sum capacity of the MIMO BC if Costa Precoding is applied or the sum MSE of the
MAC. We assume perfect CSI at transmitter and mobiles and derive the optimal
transmit strategies under individual and sum power constraints. The structure of
this part of the thesis is summarised in the following:

• At first, the signal model and the associated performance metrics are intro-
duced in section 3.3.1. The problem statements are proposed in section 3.3.2.
The sum performance is maximised under a sum power constraint.

• We solve these problems in section 3.3.3 and derive an iterative algorithm
which efficiently solves the sum performance optimisation problem of the
multiuser MIMO system. We show that the original problem can be decom-
posed into two parts, namely power allocation and covariance matrix optimi-
sation under individual power constraints. These two parts are alternately

10



1.4 Outline of the thesis

performed and converge to the optimal solution. Furthermore, the covariance
matrix optimisation step can be further decomposed into iterative single-user
performance optimisation treating the other users as noise.

• In order to get better understanding of the optimal transmit strategy which is
in general very complex, we analyse the strategy at low SNR values in section
3.3.4. We completely characterise the SNR range, in which only one user is
allowed to transmit at a time.

• This chapter is concluded in section 3.3.5 by a short discussion of the con-
struction of the iterative algorithm. In addition, we provide an illustrative
example of average sum capacities for SISO, SIMO, and MIMO MACs with
different numbers of users and SNR values.

Finally, in chapter 4, we conclude the thesis and give directions for further research.
The list of publications and the bibliography finalise this thesis.
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2 Optimal transmission strategies and impact of

correlation in single-user multiple-antenna channels

2.1 Related work

The increasing need for fast and reliable wireless communication links has opened
the discussion about systems with multiple antennas both located at the transmitter
and the receiver - so called multiple-input multiple-output (MIMO) systems [FG98].
Systems with multiple antennas at one side of the link are well known [Jak74] for
increasing the capacity and performance. In recent years, it was discovered that
MIMO systems have the ability to reach higher transmission rates than one-sided
array links [WFGV98] [Tel99].

Many results regarding the capacity of MISO and MIMO systems under different
levels of CSI and the corresponding transmission strategies were recently published.
First, we review recent results for MISO systems. The MISO case has recently
attracted much attention. In [Win98], the potential of multiple antenna systems
was pointed out. The capacity of a MISO system with imperfect feedback was
first analysed in [VM01] and [NLTW98, NTW99]. In [JG01b, JB02b] the optimum
transmission strategy with covariance knowledge at the transmit array with respect
to the ergodic capacity was analysed. In [RFLT98, SB01, BS01], the problem of
downlink beamforming in MISO systems was solved. In [JG03], the ergodic capacity
in the non-coherent transmission scenario with only covariance knowledge at the
transmitter and the receiver, is studied.

It has been shown that even partial CSI at the transmitter can increase the capacity
of a MISO system. Recently, transmission schemes for optimising capacity in MISO
mean-feedback and covariance-feedback systems were derived in [VM01, NLTW98].
The capacity can be achieved by Gaussian distributed transmit signals with a partic-
ular covariance matrix. In a block fading model, the general signal processing struc-
ture which achieves capacity independent of the type of CSI consists of a Gaussian
codebook, a number of beamformers and a power allocation entity [VM01, BCT01].
Additionally, it has been proved that the optimal transmit covariance matrix in the
covariance feedback case has the same eigenvectors as the known channel covariance
matrix. The complete characterisation of the impact of correlation on the ergodic
capacity in MISO systems can be found in [JB04c].

While studying MIMO systems, we can imagine several different scenarios in which
the transmitter or the receiver have partial or perfect channel state information
(CSI). The capacity of a single-user MIMO system with perfect CSI at the receiver
and no CSI at the transmitter was studied in [Tel99]. Equal power allocation was
shown to be optimal for uncorrelated Rayleigh fading MIMO channels without
CSI at the transmitter. The optimum strategy in order to minimise the outage
probability is analysed in [JB03a]. The capacity of a single-user MIMO system
with perfect CSI at both the transmitter and the receiver can be derived from the
’water-filling’ approach [CT91, Tel99]. If the transmitter has only partial CSI in
terms of the channel covariance matrix the optimal transmission strategy is shown
in [JG01b] to transmit in the direction of the known channel eigenvectors. The
power allocation problem is discussed in [JG01b], [JB02a], [SM02] and [JB02b].
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2 Single-user multiple-antenna optimisation

Practical power allocation and rate adaption algorithms are discussed in [MBO04,
BMO04]. The case in which both the transmitter and the receiver do not have
channel state information remains an open problem. Even for the single-input
single-output Rayleigh fading case, the capacity achieving transmission strategy for
no CSI has not been solved completely [AFTS01]. For MIMO case, the optimum
transmission strategy without CSI at the transmitter and receiver was characterised
in [MH99].

Most of the results regarding the ergodic and outage capacity of single user MISO
and MIMO systems assume that the transmit and receive antennas are uncorrelated.
In reality, there can occur correlation at the transmit antenna array due to the
placement of the array and the geometry in the transmission scenario. Especially
at the base station which is often un-obstructed, correlation between the antennas
can occur.

In literature there are different models which measure the correlation of the trans-
mit and receive antennas in MIMO systems. We use the well established model
from [CTK02]. This model is well suited for Rayleigh and Ricean MIMO channels
which naturally arise in a rich scattering environment. In [SFGK00] a model for
correlation of the multi element antenna was developed and the ergodic and outage
capacity was computed under correlation. In [CTK02] the impact of correlation was
analysed by studying the asymptotic eigenvalue distribution of the channel matrix
for a large number of transmit and receive antennas. The theory of majorization for
discrete vectors was extended to continuous probability density functions and it was
shown that correlation decreases the ergodic capacity. In [MO02], an approximative
expression for the capacity of correlated MIMO channels has been presented. In
[MSS01] analytical results for the moments of the mutual information under corre-
lation were derived for large antenna arrays, too. Using the tight capacity bound
which was developed in [ONBP02] for high SNR values, the impact of correlation
can easily be analysed. All analytical results assume either a large number of an-
tennas or high SNR values. Although the recent results indicate that correlation
decreases the ergodic capacity without CSI at the transmitter, the general proof
is still missing. For the MISO case, a proof was derived in [BJ04a]: The ergodic
capacity of a MISO system with no CSI at the transmitter decreases if the transmit
correlation increases. Furthermore, it was shown in [BJ04a], that the capacity loss
due to correlation is bounded by some small constant.

The statistics in MIMO channels are entirely characterised by the transmit and
receive correlation matrix if the channel between is a rich scattering channel which
is assumed Rayleigh distributed. If the channel between the transmit and receive
array has singularities or rank deficiencies, the channel statistics are more complex.
A method for describing such phenomena was proposed in [Say02]. The analysis
in [CFV00, CFGV02] is adapted to several special practical scenarios in which so
called keyholes occur. For example, in indoor transmission scenarios in which we
have long corridors the channel can be singular. This is not because of correlation
at the transmitter or the receiver but because of a keyhole in between. We do not
discuss effects like keyholes in this thesis, because we study the impact of correlation
of the transmit antenna array separately. Therefore, we assume that the channel
between transmitter and receiver does not have keyholes.
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2.2 Channel model and basic definitions

2.2 Channel model and basic definitions

2.2.1 Channel model

Consider the standard MIMO block flat-fading channel model

y = Hx + n (2.1)

with complex nT × 1 transmit vector x, channel matrix H with nR × nT entries,

circularly symmetric complex Gaussian noise n with variance
σ2

N

2 I per dimension.
For convenience, we define the inverse noise variance as ρ = 1/σ2

N . We assume that
the receiver knows H perfectly.

Let us first describe the signal processing at the transmit antenna array. The
transmit covariance matrix is given by

Q = E
(
xxH

)
.

Using the eigenvalue decomposition of Q = UQΛQUH
Q , it becomes obvious how

one can construct a particular transmit covariance matrix. The input data stream
d(k) is split into m parallel data streams d1(k) . . . dm(k). Each parallel data stream
is multiplied by a factor

√
p1 . . .

√
pm and then weighted by a beamforming vector

u1 . . .um. The number of parallel data streams is less than or equal to the number
of transmit antennas (m ≤ nT ). The beamforming vectors ui have size nT × 1 with
nT as the number of transmit antennas. The powers p1, ..., pnT

correspond to the
eigenvalues in the diagonal matrix ΛQ. The nT signals of each weighted data stream
xi(k) = di(k) · √pi ·ui are added up x(k) =

∑m
i=1 xi(k) and sent. By omitting the

time index k for convenience we obtain in front of the transmit antennas

x =

m∑

l=1

dl ·
√
pl · ul. (2.2)

The signal processing structure is shown in figure (2.1). The transmit signal in x has

S/P

1:m

u
1

u
m

+

+

1

nT

x (k)

x (k)

1

nT

d(k)

1

nT

d (k)

d (k)

1

m

x

x

1

m

λ

λ
y (k)
nR

y (k)
1

y (k)
2MIMO Channel

Figure 2.1: Signal processing structure for the MIMO system.

a covariance matrix Q with eigenvalues p1, ..., pm, 0, ..., 0 and eigenvectors u1, ...,um.
In order to construct a transmit signal with a given covariance matrix, two signal
processing steps are necessary: The first step is the power control p1, ..., pm and the
second step is multiplying the beamformers u1, ...,um. The sum transmit power
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2 Single-user multiple-antenna optimisation

∑nT

k=1 pk is constrained, i.e.

nT∑

k=1

pk = P.

Next, we study the stochastic properties of the channel. The correlation of the
channel vectors arises in the common downlink transmission scenario in which the
base station is un-obstructed [SFGK00]. We follow the model in [GP94] where the
subspaces and directions of the paths between the transmit antennas and the receive
cluster change more slowly than the actual attenuation of each path.

The channel matrix H for the case in which we have correlated transmit and cor-
related receive antennas is modelled as

H = R
1
2

R · W · R
1
2

T (2.3)

with transmit correlation matrix RT = UT DT UH
T and receive correlation matrix

RR = URDRUH
R . UT and UR are the matrices with the eigenvectors of RT and

RR respectively, and DT , DR are diagonal matrices with the eigenvalues of the ma-
trix RT and RR, respectively. The random matrix W has zero-mean independent
complex Gaussian identically distributed entries, i.e. W ∼ CN(0, I).

The most general form of the correlation model consists of a very large correlation
matrix of size (nT · nR × nT · nR) which incooperates the transmit and receive
correlation, i.e. it is the expectation of the outer product of the vectorised channel
matrix

κ = E
[
vec(H) · vec(H)H

]
. (2.4)

The correlation matrix κ in (2.4) expresses the correlation between each transmit or
receive element to every other transmit or receive element. Often, the transmit and
the receive antenna array are spatially divided. Then, the following simplification
is allowed [CTK02]. In the case in which each receive antenna observes the same
correlation between the transmit antennas, i.e. the transmit correlation is indepen-
dent of the receive antenna and vice versa the receive correlation is independent of
the transmit antenna, the correlation model in (2.4) simplifies in comparison to the
model in (2.3).

We assume that the entries in the channel matrix are complex Gaussian distributed.
Therefore, we can describe the impact of the correlation at the transmitter and the
receiver by considering the second moment, i.e. the covariance matrix. The analysis
in [CFV00, CFGV02] can not be applied to our scenario because the entries of the
channel matrix in [CFV00, CFGV02] are products of complex Gaussian distributed
entries. It does not suffice to consider only the second moment in order to analyse
the impact of correlation or keyholes. However, the authors in [CFV00, CFGV02]
argue that a MIMO system with ’many’ keyholes converges to the common MIMO
model by application of the central limit theorem.

The model of correlation which we introduced in (2.3) allows to analyse the different
performance metrics from chapter 1 with respect to correlation at the transmit and
the receive side. In order to provide a stable mathematical theory for studying
correlation, we give a mathematical measure of correlation in the next section.
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2.2 Channel model and basic definitions

2.2.2 A mathematical measure of correlation

In order to provide a measure of correlation, we take two arbitrarily chosen transmit
correlation matrices R1

T and R2
T with the constraint that trace(R1

T ) = trace(R2
T ) =

nT which is equivalent to

nT∑

l=1

λT,1
l =

nT∑

l=1

λT,2
l , (2.5)

with λT,1
l , 1 ≤ l ≤ nT , and λT,2

l , 1 ≤ l ≤ nT , are the eigenvalues of the covariance
matrix R1

T and R2
T , respectively.

This constraint regarding the trace of the correlation matrix RT is necessary because
the comparison of two transmission scenarios is only valid if the average path loss
is equal. Without receive correlation, the trace of the correlation matrix can be
written as

trace(RT ) =

nT∑

i=1

(

E

[

HHH
])

ii
=

nT∑

i=1

E
[
|hi|2

]
. (2.6)

However, the RHS of (2.6) is the sum of the average path loss from the transmit
antenna i = 1...nT . In order to study the impact of correlation on the achiev-
able capacity separately, the average path loss is kept fixed by applying the trace
constraint on the correlation matrices R1

T and R2
T .

We will say that a correlation matrix R1
T is more correlated than R2

T with descend-

ing ordered eigenvalues λT,1
1 ≥ λT,1

2 ≥ ... ≥ λT,1
nT

≥ 0 and λT,2
1 ≥ λT,2

2 ≥ ... ≥ λT,2
nT

≥
0 if

m∑

k=1

λT,1
k ≥

m∑

k=1

λT,2
k 1 ≤ m ≤ nT − 1. (2.7)

The measure of correlation which we will introduce is defined in a natural way:
the larger the first m eigenvalues of the correlation matrices are (with the trace
constraint in (2.6)), the more correlated is the MIMO channel. As a result, the most
uncorrelated MIMO channel has equal eigenvalues, whereas the most correlated
MIMO channel has only one non-zero eigenvalue which is given by λ1 = nT .

Before proceeding with our definition of ’more correlated’ in terms of the eigenvalue
distribution of the channel covariance matrix, we give the necessary definitions we
will need in the following.
Definition 1: For two vectors x,y ∈ Rn with descending ordered components
x1 ≥ x2 ≥ ... ≥ xn ≥ 0 and y1 ≥ y2 ≥ ... ≥ yn ≥ 0 one says that the vector x

majorizes the vector y and writes

x ≻ y if

m∑

k=1

xk ≥
m∑

k=1

yk ,m = 1, ..., n− 1. and

n∑

k=1

xk =

n∑

k=1

yk.

The next definition describes a function Φ which is applied to the vectors x and y

with x ≻ y:
Definition 2: A real-valued function Φ defined on A ⊂ Rn is said to be Schur-
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2 Single-user multiple-antenna optimisation

convex on A if

x ≻ y on A ⇒ Φ(x) ≥ Φ(y).

Similarly, Φ is said to be Schur-concave on A if

x ≻ y on A ⇒ Φ(x) ≤ Φ(y).

Example: Suppose that x,y ∈ Rn
+ are positive real numbers and the function

Φ is defined as the sum of the squared components of the vectors, i.e. Φ2(x) =
∑n

k=1 |xk|2. Then, it is easy to show that the function Φ2 is Schur-concave on Rn
+,

i.e. if x ≻ y ⇒ Φ2(x) ≤ Φ2(y).

We will need the following lemma (see [MO79, Theorem3.A.4]) which is sometimes
called Schur’s condition. It provides an approach for testing whether some vector
valued function is Schur-convex or not.
Lemma 1: Let I ⊂ R be an open interval and let f : In → R be continuously
differentiable. Necessary and sufficient conditions for f to be Schur-convex on In

are

f is symmetric on I
n (2.8)

and

(xi − xj)

(
∂f

∂xi
− ∂f

∂xj

)

≥ 0 forall 1 ≤ i, j ≤ n. (2.9)

Since f(x) is symmetric, Schur’s condition can be reduced as in [MO79, p. 57]

(x1 − x2)

(
∂f

∂x1
− ∂f

∂x2

)

≥ 0. (2.10)

From Lemma 1 follows that f(x) is a Schur-concave function on In if f(x) is sym-
metric and

(x1 − x2)

(
∂f

∂x1
− ∂f

∂x2

)

≤ 0. (2.11)

The definition of Schur-convexity and Schur-concavity can be extended if another
function Ψ : R → R is applied to Φ(x). Assume that Φ is Schur-concave, if
the function Ψ is monotonically increasing then the expression Ψ(Φ(x)) is Schur-
concave, too. If we take for example the function Ψ(n) = log(n) for n ∈ R+ and the
function Φp from the example above, we can state that the composition of the two
functions Ψ(Φp(x)) is Schur-concave on Rn

+. This result can be generalised for all
possible compositions of monotonically increasing as well as decreasing functions,
and Schur-convex as well as Schur-concave functions. For further information about
majorization theory see [MO79].

The following definition provides a measure for comparison of two correlation ma-
trices.
Definition 3: The transmit correlation matrix R1

T is more correlated than R2
T if
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2.2 Channel model and basic definitions

and only if

m∑

l=1

λT,1
l ≥

m∑

l=1

λT,2
l for m = 1...nT , and

nT∑

l=1

λT,1
1 =

nT∑

l=1

λT,2
2 . (2.12)

One says that the vector consisting of the ordered eigenvalues λT
1 majorizes λT

2 ,
and this relationship can be written as λT

1 ≻ λT
2 like in Definition 1.

Remark I: It can be shown that vectors with more than two components cannot be
totally ordered. So there are examples of correlation vectors that cannot compared
using our Definition 3, e.g. η1 = [0.6, 0.25, 0.15] and η2 = [0.55, 0.4, 0.05]. This
is a problem of all possible orders for comparing correlation vectors. Majorization
induces only a partial order.

Note that our definition of correlation in Definition 3 differs from the usual def-
inition in statistics. In statistics a diagonal covariance matrix indicates that the
random variables are uncorrelated. This is independent of the auto-covariances on
the diagonal. In our definition, we say that the antennas are uncorrelated if in addi-
tion to statistical independence, the auto-covariances of all entries are equal. This
difference to statistics occurs because the direction, i.e. the unitary matrices of the
correlation have no impact on our measure of correlation. Imagine the scenario in
which all transmit antennas are uncorrelated, but have different average transmit
powers because of their amplifiers. In a statistical sense, one would say the antennas
are uncorrelated. Our measure of correlation says that the antennas are correlated,
because they have different transmit powers. The measure of correlation in Def-
inition 3 is more suitable for the analysis of the performance of multiple antenna
systems, because different transmit powers at the antennas obviously have a strong
impact on the performance. In this thesis, these effects are considered.

This measure of correlation allows us to analyse the impact of correlation on the
various performance metrics introduced in chapter 1 in single-user MIMO systems
under different types of CSI. In the following, the measure of correlation is applied
to transmit correlation matrices RT and to receive correlation matrices RR as well.

Remark II: As mentioned above, the case in which the transmit antennas are fully
correlated corresponds to λT

1 = nT , λT
2 = ... = λT

nT
= 0. The case in which the

transmit antennas are fully uncorrelated corresponds to λT
1 = λT

2 = ... = λT
nT

= 1.
This illustrates that the expression in (2.12) can be used as a measure for correlation.

Example: At this point, we give another example for the measure of correlation.
Assume the situation in figure (2.2). We have two different correlation scenarios.
In scenario A and B the largest two eigenvalues (λA

1 = λB
1 and λA

2 = λB
2 ) are equal.

The smallest three eigenvalues in scenario B are equal (λB
3 = λB

4 = λB
5 ) but in

scenario A the smallest three eigenvalues are unequal (λA
3 > λA

4 > λA
5 ). In addition

to this, the sum of all eigenvalues in scenario A and B is equal. Applying the order
which is introduced in Definition 3, eigenvalue vector A majorizes eigenvector B
(λA ≻ λB).

Scenario B applies for all eigenvalue distributions λ with fixed λ1 and λ2 and equal
trace the ’smallest’ eigenvalue distribution, i.e. λB ≺ λ for all λ with

λ1 + λ2 +

nT∑

k=3

λk = 1
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EIGENVALUESEIGENVALUES

Scenario A Scenario B

λ λ λ λ λ1 2 4 53 λ λ λ λ λ1 2 4 53

Figure 2.2: Example correlation matrix eigenvalue distribution.

and for λB with

1 − λB
1 − λB

2

nT − 2
= λB

3 = ... = λB
nT
.

Entropy of Gaussian vector As another example of the measure of correlation,
consider a random Gaussian distributed vector z of dimension n with z ∼ CN(0,R)
and with covariance matrix R. Denote the eigenvalues of the covariance matrix R

as r = [r1, ..., rn]. In the following, we show that the entropy hr(z) is a Schur-
concave function with respect to the correlation eigenvalues r. The entropy of z is
given by [CT91, Theorem 9.6.5]

hr(z) = log [(2πe)ndet(R)] = log

[

(2πe)n
n∏

i=1

ri

]

. (2.13)

Further on, we have the following result by [MO79, Theorem 3.F.1.a]

λ ≻ µ →
n∏

i=1

λi ≤
n∏

i=1

µi. (2.14)

Therefore, from (2.13) and (2.14) follows

λ ≻ µ → hλ(z) ≤ hµ(z).

This can be shown alternatively, by

hr(z) = log

[

(2πe)n
n∏

i=1

ri

]

= log(2πe)n +

n∑

i=1

log ri. (2.15)

According to [MO79, Proposition 3.C.1],

λ ≻ µ →
n∑

i=1

log λi ≤
n∑

i=1

log µi.

2.3 Average performance metrics

We assume that the receiver has perfect CSI. The transmitter has either no CSI,
perfect CSI, or knowledge of the transmit correlation matrix RT and receive cor-
relation matrix RR. Let us study the optimisation problems regarding the average
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2.3 Average performance metrics

performance metrics average mutual information (1.8) and average normalised MSE
(1.13) from chapter 1.

All average performance metrics introduced in chapter 1 can be written in the
following generalised form

Φ(ρ,Q,RT ,RR) = EW tr φ(ρR
1/2
R WR

1/2
T QR

1/2
T W HR

1/2
R ) (2.16)

with zero-mean complex Gaussian iid random matrix W and with the matrix-valued
function φ defined on the set of positive semidefinite matrices. Using the following
matrix-valued function φ1(X) in the RHS of (2.16)

φ1(X) = log (I + X) (2.17)

the generalised average performance function Φ in (2.16) corresponds in every detail
to the average mutual information in (1.8). Using another matrix-valued function
φ2(X) in (2.16)

φ2(X) =
nT

nR
I − X [I + X]

−1
(2.18)

the function Φ in (2.16) directly corresponds to the average normalised MSE in
(1.13). The average normalised MSE is to be minimised. The first term in the RHS
of (2.18) does neither depend on the transmission strategy nor on the transmit or
receive correlation. It depends only on the number of transmit and receive antennas.
Therefore, the minimisation of the normalised average MSE can be expressed as a
maximisation of the function

φ̃2(X) = X [I + X]
−1

(2.19)

In (2.16) it is assumed that the transmit signals are complex Gaussian distributed
with transmit covariance matrix Q with power constraint tr (Q) = P . The transmit
covariance matrix can be understood as an operator that maps from the set of all
channel matrices H = {H} to the set of transmit covariance matrices under the
trace constraint Q = {Q : Q � 0, tr Q = P}. The maximum of (2.16) with respect
to transmit strategy Q depends on the CSI at the transmitter. In general, the
generalised performance function Φ in (2.16) is optimised with respect to transmit
policy Q under the trace constraint. As a result, for fixed SNR ρ, transmit RT

and receive correlation matrices RR, we obtain the following class of optimisation
problems

max or min Φ(Q, ρ,RT ,RR) s.t. Q � 0 and tr Q = P . (2.20)

If the transmitter has perfect CSI, the transmitter can adapt its transmit strategy
Q to every channel matrix realization H. The transmit strategy changes with
every channel realization. In case of average mutual information maximisation,
the optimal transmission strategy is the well known ’water-filling’ [Tel99], [CT91].
Then, the maximum mutual information corresponds to the ergodic channel capacity
of a closed-loop MIMO system. In case of average normalised MSE minimisation,
the optimal transmission strategy is some kind of altered ’water-filling’ [HB03]. In
section 2.3.2, we derive the general structure of the optimal transmit strategy Q for
arbitrary inner performance function φ.

If the transmitter has knowledge about the transmit and receive correlation, the
transmit strategy does not depend on each instantaneous channel realization. The
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2 Single-user multiple-antenna optimisation

transmit covariance matrix is kept fixed for a pair of transmit and receive correlation
matrices. In order to describe the optimisation problem which leads to the optimal
transmission strategy with covariance feedback, we discuss the expression in (2.16).

The main problem in computing the average generalised performance metric Φ in
(2.16) is the expectation operator. We obtain for the expectation of the inner
matrix-valued function

EW tr φ(ρR
1/2
R WR

1/2
T QR

1/2
T W HR

1/2
R )

= EW tr φ(ρΛ
1/2
R WΛ

1/2
T QΛ

1/2
T W HΛ

1/2
R )

= Ew1,...,nT
tr φ

(

ρ

nT∑

k=1

λT
k pkw̃kw̃H

k

)

. (2.21)

The first identity in (2.21) follows from the fact that the distribution of the random
variable W and WU and UW for unitary U are equal. This fact has been exten-
sively used in [MH99]. Furthermore, note that the trace of UWUH is equal to the
trace of W for unitary U . The random vectors w̃k for 1 ≤ k ≤ nT are given by

w̃k =









√

λR
1 w1,k√

λR
2 w2,k

...
√

λR
nR
wnR,k









(2.22)

with zero-mean complex Gaussian iid random variables wi,j with 1 ≤ i ≤ nR and
1 ≤ j ≤ nT . Note that the LHS in (2.21) can be further rewritten as

tr φ(ρR
1/2
R WR

1/2
T QR

1/2
T W HR

1/2
R ) = tr φ

(

ρ

nR∑

k=1

λR
k ŵkŵ

H
k

)

(2.23)

with ŵk for 1 ≤ k ≤ nR as

ŵk =









√

p1λT
1 wk,1√

p2λT
2 wk,2

...
√

pnT
λT

nT
wk,nT









. (2.24)

The equations (2.21) and (2.23) express the symmetry of the average performance
metric with respect to the correlation properties at the transmitter and the receiver.
For the equal power allocation transmit strategy, one can observe that the impact
of correlation at the transmit antennas or at the receive antennas is equal. This
intuitive explanation will be affirmed in Corollary 7 and Theorem 3.

In the case in which the transmitter knows the transmit correlation matrix and
receive correlation matrix, the optimum eigenvectors of the transmit covariance
matrix Q correspond to the eigenvectors of the transmit correlation matrix. This
will be proven in section 2.3.2. For the average mutual information, this was shown
in [JVG01] for completely uncorrelated receive antennas and in [JB03b] for receive
correlation. The optimal power allocation is given by

Λ
opt
Q = argp

[

maxPnT
k=1

pk=P
E tr

(

φ

(

ρ

nT∑

i=1

λT
i piw̃iw̃

H
i

))]

(2.25)
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with w̃i given in (2.22). Using the optimum transmit strategy characterised so far,
the maximum of the average mutual information (for φ1 in (2.25)) corresponds to
the ergodic channel capacity of a MIMO system with long-term knowledge about
the transmit and receive correlation.

If the transmitter has no CSI, it can neither adapt the transmit strategy to the
instantaneous channel realization nor to the long-term channel information. The
transmit strategy is fixed for all channel realizations. Furthermore, it is difficult
to define a channel capacity, because the average mutual information itself is a
variable which depends on the transmit and receive correlation. In addition to this,
it is not obvious how to define the best transmit strategy. What correlation should
be assumed? In the next subsection, we propose an approach in order to solve these
problems. We show that the optimal transmit covariance matrix which solves (2.20)
under the worst case channel correlation (see section 2.3.2) is given by

Qopt =
P

nT
I. (2.26)

In the next section, we prove that equal power allocation as assumed in (2.26) is
most robust against worst case correlation without CSI at the transmitter.

Additionally, the solution to the optimisation problem in (2.20) is characterised
and the well-known waterfilling solution for perfect CSI at the transmitter is briefly
reviewed in the next section.

2.3.1 Properties of the inner matrix-valued performance function:

Matrix-concavity

Before proceeding to the next section, it is important to know the properties of the
function φ in the optimisation problem (2.20). The following definitions will prove
useful. Matrices and functions are discussed in [Bha97, HJ91].

The function F : C
n
+ → C

n
+ is a matrix-valued function. The function F maps from

the set of positive semidefinite matrices to the set of positive semidefinite matrices.
We consider only matrix-valued functions which act by a scalar function F (x) on
each eigenvalue of the matrix A motivated by the spectral theorem in linear algebra.
Therefore, the function F affects only the eigenvalues of the matrix A = UΛUH ,
i.e. F (A) = UF (Λ)UH and F (Λ) = diag (F (λ1), ..., F (λn)).

We will assume that F is matrix-monotone, i.e. F (A) � F (B) holds if A−B � 0

[Bha97, Section V]. In our case the function φ1(A) for the mutual information and
the function φ̃2(A) for the normalised MSE are matrix-monotone.

A matrix-valued function is matrix-concave if

F [(1 − λ)A + λB] � (1 − λ)F (A) + λF (B). (2.27)

A function F is called matrix-convex if −F is matrix-convex. Both performance
functions φ1(X) and φ2(X) are matrix-concave and matrix-convex, respectively.

Therefore, we restrict our analysis to the cases in which the inner function φ in the
optimisation problem (2.20) are matrix-concave or matrix-monotone functions1.

Next, we define according to Löwner’s Theorem [Lö34] [Bha97, Section V.4] the

1In [HP82, Theorem 2.5] it is shown that all operator monotone functions on (0,∞) are operator
concave.
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following class of matrix valued functions

F̃ (A) =

∫ ∞

0

sA (sI + A)
−1
dµ(s) (2.28)

with a positive measure µ ∈ [0,∞), i.e. µ is monotonically increasing, positive, and
continuous from the left [KF70], with entries

[

F̃ (A)
]

kl
=

∫ ∞

0

s
[

A (sI + A)
−1
]

kl
dµ(s). (2.29)

Every matrix-monotone function F can be expressed by a unique positive measure
µ defined on [0,∞] as the function F̃ in (2.28) and (2.29) plus a constant term and a
linear term. In this thesis, we consider only the class of matrix-monotone functions
which can be expressed with the representation in (2.28).

As a result, the optimisation problem in (2.20) can be expressed using Löwner’s
representation of matrix-convex functions as

Φ(ρ,Q,RT ,RR) = E tr

∫ ∞

0

s
(

ρR
1/2
R WR

1/2
T QR

1/2
T W HR

1/2
R

)

(2.30)

·
[

sI +
(

ρR
1/2
R WR

1/2
T QR

1/2
T W HR

1/2
R

)]−1

dµ(s).

Note that the measure dµ(s) in (2.30) depends on the inner performance function
φ. Often, the representation in (2.30) is useful for solving the optimisation problem
(2.20) in the forthcoming sections. Note that the term inside the integral equals
the second summand of the matrix-valued function φ2. The integral and the trace
operator can be interchanged because the trace is a finite sum.

Often, we will need the first derivative of the matrix valued function F at A

DF (A)(H) =
d

dt

∣
∣
∣
∣
∣
t=0

F (A + tH).

There is an interesting relationship between the derivative DF (A) and the matrix
F [1](A). According to the approach in this section, it is defined in the following
way: F [1](A) acts on the eigenvalues of A = UΛAUH with

F [1](A) = Udiag(f ′(λ1), f ′(λ2), ..., f ′(λn))UH (2.31)

Since the matrix F [1](A) can be conveniently expressed using the positive measure
µ, we will often use this matrix in the following. Let us call the matrix F [1](A) the
’outer derivative’ of F .

Examples of performance metrics of the matrix-monotone class

In communications systems analysis, the performance of the system is often mea-
sured by a function which belongs to the aforementioned class, i.e. it can be rep-
resented as the trace of a matrix-monotone function with channel H and transmit
strategy Q as an argument E tr φ(ρHQHH).

The average mutual information can be expressed as this type of function as shown
above φ(X) = log det (I + ρX). The distribution µ(s) in the Löwner representation

is then given by µ(s) = u(s−1)
s2 with the step function u(t) = 0 for t < 0 and u(t) = 1

for t ≥ 0.
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For the normalized MSE, the function φ is φ(X) = X [I + X]
−1

. In this case, the
distribution µ(s) is given by µ(s) = δ(s − 1) with the dirac impulse δ(0) = 1 and
otherwise δ(t) = 0 for t 6= 0.

The Chernoff bound of orthogonal space-time block codes can be represented [NBP02]
by taking the natural logarithm and φ(X) = log(nα)(−αX) with symbol constel-
lation parameters nα as the number of signal point with minimum distance and
α = ρ · dmin with SNR ρ and minimum distance dmin.

2.3.2 Optimum transmission strategies

In this section, we derive the transmission strategies which maximise the average
performance metrics for the single-user MIMO system in (2.20) with no CSI, co-
variance knowledge, and perfect CSI at the transmitter.

Optimum transmission strategy without CSI at the transmitter

In this section, we derive the optimum transmission strategy without CSI at the
transmitter and with correlation at the transmit antenna array. In order to do
so we have to introduce additional constraints on the transmit correlation matrix.
In the following, we consider the least favourable transmit correlation matrix and
search for the transmit strategy which maximises the average performance metric
under this correlation matrix. This kind of min-max expression for the mutual
information in the case in which the transmitter has no a priori information about
the type of channel class, was defined as the channel capacity of the compound
channel in [Wol78]. A similar approach in [PCL03b] studies the maximum with
respect to the transmit covariance matrix and the minimum with respect to the
channel realization of the instantaneous capacity in a flat-fading MIMO channel. In
addition to this, the worst case capacity of a MIMO system is studied in [GHIM01].
In our case, the generalised performance function Φ is to be maximised by transmit
covariance matrix and to be minimised by transmit correlation matrix.

The line of argument is the following: We show that the transmission strategy which
is most robust against the worst case transmit correlation is equal power allocation.
This is done by an upper and a lower bound which coincide with another. In
order to derive the lower bound, it is necessary to know the worst case correlation
which minimises the performance function if equal power allocation is applied. This
result is derived in section 2.3.3 where the impact of correlation on the average
performance function is analysed. Therefore, our line of argument is not a circular
proof. In the derivation of the optimum strategy we merely use the fact that
the worst case transmit correlation for equal power allocation is the completely
correlated case. The receive correlation is kept fixed during the derivation.

Let us define

F (Z) = E tr φ(ρW̃ZW̃
H

) (2.32)

with matrix W̃ = R
1/2
R · W . Then the average mutual information or the nor-

malised average MSE with correlation at the transmit antenna array can be written

as F (R
1/2
T QR

1/2
T ) with φ1 or φ̃2 as inner performance function. Obviously, the

transmitter is going to maximise the function F , but it has no a priori information
about the transmit correlation, i.e. the channel belongs to some class but the trans-
mitter does not know which. Following the approach of the compound channel in
[Wol78], the transmitter is pessimistic and it assumes that the channel belongs to
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2 Single-user multiple-antenna optimisation

the worst case class of channels 2. The worst case correlation is obtained if we as-
sume that the correlation player knows the strategy of the transmit player, i.e. the
correlation is a function of the transmit strategy RT (Q). The performance function
is minimised with respect to this correlation and we have the following max-min
problem

φ = sup
tr (Q)≤P

inf
tr (RT )=nT

F (R
1/2
T QR

1/2
T )

= supPnT
k=1

pk)≤P

inf
tr (RT )=nT

E tr φ

(

ρ

nT∑

k=1

pkλ
T
k w̃kw̃H

k

)

. (2.33)

For the inner infimum with fixed transmit covariance matrix Q we have

inf
tr (RT )=nT

F (R
1/2
T QR

1/2
T ) ≤ min

1≤k≤nT

E tr φ
(
ρpknT w̃kw̃H

k

)
(2.34)

where we have used the rank one diagonal correlation matrix which has zeros on
the diagonal but on the k-th position, i.e.

RT = diag[0, ..., 0, nT , 0, ..., 0].

The RHS of (2.34) can be written as

min
1≤k≤nT

E tr φ
(
ρpknT w̃kw̃H

k

)
=(a)

E tr φ
(
ρpminnT w̃kw̃H

k

)

≤(b)
E tr φ

(
ρw̃kw̃H

k

)
=(c) min

tr (RT )=nT

F (R
1/2
T Q̂R

1/2
T ). (2.35)

In (2.35) we have used in (a) that the minimum is achieved if the k-th position
with a nonzero entry in the correlation matrix corresponds to the smallest transmit
covariance matrix eigenvalue. Step (b) follows from the observation that for the
smallest transmit covariance matrix eigenvalue only P/nT power can be allocated.
Finally, in step (c) we used the equal power allocation transmit covariance matrix,

i.e. Q̂ = P
nT

I. The RHS in (2.35) does not depend on the transmit covariance
matrix. If we take the supremum of (2.35) over all transmit covariance matrices
with power constraint P , it holds

sup
tr (Q)≤P

inf
tr (RT )=nT

F (R
1/2
T QR

1/2
T ) ≤ E tr φ

(

ρw̃1w̃
H
1

)

. (2.36)

Furthermore, the following lower bound on the max-min capacity holds

sup
tr (Q)≤P

inf
tr (RT )=nT

F (R
1/2
T QR

1/2
T ) ≥ inf

tr (RT )=nT

F (
ρ

nT
RT )

= E tr φ(ρw̃1w̃
H
1 ). (2.37)

The infimum in (2.37) is characterised in Theorem 1. The result in Theorem 3 states
that if equal power allocation is used, the average performance function is lowest
for completely correlated transmit antennas. From (2.36) and (2.37) it follows that

2An optimistic transmitter would choose to assume the best case class and a realistic transmitter
would choose a kind of average. However, we follow the pessimistic transmitter.
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2.3 Average performance metrics

the max-min mutual information in (2.32) is given by

sup
tr (Q)≤P

inf
tr (RT )=nT

F (R
1/2
T QR

1/2
T ) = E tr φ(ρw̃1w̃

H
1 )

= E tr φ(ρ

nR∑

k=1

λR
k wk) (2.38)

and can be achieved by equal power allocation, i.e. Q̂ = P
nT

I. Note, that the
argument of the function φ in (2.38) is a scalar.

The max-min performance metric in (2.38) can be further analysed. In the RHS
of (2.38), the random variables w̃1 include the receive correlation. The result in
Theorem 3 is applied for receive correlation in Corollary 7 and it states that if equal
power allocation is used, the average performance function is lowest for completely
correlated receive antennas. Therefore, the minimum of the max-min mutual infor-
mation in (2.38) with respect to receive correlation RR is given by

inf
tr (RR)=nR

E tr φ(ρw̃1w̃
H
1 ) = E tr φ(ρnRw1)

In the case in which the inner function φ is the mutual information, we obtain

inf
tr (RR)=nR

E tr φ1(ρw̃1w̃
H
1 ) = E log(1 + ρnRw1)

= exp(1/(ρnR))Ei(1, 1/(ρnR)).

with the exponential integral Ei(a, b) =
∫∞

1
exp(−κb)κ−adκ. In the case in which

the inner function φ is the modified average normalised MSE, we obtain

inf
tr (RR)=nR

E tr φ̃2(ρw̃1w̃
H
1 ) = E

ρnRw1

1 + ρnRw1

= 1 − exp(1/(ρnR))Ei(1, 1/(ρnR))

ρnR
.

The derivation in this section has shown that equal power allocation is the most
robust transmit strategy if the transmitter has no CSI but the channel is correlated.
The max-min average mutual information could be called compound channel capac-
ity according to the notion introduced in [Wol78]. The transmitter knows that the
channel belongs to the class of Rayleigh fading channels with transmit and receive
correlation, but does neither know the concrete instantaneous channel realization
nor the correlation matrices a priori.

Optimum transmission strategy with covariance matrix knowledge at the

transmitter

In this section, we derive the optimum transmit strategy if the transmitter knows
the transmit and receive correlation matrix. At first, we show that the optimum
transmit directions, i.e. the optimal eigenvectors of the transmit covariance matrix
correspond to the eigenvectors of the transmit correlation matrix. Furthermore, we
characterise the optimum power allocation in terms of the necessary and sufficient
Karush-Kuhn-Tucker conditions. Finally, we derive an iterative algorithm which
solves the power allocation problem.

Optimal eigenvectors of transmit covariance matrix

The following lemma provides the optimal transmit directions. It shows that the

27



2 Single-user multiple-antenna optimisation

optimal transmit eigenvectors correspond to the eigenvectors of the known transmit
correlation matrix.
Lemma 2: The optimal transmit covariance matrix eigenvectors correspond with
the eigenvectors of the transmit correlation matrix which are known at the trans-
mitter, i.e.

max
Q�0

tr Q≤P

Φ(ρ,Q,RT ,RR) = maxPnT
k=1

pk=P
E tr

(

φ

(

ρ

nT∑

i=1

λT
i piw̃iw̃

H
i

))

as in (2.25).

The proof can be found in section 2.4.1. As a result, only the power allocation has
to be characterised. The beamformers at the transmitter equal the eigenvectors of
the transmit correlation matrix.

Characterisation of the optimum power allocation

In order to characterise the optimum power allocation we define the power vector
p = [p1, ..., pnT

] with the sum power constraint ||p|| ≤ P . For fixed transmit and
receive correlation matrix eigenvalues λT

k and λR
k , the average performance metric

is a function of the power allocation, which follows from (2.25)

Φ(p,λR,λT ) = E tr φ

(

ρ

nT∑

k=1

pkλ
T
k w̃kw̃H

k

)

. (2.39)

The maximum of the average performance metric in (2.39) with respect to the power
allocation is given by

Φ̂(λR,λT ) = maxPnT
k=1

pk=P
E tr φ

(

ρ

nT∑

k=1

pkλ
T
k w̃kw̃H

k

)

. (2.40)

Furthermore, we define the following coefficients

αk(p̂) = ρλT
k E

(

w̃H
k φ

[1]

(

ρ

nT∑

l=1

p̂lλ
T
l w̃lw̃

H
l

)

w̃k

)

. (2.41)

In (2.41), the term F [1](X) is the ’first derivative’ of the matrix-valued function
F (X) as defined in section 2.3.1. Finally, we define the set of indices for which a
given power allocation has entries greater than zero

I(p̂) = {k ∈ {1, ..., nT } : p̂k > 0}. (2.42)

The following theorem provides a characterisation of the power allocation p̂ which
maximises the expression in (2.39).
Theorem 1: A necessary and sufficient condition for the optimality of a power
allocation p̂ is

{k1, k2 ∈ I(p̂) =⇒ αk1
= αk2

and (2.43)

k 6∈ I(p̂) =⇒ αk ≤ max
l∈I(p̂)

αl}. (2.44)

This means that all indices l which obtain some power pl greater than zero have
the same αl = maxk∈{1,...,nT } αk. Furthermore, all other αi are less or equal to αl.
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The proof can be found in section 2.4.2.

In case, φ is the mutual information the coefficients αk(p̂) are given by

α1
k(p̂) = ρλT

k E



w̃H
k

(

I + ρ

nT∑

l=1

p̂lλ
T
l w̃lw̃

H
l

)−1

w̃k



 .

In case, φ is the modified normalised average MSE the coefficients αk(p̂) are given
by

α2
k(p̂) = ρλT

k E



w̃H
k

(

I + ρ

nT∑

l=1

p̂lλ
T
l w̃lw̃

H
l

)−2

w̃k



 .

Algorithm for optimum power allocation

We use Theorem 1 from the last section to provide the following algorithm which
computes the optimum power allocation for the MIMO system with covariance
feedback (algorithm 1).

Algorithm 1 Optimum power allocation

Require: given µ and SNR ρ
1: p1 = [1, 0, ..., 0]
2: for i = 1 to nT − 1 do

3: if αi(p
i) ≥ αi+1(pi) then

4: optimum solution is given in pi

5: else

6: find pi+1 with α1(pi+1) = ... = αi+1(pi+1)
7: end if

8: end for

Ensure:
∑nT

k=1 pk = 1

We start with the beamforming solution in p1 = [1, 0, ..., 0] and check whether the
condition in (2.44) is fulfilled. If it is not fulfilled we split the transmission power
to direction one and two (p2 = [p1, p2, 0, ..., 0]) in such a way that α1(p2) = α2(p2).
Next, we recheck the condition in (2.44) for p2 again and so on.

In the following, we derive a simple approach to compute the step in line 6 in
algorithm 1. In order to find a pi+1 which solves

α1(pi+1) = α2(pi+1) = ... = αi+1(pi+1) (2.45)

we propose the following approach. At first, let us define i functions f1(p), ..., fi(p)
with

fk(p) = (α1(p) − αk(p))
2 ∀k = 1...i.

Next, we define the objective function g(p) with

g(p) =
i∑

k=1

fk(p). (2.46)

Finally, the pi+1 which solves (2.45) is the null of g(p), i.e. it numerically solves
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2 Single-user multiple-antenna optimisation

the optimisation problem

pi+1 = arg min
i+1P
k=1

pi+1

k =1

g(p). (2.47)

Observe that there exists only one pi+1 which solves (2.45). As a result, algorithm 1
provides the optimum power allocation for given SNR, transmit, and receive corre-
lation matrix. However, the coefficients αk(p̂) are difficult to compute. Therefore,
we further characterise the optimum power allocation strategy for low and high
SNR values to gain more insights into the analytical structure of the optimal power
allocation.

Optimum strategy for low SNR:

The SNR range in which only one direction is supported, i.e. p1 = P and p2 = p3 =
... = pnT

= 0 is named the beamforming range. The following theorem provides the
necessary and sufficient condition for beamforming to be optimal with respect to
optimisation in (2.25).
Theorem 2: The solution to the optimisation in (2.25) is given by beamforming
p1 = P , p2 = p3 = ... = pnT

= 0 if and only if the following condition is fulfilled

ρλT
2 E tr

[

RRφ
[1](ρλT

1 w̃1w̃
H
1 )
]

≤ ρλT
1 E

[

w̃H
1 φ

[1](ρλT
1 w̃1w̃

H
1 )w̃1

]

. (2.48)

The proof can be found in appendix 2.4.4.

Theorem 2 can be specialised for specific choices of φ and for uncorrelated receive
antennas. We have the following corollaries from Theorem 2:
Corollary 1: The solution to the optimisation in (2.25) is given by beamforming
p1 = P , p2 = p3 = ... = pnT

= 0 if and only if the receive antennas are uncorrelated
and the following condition is satisfied so.

ρλT
2 ≤

E

[

ρλT
1 w̃1w̃

H
1 φ

[1](ρλT
1 w̃1w̃

H
1 )
]

E

[

φ[1](ρλT
1 w̃1w̃

H
1 )
]

For the special case, in which the mutual information is maximised, we have the
following corollary.
Corollary 2: Capacity can be achieved by beamforming for given eigenvalues of
transmit and receive correlation matrix and given SNR if and only if the inequality

ρλT
2 ≤

1 − E



 1

1+ρλT
1

nRP
k=1

λR
k ωk





nR∑

k=1

λR
k − ρλT

1

nR∑

k=1

λR
k τk

(2.49)

with τk = E

(
λR

k ωk

1+ρλT
1

PnR
k=1

λR
k ωk

)

is fulfilled. The ωk are independent identically

distributed following a standard exponential distribution.

This result corresponds to the result in [JB03b].

If we optimise the mutual information, it follows the beamforming range with un-
correlated receive antennas, i.e. RR = I in the following corollary.
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Corollary 3: Capacity can be achieved by beamforming for uncorrelated receive
antennas for given eigenvalues of transmit correlation matrix and given SNR if and
only if the inequality

ρλ2 ≤
1 − E

(
1

1+ρλ1||w1||2

)

E

(
1

1+ρλ1||w1||2

)

+ nR − 1
(2.50)

is fulfilled.

This corresponds to the result in [JB03b, JG02].

Remark: The inequality in (2.50) can be written with

E

(
1

1 + ρλ1||w1||2
)

=

(
1

ξ

)nR

e
1
ξ Γ(1 − nR,

1

ξ
),

with ξ = ρµ1, the incomplete gamma function defined as Γ(a, z) = Γ(a) − za

a

1F1(a, 1 + a,−z), and with the confluent hyper-geometric function 1F1(e, f, g) as

ρλ2 ≤
1 −

(
1

ρλ1

)nR

e
1

ρλ1 Γ(1 − nR,
1

ρλ1
)

(
1

ρλ1

)nR

e
1

ρλ1 Γ(1 − nR,
1

ρλ1
) + nR − 1

. (2.51)

For the special case in which the modified average normalised MSE is maximised,
we obtain the following necessary and sufficient condition for optimality of beam-
forming for uncorrelated receive antennas:
Corollary 4: The minimum normalised average MSE can be achieved by beam-
forming for uncorrelated receive antennas, given eigenvalues of channel correlation
matrix, and given SNR if and only if the inequality

ρλ2 ≤
E

(
ρλ1||w1||

2

(1+ρλ1||w1||2)2

)

E

(
1

(1+ρλ1||w1||2)2

)

+ nR − 1
(2.52)

is fulfilled.

The behaviour at high SNR values cannot be described in closed form. The optimal
power allocation strongly depends on the system parameter, i.e. the number of
transmit and receive antennas. For MISO systems, the optimal power allocation
for SNR approaching infinity is in general not equal power allocation [JB03f].

Optimum transmission strategy with perfect CSI at the transmitter

If the transmitter has perfect CSI, the optimal transmit strategy Q is adapted to
every instantaneous channel realization H. This results in the following optimisa-
tion problem

max
Q�0

tr Q≤P

tr φ
(

ρHQHH
)

. (2.53)

The optimum solution to (2.53) is characterised by the following Lemma 3.
Lemma 3: The optimisation problem in (2.53) is solved by transmit strategy Q =
Udiag(p1, ..., pnT

)UH with eigenvectors U that correspond to the eigenvectors of
the channel realization H = UΛHUH . Assume that H has full rank. The optimal
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power allocation p∗1, ..., p
∗
nT

fulfils the following necessary and sufficient optimality
condition for all 1 ≤ k ≤ nT :

p∗k =

(
1

ρλH
k

φ̃[1]

(
ν

ρλH
k

))+

(2.54)

with ν > 0 such that
∑nT

k=1 p
∗
k = P and with a+ = max(a, 0). The function φ̃[1] is

the inverse function of the first derivative of the function φ.

The Lemma 3 directly follows from the KKT optimality conditions and the proof
can be found in appendix 2.4.6.

Remark: The characterisation in (2.54) admits a ’water-filling’ power allocation
algorithm [PF04]. Note, the function φ[1](x) is monotonically decreasing because
φ(x) is (matrix)-concave. As a result, the inverse function φ̃[1](x) is monotonically
decreasing with x, too. The algorithm works as follows: Sort the eigenvalues λk

in increasing order; start with j = 2 and choose ν such that 1
λH

k

φ̃[1]
(

ν
λH

k

)

> 0. If
∑j

k=1 pk ≤ P increase j. Otherwise, p1, ..., pj−1 are active and they share the power
P such that their KKT conditions are equal.

The optimal power allocation and the Lagrangian multiplier in the optimisation
in (2.53) can be rewritten using the alternative representation of the (matrix)-
monotone function. The optimal power allocation is given by

ρλH
k

∫ ∞

0

s2

(s+ ρλH
k pk)2

dµ(s) = ν if pk > 0

ρλH
k

∫ ∞

0

dµ(s) ≤ ν otherwise. (2.55)

An interesting question concerns the uniqueness of the optimal power allocation.
The following Lemma 4 proves that the optimal power allocation in (2.54) is unique.

Lemma 4: The optimal power allocation in (2.54) and (2.55) is unique.

The proof by contradiction can be found in appendix 2.4.7.

For the two special cases, mutual information and MSE optimisation, we obtain the
following two corollaries. Define ξ = min(nT , nR).
Corollary 5: The transmit strategy for maximising the mutual information with
perfect CSI at the transmitter is spatial ’water-filling’ in direction of the eigenvectors
of the known channel matrix H. The optimum power allocation for each channel
realization H with eigenvalues λH

1 , ..., λ
H
ξ is characterised for 1 ≤ i ≤ ξ by

pi =

(

ν − 1

ρλH
i

)+

(2.56)

with power constraint

ξ
∑

i=1

pi =

ξ
∑

i=1

(

ν − 1

ρλH
i

)+

= P.

Remark: This corollary follows from Lemma 3 by inserting the performance func-
tion φ1(x) = log(1 + x). The inverse function of the first derivative is then given
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by

φ̃
[1]
1 (y) =

1

y
− 1.

The water-filling power allocation for maximisation of mutual information in parallel
Gaussian channels can be found in [CT91], too.
Corollary 6: The transmit strategy for minimising the MSE with perfect CSI at
the transmitter is spatial ’water-filling’ in direction of the eigenvectors of the known
channel matrix H. The optimum power allocation for each channel realization H

with eigenvalues λH
1 , ..., λ

H
ξ is characterised for 1 ≤ i ≤ ξ by

pi =

(

1
√

νρλH
i

− 1

ρλH
i

)+

(2.57)

with power constraint
∑ξ

i=1 pi = P .

Remark: This corollary follows from Lemma 3 by inserting the performance func-
tion φ2(x) = x

1+x . The inverse function of the first derivative is then given by

φ̃
[1]
2 (y) =

1√
y
− 1.

The water-filling power allocation for minimisation of the average MSE can be found
in [SSB+02, Table 1] and [HB03].

Optimum strategy for low SNR values:

The beamforming range depends on the instantaneous channel realization by its
largest and second largest eigenvalue λH

1 and λH
2 . From the representation in (2.55)

follows the following condition for optimality of beamforming

λH
2

λH
1

≤
∫ ∞

0

s2

(s+ ρλH
1 )2

dµ(s). (2.58)

For mutual information maximisation, beamforming is optimal if and only if

ρ ≤ λH
1 − λH

2

λH
1 λ

H
2

. (2.59)

The inequality (2.59) contains the random variables λH
1 and λH

2 .

For MSE minimisation, beamforming is optimal if and only if

ρ ≤
√

1

λH,2
1

+
λH

1

λH
2

− 1 − 1

λH
1

. (2.60)

The closed-loop MIMO performance function serves as an upper bound for the
achievable open-loop and covariance feedback MIMO performance. In the next
section, the impact of correlation on the average performance metrics of the MIMO
system is analysed.
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2.3.3 Impact of correlation on the average performance in MIMO channels

In this section, we study the impact of correlation on the average performance met-
rics in MIMO system with no CSI, perfect CSI, and covariance matrix knowledge
at the transmitter and perfect CSI at the receiver. We will show that the average
performance without CSI at the transmitter decreases with increasing transmit cor-
relation, i.e. the average performance in (2.16) as a function of correlation properties
is Schur-concave.

For the case in which the transmitter has covariance matrix knowledge or perfect
CSI, we will show that in MIMO systems sometimes correlation increases the average
performance, and sometimes it decreases it, depending on the SNR range.

The special case in which the receiver’s side has only one receive antenna is discussed
in section 2.3.4. Much stronger results can be derived for the MISO system. The
results are compared in section 2.3.5.

The completely uncorrelated transmit and receive correlation vector is

λT
nc = [1, ..., 1] λR

nc = [1, ..., 1] (2.61)

and the completely correlated transmit and receive correlation vector is

λT
cc = [nT , 0, ..., 0] λR

cc = [nR, 0, ..., 0] . (2.62)

Average performance of open-loop MIMO channel

At first, we fix the receive correlation vector λ̄
R

and prove the following theorem
which states that the average performance for the open-loop MIMO channel is a
Schur-concave function with respect to the transmit correlation matrix eigenval-
ues λT . The average performance metric as a function of transmit and receive
correlation can be written as

ΦnoCSI
MIMO(λT ,λR) = E tr φ

(

ρ

nT∑

k=1

λT
k w̃kw̃H

k

)

(2.63)

Note that the receive correlation vector is implicitely contained in the random vec-
tors w̃k defined in (2.22).

Theorem 3: For fixed receive correlation vector λ̄
R

and vector λT
0 and for an

arbitrary vector λT
1 which majorizes vector λT

0 , i.e.

λT
1 � λT

0 ,

it follows that

ΦnoCSI
MIMO(λT

0 , λ̄
R

) ≥ ΦnoCSI
MIMO(λT

1 , λ̄
R

).

The proof can be found in appendix 2.4.8.

Remark: Theorem 3 states that transmit correlation decreases the average per-
formance of a MIMO system with perfect CSI at the receiver and no CSI at the
transmitter. In terms of average performance, the completely correlated case per-
forms the worst, and the completely uncorrelated performs the best. Note that the
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significance of Theorem 3 is much greater. On the one hand, the optimal transmit
strategy without CSI at the transmitter with respect to the worst case correlation
was derived using this result. On the other hand, the result in Theorem 3 can be
further applied to receive correlation as well.

Next, we fix the transmit correlation vector λ̄
T

and give the following corollary
which states that the average performance is a Schur-concave function with respect
to the receive correlation matrix eigenvalues λR.

Corollary 7: For fixed transmit correlation vector λ̄
T

, fixed vector λR
0 , and for

arbitrary vector λR
1 which majorizes vector λR

0 , i.e.

λR
1 � λR

0 ,

it follows that

ΦnoCSI
MIMO(λ̄

T
,λR

0 ) ≥ ΦnoCSI
MIMO(λ̄

T
,λR

1 ).

The proof of Theorem 3 can be used together with the application of the alternative
representation in (2.23) to prove Corollary 7.

The next corollary emphasizes the behaviour at the both extreme correlation sce-
narios, complete correlation as well as no correlation at all.
Corollary 8: The average performance of the single-user MIMO system with un-
informed transmitter and perfect CSI at the receiver is highest with uncorrelated
transmit antennas:

ΦnoCSI
MIMO(λT

nc, λ̄R) ≥ ΦnoCSI
MIMO(λT , λ̄R)

for all λT which fulfill tr (λT ) = nT . The average performance of the single-user
MIMO system with uninformed transmitter and perfect CSI at the receiver is lowest
for correlated transmit antennas:

ΦnoCSI
MIMO(λT

cc, λ̄R) ≤ ΦnoCSI
MIMO(λT , λ̄R)

for all λT which fulfill tr (λT ) = nR.

The corollary follows direclty from Theorem 1 because the vector of eigenvalues of
the correlation matrix for the completely uncorrelated case λnc is majorized by all
other eigenvalue vectors. The other way around, the completely correlated vector
λcc majorizes all other vectors.

From Theorem 3 the next two corollaries follows for the average mutual information
and the average MSE. The average mutual information as a function of transmit
and receive correlation eigenvalues is described by

C(λT ,λR) = E tr log

(

I + ρ

nT∑

k=1

λT
k w̃kw̃H

k

)

= E tr log

(

I + ρ

nR∑

l=1

λR
l ŵlŵ

H
l

)

The average sum MSE as a function of transmit and receive correlation is given by

MSE(λT ,λR) = E tr

(

ρ

nT∑

k=1

λT
k w̃kw̃H

k

)[

I + ρ

nT∑

k=1

λT
k w̃kw̃H

k

]−1

= E tr

(

ρ

nR∑

l=1

λR
k ŵkŵH

k

)[

I + ρ

nR∑

l=1

λR
k ŵkŵH

k

]−1

.
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Corollary 9: The average mutual information in single-user flat-fading MIMO
channels is a Schur-concave function with respect to the transmit correlation eigen-
values for fixed receive correlation, i.e.

λT
1 � λT

2 =⇒ C(λT
1 , λ̄

R
) ≤ C(λT

2 , λ̄
R

).

Furthermore, the average mutual information is Schur-concave with respect to the
receive correlation eigenvalues for fixed transmit correlation eigenvalues, too.

λR
1 � λR

2 =⇒ C(λ̄
T
1 ,λ

R
1 ) ≤ C(λ̄

T
2 ,λ

R
2 )

Remark: Note that the Schur-concavity of the average mutual information holds
for all numbers of transmit and receive antennas and for all SNR values. As a result,
the impact of correlation on the average mutual information is described.
Corollary 10: The average MSE in single-user flat-fading MIMO channels in which
the receiver performs MMSE detection is a Schur-convex function with respect to
the transmit correlation eigenvalues for fixed receive correlation, i.e.

λT
1 � λT

2 =⇒ MSE(λT
1 , λ̄

R
) ≥MSE(λT

2 , λ̄
R

).

Furthermore, the average MSE is Schur-convex with respect to the receive correla-
tion eigenvalues for fixed transmit correlation eigenvalues, too.

λR
1 � λR

2 =⇒ MSE(λ̄
T
1 ,λ

R
1 ) ≥MSE(λ̄

T
2 ,λ

R
2 )

Performance degradation due to correlation

Next, we analyse the capacity loss due to transmit and receive correlation. The
difference between the completely uncorrelated and completely correlated scenario
is a function of the SNR and the number of transmit and receive antennas. In
general, it is given by

∆(ρ, nT , nR) = E tr
[

φ(ρWW H) − φ(ρnTnRw1)
]

(2.64)

with w1 standard exponentially distributed, i.e. pdf p(w)w1
= exp(−w) and W has

zero-mean iid complex Gaussian entries. We observe that in the first term of the
RHS in (2.64) min(nT , nR) degrees of freedom are available, whereas in the second
term only one degree of freedom is available. The following Lemma shows that the
difference in (2.64) is monotonically increasing with the SNR.
Lemma 5: The performance loss due to correlation ∆(ρ, nT , nR) in (2.64) increases
with the SNR ρ.

The proof can be found in appendix 2.4.9.

The exact analysis is given in the next subsection for the average mutual informa-
tion.

Average mutual information degradation due to correlation

The average mutual information in the case of uncorrelated transmit and receive
antennas with uninformed transmitter and perfect CSI at the receiver is given by

C(λT
nc,λ

R
nc) = E log det

(

1

ρ
I +

nT∑

k=1

wkwH
k

)

− log det

(
1

ρ
I

)

. (2.65)
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The average mutual information in the case of fully correlated receive and transmit
antennas in given by

C(λT
cc,λ

R
cc) = E log

(
1

ρ
+ nTnRw1

)

− log

(
1

ρ

)

. (2.66)

The difference between the uncorrelated C(λT
nc,λ

R
nc) from (2.65) and correlated

C(λT
cc,λ

R
cc) from (2.66) case is a function of the SNR, the number of transmit, and

the number of receive antennas:

∆cc
nc(ρ, nT , nR) = C(λT

nc,λ
R
nc) − C(λT

cc,λ
R
cc) (2.67)

Theorem 4: The capacity loss due to correlation of the single user MIMO system
with an uninformed transmitter and perfect CSI with nT transmit antennas, nR

receive antennas, and at a SNR of ρ is lower bounded by

∆cc
nc(ρ, nT , nR) ≥

nT∑

k=1

Ψ(nR − k + 1) + γ − log(nRnT ) + log
(

(Pρ)
nT −1

)

(2.68)

with the Psi-function. The bound in (2.68) becomes tight for SNR approaching
infinity.

The proof can be found in 2.4.10.

Remark I: The result in (2.68) can be alternatively approximated for SNR ap-
proaching infinity. In [SM00, section 2.1, (11)], for SNR approaching infinity, the
ergodic capacity of a flat-fading completely uncorrelated MIMO system is approxi-
mated as

Cuc
ρ→∞ ≈ log ((ρ)

nT ) +

nT∑

j=1

Ψ(nR − nT + j) − nT log(nT ). (2.69)

Remark II: If the transmitter has more than one antenna, the difference in (2.68)
grows without bound with SNR and with the number of transmit antennas. This
means that the information loss due to correlation can be serious high. In the case
in which we have one receive antenna, the loss in average mutual information due
to correlation is bounded by some small constant.

Impact of correlation with covariance feedback

For the case in which the transmitter knows the transmit correlation matrix, the
average performance is neither Schur-convex nor Schur-concave. First we present
necessary and sufficient condition which has to be fulfilled so that the average
performance is Schur-convex. It is immediately observed that this condition is
not fulfilled for high SNR values but for low SNR values. In addition to this,
the following derivation provides a characterisation of the optimal power allocation
scheme related to transmit correlation. This characterisation reduces the search
space for power allocation vectors and decreases the computational complexity of
the iterative algorithm in section 2.3.2.

The average performance with covariance knowledge at the transmitter as a function
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of transmit and receive correlation is given as

Φcov
MIMO(λT ,λR) = maxPnT

k=1
pk=P

E tr

(

φ

(

ρ

nT∑

k=1

pkλ
T
k w̃kw̃H

k

))

. (2.70)

In the following, we assume that the transmit correlation matrix has full rank and
keep the receive correlation matrix RR fixed.
Lemma 6: The average performance of the MIMO system with correlation knowl-
edge at the transmitter is a Schur-convex function with respect to the transmit
correlation matrix eigenvalues λT if and only if the following inequality is fulfilled
by the optimum power allocation p = [p1, ..., pnT

] and the transmit correlation
matrix eigenvalues λT = [λT

1 , ..., λ
T
nT

] for all 1 ≤ l ≤ nT − 1

pl

λT
l

≥ pl+1

λT
l+1

(2.71)

The proof can be found in the section 2.4.11.

Remark: Using the condition in (2.71) it is simple to determine whether transmit
correlation increases or decreases the average performance. Note that the transmit
correlation as well as the SNR and the optimal power allocation are known at the
transmitter.

In order to apply the result to the theory of majorization which we use to com-
pare different correlation scenarios, we need a connection between the condition
in Lemma 6 and majorization. With this connection, we have statements about
Schur-convexity or Schur-concavity of the ergodic channel capacity in the covari-
ance feedback scenario.

The condition (2.71) in Lemma 6 is stronger than the majorization between the
power allocation vector p and the transmit correlation vector λT [MO79, Propo-
sition 5.B.1]. From (2.71) follows (with normalised transmit power and transmit
correlation

∑
pk =

∑
λT

k )

p � λT (2.72)

From (2.72) does not follow the condition (2.71) in Lemma 6. However, we can use
(2.72) to check whether (2.71) can be fulfilled and whether the ergodic capacity is
Schur-convex. This approach provides the following results:

• For low SNR in the beamforming range: If only one direction is supported,
i.e. p1 = P and p2 = p3 = ... = pnT

= 0 the condition from Lemma (6) is
fulfilled, because the RHS of (2.71) are always zero.

• For high SNR: In general, more than one data stream is multiplexed. If
nR ≥ nT , equal power allocation turns out to be optimal. In those cases, the
average performance is Schur-concave (Theorem 3) and the performance loss
due to correlation is given by Theorem 4.

The ergodic channel capacity for covariance knowledge at the transmitter as a func-
tion of transmit and receive correlation is given by

Ccov
MIMO(λT ,λR) = maxPnT

k=1
pk=P

E log det

(

I + ρ

nT∑

k=1

pkλ
T
k w̃kw̃H

k

)

. (2.73)
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Hence, the ergodic capacity in MIMO systems with covariance feedback is Schur-
convex at low SNR values and Schur-concave in the high SNR range (if equal power
allocation is optimal, i.e. nR ≥ nT ).

In order to characterise the impact of receiver correlation on the average perfor-
mance of the covariance feedback MIMO system, we prove the following theorem.

Theorem 5: The ergodic capacity of the MIMO system with covariance knowledge

at the transmit antenna array and with fixed transmit correlation λ̄
T

is Schur-
concave with respect to the receive correlation λR, i.e. from λR

0 � λR
1 follows for

the ergodic capacity in (2.73) that C(λ̄
T
,λR

0 ) ≤ C(λ̄
T
,λR

1 ).

The sketch of the proof of Theorem 5 can be found in section 2.4.12.

We state the following theorem that analyses the impact of receive correlation on
the achievable capacity. It is a corollary of the Theorem 5. However, we present it
together with its proof because the proof itself is interesting.
Lemma 7: The achievable capacity of a MIMO system with covariance feedback
is biggest in case of uncorrelated receive antennas.

The proof can be found in section 2.4.13.

The specialisation of the results from this section for the mutual information and
average MSE, result in the following corollaries. The average mutual information
corresponds with the ergodic channel capacity, because a coding theorem and its
converse can be proved [GV97] for covariance feedback.
Corollary 11: The ergodic capacity as well as the average MSE for a MIMO sys-
tem with perfect CSI at the receiver and covariance knowledge at the transmitter
is Schur-convex with respect to transmit correlation λT for fixed receive correlation
λR if and only if the following condition with the optimal power allocation p∗ is
fulfilled for all 1 ≤ l ≤ nT − 1

pl

λT
l

≥ pl+1

λT
l+1

.

The discussion from above holds for the ergodic capacity and the average MSE, too.
For small SNR values, correlation is helpful, since it increases the ergodic capacity
and decreases the average MSE.

Impact of correlation with perfect CSI

The average performance with perfect CSI at the transmitter as a function of trans-
mit and receive correlation is given by

ΦpCSI
MIMO(λT ,λR) = E maxPnT

k=1
pk=P

tr φ

(

ρ

nT∑

k=1

pkλ
T
k w̃kw̃H

k

)

. (2.74)

In general, it is complicated to analyse the average performance of a system in
which the transmission strategy depends on each random channel realization and
therefore is a random variable, too. Hence, we discuss the impact of correlation
for low and high SNR values, only. For low SNR in average only one direction is
supported by the waterfilling power allocation, i.e. Ep1 = P and Ep2 = Ep3 = ... =
EpnT

= 0. Therefore, the average performance is for small SNR values Schur-convex
with respect to transmit correlation. Analogue, for high SNR, we know that equal
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power allocation is optimal if the number of receive antennas is larger than or equal
to the number of transmit antennas. Therefore, the average performance is for
high SNR values Schur-concave with respect to transmit correlation. The impact of
transmit correlation depends on the distribution of the eigenvalues of the channel
realizations. The probability density function of the eigenvalues of the correlated
Wishart matrix is in general not known in closed form. However, for asymptotic
many transmit and receive antennas there exist formulas [SB95] for the empirical
distribution function and an analysis in [CTK02, MO02] which indicates that the
ergodic capacity is Schur-concave with respect to receive correlation for asymptotic
high SNR.

We conjecture that the closed-loop MIMO ergodic channel capacity is Schur-convex
for small SNR values and Schur-concave for high SNR values with respect to trans-
mit and receive correlation, because in the low SNR regime, only the largest in-
stantaneous channel eigenvalue is supported and the more correlated the transmit
or the receive antennas are, the larger is the largest eigenvalue in average.

The impact of correlation for all three types of CSI at the transmitter is illustrated
in section 2.3.6. The more CSI is available, the higher is the average performance.
In addition to this, the three types of CSI are related by the following identities:
Lemma 8: The average performance of the MIMO system with the three different
types of CSI, namely perfect, covariance, and no CSI are related by their extreme
cases, i.e. for completely correlated transmit antennas λT

cc and completely uncorre-
lated transmit antennas λT

nc and fixed receive correlation λR. It holds

ΦnoCSI
MIMO(λT

nc,λ
R) = Φcov

MIMO(λT
nc,λ

R) and Φcov
MIMO(λT

cc,λ
R) = ΦpCSI

MIMO(λT
cc,λ

R).

This lemma follows from the fact that the transmission strategies for completely
uncorrelated transmitters for no CSI and covariance knowledge and for completely
correlated transmitters for covariance knowledge and perfect CSI are equal. In the
MISO case, this lemma can be specialised to provide a full inequality chain between
all types of CSI and all comparable transmit correlation vectors.

These reflections complete the analysis of the impact of correlation on the average
performance of MIMO systems under different types of CSI at the transmitter and
with perfect CSI at the receiver. Logically, all results stay valid if we consider
MISO systems in which the receiver has only one receive antenna. However, much
stronger results can be derived for the MISO case as in the MIMO case. Especially,
for covariance feedback and perfect CSI at the transmitter. Therefore, the impact
of correlation on the average performance in MISO systems is analysed in the next
section.

2.3.4 Impact of correlation on the average performance in MISO systems

In this section, results for the average performance in MISO channels are given
which cannot be derived from the general MIMO case. For the open-loop MISO
performance follows from Theorem 3 that the average performance is Schur-concave
with respect to the transmit correlation eigenvalues. The average performance is
given with Q = 1

nT
I by

ΦnoCSI
MISO(ρ,λT ) = E tr φ

(

1 +
ρ

nT

nT∑

k=1

λT
kwk

)

(2.75)

with iid standard exponentially distributed wk.
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The optimal transmit strategy with perfect CSI at the transmitter and one receive
antenna is beamforming in direction of the largest channel matrix eigenvalue, be-
cause λ2(H) = λ3(H) = ... = λξ(H) = 0. Therefore, the average performance for
perfect CSI is given by

ΦpCSI
MISO(ρ,λT ) = E tr φ

(

ρ

nT∑

k=1

λT
kwk

)

. (2.76)

Remark: With the substitution ρ = ρ̃/nT we obtain for the performance with
perfect CSI (2.76) the same expression as for the performance without CSI (2.75).
Therefore, the average performance with perfect CSI is Schur-concave with respect
to transmit correlation. This is in contrast to the general MIMO case in which the
performance can be Schur-concave if and only if the condition from Lemma 6 is
fulfilled.

Finally, the average performance of the MISO system with covariance feedback is
given by

Φcov
MISO(ρ,λT ) = maxP

pk=P
E tr φ

(

ρ

nT∑

k=1

pkλ
T
kwk

)

. (2.77)

The next Theorem is proven for the ergodic channel capacity only. We consider
the ergodic channel capacity of the MISO system for the covariance feedback case
which is given by

Ccov
MISO(ρ,λT ) = maxP

pk=P
E log det

(

1 + ρ

nT∑

k=1

pkλ
T
kwk

)

. (2.78)

The next theorem states that the ergodic capacity in (2.78) is Schur-convex with
respect to the correlation vector λT .
Theorem 6: For arbitrary channel correlation vectors λT

1 and λT
2 we have the

following implication

λT
1 � λT

2 =⇒ Ccov
MISO(ρ,λT

1 ) ≥ Ccov
MISO(ρ,λT

2 ). (2.79)

i.e. the capacity of the single user MISO system with covariance feedback is Schur-
convex.

The proof can be found in appendix 2.4.14.

Average mutual information in MISO systems

In this section, the average mutual information in MISO systems for different types
of CSI under transmit correlation is derived from the general results in the last
sections.

The inequality chain in the next corollary shows the relation between the different
CSI schemes and different levels of transmit correlation. We omit the super-index T

for convenience, because in MISO systems there is no receive correlation. Assume
that the correlation vector λ2 majorizes λ1, i.e. λ1 ≺ λ2. We define the fully
correlated vector λcc = [nT , 0, ..., 0]T and the completely uncorrelated vector as
λnc = [1, 1, ..., 1]T . Note, that the vector λcc majorizes all other vectors and that
the vector λnc is majorizes by all other vectors.

41



2 Single-user multiple-antenna optimisation

Corollary 12: For the average mutual information and the ergodic capacities in
MISO systems with different levels of correlation and different CSI at the transmit-
ter, we have the following inequalities:

CnoCSI
MISO (λcc) ≤ CnoCSI

MISO (λ2) ≤ CnoCSI
MISO (λ1) ≤ CnoCSI

MISO (λnc) =

CcfCSI
MISO (λnc) ≤ CcfCSI

MISO (λ1) ≤ CcfCSI
MISO (λ2) ≤ CcfCSI

MISO (λcc) =

CpCSI
MISO(λcc) ≤ CpCSI

MISO(λ2) ≤ CpCSI
MISO(λ1) ≤ CpCSI

MISO(λnc). (2.80)

This corollary follows from the Schur-concavity of the average mutual information
for no CSI and perfect CSI, as well as from the Schur-convexity of the ergodic
channel capacity for covariance knowledge.

Loss and gain due to correlation

The worst case scenario is the uninformed transmitter with fully correlated channels
CnoCSI

MISO (λcc). The best case scenario is the perfectly informed transmitter with

completely uncorrelated channels CpCSI
MISO(λnc). In the following, we characterise

the quantitative capacity gain. We explicitly list the capacities from (2.80):

CnoCSI
MISO (λcc) = E log(1 + ρw1)

CnoCSI
MISO (λnc) = E log

(

1 +
ρ

nT

nT∑

k=1

wk

)

= CcfCSI
MISO (λnc)

CcfCSI
MISO (λcc) = E log(1 + nT ρw1) = CpCSI

MISO(λcc)

CpCSI
MISO(λnc) = E log

(

1 + ρ

nT∑

k=1

wk

)

We define the difference between the best and the worst case scenario for no CSI as

∆cr
nc(ρ, nT ) = Copt

nc (ρ, nT ) − Copt
cr (ρ) (2.81)

For no CSI at the transmitter, the capacity difference in the single-user MISO
system for uncorrelated transmit antenna versus fully correlated transmit antennas
for SNR approaching infinity is given by

∆cr
nc(∞, nT ) =

1

loge(2)
(γ − log(nT ) + Ψ(nT )) . (2.82)

This follows from Theorem 4. As a result, we obtain for the limit as nT → ∞

lim
nT →∞

∆cr
nc,noCSI(nT ) =

γ

loge(2)
. (2.83)

For the case in which the transmitter knows the covariance matrix, the capacity
gain due to correlation increases with the number of transmit antennas nT and
with the SNR ρ.

The capacity is bounded for increasing SNR, but grows unbounded with the number
of transmit antennas. Analogue to (2.82), we obtain the difference

∆cr
nc,cov(nT ) =

1

log(2)
(γ − 2 · log(nT ) + Ψ(nT )) (2.84)
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For nT approaching infinity, the expression in (2.84) behaves like − log(nT )
log(2) . In the

covariance feedback scenario, the maximum capacity gain due to correlation grows
unbounded with the number of transmit antennas.

If the transmitter has perfect CSI the capacity loss due to correlation increases with
the SNR ρ and the number of transmit antennas nT . It is bounded with increasing
SNR. The capacity loss is given by

∆cr
nc,pCSI(ρ, nT ) = CpCSI

MISO(λnc) − CpCSI
MISO(λcc) (2.85)

= E log(1 + ρnTw1) − E log(1 + ρω)

with χ2 distributed ω with nT degrees of freedom. Notice that the difference be-
tween the scenario without CSI and (2.85) consists only in the denominator nT . As
a result, we obtain the same capacity difference as in the case without CSI

∆cr
nc,pCSI(nT ) =

1

log(2)
(γ − log(nT ) + Ψ(nT ))

and the same upper bound

∆cr
nc,pCSI(nT ) ≤ γ

loge(2)
.

Illustration of relationship between different CSI schemes
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Figure 2.3: Capacity as a function of correlation for MISO 2 × 1 system with dif-
ferent levels of CSI

Figure (2.3) illustrates the results from the last sections. For a MISO system with
two transmit antennas, we show the average mutual information over the largest
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eigenvalue of the channel covariance matrix µ1. The second channel covariance
matrix eigenvalues is given by 1 − µ1. The left side µ1 = 0.5 corresponds to the
uncorrelated scenario while the right side µ1 = 1 corresponds to the completely cor-
related scenario. In figure (2.3), we consider three types of CSI at the transmitter,
no CSI, covariance feedback, and perfect CSI and show the open-loop average mu-
tual information, the closed-loop, and covariance feedback ergodic channel capacity.

At first, we observe in figure (2.3) that the ergodic capacity is lowest for no CSI
and highest for perfect CSI regardless of the correlation µ1. In addition to this, the
ergodic capacity for no CSI and covariance feedback for completely uncorrelated
transmit antennas is equal because the optimal power allocation with uncorrelated
transmit antennas and covariance feedback is equal power allocation. In the case
in which the transmit antennas are completely correlated, the ergodic capacity for
covariance feedback and perfect CSI is equal because in the completely correlated
case only one signal dimension is available for power allocation with perfect CSI or
with covariance knowledge.

Finally, we illustrate the inequality chain from (2.80). We observe that the capacity
for this scenario can be increased by more CSI and by more or less correlation. Start-
ing with no CSI from 3,44 bit/s/Hz (100 %) the capacity increases with less corre-
lation to 3.68 bit/s/Hz (107 %). With covariance feedback we start uncorrelated
at 3.68 bit/s/Hz and increase the capacity up to 4.08 bit/s/Hz (119 %) with more
correlation. In the scenario with perfect CSI, we start at this value (4.08 bit/s/Hz)
completely correlated and gain up to 4.30 bit/s/Hz (125 %) with less correlation.
For SNR approaching infinity, the upper bounds for the capacity difference between
completely correlated and completely uncorrelated, read ∆noCSI = ∆pCSI ≤ 0.4427
bit/s/Hz and ∆cfCSI ≤ 0.5573 bit/s/Hz.

2.3.5 Comparison of average performance results between MIMO and MISO

systems

Comparison of optimum transmit strategies between MIMO and MISO

In this section, we conclude the results for optimal transmission from the last sec-
tions and compare them to the optimal strategies in MISO systems. In table 2.1,
these results are summarised. In curly brackets is the reference for the general
result, the result with respect to average mutual information, and the result with
respect to average sum MSE. A cross stands for no reference.

In the case with uninformed transmitters, the optimum transmission strategies for
MIMO and MISO systems are equal. Intuitively, one would say that if we have no
idea where our conversational partner is, we call out in any direction. The authors
in [PCL03b] handle the case in which the channel is unknown to the transmitter but
belongs to a class of channels which is known at the transmitter. It is shown that
the instantaneous mutual information is maximised by uniform power allocation
with respect to the worst case channel from the class. In the literature, this kind
of channel model is characterised by the compound channel capacity [Wol78]. The
capacity in the case where the family of channels consists of memoryless channels is
studied in [BBT59] and where the family consists of finite-state channel in [LT98].

In the case with covariance knowledge at the transmitter, the transmission strategies
of MIMO and MISO systems are quite similar but differ in their power allocation
programming problem.

In general we conclude: The more antennas are available and the more uncorrelated
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CSI MISO

no CSI equal power allocation in all directions { Theorem 3, [BJ04a], x }

covariance
direction of eigenvectors of covariance matrix { Lemma 2, [JVG01,
JB02b] , x }, power allocation { Algorithm 1, [JB04c], x }

perfect CSI
beamforming in direction of instantaneous channel realization {
Lemma 3, [JB04c], x }

CSI MIMO

no CSI equal power allocation { Theorem 3, [JB03e], [PCL03a] }

covariance
direction of eigenvectors of covariance matrix { Lemma 2, [JB03b],
[PCL03a] }, power allocation { algorithm 1, [JVG01] and [JB03b],
x }

perfect CSI
waterfilling in direction of eigenvectors of instantaneous channel
realization { Lemma 2, [CT91], [SSB+02] }

Table 2.1: Optimal transmission schemes in MIMO and MISO systems with respect
to the average performance with different types of CSI at the transmitter
and perfect CSI at the receiver.

the antennas on the receiver side are, the higher the number of parallel transmit
data streams. This conclusion is valid for partial as well as for perfect CSI at
the transmitter. This conclusion has an important impact: Let us imagine the
case in which the transmit antennas are not allowed to cooperate, i.e. we have a
multiuser SIMO system. One important question is, how many users are supported
at the same time, i.e. how many data streams are transmitted in parallel in order to
maximise the sum capacity of this corresponding multiuser system. The conclusions
from the single-user MIMO system indicate, that the number of users which are
allowed to simultaneously transmit grows with the number of (uncorrelated) receive
antennas. Or we can ask the other way round, when can the sum capacity in
multiuser SIMO systems be achieved by TDMA schemes 3. Answers to this and
related questions can be found in chapter 3 of this thesis.

Comparison of impact on correlation in MISO and MIMO systems

In this section, we conclude the results on the impact of correlation on the average
MISO and MIMO channel performance for different types an CSI. The reference
for the general result is in curly brackets, the result with respect to average mutual
information, and the result with respect to average sum MSE. A cross stands for
no reference.

In table (2.2), the impact of transmit correlation in MISO systems on the average
performance with different types of CSI at the transmitter and perfect CSI at the
receiver is summarised.

In table 2.3, the impact of transmit correlation in MIMO systems on the average
performance with different types of CSI at the transmitter and perfect CSI at the
receiver is summarised.

In table 2.4, the impact of receive correlation in MIMO systems on the average
performance with different types of CSI at the transmitter and perfect CSI at the

3In this type of analysis, TDMA in multiuser SIMO systems corresponds to beamforming in
single user MIMO systems.
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CSI MISO

no CSI Schur-concave { Theorem 3 , [JB04c] , x }

covariance
Schur-convex (only for average mutual information){ x, Theorem
6, x }

perfect CSI Schur-concave { Theorem 3 , [JB04c], x }

Table 2.2: Impact of transmit correlation in MISO systems on the average perfor-
mance with different types of CSI at the transmitter and perfect CSI at
the receiver.

CSI MIMO: Tx correlation

no CSI Schur-concave { Theorem 3 , [JB04e], x }

covariance
for small SNR Schur-convex, for high SNR Schur-concave
{ Lemma 6, x , x }

perfect CSI
for small SNR Schur-convex, for high SNR Schur-concave
{ section 2.3.3, x, x }

Table 2.3: Impact of transmit correlation in MIMO systems on the average mutual
information and on the ergodic capacity with different types of CSI at
the transmitter and perfect CSI at the receiver.

receiver is summarised.

CSI MIMO: Rx correlation

no CSI Schur-concave { Corollary 7, [JB04e], x }
covariance Schur-concave { Theorem 5, x, x }

perfect CSI
for small SNR Schur-convex, for high SNR Schur-concave
{ section 2.3.3, x, x}

Table 2.4: Impact of receive correlation in MIMO systems on the average perfor-
mance with different types of CSI at the transmitter and perfect CSI at
the receiver.

In addition to the results which can be found in table 2.2, 2.3, and 2.4 it is worth
mention that the loss due to correlation in MISO systems is bounded by some small
constant for the open-loop and closed-loop channel capacity. Whereas the loss in
MIMO system due to correlation in open-loop systems grows unbounded with the
number of transmit antennas and the SNR. However, in some cases it is possible to
exploit the correlation if partial or perfect CSI is available.

2.3.6 Numerical results and discussion

Beamforming range in MIMO systems with covariance knowledge

Inequality (2.49) can be solved for SNR ρ. The necessary SNR over the largest
eigenvalue λT

1 = 1 − λT
2 can be computed. In figure (2.4) the largest SNR at

which beamforming achieves capacity given the channel eigenvalues for different
numbers of receive antennas is plotted. The eigenvalues of the channel covariance
matrix are normalised, i.e.

∑nT

i=1 λ
T
i = 1. If we look at λT

1 = 0.6, we can calcu-
late the SNR value (nR = 2) at which the inequality is tight. For λT

1 → 1 the
largest SNR at which beamforming achieves capacity approaches infinity and for
λT

1 → 0.5 the SNR at which beamforming achieves capacity approaches minus in-
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finity. The more (uncorrelated) receive antennas are used the smaller is the largest
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Figure 2.4: SNR range of beamforming over correlation λT
1 .

SNR at which beamforming can achieve capacity. This behaviour follows from the
expectation value of ||w1||2 that is a function of the number of receive antennas
E(||w1||2) = E(||w2||2) = nR. From the observations in figure (2.4) it follows that
in the MIMO scenario additional directions are supported at lower SNR. Espe-
cially, the beamforming range in MISO systems is larger than in MIMO systems.
In [JB03b], this result has been extended to the case in which the receive antennas
are potentially correlated, too. The more correlated the receive antennas are, the
larger is the beamforming range [JB03b, Lemma 2].

MIMO average mutual information and ergodic channel capacities for different

system architectures under transmit correlation

In figure (2.5) we show the average mutual information (no CSI) and the ergodic
channel capacity (covariance knowledge and perfect CSI) for a two times two MIMO
system with different types of CSI at the transmitter. The two receive antennas
are completely uncorrelated. On the x-axis the largest eigenvalues of the transmit
correlation matrix is varied from λT

1 = 0.5...1. The second eigenvalue of the transmit
correlation matrix is given by λT

2 = 1 − λT
1 .

In figure (2.5), we have two SNR scenarios, low SNR at 0 dB and medium high
SNR at 15 dB. The behaviour which was described in table 2.3 and 2.4 can be
observed in figure (2.5): For small SNR values, we observe that the open-loop
MIMO average mutual information decreases with transmit correlation whereas
the covariance feedback and closed-loop MIMO ergodic channel capacities increase
with transmit correlation. If knowledge about the transmit correlation is available,
correlation can be utilised at low SNR values.
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Figure 2.5: Open-loop average mutual information, closed-loop and covariance feed-
back ergodic MIMO channel capacity over transmit correlation with
uncorrelated receive antennas.

For higher SNR values in (2.5), we observe that the open-loop MIMO average mu-
tual information decreases with transmit correlation. The covariance feedback and
closed-loop MIMO ergodic capacities are best for uncorrelated transmit antennas.
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The curve for the covariance feedback is not monotonic with λT
1 . For higher SNR

the minimum moves to the right edge and the covariance feedback MIMO ergodic
channel capacity becomes Schur-concave with respect to the transmit correlation.

Furthermore, note that for completely uncorrelated transmit antennas the ergodic
channel capacity with covariance feedback and the average mutual information for
no CSI are equal, because the transmit strategy is equal power allocation in both
cases. For completely correlated transmit antennas, the ergodic channel capacity
with perfect CSI and covariance feedback are equal because only one eigenvalue is
supported and the transmit strategy is the same in both cases (beamforming).

MIMO average mutual information and ergodic channel capacities for different

system architectures under receive correlation

In figure (2.6) we show the average mutual information (for no CSI) and the ergodic
channel capacity (for covariance knowledge and perfect CSI) for a two times two
MIMO system. The two transmit antennas are slightly correlated with λT

1 = 0.6 and
λT

2 = 0.4. On the x-axis the largest eigenvalues of the receive correlation matrix is
varied from λR

1 = 0.5...1. The second eigenvalue of the transmit correlation matrix
is given by λR

2 = 1 − λR
1 .

First, we note in figure (2.6), that at the boundary points with no correlation
λR

1 = 0.5 and with complete correlation λR
1 = 1 the average mutual information and

the ergodic channel capacities for the different types of CSI does not equal, because
we have some transmit correlation which is utilised the more CSI is available at the
transmitter.

For low SNR, we observe in figure (2.6), that the open-loop average mutual infor-
mation and the covariance feedback MIMO ergodic channel capacity decrease with
correlation, whereas the closed-loop capacity increases with correlation. For high
SNR, all mutual informations decrease with correlation.

Concluding remarks

In this subsection, we studied a MIMO system with different types of CSI at the
transmitter and correlation at the transmitter and the receiver side. We assumed
perfect CSI at the receiver and analysed the average mutual information and the
ergodic channel capacity, respectively.

Without CSI, we derived the open-loop MIMO average mutual information and
the optimal transmission strategy. Equal power allocation turned out to be most
robust against worst case channel correlation. Next, we showed that the average
open-loop MIMO mutual information is Schur-concave with respect to correlation
at the transmit array and Schur-concave with respect to correlation at the receive
antenna array. In addition to this, we computed the loss due to correlation in
open-loop MIMO systems.

With covariance knowledge at the transmitter, the transmit correlation can be
utilised in order to increase the average mutual information. We derived the optimal
transmission strategy and showed that the ergodic covariance feedback MIMO chan-
nel capacity can be Schur-convex (for small SNR values) or can be Schur-concave
(for high SNR values) in contrast to the ergodic covariance feedback MISO chan-
nel capacity which is strict Schur-convex with respect to transmit correlation. The
ergodic covariance feedback MIMO channel capacity is Schur-concave with respect
to receive correlation.
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Figure 2.6: Open-loop average mutual information, closed-loop and covariance feed-
back ergodic MIMO channel capacities over receive correlation with cor-
related transmit antennas λT = [0.6; 0.4].

With perfect CSI at the transmitter, the optimal transmit strategy is waterfilling.
Because the waterfilling power allocation is computed at each instantaneous channel
realization, it is difficult to characterise the impact of transmit or receive correlation
on the ergodic capacity. For transmit correlation we can argue the same lines as for
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the covariance feedback case, i.e. for small SNR values closed-loop ergodic channel
capacity is Schur-convex while for high SNR values it is Schur-concave.

In all three scenarios, the transmitter consists of a Gaussian codebook from which
the codewords are drawn, and of a signal processing unit with power allocation and
beamforming entity. Depending on the type of CSI the power allocation and beam-
forming directions are adapted to the instantaneous channel realizations in each
time slot with perfect CSI, or they are adapted for a long time period to the aver-
age transmit and receive correlation with covariance knowledge at the transmitter,
or the transmit strategy is kept fixed for all time without CSI.

2.4 Proofs

2.4.1 Proof of Lemma 2

The optimisation problem max E tr φ(ρW̃R
1/2
T QR

1/2
T W̃

H
) can be rewritten using

the representation of matrix monotone functions as

max
Q�0

tr Q≤P

∞∫

0

E tr

(

sρW̃R
1/2
T QR

1/2
T W̃

H
[

ρW̃R
1/2
T QR

1/2
T W̃

H
+ sI

]−1
)

dµ(s).

Next, we maximise the integrand for all s > 0 with respect to Q. This maximises
the integral itself. The resulting maximisation problem is given by

V = max
Q�0

tr Q≤P

E tr

(

sρW̃R
1/2
T QR

1/2
T W̃

H
[

ρW̃R
1/2
T QR

1/2
T W̃

H
+ sI

]−1
)

= max
Q̂�0

tr R
−1/2

T Q̂R
−1/2

T ≤P

E tr

(

sρW̃ Q̂W̃
H
[

ρW̃ Q̂W̃
H

+ sI
]−1
)

(2.86)

for all real numbers s ≥ 0. If RT has full rank, there exists a Q̃ with

tr R
−1/2
T Q̃R

−1/2
T ≤ P

which solves (2.86)

V = E tr

(

sρW̃ Q̃W̃
H
[

ρW̃ Q̃W̃
H

+ sI
]−1
)

. (2.87)

With the eigenvalue decomposition of Q̃ = ŨΛ̃Ũ
H

and using the fact that the
random matrix W̃ is invariant against multiplication with unitary matrix from the
right, we obtain

V = E tr

(

sρW̃ Λ̃W̃
H
[

ρW̃ Λ̃W̃
H

+ sI
]−1
)

. (2.88)

Finally, we have to show that the trace condition is satisfied by

tr D
−1/2
T Λ̃D

−1/2
T ≤ P.

This follows from the fact that the trace of the sum of two Hermitian matrices A

and B with eigenvalues α1 ≥ α2 ≥ ... ≥ αn and β1 ≥ β2 ≥ ... ≥ βn, respectively, is
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bounded from below and above by

n∑

k=1

αkβn−k+1 ≤ tr AB ≤
n∑

k=1

αkβk. (2.89)

The upper bound in (2.89) is derived in [MO79, 9.H.1.g] and the lower bound is
proven in [MO79, 9.H.1.h]. This completes the proof.

�

2.4.2 Proof of Theorem 1

We name the optimal power allocation with p̂, i.e. from (2.39)

p̂ = arg max
||p||≤P,pi≥0

Φ(p,λR,λT ).

Let the correlation matrix eigenvalues λT
1 , ..., λ

T
nT

and λR
1 , ..., λ

R
nR

be fixed. We
define the parametrised power allocation

p(t) = (1 − t)p̂ + tp (2.90)

with arbitrary p : ||p|| ≤ P, pi ≥ 0. The parametrised average performance metric
is given by

Φ(t) = E tr φ

(

ρ

nT∑

k=1

p̂kλkwkwH
k + ρt

nT∑

k=1

(pk − p̂k)λkwkwH
k

)

. (2.91)

The first derivative of (2.91) at the point t = 0 is given by

δΦ(t)

δt

∣
∣
∣
∣
∣
t=0

=

nT∑

k=1

(pk − p̂k)αk(p̂) (2.92)

with αk(p̂) defined in (2.41). This follows from the Lemma 9 in appendix 2.4.3.
It is easily shown that the second derivative of Φ(t) is always smaller to zero for
all 0 ≤ t ≤ 1, because the inner performance function φ(X) is matrix-concave by
assumption. Hence, it suffices to show that the first derivative of Φ(t) at the point
t = 0 is less or equal to zero, i.e.

nT∑

k=1

(pk − p̂k)αk(p̂) ≤ 0. (2.93)

We split the proof into two parts. In the first part, we will show that the condition
in (2.44) is sufficient. We assume that (2.44) is fulfilled. We can rewrite the first
derivative of Φ(t) at the point t = 0 as

Q =

nT∑

k=1

(p̂k − pk)αk(p̂k) =

nT∑

k=1

p̂kαk(p̂) (2.94)

= max
k∈{1,...,nT }

αk(p̂)
∑

l∈I(p̂)

p̂l −
nT∑

l=1

plαl(p̂).
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But we have

nT∑

l=1

plαl(p̂) ≤
nT∑

l=1

pl max
k∈{1,...,nT }

αl(p̂).

Therefore, it follows for Q in (2.95)

Q ≥ 0 (2.95)

In order to show that condition (2.44) is a necessary condition for the optimality of
power allocation p̂, we study two cases and prove them by contradiction.

1. Assume (2.44) is not true. Then we have a k ∈ I(p̂) and k0 ∈ I(p̂) with the
following properties:

max
1≤k≤nT

αk(p̂) = αk0(p̂)

and αk(p̂) < αk0
(p̂). We set p̃k0

= 1 and p̃i∈{1,...,nT }k0
= 0. It follows that

nT∑

l=1

(p̂k − p̃k)αk(p̂) < 0

which is a contradiction.

2. Assume ∃k0 : αk0
> αk with k0 6∈ I(p̂) and k ∈ I(p̂), then set p̃k0

= 1 and
õl∈{1,...,nT }k0

= 0. Then we have the contradiction

nT∑

k=1

(p̂k − p̃k)αk < 0.

This completes the proof.

�

2.4.3 Lemma 9 and its proof

Lemma 9: The first derivative of the function tr F (C + ǫD) at the point ǫ = 0 is
given by

∂

∂ǫ
tr [F (C + ǫD)]

∣
∣
∣
ǫ=0

= tr
(

F [1](C) · D
)

(2.96)

Proof: The function F is analytic, because F is matrix-monotone and the represen-
tation in (2.28) can be used. Therefore, the function can be approximated arbitrary
well with a polynomial. Both sides of (2.96) in Lemma 1 are linear in F . Therefore,
it suffices to prove equation (2.96) for the powers F (t) = tp with p ∈ N

+. It holds

tr

(
∂

∂ǫ
tr [F (C + ǫD)]

∣
∣
∣
ǫ=0

)

= tr

(
p
∑

k=1

Ck−1DCp−k

)

= tr
(
DCp−1 + CDCp−2 + C2DCp−3 + ...

)

= p · tr
(
DCp−1

)

= tr
(

F [1](C) · D
)

.
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�

2.4.4 Proof of Theorem 2

First, we have to prove the following: If the optimum is achieved by beamforming,
the inequality (2.49) is fulfilled. In the case of beamforming, the full transmit power
is used to transmit in direction of the largest channel covariance matrix eigenvalue.
We express the SNR as ρ = P

σ2
n

. We allocate power 1 − p to the first eigenvalue

of the transmit covariance matrix, i.e. p1 = (1 − p) and choose a power allocation
p̃2, ..., p̃nT

which sums up to p, i.e.
∑nT

k=2 p̃k = p. This normalisation can be achieved
by p2, ..., pnT

which sum up to one and are multiplied by p. Therefore, we have the
following parameterised average performance metric

Φ(p) = E tr φ

(

ρ(1 − p)λT
1 w̃1w̃

H
1 + ρp

nT∑

k=2

pkλ
T
k w̃kw̃H

k

)

. (2.97)

By assumption, the optimum can be achieved with beamforming. This gives

Φ(p) ≤ Φ(0) (2.98)

for all 0 ≤ p ≤ 1. Note, that Φ(p) is concave with respect to p. It follows that
the first derivate of Φ(p) at the point p = 0 is less or equal to zero, because (2.98)
holds. The first derivate of Φ(p) at the point p = 0 is given by

∂Φ(p)

∂p

∣
∣
∣
∣
∣
p=0

= E tr

([

−ρλT
1 w̃1w̃

H
1 + ρ

nT∑

k=2

pkλ
T
k w̃kw̃H

k

]

· φ[1]
(
ρλT

1 w̃1w̃
H
1

)

)

≤ E tr
([

−ρλT
1 w̃1w̃

H
1 + ρλT

2 w̃2w̃
H
2

]
· φ[1]

(
ρλT

1 w̃1w̃
H
1

))

. (2.99)

The first inequality in (2.99) follows from the choice p2 = p and p3 = p4 = ... =
pnT

= 0 which provides an upper bound. With the upper bound of the first deriv-
ative (2.99) at the point p = 0 follows the condition

E tr
(

ρλT
1 w̃1w̃

H
1 φ

[1](ρλT
1 w̃1w̃

H
1 )
)

≥ E tr
(

ρRRφ
[1](ρλT

1 w̃1w̃
H
1 )
)

(2.100)

which exactly corresponds to the condition in (2.48).

For the reverse direction, we have to prove that if the inequality is fulfilled, then the
optimum can be achieved by beamforming. From equation (2.100), we know that if
λT

1 and λT
2 fulfill the inequality (2.48) then the first derivative of the parameterised

performance (2.97) at the point p = 0 is less or equal to zero. Now assume that
beamforming can not achieve the optimum. Then there exists an optimal power
allocation (P1, P2) with P2 > 0. From Lemma 10 in the section 2.4.5 follows that
for all 0 ≤ p ≤ P1

Φ(p) > Φ(0). (2.101)

This yields Φ′(0) > 0 which is a contradiction to (2.48). It follows that (2.48) is
also sufficient and the proof is completed.

�

54



2.4 Proofs

2.4.5 Lemma 10 and its proof

Lemma 10: We assume that the optimal transmission covariance matrix Q has
rank 2, i.e. beamforming can not achieve the optimum. It follows that the optimum
achieving power allocation has the form (P1, P2) with P2 > 0. We can write

Φopt = E tr φ(ρP1λ
T
1 w̃1w̃

H
1 + ρP2λ

T
2 w̃2w̃

H
2 ).

Then for all 0 < p ≤ P2 and

Φ(p) = E tr φ(ρ((1 − p)λT
1 w̃1w̃

H
1 + pλT

2 w̃2w̃
H
2 ))

it follows

Φ(p) > Φ(0). (2.102)

Proof: With 0 < p < P2 arbitrary define ν = 1 − p
P2

. It follows 0 < ν < 1. Further
on, define the matrix

A1 = ρλT
1 w̃1w̃

H
1 (2.103)

and

A2 = ρ(P1λ
T
1 w̃1w̃

H
1 + P2λ

T
2 w̃2w̃

H
2 ). (2.104)

Now consider the linear combination of (2.103) and (2.104)

A(ν) = νA1 + (1 − ν)A2. (2.105)

With (2.105) and ν = 1 − p
P2

the performance function can be parameterised

Φ(p) = E tr φ(A(ν))

= E tr (νA1 + (1 − ν)A2)

≥ νE tr φ(A1) + (1 − ν)E tr φ(A2).

The inequality follows by observing that tr Φ(A(ν)) is strict concave on the set
of positive definite matrices (with the usual ordering). The expectation operator is
linear and order preserving and therefore follows the inequality in (2.102). Hence,
if the rank of the optimal Q is equal to two than the performance metric Φ(p) is
greater than Φ(0) for all 0 < p < P2. The case p = P2 is trivial.

�

2.4.6 Proof of Lemma 3

The Lagrangian for the optimisation problem in (2.53) is given by

L(p1, .., pnT
, µ, ψ1, ..., ψnT

) =

nT∑

k=1

φ(λkpk) +

nT∑

k=1

ψkpk − µ

(

P −
nT∑

k=1

pk

)

(2.106)

with Lagrangian multipliers µ > 0 and ψk = 0 if pk > 0, otherwise ψk > 0 if pk = 0.
The KKT optimality condition is then

λkφ
[1](λkpk) = µ− ψk for all 1 ≤ k ≤ nT .
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From this follows directly the optimal power allocation in (2.54).

�

2.4.7 Proof of Lemma 4

Assume that two different power allocations p1 and p2 are optimal with
∑nT

k=1 p
1
k =

∑nT

k=1 p
2
k = P . Note, that if p1

1 = p2
1 then the Lagrangian multiplier µ for user one

and user two is equal and therefore the complete power allocation p1
k = p2

k would
be equal. As a result, we assume without loss of generality, that p1

1 > p2
2. Then it

follows that the Lagrangian multiple ν1 < ν2 because

ν1 = ρλ1φ
[1](p1

1λ1) < ρλ1φ
[1](p2

1λ1) = ν2

and because φ[1] is monotonically decreasing. Set L1 and L2 the number of ’active’
powers, i.e. for all 1 ≤ j ≤ L1 it holds p1

1, ..., p
1
j > 0. From the representation in

(2.55) follows for all l > L1 that λl ≤ µ1. For λl > µ1 holds pl > 0. This set
contains the set of all k with λk ≥ µ2. As a result, we have L1 ≥ L2.

For all 1 ≤ l ≤ L2 holds p1
l > p2

l because µ1 < µ2. Therefore, we have

L2

∑

l=1

p1
l >

L2

∑

l=1

p2
l = P. (2.107)

The inequality in (2.107) is a contradiction to the assumption, that
∑
p1

k =
∑
p2

k =
P . This completes the proof.

�

2.4.8 Proof of Theorem 3

For fixed receive correlation, we show that Schur’s condition in (2.11) is fulfilled
with respect to transmit correlation vector λT . In order to verify Schur’s condition,
the first derivative of (2.63) with respect to λT

1 and λT
2 is important. These partial

derivatives are given by

∂Φ(λT ,λR)

∂λT
1

= E tr

[

ρw̃1w̃
H
1 · φ[1]

(

ρ

nT∑

k=1

λT
k w̃kw̃H

k

)]

(2.108)

∂Φ(λT ,λR)

∂λT
2

= E tr

[

ρw̃2w̃
H
2 · φ[1]

(

ρ

nT∑

k=1

λT
k w̃kw̃H

k

)]

(2.109)

The first two largest eigenvalues λT
1 and λT

2 are parameterised by

λT
1 = λ+ t and λT

2 = λ− t.

Then, the difference between the first derivatives in (2.108) and (2.109) is a function
of t and is given by

Γ(t) = E tr
[

∆ · φ[1] (R + ρt∆)
]

(2.110)
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with

W k = w̃kw̃H
k

R = ρλ (W 1 − W 2) + ρ

nT∑

k=3

λT
k W k

∆ = W 1 − W 2.

Next, the matrix monotone function φ(A) can be written as

φ(A) =

∫ ∞

0

sA [sI + A]
−1
dµ(s)

with probability distribution dµ(s). The ’first derivative’ as defined in section 2.3.1
is then given as

φ[1](A) =

∫ ∞

0

s2 [sI + A]
−2
dµ(s). (2.111)

The result from (2.111) is set into Γ(t) in (2.110) and integration and summation
is exchanged to obtain

Γ(t) =

∫ ∞

0

s2E tr
(

∆ · [R(s) + ρt∆]
−2
)

dµ(s) (2.112)

with R(s) = sI + ρλ (W 1 + W 2) + ρ
∑nT

k=3 λ
T
k W k. Finally, we study the trace

expression in (2.112) as a function with respect to t. Therefore, we define for all
s ≥ 0

M(t) = tr
(

∆ · [R(s) + ρt∆]
−2
)

. (2.113)

Note, that Γ(0) = 0. The first derivative of the function M(t) with respect to t is
for all s ≥ 0 and all W 1, W 2 smaller than or equal to zero. Therefore, the integral
in (2.112) is smaller than or equal to zero, too, because the outer integral is over
a probability distribution function, which is positive for all s by definition and has
only positive steps. With T = [R(s) + ρt∆]

−1
it holds

∂M(t)

∂t
= −ρ tr (∆TT∆T ) − ρ tr (∆T∆TT ) = −2ρ tr



T ∆T∆
︸ ︷︷ ︸

Q

T



 .(2.114)

Note, that the matrix T is positive definite. Finally, the matrix Q can be written
as

Q = W 1TW 1 − W 2TW 1 − W 1TW 2 + W 2TW 2

=
[

W 1T
1/2 − W 2T

1/2
]

︸ ︷︷ ︸

C

[

T 1/2W 1 − T 1/2W 2

]

= CCH � 0. (2.115)

Inequality (2.115) shows that the matrix Q is positive definite and therefore the
first derivative of M(t) with respect to t in (2.114) is smaller than or equal to zero.
Therefore, the function Φ(t) in (2.112) is smaller than or equal to zero and this
verifies Schur’s condition and completes the proof.

�
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2.4.9 Proof of Lemma 5

The difference in (2.64) can be rewritten with X = WW H and Y = nTnRw1 as

tr Φ(ρX) − tr Φ(ρY ) = E

∞∫

0

s tr

(

X

[
s

ρ
I + X

]−1

− Y

(
s

ρ
1 + Y

)−1
)

dµ(s)

= E

∞∫

0

s̃ρ tr
(

X [s̃I + X]
−1 − Y (s̃+ Y )−1

)

dµ(s̃)

= ρ
(

tr Φ̃(X) − tr Φ̃(Y )
)

. (2.116)

The second step follows from the substitution s̃ = s
ρ . The difference tr Φ̃(X) −

tr Φ̃(Y ) in (2.116) is positive, since Φ̃(X) is matrix-monotone, too. As a result, the
difference is monotonically increasing with SNR ρ.

�

2.4.10 Proof of Theorem 4

We can lower bound the difference in (2.67) by

∆cc
nc(ρ, nT , nR) = E log det

(
1

ρ
I + WW H

)

− E log

(
1

ρ
+ nRnTw1

)

+ log(ρnT −1)

≥ E log det
(

WW H
)

− E log(nTnRw1) + log(ρnT −1). (2.117)

Note that for SNR approaching infinity this bound gets tight. The first two terms
can be calculated as follows. The expectation of log(nTnRw1) is given by

E log(nTnRw1) = log(nTnR) − γ

with Euler’s constant γ [GR80]. The pdf of the determinant of the Wishart matrix
is the same as the pdf of the sum of independent chi squared distributed random
numbers with different degrees of freedom [Goo63, GN00]

det

(
nT∑

k=1

wkwH
k

)

∼
nT∑

k=1

χ2
2(nR−k+1) − nT · log(2). (2.118)

Using (2.118) and the following identity for a chi squared random variable with ζ
degrees of freedom

E logχ2
ζ = log(2) + Ψ(

ζ

2
),
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we obtain

E log det
(

nT∑

k=1

wkwH
k

)
=

nT∑

k=1

E logχ2
2(nR−k+1) − nT log(2)

=

nT∑

k=1

(log(2) + Ψ(nR − k + 1)) − nT log(2)

=

nT∑

k=1

Ψ(nR − k + 1) (2.119)

with the Psi-function which can be recursively defined for integer arguments (see
section 8.365 in [GR80])

Ψ(1) = −γ

Ψ(k + 1) = Ψ(k) +
1

k
. (2.120)

For the lower bound on the capacity loss due to correlation of the single user MIMO
system with an uninformed transmitter and perfect CSI (2.119) yield in (2.117) the
desired equation.

�

2.4.11 Proof of Lemma 6

In this proof we cannot directly use Schur’s condition, because the optimal power
allocation strategy depends on the transmit correlation. Therefore, we have to prove
first that the additional term which occurs for the derivative of the optimal power
allocation with respect to the correlation eigenvalues, vanishes.

The proof is constructed in the following way: At first, we consider two arbitrary
transmit correlation vectors λ1 and λ2 which satisfy λ1 ≻ λ2. The we construct
all possible linear combinations of λ1 and λ2. Notice that all linear combinations
lie in the space of comparable correlation vectors. Next, we study the parametrised
performance as a function of the linear combination parameter t. We show that
the first derivative of the parametrised performance with respect to t is less than
or equal to zero for all t if the condition (2.71) in Lemma 6 is fulfilled. This result
can be generalised and can be applied for every (comparable) correlation vector.

With arbitrary λ1 and λ2 which satisfy λ1 ≻ λ2, define the eigenvalue vector

λ(t) = tλ2 + (1 − t)λ1.

Assume that the optimum power allocation is given by p1(t), ..., pnT
(t). The para-

metrised average performance is then given by

f(t) = E tr φ

(

ρ

nT∑

k=1

λk(t)pk(t)w̃kw̃H
k

)

(2.121)

= E tr φ

(

ρ

nT∑

k=1

(λ1
k + t(λ2

k − λ1
k))pk(t)w̃kw̃H

k

)

.
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The first derivative of (2.121) with respect to t is given by

df(t)

dt
= E tr

(

φ[1](A)
(
ρ

nT∑

k=1

pk(t)(λ2
k − λ1

k)w̃kw̃H
k

+ρ

nT∑

k=1

dpk(t)

dt

(
λ1

k + t(λ2
k − λ1

k)
)
w̃kw̃H

k

))

(2.122)

with

A = ρ

nT∑

k=1

pk(t) ·
(
λ1

k + t(λ2
k − λ1

k)
)
w̃kw̃H

k .

Let us consider the second term in (2.122) first. Define

ψk(t) = (λ2
k + t(λ1

k − λ2
k)) ∀k = 1...nT .

Then we have

nT∑

k=1

dpk(t)

dt
E

(

ψk(t)w̃H
k φ

[1](A)w̃k

)

=

nT∑

k=1

dpk(t)

dt
αk(t). (2.123)

In order to show that (2.123) is equal to zero, we define the index m for which holds

dpk(t)

dt
6= 0 ∀1 ≤ k ≤ m. (2.124)

We split the sum in (2.123) in two parts, i.e.

m∑

k=1

dpk(t)

dt
αk(t) +

nT∑

k=m+1

dpk(t)

dt
αk(t). (2.125)

For all 1 ≤ k ≤ m we have from (2.124) that either

pk(t+ ǫ) > 0 ∀ǫ > 0 (2.126)

αk(t+ ǫ) = αmax(t+ ǫ) = α1(t+ ǫ) ∀ǫ > 0 (2.127)

or

pk(t− ǫ) > 0 ∀ǫ > 0 (2.128)

αk(t− ǫ) = αmax(t− ǫ) = α1(t− ǫ) ∀ǫ > 0 (2.129)

Equation (2.127) and (2.129) follows from (2.126) and (2.128) using the result in
(2.44) for all active k. In (2.127), direction k is supported for all τ ≥ t, i.e. direction
k occurs at t. In (2.129), direction k is supported for all τ ≤ t, i.e. direction k
vanishes at t.

Assume the case in (2.127). The set of points t for which αk(t) = α1(t) is closed
because the preimages of closed sets are closed. Using continuity, it holds

αk(t) = lim
ǫ→0

αk(t+ ǫ) = lim
ǫ→0

α1(t+ ǫ) = α1(t). (2.130)

For the case in (2.129), it holds

αk(t) = lim
ǫ→0

αk(t− ǫ) = lim
ǫ→0

α1(t− ǫ) = α1(t). (2.131)
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The consequence from (2.130) and (2.131) is that all active directions at point t and
all directions which occur or vanish at point t fulfill α1(t) = α2(t) = ... = αm(t).
Therefore, the first addend in (2.125) is

m∑

k=1

dpk(t)

dt
= α1(t)

m∑

k=1

dpk(t)

dt
= 0.

The second addend in (2.125) is obvious equal to zero. We obtain for (2.122)

df(t)

dt
=

nT∑

k=1

(λ2
k − λ1

k)pk(t)E
(

w̃H
k φ

[1](A)w̃k

)

.

We are going to show that

nT∑

k=1

(λ2
k − λ1

k)E
(

pk(t)w̃H
k φ

[1](A)w̃k

)

≤ 0. (2.132)

We define

ak = λ1
k − λ2

k (2.133)

sk =

k∑

l=1

al (2.134)

snT
=

nT∑

k=1

ak = 0 = s0. (2.135)

Therefore, it holds sk ≥ 0 for all 1 ≤ k ≤ nT . We can reformulate (2.132) and
obtain

nT −1∑

l=1

sl(bl(t) − bl+1(t)) ≥ 0 (2.136)

with

bl(t) = E

(

pl(t)w̃
H
l φ

[1](A)w̃l

)

. (2.137)

The inequality in (2.136) is fulfilled if

bl(t) ≥ bl+1(t). (2.138)

The term bl in (2.137) is related to αl from (2.44) by

bl(t) =
pl(t)

λl(t)
αl(t).

As a result, we obtain the sufficient condition for the monotony of the parametrised
average performance f(t)

pl(t)

λl(t)
≥ pl+1(t)

λl+1(t)
. (2.139)

In order to show the necessity of the condition, we argue that if the optimal power
allocation does not fulfill the condition then the first derivative of the parameterised
average performance in (2.122) is not smaller than or equal to zero and therefore,
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2 Single-user multiple-antenna optimisation

the average performance is not Schur-convex. This completes the proof.

�

2.4.12 Sketch of Proof of Theorem 5

We give here only the sketch of the proof, because it does not provide new insights
but is rather a repetition of technicalities already used. The proof follows from the
steps in the proof of Lemma 6 and the proof of Theorem 3. Here, the average per-
formance is parameterised with respect to two arbitrary receive correlation vectors.
The first derivative of the parameterised average performance with respect to the
linear combination parameter t consists of two terms. The second term arises from
the power allocation and depends on the transmit and receive correlation as well.
Following the derivation in the proof of Lemma 6 it can be shown that the second
term vanishes. The first term directly corresponds to b1(t) and b2(t) in the proof of
Theorem 3 and it can be shown that the first derivative is always smaller than or
equal to zero.

2.4.13 Proof of Lemma 7

For the proof of optimality of uncorrelated receivers, we write the channel capacity
with covariance knowledge as

C = max
tr(Λ)=P

E log det
(

I + ρD
1
2

RWD
1
2

T ΛD
1
2

T W HD
1
2

R

)

= max
tr(Λ)=P

E log det
(

I + ρΛ
1
2 D

1
2

T W HDRWD
1
2

T Λ
1
2

)

,

by reciprocity. For fixed DT and Λ, the optimisation problem for DR is the same
as for transmit covariance matrix without channel state information. The result in
[Tel99] can be applied for this scenario, too.

D
opt
R = arg max

tr(DR)=nR

E log det
(

I + ρΛ
1
2 D

1
2

T W HDRWD
1
2

T Λ
1
2

)

.

For this case, we know already that the optimal strategy is to transmit in all di-
rection with equal power. Hence, the largest capacity is achieved with uncorrelated
receive antennas D

opt
R = I.

�

2.4.14 Proof of Theorem 6

The proof follows the same line as the proof of Lemma 6 which is proven in appendix
2.4.11. We start with the necessary and sufficient condition for Schur-convexity in
(2.139).

pl

λl
≥ pl+1

λl+1
. (2.140)

We show that the condition in (2.140) is always fulfilled by the optimum p for all
correlations λ. The necessary and sufficient condition for the optimal p is that for
active pl > 0 and pl+1 > 0 it holds

αl − αl+1 = 0,
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i.e.
∫ ∞

0

e−tf(t)
λl

1 + ρtλlpl
dt−

∫ ∞

0

e−tf(t)
λl+1

1 + ρtλl+1pl+1
dt = 0 (2.141)

with

f(t) =

n∏

k=1

1

1 + ρtλkpk
.

From (2.141) it follows that

∫ ∞

0

e−tf(t)gl(t) (λl − λl+1 − (ρtλl+1λl)(pl − pl+1)) dt = 0

with

gl(t) = (1 + ρtλlpl)
−1(1 + ρtλl+1pl+1)−1.

This gives

∫ ∞

0

e−tf(t)gl(t)

(
λl − λl+1

pl − pl+1

1

ρλlλl+1
− t

)

dt = 0

and

λl − λl+1

pl − pl+1

1

ρλlλl+1

∫ ∞

0

e−tf(t)gl(t)dt−
∫ ∞

0

e−tf(t)gl(t)tdt = 0. (2.142)

Note the following facts about the functions f(t) and gl(t)

gl(t) ≥ 0 ∀ 0 ≤ t ≤ ∞ f(t) ≥ 0 ∀ 0 ≤ t ≤ ∞
dgl(t)

dt
≤ 0 ∀ 0 ≤ t ≤ ∞ df(t)

dt
≤ 0 ∀ 0 ≤ t ≤ ∞. (2.143)

By partial integration we obtain the following inequality

∫ ∞

0

f(t)gl(t)(1 − t)e−tdt =
(
f(t)gl(t)te

−t
)∞

t=0

−
∫ ∞

0

d(f(t)gl(t))

dt
te−tdt ≥ 0. (2.144)

From (2.144) and the properties of f(t) and gl(t) in (2.143) follows that

∫ ∞

0

e−tf(t)gl(t)dt ≥
∫ ∞

0

te−tf(t)gl(t)dt.

Now we can lower bound the equality in (2.142) by

0 =
λl − λl+1

pl − pl+1

1

ρλlλl+1

∫ ∞

0

e−tf(t)gl(t)dt−
∫ ∞

0

e−tf(t)gl(t)tdt

≥ λl − λl+1

pl − pl+1

1

ρλlλl+1
− 1. (2.145)
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From (2.145) follows

1 ≥ λl − λl+1

pl − pl+1

1

ρλlλl+1

and further on

λl − λl+1 ≤ (pl − pl+1)ρλlλl+1. (2.146)

From (2.146) follows

λl(1 − ρλl+1pl) ≤ λl+1(1 − ρλlpl+1)

and finally

ρλl+1pl ≥ ρλlpl+1. (2.147)

From (2.147) follows the inequality in (2.140). This completes the proof.

�
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3 Optimal transmission strategies for multiple antenna

multiple access and broadcast channels

3.1 Introduction

In wireless point-to-point links, one applies multiple antennas to increase the spec-
tral efficiency and the performance of wireless systems. In multiuser scenarios,
multiple antennas at the base or even at the mobiles require the development of
new transmission strategies in order to achieve the benefits of using the spatial do-
main. In multiple input multiple output (MIMO) multiple access channels (MAC),
the optimum transmission strategy depends on the objective function, the power
constraints, the channel realisation, and the SNR range.

The optimisation problems are divided into two classes: In one class, the objec-
tive function measures a global performance criteria of the system. In order to
increase the average throughput of the MIMO MAC, the ergodic sum capacity can
be maximised or the average normalised mean-square error can be minimised. The
solution of this class’ optimisation problems leads to transmission strategies which
can be quite unfair for some users. If they experience poor channel conditions for
long periods of time, they are not allowed to transmit. Therefore, the other class of
optimisation problems deals with the fulfilment of rate, SINR, or MSE requirements
with minimal power. In order to solve problems of this class it is necessary to un-
derstand the geometry of the achievable rate, SINR, or MSE region. In both classes
of optimisation problems, the constraints can be either individual power constraints
of each user or a sum power constraint. The second class of programming problems
are non-convex non-linear programming problems which are notoriously complicate
to analyse. The big number of degrees of freedom in the temporal as well as the
spatial domain increases the number of parameters which can be controlled. In or-
der to simplify the analysis, it is of advantage to divide the programming problem
into parts which can be solved in an iterative fashion.

The analysis of multiuser MIMO systems is very important because usually more
than one user is involved in cellular as well as ad-hoc systems. Up to now, only
little has been found out about MIMO multiuser systems. The achievable rates and
the transmission strategy depend on the following:

• Structure of the wireless MIMO system: In the common cellular approach,
many mobiles share one base station which controls the scheduling and trans-
mission strategies, e.g. power control in a centralised manner. In cellular
systems the inter- and intracell interference can be controlled by spectrum
and time allocation. In MIMO systems an additional dimension, namely the
space, is available for allocation purposes.

• Transmit strategies: Obviously, the transmit strategies of the participating
mobiles influence the achievable rate and the properties of the complete sys-
tem. In turn, the transmit strategies depend on the type of channel state
information (CSI) at the transmitter, i.e. the more CSI is known about the
own channel as well as about the other users and the interference, the more
adaptive and smart transmission strategies can be applied. If no CSI is avail-
able at the transmitter, it is best to use multiuser space-time (-spreading)
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codes.

• Receiver strategies: Different decoding and detection strategies can be used at
the receiver. The range leads from single-user detection algorithms which treat
the other users a noise up to linear and even non-linear multiuser detection
algorithms. Of course, the receiver architecture depends on the type of CSI,
too.

• System parameters: In general, an important factor is the scenario in which
the wireless system works. In home or office scenarios the system parameter
heavily differ from parameters in public access, hot-spots, or high velocity
scenarios. User parameters, resource parameters, and especially channel pa-
rameters have to be taken into account. The achievable performance and
throughput depend on those system parameters.

The impact of interference in single-cell multiuser MIMO systems was studied in
[BJ02g, BSJ03, BSJ02]. Joint processing lead to a set of optimal transmit covariance
matrices which maximise the sum capacity. These results are only valid for perfect
CSI at both sides of the link, and for successive interference cancellation (SIC)
for the uplink or Costa precoding for the downlink. For independent decoding or
precoding, the difficult optimisation problem was studied in [SB03]. Under the
assumption of a multiuser MMSE receiver, the minimisation of the average sum
MSE and the structure of the individual MSE region were analysed in [JB03g].

Our first approach in understanding a point-to-point link in a multiuser scenario
is to treat the impact of interference as additional noise. The question here is,
how much performance is lost by worst case interference? Obviously, the maximum
performance loss depends on the constraints which are imposed on the noise plus
interference. We model the impact of the mentioned effects on the system by a
special noise covariance matrix and analyse the structure and the performance of
the resulting MIMO channels. We do not assume an a priori structure of the
interference. It could be the uplink or downlink transmission, the interference could
be an intercell or an intracell interference. The receiver noise, the intercell, and the
intracell interference restrict the achievable capacity. We will open this section by
this worst case noise analysis because it provides a nice transition from single-user
systems to multiuser systems. The performance function is the same as in the
single-user scenario only the noise structure changes. Furthermore, this approach
provides insights into the structure of multiuser multiple-antenna communication
which is utilised in the succeeding sections.

In the second part of this chapter, we analyse sum performance optimisation prob-
lems. The development from the single-antenna MAC to the MIMO MAC is shown
and the differences and the common ground between the single-antenna and the
multiple-antenna cases are stressed. Furthermore, we focus on the connections
between the different objective functions and their corresponding programming
problems. We give a generalisation of the iterative waterfilling algorithm from
[YRBC04, YRBC01] for arbitrary matrix-monotone performance functions. An it-
erative algorithm, which performs power allocation and iterative generalised water-
filling, maximises the sum performance of the multiuser MIMO channel. Finally,
all theoretical results and algorithms are illustrated by numerical simulations.

In the SISO multiuser MAC it has been shown that the maximum sum capacity is
achieved when only the best user is allowed to transmit [KH95] under a sum power
constraint1. In [YRBC04], the authors maximise the ergodic sum capacity of the

1The sum power constraint can be either a long-term sum power constraint or a short-term power
constraint. In this work, we are considering only short-term power constraints, because the
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MIMO MAC for fixed individual power constraints for the transmit covariance ma-
trices. It was shown that the optimal transmit covariance matrices are characterised
by an iterative water-filling solution which treats the other users like noise under
individual power constraints. We study the sum performance of a Gaussian MIMO
MAC and BC under individual and sum power constraints. The MIMO MAC model
appears in the uplink transmission from multiple users to the multi-antenna base
station. Each user is equipped with multiple antennas. Furthermore, we assume
that the base station and all mobiles have perfect channel state information (CSI).
Recently, the perfect CSI assumption was made for the MIMO MAC and the MIMO
BC in [RC01, RC03, YRBC04, BJ02g] and [VJG02a, VT03]. In [RC01], the ergodic
sum capacity of a multi-antenna Gaussian multiple-access channel is defined, and
the impact of the number of transmit and receive antennas, as well as the number of
users are analysed. The special case in which covariance information is only avail-
able at the mobiles is considered in [JG01a]. In [RC03], the ergodic capacity, the
ergodic sum rate region, the outage capacity, and algorithms for the vector MAC
are analysed.

The system model, which is dual to the MIMO MAC, is the multiuser MIMO down-
link transmission. It leads to the BC [Cov72, Cov98], the multi-antenna Gaussian
non-degraded broadcast channel [CS01], or vector broadcast channel [YC01]. Re-
cently, the sum capacity and achievable region of the multiuser MIMO BC were
studied in [VJG02a, VJG02b] and [VT03]. An upper bound on the capacity region
of the BC was derived in [Sat78]. The bound is found by computing the capacity
of the cooperative system under worst case noise. The structure of the worst case
noise for the MIMO BC is analysed in [Yu03]. In [VJG02b], [BS02a], and [TV02],
the duality between the multiuser uplink and downlink channel was studied. It was
shown that the achievable capacity region of the downlink transmission collapses
with the capacity region of the uplink. In addition to this, the maximum sum rate
point on the envelope of the capacity region can be characterised by the capacity
of the equivalent cooperative MIMO system with the worst case noise [Sat78]. It
has to be stressed that the capacity region of the non-degraded BC is still an open
research problem. In [VKS+03], the authors show that all points below their pro-
posed upper bound are achievable under the assumption that Gaussian code books
are optimal. This assumption has been derived in [WSS04] and it has been shown
that the capacity region of the nondegraded MIMO BC equals that of the MIMO
MAC.

We proceed as follows: First, the worst case noise performance of MIMO systems
is analysed. And next, the sum performance and individual performance measures
are optimised with respect to individual or sum power constraints.

3.2 Worst Case Noise Analysis in Multiuser MIMO Systems

3.2.1 Motivation and related results

Let us assume, that we have a two-player game in which the transmit player wants to
increase the performance of the point-to-point link, while the noise plus interference
player wants to reduce the performance. The transmit player is first. He perfectly
knows the channel realisation as well as the noise covariance matrix. The noise plus
interference player is second. This game leads to the a minimax problem of the

extension to a long-term constraint is straight forward and lead to an additional water-filling
across the temporal dimension. All our results can be further improved by this technique. The
analysis in [KH95] is under a long-term power constraint.
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following type

min
Z∈Z

max
Q∈Q

tr F (Z−1/2HQHHZ−1/2) (3.1)

in which the noise Z is in some set of admissible noise or interference Z and the
transmit strategy Q belongs to some set of admissible transmit strategies Q and F
is a matrix monotone function. The matrix H is fixed and depends on the trans-
mission medium. If the AWGN channel is studied, H = I. Otherwise, the matrix
H can be a flat-fading MIMO channel matrix, or a frequency-selective channel ma-
trix, etc. In general, we assume that the transmit strategy is power limited, i.e.
Q = {Q : tr (Q) ≤ P}. However, the noise Z can be created by a variety of effects,
e.g. thermal noise, intercell-, intracell-, inter-symbol-, or inter-carrier-interference.
The concrete structure of Z depends on the application, transmit- and receive
strategies. We do not determine a concrete scenario or strategy but consider three
noise scenarios which are of general interest. Furthermore, we only restrict the ob-
jective function to be matrix-monotone. In section 3.2.3, concrete examples from
wireless transmission illustrate the application of the theoretical results.

The vector channel capacity [Tel99] or the MSE can be used direclty as an objec-
tive function because both are traces of matrix-monotone functions. In [VBG03],
expressions like (3.1), in which F was the channel capacity, were studied under
different admissible sets Z and Q. In order to characterise the minimax points, the
authors of [VBG03] used the dual Lagrangian approach. Based on the character-
isation of the broadcast rate region in [Sat78], the authors in [VT03] established
a duality and reciprocity theory between the SIMO multiple access sum capacity
point, MIMO uplink capacity, MIMO downlink capacity and MISO broadcast sum
capacity point for systems which apply SIC (uplink) and Costa precoding (down-
link). The duality between the SIMO MAC sum capacity point and MIMO uplink
capacity corresponds to the noise constraints which will be given in Scenario III.
For independent coding and decoding, the uplink - downlink duality for SIMO was
shown in [BS02b]. In [Yu03], the MIMO broadcast channel was studied, and the
structure of the worst case noise of the corresponding cooperative MIMO system
which minimises the Sato upper bound was analysed.

In [Blu03], the author analyses the MIMO channel capacity with unknown interfer-
ing users and no CSI at the transmitter as well as perfect CSI at the receiver. The
optimum signalling for achieving the channel capacity is characterised by analysing
the second derivative of the mutual information and by showing that in some cases
it is negative and in some cases it is positive. Therefore, in these cases in which
the interference is sufficiently weak or sufficiently strong, the optimum signalling is
either equal power allocation across all antennas or single-antenna allocation. In
[YB03], the mutual information of a MIMO system with multiple users and perfect
CSI at both sides is considered and different signalling approaches are considered.

A minimax approach in [PCL03b] studies the maximum of the mutual information
with respect to the transmit covariance matrix and the minimum with respect to the
channel realization of the instantaneous capacity in a flat-fading MIMO channel. In
addition to this, the worst case capacity of a MIMO system is studied in [GHIM01].

3.2.2 Noise scenarios

We are interested in the general limits of the MIMO channel performance under
different types of noise plus interference. Therefore, we consider three scenarios in
which the noise is subject to different constraints. In the first scenario the noise
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covariance matrix is trace constrained. This is the less restrictive constraint, because
only the sum noise power is kept fixed and their eigenvalues and diagonal entries
are free to choose. This leads to the worst case noise under a trace constraint. In
the second scenario the eigenvalues of the noise covariance matrix are fixed. This
leads to the notion of worst case directions. These are the eigenvectors of the noise
covariance matrix Z. Finally, in the third scenario the diagonal elements of the
noise covariance matrix are fixed. This yields the worst case coloured noise. We
show for all three scenarios that the achievable minimax performance fulfils the
saddle point property. Furthermore, the worst case noise in Scenario I and Scenario
II leads to two different types of worst case orthogonal channels. In Scenario I
the complete CSI at the transmitter is lost and therefore the cooperation, too,
because CSI is necessary for successful cooperation at the transmit side. In Scenario
III, the performance of the MIMO channel with worst case coloured noise equals
the capacity of a multiuser SIMO channel with white noise, i.e. the transmitter
cooperation gets lost.

1. Trace Constraint: The trace of the noise covariance matrix is constraint to
nR · σ2

N , i.e.

tr (Z) ≤ σ2
NnR. (3.2)

In this scenario, the sum noise power which arrives at the base station is kept
fixed. The noise has no additional constraints. This model corresponds to a
scenario in which the inter- and intracell interference dominates. The noise
has fewest constraints in comparison to the other scenarios. We denote the
noise in (3.2) as worst case noise under trace constraints.

2. Fixed Eigenvalues: The eigenvalues of the noise covariance matrix are fixed.
The diagonal matrix

ΛZ = diag(λ1(Z), ..., λm(Z))

is fixed.

Here, the average power (eigenvalues of noise covariance matrix ΛZ) is fixed,
while the dominant directions of the noise (eigenvectors of the noise covariance
matrix U) vary. This constraint leads to the worst case noise directions.

3. Diagonal constraint: The diagonal of the noise covariance matrix is constraint
to be less or equal to some constant σ2

N , i.e.

diag(Z) = [σ2
N , ..., σ

2
N ].

In this scenario, we fix the noise power at each receive antenna at the base
station. The receiver noise at each receive antenna has equal power but the
intra- and intercell interference creates the correlation or the colour of the
noise. The free parameter is the correlation of the noise. This scenario pro-
vides the worst case coloured noise.

3.2.3 Applications

The analysis in this work can be applied to the following MIMO MAC scenario. In
addition to this, it can be applied to MIMO BC by duality.
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MIMO MAC

We consider the typical flat-fading MIMO MAC model with nT transmit and nR

receive antennas in cellular multiuser uplink transmission. In figure (3.1), we show
an uplink transmission from user (U) to the base (B). On the one hand, intercell
interference comes from neighbour cells (K) and on the other hand user in the same
cell create intracell interference (S).

Figure 3.1: Cellular MIMO multiuser uplink.

Following the flat block-fading cellular MIMO multiuser uplink model considered
above, the received signal is given by

y = Hx
︸︷︷︸

user signal

+
∑

k∈S

Hkxk

︸ ︷︷ ︸

intracell interference

+
∑

k∈K

Hkxk

︸ ︷︷ ︸

intercell interference

+n (3.3)

with white Gaussian noise n ∼ CN(0, σ2
NI). We collect all noise and interference

terms in one vector z and obtain

y = Hx + z (3.4)

where x is the transmitted signal, H is the channel matrix, z is the interference
plus noise. The mobile has nT transmit antennas and the base nR receive antennas.
The number of transmit antennas is assumed to be equal to or smaller than the
number of receive antennas, i.e. nT ≤ nR. The channel matrices and signals of
the intercell and intracell interfering users can have arbitrary number of transmit
dimensions.

We assume that the interference plus noise is complex Gaussian distributed with
covariance matrix Z. This assumption is motivated by the law of large numbers for
a large number of interfering users. Furthermore, the zero-mean complex Gaussian
distribution is the worst case noise distribution under a variance constraint. There-
fore, we model the interference plus noise as zero-mean complex Gaussian distrib-
uted with covariance matrix Z, i.e. z ∼ CN(0,Z). Note that the noise covariance
matrix has always full rank, otherwise the noise-free dimension could be used for
transmission and we would have arbitrary high rate.
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Then the optimum input distribution which maximises the capacity of the channel
in (3.4) is the zero-mean complex Gaussian distribution, too, i.e. x ∼ CN(0,Q).
The transmit covariance matrix is given by Q = E(xxH). The mutual information
of the channel in (3.4) is [Tel99]

C(Q,Z) = log
det(Z + HQHH)

det(Z)
. (3.5)

We assume that the sum transmit power is constrained to P , i.e. tr(Q) ≤ P .

MIMO BC

We consider the typical flat-fading MIMO BC model with nT transmit and nR

receive antennas in cellular multiuser downlink transmission. In figure (3.2), we
show an downlink transmission from the base (B) to user (U). The base might
simultaneously transmit to the other user in the cell (S). On the one hand, intercell
interference comes from neighbour cells (K) and on the other hand user in the same
cell create intracell interference (S).

Figure 3.2: Cellular MIMO multiuser downlink

Following the flat block-fading cellular MIMO multiuser downlink model considered
above, the received signal is given by

y = Hx
︸︷︷︸

user signal

+
∑

k∈S

Hxk

︸ ︷︷ ︸

intracell interference

+
∑

k∈K

Hxk

︸ ︷︷ ︸

intercell interference

+n (3.6)

with white Gaussian noise n ∼ CN(0, σ2
NI). We collect all noise and interference

terms in one vector z and obtain

y = Hx + z (3.7)

where x is the transmitted signal, H is the channel matrix, z is the interference
plus noise. The mobile has nT transmit antennas and the base nR receive antennas.
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The channel matrix and signals of the intercell and intracell interfering users can
have arbitrary number of transmit dimensions.

Under the same assumptions as in the MIMO MAC case above, we arrive at the
mutual information of the channel in (3.7)

C(Q,Z) = log
det(Z + HQHH)

det(Z)
.

We assume that the sum transmit power is constrained to P , i.e. tr(Q) ≤ P , too.

Examples for performance metrics

Examples for performance metrics of the point-to-point link which belong to the
large class of trace of matrix-monotone functions are:

• Channel Capacity: The capacity of vector system

C(Q,Z) = log




det
(

Z + HQHH
)

detZ



 (3.8)

can be transformed into

tr F (Z−1/2HQHHZ−1/2) = tr log
(

I + Z−1/2HQHHZ−1/2
)

.

The capacity C(Q, Z) in (3.8) is convex with respect to Z [DC01, Lemma
II.3] and concave with respect to Q [CT88, Theorem 1]. The capacity of
MIMO MAC, BC with worst case noise is analysed in [BJ03b].

• Normalised MSE: The normalised MSE

G(Z,Q) = nT − tr

([

Z + HQHH
]−1

HQHH

)

can be transformed into

tr F (Z−1/2HQHHZ−1/2) = nT + tr

([

I + Z−1/2HQHHZ−1/2
]−1
)

.

The MSE is to be minimized or −MSE is to be maximized. −G is a concave
function with respect to Q and convex function with respect to Z, too. M
is a constant which depends on the system parameter, e.g. the number of
antennas.

3.2.4 Preliminaries

In order to characterise the impact of Z and Q on the performance metric in (3.1),

note that tr F (Z−1/2HQHHZ−1/2) is concave with respect to Q. In addition

to this, we show in the following that tr F (Z−1/2HQHHZ−1/2) is convex with
respect to Z. We define M = HQHH for convenience and obtain

F (Z−1/2MZ−1/2) =

∫ ∞

0

sZ−1/2MZ−1/2
(

sI + Z−1/2MZ−1/2
)−1

dµ(s). (3.9)
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The representation in (3.9) follows from Löwners Theorem. The same assump-
tions as in section 2.3.1 are valid. Applying the trace operator on (3.9) and swap
integration and finite summation, we obtain

tr
(

F (Z−1/2MZ−1/2)
)

=

∫ ∞

0

s tr
(

M (sZ + M)
−1
)

dµ(s). (3.10)

Define the parameterised noise matrix Z(λ) = (1 − λ)Z1 + λZ2. From [MO79,
Proposition 16.E.7.C] follows that A−1 is matrix-convex and therefore we have for
(3.9) and (3.10) that

− tr M (sZ(λ) + tr M)
−1

+ tr (1 − λ)M (sZ1 + M)
−1

+ tr λM (sZ2 + M)
−1 ≥ 0. (3.11)

And finally with inequality (3.11), it holds

tr
(

F
(

Z−1/2(λ)MZ−1/2(λ)
))

≤ (1 − λ) tr
(

F
(

Z
−1/2
1 MZ

−1/2
1

))

+ λ tr
(

F
(

Z
−1/2
2 MZ

−1/2
2

))

.

This shows that the trace of every matrix-monotone function

tr F (Z−1/2HQHHZ−1/2)

is convex with respect to Z and concave with respect to Q. The set of all admissible
matrices Q with trace constraint is convex. The set of noise matrices Z in Scenario
I and III is convex, too. For the minimax problem in (3.1) follows, that the minimax
problem with noise constraint I and III fulfils the Saddle-point property. In order
to decide whether the min-max expressions satisfy the saddle-point property

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y) (3.12)

we use Theorem 1 in [Fan53]. One result in [Fan53, Theorem 1] states, that (3.12)
is fulfilled, if f is convex on x and concave on y and if the sets X and Y are convex,
too.

In order to characterise the solution of minimax problems of type (3.1), we need the
following theorem which characterises the worst case noise under trace constraint.
Theorem 7: For positive semidefinite matrices A and B with eigenvalues α1 ≥
α2 ≥ ... ≥ αn and β1 ≥ β2 ≥ ... ≥ βn and arbitrary matrix-monotone function F it
holds

min
π

tr F (diag(α1, ...., αn)diag(βπ1
, ..., βπn

)) ≤ tr F (B1/2AB1/2) ≤
max

π
tr F (diag(α1, ...., αn)diag(βπ1

, ..., βπn
))

with permutation π.

The proof of Theorem 7 can be found in appendix 3.4.1. Theorem 7 is a generali-
sation of [Fie71].
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3.2.5 Worst case noise with trace constraint

In this section, the worst case noise with the trace constraint from scenario 1 is
characterised. The optimisation problem for the scenario 1 is given by

ΦI = min
tr (Z)≤σ2

N nR

max
tr (Q)≤P

tr F (Z−1/2HQHHZ−1/2). (3.13)

The problem in (3.13) fulfils the saddle-point properties [Fan53]. Therefore we can
switch the min-max problem into max-min, i.e.

min
tr (Z)≤σ2

N nR

max
tr (Q)≤P

tr F (Z−1/2HQHHZ−1/2) =

max
tr (Q)≤P

min
tr (Z)≤σ2

N nR

tr F (Z−1/2HQHHZ−1/2).

Let us describe the first result (Theorem 8): In Scenario I, the vector MIMO channel
transforms into orthogonal channels in figure 3.3. The input streams are weighted
by the eigenvalues of the transmit covariance matrix λi(Q)1/2 then weighted by the
channel matrix eigenvalues λi(H)1/2. The additive noise CN(0, 1) is weighted by
minimal noise covariance matrix eigenvalues λi(Z)1/2 which are computed according
to (3.67). The vector MIMO channel with perfect CSI at the transmitter transforms
into a MIMO channel without CSI and SNR ρ = P

nRσ2
N

.

~CN(0,Q)

~CN(0,Z)

~CN(0,  I)

~CN(0,    I)
n σ

P

n
2

R

n
T

n
T

Figure 3.3: Worst Case Noise with Trace Constraint: Vector MIMO channel ΦI

with perfect CSI and worst case noise and corresponding vector MIMO
channel without CSI and white noise (Theorem 8).

In figure (3.3), the correspondence is shown between the closed-loop MIMO system
(transmit covariance matrix Q) with worst case noise (noise covariance matrix Z)
with trace constraint and the open-loop MIMO system (transmit covariance matrix
I) with white noise with SNR ρ.

The following Theorem 8 solves the minimax problem in (3.13).
Theorem 8: The value of the minimax problem in (3.13) is given by

ΦI = tr F (ρHHH) (3.14)

with SNR ρ = P
nRσ2

N
.

The proof can be found in appendix 3.4.2.

Remark 1: The RHS of equation (3.14) in Theorem 8 is the value of the objective
function for uncorrelated white noise and equal power allocation divided by the
dimension of the noise matrix. This surprising result of Theorem 8 is interpreted in
the following way: The value of the trace of an arbitrary matrix-monotone objective
function of an transmission system with perfect information and cooperation at the
transmitter under worst case noise with trace constraint is equal to the value of the
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system with an uninformed transmitter and with uncorrelated white noise and SNR
ρ.

Remark 2: The optimal transmit strategy can be further characterised: It is given
by

λ∗k(Q) =
λk(H)

µ
ρ2F [1](ρλk(H)). (3.15)

The Lagrangian µ is chosen such that
∑nT

k=1 λ
∗
k(Q) = 1. As a result we have

µ = ρ2
nT∑

k=1

λk(H)F [1](ρλk(H)). (3.16)

Equation (3.15) and µ in (3.16) yields

λ∗k(Q) =
λk(H)F [1](ρλk(H))

∑nT

l=1 λl(H)F [1](ρλl(H))
. (3.17)

For small SNR values,

lim
σ2

N→∞
λ∗i (Q) =

λi(H)
∑ν

k=1 λk(H)
(3.18)

because F [1](0) = c. This follows from Lemma 13 in appendix 3.4.5.

3.2.6 Worst case noise directions

We assume that the noise eigenvalues are fixed. We study the impact of the di-
rections or eigenvectors of Z, i.e. of the unitary matrix UZ . We write the set of
unitary nR × nR matrices as U(nR). Let us define the optimisation problem as

ΦII = min
W∈U(nR)

max
tr (Q)≤P

tr F (Λ
−1/2
Z W HHQHHWΛ

−1/2
Z ). (3.19)

Furthermore, we define

ΦD
II = maxPn

i=1
λi(Q)≤P

n∑

i=1

F

(
λi(H)λi(Q)

λi(Z)

)

. (3.20)

Obviously, the solution in (3.20) is the waterfilling solution for Q.

The result in this section (Theorem 9) is that ΦII and ΦD
II are equal. In figure

(3.4), the correspondence between the closed-loop MIMO system with worst case
noise directions with noise covariance matrix Z and the system with parallel SISO
channels λ1(H), ..., λnR

(H) and noise variances λ1(Z), ..., λnR
(Z) is shown.

In Scenario II, the worst case directions de-construct the MIMO channel into nR

orthogonal channels. The capacity ΦD
II in (3.20) can be easily computed.

We collect this result in the following theorem that states that the capacities in
(3.19) and (3.20) are equal. Using Theorem 7, one can easily prove the following
Theorem 9.
Theorem 9: The worst case noise directions W in (3.19), are given by a permu-
tation matrix Π. As a result, ΦII = ΦD

II .
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~CN(0,Q)

~CN(0,Z)
n

11

K

1

1

K

R
n

Figure 3.4: Worst Case Noise Directions: Vector MIMO channel ΦII and corre-
sponding diagonalised orthogonal channels ΦD

II

At this point, the special case in which the performance metric is the instantaneous
channel capacity has to be discussed. If Φ(X) = log(1+X) then a stronger version
of Theorem 9 can be proven, because the worst case and best case permutation of
the eigenvalues is fixed and does not vary with their values. We assume that the
noise eigenvalues are fixed and ordered, i.e. λ1(Z) ≥ λ2(Z) ≥ ... ≥ λn(Z). Let us
define the optimisation problem as

CII = min
W∈U(n)

max
tr (Q)≤P

log
det(WΛZW H + HQHH)

det(WΛZW H)
. (3.21)

Furthermore, we define

CD
II = maxPn

i=1
λi(Q)≤P

n∑

i=1

log

(

1 +
λi(H)λi(Q)

λi(Z)

)

. (3.22)

Obviously, the solution in (3.22) is the waterfilling solution.
Theorem 10: The capacity CII in (3.21) and the capacity CD

II in (3.22) are equal.

The proof can be found in appendix 3.4.6.

3.2.7 Worst case coloured noise

In this scenario, the diagonal entries of the noise covariance matrix are equal to σ2
N .

We define the set of all noise covariance matrices with constant σ2
N entries on the

diagonal as

Z = {Z : Z � 0,diag(Z) = [σ2
N ...σ

2
N ]}. (3.23)

We define the value of the minimax problem as

ΦIII = min
Z∈Z

max
tr (Q)≤P

tr F (Z−1/2HQHHZ−1/2). (3.24)

Furthermore, we define the following programming problem

ΦD
III = maxPnT

k=1
pk=P

tr F (HDiag([p1, ..., pnT
])HH). (3.25)
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The next Theorem shows that the values of the optimisation problems in (3.24) and
(3.25) are equal.
Theorem 11: The value of (3.24) equals the value of (3.25), i.e. ΦIII = ΦD

III .

The proof of Theorem 11 can be found in appendix 3.4.7. The transmitter looses its
cooperation, i.e. the matrix Q cannot be chosen arbitrarily. However, the diagonal
entries can be controlled. The worst case coloured noise system has equal value as
a system without cooperation and only power control and white uncorrelated noise.

The result of this section (Theorem 11) is that ΦIII and ΦD
III are equal. Let us

first describe the result: In figure (3.5), the correspondence between the closed-loop
MIMO system with worst case coloured noise and the SIMO MAC with white noise
is shown. In Scenario III, there is cooperation at the transmit side only in terms of
power control.

~CN(0,Q)

~CN(0,Z)

~CN(0,I)
n

Figure 3.5: Worst Case Coloured Noise: Vector MIMO channel ΦIII and corre-
sponding SIMO MAC ΦD

III .

The worst case colour of the noise reduces the achievable performance of a MIMO
system with nT cooperating transmit antennas to nT users who perform only power
control. The achievable performance ΦIII for the MIMO channel with worst case
coloured noise equals the sum performance of the multiuser SIMO MAC. This fact
has been used in [Sat78] in the context of capacities to derive an upper bound on
the capacity region of the broadcast channel.

Example for worst case coloured noise

In the following, we give two examples for the computation of the worst case coloured
noise saddle point by solving the simple SIMO MAC problem. The performance
metric is the capacity, i.e. F (X) = log(I + X). In the first example both users are
supported. In the second example, only one mobile user.

Example A

Let the channel matrix given by

H =

(
0.1 0.5
0.8 0.2

)

with transmit power constraint P = 10 and noise power σ2
N = 1. We apply the

following steps:

1. We compute the optimal power allocation for the SIMO MAC by MAXDET
[WVB96]

S∗ = diag([3.5457, 6.4543]).
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The Lagrangian multiplier is λ1 = λ2 = 0.124.

2. We compute the worst case coloured noise in (3.82). The corresponding KKT
condition yields

Z∗ =

(
1 0.151

0.151 1

)

.

3. Waterfilling with respect to the effective channel provides the optimal MIMO
transmission strategy:

Q∗ =

(
6.2675 1.0151
1.0151 3.7325

)

Next, we verify this result by computing the sum capacity of the SIMO MAC with
S∗ and by computing the capacity of the MIMO channel with worst case coloured
noise Z∗ and transmit strategy Q∗:

CD
III = log det

(

I + HHS∗H
)

= 3.2653.

CIII = log det
(

Z∗ + HQ∗HH
)

− log detZ = 3.2653.

And we have

CD
III = CIII .

Example B

We consider the same channel as in example A and the same noise variance. We
choose the transmit power P = 1.

1. The optimal power allocation for the SIMO MAC is given by

S∗ = diag([0, 1])

and the Lagrangian multiplier is λ1 = 0.2407 < 0.4048 = λ2.

2. The corresponding worst case coloured noise for the single-user MIMO system
is

Z∗ =

(
1(0.5946) 0.2647

0.2647 1

)

.

Here, the entry (1, 1) in Z∗ was filled up from 0.5946 to 1. Note, that the
noise covariance matrix which has not been filled up can be used to compute
the optimal transmit covariance matrix Q∗ and the capacity in the next steps
[Yu03].

3. The waterfilling solution yields

Q∗ =

(
0.9412 0.2353
0.2353 0.0588

)

.

An as in the previous example, we have

CD
III = 0.7485 = CIII .
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3.2.8 Interpretation and discussion of worst case noise analysis

In all three scenarios it is shown that the achievable performance with optimal
transmit covariance matrix under worst case noise (with different constraints) equals
the achievable performance without transmit cooperation and iid white noise. The
differences between CSI and cooperation are further discussed in the following.

Discussion of results

We have considered a scenario in which the transmitter has perfect CSI H and
furthermore knowledge of the interference covariance matrix Z. Obviously, both the
performance Φ as well as the optimal transmit covariance matrix Q are a function
of the noise covariance matrix Z. In all three noise scenarios, we have searched
for the global minimum of Φ with respect to Z. From a multiuser point of view,
this corresponds to the question ’what is the worst case interference, that limit
the performance of the point to point link?’. Closely related are the questions
’how much performance can be guaranteed even in worst case noise?’ and ’what is
lost due to worst case noise?’. In general MIMO systems, the transmit antennas
can cooperate, i.e. beamforming in addition to spatial multiplexing. A necessary
condition for cooperation is some kind of CSI at the transmit side. This means that
there are different stages of transmit operation. Without CSI, there is obviously no
cooperation.

In order to summarise the results and answer the three questions from the last
paragraph, the following summary is proposed.

• Worst case noise with trace constraint: Regarding the performance, a MIMO
system with perfect CSI about H and about interference Z at both sides
of the link equals a MIMO system without CSI at the transmitter and with
white slightly amplified noise. Due to worst case noise, the transmitter loses
its CSI and hence its cooperation.

• Worst case noise directions: In this scenario, the MIMO system with perfect
CSI about H and Z transforms under worst case noise directions with fixed
noise covariance matrix eigenvalues to a system with parallel fading channels

with effective channel gains λi(H)
λi(Z) . At the transmitter, CSI and cooperation

was available and necessary to diagonalise the channel. The last optimisation
step is power allocation according to waterfilling against the effective channel.

• Worst case coloured noise: Regarding the channel performance, a MIMO
system with perfect CSI about H and Z under worst case coloured noise
equals a MISO MAC with CSI at the transmitters and white noise. In this
scenario, the CSI is still available at the transmit antennas. In exchange, the
cooperation at the transmit side is lost.

3.2.9 Comparison of worst case noise capacities

In Scenario I, the worst case noise has the same directions as in Scenario II. Ad-
ditionally, the eigenvalues of the noise covariance matrix are chosen to minimise
the performance. The optimal noise covariance matrix eigenvalues are explicitly
given in (3.66). The minimax problem in (3.13) fulfils the saddle-point property.
Therefore, we have for all Q and Z and with optimal pair (Q∗,Z∗)

F (Q,Z∗) ≤ F (Q∗,Z∗) ≤ F (Q∗,Z).
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For fixed Z, the optimal Q is the waterfilling solution and for fixed Q the noise
covariance matrix which minimises the performance is given by (3.66). In general,
we have for the eigenvectors of the optimal Q∗ and Z∗

Q∗ = V HΛQ∗V H
H

Z∗ = UHΛZ∗UH
H

In Scenario I the set of admissible noise covariance matrices is larger than in Scenario
II. The additional choice of eigenvalue distribution reveals this. Therefore, ΦI is
smaller than or equal to ΦII .

Obviously, ΦI is smaller than or equal to ΦIII and ΦI is smaller than or equal to
ΦIII . This follows from the fact, that the set of feasible noise covariance matrices in
Scenario I and Scenario II is larger than the set of feasible noise covariance matrices
in Scenario III. We obtain

ΦI ≤ ΦII

and

ΦI ≤ ΦIII .

Unfortunately, we cannot compare the capacities ΦII and ΦIII , because neither the
set of noise covariance matrices in Scenario II is a subset of the set in Scenario III
and vice versa.

At this point, the characterisation of the worst case noise performance of point to
point MIMO link is complete. In the next section, we go one step beyond and
incooperate the transmit strategies of all other users in the cell or system in order
to optimise the sum of the performances of all users. The results from this section
will help, because single-user optimisation under coloured noise will be one key
ingredient in multi-user optimisation algorithms.

3.3 Sum Performance Analysis of Multiuser MIMO Systems

In this section, we take all users and their transmit strategies into account in order
to optimise the overall performance of the multiuser MIMO system. At first, we
present the signal model and define the relevant performance measures in section
3.3.1. The performance measures split into two classes. The first class is the sum
performance of the overall system and individual performances of each single user.
The focus in this section is on the sum performance of the overall system. The
second class of individual performance requirements and their fulfilment is left for
the future research section in chapter 4.

In section 3.3.2, we propose the problem statements associated with the sum perfor-
mance measures and derive the generalised representation of the sum performance as
the trace of an arbitrary matrix-monotone function. The optimisation of this func-
tion is performed in section 3.3.3. The properties of the optimal transmit strategies
of the users are analysed in 3.3.4.

3.3.1 Signal model and sum performance measures

In this section, we present the signal model of the MIMO MAC and BC. The
performance is either measured in terms of sum capacity for the MAC with SIC and
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the BC with Costa Precoding, or if the receiver applies the linear MMSE receiver
at the base station, in terms of the average sum MSE.

MIMO MAC

Consider the multiple access channel in figure (3.6). The communication channel
between each user and the base station is modelled by a block-flat fading MIMO
channel as in the single-user scenario in figure (1.1).

Figure 3.6: MIMO MAC system.

We have K mobiles with nT antennas each. We can easily extend the results to the
case in which every mobile has a different number of transmit antennas. The base
station owns nR receive antennas. In the discrete time model, the received vector
y at any one time at the base station can be described by

y =
K∑

k=1

Hkxk + n (3.26)

with the receiver noise n ∈ C
nR×1 which is additive white Gaussian (AWG) noise,

flat fading channel matrices Hk ∈ C
nR×nT , and transmit signals xk ∈ C

nT ×1.
We assume uncorrelated noise with covariance σ2

nInR
. The inverse noise power is

denoted by ρ = 1
σ2

n
.

Equation (3.26) can be rewritten in compact form as

y = Ĥx̂ + n (3.27)

with Ĥ = [H1,H2, ...,HK ] and x̂ = [xT
1 , ...,x

T
K ]T . We collect the transmit covari-

ance matrices in

Q̂ =








Q1 0 0 ... 0
0 Q2 0 ... 0

0 0
. . . 0

0 0 0 0 QK







. (3.28)
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The performance measures of the MIMO MAC were introduced in section 1.3.2.
The sum capacity of the MIMO MAC with SIC applied at the base station is given
by

C(Q,H, ρ) = log det

(

I + ρ
K∑

k=1

HkQkHH
k

)

with the set of covariance matrices Q and the set of channel realisations H

Q = {Q1,Q2, ...,QK} and H = {H1,H2, ...,HK}.

In order to derive the normalised MSE of the linear multiuser MMSE receiver,
we follow the definition and derivation of the normalised MSE in [VAT99] for the
synchronous CDMA system. The linear MMSE multiuser receiver computes the
data estimate

x̃ = Q̂Ĥ
H
(

σ2
nI + ĤQ̂Ĥ

H
)−1

y. (3.29)

The covariance matrix of the estimation error ǫ is given as

Kǫ = Q̂ − Q̂Ĥ
H
(

ĤQ̂Ĥ
H

+ σ2
nI
)−1

ĤQ̂. (3.30)

For convenience, we define the matrix A

A = σ2
nI +

K∑

k=1

HkQkHH
k . (3.31)

From (3.30), we define the normalised MSE as

MSE(Q,H, ρ) = tr(Q̂
−1/2

KǫQ̂
−1/2

) = KnT −
nR∑

i=1

µi

σ2
n + µi

= KnT − nR + σ2
n

nR∑

i=1

1

σ2
n + µi

= KnT − nR + σ2
n tr

(
A−1

)
(3.32)

with µi as the eigenvalues of ĤQ̂Ĥ
H

. The MSE is reduced by minimising the
sum in the RHS of (3.32). It is worth mentioning that the term

∑nR

i=1
1

σ2
n+µi

is a

Schur-convex function with respect to the µi [MO79].

MIMO BC

In figure (3.7), the MIMO BC is depicted. Here, we study the downlink transmission
from the base station to the mobiles. The base station is equipped with nT transmit
antennas and each mobile has nR antennas. The channel matrices in the downlink
transmission correspond to the Hermitian channel matrices from the uplink, i.e.
Hdl

i = HH
i (reciprocity).

The received vector yk at each mobile k can be written as

yk = HH
k xk +

K∑

l=1,k 6=l

HH
k xl + nk (3.33)
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Figure 3.7: MIMO BC system.

with the flat fading channel matrices Hk, the AWG receiver noises nk, and the
transmit signal xk which is intended for mobile k. The noise at the mobiles is
assumed uncorrelated and independent identically distributed. In equation (3.33)
the first term is the signal for user k, the second term is the interference from the
signals for the other users, and the last term is the noise.

In order to end up with the same expression for the sum capacity as in the MIMO
MAC case, we use the following results:

• The capacity regions of the MIMO MAC and MIMO BC are equal [VBG03,
WSS04].

• The set of transmit covariance matrices in the MIMO MAC (with fixed de-
coding order) can be transformed into a set of transmit covariance matrices
for the MIMO BC (with flipped channels and reverse precoding order) which
achieves the same capacity point [Vis03, Section 3.3].

It suffices to consider the sum capacity optimisation of the MIMO MAC because
the following steps lead to the optimal transmit covariance matrices for the MIMO
BC:

• Solve the sum capacity optimisation problem for the MIMO MAC with flipped
channels HH

k .

• Transform the transmit covariance matrix QM
j for each user j according to

the rule in [Vis03]

QB
j = B

−1/2
j F jG

H
j A

1/2
j QM

j A
1/2
j GjF

H
j B

−1/2
j

with F j as the left eigenvectors of the channel matrix Hj and Gj as the right
eigenvectors of the channel matrix Hj and

Bj = I + ρ
K∑

l=j+1

H lQ
M
l HH

l

and

Aj = I + ρHH
j

j−1
∑

l=1

QB
l Hj .
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These transmit covariance matrices achieve the sum capacity of the MIMO BC.

General structure of performance function

The sum capacity of the MIMO MAC with SIC and MIMO BC with Costa Pre-
coding as well as the average normalised sum MSE for the MIMO MAC can be
written in the following generalised form using an arbitrary matrix-monotone inner
performance function φ(X)

Φ(ρ,Q,H) = tr φ

(

ρ

K∑

k=1

HkQkHH
k

)

. (3.34)

In order to obtain the sum capacity from (3.34), the inner performance function
φ(X) has to be chosen as

φ1(X) = log det (I + X)

This corresponds to the choice of the inner objective function φ1 in the single-user
scenario in equation (2.17). The inner performance function for the normalised sum
MSE is given by

φ̃2(X) =

(
KnT

nR
− 1

)

I + [I + X]
−1

=
KnT

nR
I − X [I + X]

−1
.

In the case in which the2 normalised sum MSE is considered, the inner objective
function is chosen as

φ2(X) = X [I + X]
−1
. (3.35)

Note the similarity to the single-user MSE performance function in (2.18). Again,
we restrict the class of inner performance functions to be matrix-monotone as in
the single-user case. Therefore, the same assumptions as in section 2.3.1 hold.

In the following three sections, we are going to maximise the sum performance in
(3.34) by choosing the optimal transmit covariance matrices Q1, ...,QK . At first,
we consider the case in which the transmit powers of all users are constrained,
i.e. tr (Qk) ≤ pk. In order to get a better performance we apply adaptive power

allocation under a sum power constraint, i.e.
∑K

k=1 pk ≤ P . These two cases
directly lead to an iterative algorithm which solves the general problem of sum
performance optimisation under a sum power constraint.

3.3.2 Problem statements: Sum performance optimisation under different

power constraints

We optimise the transmit covariance matrices in order to maximise the sum perfor-
mance in (3.34). First, each transmit covariance matrix is constrained in its power
to Pk, i.e. 0 ≤ tr (Qk) ≤ pk. This is motivated in the MAC by an admissible
transmit power at the mobiles.
Problem 1: In order to maximise the sum performance in (3.34) for fixed and known
channel realizations Hk, find the optimal transmit covariance matrices Q∗

1, ...,Q
∗
K ,

2We take the last term of the difference in order to obtain an equivalent maximisation problem.
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i.e. solve

max tr φ

(

ρ
K∑

k=1

HkQkHH
k

)

subject to tr Qk ≤ pk and Qk � 0, 1 ≤ k ≤ K. (3.36)

In the next step, an additional power allocation under sum power constraint for
fixed transmit covariance matrices is performed. This leads to the next problem
statement.
Problem 2: The channel realizations Hk of all users k are assumed to be known.
Keep the transmit covariance matrices fixed Q′

1,Q
′
2, ...,Q

′
K . Distribute an fixed

amount of transmit power P across the mobiles, i.e. solve

max tr φ

(

ρ
K∑

k=1

pkHkQ′
kHH

k

)

subject to

K∑

k=1

pk ≤ P and pk > 0, 1 ≤ k ≤ K. (3.37)

Combining these two step, power allocation in Problem 2 and transmit covariance
matrix optimisation in Problem 1, then one arrives at the general problem of sum
performance optimisation under a sum power constraint. This problem arises for
example in the downlink transmission in which the base station can allocate an
amount of power P for the transmit signals of the users. The corresponding problem
statement is given in Problem 3.
Problem 3: Assume that the channel realizations Hk are known and fixed. Solve
the sum performance optimisation under the sum power constraint, i.e.

max tr φ

(

ρ

K∑

k=1

HkQ̃kHH
k

)

subject to

K∑

k=1

tr Q̃k ≤ P and Q̃k � 0, 1 ≤ k ≤ K. (3.38)

3.3.3 Optimisation of sum performance

In the following, we analyse the structure of the optimisation problem in Problem 1,
2, and 3 using the Karush-Kuhn-Tucker (KKT) optimality conditions. All problems
are convex optimisations. Besides, the set of covariance matrices Q1, ...,QK with
the trace constraints is convex, the set of power allocations p1, ...pK is convex,
and the set of covariance matrices Q̃1, ..., Q̃K with sum trace constraint is convex.
Therefore, Slater’s condition is satisfied. And as a result, the KKT conditions are
sufficient and necessary for the optimum solution [BV03].

Covariance optimisation with individual power constraints

In the following, we assume that the powers p1, ..., pK are fixed and study the opti-
misation in (3.36). We show that the optimal covariance matrices can be found by
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iterative single-user performance optimisation with coloured noise. This approach
corresponds with the iterative waterfilling approach in [YRBC04] for sum capacity
optimisation in which single-user waterfilling is iteratively performed treating the
other users as noise in order to maximise the sum capacity. On the one hand this
approach provides insight into the structure of the optimum transmit covariance
matrices and on the other hand under specific conditions this approach is computa-
tional more efficient than the joint optimisation of the transmit covariance matrices.
If the number of users is large in comparison to the number of transmit antennas of
the users, the joint optimisation is computational more complex than the iterative
optimisation of each user separately.

The Lagrange function for the optimisation problem in (3.36) is given by

L1(Q,P, νk) = tr φ

(

ρ

K∑

k=1

HkQkHH
k

)

+
K∑

k=1

tr (ΨkQk) +
K∑

k=1

νk(pk − tr(Qk)) (3.39)

with the set of covariance matrices and the set of Lagrangian multipliers

Q = (Q1, ...,QK) and P = (Ψ1, ...,ΨK).

The first derivative of (3.39) with respect to Qi is given by

dL1(Q,P, νk)

dQi

= ρHH
i φ

[1]

(

ρ

K∑

k=1

HkQkHH
i

)

Hi + Ψi − νiI. (3.40)

As a result, the KKT conditions for the optimal covariance matrices which solve
optimisation problem in (3.36) are

ρHH
i φ

[1]

(

ρ

K∑

k=1

HkQkHH
i

)

Hi = νiI − Ψi 1 ≤ i ≤ K

tr (ΨiQi) = 0 1 ≤ i ≤ K

Ψk � 0 1 ≤ i ≤ K

Qi � 0 1 ≤ i ≤ K

νi ≥ 0 1 ≤ i ≤ K

pi − tr(Qi) ≥ 0 1 ≤ i ≤ K

νi (pi − tr(Qi)) = 0 1 ≤ i ≤ K (3.41)

Based on these optimality conditions, we will show next that a kind of iterative
single-user optimisation solves (3.36). For the k-th user, we write the noise plus
interference as

Zk = I + ρ

K∑

l=1
l 6=k

H lQlH
H
l . (3.42)

At this point, the structure of the performance metric has an impact on the choice
of the single-user optimisation problem.

Sum-Capacity

In the case in which the performance metric is the sum capacity, the single-user
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problem which is iteratively solved is the waterfilling with respect to the effective

channel Z
−1/2
k Hk. The performance metric is φ(X) = log(I + X), i.e. the sum

performance metric is the given by

max tr log

(

I + ρ

K∑

k=1

HkQkHH
k

)

subject to tr Qk ≤ pk and Qk � 0, 1 ≤ k ≤ K. (3.43)

For each user k ∈ [1...K] we solve the optimisation problem

max tr log







I + ρ

H̃k
︷ ︸︸ ︷

Z
−1/2
k Hk QkHH

k Z
−1/2
k







subject to tr (Qk) ≤ pk and Qk � 0. (3.44)

The next theorem shows that the single-user covariance optimisations for all users
1 ≤ k ≤ K in (3.44) mutually solve the optimisation problem (3.43). This theorem
corresponds to Theorem 3 in [YRBC04].
Theorem 12: If all covariance matrices Q∗

k mutually solve the optimisation prob-
lem in (3.44) for Zk in (3.42), then they solve optimisation problem in (3.43) for
the sum capacity, too.

The result follows from the fact, that the optimisation problem in (3.44) has the
same optimality conditions as the original problem in (3.43).

Remark: In order to prove convergence of the iterative single-user waterfilling, note
that the objective in (3.44) differs from the objective in (3.43) only by a constant
which is independent of Qk. Therefore, in each single-user waterfilling step the

sum capacity is increased. The channel matrix H̃k = Z
−1/2
k Hk in (3.44) is the

effective channel which is weighted by the inverse noise. The iterative single-user
performance algorithm in (3.44) solves the original optimisation problem in (3.36).
However, in contrast to the iterative waterfilling algorithm proposed for capacity
maximisation, we cannot derive a simple algorithm which solves the generalised
single-user performance problem because of the dependence on the noise covariance
matrix Zk in (3.44).

Sum MSE

In the case in which the performance metric is the sum MSE, the single-user problem
which is iteratively solved is the original sum MSE problem for fixed transmit
strategies of the other users. The performance metric is φ(X) = X(I + X), i.e.
the sum performance metric is the given by

max tr



ρ
K∑

k=1

HkQkHH
k

[

I + ρ
K∑

k=1

HkQkHH
k

]−1




subject to tr Qk ≤ pk and Qk � 0, 1 ≤ k ≤ K. (3.45)

For each user k ∈ [1...K] we solve the optimisation problem

max tr −
([

I + Zk + ρHkQkHH
k

]−1
)

subject to tr (Qk) ≤ pk and Qk � 0. (3.46)
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The next theorem shows that the single-user covariance optimizations for all users
1 ≤ k ≤ K in (3.46) solve the optimization problem (3.45).
Theorem 13: If all covariance matrices Q∗

k mutually solve the optimization prob-
lem in (3.46) for

Zk = σ2
nI +

K∑

l=1,l 6=k

HlQlH
H
l , (3.47)

then they solve optimization problem in (3.45), too.

The proof can be found in section 3.4.8.

Remark: Note that the single-user optimization problem in (3.44) has an inter-
esting interpretation: Assume the single-user MSE optimization with colored noise
Zk = UZΛZUH

Z . We can write

tr
([

Zk + ρHkQkH
H
k

]−1
)

= tr

(

ΛZ

[

I + ρH̃kQkH̃
H
k

]−1
)

=

nR∑

l=1

λ−1
Z (l)

([

I + ρH̃kQkH̃
H
k

]−1
)

l,l

. (3.48)

The channel matrix H̃k = Z
−1/2
k Hk in (3.48) is the weighted effective channel.

The iterative single-user MSE algorithm solves the original optimization problem
in (3.45). However, in contrast to the iterative waterfilling algorithm we cannot
derive a simple algorithm which solves the single-user MSE problem because of the
dependence on the noise eigenvalues in (3.48).

In the last section, we have assumed that the transmit power of each user k is
constrained by some individual power constraint pk. Next, we assume that the
available transmit power can be distributed between all mobiles with a sum power
constraint, i.e.

∑K
k=1 pk ≤ P .

Power allocation

The sum performance can be further improved if adaptive power control is applied.
During the power allocation we keep the transmit covariance matrices fixed. For
fixed transmit covariance matrices Q′

1, ...,Q
′
K solve programming problem (3.37).

The transmit covariance matrices Q′
k are fixed and power normalised, i.e. tr(Q′

k)) =
1. The Lagrangian for the optimisation problem in (3.37) is given by

L2(p,λ, µ) = tr φ

(

ρ

K∑

k=1

pkHkQ′
kHH

k

)

+

K∑

k=1

(λkpk) + µ

(

P −
K∑

k=1

pk

)

. (3.49)

with the power vector and Lagrangian multiplier vector

p = (p1, ..., pK) and λ = (λ1, ..., λK).
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The first derivative of (3.49) with respect to pi is given by

dL2(p,λ, µ)

dpi
= tr

(

ρHiQ
′
iH

H
i φ

[1]

[

ρ
K∑

k=1

pkHkQ′
kHH

k

])

+ λi − µ. (3.50)

As a result, the KKT conditions of the power allocation optimisation problem in
(3.37) are

tr

(

ρHiQ
′
iH

H
i φ

[1]

[

ρ
K∑

k=1

pkHkQ′
kHH

k

])

= µ− λi 1 ≤ i ≤ K

λkpk = 0 1 ≤ k ≤ K

λk ≥ 0 1 ≤ k ≤ K

µ ≥ 0

pk ≥ 0 1 ≤ k ≤ K

P −
K∑

k=1

pk ≥ 0

µ

(

P −
K∑

k=1

pk

)

= 0 (3.51)

These conditions in (3.51) are fulfilled by the optimum power allocation vector
for fixed covariance matrices. Observe, that for all active users l the Lagrangian
multiplier λl is equal to zero. Therefore, the condition

tr

(

ρHiQ
′
iH

H
i φ

[1]

[

ρ

K∑

k=1

pkHkQ′
kHH

k

])

= µ

is fulfilled. We use these conditions twofold. First, it can be used to derive the
properties of the optimal transmit strategies. In section (3.3.4), the SNR range in
which only the best user gets the complete power is studied. Second, the condition
can be used to verify that the solution by the interior point algorithm satisfies the
KKT. If it did not satisfy the KKT, we would restart the search algorithm with
another starting point in the interior.

Iterative power and covariance optimisation

The final step in optimising the performance of the multiuser MIMO system is to
connect the two optimisation problems from the last sections. Consequently, this
will lead us to an iterative algorithm which solves the performance maximisation
problem with a sum power constraint. This problem is given in (3.38).

In the following, we study the structure of the optimisation problem in (3.38). The
Lagrangian of (3.38) is given by

L(Q̃,P, µ) = tr φ

(

ρ

K∑

k=1

HkQ̃kHH
k

)

+

K∑

k=1

tr (Q̃kΨk) + µ

(

P −
K∑

k=1

tr (Q̃k)

)

. (3.52)
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with the set of covariance matrices and Lagrangian multipliers

Q̃ = {Q̃1, ..., Q̃K} and P = {Ψ1, ...,ΨK}.

The first derivative of (3.52) with respect to Qi is given by

dL(Q̃,P, µ)

dQ̃i

=

(

ρHH
i φ

[1]

[

ρ

K∑

k=1

HkQ̃kHH
k

]

Hi

)

+ Ψi − µI. (3.53)

As a result, the KKT conditions for the optimisation problem in (3.38) are

ρHH
i φ

[1]

[

ρ

K∑

k=1

HkQ̃kHH
k

]

Hi = µI − Ψi 1 ≤ i ≤ K

tr (Q̃iΨi) = 0 1 ≤ i ≤ K

Ψi � 0 1 ≤ i ≤ K

Q̃i � 0 1 ≤ i ≤ K

µ ≥ 0

P −
K∑

k=1

tr (Q̃k) ≥ 0 (3.54)

µ

(

P −
K∑

k=1

tr (Q̃k)

)

= 0. (3.55)

These conditions in (3.55) are fulfilled by the optimum transmit covariance matrices
Q̃i and by the corresponding Lagrangian multipliers Ψi and µ. We use these KKT
conditions in (3.55) to analyse the behaviour at small SNR values. We characterise
the ’best’ user and its transmission strategy and provide a necessary and sufficient
condition for the optimality of single-user transmission in section (3.3.4).

In the following, we describe the optimisation strategy which leads to the optimum
power allocation and transmit covariance matrices. The structure we derive is a
generalisation of the solution of the sum capacity optimisation of the MIMO MAC
[YRBC04, BJ02g].

The optimisation consists of two steps: We start with fixed covariance matrices
Q0

k = I. Then we perform iteratively power allocation (3.37) and covariance matrix
optimisation (3.36). This yields Algorithm (2).

Algorithm 2 Iterative power allocation and covariance matrix optimisation

initialise Q0
1 = ... = Q0

K = I.
while required accuracy not reached do

From last step n− 1 given covariance matrices Qn
1 , ...Q

n
K .

Solve the power allocation optimisation (3.37):

pn
1 , ..., p

n
K = arg maxp1,...,pK

tr φ
(

ρ
∑K

k=1 pkHkQn
kHH

k

)

subject to pk ≥ 0 and
∑K

k=1 pk = P .
With fixed power allocation pn

1 , ..., p
n
K solve the covariance matrix optimisation

(3.36)

Qn
1 , ...,Q

n
K = arg minQ̄1,...,Q̄K

tr φ
(

ρ
∑K

k=1 p
n
kHkQ̄kHH

k

)

subject to Qk � 0 and tr(Qk) = 1 using iterative single-user covariance opti-
misation (see Theorem 12 for capacity and Theorem 13 for MSE).

end while
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3.3 Sum Performance Analysis of Multiuser MIMO Systems

Description of the algorithm: At first, we initialise the transmit covariance matrices
as identity matrices. Next, we iteratively perform the loop while the difference in
the sum performance between two steps is larger than some small constant. Inside
the loop, we perform the power allocation step at first. With the new fixed powers
we optimise the covariance matrices with the algorithm from the last section. Note,
that the performance is increasing with each step.

In the case of sum capacity optimisation, the inner covariance matrix optimisation
specialises to the iterative waterfilling [YRBC04] and the complete algorithm 1
specialises to the power allocation plus iterative waterfilling [BJ02g].

Optimality of iterative approach

In order to check whether the iterative algorithm 2 solves the problem (3.37), we
propose the following theorem. We define the set of active users, i.e. the users with
pk > 0, for convenience

I = {k ∈ {1, ...,K} : pk > 0}

Theorem 14: Suppose that the set of covariance matrices {Q∗
k} solves (3.36) for

given {p∗k} and {p∗k} solves (3.37) for given covariance matrices {Q∗
k}. The covari-

ance matrices Q̃k = p∗kQ∗
k solve problem (3.38) if and only if there exists a µ̄ ≥ 0

such that

νk

p∗k
= µ̄, k ∈ I (3.56)

µ̄I − ρHH
i φ

[1]

[

ρ

K∑

k=1

p∗kHkQ∗
kHH

k

]

Hi � 0 k ∈ {1, ..., k}\I. (3.57)

The proof of Theorem 14 can be found in section 3.4.9.

The solution of problem (3.38) can imply that either one or a small number of users
is allowed to transmit in order to maximise sum performance. This depends on the
SNR and on the channel matrices. Of course, this solution is unfair for users which
want to transmit but are not allowed to for a larger period of time. Especially, if
the users have a certain service requirement for voice of image transmission, some
MSE requirements occur.

3.3.4 Properties of optimal transmit strategy

In this section, we show that for small SNR values the complete transmission power
is allocated to the best user. We characterise the best user and show that the user
with the maximum channel eigenvalue is the best user. Next, we characterise the
single-user SNR range in which the sum performance is maximised by one single
user. Finally, we provide the complete characterisation of the single-user range.

In the following, we consider the two best users with channel H1 and H2. However,
the derivation can be easily extended to the arbitrary multiuser case. In the follow-
ing theorem, we show that for arbitrary small SNR values both users are supported
if their maximum channel eigenvalues are equal. As a corollary it follows that the
user with the maximum eigenvalue gets the complete transmission power for low
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3 Multi-user multiple-antenna optimisation

SNR values. We use this result in the next section for the analysis of the single-user
range, i.e. the SNR range in which only one user is supported.
Theorem 15: Let the users be ordered according to their maximum channel eigen-
values in decreasing order. Let Qs

1 be the optimal transmit covariance matrix for
the single-user channel H1 according to generalized single-user water filling from
Lemma 3. For fixed ρ̂, it is optimal to allocate the complete sum power to user
one, i.e. the user with the largest maximum channel eigenvalue, if and only if the
following condition is satisfied

λmax

(

HH
2 φ

[1]
[

ρ̂H1Q
s
1(ρ̂)HH

1

]

H2

)

≤ λmax

(

HH
1 φ

[1]
[

ρ̂H1Q
s
1(ρ̂)HH

1

]

H1

)

(3.58)

then the optimal set of covariance matrices is Q1(ρ̂) = Qs
1(ρ̂) and Q2(ρ̂) = Q3(ρ̂) =

... = QK(ρ̂). This transmit strategy is also optimal for all ρ ≤ ρ̂.

The proof can be found in section 3.4.10.

We know that the first user is the user with the largest maximum channel eigenvalue
and that the next user is the user with the second maximal channel eigenvalue. This
is somewhat surprising, since the average transmitted power is given by the trace
of the channel covariance matrix, i.e. the Frobenius norm. The order which decides
who is the best user is the induced l2-norm.

3.3.5 Discussion of sum performance optimisation algorithm

Let us briefly review the construction of the solution to the sum performance op-
timisation of multiuser MIMO systems. The original problem of transmit strategy
optimisation was decomposed into two subproblems, namely power allocation and
covariance matrix optimisation under individual power constraints. This scheme is
illustrated in figure (3.8).

The outer loop is between power allocation and covariance matrix optimisation
under individual power constraints. The covariance matrix optimisation can be
decomposed into an inner loop in which single-user covariance matrix optimisation
with respect to the effective channel is performed.

In the case in which the sum performance is measured by the sum capacity, the
inner single-user waterfilling algorithm can be derived in closed form [YRBC04].
Then, the covariance matrix optimisation corresponds to iterative waterfilling.

3.4 Proofs

3.4.1 Proof of Theorem 7

We prove Theorem 7 by contradiction. Assume that the optimal eigenvectors are
chosen such that A and B do not commute. Then the directional derivative is
larger (smaller) than zero and therefore other eigenvectors achieve a better higher
(smaller) value.

The objective function F (B1/2AB1/2) can be rewritten using the eigenvalues de-
composition A = UAΛAUH

A , B = UBΛBUH
B , and U = UH

B UA. Without loss of
generality, we assume that both A and B are full rank. The objective function is
rewritten as

tr F (B1/2AB1/2) = tr F (Λ
1/2
B UAUHΛ

1/2
B ).
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3.4 Proofs

Figure 3.8: Sum Performance Optimisation Algorithm

Let B0 = ΛB and A1 = UAUH . We go similar lines as in the proof of [Fie71]. Note
that B0 and A1 do not commutate, i.e. B0A1 6= A1B0. Next, we parameterise an
unitary matrix U = eǫS with specific choice of S with S = −SH . We show that
the directional derivative of the parameterised objective function

F (ǫ) = F (B
1/2
0 eǫSA1e

−ǫSB
1/2
0 ) (3.59)

at the point ǫ = 0 is either larger than zero by a specific choice of S or smaller than
zero for another choice of S. Therefore, it can neither be the global maximum nor
the global minimum of the objective function. This is a contradiction and it follows
that the maximum and minimum is attained for commutating matrices A and B.
For the maximum, we chose

S = B
1/2
0 F [1](B

1/2
0 A1B

1/2
0 )B

1/2
0 A1

−A1B
1/2F [1](B1/2A1B

1/2)B1/2 6= 0. (3.60)
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The inequality in (3.60) is fulfilled for all full rank matrices A1 and B0 which do
not commute and for all matrix-monotone function which can be represented as in
section 2.3.1. Note that SH = −S in (3.60). The Taylor series expansion of F (ǫ)
is given by

F (ǫ) = F
(

B
1/2
0 A1B

1/2
0 + ǫ

(

B
1/2
0 SA1B

1/2
0 − B

1/2
0 A1SB

1/2
0

)

+O(ǫ2)
)

. (3.61)

The trace of the first derivative of F (ǫ) in (3.61) with respect to ǫ at the point ǫ = 0
is given by

tr
∂

∂ǫ
F (ǫ)

∣
∣
∣
ǫ=0

= tr
(

F [1](B
1/2
0 A1B

1/2
0 )

(

B
1/2
0 SA1B

1/2
0 − B

1/2
0 A1SB

1/2
0

))

= tr
(

A1B
1/2
0 F [1](B

1/2
0 A1B

1/2
0 )B1/2S − B

1/2
0 F [1](B

1/2
0 A1B

1/2
0 )B

1/2
0 A1S

)

= tr
([

A1B
1/2
0 F [1](B

1/2
0 A1B

1/2
0 )B

1/2
0 − B

1/2
0 F [1](B

1/2
0 A1B

1/2
0 )B

1/2
0 A1

]

S
)

= tr
(

SSH
)

> 0. (3.62)

The same approach proves that the derivative at point B
1/2
0 A1B

1/2
0 is less than zero

for a corresponding choice of the matrix S. This is a contradiction and completes
the proof.

�

3.4.2 Proof of Theorem 8

We give an overview over the proof: First, we prove that the minimax performance
equals the minimax performance of the expression

ΦD
I = min

ΛZ≻0
tr ΛZ≤nRσ2

N

max
ΛQ�0

tr ΛQ≤P

tr F
(

Λ
−1/2
Z Λ

1/2
H ΛQΛ

1/2
H Λ

−1/2
Z

)

(3.63)

with channel matrix eigenvalues ΛH = UH
HHHHUH . This is done using the

Karush-Kuhn-Tucker (KKT) conditions for optimality of Z and Q in the following
way: For fixed noise covariance matrix Z, the optimal transmit covariance matrix
Q∗ is characterised by the corresponding KKT conditions. For fixed transmit co-
variance matrix Q, the worst case noise covariance matrix Z∗ is characterised by
the corresponding KKT conditions. The pair of covariance matrices (Q∗,Z∗) is
on the saddle point if and only if for fixed noise covariance matrix Z∗, the KKT
conditions are fulfilled by transmit covariance matrix Q∗ and the other way round,
if for fixed transmit covariance matrix Q∗, the KKT conditions are fulfilled by the
noise covariance matrix Z∗. First, we need the following Lemma 11.
Lemma 11: The minimax expression ΦI in (3.13) and the minimax expression in
ΦD

I in (3.63) are equal for fixed channel matrix H, i.e. ΦI = ΦD
I .

The proof of Lemma 11 is given in appendix 3.4.3.

Remark: For fixed noise covariance matrix eigenvalues and channel eigenvalues,
the optimum transmit covariance matrix eigenvalues are given by the generalised
waterfilling solution (see section 2.3.2). For fixed channel eigenvalues and transmit
covariance matrix eigenvalues, the noise eigenvalues which minimise ΦD

I can be
easily found. Let ν denote the rank of the transmit covariance matrix Q, i.e.
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3.4 Proofs

λ1(Q) ≥ ... ≥ λν(Q) > λν+1(Q) = ... = λn(Q) = 0. We start with the Lagrangian
of the minimisation problem

L(Λ̂Z , ξk, µ) =
ν∑

i=1

F

(

λi(H)λi(Q)

λi(Z)

)

+µ

(
ν∑

l=1

λl(Z) − nRσ
2
N

)

+
ν∑

k=1

ξkλk(Z). (3.64)

The Lagrangian multiplier ξk which ensure that the eigenvalues of the noise co-
variance matrix Z are greater than or equal to zero, are all equal to zero, because
λk(Z) > 0 for all 1 ≤ k ≤ ν. Otherwise the performance would be infinity. Since
the optimisation problem is convex with respect to the noise eigenvalues, we have
the necessary and sufficient Karush-Kuhn-Tucker (KKT) condition from (3.64)

∂L(Λ̂Z , µ)

∂λi(Z)
= −

λi(H)λi(Q)F [1]
(

λi(H)λi(Q)
λi(Z)

)

λi(Z)2
+ µ = 0. (3.65)

We express (3.65) as

F [1]

(
λi(H)λi(Q)

λ∗i (Z)

)

= µ
λ∗i (Z)2

λi(H)λi(Q)
. (3.66)

The Lagrangian multiplier µ has to be chosen that
∑n

i=1 λ
∗
i (Z) = nRσ

2
N .

In the second part of the proof, we further characterise the worst case noise covari-
ance eigenvalues in the following Lemma 12. The SNR is ρ = P

nRσ2
N

.

Lemma 12: The worst case noise eigenvalues in (3.66) correspond to the weighted
optimal transmit covariance matrix eigenvalues which are given by the water-filling
solution

λ∗i (Z) =
1

ρ
λ∗i (Q). (3.67)

The proof of Lemma 12 is given in appendix 3.4.4. Finally, we set λ∗k(Q) into the
performance function and obtain (3.14) completing the proof.

�

3.4.3 Proof of Lemma 11

The singular value decomposition of H is given by H = UHΛ
1/2
H V H

H . At first, we
show that ΦI ≤ ΦD

I . We have

max
tr (Q)≤P

tr F (Z−1/2HQHHZ−1/2) = max
tr (Q)≤P

tr F (Z−1/2UHΛ
1/2
H QΛ

1/2
H UH

HZ−1/2).

Now, we choose Ẑ = UHΛZUH
H fixed, then it directly follows

ΦI = min
tr (Z)≤σ2

N nR

max
tr (Q)≤P

tr F (Z−1/2HQHHZ−1/2)

≤ min
tr (Z)≤σ2

N nR

max
tr (Q)≤P

tr F (Λ
−1/2
Z Λ

1/2
H QΛ

1/2
H Λ

−1/2
Z ) = ΦD

I (3.68)
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Next, we use Theorem 7 to show that ΦI ≥ ΦD
I . With Theorem 7 we have

tr F (Λ
−1/2
Z Λ

1/2
H QΛ

1/2
H Λ

−1/2
Z ) ≥ min

π

m∑

i=1

tr F (λπi
(Z)λi(HQHH)). (3.69)

The maximum over Q of the term in (3.69) is greater or equal to the term with the
choice of UQ = UH

H , i.e.

max
tr (Q)≤P

tr F (Λ
−1/2
Z Λ

1/2
H QΛ

1/2
H Λ

−1/2
Z ) ≥ min

π

m∑

i=1

tr F (λπi
(Z)λi(H)λi(Q̂)).(3.70)

Inequality (3.70) is valid for all Z. Therefore, we have

min
tr (Z)≤nRσ2

N

max
tr (Q)≤P

tr F (Λ
−1/2
Z Λ

1/2
H QΛ

1/2
H Λ

−1/2
Z ) ≥

min
tr (Z)≤nRσ2

N

max
tr (Q)≤P

m∑

i=1

tr F (λi(Z)λi(H)λi(Q)). (3.71)

From (3.71) it follows

ΦI ≥ ΦD
I . (3.72)

From (3.68) and (3.72) follows ΦI = ΦD
I . This completes the proof.

�

3.4.4 Proof of Lemma 12

We denote the optimal transmit covariance matrix eigenvalues with λ∗i (Q) and
the worst case noise covariance matrix eigenvalues with λ∗i (Z). The water-filling
solution of the transmit covariance matrix eigenvalues is given for all λ∗i (Q) > 0 as

F [1]

(
λk(H)λ∗k(Q)

λk(Z)

)

= µ̃
λk(Z)

λk(H)
(3.73)

with µ̃ ≥ 0. We show that the choice λ∗i (Z) = 1
ρλ

∗
i (Q) fulfils both optimality

conditions (3.66) and (3.73) simultaneously. This result is derived by computing
the Lagrangian multiplier for (3.73) and (3.66) by noting that

µ̃λ∗k(Q) = µλ∗k(Z). (3.74)

Finally, the two Lagrangian multiplier are related from (3.74) by

µ̃ =
nRσ

2
N

P
µ.

�
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3.4.5 Lemma 13 and the sketch of its proof

Lemma 13: Consider the operator-monotone function f(t) =
∫∞

0
st(s+t)−1dµ(s).

Then f(0+) = 0 and the expression

lim
t→0

f(t) − f(0)

t
= f ′(0)

exists and 0 < f ′(0) < +∞.
Proof: We give here only the sketch of the proof, because the proof contains many
mathematical technicalities which does not provide new information or new insights.

The properties of the function f(t) clearly depend on the measure dµ(s). We split
the positive measure dµ(s) into two parts

dµ(s) = dµ0(s) + dµ̂(s). (3.75)

The first part dµ0(s) is a discrete measure with a step at s = 0 and the second part
dµ̂(s) is a continuous measure around the zero.

For the first part of Lemma 13, we consider

f(t) =

∫ ∞

0

ts

s+ t
dµ0(s)

︸ ︷︷ ︸

=0 for all t>0

+

∫ ∞

0

ts

s+ t
dµ̂(s). (3.76)

From now on, we have to study only the continuous part, i.e. µ = µ̂. For all t > 0
holds ts(s+ t)−1 ≤ t. Therefore, we have with finite positive number c = µ̂((0,∞))

0 ≤ lim
t→0

f(t) ≤ lim
t→0

t · c = 0.

For the second part of Lemma 13, we have the following identities

f ′(t) = lim
τ→0

f(t+ τ) − f(t)

τ

f ′(0) = lim
τ→0

f(τ) − f(0)

τ

= lim
τ→0

f(τ)

τ

= lim
τ→0

∫ ∞

0

s

s+ τ
dµ̂(s).

Using the continuity of the measure around zero we can show that interchanging
the limit and the integral is allowed, and it follows

f ′(0) =

∫ ∞

0

dµ̂(s) = c <∞.

This completes the sketch of the proof.
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3.4.6 Proof of Theorem 10

The singular value decomposition of H is given by H = UHΛ
1/2
H V H

H . First, we

show that CII ≤ CD
II . We choose Ŵ = V H . Then it follows that

CII ≤ max
tr (Q)≤P

log
det(ŴΛZŴ

H
+ V HΛ

1/2
H QΛ

1/2
H V H

H)

det(ŴΛZŴ
H

)

= max
tr (ΛQ)≤P

m∑

i=1

log

(

1 +
λi(H)λi(Q)

λi(Z)

)

= CD
II . (3.77)

Next, we use the following Theorem [Fie71, Theorem 1] For positive semidefinite
matrices A and B with eigenvalues α1 ≥ α2 ≥ ... ≥ αn and β1 ≥ β2 ≥ ... ≥ βn it
holds

n∏

i=1

(αi + βi) ≤ det(A + B) ≤
n∏

i=1

(αi + βn+1−i)

This Theorem is stronger as Theorem 7, because it characterises the best and worst
case permutation. However, it is only applicable to the special case of F (X) =
log(I + X).

Hence, applying the Theorem, we show that CII ≥ CD
II . We have

CII ≥ max
tr Q≤P

m∑

i=1

log

(

1 +
λi(Λ

1/2
H QΛ

1/2
H )

λi(Z)

)

=

= max
tr (ΛQ)≤P

m∑

i=1

log

(

1 +
λi(H)λi(Q)

λi(Z)

)

= CD
II . (3.78)

From (3.77) and (3.78) follows CII = CD
II . This completes the proof.

�

3.4.7 Proof of Theorem 11

At first, we define the maximisation problem

ΦIIIa(Z) = max
tr (QZ)≤P

tr F (HQHH). (3.79)

Obviously, we have the following inequality chain

ΦD
III ≤ ΦIII ≤ ΦIIIa(Z). (3.80)

Next, we find a Z∗ which is in Z and for which ΦIIIa(Z∗) = ΦD
III , i.e. the optimal

input Q∗ = diag(p1, ..., pn) for ΦD
III is also optimal for ΦIII . The sufficient condition

for optimality of Q∗ is given by the KKT conditions [BV03]. The Lagrangian of
the optimisation problem in (3.79) is given by

L(Q, λ,Ψ) =

∫ ∞

0

s tr

(

HQHH
[

sI + HQHH
]−1
)

dµ(s)

−λ tr (QZ − P ) + tr ΨQ.
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As a result, the KKT conditions are given by

tr QZ ≤ P

tr ΨQ = 0

∂

∂Q
L(Q, λ)

∣
∣
∣
Q=Q∗

=

∫ ∞

0

s2
[

sI + HQ∗HH
]−2

dµ(s) − λZ + Ψ = 0 (3.81)

Next, we find a noise covariance matrix such that the corresponding optimal trans-
mit covariance matrix Q is diagonal and corresponds to the optimal power alloction
from the corresponding MAC problem. The condition in (3.81) is fulfilled by

Z∗ =
1

λ

∫ ∞

0

s2
[

sI + HQ∗HH
]−2

dµ(s) +
1

λ
Ψ. (3.82)

Note that the worst case noise covariance matrix and the Lagrangian multiplier Ψ

for positive semidefiniteness of Q fulfill

tr Q∗Ψ = 0

tr Z∗Q∗ = P.

The Lagrangian multiplier λ is derived from (3.25) as

λ =

∫ ∞

0

s2

(s+ λk(H)pk)
2 dµ(s) (3.83)

for all k for which pk > 0. The solution in (3.83) is a generalised waterfilling solution.
From (3.82), we have the worst case noise for which ΦD

III = ΦIII = ΦIIIa(Z∗)
and for which the optimal Q∗ = diag(p1, ..., pn) fulfils the trace constraint. This
completes the proof.

�

3.4.8 Proof of Theorem 13

The necessary and sufficient condition for the optimality of Q∗
k for Z∗

k from (3.47)
is with respect to the single-user optimization problem in (3.46)

HH
i

[
Zk + HkQ

∗
kH

H
k

]−1
Hi = µiI − Ψi

tr(QiΨi) = 0. (3.84)

We conclude that (3.84) holds for all Q∗
i for all i ∈ {1, ...,K}. Since (3.84) exactly

corresponds with (3.41), the KKT from (3.45) are fulfilled, too. The KKT which
are derived from (3.45) are necessary and sufficient for the global optimum. This
completes the proof.

�

3.4.9 Proof of Theorem 14

Suppose that (3.56) and (3.57) are fulfilled. With the KKT condition for the co-
variance matrix optimisation in (3.41) this implies

ρHH
i φ

[1]

(

ρ

K∑

k=1

p∗kHkQ∗
kHH

k

)

Hi = µ̄I − Ψ̄i i ∈ I, . (3.85)
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where Ψ̄i = Ψi/p
∗
i is positive semidefinite. With the condition tr(Q∗

i Ψ̄i) = 0 from
(3.41) we can choose Q∗

i = 0 for i ∈ {1, ...,K}\I. Therefore the KKT condition
tr(Q∗

i Ψ̄i) = 0 is fulfilled for all positive semidefinite Ψ̄i. Since Ψ̄i is positive
semidefinite, (3.85) will also be fulfilled for i ∈ {1, ...,K}\I. This is an immediate
consequence of (3.57). Hence, the KKT conditions (3.55) are fulfilled for all i, which
implies optimality with respect to the original problem (3.38).

To prove the reverse direction, we assume that Q̃i is optimal with respect to the
original problem in (3.38). Then, the KKT in (3.55) are fulfilled. Further on, there
is a decomposition Q̃i = p∗i Q

∗
i which solves the partial problem (3.37) and (3.36),

respectively. Otherwise, it would be possible to achieve a performance higher than
the optimum of the original problem. This would lead to a contradiction. From
the KKT condition (3.55) immediately follows the KKT in (3.51) and (3.41). This
completes the proof.

�

3.4.10 Proof of Theorem 15

Using the KKT conditions from (3.51), the necessary and sufficient condition in
Theorem 15 can be easily derived. Next, we will show that the users are sorted by
their maximum channel matrix eigenvalues and not by the Frobenius norm. Hence,
we start with the KKT conditions for the power optimisation with fixed optimal
transmit covariance matrices Q1,Q2 with tr Q1 = tr Q2 = 1. The first KKT
condition is given in (3.55)

ρHH
1 φ

[1]
[

ρp1H1Q1H
H
1 + ρp2H2Q2H

H
2

]

H1 = µI − Ψ1

ρHH
2 φ

[1]
[

ρp1H1Q1H
H
1 + ρp2H2Q2H

H
2

]

H2 = µI − Ψ2 (3.86)

The normalised covariance matrices Q1 and Q2 are the optimum transmit covari-
ance matrices. The Lagrangian multipliers Ψ1 and Ψ2 are positive definite. As a
result, we have for all w : ||w||2 = 1

ρwH
(

HH
1 φ

[1]
[

ρp1H1Q1H
H
1 + ρp2H2Q2H

H
2

]

H1

)

w ≤ µ||w||2 = µ. (3.87)

Taking the supremum of the LHS in (3.87) with the eigenvector of H1 which equals

the maximum eigenvalue of HH
1 φ

[1]
[

ρp1H1Q1H
H
1 + ρp2H2Q2H

H
2

]

H1, we obtain

ρλmax

(

HH
1 φ

[1]
[

ρp1H1Q1H
H
1 + ρp2H2Q2H

H
2

]

H1

)

≤ µ. (3.88)

Let the transmit covariance matrix of user one given as

Q1 =

L1∑

l=1

λQ1
(l)u

(1)
l u

(1)H
l

with rank(Q1) = L1. Then from the optimality condition tr(Q1Ψ1) = 0 follows

u
(1)H
l Ψ1u

(1)
l = 0 for all 1 ≤ l ≤ L. Using (3.86) this shows

ρu
(1)H
l HH

1 φ
[1]
[

ρp1H1Q1H
H
1 + ρp2H2Q2H

H
2

]

H1u
(2)
l = µ. (3.89)
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With (3.88) and (3.89) we have

ρλmax

(

HH
1 φ

[1]
[

ρp1H1Q1H
H
1 + ρp2H2Q2H

H
2

]

H1

)

= µ. (3.90)

By analogy arguments we obtain for user 2

ρλmax

(

HH
2 φ

[1]
[

ρp1H1Q1H
H
1 + ρp2H2Q2H

H
2

]

H2

)

= µ.

As a result with (3.86), we obtain the optimality condition which is fulfilled by
optimal p1 and p2

λmax

(
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H
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]
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H
2

]−2

H2

)

. (3.91)

Next, we study the convergence behaviour of the maximum eigenvalues in (3.91)
for P → 0. We can show by Lemma 13 that the maximum eigenvalues in (3.91)
converge to

λmax

(

HH
1 φ
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[

ρp1H1Q1H
H
1 + ρp2H2Q2H

H
2

]
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)
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−→ρ→0 λmax(H2H
H
2 )

Therefore, from (3.91) follows for ρ→ 0 that

λmax(H1H
H
1 ) = λmax(H2H

H
2 ).

This proves the first part of the Theorem 15. The second part of the Theorem 15
follows from the KKT condition already used in (3.91) for p2 = 0. In order to prove
the last part of the theorem, we start with the RHS of (3.91) for p2 = 0. With the
singular value decomposition of the channel matrix H1 = V ΛHUH , we can write

ρλmax

(

HH
2 φ

[1]
[

ρ̂H1Q
s
1(ρ̂)HH

1

]

H2

)

= ρ max
||u||2=1

uHHH
2 V 1φ

[1] [ρ̂diag(pkλk(H))] V H
1 H2u. (3.92)

The set M is defined as M = {m : mH = uHHH
2 V 1

∣
∣
∣||u||2 = 1}. The optimal

single-user transmit strategy Qs
1(ρ̂) was derived in Lemma 3 as ρλkφ

[1](ρpkλk) = µ
for all active k ≤ R(ρ). This yields for (3.92)

ρ max
w∈M

wHφ[1] [ρ̂diag(pkλk(H))] w = max
w∈M

µ
R(ρ̂)∑

l=1

||wl||
2

λl(H)

= µ max
w∈M

R(ρ̂)∑

l=1

||wl||
2

λl(H) . (3.93)

By assumption ρ̂ was chosen such that the LHS of (3.92) is smaller than or equal
to µ. It follows

max
w∈M

R(ρ̂)
∑

l=1

||wl||2
λl(H)

≤ 1. (3.94)
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The rank function R(ρ) is monotonic increasing with ρ. Therefore, (3.94) holds for
all ρ ≤ ρ̂. This completes the proof.

�
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4.1 Conclusions

In this thesis, the performance of single-user and multiple-user multiple-antenna
wireless systems was studied. We considered the average and instantaneous sum
capacity as well as the average normalised MSE and the normalised sum MSE as
performance metrics. The following topics were covered and the following results
were derived:

• Based on the well established MIMO block flat fading channel model with
correlated transmit and receive antennas, we provided a partial order of cor-
relation scenarios based on majorization. This allowed us to compare the
achievable performance of correlated MIMO systems.

• We identified the general structure of the performance functions in MIMO
systems. It was possible to write the considered performance measures as the
trace of a matrix-monotone function. Using Löwner’s representation of those
functions, we developed a general theory for solving performance optimisation
problems in MIMO systems.

• Under three different types of CSI at the transmitter, namely perfect CSI,
knowledge of the correlation matrices, and no CSI, we derived the optimal
transmit strategies with respect to the class of performance functions for sin-
gle user MIMO systems. We showed that the optimal signal processing struc-
ture consists of a Gaussian codebook, a power allocation entity, and a set of
beamformers.

• The impact of the correlation on the achievable average performance of single-
user MIMO systems depends on the type of CSI available at the transmitter.
We characterised the behaviour of the average performance and quantified the
loss or gain due to correlation.

• The step in direction of multi-user MIMO performance analysis was set up
by considering a point-to-point link with inter-cell and intra-cell interference
modelled by coloured noise. We modelled three representative scenarios by
different constraints on the noise covariance matrix. The transmitter was
assumed to have perfect CSI and knowledge of the noise variance. We proved
that worst case noise robs the CSI and deconstructs the cooperation at the
transmit side.

• Incooperating the transmit strategies of all participating users, we optimised
the sum performance of the multi-user MIMO system and derived an itera-
tive algorithm which efficiently computes the optimal transmit strategy. In
addition to this, we characterised the optimal transmit strategy at low SNR
values and derived the single-user optimality range.

Note, that the result in chapter 3 can be directly applied to wired communications
systems, e.g. DSM for DSL [YGC01].
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4.2 Future research

There are countless possibilities for future research in the important and interesting
area of (network) information theory and wireless communications. In the following,
we will mention two representative and challenging directions:

4.2.1 Outage capacity and delay limited capacity

In contrast to the average quantities in (1.8), (1.9), and (1.13) a more detailed
measure of information provides the outage probability which is described next. Let
us assume that the system works at a given transmission rate R. Obviously, an
outage occurs if the information cannot be reliably transmitted with this rate, i.e.
if the instantaneous mutual information f(Q,H, ρ) is below that value R. The
probability of this event is called the outage probability of the MIMO system

Ω(ρ,Q) = Pr [f(Q,H , ρ) < R] (4.1)

for transmit strategy Q or with respect to the instantaneous channel capacity

Ω(ρ) = Pr [c(H, ρ) < R] .

In [Tel99], the outage probability was derived and analysed by numerical simula-
tions. By using the outage probability as a measure for performance evaluation,
one can design a system which works for a given percentage of time. On the other
hand, for a given percentage of outage ǫ, the rate R with the constraint that the
outage probability is smaller than or equal to ǫ, i.e.

R(ǫ) = maxR s.t. Ω(ρ) ≤ ǫ.

The quantity R(ǫ) is called the ǫ-capacity of the channel. The 0-capacity is called
the delay-limited capacity, i.e.

D = max
Q:E tr Q≤P

R s.t. Pr [f(Q,H , ρ) < R] = 0. (4.2)

The delay-limited capacity was derived and analysed in [CTB99] for SISO and
single-sided diversity channels. The work was extended in [BCT01] for block-fading
channels with multiple antennas. The notions of capacity vs. outage and delay-
limited capacity were discussed in [Ber00, Chapter 3].

These measures of instantaneous, outage, and delay limited performance have to be
analysed for single-user MIMO systems. Based on these performance measures it
is then possible to incooperate higher layer aspects into the analysis and design of
MIMO systems [BJH03]. The impact of correlation and the optimal transmission
strategies for MISO systems were studied in [JB03a, BJ04d]. A generalization to
MIMO systems is an open research problem.

4.2.2 Individual QoS requirements and network optimisation

Both individual rates without and with SIC Rk and RSIC
k respectively, of one user

k depend on the rates of the other users. Consider a two user MAC. The achievable
rates with SIC if user one is detected first and subtracted before user two is detected
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are given by

RSIC
1 = log det

(

I + ρH1Q1H
H
1 + ρH2Q2H

H
2

)

− log det
(

I + ρH2Q2H
H
2

)

,

RSIC
2 = log det

(

I + ρH2Q2H
H
2

)

.

In general, the rate of user two can be expressed as a function of user one and vice
versa. It is possible to plot the rate of user two over rate of user one. This results
in the capacity region of the two user MAC. For all rate tupes (r1, r2) inside the
capacity region, there exist codes of length n for which the maximal probability of
error tends to zero with increasing code length n→ 0 [CT91, section 14.3]. In this
case, it is assumed that the receiver applies the optimal detector.

Each user drives its own service, e.g. speech connection-oriented, or a multi-media
stream-oriented service, which requires a minimum quality of service (QoS). On the
physical layer, these QoS requirements transform into SINR or rate requirements.
On the DLL, there are delay and reliability constraints. The problem statement then
is: Allocate minimum sum transmit power in order to fulfill the QoS requirements
of all users. This problem has been solved for multiuser SIMO systems in [Sch02].
Actually, the extension to MIMO MAC and BC remains an open research problem
[BSJ02, JB02c]. Furthermore, higher layer aspects, like scheduling based on this
spatial characterisation of the physical layer lead to the newly coined cross-layer
design and network optimisation [GW02, Yeh03, BJH03]. This will be a major
research topic in the future.

4.2.3 Extension to multi-carrier communications

If we extend the class of channels to frequency-selective channels, one would think
that additional efforts are necessary in order to deal with intersymbol-interference.
Orthogonal Frequency Division Multiplexing (OFDM) is an effective engineering
approach to deal with frequency-selective channels. From an information theoretic
point of view, we have to exploit the additional spectral dimension in order to
improve the performance, throughput, and reliability of the transmission.

The difference of the spectral dimension in contrast to the spatial dimension is that
the carriers are orthogonal and does not interfere with each other (ideally). The
spatial signals do interfere. In order to better understand the properties of the
MIMO OFDM channel [BGP02] it will be necessary to study the impact of the
power delay profile on the average and instantaneous performance. In addition to
this, the correlations between the carriers depend on the number of taps and on
the power delay profile. The analysis of the performance metrics from section 4.2.1
with respect to power delay profile as well as spatial correlation will provide further
insights into the maximum achievable performance and throughput. Furthermore,
it will lead to the development of optimum transmit strategies which exploit the
spectral dimension as well as the spatial dimension.
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