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Abstract

Today’s Internet serves a huge variety of different applications with diverse and ever increas-
ing demands on the underlying network. Among others, current trends towards immersive
entertainment, like 8K video streaming or VR gaming, pose new challenges on end-to-end
bandwidth volume and have stringent delay requirements. At the same time, the number
of users is growing, as well as the users’ expectations on the delivered service quality. As
a consequence, delivering good Quality of Experience (QoE) becomes an ever more chal-
lenging task and – due to the steadily increasing number of providers – the satisfaction of
subscribers and users is a substantial factor to remain competitive on the market. As a con-
sequence, QoE management has emerged as a key research topic over the past years and
constantly gains importance for several stakeholders in the Internet ecosystem. This mono-
graph examines relevant research questions related to QoE management on the example of
HTTP Adaptive Streaming (HAS), which is to date the application contributing the most to
the global IP traffic.

One of the major challenges of QoE management is to understand the complex interplay
of application- and network-specific parameters and their impact on the user satisfaction.
The first part of this thesis shows how QoE-relevant performance metrics for HAS can
efficiently be retrieved for a given – and potentially huge – input parameter space by means
of analytical modeling. More specifically, we use an existing approach relying on discrete-
time analysis, which models an HAS client’s video buffer, and we extend it so to reflect the
HAS-typical quality adaptation behavior. For given input network characteristics, such as
the available bandwidth and its variation, as well as for various video- and player-specific
settings, like the quality switching thresholds, the model yields probabilistic outputs for the
video buffer’s filling state. From that, all relevant HAS metrics, e.g., the stalling behavior
and the delivered video quality, can be derived, allowing to efficiently tune HAS parameters
in accordance with each other, so as to optimize the QoE.

The second part quantifies possible positive effects of using variable segment durations
for HAS. Instead of relying on a content-agnostic video segmentation strategy with fixed
segment durations, the variable approach – proposed by Netflix as shot-based encoding –
takes the video content into account by segmenting the video at scene-cuts. This results in
segments of different lengths, but promises to reduce the number of costly I-frames during
the encoding and hence, to increase the encoding efficiency. However, no comparative study
highlighting the impact of this technique on the HAS ecosystem has been conducted, yet.
Thus, we first provide a broad investigation on the bitrate reduction that can be achieved
with the variable approach. In a second step, we evaluate by means of a measurement
study its impact on the streaming performance, taking into account three different adaptation
heuristics. Our results show that variable segment durations can significantly reduce the
bitrate requirements and – as a result – are capable of increasing the HAS QoE.
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Abstract

The third part of this thesis focuses on how mobile network operators (MNOs) can exploit
new features provided by the 5G networking architecture, so to overcome current QoE mon-
itoring limitations. More specifically, we propose to make use of Network Functions (NFs)
which are introduced with 5G and dedicated for improved analytics, complex computations,
and for the interaction with third parties, such as content providers. These capabilities en-
able a variety of potentials, like, for example, estimating the QoE by applying Machine
Learning (ML) techniques. From the perspective of an MNO, we elaborate on the involved
challenges of introducing such an ML-based QoE estimation in 5G networks and by means
of a simulation-based feasibility study, we demonstrate that the QoE can reliably be esti-
mated solely based on network KPIs. In this scope, we perform a quantitative comparison,
addressing the estimation accuracy of different state-of-the-art regression techniques, and
discuss them with respect to different relevant qualitative aspects.
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Zusammenfassung

Das heutige Internet wird für eine Vielzahl verschiedenartiger Anwendungen genutzt. Diese
haben zum einen sehr diverse Anforderungen an das zugrundeliegende Netz, welche zum
anderen auch stetig steigen. Besonders stark ist dieser Trend bei den Unterhaltungsmedien
zu beobachten. Ultrahochauflösendes Video Streaming, zum Beispiel in 8K, fordert immer
höhere Bandbreiten ein, während Onlinespiele zusätzlich immer striktere Bedingungen be-
züglich der maximal auftretenden Paketverzögerungen haben. Können diese Anforderungen
vom Netz nicht erfüllt werden, so wird die vom Nutzer subjektiv wahrgenommene Quali-
tät der Anwendung beeinträchtigt. Besipielsweise führt eine zu geringe Bandbreite im Fall
von Video Streaming zu Wiedergabeunterbrechungen und schlechter Bildqualität. Wenn bei
Voice-over-IP Telefonaten Paketverlust oder -verzögerung auftreten, so wird die Qualität
der Sprachübertagung wesentlich gestört. Um die subjektive Wahrnehmung zu quantifizie-
ren, hat sich in den letzten Jahren in der Forschung das Konzept „Quality of Experience“
(QoE) etabliert, welches den Grad der (Un)-zufriedenheit des Nutzers eines Services be-
schreibt. Dieser resultiert aus der Erfüllung der individuellen Erwartung an den Service.

Während zum einen die Erwartungshaltung der einzelnen Nutzer stetig dahingehend zu-
nimmt, dass die Anwendungen stabil und ohne Qualitätseinbußen laufen, werden auch
die Angebote selbst, wie zum Beispiel Video-on-Demand Plattformen, immer beliebter.
So nimmt die tägliche Nutzung von Video Streaming, virtuellen Konferenzen oder auch
Cloud Gaming weltweit zu. Diese Trends, gepaart mit den kontinuierlich steigenden Anfor-
derungen heutiger Services an das Netz, stellen sowohl Anwendungs- als auch Netzanbie-
ter vor große Herausforderungen. Zum einen muss die Infrastruktur entsprechend skaliert
sein, so dass Applikationen flüssig laufen und den Nutzern eine größtmögliche Zufrieden-
heit geboten wird, um sie nicht an die Konkurrenz zu verlieren. Zum anderen aber müssen
die Anbieter kostengünstig agieren, um wirtschaftlich rentabel zu bleiben, um so am stetig
wachsendem Markt konkurrenzfähig zu sein.

Um diese Ziele zu vereinen, benötigt es intelligente Mechanismen auf Netz- und Anwen-
dungsebene, die es erlauben, vorhandene Ressourcen möglichst effizient zu nutzen, aber
dennoch den verschiedenen Anwendungsanforderungen gerecht zu werden. „Quality of
Service“ (QoS) Management erlaubt es, relevante Netzwerkparameter wie zum Beispiel
Durchsatz oder Paketverzögerungen zu messen und bei Bedarf diese Parameter mit Hil-
fe verschiedener Steuerungsmechanismen, wie zum Beispiel Bandbreitenreservierung für
einzelne Verbindungen, zu verbessern. Zwar ist durch die Verbesserung der Netzwerkpa-
rameter von einer Verbesserung der Anwendungsqualität auszugehen, die genaue Auswir-
kung auf die vom Nutzer wahrgenommene Dienstgüte kann jedoch nur schwer quantifiziert
werden.

Aus diesem Grund geht QoE Management – im Vergleich zu QoS Management – einen
Schritt weiter und berücksichtigt bei der Umsetzung von Steuerungsmechanismen weite-
re Kontextinformationen, wie die spezifischen Anforderungen der laufenden Anwendung,
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Zusammenfassung

oder das vom Nutzer verwendete Endgerät und dessen Eigenschaften. Somit ermöglicht
QoE Management eine gezieltere Anpassung des Netzwerks und der Anwendung, so dass
vorhandene Ressourcen effizient genutzt werden, und die Nutzerzufriedenheit maximiert
wird. Allerdings ist das eine sehr komplexe Aufgabe, gekoppelt mit einer Vielzahl an Her-
ausforderungen, weshalb sich QoE Management in den letzten Jahren zu einem wichtigen
Forschungsfeld entwickelt hat. Elementares Ziel ist es, leistungsfähige und optimierte Lö-
sungen in Bezug auf die drei folgenden Grundbausteine zu entwickeln: Der erste ist die
Modellierung und die Abschätzung von QoE. Dieser Baustein befasst sich damit, zu quan-
tifizieren, wie Netzwerkparameter, anwendungsspezifische Einstellungen und die Erwar-
tungshaltung des Nutzers dessen wahrgenommene Dienstgüte beeinflussen. Der zweite nö-
tige Baustein, das QoE Monitoring, beschreibt die Fähigkeit, relevante Parameter im Netz
und in der Anwendung, oder direkt die QoE, messen zu können. Schließlich, und das formt
den dritten Grundbaustein, benötigt man noch Mechanismen, um das Netz und die Anwen-
dung gezielt steuern zu können, um am Ende die QoE zu verbessern oder ein bestimmtes
Level an Nutzerzufriedenheit garantieren zu können. Diese Arbeit adressiert die verschie-
denen Herausforderungen von QoE Management, stellt unterschiedliche Lösungsansätze in
Bezug auf alle drei Bausteine vor und evaluiert diese im Hinblick auf ihre Umsetzbarkeit
und Leistungsfähigkeit.

Zunächst stellen wir ein analytisches Modell vor, welches auf Warteschlangentheorie ba-
siert und in der Lage ist, QoE-relevante Metriken für adaptives Video Streaming effizient zu
berechnen. Das Modell nimmt als Eingabe verschiedene netz-, video- und anwendungsspe-
zifische Parameter entgegen. Dazu gehören unter anderem die vorhandene Bandbreite und
deren Schwankung, die verfügbaren Videobitraten und die maximale Kapazität des Video-
puffers. Die hohe Effizienz des Modells erlaubt es, mit überschaubarem Zeitaufwand eine
Vielzahl an verschiedenen Parameterkombinationen zu testen und somit deren Zusammen-
spiel und Einfluss auf die QoE zu evaluieren. Es kann also benutzt werden, um die einzelnen
Einstellungsparameter von adaptivem Streaming so zu optimieren, dass unter verschiedenen
Netzwerkbedingungen die vom Nutzer erfahrene Dienstgüte maximiert wird.

Des Weiteren untersuchen wir in dieser Arbeit, inwiefern eine effizientere Strategie zur Vi-
deosegmentierung die QoE von Streaminganwendungen verbessern kann. Typischerweise
wird ein Video für adaptives Streaming – ohne jegliche Berücksichtigung des Videoinhalts –
in gleichlange Segmente von wenigen Sekunden Dauer unterteilt und jedes dieser Segmente
mit verschiedenen Bitraten codiert. Während der Wiedergabe kann somit die Qualität dy-
namisch an die aktuell verfügbare Bandbreite angepasst werden. Allerdings verringert eine
solche, von der Videostruktur unabhängige Segmentierung, die Effizienz beim Encoding.
Berücksichtigt man jedoch die Charakteristiken des zugrundeliegenden Videos und unter-
teilt das Video an den Stellen, an welchen ein Szenenwechsel stattfindet, dann kann das die
Effizienz des Encodings steigern, liefert aber Segmente von variabler Dauer. Zunächst quan-
tifizieren wir unter Einbeziehung verschiedener encodingspezifischer Einflussfaktoren, wie
viel Bitrate der variable Ansatz im Vergleich zum konventionellen Ansatz einsparen kann.
Wir zeigen, dass das Potenzial von variablen Segmentdauern am stärksten vom gewählten
Videoclip selbst abhängt, und dass die Videobitrate bei gleichbleibender Qualität signifikant
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reduziert werden kann. In einem zweiten Schritt evaluieren wir die Leistungsfähigkeit von
variablen Segmentdauern beim Video Streaming selbst. Wir stellen fest, dass die reduzierte
Bitrate vor allem in solchen Situationen die QoE deutlich verbessern kann, in denen nur
wenig Bandbreite zur Verfügung steht.

Der dritte Teil dieser Arbeit bezieht sich auf den Baustein QoE Monitoring und untersucht,
wie sich Netzwerkbetreiber maschinelles Lernen zu Nutze machen können, um die QoE
basierend auf Telemetriedaten aus dem Netzwerk zu schätzen. Die 5G Netzwerkarchitektur
führt neue, dedizierte Netzfunktionen für die Datenanalyse, komplexe Berechnungen, sowie
für den Informationsaustausch mit Dritten, zum Beispiel einem Inhaltsanbieter, ein. Diese
Netzfunktionen eröffnen eine Vielzahl neuartiger Möglichkeiten, wie zum Beispiel eine zu-
verlässige Schätzung der QoE im Netz durch die Integration von maschinellem Lernen.
Zunächst diskutieren wir die Herausforderungen eines solchen Ansatzes in 5G Netzen und
untersuchen die Anwendbarkeit und Leistungsfähigkeit verschiedener Regressionstechni-
ken. Unsere Ergebnisse zeigen, dass gängige Techniken des maschinellen Lernens für QoE
Monitoring, welches rein auf Telemetriedaten aus dem Netz beruht, mit hoher Effizienz und
Genauigkeit eingesetzt werden können. Der vorgestellte Ansatz kann somit die Grundlage
für ein wirkungsvolles QoE Management in zukünftigen Netzwerken bilden.
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1
Introduction

Today’s Internet serves an ever growing number and variety of applications. While their
requirements on the network are highly diverse, they are at the same time constantly in-
creasing. This trend is particularly prominent in the multimedia and entertainment domain.
For example, while ultra-high definition (UHD) video streaming demands more and more
bandwidth capacity, online cloud gaming applications additionally have stringent demands
in terms of packet delays. If the requirements cannot be fully met, the application quality
– as perceived by the user – is degraded. For example, insufficient bandwidth causes inter-
ruptions during a video stream and results in poor visual quality. Increased packet delays
lead to lacks in online games and to delayed audio playback at the receiver side of a VoIP
call. In order to quantify the impact of network impairments on the application quality,
as subjectively perceived by the end-user, the concept of Quality of Experience (QoE) has
emerged as an important research topic during the last decade. It reflects the degree of de-
light or annoyance when using a specific service and is highly depending on the personal
expectation a user has on that service.

While the expectations of the individual users on good service quality are steadily increas-
ing, the market of Internet service offers is expanding simultaneously. For example, due
the raising popularity of Video On Demand (VoD) platforms, conventional media technolo-
gies, such as broadcast TV, are step by step replaced. The modern working environment
currently experiences a shift towards more flexibility, thus intensifying the usage of remote-
office, cloud computing, and online conferencing solutions. These trends, combined with
the steadily increasing network requirements of novel applications, pose huge challenges to
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Figure 1.1: Illustration of the three key building blocks for QoE management [19].

both, application providers (APs) and network providers (NPs). Providing a good QoE to
the user is an important business incentive for these stakeholders in the Internet ecosystem
to reduce the ever present risk of customer churn [16]. While this can be achieved by de-
ploying high-performance infrastructures and by scaling services so to achieve high quality
experiences, NPs and APs also have to operate their networks and services economically in
order to stay competitive on the expanding market [17]. Therefore, the crux is to exploit net-
work resources and application-level mechanisms as efficiently as possible to achieve both,
customer loyalty by delivering a good QoE plus being economically viable by profitable
service operation.

In order to meet these conflicting objectives, it needs intelligent mechanisms on application-
and network-layer, which allow to use the available resources as efficiently as possible,
whilst still fulfilling the applications’ requirements. The concept Quality of Service (QoS)
refers to the monitoring of network parameters, such as throughput or latency, which can
trigger the execution of targeted network control actions. That is, for example, adjusting
a flow’s guaranteed bitrate or prioritizing certain traffic. Although an improvement of the
network parameters is associated with an improvement of the service quality, the specific
implications on the quality – as subjectively perceived by the user – cannot be quantified
exactly, due to the complex and service-specific relationship between QoS and QoE.

QoE management goes one step beyond and considers additional context factors such as
the used applications, their specific requirements, or the user’s end-device. While QoE
management is promising in terms of meeting the trade-off between economic aspects and
application performance in a service- and user-centric manner, it is challenging and involves
complex tasks. Although there is no standardized definition of them, there is a consensus
in the QoE research community that the QoE management process can be broken down to
three major building blocks [18, 19, 20], as illustrated in Figure 1.1.

2



1. QoE modeling and assessment: It is essential to understand the requirements of
given applications and how disturbances affect the QoE. The QoE modeling and as-
sessment component describes the creation of predictive mathematical models, which
allow to map how measurable parameters, i.e., network- or application-related key
performance indicators (KPIs), affect the user perceived quality. These generic rela-
tionships between measurable parameters and QoE are a fundamental step towards
understanding QoE [18] and are crucial to derive appropriate control actions.

2. QoE monitoring and measurement: Monitoring refers to the collection of data and
information. This can be network- or application-related KPIs, such as throughput,
packet loss, terminal capabilities, or video bitrate, which are used along with QoE
models to retrieve the QoE. Other than that, this building block can also involve the
collection of explicit user ratings, e.g., via surveys, which would give the best view
of the user satisfaction.

3. QoE control and optimization: This component describes the adaptation and opti-
mization via dynamic control actions on network- and application-level, potentially
triggered by QoE monitoring activities. Those control actions can be short-termed,
e.g., updated per-flow bandwidth guarantees or traffic prioritization, or long-termed,
such as switching to an improved voice codec for VoIP telephony.

Each one of these building blocks is essential for QoE management, as no proper control
actions could be performed without knowing the current state of the application perfor-
mance and the possible implications of implemented control actions. Furthermore, each of
the building blocks brings its own challenges and their specific realizations are still topic of
research, among others because they constantly need to adapt to the dynamics of the Inter-
net ecosystem. New applications like VR gaming, but also adaptations to existing services,
such as the deployment of novel voice or video codecs, require new mapping functions be-
tween QoS and QoE used for modeling QoE. With the ever increasing share of end-to-end
encrypted traffic, inspecting packet payloads, e.g., to retrieve information such as audio or
video bitrate from network flows, is no longer applicable and NPs need to find QoE moni-
toring alternatives [21]. Advanced resource control mechanisms introduced with next gen-
eration networks, like Network Slicing or QoS-flows in 5G, offer new possibilities for QoE
control in the network, but due to the recent 5G deployment, field studies and guidelines on
how to optimally exploit them for QoE-aware networking are still missing.

One major flaw which hinders to fully exploit the potential of QoE management – and thus
a highly relevant challenge – is the missing signaling between the network and the applica-
tions, allowing to exchange relevant information [18]. The positive effects of application-
network collaboration have been shown in several studies and proposals [22, 23, 24, 25, 26].
But still, the AP and the NP are stakeholders, that typically can only operate independently
from each other within the Internet ecosystem. This is due to their different vantage points
and bounded control capabilities. For instance, the AP can monitor application performance
metrics and adapt application-specific settings, but without solid awareness of the underly-
ing network characteristics. Similarly, the NP has capabilities to monitor and control the
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network, but it is not fully aware of the performance of running applications or their spe-
cific settings. Although the network KPIs collected via QoS monitoring allow an estimate
of the QoE, more reliable information of the application performance would increase the
effectiveness of QoE-aware adjustments. Collaborations between APs and NPs can help to
overcome such issues, but are often hindered by practical obstacles, such as privacy con-
cerns or network neutrality [26], as well as missing interfaces and network entities [18].

The limited system view and bounded control capabilities of APs and NPs increase the
complexity of QoE management for either side, as the QoE delivered to the user is dictated
by the specifics and requirements of the application, as well as by the underlying network
and the degree to which it can satisfy the application’s needs. However, the combination
of all of these possible settings and conditions form such a huge problem space, that even
if any conceivable information about the application and the network conditions would be
available, it is still challenging to retrieve control actions that result in an optimized system
performance. This is due to the missing holistic understanding of services. While con-
trolled measurements and simulation activities allow to study certain use-cases, scalable
approaches for generating such an overall understanding are still missing.

1.1 Research Questions

This work proposes novel strategies to overcome some of the major limitations of QoE man-
agement. On the example of HTTP Adaptive Streaming (HAS), which is one of the most
widely used applications to date and which constitutes the majority of the overall global
IP traffic volume [27], we examine how to better exploit the potential of QoE manage-
ment. Thereby, we take into account the perspective of both stakeholders within the HAS
ecosystem, i.e., the NP and the AP, and we cover all of the three key building blocks while
elaborating on the following research questions:

RQ1 How to efficiently build up a holistic understanding of the complex interplay be-
tween application- and network-specific parameters and their impact on QoE?
The AP has a huge range of capabilities to tune its HAS system so as to achieve a high
level of satisfaction for the end user. That is, for example, the number of provided
quality levels and their bitrate characteristics, threshold settings to define which qual-
ity level to select, or buffer-dependent presets for starting and pausing the playback.
However, these settings need to be properly adjusted in accordance to each other on
the one hand, and tuned to the underlying network conditions on the other hand. For
example, higher bandwidth variations, as observed in mobile environments, require
different settings of the control parameters compared to wired networks, where the
bandwidth capacity is in general higher and more stable. The question on how to un-
derstand all relevant inter-dependencies relates to the QoE modeling and assessment
building block and it is especially relevant for the AP to adjust its settings as good
as possible, but also relevant for the NP to derive the requirements imposed on its
network.
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RQ2 Does a more efficient video segmentation technique allow for further optimizing
the HAS ecosystem, so as to increase the system efficiency and QoE?
By splitting videos into short segments of equal duration and encoding each of them
with a set of different bitrates, HAS allows to dynamically adapt the video qual-
ity during playback. However, the segmentation process causes additional encoding
overhead, that is, in order to achieve the same visual quality for an HAS-prepared
video, a higher bitrate is required compared to the unsegmented version of that video.
By allowing segments of variable duration, this additional overhead can be reduced.
In how far this condition can be exploited to achieve a generic improvement to the
HAS ecosystem, is a question related to the QoE optimization building block. While
the AP can potentially profit from this approach by providing a better visual qual-
ity with the same bitrate requirements, the NP’s traffic volume could be decreased,
although delivering the same quality.

RQ3 How can new features of the 5th generation of mobile networks help to overcome
the QoE monitoring limitations of today’s networks?
The missing interaction between AP and NP is a key limitation to efficient QoE man-
agement and is partially caused by practical issues, such as missing interfaces and net-
work entities. This obstacle is eliminated in the 5G networking architecture, which
provides a new network function (NF), dedicated for the information exchange be-
tween the network operator and third parties, such as an AP. Combined with another
newly introduced NF, which leverages advanced data analytics in the network, 5G
offers innovative opportunities for QoE monitoring. While this can potentially be a
game changer towards user-centric network management, the question remains how
to systematically exploit the provided features and how to define their specifics, which
is not part of ongoing 5G standardization activities and hence up to the vendor or the
NP, respectively.

1.2 Scientific Contributions

The scientific contributions of this monograph are summarized in Figure 1.2. The research
studies are categorized along the horizontal axis according to their focus with respect to the
different QoE management building blocks, i.e., monitoring and measurement, modeling
and assessment, or control and optimization. The vertical axis denotes whether their rele-
vance is more towards the application domain (or the AP) or towards the network domain
(or the NP). The markers [x]y−RQk denote that the scientific publication [x] forms the basis of
chapter y and addresses the research question RQk. The different chapters are highlighted
using different colors.

The first part addresses RQ1 by proposing an analytical approach relying on queueing the-
ory, which is capable of reflecting the behavior of an HAS client. More specifically, the
video streaming process is modeled by means of a discrete-time GI/GI/1 system, where the
remaining workload in the system represents the buffer filling state of the client. On the one
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Figure 1.2: Contributions of this work illustrated as a classification of the research studies
conducted by the author. The notation [x]y−RQk indicates that the respective publication is
discussed in Chapter y of this monograph and addresses research question RQk.

hand, the model is fed with input distributions for the available bandwidth and for the bi-
trates on the different quality levels. On the other hand, it is supplied with all HAS-specific
control variables, e.g., the maximum buffer capacity, the segment duration, and the quality
switching thresholds. For the given inputs, the model computes the buffer distribution, from
which in turn all QoE-relevant performance metrics can be derived as probabilistic outputs.
That is, the stalling probability, the delivered video quality, or the frequency and amplitude
of quality switches. The model’s analytical nature allows to efficiently explore a huge set
of parameter combinations and thus to better understand their interplay within the HAS
ecosystem. Despite its high level of abstraction, we show that the model’s results are in line
with those generated via testbed measurements. Moreover, we demonstrate its applicability
for QoE analysis, although it operates on steady-state probabilities, disregarding the tem-
poral behavior of a video session, such as the position of a stalling event during playback.
This makes the model a powerful tool to properly adjust the HAS-specific parameters in
accordance to each other, so as to optimize the QoE for any given network condition.

Focusing on RQ2, the second part quantifies a possible improvement of the HAS ecosystem
by using a content-aware video segmentation strategy. The conventional approach relies on
content-agnostic and fixed segment durations, which leads to an increased encoding over-
head. This can be eliminated to a certain degree by splitting the video at scene-cuts, which
results in variable segment durations. To compare both options from an encoding perspec-
tive, we generate a representative data set of video sequences, encoded using a multitude
of different parameter combinations. This allows to quantify the encoding efficiency gain,
which can be achieved by the proposed approach, as well as to understand the relevant fac-
tors, which influence its magnitude. To study the impact of variable segment durations on
the streaming performance, we run extensive testbed measurements with varying bandwidth
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constraints and different state-of-the-art client-side quality adaptation heuristics. We learn
that in certain scenarios, the QoE can be significantly improved without any further adapta-
tions to the HAS ecosystem, while other scenarios would require some adjustments to the
system in order to benefit from the variable approach. We elaborate on the root causes of
observed drawbacks and indicate how to overcome them via client-side modifications.

The third part targets RQ3 by proposing an integration of Machine Learning (ML) in 5G
networks, exploiting the features of its novel network functions, dedicated for the (1) infor-
mation exchange between the mobile network operator (MNO) and third parties, as well as
for (2) enhanced data analytics. We detail on the involved challenges and relevant design
criteria when integrating ML-assisted QoE estimation into 5G networks from an operator’s
point of view. By means of network simulations and on the example of different regression
techniques, we practically examine how accurate the QoE can be estimated solely based on
network-related KPIs, which are accessible to an MNO. We study the relevance of differ-
ent types of network telemetry data for the estimation process, as well as possible factors
that impact the estimation accuracy, such as user mobility patterns or the used application.
Our results can serve as a guideline towards understanding the applicability of different ML
techniques, from both, a quantitative and qualitative perspective, as well as to define the
relevant statistics and KPIs to monitor.

Finally, we note that for the sake of reproducibility of the conducted studies and to support
building upon our obtained results, we publicly provide several data sets and software tools.
In particular, the set of encoded video sequences and the streaming sessions obtained via
testbed measurements to address RQ2 are provided on Zenodo1. The used encoding archi-
tecture and the testbed setup are available on Github2. The simulation environment which
has been implemented in the course of addressing RQ3 can as well be found on Github3.

1.3 Outline of the Thesis

The structure of this monograph is illustrated in Figure 1.3. The first column denotes the
specific goals, the second column represents the applied methodology or the tools that have
been used, and the third column specifies the gained insights. Chapter 2 gives general
background information on topics related to QoE and HAS. Background and related work
which are specific to a certain part of this thesis are introduced at the beginning of the
respective chapter. Furthermore, by the end of each chapter, we summarize the lessons
learned in a dedicated section.

The focus of Chapter 3 is on the analytical approach for modeling the behavior of an HAS
client. We first describe the model’s design in its two versions, one representing a buffer-
based, the other one a rate-based quality adaptation strategy. Afterwards, we validate the

1https://zenodo.org/record/3732206
2https://fg-inet.github.io/acm-mmsys-2020/
3https://github.com/fg-inet/vagrant-omnet-simulation-mobility
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model’s capability of computing QoE-related KPIs using testbed measurements. In a next
step, we show that in conjunction with a Monte-Carlo simulation approach, the model can
be applied for QoE analysis, despite its probabilistic outputs and its missing temporal char-
acteristics. To examine the impact of the quality switching thresholds on relevant perfor-
mance metrics, we perform an exemplary parameter study using the buffer-based version
of the model. Finally, in another experiment, we elaborate on possible improvements of
the HAS ecosystem by using segments of variable durations, which reduce the encoding
overhead, but introduce more uncertainty to the system.

In Chapter 4 we perform an in-depth analysis of the benefits of variable segment durations.
We encode a representative set of videos using various settings for the target quality/bitrate,
resolution, and maximum segment duration. The resulting data set contains roughly 2,000
encoded video sequences and allows to holistically compare the variable approach against
the state-of-the-art mechanism with respect to several encoding-related parameters, such as
the encoding overhead, resulting segment durations, and visual quality. While the variable
approach reduces the average bitrate requirements without noticeable quality degradation, it
increases the variability of the video segment sizes. To study the impact of this observation
on the HAS performance, we perform testbed measurements to create a large data set of
streaming sessions. This allows us to compare both approaches with respect to the resulting
QoE and to reveal scenarios in which the variable approach is most promising.

Chapter 5 addresses QoE estimation using ML in 5G networks. We first analyze the in-
volved challenges and requirements for realizing such a concept and propose its possible
integration into the 5G networking architecture. To study the feasibility of estimating the
QoE solely based on network KPIs, we perform network simulations to generate a ground-
truth data set, which is used for training ML models. More specifically, we quantitatively
compare the performance of five different regression techniques with respect to their esti-
mation accuracy, as well as in terms of their computational overhead during the training
and testing phase. Finally, we consider different qualitative aspects which should be kept in
mind by an MNO when deciding about the ML model to deploy.

This monograph concludes with Chapter 6 by giving a brief summary on the conducted
studies, the obtained results, and the derived insights.
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2
General Background

The following chapter describes important concepts covered throughout this monograph.
First, we briefly introduce the term QoE and the working principle behind HAS. In this
context, we introduce some state-of-the art adaptive bitrate (ABR) strategies and present
the HAS control parameter space. Afterwards, we focus on the HAS-related QoE influence
factors (QoE-IFs) and present models allowing to retrieve the subjective application quality
from objective performance metrics.

2.1 Quality of Experience

Over the past years, the diversity and the demands of Internet applications have been grow-
ing. The simultaneous increase of the users’ expectations on the quality of the used ser-
vice [28] made the goal of delivering desirable levels of QoS a highly critical issue [29].
The premise of QoS management is to provide an application with its specific resources,
e.g., low delay or packet loss rates for VoIP or high bandwidth for VoD streaming services.
Accordingly, QoS research focuses on these network-related KPIs and how they can be
measured and evaluated. However, there is a growing consensus in the research community
that the technology-centric concept of QoS does not cover sufficiently the performance as-
pect of a given application or service. QoS neglects the user while the relationship between
QoS metrics and subjective user satisfaction is complex [30]. As a consequence, QoS does
not allow to infer the user perceived application quality. With the advent of QoE, the term
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"‘end-to-end quality"’ is re-interpreted, considering the user as the end of the communica-
tion chain [31, 32]. The Qualinet whitepaper [33] defines QoE as

the degree of delight or annoyance of the user of an application or service.
It results from the fulfillment of his or her expectations with respect to the
utility and or enjoyment of the application or service in the light of the user’s
personality and current state.

The paradigm shift from technical aspects to user perceived quality is beneficial in the sense
that users do not bother technical performance, but just expect a website to load quickly or
a video to be played back smoothly. Hence, besides the technical factors related to the
network, QoE considers several additional factors. Context level factors account, among
others, for the user’s location or the purpose of using a specific service. User level factors
describe psychological effects, such as previous experiences, expectations on the service
quality, as well as the time of the day, or the browsing history [34].

Over the past years QoE evolved as an important and broad research topic, covering several
aspects. Research activities have been carried out on how to use crowd-sourced measure-
ments to collect subjective user ratings [35, 36, 37]. One of the key challenges thereby is to
obtain reliable ratings from the users. This can be hindered by reduced participant invest-
ment in the task or by not sufficiently emulating a user’s typical environment or platform
experience during controlled lab experiments. Several works study the correlation between
technical QoS metrics and QoE or QoE-related KPIs for different applications, use-cases,
and environments [38, 39, 40, 41, 42]. Other works focus on the impact of different appli-
cation metrics, such as video interruptions or frame-rate on QoE [43] or elaborate on metrics
to quantify QoE [44].

2.2 HTTP Adaptive Streaming

A conceptual overview of HTTP Adaptive Streaming (HAS) is given in Figure 2.1. The
video provided at the sever is split into small segments of a few seconds duration [46] and
each segment is encoded using different bitrates, resulting in several levels of visual quality.
The HAS client first downloads a media presentation description (MPD) file, which con-
tains meta information on the requested video. This includes the video’s segment duration,
characteristics of the different quality levels, i.e., bitrate and resolution, as well as the URLs
to locate the specific segments. The client subsequently downloads the segments via HTTP
GET requests and stores them in its video buffer. In order to dynamically adapt the video
quality, the client runs an adaptive bitrate (ABR) algorithm, which is often also referred
to adapatation heuristic. After a segment download has been completed, the ABR strat-
egy determines the quality for the next segment. Its goal is to maximize the visual quality
whilst simultaneously avoiding video interruptions during play back. For instance, it aims
at providing the best possible QoE given the underlying networking characteristics.
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Heterogenous End-Devices
Requested quality level appropriate 
for current network conditions

Network 
With bandwidth capacities 
varying over time 

HTTP Server
Video content available in 
several different qualities

Figure 2.1: Illustration of the working principle behind HTTP Adaptive Streaming [45].

The HAS concept is implemented in different proprietary solutions, such as Adobe HTTP
Dynamic Streaming, Apple HTTP Live Streaming (HLS), or Microsoft Smooth Streaming
(MSS). Dynamic Adaptive Streaming over HTTP (DASH) is the first streaming solution
that has officially been standardized. The DASH Industry Forum (DASH-IF) furthermore
publicly provides a reference client implementation, called dash-js1.

2.2.1 Adaptive Bitrate Strategies

Literature propose a vast number of different ABRs [47, 48]. In general, they can be classi-
fied as buffer-based or rate-based. However, some ABRs combine both options and hence
can be classified as hybrid strategies. Buffer-based approaches adapt the quality depending
on the client’s video buffer state. A large video buffer allows to request segments of high
quality, otherwise the quality is kept low to support a fast download. The quality level is
then chosen on buffer thresholds, i.e., the buffer needs to exceed a certain threshold, so to
download a specific quality level. ABR mechanisms building on this concept are presented
in [49, 50, 51]. One of the most prominent buffer-based ABRs in literature is BOLA [52].
Compared to other buffer-based ABRs, which only consider the number of quality levels
to set the quality switching thresholds in a static manner, BOLA tunes these thresholds dy-
namically based on an optimization function that additionally considers the bitrate of the
quality levels.

Rate-based ABR strategies adapt the quality based on throughput estimations. More specif-
ically, the client measures the obtained throughput for each segment download. In order to
compensate short-term fluctuations, the measured values are smoothed, e.g., by applying
an exponentially weighted moving average. The ABR mechanism then requests the next
segment in the highest bitrate not exceeding the measured throughput. Many implementa-
tions decrease the measured throughput by a certain factor to obtain a more conservative

1https://reference.dashif.org/dash.js/
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estimation and to account for overhead. One of the most prominent approaches for rate-
based ABR strategies are probe and adapt (PANDA) [53], as well as the strategies which
are discussed in [54, 55].

ABR strategies that purely rely on either measured throughput or the current buffer state
suffer from certain weaknesses. Throughput estimation techniques applied in rate-based
ABRs may not be reliable due to varying bandwidth demands of the client or changing net-
work conditions. Buffer-based adaptation schemes suffer from long-term bandwidth fluctu-
ations [48] and from performance degradations at the beginning of the video playback. As
a consequence, there are several proposals to combine rate- and buffer-based approaches, to
exploit the benefits of both and overcome the specific drawbacks. FastMPC [56] describes a
practical model-predictive controller, which finds an appropriate bitrate for the next segment
by combining rate and buffer size predictions. A similar procedure is described in [57], but
relying on a fuzzy-based approach.

2.2.2 HAS Control Parameters

By means of a set of parameters, the HAS ecosystem allows to tune the streaming behavior,
and thus, the different KPIs. These either relate to client-sided settings or to characteristics
of the provided video. In the following, we give a brief overview on these control parameters
and how they potentially impact HAS QoE-IFs.

Video segment duration: In general, the video quality can be adapted with each new seg-
ment request. Hence, the video segment durations determines a lower bound of how often
the quality can be changed throughout the video. The shorter a segment, the quicker the
HAS client can react to changing network conditions, while longer segment durations lead
to a reduced responsiveness. However, short video segments come with the costs of in-
creased encoding overhead [58] as an IDR frame needs to be placed at the beginning of
each segment. This means that for delivering the same visual quality with short segments, a
higher bitrate is required compared to using longer segments. Furthermore, as each segment
needs to be requested individually, shorter segments increase the overhead in terms of the
HTTP GET requests [59]. This is especially problematic in networks with large RTTs.

Number of quality levels: Providing a higher number of quality representations is benefi-
cial for the QoE in two ways. Firstly, it allows a more fine-grained adaptation of the video
quality to the current network conditions, and secondly are quality switches between two
adjacent levels less recognizable to the user [60, 61]. However, a higher number of quality
levels results in increased costs for encoding and storage for the AP.

Buffer threshold settings: Certain thresholds related to the buffer filling state allow to ad-
just the HAS client’s behavior. The first one is the initial buffer state, which determines the
minimal amount of buffered play time before the video play back starts. Higher thresholds
result in an increased initial delay, but reduce the probability for later re-buffering events.
Hence, as the video buffer has significant impact on initial delay and stalling probability,
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both being important QoE-IFs, it needs to be carefully dimensioned [62]. The second one
is the maximum buffer capacity, defining an upper bound for the amount of pre-buffered
video time. While a high maximum buffer supports a fluent play back, it is prone to high
bandwidth wastage in case that the user aborts the video stream. Some HAS implementa-
tions rely on further buffer thresholds, such as minimum amount of buffered play time after
a video stalling, or a video buffer target, which the client aims to achieve.

Quality switching thresholds: Finally, the settings of switching thresholds allow to tune
the QoE-IFs. In the case of a buffer-based ABR, the switching thresholds constitute the
minimum amount of buffered play time to request a given quality level. Accordingly in the
case of a throughput-based ABR, the switching thresholds constitute the minimum mea-
sured throughput to download a specific quality level. High, i.e., pessimistic, settings of
the switching thresholds result in lower visual quality but simultaneously reduce the risk of
stallings, while optimistic settings deliver higher quality at an increased stalling risk.

Finding an optimized tuning of these parameters is a challenging task, as the various op-
erational settings need to be geared to each other. Furthermore are there several external
influencing factors like the client’s device screen size or the underlying network charac-
teristics. For example, in mobile networks with higher bandwidth fluctuations, thresholds
for quality switches and buffer settings should be chosen more pessimistic. There are sev-
eral proposals to tackle the issue of dynamically tuning the parameter space to the given
conditions. The Adaptation Buffer Management Algorithm (ABMA) [63, 64] dynamically
adjusts the video buffer size to compensate for download rate oscillations. The Buffer Oc-
cupancy based Lyapunov Algorithm (BOLA) [52] adjusts the quality switching thresholds
to the bitrate characteristics of the available quality levels. Similar to that, SARA [65] takes
the variability of the video segment sizes into account when selecting the next quality.

2.2.3 QoE Influence Factors for HAS

The QoE for HAS is impacted by different factors related to waiting times and quality [66].
In the following, we give a brief introduction on all QoE-relevant KPIs for HAS and how
they affect the resulting user QoE.

Initial delay: The initial delay describes the user’s waiting time between initiating the video
stream and the video play back. Users are more sensitive towards waiting times during the
play back and rather accept a longer initial waiting time [67]. Consequently, in order to
avoid interruptions during the play back, typical HAS implementations define a threshold
for the minimum amount of buffered play time, before the video is played back. To avoid
QoE degradation, a good trade-off needs to be found which keeps the initial delay as low as
possible, whilst still allowing a fluent play back once it started.

Stallings: This term describes interruption during the video play back, resulting in waiting
times for the user. The video typically stalls due to a re-buffer event, i.e. the buffer drained
empty and the play back can only be resumed, when a certain buffer threshold is reached
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again and earliest as soon as the next segment is arrived. With respect to video stallings,
there are two KPIs influencing the QoE: the stalling duration and the overall number of
stallings occurring throughout the video play back. Studies show that the user’s QoE is
degraded to higher extent, if more interruptions of shorter duration occur, compared to a
reduced number of stallings of longer duration [68].

Quality switches: The adaptive behavior of HAS results in changing quality throughout
the video play back, causing viewer distraction. There are two important KPIs related to
the quality switches. Firstly, the frequency or overall number of switches, and secondly, the
switching amplitude [60, 69]. In order to provide a good QoE, a solid trade-off between
maximizing the delivered video quality and minimizing the frequency and amplitude of
quality switches needs to be found [70].

Visual quality: The resulting visual quality of a video is determined by the used encod-
ing bitrate, the video’s resolution, and the complexity of the video content. Metrics for
assessing the visual quality can be classified into three major categories [71]: full-reference
(FR), no-reference (NR), and reduced-reference (RR). FR metrics perform a frame by frame
comparison between a reference video (usually uncompressed and hence without quality
degradation) and the video under test. The two most prominent FR metrics are the Struc-
tural Similarity Index Measure (SSIM) [72] index and the Peak Signal to Noise Ration
(PSNR) [73]. The Fusion-based Video Quality Assessment (FVQA) [74] aims at assessing
the visual quality of a video stream more reliably, by fusing several existing video quality
assessment methods to a single video quality score. Thereby, the fusion coefficients are
learned from training video samples. This approach was then further developed in con-
junction with Netflix and is today known as the Video Multimethod Assessment Fusion
(VMAF), which constitutes an approach widely adopted by research and industry [75]. NR
metrics assess the visual quality without an explicit reference video. Most of the NR met-
rics rely on blockiness [76, 77], which is the prominent artifact of block-based compression
techniques such as H.264. RR metrics combine the principles of FR and NR metrics. Hence,
RR metrics combine the benefits of high accuracy of the quality assessment by using a ref-
erence sequence and of a reduced number of features for comparing the reference video
against the video under test [78].

2.3 QoE Models

Explicit user ratings, e.g., in the form of feedback questionnaires, are the most reliable mea-
sure for the customer satisfaction. However, they are practically not usable on large scale
as the participation is typically limited and surveys are prone to disturb the user [79]. QoE
models allow to derive the perceived quality based on application- and/or network-related
KPIs. Typically, user studies are performed in the scope controlled lab studies, where the
test subject is exposed to different stimuli, e.g., a specific video quality or stalling pattern,
and then asked to rate the level of satisfaction on a pre-defined scale. The average of all test
subjects’ scores is often referred to as the mean opinion score (MOS) [80], which evolved
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over time as the de-facto metric to quantify perceived media quality [81]. In particular, the
5-point MOS scale is very popular. It ranges from 1 to 5 and represents the perceived qual-
ity as bad, poor, fair, good, and excellent. Correlating the network- and application specific
settings with the users’ ratings allow to mathematically model the impact of different stim-
uli or network characteristics on the resulting user satisfaction. Hence QoE models allow to
estimate the users’ perceived quality also in the absence of explicit ratings. In the following,
we present the two QoE models for HAS applied in this work and give a brief outline on
further models.

2.3.1 Standardized ITU-T P.1203 Model

The ITU-T recommendation P.1203 describes the first standardized QoE model for HAS [82,
83]. Its high accuracy in terms of predicting the real streaming QoE could be obtained via
extensive training and validation on a huge database, containing over a thousand video se-
quences. These video sequences contain HAS-typical artifacts, such as stallings, quality
switches, initial loading time, or visual quality degradation resulting from low encoding
bitrates, as well as the subjective rating, expressed as MOS. The model consists of three
modules, one for the visual video quality (Pv), one for the audio quality (Pa), and finally
one for the audio-visual integration (Pq). In the remainder of this work, we will confine on
the visual quality (Pv) and omit the audio quality score. Furthermore can the video quality
itself be estimated in three different modes. Thereby, lower modes require less information
at the cost of lower accuracy and can be computed more efficiently. Mode 0 estimates the
QoE only based on meta-data. For instance, initial loading times, stalling events, resolution,
bitrate, framerate, and the used video codec. Mode 1 extends the included information by
packet header information, such as the video frame size and whether a frame is an I-frame
or not. Mode 2 and mode 3 additionally consider video bitstream information, up to 2% in
mode 2 and full bitstream parsing in mode 3. This mode hence uses video frame-level char-
acteristics, such as the frame types, theirs sizes and the quantization parameter (QP) values
on a per-macroblock scale. Thus, mode 3 yields the highest QoE estimation accuracy that
is possible with the P.1203 model. The model returns one overall quality score and several
diagnostic quality scores on a MOS scale. We will use the following scores throughout the
scope of the monograph:

• O34: Per-second audiovisual quality score

• O23: Stalling quality

• O46: Overall quality score, combines audiovisual and stalling quality scores

When omitting the audio track, the model per default assumes a constant high audio quality
when computing the audio-visual quality score (O34). Furthermore, O34 yields a value for
each second of the video stream. When we refer to O34 in later parts of this work, we mean
the average of all per-second scores of a streaming session.
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An in-depth study of the impact of HAS QoE factors on the output of P.1203 is performed
in [84], showing that well-known results from previous QoE studies are qualitatively rep-
resented, such as the high impact of stallings. As P.1203 has been trained and validated
only for H.264 encoded video sequences and resolutions up to full-HD, [85] provides an
extension towards newer codecs like H.265 and VP9, as well as resolutions up to 2160p.

2.3.2 Cumulative Quality Model

Another model to asses QoE for HAS is the Cumulative Quality Model (CQM) presented
in [86, 87]. Compared to ITU-T P.1203, which retrieves one QoE score for the whole video
session, CQM evaluates the quality of a session over time, making the model also applicable
for real-time quality monitoring. The model relies on time windows of different lengths, so
to account for short-term quality fluctuations, e.g., between subsequent segments, as well
as for long-term quality fluctuations, to compute the cumulative quality at any point in
time. For a given window, each contained video segment’s visual quality is assessed via
existing metrics [88, 89]. Via a weighted sum of the visual qualities, interruption patterns,
and quality switches, the per-window quality value is determined. For the first window,
the initial delay is considered additionally. Please note that the output of CQM can be
influenced by different parameter settings, i.e., it allows to weight the QoE-IFs differently.
In this work, we use the implementation which is publicly provided2 along with the default
weight settings.

2.3.3 Other QoE Models

A simple QoE model for HAS only taking the time on highest layer and the quality switch-
ing amplitude into account is presented in [60]. The work in [56] assesses QoE as a weighted
sum of average video quality, the variation of the quality between the segments, stalling
events, and the initial delay. Yet another approach is presented in [90]. Besides the typ-
ical QoE-IFs, the proposed method additional considers the bitrate distribution and takes
into account the recency effect, a psychological phenomenon describing that users tend to
remember recent events better [91]. QoE models exist for a wide range of different ap-
plications. For example, the work in [92] allows to retrieve the QoE for file download
applications, by deriving the MOS as a logarithmic function from the overall download du-
ration. Remote virtual desktop services are targeted in [93]. The authors evaluate how the
MOS score of typical tasks, such as typing, scrolling, or menu browsing, is affected by the
RTT or by the available bandwidth. The work in [94] studies how framerate and bitrate
affect the cloud gaming quality and proposes a QoE model based on these two effects for
two exemplary games.

2https://github.com/TranHuyen1191/CQM
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3
Modeling Adaptive Streaming Using

Discrete-Time Analysis

As outlined in the previous chapter, the overall HAS performance is influenced by a vari-
ety of factors, including the applied ABR scheme, the underlying network characteristics,
as well as video- and player-specific parameter settings. These influencing parameters are,
upon others, quality switching thresholds, upper and lower buffer bounds, segment dura-
tions, the average video bitrate and its variation, or the number of provided quality levels.
In order to tune these parameters for optimizing the QoE, both, testbed measurements and
simulations, have been widely adopted [53, 95]. However, the large number of adjustable
and non-adjustable parameters, with each of them theoretically having an unlimited value
space, results in a vast number of potential parameter combinations. As a consequence,
neither measurements nor simulation activities scale to study the complete parameter space.
Hence, current evaluations are performed only for specific use cases and are only capable
of covering a subset of the large problem space.

As no holistic evaluation methodologies exist so far, we only have a very limited under-
standing of the effects that the various parameters have on the performance metrics across
the wide range of operational settings. In the following, parameters refer to the factors such
as the number of quality levels, the quality switching thresholds, or the segment durations,
while the operational settings refer to external influencing factors like network characteris-
tics or the video content. Therefore, even for a single operational setting, it remains unclear
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which parameter configuration would yield the best performance. Furthermore, it is prac-
tically infeasible to identify relevant factors and inter-dependencies between these, which
is required for a comprehensive understanding of the factors significantly influencing the
performance of adaptive video streaming.

To tackle the problem of a holistic understanding, different analytical queueing-based ap-
proaches have been developed [62, 96]. Even though both models allow for a fast com-
putation of a subset of relevant HAS performance metrics, such as the stalling probability
or the stalling duration, they do not allow to cover all of the previously outlined influence
factors. This is due to their strong assumptions, upon others that the quality is not dynam-
ically adapted to the underlying network conditions or the buffer state. Consequently, they
fail to analyze any crucial metric related to the playback quality, such as the frequency or
amplitude of switches, or the average visual quality.

To enable the incorporation of these HAS-inherent parameters, this chapter proposes a
queueing model based on discrete-time analysis, which is capable of taking the adaptive
behavior of an HAS client into account. More precisely, we extend the work from [96]
by the inclusion of multiple video quality representations and by the integration of the
decision logic behind rate-based and buffer-based ABR strategies. The proposed model
overcomes the limitations of current solutions and thus allows for analyzing the full range
of HAS-related operational settings, as well as their interplay and implications in terms of
QoE-relevant performance metrics. We confirm this ability by providing a testbed-driven
validation of the model, using a vast number of parameter combinations and varying avail-
able bandwidths settings.

The model returns distribution functions, e.g., for the stalling probabilities, without any
information about the temporal behavior of a video session, such as the timely positions
of stallings. It hence needs to be examined whether QoE prediction models, such as the
P.1203 model, which compute the QoE based on the chronological sequence of a specific
video playback, can be used when the QoE-relevant metrics are obtained from the HAS
performance model, i.e., without any temporal information. For that reason, this chap-
ter additionally evaluates how and to which extent the generalized results of the analytical
model can be utilized to derive sequence-based QoE values or the QoE distribution for a set
of sequences for similar input parameters with stochastic variations. To do so, we derive
chronological video playback sequences using a Monte-Carlo approach for a specific video
clip and different network scenarios. For these sequences, we compute the perceived QoE
distributions using the open source implementation of P.1203. Similarly, we conduct testbed
measurements for the same network scenarios using the Bola [95] ABR controller imple-
mented in the dash.js framework and further compute the corresponding QoE distribution.
Our evaluations show that using the output of the HAS performance model to generate ar-
tificial video sequences which are used along with the P.1203 QoE prediction model allows
for a good QoE estimation.

Finally, this chapter shows two exemplary use-cases for a practical application of the buffer-
based version of proposed model. The first one is a small parameter study, which evaluates
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the impact of the switching threshold setting on different HAS-relevant QoE-IFs. Our anal-
ysis shows that there are indeed configurations, which are beneficial for all tested network
scenarios. The second one evaluates potential prospects of using a different video segmenta-
tion technique, which relies on variable instead of fixed-length segments. More specifically,
we show that by the variable approach, a significant reduction of stalling probability can be
achieved.

The remainder of this chapter is structured as follows. Section 3.1 provides background
information on analytical models and presents related work which are using such models
for HAS analysis. Section 3.2 focuses on our proposal of an analytical model which is based
on discrete-time analysis. Thereby, we first introduce the used notations and describe the
stochastic preliminaries. After that, both, the buffer-based and the rate-based version of the
model are introduced. In a next step, we show how QoE-related video streaming metrics,
such as average quality or stallings, can be derived from the modeled video buffer. In
Section 3.3 we validate the model’s accuracy by comparing it against video traces obtained
via testbed measurements. Subsequently, we investigate in Section 3.4 in how far the model
can be applied for QoE analysis, despite the unavailability of temporal information of the
video session. Two use-cases for applying the model are presented in Section 3.5. The first
one presented in 3.5.1 is the exemplary parameter study on the quality switching thresholds,
while the second one evaluates in 3.5.2 the possible benefits of using variable durations for
video segments, instead of relying on fixed ones. Finally, we summarize the lessons learned
in Section 3.6.

3.1 Background and Related Work

Theoretical models allow to analyze the processes of (complex) systems in an abstracted
manner. Based on the works from Tran-Gia and Hoßfeld [97, 98], the following Section first
introduces the key working principle of queueing-based models and presents two generic
discrete-time approaches afterwards, which form the basis for the HAS performance model
presented later in this chapter. Several generic HAS models have been presented in the liter-
ature and we outline the respective relevant publications. Moreover have analytical models
been considered for an integration into ABR strategies in order to optimize their decisions.
Hence, the following Section briefly outlines research activities towards improving ABR
mechanisms by means of analytical models.

3.1.1 Analytical Models and Queueing Theory

Analytical models allow to theoretically describe a system’s processes, taking into account
the most relevant timely and logical characteristics. They are often used to assess the per-
formance of a system when being under load, to retrieve rejection probabilities or to obtain
the waiting or processing times. If the number of participants or requests in such a sys-
tem is sufficiently large, the system’s procedures can be modeled by means of stochastic
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processes [98]. While actual measurements yield the best reflection of a real system, sim-
ulations introduce abstractions of the system to different extents, depending on the level of
detail with which the system components are simulated. In this context, analytical mod-
els, which rely on approximative methods, have the highest level of abstraction. However,
such a highly abstracted approach which only considers the most essential system proper-
ties allows to explore a huge parameter space very efficiently. Due to their high efficiency,
analytical models are widely used for example for determining how to scale a system so to
satisfy certain performance requirements.

Analytical models relying on queuing theory basically analyze arrivals and processing times
to identify flaws of the system and to retrieve optimized scaling of resources. Thereby, the
modeled system typically includes a source, one more processing units and optionally one or
several queues, which can be finite of infinite. For example, one could imagine modeling the
payment process of customers in a supermarket. The customers arrive at the checkout with
a specific rate from which their inter-arrival time can be deduced, i.e., the time that passes
between two customers being ready to pay their groceries. This can be seen as request,
which should be served by one of the processing units, i.e., the checkstand. If at least one
checkstand is currently not serving any other customer, the request can directly be served.
If all checkstands (processing units) are blocked, the customer has to wait. There can either
be one global queue, or one queue for each checkstand. In any case, the customer’s waiting
time depends on the following two factors: The number of earlier arrived customers waiting
in line, and the duration of scanning their products and cashing them up, which is referred
to as the processing time. For a given inter-arrival time of customers and a given processing
time, which are expressed as random variable, the queuing-based model allows to compute
the waiting time of customers, depending on the number of opened checkstands and the
queue management (one vs. several queues) and can hence be used to optimize the system.
Systems where an endless number of requests can be queued are referred to non-blocking
systems. In contrast, blocking systems reject requests either when the queue capacity is
reached, or when there is no queue and all serving units are blocked. A typical example for
a blocking system is a mobile cell with a limited number of communication channels, which
are assigned to the subscribers connected to the cell. In case that all of these channels are
already allocated, any new subscriber is blocked from the system. While in non-blocking
systems, the focus is typically to minimize waiting times, queuing-based models for block-
ing systems can be used to scale the system so to not exceed a certain blocking rate with a
given probability.

How exactly a system can be modeled depends, besides being non-blocking or blocking,
on different other characteristics. This includes upon others the stochastic properties of the
inter-arrival and processing times, i.e., their specific distributions, as well as the number of
processing units and the number of waiting slots, i.e., the queue capacity. Furthermore can
queueing-based models either be discrete or continuous in terms of time and state.

21



3 Modeling Adaptive Streaming Using Discrete-Time Analysis

GI
generally distributed 
inter-arrival time

A

∞

GI

B

generally distributed 
service time

unlimited waiting 
room 

Figure 3.1: Schematic illustration of the discrete-time delay system GI/GI/1 [97].

3.1.2 Discrete-time GI/GI/1 Queueing Models

Discrete-time models operate on discrete time intervals of constant length ∆t. The system
is then only analyzed for the resulting set of equidistant points in time. The notion GI/GI/1
indicates that the distribution for both, the inter-arrival time A as well as the service time B,
is general independent (GI) with:

a(k) = P(A = k ·∆t) k = 0,1,2, ...,

b(k) = P(B = k ·∆t) k = 0,1,2, ....

An illustration of a GI/GI/1 discrete-time delay system is shown in Figure 3.1. It considers
a single service unit and one queue with infinite capacity. Typically, GI/GI/1 systems are
analyzed with respect to the amount of unfinished work in the system, denoted as U(t). We
use Figure 3.2 to show how U(t) can be derived from the Random Variables (RVs) A and B
and introduce the following notations:

An RV for the inter-arrival time between request n and request n+1

Bn RV for the service time of the n-th request

U−n RV for the amount of unfinished work in the system immediately before the arrival of
the n-th request

U+
n RV for the amount of unfinished work in the system immediately after the arrival of

the n-th request

Uv
n+1 RV for the virtual amount of unfinished work in the system immediately before the

arrival of the request n+1.

The x-axis denotes the time t, while the y-axis represents the amount of unfinished work in
the system at a point in time t, i.e., U(t). In general, U(t) corresponds the sum of service
times of all waiting requests plus the remaining service time of the request currently being
processed by the service unit. Accordingly, U(t) increases with each incoming request n
by the service time of the n-th request, denoted as Bn. For the arrival of new request n,
two distinct RVs are considered. Firstly, U−n , which denotes the amount of unfinished work
immediately before the arrival of n. Secondly, U+

n , which respectively denotes the amount
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Figure 3.2: Course of request arrivals and evolvement of the unfinished workload in a
GI/GI/1 system [97].

of unfinished work in the system immediately after the arrival of n. Another additional RV
used is the virtual buffer Uv, which can be negative and is introduced to simplify computa-
tions. It is capable to account for the time during which the service unit is empty.

The amount of unfinished work in the system directly prior to the arrival of the n+ 1-th
request (U−n+1) is computed from the amount of unfinished work prior to the arrival of the
n-th request (U−n ) as follows: First, the service time of request n is added to U−n :

U+
n =U−n +Bn

In general, considering two random variables F and G with density functions f ,g we
note that the sum H = F + G is distributed according to the density function h = f ∗g,
where ∗ denotes the convolution of density functions, when F and G are independent. While
the convolution inherently is an operation on functions and again yields a function, the nota-
tion h(k) = f (k)∗g(k) is often used in the queuing theory literature to denote h = f ∗g (see
further [96, 99]) and we adapt our notation accordingly. An advantage of this notation is the
simpler expression when subtracting two random variables: H = F−G is then denoted by
h(k) = f (k)∗g(−k), where g(−k) denotes the probability density function −k 7→ g(k).

Accordingly, under the assumption that U−n and Bn are independent RVs with the respective
density functions u−n and bn, the density of the unfinished work directly after arrival of
request n, is denoted as

u+n (k) = u−n (k)∗bn(k). (3.1)

The next step computes the virtual buffer immediately before the arrival of the n+ 1-th
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request, denoted as Uv
n+1. For that, the inter-arrival time of n+1 is subtracted from U+

n :

Uv
n+1 =U+

n −An

Denoting U−A as u(k)∗a(−k), the density function for Uv
n+1 is derived as follows:

uv
n+1(k) = u+n (k)∗an(−k) (3.2)

The virtual amount of unfinished work in the system differs from the actual amount of
unfinished work only in the sense, that the virtual can have negative values, while the actual
cannot. Accordingly, for U−n+1 it holds:

U−n+1 = max(0,Uv
n+1)

To obtain the respective density function, all probability mass below 0 of uv
n+1 has to be

shifted to 0, which is achieved with the π0 operator:

u−n+1(k) = π0
(
uv

n+1(k)
)

(3.3)

Whereby the π0 operator applied here is a special case for the generic discrete operator πm,
which is defined as follows:

πm
(
x(k)

)
=


0, k < m,

∑
m
i=−∞ x(i), k = m,

x(k), k > m.

(3.4)

Combining Equations 3.1, 3.2, and 3.3, the density function for the remaining work load in
the system immediately prior the arrival of request n+1 can be condensed to:

u−n+1 = π0
(
u−n (k)∗bn(k)∗an(−k)

)
= π0

(
u−n (k)∗ cn(k)

)

Thereby,
cn(k) = bn(k)∗an(−k)

is called the discrete-time system function.

If the service unit processes the requests in the queue in a first-in first-out (FIFO) manner,
the waiting time of request n corresponds to the amount of unfinished work immediately
before its arrival, i.e., U−n . Accordingly, the waiting time of the n-th request, denoted as RV
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Figure 3.3: Discrete-time delay system GI/GI/1 with bounded delay [97]. The requests
n and n+ 2 are blocked as the remaining workload in the system at their arrival exceeds
threshold L.

Wn, can recursively be computed as follows:

Wn+1 = max(0,Wn +B−A)

wn+1 = π0
(
wn(k)∗ cn(k)

)
Under the assumption that inter-arrival times and service times are statistically independent
and identically distributed, i.e., An = A and Bn = B for all n, and that the system is stationary
(W = limn→∞Wn), the density for the waiting time can be denoted as

w(k) = π0
(
w(k)∗ c(k)

)
with

c(k) = b(k)∗a(−k).

3.1.3 GI/GI/1 System with Bounded Delay

Queues with infinite capacity can result in huge waiting times. In some cases, it is, however,
desirable to bound the waiting time for incoming requests to an upper limit. This can be
achieved by rejecting an incoming request if its expected waiting time exceeds a pre-defined
threshold. The system introduced in 3.1.2 is modified in such a way, that only those requests
are accepted and enqueued, which have at the point of their arrival an expected waiting time
below

Wmax = L ·∆t.

Such a system is illustrated in Figure 3.3. The request is not served, if the remaining work-
load exceeds L, i.e., if Un ≥ L. Hence, for GI/GI/1 systems with bounded delay, two cases
need to be considered. In the first case, the request is accepted as the threshold L is not
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reached. The remaining workload in the system is computed using the conditional RV
Un,0 =Un|Un < L as follows:

un,0(k) =
σL−1[un(k)]
P(Un < L)

=
σL−1[un(k)]

∑
L−1
i=0 un(i)

.

The operator σm[x(k)] only accepts the lower part (k < m) of a distribution and leaves out
the rest:

σ
m[x(k)] =

{
x(k), k ≤ m,

0, k > m.
(3.5)

Through the division with P(Un < L) the distribution of RV Un,0 = Un|Un < L is normed.
The amount of unfinished work in the system in case the request is accepeted evolves as
follows:

Un+1,0 =Un,0 +Bn−An,

un+1,0 = π0[un,0 ∗b(k)∗an(−k)]

In the second case the request is rejected because the threshold L is reached. The distribution
of the conditional RV Un,1 =Un|Un ≥ L is defined as follows:

un,1(k) =
σL[un(k)]
P(Un ≥ L)

=
σL[un(k)]
∑

∞
i=L un(i)

.

The operator σm[x(k)] only accepts the upper part (k ≥ m) of a distribution x(k) and leaves
out the rest:

σm[x(k)] =

{
0, k < m,

x(k), k ≥ m.
(3.6)

Similar as above, the division with P(Un ≥ L) norms the distribution of the RV Un,1 =

Un|Un ≥ L. The amount of unfinished work in the system in case the request is rejected
evolves as follows:

Un+1,1 =Un,1−An,

un+1,1 = π0[un,1 ∗an(−k)]

When combining both cases - accepting and rejecting the next request - the unfinished work
at arrival of n+1 can be derived from Un as follows:

un+1(k) = P(Un < L) ·un+1,0(k)+P(Un ≥ L) ·un+1,1(k)

Using this equation allows to establish a recursive formula to obtain the remaining workload
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in the system immediately before arrival of request n+1:

un+1(k) = π0
[
σ

L−1[un(k)]∗bn(k)∗an(−k)
]
+π0

[
σL[un(k)]∗an(−k)

]
= π0

[
σ

L−1[un(k)]∗bn(k)∗an(−k)+σL[un(k)]∗an(−k)
]

For a stationary system, the probability of being blocked corresponds to the probability of
the amount of unfinished work being above L and hence:

pB =
∞

∑
k=L

u(k).

3.1.4 Generic HAS Models

The HAS behavior can be modeled by using Markov models. One example are M/M/1/∞

models. They work on a high level of abstraction, but in return they allow to easily com-
pute relevant metrics. Hoßfeld et al. [62] presents such a model, which applies a pq-policy.
Thereby, buffer values of p and q constitute lower and upper buffer bounds for segment
requests. For instance, as long as the video buffer is below p seconds, segments are re-
quested to ramp up the buffer. As soon as the upper threshold of q seconds is exceeded,
the client enters the idle state and does not request further video segments, until the buffer
falls below the threshold p again. This results in the HAS-typical on-off behavior and using
mean-values analysis, the authors are capable of deriving stalling frequency and stalling ra-
tio. The model and its capabilities for computing these metrics is then applied to optimally
dimension the video buffer for users with different characteristics, e.g., watching a complete
video versus video browsing.

De Cicco et al. [100] formalizes the behavior of an Akamai video streaming session. The
system is modeled as a hybrid automaton, using upon others the video level, the current rate,
and the playout buffer as state variables. Using their model, the authors show that stalling
can be avoided by properly tuning switching thresholds and that a proper setting of the ratio
between idle states and segment downloading can avoid large buffering, which results in
network resource wasting in case the user aborts the video.

Burger et al. [96] models the video buffer as a GI/GI/1 queue with pq-policy using discrete-
time analysis. Thereby, the video portion buffered at the client is considered as the amount
of unfinished work in the system. The playback corresponds the service time, i.e., drain-
ing the buffer. It is assumed that the inter-arrival times, which correspond to the segments’
download durations, are independent. The model allows to evaluate the impact of video
characteristics (e.g. segment duration, bitrate variation), network dynamics, and buffer poli-
cies on the streaming performance. However, this work does not model the quality switch-
ing behavior of HAS. Admittedly, the model allows for evaluating metrics like stalling
probability and average buffer, but not for evaluating those QoE influencing factors that are
related to video quality, i.e., the average quality or the number and amplitudes of quality
switches. Correspondingly, the model in it its current state does not yet allow to examine
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the impact of the number of quality levels, or the setting of quality switching thresholds, on
HAS performance.

A queueing theoretic method to predict video interruptions in wireless environments is pre-
sented in [101]. It models the client’s video buffer as a G/G/1 queue. Building on the
previous work from [102], the authors propose a method that is capable of predicting suit-
able video streaming parameters, e.g., the initial buffer filling threshold, for given network
conditions, such as the delay. As a novelty compared to previous works [103, 104], the au-
thors incorporate the effects of finite video durations into their buffer model. Another video
buffer model for wireless networks is presented in [105]. Compared to the previously dis-
cussed approach proposed in [101], this model relies on a G/D/1 queue. For instance, while
the packet arrival is still arbitrary, the video play back is assumed to be deterministic.

3.1.5 HAS Models for ABR Improvement

Several works model the behavior of adaptive video streaming in the scope of developing
more advanced ABR algorithms. One of them is QUETRA [106], which makes use of an
M/D/1/K queue to model the client’s buffer taking into account the chosen video segment
quality, current network throughput, and the overall buffer capacity limit. Hence, their
model allows to estimate the buffer filling state depending on potential bitrate decisions and
the current network state. This is exploited to optimize the client’s decision in terms of the
next segment to download and consequently to obtain an ideal buffer filling state.

Another proposal, also relying on an M/D/1/K, is qMDP [107]. While QUETRA considers
an arbitrary buffer capacity, qMDP aims at dynamically optimizing it via reinforcement
learning (RL). Therefore, they introduce rewards for training the RL-based model. Positive
rewards are given for downloading a high video bitrate, while negative rewards are given
for quality switches, stalling events, and deviations of the current buffer from the targeted
buffer value.

A similar approach, called DQ-DASH [108], makes use of an Mx/D/1/K queueing ap-
proach. Compared to QUETRA and qMDP, DQ-DASH considers parallel video segment
downloads from multiple servers. For that reason, the segment download is modeled as
Markovian batch arrival process. The proposed model is incorporated into an ABR strat-
egy, which - besides the buffer estimated - takes the throuhput measurements to the different
servers as well as the total buffer capacity limit into account when decding about the next
segments’ quality level.

Model predictive control (MPC) is used in [56] to optimally combine rate-based and buffer-
based adaptation heuristics. In general, MPC attempts to predict key environment variables
over a moving look-ahead horizon and to solve an exact optimization problem based on the
prediction. To overcome the high computational overhead and practical difficulties, such
as additional software requirements in the video player, the authors propose FastMPC. It
stores optimal control decisions offline, so to use them later efficiently online.
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Figure 3.4: Discrete-time delay system GI/GI/1 for video buffer modeling [96].

3.2 Proposed Discrete-Time Models for HAS

This section details on the proposed model for HAS, which is capable to model the quality
switching behavior. It builds upon the previous work [96] and extents it in such a way, that
either from the buffer distribution or from the throughput distribution, a distribution for the
quality levels can be derived. We first give a short overview on the basic model, introduce
the notations used throughout this chapter, and present the stochastic preliminaries. Then,
the both versions of the model, one reflecting a buffer-based and one reflecting a rate-based
adaptation strategy, are described. In a next step, we show how the relevant metrics can
be obtained from the modeled video buffer for both of the versions. Finally, we show the
validation results.

3.2.1 Model Overview and Notations

A systematic overview of the model is given Figure 3.4. It is an adaptation and specification
of the system denoted in Figure 3.1 towards the use-case of video buffer modeling. The
inter-arrival time corresponds to the arrival of video segments. The (unlimited) waiting
room translates to the limited video buffer, which is equipped with the two thresholds p and
q controlling the segment request behavior, and consequently the inter-arrival time. More
specifically, the arrival process is paused if threshold q is exceeded, until the queue filling
level falls below p again. The service time of a request corresponds to the playback of a
video segment and hence equals the segment’s duration. Please note that for the sake of
simplicity, the illustration in Figure 3.4 neglects the quality adaptation behavior. That is,
depending on additional buffer-related thresholds or depending on a segment’s download
duration, the next segment is requested in a specific quality level. While this can take effect
on the segment inter-arrival times, as the different bitrates along the distinct qualities impact
the download duration, the service time is not affected by the different qualities.

Table 3.1 summarizes the notations used throughout the description of the model. The
number of video quality levels can be arbitrary and is denoted as N ∈ N. The quality level
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Table 3.1: Notations used for describing the analytical HAS model.
IN

P
U

T
FI

X
E

D

N number of provided quality levels
Q quality levels Q = {1, . . . ,N}
q threshold after which buffering is paused
p threshold for resuming buffering after having stopped before

qti threshold (buffer or rate) for requesting quality i ∈Q, qt1 = 0
Qi set of states (buffer or rate) requesting quality i ∈Q

R
A

N
D

O
M

V
A

R
.

(R
V

) A(i)
n inter-arrival time RV of segment n of quality i ∈Q

Bn playback time RV of segment n
C(i)

n average bitrate RV of segment n of quality i ∈Q
Dn average throughput RV for downloading segment n

A
N

A
LY

S
IS Un buffer RV immediately after arrival of segment n−1

Ûn virtual buffer RV immediately before arrival of segment n, which might attain
negative values to denote stalling

Ũn actual buffer RV ≥ 0 immediately before arrival of segment n

for the next segment is always decided immediately upon having received the previous video
segment: based on the current buffer level or based on the latest download rate either of the
quality levels is chosen. The decision is made according to pre-defined quality switching
thresholds, denoted as qti. Given qti for i ∈ {2, . . . ,N}, the highest quality i is chosen such
that the buffer level or download rate lies above qti (qt1 = 0). Furthermore, the model
allows for considering buffering thresholds p and q, p < q, where once the buffer level q is
exceeded, the next video segment is delayed until the buffer undercuts the threshold p. This
limits the overall amount of buffered video at any time and is typically done in HAS client
implementations to avoid high bandwidth wastage in case the user aborts the playback.

Each quality level i corresponds to a (discrete) set Qi ⊆ N of buffer levels or rates upon
which quality level i is requested. Considering the buffer-based model, we define

Q1 = {0,1, . . . ,qt2−1},
Qi = {qti, . . . ,qti+1−1}, i ∈ {2, . . . ,N−1},
QN = {qtN , . . . ,maxbuf },

[buffer] (3.7)

where maxbuf denotes the maximal possible buffer size, e.g., the length of the video.

For the rate-based model, the sets are analogously defined, but using maxrate to denote the
maximal rate:

Q1 = {0, . . . ,qt2−1},
Qi = {qti, . . . ,qti+1−1}, i ∈ {2, . . . ,N−1},
QN = {qtN , . . . ,maxrate} .

[rate] (3.8)
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Figure 3.5: Sample state process of GI/GI/1 buffer with pq-policy and quality switching
behavior. The quality is determined by a control variable, e.g., the estimated rate or the
current buffer state, as in the shown in the illustration. Different line colors denote different
quality levels.

While the above parameters are specific to the HAS implementation and assumed to be
fixed, the external factors, as for example the available bandwidth, are modeled as random
variables (RV) drawn from arbitrary probability distributions. Specifically, we denote by
Bn the random variable determining the duration of segment n. As HAS services typically
utilize the same duration for each video segment, we note that this behavior can easily be
modeled by using a deterministic, fixed distribution for the segment play time. Dn denotes
the average throughput while downloading segment n. The bitrate for segment n of qual-
ity i ∈ {1, . . . ,N} is modeled as the RV C(i)

n . Accordingly, the inter-arrival time, i.e., the
download duration, of segment n of quality i, can be computed as follows:

A(i)
n =

C(i)
n ·Bn

Dn
. (3.9)

Note that the distribution of A(i)
n has to be calculated by a ratio distribution in order to

consider the bitrate of the segment and the download bandwidth. Since we are utilizing
discrete-time analysis, we can compute the ratio distribution by iterating over all possible
combinations.

Figure 3.5 gives an exemplary overview of the model using three quality levels, which
means that N = 3 and i = 1,2,3. The time t is depicted along the x-axis and the y-axis
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represents the buffered playback time. In the example, for the n− 1-th segment, quality
level i = 1 is chosen based on the control set Q1. Please note that the illustrative example
denotes the buffer ranges for selecting a specific quality level, with low corresponding to
i = 1, medium corresponding to i = 2, and high corresponding to i = 3, respectively. The
quality can, however, similarly be chosen depending on the download rate, without any
loss of generality. After the full download time of A(1)

n−1 (but before the segment arrival) two
buffer levels are considered Ûn−1 and Ũn−1: the virtual buffer value Ûn−1 allows for negative
values, which will indicate stalling, while Ũn−1 denotes the actual buffer value, which can at
most be empty. Specifically, Ûn−1 is obtained by subtracting the download time A(1)

n−1 from
Un−1, whereby Un−1 denotes the buffer state immediately after reception of the n− 2-th
segment. The actual buffer value Ũn−1 is obtained by considering the maximum of Ûn−1

and 0. Hence, as Ûn−1 ≥ 0 holds in the example, Ũn−1 = Ûn−1 follows. Accordingly, the
segment’s playtime Bn−1 is added to the buffer level Ũn−1 to obtain the new buffer level Un

immediately after receiving the n− 1-th segment. According to the control sets, the next
segment is downloaded in the highest quality i = 3, resulting in a download duration of A(3)

n .
As the download duration A(3)

n is larger than the current buffer time Un, the virtual buffer Ûn

drops below zero while for the actual buffer Ũn = 0 holds. In this case, the video playback
is stalled for a duration of −Ûn time units. After receiving the n-th segment, the actual
buffered playback time is set to Bn, i.e., Un+1 = Bn holds, and the playback resumes as the
buffer value is now again positive. After downloading segment n+ 1 in quality i = 2, the
threshold q is exceeded. Thus, requesting segment n+ 2 is delayed until the buffer drops
below the threshold p.

Finally, we note that the model relies on the following assumptions:

1. Round trip times and protocol overhead are not modeled.

2. Segments must be fully received before being played back.

3. After a video stalling, the playback is immediately resumed once a segment arrives:
there is no buffer limit for resuming the playback.

4. Segment arrivals An and the service time Bn are required to be independent probability
distributions.

3.2.2 Stochastic Preliminaries

The above presented model essentially represents a complex GI/GI/1 queuing model. More
specifically, we can transfer the specifics of the GI/GI/1 model with bounded delay, which
only accepts requests up to a certain level of remaining workload in the system, to the buffer-
and quality switching policies of the presented model. While in the example of Figure 3.5
the random variables, e.g., A(i)

n and Un attained specific values, the model will work on
the distributions of these random variables. We denote the underlying probability density
functions by employing lower case letters: a(i)n , bn, c(i)n , and dn denote the density functions
of the input random variables A(i)

n , Bn, C(i)
n , and Dn. While these densities are provided as
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part of input, the main task when analyzing the model is to concisely compute the density
functions pertaining to the buffer level random variables Un, Ũn, etc., as these are used to
compute the quality metrics.

In order to take the latest buffer state or download rate into account, we use the σ -operators
σm from Equation 3.5 and σm from Equation 3.6 to truncate the respective probability dis-
tributions to a certain range.

To account for negative buffer values, we apply the πm operator from Equation 3.4 with
m = 0 to concentrate all probability mass below 0 to 0. Accordingly, to account for buffer
values exceeding the threshold p, we introduce the sweep operator π p.

π0
(

f (k)
)
=


f (k), k > 0

f (0)+∑ j<0 f ( j), k = 0

0, k < 0

(3.10)

π
p( f (k)

)
=


f (k), k < p

f (p)+∑ j≥p f ( j), k = p

0, k > p

(3.11)

3.2.3 Buffer-based Model

In the following the buffer-based model is presented. The core challenge in modeling the
buffer-based behavior lies in computing the current buffer levels Ûn, Ũn, and Un. The com-
putation of these is necessitated as the quality is chosen based on the buffer levels Un and
for example Ûn will be used to compute the stalling probability. For our analysis we as-
sume qtN ≤ p < q to hold: if qtN > p was to hold, then the highest quality could never be
requested after pausing buffering.

Henceforth, our main goal is to derive concise (recursive) formulas for the probability den-
sity functions un, ûn, ũn of the respective buffer level random variables. We start by consid-
ering the density function of ûn pertaining to the random variable Ûn of the virtual buffer.
Ûn is generally computed as a function of the previous buffer level Un just after receiving
segment n−1 and the arrival time A(i)

n of the segment n of quality i. Hence, both the chosen
quality i, dictating the download time A(i)

n , and potentially pausing the buffering depend on
the buffer level Un and the following cases have to be considered:

Ûn =


Un−A(i)

n if qti ≤Un < qti+1, i ∈Q \{N}, (3.12)

Un−A(N)
n if qtN ≤Un < q , (3.13)

p−A(N)
n if q≤Un . (3.14)

Above, the first N−1 cases of Equation 3.12 capture the system’s behavior when the buffer
level Un indicates requesting a quality contained in {1, . . . ,N−1}. When the highest quality
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is chosen, the two cases of Equations 3.13 and 3.14 need to be considered: if the buffer level
lies below q, then simply the next segment is downloaded according to the highest quality,
while if q is exceeded, requesting the next segment is delayed until the buffer has reached
the threshold p again (cf. Figure 3.5).

Considering the first N − 1 cases, the density of Un−A(i)
n computes to ûn(k) = un(k) ∗

a(i)n (−k). However, as this only holds for the case qti ≤ Un < qti+1, only the following
partial density functions are obtained:

ûn,i(k) = σqti

(
σ

qti+1
(
un(k)

))
∗a(i)n (−k), i ∈Q\{N}. (3.15)

Above, the restriction on the range of Un is realized by truncating the distribution un(k) to
the respective range between qti and qti+1 using the respective σ -operators.

In a similar fashion, the density for the case of Equation 3.13 can be captured by the fol-
lowing partial density function:

ûn,N,<q(k) = σqtN

(
σ

q(un(k)
))
∗a(N)

n (−k). (3.16)

Lastly, for Equation 3.14 the following density is obtained:

ûn,N,≥q(k) = π
p
(

σq
(
un(k)

))
∗a(N)

n (−k) . (3.17)

Intuitively, by first applying the σq-operator only buffer levels exceeding q are considered,
while the π p operator then realigns the full probability mass to the value p.

Overall, the density function ûn computes to the summation over the partial densities of
Equations 3.15 to 3.17 (cf. [96]). Hence, the following is obtained:

ûn(k) =



∑
N−1
i=1

(
σqti

(
σqti+1

(
un(k)

))
∗a(i)n (−k)

)

+

(
σqtN

(
σq
(
un(k)

))
∗a(N)

n (−k)
)

+

(
π p
(

σq
(
un(k)

)
∗a(N)

n (−k)
))


. (3.18)

Given the ability to compute the density ûn we can easily derive the densities of Ũn and Un.
Considering Ũn, we note that Ũn = max{0,Ûn} holds, as the actual buffer can never attain
a negative value. Hence, the following density function is obtained using the π0 sweep
operator:

ũn(k) = π0
(
ûn(k)

)
. (3.19)
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Lastly, as the buffer level Un+1 immediately after the arrival of segment n computes to
Un+1 = Ũn +Bn, the convolution of the respective densities is employed to obtain:

un+1(k) = ũn(k)∗bn(k) . (3.20)

Given a specific density function un together with the input densities a(i)n (k) and b(nk), the
density function un+1 can be computed using the Equations 3.18 to 3.20. Hence, given an
initial distribution for u1 (modeling the empty buffer), the exact density functions for any
segment can be readily computed.

Figure 3.6 summarizes the computation of the buffer distribution. We start with the density
of the video buffer immediately after arrival of segment n−1, i.e., un(k) 1 . As the quality,
and hence the download duration, depends on the specific buffer values, we need to consider
the different cases, as indicated in Equations 3.12 to 3.14. More specifically, if the buffer
exceeds quality switching threshold qt1, which is always the case as we set qt1 = 0, but does
not exceed qt2 2 , the lowest quality, i.e., i = 1 is chosen. Accordingly, the density of the
inter-arrival time for segment n is a(1)n (k), which is subtracted from un(k) by performing the
convolution with a(1)n (−k).

This is done analogues for the values of un(k) exceeding qt2, but undercutting qt3, where
the second quality level (i = 2) is chosen and the convolution is done using a(2)n (−k) to
account for the respective download duration 3 . Hence, as long as any quality level below
the highest quality (i = N) is chosen, Equation 3.12 is applied and the partial densities as
denoted in Equation 3.15 are obtained.

If the buffer suffices for downloading the highest quality (i = N), two further cases have
to be distinguished. In the first case 4 , threshold qtN is reached, but the buffer is still
below q, the threshold for pausing segment request. It is hence sufficient to perform the
convolution to account for the download duration for the highest quality segment a(N)

n (−k).
For instance, Equation 3.13 is applied, resulting in the partial density as computed according
to Equation 3.16.

In the second case 5 , threshold q is exceeded, resulting in pausing segment requests until
the buffer falls below threshold p. To account for this, all probability mass above q is
concentrated to p using the sweep operator π p. According to Equation 3.14, the partial
density as denoted in Equation 3.17 is obtained.

To derive the virtual buffer density (ûn(k)), all partial density function are summed up
(Equation 3.18) 6 . When applying the sweep operator π0 7 to the virtual buffer (ûn(k)),
the actual buffer prior to the arrival of the n-th segment (ũn(k)), which does not allow for
negative values, is obtained. Finally, the downloaded segment’s play time is added to the
buffer, which is obtained by performing the convolution of ũn(k) with the segment duration
density bn(k) 8 as denoted in Equation 3.20.
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Figure 3.6: Computational diagram for the buffer-based version of the proposed model.

3.2.4 Rate-based Model

We now turn to the rate-based model. Again, the goal is to derive the probability density
functions un, ûn, ũn. The main difference with respect to the buffer-based model is that
the quality selection now only depends on the last observed data rate Dn−1: if and only if
Dn−1 ∈ Qi holds, then the segment n is requested with quality i. Additionally, the buffer
thresholds p and q are to be enforced: once Un exceeds q, requesting further segments is
delayed until the buffer reaches the lower threshold p again.

Given the fixed probability distribution dn for the download rate of the n-th segment, the
probability that a segment will be requested using a specific quality computes to

P(Dn−1 ∈ Qi) = ∑
k∈Qi

dn−1(k) for i ∈Q.

Analogous to the analysis of the buffer-based model, we start by deriving the densities of
ûn and ũn, which will then again be used to compute un+1. Regarding ûn, fewer cases need
to be considered (cf. Equations 3.12 to 3.14), as the requested quality only depends on the
previous data rate. Nevertheless, a distinction has to be made depending on whether the
buffer exceeds the threshold q. For Un < q, the density computes to:

û<q
n (k) = ∑

i∈Q
P(Dn–1 ∈ Qi)·

(
σ

q(un(k)
)
∗a(i)n (–k)

)
. (3.21)
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Figure 3.7: Computational diagram for the rate-based version of the proposed model.

In the other case, i.e., for Un ≥ q, the request is delayed until buffer level p is reached, and
the density computes to:

û≥q
n (k)=∑

i∈Q
P(Dn–1∈Qi)·

(
π

p
(

σq
(
un(k)

))
∗a(i)n (–k)

)
. (3.22)

To merge the above Equations 3.21 and 3.22, note that both only differ in whether the π p

operator is applied or not and their conditioning. Accordingly, to unify both, we introduce
the following buffer distribution u′n, where the probability mass above q is realigned to p:

u′n(k) = σ
q(un(k)

)
+π

p
(

σq
(
un(k)

))
. (3.23)

Using this adapted density function u′n, the density ûn of the virtual buffer Ûn computes
to:

ûn(k)=∑
i∈Q

P(Dn−1 ∈ Qi)·
(
u′n(k)∗a(i)n (−k)

)
. (3.24)

Lastly, we note that the computation of the densities ũn and un+1 only rely on the computa-
tion of ûn (cf. Equations 3.19 and 3.20). Accordingly, the respective formulas still hold for
the rate-based model, albeit now using ûn defined in Equation 3.24:

ũn(k) =π0
(
ûn(k)

)
, (3.25)

un+1(k) =ũn(k)∗bn(k) . (3.26)

Figure 3.7 summarizes the above observations and depicts the iterative computation of the
buffer densities. We start with the density of the video buffer immediately after arrival
of segment n− 1, i.e., un(k) 1 . The distinction needs to be made, whether threshold q is
exceeded or not. If so 2 , the sweep operator π p is applied to shift all probability mass above
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q to p. Otherwise, the buffer is below q 3 and no further operations need to be performed.
Both partial densities for the buffer are then summed up and according to Equation 3.23,
density u′n(k) is obtained, where the buffer cannot exceed p.

Next, the quality and hence the download duration for segment n is determined according
to the rate observed during download of segment n− 1, i.e., Dn−1. The probability for
requesting the lowest quality level (i = 1) is expressed as P(Dn−1 ∈Q1) 4 and is equivalent
to the probability mass of dn−1 being below qt2. In this case, the convolution of u′n(k)
is performed with the density of the download duration to decrease the buffer by a(i)n (k).
Analogous to, the second quality level (i = 2) is chosen for throughput values above qt2
but below qt3, corresponding P(Dn−1 ∈ Q2) 5 , as well as for any quality level i up to
i = N 6 .

All partial densities are the summed up 7 , as denoted in Equation 3.24, resulting in the
virtual buffer density ûn(k). The remaining steps are equivalent to the buffer-based version
of the model: The sweep operator π0 shifts all probability mass below 0 to 0 so to obtain the
buffer density prior to the arrival of segment n, i.e., ũn(k) 8 . Performing the convolution
with the play time of the n-th segment, i.e., bn(k), finally results in the density un+1(k),
describing the buffer immediately after reception of the segment 9 .

3.2.5 Metric Computation

In the following, relevant HAS performance metrics are formulated based on the above de-
rived density distributions. While the model generally allows for studying the performance
before and after the n-thsegment arrival (by iteratively computing the respective densities),
in the following only steady state performance metrics will be considered. To this end, we
have to assume that the input probability distributions are either constant, i.e., that bn = b,
c(i)n = c(i), and dn = d hold for n ≥ 0, or that the density series {bn}n, {c(i)n }n, and {dn}n

converge, such that the steady state density functions b = limn→∞ bn, etc., are well-defined.
In either of these cases, the buffer density functions will eventually converge as well. In the
following, we assume limn→∞ un = u and first consider the performance metrics related to
the buffer state and then discuss metrics pertaining to the quality.

3.2.5.1 Buffer-related Metrics

Since a precise computation of the buffer level at any point in time is cumbersome and in-
volves the computation of recurrence times [109], we rely on the buffer level u immediately
after the segment arrival times, for computing the average buffer filling level. This metric
can easily be computed, both for model and measurements. Accordingly, we estimate the
average buffer level (at the segment arrivals) as:

AVERAGE BUFFER LEVEL: E(u) = ∑k k ·u(k) . (3.27)
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Next, we consider the stalling probability and stalling duration. As discussed above, when-
ever Ûn lies below 0, stalling of exactly −Ûn time units occurs. As stalling only depends
on the buffer distribution, we do not need to distinguish between the buffer- and rate-based
approach. Considering the steady state probabilities, the stalling probability computes to:

STALLING PROBABILITY: Pstalling = ∑k<0 û(k) . (3.28)

To compute the stalling duration, we consider the negated expected value of û conditioned
on the negative buffer levels:

STALLING DURATION: L =−∑k<0 k · û(k) . (3.29)

3.2.5.2 Quality-related Metrics

In contrast to the above presented metrics, to model the quality-related metrics, we have
to distinguish between the buffer- and rate-based version for computing the quality-related
metrics. They depend on the buffer levels in the buffer-based case and on the download
durations in the rate-based case.

We first consider the average quality, which we define to lie in the range from 1 to N accord-
ing to the definition of quality levels Q. In the buffer-based model, the quality is dictated
by the buffer level after having received a segment, i.e., u. For the rate-based model, the
average quality is only determined by the steady state download rate d. Accordingly, we
obtain:

AVERAGE QUALITY:

Q̄buffer = ∑
i∈Q

(
i · ∑

k∈Qi

u(k)
)
, (3.30)

Q̄rate = ∑
i∈Q

(
i · ∑

k∈Qi

d(k)
)
. (3.31)

Another performance metric of interest is the stability of quality levels in terms of the rel-
ative number of segments witnessing a quality level change. In the buffer-based case, the
quality switches between the n-th and the n+ 1-th segment, if the buffer at the arrival of
the n-th segments exceeds a threshold qt , while at the arrival of the n-th segment, any other
threshold than qt is reached. The same holds for the rate-based approach, however, the
threshold qt refers to the data rate during download of the n-th and n+ 1-the segment, re-
spectively. This can be translated for the (steady state) probabilities of switching quality
levels as follows:
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SWITCHING PROBABILITY:

Pswitch
buffer = lim

n→∞
∑
i∈Q

P(Un ∈ Qi,Un+1 /∈ Qi) , (3.32)

Pswitch
rate = lim

n→∞
∑
i∈Q

P(Dn ∈ Qi,Dn+1 /∈ Qi) . (3.33)

We first derive a concise formula for the buffer-based model, i.e., Pswitch
buffer . As analyzed in

Section 3.2.3, the random variable Un+1, and respectively its density, depends on Un (cf.
Equation 3.20). As the different ‘computational branches’ of the computation of un+1 (cf.
Figure 3.6) need to be taken into account, we first decompose the switching probability
Pswitch

buffer into the sum:

lim
n→∞

(
∑

N
i=1P(Un ∈ Qi, Un+1 /∈ Qi, Un < q)
+ P(Un ∈ QN ,Un+1 /∈ QN ,Un ≥ q)

)
. (3.34)

Now, conditioning on the quality level of Un and considering the steady state distribution
u, the probability of quality switches for the buffer-based case Pswitch

buffer can be computed as
follows:

Pswitch
buffer =


N
∑

i=1
∑

k/∈Qi

(
π0[σqti(σ

qti+1(u(k)))∗a(i)(-k)]∗b(k)
)

+ ∑
k/∈QN

(
π0[π

p(σq(u(k)))∗a(N)(-k)]∗b(k)
)
. (3.35)

Intuitively, above the σ -operators represent the conditioning of Un having a specific quality
(of steady state density u), while the inner formulas are obtained by following the computa-
tional specification to obtain the buffer level probabilities for Un+1 and then considering all
buffer levels k where another quality level was chosen (k /∈ Qi).

For the rate-based approach, the switching probability only depends on the (steady state)
download rate. Accordingly, it can be readily computed using basic probability theory as
follows:

Pswitch
rate = lim

n→∞

(
∑

N
i=1 P(Dn ∈ Qi,Dn+1 /∈ Qi)

)
(3.36)

= lim
n→∞

(
1–∑

N
i=1P(Dn∈Qi) ·P(Dn+1∈Qi)

)
(3.37)

= 1−∑
i∈Q

(
∑

k∈Qi

d(k)
)2
. (3.38)
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Table 3.2: Model input and measurement parameters used throughout the validation study.

Parameter Value

maximum buffer 40 seconds
buffer-based thresholds qt1 = 0s, qt2 = 10s, qt3 = 20s, qt4 = 30s
rate-based thresholds qti = 1.15-fold of average bitrate of level i
bandwidth provisioning factor a = {0.8,1.0,1.2,1.4,1.6,2.0}-fold of average bitrate

of the lowest quality level (i = 1)
bandwidth coefficient of variation cv = 0,0.2,0.4,0.6
average video bitrates bri = {563, 1098, 1634, 2170} kbps for i = 1,2,3,4

3.3 Model Validation

In the following, we validate the probabilistic outputs of the model. Therefore, we run
testbed measurements and apply both versions of the model with the same properties used
during the measurements, i.e., number and characteristics of quality levels, switching thresh-
olds, etc. We first present the applied experiment paramters and discuss the results after-
wards.

3.3.1 Methodology and Experiment Parameters

We generate video sequences using a virtual testbed setup. It consists of a video server
and a HAS client running the TAPAS player [110]. The server and the client run in two
different Linux namespaces1 on a single physical machine. A virtual interface connects
both namespaces and allows to throttle the bandwidth between client and server using the
Linux traffic control2. As a rate-based HAS implantation, we use PANDA [53]. For the
buffer-based approach, we use an own and very simple heuristic, which selects the quality
based on the current buffer state and pre-defined thresholds.

The test video sequence consists of 48 segments with a duration of 5 seconds each, which
are provided in four different quality levels, as denoted in Table 3.2. For the buffer-based ap-
proach, we set the quality switching thresholds to qt1 = 0, qt2 = 10, qt3 = 20, and qt4 = 30.
In case of the rate-based approach, we set the safety margin, i.e., the percentage to which
the throughput rate has to exceed the bitrate of a certain quality level, to 15%. Accord-
ingly, the obtained thresholds are computed using the average bitrate per quality level as
qti = 1.15 ·C(i), for i ∈ {2,3,4}, with C(i) denoting the average bitrate of quality level i. For
the first threshold qt1 = 0 holds. The maximum buffer threshold is set to q = 40. As we do
not consider a segment request resume threshold, we set p = q = 40. For the available aver-
age bandwidth, we define the bandwidth provisioning factor a. It corresponds to the ratio of
the average bandwidth to the average bitrate of the lowest quality level. A fluent video play-
back is generally only possible if a > 1. Additionally, we consider different settings of the

1http://man7.org/linux/man-pages/man7/namespaces.7.html
2https://linux.die.net/man/8/tc
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coefficient of variation cv for the available bandwidth. To enable measurements with spe-
cific parameter settings for a and cv, custom network trace files are generated. Thereby, the
values for the available bandwidth per second are chosen according to a negative binomial
distribution, so to achieve the target bandwidth characteristics.

Our analytical computations are based on the same empirical distributions and values as
used for the measurements. With respect to the video characteristics, we compute the av-
erage values of the bitrates and the standard deviations and approximate the empirical dis-
tribution with a negative binomial distribution. This allows us to abstract the specific video
clip and to generalize our results. For the rate distribution, needed as an input for the ana-
lytical model, we utilize the empirical distribution from the testbed client’s rate estimation.
The client estimates the rate by dividing each received segment’s size by its download du-
ration. Typically, the download takes roughly as long as a segment’s duration. Hence, the
actual throughput for a segment is the average of several random bandwidth values speci-
fied in the trace files. As a result, the coefficients of variation for the estimated rate, which
are considered in the model, are lower than the coefficients of variations for the available
bandwidth, which are considered in the network traces for the measurements. For instance,
cv values of 0.2, 0.4, and 0.6 for the available bandwidth reduce to cv values of roughly 0.1,
0.2, and 0.3 for the estimated rate. As the model considers the available bandwidth on a
per-segment scale, we use the latter ones, i.e., the empirical client-side measurements as the
input for the model. Again, by using a distribution to describe the network characteristics,
temporal effects are eliminated.

For our evaluations, we only consider the buffer state immediately after segment arrival in
both cases, when performing the testbed measurements and when applying the analytical
model. Hence, the actual average buffers are expected to be slightly lower. In order to
account for overhead such as MPD file or TCP/IP packet headers, we reduce the available
bandwidth in the model by a factor of 0.07, matching the average overhead ratio measured
in the testbed. Finally, we note that for each or the tested parameter combination, 15 testbed
measurement runs are performed in order to obtain statistical significance.

3.3.2 Validation Results

First of all, we evaluate how accurate the average buffer filling level can be captured by the
analytical model. Figure 3.8a shows the results for the buffer-based approach. The x-axis
depicts the bandwidth provisioning factor, the y-axis denotes the buffer level in seconds.
Values obtained from the analytical model are depicted as bars, whereas the colors express
different cv values. The dots represent the buffer levels obtained from the testbed mea-
surements along with the 95% confidence intervals. It can be seen that the model is quite
accurate for all evaluated cv parameters and provisioning factors a. The highest deviations
are observed for a = 2, where the model returns higher values for the average buffer for any
of the examined cv.
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(b) Rate-based model.

Figure 3.8: Comparison of analytical (bars) and empirical (dots) buffer levels with the 95%
confidence intervals for the measurements.

Analogous, Figure 3.8b depicts the buffer levels obtained for the rate-based model. For
bandwidth provisioning factors of a = 1.0 and a = 1.2, we see discrepancies between the
model’s output and the testbed measurement. However, for the remaining bandwidth pro-
visioning factors, the model can accurately capture the buffer level any considered values
of cv. For the rate-based version, it can also be observed that for a ≥ 2, the average buffer
decreases as cv increases. This is due to the fact that higher segment qualities can be down-
loaded more often, resulting in a higher download duration, and hence decreasing the aver-
age buffer level.

Next, we study the QoE-IFs, which can be derived from the modeled video buffer. The
results for the buffer-based version are depicted in Figure 3.9. As shown in Figure 3.9a, the
analytical model in general yields a good approximation of the stalling probability obtained
in the testbed measurements. Significant deviations can only be observed for two settings
of the bandwidth provisioning factor a. For very low bandwidth settings, i.e., a = 0.8, the
model under-estimates the stalling probability by an absolute value of about 0.1 for any cv.
The second setting where greater deviations occur is a = 1.2 with low values for cv. In this
case, the model over-estimates the stalling probability, but the deviation is in any case less
than absolute value of 0.1.

While the stalling probability can be modeled with high accuracy in most cases, there are
larger discrepancies when it comes to the duration of stallings, as shown in Figure 3.9b.
For each of the tested parameter settings, the analytical model under-estimates the stalling
duration. For bandwidth provisioning factors of a = 0.8 and a = 1.0, the deviation is about
1.0s to 1.5s and reaches up about 5s for a = 1.6 and cv = 0. We note here that the overall
number of stallings occurring during one testbed video session is very low. In a single
measurement run, only 48 segments are downloaded and if a > 1.0, stallings are rare events,
leading to the small sample size. Hence, the average stalling duration is obtained from a
low number of samples, which also explains the large confidence intervals. The issue can
be overcome by performing more measurements to obtain a greater sample size and by
introducing more randomness, e.g., by using different video sequences.

43



3 Modeling Adaptive Streaming Using Discrete-Time Analysis

0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bandwidth provisioning factor a

St
al

lin
g 

pr
ob

ab
ilit

y
cv=0.0
cv=0.1
cv=0.2
cv=0.3
measurement

(a) Stalling probability.

0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

1

2

3

4

5

6

Bandwidth provisioning factor a

St
al

lin
g 

du
ra

tio
n 

[s
]

(b) Avgerage stalling duration.
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(d) Switching probability.

Figure 3.9: Buffer-based model: Comparison of analytical (bars) and empirical (dots) qual-
ity metrics with the 95% confidence intervals for the measurements.

Figures 3.9c and 3.9d depict the metrics related to the video quality, i.e., the average quality
level and the quality switching probability. In general, the model slightly under-estimates
the average quality, but is still capable to yield accurate results. In terms of the switching
probability, we can observe certain deviations, but the model outputs still preserve the trends
and the absolute differences between model and measurements are in case below 0.1.

Accordingly, Figure 3.10 illustrates the HAS performance metrics for the rate-based ver-
sion of the model. The stalling probability, denoted in Figure 3.10a, is relatively accurate
modeled for a = 0.8 and a = 1.0, however, the model over-estimates the probability for
video interruptions in the remaining cases. The maximum deviation occurs for a = 1.2 and
cv = 0.3, with an absolute drift of approximately 0.1.

Figure 3.10b denotes the stalling duration. We obtain similar outputs from measurements
and model, with a deviation not exceeding 0.5s, for a = 0.8, i.e., the scenarios where
stallings are likely to occur with high frequency. For a = 1.0, the model can preserve the
trend of increasing stalling duration with increasing cv, but the discrepancy between model
and measurement is enlarged. Similar as with the buffer-based approach, due to the few
stallings during the measurements when a > 1.0, i.e., the small sample size from which the
average stalling duration is composed, the results from measurements and model deviate.
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Figure 3.10: Rate-based model: Comparison of analytical (bars) and empirical (dots) qual-
ity metrics with the 95% confidence intervals for the measurements.

Finally, we discuss the metrics related to the video quality. As shown in Figure 3.10c,
the model yields highly accurate results for the average quality. For the quality switching
probability denoted in Figure 3.10d, we observe that the model over-estimates how often
quality switches occur, especially for a > 1.2.

The comparisons between model and measurements indicate that the model enables a good
prediction of all metrics apart from the stalling durations. It should be noted that the mea-
surements were conducted using a relatively short video, which in turn leads to a small
sample size when evaluating metrics like the stalling duration, especially for higher values
of a, where interruptions are per se unlikely to happen. A higher statistical significance
in the measured results can be obtained by using a diverse set of video clips, longer video
sequences, and by increasing the number of measurement runs. However, as the stallings
occur only for small number of parameter configurations, obtaining a higher significance in
terms of stalling duration is costly. Regarding the discrepancy between measurements and
model, it should be noted that so far, we only apply one fixed share of 0.07 to account for
overheads. However, this value is only a rough estimate and depends on the bandwidths and
bitrate. Despite these and other assumptions, e.g., no influence of RTT or the independence
of RVs, the results still indicate the applicability of the presented model.
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Figure 3.11: Overview of the applied methodology to assess the model’s capability for
obtaining reliable QoE output, despite its lack of temporal context.

3.4 Model Applicability for QoE Analysis

In this section, we examine in how far the model can be applied for QoE analysis. As
outlined in the previous parts of this chapter, the analytical model returns asymptotic prob-
abilities, but is not capable of capturing the temporal behavior of video sessions. How-
ever, state-of-the art QoE models require temporal aspects, such as the timely position of
stallings. In the following we propose an approach based on Monte-Carlo simulation to
generate video sequences from the model’s output. These video sequences are then used
to obtain the QoE via the P.1203 model and, similarly as the validation carried out above,
they are compared against the QoE obtained from video sessions generated via testbed mea-
surements. We first give a brief overview of the proposed methodology for video sequence
generation and introduce the experimental parameters. The section concludes with a short
discussion of the results.

3.4.1 Methodology Overview

A comprehensive overview of the applied methodology is illustrated in Figure 3.11. It
shows the whole process with respect to the testbed measurement runs, model-based eval-
uations, obtaining time series of the video playback, and the QoE assessment using ITU-T
P.1203. The top of the illustration shows the input in terms of segment sizes and bandwidth.
We consider static bandwidths 1 as well as bandwidths with varying capacity over time 2 ,
by applying a real network trace [111], which denotes the bandwidth as a time-series on a
time scale of one second. The bandwidth trace is used in three different manners. In the first
case, the trace is not modified and starts at the beginning (unmodified). In the second case,
we pick a random start point for the trace (random start). In the third case, we shuffle the
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whole trace file (shuffled). Especially the third case, where the per-second bandwidth values
are shuffled, increases the randomness by eliminating the temporal correlation in the trace
file. The video segment sizes are fixed, i.e., there is a pre-defined, chronological order of
the segments’ sizes, Having these segment sizes, testbed measurements are performed and
the buffer-based HAS performance model is applied, once assuming the static bandwidth 3
and once using bandwidth traces 4 . As both, the segment sizes and the bandwidth values
are fixed and in chronological order, the HAS performance model can be used to retrieve
a time series of the video buffer. More specifically, the model is capable to compute the
buffer state immediately before and after segment arrival. Hence, in both cases, when using
the HAS performance model and when running the testbed measurements, we obtain a time
series of all relevant HAS performance parameters 5 , such as the playback quality or the
number and duration of video interruptions.

In order to exploit the benefits of the analytical model, i.e., the efficient computation of
relevant metrics for a huge number of parameter combinations, it has to be with input dis-
tributions, instead of chronological sequences. Hence, in a next step we increase the level
of randomness of the input data and express the segment sizes and bandwidth as distribu-
tions 6 , which follow the same statistical properties, i.e., mean values and standard devi-
ations, as their respective chronological sequences. Thus, the distributions used in 6 are
an abstraction of the time series used in 2 . When the HAS performance model is applied
with these distributions, it returns steady state results of relevant adaptive streaming metrics
like stalling probability or the video buffer distribution 7 . As we need video play back se-
quences in order to compute the QoE with the P.1203 model, we perform Monte-Carlo [112]
simulations 8 to generate these sequences, as further described in Section 3.4.2.

Hence, we constantly increase the level of randomness of the input data, from fixed traces
and time series to probability distributions and want to study the impact of disorder and
abstraction on the obtained QoE scores. The time series obtained via measurement, via the
model with trace inputs, and via using the model with distribution inputs in conjunction with
Monte-Carlo simulations, are evaluated and compared with regard to the final QoE score,
which is obtained by using the ITU-T P.1203 model. The ultimate goal is to evaluate in how
far the HAS performance model, when it is applied in its most efficient manner, i.e., relying
on distributions for segment sizes and bandwidth, can reliably capture the QoE. For that,
we compare the obtained QoE scores against those scores obtained with the performance
model with fixed inputs and against those obtained via testbed measurements 9 .

3.4.2 Video Playback Sequence Generation

In this subsection we describe how we generate video time sequences based on the output of
the HAS performance model, when applied with generic distributions for the segment sizes
and available bandwidth (see 7 and 8 in Figure 3.11). To generate a couple of different
video playback sequences, we use a Monte-Carlo simulation approach, namely a random
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walk. We start with the empty system and compute the transmission time for the first seg-
ment. This is done by drawing a random inter-arrival time from the corresponding segment
inter-arrival time distribution for the selected quality defined by the current buffer level and
the quality switching thresholds. The video playback buffer depletes until the next segment
arrives at the video client, which results in an increase of the video playback buffer by a ran-
dom variable following the segment length distribution. Relevant QoE metrics, such as the
downloaded video quality or the stalling time and duration, are logged. Then, the random
walk is continued by drawing further random variables for inter-arrival times depending on
the developing video buffer state, as well as random variables for the segment length dis-
tributions. This is continued until the desired number of segment downloads is reached. In
total, we randomly generate 50 video playback sequences for each input parameter combi-
nation using the outlined method.

3.4.3 Experimental Parameters

Our test video with a total duration of 240 seconds is split into 60 video segments, each
of 4 seconds duration. Each video segment is available in four different quality levels,
with the following tuples (average bitrate, standard deviation) denoted in kbps: (510,154),
(1016,313), (1524,474), (2034,634). For the available bandwidth, we consider on the one
hand static limits of 500, 1000, and 2000 kbps, which do not change throughout the ex-
periments. On the other hand, we use the car bandwidth trace [111], which we scale so to
achieve similar average values as for the static case. The scaled trace files result in the fol-
lowing tuples for average bitrate and standard deviation denoted in kbps: (496,260), (992,
520), (1984, 1040). In any of the three cases, the coefficient of variation (cvar) for the
available bandwidth is 0.52.

Please note that the selected bandwidth configurations are lower than what can be expected
from a real (mobile) network deployment. However, the goal of the study is to investigate
if the proposed methodology, i.e., generating video sequences via Monte-Carlo simulations
from probability distributions, is capable to retrieve QoE scores comparable to those ob-
tained from testbed measurements. Setting a comparably low bandwidth capacity ensures
that video stallings occur, which are one of the most dominant factors impacting QoE.

The HAS performance model is once applied on time series and once with input distribu-
tions for the available bandwidth. In the latter case, we use a deterministic distribution for
static bandwidth limits. For varying bandwidth, realized in the testbed measurements with
the trace experiments, we use distributions corresponding the characteristics mentioned
above, i.e., we preserve the same average values and standard deviations of the traces’
bandwidth values.

For the testbed measurements, we use the buffer-based bitrate adaptation strategy Bola,
which is implemented in the Dash.js player. The quality switching thresholds are configured
as follows: With a buffer value below 10 seconds, the lowest quality level, i.e., level 1 is
requested. A buffer value of at least 10 seconds is necessary for requesting level 2, and
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Figure 3.12: CDF of the QoE values resulting from the different bandwidth modes with an
average bandwidth of 500 kbps. Black solid lines indicate the HAS performance model’s
outcome on distributions. The remaining solid lines indicate QoE values computed by the
HAS performance model (pm) relying on time series as input. Dashed lines represent the
results from measurements in the testbed (tb).

15 seconds of buffered play time triggers the heuristic to download the next segment in
the 3rd quality level. Level 4 is requested if the video buffer exceeds a threshold of 20
seconds. When applying the HAS performance model, the quality switching thresholds are
set accordingly.

3.4.4 Evaluation Results

We first evaluate the obtained QoE values for different bandwidth modes and levels of ran-
domness with an average available bandwidth of 500 kbps. The results are depicted in
Figure 3.12. More specifically, Figure 3.12a shows the results for the two bandwidth modes
without or low level of randomness, i.e., the static bandwidth and the bandwidth trace
started from the beginning. In case of static, the HAS performance model (pm) returns a
MOS value of 1.94 and a MOS value of 1.98 when the bandwidth trace is applied. As the
model computes stallings and the next segment’s quality based on fixed inputs, the output
is deterministic and we obtain only one MOS value for trace and one MOS value for static.
The testbed measurements (tb), however, return slightly varying QoE values. In the case of
static, the values range between 1.95 and 2.04. If testbed measurements are performed using
trace, the variability increases slightly, returning MOS values between 1.85 and 2.0. These
variations in the measurements are due to several aspects, including the behavior of TCP
and software. When we apply the HAS performance model with distributions for bandwidth
and segment sizes, it yields distributions for QoE-relevant metrics, such as stalling probabil-
ity and video quality. Using the Monte-Carlo simulation technique (see Figure 3.11 8 ), we
generate 50 video sequences from these output distributions, i.e., we create chronological
orders of video quality and staling events. The resulting MOS values range from 1.8 to 2.4,
as shown by the black solid line. Hence, the MOS range, as obtained with the proposed
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Figure 3.13: CDF of the QoE values resulting from the different bandwidth modes with an
average bandwidth of 1000 kbps. Black solid lines indicate the HAS performance model’s
outcome on distributions. The remaining solid lines indicate QoE values computed by the
HAS performance model relying on time series as input. Dashed lines represent the results
from measurements in the testbed.

methodology covers all MOS scores obtained via testbed measurements. Moreover, it is
notable that the median score obtained with the Monte-Carlo approach is in line with the
median score obtained via testbed measurements.

The results when increasing the level of randomness by using random start points in the
bandwidth trace or by shuffling the bandwidth trace are shown on in Figure 3.12b. While
the computation using the performance model (pm) with time series for the bandwidth,
i.e., static and trace, resulted in a single MOS value, we now obtain different QoE values
for different computation runs, due to the induced randomness. The retrieved MOS lies
between 1.84 and 2.3 for random start and between 1.85 and 2.0 for shuffled. The QoE
as measured in the testbed (tb )ranges from 1.84 to 2.0 for random start and 1.84 and 2.1
for shuffled. Again, applying the model with input distributions and using the Monte-Carlo
approach to generate time series for the video session, as indicated by the black solid line,
is capable of fully covering the QoE ranges obtained from testbed measurements and using
the model with input time series. Furthermore, the median obtained with the proposed
methodology is similar to the median QoE scores from testbed measurements, indicating a
good approximation.

The cumulative distribution functions for the modes with an average available bandwidth
of 1000 kbps are shown in Figure 3.13. First, we discuss the results obtained when the
bandwidth remains static or when using trace without any randomization, as shown in Fig-
ure 3.13a. Once again, we obtain a single QoE value when applying the HAS performance
model (pm) with fixed time series input, giving MOS scores of 4.58 and 4.28, respectively.
The variation of the QoE values obtained from testbed measurements in static mode is neg-
ligible. This is due to the fact the provided bandwidth allows the client to smoothly stream
on the lowest quality. It rarely selects segments on the second quality level or suffers from
stalling. On average, a MOS of 4.58 is achieved. If the bandwidth mode trace is applied
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Figure 3.14: CDF of the QoE values resulting from the different bandwidth modes with an
average bandwidth of 2000 kbps. Black solid lines indicate the HAS performance model’s
outcome on distributions. The remaining solid lines indicate QoE values computed by the
HAS performance model relying on time series as input. Dashed lines represent the results
from measurements in the testbed.

during testbed measurements (tb), periods occur where the available bandwidth is not suf-
ficient to download the segment timely, but also periods where the available bandwidth is
sufficient to build up a buffer that allows higher quality. Hence, the MOS shows a slight
variability between 4.2 and 4.6. Using the proposed methodology relying on the HAS per-
formance model and the Monte-Carlo approach, as indicated by the black solid line, the
MOS score is under-estimated for about 70% of the generated video sequences with a high
discrepancy compared to the testbed measurement results.

These discrepancies between the measurement results and the generated video sequences
decrease with an increasing level of randomness, as shown in Figure 3.13b. Although the
QoE scores obtained with the proposed methodology (black solid line) still tend to be lower,
the absolute difference compared to the measurement outputs is smaller.

Finally, we discuss the evaluation results when considering an average available bandwidth
of 2000 kbps using Figure 3.14. As depicted in Figure 3.14a, the MOS scores obtained with
the performance model and fixed inputs are nearly equal for static and trace with values of
4.585 and 4.584, respectively. It is hence in line with the MOS scores obtained during the
testbed measurements with static bandwidth, where an average MOS of 4.58 is achieved.
The testbed measurements using mode trace yield values ranging from 4.04 to 4.58. Again,
the majority of generated video sessions under-estimate the MOS values obtained from the
measurements.

Figure 3.14b shows that when introducing more randomness in the testbed measurements,
the obtained MOS scores diverge more towards to the MOS scores obtained with the an-
alytical model combined with the Monte-Carlo approach. The maximum deviation is less
than an absolute score of 0.5.
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Finally, we give a brief summary on the results described above. The MOS scores obtained
when applying the analytical HAS performance model on distributions and generating video
sequences from the probabilistic outputs, show higher variances than the testbed measure-
ments or applying the analytical model with fixed time series input. This is due to the
higher abstraction level of the model input parameters and due to the fact that the model
might cover more diverse cases. This also includes distinct edge cases, such as the un-
favorable combination of having a relative low bandwidth capacity during the download
of a comparably large video segment. The probability of such a scenario is lower for the
testbed measurements, especially when the level of randomness is low, i.e., no random-
ization of the bandwidth trace. For that reason, we observe a better approximation of the
analytical model’s results, when compared to the testbed measurements with an increased
level of randomness. In general, the proposed methodology yields a good reflection of the
measurement-based results in low bandwidth scenarios. As there are only small discrep-
ancies and as the median QoE scores from the analytical model and the testbed match, the
model can be used to reliably approximate the QoE. The analytical model tends to under-
estimate the QoE in higher bandwidth scenarios, due to the reasons outlined above. How-
ever, in this case where the QoE is in general higher and less critical, the model can still be
used to obtain a lower-bound or worst-case approximation.

3.5 Use-Cases for Practical Application of the Model

In the following, we practically apply the buffer-based version of the proposed model in two
different use-cases. The first use-case is a parameter study to examine the impact of buffer-
based quality switching thresholds on the relevant QoE-IFs. The second one addresses
possible benefits of using segments with variable durations, an approach which can reduce
the video bitrate, but simultaneously increases the variability of the segments’ sizes.

3.5.1 Parameter Study on Quality Switching Thresholds

In the following, we exemplary illustrate the model’s applicability for parameter optimiza-
tions by studying the impact of the quality switching threshold on relevant QoE influence
factors. We consider a video split into segments of 5 seconds duration with three different
quality levels, hence requiring three quality switching thresholds: qt1, which is set to 0, ana-
logues to previous parts of this chapter. The threshold for selecting the quality level 2, i.e.,
qt2, is subject of the parameter study. Hence, we test four different configurations, namely
qt2 = {6,10,14,18}. Finally, the threshold for selecting quality level 3, i.e., the highest
quality available, is fixed with qt3 = 25.

For the video bitrates of the three quality levels, it holds q1 = 0.7 · q2 and q3 = 1.3 · q2,
whereby the average bitrate of quality level 2 is 5000 kbps with a standard deviation of
500 kbps. We set the bandwidth provisioning factor to a = 1.5, i.e., the available bandwidth
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Figure 3.15: Impact of the quality switching threshold qt2 on QoE-IFs for different coef-
ficients of variation of the available bandwidth (cvar). All metrics along the y-axis denote
the average value.

is the 1.5-fold of the lowest quality’s bitrate. The coefficient of variation of the available
bandwidth (cvar) ranges from 0 to 1 in steps of 0.05.

The plots in Figure 3.15 illustrate, from top to bottom, the average values for the amplitude
of quality switches, the frequency of quality changes, the video buffer level, the quality
level, and the stalling probability. For cvar = {0,0.05,0.1,0.15,0.2}, the behavior is similar
for all configurations of qt2. For cvar ranging between 0.25 and 0.5, the average buffer
values start to drift apart, whereby a higher threshold qt2 indicates a larger buffer. Within
this region (cvar between 0.25 and 0.5), it is also observable that qt2 = 6 shows the lowest
switching frequency and amplitude, whereby qt2 = 18 shows the highest values for these
metrics. This is due to the fact that the average buffer, when setting qt2 to 18 seconds,
lies between 22.5 seconds and 17.39 seconds. Hence, the average buffer is close to the
switching threshold of qt2 = 18, and as a consequence, quality switches are triggered with
higher probability. As the buffer constantly decreases with increasing values of cvar, the
buffer approaches the values of the lower switching thresholds. As a result, beginning with
cvar = 0.55, the switching frequency increases with decreasing qt2.

In general, the buffer shrinks with increasing bandwidth variations. Accordingly, the prob-
ability for stalling increases, especially in cases where quality is adapted in a rather aggres-
sive (qt2 = 6), than a conservative manner (qt2 = 18). Although small quality thresholds
bring a high quality on average, they should be avoided if the network is likely to show
high variability. The results point out that higher values for threshold qt2 can cushion net-
work dynamics and lead to less stalling, while they provide a similar quality as the lower
thresholds for qt2 in constant scenarios, i.e., when cvar = 0.

The threshold qt2 determines the number of video interruptions in networks with high vari-
ability, but at the same time has hardly an impact on the average quality in scenarios with
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static network conditions. Accordingly, it is in general better to set the threshold for leaving
the lowest quality level to a larger value and thus increase the quality in a more conservative
manner.

This first proof-of-concept study shows how the model can be used to optimize quality
switching thresholds for a given set of quality levels in a QoE-centric manner. It is essential
to adjust configuration-specific parameters, e.g., buffer boundaries for pausing/resuming
segment requests or quality thresholds, to the expected network conditions as well as to the
given content properties, such as the number of available qualities or their bitrate charac-
teristics. With the proposed generic model, which supports any distributions and configu-
rations, parameters can be tuned to the underlying conditions without the need for costly
measurements or simulations.

3.5.2 Impact of Variable Segment Durations on Stalling Probability

With HAS, each video segment has to start with an I-frame, a frame containing the whole
image information. B- and P-frames are cheaper and only encode the differences to the
I-frames. Besides segment starts, I-frames are also included for scene-cuts. Aligning the
segment split points with the existing scene-cuts reduces the number of I-frame, and conse-
quently the required bitrate. However, there is a higher variability in terms of the segments’
sizes. For instance, while segments of equal durations have similar sizes, the sizes of vari-
able segments are more differing, the larger their difference is in terms of duration. Hence,
it is unclear whether the reduced bitrate, but increased segment size variability, is beneficial
for the QoE of HAS. Accordingly, we now apply the buffer-based model to study the impact
of using video segments of variable durations on the video stalling probability.

As an exemplary test video sequence, we use again the Big Buck Bunny video clip. The
video is encoded using a constant rate factor (CRF)3 of 26. Setting a pre-defined CRF value
allows the encoder to dynamically set the bitrate, so to obtain the targeted quality. This
means that - independent of the used segment duration - the encoder will retrieve videos of
the same quality, but with potentially different bitrates needed to achieve the target visual
quality.

We once encode and split the video with a fixed segment duration of 4 seconds each and
once with a fixed duration of 10 seconds each. Then, we encode and split the video again,
but the encoder can freely choose the segment length up to a fixed maximum duration. This
is done two times, once setting the maximum segment duration to 4 seconds, and once
setting the maximum duration to 10 seconds. For instance, the durations of the segments
are variable, but never exceed the segment durations of the respective fixed version. In the
case of 4 seconds (maximum) segment duration, we can economize 5.6% of bitrate with the
variable approach compared to the fixed one. In the case of 10 seconds (maximum) segment
duration, the variable approach leads to a bitrate reduction of 4.2%.

3https://slhck.info/video/2017/02/24/crf-guide.html
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Figure 3.16: Stalling probability of the variable segmentation (var) and the fixed segmen-
tation (fix) approach compared for the Big Buck Bunny clip encoded with a CRF of 26.

For the streaming measurements, we set the the bandwidth provisioning factor as the {0.8 :
0.1 : 1.6}-fold of the average bitrate of the fixed version, i.e., the videos with a fixed segment
duration of 4s or 10s. For the coefficient of variation cvar of the available bandwidth, we
consider values of 0.1 and 0.5. The model’s buffer thresholds p and q are set to 30 and
40, respectively. We omit the quality switching behavior to focus on the segment duration
impact on the stalling behavior.

Figure 3.16 illustrates the obtained stalling probabilities. The x-axes denote the band-
width provisioning factor a, the y-axes represent the stalling probability. As shown in
Figure 3.16a, for any of the tested combinations for a and cvar, the stalling probability is
reduced by the variable segmentation technique. For example, for a = 0.8 and cvar = 0.5,
the stalling probability can be reduced from 0.37 to 0.27, indicating a potential significant
improvement of the QoE. Figure 3.16b shows the results for segments with a (maximum)
duration of 10 seconds. Again, for any of the tested parameter settings, the variably seg-
mented video leads to a reduction of the stalling probability compared to the respective fixed
version. The most significant reduction can be achieved for a = 0.8 and cvar = 0.5, where
the stalling probability can be reduced by 0.18 with the variable approach.

To summarize, the results indicate a high potential of the variable segmentation technique to
improve the HAS QoE. However, we want to note here that further effects, such as a possible
visual degradation due to the reduction of I-frames, have been neglected. Furthermore, the
HAS typical quality switching behavior is not considered. Hence, further studies are needed
to investigate in how far adaptation heuristics can cope with segments of variable durations,
which will be covered in the subsequent chapter.
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3.6 Lessons Learned

This chapter proposed an analytical model based on queueing-theory, which allows to effi-
ciently compute relevant QoE-IFs for HAS. It is able to reflect both, buffer-based as well as
rate-based quality adaptation behavior. Despite several assumptions that have been made,
the validation showed that for both options, the video buffer can be modeled very accu-
rately. The same holds for the investigated QoE-IFs, whereas the output of the model for
the stalling duration in some cases deviates significantly from those values obtained via
measurements.

In an initial study we investigated whether the model, despite its inability of considering
temporal behavior, is capable of computing the video QoE using time dependent QoE mod-
els like P.1203. To do so, we designed an approach based on Monte-Carlo simulations for
generating video play back sequences, which in turn can be used as an input for state-of-
the art QoE models. The evaluation results show that the output of the abstract analytical
model, although it yields generalized results and does not capture the temporal playback
behavior, still allows a good estimation of the QoE. This indicates that analytical models
may provide a scalable solution for a QoE-aware optimization of parameter settings, such as
video segment durations or quality switching thresholds, to the given network conditions.

To demonstrate the practical applicability of the model, we first studied the interplay of
switching thresholds and network conditions in terms of the various QoE-IFs. The evalua-
tions show the importance of calibrating the switching thresholds to the network’s variabil-
ity and reveal specific best-practices for setting these thresholds. For example, the threshold
for switching from the lowest to the second lowest quality level should always be set in
a conservative manner, i.e., the buffer should be sufficiently filled. While a conservative
threshold is not harmful in terms of the delivered video quality as long as the network
throughput is stable, it can clearly reduce the stalling probability for highly varying net-
work conditions. Secondly, we practically applied the analytical model to evaluate possible
benefits of using variable segment durations for HAS. Our evaluations have shown that this
approach, due to its capability of reducing the required video bitrate, significantly reduces
the stalling probability. Hence, variable segment duration potentially deliver a better QoE
to the user, whilst constituting only a minor change to the HAS ecosystem.
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Adaptive Video Streaming

The evaluations carried out in the previous chapter indicate that using variable segment
durations for HAS potentially reduces the probability for video stallings. These findings
obtained via analytical modeling, however, neglect the impact of the ABR behavior and
are based on a single video sequence. Furthermore, the conducted study is limited to the
impact on video stallings, without considering any other QoE-relevant performance metric.
The goal of this chapter is to derive more generalizable conclusions about the benefits of
using variable segment durations by evaluating their impact on the coding efficiency and the
streaming performance, using a broad set of encoded video sequences and testbed-generated
streaming sessions.

The state-of-the-art video segmentation approach relying on fixed segment durations is ap-
plied for practical reasons, as it reduces the degrees of freedom of both, the encoding as well
as the streaming process. It allows for a fast video encoding, because there are less depen-
dencies the encoder has to consider. In terms of video streaming, the prediction complexity
for the ABR algorithm is reduced, since it can rely on a fixed increase of the buffered
playtime after a segment download has finished. Fixed segment durations, however, also
introduce additional overhead, since a keyframe (I-frame) has to be inserted in a content-
agnostic manner at the beginning of each segment to allow its independent playback.

Technically, the HAS principle permits utilizing segments of variable durations, as long
as the segment start times, i.e., the I-frame locations, are consistent between the different
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quality levels. Variable segment durations are the result from a segmentation technique,
which takes the video characteristics into account. For instance, aligning the segment split
positions with I-frames that are needed a-priori, e.g., due to scene-cuts, results in segments
of different lengths. Netflix refers to this approach as shot-based encoding [113], and the
previous chapter of this monograph already provided an initial insight of the potential to
reduce the stalling probability resulting from the increased encoding efficiency. However,
a large-scale comparative analysis, studying impact factors such as the compression rate,
video resolution, or the magnitude of segment duration variability, has not been conducted
yet. Besides, while few existing works [114, 115] study the gain in terms of compression
efficiency, these works still neglect the influence of variable segment durations on the video
streaming process itself. As an increasing variability of the segment durations results in
an increase of the segment size variations, it affects the decisions of ABR algorithms and
therewith the streaming performance [65]. Hence, to show the applicability and potentials
of variable segment durations for today’s HAS systems, it is essential to conduct a broad
investigation of their influence on the streaming behavior, which also does not exist so far.

This gap is addressed in the course of this chapter. In order to evaluate and compare the
fixed and the variable approach with regard to encoding-related metrics – such as segment
durations, file size, or video quality – we create a large data set consisting of roughly 2,000
encoded video sequences. For the sake of representativeness of our results, we choose
four publicly available video sources with durations between 8 and 12 minutes, all with
a resolution of up to 2160p. We use the H.264 video compression standard and consider
variable bitrate encoding (VBR) as well as constant bitrate encoding (CBR) with different
constant rate factor (CRF) settings and target bitrates. Evaluations carried out using this
data set show that variable segment durations can reduce the video bitrate by up to 15%,
while maintaining a comparable video quality, as shown by the SSIM metric. Furthermore,
we reveal the relevant factors influencing the potential for bitrate reduction.

To study the impact of variable segment durations on HAS performance, we run extensive
testbed measurements. Thereby, we consider varying network conditions, different state-of-
the-art ABR strategies, and a subset of the encoded video sequences, including both, fixed
and variably segmented videos. Thus, we obtain more than 7,000 streaming sessions, which
are evaluated in terms of their QoE scores according to the model from ITU-T Recommen-
dation P.1203. Our evaluations reveal a slight increase in the median QoE of all streaming
sessions when using variable segment durations and significant increase of the subjective
streaming performance in scenarios with low bandwidth capacities.

The rest of this chapter is structured as follows. Section 4.1 gives background information
and presents related work focusing on the impact of segment durations for HAS. Section 4.2
introduces the proposed variable approach. Section 4.3 details on the investigations carried
out related to video encoding and segmentation. Subsequently, the impact of the variable
approach on the streaming performance is addressed in Section 4.4. Finally, Section 4.5
summarizes the lessons learned.
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Group of Pictures (GoP)

Figure 4.1: Structure and references of different frame types in digital video coding. Ar-
rows denote references between the frames.

4.1 Background and Related Work

This section firstly introduces digital video encoding basics with a focus on the different
types of frames that are used throughout the encoding process. Next, we describe the state-
of-the art mechanism for preparing HAS content with fixed segment duration. The SSIM
metric is introduced subsequently, as this is one of the most prominent metrics to assess
video quality and also used in the course of this chapter. Finally, we present scientific studies
which focus the impact of segment durations on HAS performance and outline related works
on variable segment durations.

4.1.1 Digital Video Encoding

Generally spoken, a video is not more than the concatenation of still images, which - when
displayed in chronological order with a rate of at least about 24 images per second - is
perceived as motion by humans. Raw, i.e., uncompressed, digital videos indeed do rely
on the purely succession of pictures. While they come without any degradation of visual
quality, raw videos result in very high file sizes, making them inefficient for storage and
transmission. Video encoding techniques allow to store the video information in a more
efficient manner by exploiting the temporal redundancy of subsequent images. For instance,
as long as no scene-cut occurs, the color and location of the pixels of an image i are very
similar to those of an image i+1.

Digital video encoding makes use of the high correlation of pixels of successive images
by only considering the information about the changes between two subsequent images.
The movements of pixels are encoded in so-called motion vectors, which are substantially
cheaper to encode than storing the whole image information. In this context, different types
of video frames need to be taken into account, which differ with respect to the information
they contain and in terms of the frames they are referring to.

Figure 4.1 exemplarily illustrates an encoded video scene using I-, P-, and B-frames, as
applied, e.g., with the H.264 video compression standard. The Intra-coded picture, or I-
frame, contains the complete picture information and is basically like any other image, such
as JPEG. An I-frame does not require any other frame to be decoded, but is simultaneously
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the most expensive type of frames, i.e., it has typically a comparably high file size. P-
frames (Predictive-coded picture) refer to previous I-frames or other previous P-frames.
More specifically, a P-frame encodes the difference compared to the previous frame it refers
to. For example, if a person is moving through a static nature scene, only the person’s
movement needs to be encoded, while no information regarding the unchanging background
has to be stored. As a consequence, P-frames are more compressible than I-frames and their
usage increases the encoding efficiency. Finally, there are B-frames (Bidirectional predicted
picture). Compared to P-frames, which only refer to previous frames, B-frames can have
preceding as well as subsequent frames as their reference. Due to their option to refer to
two or more frames, B-frames are the most efficient ones in reducing the size of the frame,
while maintaining the visual quality. The sequence of one I-frame and all following frames
which refer to that I-frame is denoted as a Group of Picture (GOP) and each GOP of an
encoded video sequence can be decoded independently.

4.1.2 State-of-the-Art Video Preparation for HAS

As they are complete images, I-frames typically have a significant larger file size than P- or
bidirectionally B-frames, which only encode the differences compared to a reference frame.
Hence, I-frames should be used sparingly as refresh points for the decoder. At scene cuts,
however, the placement of I-frames can yield lower file sizes, as predicting from a previous
picture would be less efficient, that is, it would require more bits to code the difference than
to simply create another I-frame.

With HAS, all encoded video segments must be playable independently to allow for the
quality adaptation with each segment. This requires them to start with an I-frame – more
specifically, an instantaneous decoder refresh (IDR frame) – which is inserted during the
segmentation process. Typically, it is recommended to encode videos for HAS using strictly
fixed I-frame intervals. Depending on the used technology and intended encoding latency,
these intervals range from 2 to 10 seconds [46, 116]. Choosing fixed intervals has practical
reasons, since scene-cut detection can be disabled, and the encoder can work in a “set and
forget” mechanism. This approach, however, lowers the encoding efficiency, as more I-
frames are needed, particularly if a very short segment duration is chosen. Aligning the
segment durations with existing I-frames – which are needed anyway due to scene-cuts
– could reduce this overhead. This, however, would result in video segments that have
different durations. While from a technical point of view, variable segment durations can be
used for HAS, there are some practical challenges associated with this method, as we will
describe in more detail in the course of this chapter.

4.1.3 Structural Similarity Metric

The structural similarity (SSIM) metric by Wang et al. [72] is widely used for quantify-
ing the visual quality of a video. It is an FR metric, which means that an uncompressed
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distortion-free frame is used as reference and compared with another, potentially visually
degraded frame. The SSIM takes into account three intermediary scores, which express the
differences in terms of luminance, contrast, and structure. They are typically computed in a
sliding window fashion on small pixel blocks, e.g., of size 8x8 [117], moving horizontally
and vertically from the top left to the bottom right pixel of a frame and are later composed
to one final score. The windows within the reference and the distorted frame are supposed
to be non-negative image signals and are denoted as x and y in the following.

luminance l(x,y) =
2µxµy +C1

µ2
x +µ2

y +C1

Thereby, µx and µy are the averages for the images x and y and C1 denotes a constant which
avoids instability when µ2

x +µ2
y is nearly zero.

contrast c(x,y) =
2σxσy +C2

σ2
x +σ2

y +C2

Again, a constant factor, in this case C2, is introduced to account for σ2
x +σ2

y being nearly
zero. The terms σx and σy denote the standard deviations.

structure s(x,y) =
σxy +C3

σxσy +C3

The term σxy denotes the cross-variance and similar as above, C3 stabilizes the division. The
three components are combined as follows to obtain the final similarity index for images x
and y:

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ

The parameters α > 0, β > 0, and γ > 0 allow to put different weights to the three com-
ponents. If luminance, contrast, and structure should be equally and fully considered, i.e.,
α = β = γ = 1, the final SSIM score can be denoted as follows:

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
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As this formula yields the SSIM score for a single frame, it needs to be successively applied
to each single frame of a video. When denoting a video’s SSIM score throughout this chap-
ter, we refer to the average SSIM score of all its frames. The SSIM values range from 0 to
1, including both borders. An SSIM value of 1 means equality between two frames. Conse-
quently, the higher the SSIM value, the lower the visual degradation due to compression. In
contrast to other metrics used for image quality assessment, like for example peak signal-
to-noise ratio (PSNR), SSIM is capable to consider the subjective quality by combining the
three aforementioned factors and is thus well known for its high correlation with the human
perception of degradations [118].

4.1.4 Studies on Segment Durations for HAS

The impact of segment durations has been focus of several studies, as it is a crucial factor
for the performance of adaptive video streaming and for the user’s satisfaction with the
service [119]. Shorter video segments allow a more fine-granular adaptation of the video
quality to current network conditions. However, short video segments decrease the encoding
efficiency [120] and increase the signaling overhead, as each segment download is initiated
via a dedicated HTTP request.

In order to analyze the performance of HAS for different fixed segment durations in a mobile
environment, [121] applies flow-level modeling. The developed mathematical models show
that using segments of shorter duration should be used, as they allow higher frequencies for
quality adaptations and yield better properties in terms of video playback smoothness. To
overcome the issue of increased signaling overhead, the authors propose to request several
video segments at once. Liu et al. [122] examine how to set the segment duration so as
to optimize the client’s TCP throughput estimation, which in turn allows for an optimized
bitrate adaptation when rate-based heuristics are used. They conclude that the segment
duration should be set as the minimum duration in which the average reception rate can
represent the end-to-end networks capacity.

The selection of segment durations in live-streaming scenarios is discussed in [59]. The
paper evaluates the trade-off between the high responsiveness of short segments in terms
of quality adaptation versus their increased encoding overhead when selecting a suitable
segment duration. The authors show that streaming with segments of a sub-second duration
allows to reduce the start-up delay and camera-to-display delay. By using the HTTP/2 push
feature, they overcome the issue of increased signaling overhead. Depending on the network
RTT and the segment durations, the authors derive an optimized number of k segments to
be pushed to the client with a single HTTP GET request, so to optimize the streaming
performance.

The work presented in [123] proposes to use different segment durations, depending on the
current HAS phase. The HAS videos are segmented multiple times so to obtain several
representations in terms of the segment duration. During the start-up phase, the client re-
quests very short video segments. With increasing buffer size, longer segments are fetched

62



4.2 Variable Segment Durations for Adaptive Streaming

from the server. Using this method, the authors combine the advantages of a low start-up
delay (due to short segments) with the advantage of increased encoding efficiency resulting
from longer segments during a steady playout phase. The idea of providing the video con-
tent not only in different qualities, but additionally split in segments of different durations
is also presented in [124]. The idea behind is to use longer segment durations on higher
quality levels to make use of the high compression efficiency and to use the shorter duration
representations for lower bitrates to achieve a faster quality adaptation in case of sudden
bandwidth fluctuations. Accordingly, an ABR algorithm is proposed which does not only
choose the next segment’s bitrate, but also the segment’s duration. A weakness of this ap-
proach is the constrained possibility for switching between representations of longer and
shorter segment durations, as this is only possible where the segments’ starting points are
synchronized.

Although the works above consider several representations with different segment dura-
tions, the durations within these representations are still fixed. The idea to improve the
alignment of the video segments with the video content has initially been proposed and
compared with fixed video segments in [115], which found on a small that of encoded
videos that on average 10% of bitrate can be saved. In 2018, Netflix proposed shot-based
encoding in their Dynamic Optimization approach, which utilizes variable segment dura-
tions and thereby allows for improved rate-distortion optimizations for each shot [113].
Similarly, [114] investigates the impact of the variable approach on the resulting segment
sizes and their variability. Thereby, the authors consider among others different video cate-
gories, resolutions, and video codecs.

4.2 Variable Segment Durations for Adaptive Streaming

The state-of-the art mechanism for preparing HAS content relies on fixed segment dura-
tions, which increases the encoding overhead, and thus the bitrate requirements due to ad-
ditionally inserted I-frames, which are comparably expensive. In the following we explain
how the proposed variable approach can overcome this issue based on a real video example
and a detailed focus on the frame structure during video encoding and segmentation. Some
best practices and necessary player capabilities should be kept in mind when using segments
of variable duration, to avoid drawbacks during streaming. We shortly refer to them at the
end of this subsection.

4.2.1 Variable versus Fixed Segment Durations

Figure 4.2 illustrates the first 45 seconds of the Big Buck Bunny video with 24 frames per
second. It is used in the following to discuss the differences between the fixed and variable
segmentation approach. More specifically, we focus on the procedure of splitting the video
and placing the segment start positions in a content-depending manner. In this example,
we assume a maximum segment duration of 10 seconds (240 frames per segment) for the
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Figure 4.2: Exemplary illustration of the I-frame placement for unsegmented videos and
segmented videos with the fixed and the variable approach. The first line denotes the raw
video, the second line represents the encoded, but not segmented version of the video. The
two bottom lines show a segmentation using fixed durations and variable durations, respec-
tively. Red frames indicate I-frames at the beginning of a video segment.

variable approach. The setting of a maximum duration is done in order to avoid that they
become too long. For the fixed approach, we set a duration of 4.5 seconds, i.e., 108 frames
per segment.1

The top box of the figure represents the raw video, where each frame contains the complete
image information. The second box illustrates a compressed, but not segmented video. I-
frames are inserted when the scene changes, which happens at frames 0, 10, 250, 285, 378,
553, and 803. For the remaining part of the video, the encoder relies on cheaper P- and
B-frames, which are omitted in the illustration for the sake clarity.

The third box illustrates a segmented video when using the proposed variable approach.
Similar to the unsegmented video, frames 0 and 10 are I-frames. At frame 240, the maxi-
mum duration of 10 seconds is reached for the first segment and a new segment has to start.
Consequently, frame 240 must be encoded as an I-frame. This I-frame (240) can then also
be used to account for the scene-cut, which is captured in the unsegmented sequence with
the I-frame at position 250. Hence, with the variable approach, frame 250 can be encoded
more efficiently by using a P- or B-frame. This is possible because the encoder has a cer-
tain degree of freedom in terms of where to place an I-frame for an efficient encoding and
segmentation. This especially holds when a scene does not change abruptly, but instead
with fading effects. The next three segment beginnings are aligned with the scene-cuts. For
instance, the existing I-frames of the unsegmented video, that is, frame 285, 378, and 553,
can be used as segment start points. Finally, segments are split at frame 793 and frame
1033, because the maximum segment duration limit of 240 frames is reached.

The bottom box depicts the fixed segmentation, where all segments must have a duration of
4.5 seconds. Two of the frames (250, 803), which used to be I-frames in the unsegmented

1Later parts of this chapter will show that a maximum segment duration of 10 seconds with the variable
approach results in an average segment duration of 4.5 seconds. This means that the illustrated values result
in the same number of video segments for the fixed and the variable approach, when considering the entire
video.
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video, can be replaced by a cheaper frame-type, because an I-frame was inserted nearby.
However, due to the strictly fixed segment duration of 108 frames, I-frames are placed at
324 and 432, despite the small differences to their preceding I-frames, which are required
because the scene changed. Another I-frame, inserted for the sake of a constant segment
duration, is 540. Roughly half a second later, i.e., after 13 more frames, an I-frame is
nevertheless needed as the scene changes again. The total number of additionally needed
I-frames, due to video segmentation, sums up to 7 in the fixed case, while only 1 additional
I-frame is needed in the variable case for the illustrated sequence of 45 seconds.

4.2.2 Requirements and Best Practices

The HAS principle of adapting the video quality prior to a segment’s download does not hin-
der the usage of variable segment durations. Nevertheless, some requirements need to be
fulfilled in order to implement this approach in a real system: Firstly, the segment bound-
aries have to be aligned along all available quality representations of one video, that is,
video bitrates and resolutions. Otherwise, even the slightest deviation will provoke a skip
or a repetition of frames at quality switches, which may impair the user’s experience.

Secondly, the player implementation must be agnostic to changing segment durations, that
is, it has to consider each segment’s duration individually. During our tests, we found
that some player implementations assume fixed segment durations per se. The TAPAS
player [110], which is intentionally kept simple to ease the integration of own heuristics,
only captures the duration of the first segment and works on the premise that all other seg-
ments have exactly this duration. This would result in wrong buffer computations and con-
sequently lead to wrong decisions carried out by the ABR strategy. Another similar issue
was found with the dash.js reference player in version 2.9.3. When the insufficient buffer
rule2 rule was triggered, it mapped the current segment’s duration to the 10 subsequent seg-
ments when estimating their download duration. As this estimation was based on the wrong
segment duration, the player over- or under-estimated the download duration, resulting in a
too optimistic or too pessimistic behavior in terms of quality selection. The issue has been
addressed with version 3 of dash.js.

Finally, a practical maximum segment duration should be defined. The longer a segment’s
duration becomes, the longer it takes to download it. If the download duration exceeds the
buffered time, it will cause video stalling. Besides, the definition of a maximum segment
duration caps the variability of the segment sizes and furthermore guarantees that an I-frame
is placed after a certain time interval, which maintains the visual quality on the one hand
and the adaptability of the video stream on the other hand.

2https://github.com/Dash-Industry-Forum/dash.js/wiki/ABR-Logic
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5 6 1 4 3 5 VAR (variable, 6 segments, 
average duration = 4s, maximum duration = 6s)

4 4 4 4 4 4 NA (fix, 6 segments,
duration = 4s = average duration of  VAR)

6 6 6 6 EM (fix, 4 segments, 
duration = 6s = maximum duration of VAR)

Figure 4.3: Exemplary illustration of the two fixed segmentation options NA and EM used
as a comparison against the variable approach (VAR). The bars denote the video segments
along with their duration in seconds.

4.3 Impact on Video Encoding Efficiency

First of all, we quantify potential advantages of the variable approach compared to the fixed
segmentation with respect to the encoding efficiency. That is, we study the bitrate reduc-
tion and evaluate in how far the visual quality of the video is impacted by the reduction
of I-frames. Therefore, we use four source videos, which are encoded and segmented with
a multitude of different parameters, leading to a large data set of video sequences. This
allows us to reveal the relevant factors, which impact the potential of the variable approach.
We present in the following the applied methodology and describe the obtained results af-
terwards.

4.3.1 Evaluation Methodology

This subsection introduces the methodology for studying the video encoding and segmen-
tation process with the variable and the fixed approach. First of all, we introduce the termi-
nology used throughout this chapter in order to fairly compare both approaches. Then, we
present the four source videos used to create the data set of encoded sequences, along with
their most important characteristics. In a next step, we describe the video encoding and
segmentation process along with the different parameter options, as well as the (maximum)
segment duration settings. Finally, we provide insights to our encoding architecture, which
is used to generate the data set.

4.3.1.1 Terminology

When using the variable approach, we define a maximum duration (max_dur) for the video
segments. The encoder can freely choose a segment’s duration within the range from 0 to
max_dur seconds. Please note that the definition of a sensible maximum duration is im-
portant to avoid segments of too long duration, as they would reduce the adaptability of the
video stream. Throughout subsequent parts of this chapter, we use two methods to compare
the performance of the variable and the fixed approach, as illustrated in Figure 4.3.
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The first line represents a variably segmented video, where the encoder can freely choose
the segment duration within a range of 0 to 6 seconds. The illustrative example yields an av-
erage segment duration of 4 seconds and 6 segments in total. The second line shows the first
option to compare the variable and the fixed approach, where the fixed-segment sequences
are evaluated against those variable-segment sequences, which have (nearly) the same av-
erage segment duration, with a granularity of half a second. For instance, if the variable
approach with max_dur = 6 seconds yields an average segment duration of 4.3 seconds,
this is compared to the fixed segmentation with a duration of 4.5 seconds. If it yields an
average segment duration of 3.9 seconds, this is compared to the fixed segment duration
of 4.0 seconds. We refer to this option as nearest average (NA). Finally, the third line il-
lustrates the second comparison option. It evaluates the variable-segment encodes against
those fixed-segment encodes, which have the same duration as the specified max_dur. In
the shown example, the variable approach with max_dur = 6 seconds is compared to the
fixed approach with a segment duration of 6 seconds. Accordingly, we refer to this approach
as equal max (EM).

The NA comparison yields (nearly) the same number of video segments, and hence results in
the same signaling overhead when it comes to video streaming. With EM, the total number
of segments is lower for the fixed duration video. As a consequence, an EM video can be
streamed with lower signaling overhead than the respective VAR video. While the increased
signaling overhead might be disadvantageous for VAR on the one hand, it is beneficial on
the other hand in the sense that the quality can be adapted more frequently, due to the
comparably shorter segment durations. In the remainder of this chapter, we refer to the
approach applying variable segment durations as VAR, and we use NA/EM for the fixed-
duration segmentation.

4.3.1.2 Source Videos

Our evaluations are conducted based on four freely available videos. The clips Big Buck
Bunny (BBB), El Fuente (ELF), and Tears Of Steel (TOS) are provided by the Blender
foundation3, while Meridian (MER)4 is a test sequence from Netflix. The sources are scaled
from their original dimensions to 2160p, 1080p, 720p, 480p, and 240p resolution (using
bicubic filtering), with 24 frames per second (using ffmpeg’s fps filter).

Spatial and temporal information (cf. ITU-T Rec. P.910) are widely used as an approximate
for video complexity. The spatial information (SI) is computed from a single frame and
estimates the image complexity by computing the standard deviation of each pixel in a
filtered version of the image. The temporal information (TI) is computed as the standard
deviation of the motion difference between two consecutive frames. The higher the SI and
TI values for a given video, the higher is its complexity.

3https://www.blender.org/
4https://medium.com/netflix-techblog/engineers-making-movies-aka-open-source-test-

content-f21363ea3781
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(a) Big Buck Bunny. (b) Tears Of Steel.

(c) Meridian. (d) El Fuente.

Figure 4.4: Spatial and temporal information of the four source videos. Lighter areas
indicate higher density, darker areas lower density, respectively.

Table 4.1: Characteristics of the considered source videos.

Full Name Abbreviation Mean SI Mean TI Duration Category

Big Buck Bunny BBB 49.923 17.575 10:34 Cartoon
El Fuente ELF 28.994 20.194 07:57 Documentary
Meridian MER 28.541 8.732 11:58 Mystery

Tears of Steel TOS 45.307 21.027 12:14 Action

The ranges for the spatial and temporal complexity of the videos in our test set are illus-
trated in Figure 4.4. The x-axes denote the SI, the y-axes the TI, respectively. Lighter areas
indicate higher density, darker areas indicate lower density, respectively. Table 4.1 further
denotes the corresponding average values along with additional video characteristics. Be-
sides the varying spatio-temporal complexity, these videos have been chosen due to their
different categories, as well as for their durations of at least about eight minutes, to support
meaningful conclusions.
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4.3.1.3 Encoding Methods

For encoding the videos, we use ffmpeg and apply both of the major rate control option
used for encoding, which either achieve a target visual quality or a target (nearly constant)
bitrate for the encoded bitstreams:

• Variable Bitrate Encoding (VBR): one-pass, using the x264 Constant Rate Factor
(CRF), which results in a roughly constant quality.5

• Constant Bitrate Encoding (CBR): two-pass, using a target bitrate (br) and Virtual
Buffer Verifier (VBV) constraints of maxrate = 1.25 ·br and bu f size = 2 ·br.6

While VBR encoding has a lower variation in visual quality over time, it leads to higher
bitrate variations, which may impair the streaming performance. CBR, on the other hand,
keeps the bitrate static, within constraints, along the video, resulting in possible quality
degradations in scenes that are more spatio-temporally complex. Video streaming services
have mainly been relying on CBR-encoded content due to the reduced bitrate variations, but
streaming with VBR-has gained more significance over the past years [125, 126, 127].

With VBR, the CRF accounts for the motion in the video to determine the bitrate needed to
achieve a certain quality. For our analysis, we consider four different settings for the CRF,
i.e., cr f ∈ {16,22,28,34}. The lower the CRF, the higher is the resulting video quality,
whereby a value of 16 can be considered as visually lossless. An increase of the CRF
value by 6 will roughly halve the resulting bitrate.7 To determine the target bitrates for the
CBR approach, we first encode each video in all resolutions, as well as using all specified
segment durations using VBR encoding with the four different CRF values. For each four-
tuple {video/resolution/CRF/duration}, the average resulting bitrate is then used as the
target bitrate for CBR. By doing so, we obtain similar average bitrates for both, VBR and
CBR encoded videos.

4.3.1.4 Segment Durations

Video segments of too long durations should be avoided. Otherwise, the quality might be
degraded, short-term quality adaptations are not possible, and the increased download time
could lead to re-buffering. Hence, we specify an upper bound for the maximum duration
of variable segments, denoted as max_dur. In order to compare the efficiency of different
variable segment lengths, we choose four different settings, i.e., max_dur∈{4,6,8,10} sec-
onds. For the fixed durations, we use the values according to NA and EM resulting from the
variable segmentation.

For the encoding with fixed segment durations, the ffmpeg option force-key-frames
is used, and scene-cut detection is deactivated. In order to determine where to split the

5https://slhck.info/video/2017/02/24/crf-guide.html
6https://slhck.info/video/2017/03/01/rate-control.html
7https://trac.ffmpeg.org/wiki/Encode/H.264
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Table 4.2: Parameter settings for video encoding and segmentation.

Characteristic Values

Source video BBB, TOS, MER, ELF
Resolution 240p, 480p, 720p, 1080p, 2160p
Frames per second 24
Encoding method Variable Bitrate (VBR), Constant Bitrate (CBR)
Constant rate factor (CRF) used for VBR 16, 22, 28, 34
Target bitrate used for CBR Average bitrates resulting from VBR encoding
(Maximum) segment duration VAR and EM: 4s, 6s, 8s, 10s

NA: Average durations resulting from VAR (see Table 4.3)

video when using the variable approach with a given maximum duration, we apply the
following procedure: For each video, we choose its version in 2160p resolution as the
reference. This reference is encoded and segmented with the force-key-frames option
set to max_dur, i.e., keyframes are only forced if no keyframe was inserted since max_dur
seconds. Furthermore, we do not specify any segment duration with the seg_duration
option. This allows the encoder to freely choose the segment durations between 0 and
max_dur seconds. All frame positions, at which the encoder decides to split the video, are
logged during the encoding of the reference. These logged positions are then used as an
ffmpeg input when encoding and segmenting the remaining video representations. This
ensures that we split at exactly the same positions along each resolution and target bitrate
or quality for a given video. The described procedure turned out to be necessary, as in rare
cases, the split positions deviated by a few frames from one resolution to another. This
was caused by the scene-cut detection of the encoder, which treats inter-frame differences
differently at lower resolutions.

4.3.1.5 Encoding Architecture and Quality Calculation

As outlined in the previous parts, we apply a wide range of different encoding and segmen-
tation options. A summary of all parameter settings used is given in Table 4.2. Each of the 4
videos is encoded in 5 distinct resolutions. We encode each clip once using VBR encoding
with 4 different CRF values, and once using CBR encoding with the target bitrate set as the
average bitrate resulting from the VBR encoding. We furthermore consider 4 settings for
max_dur when using VAR. In order to obtain all respective EN and NA encodings, each clip
is additionally segmented using 8 fixed durations. Hence, in total our data set consists of
4 ·5 ·4 ·2 · (4+8) = 1,920 encoded video sequences.

The encoding and segmentation process itself, as well as the subsequent evaluation of the
resulting videos, is time and resource consuming. In order to support encoding on any
platform and to easily distribute the encoding and evaluation process on several comput-
ing nodes, the tasks were encapsulated within a Docker8 container, publicly provided on
Github.9 Each Docker instance obtains one task, which is defined by the source video ID

8https://www.docker.com
9https://github.com/fg-inet/docker-video-encoding
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and a combination of encoding parameters. These parameters are summarized in a job de-
scription that includes the segmentation option (fixed vs. variable), the encoding option
(CBR vs. VBR), the (maximum) segment duration, and a target bitrate or CRF value.

When the video segmentation and encoding is completed, the container analyzes the re-
sulting video and determines several parameters. Firstly, it yields encoding quality-relevant
metrics on a per-frame basis, such as the SSIM metric and PSNR, calculated against the
2160p source via ffmpeg.10 Secondly, it analyzes the resulting bitrates and retrieves de-
tailed frame characteristics, such as the type and size. Thirdly, it generates a timeline of the
video segments, specifying their duration and file size.

4.3.2 Evaluation Results

In the following we evaluate and compare the variable and the fixed segmentation approach
with regard to several aspects. Firstly, we investigate the segment durations resulting form
the variable approach with different settings for max_dur. Secondly, we examine the num-
ber of I-frames which can be economized by the proposed approach and quantify the po-
tential bitrate reduction. In a next step, the impact of the variable approach on the visual
quality is quantified. Lastly, we study the influence of relevant video parameters, such as
the CRF value or the segment duration, on the encoding efficiency gain.

4.3.2.1 Resulting Segment Durations

The box plots shown in Figure 4.5 illustrate the segments’ durations resulting from the
variable segmentation technique. The x-axis denotes the configured maximum duration
(max_dur), the y-axis denotes the resulting duration. In the case of Big Buck Bunny (Fig-
ure 4.5a), Tears Of Steel (Figure 4.5b), and Meridian (Figure 4.5c), the median segment
durations nearly remain static along all max_dur settings. However, the encoder makes use
of longer segments if admitted, leading to increased average durations for each video clip
when increasing the maximum duration setting. With a maximum duration of 4 seconds,
the longest average durations can be observed for Meridian and El Fuente (Figure 4.5d), as
for these videos, the median duration corresponds almost to the maximum duration.

El Fuente results in the largest average duration among the investigated videos for any
of the configured maximum durations. Among all considered video clips, ELF has the
lowest number of I-frames relative to its video duration. This indicates that there are fewer
scene-cuts, and consequently less possibilities for the encoder to split at I-frames which are
anyways needed.

As described above, we compare the variable approach against the fixed either based on
the same average duration (NA), or based on the same maximum duration (EM). Table 4.3
summarizes the information retrieved from Figure 4.5 to allow a quick lookup of the fixed

10https://github.com/slhck/ffmpeg-quality-metrics
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(a) Big Buck Bunny.
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(b) Tears Of Steel.
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(c) Meridian.
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(d) El Fuente.

Figure 4.5: Segment durations resulting from VAR with different maximum duration set-
tings. Purple lines denote the median, boxes denote the 25th to 75th percentile. Green
markers and the numbers on top indicate the average segment duration denoted in seconds.

Table 4.3: Fixed segment durations according to EM and NA resulting from VAR with
different maximum duration settings for the source video clips. All values are denoted in
seconds.

BBB TOS MER ELF
VAR EM NA EM NA EM NA EM NA

0-4 4 3 4 3 4 3 4 3
0-6 6 3.5 6 3.5 6 4 6 4.5
0-8 8 4 8 4 8 4.5 8 5
0-10 10 4.5 10 4.5 10 5 10 6

segment durations corresponding to a segmentation using VAR. Thereby, VAR denotes the
range of allowed segment durations in the variable case, and EM and NA denote the respec-
tive fixed segment durations, against which VAR is compared. Please note that we specify a
maximum granularity of half a second for the fixed segment durations. For instance, when
determining the NA durations we round the average values obtained via VAR, which results
in a slight deviation of the values shown in Figure 4.5 from the values given in Table 4.3.
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Figure 4.6: Absolute number of I-frames. Comparison of VAR using a maximum duration
of 10 seconds against the respective NA fixed segment durations.

4.3.2.2 Reduction of I-frames

In the following, we investigate the number of I-frames that can be reduced by using the
variable approach for the different videos. For these evaluations, we confine on VBR en-
coding and on the comparison using NA. Please note that each video segment strictly must
start with an I-frame. Compared to EM, VAR increases the number of I-frames due to the
higher number of resulting video segments, while NA yields the same number of segments
as VAR. Hence, the NA is the better option to fairly study the potential I-frame reduction
that can be achieved with VAR.

Figure 4.6 illustrates the number of I-frames needed when using VAR on the example of a
maximum segment duration of 10 seconds and the number of I-frames needed when consid-
ering the respective NA fixed segment duration for the investigated video clips. Note that for
the same segment duration setting of one video, the number of I-frames is equal along all
resolutions and quality representations, as well as for VBR and CBR encoding. Although
both, VAR and NA segmentation, result in practically the same number of video segments,
VAR requires a significantly reduced number of I-frames.

For the BBB clip, we obtain 148 I-frames with VAR, compared to 278 with NA. Hence,
the costly I-frames can be reduced by a total of 130. Accordingly, the VAR approach can
economize 46% of the expensive frames in this case. The relative reduction is similar for
the remaining videos. For instance, 49%, 38%, and 42% of the I-frames can be saved for
TOS, MER, and ELF, respectively.

4.3.2.3 Reduction of File Size

In a next step, we exemplarily study the impact of the I-frame reduction on the overall
video file size. For each of the four video clips, we consider its 720p video resolution,
once encoded with a CRF value of 16, i.e., the highest visual quality considered during our
evaluations, and once with a CRF value of 34, the lowest quality, respectively. Figure 4.7a
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(a) Filesize for 720p and CRF 16. (b) Filesize for 720p and CRF 34.

Figure 4.7: Overall filesize for VBR encoded videos. Comparison of VAR using a maxi-
mum duration of 10 seconds against the respective NA fixed segment durations.

illustrates by means of different colors the contribution of the three different types of frames
to the overall file size for the example of CRF = 16.

For any video clip, the P-frames contribute the most to the filesize, followed by the B-
frames. Although I-frames are the most costly types of frames, i.e., they require much more
bytes than P- and B-frames, their overall contribution is the lowest, which stems from the
fact that they are used the rarest. In any case, the relatively low overall contribution of
I-frames with NA can roughly be halved when using VAR.

Analogues, the results for encodings with CRF = 34 are depicted in Figure 4.7b. It shows
that the overall file size is drastically reduced compared to the encoding with CRF = 16. The
reduced bitrate, which results in lower visual quality, is achieved by a higher compression
rate of B- and P-frames. As the I-frames contain the complete image information and as they
are used as references, they are compressed to a lower extent, or even left un-compressed.
Consequently, the relative contribution of the I-frames to the overall file size increases when
increasing the CRF. But similar to the previous case, the amount of bytes needed for I-
frames can roughly be halved by VAR, resulting in slight decrease of the overall file size for
all videos.

4.3.2.4 Reduction of Encoding Overhead

The previous evaluations showed on a small set of examples that I-frames can be saved,
leading to a reduction of the overall video file size. In a next step, we evaluate the bitrate
reduction on large scale, taking into account the whole data set of encoded videos. For
instance, the ECDFs shown in Figure 4.8 comprise the values obtained along all investigated
resolutions, (maximum) segment durations, and target bitrates (in the case of CBR) or CRF
values (in the case of VBR).

Figure 4.8a illustrates the results for CBR encoded videos, when VAR is compared against
the fixed approach with the same average segment duration, i.e., NA. VAR can reduce the
average bitrate by up to 16%, which is obtained for the BBB clip. In general, the potential of
VAR to increase the encoding efficiency is most dominant for BBB. For this video, at least
6% of the bitrate can be economized. The efficiency gain is the lowest for ELF, where the
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(a) CBR-encoded, compared according to NA. (b) CBR-encoded, compared according to EM.

(c) VBR-encoded, compared according to NA. (d) VBR-encoded, compared according to EM.

Figure 4.8: Bitrate saving that can be achieved by the variable approach compared to the
fixed approach for the different encoding options. Black solid lines denote the overall bitrate
saving, colored dotted lines represent the different videos.

bitrate can at most be reduced by 5%. Among all test videos, ELF has the lowest number
of I-frames relative to its duration. This results in a lowered potential of VAR to reduce the
bitrate.

When comparing the variable approach and the fixed approach based on EM (Figure 4.8b),
the saving in terms of bitrate is lower than in the NA case. This is due to the fact that the
variable segmentation results in segments that are shorter compared to the respective fixed
duration segments. In general, shorter segments imply an increased encoding overhead due
to the higher amount of I-frames. Nevertheless, VAR yields a median bitrate reduction of
about 3% and in the worst case it cannot increase efficiency gain. For instance, VAR never
results in an increase of the encoding bitrate.

The respective results for the VBR encoding are illustrated in Figures 4.8c and 4.8d. In
general, the achieved bitrate reduction when using VBR encoding is lower compared to
when using CBR encoding. The maximum for NA reduces to 13%, while the maximum
for EM reduces to roughly 6%. Nevertheless, VAR never increases the bitrate requirements.
Even if the potential for reducing the bitrate might be very small, as it is the case for ELF
with a maximum of about 2.5% according to EM, no disadvantaged is induced by using the
variable approach.
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(a) CBR-encoded, compared according to NA. (b) CBR-encoded, compared according to EM.

(c) VBR-encoded, compared according to NA. (d) VBR-encoded, compared according to EM.

Figure 4.9: Difference in terms of video quality, expressed as SSIM, for the variable and
fixed approach for the different encoding options. Black solid lines denote the overall SSIM
loss, colored dotted lines represent the different videos.

4.3.2.5 Impact on Video Quality

In order to fairly compare variable and fixed segment durations, we need to examine whether
the I-frame reduction results in a quality degradation for variable segments. Hence, we now
analyze the visual quality of fixed- and variably-segmented videos by means of the SSIM
metric. This metric compares each frame of a compressed video against the respective
uncompressed and distortion-free reference frame. It yields a value ranging between 0 and
1, where 1 means equality to the uncompressed original content, i.e., the highest quality
quality. For our evaluations, we calculate the SSIM metric using the respective ffmpeg
filter, with bicubic upscaling of the encoded video to the 2160p reference.

The plots in Figure 4.9 illustrate the ECDFs of the visual quality loss. Along the x-axis, we
denote the absolute SSIM loss, i.e., the magnitude by which the quality is degraded when
using VAR. For CBR encoded videos, we observe small a quality loss when using VAR. The
SSIM reduction is in both cases, NA (Figure 4.9a) and EM (Figure 4.9b), below an absolute
value of 0.005. Moreover, for the majority of the analyzed videos, the loss in terms of SSIM
is less than 0.001.

For VBR, which specifies a target quality instead of a target bitrate, as in the case of CBR,
the quality can better be maintained for the variable approach. Accordingly, the differences
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in terms of SSIM are lower. As shown in Figure 4.9c, when comparing VAR against NA, the
SSIM loss is any case below 0.003, and for the majority of the evaluated sequences even
clearly below 0.0005. When considering EM, the SSIM is degradation is any case less than
0.0015, as shown in Figure 4.9c.

In general, the relationship between SSIM and perceived quality is not linear [72]. For
high qualities, i.e., high SSIM values, already small SSIM disturbances may have a high
impact on the MOS, while for lower qualities, i.e., low SSIM values, small disturbances are
negligible. However, such effects are generally not visible to humans when they are in the
order of magnitude which we observe. Hence, the quality degradations incurred by VAR are
negligible. In the next subsection, where we perform an in-depth investigation of the factors
that influence bitrate reduction and quality decrease, we will see that high quality encodings
undergo a much smaller SSIM degradation than 0.005.

4.3.2.6 Influence Factors on Bitrate and Quality

The evaluations so far show that when using variable segment durations, bitrate can be saved
for a slightly lower video quality. In a next step, we evaluate on the example of the VBR
encoded videos, in how far the following factors influence the magnitude of bitrate reduction
and quality degradation: The source video, the CRF value, the maximum segment segment
duration, and finally, the video resolution. The results are illustrated in Figure 4.10, where
the y-axis denotes the absolute SSIM loss, and the x-axis represents relative amount of
bitrate, which VAR can save compared to NA.

As already seen above (Figure 4.8), the potential for bitrate saving is highly dependent on
the source video, which is in line with the observations from Figure 4.10a. It shows that
for ELF, the bitrate reduction is any case below 4%. It hence constitutes the video where
the encoding efficiency can be increased the fewest. ELF is followed by TOS and MER,
and the BBB brings the highest potential for reducing the bitrate with VAR. Further, the plot
reveals that for MER, the visual quality remains the most stable with VAR.

Figure 4.10b shows a clear influence of the chosen CRF value. With higher CRF values
(i.e., lower video quality), variable segment durations tend to degrade SSIM to a greater
extent. Nevertheless, this degradation is still too small to be the reason for the significant
bitrate reduction we observe. As shown above, the bitrate reduction can be achieved by
eliminating I-frames with the more efficient variable method. A second observation from
Figure 4.10b is that higher CRF values tend to imply a higher bitrate reduction.

As a third characteristic, we consider the segment duration in Figure 4.10c. Contrary to
the two previous factors, i.e., the source video and the CRF value, a clear pattern is now
missing. This means that the chosen maximum duration for variable video segments has
no strong effect on the bitrate that can be saved compared to the NA fixed segmentation.
However, there is a slight trend of lower quality degradation if the variable segments do no
exceed a duration of 4 seconds.
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(b) CRF.
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(c) Segment duration.
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(d) Video resolution.

Figure 4.10: Impact of VAR on bitrate and video quality for VBR-encoded videos depend-
ing on different video- and encoding-specific characteristics.

Finally, Figure 4.10d shows that the video resolution has no clear visible influence on the
bitrate saving achieved with VAR, as the plotted data points again do not form a distinct
pattern. Whereas a slight trend towards a higher loss of SSIM at lower resolutions can be
observed. To summarize, while CRF and the source video itself highly impact the perfor-
mance of variable segments in terms of bitrate and quality, the effects of maximum durations
and video resolution are rather small.

4.4 Impact on Video Streaming Performance

The evaluations in the previous section show that the encoding overhead can be reduced with
VAR. However, the introduced variability in terms of segment durations results consequently
in an enlarged variability of the segments’ sizes, which can negatively affect the video
streaming performance. As it is not clear whether the reduced bitrate can compensate this
enlarged variability, this section evaluates the impact of VAR on the video streaming QoE.
Via testbed measurements, we generate a large set of video sessions using various network
settings and compare the resulting QoE according to the P.1203 model.
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4.4.1 Evaluation Methodology

In the following, we describe the methodology for the video streaming experiments. First
of all, we present the set of videos chosen for comparing the variable segmentation ap-
proach against the fixed approach. Afterwards, we introduce our virtual testbed, along with
the video player settings and the used ABR strategies. Finally, we describe the network
configurations used throughout the experiments.

4.4.1.1 Video Sequences

During the video streaming evaluations, we confine on comparing the variable approach
against the fixed one based on NA, i.e., the number of downloaded segments during a video
session is practically equal. Furthermore, we use the videos resulting from the CBR encod-
ing, as this is a more applicable encoding method for video streaming, since VBR encoding
results in an overall higher bitrate variability.

As previously shown, the video itself has a strong influence on the performance of variable
segment durations during the encoding process (cf. Figure 4.10a). To account for this in-
fluence factor during the video streaming process, we consider all of the four source videos
for our analysis. For each video, we use the variable video representation with the highest
maximum segment duration, i.e., 10 seconds. Note that in terms of encoding efficiency, the
effect of the maximum duration is negligible (cf. Figure 4.10c) compared to the effect of
the source video or target quality. However, the larger the maximum duration, the higher
is the variability of the resulting segments’ sizes, which negatively affects video streaming
performance [96]. Hence, the evaluations using the variable videos with a maximum dura-
tion of 10 seconds can be seen as a “worst case scenario” with respect to the variability of
the segments’ durations and sizes. The coefficient of variation of the segment sizes is larger
with VAR for all of the selected video clips. For the BBB clip, it increases from 0.43 (NA)
to 0.74 (VAR), and for TOS from 0.45 to 0.76, respectively. In the case of MER, the coef-
ficient of variation with NA is 0.69 and 0.77 with VAR. Finally, VAR increases the segment
size variability for ELF from 0.52 to 0.55, being the lowest increase among all clips used
during the video streaming measurements.

To determine the bitrate ladder (i.e., the resolution-bitrate pairs selected for video stream-
ing), we utilize the selection method presented in [128]. For each video, we choose 5
different quality levels, i.e., bitrate/resolution combinations, which we obtain from the re-
sulting bitrate ladder. Table 4.4 illustrates the resolutions and bitrates used for the different
quality levels for the VAR videos. Please note that the quality levels for the NA videos only
differ in the sense that the bitrates are slightly higher on each level, due to the higher en-
coding overhead. The resolutions are equivalent between VAR and NA along the different
quality representations. We omit video representations with a resolution of 2160p, as this
resolution is not supported by the P.1203 standard.11

11Current developments in the ITU-T P.1204 recommendation series will address 4K/UHD video.
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Table 4.4: Bitrates and resolutions selected for the streaming measurements.

BBB TOS MER ELF
L Res BR Res BR Res BR Res Br

0 480p 215 kbps 240p 234 kbps 720p 164 kbps 240p 291 kbps
1 720p 406 kbps 480p 354 kbps 720p 342 kbps 480p 403 kbps
2 1080p 797 kbps 720p 689 kbps 1080p 492 kbps 720p 942 kbps
3 1080p 1.6 Mbps 720p 1.4 Mbps 1080p 2.0 Mbps 720p 2.1 Mpbs
4 1080p 3.4 Mbps 1080p 2.7 Mbps 1080p 12.6 Mbps 1080p 3.5 Mbps

4.4.1.2 Measurement Environment and Video Player Settings

We run our measurements in a virtual testbed, consisting of three VMs, set up via Vagrant
and VirtualBox. One of VMs acts as the server hosting the videos, one as the HAS streaming
client, and the third VM acts as a network emulator. The latter connects client and server
and allows to emulate different network settings, i.e., rate limiting using the Linux traffic
control12. The client runs the browser-based DASH reference player dash.js13 in version
v3.0.0. We modified the player so as to log all relevant metrics for QoE computation, such as
playback quality or video stallings. For the sake of scalability, and to allow streaming tests
without actually playing back the video (e.g., when running on a server where no display
is attached), the browser runs in headless mode. To allow the client to request videos in
headless mode, we use Puppeteer14, which runs on top of Node.js.

The dash.js player implements the three following ABR strategies: a buffer-based solu-
tion according to BOLA [95], a throughput-based, and a hybrid solution.15 In order to be
able to draw more generic conclusions, we run testbed measurements with each of the three
available strategies. In following parts of this work, we will refer to them as BOLA-ABR,
throughput-ABR, and hybrid-ABR. We set the initial buffer threshold to 12 seconds, and the
stable buffer time, i.e., the internal buffer target the player tries to reach, to 30 seconds. The
maximum buffer time is set to 45 seconds, i.e., the client will pause segment requests when
this threshold is reached.

4.4.1.3 Network Settings

We test the feasibility of variable segment durations for adaptive streaming with fluctuat-
ing bandwidth capacities, which allows to capture the behavior in a more stressful manner.
We use realistic bandwidth traces [111] which have been collected in a 3G network during
commute with different types of public transport. We scale them so as to achieve an aver-
age rate of the {1,2,4,6}-fold of the lowest quality’s bitrate of each of the four VAR test
videos. Analogous to the previous chapter, we refer to these bandwidth limit settings as

12https://linux.die.net/man/8/tc
13https://github.com/Dash-Industry-Forum/dash.js
14https://github.com/puppeteer/puppeteer
15https://github.com/Dash-Industry-Forum/dash.js/wiki/ABR-Logic#primary-rules
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bandwidth provisioning factor and denote it as a, i.e., a∈ {1,2,4,6}. Additionally, we limit
the available bandwidth to the 1-fold of the lowest quality’s bitrate for each NA video. The
very low bandwidth settings allow a comparison of NA and VAR in those scenarios, where
hardly any other than the lowest quality can be downloaded and where the ABR’s behavior
is negligible for the streaming performance. We confine on a = 6 as the highest rate, as
this bandwidth configuration already triggers the ABR to choose between different levels
that yield a decent video quality. Hence, these scenarios allow to study the impact of VAR
on the heuristic’s behavior and consequently on the quality adaptation and resulting video
streaming performance.

From the trace data set, we choose three replicas, i.e., same commute path and vehicle
but measured on a different day, of the traces car, ferry, and tram. We furthermore define
three different starting points for each of the traces, namely from the beginning, i.e., second
0, and two randomly chosen start points. The traces are looped, i.e., if the end of the
trace is reached, it starts again from the beginning. For each trace replica and each start
pointing, three measurement runs are performed. Hence, having a single different trace
type (car, ferry, or tram) which is applied with three different starting points, this results in
27 measurement runs for a single configuration. A specific configuration is a combination
of the bandwidth provisioning factor a, the video along with its segmentation option (VAR
and NA), the applied adaptation strategy, and finally the trace type. This results in a data set
comprising more than 7,000 streaming sessions with a duration of at least 8 minutes each.

4.4.2 Evaluation Results

In the following, we compare the performance of variable and fixed segment durations with
respect to the obtained QoE obtained. Thereby, we evaluate the QoE of each streaming
session according to the ITU-P.1203 model in mode 3, which takes video frame-level char-
acteristics, such as the frame types, frame sizes, and the quantization parameter (QP) values
on a per-macroblock scale into account. As we omit the audio track for the videos, the QoE
model per default assumes a constant high audio quality when computing the audio-visual
quality score (O34).

Our in-depth analysis of all three ABRs available in the dash.js reference implementation,
i.e., hybrid-ABR, BOLA-ABR, and throughput-ABR, showed that there are only slight dif-
ferences in terms of how VAR performs compared to NA. Table 4.5 denotes the median
improvements for the overall QoE score, as well as for the two diagnostics scores, achieved
by VAR, i.e., QoE(VAR)-QoE(NA) for all test runs using the different ABR strategies. We
furthermore indicate the confidence intervals on a 95% confidence level. The medians of the
different QoE scores differ only slightly and the corresponding confidence intervals overlap
in most of the cases. Particularly for the overall QoE O46, the confidence intervals for all of
the ABRs overlap, showing that the impact of the ABR is not significant. For that reason,
we confine the following detailed streaming analysis on hybrid-ABR, which is the default
configuration of dash.js
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Table 4.5: Median QoE improvements (QoE(VAR) - QoE(NA)) and confidence intervals
(CI) for the different QoE metrics over all runs.

Score Description Improvement ± CI

hybrid-ABR BOLA-ABR throughput-ABR

O23 Stalling quality 0.034 ± 0.010 0.011 ± 0.011 0.008 ± 0.008
O34 Audio-visual quality score 0.048 ± 0.005 0.043 ± 0.003 0.046 ± 0.005
O46 Overall quality score 0.035 ± 0.012 0.015 ± 0.015 0.011 ± 0.013

(a) Absolute QoE scores. (b) Difference of QoE scores.

Figure 4.11: Absolute value and differences of the QoE scores obtained from the measure-
ments using the adaptation strategy hybrid-ABR.

First, we comprehensively analyze the QoE scores by considering all performed measure-
ment runs. In a next step, we investigate the impact of VAR under different settings of the
available bandwidth. Finally, we discuss in more detail the results obtained for one specific
scenario.

4.4.2.1 Overall Analysis of QoE Scores

Figure 4.11a illustrates the different QoE scores obtained for all measurement runs with
variable segment durations (VAR) and the respective fixed segment durations using NA
comparison and the hybrid-ABR logic. The x-axis represents the values on MOS scale,
the y-axis denotes the ECDF. The dotted lines, representing the values for VAR, are slightly
shifted towards the right along the x-axis compared to the respective solid lines. Hence,
VAR tends to yield higher MOS values for the three different QoE scores. While the median
value for O46, i.e., the overall quality, is 2.806 for NA, this value can slightly be increased
to 2.853 by VAR. In terms of stalling quality, denoted as O23, NA achieves a median value
of 3.346, which also can slightly be improved by VAR, which achieves a median value of
3.404. More significant improvements using the variable approach can be seen for O34, i.e.,
the audio-visual quality score. While the median for NA is 4.0, this value increases to 4.12
for VAR.
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(c) a = 4.
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(d) a = 6.

Figure 4.12: Differences in terms of the QoE scores for different settings of the bandwidth
provisioning factors a.

Figure 4.11b illustrates the absolute differences of the QoE scores obtained for all mea-
surement runs. Negative values along the x-axis denote an impairment induced by VAR,
positive values indicate an improvement of the QoE. The most significant absolute differ-
ences between VAR and NA can be observed for the stalling quality (O23). For this score,
the absolute deviations can be up to 1.5 on MOS scale and an improvement by VAR can
be achieved for 56% of the investigated streaming sessions. The audio-visual quality score,
i.e., O34, can be improved by VAR in 75% of the tested cases, however, the magnitude of im-
pairment or improvement is in any case below 0.5 and hence, significantly lower compared
to O23. Finally, the overall quality score O46 can be improved for 57% of the sessions.

Overall, the median improvement achieved by VAR with hybrid-ABR is 0.034± 0.01 for
O23 and 0.048± 0.005 for O34. The median improvement of the overall QoE score, i.e.,
O46, is 0.035±0.012 (cf. Table 4.5). As none of the denoted confidence intervals includes
0, we can conclude that the improvements achieved by VAR are significant for all considered
QoE metrics.

83



4 Variable Segment Durations for Adaptive Video Streaming

4.4.2.2 QoE Scores Obtained with Different Bandwidth Capacity Limits

In order to better understand the impact of VAR in the different scenarios, we evaluate the
obtained QoE scores for different bandwidth capacities. Figure 4.12 shows the difference
QoE(VAR)−QoE(NA) for different rate limits, i.e., settings of a, while Table 4.6 denotes
the average values of the QoE scores obtained with VAR and NA.

Figure 4.12a shows that for a bandwidth provisioning factor of a = 1, the overall QoE score
(O46) can be improved in 64% of the cases. The maximum improvement of O46 that can
be observed for this rate is 0.767, while in the worst case, VAR yields an impairment of the
QoE by 0.297. The differences between VAR and NA in terms of O34, i.e., the audio-visual
quality score, are relatively small. This is due to the fact that the small bandwidth capacity
hardly leaves room for streaming on any other than the lowest quality level. Nevertheless,
for the majority of the streaming sessions VAR improves the O34 scores and additionally,
the magnitude of improvements is higher than the magnitude of impairments. For the O23
score, VAR yields an improvement in more than 60% of the streaming sessions. While it
can be increased by up to 1.452, it is never worsened by more than 0.52. This indicates a
significantly lower number of video interruptions due to the increased encoding efficiency
and the consequently reduced bandwidth requirements.

Figure 4.12b shows the results for a bandwidth provisioning factor of a = 2. The visual
quality (O34) can now be improved for 82% of the measurement runs. This indicates that
the video buffer can be filled up more quickly, allowing the client to choose higher qualities
more often in the case of VAR compared to NA. Besides, we observe an increase of the
stalling quality (O23) for 58% of the test runs. Overall, this results in an improvement of
O46 in 62% of the cases.

For an average rate corresponding to a = 4, as illustrated in Figure 4.12c, both, the overall
quality score (O46) and the stalling quality score (O23), are improved by VAR for 52% of
the test runs. The audio-visual quality can be improved in roughly 70% of the investigated
cases. Hence, compared to the two previous cases, i.e., a = 1 and a = 2, the potential of
VAR to improve QoE is significantly lower. This indicates that the achievable improvement
is decreasing as the bandwidth capacity increases.

This assumption can be confirmed when evaluating the streaming sessions obtained with
the highest bandwidth availability, i.e., when a = 6, as illustrated in Figure 4.12d. We now
observe the first case, where the fixed approach outperforms the variable approach for the
majority of the test runs. In 55% of the cases, NA yields a higher overall quality score
(O46) than VAR. Furthermore, the stalling quality (O23) is in 55% of the cases higher with
NA, than with VAR. However, in 62% of our scenarios, VAR still increases the audio-visual
quality score.

The overall QoE (O46) is mainly affected by the stallings [84]. This is also noticeable in our
evaluations, as O46 and O23 have a similar behavior for the shown cases in Figure 4.11b
and Figure 4.12. If O23 can be increased by VAR for a certain share, the share with which
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Table 4.6: Average values for the different QoE scores obtained with hybrid-ABR. Bold
numbers represent the respective higher value.

O23 O34 O46
a VAR NA VAR NA VAR NA

1.0 2.510 2.370 3.582 3.530 2.178 2.105
2.0 3.585 3.518 3.963 3.882 2.973 2.931
4.0 3.873 3.826 4.370 4.309 3.435 3.399
6.0 3.923 3.939 4.533 4.496 3.587 3.618

O46 can be increased is similar to that. The degradation of O46 in scenarios with increasing
available bandwidth might be due to an increase of stallings, resulting from a too optimistic
quality adaptation of the heuristic with VAR videos. The resulting higher visual quality,
however, cannot compensate the increased number of stallings and hence, the overall QoE
is decreased with VAR compared to the fixed approach.

Table 4.6 summarizes the average QoE obtained with VAR and NA for different settings of
the bandwidth provisioning factor a. As long as a≤ 4, VAR yields higher values for all three
types of types of scores. However, when a = 6, the average stalling quality is decreased by
VAR. Simultaneously, this is the only scenario where the overall quality score is impaired
with the variable approach. Although VAR can still improve the audio visual score, this vi-
sual quality improvement cannot compensate for the induced stallings. However, to support
this hypothesis, we deeper investigate the scenario with a = 6 in the following.

4.4.2.3 Detailed Investigation of High Bandwidth Capacity Scenarios

Figure 4.13a denotes the average quality level obtained for the different source videos with
different trace types. In any case, VAR yields a higher visual streaming quality on average
compared to NA, except for two cases. The first one is the ELF clip in conjunction with the
car trace, the second case is again the clip ELF, but for the tram trace. Next, we focus on the
total stalling duration, which is denoted in Figure 4.13b. For the trace ferry, the variable ap-
proach is capable to reduce the overall re-buffer time, independent of the underlying source
video. However, for the traces car and tram, VAR leads to an increase of the total stalling
duration for the clips BBB, TOS, and MER. Only for ELF, the streaming performance in
terms of stallings can be improved by VAR. Please note that ELF is simultaneously the only
video, in which VAR did not increase, but very slightly decrease the average video quality
level. This supports our claim from above, that there tends to be a too optimistic quality
selection with VAR, leading to a higher re-buffer time, and hence to a reduction of the QoE
in general. Please not in this context that a stalling duration increase from 4s to 6s (e.g.
BBB with the car trace in Figure 4.13b), can have a drastic negative negative impact on
the overall QoE. In the following, we further investigate the assumption of a too optimistic
quality selection, which results into stallings, by taking a closer look on the average video
buffer filling levels.
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Figure 4.13: Quality level and stalling duration for a = 6. Gray bars show the results for
NA. Green bars denote an improvement by VAR compared to NA, purple bars denote an
impairment.

The hybrid-ABR selects the next segment’s quality based on both, the throughput measured
during the last segment downloads well as the current buffer level. As we configured the tar-
get buffer level as 30 seconds, quality switches are likely to happen shortly before this level
is reached. Figure 4.14 illustrates the probability of a buffer level above 26 seconds. For
the three clips BBB, TOS, and MER, the probability of having a buffer level near the target
buffer is higher for VAR than for NA. In contrast, for ELF, the probability of buffer values
higher than 26s is similar for VAR and NA, but slightly lower with VAR. This strengthens
our hypothesis that with VAR, the overall QoE score (O46) decreases for higher rates due
to a too aggressive quality adaptation. As the average bitrate for VAR is lower compared
to NA, higher buffer values can be reached faster. This triggers the heuristic to switch to
a higher quality, which can lead to stalling, especially in environments with varying band-
width capacity and if the downloaded segment is of comparably long duration. Please note
the increased variability in terms of segment sizes for the VAR approach. As stated above,
the coefficient of variation for the segments sizes is increased by 0.31, for BBB and TOS
and by 0.08 for MER. With higher quality levels, and hence higher bitrates, the absolute
variation of the segment sizes increases. For the ELF clip, i.e., that clip in which VAR also
improves the QoE for higher bandwidth capacities, the segment sizes’ coefficient of varia-
tion is only decreased by 0.02. To summarize, the combination of a fast buffer ramp-up with
VAR and the potentially highly differing segment sizes at higher quality levels, results in a
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Figure 4.14: Probability for buffer levels nearby the target buffer. Gray bars represent the
probability for NA. Green bars denote a higher probability with VAR, purple bars a lower
probability with VAR compared to NA.

worsened streaming performance compared to NA. This can be overcome by adjusting the
buffer thresholds for quality switches to the expected segment size variation. For instance,
the higher the variability, the more conservative the client should switch to a higher quality
level.

4.5 Lessons Learned

In this chapter, we performed a holistic analysis of the potential benefits of using a content-
depending video segmentation technique, which results segments of variable durations. The
conducted study is comprised of two parts: the first one focuses on the video encoding and
segmentation process, while the second one addresses the implications of variable segment
durations on the HAS performance during streaming.

In the scope of the first part, we showed that the variable approach is capable of significantly
reducing the number of costly I-frames during encoding, which consequently results in
a reduced file size as compared to the state-of-the-art mechanisms relying on segments
of equal durations. In order to draw generalizable conclusions in terms of the achieved
reduction of the bitrate requirements, we encoded a set of representative video clips using a
vast number of encoding- and segmentation-specific parameter combinations. The analysis
of the resulting data set, comprising nearly 2,000 encoded video sequences, revealed that the
bitrate can be reduced by up to 15% by the variable approach. Furthermore, we identified
the chosen CRF value and the underlying source video as the main influence factors for the
encoding efficiency gain, while there is only a negligible impact of the specified maximum
segment duration and the video’s resolution. Although the improvements achieved by the
variable approach are minor in certain cases, the average bitrate was never increased for any
of the evaluated video sequences. Hence, deploying such a solution is in any case beneficial.
Even a marginal relative bitrate reduction of a few percent, results in total in a significant
absolute cost reduction for storing and transmitting videos, given the huge amount of video
content provided online and the massive share of HAS on the overall IP traffic.
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In the second part of our study, we investigated the impact of variable segment duration on
the HAS performance. By means of testbed measurements, we created a comprehensive set
of more than 7,000 streaming session, including different videos, three diverse ABR strate-
gies, as well as various bandwidth characteristics. We learned that the approach relying on
variable segment durations can clearly outperform the conventional approach in scenarios
with low bandwidth capacities. There, the overall QoE score could be improved for 64% of
the streaming sessions, with an absolute gain of up to 0.767 on the five point MOS scale,
while the impairments occurring in the remaining 36% of the evaluated sessions never de-
graded the QoE by more than 0.297. This achievement is mainly due to the lower number of
stallings with the variable approach, resulting from the reduced bitrate. However, we found
that the variability of the segments’ sizes increases with the content-dependent technique.
This effect becomes stronger with visually better quality levels, which are encoded with
higher bitrates, and hampers the ABR strategy to carry out optimal decisions. Our analysis
showed that in scenarios with high bandwidth capacity, the ABR mechanism acted too op-
timistic in terms of switching to a higher quality level. This increases the risk of a stalling
when the requested segmented has a comparably long duration and thus, takes longer to be
downloaded due to its larger size. However, this issue is not a drawback of variable seg-
ment durations per se, as it can be addressed by a proper tuning of the quality switching
thresholds or by deploying an ABR strategy which is capable of considering the segment
sizes and their variability, such as the mechanism proposed in [65]. Hence, we conclude
that the HAS ecosystem can further be optimized by considering the underlying video dur-
ing the segmentation process, as this allows to reduce the bitrate requirements and – given
the same network conditions – to deliver a better QoE as compared to the content-agnostic
state-of-the-art approach.
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The two previous chapters presented approaches related to QoE assessment and QoE opti-
mization. More specifically, the analytical model proposed in Chapter 3 allows for under-
standing the interplay of the HAS parameters and their impact on QoE and can thus be used
by an AP to derive an optimized parameter setting. The content-depended segmentation
approach discussed in Chapter 4 can be exploited by an AP to deliver a better QoE due to
the reduced bitrate requirements. Besides the AP, the NP is an important stakeholder in
the Internet ecosystem, which is driven by business incentives to deliver a good QoE to its
customers. However, while the AP has capabilities to monitor QoE-relevant application-
level metrics, such as video interruption times, and to collect user ratings, the NP only has
access to network-level data. Although models exist, which allow a mapping from collected
QoS metrics to QoE, they are typically only available for a limited number of services, are
cumbersome to design and update, and focus only on key network features or aggregated
monitoring information when deriving the QoE. They allow for identifying service degra-
dation, but their general applicability for root cause analysis or as a basis for fine-grained
resource control is limited. As a consequence, these traditional models, for example, cannot
be used for self-driven networks, which implement automated control-loops for triggering
QoE-aware network-control actions based on the derived QoE.

Evolving networking technologies and architectures, like the 5G system (5GS), introduce
new NFs, providing improved monitoring capabilities and novel ways for application-network
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interactions. NFs potentially enabling an improved QoE monitoring are the Application
Function (AF) and the Network Data Analytics Function (NWDAF). The AF implements
a standardized interface which enables the interaction between the 5GS and third parties,
such as APs. For instance, it can be used by APs to communicate any QoE-relevant in-
formation to the MNO. The NWDAF is capable of collecting fine-grained and real-time
network statistics from other 5G control- and user-plane NFs. Besides, it can perform com-
plex analytics upon the gathered data. While using the AF to receive detailed application
information on a per-device basis is theoretically possible, such an exchange of data does
not scale and would easily overload the AF or the mobile network control plane. Moreover,
it is to be expected that an AP is not be willing to constantly expose the QoE or relevant
KPIs, which indicate the performance of its application. Hence, it is of upmost importance
to rely on network monitoring data available at the NWDAF and to enrich this data so to
allow an accurate and fine-grained QoE estimation for a diverse set of applications.

The relationship between the different network KPIs and QoE is complex and the signif-
icance of a measured parameter (or a combination of the measured parameters) for the
resulting QoE is highly dependent on the used service, the user context, the value of the
measured parameter, and the QoE score itself. Using Machine Learning (ML) is a promis-
ing approach to efficiently learn the complex interactions between the available network
statistics and the QoE in different contexts and is additionally capable of overcoming the
limitations of traditional QoE models, which derive the QoE purely based on a pre-defined
mapping of fixed inputs. Once trained and deployed, the ML model allows the MNO for
estimating the service-specific QoE for any user from its collected statistics. Although the
5G architecture provides the infrastructure for such an ML-driven approach, it is unclear
how reliable and efficient such a QoE estimation can be performed for diverse services with
their individual network requirements.

In this chapter, we shed light on the challenges and prospects for introducing an ML-based
QoE estimation in 5GS. We generally investigate if an ML-driven QoE estimation can re-
alistically be performed based on the information accessible to an MNO via the NWDAF.
We first identify the challenges and design criteria linked to the ML deployment from an
operator’s perspective. Secondly, we identify how good these challenges can be met by a
representative set of five different regression techniques, ranging from simple linear models
to highly complex neural networks. For instance, we study how accurate and how efficient
these regression techniques can estimate the QoE. Thereby, our evaluations are based on
data generated from simulation activities, taking into account the heterogeneity resulting
from different user characteristics and running services.

The rest of this chapter is structured as follows. Section 5.1 introduces the ML models used
throughout the evaluations and presents related work. Next, we elaborate in Section 5.2
on the challenges and design criteria from an MNO’s point of view and describe how they
are addressed in the scope of this chapter. Section 5.3 introduces the methodology and
Section 5.4 describes our ground-truth data set. Subsequently, we present the results of our
studies in Section 5.5. The chapter concludes with the lessons learned in Section 5.6.
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Figure 5.1: Schematic illustration of a simple regression model. It expresses the relation-
ship between the dependent and the independent variable by means of the regression line
which minimizes the overall loss.

5.1 Background and Related Work

In the following, we briefly describe the basic working principle behind the regression tech-
nique used throughout the evaluations of this chapter. Next, we present the performance
metrics used to assess the accuracy obtained with the different ML model and subsequently
discuss related works.

5.1.1 Regression Techniques

Regression analysis is a widely used concept in the field of Machine Learning. Regression
models learn the relationship between a dependent variable and one ore more independent
variables, which are often referred to as predictors, co-variates, or - as throughout the re-
mainder of this chapter - features. As the dependent variable, i.e., the outcome, is part of
the training process, regression techniques fall in the field of supervised learning. Having
trained a regression model then allows to predict the unknown response from features at de-
ployment. Features can be raw observations or their predefined transformation. Generally
spoken, regression techniques find a mathematical equation that expresses the relationship
between the available features and the outcome. A schematic illustration is given in Fig-
ure 5.1. It depicts a single feature (independent variable) on the x-axis and the outcome
(dependent variable) on the y-axis. The regression line indicates their relationship, which
has been learned by the regression model in such a way, that a specific loss function, tak-
ing into account the distance between the regression line and each of the data points, is
minimized. In order to prevent over-fitting of models, they typically apply regularization,
which puts an additional penalty to the loss function so to decrease the sensitivity towards
the input features [129]. An unknown outcome is then predicted solely based on the given
feature value (independent variable) by simply applying the learned function to it.

91



5 Machine Learning for QoE Estimation in 5G Networks

In the course of this chapter, we use five different regression techniques, which are briefly
introduced in the following. For two of them, the response is expressed as a linear func-
tion of the features. Three of the models are non-linear, which allows them to learn more
complex relationships.

5.1.1.1 Least Absolute Shrinkage and Selection Operator

LASSO [130] is a linear regression model trained with the L1 regularizer, the sum of abso-
lute values of the weights (or the regression coefficients), in addition to the mean squared
error (MSE) of the prediction. The L1 regularizer is known to induce sparsity, meaning that
many of the learned weights are zero, and therefore the corresponding features are com-
pletely neglected when estimating the response, i.e., the QoE in our case. The number of
zero weights can be tuned by the regularization parameter λ , which controls the strength of
shrinkage and sparsity. By doing so, LASSO does not only help to reduce over-fitting, but
can also be used for feature selection.

If the goal is to estimate the QoE y from a limited number of features as accurate as possible
under a limited total cost of making the necessary features available (in the run time), this
can be expressed in a standard machine learning formulation, called the regularized linear
regression. Let cd be the computation/communication cost of the d-th feature xd . Then, we
want to solve the following problem:

min
w

L≡ |y−∑
D
d=1 wdxd |2 (5.1)

subject to∑
D
d=1 cdδ (wd 6= 0)≤ λ0.

Here, w = (w1, . . . ,wD) ∈ RD is the regression parameter, λ0 > 0 is the total cost budget,
and δ (·) is the indicator function giving one if the event is true and zero otherwise. Un-
fortunately, the problem (5.1) is known to be intractable (NP-hard) because the non-convex
constraint, for which a convex surrogate is often used.

min
w

L = |y−∑
D
d=1 wdxd |2 (5.2)

subject to∑
D
d=1 cd |wd | ≤ λ1,

where y and x = (x1, . . . ,xD) are assumed to be standardized, so that the means and the
standard deviations of y and {xd ;d = 1, . . . ,D} are all zero and unity, respectively. The
problem (5.2) is now convex, and can be simplified as

min
w

L≡ |y−∑
D
d=1 wdxd |2 +λ‖w‖1, (5.3)

for the regularization parameter λ > 0 (which should be appropriately set so that it matches
λ1) and the pre-processed features such that the means and the standard deviations of {xd}
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are zero and c−1
d , respectively. The second part of the sum in 5.3 is called the `1-norm

‖w‖1 ≡
D

∑
d=1
|wd | ≡ |w1|+ |w2|+ |w3|+ ...+ |wD|

and is often used in machine learning in order to induce sparsity—many of {wd} get exactly
zero as λ grows. It was proved that the solution of the problem (5.3) is piece-wise linear to
λ , and various efficient solvers have been developed and available online.

The number ∑
D
d=1 δ (wd 6= 0) of used features is monotonically decreasing with respect to λ ,

providing the best feature set for each number of used features. When the total cost budget
λ0 is given, it allows for evaluating the total cost ∑

D
d=1 cdδ (wd 6= 0) for each of those best

feature sets, and for choosing the one giving the lowest regression error under the budget.
Thus, LASSO can be used to find a feature set which is as cheap as possible, allowing to
tune the cost versus accuracy trade-off for estimating the QoE.

5.1.1.2 Linear Ridge Regression

LRR [131] is, same as LASSO, a linear regression model. However, while LASSO relies
on the L1 regularizer, LRR uses the L2 regularizer. Hence, while the problem which is
solved by LASSO as denoted in 5.3, the according problem solved with LRR is defined as
follows:

min
w

L≡ |y−∑
D
d=1 wdxd |2 +λ‖w‖2

2. (5.4)

The second part of the sum in 5.4 is the regularization applied by LRR, which is the square
of the `2-norm, which is defined as follows:

‖w‖2 ≡

√
D

∑
d=1

wd
2 ≡

√
w12 +w22 +w32 + ...+wD

2.

For instance, while the `1-norm, which is used with LASSO, is calculated as the sum of
absolute values in the vector, the `2-norm is calculated as the square root of the sum of the
squared vector values. The main difference between them is that L1 regularization estimates
the median of the data, while L2 regularization estimates the mean of the data for over-fitting
prevention and that L2 hardly shrinks any weight to zero. It cares more about driving big
weights to small values, and tends to give small but well distributed weights. By doing so,
LRR tends to provide better prediction accuracy than LASSO, while it cannot be directly
used for feature selection, as non of the features are fully eliminated. If no penalty is given,
i.e., λ = 0, LRR performs ordinary least squares, while increasing values of λ decrease
the sensitivity of the model to the input features. That is, if λ is set very large, the trained
model will tend to under-fit, making it a crucial task to find an appropriate setting for that
parameter.
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Kernel function 

Figure 5.2: Schematic illustration of separable data points after transforming them by
means of a kernel function.

5.1.1.3 Kernel Ridge Regression

KRR [131] is a kernel regression model, which is - similar as LRR - trained with the L2
regularizer. Sometimes, data is not separable in an n-dimensional space, but in higher di-
mensions, as denoted in Figure 5.2. For that reason, KRR applies the kernel trick, which is
the dot product of the transformed vectors in the higher dimensional space. That is, with the
kernel, the transformation of the data points into the feature space is only performed implic-
itly. The kernel trick allows for operating in the original feature space without computing
the high dimensional mapping, offering a more efficient and less expensive way to non-
linearly transform features into high dimensional space. The kernel regression is equivalent
to linear regression applied to a high, possibly infinite, dimensional space into which the
original features are non-linearly mapped. By choosing an appropriate kernel, this model
can approximately express any smooth function. Upon others, laplacian, polynomial, expo-
nential, or sigmoid kernel functions are typically used. In our analysis we use the Gaussian
kernel, another popular option, with the bandwidth parameter γ , with which KRR is capable
of learning any non-linear relationships between the features and the response.

5.1.1.4 Support Vector Regression

SVR [132] is a similar model to KRR and also applies the kernel trick. But while KRR is
trained on linear least squares by applying the L2 regularizer, SVR relies on the ε-insensitive
loss. The parameter ε defines an acceptable error margin - the errors smaller than the margin
are ignored during training, resulting in a small number of support vectors. Similar as the
regularization parameter λ used with LRR and KRR, the error margin ε allows to tune the
sensitivity of the model to the independent variables, and hence, to avoid over- or under-
fitting of the model. Since the ε-insensitive loss is less sensitive to outliers than the MSE
(as used with KRR), SVR is more robust against outliers. Similar as with KRR, we apply
SVR with the Gaussian kernel in following parts of this chapter to be capable of modeling
non-linear relationships between the features and the outcome.
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Figure 5.3: Reduced neural network with a single hidden layer for solving regression prob-
lems.

5.1.1.5 Neural Networks

NNs [131] are models consisting of artificial neurons. A neuron converts a given input to
the output by applying a linear transformation with learned weights and then a non-linear
transformation, called activation. Typically, thousands of neurons form a layer, and mul-
tiple layers are stacked, where the features correspond to the input for the first layer and
the responses correspond to the output of the final layer. The non-linearity of the activation
allows to model non-linear relationship between the features and the responses. Actually,
NNs with just a single intermediate layer, which has sufficiently many nodes, can approxi-
mately express any function. Deep NN with many layers showed excellent performance in
many classification and regression tasks, where the raw data, e.g., natural images, without
any manual feature engineering are directly fed into the network [133]. This is possible
because the first layers work as an automatic non-linear feature extractor, if a deep NN with
an appropriate architecture is trained appropriately.

The goal of the evaluations in this chapter is to estimate the QoE on MOS scale, i.e., a
continuous number, which thus represents a regression problem. Indeed, NNs are able to
pretend to be any type of regression model. Figure 5.3 illustrates a simple neural network,
used to solve a regression problem. It consists of one input layer, where each input unit,
or neuron, represents a given input, e.g., the specific value of a feature. The inputs are
weighted and linearly combined with a bias (denoted as b1), which is a constant factor
to improve the model’s fit to the underlying data. The resulting output is forwarded and
serves as the input to the activation function, which transforms it according to the pre-
defined function. The activation function can be both, linear or non-linear, with sigmoid,
hyperbolic tangent (tanh), and rectified linear unit (ReLU) being widely used for the latter
option. In the shown example, there is only one single hidden layer, because the outcome of
the activation function is the predicted score, which represents the output layer. If the NN is
still in the training phase, the prediction (ŷ) is compared against the true value (y) by means
of a loss function, which quantifies the prediction error. NNs that are used for regression,
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i.e., which predict real-value quantities, typically use the MSE as the loss function. The
gradient of the loss function is used to tune the weights of the input layer and the bias. This
process is called backpropagation and it improves the network’s prediction accuracy with
each iteration. Iterations are referred to in the context of NN as epochs, whereby one epoch
means that an entire data set is passed forward and backward through the neural network
once. Another important term is the learning rate, which denotes the magnitude of changes
to the weights in response to the gradient of the loss function each time the model weights
are updated.

5.1.2 Performance Metrics

The performance of ML models with respect to their accuracy can be quantified by compar-
ing the predicted scores against their respective true scores and thus deducing the error. The
MSE measures the average of the squares of the errors and is often used during training to
optimize the model, e.g., with the L2 regularizer or as the loss function for NN. Apart from
that, it is one of the most widely used metrics to assess the estimation accuracy. It computes
as

MSE =
1
n

n

∑
i=1

(yi− ŷi)
2

whereby n denotes the number of samples, yi the true output of sample i, and ŷi the predicted
output, respectively. The Root Mean Squared Error (RMSE) is accordingly computed as

RMSE =

√
1
n

n

∑
i=1

(yi− ŷi)2

and has, compared to the MSE, the advantage to preserve to the unit. For instance, the unit
of the output from applying the RMSE is the same as the input units. Another widely used
performance metric in the field of ML is the median absolute error (MedAE), computed
as

MedAE = median (|y1− ŷ1|, |y2− ŷ2|, ..., |yn− ŷn|).

The advantage of MedAE compared to MSE and RMSE is its lower sensitivity towards out-
liers. Furthermore, a model’s accuracy can be assessed by simply taking the correlations
between the predicted output and the true value into account. Two prominent examples to
name here, and used throughout our analysis, are Pearson’s correlation coefficient (PCC)
and Spearman’s rank-order correlation (SROCC). While a wide range of further assessment
metrics exist [134], we confine in this chapter on the previously presented metrics, which
allow a substantial comparison of the different models with respect to their estimation ac-
curacy.
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5.1.3 Machine Learning in Communication Networks

The paradigm shift towards softwarized networks and increasingly available network re-
sources leverage the introduction of intelligence to communication systems. ML is de-
ployed in a broad field of use-cases, including traffic classification, routing optimization,
resource management, security, and prediction of QoS or QoE. Benefits and drawbacks of
different ML approaches in the context of SDN are presented in [135]. This comprehensive
survey describes a wide range of algorithms and how they can be used for classification
or prediction in today’s networks to address problems related to, e.g., privacy and security,
or identifying traffic patterns. Similarly, [136] provides a comprehensive body of knowl-
edge on the applicability of ML techniques to support network operations and management.
The article focuses on traffic engineering, performance optimization, and network security.
ML is widely applied for estimating QoE from network-level KPIs. In this context, many
works address video streaming, as this is one of the most prominent applications in today’s
networks. Due to the ongoing trend towards traffic encryption, ML is often applied on
traffic meta-data to estimate QoE-relevant video streaming metrics, such as resolution or
bitrate [137, 138, 139, 140], as well as to predict [141] or classify [142, 143] the QoE in
terms of the MOS.

Mobile video streaming is getting more and more popular. Due to additional network-
related KPIs, such as the channel quality, and additional characteristics of clients, e.g., their
movement, QoE assessment in mobile environments needs dedicated evaluations. There-
fore, [144] focuses on mobile networks when studying the performance of various classi-
fiers and the impact of the used features retrieved from network- and application-related
data. However, it is desirable to estimate the QoE solely using network-related features,
as such data is typically available to an MNO or ISP and easier to obtain at scale than de-
tailed application-level information. Such solutions, where the estimation is solely based
on network-level KPIs, are presented for LTE networks in [145] and for 5G networks in [6].
Both approach assume to have network data available on a very fine-grained basis, which
are generally harder to obtain. To overcome this issue, [146] analyzes how TLS transac-
tions can be used by ISPs to estimate video QoE from coarse-grained data. A first industry
solution which utilizes ML in combination with network, client, and codec information for
the assessment of the network’s impact on speech quality for VoIP services is sQLEARN1

from Infovista. It is intended for 4G/LTE and as well for 5G networks, both carrier, i.e.,
VoLTE, and OTT services.

With the introduction of 5G, new opportunities and challenges arise for ML-driven network
operations. The work in [147] focuses on the potential solutions for 5G from an ML per-
spective. The authors discuss some promising approaches on how ML can contribute to
support 5G and evaluate the impact and possible limitations of such approaches. Thereby,
QoE is often mentioned as a possible use-case for ML in 5G. While [148] focuses on the
challenges and proposes a data-driven architecture for QoE management, the work in [149]

1https://www.infovista.com/sites/default/files/resources/WP_Infovista_Learn_About_
sQLEAR_in_Motion.pdf.pdf
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goes a step beyond the QoE assessment by presenting an ML-based resource allocation for
5G networks. The proposed system determines the network performance level via cluster-
ing, predicts network KPIs by means of regression, and dynamically provisions resources
in a proactive way. Similarly, the work in [150] applies ML techniques for traffic fore-
casting to efficiently scale 5G core network resources and [151] proposes to use ML to
predict the number of users in a cell so to optimize traffic routing. One of the new key
features of 5G, network slicing, is exploited in conjunction with deep learning [152] and
reinforcement learning [153] to achieve an optimized resource utilization. Both are similar
to DeepCog [154], an approach using neural networks to forecast the resource demands of
network slices so to perform an appropriate resource allocation.

The exploitation of the newly introduced NFs in 5GS for intelligent networking has recently
been proposed in literature. For example, it is examined how the NWDAF can be used
for predicting abnormal as well as expected behavior for a group of UEs, and to forecast
the network load in an area of interest. The proposed architecture connects the NWDAF
with other NFs via the SBI to allow mutual data transfer. Using both, time series data and
generated features available at the NWDAF, different ML models are examined with respect
to their feasibility for the given problems. The conducted study shows that NNs outperform
LRR models when it comes to network load prediction and that tree-based XGBoost yields
better classification performance compared to logistic regression in the anomaly detection
use-case. Due to the huge amount of devices expected to be connect to 5GS, moving all data
to a centralized unit for analytics is un-efficient. The need for running ML algorithms in a
distributed manner is discussed in [155]. Only then, a fast decision making which minimizes
the network response time to user requests, and to fulfill the latency requirement of 5G,
can be guaranteed. The outlined proposal for a distributed analytics architecture considers
one centralized NWDAF instance and several distributed NWDAF instances, which can be
collocated with other NFs and only collect data gathered from that collocated NF.

5.2 Challenges and Design Criteria from MNO
Perspective

An MNO planning to integrate ML-based QoE estimation into its network is faced with a
variety of different challenges and design decisions. As there is no one-fits-all solution, we
first elaborate on the major questions to be addressed in order to tailor such an integration
to an MNO’s needs and describe afterwards how we exemplarily account for them in the
scope of this chapter.

Q-1 Can the QoE be estimated using ML and solely based on network KPIs?: While
ML is a promising approach to overcome the limitations of QoE monitoring in today’s
networks, the relationship between different metrics which can be monitored in the
network and the QoE is complex. Answering the question how reliable and efficient
such a QoE estimation can be carried out, consequently forms a crucial prerequisite.
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Q-2 How to estimate the QoE in 5G mobile networks?: This question relates to the
specific realization implemented by the MNO for the ML-based QoE estimation and
it inherits a couple of follow-up questions.

Q-2.1 How to efficiently exploit new features provided in 5G networks?: The 5G
architecture provides new NFs dedicated for enhanced data analytics (NWDAF)
and for third party information exchange (AF). Their specific usage is however
not part of 5G standardization activities and it resides with the MNO to deter-
mine how to particularly exploit their capabilities.

Q-2.2 Which features need to be provided at the NWDAF for training and testing
and how to obtain them?: While the network-related data, which is later used
for the estimation, is easily accessible to the MNO, the application-related data
required to obtain the QoE is typically only available to the AP. Hence, one of
the main challenges is to settle a proper way for obtaining both types of data.
The collected data then needs to be analyzed and pre-processed to make it useful
for later usage. It needs to be ensured that both sources of data, i.e., network-
and application-related data, provide information addressing the same target,
e.g., the same time period, the same geographical area, or the same access tech-
nology. First analysis of the ground-truth data should include the granularity
of available data (i.e., are time series available per second, per minute, or per
session) and provide insights regarding the relationship between the monitored
data and QoE, to assess a data source’s relevance for the estimation process.

Q-2.3 Which ML models should be considered for potential deployment?: The
field of ML offers a huge amount of individual techniques. They differ with
respect to their training process, i.e., supervised versus un-supervised learning
models, as well as in terms of their respective prediction target, which can be
clusters of given data points, a categorization of input samples into a pre-defined
set of classes, or actual numbers covering a continuous range. Furthermore, the
available models range from very simple approaches, such as linear regression
techniques, to highly advanced and complex approaches like artificial neural
networks. Which one to choose is a crucial design criteria and depends on
numerous factors.

Q-2.3.1 Which specific use-case should be addressed? The purpose of the QoE
estimation determines the requirements and hence narrows down to a spe-
cific set of potential ML algorithms for deployment. Different use-case
have different demands, e.g., in terms of the estimation speed or the level
of estimation granularity. If only a rough estimation of the system’s QoE
on a large time scale is of interest, it can be sufficient to run simple classifi-
cation algorithms. If the QoE estimation should be used for a QoE-aware,
real-time resource control on a per-flow level, the requirements in terms of
estimation speed, accuracy, and granularity are significantly higher.
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Q-2.3.2 How well does an algorithm perform?: The estimation accuracy is one of
the key factors for determining the algorithm to deploy. However, while a
high estimation accuracy is in general favorable, it might not be the ultimate
goal. For instance, an MNO might still deploy another model than the
best performing one, if it is capable of better meeting the overall trade-off,
which can, for example, involve factors such as the comprehensibility or
robustness towards over-fitting.

Q-2.3.3 What are potential influence factors on the accuracy?: Today’s net-
works are very heterogeneous in many terms. It needs to be examined if,
and to which extent, different factors impact the estimation accuracy. This
includes for example the movement patterns of users or the service type,
for which the QoE should be estimated.

Q-2.3.4 Deploying a one fits-all solution or dedicated algorithms for different
services?: If the same ML algorithm can be used for all applications, the
MNO can benefit from reduced costs for maintenance and manpower. If
a dedicated algorithm should be used for each specific service, this can be
beneficial in terms of estimation performance.

Q-2.3.5 How comprehensible is the model? This design decisions refers to whether
the MNO aims at understanding what lead the algorithm to the specific out-
put, or if the black-box behavior, coming along with some ML models, can
be accepted.

Q-2.3.6 How costly is a model in terms of resources?: Besides the accuracy and
the comprehensibility, an MNO should also take the computational and
temporal overhead into account to ensure that the mechanisms scale and
can be applied efficiently to not overload the responsible NF. For instance,
the MNO needs to be aware of the exploitation of available resources during
training and testing, as well as of the duration until an estimate is available.

Q-2.4 How to maintain deployed models? The Internet ecosystem is highly dy-
namic, leading to the fact that a once trained and deployed model will loose its
validity with ongoing changes in the system. For example, the usage of a new
voice codec in a VoIP service will affect the relationship between the measured
network KPIs and the resulting QoE and hence differ from the associations as
learned by the model. Accordingly, it is advisable, or even mandatory, for the
MNO to still collect ground-truth QoE data for updating and re-validating a de-
ployed model. By means of regular sanity checks and re-trainings, the MNO
needs to ensure that the model is still adequate, or deploy an updated version to
account for system changes. Consequently, a deployed model can evolve over
time, which potentially raises another challenge if the MNO aims to keep track
of the evolution of the model.

100



5.2 Challenges and Design Criteria from MNO Perspective

NMS

UPF

AMF

NWDAF

AF 3rd Party

SMF

Any CP NF

N6N3

DN (DATA 
NETWORK)

N2

Uu

Uu Application Server

3GPP User Plane (UP)
3GPP Control Plane (CP)
Application Data (Non 3GPP)

E2E Application Data

N4

Network KPIs

Ground-truth QoE 
(via 3rd party AF)

Training 

Analytics
QoE estimation model

Network 
KPIs ෪QoE

Figure 5.4: Integration of AF and NWDAF in the 5G architecture to support data analytics
and third party information exchange.

Elaborating on these challenges allows an MNO to analyze the trade-offs and find the sweet
spot in the variety of design goals, which can exclude each other. For example, the de-
sign goal of deploying a simple model can conflict with the demand of a high estimation
accuracy, if the complex models outperform the simple alternatives. Besides accuracy and
complexity, other criteria which need to be taken into account are related to the costs and
the robustness of algorithms, e.g., in terms of the used application.

5.2.1 Data Analytics-driven QoE Estimation in 5G Networks

Based on Figure 5.4, we describe two newly introduced NFs, which are relevant for our
work. The first one is the Application Function (AF). It is a 5G core network function, which
can be owned and customized by third parties, and hence enables communication between
5G core control plane NF (owned by the MNO) and content or application providers, e.g.,
YouTube or Netflix. It provides a standardized interface, connected to the Service Based
Interface (SBI), which allows for sharing information related to the application with any
other 5G core control plane NF.

The second one is the Network Data Analytics Function (NWDAF). This NF is also con-
nected to the SBI and capable of collecting and processing statistics from other 5G control
plane NFs, i.e., the Access and Mobility Management Function (AMF), Session Manage-
ment Function (SMF), or the Network Management System (NMS). Besides, the NWDAF
can also obtain data from third parties via the AF, e.g., information about the QoE. As the
entity where all information is accumulated, the NWDAF can be seen as the brain of the
5G system, which provides intelligent services to all NF by exposing analytics, which other
NFs can invoke and where ML algorithms may run. Dedicated for an ML/AI deployment,
the NWDAF can be decomposed into two logical functions: training and analytics. The
NWDAF which holds the logical function for training takes care for the development of the
model, including the initial training and regular re-training of the model with new training
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Figure 5.5: Contributions of this chapter to address the challenges of ML-based QoE es-
timation, with respect to the three steps (data collection, model training and testing, and
deployment). The notation Q-X specifies the respective question which is addressed. Light
green boxes denote elaborations carried out on the example of the five regression techniques.

data, to keep it up to date. The NWDAF containing the analytics function applies the trained
models, i.e., it estimates the QoE.

For the scope of this chapter, we assume the following workflow: The AP, which is aware
of any application-related KPI, provides the QoE scores via the AF, e.g., retrieved via the
P.1203 model. The MNO, which can collect any network-related KPI at any NF connected
via the SBI, statistically processes the monitored data at the NWDAF, i.e., it generates
features from the monitored data. The logical function of the NWDAF dedicated for train-
ing is applied to learn the relationship between the generated features and the QoE. Once
the model is capable to obtain a satisfactory estimation accuracy, it can be deployed via
the NWDAF’s logical analytics function, allowing the MNO to assess the QoE also in the
absence of information provided by the AP via the AF. Such a mechanism consequently
allows the MNO to perform QoE monitoring in its network.

5.2.2 Conducted Feasibility Study

By means of a feasibility study, we demonstrate the applicability of the approach described
above and show exemplarily how the different challenges and design criteria can be ad-
dressed. Figure 5.5 classifies our contributions with respect to thee three major phases data
collection, model training and testing, and deployment. The top of the illustration denotes
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our proposed concept, exploiting the 5G NFs for an ML-driven QoE estimation, thus focus-
ing on Q-2.1. The blue squares denote the network KPIs obtained during the data collection
phase at different instances, e.g., at the User Equipment (UE) or the Access Node (AN),
which are statistically processed to generate features. Additionally, during this phase, true
QoE scores are provided via the AF (denoted as the purple box) from a third party AP. In
the course of our practical study, we gather these types of data by means of network simula-
tions and for two exemplary applications, i.e., HAS and VoIP. Based on the generated data
set, we to address Q-2.2 by studying the correlation between the network-related features
and the QoE.

During the model training and testing phase, the logical NWDAF function for training
learns the relationships between the network KPIs and the QoE. For our feasibility study,
we assume that the MNO’s goal is to estimate the QoE on MOS scale. Accordingly, we
train regression techniques, which are capable for predicting any number in the given range
between 1 and 5. While this is more complex compared to a classification into pre-defined
classes, e.g., low, medium, and high QoE, the finer granularity of the prediction output
allows to cover a wider range of possible use-cases, including reporting, on-demand trou-
bleshooting, or automatic corrective actions. We use the least absolute shrinkage and selec-
tion operator (LASSO), Linear Ridge Regression (LRR), Kernel Ridge Regression (KRR),
Support Vector Regression (SVR), and Neural Networks (NN). Although the set of used
techniques is relatively small, it is representative in terms of the models’ complexities. Our
performance analysis addresses Q-1 by demonstrating the general feasibility of estimat-
ing the QoE from network KPIs, as all trained models yield reliable outputs. Besides the
general comparison with respect to the estimation accuracy (Q-2.3.2), we study in how far
it is influenced by a user’s movement pattern, the obtained QoE, or the used application
(Q-2.3.3).

According to the proposed concept, during deployment, the logical function of the NWDAF
which is dedicated for analytics, holds a trained ML model. Thus, based on the network
KPIs, it can estimate the QoE. In the scope of our feasibility study, we analyze the resource
consumption, as well as the time it takes the different regression techniques to obtain the
QoE estimates, thus addressing Q-2.3.6. Finally, we compare them in a qualitative man-
ner, considering factors such as their comprehensibility, trackability, or whether they pro-
vide built-in features supporting over-fitting prevention or feature selection, to account for
Q-2.3.4, Q-2.3.5, and Q-2.4.

5.3 Evaluation Methodology

This section introduces the applied methodology for our studies. We first detail on the
conducted simulations to generate the ground-truth data set, along with the considered ap-
plications and scenarios. In a next step, we describe the procedure for training the different
regression techniques.
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5.3.1 Simulation Scenarios for Ground-truth Data Collection

For generating the network- and application-related ground-truth data, we rely on the dis-
crete event simulator OMNeT++ [156]. Additionally, we use the frameworks INET and
SimuLTE. Although SimuLTE simulates 4G networks, the type of monitored information
is the same with 5G networks. For instance, the equivalent of 4G Packet Gateway (PGW)
and eNB data is information collected from UPF and gNB in 5G. Four our feasibility study,
the main point of using SimuLTE is to obtain monitoring information from both, access and
core network. As we assume the monitoring information to be available at NWDAF and
do not consider any signaling exchange for data collection, SimuLTE can be used for our
purpose of generating user plane traffic in a mobile network. From the perspective of the
radio technology, 5G has much higher data rates compared to 4G. However, the principles
of system load (number of UEs in a cell) and radio quality will still play a role in 5G sys-
tems. Our simulations consist of a single AN which serves a varying number of active UEs,
which differ with respect to their mobility characteristic. On the one hand, we consider
static clients, which do not move throughout the experiments. Some clients, on the other
hand, move between different points of interest (POIs) within the cell. To simulate realistic
movement patterns, we take the small world in motion (SWIM) movement model [157] into
account. Moving clients are either considered as pedestrians or vehicles, with speeds of 3
kmph and 50 kmph, respectively.

For the active clients, we consider two different types of applications. The first one is VoD
application, according to the HAS principle. The video streamed by the clients has an
overall duration of 400 seconds, split into small segments of 5 seconds each, and is made
available in four different qualities, comprising bitrates of 500 kbps, 1 Mbps, 1.5 Mbps,
and 3 Mbps. The VoD client applies a buffer-based heuristic, hence, the segment quality is
determined based on the video buffer’s filling level. The lowest quality level is chosen if the
buffer contains less than 10s of video play time. The second, third, or fourth quality level is
chosen if the buffer exceeds the threshold of 10s, 20s, or 30s, respectively. In order to make
our results more generic, and not limited to a specific QoE model, we apply two different
existing models to obtain the QoE for VoD clients. The first one is the ITU-T P.1203 model,
the second one is the cumulative quality model (CQM). In the following, we will refer to
these models as VoD-P.1203 and VoD-CQM. The QoE is computed on a per-session level,
i.e., after the 400s of the video clip have been played back. CQM allows to set different
parameters, such as weights for different quality window metrics and we use the default
values from the implementation’s repository2.

The second application we consider is VoIP, for which we only model the receiver side, i.e.,
the listener of a conversation. The talk spurt duration follows a Weibull distribution with a
scale of 1.4 seconds and a shape of 0.82 seconds. Between the talk spurts, there is silence,
which also follows a Weibull distribution (0.899s, 1.089s). We use the g726 codec and a
bitrate of 40 kbps. Although better voice coder exist, the voice processing in the example
under study does not have to be representative of reality, but at least allow quality variation

2https://github.com/TranHuyen1191/CQM
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all along the available range, so that training and testing data can be used to compare the
ML techniques under study. The QoE of the VoIP client is computed using the e-model
as defined in the ITU-T G.107 standard [158]. Thereby, a MOS value is computed after
each talk spurt. To obtain the clients’ overall QoE for the whole VoIP session, we take
the average MOS of all talk spurts. Newer models, such as the ITU-T P.863 (POLQA) are
capable to better reflect the user’s perceived voice quality. POLQA is a FR metric, i.e., it
needs a reference audio sample to compare it against the received audio signal to obtain the
MOS. However, due to the simulative nature of our approach, such FR metrics cannot be
applied in our case. Nevertheless, the general relationship between MOS and its impacting
factors is the same for both models [159, 160]. Hence, we can expect a similar performance
of the applied ML models, independent of the applied QoE model.

To obtain QoE values exploiting the MOS range as good as possible, we run simulations
with a slight overload of the cell’s capacity. For VoD, we consider 80 and 160 active clients.
When running simulations for VoIP, we increase the number of clients to 400, as a VoIP
client consumes significantly less bandwidth. The clients are either moving or static and we
set the following distribution with regard to the UEs’ mobility patterns: 100% static, 100%
moving, or half moving half non-moving. To vary the impact of the clients’ movement
patterns on network KPIs, we configure four different POI settings: A single POI, which is
located at the edge of the cell or a single POI, which is close to the AN. Next, we consider
10 and 100 POIs, which are randomly placed within the cell. Finally, we simulate each
configuration with different seeds, which determine the initial placement of the UEs.

5.3.2 Collected Monitoring Information and Features

With the term ground-truth data, we refer to those data points, where we have network-
related information and its associated true QoE expressed as MOS. While the estimated
QoE is the output of the trained ML models, the true QoE is reliably retrieved by applying
t the QoE models. To obtain the true QoE, we collect all relevant network-related and/or
application-related information needed with the respective QoE model, e.g., video quality
and interruptions in the case of VoD. The QoE estimation performed by the ML models,
however, solely relies on network-related information. Our monitored network information
for the different application types are summarized in Table 5.1. All of them are collected
as time series. To generate the features, which are the input for the ML models to estimate
the QoE, we apply the 12 different statistics shown in the table to the time series. Please
note that in the case of VoIP, where we only consider the transmission from sender to
receiver, there is no up-link related monitoring information. The only exception is the AN
throughput, whose upload throughput reflects the sum of the download throughput of all
active UEs. We furthermore collect two different types of delays in the case of VoIP: the
end-to-end delay and the Radio Link Control (RLC) delay. The end-to-end delay is an in-
app measurement and possibly not available to an MNO. However, the MNO is in any case
capable to obtain the RLC delay, which is, in our case, monitored on a per-UE basis at the
AN.
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Table 5.1: Overview of the data monitored in the network and the applied statistics to
generate network-level features. Check marks denote that the monitoring information is
collected for estimating the QoE of the specific application.

Network KPI Abbreviation VoD VoIP

Access node throughput on uplink AN TP UL 3 3

Access node throughput on downlink AN TP DL 3 7

User equipment throughput on uplink UE TP UL 3 7

User equipment throughput on downlink UE TP DL 3 3

Channel quality indicator on downlink CQI DL 3 3

Channel quality indicator on uplink CQI UL 3 7

TCP Round trip time RTT 3 7

End to end delay E2E delay 7 3

Radio link control delay RLC delay 7 3

Hybrid automatic repeat request error rate on downlik HARQ ER DL 7 3

Applied Statistics Abbreviation(s)

Average / minimum / maximum / median avg / min / max / median
Standard deviation/ variance std / var
25th percentile / 75th percentile 25perc / 75perc
Coefficient of variation / kurtosis / skewness cov / kurt / skew
Unbiased standard error of the mean sem

5.3.3 Training of Machine Learning Models

We split the set of ground-truth data points into a training set, which comprises 80% of
the data, and a test set for the remaining 20%. The training set is used for training the ML
models and tuning their hyper-parameters, i.e., those parameters which are not set upfront,
but optimized during the training phase. During training, we apply a 5-fold cross-validation,
i.e., the training is repeated 5 times. Thereby, 80% of the training set samples are used for
the actual training and 20% to validate the trained model’s performance. In each of the 5
rounds of training, the set of 20% of samples used for the validation changes. That way, each
sample in the training set is used four times to train the model and is used once to validate
a trained model’s performance. In each of the five rounds, a validation error and a training
error are obtained. Both types of errors need to be considered to ensure that a model does
not under- or over-fit. A high validation error in combination with a low training score
indicate an over-fit of the model, while a high validation error in combination with a high
training error reveal an under-fitting model. The sweet spot is located where the validation
error is low, with a moderate training error. The hyper-parameter set which maximizes the
validated performance (averaged over the 5 folds) is chosen for the final model. Hence, the
hyper-parameters are tuned and the trained model can be applied to the test set. Contrary to
the validation set, the test set (the 20% of the whole ground-truth which has not been used
during the training phase) only comprises data that the ML model has not seen so far, i.e.,
none of the samples of the test set were used to train the model. By applying the model
to the test set, we obtain the test error, which is used for reporting the final performance.
Consequently, when evaluating a model’s accuracy, we are referring to the test error.
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Table 5.2: Parameter settings for training the ML algorithms with VoD. The selected pa-
rameters are those which yield the highest estimation accuracy among the tested parameters
and which are used in the evaluation chapter.

Parameter Description Tested # comb. Selected

LASSO λ Regularization [0 : 0.1] (|λ |= 21) 21 0.0005

LRR λ Regularization [0 : 500] (|λ |= 28) 28 10−9

KRR λ Regularization [0 : 10] (|λ |= 23) 23 0.07

SVR C Regularization [0.1 : 6] (|C|= 16) 32 4.92
ε Acceptable error [0.01,0.1] 0.01

NN

LR Learning rate [0.001,0.01,0.1]

504

0.001
#epochs Number of epochs [100,200,500,1000] 1000
#neurons Number of neurons [10,50,200] 50
batchS Batch size [10 : 1000] (|batchS|= 7) 200
AF Activation function tanh, relu relu

Table 5.3: Parameter settings for training the ML algorithms with VoIP. The selected pa-
rameters are those which yield the highest estimation accuracy among all tested parameters
and which are used in the evaluation chapter.

Parameter Description Tested # comb. Selected

LASSO λ Regularization [0:0.1] (|λ |= 21) 21 0

LRR λ Regularization [0.1 : 600] (|λ |= 28) 28 0.1

KRR λ Regularization [0 : 1] (|λ |= 23) 23 0.01

SVR C Regularization [7 : 12] (|C|= 16) 32 12
ε Acceptable error [0.01,0.1] 0.03

NN

LR Learning rate [0.001,0.01,0.1]

504

0.01
#epochs Number of epochs [100,200,500,1000] 1000
#neurons Number of neurons [10,50,200] 50
batchS Batch size [10 : 1000] (|batchS|= 7) 200
AF Activation function tanh, relu relu

All ML algorithms are tested using various settings for their respective parameters. Ta-
ble 5.2 summarizes the tested settings for each ML option when training for the application
VoD, and Table 5.3 when training for VoIP, respectively. For the NN, we consider a sin-
gle hidden layer. The table further denotes those parameter settings, that have been chosen
for the QoE estimation for the different service types. The chosen parameters are those
which yield the highest estimation accuracy, i.e., the lowest validation error expressed as
MSE. These parameter settings are used when comparing the different algorithms in the
evaluation chapter.
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Table 5.4: Number of samples and average MOS ± standard deviation for the different
subsets of the ground-truth data set.

VoD-P.1203 VoD-CQM VoIP
Data set # samples MOS # samples MOS # samples MOS

all 13952 2.18±0.60 13952 1.65±0.79 27592 4.17±0.49
stationary clients 3210 2.41±0.82 3210 1.97±0.98 8392 4.04±0.67

moving clients 10742 2.12±0.49 10742 1.55±0.70 19200 4.23±0.37
low QoE 8095 1.83±0.07 10139 1.89±0.13 291 1.21±0.24

medium QoE 5067 2.46±0.39 3295 2.68±0.35 2136 2.97±0.40
high QoE 790 4.02±0.36 518 3.74±0.16 25165 4.31±0.18

5.4 Ground-truth Data Set Analysis

This section presents the characteristics of the ground-truth data set. We first detail on the
number of collected samples and show the distributions of the ground-truth QoE for VoIP
and VoD. Next, we study the correlations of the network-related features with QoE and
exemplary show the impact of the most powerful features’ values on the obtained MOS
scores.

5.4.1 Ground-truth QoE Distribution

In order to allow more fine-grained analysis, we divide our ground-truth data set into sub-
sets. Thereby, we distinguish between stationary and moving clients. We further categorize
the data samples according to their true QoE score into three classes: low, if the QoE is
below 2.0, medium, if the QoE ranges between 2.0 and 3.5, and high if the QoE is above
3.5. We refer to to the overall data set as all. We will refer to these subsets throughout
our study, to evaluate the performance for different ranges of the QoE and varying move-
ment patterns of the clients. Table 5.4 denotes the number of ground-truth samples for each
service type in the different subsets and it shows the average MOS values along with their
standard deviations. The average QoE of the VoD clients is higher when using the ITU-T
P.1203 model (2.18), compared to using CQM (1.65). With both models, stationary clients
obtain a better QoE than the moving clients. For moving clients, we observe a lower stan-
dard deviation than for stationary clients. This can also be observed for VoIP, where moving
clients have a standard deviation of 0.37, while for the stationary ones, the standard devia-
tion increases to 0.67. Contrary to VoD, moving VoIP clients obtain a slightly higher QoE
than stationary ones. This is counter-intuitive, since mobility is a well known degradation
factor in telecommunications. This issue nevertheless does not pose a problem in terms of
training and testing the ML models, as the global distributions of MOS scores, and hence
the training of the models, are not biased.

The QoE distributions for the different services are denoted in Figure 5.6. The x-axis de-
notes the ground-truth QoE scores, the y-axis denotes the ECDF. While for the VoD clients,
about 60% (P.1203) or 70% (CQM) suffer from low QoE, about 90% of the VoIP clients
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Figure 5.6: Ground-truth QoE scores obtained for VoIP and for VoD with the different
QoE models.

achieve a high MOS score. We want to add here that the data sets are not equally distributed
in terms of the true QoE. The low QoE scores for the VoD clients can be explained with the
highly increased bandwidth requirements of VoD in the specific context of the simulated
environment used during this study. Although the ground-truth QoE distribution could eas-
ily be harmonized by removing samples of too frequent MOS values, we use the data set as
it is. An MNO who actually deploys ML in its system will face similar issues. Additionally,
it allows us to study the estimation accuracy in a more natural/realistic setting.

5.4.2 Relationship Between Most Expressive Feature and QoE

Next, we study the relationship between the QoE for VoD and VoIP clients and their re-
spective features with the highest correlation according to Pearson’s correlation coefficient.
For VoD, independent of the applied model, the feature with the highest correlation with
QoE is the average downlink throughput. We first detail on this feature’s impact on the VoD
QoE when computed according to the P.1203 model. Figure 5.7a denotes the average UE
downlink throughput on the x-axis and the QoE scores on the y-axis. The white line shows
the average values of the UE donwlink throughput obtained within discrete MOS intervals
with steps of 0.1. For example, it denotes the average UE donwlink throughput of all clients
which achieve a MOS between 3.5 and 3.6. Additionally, we denote with the dotted lines
the average value +/- its standard deviation. We can observe a linear behavior between the
average throughput and QoE. As expected, the higher the average throughput, the higher
the MOS score. The plot further shows that with increasing MOS scores, the standard de-
viations increase and there are more throughput values that lie far away from the average
of the 0.1-sized QoE interval. Figure 5.7b accordingly shows this relationship for the VoD
QoE as computed by CQM. As expected, the relationship between the average downlink
throughput and QoE is similar as with VoD-P.1203.
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Figure 5.7: Relationship between the QoE and the respective most expressive network-
related feature.

For VoIP, the feature with the highest correlation to QoE is the standard deviation of the
downlink RLC delay. The impact of this feature’s values on the MOS scores is denoted
in Figure 5.7c The higher the RLC downlink delay, the lower the MOS. Contrary to the
VoD clients, the standard deviation of this feature’s value increases with decreasing MOS
values. Furthermore, we can see several outliers, especially in the region of medium and
low QoE.

5.4.3 Feature Correlation Analysis

Figure 5.8 denotes the correlation between the QoE score and the different features accord-
ing to PCC. For the sake of clarity, we confine on the 40 top ranked features. While green
boxes denote a positive correlation, purple colored boxes denote a negative correlation, re-
spectively. For the VoD QoE according to P.1203, the highest correlation observed is the av-
erage UE downlink throughput (0.90), followed by the average UE uplink throughput with a
value of 0.86. The subsequent 16 features are all related either to the UE uplink or downlink
throughput, showing the high relevance of this monitoring statistic for the QoE estimation.
The first feature which is related to a different monitoring metric than UE throughput is the
25th percentile of the UE uplink CQI, with a correlation coefficient of 0.38, followed by the
minimum and average uplink CQI (0.37).

The correlations when using CQM differ only slightly. Same as with P.1203, the two highest
correlations are obtained for the average UE throughput on downlink (0.90) and uplink
(0.86). Again, the first feature not related to UE throughput is the 25th percentile of uplink
CQI, which has a slightly higher correlation of 0.41 when using CQM instead of P.1203.

The most expressive feature in case of VoIP is the standard deviation of the RLC downlink
delay with a correlation of -0.86. In general, features generated from the RLC delay are
highly correlated with the VoIP QoE. The first feature which is not related to any delay
metric is ranked on the 20th place. It is the maximum UE downlink throughput which has a
comparably low influence on the QoE with a correlation coefficient of only -0.17.
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Figure 5.8: Correlation between network-related features and QoE. Only the 40 features
with the highest PCC scores are shown. Values are sorted from top to bottom according
their absolute correlation values.
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5.5 Performance Evaluation

This section evaluates and compares the different regression techniques considered for this
chapter. We first perform a quantitative assessment and study the QoE estimation accuracy.
Next, we investigate the different mechanisms with respect to their resource requirements
and the duration for training and testing the models. Finally, as an operator might also
consider different non-qualitative aspects when deciding about the algorithm to deploy, we
compare the different mechanisms with respect to different qualitative factors.

5.5.1 Quantitative Assessment

For assessing the different mechanisms quantitatively, we first take a detailed look on the
estimated versus true QoE. In a next step, we investigate how the estimation accuracy differs
for the different data sets, i.e., depending on a client’s movement characteristic or true
QoE. The quantitative assessment concludes with an investigation of meta KPIs, such as the
duration or CPU load for running the mechanisms.

5.5.1.1 Estimated versus True QoE

This section studies the deviation of the estimated MOS score from the true score. Thereby,
we also evaluate whether a mechanisms tends to over- or under-estimate the QoE. To do so,
we assume an estimation to be accurate, if it deviates less than 0.1 from the true score. For
instance, if the true QoE is 2.7, any estimated value between 2.6 and 2.8 is seen as accurate.
Values lower than 2.6 represent an under-estimation and higher than 2.8 an over-estimation,
respectively.

Figure 5.9a illustrates the true QoE and its estimation from the five regression techniques
for VoD when using the ITU-T P.1203 model. The angle bisector represents the cases
where the estimation equals the true QoE, i.e., the optimal case. Values above this line are
under-estimations (shown in blue), values below this line are over-estimations (shown in
red). All of the tested mechanisms have a similar fraction of under-estimates. The lowest
rate is obtained for SVR (14.5%) and the highest one for LASSO, with about 17%. More
significant differences can be observed when it comes to the QoE over-estimates. Thereby,
KRR outperforms the other mechanism with a fraction of about 14% over-estimation. NN
performs the worst and over-estimates the QoE in nearly half of the test samples.

When the true VoD QoE is obtained with CQM instead of P.1203, the accuracy decreases
for all of the five regression techniques, as shown in Figure 5.9b. Similar as with P.1203,
SVR and KRR yield the lowest fraction of under-estimations. However, the fractions are
increased by roughly 7% compared to P.1203, resulting in an under-estimation rate of about
22% for SVR and 23% for KRR. The over-estimation rate increases as well when using
CQM instead of P.1203. The only exception is NN, which over-estimates less for CQM
than for P.1203. Another observation that can be drawn compared to P.1203 is the increased
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(a) VoD P.1203. (b) VoD CQM. (c) VoIP.

Figure 5.9: Accuracy of the different regression techniques for the different service types.
Deviations of estimated QoE larger than +0.1 are counted as over-estimation, deviations
larger than -0.1 are counted as under-estimation. Estimated values within the +/- 0.1 bound-
ary are assumed as accurate estimations.

113



5 Machine Learning for QoE Estimation in 5G Networks

all stationary moving low QoE medium QoE high QoE
0.0

0.2

0.4

0.6

0.8

1.0
RM

SE

0.
18

0.
18

0.
19

0.
16 0.

22 0.
25

0.
24 0.
26

0.
21

0.
29

0.
16

0.
16

0.
16

0.
14 0.

19

0.
10

0.
10 0.

15
0.

08 0.
15 0.

21
0.

21
0.

20
0.

19 0.
23

0.
47

0.
45

0.
41

0.
40

0.
52

Subset

LASSO
LRR
KRR
SVR
NN

Figure 5.10: RMSE scores obtained for VoD-P.1203 within the different subsets.

magnitude of deviations from the true QoE score. The data points lie more far away from the
angle bisector, indicating that inaccurate estimates are of higher magnitude with CQM.

For VoIP, the QoE estimates tend to be more accurate, as shown in Figure 5.9c. With
LASSO, LRR, KRR, and SVR, the fractions of both, over- and under-estimation, are below
10%. SVR outperforms the other mechanisms and can achieve an accurate estimation within
the +/-0.1-boundary for about 86.7% of the test samples. NN has a clear tendency towards
under-estimating the QoE (29%), but over-estimates with a similar rate as the other four
regression techniques.

5.5.1.2 Estimation Accuracy - RMSE

Next, we compare the five regression techniques using the root mean square error (RMSE).
Thereby, we do not only consider the used application type, but also evaluate the estimation
accuracy for different subsets of our ground-truth data set. For instance, when reporting
the performance metrics, we take into account whether a UE was stationary or moving, and
whether the ground-truth QoE is low, medium, or high. Please note that the models have
not been explicitly trained on the subsets. Instead, they have been trained and optimized on
the data set all and we only use the subsets when evaluating their performance.

The RMSE scores for VoD-P.1203 are illustrated in Figure 5.10. There are only slight
differences between the five mechanisms in terms of RMSE in the complete data set (all).
LASSO and LRR both obtain an RMSE of 0.18 and KRR yields 0.19. SVR is most accurate
with an RMSE of 0.16, the NN has the highest error with 0.22. If the RMSE is considered
separately for stationary and for moving clients, it shows that for VoD - P.1203, in any case,
the estimation is more accurate for moving clients. This is most significant for SVR and
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Figure 5.11: RMSE scores obtained for VoD-CQM within the different subsets.

NN, which yield an RMSE of 0.26 and 0.29 for stationary clients, but can achieve 0.16 and
0.19 for moving ones.

Next, we consider the RMSE separately depending on the true ground-truth QoE class. For
low QoE scores, all techniques achieve a high estimation accuracy. SVR scores best with
an RMSE of 0.08. The highest errors are obtained for NN and KRR with an RMSE of
0.15 each. For medium ground-truth QoE scores, the estimation errors increase for all five
regression techniques. As before, SVR outperforms the other approaches and achieves an
RMSE of 0.19. For high ground-truth QoE scores, we see again a decrease of the estimation
accuracy. Compared to the low QoE subset, the RMSE scores are about the fourth-fold.

For the VoD-CQM (Figure 5.11), the estimation error in the overall data set is higher com-
pared to VoD-P.1203. SVR achieves the lowest RMSE with 0.23 (0.16 for P.1203) and NN
has the highest RMSE with 0.27. Again, the accuracy for moving clients is slightly better.
However, the difference is less significant as with the P.1203 samples. Furthermore, low
QoE scores can be estimated with higher accuracy than medium or high ones. The highest
RMSE in the low QoE subset is 0.23 obtained from NN. This is still lower than the lowest
RMSE in the medium QoE subset, which is 0.35 for KRR.

Finally, we investigate the estimation accuracy for VoIP, as shown in Figure 5.12. Con-
sidering the whole dat aset (all), SVR achieves the lowest RMSE with 0.10 and LASSO
the highest with 0.17. In general, the estimation is more accurate for VoIP, compared to
VoD. Contrary to VoD, the QoE of stationary clients can be estimated with higher accuracy
than the QoE of moving clients. As we showed in Table 5.4, moving VoIP clients have
lower MOS standard deviation than the stationary ones. For VoD, this is vice versa and
the moving clients have a lower MOS standard deviation. Furthermore, Figure 5.12 shows
that the VoIP QoE estimation is more accurate for higher ground-truth QoE values. While
KRR achieves the best estimation accuracy in the low QoE subset with an RMSE of 0.48, it
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Figure 5.12: RMSE scores obtained for VoIP within the different subsets.

yields the worst performance in the high QoE subset, but with a significantly lower RMSE
of only 0.12. This can be explained by the lower amount of ground-truth samples in the low
QoE subset. Additionally, we showed in Figure 5.7c that with lower QoE scores, the values
of the feature std RLC Delay DL are more spread along the x-axis, i.e., the relationship be-
tween the feature and QoE becomes less distinct and consequently makes the estimation of
those samples more difficult. Finally, we note the low estimation accuracy of LASSO and
LRR in the low QoE subset. While the other three mechanism yield an RMSE around 0.5,
it is 0.97 for LASSO and 1.03 for LRR. A possible explanation for the low performance
of these two linear models is their limited capability to capture the non-linear relationship
between delay variation (jitter) and QoE accurately. Although the non-linear models also
outperform the linear ones in the data set all, the effect is more obvious when it comes to
the low QoE scores, where the delay and its variation actually play a role.

5.5.1.3 Estimation Accuracy - Further Metrics

Apart from the RMSE, we also compare the different mechanisms based on the MSE, the
MedAE, and based on the correlation between estimated QoE and true QoE score according
to PCC and SROCC. The respective scores are denoted in Table 5.5. For PCC and SROCC,
higher values reflect a better performance (↑), while for MSE and MedAE, values as low as
possible are desired (↓).

For the PCC, SVR is the mechanism which most often outperforms the other mechanisms.
There are only few cases where SVR is significantly worse in terms of PCC compared one
other approach. One is in the subset of low QoE scores for VoD-P.1203, where LASSO
achieves a PCC of 0.76, while SVR scores 0.66. Another case is the subset of high QoE
scores for VoD-CQM. The NN outperforms SVR with an increase of PCC by 0.05. Finally,
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Table 5.5: Performance scores of the mechanisms within the different subsets. For PCC
and SRCOCC, high values reflect a better score (↑), for MSE and MedAE, values should be
as low as possible (↓). The respective best scores are highlighted as bold numbers.

PCC (↑) SROCC (↑) MSE (↓) MedAE (↓)

LASSO LRR KRR SVR NN LASSO LRR KRR SVR NN LASSO LRR KRR SVR NN LASSO LRR KRR SVR NN

V
O

D
-

P.
12

03

all 0.95 0.95 0.95 0.96 0.94 0.93 0.93 0.94 0.92 0.86 0.034 0.032 0.036 0.025 0.046 0.075 0.075 0.047 0.059 0.122
stationary 0.95 0.96 0.95 0.97 0.94 0.95 0.95 0.94 0.92 0.90 0.064 0.059 0.066 0.043 0.086 0.122 0.112 0.072 0.077 0.147

moving 0.94 0.94 0.94 0.95 0.93 0.92 0.91 0.94 0.93 0.85 0.025 0.024 0.027 0.020 0.035 0.069 0.068 0.044 0.055 0.117
low QoE 0.76 0.74 0.52 0.66 0.49 0.73 0.71 0.78 0.69 0.52 0.009 0.010 0.022 0.007 0.021 0.054 0.054 0.028 0.041 0.114

medium QoE 0.83 0.83 0.86 0.87 0.81 0.83 0.84 0.87 0.88 0.81 0.045 0.043 0.039 0.035 0.053 0.131 0.126 0.109 0.106 0.132
high QoE 0.66 0.67 0.64 0.66 0.59 0.66 0.66 0.64 0.66 0.56 0.222 0.199 0.168 0.163 0.274 0.311 0.287 0.293 0.309 0.410

V
O

D
-

C
Q

M

all 0.94 0.95 0.95 0.95 0.94 0.95 0.94 0.96 0.95 0.91 0.067 0.063 0.058 0.055 0.073 0.134 0.121 0.079 0.081 0.087
stationary 0.96 0.96 0.96 0.97 0.95 0.97 0.97 0.96 0.95 0.94 0.085 0.079 0.075 0.063 0.095 0.173 0.165 0.105 0.110 0.104

moving 0.93 0.94 0.94 0.94 0.93 0.94 0.93 0.95 0.94 0.90 0.062 0.059 0.053 0.052 0.066 0.123 0.112 0.073 0.074 0.087
low QoE 0.89 0.89 0.89 0.89 0.83 0.88 0.87 0.91 0.88 0.79 0.038 0.035 0.031 0.025 0.052 0.105 0.095 0.050 0.059 0.087

medium QoE 0.69 0.68 0.70 0.69 0.66 0.67 0.66 0.68 0.67 0.64 0.149 0.142 0.122 0.137 0.123 0.288 0.279 0.230 0.256 0.243
high QoE 0.61 0.66 0.51 0.62 0.67 0.66 0.70 0.53 0.66 0.69 0.117 0.122 0.168 0.110 0.168 0.203 0.256 0.249 0.209 0.310

V
O

IP

all 0.94 0.94 0.96 0.98 0.96 0.71 0.71 0.75 0.75 0.63 0.028 0.026 0.023 0.011 0.022 0.026 0.023 0.011 0.032 0.082
stationary 0.94 0.95 0.94 0.98 0.96 0.66 0.66 0.71 0.72 0.56 0.015 0.013 0.015 0.007 0.016 0.024 0.022 0.010 0.030 0.082

moving 0.93 0.94 0.96 0.98 0.96 0.79 0.80 0.82 0.82 0.75 0.058 0.056 0.043 0.020 0.036 0.032 0.027 0.014 0.037 0.081
low QoE 0.55 0.49 0.75 0.49 0.10 0.82 0.84 0.80 0.69 0.24 0.946 1.053 0.235 0.239 0.280 0.389 0.291 0.259 0.177 0.353

medium QoE 0.72 0.76 0.80 0.87 0.83 0.69 0.72 0.82 0.85 0.80 0.139 0.114 0.095 0.056 0.086 0.252 0.222 0.152 0.143 0.180
high QoE 0.90 0.91 0.84 0.94 0.90 0.62 0.61 0.67 0.68 0.51 0.008 0.007 0.015 0.004 0.013 0.024 0.021 0.009 0.029 0.079

for the low VoIP QoE subset, KRR achieves a PCC of 0.75 while SVR only yields a PCC
of 0.49. The subset of low VoIP QoE is also interesting for the NN, which only has a
correlation of 0.10, the lowest value observed during our evaluations. According to SROCC,
the mechanism which most frequently yields the highest values is KRR. Significantly higher
SROCC are only achieved with LRR and NN in the subset of high VoD-CQM QoE. Similar
as for PCC, the Neural Network fails in the low VoIP QoE dat aset, with a SROCC score
of only 0.24. In terms of MSE, SVR outperforms any other mechanism for all subsets of
VoD-P.1203. SVR also performs well on the VoD-CQM data set. Only for the medium
VoD-CQM QoE subset, KRR and NN achieve a slightly better accuracy. In the VoIP data
set, SVR’s performance can only be topped in the low QoE subset by KRR. However, the
difference is only 0.004 therefore negligible. Next, we investigate the performance based
on the MedAE For this metric, KRR yields the lowest errors most frequently. Significantly
lower errors can only be achieved by SVR in the stationary clients subset of VoD-P.1203, by
LASSO and SVR in the high QoE subset of VoD-CQM, and by SVR for low and medium
VoIP QoE.

5.5.1.4 Meta-KPI Analysis

Our meta-analysis for the performance of the different regression techniques includes sev-
eral metrics expressing the computational overhead of the ML models. Figure 5.13 denotes
the CPU and RAM usage during training and testing, i.e., actually estimating the QoE for
the samples in the testset. The metrics obtained for VoD are shown in Figure 5.13a. LRR
and NN are CPU- and RAM-efficient during training. KRR has a higher RAM usage com-
pared to the other mechanisms, while SVR and LASSO have the highest CPU-load during
training. During testing, the most CPU-efficient approach is SVR and the most-RAM effi-
cient approach is NN. Figure 5.13b shows the resource consumption for VoIP. Again, KRR
has the highest RAM usage during training, however, in another order of magnitude. While
with VoD, it used 15.5% of the RAM, it increases to 31.8% with VoIP. The RAM usage is
similar for the remaining approaches and they mainly differ in terms of their CPU usage.
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Figure 5.13: Resource consumption of the different regression techniques. Squares denote
values obtained for training, circles for testing, respectively. Errorbars denote the standard
deviation obtained after five repetitions.
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Figure 5.14: Duration for training and testing the models. Errorbars denote the standard
deviation after five repetitions.

The highest CPU usage during training is observed for SVR, the lowest one for LRR. Dur-
ing testing, similar as with VoD, SVR is the most CPU-efficient approach and LASSO the
least efficient one.

Finally, we denote the duration for training and testing in Figure 5.14. Please note that the
training duration, denoted on the x-axis, highly depends on the number of parameter com-
binations used to train the respective models and that a different amount of combinations
has been used for the different approaches. Consequently, we will focus on the duration for
testing, i.e., actually estimating the QoE. The results for VoD are shown in Figure 5.14a.
LRR, LASSO, and NN are capable to estimate the QoE of the 2790 test samples in about
0.52 seconds. KRR and SVR, the methods applying the kernel trick, are less efficient and
need about 2.3 seconds. Figure 5.14b shows the respective results for VoIP. We point out
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Table 5.6: Classification of the evaluated mechanisms with respect to different qualitative
aspects.

Topic Description LASSO LRR KRR SVR NN

Complexity

Comprehensibility by humans Easy Easy Medium Medium Hard
Number of settable hyper-parameters 1 (λ ) 1 (λ ) 2 (λ and

kernel)
+ kernel-
specific
settings

3 (C, ε ,
kernel)
+ kernel-
specific
settings

∼ 10

Number of model parameters to tune max #features+1 #features+1 #samples #samples #NN connections
Complexity to finding the (near) optimum Easy Easy Medium Medium Hard

Data set
Requirements on the data set size Low Low Medium Medium High
Sensitivity towards outliers High High Medium Low Medium

Feature selection
Detection of relevant features Easy (Integrated) Dedicated step needed (e.g. PCA, correlation analysis)
Reducing the number of used features Easy (tuning λ ) Hard/Dedicated step needed if not all features should be used

Trackability
Feasibility to track a model’s evolution Easy Medium Medium Medium Hard
Amount of data that needs to be tracked Low Low Low Low Medium

Over-fitting
Sensitivity towards over- or under-fitting Low Low Medium Medium Medium
Automatically applied prevention mechanisms Yes Yes Yes Yes No
Efforts to prevent over-fitting Low Low Low Low Medium

Service coverage Applicability to different types of problems Low Low High High High

that the VoIP testset contains 5518 test samples, roughly the double compared to the VoD
testset. Again, LRR, LASSO, and NN are the fastest estimators and need about half a sec-
ond. It takes 3.9 seconds for SVR, and KRR has the longest estimation duration with about
8 seconds.

5.5.2 Qualitative Assessment

Besides the typical performance metrics, stakeholders such as MNOs also need to take
qualitative aspect into account, when deciding which algorithm to deploy in their networks.
In the following, we use qualitative scales and classify the algorithms applied in this work
with respect to different design decisions, as shown in Table 5.6.

5.5.2.1 Requirements on Data Set Size

Primarily, the required size of the data set, which allows to train the model adequately,
depends on the complexity of the problem. Nevertheless, the required amount of data also
depends on the used model itself. In general, more complex models (i.e., with a high dimen-
sional weight parameter space) require more data, unless unreasonably strong regularization
is applied. The linear models, LASSO and LRR, have relatively low dimensional parameter
space (usually the number of features plus one), and hence their requirements in terms of the
number of samples in the training data set are comparably low. On the other hand, KRR and
SVR with non-linear kernels typically require more data in order to learn the higher order
dependencies. The complexity of NN depends on the architecture, but its benefits appear
when a complex architecture is trained on a large data set. In this sense, it requires a large
amount of data. Outliers are critical in general when it comes to training ML algorithms
and should be eliminated during the pre-processing step, if possible. The sensitivity towards
outliers mainly depends on the loss function to be minimized — squared losses, e.g., MSE,
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are highly sensitive to outliers, while (piece-wise) linear loss is robust. Therefore, SVR
trained with the piece-wise linear ε-insensitive loss tends to be more robust than the other
four models.

5.5.2.2 Training and Hyper-parameter Tuning

For the ML model for which the training is performed by solving a convex problem, reli-
able solvers are accessible — the problem is solved analytically or by an iterative algorithm
with convergence guarantee. The training objectives for LASSO, LRR, KRR, and SVR are
all convex, and therefore, we can expect that the model is stably trained when the model
hyper-parameters are set appropriately. On the other hand, NN is trained by solving non-
convex problems, and available state-of-the-art solvers are only guaranteed to converge to
a local solution. There are many tips on choice of solvers, e.g., stochastic gradient descent
or ADAM [161], initialization, and algorithm parameter setting, e.g., learning rate, momen-
tum, the number of epochs, batch size, to likely get a “good” local solution, but good setting
can depend on the model architecture and the model hyper-parameters, and therefore, can-
not be fully automatic and human intervention is necessary when training fails. The model
hyper-parameters have to be set appropriately. The linear methods, LASSO and LRR, have
a single regularization parameters, which can be tuned by grid search on the validation
error, i.e., prediction error on validation data. The kernel methods, KRR and SVR, have
bandwidth parameters, which should be tuned, although the default value (γ = 1) can also
work, assuming that the training data is appropriately pre-processed, e.g., standardization so
that all features have zero means and unit variances. For NN, the architecture corresponds
to the model hyper-parameters, including the number of hidden layers, the neuron type, e.g.,
fully-connected, convolutional, pooling, etc., and the number of nodes in each layer. For
extensive exploration, Bayesian optimization can be used.

5.5.2.3 Feature Selection and Interpretability

Finding the features that are relevant for estimating the QoE is important. Practically, this
information can be used to reduce the costs for estimation (e.g., collecting the data and
processing it to generate the features), and allows to understand what the ML model has
learned, or explain why it predicts a particular response for particular input features. The
latter is important when ML models are deployed in real applications that require high
reliability and security. For linear models, the learned weights can be seen as the impor-
tance of the corresponding features, and therefore are easily interpretable – the features
for which the learned absolute weights are large are relevant for predicting the response.
However, correlations between features can cause spuriously detect relevant features, be-
cause the contribution from the two positively correlated features with large positive and
negative weights, respectively, can cancel to each other. LASSO was proposed to avoid
this phenomenon. The sparsity inducing L1 regularizer suppresses the contribution (i.e.,
weight) from unnecessary features, and its solution for a fixed number of non-zero weights
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are guaranteed to correspond to the set of features that best predicts the response. The ker-
nel methods and NN are seen as black-box predictors, and there is no straightforward way
to interpret. In a recently emerging research field, called explainable artificial intelligence
(XAI) [162], researchers are tackling to address this issue, and many methods have been and
are being developed. However, no existing method is guaranteed to correctly explain the
ML model, and furthermore, vulnerability against adversarial attack was pointed out [163].
Accordingly, interpreting non-linear ML models is so far a relatively hard task, requiring at
least some human effort and expert knowledge.

5.5.2.4 Trackability

If an ML model is re-trained regularly using new ground-truth data, it will evolve over time.
This happens for diverse reasons. The content provider could change the model used to
compute the QoE which is communicated via the AF or it could adjust application settings.
For the example of VoD, this could be a change in the quality switching thresholds, a re-
configuration of the maximum amount of buffered playtime, or changing video encoding
characteristics, e.g., the segment duration or video bitrate. In case of VoIP, such a change
could be the implementation of a new voice codec. Furthermore, changes regarding the net-
work configuration, such as applying another scheduling algorithm for resource allocation
at the AN, influence the correlation between network-related features and QoE. It might
be of interest for an MNO, to monitor how the model evolves over time. For instance, to
track which features gained importance and which ones became less relevant. Accordingly,
the trackability of a model mainly depends on three factors, which have previously been
discussed: Its capability for feature relevance analysis, its comprehensibility, and its num-
ber of (hyper-)parameters. Tracking how the model evolves over time is very simple with
LASSO. It returns a p-value for each feature, which can be seen as a measure of its respec-
tive importance to estimate QoE. Besides, λ is the only configurable parameter that needs
to tracked. With LRR, KRR, and SVR, such a simple tracking of feature importance cannot
be performed. Indeed, the weights of the input features could be seen as a rough approx-
imation of their importance, but this requires a linear kernel and that all features have the
same scale, which is seldom the case. Hence, if the feature importance should be tracked,
dedicated methods need to be applied, also beyond the training process. This allows to keep
track of the feature importance in general, but not the feature importance with respect to
the specific model which was applied. However, only few model parameter settings need to
be monitored and we classify the trackability of KRR, LRR, and SVR as medium. To ob-
tain the feature importance with NN, more complex methods, like permutation importance,
need to be applied. The values of the features are, one after another, randomly shuffled.
These shuffled values are used as an input for the trained model. Analyzing how much the
prediction output is distorted by modifying the input, allows to estimate the importance of
a features. As this process is very inefficient, and a huge range of model parameters need to
be tracked, we classify the NN as hard in terms of trackability.
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5.5.2.5 Service Coverage

The range of problems to which a specific ML algorithm can be applied is varying. In the
context of estimating QoE, we refer to this range as the service coverage, i.e., to how many
service types an algorithm can be applied without knowing the relationship between input
features and QoE upfront. Due to their linearity, LASSO and LRR are limited to services
where this relationship is linear. Contrary, KRR, SVR, and NN can be used for most prob-
lems, even if the relationship between input features and response is not linear. Thereby,
the NN with its deep architecture might show advantages in solving highly complicated
problems.

5.6 Lessons Learned

In this chapter, we elaborated on the capabilities of new NFs introduced with 5G and how
they can be exploited to overcome current QoE monitoring limitations. More specifically,
we proposed an approach relying on the AF and the NWDAF, allowing an MNO to utilize
ML so as to estimate the QoE solely based on network KPIs, which it can access at any
time. In this context, we discussed the involved challenges and design criteria from an
MNO’s point of view and conducted a feasibility study to demonstrate the applicability of
the proposed solution.

From our study, we learned that it is possible to obtain a reliable QoE estimation from
network telemetry data. More specifically, we trained and evaluated a set of five distinct
regression techniques, which are representative in terms of the their complexities, and stud-
ied their accuracy with respect to different performance metrics. In order to draw more
generalizable conclusions, we used with VoD and VoIP two distinct types of applications,
which differ with respect to their QoS/QoE relationship. To be able to identify possible
influence factors on the achieved performance, our study considers heterogeneous move-
ment patterns of clients and examines the accuracy within different subsets, representing,
e.g. low, medium, or high QoE scores.

The lowest estimation accuracy along the complete ground-truth data set is an RMSE of
0.27, obtained for the CQM model using the NN, which can still be seen as a very ac-
curate estimation. However, we learned that linear models, i.e., LASSO and LRR, fail to
estimate the low QoE scores for VoIP. This is due to the non-linear relationship between
large delays, i.e., a highly important KPI for VoIP degradation, and the resulting QoE.
Consequently, when assessing the applicability of different ML techniques with respect to
estimating the QoE of a given service, either the complex relationships between QoS and
QoE need be known beforehand or thoroughly examined. Otherwise, several options for a
possible deployment should be considered, allowing to choose the best performing one.

The estimation performance is, however, not the only factor determining the suitability of
a specific ML model. Instead, there are several practical consideration which should be
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taken into account, as discussed during the qualitative comparison of the different regres-
sion techniques. We found that while the non-linear approaches, especially KRR and SVR,
performed well in all of the investigated scenarios and subsets, their decisions are hard to
trace, and hence, could impede a root cause analysis. Finally, we note that the ML option
to be deployed should be well tailored to the underlying use-case, as we identified a high
heterogeneity of the different models in terms of their CPU-load, RAM-usage, and their du-
ration for training and testing, despite using the same physical machine and frameworks.
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6
Conclusion

Novel applications running on today’s Internet, such as UHD video streaming or VR gam-
ing, have ever increasing resource demands and are thus challenging the underlying net-
work. In addition to that is the number of users of such services steadily growing, as well as
the users’ expectations on being provided with a good quality. The paramount goal of net-
work and service providers is to keep the users satisfied, whilst operating in an economical
manner. Otherwise, they cannot be competitive in the constantly expanding market.

While the technology-oriented concept of QoS management allows for controlling and man-
aging the network resources, it neglects the end-user along the service chain. QoE manage-
ment overcomes this limitation by additionally considering end-user related factors such as
the used application, the delivered content, or the context. Over the past years, QoE man-
agement has emerged as an important research area, due to its huge potential of solving
the formerly mentioned challenges. For instance, it involves mechanisms for efficiently ex-
ploiting network resources and for applying advanced application-level mechanisms so to
achieve customer loyalty by delivering a good QoE, whilst at the same time being econom-
ically viable by means of profitable service operation.

Despite the vast research efforts related to QoE management, it still faces a multitude of
challenges to date. To exploit its full potential, it is essential to co-ordinate the control
loops on application- and network-level. Thereby, the key limitation is that NPs and APs
have distinct angles on the Internet ecosystem. Consequently, each of them operates within
their specific action space and hence – to a certain degree – independent of the respective
other. For instance, the AP has capabilities to assess the QoE or its relevant parameters,
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as well as to collect in-app user ratings. However, it is either unaware of the underlying
network KPIs or has to rely on rough estimations of the current network state when tuning
application-specific settings. Analogous to that has the NP no information about detailed
application specifics, whereas it is capable of performing fine-grained network monitoring
as well as to implement advanced resource allocation strategies.

This monograph covered three different aspects related to QoE management, with the goal
to overcome its current limitations and to improve the user satisfaction on the example of
HAS. Thereby, the focus was set on all three QoE management building blocks, i.e., QoE
modeling, QoE optimization, and QoE monitoring, and the lessons learned have relevance
for both of the main stakeholder in the HAS ecosystem, the AP as well as the NP. More
specifically, we could derive the following conclusions:

Analytical models allow to understand the complex interplay between application- and
network-specific parameters and their impact on QoE. In the course of this monograph
we extended an existing analytical approach, relying on discrete-time analysis, by the capa-
bility of modeling the HAS-specific quality adaptation feature, according to both, a buffer-
based and a rate-based adaptation scheme. The conducted validation confirms the model’s
reliability in terms of computing the buffer state and other important KPIs, allowing for
efficiently retrieving a well tuned parameter setting, so as to optimize the QoE delivered
to the user. We furthermore showed that, despite the probabilistic nature of the model’s
output and the resulting lack of temporal context, it can still reflect the QoE as obtained
with time-dependent QoE estimation models, such as P.1203. To demonstrate the model’s
applicability for optimization purposes, we performed an exemplary parameter study from
which we concluded that the threshold for leaving the lowest quality level should rather
be set in a conservative manner. Compared to an aggressive setting, it reduces stallings in
scenarios with moderate to high bandwidth fluctuations, but is still capable of achieving the
same average video quality in scenarios with low or no bandwidth variation. From the pre-
sented efficient way to build up HAS-specific domain knowledge to support QoE modeling
activities, we exemplarily derived a specific configuration which can lead to a general QoE
improvement for HAS, i.e., independent of the network characteristics.

Variable segment durations can enhance the efficiency of the HAS ecosystem by reduc-
ing the video encoding overhead and improving the delivered QoE. Typically, videos for
HAS are split in a content-agnostic manner in order to achieve video segments of equal du-
rations. In the scope of this monograph we considered a segmentation technique which
takes the video content into account by splitting at scene-cuts, resulting in segments of
variable durations. This allows to significantly reduce the number of costly I-frames and
thus, to increase the overall encoding efficiency of HAS-prepared videos. By means of
our data set, comprising a vast number of video sequences encoded with a representative
set of different settings, we derive the relevant factors which influence the magnitude of
bitrate reduction achieved by the variable approach. Moreover, we conducted controlled
testbed measurements, considering various bandwidth capacities and different ABR mech-
anisms, to study the impact of variable segment durations on the video streaming QoE. We
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6 Conclusion

learn that in scenarios with low bandwidth limits, the variable approach reduces the number
of video interruptions, delivers a higher visual quality, and hence, clearly outperforms the
state-of-the art mechanism. However, with increasing bandwidth capacities, we observe
more cases where the variable approach degrades the subjective HAS performance. Due
to a faster buffer ramp-up, higher qualities are more likely to be requested. This behavior,
combined with the enlarged segment size variability at higher quality levels, increases the
risk of stallings. To overcome this issue, the quality switching thresholds could either be
set more conservative, or dedicated ABR strategies should be applied, which are capable of
taking the segments’ sizes into account when selecting the quality. This small adaptation to
the system would allow to fully exploit the potential of variable segment durations.

The introduction of new features for third party information exchange and data ana-
lytics in 5G can overcome current QoE monitoring limitations. The two key enabling
5G NFs discussed in this monograph are the NWDAF and the AF. The NWDAF is dedicated
for collecting, processing, and analyzing a vast amount of data and it can share generated
analytics with other NFs. The AF provides a standardized interface for the communication
with third parties, such as APs. In the scope of this work, we proposed a work flow rely-
ing on these NFs, which are newly introduced with the 5th generation of mobile networks.
More specifically, we assume that the MNO receives QoE information from the AP via the
AF. The MNO is thus capable of correlating the obtained ground-truth QoE with network
statistics available at the NWDAF in order to train ML-based models. During deployment,
such a model is capable of estimating the QoE from network telemetry data, which can
be collected by the MNO at any time. While this can potentially overcome current QoE
monitoring limitations of NPs, it is associated with several challenges and design criteria.
We first elaborated on the key challenges from the viewpoint of an MNO and then demon-
strated by means of a simulation-based study the feasibility of such an approach. Therefore,
we compared five regression techniques with respect to their estimation accuracy, resource
consumption, and duration for training and testing. In addition to that, we performed a
qualitative comparison of the techniques, taking into account aspects such as their compre-
hensibility or their capability of performing feature selection. Our results and discussions
can serve as a guideline for ML deployment in 5GS and show in how far the tested tech-
niques can satisfy the requirements and cope with the heterogeneity of today’s networks.

In general, introducing more context information to the HAS ecosystem allows to run it in a
more efficient manner. We have shown that by taking the video content into account, instead
of purely relying on a content-agnostic segmentation, a more efficient video encoding can
be achieved. In order to fully exploit the potential of variable segment durations for HAS,
it is advisable to not only increase the amount of considered context for encoding, but also
for streaming. For instance, in a next step, one could contemplate to dynamically tune
quality switching and buffer thresholds to the video segments’ characteristics, such as their
average segment size and variation, instead of relying on a one-fits-all solution. Although
this additionally increases the complexity of the system, it will eliminate the drawbacks
of the variable approach identified in this monograph. Such optimized threshold settings
could, for example, be revealed be applying the proposed analytical queuing model.
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Enhanced context-awareness also plays an essential role for 5G and beyond networks,
among others driven by the goals of improving network efficiency and providing a bet-
ter QoE. The 5G architecture also introduces new mechanisms for resource allocation, such
as QoS-flows, which allow for assigning per-flow bitrate guarantees, or network slicing,
a technology to run dedicated virtual networks tailored to a vertical’s specific needs, e.g.
ultra low delay or high bandwidth, on the same physical infrastructure. Accordingly, the
next steps should focus on the exploitation of such new 5G-specific control mechanisms
in an optimized and QoE-aware manner. For instance, the obtained QoE information can
be used to enhance the user satisfaction by triggering a well targeted, automated resource
allocation. The implementation of an AI-enabled, self-organized control loop, consisting of
QoE monitoring, deriving control actions, and reviewing their implications on the QoE, can
form the basis for fully autonomous QoE management in next generation networks.
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