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Abstract 

A simulator study investigated the consequences of a transition between two al-

ternative formats of the attitude indictor in aircraft cockpits, the moving-horizon and 

moving-aircraft format. Two groups of novices practiced performing two flight tasks 

(flight-path tracking and recovery from unusual attitudes) with one attitude-indicator 

format for six practice sessions, before transitioning to the other format. The results 

show that, after practice, participants were able to perform both tasks equally well with 

both attitude-indicator formats. However, the number of reversal errors in the recovery 

task increased considerably when transitioning from the moving-aircraft to moving-

horizon format. No such effect emerged for the other direction. This suggests that the 

former transition is more difficult and represents a possible risk for flight safety.  

Keywords: attitude indicator, transition, spatial disorientation, display design 

principles, display–control compatibility 
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Attitude Indicator Format: How Difficult Is the Transition Between Different Reference 

Systems? 

On January 10, 2000, a Saab 340B crashed near Nassenwil, Zürich, Switzerland. 

Ten passengers (including three crewmembers) were killed. The accident occurred after 

the pilots failed to recover from a surprising bank movement of their aircraft to the 

right. The accident investigation report identified as one important contributing factor 

the pilot’s inappropriate rudder input to the right, which further increased the unusually 

high bank attitude and thus aggravated the situation. This was attributed to the fact that 

the pilot flying, who was originally trained on Russian aircraft equipped with a so-called 

moving-aircraft (MA) attitude indicator (AI), lost his spatial orientation presumably 

owing to a misinterpretation of the Western moving-horizon (MH) AI (Eidgenössisches 

Departement für Umwelt, Verkehr, Energie und Kommunikation [UVEK], 2002). 

This exemplary accident points to the importance of a classic human factors issue 

in aviation psychology, namely, the question of which reference frame should be used to 

display the aircraft’s attitude information to pilots (Fitts, 1947; Previc & Ercoline, 1999). 

Over the years, several AI formats have been proposed, but only two were widely dis-

seminated. The first one is the MH format, which has always been the common format 

in Western aircraft. The MH format depicts the attitude with a moving artificial horizon 

against a fixed aircraft symbol. A clockwise bank movement of the aircraft is depicted by 

a counterclockwise rotation of the artificial horizon in the AI and vice versa. An upward 

or downward pitching of the aircraft is shown by downward or upward movements of 

the horizon line. This is a direct analogy to what one would see from inside the cockpit – 

a horizon apparently moving relative to the aircraft (Previc & Ercoline, 1999). The sec-

ond AI format, the MA format (Previc & Ercoline, 1999), has often been used by Russian 
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aircraft manufacturer and is still a standard in current aircraft models, for example, in 

Tupolev Tu-134 and MiG fighters. In this display, bank movements of the aircraft are in-

dicated by corresponding rotations of the aircraft symbol in the display, while the artifi-

cial horizon line is kept in a steady horizontal position. This directly corresponds to 

what one would see if one would observe the aircraft from behind. Only changes in the 

pitch angle are indicated by movements of the horizon line, corresponding to the depic-

tion in the MH display. 

Both formats are driven by different concepts of compatibility. While the MH for-

mat serves the principle of pictorial realism, that is, it corresponds to what is perceived 

to move in the outside world when the attitude of an aircraft changes, the MA format 

serves the principle of moving part (Roscoe, 1968), that is, the moving element in the 

display corresponds to what moves in the pilot’s “mental representation” of flying an 

aircraft (Wickens, 2003, p. 152). 

Since both competing AI formats are still in use today, two important questions 

arise. First, which AI format is superior in terms of higher performance and less prone 

to misinterpretation? This also involves the question of which of the two compatibility 

principles referred to earlier is the more dominant one in ensuring intuition of the dis-

played information. Second, and even more important, what are the consequences of a 

transition when a pilot has to switch between both AI formats for some reason? The first 

question has repeatedly been addressed in prior research. Most of this research was con-

ducted during the 1950s-1970s and has been well summarized by Previc and Ercoline 

(1999). In particular, the results of research with flight novices has provided strong evi-

dence for the MA format being more intuitive and exhibiting a general superiority in 

supporting quick and correct recoveries from unusual attitudes than the MH format. 
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More recent research has replicated these findings for the typical AIs integrated in the 

primary flight displays (PFD) of today’s glass cockpits (Ding & Proctor, 2017; Müller, Sa-

dovitch, & Manzey, 2018). Furthermore, there is evidence that the results gained with 

flight novices can also be generalized to experienced pilots (Müller et al., 2018; Ponoma-

renko, Lapa, & Lemeshchenko, 1990). For example, Müller et al. (2018) were surprised 

by the finding that pilots, certified for instrument flying based on training with MH AIs, 

were also less prone to reversal errors in recoveries from unusual attitudes when using 

the MA format compared with “their” MH format.  

Several theories have been proposed to explain the supposed superiority of the 

MA format. The first set of theories considers it as a result of basic perceptual organiza-

tion, namely, a reversal of figure–ground perception and the differentiation of various 

perceptual spaces when interacting with the three-dimensional environment (Johnson 

& Roscoe, 1972; Previc & Ercoline, 1999). The basic principle guiding the design of the 

MH format is that it should mimic the view out of the cockpit window showing the 

movements of the natural horizon in case of attitude changes. This presupposes that pi-

lots perceive the displayed artificial horizon as the stable (back-)ground and any move-

ments of this horizon as movements of the airplane (figure), as they intuitively do when 

interpreting movements of the natural horizon. However, the artificial horizon line in an 

MH format does not fulfill the usual characteristics of a ground. Instead it represents 

characteristics of a typical figure, that is, a comparatively small moving element in-

cluded in a much larger and stable instrument panel. This can easily lead to a figure–

ground reversal in a way that the pilot does not perceive the moving artificial horizon as 

the ground in front of which the airplane is moving, but as the figure that is directly con-

trolled by the steering movements at the yoke or sidestick. As a consequence, they tend 
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to execute a reversed control input compared with what was necessary to control the at-

titude of the aircraft when interacting with the MH AI. 

This fits directly the distinction of perceptual spaces in the neuropsychological 

reference model proposed by Previc and Ercoline (1999). Specifically, they propose that 

different major brain systems are involved when interacting with the environment. The 

first and closest one is the peripersonal system. It processes information of the percep-

tual space within reaching distance. Movements of objects in this space are usually per-

ceived as movements relative to oneself (as stable reference) and not as consequences of 

self-motions. By contrast, the ambient extrapersonal system processes information 

from far distances. Large-scale movements in this space are usually perceived as conse-

quences of self-motions against a stable environment. Based on this theory, the main is-

sue of the MH format is that it tries to induce a perceptual effect typically for move-

ments processed by the ambient extrapersonal system by presenting the related infor-

mation on a small instrument in the peripersonal space. Directly corresponding to the 

figure–ground reversal effect, this should lead pilots to intuitively perceive movements 

of the artificial horizon as movements caused by their steering inputs rather than by a 

consequence of their self-motion (Previc & Ercoline, 1999). 

Another theoretical explanation of the assumed advantages of the MA versus MH 

format relates to ideomotor theory (Greenwald, 1970) and effects of response–effect 

compatibility (Janczyk, Pfister, Crognale, & Kunde, 2012; Janczyk, Yamaguchi, Proctor, 

& Pfister, 2015). According to this theory, “it is easier to produce actions that predictably 

produce consequences that are compatible rather than incompatible with the action it-

self” (Janczyk et al., 2012, p. 2). While the MA format is compatible in this respect, that 

is, right/left movements at the controls lead to directly compatible right/left movements 
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of the moving part (aircraft symbol) in the display, the MH format is response–effect in-

compatible, that is, right/left movements at the controls lead to left/right movements of 

the artificial horizon. Numerous studies have shown that response–effect incompatible 

actions indeed need longer and are more prone to errors than compatible ones, both for 

discrete manual responses (e.g., Kunde, 2001) as well as for continuous rotary move-

ments (Janczyk et al., 2015). 

This also suggests that a transition from the MH to the MA format should be eas-

ier to achieve than the other way around. Transitioning from the MH to the MA format 

involves a transition from an inferior to a more intuitive and compatible format and, 

thus, should be achieved faster and with less risks of misinterpretation compared with 

the reverse transition. Evidence supporting this assumption is provided from studies 

with pilots who were extensively trained with an MH format and then had to perform 

simulated flight tracking tasks or recoveries from unusual attitudes with the MA format. 

In the majority of such studies, pilots were able to perform these transition tasks with 

only small or even no performance impairments (e.g., Browne, 1954; Cohen, Otakeno, 

Previc, & Ercoline, 2001; Gardner, Lacey, & Seeger, 1954; Müller et al., 2018; Roscoe & 

Williges, 1975). This is in line with findings of Kovalenko (1991) suggesting that almost 

one third of all experienced pilots, flying with the standard MH format, appear to still 

keep a mental representation of spatial bank movements that is more aligned with the 

depiction of attitude changes in an MA than an MH display. 

In contrast, fewer studies have investigated the transfer from an MA to an MH 

display, which seem to be even more important given the fact that today pilots trained 

on Russian aircraft with MA AI often need to transfer to aircraft with Western technol-

ogy. As far as we are aware of, the only exception is a study by Yamaguchi and Proctor 
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(2010). They trained two groups of 20 flight novices each to perform simulated flight 

path tracking tasks with the MH format or the MA format, respectively. Both groups 

showed a similar practice progress and finally performed the tasks equally well. Subse-

quently, both groups had to switch to the alternative AI format for a transition session. 

In contrast to our assumption, no asymmetric transition effects for MH to MA (easy) 

and MA to MH (difficult) transitions were found. Instead, both directions of transition 

led to tracking performance decrements to a similar degree, suggesting that risks of 

transitions might be comparable in both directions. However, the study involved some-

what artificial displays and the results were based on tracking tasks only. Tracking tasks 

solely require comparatively small continuous control movements in order to compen-

sate slight attitude changes that can be monitored constantly, which might be performed 

well even with a different display format. Thus, it might be questioned to what extent 

the findings can be generalized to the typical AIs integrated in today’s PFDs and the 

more critical recovery tasks. Recovery tasks are considered as particularly critical with 

respect to two aspects. First, they put higher demands on pilots than tracking tasks do, 

owing to their unexpected nature and the rather unusual flight attitudes, which have to 

be recovered. Second, recovery tasks simulate safety critical flight situations where in-

correct responses can directly lead to fatal accidents. 

Anecdotal reports from aviation indeed suggest that attitude recovery tasks might 

make a difference with respect to the relative risks of negative transfer effects involved 

in transitions of the AI format. In contrast to the relatively easy MH–MA transition, the 

switch from an MA to MH format seems to be coupled with negative performance con-

sequences, especially in high-stress situations, and might even involve severe risks for 

flight safety. Dramatic examples of such anecdotal evidence are the crash of the Saab 
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340B Crossair CRX 498 in January 2000, described in our introductory example, and 

the crash of the Boeing 737-505 Aeroflot Flight 821 in September 2008 with 88 fatali-

ties. In both accidents, the pilots, who were originally trained on MA-formatted instru-

ments and had extensive experience on Russian aircraft, flew a Western aircraft 

equipped with an MH AI after a relatively short re-training phase, without a specific dif-

ferential training on Russian and Western aviation. The reports of both accident investi-

gation boards (Interstate Aviation Committee, 2008; UVEK, 2002) presumed that one 

important contributing factor to these fatal accidents was that the pilots responded 

falsely to the MH-formatted AI by falling back to their previously learned heuristics; 

that is, responding to unusual attitude change based on an MA AI. 

In order to evaluate the possible risks of transitioning between the different AI 

formats, the current study directly compared the performance consequences of transi-

tions from MH to MA and MA to MH formats, based on a display design closely resem-

bling PFDs implemented in today’s glass cockpits (i.e., A320). Because pilots trained ex-

clusively on Russian aircraft are almost impossible to recruit for such research and given 

that our previous research comparing the AI formats showed similar effects for flight 

novices and pilots (Müller et al., 2018), we decided to base the entire research on flight 

novices. After providing intensive training with either MH- or MA-formatted AI, partici-

pants were requested to transfer to the AI format they were not trained with previously. 

Transfer-induced performance consequences were then evaluated for both simulated 

flight-path tracking and for recoveries from unusual attitudes. We expected to repro-

duce Yamaguchi and Proctor’s (2010) results regarding the tracking task, but we as-

sumed asymmetric transition effects to become apparent in the recovery task. 
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Method 

Participants 

A total of 31 participants were recruited to take part in the study. This sample size 

was based on an a priori power analysis using G*Power (Faul, Erdfelder, Lang, & Buch-

ner, 2007), which revealed that a sample size of 30 would enable us to detect at least a 

medium effect with a probability of 95% and a significance level of 5% for a between-

group comparison.  

The sample consisted of nine female and 22 male participants. Most of the partic-

ipants (n = 23) had no prior knowledge of flying an aircraft whatsoever. The eight re-

maining participants had some limited experiences based on casually flying in flight 

simulators of different fidelity (including PC games). The participants were randomly di-

vided into two groups. The mean age of the MH group was 31.4 years (SD = 7.2) and the 

MA group, 24.6 years (SD = 3.5). All participants of the simulator study were treated ac-

cording to the Declaration of Helsinki. Participation was compensated by either course 

credits or a monetary expense allowance of € 10. 

Apparatus 

The experiment was conducted in a PC-based flight simulator consisting of a 

mock-up Cessna 172 Skyhawk SP G1000 cockpit panel with an integrated screen dis-

playing a PFD. The input device was a Logitech Extreme 3D Pro joystick. The outside 

view, generated by an X-Plane flight simulation, was projected on the wall approxi-

mately 1.2 m in front of the cockpit. The PFD recreated the overall design of an Airbus 

A320 PFD (see Figure 1). However, some adjustments were made to meet the require-

ments of the experimental flight tasks and accommodate the fact that the participants 

were novices (i.e., the flight mode annunciator, indications of control limits, and bank 
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indicator were hidden). The AI of the PFDs was 8.3 cm high and 7.1 cm wide and the 

participants were seated about 60 cm in front of the cockpit panel. The simulation was a 

simplified linear flight model with two degrees of freedom in pitch and bank so that nov-

ices could easily learn how to fly. The joystick inputs were linearly transferred into pitch 

and bank rates. There was no need for thrust control. 

 

Figure 1. Both primary flight display (PFD) configurations used in the experiment. The 

left side shows the moving-horizon (MH) format and the right side the moving-aircraft 

(MA) format. Both PFDs show a bank angle of 45° to the right and pitch up of 10°. AI = 

attitude indicator. 

 

Tasks 

Tracking. Participants were required to hold a stable horizontal flight with pitch 

and bank angle of 0°. Continuous corrections on an x- and y-axis by means of the joy-

stick were necessary to compensate two separate preprogrammed disturbance functions 

based on the study of Fracker and Wickens (1989). The amplitude in bank was three 

times higher than the amplitude of the pitch function. 



ATTITUDE INDICATOR FORMAT 12 

Recovery. Sudden attitude changes of the aircraft by 45°, 90°, and 135° to the 

left or right had to be recovered to a stable horizontal flight. The pitch angle always was 

set to 0° at the moment of attitude change. As soon as the participants regained the hor-

izontal attitude and kept it stable within ±2° for 2 s, the given trial was completed. 

Design 

The experiment involved a 2 (group) × 7 (session) × 3 (bank angle) design. The 

first factor was defined as a between-subjects factor and included two groups, that is, 

novices practicing the MH or the MA format, respectively. The second factor repre-

sented a within-subjects factor and included six practice sessions and one transition ses-

sion. During the practice sessions, the participants practiced the two tasks with “their” 

AI format. In the seventh session, representing the transition session, participants had 

to perform the tasks with the AI format they had not practiced. The third factor was 

used only when analyzing the recovery-task performance and represented the three 

bank angle deflections to be recovered (i.e., 45°, 90°, and 135°). 

Dependent Measures 

Tracking task. Tracking performance was assessed in terms of tracking error, 

quantified by the root mean square error (RMSE) of bank and pitch angle in relation to 

0°. This measure varied inversely to how precisely the participants were able to main-

tain a horizontal flight attitude with the given AI indicators. Because the AI formats did 

not differ in pitch representation, no effects of the AI format were expected for the pitch 

RMSE. The bank and pitch angle deflections used to calculate the RMSE were recorded 

in 60 Hz. 
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Recovery task. The first performance measure used was percentage of reversal 

errors. A reversal error was defined as an initial joystick input in a direction that ampli-

fies instead of compensating a given bank angle change. As a second measure, the re-

sponse time, defined as time from the occurrence of an attitude change to the first no-

ticeable joystick input, was assessed. Only trials without reversal errors were included in 

this measure. 

Workload. To assess the subjective workload, the NASA-TLX (Hart & 

Staveland, 1988) was used without weightings (Hart, 2006).  

Procedure 

The experimental procedure consisted of an instruction part, six practice ses-

sions, and a transition session. 

Instruction part. At the beginning of the instruction part, the participants read 

a standardized PC-based instruction, including general information on the test proce-

dure and the task. Subsequently, a consent form was signed. This was followed by an ac-

commodation phase, where the participants could familiarize themselves with the simu-

lation and aircraft controls. During this accommodation phase, only the outside view 

was shown as a reference for movements of the aircraft, and the participants were asked 

to maneuver the aircraft (including different turns and level flights) and try to familiar-

ize themselves with the joystick controls. This accommodation phase was followed by 

instructions on the use of each group’s AI for a proper assessment of the aircraft’s atti-

tude. The subsequent familiarization phase then included flying with both an outside 

view as well as the PFD. After 2 minutes, the outside view was blanked and only the PFD 
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was left for spatial orientation and attitude control of the simulated aircraft. Every par-

ticipant completed several defined flight tasks and a free flight phase in order to become 

familiarized with the logic of their AI display. 

Practice part. The following practice phase was introduced by a description of 

the tracking and recovery tasks followed by six practice sessions. Each practice session 

lasted about 7 min and included a 2-min trial of the tracking task and a set of 24 trials of 

the recovery task (3 bank angles × 2 directions × 4 replications). The latter trials were 

performed in random order with the time between trials varying from 5 to 12 s. The or-

der of tracking and recovery tasks during the sessions was counterbalanced across par-

ticipants. Small breaks of approximately 1 min were included between the sessions. 

Transition part. The transition session directly followed the sixth practice ses-

sion. This session started with an instruction explaining the basic principle of the new 

AI format. Then, the same set of tasks as in the practice sessions had to be performed. 

Ratings of perceived workload were collected by means of the NASA-TLX after 

the first, the sixth, and the transition session. The experiment took about 90 min per 

participant. 

Data Analysis 

The statistical data analyses of the performance data were preceded by an outlier 

analysis. In the tracking task, participants were excluded if their bank RMSE in any of 

the sessions was more than three standard deviations above the mean of their experi-

mental group. In the recovery task, only trials meeting two criteria were considered in 

the analysis: a response time of greater than 100 ms and a successful completion within 

10 s. Participants who could not successfully finish more than 25% recovery trials in one 

of the sessions were removed entirely from the analysis. 
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Performance data derived from the tracking and the recovery task were then ana-

lyzed by analyses of variance (ANOVA) with repeated measures. An initial analysis in-

vestigated the possible effects of the AI format on the absolute level of performance and 

performance gain achieved through practice. This analysis included the two experi-

mental groups and Practice Sessions 1–5. A second analysis included only Practice Ses-

sion 6 and the transition session and addressed the performance consequences of the 

different transitions (MH–MA and MA–MH). Percentage data of reversal errors were 

arcsine transformed before the analyses in order to achieve better distribution charac-

teristics (Sokal & Rohlf, 1981). We report the back-converted descriptive statistics for re-

versal errors in percent to facilitate interpretation. Since ratings of subjective workload, 

assessed by NASA-TLX, were only available from the first, sixth, and the transition ses-

sion, these data were analyzed by 2 (group) × 3 (session) ANOVA. A significance level of 

α = 5% was used to consider an effect as significant. If the sphericity assumption was vi-

olated (Mauchly, 1940), a correction of the degrees of freedom was performed according 

to the Huynh–Feldt procedure (Huynh & Feldt, 1976). The size of each effect is calcu-

lated in terms of partial eta-squared (ηp²), while ηp² = 0.01 represents a small, ηp² = 

0.06 a medium, and ηp² = 0.14 a large effect (Cohen, 1988). 

Results 

Tracking Task 

Two participants of the MH group were considered as outliers and were not in-

cluded in the statistical analysis. Figure 2 shows the mean RMSE scores for the bank 

and pitch angle of the remaining 29 participants, separated for the two groups and the 

different sessions of the experiment. 
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Effects of practice. Figure 2A shows that both groups performed almost 

equally well during the five practice phases, independent of the respective AI format. 

This holds true for both the absolute performance level and the performance gain over 

the course of practice. A significant main effect in the 2 (group) × 5 (session) ANOVA re-

vealed that both groups improved in their bank tracking performance from the first 

(M = 4.39°, SE = 0.38°) to the fifth session (M = 3.10°, SE = 0.20°), 

F(2.92, 78.82) = 12.22, p < .001, ηp² = .31. Neither a significant main effect of group, 

F(1, 27) = 0.02, p = .882, ηp² < .01, nor a significant interaction effect of Group × Ses-

sion, F(2.92, 78.82) = 0.65, p = .578, ηp² = .02, emerged. 

Essentially, the same pattern was also found for pitch RMSE in Figure 2B. The 

pitch RMSE decreased significantly from Practice Session 1 (M = 2.40°, SE = 0.35°) to 

Session 5 (M = 1.41°, SE = 0.11°), F(1.26, 34.03) = 8.87, p = .003, ηp² = .25. Again, nei-

ther the main effect of group, F(1, 27) = 0.53, p = .471, ηp² = .02, nor the interaction ef-

fect of Group × Session, F(1.26, 34.03) = 1.13, p = .309, ηp² = .04, was significant. 
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Figure 2. Means of (A) bank and (B) pitch root mean square error over six practice ses-

sions and transition session for both groups, moving aircraft and moving horizon. Error 

bars represent standard errors. RMSE = root mean square error, MH = moving horizon, 

MA = moving aircraft. 

 

Effects of transition. As becomes evident from Figure 2A, a significant in-

crease of mean bank error was found in both groups when transferring from the sixth 

practice session (M = 3.05°, SE = 0.21°) to the alternative format in the transition ses-

sion (M = 3.54°, SE = 0.27°), F(1, 27) = 9.20, p = .005, ηp² = .25. However, this effect was 
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relatively small, and a post hoc analysis contrasting the performance in the first practice 

session and the transition session revealed that the performance in the transition ses-

sion was still significantly better than the performance in the initial practice session, 

F(1, 27) = 8.89, p = .006, ηp² = .25. Neither a main effect of group, F(1, 27) = 0.15, 

p = .701, ηp² = .01, nor an interaction effect of Group × Session emerged, F(1, 27) = 0.51, 

p = .480, ηp² = .02. 

Again, the effects for pitch RMSE were similar, albeit still weaker. The partici-

pants showed a slightly higher mean RMSE in the transition session (M = 1.57°, 

SE = 0.14°) compared with the final practice session (M = 1.37°, SE = 0.09°), but this ef-

fect was not significant, F(1, 27) = 3.48, p = .073, ηp² = .11. Again, neither a main effect of 

group, F(1, 27) = 1.54, p = .225, ηp² = .05, nor a Group × Session interaction was found, 

F(1, 27) = 1.10, p = .303, ηp² = .04. 

Workload. Because of missing data, one additional participant had to be ex-

cluded from the analysis of the NASA-TLX data. The 2 × 3 (Group [MH, MA] × Session 

[1, 6, 7]) ANOVA did not reveal a significant difference in perceived workload between 

the two groups. Although the mean TLX ratings of the MH group were somewhat lower 

(M = 33.2, SE = 4.4) than the ratings of the MA group (M = 44.9, SE = 4.8), this effect 

was not significant, F(1, 26) = 3.21, p = .085, ηp² = .110. However, a main effect of ses-

sion was found, F(2, 52) = 14.35, p < .001, ηp² = .36, indicating lower ratings after task 

practice in Session 6 (M = 37.0, SE = 3.3) and the transition session (M = 33.6, SE = 3.6), 

compared with the first practice session (M = 49.0, SE = 3.8). Most importantly, no sig-

nificant interaction effect was observed, F(2, 52) = 1.55, p = .222, ηp² < .06. An inspec-
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tion of the NASA-TLX subscales revealed that almost all subscales (i.e., physical de-

mand, temporal demand, performance, effort, and frustration) contributed to the sig-

nificant session effect in a similar way. 

Recovery Task 

Based on the outlier analyses, three participants were excluded from the analyses 

of recovery-task performance. Notably, all three outliers were found in the MH group. In 

addition, 3.0% of all individual trials were disregarded owing to unsuccessfully finished 

recoveries or response time constraints. Figure 3 shows the means of reversal error and 

the response time of the recovery task across all sessions of the experiment. 

Effects of practice. As becomes evident from Figure 3A, a clear practice effect 

emerged in the two groups also for recovery performance. On average, the rate of recov-

ery errors was reduced from 14.0% (SE = 2.6%) in the first practice session to 5.2% 

(SE = 1.4%) in the fifth practice session. This was reflected in a significant main effect of 

session in the 2 (group) × 5 (session) × 3 (bank angle) ANOVA, F(4, 104) = 7.66, 

p < .001, ηp² = .23. As with the tracking performance, neither the main effect of group, 

F(1, 26) < 0.01, p = .961, ηp² < .01, nor the Group × Session interaction, F(4, 104) = 0.99, 

p = .418, ηp² = .04, was significant. Yet, the bank angle deflection made a difference. As 

predicted, both groups made more reversal errors the higher the bank angle deflection 

was, particularly when comparing the 135° attitude change to both smaller bank angle 

changes, F(1.49, 38.84) = 22.16, p < .001, ηp² = .46. This main effect was not moderated 

by the AI format, as no interaction effect of Group × Bank Angle emerged, 

F(1.49, 38.84) = 0.86, p = .400, ηp² = .03. Furthermore, neither the interaction effect 

Session × Bank Angle, F(8, 208) = 1.68, p = .105, ηp² = .06, nor the interaction Group × 

Session × Bank Angle became significant, F(8, 208) = 0.48, p = .866, ηp² = .02. 
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Figure 3. Means of (A) reversal error and (B) response time over six practice sessions 

and transition session for both groups, moving horizon and moving aircraft. Error bars 

represent standard errors. MH = moving horizon, MA = moving aircraft. 

 

The participants’ response times revealed a similar tendency as the recovery er-

rors. This was reflected in a significant reduction of the mean response time in Session 5 

(M = 618.1 ms, SE = 24.9 ms) compared with the first practice session (M = 673.5 ms, 

SE = 26.4 ms), F(2.64, 68.63) = 2.94, p = .046, ηp² = .10. Again, a significant effect of 

bank angle emerged, F(1.31, 34.15) = 7.02, p = .007, ηp² = .21, indicating a generally 
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lower response time with the smallest bank angle (45°) compared with both higher an-

gles. By contrast, neither the main effect of group, F(1, 26) = 2.39, p = .134, ηp² = .08, 

nor any interaction effect was significant, all F < 2.0, p > .11, ηp² < .07.  

Effects of transition. As becomes evident from Figure 3A the mean reversal er-

ror rate increased in both groups when transitioning to the alternative AI format. As ex-

pected, this increase was much larger for the group transitioning from the MA to the 

MH format than for the reverse transition. While the mean reversal error rate of both 

groups was approximately identical in the last practice session (MA: M = 5.0%, 

SE = 1.8%; MH: M = 5.9%, SE = 2.0%), the reversal error rate of the MA group increased 

considerably more when switching to the MH format (M = 28.4%, SE = 4.8%) compared 

with the MH group switching to the MA format (M = 7.3%, SE = 2.8%). In the 2 (group) 

× 2 (session) × 3 (bank angle) ANOVA, this was reflected in significant main effects of 

group, F(1, 26) = 6.31, p = .019, ηp² = .20, and session, F(1, 26) = 19.20, p < .001, 

ηp² = .42, and a strong Group × Session interaction effect, F(1, 26) = 13.82, p < .001, 

ηp² = .35. In addition, a main effect of bank angle emerged, indicating that the partici-

pants committed the more reversal errors the higher the sudden change of bank angle 

was, F(2, 52) = 5.95, p = .005, ηp² = .19. This effect was not moderated by the direction 

of transition, as no interaction effects including the bank angle factor were significant, 

all F < 1.9, p > .16, ηp² ≤ .07. 

For recovery response times, a significant main effect of session emerged, indicat-

ing an increase of mean response times in the transition session (M = 739.2 ms, 

SE = 29.4 ms), compared with the last practice session (M = 632.4 ms, SE = 30.2 ms), 

F(1, 26) = 24.91, p < .001, ηp² = .49. Yet, neither a main effect of group, F(1, 26) = 0.47, 

p = .498, ηp² = .02, nor an interaction effect of Group × Session was observed, 
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F(1, 26) = 0.06, p = .811, ηp² < .01. Response times were generally lower for the 45° atti-

tude change compared with the two larger changes, reflected in a main effect of bank an-

gle, F(1.90, 49.50) = 12.52, p < .001, ηp² = .33. The interaction effect of Group × Bank 

Angle, F(1.90, 49.50) = 3.18, p = .053, ηp² = .11, as well as Session × Bank Angle, 

F(2, 52) = 2.98, p = .060, ηp² = .10, both just missed the usual level of significance. The 

threefold interaction of Group × Session × Bank Angle did not reach significance, 

F(2, 52) = 1.70, p = .192, ηp² = .06. 

Workload. The mean NASA-TLX ratings for the recovery tasks performed in 

Sessions 1, 6, and 7 did not differ significantly between the two practice groups, 

F(1, 26) = 1.25, p = .273, ηp² = .05. In addition, neither the main effect session, 

F(1.94, 50.34) = 0.28, p = .752, ηp² = .01, nor the interaction effect Group × Session was 

significant, F(1.94, 50.34) = 0.86, p = .425, ηp² = .03. 

Discussion 

The results of the present experiment provide several interesting theoretical as 

well as practical insights. First, the effects of practice show that novices were equally 

able to acquire the skills to cope with tracking and recovery tasks effectively, independ-

ent of whether they practiced these tasks with an MA or MH display. Second, a transi-

tion from the practiced AI format to an alternative format led to performance decre-

ments in both tasks. While these performance decrements were relatively small and in-

dependent of the direction of transition in the tracking task, highly asymmetric transi-

tion effects emerged for the recovery task. This suggests that different performance risks 

are associated with these two directions of transition. 

Let us first consider the results of the tracking task. Already in the first practice 

session, no obvious differences between the groups using MH or MA format were found. 
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Thus, the short familiarization phase obviously was sufficient to balance any perfor-

mance differences related to the two formats. This is in line with the findings of Yama-

guchi and Proctor (2000) but contrasts the results from our previous work, where we 

found that novices were better able to perform the tracking task with the MA versus MH 

display (Müller et al., 2018). While in this previous research the AI format was varied 

within subjects, the current study as well as the study of Yamaguchi and Proctor (2010) 

varied the AI format between subjects. The latter might have reduced the sensitivity to 

find differences between the two formats on group level. Even more important, the task 

practice with the different AI formats had an equally positive effect on tracking perfor-

mance during the practice phase and led only to small performance decrements when 

transitioning to the alternative format, independent of the direction of transition. Actu-

ally, tracking performance remained on a higher level than in the initial practice session 

even in the transition sessions. This suggests that the acquisition of tracking skills in in-

teraction with a certain AI format can be transferred at least to some extent between the 

different formats. Practice effects were also reflected in the subjective workload ratings. 

For both AI formats, the ratings were lower after the sixth practice session compared 

with the first one. In addition, no effect on subjectively perceived workload emerged in 

the transition sessions, suggesting that the transition was not perceived as effortful by 

the participants. 

The general finding of a symmetric transition effect in tracking performance con-

firms the results of Yamaguchi and Proctor (2010). Yet, in contrast to our work, they did 

not find any indication of a positive transfer between the two formats. The fact that their 
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participants had an additional load in a secondary task during task practice with the dif-

ferent AI formats might have prevented the development of general and transferable 

tracking skills. 

Considering these results for the tracking task in our experiment as well as the 

previous research by Yamaguchi and Proctor (2010), it might be concluded that a transi-

tion from MH to MA format is equally demanding as a transition from MA to MH for-

mat. Thus, both directions of transitions might easily be achievable for pilots with only 

limited risks of performance decrements. 

However, a different picture emerged when considering the recovery task. The in-

itial practice sessions also proved the principal suitability of both formats for learning 

an efficient recovery from unusual attitudes based on the AI, but a clear asymmetric per-

formance effect appeared when transitioning from one format to the other. This effect 

emerged independent of the degree of bank angle deflections and directly supports our 

hypothesis. While reversal errors increased only slightly after switching from MH to MA 

format, reversal errors increased substantially when switching from MA to MH format. 

That the recovery performance did in fact show the expected transition effect while the 

tracking tasks did not can be explained by the different nature of responses required in 

both tasks. The tracking task requires continuous corrections of relatively small devia-

tions of the aircraft attitude, which allow for constant feedback of the required re-

sponses, while spatial orientation is permanently maintained. The type of AI format 

does not make a big difference in supporting these movements. By contrast, the recovery 

task requires fast discrete responses to sudden and rather extreme attitude changes, 

which put high demands on quick orientation and response selection. It seems immedi-
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ately plausible that this task has particularly provoked a quick and intuitive response be-

havior. Consequently, the accuracy of responses suffered more when transitioning from 

the intuitive MA to the unintuitive MH format than vice versa. 

Remarkably, and in contrast to what was found for decrements in tracking per-

formance, the recovery performance decrements induced by the MA to MH transition 

were so strong that the mean rate of reversal errors in this group was even worse than 

their average performance level in the first practice session. Obviously, the experience 

with the MA format reinforces the already more intuitive mental model that the move-

ment in the instrument directly corresponds to the movement of the aircraft. Thus, it 

makes a shift to the MH format and its inverse logic of dynamics – that is, movements of 

the horizon to the left indicate movements of the aircraft to the right and vice versa, 

which is incompatible to the principle of moving part (Roscoe, 1968) – even more diffi-

cult than without much practice. 

A transition effect was also evident in the response times. In both groups, the 

time to respond to a given attitude change increased considerably, independent of the 

degree of bank deflection, and fell back (or even became slightly worse) to the perfor-

mance level during the first practice session. However, no asymmetric transition effect 

emerged in this measure. This excludes that the asymmetric effect observed in the rever-

sal errors might be simply explained by a speed–accuracy effect. Interestingly, the 

(asymmetric) performance decrements in recovery performance were not reflected in 

the subjective workload ratings linked to this task. In fact, the TLX ratings of the partici-

pants did not show any effect of transition. This suggests that the participants subjec-
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tively were not aware of the higher demand after a transition to the alternative AI for-

mat, which makes the risks involved in such transitions, particularly the MA–MH tran-

sition, even higher.  

Conclusion and Limitations 

The results of the present study extend our previous findings suggesting that pi-

lots trained with the MH format would not have many difficulties to change to the more 

intuitive MA format, neither with respect to a precise flight-path tracking nor regarding 

the more unusual recovery task (Müller et al., 2018). Consequently, a practical migra-

tion of the current MH AI displays to the superior MA format would likely be feasible 

with only limited effort of re-training and familiarization time. 

At the same time, it also suggests that the reverse transition is much more prob-

lematic, supporting conclusions of the Crossair accident investigation (UVEK, 2002). 

The transition from the MA format to the less intuitive MH format led to a considerable 

increase in proneness to reversal errors. This effect was presumably caused by a rein-

forced bias to interpret the dynamic movements in the AI display as directly linked to 

the bank movements of the aircraft even when flying with the MH format combined with 

resulting issues of response–effect incompatibility. Theoretically, this bias is assumed to 

result from combined effects of perceptual organization as proposed by the figure–

ground reversal hypothesis (Johnson & Roscoe, 1972) and the neuropsychological refer-

ence model (Previc & Ercoline, 1999). The main risk involved in this transition is that 

pilots will respond intuitively in stressful situations and fall back on earlier learned con-

trol behavior. Thus, special caution is advised when pilots change from MA- to MH-for-

matted flight displays. Intensive and long re-training phases with a particular focus on 
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AI differences will be needed to override this bias. At best, interpreting the new MH for-

mat should be over-trained to avoid the risk of fallback, before pilots transitioning from 

the MA format go into line operation. 

One limitation of the present experiment may be the use of flight novices instead 

of trained pilots as participants. However, results of our earlier research suggest that the 

effects of different AI displays found with flight novices are not that different from find-

ings with certified pilots as one might expect (Müller et al., 2018). An actual limitation 

can be seen in the use of sudden and discrete attitude changes, which represents a ra-

ther rare demand in real aviation. A further limitation is that we only tested AIs imple-

mented in head-down PFDs. The situation might be different for synthetic-vision or 

head-up displays (Beringer & Ball, 2009; Ercoline, DeVilbiss, & Evans, 2004; Pongratz, 

Vaic, Reinecke, Ercoline, & Cohen, 1999), which remain a matter of future research.   
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